]> code.delx.au - gnu-emacs/blob - src/regex.c
* regex.c (at_begline_loc_p): Also recognize `(?N:' and correctly
[gnu-emacs] / src / regex.c
1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
4
5 Copyright (C) 1993-2012 Free Software Foundation, Inc.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
20 USA. */
21
22 /* TODO:
23 - structure the opcode space into opcode+flag.
24 - merge with glibc's regex.[ch].
25 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
26 need to modify the compiled regexp so that re_match can be reentrant.
27 - get rid of on_failure_jump_smart by doing the optimization in re_comp
28 rather than at run-time, so that re_match can be reentrant.
29 */
30
31 /* AIX requires this to be the first thing in the file. */
32 #if defined _AIX && !defined REGEX_MALLOC
33 #pragma alloca
34 #endif
35
36 /* Ignore some GCC warnings for now. This section should go away
37 once the Emacs and Gnulib regex code is merged. */
38 #if (__GNUC__ == 4 && 3 <= __GNUC_MINOR__) || 4 < __GNUC__
39 # pragma GCC diagnostic ignored "-Wstrict-overflow"
40 # ifndef emacs
41 # pragma GCC diagnostic ignored "-Wunused-but-set-variable"
42 # pragma GCC diagnostic ignored "-Wunused-function"
43 # pragma GCC diagnostic ignored "-Wunused-macros"
44 # pragma GCC diagnostic ignored "-Wunused-result"
45 # pragma GCC diagnostic ignored "-Wunused-variable"
46 # endif
47 #endif
48
49 #ifdef HAVE_CONFIG_H
50 # include <config.h>
51 #endif
52
53 #include <stddef.h>
54
55 #ifdef emacs
56 /* We need this for `regex.h', and perhaps for the Emacs include files. */
57 # include <sys/types.h>
58 #endif
59
60 /* Whether to use ISO C Amendment 1 wide char functions.
61 Those should not be used for Emacs since it uses its own. */
62 #if defined _LIBC
63 #define WIDE_CHAR_SUPPORT 1
64 #else
65 #define WIDE_CHAR_SUPPORT \
66 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
67 #endif
68
69 /* For platform which support the ISO C amendment 1 functionality we
70 support user defined character classes. */
71 #if WIDE_CHAR_SUPPORT
72 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
73 # include <wchar.h>
74 # include <wctype.h>
75 #endif
76
77 #ifdef _LIBC
78 /* We have to keep the namespace clean. */
79 # define regfree(preg) __regfree (preg)
80 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
81 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
82 # define regerror(err_code, preg, errbuf, errbuf_size) \
83 __regerror (err_code, preg, errbuf, errbuf_size)
84 # define re_set_registers(bu, re, nu, st, en) \
85 __re_set_registers (bu, re, nu, st, en)
86 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
87 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
88 # define re_match(bufp, string, size, pos, regs) \
89 __re_match (bufp, string, size, pos, regs)
90 # define re_search(bufp, string, size, startpos, range, regs) \
91 __re_search (bufp, string, size, startpos, range, regs)
92 # define re_compile_pattern(pattern, length, bufp) \
93 __re_compile_pattern (pattern, length, bufp)
94 # define re_set_syntax(syntax) __re_set_syntax (syntax)
95 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
96 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
97 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
98
99 /* Make sure we call libc's function even if the user overrides them. */
100 # define btowc __btowc
101 # define iswctype __iswctype
102 # define wctype __wctype
103
104 # define WEAK_ALIAS(a,b) weak_alias (a, b)
105
106 /* We are also using some library internals. */
107 # include <locale/localeinfo.h>
108 # include <locale/elem-hash.h>
109 # include <langinfo.h>
110 #else
111 # define WEAK_ALIAS(a,b)
112 #endif
113
114 /* This is for other GNU distributions with internationalized messages. */
115 #if HAVE_LIBINTL_H || defined _LIBC
116 # include <libintl.h>
117 #else
118 # define gettext(msgid) (msgid)
119 #endif
120
121 #ifndef gettext_noop
122 /* This define is so xgettext can find the internationalizable
123 strings. */
124 # define gettext_noop(String) String
125 #endif
126
127 /* The `emacs' switch turns on certain matching commands
128 that make sense only in Emacs. */
129 #ifdef emacs
130
131 # include <setjmp.h>
132 # include "lisp.h"
133 # include "buffer.h"
134
135 /* Make syntax table lookup grant data in gl_state. */
136 # define SYNTAX_ENTRY_VIA_PROPERTY
137
138 # include "syntax.h"
139 # include "character.h"
140 # include "category.h"
141
142 # ifdef malloc
143 # undef malloc
144 # endif
145 # define malloc xmalloc
146 # ifdef realloc
147 # undef realloc
148 # endif
149 # define realloc xrealloc
150 # ifdef free
151 # undef free
152 # endif
153 # define free xfree
154
155 /* Converts the pointer to the char to BEG-based offset from the start. */
156 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
157 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
158
159 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
160 # define RE_TARGET_MULTIBYTE_P(bufp) ((bufp)->target_multibyte)
161 # define RE_STRING_CHAR(p, multibyte) \
162 (multibyte ? (STRING_CHAR (p)) : (*(p)))
163 # define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) \
164 (multibyte ? (STRING_CHAR_AND_LENGTH (p, len)) : ((len) = 1, *(p)))
165
166 # define RE_CHAR_TO_MULTIBYTE(c) UNIBYTE_TO_CHAR (c)
167
168 # define RE_CHAR_TO_UNIBYTE(c) CHAR_TO_BYTE_SAFE (c)
169
170 /* Set C a (possibly converted to multibyte) character before P. P
171 points into a string which is the virtual concatenation of STR1
172 (which ends at END1) or STR2 (which ends at END2). */
173 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
174 do { \
175 if (target_multibyte) \
176 { \
177 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
178 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
179 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
180 c = STRING_CHAR (dtemp); \
181 } \
182 else \
183 { \
184 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
185 (c) = RE_CHAR_TO_MULTIBYTE (c); \
186 } \
187 } while (0)
188
189 /* Set C a (possibly converted to multibyte) character at P, and set
190 LEN to the byte length of that character. */
191 # define GET_CHAR_AFTER(c, p, len) \
192 do { \
193 if (target_multibyte) \
194 (c) = STRING_CHAR_AND_LENGTH (p, len); \
195 else \
196 { \
197 (c) = *p; \
198 len = 1; \
199 (c) = RE_CHAR_TO_MULTIBYTE (c); \
200 } \
201 } while (0)
202
203 #else /* not emacs */
204
205 /* If we are not linking with Emacs proper,
206 we can't use the relocating allocator
207 even if config.h says that we can. */
208 # undef REL_ALLOC
209
210 # include <unistd.h>
211
212 /* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
213
214 static void *
215 xmalloc (size_t size)
216 {
217 register void *val;
218 val = (void *) malloc (size);
219 if (!val && size)
220 {
221 write (2, "virtual memory exhausted\n", 25);
222 exit (1);
223 }
224 return val;
225 }
226
227 static void *
228 xrealloc (void *block, size_t size)
229 {
230 register void *val;
231 /* We must call malloc explicitly when BLOCK is 0, since some
232 reallocs don't do this. */
233 if (! block)
234 val = (void *) malloc (size);
235 else
236 val = (void *) realloc (block, size);
237 if (!val && size)
238 {
239 write (2, "virtual memory exhausted\n", 25);
240 exit (1);
241 }
242 return val;
243 }
244
245 # ifdef malloc
246 # undef malloc
247 # endif
248 # define malloc xmalloc
249 # ifdef realloc
250 # undef realloc
251 # endif
252 # define realloc xrealloc
253
254 # include <string.h>
255
256 /* Define the syntax stuff for \<, \>, etc. */
257
258 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
259 enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
260
261 # define SWITCH_ENUM_CAST(x) (x)
262
263 /* Dummy macros for non-Emacs environments. */
264 # define CHAR_CHARSET(c) 0
265 # define CHARSET_LEADING_CODE_BASE(c) 0
266 # define MAX_MULTIBYTE_LENGTH 1
267 # define RE_MULTIBYTE_P(x) 0
268 # define RE_TARGET_MULTIBYTE_P(x) 0
269 # define WORD_BOUNDARY_P(c1, c2) (0)
270 # define CHAR_HEAD_P(p) (1)
271 # define SINGLE_BYTE_CHAR_P(c) (1)
272 # define SAME_CHARSET_P(c1, c2) (1)
273 # define BYTES_BY_CHAR_HEAD(p) (1)
274 # define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
275 # define STRING_CHAR(p) (*(p))
276 # define RE_STRING_CHAR(p, multibyte) STRING_CHAR (p)
277 # define CHAR_STRING(c, s) (*(s) = (c), 1)
278 # define STRING_CHAR_AND_LENGTH(p, actual_len) ((actual_len) = 1, *(p))
279 # define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) STRING_CHAR_AND_LENGTH (p, len)
280 # define RE_CHAR_TO_MULTIBYTE(c) (c)
281 # define RE_CHAR_TO_UNIBYTE(c) (c)
282 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
283 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
284 # define GET_CHAR_AFTER(c, p, len) \
285 (c = *p, len = 1)
286 # define MAKE_CHAR(charset, c1, c2) (c1)
287 # define BYTE8_TO_CHAR(c) (c)
288 # define CHAR_BYTE8_P(c) (0)
289 # define CHAR_LEADING_CODE(c) (c)
290
291 #endif /* not emacs */
292
293 #ifndef RE_TRANSLATE
294 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
295 # define RE_TRANSLATE_P(TBL) (TBL)
296 #endif
297 \f
298 /* Get the interface, including the syntax bits. */
299 #include "regex.h"
300
301 /* isalpha etc. are used for the character classes. */
302 #include <ctype.h>
303
304 #ifdef emacs
305
306 /* 1 if C is an ASCII character. */
307 # define IS_REAL_ASCII(c) ((c) < 0200)
308
309 /* 1 if C is a unibyte character. */
310 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
311
312 /* The Emacs definitions should not be directly affected by locales. */
313
314 /* In Emacs, these are only used for single-byte characters. */
315 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
316 # define ISCNTRL(c) ((c) < ' ')
317 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
318 || ((c) >= 'a' && (c) <= 'f') \
319 || ((c) >= 'A' && (c) <= 'F'))
320
321 /* This is only used for single-byte characters. */
322 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
323
324 /* The rest must handle multibyte characters. */
325
326 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
327 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
328 : 1)
329
330 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
331 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
332 : 1)
333
334 # define ISALNUM(c) (IS_REAL_ASCII (c) \
335 ? (((c) >= 'a' && (c) <= 'z') \
336 || ((c) >= 'A' && (c) <= 'Z') \
337 || ((c) >= '0' && (c) <= '9')) \
338 : SYNTAX (c) == Sword)
339
340 # define ISALPHA(c) (IS_REAL_ASCII (c) \
341 ? (((c) >= 'a' && (c) <= 'z') \
342 || ((c) >= 'A' && (c) <= 'Z')) \
343 : SYNTAX (c) == Sword)
344
345 # define ISLOWER(c) lowercasep (c)
346
347 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
348 ? ((c) > ' ' && (c) < 0177 \
349 && !(((c) >= 'a' && (c) <= 'z') \
350 || ((c) >= 'A' && (c) <= 'Z') \
351 || ((c) >= '0' && (c) <= '9'))) \
352 : SYNTAX (c) != Sword)
353
354 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
355
356 # define ISUPPER(c) uppercasep (c)
357
358 # define ISWORD(c) (SYNTAX (c) == Sword)
359
360 #else /* not emacs */
361
362 /* 1 if C is an ASCII character. */
363 # define IS_REAL_ASCII(c) ((c) < 0200)
364
365 /* This distinction is not meaningful, except in Emacs. */
366 # define ISUNIBYTE(c) 1
367
368 # ifdef isblank
369 # define ISBLANK(c) isblank (c)
370 # else
371 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
372 # endif
373 # ifdef isgraph
374 # define ISGRAPH(c) isgraph (c)
375 # else
376 # define ISGRAPH(c) (isprint (c) && !isspace (c))
377 # endif
378
379 /* Solaris defines ISPRINT so we must undefine it first. */
380 # undef ISPRINT
381 # define ISPRINT(c) isprint (c)
382 # define ISDIGIT(c) isdigit (c)
383 # define ISALNUM(c) isalnum (c)
384 # define ISALPHA(c) isalpha (c)
385 # define ISCNTRL(c) iscntrl (c)
386 # define ISLOWER(c) islower (c)
387 # define ISPUNCT(c) ispunct (c)
388 # define ISSPACE(c) isspace (c)
389 # define ISUPPER(c) isupper (c)
390 # define ISXDIGIT(c) isxdigit (c)
391
392 # define ISWORD(c) ISALPHA (c)
393
394 # ifdef _tolower
395 # define TOLOWER(c) _tolower (c)
396 # else
397 # define TOLOWER(c) tolower (c)
398 # endif
399
400 /* How many characters in the character set. */
401 # define CHAR_SET_SIZE 256
402
403 # ifdef SYNTAX_TABLE
404
405 extern char *re_syntax_table;
406
407 # else /* not SYNTAX_TABLE */
408
409 static char re_syntax_table[CHAR_SET_SIZE];
410
411 static void
412 init_syntax_once (void)
413 {
414 register int c;
415 static int done = 0;
416
417 if (done)
418 return;
419
420 memset (re_syntax_table, 0, sizeof re_syntax_table);
421
422 for (c = 0; c < CHAR_SET_SIZE; ++c)
423 if (ISALNUM (c))
424 re_syntax_table[c] = Sword;
425
426 re_syntax_table['_'] = Ssymbol;
427
428 done = 1;
429 }
430
431 # endif /* not SYNTAX_TABLE */
432
433 # define SYNTAX(c) re_syntax_table[(c)]
434
435 #endif /* not emacs */
436 \f
437 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
438 \f
439 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
440 use `alloca' instead of `malloc'. This is because using malloc in
441 re_search* or re_match* could cause memory leaks when C-g is used in
442 Emacs; also, malloc is slower and causes storage fragmentation. On
443 the other hand, malloc is more portable, and easier to debug.
444
445 Because we sometimes use alloca, some routines have to be macros,
446 not functions -- `alloca'-allocated space disappears at the end of the
447 function it is called in. */
448
449 #ifdef REGEX_MALLOC
450
451 # define REGEX_ALLOCATE malloc
452 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
453 # define REGEX_FREE free
454
455 #else /* not REGEX_MALLOC */
456
457 /* Emacs already defines alloca, sometimes. */
458 # ifndef alloca
459
460 /* Make alloca work the best possible way. */
461 # ifdef __GNUC__
462 # define alloca __builtin_alloca
463 # else /* not __GNUC__ */
464 # ifdef HAVE_ALLOCA_H
465 # include <alloca.h>
466 # endif /* HAVE_ALLOCA_H */
467 # endif /* not __GNUC__ */
468
469 # endif /* not alloca */
470
471 # define REGEX_ALLOCATE alloca
472
473 /* Assumes a `char *destination' variable. */
474 # define REGEX_REALLOCATE(source, osize, nsize) \
475 (destination = (char *) alloca (nsize), \
476 memcpy (destination, source, osize))
477
478 /* No need to do anything to free, after alloca. */
479 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
480
481 #endif /* not REGEX_MALLOC */
482
483 /* Define how to allocate the failure stack. */
484
485 #if defined REL_ALLOC && defined REGEX_MALLOC
486
487 # define REGEX_ALLOCATE_STACK(size) \
488 r_alloc (&failure_stack_ptr, (size))
489 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
490 r_re_alloc (&failure_stack_ptr, (nsize))
491 # define REGEX_FREE_STACK(ptr) \
492 r_alloc_free (&failure_stack_ptr)
493
494 #else /* not using relocating allocator */
495
496 # ifdef REGEX_MALLOC
497
498 # define REGEX_ALLOCATE_STACK malloc
499 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
500 # define REGEX_FREE_STACK free
501
502 # else /* not REGEX_MALLOC */
503
504 # define REGEX_ALLOCATE_STACK alloca
505
506 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
507 REGEX_REALLOCATE (source, osize, nsize)
508 /* No need to explicitly free anything. */
509 # define REGEX_FREE_STACK(arg) ((void)0)
510
511 # endif /* not REGEX_MALLOC */
512 #endif /* not using relocating allocator */
513
514
515 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
516 `string1' or just past its end. This works if PTR is NULL, which is
517 a good thing. */
518 #define FIRST_STRING_P(ptr) \
519 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
520
521 /* (Re)Allocate N items of type T using malloc, or fail. */
522 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
523 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
524 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
525
526 #define BYTEWIDTH 8 /* In bits. */
527
528 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
529
530 #undef MAX
531 #undef MIN
532 #define MAX(a, b) ((a) > (b) ? (a) : (b))
533 #define MIN(a, b) ((a) < (b) ? (a) : (b))
534
535 /* Type of source-pattern and string chars. */
536 #ifdef _MSC_VER
537 typedef unsigned char re_char;
538 #else
539 typedef const unsigned char re_char;
540 #endif
541
542 typedef char boolean;
543 #define false 0
544 #define true 1
545
546 static regoff_t re_match_2_internal (struct re_pattern_buffer *bufp,
547 re_char *string1, size_t size1,
548 re_char *string2, size_t size2,
549 ssize_t pos,
550 struct re_registers *regs,
551 ssize_t stop);
552 \f
553 /* These are the command codes that appear in compiled regular
554 expressions. Some opcodes are followed by argument bytes. A
555 command code can specify any interpretation whatsoever for its
556 arguments. Zero bytes may appear in the compiled regular expression. */
557
558 typedef enum
559 {
560 no_op = 0,
561
562 /* Succeed right away--no more backtracking. */
563 succeed,
564
565 /* Followed by one byte giving n, then by n literal bytes. */
566 exactn,
567
568 /* Matches any (more or less) character. */
569 anychar,
570
571 /* Matches any one char belonging to specified set. First
572 following byte is number of bitmap bytes. Then come bytes
573 for a bitmap saying which chars are in. Bits in each byte
574 are ordered low-bit-first. A character is in the set if its
575 bit is 1. A character too large to have a bit in the map is
576 automatically not in the set.
577
578 If the length byte has the 0x80 bit set, then that stuff
579 is followed by a range table:
580 2 bytes of flags for character sets (low 8 bits, high 8 bits)
581 See RANGE_TABLE_WORK_BITS below.
582 2 bytes, the number of pairs that follow (upto 32767)
583 pairs, each 2 multibyte characters,
584 each multibyte character represented as 3 bytes. */
585 charset,
586
587 /* Same parameters as charset, but match any character that is
588 not one of those specified. */
589 charset_not,
590
591 /* Start remembering the text that is matched, for storing in a
592 register. Followed by one byte with the register number, in
593 the range 0 to one less than the pattern buffer's re_nsub
594 field. */
595 start_memory,
596
597 /* Stop remembering the text that is matched and store it in a
598 memory register. Followed by one byte with the register
599 number, in the range 0 to one less than `re_nsub' in the
600 pattern buffer. */
601 stop_memory,
602
603 /* Match a duplicate of something remembered. Followed by one
604 byte containing the register number. */
605 duplicate,
606
607 /* Fail unless at beginning of line. */
608 begline,
609
610 /* Fail unless at end of line. */
611 endline,
612
613 /* Succeeds if at beginning of buffer (if emacs) or at beginning
614 of string to be matched (if not). */
615 begbuf,
616
617 /* Analogously, for end of buffer/string. */
618 endbuf,
619
620 /* Followed by two byte relative address to which to jump. */
621 jump,
622
623 /* Followed by two-byte relative address of place to resume at
624 in case of failure. */
625 on_failure_jump,
626
627 /* Like on_failure_jump, but pushes a placeholder instead of the
628 current string position when executed. */
629 on_failure_keep_string_jump,
630
631 /* Just like `on_failure_jump', except that it checks that we
632 don't get stuck in an infinite loop (matching an empty string
633 indefinitely). */
634 on_failure_jump_loop,
635
636 /* Just like `on_failure_jump_loop', except that it checks for
637 a different kind of loop (the kind that shows up with non-greedy
638 operators). This operation has to be immediately preceded
639 by a `no_op'. */
640 on_failure_jump_nastyloop,
641
642 /* A smart `on_failure_jump' used for greedy * and + operators.
643 It analyzes the loop before which it is put and if the
644 loop does not require backtracking, it changes itself to
645 `on_failure_keep_string_jump' and short-circuits the loop,
646 else it just defaults to changing itself into `on_failure_jump'.
647 It assumes that it is pointing to just past a `jump'. */
648 on_failure_jump_smart,
649
650 /* Followed by two-byte relative address and two-byte number n.
651 After matching N times, jump to the address upon failure.
652 Does not work if N starts at 0: use on_failure_jump_loop
653 instead. */
654 succeed_n,
655
656 /* Followed by two-byte relative address, and two-byte number n.
657 Jump to the address N times, then fail. */
658 jump_n,
659
660 /* Set the following two-byte relative address to the
661 subsequent two-byte number. The address *includes* the two
662 bytes of number. */
663 set_number_at,
664
665 wordbeg, /* Succeeds if at word beginning. */
666 wordend, /* Succeeds if at word end. */
667
668 wordbound, /* Succeeds if at a word boundary. */
669 notwordbound, /* Succeeds if not at a word boundary. */
670
671 symbeg, /* Succeeds if at symbol beginning. */
672 symend, /* Succeeds if at symbol end. */
673
674 /* Matches any character whose syntax is specified. Followed by
675 a byte which contains a syntax code, e.g., Sword. */
676 syntaxspec,
677
678 /* Matches any character whose syntax is not that specified. */
679 notsyntaxspec
680
681 #ifdef emacs
682 ,before_dot, /* Succeeds if before point. */
683 at_dot, /* Succeeds if at point. */
684 after_dot, /* Succeeds if after point. */
685
686 /* Matches any character whose category-set contains the specified
687 category. The operator is followed by a byte which contains a
688 category code (mnemonic ASCII character). */
689 categoryspec,
690
691 /* Matches any character whose category-set does not contain the
692 specified category. The operator is followed by a byte which
693 contains the category code (mnemonic ASCII character). */
694 notcategoryspec
695 #endif /* emacs */
696 } re_opcode_t;
697 \f
698 /* Common operations on the compiled pattern. */
699
700 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
701
702 #define STORE_NUMBER(destination, number) \
703 do { \
704 (destination)[0] = (number) & 0377; \
705 (destination)[1] = (number) >> 8; \
706 } while (0)
707
708 /* Same as STORE_NUMBER, except increment DESTINATION to
709 the byte after where the number is stored. Therefore, DESTINATION
710 must be an lvalue. */
711
712 #define STORE_NUMBER_AND_INCR(destination, number) \
713 do { \
714 STORE_NUMBER (destination, number); \
715 (destination) += 2; \
716 } while (0)
717
718 /* Put into DESTINATION a number stored in two contiguous bytes starting
719 at SOURCE. */
720
721 #define EXTRACT_NUMBER(destination, source) \
722 do { \
723 (destination) = *(source) & 0377; \
724 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
725 } while (0)
726
727 #ifdef DEBUG
728 static void
729 extract_number (int *dest, re_char *source)
730 {
731 int temp = SIGN_EXTEND_CHAR (*(source + 1));
732 *dest = *source & 0377;
733 *dest += temp << 8;
734 }
735
736 # ifndef EXTRACT_MACROS /* To debug the macros. */
737 # undef EXTRACT_NUMBER
738 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
739 # endif /* not EXTRACT_MACROS */
740
741 #endif /* DEBUG */
742
743 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
744 SOURCE must be an lvalue. */
745
746 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
747 do { \
748 EXTRACT_NUMBER (destination, source); \
749 (source) += 2; \
750 } while (0)
751
752 #ifdef DEBUG
753 static void
754 extract_number_and_incr (int *destination, re_char **source)
755 {
756 extract_number (destination, *source);
757 *source += 2;
758 }
759
760 # ifndef EXTRACT_MACROS
761 # undef EXTRACT_NUMBER_AND_INCR
762 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
763 extract_number_and_incr (&dest, &src)
764 # endif /* not EXTRACT_MACROS */
765
766 #endif /* DEBUG */
767 \f
768 /* Store a multibyte character in three contiguous bytes starting
769 DESTINATION, and increment DESTINATION to the byte after where the
770 character is stored. Therefore, DESTINATION must be an lvalue. */
771
772 #define STORE_CHARACTER_AND_INCR(destination, character) \
773 do { \
774 (destination)[0] = (character) & 0377; \
775 (destination)[1] = ((character) >> 8) & 0377; \
776 (destination)[2] = (character) >> 16; \
777 (destination) += 3; \
778 } while (0)
779
780 /* Put into DESTINATION a character stored in three contiguous bytes
781 starting at SOURCE. */
782
783 #define EXTRACT_CHARACTER(destination, source) \
784 do { \
785 (destination) = ((source)[0] \
786 | ((source)[1] << 8) \
787 | ((source)[2] << 16)); \
788 } while (0)
789
790
791 /* Macros for charset. */
792
793 /* Size of bitmap of charset P in bytes. P is a start of charset,
794 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
795 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
796
797 /* Nonzero if charset P has range table. */
798 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
799
800 /* Return the address of range table of charset P. But not the start
801 of table itself, but the before where the number of ranges is
802 stored. `2 +' means to skip re_opcode_t and size of bitmap,
803 and the 2 bytes of flags at the start of the range table. */
804 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
805
806 /* Extract the bit flags that start a range table. */
807 #define CHARSET_RANGE_TABLE_BITS(p) \
808 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
809 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
810
811 /* Return the address of end of RANGE_TABLE. COUNT is number of
812 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
813 is start of range and end of range. `* 3' is size of each start
814 and end. */
815 #define CHARSET_RANGE_TABLE_END(range_table, count) \
816 ((range_table) + (count) * 2 * 3)
817
818 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
819 COUNT is number of ranges in RANGE_TABLE. */
820 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
821 do \
822 { \
823 re_wchar_t range_start, range_end; \
824 re_char *rtp; \
825 re_char *range_table_end \
826 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
827 \
828 for (rtp = (range_table); rtp < range_table_end; rtp += 2 * 3) \
829 { \
830 EXTRACT_CHARACTER (range_start, rtp); \
831 EXTRACT_CHARACTER (range_end, rtp + 3); \
832 \
833 if (range_start <= (c) && (c) <= range_end) \
834 { \
835 (not) = !(not); \
836 break; \
837 } \
838 } \
839 } \
840 while (0)
841
842 /* Test if C is in range table of CHARSET. The flag NOT is negated if
843 C is listed in it. */
844 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
845 do \
846 { \
847 /* Number of ranges in range table. */ \
848 int count; \
849 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
850 \
851 EXTRACT_NUMBER_AND_INCR (count, range_table); \
852 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
853 } \
854 while (0)
855 \f
856 /* If DEBUG is defined, Regex prints many voluminous messages about what
857 it is doing (if the variable `debug' is nonzero). If linked with the
858 main program in `iregex.c', you can enter patterns and strings
859 interactively. And if linked with the main program in `main.c' and
860 the other test files, you can run the already-written tests. */
861
862 #ifdef DEBUG
863
864 /* We use standard I/O for debugging. */
865 # include <stdio.h>
866
867 /* It is useful to test things that ``must'' be true when debugging. */
868 # include <assert.h>
869
870 static int debug = -100000;
871
872 # define DEBUG_STATEMENT(e) e
873 # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
874 # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
875 # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
876 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
877 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
878 if (debug > 0) print_partial_compiled_pattern (s, e)
879 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
880 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
881
882
883 /* Print the fastmap in human-readable form. */
884
885 void
886 print_fastmap (fastmap)
887 char *fastmap;
888 {
889 unsigned was_a_range = 0;
890 unsigned i = 0;
891
892 while (i < (1 << BYTEWIDTH))
893 {
894 if (fastmap[i++])
895 {
896 was_a_range = 0;
897 putchar (i - 1);
898 while (i < (1 << BYTEWIDTH) && fastmap[i])
899 {
900 was_a_range = 1;
901 i++;
902 }
903 if (was_a_range)
904 {
905 printf ("-");
906 putchar (i - 1);
907 }
908 }
909 }
910 putchar ('\n');
911 }
912
913
914 /* Print a compiled pattern string in human-readable form, starting at
915 the START pointer into it and ending just before the pointer END. */
916
917 void
918 print_partial_compiled_pattern (start, end)
919 re_char *start;
920 re_char *end;
921 {
922 int mcnt, mcnt2;
923 re_char *p = start;
924 re_char *pend = end;
925
926 if (start == NULL)
927 {
928 fprintf (stderr, "(null)\n");
929 return;
930 }
931
932 /* Loop over pattern commands. */
933 while (p < pend)
934 {
935 fprintf (stderr, "%d:\t", p - start);
936
937 switch ((re_opcode_t) *p++)
938 {
939 case no_op:
940 fprintf (stderr, "/no_op");
941 break;
942
943 case succeed:
944 fprintf (stderr, "/succeed");
945 break;
946
947 case exactn:
948 mcnt = *p++;
949 fprintf (stderr, "/exactn/%d", mcnt);
950 do
951 {
952 fprintf (stderr, "/%c", *p++);
953 }
954 while (--mcnt);
955 break;
956
957 case start_memory:
958 fprintf (stderr, "/start_memory/%d", *p++);
959 break;
960
961 case stop_memory:
962 fprintf (stderr, "/stop_memory/%d", *p++);
963 break;
964
965 case duplicate:
966 fprintf (stderr, "/duplicate/%d", *p++);
967 break;
968
969 case anychar:
970 fprintf (stderr, "/anychar");
971 break;
972
973 case charset:
974 case charset_not:
975 {
976 register int c, last = -100;
977 register int in_range = 0;
978 int length = CHARSET_BITMAP_SIZE (p - 1);
979 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
980
981 fprintf (stderr, "/charset [%s",
982 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
983
984 if (p + *p >= pend)
985 fprintf (stderr, " !extends past end of pattern! ");
986
987 for (c = 0; c < 256; c++)
988 if (c / 8 < length
989 && (p[1 + (c/8)] & (1 << (c % 8))))
990 {
991 /* Are we starting a range? */
992 if (last + 1 == c && ! in_range)
993 {
994 fprintf (stderr, "-");
995 in_range = 1;
996 }
997 /* Have we broken a range? */
998 else if (last + 1 != c && in_range)
999 {
1000 fprintf (stderr, "%c", last);
1001 in_range = 0;
1002 }
1003
1004 if (! in_range)
1005 fprintf (stderr, "%c", c);
1006
1007 last = c;
1008 }
1009
1010 if (in_range)
1011 fprintf (stderr, "%c", last);
1012
1013 fprintf (stderr, "]");
1014
1015 p += 1 + length;
1016
1017 if (has_range_table)
1018 {
1019 int count;
1020 fprintf (stderr, "has-range-table");
1021
1022 /* ??? Should print the range table; for now, just skip it. */
1023 p += 2; /* skip range table bits */
1024 EXTRACT_NUMBER_AND_INCR (count, p);
1025 p = CHARSET_RANGE_TABLE_END (p, count);
1026 }
1027 }
1028 break;
1029
1030 case begline:
1031 fprintf (stderr, "/begline");
1032 break;
1033
1034 case endline:
1035 fprintf (stderr, "/endline");
1036 break;
1037
1038 case on_failure_jump:
1039 extract_number_and_incr (&mcnt, &p);
1040 fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
1041 break;
1042
1043 case on_failure_keep_string_jump:
1044 extract_number_and_incr (&mcnt, &p);
1045 fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
1046 break;
1047
1048 case on_failure_jump_nastyloop:
1049 extract_number_and_incr (&mcnt, &p);
1050 fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
1051 break;
1052
1053 case on_failure_jump_loop:
1054 extract_number_and_incr (&mcnt, &p);
1055 fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
1056 break;
1057
1058 case on_failure_jump_smart:
1059 extract_number_and_incr (&mcnt, &p);
1060 fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
1061 break;
1062
1063 case jump:
1064 extract_number_and_incr (&mcnt, &p);
1065 fprintf (stderr, "/jump to %d", p + mcnt - start);
1066 break;
1067
1068 case succeed_n:
1069 extract_number_and_incr (&mcnt, &p);
1070 extract_number_and_incr (&mcnt2, &p);
1071 fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1072 break;
1073
1074 case jump_n:
1075 extract_number_and_incr (&mcnt, &p);
1076 extract_number_and_incr (&mcnt2, &p);
1077 fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1078 break;
1079
1080 case set_number_at:
1081 extract_number_and_incr (&mcnt, &p);
1082 extract_number_and_incr (&mcnt2, &p);
1083 fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
1084 break;
1085
1086 case wordbound:
1087 fprintf (stderr, "/wordbound");
1088 break;
1089
1090 case notwordbound:
1091 fprintf (stderr, "/notwordbound");
1092 break;
1093
1094 case wordbeg:
1095 fprintf (stderr, "/wordbeg");
1096 break;
1097
1098 case wordend:
1099 fprintf (stderr, "/wordend");
1100 break;
1101
1102 case symbeg:
1103 fprintf (stderr, "/symbeg");
1104 break;
1105
1106 case symend:
1107 fprintf (stderr, "/symend");
1108 break;
1109
1110 case syntaxspec:
1111 fprintf (stderr, "/syntaxspec");
1112 mcnt = *p++;
1113 fprintf (stderr, "/%d", mcnt);
1114 break;
1115
1116 case notsyntaxspec:
1117 fprintf (stderr, "/notsyntaxspec");
1118 mcnt = *p++;
1119 fprintf (stderr, "/%d", mcnt);
1120 break;
1121
1122 # ifdef emacs
1123 case before_dot:
1124 fprintf (stderr, "/before_dot");
1125 break;
1126
1127 case at_dot:
1128 fprintf (stderr, "/at_dot");
1129 break;
1130
1131 case after_dot:
1132 fprintf (stderr, "/after_dot");
1133 break;
1134
1135 case categoryspec:
1136 fprintf (stderr, "/categoryspec");
1137 mcnt = *p++;
1138 fprintf (stderr, "/%d", mcnt);
1139 break;
1140
1141 case notcategoryspec:
1142 fprintf (stderr, "/notcategoryspec");
1143 mcnt = *p++;
1144 fprintf (stderr, "/%d", mcnt);
1145 break;
1146 # endif /* emacs */
1147
1148 case begbuf:
1149 fprintf (stderr, "/begbuf");
1150 break;
1151
1152 case endbuf:
1153 fprintf (stderr, "/endbuf");
1154 break;
1155
1156 default:
1157 fprintf (stderr, "?%d", *(p-1));
1158 }
1159
1160 fprintf (stderr, "\n");
1161 }
1162
1163 fprintf (stderr, "%d:\tend of pattern.\n", p - start);
1164 }
1165
1166
1167 void
1168 print_compiled_pattern (bufp)
1169 struct re_pattern_buffer *bufp;
1170 {
1171 re_char *buffer = bufp->buffer;
1172
1173 print_partial_compiled_pattern (buffer, buffer + bufp->used);
1174 printf ("%ld bytes used/%ld bytes allocated.\n",
1175 bufp->used, bufp->allocated);
1176
1177 if (bufp->fastmap_accurate && bufp->fastmap)
1178 {
1179 printf ("fastmap: ");
1180 print_fastmap (bufp->fastmap);
1181 }
1182
1183 printf ("re_nsub: %d\t", bufp->re_nsub);
1184 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1185 printf ("can_be_null: %d\t", bufp->can_be_null);
1186 printf ("no_sub: %d\t", bufp->no_sub);
1187 printf ("not_bol: %d\t", bufp->not_bol);
1188 printf ("not_eol: %d\t", bufp->not_eol);
1189 printf ("syntax: %lx\n", bufp->syntax);
1190 fflush (stdout);
1191 /* Perhaps we should print the translate table? */
1192 }
1193
1194
1195 void
1196 print_double_string (where, string1, size1, string2, size2)
1197 re_char *where;
1198 re_char *string1;
1199 re_char *string2;
1200 ssize_t size1;
1201 ssize_t size2;
1202 {
1203 ssize_t this_char;
1204
1205 if (where == NULL)
1206 printf ("(null)");
1207 else
1208 {
1209 if (FIRST_STRING_P (where))
1210 {
1211 for (this_char = where - string1; this_char < size1; this_char++)
1212 putchar (string1[this_char]);
1213
1214 where = string2;
1215 }
1216
1217 for (this_char = where - string2; this_char < size2; this_char++)
1218 putchar (string2[this_char]);
1219 }
1220 }
1221
1222 #else /* not DEBUG */
1223
1224 # undef assert
1225 # define assert(e)
1226
1227 # define DEBUG_STATEMENT(e)
1228 # define DEBUG_PRINT1(x)
1229 # define DEBUG_PRINT2(x1, x2)
1230 # define DEBUG_PRINT3(x1, x2, x3)
1231 # define DEBUG_PRINT4(x1, x2, x3, x4)
1232 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1233 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1234
1235 #endif /* not DEBUG */
1236 \f
1237 /* Use this to suppress gcc's `...may be used before initialized' warnings. */
1238 #ifdef lint
1239 # define IF_LINT(Code) Code
1240 #else
1241 # define IF_LINT(Code) /* empty */
1242 #endif
1243 \f
1244 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1245 also be assigned to arbitrarily: each pattern buffer stores its own
1246 syntax, so it can be changed between regex compilations. */
1247 /* This has no initializer because initialized variables in Emacs
1248 become read-only after dumping. */
1249 reg_syntax_t re_syntax_options;
1250
1251
1252 /* Specify the precise syntax of regexps for compilation. This provides
1253 for compatibility for various utilities which historically have
1254 different, incompatible syntaxes.
1255
1256 The argument SYNTAX is a bit mask comprised of the various bits
1257 defined in regex.h. We return the old syntax. */
1258
1259 reg_syntax_t
1260 re_set_syntax (reg_syntax_t syntax)
1261 {
1262 reg_syntax_t ret = re_syntax_options;
1263
1264 re_syntax_options = syntax;
1265 return ret;
1266 }
1267 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1268
1269 /* Regexp to use to replace spaces, or NULL meaning don't. */
1270 static re_char *whitespace_regexp;
1271
1272 void
1273 re_set_whitespace_regexp (const char *regexp)
1274 {
1275 whitespace_regexp = (re_char *) regexp;
1276 }
1277 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1278 \f
1279 /* This table gives an error message for each of the error codes listed
1280 in regex.h. Obviously the order here has to be same as there.
1281 POSIX doesn't require that we do anything for REG_NOERROR,
1282 but why not be nice? */
1283
1284 static const char *re_error_msgid[] =
1285 {
1286 gettext_noop ("Success"), /* REG_NOERROR */
1287 gettext_noop ("No match"), /* REG_NOMATCH */
1288 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1289 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1290 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1291 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1292 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1293 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1294 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1295 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1296 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1297 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1298 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1299 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1300 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1301 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1302 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1303 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
1304 };
1305 \f
1306 /* Avoiding alloca during matching, to placate r_alloc. */
1307
1308 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1309 searching and matching functions should not call alloca. On some
1310 systems, alloca is implemented in terms of malloc, and if we're
1311 using the relocating allocator routines, then malloc could cause a
1312 relocation, which might (if the strings being searched are in the
1313 ralloc heap) shift the data out from underneath the regexp
1314 routines.
1315
1316 Here's another reason to avoid allocation: Emacs
1317 processes input from X in a signal handler; processing X input may
1318 call malloc; if input arrives while a matching routine is calling
1319 malloc, then we're scrod. But Emacs can't just block input while
1320 calling matching routines; then we don't notice interrupts when
1321 they come in. So, Emacs blocks input around all regexp calls
1322 except the matching calls, which it leaves unprotected, in the
1323 faith that they will not malloc. */
1324
1325 /* Normally, this is fine. */
1326 #define MATCH_MAY_ALLOCATE
1327
1328 /* The match routines may not allocate if (1) they would do it with malloc
1329 and (2) it's not safe for them to use malloc.
1330 Note that if REL_ALLOC is defined, matching would not use malloc for the
1331 failure stack, but we would still use it for the register vectors;
1332 so REL_ALLOC should not affect this. */
1333 #if defined REGEX_MALLOC && defined emacs
1334 # undef MATCH_MAY_ALLOCATE
1335 #endif
1336
1337 \f
1338 /* Failure stack declarations and macros; both re_compile_fastmap and
1339 re_match_2 use a failure stack. These have to be macros because of
1340 REGEX_ALLOCATE_STACK. */
1341
1342
1343 /* Approximate number of failure points for which to initially allocate space
1344 when matching. If this number is exceeded, we allocate more
1345 space, so it is not a hard limit. */
1346 #ifndef INIT_FAILURE_ALLOC
1347 # define INIT_FAILURE_ALLOC 20
1348 #endif
1349
1350 /* Roughly the maximum number of failure points on the stack. Would be
1351 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1352 This is a variable only so users of regex can assign to it; we never
1353 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1354 before using it, so it should probably be a byte-count instead. */
1355 # if defined MATCH_MAY_ALLOCATE
1356 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1357 whose default stack limit is 2mb. In order for a larger
1358 value to work reliably, you have to try to make it accord
1359 with the process stack limit. */
1360 size_t re_max_failures = 40000;
1361 # else
1362 size_t re_max_failures = 4000;
1363 # endif
1364
1365 union fail_stack_elt
1366 {
1367 re_char *pointer;
1368 /* This should be the biggest `int' that's no bigger than a pointer. */
1369 long integer;
1370 };
1371
1372 typedef union fail_stack_elt fail_stack_elt_t;
1373
1374 typedef struct
1375 {
1376 fail_stack_elt_t *stack;
1377 size_t size;
1378 size_t avail; /* Offset of next open position. */
1379 size_t frame; /* Offset of the cur constructed frame. */
1380 } fail_stack_type;
1381
1382 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1383
1384
1385 /* Define macros to initialize and free the failure stack.
1386 Do `return -2' if the alloc fails. */
1387
1388 #ifdef MATCH_MAY_ALLOCATE
1389 # define INIT_FAIL_STACK() \
1390 do { \
1391 fail_stack.stack = (fail_stack_elt_t *) \
1392 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1393 * sizeof (fail_stack_elt_t)); \
1394 \
1395 if (fail_stack.stack == NULL) \
1396 return -2; \
1397 \
1398 fail_stack.size = INIT_FAILURE_ALLOC; \
1399 fail_stack.avail = 0; \
1400 fail_stack.frame = 0; \
1401 } while (0)
1402 #else
1403 # define INIT_FAIL_STACK() \
1404 do { \
1405 fail_stack.avail = 0; \
1406 fail_stack.frame = 0; \
1407 } while (0)
1408
1409 # define RETALLOC_IF(addr, n, t) \
1410 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
1411 #endif
1412
1413
1414 /* Double the size of FAIL_STACK, up to a limit
1415 which allows approximately `re_max_failures' items.
1416
1417 Return 1 if succeeds, and 0 if either ran out of memory
1418 allocating space for it or it was already too large.
1419
1420 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1421
1422 /* Factor to increase the failure stack size by
1423 when we increase it.
1424 This used to be 2, but 2 was too wasteful
1425 because the old discarded stacks added up to as much space
1426 were as ultimate, maximum-size stack. */
1427 #define FAIL_STACK_GROWTH_FACTOR 4
1428
1429 #define GROW_FAIL_STACK(fail_stack) \
1430 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1431 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1432 ? 0 \
1433 : ((fail_stack).stack \
1434 = (fail_stack_elt_t *) \
1435 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1436 (fail_stack).size * sizeof (fail_stack_elt_t), \
1437 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1438 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1439 * FAIL_STACK_GROWTH_FACTOR))), \
1440 \
1441 (fail_stack).stack == NULL \
1442 ? 0 \
1443 : ((fail_stack).size \
1444 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1445 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1446 * FAIL_STACK_GROWTH_FACTOR)) \
1447 / sizeof (fail_stack_elt_t)), \
1448 1)))
1449
1450
1451 /* Push a pointer value onto the failure stack.
1452 Assumes the variable `fail_stack'. Probably should only
1453 be called from within `PUSH_FAILURE_POINT'. */
1454 #define PUSH_FAILURE_POINTER(item) \
1455 fail_stack.stack[fail_stack.avail++].pointer = (item)
1456
1457 /* This pushes an integer-valued item onto the failure stack.
1458 Assumes the variable `fail_stack'. Probably should only
1459 be called from within `PUSH_FAILURE_POINT'. */
1460 #define PUSH_FAILURE_INT(item) \
1461 fail_stack.stack[fail_stack.avail++].integer = (item)
1462
1463 /* These POP... operations complement the PUSH... operations.
1464 All assume that `fail_stack' is nonempty. */
1465 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1466 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1467
1468 /* Individual items aside from the registers. */
1469 #define NUM_NONREG_ITEMS 3
1470
1471 /* Used to examine the stack (to detect infinite loops). */
1472 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1473 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1474 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1475 #define TOP_FAILURE_HANDLE() fail_stack.frame
1476
1477
1478 #define ENSURE_FAIL_STACK(space) \
1479 while (REMAINING_AVAIL_SLOTS <= space) { \
1480 if (!GROW_FAIL_STACK (fail_stack)) \
1481 return -2; \
1482 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1483 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1484 }
1485
1486 /* Push register NUM onto the stack. */
1487 #define PUSH_FAILURE_REG(num) \
1488 do { \
1489 char *destination; \
1490 ENSURE_FAIL_STACK(3); \
1491 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1492 num, regstart[num], regend[num]); \
1493 PUSH_FAILURE_POINTER (regstart[num]); \
1494 PUSH_FAILURE_POINTER (regend[num]); \
1495 PUSH_FAILURE_INT (num); \
1496 } while (0)
1497
1498 /* Change the counter's value to VAL, but make sure that it will
1499 be reset when backtracking. */
1500 #define PUSH_NUMBER(ptr,val) \
1501 do { \
1502 char *destination; \
1503 int c; \
1504 ENSURE_FAIL_STACK(3); \
1505 EXTRACT_NUMBER (c, ptr); \
1506 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
1507 PUSH_FAILURE_INT (c); \
1508 PUSH_FAILURE_POINTER (ptr); \
1509 PUSH_FAILURE_INT (-1); \
1510 STORE_NUMBER (ptr, val); \
1511 } while (0)
1512
1513 /* Pop a saved register off the stack. */
1514 #define POP_FAILURE_REG_OR_COUNT() \
1515 do { \
1516 long pfreg = POP_FAILURE_INT (); \
1517 if (pfreg == -1) \
1518 { \
1519 /* It's a counter. */ \
1520 /* Here, we discard `const', making re_match non-reentrant. */ \
1521 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1522 pfreg = POP_FAILURE_INT (); \
1523 STORE_NUMBER (ptr, pfreg); \
1524 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, pfreg); \
1525 } \
1526 else \
1527 { \
1528 regend[pfreg] = POP_FAILURE_POINTER (); \
1529 regstart[pfreg] = POP_FAILURE_POINTER (); \
1530 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1531 pfreg, regstart[pfreg], regend[pfreg]); \
1532 } \
1533 } while (0)
1534
1535 /* Check that we are not stuck in an infinite loop. */
1536 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1537 do { \
1538 ssize_t failure = TOP_FAILURE_HANDLE (); \
1539 /* Check for infinite matching loops */ \
1540 while (failure > 0 \
1541 && (FAILURE_STR (failure) == string_place \
1542 || FAILURE_STR (failure) == NULL)) \
1543 { \
1544 assert (FAILURE_PAT (failure) >= bufp->buffer \
1545 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1546 if (FAILURE_PAT (failure) == pat_cur) \
1547 { \
1548 cycle = 1; \
1549 break; \
1550 } \
1551 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1552 failure = NEXT_FAILURE_HANDLE(failure); \
1553 } \
1554 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1555 } while (0)
1556
1557 /* Push the information about the state we will need
1558 if we ever fail back to it.
1559
1560 Requires variables fail_stack, regstart, regend and
1561 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1562 declared.
1563
1564 Does `return FAILURE_CODE' if runs out of memory. */
1565
1566 #define PUSH_FAILURE_POINT(pattern, string_place) \
1567 do { \
1568 char *destination; \
1569 /* Must be int, so when we don't save any registers, the arithmetic \
1570 of 0 + -1 isn't done as unsigned. */ \
1571 \
1572 DEBUG_STATEMENT (nfailure_points_pushed++); \
1573 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
1574 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1575 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1576 \
1577 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1578 \
1579 DEBUG_PRINT1 ("\n"); \
1580 \
1581 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1582 PUSH_FAILURE_INT (fail_stack.frame); \
1583 \
1584 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1585 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1586 DEBUG_PRINT1 ("'\n"); \
1587 PUSH_FAILURE_POINTER (string_place); \
1588 \
1589 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1590 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1591 PUSH_FAILURE_POINTER (pattern); \
1592 \
1593 /* Close the frame by moving the frame pointer past it. */ \
1594 fail_stack.frame = fail_stack.avail; \
1595 } while (0)
1596
1597 /* Estimate the size of data pushed by a typical failure stack entry.
1598 An estimate is all we need, because all we use this for
1599 is to choose a limit for how big to make the failure stack. */
1600 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1601 #define TYPICAL_FAILURE_SIZE 20
1602
1603 /* How many items can still be added to the stack without overflowing it. */
1604 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1605
1606
1607 /* Pops what PUSH_FAIL_STACK pushes.
1608
1609 We restore into the parameters, all of which should be lvalues:
1610 STR -- the saved data position.
1611 PAT -- the saved pattern position.
1612 REGSTART, REGEND -- arrays of string positions.
1613
1614 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1615 `pend', `string1', `size1', `string2', and `size2'. */
1616
1617 #define POP_FAILURE_POINT(str, pat) \
1618 do { \
1619 assert (!FAIL_STACK_EMPTY ()); \
1620 \
1621 /* Remove failure points and point to how many regs pushed. */ \
1622 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1623 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1624 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1625 \
1626 /* Pop the saved registers. */ \
1627 while (fail_stack.frame < fail_stack.avail) \
1628 POP_FAILURE_REG_OR_COUNT (); \
1629 \
1630 pat = POP_FAILURE_POINTER (); \
1631 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1632 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1633 \
1634 /* If the saved string location is NULL, it came from an \
1635 on_failure_keep_string_jump opcode, and we want to throw away the \
1636 saved NULL, thus retaining our current position in the string. */ \
1637 str = POP_FAILURE_POINTER (); \
1638 DEBUG_PRINT2 (" Popping string %p: `", str); \
1639 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1640 DEBUG_PRINT1 ("'\n"); \
1641 \
1642 fail_stack.frame = POP_FAILURE_INT (); \
1643 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1644 \
1645 assert (fail_stack.avail >= 0); \
1646 assert (fail_stack.frame <= fail_stack.avail); \
1647 \
1648 DEBUG_STATEMENT (nfailure_points_popped++); \
1649 } while (0) /* POP_FAILURE_POINT */
1650
1651
1652 \f
1653 /* Registers are set to a sentinel when they haven't yet matched. */
1654 #define REG_UNSET(e) ((e) == NULL)
1655 \f
1656 /* Subroutine declarations and macros for regex_compile. */
1657
1658 static reg_errcode_t regex_compile (re_char *pattern, size_t size,
1659 reg_syntax_t syntax,
1660 struct re_pattern_buffer *bufp);
1661 static void store_op1 (re_opcode_t op, unsigned char *loc, int arg);
1662 static void store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2);
1663 static void insert_op1 (re_opcode_t op, unsigned char *loc,
1664 int arg, unsigned char *end);
1665 static void insert_op2 (re_opcode_t op, unsigned char *loc,
1666 int arg1, int arg2, unsigned char *end);
1667 static boolean at_begline_loc_p (re_char *pattern, re_char *p,
1668 reg_syntax_t syntax);
1669 static boolean at_endline_loc_p (re_char *p, re_char *pend,
1670 reg_syntax_t syntax);
1671 static re_char *skip_one_char (re_char *p);
1672 static int analyse_first (re_char *p, re_char *pend,
1673 char *fastmap, const int multibyte);
1674
1675 /* Fetch the next character in the uncompiled pattern, with no
1676 translation. */
1677 #define PATFETCH(c) \
1678 do { \
1679 int len; \
1680 if (p == pend) return REG_EEND; \
1681 c = RE_STRING_CHAR_AND_LENGTH (p, len, multibyte); \
1682 p += len; \
1683 } while (0)
1684
1685
1686 /* If `translate' is non-null, return translate[D], else just D. We
1687 cast the subscript to translate because some data is declared as
1688 `char *', to avoid warnings when a string constant is passed. But
1689 when we use a character as a subscript we must make it unsigned. */
1690 #ifndef TRANSLATE
1691 # define TRANSLATE(d) \
1692 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1693 #endif
1694
1695
1696 /* Macros for outputting the compiled pattern into `buffer'. */
1697
1698 /* If the buffer isn't allocated when it comes in, use this. */
1699 #define INIT_BUF_SIZE 32
1700
1701 /* Make sure we have at least N more bytes of space in buffer. */
1702 #define GET_BUFFER_SPACE(n) \
1703 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1704 EXTEND_BUFFER ()
1705
1706 /* Make sure we have one more byte of buffer space and then add C to it. */
1707 #define BUF_PUSH(c) \
1708 do { \
1709 GET_BUFFER_SPACE (1); \
1710 *b++ = (unsigned char) (c); \
1711 } while (0)
1712
1713
1714 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1715 #define BUF_PUSH_2(c1, c2) \
1716 do { \
1717 GET_BUFFER_SPACE (2); \
1718 *b++ = (unsigned char) (c1); \
1719 *b++ = (unsigned char) (c2); \
1720 } while (0)
1721
1722
1723 /* Store a jump with opcode OP at LOC to location TO. We store a
1724 relative address offset by the three bytes the jump itself occupies. */
1725 #define STORE_JUMP(op, loc, to) \
1726 store_op1 (op, loc, (to) - (loc) - 3)
1727
1728 /* Likewise, for a two-argument jump. */
1729 #define STORE_JUMP2(op, loc, to, arg) \
1730 store_op2 (op, loc, (to) - (loc) - 3, arg)
1731
1732 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1733 #define INSERT_JUMP(op, loc, to) \
1734 insert_op1 (op, loc, (to) - (loc) - 3, b)
1735
1736 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1737 #define INSERT_JUMP2(op, loc, to, arg) \
1738 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1739
1740
1741 /* This is not an arbitrary limit: the arguments which represent offsets
1742 into the pattern are two bytes long. So if 2^15 bytes turns out to
1743 be too small, many things would have to change. */
1744 # define MAX_BUF_SIZE (1L << 15)
1745
1746 #if 0 /* This is when we thought it could be 2^16 bytes. */
1747 /* Any other compiler which, like MSC, has allocation limit below 2^16
1748 bytes will have to use approach similar to what was done below for
1749 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1750 reallocating to 0 bytes. Such thing is not going to work too well.
1751 You have been warned!! */
1752 #if defined _MSC_VER && !defined WIN32
1753 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1754 # define MAX_BUF_SIZE 65500L
1755 #else
1756 # define MAX_BUF_SIZE (1L << 16)
1757 #endif
1758 #endif /* 0 */
1759
1760 /* Extend the buffer by twice its current size via realloc and
1761 reset the pointers that pointed into the old block to point to the
1762 correct places in the new one. If extending the buffer results in it
1763 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1764 #if __BOUNDED_POINTERS__
1765 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1766 # define MOVE_BUFFER_POINTER(P) \
1767 (__ptrlow (P) = new_buffer + (__ptrlow (P) - old_buffer), \
1768 SET_HIGH_BOUND (P), \
1769 __ptrvalue (P) = new_buffer + (__ptrvalue (P) - old_buffer))
1770 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1771 else \
1772 { \
1773 SET_HIGH_BOUND (b); \
1774 SET_HIGH_BOUND (begalt); \
1775 if (fixup_alt_jump) \
1776 SET_HIGH_BOUND (fixup_alt_jump); \
1777 if (laststart) \
1778 SET_HIGH_BOUND (laststart); \
1779 if (pending_exact) \
1780 SET_HIGH_BOUND (pending_exact); \
1781 }
1782 #else
1783 # define MOVE_BUFFER_POINTER(P) ((P) = new_buffer + ((P) - old_buffer))
1784 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1785 #endif
1786 #define EXTEND_BUFFER() \
1787 do { \
1788 unsigned char *old_buffer = bufp->buffer; \
1789 if (bufp->allocated == MAX_BUF_SIZE) \
1790 return REG_ESIZE; \
1791 bufp->allocated <<= 1; \
1792 if (bufp->allocated > MAX_BUF_SIZE) \
1793 bufp->allocated = MAX_BUF_SIZE; \
1794 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1795 if (bufp->buffer == NULL) \
1796 return REG_ESPACE; \
1797 /* If the buffer moved, move all the pointers into it. */ \
1798 if (old_buffer != bufp->buffer) \
1799 { \
1800 unsigned char *new_buffer = bufp->buffer; \
1801 MOVE_BUFFER_POINTER (b); \
1802 MOVE_BUFFER_POINTER (begalt); \
1803 if (fixup_alt_jump) \
1804 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1805 if (laststart) \
1806 MOVE_BUFFER_POINTER (laststart); \
1807 if (pending_exact) \
1808 MOVE_BUFFER_POINTER (pending_exact); \
1809 } \
1810 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1811 } while (0)
1812
1813
1814 /* Since we have one byte reserved for the register number argument to
1815 {start,stop}_memory, the maximum number of groups we can report
1816 things about is what fits in that byte. */
1817 #define MAX_REGNUM 255
1818
1819 /* But patterns can have more than `MAX_REGNUM' registers. We just
1820 ignore the excess. */
1821 typedef int regnum_t;
1822
1823
1824 /* Macros for the compile stack. */
1825
1826 /* Since offsets can go either forwards or backwards, this type needs to
1827 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1828 /* int may be not enough when sizeof(int) == 2. */
1829 typedef long pattern_offset_t;
1830
1831 typedef struct
1832 {
1833 pattern_offset_t begalt_offset;
1834 pattern_offset_t fixup_alt_jump;
1835 pattern_offset_t laststart_offset;
1836 regnum_t regnum;
1837 } compile_stack_elt_t;
1838
1839
1840 typedef struct
1841 {
1842 compile_stack_elt_t *stack;
1843 size_t size;
1844 size_t avail; /* Offset of next open position. */
1845 } compile_stack_type;
1846
1847
1848 #define INIT_COMPILE_STACK_SIZE 32
1849
1850 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1851 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1852
1853 /* The next available element. */
1854 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1855
1856 /* Explicit quit checking is only used on NTemacs and whenever we
1857 use polling to process input events. */
1858 #if defined emacs && (defined WINDOWSNT || defined SYNC_INPUT) && defined QUIT
1859 extern int immediate_quit;
1860 # define IMMEDIATE_QUIT_CHECK \
1861 do { \
1862 if (immediate_quit) QUIT; \
1863 } while (0)
1864 #else
1865 # define IMMEDIATE_QUIT_CHECK ((void)0)
1866 #endif
1867 \f
1868 /* Structure to manage work area for range table. */
1869 struct range_table_work_area
1870 {
1871 int *table; /* actual work area. */
1872 int allocated; /* allocated size for work area in bytes. */
1873 int used; /* actually used size in words. */
1874 int bits; /* flag to record character classes */
1875 };
1876
1877 /* Make sure that WORK_AREA can hold more N multibyte characters.
1878 This is used only in set_image_of_range and set_image_of_range_1.
1879 It expects WORK_AREA to be a pointer.
1880 If it can't get the space, it returns from the surrounding function. */
1881
1882 #define EXTEND_RANGE_TABLE(work_area, n) \
1883 do { \
1884 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1885 { \
1886 extend_range_table_work_area (&work_area); \
1887 if ((work_area).table == 0) \
1888 return (REG_ESPACE); \
1889 } \
1890 } while (0)
1891
1892 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1893 (work_area).bits |= (bit)
1894
1895 /* Bits used to implement the multibyte-part of the various character classes
1896 such as [:alnum:] in a charset's range table. */
1897 #define BIT_WORD 0x1
1898 #define BIT_LOWER 0x2
1899 #define BIT_PUNCT 0x4
1900 #define BIT_SPACE 0x8
1901 #define BIT_UPPER 0x10
1902 #define BIT_MULTIBYTE 0x20
1903
1904 /* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1905 #define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
1906 do { \
1907 EXTEND_RANGE_TABLE ((work_area), 2); \
1908 (work_area).table[(work_area).used++] = (range_start); \
1909 (work_area).table[(work_area).used++] = (range_end); \
1910 } while (0)
1911
1912 /* Free allocated memory for WORK_AREA. */
1913 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1914 do { \
1915 if ((work_area).table) \
1916 free ((work_area).table); \
1917 } while (0)
1918
1919 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1920 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1921 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1922 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1923 \f
1924
1925 /* Set the bit for character C in a list. */
1926 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1927
1928
1929 #ifdef emacs
1930
1931 /* Store characters in the range FROM to TO in the bitmap at B (for
1932 ASCII and unibyte characters) and WORK_AREA (for multibyte
1933 characters) while translating them and paying attention to the
1934 continuity of translated characters.
1935
1936 Implementation note: It is better to implement these fairly big
1937 macros by a function, but it's not that easy because macros called
1938 in this macro assume various local variables already declared. */
1939
1940 /* Both FROM and TO are ASCII characters. */
1941
1942 #define SETUP_ASCII_RANGE(work_area, FROM, TO) \
1943 do { \
1944 int C0, C1; \
1945 \
1946 for (C0 = (FROM); C0 <= (TO); C0++) \
1947 { \
1948 C1 = TRANSLATE (C0); \
1949 if (! ASCII_CHAR_P (C1)) \
1950 { \
1951 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
1952 if ((C1 = RE_CHAR_TO_UNIBYTE (C1)) < 0) \
1953 C1 = C0; \
1954 } \
1955 SET_LIST_BIT (C1); \
1956 } \
1957 } while (0)
1958
1959
1960 /* Both FROM and TO are unibyte characters (0x80..0xFF). */
1961
1962 #define SETUP_UNIBYTE_RANGE(work_area, FROM, TO) \
1963 do { \
1964 int C0, C1, C2, I; \
1965 int USED = RANGE_TABLE_WORK_USED (work_area); \
1966 \
1967 for (C0 = (FROM); C0 <= (TO); C0++) \
1968 { \
1969 C1 = RE_CHAR_TO_MULTIBYTE (C0); \
1970 if (CHAR_BYTE8_P (C1)) \
1971 SET_LIST_BIT (C0); \
1972 else \
1973 { \
1974 C2 = TRANSLATE (C1); \
1975 if (C2 == C1 \
1976 || (C1 = RE_CHAR_TO_UNIBYTE (C2)) < 0) \
1977 C1 = C0; \
1978 SET_LIST_BIT (C1); \
1979 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
1980 { \
1981 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
1982 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
1983 \
1984 if (C2 >= from - 1 && C2 <= to + 1) \
1985 { \
1986 if (C2 == from - 1) \
1987 RANGE_TABLE_WORK_ELT (work_area, I)--; \
1988 else if (C2 == to + 1) \
1989 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
1990 break; \
1991 } \
1992 } \
1993 if (I < USED) \
1994 SET_RANGE_TABLE_WORK_AREA ((work_area), C2, C2); \
1995 } \
1996 } \
1997 } while (0)
1998
1999
2000 /* Both FROM and TO are multibyte characters. */
2001
2002 #define SETUP_MULTIBYTE_RANGE(work_area, FROM, TO) \
2003 do { \
2004 int C0, C1, C2, I, USED = RANGE_TABLE_WORK_USED (work_area); \
2005 \
2006 SET_RANGE_TABLE_WORK_AREA ((work_area), (FROM), (TO)); \
2007 for (C0 = (FROM); C0 <= (TO); C0++) \
2008 { \
2009 C1 = TRANSLATE (C0); \
2010 if ((C2 = RE_CHAR_TO_UNIBYTE (C1)) >= 0 \
2011 || (C1 != C0 && (C2 = RE_CHAR_TO_UNIBYTE (C0)) >= 0)) \
2012 SET_LIST_BIT (C2); \
2013 if (C1 >= (FROM) && C1 <= (TO)) \
2014 continue; \
2015 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
2016 { \
2017 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
2018 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
2019 \
2020 if (C1 >= from - 1 && C1 <= to + 1) \
2021 { \
2022 if (C1 == from - 1) \
2023 RANGE_TABLE_WORK_ELT (work_area, I)--; \
2024 else if (C1 == to + 1) \
2025 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
2026 break; \
2027 } \
2028 } \
2029 if (I < USED) \
2030 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
2031 } \
2032 } while (0)
2033
2034 #endif /* emacs */
2035
2036 /* Get the next unsigned number in the uncompiled pattern. */
2037 #define GET_UNSIGNED_NUMBER(num) \
2038 do { \
2039 if (p == pend) \
2040 FREE_STACK_RETURN (REG_EBRACE); \
2041 else \
2042 { \
2043 PATFETCH (c); \
2044 while ('0' <= c && c <= '9') \
2045 { \
2046 int prev; \
2047 if (num < 0) \
2048 num = 0; \
2049 prev = num; \
2050 num = num * 10 + c - '0'; \
2051 if (num / 10 != prev) \
2052 FREE_STACK_RETURN (REG_BADBR); \
2053 if (p == pend) \
2054 FREE_STACK_RETURN (REG_EBRACE); \
2055 PATFETCH (c); \
2056 } \
2057 } \
2058 } while (0)
2059 \f
2060 #if ! WIDE_CHAR_SUPPORT
2061
2062 /* Map a string to the char class it names (if any). */
2063 re_wctype_t
2064 re_wctype (const re_char *str)
2065 {
2066 const char *string = (const char *) str;
2067 if (STREQ (string, "alnum")) return RECC_ALNUM;
2068 else if (STREQ (string, "alpha")) return RECC_ALPHA;
2069 else if (STREQ (string, "word")) return RECC_WORD;
2070 else if (STREQ (string, "ascii")) return RECC_ASCII;
2071 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
2072 else if (STREQ (string, "graph")) return RECC_GRAPH;
2073 else if (STREQ (string, "lower")) return RECC_LOWER;
2074 else if (STREQ (string, "print")) return RECC_PRINT;
2075 else if (STREQ (string, "punct")) return RECC_PUNCT;
2076 else if (STREQ (string, "space")) return RECC_SPACE;
2077 else if (STREQ (string, "upper")) return RECC_UPPER;
2078 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
2079 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
2080 else if (STREQ (string, "digit")) return RECC_DIGIT;
2081 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
2082 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2083 else if (STREQ (string, "blank")) return RECC_BLANK;
2084 else return 0;
2085 }
2086
2087 /* True if CH is in the char class CC. */
2088 boolean
2089 re_iswctype (int ch, re_wctype_t cc)
2090 {
2091 switch (cc)
2092 {
2093 case RECC_ALNUM: return ISALNUM (ch) != 0;
2094 case RECC_ALPHA: return ISALPHA (ch) != 0;
2095 case RECC_BLANK: return ISBLANK (ch) != 0;
2096 case RECC_CNTRL: return ISCNTRL (ch) != 0;
2097 case RECC_DIGIT: return ISDIGIT (ch) != 0;
2098 case RECC_GRAPH: return ISGRAPH (ch) != 0;
2099 case RECC_LOWER: return ISLOWER (ch) != 0;
2100 case RECC_PRINT: return ISPRINT (ch) != 0;
2101 case RECC_PUNCT: return ISPUNCT (ch) != 0;
2102 case RECC_SPACE: return ISSPACE (ch) != 0;
2103 case RECC_UPPER: return ISUPPER (ch) != 0;
2104 case RECC_XDIGIT: return ISXDIGIT (ch) != 0;
2105 case RECC_ASCII: return IS_REAL_ASCII (ch) != 0;
2106 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2107 case RECC_UNIBYTE: return ISUNIBYTE (ch) != 0;
2108 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2109 case RECC_WORD: return ISWORD (ch) != 0;
2110 case RECC_ERROR: return false;
2111 default:
2112 abort ();
2113 }
2114 }
2115
2116 /* Return a bit-pattern to use in the range-table bits to match multibyte
2117 chars of class CC. */
2118 static int
2119 re_wctype_to_bit (re_wctype_t cc)
2120 {
2121 switch (cc)
2122 {
2123 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
2124 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2125 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2126 case RECC_LOWER: return BIT_LOWER;
2127 case RECC_UPPER: return BIT_UPPER;
2128 case RECC_PUNCT: return BIT_PUNCT;
2129 case RECC_SPACE: return BIT_SPACE;
2130 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
2131 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2132 default:
2133 abort ();
2134 }
2135 }
2136 #endif
2137 \f
2138 /* Filling in the work area of a range. */
2139
2140 /* Actually extend the space in WORK_AREA. */
2141
2142 static void
2143 extend_range_table_work_area (struct range_table_work_area *work_area)
2144 {
2145 work_area->allocated += 16 * sizeof (int);
2146 if (work_area->table)
2147 work_area->table
2148 = (int *) realloc (work_area->table, work_area->allocated);
2149 else
2150 work_area->table
2151 = (int *) malloc (work_area->allocated);
2152 }
2153
2154 #if 0
2155 #ifdef emacs
2156
2157 /* Carefully find the ranges of codes that are equivalent
2158 under case conversion to the range start..end when passed through
2159 TRANSLATE. Handle the case where non-letters can come in between
2160 two upper-case letters (which happens in Latin-1).
2161 Also handle the case of groups of more than 2 case-equivalent chars.
2162
2163 The basic method is to look at consecutive characters and see
2164 if they can form a run that can be handled as one.
2165
2166 Returns -1 if successful, REG_ESPACE if ran out of space. */
2167
2168 static int
2169 set_image_of_range_1 (struct range_table_work_area *work_area,
2170 re_wchar_t start, re_wchar_t end,
2171 RE_TRANSLATE_TYPE translate)
2172 {
2173 /* `one_case' indicates a character, or a run of characters,
2174 each of which is an isolate (no case-equivalents).
2175 This includes all ASCII non-letters.
2176
2177 `two_case' indicates a character, or a run of characters,
2178 each of which has two case-equivalent forms.
2179 This includes all ASCII letters.
2180
2181 `strange' indicates a character that has more than one
2182 case-equivalent. */
2183
2184 enum case_type {one_case, two_case, strange};
2185
2186 /* Describe the run that is in progress,
2187 which the next character can try to extend.
2188 If run_type is strange, that means there really is no run.
2189 If run_type is one_case, then run_start...run_end is the run.
2190 If run_type is two_case, then the run is run_start...run_end,
2191 and the case-equivalents end at run_eqv_end. */
2192
2193 enum case_type run_type = strange;
2194 int run_start, run_end, run_eqv_end;
2195
2196 Lisp_Object eqv_table;
2197
2198 if (!RE_TRANSLATE_P (translate))
2199 {
2200 EXTEND_RANGE_TABLE (work_area, 2);
2201 work_area->table[work_area->used++] = (start);
2202 work_area->table[work_area->used++] = (end);
2203 return -1;
2204 }
2205
2206 eqv_table = XCHAR_TABLE (translate)->extras[2];
2207
2208 for (; start <= end; start++)
2209 {
2210 enum case_type this_type;
2211 int eqv = RE_TRANSLATE (eqv_table, start);
2212 int minchar, maxchar;
2213
2214 /* Classify this character */
2215 if (eqv == start)
2216 this_type = one_case;
2217 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2218 this_type = two_case;
2219 else
2220 this_type = strange;
2221
2222 if (start < eqv)
2223 minchar = start, maxchar = eqv;
2224 else
2225 minchar = eqv, maxchar = start;
2226
2227 /* Can this character extend the run in progress? */
2228 if (this_type == strange || this_type != run_type
2229 || !(minchar == run_end + 1
2230 && (run_type == two_case
2231 ? maxchar == run_eqv_end + 1 : 1)))
2232 {
2233 /* No, end the run.
2234 Record each of its equivalent ranges. */
2235 if (run_type == one_case)
2236 {
2237 EXTEND_RANGE_TABLE (work_area, 2);
2238 work_area->table[work_area->used++] = run_start;
2239 work_area->table[work_area->used++] = run_end;
2240 }
2241 else if (run_type == two_case)
2242 {
2243 EXTEND_RANGE_TABLE (work_area, 4);
2244 work_area->table[work_area->used++] = run_start;
2245 work_area->table[work_area->used++] = run_end;
2246 work_area->table[work_area->used++]
2247 = RE_TRANSLATE (eqv_table, run_start);
2248 work_area->table[work_area->used++]
2249 = RE_TRANSLATE (eqv_table, run_end);
2250 }
2251 run_type = strange;
2252 }
2253
2254 if (this_type == strange)
2255 {
2256 /* For a strange character, add each of its equivalents, one
2257 by one. Don't start a range. */
2258 do
2259 {
2260 EXTEND_RANGE_TABLE (work_area, 2);
2261 work_area->table[work_area->used++] = eqv;
2262 work_area->table[work_area->used++] = eqv;
2263 eqv = RE_TRANSLATE (eqv_table, eqv);
2264 }
2265 while (eqv != start);
2266 }
2267
2268 /* Add this char to the run, or start a new run. */
2269 else if (run_type == strange)
2270 {
2271 /* Initialize a new range. */
2272 run_type = this_type;
2273 run_start = start;
2274 run_end = start;
2275 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2276 }
2277 else
2278 {
2279 /* Extend a running range. */
2280 run_end = minchar;
2281 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2282 }
2283 }
2284
2285 /* If a run is still in progress at the end, finish it now
2286 by recording its equivalent ranges. */
2287 if (run_type == one_case)
2288 {
2289 EXTEND_RANGE_TABLE (work_area, 2);
2290 work_area->table[work_area->used++] = run_start;
2291 work_area->table[work_area->used++] = run_end;
2292 }
2293 else if (run_type == two_case)
2294 {
2295 EXTEND_RANGE_TABLE (work_area, 4);
2296 work_area->table[work_area->used++] = run_start;
2297 work_area->table[work_area->used++] = run_end;
2298 work_area->table[work_area->used++]
2299 = RE_TRANSLATE (eqv_table, run_start);
2300 work_area->table[work_area->used++]
2301 = RE_TRANSLATE (eqv_table, run_end);
2302 }
2303
2304 return -1;
2305 }
2306
2307 #endif /* emacs */
2308
2309 /* Record the image of the range start..end when passed through
2310 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2311 and is not even necessarily contiguous.
2312 Normally we approximate it with the smallest contiguous range that contains
2313 all the chars we need. However, for Latin-1 we go to extra effort
2314 to do a better job.
2315
2316 This function is not called for ASCII ranges.
2317
2318 Returns -1 if successful, REG_ESPACE if ran out of space. */
2319
2320 static int
2321 set_image_of_range (struct range_table_work_area *work_area,
2322 re_wchar_t start, re_wchar_t end,
2323 RE_TRANSLATE_TYPE translate)
2324 {
2325 re_wchar_t cmin, cmax;
2326
2327 #ifdef emacs
2328 /* For Latin-1 ranges, use set_image_of_range_1
2329 to get proper handling of ranges that include letters and nonletters.
2330 For a range that includes the whole of Latin-1, this is not necessary.
2331 For other character sets, we don't bother to get this right. */
2332 if (RE_TRANSLATE_P (translate) && start < 04400
2333 && !(start < 04200 && end >= 04377))
2334 {
2335 int newend;
2336 int tem;
2337 newend = end;
2338 if (newend > 04377)
2339 newend = 04377;
2340 tem = set_image_of_range_1 (work_area, start, newend, translate);
2341 if (tem > 0)
2342 return tem;
2343
2344 start = 04400;
2345 if (end < 04400)
2346 return -1;
2347 }
2348 #endif
2349
2350 EXTEND_RANGE_TABLE (work_area, 2);
2351 work_area->table[work_area->used++] = (start);
2352 work_area->table[work_area->used++] = (end);
2353
2354 cmin = -1, cmax = -1;
2355
2356 if (RE_TRANSLATE_P (translate))
2357 {
2358 int ch;
2359
2360 for (ch = start; ch <= end; ch++)
2361 {
2362 re_wchar_t c = TRANSLATE (ch);
2363 if (! (start <= c && c <= end))
2364 {
2365 if (cmin == -1)
2366 cmin = c, cmax = c;
2367 else
2368 {
2369 cmin = MIN (cmin, c);
2370 cmax = MAX (cmax, c);
2371 }
2372 }
2373 }
2374
2375 if (cmin != -1)
2376 {
2377 EXTEND_RANGE_TABLE (work_area, 2);
2378 work_area->table[work_area->used++] = (cmin);
2379 work_area->table[work_area->used++] = (cmax);
2380 }
2381 }
2382
2383 return -1;
2384 }
2385 #endif /* 0 */
2386 \f
2387 #ifndef MATCH_MAY_ALLOCATE
2388
2389 /* If we cannot allocate large objects within re_match_2_internal,
2390 we make the fail stack and register vectors global.
2391 The fail stack, we grow to the maximum size when a regexp
2392 is compiled.
2393 The register vectors, we adjust in size each time we
2394 compile a regexp, according to the number of registers it needs. */
2395
2396 static fail_stack_type fail_stack;
2397
2398 /* Size with which the following vectors are currently allocated.
2399 That is so we can make them bigger as needed,
2400 but never make them smaller. */
2401 static int regs_allocated_size;
2402
2403 static re_char ** regstart, ** regend;
2404 static re_char **best_regstart, **best_regend;
2405
2406 /* Make the register vectors big enough for NUM_REGS registers,
2407 but don't make them smaller. */
2408
2409 static
2410 regex_grow_registers (int num_regs)
2411 {
2412 if (num_regs > regs_allocated_size)
2413 {
2414 RETALLOC_IF (regstart, num_regs, re_char *);
2415 RETALLOC_IF (regend, num_regs, re_char *);
2416 RETALLOC_IF (best_regstart, num_regs, re_char *);
2417 RETALLOC_IF (best_regend, num_regs, re_char *);
2418
2419 regs_allocated_size = num_regs;
2420 }
2421 }
2422
2423 #endif /* not MATCH_MAY_ALLOCATE */
2424 \f
2425 static boolean group_in_compile_stack (compile_stack_type compile_stack,
2426 regnum_t regnum);
2427
2428 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2429 Returns one of error codes defined in `regex.h', or zero for success.
2430
2431 Assumes the `allocated' (and perhaps `buffer') and `translate'
2432 fields are set in BUFP on entry.
2433
2434 If it succeeds, results are put in BUFP (if it returns an error, the
2435 contents of BUFP are undefined):
2436 `buffer' is the compiled pattern;
2437 `syntax' is set to SYNTAX;
2438 `used' is set to the length of the compiled pattern;
2439 `fastmap_accurate' is zero;
2440 `re_nsub' is the number of subexpressions in PATTERN;
2441 `not_bol' and `not_eol' are zero;
2442
2443 The `fastmap' field is neither examined nor set. */
2444
2445 /* Insert the `jump' from the end of last alternative to "here".
2446 The space for the jump has already been allocated. */
2447 #define FIXUP_ALT_JUMP() \
2448 do { \
2449 if (fixup_alt_jump) \
2450 STORE_JUMP (jump, fixup_alt_jump, b); \
2451 } while (0)
2452
2453
2454 /* Return, freeing storage we allocated. */
2455 #define FREE_STACK_RETURN(value) \
2456 do { \
2457 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2458 free (compile_stack.stack); \
2459 return value; \
2460 } while (0)
2461
2462 static reg_errcode_t
2463 regex_compile (const re_char *pattern, size_t size, reg_syntax_t syntax, struct re_pattern_buffer *bufp)
2464 {
2465 /* We fetch characters from PATTERN here. */
2466 register re_wchar_t c, c1;
2467
2468 /* Points to the end of the buffer, where we should append. */
2469 register unsigned char *b;
2470
2471 /* Keeps track of unclosed groups. */
2472 compile_stack_type compile_stack;
2473
2474 /* Points to the current (ending) position in the pattern. */
2475 #ifdef AIX
2476 /* `const' makes AIX compiler fail. */
2477 unsigned char *p = pattern;
2478 #else
2479 re_char *p = pattern;
2480 #endif
2481 re_char *pend = pattern + size;
2482
2483 /* How to translate the characters in the pattern. */
2484 RE_TRANSLATE_TYPE translate = bufp->translate;
2485
2486 /* Address of the count-byte of the most recently inserted `exactn'
2487 command. This makes it possible to tell if a new exact-match
2488 character can be added to that command or if the character requires
2489 a new `exactn' command. */
2490 unsigned char *pending_exact = 0;
2491
2492 /* Address of start of the most recently finished expression.
2493 This tells, e.g., postfix * where to find the start of its
2494 operand. Reset at the beginning of groups and alternatives. */
2495 unsigned char *laststart = 0;
2496
2497 /* Address of beginning of regexp, or inside of last group. */
2498 unsigned char *begalt;
2499
2500 /* Place in the uncompiled pattern (i.e., the {) to
2501 which to go back if the interval is invalid. */
2502 re_char *beg_interval;
2503
2504 /* Address of the place where a forward jump should go to the end of
2505 the containing expression. Each alternative of an `or' -- except the
2506 last -- ends with a forward jump of this sort. */
2507 unsigned char *fixup_alt_jump = 0;
2508
2509 /* Work area for range table of charset. */
2510 struct range_table_work_area range_table_work;
2511
2512 /* If the object matched can contain multibyte characters. */
2513 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2514
2515 /* Nonzero if we have pushed down into a subpattern. */
2516 int in_subpattern = 0;
2517
2518 /* These hold the values of p, pattern, and pend from the main
2519 pattern when we have pushed into a subpattern. */
2520 re_char *main_p IF_LINT (= NULL);
2521 re_char *main_pattern IF_LINT (= NULL);
2522 re_char *main_pend IF_LINT (= NULL);
2523
2524 #ifdef DEBUG
2525 debug++;
2526 DEBUG_PRINT1 ("\nCompiling pattern: ");
2527 if (debug > 0)
2528 {
2529 unsigned debug_count;
2530
2531 for (debug_count = 0; debug_count < size; debug_count++)
2532 putchar (pattern[debug_count]);
2533 putchar ('\n');
2534 }
2535 #endif /* DEBUG */
2536
2537 /* Initialize the compile stack. */
2538 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2539 if (compile_stack.stack == NULL)
2540 return REG_ESPACE;
2541
2542 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2543 compile_stack.avail = 0;
2544
2545 range_table_work.table = 0;
2546 range_table_work.allocated = 0;
2547
2548 /* Initialize the pattern buffer. */
2549 bufp->syntax = syntax;
2550 bufp->fastmap_accurate = 0;
2551 bufp->not_bol = bufp->not_eol = 0;
2552 bufp->used_syntax = 0;
2553
2554 /* Set `used' to zero, so that if we return an error, the pattern
2555 printer (for debugging) will think there's no pattern. We reset it
2556 at the end. */
2557 bufp->used = 0;
2558
2559 /* Always count groups, whether or not bufp->no_sub is set. */
2560 bufp->re_nsub = 0;
2561
2562 #if !defined emacs && !defined SYNTAX_TABLE
2563 /* Initialize the syntax table. */
2564 init_syntax_once ();
2565 #endif
2566
2567 if (bufp->allocated == 0)
2568 {
2569 if (bufp->buffer)
2570 { /* If zero allocated, but buffer is non-null, try to realloc
2571 enough space. This loses if buffer's address is bogus, but
2572 that is the user's responsibility. */
2573 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2574 }
2575 else
2576 { /* Caller did not allocate a buffer. Do it for them. */
2577 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2578 }
2579 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2580
2581 bufp->allocated = INIT_BUF_SIZE;
2582 }
2583
2584 begalt = b = bufp->buffer;
2585
2586 /* Loop through the uncompiled pattern until we're at the end. */
2587 while (1)
2588 {
2589 if (p == pend)
2590 {
2591 /* If this is the end of an included regexp,
2592 pop back to the main regexp and try again. */
2593 if (in_subpattern)
2594 {
2595 in_subpattern = 0;
2596 pattern = main_pattern;
2597 p = main_p;
2598 pend = main_pend;
2599 continue;
2600 }
2601 /* If this is the end of the main regexp, we are done. */
2602 break;
2603 }
2604
2605 PATFETCH (c);
2606
2607 switch (c)
2608 {
2609 case ' ':
2610 {
2611 re_char *p1 = p;
2612
2613 /* If there's no special whitespace regexp, treat
2614 spaces normally. And don't try to do this recursively. */
2615 if (!whitespace_regexp || in_subpattern)
2616 goto normal_char;
2617
2618 /* Peek past following spaces. */
2619 while (p1 != pend)
2620 {
2621 if (*p1 != ' ')
2622 break;
2623 p1++;
2624 }
2625 /* If the spaces are followed by a repetition op,
2626 treat them normally. */
2627 if (p1 != pend
2628 && (*p1 == '*' || *p1 == '+' || *p1 == '?'
2629 || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
2630 goto normal_char;
2631
2632 /* Replace the spaces with the whitespace regexp. */
2633 in_subpattern = 1;
2634 main_p = p1;
2635 main_pend = pend;
2636 main_pattern = pattern;
2637 p = pattern = whitespace_regexp;
2638 pend = p + strlen ((const char *) p);
2639 break;
2640 }
2641
2642 case '^':
2643 {
2644 if ( /* If at start of pattern, it's an operator. */
2645 p == pattern + 1
2646 /* If context independent, it's an operator. */
2647 || syntax & RE_CONTEXT_INDEP_ANCHORS
2648 /* Otherwise, depends on what's come before. */
2649 || at_begline_loc_p (pattern, p, syntax))
2650 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
2651 else
2652 goto normal_char;
2653 }
2654 break;
2655
2656
2657 case '$':
2658 {
2659 if ( /* If at end of pattern, it's an operator. */
2660 p == pend
2661 /* If context independent, it's an operator. */
2662 || syntax & RE_CONTEXT_INDEP_ANCHORS
2663 /* Otherwise, depends on what's next. */
2664 || at_endline_loc_p (p, pend, syntax))
2665 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
2666 else
2667 goto normal_char;
2668 }
2669 break;
2670
2671
2672 case '+':
2673 case '?':
2674 if ((syntax & RE_BK_PLUS_QM)
2675 || (syntax & RE_LIMITED_OPS))
2676 goto normal_char;
2677 handle_plus:
2678 case '*':
2679 /* If there is no previous pattern... */
2680 if (!laststart)
2681 {
2682 if (syntax & RE_CONTEXT_INVALID_OPS)
2683 FREE_STACK_RETURN (REG_BADRPT);
2684 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2685 goto normal_char;
2686 }
2687
2688 {
2689 /* 1 means zero (many) matches is allowed. */
2690 boolean zero_times_ok = 0, many_times_ok = 0;
2691 boolean greedy = 1;
2692
2693 /* If there is a sequence of repetition chars, collapse it
2694 down to just one (the right one). We can't combine
2695 interval operators with these because of, e.g., `a{2}*',
2696 which should only match an even number of `a's. */
2697
2698 for (;;)
2699 {
2700 if ((syntax & RE_FRUGAL)
2701 && c == '?' && (zero_times_ok || many_times_ok))
2702 greedy = 0;
2703 else
2704 {
2705 zero_times_ok |= c != '+';
2706 many_times_ok |= c != '?';
2707 }
2708
2709 if (p == pend)
2710 break;
2711 else if (*p == '*'
2712 || (!(syntax & RE_BK_PLUS_QM)
2713 && (*p == '+' || *p == '?')))
2714 ;
2715 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
2716 {
2717 if (p+1 == pend)
2718 FREE_STACK_RETURN (REG_EESCAPE);
2719 if (p[1] == '+' || p[1] == '?')
2720 PATFETCH (c); /* Gobble up the backslash. */
2721 else
2722 break;
2723 }
2724 else
2725 break;
2726 /* If we get here, we found another repeat character. */
2727 PATFETCH (c);
2728 }
2729
2730 /* Star, etc. applied to an empty pattern is equivalent
2731 to an empty pattern. */
2732 if (!laststart || laststart == b)
2733 break;
2734
2735 /* Now we know whether or not zero matches is allowed
2736 and also whether or not two or more matches is allowed. */
2737 if (greedy)
2738 {
2739 if (many_times_ok)
2740 {
2741 boolean simple = skip_one_char (laststart) == b;
2742 size_t startoffset = 0;
2743 re_opcode_t ofj =
2744 /* Check if the loop can match the empty string. */
2745 (simple || !analyse_first (laststart, b, NULL, 0))
2746 ? on_failure_jump : on_failure_jump_loop;
2747 assert (skip_one_char (laststart) <= b);
2748
2749 if (!zero_times_ok && simple)
2750 { /* Since simple * loops can be made faster by using
2751 on_failure_keep_string_jump, we turn simple P+
2752 into PP* if P is simple. */
2753 unsigned char *p1, *p2;
2754 startoffset = b - laststart;
2755 GET_BUFFER_SPACE (startoffset);
2756 p1 = b; p2 = laststart;
2757 while (p2 < p1)
2758 *b++ = *p2++;
2759 zero_times_ok = 1;
2760 }
2761
2762 GET_BUFFER_SPACE (6);
2763 if (!zero_times_ok)
2764 /* A + loop. */
2765 STORE_JUMP (ofj, b, b + 6);
2766 else
2767 /* Simple * loops can use on_failure_keep_string_jump
2768 depending on what follows. But since we don't know
2769 that yet, we leave the decision up to
2770 on_failure_jump_smart. */
2771 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
2772 laststart + startoffset, b + 6);
2773 b += 3;
2774 STORE_JUMP (jump, b, laststart + startoffset);
2775 b += 3;
2776 }
2777 else
2778 {
2779 /* A simple ? pattern. */
2780 assert (zero_times_ok);
2781 GET_BUFFER_SPACE (3);
2782 INSERT_JUMP (on_failure_jump, laststart, b + 3);
2783 b += 3;
2784 }
2785 }
2786 else /* not greedy */
2787 { /* I wish the greedy and non-greedy cases could be merged. */
2788
2789 GET_BUFFER_SPACE (7); /* We might use less. */
2790 if (many_times_ok)
2791 {
2792 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2793
2794 /* The non-greedy multiple match looks like
2795 a repeat..until: we only need a conditional jump
2796 at the end of the loop. */
2797 if (emptyp) BUF_PUSH (no_op);
2798 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2799 : on_failure_jump, b, laststart);
2800 b += 3;
2801 if (zero_times_ok)
2802 {
2803 /* The repeat...until naturally matches one or more.
2804 To also match zero times, we need to first jump to
2805 the end of the loop (its conditional jump). */
2806 INSERT_JUMP (jump, laststart, b);
2807 b += 3;
2808 }
2809 }
2810 else
2811 {
2812 /* non-greedy a?? */
2813 INSERT_JUMP (jump, laststart, b + 3);
2814 b += 3;
2815 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2816 b += 3;
2817 }
2818 }
2819 }
2820 pending_exact = 0;
2821 break;
2822
2823
2824 case '.':
2825 laststart = b;
2826 BUF_PUSH (anychar);
2827 break;
2828
2829
2830 case '[':
2831 {
2832 re_char *p1;
2833
2834 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
2835
2836 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2837
2838 /* Ensure that we have enough space to push a charset: the
2839 opcode, the length count, and the bitset; 34 bytes in all. */
2840 GET_BUFFER_SPACE (34);
2841
2842 laststart = b;
2843
2844 /* We test `*p == '^' twice, instead of using an if
2845 statement, so we only need one BUF_PUSH. */
2846 BUF_PUSH (*p == '^' ? charset_not : charset);
2847 if (*p == '^')
2848 p++;
2849
2850 /* Remember the first position in the bracket expression. */
2851 p1 = p;
2852
2853 /* Push the number of bytes in the bitmap. */
2854 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2855
2856 /* Clear the whole map. */
2857 memset (b, 0, (1 << BYTEWIDTH) / BYTEWIDTH);
2858
2859 /* charset_not matches newline according to a syntax bit. */
2860 if ((re_opcode_t) b[-2] == charset_not
2861 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2862 SET_LIST_BIT ('\n');
2863
2864 /* Read in characters and ranges, setting map bits. */
2865 for (;;)
2866 {
2867 boolean escaped_char = false;
2868 const unsigned char *p2 = p;
2869 re_wchar_t ch;
2870
2871 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2872
2873 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2874 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2875 So the translation is done later in a loop. Example:
2876 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2877 PATFETCH (c);
2878
2879 /* \ might escape characters inside [...] and [^...]. */
2880 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2881 {
2882 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2883
2884 PATFETCH (c);
2885 escaped_char = true;
2886 }
2887 else
2888 {
2889 /* Could be the end of the bracket expression. If it's
2890 not (i.e., when the bracket expression is `[]' so
2891 far), the ']' character bit gets set way below. */
2892 if (c == ']' && p2 != p1)
2893 break;
2894 }
2895
2896 /* See if we're at the beginning of a possible character
2897 class. */
2898
2899 if (!escaped_char &&
2900 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2901 {
2902 /* Leave room for the null. */
2903 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
2904 const unsigned char *class_beg;
2905
2906 PATFETCH (c);
2907 c1 = 0;
2908 class_beg = p;
2909
2910 /* If pattern is `[[:'. */
2911 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2912
2913 for (;;)
2914 {
2915 PATFETCH (c);
2916 if ((c == ':' && *p == ']') || p == pend)
2917 break;
2918 if (c1 < CHAR_CLASS_MAX_LENGTH)
2919 str[c1++] = c;
2920 else
2921 /* This is in any case an invalid class name. */
2922 str[0] = '\0';
2923 }
2924 str[c1] = '\0';
2925
2926 /* If isn't a word bracketed by `[:' and `:]':
2927 undo the ending character, the letters, and
2928 leave the leading `:' and `[' (but set bits for
2929 them). */
2930 if (c == ':' && *p == ']')
2931 {
2932 re_wctype_t cc = re_wctype (str);
2933
2934 if (cc == 0)
2935 FREE_STACK_RETURN (REG_ECTYPE);
2936
2937 /* Throw away the ] at the end of the character
2938 class. */
2939 PATFETCH (c);
2940
2941 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2942
2943 #ifndef emacs
2944 for (ch = 0; ch < (1 << BYTEWIDTH); ++ch)
2945 if (re_iswctype (btowc (ch), cc))
2946 {
2947 c = TRANSLATE (ch);
2948 if (c < (1 << BYTEWIDTH))
2949 SET_LIST_BIT (c);
2950 }
2951 #else /* emacs */
2952 /* Most character classes in a multibyte match
2953 just set a flag. Exceptions are is_blank,
2954 is_digit, is_cntrl, and is_xdigit, since
2955 they can only match ASCII characters. We
2956 don't need to handle them for multibyte.
2957 They are distinguished by a negative wctype. */
2958
2959 /* Setup the gl_state object to its buffer-defined
2960 value. This hardcodes the buffer-global
2961 syntax-table for ASCII chars, while the other chars
2962 will obey syntax-table properties. It's not ideal,
2963 but it's the way it's been done until now. */
2964 SETUP_BUFFER_SYNTAX_TABLE ();
2965
2966 for (ch = 0; ch < 256; ++ch)
2967 {
2968 c = RE_CHAR_TO_MULTIBYTE (ch);
2969 if (! CHAR_BYTE8_P (c)
2970 && re_iswctype (c, cc))
2971 {
2972 SET_LIST_BIT (ch);
2973 c1 = TRANSLATE (c);
2974 if (c1 == c)
2975 continue;
2976 if (ASCII_CHAR_P (c1))
2977 SET_LIST_BIT (c1);
2978 else if ((c1 = RE_CHAR_TO_UNIBYTE (c1)) >= 0)
2979 SET_LIST_BIT (c1);
2980 }
2981 }
2982 SET_RANGE_TABLE_WORK_AREA_BIT
2983 (range_table_work, re_wctype_to_bit (cc));
2984 #endif /* emacs */
2985 /* In most cases the matching rule for char classes
2986 only uses the syntax table for multibyte chars,
2987 so that the content of the syntax-table it is not
2988 hardcoded in the range_table. SPACE and WORD are
2989 the two exceptions. */
2990 if ((1 << cc) & ((1 << RECC_SPACE) | (1 << RECC_WORD)))
2991 bufp->used_syntax = 1;
2992
2993 /* Repeat the loop. */
2994 continue;
2995 }
2996 else
2997 {
2998 /* Go back to right after the "[:". */
2999 p = class_beg;
3000 SET_LIST_BIT ('[');
3001
3002 /* Because the `:' may starts the range, we
3003 can't simply set bit and repeat the loop.
3004 Instead, just set it to C and handle below. */
3005 c = ':';
3006 }
3007 }
3008
3009 if (p < pend && p[0] == '-' && p[1] != ']')
3010 {
3011
3012 /* Discard the `-'. */
3013 PATFETCH (c1);
3014
3015 /* Fetch the character which ends the range. */
3016 PATFETCH (c1);
3017 #ifdef emacs
3018 if (CHAR_BYTE8_P (c1)
3019 && ! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
3020 /* Treat the range from a multibyte character to
3021 raw-byte character as empty. */
3022 c = c1 + 1;
3023 #endif /* emacs */
3024 }
3025 else
3026 /* Range from C to C. */
3027 c1 = c;
3028
3029 if (c > c1)
3030 {
3031 if (syntax & RE_NO_EMPTY_RANGES)
3032 FREE_STACK_RETURN (REG_ERANGEX);
3033 /* Else, repeat the loop. */
3034 }
3035 else
3036 {
3037 #ifndef emacs
3038 /* Set the range into bitmap */
3039 for (; c <= c1; c++)
3040 {
3041 ch = TRANSLATE (c);
3042 if (ch < (1 << BYTEWIDTH))
3043 SET_LIST_BIT (ch);
3044 }
3045 #else /* emacs */
3046 if (c < 128)
3047 {
3048 ch = MIN (127, c1);
3049 SETUP_ASCII_RANGE (range_table_work, c, ch);
3050 c = ch + 1;
3051 if (CHAR_BYTE8_P (c1))
3052 c = BYTE8_TO_CHAR (128);
3053 }
3054 if (c <= c1)
3055 {
3056 if (CHAR_BYTE8_P (c))
3057 {
3058 c = CHAR_TO_BYTE8 (c);
3059 c1 = CHAR_TO_BYTE8 (c1);
3060 for (; c <= c1; c++)
3061 SET_LIST_BIT (c);
3062 }
3063 else if (multibyte)
3064 {
3065 SETUP_MULTIBYTE_RANGE (range_table_work, c, c1);
3066 }
3067 else
3068 {
3069 SETUP_UNIBYTE_RANGE (range_table_work, c, c1);
3070 }
3071 }
3072 #endif /* emacs */
3073 }
3074 }
3075
3076 /* Discard any (non)matching list bytes that are all 0 at the
3077 end of the map. Decrease the map-length byte too. */
3078 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3079 b[-1]--;
3080 b += b[-1];
3081
3082 /* Build real range table from work area. */
3083 if (RANGE_TABLE_WORK_USED (range_table_work)
3084 || RANGE_TABLE_WORK_BITS (range_table_work))
3085 {
3086 int i;
3087 int used = RANGE_TABLE_WORK_USED (range_table_work);
3088
3089 /* Allocate space for COUNT + RANGE_TABLE. Needs two
3090 bytes for flags, two for COUNT, and three bytes for
3091 each character. */
3092 GET_BUFFER_SPACE (4 + used * 3);
3093
3094 /* Indicate the existence of range table. */
3095 laststart[1] |= 0x80;
3096
3097 /* Store the character class flag bits into the range table.
3098 If not in emacs, these flag bits are always 0. */
3099 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
3100 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
3101
3102 STORE_NUMBER_AND_INCR (b, used / 2);
3103 for (i = 0; i < used; i++)
3104 STORE_CHARACTER_AND_INCR
3105 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
3106 }
3107 }
3108 break;
3109
3110
3111 case '(':
3112 if (syntax & RE_NO_BK_PARENS)
3113 goto handle_open;
3114 else
3115 goto normal_char;
3116
3117
3118 case ')':
3119 if (syntax & RE_NO_BK_PARENS)
3120 goto handle_close;
3121 else
3122 goto normal_char;
3123
3124
3125 case '\n':
3126 if (syntax & RE_NEWLINE_ALT)
3127 goto handle_alt;
3128 else
3129 goto normal_char;
3130
3131
3132 case '|':
3133 if (syntax & RE_NO_BK_VBAR)
3134 goto handle_alt;
3135 else
3136 goto normal_char;
3137
3138
3139 case '{':
3140 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3141 goto handle_interval;
3142 else
3143 goto normal_char;
3144
3145
3146 case '\\':
3147 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3148
3149 /* Do not translate the character after the \, so that we can
3150 distinguish, e.g., \B from \b, even if we normally would
3151 translate, e.g., B to b. */
3152 PATFETCH (c);
3153
3154 switch (c)
3155 {
3156 case '(':
3157 if (syntax & RE_NO_BK_PARENS)
3158 goto normal_backslash;
3159
3160 handle_open:
3161 {
3162 int shy = 0;
3163 regnum_t regnum = 0;
3164 if (p+1 < pend)
3165 {
3166 /* Look for a special (?...) construct */
3167 if ((syntax & RE_SHY_GROUPS) && *p == '?')
3168 {
3169 PATFETCH (c); /* Gobble up the '?'. */
3170 while (!shy)
3171 {
3172 PATFETCH (c);
3173 switch (c)
3174 {
3175 case ':': shy = 1; break;
3176 case '0':
3177 /* An explicitly specified regnum must start
3178 with non-0. */
3179 if (regnum == 0)
3180 FREE_STACK_RETURN (REG_BADPAT);
3181 case '1': case '2': case '3': case '4':
3182 case '5': case '6': case '7': case '8': case '9':
3183 regnum = 10*regnum + (c - '0'); break;
3184 default:
3185 /* Only (?:...) is supported right now. */
3186 FREE_STACK_RETURN (REG_BADPAT);
3187 }
3188 }
3189 }
3190 }
3191
3192 if (!shy)
3193 regnum = ++bufp->re_nsub;
3194 else if (regnum)
3195 { /* It's actually not shy, but explicitly numbered. */
3196 shy = 0;
3197 if (regnum > bufp->re_nsub)
3198 bufp->re_nsub = regnum;
3199 else if (regnum > bufp->re_nsub
3200 /* Ideally, we'd want to check that the specified
3201 group can't have matched (i.e. all subgroups
3202 using the same regnum are in other branches of
3203 OR patterns), but we don't currently keep track
3204 of enough info to do that easily. */
3205 || group_in_compile_stack (compile_stack, regnum))
3206 FREE_STACK_RETURN (REG_BADPAT);
3207 }
3208 else
3209 /* It's really shy. */
3210 regnum = - bufp->re_nsub;
3211
3212 if (COMPILE_STACK_FULL)
3213 {
3214 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3215 compile_stack_elt_t);
3216 if (compile_stack.stack == NULL) return REG_ESPACE;
3217
3218 compile_stack.size <<= 1;
3219 }
3220
3221 /* These are the values to restore when we hit end of this
3222 group. They are all relative offsets, so that if the
3223 whole pattern moves because of realloc, they will still
3224 be valid. */
3225 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3226 COMPILE_STACK_TOP.fixup_alt_jump
3227 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3228 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
3229 COMPILE_STACK_TOP.regnum = regnum;
3230
3231 /* Do not push a start_memory for groups beyond the last one
3232 we can represent in the compiled pattern. */
3233 if (regnum <= MAX_REGNUM && regnum > 0)
3234 BUF_PUSH_2 (start_memory, regnum);
3235
3236 compile_stack.avail++;
3237
3238 fixup_alt_jump = 0;
3239 laststart = 0;
3240 begalt = b;
3241 /* If we've reached MAX_REGNUM groups, then this open
3242 won't actually generate any code, so we'll have to
3243 clear pending_exact explicitly. */
3244 pending_exact = 0;
3245 break;
3246 }
3247
3248 case ')':
3249 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3250
3251 if (COMPILE_STACK_EMPTY)
3252 {
3253 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3254 goto normal_backslash;
3255 else
3256 FREE_STACK_RETURN (REG_ERPAREN);
3257 }
3258
3259 handle_close:
3260 FIXUP_ALT_JUMP ();
3261
3262 /* See similar code for backslashed left paren above. */
3263 if (COMPILE_STACK_EMPTY)
3264 {
3265 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3266 goto normal_char;
3267 else
3268 FREE_STACK_RETURN (REG_ERPAREN);
3269 }
3270
3271 /* Since we just checked for an empty stack above, this
3272 ``can't happen''. */
3273 assert (compile_stack.avail != 0);
3274 {
3275 /* We don't just want to restore into `regnum', because
3276 later groups should continue to be numbered higher,
3277 as in `(ab)c(de)' -- the second group is #2. */
3278 regnum_t regnum;
3279
3280 compile_stack.avail--;
3281 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3282 fixup_alt_jump
3283 = COMPILE_STACK_TOP.fixup_alt_jump
3284 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3285 : 0;
3286 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
3287 regnum = COMPILE_STACK_TOP.regnum;
3288 /* If we've reached MAX_REGNUM groups, then this open
3289 won't actually generate any code, so we'll have to
3290 clear pending_exact explicitly. */
3291 pending_exact = 0;
3292
3293 /* We're at the end of the group, so now we know how many
3294 groups were inside this one. */
3295 if (regnum <= MAX_REGNUM && regnum > 0)
3296 BUF_PUSH_2 (stop_memory, regnum);
3297 }
3298 break;
3299
3300
3301 case '|': /* `\|'. */
3302 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3303 goto normal_backslash;
3304 handle_alt:
3305 if (syntax & RE_LIMITED_OPS)
3306 goto normal_char;
3307
3308 /* Insert before the previous alternative a jump which
3309 jumps to this alternative if the former fails. */
3310 GET_BUFFER_SPACE (3);
3311 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3312 pending_exact = 0;
3313 b += 3;
3314
3315 /* The alternative before this one has a jump after it
3316 which gets executed if it gets matched. Adjust that
3317 jump so it will jump to this alternative's analogous
3318 jump (put in below, which in turn will jump to the next
3319 (if any) alternative's such jump, etc.). The last such
3320 jump jumps to the correct final destination. A picture:
3321 _____ _____
3322 | | | |
3323 | v | v
3324 a | b | c
3325
3326 If we are at `b', then fixup_alt_jump right now points to a
3327 three-byte space after `a'. We'll put in the jump, set
3328 fixup_alt_jump to right after `b', and leave behind three
3329 bytes which we'll fill in when we get to after `c'. */
3330
3331 FIXUP_ALT_JUMP ();
3332
3333 /* Mark and leave space for a jump after this alternative,
3334 to be filled in later either by next alternative or
3335 when know we're at the end of a series of alternatives. */
3336 fixup_alt_jump = b;
3337 GET_BUFFER_SPACE (3);
3338 b += 3;
3339
3340 laststart = 0;
3341 begalt = b;
3342 break;
3343
3344
3345 case '{':
3346 /* If \{ is a literal. */
3347 if (!(syntax & RE_INTERVALS)
3348 /* If we're at `\{' and it's not the open-interval
3349 operator. */
3350 || (syntax & RE_NO_BK_BRACES))
3351 goto normal_backslash;
3352
3353 handle_interval:
3354 {
3355 /* If got here, then the syntax allows intervals. */
3356
3357 /* At least (most) this many matches must be made. */
3358 int lower_bound = 0, upper_bound = -1;
3359
3360 beg_interval = p;
3361
3362 GET_UNSIGNED_NUMBER (lower_bound);
3363
3364 if (c == ',')
3365 GET_UNSIGNED_NUMBER (upper_bound);
3366 else
3367 /* Interval such as `{1}' => match exactly once. */
3368 upper_bound = lower_bound;
3369
3370 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
3371 || (upper_bound >= 0 && lower_bound > upper_bound))
3372 FREE_STACK_RETURN (REG_BADBR);
3373
3374 if (!(syntax & RE_NO_BK_BRACES))
3375 {
3376 if (c != '\\')
3377 FREE_STACK_RETURN (REG_BADBR);
3378 if (p == pend)
3379 FREE_STACK_RETURN (REG_EESCAPE);
3380 PATFETCH (c);
3381 }
3382
3383 if (c != '}')
3384 FREE_STACK_RETURN (REG_BADBR);
3385
3386 /* We just parsed a valid interval. */
3387
3388 /* If it's invalid to have no preceding re. */
3389 if (!laststart)
3390 {
3391 if (syntax & RE_CONTEXT_INVALID_OPS)
3392 FREE_STACK_RETURN (REG_BADRPT);
3393 else if (syntax & RE_CONTEXT_INDEP_OPS)
3394 laststart = b;
3395 else
3396 goto unfetch_interval;
3397 }
3398
3399 if (upper_bound == 0)
3400 /* If the upper bound is zero, just drop the sub pattern
3401 altogether. */
3402 b = laststart;
3403 else if (lower_bound == 1 && upper_bound == 1)
3404 /* Just match it once: nothing to do here. */
3405 ;
3406
3407 /* Otherwise, we have a nontrivial interval. When
3408 we're all done, the pattern will look like:
3409 set_number_at <jump count> <upper bound>
3410 set_number_at <succeed_n count> <lower bound>
3411 succeed_n <after jump addr> <succeed_n count>
3412 <body of loop>
3413 jump_n <succeed_n addr> <jump count>
3414 (The upper bound and `jump_n' are omitted if
3415 `upper_bound' is 1, though.) */
3416 else
3417 { /* If the upper bound is > 1, we need to insert
3418 more at the end of the loop. */
3419 unsigned int nbytes = (upper_bound < 0 ? 3
3420 : upper_bound > 1 ? 5 : 0);
3421 unsigned int startoffset = 0;
3422
3423 GET_BUFFER_SPACE (20); /* We might use less. */
3424
3425 if (lower_bound == 0)
3426 {
3427 /* A succeed_n that starts with 0 is really a
3428 a simple on_failure_jump_loop. */
3429 INSERT_JUMP (on_failure_jump_loop, laststart,
3430 b + 3 + nbytes);
3431 b += 3;
3432 }
3433 else
3434 {
3435 /* Initialize lower bound of the `succeed_n', even
3436 though it will be set during matching by its
3437 attendant `set_number_at' (inserted next),
3438 because `re_compile_fastmap' needs to know.
3439 Jump to the `jump_n' we might insert below. */
3440 INSERT_JUMP2 (succeed_n, laststart,
3441 b + 5 + nbytes,
3442 lower_bound);
3443 b += 5;
3444
3445 /* Code to initialize the lower bound. Insert
3446 before the `succeed_n'. The `5' is the last two
3447 bytes of this `set_number_at', plus 3 bytes of
3448 the following `succeed_n'. */
3449 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3450 b += 5;
3451 startoffset += 5;
3452 }
3453
3454 if (upper_bound < 0)
3455 {
3456 /* A negative upper bound stands for infinity,
3457 in which case it degenerates to a plain jump. */
3458 STORE_JUMP (jump, b, laststart + startoffset);
3459 b += 3;
3460 }
3461 else if (upper_bound > 1)
3462 { /* More than one repetition is allowed, so
3463 append a backward jump to the `succeed_n'
3464 that starts this interval.
3465
3466 When we've reached this during matching,
3467 we'll have matched the interval once, so
3468 jump back only `upper_bound - 1' times. */
3469 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3470 upper_bound - 1);
3471 b += 5;
3472
3473 /* The location we want to set is the second
3474 parameter of the `jump_n'; that is `b-2' as
3475 an absolute address. `laststart' will be
3476 the `set_number_at' we're about to insert;
3477 `laststart+3' the number to set, the source
3478 for the relative address. But we are
3479 inserting into the middle of the pattern --
3480 so everything is getting moved up by 5.
3481 Conclusion: (b - 2) - (laststart + 3) + 5,
3482 i.e., b - laststart.
3483
3484 We insert this at the beginning of the loop
3485 so that if we fail during matching, we'll
3486 reinitialize the bounds. */
3487 insert_op2 (set_number_at, laststart, b - laststart,
3488 upper_bound - 1, b);
3489 b += 5;
3490 }
3491 }
3492 pending_exact = 0;
3493 beg_interval = NULL;
3494 }
3495 break;
3496
3497 unfetch_interval:
3498 /* If an invalid interval, match the characters as literals. */
3499 assert (beg_interval);
3500 p = beg_interval;
3501 beg_interval = NULL;
3502
3503 /* normal_char and normal_backslash need `c'. */
3504 c = '{';
3505
3506 if (!(syntax & RE_NO_BK_BRACES))
3507 {
3508 assert (p > pattern && p[-1] == '\\');
3509 goto normal_backslash;
3510 }
3511 else
3512 goto normal_char;
3513
3514 #ifdef emacs
3515 /* There is no way to specify the before_dot and after_dot
3516 operators. rms says this is ok. --karl */
3517 case '=':
3518 BUF_PUSH (at_dot);
3519 break;
3520
3521 case 's':
3522 laststart = b;
3523 PATFETCH (c);
3524 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3525 break;
3526
3527 case 'S':
3528 laststart = b;
3529 PATFETCH (c);
3530 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3531 break;
3532
3533 case 'c':
3534 laststart = b;
3535 PATFETCH (c);
3536 BUF_PUSH_2 (categoryspec, c);
3537 break;
3538
3539 case 'C':
3540 laststart = b;
3541 PATFETCH (c);
3542 BUF_PUSH_2 (notcategoryspec, c);
3543 break;
3544 #endif /* emacs */
3545
3546
3547 case 'w':
3548 if (syntax & RE_NO_GNU_OPS)
3549 goto normal_char;
3550 laststart = b;
3551 BUF_PUSH_2 (syntaxspec, Sword);
3552 break;
3553
3554
3555 case 'W':
3556 if (syntax & RE_NO_GNU_OPS)
3557 goto normal_char;
3558 laststart = b;
3559 BUF_PUSH_2 (notsyntaxspec, Sword);
3560 break;
3561
3562
3563 case '<':
3564 if (syntax & RE_NO_GNU_OPS)
3565 goto normal_char;
3566 BUF_PUSH (wordbeg);
3567 break;
3568
3569 case '>':
3570 if (syntax & RE_NO_GNU_OPS)
3571 goto normal_char;
3572 BUF_PUSH (wordend);
3573 break;
3574
3575 case '_':
3576 if (syntax & RE_NO_GNU_OPS)
3577 goto normal_char;
3578 laststart = b;
3579 PATFETCH (c);
3580 if (c == '<')
3581 BUF_PUSH (symbeg);
3582 else if (c == '>')
3583 BUF_PUSH (symend);
3584 else
3585 FREE_STACK_RETURN (REG_BADPAT);
3586 break;
3587
3588 case 'b':
3589 if (syntax & RE_NO_GNU_OPS)
3590 goto normal_char;
3591 BUF_PUSH (wordbound);
3592 break;
3593
3594 case 'B':
3595 if (syntax & RE_NO_GNU_OPS)
3596 goto normal_char;
3597 BUF_PUSH (notwordbound);
3598 break;
3599
3600 case '`':
3601 if (syntax & RE_NO_GNU_OPS)
3602 goto normal_char;
3603 BUF_PUSH (begbuf);
3604 break;
3605
3606 case '\'':
3607 if (syntax & RE_NO_GNU_OPS)
3608 goto normal_char;
3609 BUF_PUSH (endbuf);
3610 break;
3611
3612 case '1': case '2': case '3': case '4': case '5':
3613 case '6': case '7': case '8': case '9':
3614 {
3615 regnum_t reg;
3616
3617 if (syntax & RE_NO_BK_REFS)
3618 goto normal_backslash;
3619
3620 reg = c - '0';
3621
3622 if (reg > bufp->re_nsub || reg < 1
3623 /* Can't back reference to a subexp before its end. */
3624 || group_in_compile_stack (compile_stack, reg))
3625 FREE_STACK_RETURN (REG_ESUBREG);
3626
3627 laststart = b;
3628 BUF_PUSH_2 (duplicate, reg);
3629 }
3630 break;
3631
3632
3633 case '+':
3634 case '?':
3635 if (syntax & RE_BK_PLUS_QM)
3636 goto handle_plus;
3637 else
3638 goto normal_backslash;
3639
3640 default:
3641 normal_backslash:
3642 /* You might think it would be useful for \ to mean
3643 not to translate; but if we don't translate it
3644 it will never match anything. */
3645 goto normal_char;
3646 }
3647 break;
3648
3649
3650 default:
3651 /* Expects the character in `c'. */
3652 normal_char:
3653 /* If no exactn currently being built. */
3654 if (!pending_exact
3655
3656 /* If last exactn not at current position. */
3657 || pending_exact + *pending_exact + 1 != b
3658
3659 /* We have only one byte following the exactn for the count. */
3660 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
3661
3662 /* If followed by a repetition operator. */
3663 || (p != pend && (*p == '*' || *p == '^'))
3664 || ((syntax & RE_BK_PLUS_QM)
3665 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3666 : p != pend && (*p == '+' || *p == '?'))
3667 || ((syntax & RE_INTERVALS)
3668 && ((syntax & RE_NO_BK_BRACES)
3669 ? p != pend && *p == '{'
3670 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
3671 {
3672 /* Start building a new exactn. */
3673
3674 laststart = b;
3675
3676 BUF_PUSH_2 (exactn, 0);
3677 pending_exact = b - 1;
3678 }
3679
3680 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3681 {
3682 int len;
3683
3684 if (multibyte)
3685 {
3686 c = TRANSLATE (c);
3687 len = CHAR_STRING (c, b);
3688 b += len;
3689 }
3690 else
3691 {
3692 c1 = RE_CHAR_TO_MULTIBYTE (c);
3693 if (! CHAR_BYTE8_P (c1))
3694 {
3695 re_wchar_t c2 = TRANSLATE (c1);
3696
3697 if (c1 != c2 && (c1 = RE_CHAR_TO_UNIBYTE (c2)) >= 0)
3698 c = c1;
3699 }
3700 *b++ = c;
3701 len = 1;
3702 }
3703 (*pending_exact) += len;
3704 }
3705
3706 break;
3707 } /* switch (c) */
3708 } /* while p != pend */
3709
3710
3711 /* Through the pattern now. */
3712
3713 FIXUP_ALT_JUMP ();
3714
3715 if (!COMPILE_STACK_EMPTY)
3716 FREE_STACK_RETURN (REG_EPAREN);
3717
3718 /* If we don't want backtracking, force success
3719 the first time we reach the end of the compiled pattern. */
3720 if (syntax & RE_NO_POSIX_BACKTRACKING)
3721 BUF_PUSH (succeed);
3722
3723 /* We have succeeded; set the length of the buffer. */
3724 bufp->used = b - bufp->buffer;
3725
3726 #ifdef DEBUG
3727 if (debug > 0)
3728 {
3729 re_compile_fastmap (bufp);
3730 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3731 print_compiled_pattern (bufp);
3732 }
3733 debug--;
3734 #endif /* DEBUG */
3735
3736 #ifndef MATCH_MAY_ALLOCATE
3737 /* Initialize the failure stack to the largest possible stack. This
3738 isn't necessary unless we're trying to avoid calling alloca in
3739 the search and match routines. */
3740 {
3741 int num_regs = bufp->re_nsub + 1;
3742
3743 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
3744 {
3745 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
3746
3747 if (! fail_stack.stack)
3748 fail_stack.stack
3749 = (fail_stack_elt_t *) malloc (fail_stack.size
3750 * sizeof (fail_stack_elt_t));
3751 else
3752 fail_stack.stack
3753 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3754 (fail_stack.size
3755 * sizeof (fail_stack_elt_t)));
3756 }
3757
3758 regex_grow_registers (num_regs);
3759 }
3760 #endif /* not MATCH_MAY_ALLOCATE */
3761
3762 FREE_STACK_RETURN (REG_NOERROR);
3763 } /* regex_compile */
3764 \f
3765 /* Subroutines for `regex_compile'. */
3766
3767 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3768
3769 static void
3770 store_op1 (re_opcode_t op, unsigned char *loc, int arg)
3771 {
3772 *loc = (unsigned char) op;
3773 STORE_NUMBER (loc + 1, arg);
3774 }
3775
3776
3777 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3778
3779 static void
3780 store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2)
3781 {
3782 *loc = (unsigned char) op;
3783 STORE_NUMBER (loc + 1, arg1);
3784 STORE_NUMBER (loc + 3, arg2);
3785 }
3786
3787
3788 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3789 for OP followed by two-byte integer parameter ARG. */
3790
3791 static void
3792 insert_op1 (re_opcode_t op, unsigned char *loc, int arg, unsigned char *end)
3793 {
3794 register unsigned char *pfrom = end;
3795 register unsigned char *pto = end + 3;
3796
3797 while (pfrom != loc)
3798 *--pto = *--pfrom;
3799
3800 store_op1 (op, loc, arg);
3801 }
3802
3803
3804 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3805
3806 static void
3807 insert_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2, unsigned char *end)
3808 {
3809 register unsigned char *pfrom = end;
3810 register unsigned char *pto = end + 5;
3811
3812 while (pfrom != loc)
3813 *--pto = *--pfrom;
3814
3815 store_op2 (op, loc, arg1, arg2);
3816 }
3817
3818
3819 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3820 after an alternative or a begin-subexpression. We assume there is at
3821 least one character before the ^. */
3822
3823 static boolean
3824 at_begline_loc_p (const re_char *pattern, const re_char *p, reg_syntax_t syntax)
3825 {
3826 re_char *prev = p - 2;
3827 boolean odd_backslashes;
3828
3829 /* After a subexpression? */
3830 if (*prev == '(')
3831 odd_backslashes = (syntax & RE_NO_BK_PARENS) == 0;
3832
3833 /* After an alternative? */
3834 else if (*prev == '|')
3835 odd_backslashes = (syntax & RE_NO_BK_VBAR) == 0;
3836
3837 /* After a shy subexpression? */
3838 else if (*prev == ':' && (syntax & RE_SHY_GROUPS))
3839 {
3840 /* Skip over optional regnum. */
3841 while (prev - 1 >= pattern && prev[-1] >= '0' && prev[-1] <= '9')
3842 --prev;
3843
3844 if (!(prev - 2 >= pattern
3845 && prev[-1] == '?' && prev[-2] == '('))
3846 return false;
3847 prev -= 2;
3848 odd_backslashes = (syntax & RE_NO_BK_PARENS) == 0;
3849 }
3850 else
3851 return false;
3852
3853 /* Count the number of preceding backslashes. */
3854 p = prev;
3855 while (prev - 1 >= pattern && prev[-1] == '\\')
3856 --prev;
3857 return (p - prev) & odd_backslashes;
3858 }
3859
3860
3861 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3862 at least one character after the $, i.e., `P < PEND'. */
3863
3864 static boolean
3865 at_endline_loc_p (const re_char *p, const re_char *pend, reg_syntax_t syntax)
3866 {
3867 re_char *next = p;
3868 boolean next_backslash = *next == '\\';
3869 re_char *next_next = p + 1 < pend ? p + 1 : 0;
3870
3871 return
3872 /* Before a subexpression? */
3873 (syntax & RE_NO_BK_PARENS ? *next == ')'
3874 : next_backslash && next_next && *next_next == ')')
3875 /* Before an alternative? */
3876 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3877 : next_backslash && next_next && *next_next == '|');
3878 }
3879
3880
3881 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3882 false if it's not. */
3883
3884 static boolean
3885 group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum)
3886 {
3887 ssize_t this_element;
3888
3889 for (this_element = compile_stack.avail - 1;
3890 this_element >= 0;
3891 this_element--)
3892 if (compile_stack.stack[this_element].regnum == regnum)
3893 return true;
3894
3895 return false;
3896 }
3897 \f
3898 /* analyse_first.
3899 If fastmap is non-NULL, go through the pattern and fill fastmap
3900 with all the possible leading chars. If fastmap is NULL, don't
3901 bother filling it up (obviously) and only return whether the
3902 pattern could potentially match the empty string.
3903
3904 Return 1 if p..pend might match the empty string.
3905 Return 0 if p..pend matches at least one char.
3906 Return -1 if fastmap was not updated accurately. */
3907
3908 static int
3909 analyse_first (const re_char *p, const re_char *pend, char *fastmap, const int multibyte)
3910 {
3911 int j, k;
3912 boolean not;
3913
3914 /* If all elements for base leading-codes in fastmap is set, this
3915 flag is set true. */
3916 boolean match_any_multibyte_characters = false;
3917
3918 assert (p);
3919
3920 /* The loop below works as follows:
3921 - It has a working-list kept in the PATTERN_STACK and which basically
3922 starts by only containing a pointer to the first operation.
3923 - If the opcode we're looking at is a match against some set of
3924 chars, then we add those chars to the fastmap and go on to the
3925 next work element from the worklist (done via `break').
3926 - If the opcode is a control operator on the other hand, we either
3927 ignore it (if it's meaningless at this point, such as `start_memory')
3928 or execute it (if it's a jump). If the jump has several destinations
3929 (i.e. `on_failure_jump'), then we push the other destination onto the
3930 worklist.
3931 We guarantee termination by ignoring backward jumps (more or less),
3932 so that `p' is monotonically increasing. More to the point, we
3933 never set `p' (or push) anything `<= p1'. */
3934
3935 while (p < pend)
3936 {
3937 /* `p1' is used as a marker of how far back a `on_failure_jump'
3938 can go without being ignored. It is normally equal to `p'
3939 (which prevents any backward `on_failure_jump') except right
3940 after a plain `jump', to allow patterns such as:
3941 0: jump 10
3942 3..9: <body>
3943 10: on_failure_jump 3
3944 as used for the *? operator. */
3945 re_char *p1 = p;
3946
3947 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3948 {
3949 case succeed:
3950 return 1;
3951
3952 case duplicate:
3953 /* If the first character has to match a backreference, that means
3954 that the group was empty (since it already matched). Since this
3955 is the only case that interests us here, we can assume that the
3956 backreference must match the empty string. */
3957 p++;
3958 continue;
3959
3960
3961 /* Following are the cases which match a character. These end
3962 with `break'. */
3963
3964 case exactn:
3965 if (fastmap)
3966 {
3967 /* If multibyte is nonzero, the first byte of each
3968 character is an ASCII or a leading code. Otherwise,
3969 each byte is a character. Thus, this works in both
3970 cases. */
3971 fastmap[p[1]] = 1;
3972 if (! multibyte)
3973 {
3974 /* For the case of matching this unibyte regex
3975 against multibyte, we must set a leading code of
3976 the corresponding multibyte character. */
3977 int c = RE_CHAR_TO_MULTIBYTE (p[1]);
3978
3979 fastmap[CHAR_LEADING_CODE (c)] = 1;
3980 }
3981 }
3982 break;
3983
3984
3985 case anychar:
3986 /* We could put all the chars except for \n (and maybe \0)
3987 but we don't bother since it is generally not worth it. */
3988 if (!fastmap) break;
3989 return -1;
3990
3991
3992 case charset_not:
3993 if (!fastmap) break;
3994 {
3995 /* Chars beyond end of bitmap are possible matches. */
3996 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3997 j < (1 << BYTEWIDTH); j++)
3998 fastmap[j] = 1;
3999 }
4000
4001 /* Fallthrough */
4002 case charset:
4003 if (!fastmap) break;
4004 not = (re_opcode_t) *(p - 1) == charset_not;
4005 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
4006 j >= 0; j--)
4007 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
4008 fastmap[j] = 1;
4009
4010 #ifdef emacs
4011 if (/* Any leading code can possibly start a character
4012 which doesn't match the specified set of characters. */
4013 not
4014 ||
4015 /* If we can match a character class, we can match any
4016 multibyte characters. */
4017 (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
4018 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
4019
4020 {
4021 if (match_any_multibyte_characters == false)
4022 {
4023 for (j = MIN_MULTIBYTE_LEADING_CODE;
4024 j <= MAX_MULTIBYTE_LEADING_CODE; j++)
4025 fastmap[j] = 1;
4026 match_any_multibyte_characters = true;
4027 }
4028 }
4029
4030 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
4031 && match_any_multibyte_characters == false)
4032 {
4033 /* Set fastmap[I] to 1 where I is a leading code of each
4034 multibyte character in the range table. */
4035 int c, count;
4036 unsigned char lc1, lc2;
4037
4038 /* Make P points the range table. `+ 2' is to skip flag
4039 bits for a character class. */
4040 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
4041
4042 /* Extract the number of ranges in range table into COUNT. */
4043 EXTRACT_NUMBER_AND_INCR (count, p);
4044 for (; count > 0; count--, p += 3)
4045 {
4046 /* Extract the start and end of each range. */
4047 EXTRACT_CHARACTER (c, p);
4048 lc1 = CHAR_LEADING_CODE (c);
4049 p += 3;
4050 EXTRACT_CHARACTER (c, p);
4051 lc2 = CHAR_LEADING_CODE (c);
4052 for (j = lc1; j <= lc2; j++)
4053 fastmap[j] = 1;
4054 }
4055 }
4056 #endif
4057 break;
4058
4059 case syntaxspec:
4060 case notsyntaxspec:
4061 if (!fastmap) break;
4062 #ifndef emacs
4063 not = (re_opcode_t)p[-1] == notsyntaxspec;
4064 k = *p++;
4065 for (j = 0; j < (1 << BYTEWIDTH); j++)
4066 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
4067 fastmap[j] = 1;
4068 break;
4069 #else /* emacs */
4070 /* This match depends on text properties. These end with
4071 aborting optimizations. */
4072 return -1;
4073
4074 case categoryspec:
4075 case notcategoryspec:
4076 if (!fastmap) break;
4077 not = (re_opcode_t)p[-1] == notcategoryspec;
4078 k = *p++;
4079 for (j = (1 << BYTEWIDTH); j >= 0; j--)
4080 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
4081 fastmap[j] = 1;
4082
4083 /* Any leading code can possibly start a character which
4084 has or doesn't has the specified category. */
4085 if (match_any_multibyte_characters == false)
4086 {
4087 for (j = MIN_MULTIBYTE_LEADING_CODE;
4088 j <= MAX_MULTIBYTE_LEADING_CODE; j++)
4089 fastmap[j] = 1;
4090 match_any_multibyte_characters = true;
4091 }
4092 break;
4093
4094 /* All cases after this match the empty string. These end with
4095 `continue'. */
4096
4097 case before_dot:
4098 case at_dot:
4099 case after_dot:
4100 #endif /* !emacs */
4101 case no_op:
4102 case begline:
4103 case endline:
4104 case begbuf:
4105 case endbuf:
4106 case wordbound:
4107 case notwordbound:
4108 case wordbeg:
4109 case wordend:
4110 case symbeg:
4111 case symend:
4112 continue;
4113
4114
4115 case jump:
4116 EXTRACT_NUMBER_AND_INCR (j, p);
4117 if (j < 0)
4118 /* Backward jumps can only go back to code that we've already
4119 visited. `re_compile' should make sure this is true. */
4120 break;
4121 p += j;
4122 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4123 {
4124 case on_failure_jump:
4125 case on_failure_keep_string_jump:
4126 case on_failure_jump_loop:
4127 case on_failure_jump_nastyloop:
4128 case on_failure_jump_smart:
4129 p++;
4130 break;
4131 default:
4132 continue;
4133 };
4134 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4135 to jump back to "just after here". */
4136 /* Fallthrough */
4137
4138 case on_failure_jump:
4139 case on_failure_keep_string_jump:
4140 case on_failure_jump_nastyloop:
4141 case on_failure_jump_loop:
4142 case on_failure_jump_smart:
4143 EXTRACT_NUMBER_AND_INCR (j, p);
4144 if (p + j <= p1)
4145 ; /* Backward jump to be ignored. */
4146 else
4147 { /* We have to look down both arms.
4148 We first go down the "straight" path so as to minimize
4149 stack usage when going through alternatives. */
4150 int r = analyse_first (p, pend, fastmap, multibyte);
4151 if (r) return r;
4152 p += j;
4153 }
4154 continue;
4155
4156
4157 case jump_n:
4158 /* This code simply does not properly handle forward jump_n. */
4159 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
4160 p += 4;
4161 /* jump_n can either jump or fall through. The (backward) jump
4162 case has already been handled, so we only need to look at the
4163 fallthrough case. */
4164 continue;
4165
4166 case succeed_n:
4167 /* If N == 0, it should be an on_failure_jump_loop instead. */
4168 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
4169 p += 4;
4170 /* We only care about one iteration of the loop, so we don't
4171 need to consider the case where this behaves like an
4172 on_failure_jump. */
4173 continue;
4174
4175
4176 case set_number_at:
4177 p += 4;
4178 continue;
4179
4180
4181 case start_memory:
4182 case stop_memory:
4183 p += 1;
4184 continue;
4185
4186
4187 default:
4188 abort (); /* We have listed all the cases. */
4189 } /* switch *p++ */
4190
4191 /* Getting here means we have found the possible starting
4192 characters for one path of the pattern -- and that the empty
4193 string does not match. We need not follow this path further. */
4194 return 0;
4195 } /* while p */
4196
4197 /* We reached the end without matching anything. */
4198 return 1;
4199
4200 } /* analyse_first */
4201 \f
4202 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4203 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4204 characters can start a string that matches the pattern. This fastmap
4205 is used by re_search to skip quickly over impossible starting points.
4206
4207 Character codes above (1 << BYTEWIDTH) are not represented in the
4208 fastmap, but the leading codes are represented. Thus, the fastmap
4209 indicates which character sets could start a match.
4210
4211 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4212 area as BUFP->fastmap.
4213
4214 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4215 the pattern buffer.
4216
4217 Returns 0 if we succeed, -2 if an internal error. */
4218
4219 int
4220 re_compile_fastmap (struct re_pattern_buffer *bufp)
4221 {
4222 char *fastmap = bufp->fastmap;
4223 int analysis;
4224
4225 assert (fastmap && bufp->buffer);
4226
4227 memset (fastmap, 0, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4228 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4229
4230 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
4231 fastmap, RE_MULTIBYTE_P (bufp));
4232 bufp->can_be_null = (analysis != 0);
4233 return 0;
4234 } /* re_compile_fastmap */
4235 \f
4236 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4237 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4238 this memory for recording register information. STARTS and ENDS
4239 must be allocated using the malloc library routine, and must each
4240 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4241
4242 If NUM_REGS == 0, then subsequent matches should allocate their own
4243 register data.
4244
4245 Unless this function is called, the first search or match using
4246 PATTERN_BUFFER will allocate its own register data, without
4247 freeing the old data. */
4248
4249 void
4250 re_set_registers (struct re_pattern_buffer *bufp, struct re_registers *regs, unsigned int num_regs, regoff_t *starts, regoff_t *ends)
4251 {
4252 if (num_regs)
4253 {
4254 bufp->regs_allocated = REGS_REALLOCATE;
4255 regs->num_regs = num_regs;
4256 regs->start = starts;
4257 regs->end = ends;
4258 }
4259 else
4260 {
4261 bufp->regs_allocated = REGS_UNALLOCATED;
4262 regs->num_regs = 0;
4263 regs->start = regs->end = (regoff_t *) 0;
4264 }
4265 }
4266 WEAK_ALIAS (__re_set_registers, re_set_registers)
4267 \f
4268 /* Searching routines. */
4269
4270 /* Like re_search_2, below, but only one string is specified, and
4271 doesn't let you say where to stop matching. */
4272
4273 regoff_t
4274 re_search (struct re_pattern_buffer *bufp, const char *string, size_t size,
4275 ssize_t startpos, ssize_t range, struct re_registers *regs)
4276 {
4277 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4278 regs, size);
4279 }
4280 WEAK_ALIAS (__re_search, re_search)
4281
4282 /* Head address of virtual concatenation of string. */
4283 #define HEAD_ADDR_VSTRING(P) \
4284 (((P) >= size1 ? string2 : string1))
4285
4286 /* Address of POS in the concatenation of virtual string. */
4287 #define POS_ADDR_VSTRING(POS) \
4288 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4289
4290 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4291 virtual concatenation of STRING1 and STRING2, starting first at index
4292 STARTPOS, then at STARTPOS + 1, and so on.
4293
4294 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4295
4296 RANGE is how far to scan while trying to match. RANGE = 0 means try
4297 only at STARTPOS; in general, the last start tried is STARTPOS +
4298 RANGE.
4299
4300 In REGS, return the indices of the virtual concatenation of STRING1
4301 and STRING2 that matched the entire BUFP->buffer and its contained
4302 subexpressions.
4303
4304 Do not consider matching one past the index STOP in the virtual
4305 concatenation of STRING1 and STRING2.
4306
4307 We return either the position in the strings at which the match was
4308 found, -1 if no match, or -2 if error (such as failure
4309 stack overflow). */
4310
4311 regoff_t
4312 re_search_2 (struct re_pattern_buffer *bufp, const char *str1, size_t size1,
4313 const char *str2, size_t size2, ssize_t startpos, ssize_t range,
4314 struct re_registers *regs, ssize_t stop)
4315 {
4316 regoff_t val;
4317 re_char *string1 = (re_char*) str1;
4318 re_char *string2 = (re_char*) str2;
4319 register char *fastmap = bufp->fastmap;
4320 register RE_TRANSLATE_TYPE translate = bufp->translate;
4321 size_t total_size = size1 + size2;
4322 ssize_t endpos = startpos + range;
4323 boolean anchored_start;
4324 /* Nonzero if we are searching multibyte string. */
4325 const boolean multibyte = RE_TARGET_MULTIBYTE_P (bufp);
4326
4327 /* Check for out-of-range STARTPOS. */
4328 if (startpos < 0 || startpos > total_size)
4329 return -1;
4330
4331 /* Fix up RANGE if it might eventually take us outside
4332 the virtual concatenation of STRING1 and STRING2.
4333 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4334 if (endpos < 0)
4335 range = 0 - startpos;
4336 else if (endpos > total_size)
4337 range = total_size - startpos;
4338
4339 /* If the search isn't to be a backwards one, don't waste time in a
4340 search for a pattern anchored at beginning of buffer. */
4341 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4342 {
4343 if (startpos > 0)
4344 return -1;
4345 else
4346 range = 0;
4347 }
4348
4349 #ifdef emacs
4350 /* In a forward search for something that starts with \=.
4351 don't keep searching past point. */
4352 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4353 {
4354 range = PT_BYTE - BEGV_BYTE - startpos;
4355 if (range < 0)
4356 return -1;
4357 }
4358 #endif /* emacs */
4359
4360 /* Update the fastmap now if not correct already. */
4361 if (fastmap && !bufp->fastmap_accurate)
4362 re_compile_fastmap (bufp);
4363
4364 /* See whether the pattern is anchored. */
4365 anchored_start = (bufp->buffer[0] == begline);
4366
4367 #ifdef emacs
4368 gl_state.object = re_match_object; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
4369 {
4370 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
4371
4372 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4373 }
4374 #endif
4375
4376 /* Loop through the string, looking for a place to start matching. */
4377 for (;;)
4378 {
4379 /* If the pattern is anchored,
4380 skip quickly past places we cannot match.
4381 We don't bother to treat startpos == 0 specially
4382 because that case doesn't repeat. */
4383 if (anchored_start && startpos > 0)
4384 {
4385 if (! ((startpos <= size1 ? string1[startpos - 1]
4386 : string2[startpos - size1 - 1])
4387 == '\n'))
4388 goto advance;
4389 }
4390
4391 /* If a fastmap is supplied, skip quickly over characters that
4392 cannot be the start of a match. If the pattern can match the
4393 null string, however, we don't need to skip characters; we want
4394 the first null string. */
4395 if (fastmap && startpos < total_size && !bufp->can_be_null)
4396 {
4397 register re_char *d;
4398 register re_wchar_t buf_ch;
4399
4400 d = POS_ADDR_VSTRING (startpos);
4401
4402 if (range > 0) /* Searching forwards. */
4403 {
4404 register int lim = 0;
4405 ssize_t irange = range;
4406
4407 if (startpos < size1 && startpos + range >= size1)
4408 lim = range - (size1 - startpos);
4409
4410 /* Written out as an if-else to avoid testing `translate'
4411 inside the loop. */
4412 if (RE_TRANSLATE_P (translate))
4413 {
4414 if (multibyte)
4415 while (range > lim)
4416 {
4417 int buf_charlen;
4418
4419 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
4420 buf_ch = RE_TRANSLATE (translate, buf_ch);
4421 if (fastmap[CHAR_LEADING_CODE (buf_ch)])
4422 break;
4423
4424 range -= buf_charlen;
4425 d += buf_charlen;
4426 }
4427 else
4428 while (range > lim)
4429 {
4430 register re_wchar_t ch, translated;
4431
4432 buf_ch = *d;
4433 ch = RE_CHAR_TO_MULTIBYTE (buf_ch);
4434 translated = RE_TRANSLATE (translate, ch);
4435 if (translated != ch
4436 && (ch = RE_CHAR_TO_UNIBYTE (translated)) >= 0)
4437 buf_ch = ch;
4438 if (fastmap[buf_ch])
4439 break;
4440 d++;
4441 range--;
4442 }
4443 }
4444 else
4445 {
4446 if (multibyte)
4447 while (range > lim)
4448 {
4449 int buf_charlen;
4450
4451 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
4452 if (fastmap[CHAR_LEADING_CODE (buf_ch)])
4453 break;
4454 range -= buf_charlen;
4455 d += buf_charlen;
4456 }
4457 else
4458 while (range > lim && !fastmap[*d])
4459 {
4460 d++;
4461 range--;
4462 }
4463 }
4464 startpos += irange - range;
4465 }
4466 else /* Searching backwards. */
4467 {
4468 if (multibyte)
4469 {
4470 buf_ch = STRING_CHAR (d);
4471 buf_ch = TRANSLATE (buf_ch);
4472 if (! fastmap[CHAR_LEADING_CODE (buf_ch)])
4473 goto advance;
4474 }
4475 else
4476 {
4477 register re_wchar_t ch, translated;
4478
4479 buf_ch = *d;
4480 ch = RE_CHAR_TO_MULTIBYTE (buf_ch);
4481 translated = TRANSLATE (ch);
4482 if (translated != ch
4483 && (ch = RE_CHAR_TO_UNIBYTE (translated)) >= 0)
4484 buf_ch = ch;
4485 if (! fastmap[TRANSLATE (buf_ch)])
4486 goto advance;
4487 }
4488 }
4489 }
4490
4491 /* If can't match the null string, and that's all we have left, fail. */
4492 if (range >= 0 && startpos == total_size && fastmap
4493 && !bufp->can_be_null)
4494 return -1;
4495
4496 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4497 startpos, regs, stop);
4498
4499 if (val >= 0)
4500 return startpos;
4501
4502 if (val == -2)
4503 return -2;
4504
4505 advance:
4506 if (!range)
4507 break;
4508 else if (range > 0)
4509 {
4510 /* Update STARTPOS to the next character boundary. */
4511 if (multibyte)
4512 {
4513 re_char *p = POS_ADDR_VSTRING (startpos);
4514 int len = BYTES_BY_CHAR_HEAD (*p);
4515
4516 range -= len;
4517 if (range < 0)
4518 break;
4519 startpos += len;
4520 }
4521 else
4522 {
4523 range--;
4524 startpos++;
4525 }
4526 }
4527 else
4528 {
4529 range++;
4530 startpos--;
4531
4532 /* Update STARTPOS to the previous character boundary. */
4533 if (multibyte)
4534 {
4535 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4536 re_char *p0 = p;
4537 re_char *phead = HEAD_ADDR_VSTRING (startpos);
4538
4539 /* Find the head of multibyte form. */
4540 PREV_CHAR_BOUNDARY (p, phead);
4541 range += p0 - 1 - p;
4542 if (range > 0)
4543 break;
4544
4545 startpos -= p0 - 1 - p;
4546 }
4547 }
4548 }
4549 return -1;
4550 } /* re_search_2 */
4551 WEAK_ALIAS (__re_search_2, re_search_2)
4552 \f
4553 /* Declarations and macros for re_match_2. */
4554
4555 static int bcmp_translate (re_char *s1, re_char *s2,
4556 register ssize_t len,
4557 RE_TRANSLATE_TYPE translate,
4558 const int multibyte);
4559
4560 /* This converts PTR, a pointer into one of the search strings `string1'
4561 and `string2' into an offset from the beginning of that string. */
4562 #define POINTER_TO_OFFSET(ptr) \
4563 (FIRST_STRING_P (ptr) \
4564 ? ((regoff_t) ((ptr) - string1)) \
4565 : ((regoff_t) ((ptr) - string2 + size1)))
4566
4567 /* Call before fetching a character with *d. This switches over to
4568 string2 if necessary.
4569 Check re_match_2_internal for a discussion of why end_match_2 might
4570 not be within string2 (but be equal to end_match_1 instead). */
4571 #define PREFETCH() \
4572 while (d == dend) \
4573 { \
4574 /* End of string2 => fail. */ \
4575 if (dend == end_match_2) \
4576 goto fail; \
4577 /* End of string1 => advance to string2. */ \
4578 d = string2; \
4579 dend = end_match_2; \
4580 }
4581
4582 /* Call before fetching a char with *d if you already checked other limits.
4583 This is meant for use in lookahead operations like wordend, etc..
4584 where we might need to look at parts of the string that might be
4585 outside of the LIMITs (i.e past `stop'). */
4586 #define PREFETCH_NOLIMIT() \
4587 if (d == end1) \
4588 { \
4589 d = string2; \
4590 dend = end_match_2; \
4591 } \
4592
4593 /* Test if at very beginning or at very end of the virtual concatenation
4594 of `string1' and `string2'. If only one string, it's `string2'. */
4595 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4596 #define AT_STRINGS_END(d) ((d) == end2)
4597
4598 /* Disabled due to a compiler bug -- see comment at case wordbound */
4599
4600 /* The comment at case wordbound is following one, but we don't use
4601 AT_WORD_BOUNDARY anymore to support multibyte form.
4602
4603 The DEC Alpha C compiler 3.x generates incorrect code for the
4604 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4605 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4606 macro and introducing temporary variables works around the bug. */
4607
4608 #if 0
4609 /* Test if D points to a character which is word-constituent. We have
4610 two special cases to check for: if past the end of string1, look at
4611 the first character in string2; and if before the beginning of
4612 string2, look at the last character in string1. */
4613 #define WORDCHAR_P(d) \
4614 (SYNTAX ((d) == end1 ? *string2 \
4615 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4616 == Sword)
4617
4618 /* Test if the character before D and the one at D differ with respect
4619 to being word-constituent. */
4620 #define AT_WORD_BOUNDARY(d) \
4621 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4622 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4623 #endif
4624
4625 /* Free everything we malloc. */
4626 #ifdef MATCH_MAY_ALLOCATE
4627 # define FREE_VAR(var) \
4628 do { \
4629 if (var) \
4630 { \
4631 REGEX_FREE (var); \
4632 var = NULL; \
4633 } \
4634 } while (0)
4635 # define FREE_VARIABLES() \
4636 do { \
4637 REGEX_FREE_STACK (fail_stack.stack); \
4638 FREE_VAR (regstart); \
4639 FREE_VAR (regend); \
4640 FREE_VAR (best_regstart); \
4641 FREE_VAR (best_regend); \
4642 } while (0)
4643 #else
4644 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4645 #endif /* not MATCH_MAY_ALLOCATE */
4646
4647 \f
4648 /* Optimization routines. */
4649
4650 /* If the operation is a match against one or more chars,
4651 return a pointer to the next operation, else return NULL. */
4652 static re_char *
4653 skip_one_char (const re_char *p)
4654 {
4655 switch (SWITCH_ENUM_CAST (*p++))
4656 {
4657 case anychar:
4658 break;
4659
4660 case exactn:
4661 p += *p + 1;
4662 break;
4663
4664 case charset_not:
4665 case charset:
4666 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4667 {
4668 int mcnt;
4669 p = CHARSET_RANGE_TABLE (p - 1);
4670 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4671 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4672 }
4673 else
4674 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4675 break;
4676
4677 case syntaxspec:
4678 case notsyntaxspec:
4679 #ifdef emacs
4680 case categoryspec:
4681 case notcategoryspec:
4682 #endif /* emacs */
4683 p++;
4684 break;
4685
4686 default:
4687 p = NULL;
4688 }
4689 return p;
4690 }
4691
4692
4693 /* Jump over non-matching operations. */
4694 static re_char *
4695 skip_noops (const re_char *p, const re_char *pend)
4696 {
4697 int mcnt;
4698 while (p < pend)
4699 {
4700 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4701 {
4702 case start_memory:
4703 case stop_memory:
4704 p += 2; break;
4705 case no_op:
4706 p += 1; break;
4707 case jump:
4708 p += 1;
4709 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4710 p += mcnt;
4711 break;
4712 default:
4713 return p;
4714 }
4715 }
4716 assert (p == pend);
4717 return p;
4718 }
4719
4720 /* Non-zero if "p1 matches something" implies "p2 fails". */
4721 static int
4722 mutually_exclusive_p (struct re_pattern_buffer *bufp, const re_char *p1, const re_char *p2)
4723 {
4724 re_opcode_t op2;
4725 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4726 unsigned char *pend = bufp->buffer + bufp->used;
4727
4728 assert (p1 >= bufp->buffer && p1 < pend
4729 && p2 >= bufp->buffer && p2 <= pend);
4730
4731 /* Skip over open/close-group commands.
4732 If what follows this loop is a ...+ construct,
4733 look at what begins its body, since we will have to
4734 match at least one of that. */
4735 p2 = skip_noops (p2, pend);
4736 /* The same skip can be done for p1, except that this function
4737 is only used in the case where p1 is a simple match operator. */
4738 /* p1 = skip_noops (p1, pend); */
4739
4740 assert (p1 >= bufp->buffer && p1 < pend
4741 && p2 >= bufp->buffer && p2 <= pend);
4742
4743 op2 = p2 == pend ? succeed : *p2;
4744
4745 switch (SWITCH_ENUM_CAST (op2))
4746 {
4747 case succeed:
4748 case endbuf:
4749 /* If we're at the end of the pattern, we can change. */
4750 if (skip_one_char (p1))
4751 {
4752 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4753 return 1;
4754 }
4755 break;
4756
4757 case endline:
4758 case exactn:
4759 {
4760 register re_wchar_t c
4761 = (re_opcode_t) *p2 == endline ? '\n'
4762 : RE_STRING_CHAR (p2 + 2, multibyte);
4763
4764 if ((re_opcode_t) *p1 == exactn)
4765 {
4766 if (c != RE_STRING_CHAR (p1 + 2, multibyte))
4767 {
4768 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4769 return 1;
4770 }
4771 }
4772
4773 else if ((re_opcode_t) *p1 == charset
4774 || (re_opcode_t) *p1 == charset_not)
4775 {
4776 int not = (re_opcode_t) *p1 == charset_not;
4777
4778 /* Test if C is listed in charset (or charset_not)
4779 at `p1'. */
4780 if (! multibyte || IS_REAL_ASCII (c))
4781 {
4782 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4783 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4784 not = !not;
4785 }
4786 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4787 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
4788
4789 /* `not' is equal to 1 if c would match, which means
4790 that we can't change to pop_failure_jump. */
4791 if (!not)
4792 {
4793 DEBUG_PRINT1 (" No match => fast loop.\n");
4794 return 1;
4795 }
4796 }
4797 else if ((re_opcode_t) *p1 == anychar
4798 && c == '\n')
4799 {
4800 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4801 return 1;
4802 }
4803 }
4804 break;
4805
4806 case charset:
4807 {
4808 if ((re_opcode_t) *p1 == exactn)
4809 /* Reuse the code above. */
4810 return mutually_exclusive_p (bufp, p2, p1);
4811
4812 /* It is hard to list up all the character in charset
4813 P2 if it includes multibyte character. Give up in
4814 such case. */
4815 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4816 {
4817 /* Now, we are sure that P2 has no range table.
4818 So, for the size of bitmap in P2, `p2[1]' is
4819 enough. But P1 may have range table, so the
4820 size of bitmap table of P1 is extracted by
4821 using macro `CHARSET_BITMAP_SIZE'.
4822
4823 In a multibyte case, we know that all the character
4824 listed in P2 is ASCII. In a unibyte case, P1 has only a
4825 bitmap table. So, in both cases, it is enough to test
4826 only the bitmap table of P1. */
4827
4828 if ((re_opcode_t) *p1 == charset)
4829 {
4830 int idx;
4831 /* We win if the charset inside the loop
4832 has no overlap with the one after the loop. */
4833 for (idx = 0;
4834 (idx < (int) p2[1]
4835 && idx < CHARSET_BITMAP_SIZE (p1));
4836 idx++)
4837 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4838 break;
4839
4840 if (idx == p2[1]
4841 || idx == CHARSET_BITMAP_SIZE (p1))
4842 {
4843 DEBUG_PRINT1 (" No match => fast loop.\n");
4844 return 1;
4845 }
4846 }
4847 else if ((re_opcode_t) *p1 == charset_not)
4848 {
4849 int idx;
4850 /* We win if the charset_not inside the loop lists
4851 every character listed in the charset after. */
4852 for (idx = 0; idx < (int) p2[1]; idx++)
4853 if (! (p2[2 + idx] == 0
4854 || (idx < CHARSET_BITMAP_SIZE (p1)
4855 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4856 break;
4857
4858 if (idx == p2[1])
4859 {
4860 DEBUG_PRINT1 (" No match => fast loop.\n");
4861 return 1;
4862 }
4863 }
4864 }
4865 }
4866 break;
4867
4868 case charset_not:
4869 switch (SWITCH_ENUM_CAST (*p1))
4870 {
4871 case exactn:
4872 case charset:
4873 /* Reuse the code above. */
4874 return mutually_exclusive_p (bufp, p2, p1);
4875 case charset_not:
4876 /* When we have two charset_not, it's very unlikely that
4877 they don't overlap. The union of the two sets of excluded
4878 chars should cover all possible chars, which, as a matter of
4879 fact, is virtually impossible in multibyte buffers. */
4880 break;
4881 }
4882 break;
4883
4884 case wordend:
4885 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
4886 case symend:
4887 return ((re_opcode_t) *p1 == syntaxspec
4888 && (p1[1] == Ssymbol || p1[1] == Sword));
4889 case notsyntaxspec:
4890 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4891
4892 case wordbeg:
4893 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
4894 case symbeg:
4895 return ((re_opcode_t) *p1 == notsyntaxspec
4896 && (p1[1] == Ssymbol || p1[1] == Sword));
4897 case syntaxspec:
4898 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4899
4900 case wordbound:
4901 return (((re_opcode_t) *p1 == notsyntaxspec
4902 || (re_opcode_t) *p1 == syntaxspec)
4903 && p1[1] == Sword);
4904
4905 #ifdef emacs
4906 case categoryspec:
4907 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4908 case notcategoryspec:
4909 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4910 #endif /* emacs */
4911
4912 default:
4913 ;
4914 }
4915
4916 /* Safe default. */
4917 return 0;
4918 }
4919
4920 \f
4921 /* Matching routines. */
4922
4923 #ifndef emacs /* Emacs never uses this. */
4924 /* re_match is like re_match_2 except it takes only a single string. */
4925
4926 regoff_t
4927 re_match (struct re_pattern_buffer *bufp, const char *string,
4928 size_t size, ssize_t pos, struct re_registers *regs)
4929 {
4930 regoff_t result = re_match_2_internal (bufp, NULL, 0, (re_char*) string,
4931 size, pos, regs, size);
4932 return result;
4933 }
4934 WEAK_ALIAS (__re_match, re_match)
4935 #endif /* not emacs */
4936
4937 #ifdef emacs
4938 /* In Emacs, this is the string or buffer in which we
4939 are matching. It is used for looking up syntax properties. */
4940 Lisp_Object re_match_object;
4941 #endif
4942
4943 /* re_match_2 matches the compiled pattern in BUFP against the
4944 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4945 and SIZE2, respectively). We start matching at POS, and stop
4946 matching at STOP.
4947
4948 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4949 store offsets for the substring each group matched in REGS. See the
4950 documentation for exactly how many groups we fill.
4951
4952 We return -1 if no match, -2 if an internal error (such as the
4953 failure stack overflowing). Otherwise, we return the length of the
4954 matched substring. */
4955
4956 regoff_t
4957 re_match_2 (struct re_pattern_buffer *bufp, const char *string1,
4958 size_t size1, const char *string2, size_t size2, ssize_t pos,
4959 struct re_registers *regs, ssize_t stop)
4960 {
4961 regoff_t result;
4962
4963 #ifdef emacs
4964 ssize_t charpos;
4965 gl_state.object = re_match_object; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
4966 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
4967 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4968 #endif
4969
4970 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4971 (re_char*) string2, size2,
4972 pos, regs, stop);
4973 return result;
4974 }
4975 WEAK_ALIAS (__re_match_2, re_match_2)
4976
4977
4978 /* This is a separate function so that we can force an alloca cleanup
4979 afterwards. */
4980 static regoff_t
4981 re_match_2_internal (struct re_pattern_buffer *bufp, const re_char *string1,
4982 size_t size1, const re_char *string2, size_t size2,
4983 ssize_t pos, struct re_registers *regs, ssize_t stop)
4984 {
4985 /* General temporaries. */
4986 ssize_t mcnt;
4987 size_t reg;
4988
4989 /* Just past the end of the corresponding string. */
4990 re_char *end1, *end2;
4991
4992 /* Pointers into string1 and string2, just past the last characters in
4993 each to consider matching. */
4994 re_char *end_match_1, *end_match_2;
4995
4996 /* Where we are in the data, and the end of the current string. */
4997 re_char *d, *dend;
4998
4999 /* Used sometimes to remember where we were before starting matching
5000 an operator so that we can go back in case of failure. This "atomic"
5001 behavior of matching opcodes is indispensable to the correctness
5002 of the on_failure_keep_string_jump optimization. */
5003 re_char *dfail;
5004
5005 /* Where we are in the pattern, and the end of the pattern. */
5006 re_char *p = bufp->buffer;
5007 re_char *pend = p + bufp->used;
5008
5009 /* We use this to map every character in the string. */
5010 RE_TRANSLATE_TYPE translate = bufp->translate;
5011
5012 /* Nonzero if BUFP is setup from a multibyte regex. */
5013 const boolean multibyte = RE_MULTIBYTE_P (bufp);
5014
5015 /* Nonzero if STRING1/STRING2 are multibyte. */
5016 const boolean target_multibyte = RE_TARGET_MULTIBYTE_P (bufp);
5017
5018 /* Failure point stack. Each place that can handle a failure further
5019 down the line pushes a failure point on this stack. It consists of
5020 regstart, and regend for all registers corresponding to
5021 the subexpressions we're currently inside, plus the number of such
5022 registers, and, finally, two char *'s. The first char * is where
5023 to resume scanning the pattern; the second one is where to resume
5024 scanning the strings. */
5025 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5026 fail_stack_type fail_stack;
5027 #endif
5028 #ifdef DEBUG
5029 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5030 #endif
5031
5032 #if defined REL_ALLOC && defined REGEX_MALLOC
5033 /* This holds the pointer to the failure stack, when
5034 it is allocated relocatably. */
5035 fail_stack_elt_t *failure_stack_ptr;
5036 #endif
5037
5038 /* We fill all the registers internally, independent of what we
5039 return, for use in backreferences. The number here includes
5040 an element for register zero. */
5041 size_t num_regs = bufp->re_nsub + 1;
5042
5043 /* Information on the contents of registers. These are pointers into
5044 the input strings; they record just what was matched (on this
5045 attempt) by a subexpression part of the pattern, that is, the
5046 regnum-th regstart pointer points to where in the pattern we began
5047 matching and the regnum-th regend points to right after where we
5048 stopped matching the regnum-th subexpression. (The zeroth register
5049 keeps track of what the whole pattern matches.) */
5050 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5051 re_char **regstart, **regend;
5052 #endif
5053
5054 /* The following record the register info as found in the above
5055 variables when we find a match better than any we've seen before.
5056 This happens as we backtrack through the failure points, which in
5057 turn happens only if we have not yet matched the entire string. */
5058 unsigned best_regs_set = false;
5059 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5060 re_char **best_regstart, **best_regend;
5061 #endif
5062
5063 /* Logically, this is `best_regend[0]'. But we don't want to have to
5064 allocate space for that if we're not allocating space for anything
5065 else (see below). Also, we never need info about register 0 for
5066 any of the other register vectors, and it seems rather a kludge to
5067 treat `best_regend' differently than the rest. So we keep track of
5068 the end of the best match so far in a separate variable. We
5069 initialize this to NULL so that when we backtrack the first time
5070 and need to test it, it's not garbage. */
5071 re_char *match_end = NULL;
5072
5073 #ifdef DEBUG
5074 /* Counts the total number of registers pushed. */
5075 unsigned num_regs_pushed = 0;
5076 #endif
5077
5078 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5079
5080 INIT_FAIL_STACK ();
5081
5082 #ifdef MATCH_MAY_ALLOCATE
5083 /* Do not bother to initialize all the register variables if there are
5084 no groups in the pattern, as it takes a fair amount of time. If
5085 there are groups, we include space for register 0 (the whole
5086 pattern), even though we never use it, since it simplifies the
5087 array indexing. We should fix this. */
5088 if (bufp->re_nsub)
5089 {
5090 regstart = REGEX_TALLOC (num_regs, re_char *);
5091 regend = REGEX_TALLOC (num_regs, re_char *);
5092 best_regstart = REGEX_TALLOC (num_regs, re_char *);
5093 best_regend = REGEX_TALLOC (num_regs, re_char *);
5094
5095 if (!(regstart && regend && best_regstart && best_regend))
5096 {
5097 FREE_VARIABLES ();
5098 return -2;
5099 }
5100 }
5101 else
5102 {
5103 /* We must initialize all our variables to NULL, so that
5104 `FREE_VARIABLES' doesn't try to free them. */
5105 regstart = regend = best_regstart = best_regend = NULL;
5106 }
5107 #endif /* MATCH_MAY_ALLOCATE */
5108
5109 /* The starting position is bogus. */
5110 if (pos < 0 || pos > size1 + size2)
5111 {
5112 FREE_VARIABLES ();
5113 return -1;
5114 }
5115
5116 /* Initialize subexpression text positions to -1 to mark ones that no
5117 start_memory/stop_memory has been seen for. Also initialize the
5118 register information struct. */
5119 for (reg = 1; reg < num_regs; reg++)
5120 regstart[reg] = regend[reg] = NULL;
5121
5122 /* We move `string1' into `string2' if the latter's empty -- but not if
5123 `string1' is null. */
5124 if (size2 == 0 && string1 != NULL)
5125 {
5126 string2 = string1;
5127 size2 = size1;
5128 string1 = 0;
5129 size1 = 0;
5130 }
5131 end1 = string1 + size1;
5132 end2 = string2 + size2;
5133
5134 /* `p' scans through the pattern as `d' scans through the data.
5135 `dend' is the end of the input string that `d' points within. `d'
5136 is advanced into the following input string whenever necessary, but
5137 this happens before fetching; therefore, at the beginning of the
5138 loop, `d' can be pointing at the end of a string, but it cannot
5139 equal `string2'. */
5140 if (pos >= size1)
5141 {
5142 /* Only match within string2. */
5143 d = string2 + pos - size1;
5144 dend = end_match_2 = string2 + stop - size1;
5145 end_match_1 = end1; /* Just to give it a value. */
5146 }
5147 else
5148 {
5149 if (stop < size1)
5150 {
5151 /* Only match within string1. */
5152 end_match_1 = string1 + stop;
5153 /* BEWARE!
5154 When we reach end_match_1, PREFETCH normally switches to string2.
5155 But in the present case, this means that just doing a PREFETCH
5156 makes us jump from `stop' to `gap' within the string.
5157 What we really want here is for the search to stop as
5158 soon as we hit end_match_1. That's why we set end_match_2
5159 to end_match_1 (since PREFETCH fails as soon as we hit
5160 end_match_2). */
5161 end_match_2 = end_match_1;
5162 }
5163 else
5164 { /* It's important to use this code when stop == size so that
5165 moving `d' from end1 to string2 will not prevent the d == dend
5166 check from catching the end of string. */
5167 end_match_1 = end1;
5168 end_match_2 = string2 + stop - size1;
5169 }
5170 d = string1 + pos;
5171 dend = end_match_1;
5172 }
5173
5174 DEBUG_PRINT1 ("The compiled pattern is: ");
5175 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5176 DEBUG_PRINT1 ("The string to match is: `");
5177 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5178 DEBUG_PRINT1 ("'\n");
5179
5180 /* This loops over pattern commands. It exits by returning from the
5181 function if the match is complete, or it drops through if the match
5182 fails at this starting point in the input data. */
5183 for (;;)
5184 {
5185 DEBUG_PRINT2 ("\n%p: ", p);
5186
5187 if (p == pend)
5188 { /* End of pattern means we might have succeeded. */
5189 DEBUG_PRINT1 ("end of pattern ... ");
5190
5191 /* If we haven't matched the entire string, and we want the
5192 longest match, try backtracking. */
5193 if (d != end_match_2)
5194 {
5195 /* 1 if this match ends in the same string (string1 or string2)
5196 as the best previous match. */
5197 boolean same_str_p = (FIRST_STRING_P (match_end)
5198 == FIRST_STRING_P (d));
5199 /* 1 if this match is the best seen so far. */
5200 boolean best_match_p;
5201
5202 /* AIX compiler got confused when this was combined
5203 with the previous declaration. */
5204 if (same_str_p)
5205 best_match_p = d > match_end;
5206 else
5207 best_match_p = !FIRST_STRING_P (d);
5208
5209 DEBUG_PRINT1 ("backtracking.\n");
5210
5211 if (!FAIL_STACK_EMPTY ())
5212 { /* More failure points to try. */
5213
5214 /* If exceeds best match so far, save it. */
5215 if (!best_regs_set || best_match_p)
5216 {
5217 best_regs_set = true;
5218 match_end = d;
5219
5220 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5221
5222 for (reg = 1; reg < num_regs; reg++)
5223 {
5224 best_regstart[reg] = regstart[reg];
5225 best_regend[reg] = regend[reg];
5226 }
5227 }
5228 goto fail;
5229 }
5230
5231 /* If no failure points, don't restore garbage. And if
5232 last match is real best match, don't restore second
5233 best one. */
5234 else if (best_regs_set && !best_match_p)
5235 {
5236 restore_best_regs:
5237 /* Restore best match. It may happen that `dend ==
5238 end_match_1' while the restored d is in string2.
5239 For example, the pattern `x.*y.*z' against the
5240 strings `x-' and `y-z-', if the two strings are
5241 not consecutive in memory. */
5242 DEBUG_PRINT1 ("Restoring best registers.\n");
5243
5244 d = match_end;
5245 dend = ((d >= string1 && d <= end1)
5246 ? end_match_1 : end_match_2);
5247
5248 for (reg = 1; reg < num_regs; reg++)
5249 {
5250 regstart[reg] = best_regstart[reg];
5251 regend[reg] = best_regend[reg];
5252 }
5253 }
5254 } /* d != end_match_2 */
5255
5256 succeed_label:
5257 DEBUG_PRINT1 ("Accepting match.\n");
5258
5259 /* If caller wants register contents data back, do it. */
5260 if (regs && !bufp->no_sub)
5261 {
5262 /* Have the register data arrays been allocated? */
5263 if (bufp->regs_allocated == REGS_UNALLOCATED)
5264 { /* No. So allocate them with malloc. We need one
5265 extra element beyond `num_regs' for the `-1' marker
5266 GNU code uses. */
5267 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5268 regs->start = TALLOC (regs->num_regs, regoff_t);
5269 regs->end = TALLOC (regs->num_regs, regoff_t);
5270 if (regs->start == NULL || regs->end == NULL)
5271 {
5272 FREE_VARIABLES ();
5273 return -2;
5274 }
5275 bufp->regs_allocated = REGS_REALLOCATE;
5276 }
5277 else if (bufp->regs_allocated == REGS_REALLOCATE)
5278 { /* Yes. If we need more elements than were already
5279 allocated, reallocate them. If we need fewer, just
5280 leave it alone. */
5281 if (regs->num_regs < num_regs + 1)
5282 {
5283 regs->num_regs = num_regs + 1;
5284 RETALLOC (regs->start, regs->num_regs, regoff_t);
5285 RETALLOC (regs->end, regs->num_regs, regoff_t);
5286 if (regs->start == NULL || regs->end == NULL)
5287 {
5288 FREE_VARIABLES ();
5289 return -2;
5290 }
5291 }
5292 }
5293 else
5294 {
5295 /* These braces fend off a "empty body in an else-statement"
5296 warning under GCC when assert expands to nothing. */
5297 assert (bufp->regs_allocated == REGS_FIXED);
5298 }
5299
5300 /* Convert the pointer data in `regstart' and `regend' to
5301 indices. Register zero has to be set differently,
5302 since we haven't kept track of any info for it. */
5303 if (regs->num_regs > 0)
5304 {
5305 regs->start[0] = pos;
5306 regs->end[0] = POINTER_TO_OFFSET (d);
5307 }
5308
5309 /* Go through the first `min (num_regs, regs->num_regs)'
5310 registers, since that is all we initialized. */
5311 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
5312 {
5313 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5314 regs->start[reg] = regs->end[reg] = -1;
5315 else
5316 {
5317 regs->start[reg]
5318 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5319 regs->end[reg]
5320 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
5321 }
5322 }
5323
5324 /* If the regs structure we return has more elements than
5325 were in the pattern, set the extra elements to -1. If
5326 we (re)allocated the registers, this is the case,
5327 because we always allocate enough to have at least one
5328 -1 at the end. */
5329 for (reg = num_regs; reg < regs->num_regs; reg++)
5330 regs->start[reg] = regs->end[reg] = -1;
5331 } /* regs && !bufp->no_sub */
5332
5333 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5334 nfailure_points_pushed, nfailure_points_popped,
5335 nfailure_points_pushed - nfailure_points_popped);
5336 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
5337
5338 mcnt = POINTER_TO_OFFSET (d) - pos;
5339
5340 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
5341
5342 FREE_VARIABLES ();
5343 return mcnt;
5344 }
5345
5346 /* Otherwise match next pattern command. */
5347 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5348 {
5349 /* Ignore these. Used to ignore the n of succeed_n's which
5350 currently have n == 0. */
5351 case no_op:
5352 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5353 break;
5354
5355 case succeed:
5356 DEBUG_PRINT1 ("EXECUTING succeed.\n");
5357 goto succeed_label;
5358
5359 /* Match the next n pattern characters exactly. The following
5360 byte in the pattern defines n, and the n bytes after that
5361 are the characters to match. */
5362 case exactn:
5363 mcnt = *p++;
5364 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
5365
5366 /* Remember the start point to rollback upon failure. */
5367 dfail = d;
5368
5369 #ifndef emacs
5370 /* This is written out as an if-else so we don't waste time
5371 testing `translate' inside the loop. */
5372 if (RE_TRANSLATE_P (translate))
5373 do
5374 {
5375 PREFETCH ();
5376 if (RE_TRANSLATE (translate, *d) != *p++)
5377 {
5378 d = dfail;
5379 goto fail;
5380 }
5381 d++;
5382 }
5383 while (--mcnt);
5384 else
5385 do
5386 {
5387 PREFETCH ();
5388 if (*d++ != *p++)
5389 {
5390 d = dfail;
5391 goto fail;
5392 }
5393 }
5394 while (--mcnt);
5395 #else /* emacs */
5396 /* The cost of testing `translate' is comparatively small. */
5397 if (target_multibyte)
5398 do
5399 {
5400 int pat_charlen, buf_charlen;
5401 int pat_ch, buf_ch;
5402
5403 PREFETCH ();
5404 if (multibyte)
5405 pat_ch = STRING_CHAR_AND_LENGTH (p, pat_charlen);
5406 else
5407 {
5408 pat_ch = RE_CHAR_TO_MULTIBYTE (*p);
5409 pat_charlen = 1;
5410 }
5411 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
5412
5413 if (TRANSLATE (buf_ch) != pat_ch)
5414 {
5415 d = dfail;
5416 goto fail;
5417 }
5418
5419 p += pat_charlen;
5420 d += buf_charlen;
5421 mcnt -= pat_charlen;
5422 }
5423 while (mcnt > 0);
5424 else
5425 do
5426 {
5427 int pat_charlen;
5428 int pat_ch, buf_ch;
5429
5430 PREFETCH ();
5431 if (multibyte)
5432 {
5433 pat_ch = STRING_CHAR_AND_LENGTH (p, pat_charlen);
5434 pat_ch = RE_CHAR_TO_UNIBYTE (pat_ch);
5435 }
5436 else
5437 {
5438 pat_ch = *p;
5439 pat_charlen = 1;
5440 }
5441 buf_ch = RE_CHAR_TO_MULTIBYTE (*d);
5442 if (! CHAR_BYTE8_P (buf_ch))
5443 {
5444 buf_ch = TRANSLATE (buf_ch);
5445 buf_ch = RE_CHAR_TO_UNIBYTE (buf_ch);
5446 if (buf_ch < 0)
5447 buf_ch = *d;
5448 }
5449 else
5450 buf_ch = *d;
5451 if (buf_ch != pat_ch)
5452 {
5453 d = dfail;
5454 goto fail;
5455 }
5456 p += pat_charlen;
5457 d++;
5458 }
5459 while (--mcnt);
5460 #endif
5461 break;
5462
5463
5464 /* Match any character except possibly a newline or a null. */
5465 case anychar:
5466 {
5467 int buf_charlen;
5468 re_wchar_t buf_ch;
5469
5470 DEBUG_PRINT1 ("EXECUTING anychar.\n");
5471
5472 PREFETCH ();
5473 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, buf_charlen,
5474 target_multibyte);
5475 buf_ch = TRANSLATE (buf_ch);
5476
5477 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5478 && buf_ch == '\n')
5479 || ((bufp->syntax & RE_DOT_NOT_NULL)
5480 && buf_ch == '\000'))
5481 goto fail;
5482
5483 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5484 d += buf_charlen;
5485 }
5486 break;
5487
5488
5489 case charset:
5490 case charset_not:
5491 {
5492 register unsigned int c;
5493 boolean not = (re_opcode_t) *(p - 1) == charset_not;
5494 int len;
5495
5496 /* Start of actual range_table, or end of bitmap if there is no
5497 range table. */
5498 re_char *range_table IF_LINT (= NULL);
5499
5500 /* Nonzero if there is a range table. */
5501 int range_table_exists;
5502
5503 /* Number of ranges of range table. This is not included
5504 in the initial byte-length of the command. */
5505 int count = 0;
5506
5507 /* Whether matching against a unibyte character. */
5508 boolean unibyte_char = false;
5509
5510 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5511
5512 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
5513
5514 if (range_table_exists)
5515 {
5516 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5517 EXTRACT_NUMBER_AND_INCR (count, range_table);
5518 }
5519
5520 PREFETCH ();
5521 c = RE_STRING_CHAR_AND_LENGTH (d, len, target_multibyte);
5522 if (target_multibyte)
5523 {
5524 int c1;
5525
5526 c = TRANSLATE (c);
5527 c1 = RE_CHAR_TO_UNIBYTE (c);
5528 if (c1 >= 0)
5529 {
5530 unibyte_char = true;
5531 c = c1;
5532 }
5533 }
5534 else
5535 {
5536 int c1 = RE_CHAR_TO_MULTIBYTE (c);
5537
5538 if (! CHAR_BYTE8_P (c1))
5539 {
5540 c1 = TRANSLATE (c1);
5541 c1 = RE_CHAR_TO_UNIBYTE (c1);
5542 if (c1 >= 0)
5543 {
5544 unibyte_char = true;
5545 c = c1;
5546 }
5547 }
5548 else
5549 unibyte_char = true;
5550 }
5551
5552 if (unibyte_char && c < (1 << BYTEWIDTH))
5553 { /* Lookup bitmap. */
5554 /* Cast to `unsigned' instead of `unsigned char' in
5555 case the bit list is a full 32 bytes long. */
5556 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
5557 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5558 not = !not;
5559 }
5560 #ifdef emacs
5561 else if (range_table_exists)
5562 {
5563 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5564
5565 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5566 | (class_bits & BIT_MULTIBYTE)
5567 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5568 | (class_bits & BIT_SPACE && ISSPACE (c))
5569 | (class_bits & BIT_UPPER && ISUPPER (c))
5570 | (class_bits & BIT_WORD && ISWORD (c)))
5571 not = !not;
5572 else
5573 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5574 }
5575 #endif /* emacs */
5576
5577 if (range_table_exists)
5578 p = CHARSET_RANGE_TABLE_END (range_table, count);
5579 else
5580 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
5581
5582 if (!not) goto fail;
5583
5584 d += len;
5585 }
5586 break;
5587
5588
5589 /* The beginning of a group is represented by start_memory.
5590 The argument is the register number. The text
5591 matched within the group is recorded (in the internal
5592 registers data structure) under the register number. */
5593 case start_memory:
5594 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5595
5596 /* In case we need to undo this operation (via backtracking). */
5597 PUSH_FAILURE_REG ((unsigned int)*p);
5598
5599 regstart[*p] = d;
5600 regend[*p] = NULL; /* probably unnecessary. -sm */
5601 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5602
5603 /* Move past the register number and inner group count. */
5604 p += 1;
5605 break;
5606
5607
5608 /* The stop_memory opcode represents the end of a group. Its
5609 argument is the same as start_memory's: the register number. */
5610 case stop_memory:
5611 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5612
5613 assert (!REG_UNSET (regstart[*p]));
5614 /* Strictly speaking, there should be code such as:
5615
5616 assert (REG_UNSET (regend[*p]));
5617 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5618
5619 But the only info to be pushed is regend[*p] and it is known to
5620 be UNSET, so there really isn't anything to push.
5621 Not pushing anything, on the other hand deprives us from the
5622 guarantee that regend[*p] is UNSET since undoing this operation
5623 will not reset its value properly. This is not important since
5624 the value will only be read on the next start_memory or at
5625 the very end and both events can only happen if this stop_memory
5626 is *not* undone. */
5627
5628 regend[*p] = d;
5629 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5630
5631 /* Move past the register number and the inner group count. */
5632 p += 1;
5633 break;
5634
5635
5636 /* \<digit> has been turned into a `duplicate' command which is
5637 followed by the numeric value of <digit> as the register number. */
5638 case duplicate:
5639 {
5640 register re_char *d2, *dend2;
5641 int regno = *p++; /* Get which register to match against. */
5642 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5643
5644 /* Can't back reference a group which we've never matched. */
5645 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5646 goto fail;
5647
5648 /* Where in input to try to start matching. */
5649 d2 = regstart[regno];
5650
5651 /* Remember the start point to rollback upon failure. */
5652 dfail = d;
5653
5654 /* Where to stop matching; if both the place to start and
5655 the place to stop matching are in the same string, then
5656 set to the place to stop, otherwise, for now have to use
5657 the end of the first string. */
5658
5659 dend2 = ((FIRST_STRING_P (regstart[regno])
5660 == FIRST_STRING_P (regend[regno]))
5661 ? regend[regno] : end_match_1);
5662 for (;;)
5663 {
5664 /* If necessary, advance to next segment in register
5665 contents. */
5666 while (d2 == dend2)
5667 {
5668 if (dend2 == end_match_2) break;
5669 if (dend2 == regend[regno]) break;
5670
5671 /* End of string1 => advance to string2. */
5672 d2 = string2;
5673 dend2 = regend[regno];
5674 }
5675 /* At end of register contents => success */
5676 if (d2 == dend2) break;
5677
5678 /* If necessary, advance to next segment in data. */
5679 PREFETCH ();
5680
5681 /* How many characters left in this segment to match. */
5682 mcnt = dend - d;
5683
5684 /* Want how many consecutive characters we can match in
5685 one shot, so, if necessary, adjust the count. */
5686 if (mcnt > dend2 - d2)
5687 mcnt = dend2 - d2;
5688
5689 /* Compare that many; failure if mismatch, else move
5690 past them. */
5691 if (RE_TRANSLATE_P (translate)
5692 ? bcmp_translate (d, d2, mcnt, translate, target_multibyte)
5693 : memcmp (d, d2, mcnt))
5694 {
5695 d = dfail;
5696 goto fail;
5697 }
5698 d += mcnt, d2 += mcnt;
5699 }
5700 }
5701 break;
5702
5703
5704 /* begline matches the empty string at the beginning of the string
5705 (unless `not_bol' is set in `bufp'), and after newlines. */
5706 case begline:
5707 DEBUG_PRINT1 ("EXECUTING begline.\n");
5708
5709 if (AT_STRINGS_BEG (d))
5710 {
5711 if (!bufp->not_bol) break;
5712 }
5713 else
5714 {
5715 unsigned c;
5716 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
5717 if (c == '\n')
5718 break;
5719 }
5720 /* In all other cases, we fail. */
5721 goto fail;
5722
5723
5724 /* endline is the dual of begline. */
5725 case endline:
5726 DEBUG_PRINT1 ("EXECUTING endline.\n");
5727
5728 if (AT_STRINGS_END (d))
5729 {
5730 if (!bufp->not_eol) break;
5731 }
5732 else
5733 {
5734 PREFETCH_NOLIMIT ();
5735 if (*d == '\n')
5736 break;
5737 }
5738 goto fail;
5739
5740
5741 /* Match at the very beginning of the data. */
5742 case begbuf:
5743 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5744 if (AT_STRINGS_BEG (d))
5745 break;
5746 goto fail;
5747
5748
5749 /* Match at the very end of the data. */
5750 case endbuf:
5751 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5752 if (AT_STRINGS_END (d))
5753 break;
5754 goto fail;
5755
5756
5757 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5758 pushes NULL as the value for the string on the stack. Then
5759 `POP_FAILURE_POINT' will keep the current value for the
5760 string, instead of restoring it. To see why, consider
5761 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5762 then the . fails against the \n. But the next thing we want
5763 to do is match the \n against the \n; if we restored the
5764 string value, we would be back at the foo.
5765
5766 Because this is used only in specific cases, we don't need to
5767 check all the things that `on_failure_jump' does, to make
5768 sure the right things get saved on the stack. Hence we don't
5769 share its code. The only reason to push anything on the
5770 stack at all is that otherwise we would have to change
5771 `anychar's code to do something besides goto fail in this
5772 case; that seems worse than this. */
5773 case on_failure_keep_string_jump:
5774 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5775 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5776 mcnt, p + mcnt);
5777
5778 PUSH_FAILURE_POINT (p - 3, NULL);
5779 break;
5780
5781 /* A nasty loop is introduced by the non-greedy *? and +?.
5782 With such loops, the stack only ever contains one failure point
5783 at a time, so that a plain on_failure_jump_loop kind of
5784 cycle detection cannot work. Worse yet, such a detection
5785 can not only fail to detect a cycle, but it can also wrongly
5786 detect a cycle (between different instantiations of the same
5787 loop).
5788 So the method used for those nasty loops is a little different:
5789 We use a special cycle-detection-stack-frame which is pushed
5790 when the on_failure_jump_nastyloop failure-point is *popped*.
5791 This special frame thus marks the beginning of one iteration
5792 through the loop and we can hence easily check right here
5793 whether something matched between the beginning and the end of
5794 the loop. */
5795 case on_failure_jump_nastyloop:
5796 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5797 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5798 mcnt, p + mcnt);
5799
5800 assert ((re_opcode_t)p[-4] == no_op);
5801 {
5802 int cycle = 0;
5803 CHECK_INFINITE_LOOP (p - 4, d);
5804 if (!cycle)
5805 /* If there's a cycle, just continue without pushing
5806 this failure point. The failure point is the "try again"
5807 option, which shouldn't be tried.
5808 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5809 PUSH_FAILURE_POINT (p - 3, d);
5810 }
5811 break;
5812
5813 /* Simple loop detecting on_failure_jump: just check on the
5814 failure stack if the same spot was already hit earlier. */
5815 case on_failure_jump_loop:
5816 on_failure:
5817 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5818 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5819 mcnt, p + mcnt);
5820 {
5821 int cycle = 0;
5822 CHECK_INFINITE_LOOP (p - 3, d);
5823 if (cycle)
5824 /* If there's a cycle, get out of the loop, as if the matching
5825 had failed. We used to just `goto fail' here, but that was
5826 aborting the search a bit too early: we want to keep the
5827 empty-loop-match and keep matching after the loop.
5828 We want (x?)*y\1z to match both xxyz and xxyxz. */
5829 p += mcnt;
5830 else
5831 PUSH_FAILURE_POINT (p - 3, d);
5832 }
5833 break;
5834
5835
5836 /* Uses of on_failure_jump:
5837
5838 Each alternative starts with an on_failure_jump that points
5839 to the beginning of the next alternative. Each alternative
5840 except the last ends with a jump that in effect jumps past
5841 the rest of the alternatives. (They really jump to the
5842 ending jump of the following alternative, because tensioning
5843 these jumps is a hassle.)
5844
5845 Repeats start with an on_failure_jump that points past both
5846 the repetition text and either the following jump or
5847 pop_failure_jump back to this on_failure_jump. */
5848 case on_failure_jump:
5849 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5850 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5851 mcnt, p + mcnt);
5852
5853 PUSH_FAILURE_POINT (p -3, d);
5854 break;
5855
5856 /* This operation is used for greedy *.
5857 Compare the beginning of the repeat with what in the
5858 pattern follows its end. If we can establish that there
5859 is nothing that they would both match, i.e., that we
5860 would have to backtrack because of (as in, e.g., `a*a')
5861 then we can use a non-backtracking loop based on
5862 on_failure_keep_string_jump instead of on_failure_jump. */
5863 case on_failure_jump_smart:
5864 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5865 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5866 mcnt, p + mcnt);
5867 {
5868 re_char *p1 = p; /* Next operation. */
5869 /* Here, we discard `const', making re_match non-reentrant. */
5870 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5871 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
5872
5873 p -= 3; /* Reset so that we will re-execute the
5874 instruction once it's been changed. */
5875
5876 EXTRACT_NUMBER (mcnt, p2 - 2);
5877
5878 /* Ensure this is a indeed the trivial kind of loop
5879 we are expecting. */
5880 assert (skip_one_char (p1) == p2 - 3);
5881 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
5882 DEBUG_STATEMENT (debug += 2);
5883 if (mutually_exclusive_p (bufp, p1, p2))
5884 {
5885 /* Use a fast `on_failure_keep_string_jump' loop. */
5886 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
5887 *p3 = (unsigned char) on_failure_keep_string_jump;
5888 STORE_NUMBER (p2 - 2, mcnt + 3);
5889 }
5890 else
5891 {
5892 /* Default to a safe `on_failure_jump' loop. */
5893 DEBUG_PRINT1 (" smart default => slow loop.\n");
5894 *p3 = (unsigned char) on_failure_jump;
5895 }
5896 DEBUG_STATEMENT (debug -= 2);
5897 }
5898 break;
5899
5900 /* Unconditionally jump (without popping any failure points). */
5901 case jump:
5902 unconditional_jump:
5903 IMMEDIATE_QUIT_CHECK;
5904 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
5905 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5906 p += mcnt; /* Do the jump. */
5907 DEBUG_PRINT2 ("(to %p).\n", p);
5908 break;
5909
5910
5911 /* Have to succeed matching what follows at least n times.
5912 After that, handle like `on_failure_jump'. */
5913 case succeed_n:
5914 /* Signedness doesn't matter since we only compare MCNT to 0. */
5915 EXTRACT_NUMBER (mcnt, p + 2);
5916 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5917
5918 /* Originally, mcnt is how many times we HAVE to succeed. */
5919 if (mcnt != 0)
5920 {
5921 /* Here, we discard `const', making re_match non-reentrant. */
5922 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5923 mcnt--;
5924 p += 4;
5925 PUSH_NUMBER (p2, mcnt);
5926 }
5927 else
5928 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5929 goto on_failure;
5930 break;
5931
5932 case jump_n:
5933 /* Signedness doesn't matter since we only compare MCNT to 0. */
5934 EXTRACT_NUMBER (mcnt, p + 2);
5935 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5936
5937 /* Originally, this is how many times we CAN jump. */
5938 if (mcnt != 0)
5939 {
5940 /* Here, we discard `const', making re_match non-reentrant. */
5941 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5942 mcnt--;
5943 PUSH_NUMBER (p2, mcnt);
5944 goto unconditional_jump;
5945 }
5946 /* If don't have to jump any more, skip over the rest of command. */
5947 else
5948 p += 4;
5949 break;
5950
5951 case set_number_at:
5952 {
5953 unsigned char *p2; /* Location of the counter. */
5954 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5955
5956 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5957 /* Here, we discard `const', making re_match non-reentrant. */
5958 p2 = (unsigned char*) p + mcnt;
5959 /* Signedness doesn't matter since we only copy MCNT's bits . */
5960 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5961 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5962 PUSH_NUMBER (p2, mcnt);
5963 break;
5964 }
5965
5966 case wordbound:
5967 case notwordbound:
5968 {
5969 boolean not = (re_opcode_t) *(p - 1) == notwordbound;
5970 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
5971
5972 /* We SUCCEED (or FAIL) in one of the following cases: */
5973
5974 /* Case 1: D is at the beginning or the end of string. */
5975 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5976 not = !not;
5977 else
5978 {
5979 /* C1 is the character before D, S1 is the syntax of C1, C2
5980 is the character at D, and S2 is the syntax of C2. */
5981 re_wchar_t c1, c2;
5982 int s1, s2;
5983 int dummy;
5984 #ifdef emacs
5985 ssize_t offset = PTR_TO_OFFSET (d - 1);
5986 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5987 UPDATE_SYNTAX_TABLE (charpos);
5988 #endif
5989 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5990 s1 = SYNTAX (c1);
5991 #ifdef emacs
5992 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5993 #endif
5994 PREFETCH_NOLIMIT ();
5995 GET_CHAR_AFTER (c2, d, dummy);
5996 s2 = SYNTAX (c2);
5997
5998 if (/* Case 2: Only one of S1 and S2 is Sword. */
5999 ((s1 == Sword) != (s2 == Sword))
6000 /* Case 3: Both of S1 and S2 are Sword, and macro
6001 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
6002 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
6003 not = !not;
6004 }
6005 if (not)
6006 break;
6007 else
6008 goto fail;
6009 }
6010
6011 case wordbeg:
6012 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
6013
6014 /* We FAIL in one of the following cases: */
6015
6016 /* Case 1: D is at the end of string. */
6017 if (AT_STRINGS_END (d))
6018 goto fail;
6019 else
6020 {
6021 /* C1 is the character before D, S1 is the syntax of C1, C2
6022 is the character at D, and S2 is the syntax of C2. */
6023 re_wchar_t c1, c2;
6024 int s1, s2;
6025 int dummy;
6026 #ifdef emacs
6027 ssize_t offset = PTR_TO_OFFSET (d);
6028 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6029 UPDATE_SYNTAX_TABLE (charpos);
6030 #endif
6031 PREFETCH ();
6032 GET_CHAR_AFTER (c2, d, dummy);
6033 s2 = SYNTAX (c2);
6034
6035 /* Case 2: S2 is not Sword. */
6036 if (s2 != Sword)
6037 goto fail;
6038
6039 /* Case 3: D is not at the beginning of string ... */
6040 if (!AT_STRINGS_BEG (d))
6041 {
6042 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6043 #ifdef emacs
6044 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
6045 #endif
6046 s1 = SYNTAX (c1);
6047
6048 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
6049 returns 0. */
6050 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
6051 goto fail;
6052 }
6053 }
6054 break;
6055
6056 case wordend:
6057 DEBUG_PRINT1 ("EXECUTING wordend.\n");
6058
6059 /* We FAIL in one of the following cases: */
6060
6061 /* Case 1: D is at the beginning of string. */
6062 if (AT_STRINGS_BEG (d))
6063 goto fail;
6064 else
6065 {
6066 /* C1 is the character before D, S1 is the syntax of C1, C2
6067 is the character at D, and S2 is the syntax of C2. */
6068 re_wchar_t c1, c2;
6069 int s1, s2;
6070 int dummy;
6071 #ifdef emacs
6072 ssize_t offset = PTR_TO_OFFSET (d) - 1;
6073 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6074 UPDATE_SYNTAX_TABLE (charpos);
6075 #endif
6076 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6077 s1 = SYNTAX (c1);
6078
6079 /* Case 2: S1 is not Sword. */
6080 if (s1 != Sword)
6081 goto fail;
6082
6083 /* Case 3: D is not at the end of string ... */
6084 if (!AT_STRINGS_END (d))
6085 {
6086 PREFETCH_NOLIMIT ();
6087 GET_CHAR_AFTER (c2, d, dummy);
6088 #ifdef emacs
6089 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
6090 #endif
6091 s2 = SYNTAX (c2);
6092
6093 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
6094 returns 0. */
6095 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
6096 goto fail;
6097 }
6098 }
6099 break;
6100
6101 case symbeg:
6102 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
6103
6104 /* We FAIL in one of the following cases: */
6105
6106 /* Case 1: D is at the end of string. */
6107 if (AT_STRINGS_END (d))
6108 goto fail;
6109 else
6110 {
6111 /* C1 is the character before D, S1 is the syntax of C1, C2
6112 is the character at D, and S2 is the syntax of C2. */
6113 re_wchar_t c1, c2;
6114 int s1, s2;
6115 #ifdef emacs
6116 ssize_t offset = PTR_TO_OFFSET (d);
6117 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6118 UPDATE_SYNTAX_TABLE (charpos);
6119 #endif
6120 PREFETCH ();
6121 c2 = RE_STRING_CHAR (d, target_multibyte);
6122 s2 = SYNTAX (c2);
6123
6124 /* Case 2: S2 is neither Sword nor Ssymbol. */
6125 if (s2 != Sword && s2 != Ssymbol)
6126 goto fail;
6127
6128 /* Case 3: D is not at the beginning of string ... */
6129 if (!AT_STRINGS_BEG (d))
6130 {
6131 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6132 #ifdef emacs
6133 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
6134 #endif
6135 s1 = SYNTAX (c1);
6136
6137 /* ... and S1 is Sword or Ssymbol. */
6138 if (s1 == Sword || s1 == Ssymbol)
6139 goto fail;
6140 }
6141 }
6142 break;
6143
6144 case symend:
6145 DEBUG_PRINT1 ("EXECUTING symend.\n");
6146
6147 /* We FAIL in one of the following cases: */
6148
6149 /* Case 1: D is at the beginning of string. */
6150 if (AT_STRINGS_BEG (d))
6151 goto fail;
6152 else
6153 {
6154 /* C1 is the character before D, S1 is the syntax of C1, C2
6155 is the character at D, and S2 is the syntax of C2. */
6156 re_wchar_t c1, c2;
6157 int s1, s2;
6158 #ifdef emacs
6159 ssize_t offset = PTR_TO_OFFSET (d) - 1;
6160 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6161 UPDATE_SYNTAX_TABLE (charpos);
6162 #endif
6163 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6164 s1 = SYNTAX (c1);
6165
6166 /* Case 2: S1 is neither Ssymbol nor Sword. */
6167 if (s1 != Sword && s1 != Ssymbol)
6168 goto fail;
6169
6170 /* Case 3: D is not at the end of string ... */
6171 if (!AT_STRINGS_END (d))
6172 {
6173 PREFETCH_NOLIMIT ();
6174 c2 = RE_STRING_CHAR (d, target_multibyte);
6175 #ifdef emacs
6176 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
6177 #endif
6178 s2 = SYNTAX (c2);
6179
6180 /* ... and S2 is Sword or Ssymbol. */
6181 if (s2 == Sword || s2 == Ssymbol)
6182 goto fail;
6183 }
6184 }
6185 break;
6186
6187 case syntaxspec:
6188 case notsyntaxspec:
6189 {
6190 boolean not = (re_opcode_t) *(p - 1) == notsyntaxspec;
6191 mcnt = *p++;
6192 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
6193 PREFETCH ();
6194 #ifdef emacs
6195 {
6196 ssize_t offset = PTR_TO_OFFSET (d);
6197 ssize_t pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6198 UPDATE_SYNTAX_TABLE (pos1);
6199 }
6200 #endif
6201 {
6202 int len;
6203 re_wchar_t c;
6204
6205 GET_CHAR_AFTER (c, d, len);
6206 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
6207 goto fail;
6208 d += len;
6209 }
6210 }
6211 break;
6212
6213 #ifdef emacs
6214 case before_dot:
6215 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
6216 if (PTR_BYTE_POS (d) >= PT_BYTE)
6217 goto fail;
6218 break;
6219
6220 case at_dot:
6221 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
6222 if (PTR_BYTE_POS (d) != PT_BYTE)
6223 goto fail;
6224 break;
6225
6226 case after_dot:
6227 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6228 if (PTR_BYTE_POS (d) <= PT_BYTE)
6229 goto fail;
6230 break;
6231
6232 case categoryspec:
6233 case notcategoryspec:
6234 {
6235 boolean not = (re_opcode_t) *(p - 1) == notcategoryspec;
6236 mcnt = *p++;
6237 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n",
6238 not?"not":"", mcnt);
6239 PREFETCH ();
6240
6241 {
6242 int len;
6243 re_wchar_t c;
6244 GET_CHAR_AFTER (c, d, len);
6245 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
6246 goto fail;
6247 d += len;
6248 }
6249 }
6250 break;
6251
6252 #endif /* emacs */
6253
6254 default:
6255 abort ();
6256 }
6257 continue; /* Successfully executed one pattern command; keep going. */
6258
6259
6260 /* We goto here if a matching operation fails. */
6261 fail:
6262 IMMEDIATE_QUIT_CHECK;
6263 if (!FAIL_STACK_EMPTY ())
6264 {
6265 re_char *str, *pat;
6266 /* A restart point is known. Restore to that state. */
6267 DEBUG_PRINT1 ("\nFAIL:\n");
6268 POP_FAILURE_POINT (str, pat);
6269 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
6270 {
6271 case on_failure_keep_string_jump:
6272 assert (str == NULL);
6273 goto continue_failure_jump;
6274
6275 case on_failure_jump_nastyloop:
6276 assert ((re_opcode_t)pat[-2] == no_op);
6277 PUSH_FAILURE_POINT (pat - 2, str);
6278 /* Fallthrough */
6279
6280 case on_failure_jump_loop:
6281 case on_failure_jump:
6282 case succeed_n:
6283 d = str;
6284 continue_failure_jump:
6285 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
6286 p = pat + mcnt;
6287 break;
6288
6289 case no_op:
6290 /* A special frame used for nastyloops. */
6291 goto fail;
6292
6293 default:
6294 abort ();
6295 }
6296
6297 assert (p >= bufp->buffer && p <= pend);
6298
6299 if (d >= string1 && d <= end1)
6300 dend = end_match_1;
6301 }
6302 else
6303 break; /* Matching at this starting point really fails. */
6304 } /* for (;;) */
6305
6306 if (best_regs_set)
6307 goto restore_best_regs;
6308
6309 FREE_VARIABLES ();
6310
6311 return -1; /* Failure to match. */
6312 } /* re_match_2 */
6313 \f
6314 /* Subroutine definitions for re_match_2. */
6315
6316 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6317 bytes; nonzero otherwise. */
6318
6319 static int
6320 bcmp_translate (const re_char *s1, const re_char *s2, register ssize_t len,
6321 RE_TRANSLATE_TYPE translate, const int target_multibyte)
6322 {
6323 register re_char *p1 = s1, *p2 = s2;
6324 re_char *p1_end = s1 + len;
6325 re_char *p2_end = s2 + len;
6326
6327 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6328 different lengths, but relying on a single `len' would break this. -sm */
6329 while (p1 < p1_end && p2 < p2_end)
6330 {
6331 int p1_charlen, p2_charlen;
6332 re_wchar_t p1_ch, p2_ch;
6333
6334 GET_CHAR_AFTER (p1_ch, p1, p1_charlen);
6335 GET_CHAR_AFTER (p2_ch, p2, p2_charlen);
6336
6337 if (RE_TRANSLATE (translate, p1_ch)
6338 != RE_TRANSLATE (translate, p2_ch))
6339 return 1;
6340
6341 p1 += p1_charlen, p2 += p2_charlen;
6342 }
6343
6344 if (p1 != p1_end || p2 != p2_end)
6345 return 1;
6346
6347 return 0;
6348 }
6349 \f
6350 /* Entry points for GNU code. */
6351
6352 /* re_compile_pattern is the GNU regular expression compiler: it
6353 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6354 Returns 0 if the pattern was valid, otherwise an error string.
6355
6356 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6357 are set in BUFP on entry.
6358
6359 We call regex_compile to do the actual compilation. */
6360
6361 const char *
6362 re_compile_pattern (const char *pattern, size_t length,
6363 struct re_pattern_buffer *bufp)
6364 {
6365 reg_errcode_t ret;
6366
6367 /* GNU code is written to assume at least RE_NREGS registers will be set
6368 (and at least one extra will be -1). */
6369 bufp->regs_allocated = REGS_UNALLOCATED;
6370
6371 /* And GNU code determines whether or not to get register information
6372 by passing null for the REGS argument to re_match, etc., not by
6373 setting no_sub. */
6374 bufp->no_sub = 0;
6375
6376 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
6377
6378 if (!ret)
6379 return NULL;
6380 return gettext (re_error_msgid[(int) ret]);
6381 }
6382 WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
6383 \f
6384 /* Entry points compatible with 4.2 BSD regex library. We don't define
6385 them unless specifically requested. */
6386
6387 #if defined _REGEX_RE_COMP || defined _LIBC
6388
6389 /* BSD has one and only one pattern buffer. */
6390 static struct re_pattern_buffer re_comp_buf;
6391
6392 char *
6393 # ifdef _LIBC
6394 /* Make these definitions weak in libc, so POSIX programs can redefine
6395 these names if they don't use our functions, and still use
6396 regcomp/regexec below without link errors. */
6397 weak_function
6398 # endif
6399 re_comp (const char *s)
6400 {
6401 reg_errcode_t ret;
6402
6403 if (!s)
6404 {
6405 if (!re_comp_buf.buffer)
6406 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6407 return (char *) gettext ("No previous regular expression");
6408 return 0;
6409 }
6410
6411 if (!re_comp_buf.buffer)
6412 {
6413 re_comp_buf.buffer = (unsigned char *) malloc (200);
6414 if (re_comp_buf.buffer == NULL)
6415 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6416 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6417 re_comp_buf.allocated = 200;
6418
6419 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6420 if (re_comp_buf.fastmap == NULL)
6421 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6422 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6423 }
6424
6425 /* Since `re_exec' always passes NULL for the `regs' argument, we
6426 don't need to initialize the pattern buffer fields which affect it. */
6427
6428 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
6429
6430 if (!ret)
6431 return NULL;
6432
6433 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6434 return (char *) gettext (re_error_msgid[(int) ret]);
6435 }
6436
6437
6438 int
6439 # ifdef _LIBC
6440 weak_function
6441 # endif
6442 re_exec (const char *s)
6443 {
6444 const size_t len = strlen (s);
6445 return
6446 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6447 }
6448 #endif /* _REGEX_RE_COMP */
6449 \f
6450 /* POSIX.2 functions. Don't define these for Emacs. */
6451
6452 #ifndef emacs
6453
6454 /* regcomp takes a regular expression as a string and compiles it.
6455
6456 PREG is a regex_t *. We do not expect any fields to be initialized,
6457 since POSIX says we shouldn't. Thus, we set
6458
6459 `buffer' to the compiled pattern;
6460 `used' to the length of the compiled pattern;
6461 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6462 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6463 RE_SYNTAX_POSIX_BASIC;
6464 `fastmap' to an allocated space for the fastmap;
6465 `fastmap_accurate' to zero;
6466 `re_nsub' to the number of subexpressions in PATTERN.
6467
6468 PATTERN is the address of the pattern string.
6469
6470 CFLAGS is a series of bits which affect compilation.
6471
6472 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6473 use POSIX basic syntax.
6474
6475 If REG_NEWLINE is set, then . and [^...] don't match newline.
6476 Also, regexec will try a match beginning after every newline.
6477
6478 If REG_ICASE is set, then we considers upper- and lowercase
6479 versions of letters to be equivalent when matching.
6480
6481 If REG_NOSUB is set, then when PREG is passed to regexec, that
6482 routine will report only success or failure, and nothing about the
6483 registers.
6484
6485 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6486 the return codes and their meanings.) */
6487
6488 reg_errcode_t
6489 regcomp (regex_t *__restrict preg, const char *__restrict pattern,
6490 int cflags)
6491 {
6492 reg_errcode_t ret;
6493 reg_syntax_t syntax
6494 = (cflags & REG_EXTENDED) ?
6495 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6496
6497 /* regex_compile will allocate the space for the compiled pattern. */
6498 preg->buffer = 0;
6499 preg->allocated = 0;
6500 preg->used = 0;
6501
6502 /* Try to allocate space for the fastmap. */
6503 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
6504
6505 if (cflags & REG_ICASE)
6506 {
6507 unsigned i;
6508
6509 preg->translate
6510 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6511 * sizeof (*(RE_TRANSLATE_TYPE)0));
6512 if (preg->translate == NULL)
6513 return (int) REG_ESPACE;
6514
6515 /* Map uppercase characters to corresponding lowercase ones. */
6516 for (i = 0; i < CHAR_SET_SIZE; i++)
6517 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
6518 }
6519 else
6520 preg->translate = NULL;
6521
6522 /* If REG_NEWLINE is set, newlines are treated differently. */
6523 if (cflags & REG_NEWLINE)
6524 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6525 syntax &= ~RE_DOT_NEWLINE;
6526 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
6527 }
6528 else
6529 syntax |= RE_NO_NEWLINE_ANCHOR;
6530
6531 preg->no_sub = !!(cflags & REG_NOSUB);
6532
6533 /* POSIX says a null character in the pattern terminates it, so we
6534 can use strlen here in compiling the pattern. */
6535 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
6536
6537 /* POSIX doesn't distinguish between an unmatched open-group and an
6538 unmatched close-group: both are REG_EPAREN. */
6539 if (ret == REG_ERPAREN)
6540 ret = REG_EPAREN;
6541
6542 if (ret == REG_NOERROR && preg->fastmap)
6543 { /* Compute the fastmap now, since regexec cannot modify the pattern
6544 buffer. */
6545 re_compile_fastmap (preg);
6546 if (preg->can_be_null)
6547 { /* The fastmap can't be used anyway. */
6548 free (preg->fastmap);
6549 preg->fastmap = NULL;
6550 }
6551 }
6552 return ret;
6553 }
6554 WEAK_ALIAS (__regcomp, regcomp)
6555
6556
6557 /* regexec searches for a given pattern, specified by PREG, in the
6558 string STRING.
6559
6560 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6561 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6562 least NMATCH elements, and we set them to the offsets of the
6563 corresponding matched substrings.
6564
6565 EFLAGS specifies `execution flags' which affect matching: if
6566 REG_NOTBOL is set, then ^ does not match at the beginning of the
6567 string; if REG_NOTEOL is set, then $ does not match at the end.
6568
6569 We return 0 if we find a match and REG_NOMATCH if not. */
6570
6571 reg_errcode_t
6572 regexec (const regex_t *__restrict preg, const char *__restrict string,
6573 size_t nmatch, regmatch_t pmatch[__restrict_arr], int eflags)
6574 {
6575 regoff_t ret;
6576 struct re_registers regs;
6577 regex_t private_preg;
6578 size_t len = strlen (string);
6579 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
6580
6581 private_preg = *preg;
6582
6583 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6584 private_preg.not_eol = !!(eflags & REG_NOTEOL);
6585
6586 /* The user has told us exactly how many registers to return
6587 information about, via `nmatch'. We have to pass that on to the
6588 matching routines. */
6589 private_preg.regs_allocated = REGS_FIXED;
6590
6591 if (want_reg_info)
6592 {
6593 regs.num_regs = nmatch;
6594 regs.start = TALLOC (nmatch * 2, regoff_t);
6595 if (regs.start == NULL)
6596 return REG_NOMATCH;
6597 regs.end = regs.start + nmatch;
6598 }
6599
6600 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6601 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6602 was a little bit longer but still only matching the real part.
6603 This works because the `endline' will check for a '\n' and will find a
6604 '\0', correctly deciding that this is not the end of a line.
6605 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6606 a convenient '\0' there. For all we know, the string could be preceded
6607 by '\n' which would throw things off. */
6608
6609 /* Perform the searching operation. */
6610 ret = re_search (&private_preg, string, len,
6611 /* start: */ 0, /* range: */ len,
6612 want_reg_info ? &regs : (struct re_registers *) 0);
6613
6614 /* Copy the register information to the POSIX structure. */
6615 if (want_reg_info)
6616 {
6617 if (ret >= 0)
6618 {
6619 unsigned r;
6620
6621 for (r = 0; r < nmatch; r++)
6622 {
6623 pmatch[r].rm_so = regs.start[r];
6624 pmatch[r].rm_eo = regs.end[r];
6625 }
6626 }
6627
6628 /* If we needed the temporary register info, free the space now. */
6629 free (regs.start);
6630 }
6631
6632 /* We want zero return to mean success, unlike `re_search'. */
6633 return ret >= 0 ? REG_NOERROR : REG_NOMATCH;
6634 }
6635 WEAK_ALIAS (__regexec, regexec)
6636
6637
6638 /* Returns a message corresponding to an error code, ERR_CODE, returned
6639 from either regcomp or regexec. We don't use PREG here.
6640
6641 ERR_CODE was previously called ERRCODE, but that name causes an
6642 error with msvc8 compiler. */
6643
6644 size_t
6645 regerror (int err_code, const regex_t *preg, char *errbuf, size_t errbuf_size)
6646 {
6647 const char *msg;
6648 size_t msg_size;
6649
6650 if (err_code < 0
6651 || err_code >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
6652 /* Only error codes returned by the rest of the code should be passed
6653 to this routine. If we are given anything else, or if other regex
6654 code generates an invalid error code, then the program has a bug.
6655 Dump core so we can fix it. */
6656 abort ();
6657
6658 msg = gettext (re_error_msgid[err_code]);
6659
6660 msg_size = strlen (msg) + 1; /* Includes the null. */
6661
6662 if (errbuf_size != 0)
6663 {
6664 if (msg_size > errbuf_size)
6665 {
6666 strncpy (errbuf, msg, errbuf_size - 1);
6667 errbuf[errbuf_size - 1] = 0;
6668 }
6669 else
6670 strcpy (errbuf, msg);
6671 }
6672
6673 return msg_size;
6674 }
6675 WEAK_ALIAS (__regerror, regerror)
6676
6677
6678 /* Free dynamically allocated space used by PREG. */
6679
6680 void
6681 regfree (regex_t *preg)
6682 {
6683 free (preg->buffer);
6684 preg->buffer = NULL;
6685
6686 preg->allocated = 0;
6687 preg->used = 0;
6688
6689 free (preg->fastmap);
6690 preg->fastmap = NULL;
6691 preg->fastmap_accurate = 0;
6692
6693 free (preg->translate);
6694 preg->translate = NULL;
6695 }
6696 WEAK_ALIAS (__regfree, regfree)
6697
6698 #endif /* not emacs */