]> code.delx.au - gnu-emacs/blob - src/floatfns.c
Refill some long/short copyright headers.
[gnu-emacs] / src / floatfns.c
1 /* Primitive operations on floating point for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1988, 1993-1994, 1999, 2001-2011
4 Free Software Foundation, Inc.
5
6 Author: Wolfgang Rupprecht
7 (according to ack.texi)
8
9 This file is part of GNU Emacs.
10
11 GNU Emacs is free software: you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation, either version 3 of the License, or
14 (at your option) any later version.
15
16 GNU Emacs is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
23
24
25 /* ANSI C requires only these float functions:
26 acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
27 frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh.
28
29 Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh.
30 Define HAVE_CBRT if you have cbrt.
31 Define HAVE_RINT if you have a working rint.
32 If you don't define these, then the appropriate routines will be simulated.
33
34 Define HAVE_MATHERR if on a system supporting the SysV matherr callback.
35 (This should happen automatically.)
36
37 Define FLOAT_CHECK_ERRNO if the float library routines set errno.
38 This has no effect if HAVE_MATHERR is defined.
39
40 Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL.
41 (What systems actually do this? Please let us know.)
42
43 Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by
44 either setting errno, or signaling SIGFPE/SIGILL. Otherwise, domain and
45 range checking will happen before calling the float routines. This has
46 no effect if HAVE_MATHERR is defined (since matherr will be called when
47 a domain error occurs.)
48 */
49
50 #include <config.h>
51 #include <signal.h>
52 #include <setjmp.h>
53 #include "lisp.h"
54 #include "syssignal.h"
55
56 #if STDC_HEADERS
57 #include <float.h>
58 #endif
59
60 /* If IEEE_FLOATING_POINT isn't defined, default it from FLT_*. */
61 #ifndef IEEE_FLOATING_POINT
62 #if (FLT_RADIX == 2 && FLT_MANT_DIG == 24 \
63 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
64 #define IEEE_FLOATING_POINT 1
65 #else
66 #define IEEE_FLOATING_POINT 0
67 #endif
68 #endif
69
70 #include <math.h>
71
72 /* This declaration is omitted on some systems, like Ultrix. */
73 #if !defined (HPUX) && defined (HAVE_LOGB) && !defined (logb)
74 extern double logb (double);
75 #endif /* not HPUX and HAVE_LOGB and no logb macro */
76
77 #if defined(DOMAIN) && defined(SING) && defined(OVERFLOW)
78 /* If those are defined, then this is probably a `matherr' machine. */
79 # ifndef HAVE_MATHERR
80 # define HAVE_MATHERR
81 # endif
82 #endif
83
84 #ifdef NO_MATHERR
85 #undef HAVE_MATHERR
86 #endif
87
88 #ifdef HAVE_MATHERR
89 # ifdef FLOAT_CHECK_ERRNO
90 # undef FLOAT_CHECK_ERRNO
91 # endif
92 # ifdef FLOAT_CHECK_DOMAIN
93 # undef FLOAT_CHECK_DOMAIN
94 # endif
95 #endif
96
97 #ifndef NO_FLOAT_CHECK_ERRNO
98 #define FLOAT_CHECK_ERRNO
99 #endif
100
101 #ifdef FLOAT_CHECK_ERRNO
102 # include <errno.h>
103 #endif
104
105 #ifdef FLOAT_CATCH_SIGILL
106 static SIGTYPE float_error ();
107 #endif
108
109 /* Nonzero while executing in floating point.
110 This tells float_error what to do. */
111
112 static int in_float;
113
114 /* If an argument is out of range for a mathematical function,
115 here is the actual argument value to use in the error message.
116 These variables are used only across the floating point library call
117 so there is no need to staticpro them. */
118
119 static Lisp_Object float_error_arg, float_error_arg2;
120
121 static const char *float_error_fn_name;
122
123 /* Evaluate the floating point expression D, recording NUM
124 as the original argument for error messages.
125 D is normally an assignment expression.
126 Handle errors which may result in signals or may set errno.
127
128 Note that float_error may be declared to return void, so you can't
129 just cast the zero after the colon to (SIGTYPE) to make the types
130 check properly. */
131
132 #ifdef FLOAT_CHECK_ERRNO
133 #define IN_FLOAT(d, name, num) \
134 do { \
135 float_error_arg = num; \
136 float_error_fn_name = name; \
137 in_float = 1; errno = 0; (d); in_float = 0; \
138 switch (errno) { \
139 case 0: break; \
140 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
141 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
142 default: arith_error (float_error_fn_name, float_error_arg); \
143 } \
144 } while (0)
145 #define IN_FLOAT2(d, name, num, num2) \
146 do { \
147 float_error_arg = num; \
148 float_error_arg2 = num2; \
149 float_error_fn_name = name; \
150 in_float = 1; errno = 0; (d); in_float = 0; \
151 switch (errno) { \
152 case 0: break; \
153 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
154 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
155 default: arith_error (float_error_fn_name, float_error_arg); \
156 } \
157 } while (0)
158 #else
159 #define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0)
160 #define IN_FLOAT2(d, name, num, num2) (in_float = 1, (d), in_float = 0)
161 #endif
162
163 /* Convert float to Lisp_Int if it fits, else signal a range error
164 using the given arguments. */
165 #define FLOAT_TO_INT(x, i, name, num) \
166 do \
167 { \
168 if (FIXNUM_OVERFLOW_P (x)) \
169 range_error (name, num); \
170 XSETINT (i, (EMACS_INT)(x)); \
171 } \
172 while (0)
173 #define FLOAT_TO_INT2(x, i, name, num1, num2) \
174 do \
175 { \
176 if (FIXNUM_OVERFLOW_P (x)) \
177 range_error2 (name, num1, num2); \
178 XSETINT (i, (EMACS_INT)(x)); \
179 } \
180 while (0)
181
182 #define arith_error(op,arg) \
183 xsignal2 (Qarith_error, build_string ((op)), (arg))
184 #define range_error(op,arg) \
185 xsignal2 (Qrange_error, build_string ((op)), (arg))
186 #define range_error2(op,a1,a2) \
187 xsignal3 (Qrange_error, build_string ((op)), (a1), (a2))
188 #define domain_error(op,arg) \
189 xsignal2 (Qdomain_error, build_string ((op)), (arg))
190 #define domain_error2(op,a1,a2) \
191 xsignal3 (Qdomain_error, build_string ((op)), (a1), (a2))
192
193 /* Extract a Lisp number as a `double', or signal an error. */
194
195 double
196 extract_float (Lisp_Object num)
197 {
198 CHECK_NUMBER_OR_FLOAT (num);
199
200 if (FLOATP (num))
201 return XFLOAT_DATA (num);
202 return (double) XINT (num);
203 }
204 \f
205 /* Trig functions. */
206
207 DEFUN ("acos", Facos, Sacos, 1, 1, 0,
208 doc: /* Return the inverse cosine of ARG. */)
209 (register Lisp_Object arg)
210 {
211 double d = extract_float (arg);
212 #ifdef FLOAT_CHECK_DOMAIN
213 if (d > 1.0 || d < -1.0)
214 domain_error ("acos", arg);
215 #endif
216 IN_FLOAT (d = acos (d), "acos", arg);
217 return make_float (d);
218 }
219
220 DEFUN ("asin", Fasin, Sasin, 1, 1, 0,
221 doc: /* Return the inverse sine of ARG. */)
222 (register Lisp_Object arg)
223 {
224 double d = extract_float (arg);
225 #ifdef FLOAT_CHECK_DOMAIN
226 if (d > 1.0 || d < -1.0)
227 domain_error ("asin", arg);
228 #endif
229 IN_FLOAT (d = asin (d), "asin", arg);
230 return make_float (d);
231 }
232
233 DEFUN ("atan", Fatan, Satan, 1, 2, 0,
234 doc: /* Return the inverse tangent of the arguments.
235 If only one argument Y is given, return the inverse tangent of Y.
236 If two arguments Y and X are given, return the inverse tangent of Y
237 divided by X, i.e. the angle in radians between the vector (X, Y)
238 and the x-axis. */)
239 (register Lisp_Object y, Lisp_Object x)
240 {
241 double d = extract_float (y);
242
243 if (NILP (x))
244 IN_FLOAT (d = atan (d), "atan", y);
245 else
246 {
247 double d2 = extract_float (x);
248
249 IN_FLOAT2 (d = atan2 (d, d2), "atan", y, x);
250 }
251 return make_float (d);
252 }
253
254 DEFUN ("cos", Fcos, Scos, 1, 1, 0,
255 doc: /* Return the cosine of ARG. */)
256 (register Lisp_Object arg)
257 {
258 double d = extract_float (arg);
259 IN_FLOAT (d = cos (d), "cos", arg);
260 return make_float (d);
261 }
262
263 DEFUN ("sin", Fsin, Ssin, 1, 1, 0,
264 doc: /* Return the sine of ARG. */)
265 (register Lisp_Object arg)
266 {
267 double d = extract_float (arg);
268 IN_FLOAT (d = sin (d), "sin", arg);
269 return make_float (d);
270 }
271
272 DEFUN ("tan", Ftan, Stan, 1, 1, 0,
273 doc: /* Return the tangent of ARG. */)
274 (register Lisp_Object arg)
275 {
276 double d = extract_float (arg);
277 double c = cos (d);
278 #ifdef FLOAT_CHECK_DOMAIN
279 if (c == 0.0)
280 domain_error ("tan", arg);
281 #endif
282 IN_FLOAT (d = sin (d) / c, "tan", arg);
283 return make_float (d);
284 }
285
286 #if defined HAVE_ISNAN && defined HAVE_COPYSIGN
287 DEFUN ("isnan", Fisnan, Sisnan, 1, 1, 0,
288 doc: /* Return non nil iff argument X is a NaN. */)
289 (Lisp_Object x)
290 {
291 CHECK_FLOAT (x);
292 return isnan (XFLOAT_DATA (x)) ? Qt : Qnil;
293 }
294
295 DEFUN ("copysign", Fcopysign, Scopysign, 1, 2, 0,
296 doc: /* Copy sign of X2 to value of X1, and return the result.
297 Cause an error if X1 or X2 is not a float. */)
298 (Lisp_Object x1, Lisp_Object x2)
299 {
300 double f1, f2;
301
302 CHECK_FLOAT (x1);
303 CHECK_FLOAT (x2);
304
305 f1 = XFLOAT_DATA (x1);
306 f2 = XFLOAT_DATA (x2);
307
308 return make_float (copysign (f1, f2));
309 }
310
311 DEFUN ("frexp", Ffrexp, Sfrexp, 1, 1, 0,
312 doc: /* Get significand and exponent of a floating point number.
313 Breaks the floating point number X into its binary significand SGNFCAND
314 \(a floating point value between 0.5 (included) and 1.0 (excluded))
315 and an integral exponent EXP for 2, such that:
316
317 X = SGNFCAND * 2^EXP
318
319 The function returns the cons cell (SGNFCAND . EXP).
320 If X is zero, both parts (SGNFCAND and EXP) are zero. */)
321 (Lisp_Object x)
322 {
323 double f = XFLOATINT (x);
324
325 if (f == 0.0)
326 return Fcons (make_float (0.0), make_number (0));
327 else
328 {
329 int exp;
330 double sgnfcand = frexp (f, &exp);
331 return Fcons (make_float (sgnfcand), make_number (exp));
332 }
333 }
334
335 DEFUN ("ldexp", Fldexp, Sldexp, 1, 2, 0,
336 doc: /* Construct number X from significand SGNFCAND and exponent EXP.
337 Returns the floating point value resulting from multiplying SGNFCAND
338 (the significand) by 2 raised to the power of EXP (the exponent). */)
339 (Lisp_Object sgnfcand, Lisp_Object exp)
340 {
341 CHECK_NUMBER (exp);
342 return make_float (ldexp (XFLOATINT (sgnfcand), XINT (exp)));
343 }
344 #endif
345 \f
346 #if 0 /* Leave these out unless we find there's a reason for them. */
347
348 DEFUN ("bessel-j0", Fbessel_j0, Sbessel_j0, 1, 1, 0,
349 doc: /* Return the bessel function j0 of ARG. */)
350 (register Lisp_Object arg)
351 {
352 double d = extract_float (arg);
353 IN_FLOAT (d = j0 (d), "bessel-j0", arg);
354 return make_float (d);
355 }
356
357 DEFUN ("bessel-j1", Fbessel_j1, Sbessel_j1, 1, 1, 0,
358 doc: /* Return the bessel function j1 of ARG. */)
359 (register Lisp_Object arg)
360 {
361 double d = extract_float (arg);
362 IN_FLOAT (d = j1 (d), "bessel-j1", arg);
363 return make_float (d);
364 }
365
366 DEFUN ("bessel-jn", Fbessel_jn, Sbessel_jn, 2, 2, 0,
367 doc: /* Return the order N bessel function output jn of ARG.
368 The first arg (the order) is truncated to an integer. */)
369 (register Lisp_Object n, Lisp_Object arg)
370 {
371 int i1 = extract_float (n);
372 double f2 = extract_float (arg);
373
374 IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", n);
375 return make_float (f2);
376 }
377
378 DEFUN ("bessel-y0", Fbessel_y0, Sbessel_y0, 1, 1, 0,
379 doc: /* Return the bessel function y0 of ARG. */)
380 (register Lisp_Object arg)
381 {
382 double d = extract_float (arg);
383 IN_FLOAT (d = y0 (d), "bessel-y0", arg);
384 return make_float (d);
385 }
386
387 DEFUN ("bessel-y1", Fbessel_y1, Sbessel_y1, 1, 1, 0,
388 doc: /* Return the bessel function y1 of ARG. */)
389 (register Lisp_Object arg)
390 {
391 double d = extract_float (arg);
392 IN_FLOAT (d = y1 (d), "bessel-y0", arg);
393 return make_float (d);
394 }
395
396 DEFUN ("bessel-yn", Fbessel_yn, Sbessel_yn, 2, 2, 0,
397 doc: /* Return the order N bessel function output yn of ARG.
398 The first arg (the order) is truncated to an integer. */)
399 (register Lisp_Object n, Lisp_Object arg)
400 {
401 int i1 = extract_float (n);
402 double f2 = extract_float (arg);
403
404 IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", n);
405 return make_float (f2);
406 }
407
408 #endif
409 \f
410 #if 0 /* Leave these out unless we see they are worth having. */
411
412 DEFUN ("erf", Ferf, Serf, 1, 1, 0,
413 doc: /* Return the mathematical error function of ARG. */)
414 (register Lisp_Object arg)
415 {
416 double d = extract_float (arg);
417 IN_FLOAT (d = erf (d), "erf", arg);
418 return make_float (d);
419 }
420
421 DEFUN ("erfc", Ferfc, Serfc, 1, 1, 0,
422 doc: /* Return the complementary error function of ARG. */)
423 (register Lisp_Object arg)
424 {
425 double d = extract_float (arg);
426 IN_FLOAT (d = erfc (d), "erfc", arg);
427 return make_float (d);
428 }
429
430 DEFUN ("log-gamma", Flog_gamma, Slog_gamma, 1, 1, 0,
431 doc: /* Return the log gamma of ARG. */)
432 (register Lisp_Object arg)
433 {
434 double d = extract_float (arg);
435 IN_FLOAT (d = lgamma (d), "log-gamma", arg);
436 return make_float (d);
437 }
438
439 DEFUN ("cube-root", Fcube_root, Scube_root, 1, 1, 0,
440 doc: /* Return the cube root of ARG. */)
441 (register Lisp_Object arg)
442 {
443 double d = extract_float (arg);
444 #ifdef HAVE_CBRT
445 IN_FLOAT (d = cbrt (d), "cube-root", arg);
446 #else
447 if (d >= 0.0)
448 IN_FLOAT (d = pow (d, 1.0/3.0), "cube-root", arg);
449 else
450 IN_FLOAT (d = -pow (-d, 1.0/3.0), "cube-root", arg);
451 #endif
452 return make_float (d);
453 }
454
455 #endif
456 \f
457 DEFUN ("exp", Fexp, Sexp, 1, 1, 0,
458 doc: /* Return the exponential base e of ARG. */)
459 (register Lisp_Object arg)
460 {
461 double d = extract_float (arg);
462 #ifdef FLOAT_CHECK_DOMAIN
463 if (d > 709.7827) /* Assume IEEE doubles here */
464 range_error ("exp", arg);
465 else if (d < -709.0)
466 return make_float (0.0);
467 else
468 #endif
469 IN_FLOAT (d = exp (d), "exp", arg);
470 return make_float (d);
471 }
472
473 DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0,
474 doc: /* Return the exponential ARG1 ** ARG2. */)
475 (register Lisp_Object arg1, Lisp_Object arg2)
476 {
477 double f1, f2, f3;
478
479 CHECK_NUMBER_OR_FLOAT (arg1);
480 CHECK_NUMBER_OR_FLOAT (arg2);
481 if (INTEGERP (arg1) /* common lisp spec */
482 && INTEGERP (arg2) /* don't promote, if both are ints, and */
483 && 0 <= XINT (arg2)) /* we are sure the result is not fractional */
484 { /* this can be improved by pre-calculating */
485 EMACS_INT acc, x, y; /* some binary powers of x then accumulating */
486 Lisp_Object val;
487
488 x = XINT (arg1);
489 y = XINT (arg2);
490 acc = 1;
491
492 if (y < 0)
493 {
494 if (x == 1)
495 acc = 1;
496 else if (x == -1)
497 acc = (y & 1) ? -1 : 1;
498 else
499 acc = 0;
500 }
501 else
502 {
503 while (y > 0)
504 {
505 if (y & 1)
506 acc *= x;
507 x *= x;
508 y = (unsigned)y >> 1;
509 }
510 }
511 XSETINT (val, acc);
512 return val;
513 }
514 f1 = FLOATP (arg1) ? XFLOAT_DATA (arg1) : XINT (arg1);
515 f2 = FLOATP (arg2) ? XFLOAT_DATA (arg2) : XINT (arg2);
516 /* Really should check for overflow, too */
517 if (f1 == 0.0 && f2 == 0.0)
518 f1 = 1.0;
519 #ifdef FLOAT_CHECK_DOMAIN
520 else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor(f2)))
521 domain_error2 ("expt", arg1, arg2);
522 #endif
523 IN_FLOAT2 (f3 = pow (f1, f2), "expt", arg1, arg2);
524 /* Check for overflow in the result. */
525 if (f1 != 0.0 && f3 == 0.0)
526 range_error ("expt", arg1);
527 return make_float (f3);
528 }
529
530 DEFUN ("log", Flog, Slog, 1, 2, 0,
531 doc: /* Return the natural logarithm of ARG.
532 If the optional argument BASE is given, return log ARG using that base. */)
533 (register Lisp_Object arg, Lisp_Object base)
534 {
535 double d = extract_float (arg);
536
537 #ifdef FLOAT_CHECK_DOMAIN
538 if (d <= 0.0)
539 domain_error2 ("log", arg, base);
540 #endif
541 if (NILP (base))
542 IN_FLOAT (d = log (d), "log", arg);
543 else
544 {
545 double b = extract_float (base);
546
547 #ifdef FLOAT_CHECK_DOMAIN
548 if (b <= 0.0 || b == 1.0)
549 domain_error2 ("log", arg, base);
550 #endif
551 if (b == 10.0)
552 IN_FLOAT2 (d = log10 (d), "log", arg, base);
553 else
554 IN_FLOAT2 (d = log (d) / log (b), "log", arg, base);
555 }
556 return make_float (d);
557 }
558
559 DEFUN ("log10", Flog10, Slog10, 1, 1, 0,
560 doc: /* Return the logarithm base 10 of ARG. */)
561 (register Lisp_Object arg)
562 {
563 double d = extract_float (arg);
564 #ifdef FLOAT_CHECK_DOMAIN
565 if (d <= 0.0)
566 domain_error ("log10", arg);
567 #endif
568 IN_FLOAT (d = log10 (d), "log10", arg);
569 return make_float (d);
570 }
571
572 DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0,
573 doc: /* Return the square root of ARG. */)
574 (register Lisp_Object arg)
575 {
576 double d = extract_float (arg);
577 #ifdef FLOAT_CHECK_DOMAIN
578 if (d < 0.0)
579 domain_error ("sqrt", arg);
580 #endif
581 IN_FLOAT (d = sqrt (d), "sqrt", arg);
582 return make_float (d);
583 }
584 \f
585 #if 0 /* Not clearly worth adding. */
586
587 DEFUN ("acosh", Facosh, Sacosh, 1, 1, 0,
588 doc: /* Return the inverse hyperbolic cosine of ARG. */)
589 (register Lisp_Object arg)
590 {
591 double d = extract_float (arg);
592 #ifdef FLOAT_CHECK_DOMAIN
593 if (d < 1.0)
594 domain_error ("acosh", arg);
595 #endif
596 #ifdef HAVE_INVERSE_HYPERBOLIC
597 IN_FLOAT (d = acosh (d), "acosh", arg);
598 #else
599 IN_FLOAT (d = log (d + sqrt (d*d - 1.0)), "acosh", arg);
600 #endif
601 return make_float (d);
602 }
603
604 DEFUN ("asinh", Fasinh, Sasinh, 1, 1, 0,
605 doc: /* Return the inverse hyperbolic sine of ARG. */)
606 (register Lisp_Object arg)
607 {
608 double d = extract_float (arg);
609 #ifdef HAVE_INVERSE_HYPERBOLIC
610 IN_FLOAT (d = asinh (d), "asinh", arg);
611 #else
612 IN_FLOAT (d = log (d + sqrt (d*d + 1.0)), "asinh", arg);
613 #endif
614 return make_float (d);
615 }
616
617 DEFUN ("atanh", Fatanh, Satanh, 1, 1, 0,
618 doc: /* Return the inverse hyperbolic tangent of ARG. */)
619 (register Lisp_Object arg)
620 {
621 double d = extract_float (arg);
622 #ifdef FLOAT_CHECK_DOMAIN
623 if (d >= 1.0 || d <= -1.0)
624 domain_error ("atanh", arg);
625 #endif
626 #ifdef HAVE_INVERSE_HYPERBOLIC
627 IN_FLOAT (d = atanh (d), "atanh", arg);
628 #else
629 IN_FLOAT (d = 0.5 * log ((1.0 + d) / (1.0 - d)), "atanh", arg);
630 #endif
631 return make_float (d);
632 }
633
634 DEFUN ("cosh", Fcosh, Scosh, 1, 1, 0,
635 doc: /* Return the hyperbolic cosine of ARG. */)
636 (register Lisp_Object arg)
637 {
638 double d = extract_float (arg);
639 #ifdef FLOAT_CHECK_DOMAIN
640 if (d > 710.0 || d < -710.0)
641 range_error ("cosh", arg);
642 #endif
643 IN_FLOAT (d = cosh (d), "cosh", arg);
644 return make_float (d);
645 }
646
647 DEFUN ("sinh", Fsinh, Ssinh, 1, 1, 0,
648 doc: /* Return the hyperbolic sine of ARG. */)
649 (register Lisp_Object arg)
650 {
651 double d = extract_float (arg);
652 #ifdef FLOAT_CHECK_DOMAIN
653 if (d > 710.0 || d < -710.0)
654 range_error ("sinh", arg);
655 #endif
656 IN_FLOAT (d = sinh (d), "sinh", arg);
657 return make_float (d);
658 }
659
660 DEFUN ("tanh", Ftanh, Stanh, 1, 1, 0,
661 doc: /* Return the hyperbolic tangent of ARG. */)
662 (register Lisp_Object arg)
663 {
664 double d = extract_float (arg);
665 IN_FLOAT (d = tanh (d), "tanh", arg);
666 return make_float (d);
667 }
668 #endif
669 \f
670 DEFUN ("abs", Fabs, Sabs, 1, 1, 0,
671 doc: /* Return the absolute value of ARG. */)
672 (register Lisp_Object arg)
673 {
674 CHECK_NUMBER_OR_FLOAT (arg);
675
676 if (FLOATP (arg))
677 IN_FLOAT (arg = make_float (fabs (XFLOAT_DATA (arg))), "abs", arg);
678 else if (XINT (arg) < 0)
679 XSETINT (arg, - XINT (arg));
680
681 return arg;
682 }
683
684 DEFUN ("float", Ffloat, Sfloat, 1, 1, 0,
685 doc: /* Return the floating point number equal to ARG. */)
686 (register Lisp_Object arg)
687 {
688 CHECK_NUMBER_OR_FLOAT (arg);
689
690 if (INTEGERP (arg))
691 return make_float ((double) XINT (arg));
692 else /* give 'em the same float back */
693 return arg;
694 }
695
696 DEFUN ("logb", Flogb, Slogb, 1, 1, 0,
697 doc: /* Returns largest integer <= the base 2 log of the magnitude of ARG.
698 This is the same as the exponent of a float. */)
699 (Lisp_Object arg)
700 {
701 Lisp_Object val;
702 EMACS_INT value;
703 double f = extract_float (arg);
704
705 if (f == 0.0)
706 value = MOST_NEGATIVE_FIXNUM;
707 else
708 {
709 #ifdef HAVE_LOGB
710 IN_FLOAT (value = logb (f), "logb", arg);
711 #else
712 #ifdef HAVE_FREXP
713 int ivalue;
714 IN_FLOAT (frexp (f, &ivalue), "logb", arg);
715 value = ivalue - 1;
716 #else
717 int i;
718 double d;
719 if (f < 0.0)
720 f = -f;
721 value = -1;
722 while (f < 0.5)
723 {
724 for (i = 1, d = 0.5; d * d >= f; i += i)
725 d *= d;
726 f /= d;
727 value -= i;
728 }
729 while (f >= 1.0)
730 {
731 for (i = 1, d = 2.0; d * d <= f; i += i)
732 d *= d;
733 f /= d;
734 value += i;
735 }
736 #endif
737 #endif
738 }
739 XSETINT (val, value);
740 return val;
741 }
742
743
744 /* the rounding functions */
745
746 static Lisp_Object
747 rounding_driver (Lisp_Object arg, Lisp_Object divisor,
748 double (*double_round) (double),
749 EMACS_INT (*int_round2) (EMACS_INT, EMACS_INT),
750 const char *name)
751 {
752 CHECK_NUMBER_OR_FLOAT (arg);
753
754 if (! NILP (divisor))
755 {
756 EMACS_INT i1, i2;
757
758 CHECK_NUMBER_OR_FLOAT (divisor);
759
760 if (FLOATP (arg) || FLOATP (divisor))
761 {
762 double f1, f2;
763
764 f1 = FLOATP (arg) ? XFLOAT_DATA (arg) : XINT (arg);
765 f2 = (FLOATP (divisor) ? XFLOAT_DATA (divisor) : XINT (divisor));
766 if (! IEEE_FLOATING_POINT && f2 == 0)
767 xsignal0 (Qarith_error);
768
769 IN_FLOAT2 (f1 = (*double_round) (f1 / f2), name, arg, divisor);
770 FLOAT_TO_INT2 (f1, arg, name, arg, divisor);
771 return arg;
772 }
773
774 i1 = XINT (arg);
775 i2 = XINT (divisor);
776
777 if (i2 == 0)
778 xsignal0 (Qarith_error);
779
780 XSETINT (arg, (*int_round2) (i1, i2));
781 return arg;
782 }
783
784 if (FLOATP (arg))
785 {
786 double d;
787
788 IN_FLOAT (d = (*double_round) (XFLOAT_DATA (arg)), name, arg);
789 FLOAT_TO_INT (d, arg, name, arg);
790 }
791
792 return arg;
793 }
794
795 /* With C's /, the result is implementation-defined if either operand
796 is negative, so take care with negative operands in the following
797 integer functions. */
798
799 static EMACS_INT
800 ceiling2 (EMACS_INT i1, EMACS_INT i2)
801 {
802 return (i2 < 0
803 ? (i1 < 0 ? ((-1 - i1) / -i2) + 1 : - (i1 / -i2))
804 : (i1 <= 0 ? - (-i1 / i2) : ((i1 - 1) / i2) + 1));
805 }
806
807 static EMACS_INT
808 floor2 (EMACS_INT i1, EMACS_INT i2)
809 {
810 return (i2 < 0
811 ? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2))
812 : (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2));
813 }
814
815 static EMACS_INT
816 truncate2 (EMACS_INT i1, EMACS_INT i2)
817 {
818 return (i2 < 0
819 ? (i1 < 0 ? -i1 / -i2 : - (i1 / -i2))
820 : (i1 < 0 ? - (-i1 / i2) : i1 / i2));
821 }
822
823 static EMACS_INT
824 round2 (EMACS_INT i1, EMACS_INT i2)
825 {
826 /* The C language's division operator gives us one remainder R, but
827 we want the remainder R1 on the other side of 0 if R1 is closer
828 to 0 than R is; because we want to round to even, we also want R1
829 if R and R1 are the same distance from 0 and if C's quotient is
830 odd. */
831 EMACS_INT q = i1 / i2;
832 EMACS_INT r = i1 % i2;
833 EMACS_INT abs_r = r < 0 ? -r : r;
834 EMACS_INT abs_r1 = (i2 < 0 ? -i2 : i2) - abs_r;
835 return q + (abs_r + (q & 1) <= abs_r1 ? 0 : (i2 ^ r) < 0 ? -1 : 1);
836 }
837
838 /* The code uses emacs_rint, so that it works to undefine HAVE_RINT
839 if `rint' exists but does not work right. */
840 #ifdef HAVE_RINT
841 #define emacs_rint rint
842 #else
843 static double
844 emacs_rint (double d)
845 {
846 return floor (d + 0.5);
847 }
848 #endif
849
850 static double
851 double_identity (double d)
852 {
853 return d;
854 }
855
856 DEFUN ("ceiling", Fceiling, Sceiling, 1, 2, 0,
857 doc: /* Return the smallest integer no less than ARG.
858 This rounds the value towards +inf.
859 With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR. */)
860 (Lisp_Object arg, Lisp_Object divisor)
861 {
862 return rounding_driver (arg, divisor, ceil, ceiling2, "ceiling");
863 }
864
865 DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0,
866 doc: /* Return the largest integer no greater than ARG.
867 This rounds the value towards -inf.
868 With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR. */)
869 (Lisp_Object arg, Lisp_Object divisor)
870 {
871 return rounding_driver (arg, divisor, floor, floor2, "floor");
872 }
873
874 DEFUN ("round", Fround, Sround, 1, 2, 0,
875 doc: /* Return the nearest integer to ARG.
876 With optional DIVISOR, return the nearest integer to ARG/DIVISOR.
877
878 Rounding a value equidistant between two integers may choose the
879 integer closer to zero, or it may prefer an even integer, depending on
880 your machine. For example, \(round 2.5\) can return 3 on some
881 systems, but 2 on others. */)
882 (Lisp_Object arg, Lisp_Object divisor)
883 {
884 return rounding_driver (arg, divisor, emacs_rint, round2, "round");
885 }
886
887 DEFUN ("truncate", Ftruncate, Struncate, 1, 2, 0,
888 doc: /* Truncate a floating point number to an int.
889 Rounds ARG toward zero.
890 With optional DIVISOR, truncate ARG/DIVISOR. */)
891 (Lisp_Object arg, Lisp_Object divisor)
892 {
893 return rounding_driver (arg, divisor, double_identity, truncate2,
894 "truncate");
895 }
896
897
898 Lisp_Object
899 fmod_float (Lisp_Object x, Lisp_Object y)
900 {
901 double f1, f2;
902
903 f1 = FLOATP (x) ? XFLOAT_DATA (x) : XINT (x);
904 f2 = FLOATP (y) ? XFLOAT_DATA (y) : XINT (y);
905
906 if (! IEEE_FLOATING_POINT && f2 == 0)
907 xsignal0 (Qarith_error);
908
909 /* If the "remainder" comes out with the wrong sign, fix it. */
910 IN_FLOAT2 ((f1 = fmod (f1, f2),
911 f1 = (f2 < 0 ? f1 > 0 : f1 < 0) ? f1 + f2 : f1),
912 "mod", x, y);
913 return make_float (f1);
914 }
915 \f
916 /* It's not clear these are worth adding. */
917
918 DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0,
919 doc: /* Return the smallest integer no less than ARG, as a float.
920 \(Round toward +inf.\) */)
921 (register Lisp_Object arg)
922 {
923 double d = extract_float (arg);
924 IN_FLOAT (d = ceil (d), "fceiling", arg);
925 return make_float (d);
926 }
927
928 DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0,
929 doc: /* Return the largest integer no greater than ARG, as a float.
930 \(Round towards -inf.\) */)
931 (register Lisp_Object arg)
932 {
933 double d = extract_float (arg);
934 IN_FLOAT (d = floor (d), "ffloor", arg);
935 return make_float (d);
936 }
937
938 DEFUN ("fround", Ffround, Sfround, 1, 1, 0,
939 doc: /* Return the nearest integer to ARG, as a float. */)
940 (register Lisp_Object arg)
941 {
942 double d = extract_float (arg);
943 IN_FLOAT (d = emacs_rint (d), "fround", arg);
944 return make_float (d);
945 }
946
947 DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0,
948 doc: /* Truncate a floating point number to an integral float value.
949 Rounds the value toward zero. */)
950 (register Lisp_Object arg)
951 {
952 double d = extract_float (arg);
953 if (d >= 0.0)
954 IN_FLOAT (d = floor (d), "ftruncate", arg);
955 else
956 IN_FLOAT (d = ceil (d), "ftruncate", arg);
957 return make_float (d);
958 }
959 \f
960 #ifdef FLOAT_CATCH_SIGILL
961 static SIGTYPE
962 float_error (signo)
963 int signo;
964 {
965 if (! in_float)
966 fatal_error_signal (signo);
967
968 #ifdef BSD_SYSTEM
969 sigsetmask (SIGEMPTYMASK);
970 #else
971 /* Must reestablish handler each time it is called. */
972 signal (SIGILL, float_error);
973 #endif /* BSD_SYSTEM */
974
975 SIGNAL_THREAD_CHECK (signo);
976 in_float = 0;
977
978 xsignal1 (Qarith_error, float_error_arg);
979 }
980
981 /* Another idea was to replace the library function `infnan'
982 where SIGILL is signaled. */
983
984 #endif /* FLOAT_CATCH_SIGILL */
985
986 #ifdef HAVE_MATHERR
987 int
988 matherr (struct exception *x)
989 {
990 Lisp_Object args;
991 const char *name = x->name;
992
993 if (! in_float)
994 /* Not called from emacs-lisp float routines; do the default thing. */
995 return 0;
996 if (!strcmp (x->name, "pow"))
997 name = "expt";
998
999 args
1000 = Fcons (build_string (name),
1001 Fcons (make_float (x->arg1),
1002 ((!strcmp (name, "log") || !strcmp (name, "pow"))
1003 ? Fcons (make_float (x->arg2), Qnil)
1004 : Qnil)));
1005 switch (x->type)
1006 {
1007 case DOMAIN: xsignal (Qdomain_error, args); break;
1008 case SING: xsignal (Qsingularity_error, args); break;
1009 case OVERFLOW: xsignal (Qoverflow_error, args); break;
1010 case UNDERFLOW: xsignal (Qunderflow_error, args); break;
1011 default: xsignal (Qarith_error, args); break;
1012 }
1013 return (1); /* don't set errno or print a message */
1014 }
1015 #endif /* HAVE_MATHERR */
1016
1017 void
1018 init_floatfns (void)
1019 {
1020 #ifdef FLOAT_CATCH_SIGILL
1021 signal (SIGILL, float_error);
1022 #endif
1023 in_float = 0;
1024 }
1025
1026 void
1027 syms_of_floatfns (void)
1028 {
1029 defsubr (&Sacos);
1030 defsubr (&Sasin);
1031 defsubr (&Satan);
1032 defsubr (&Scos);
1033 defsubr (&Ssin);
1034 defsubr (&Stan);
1035 #if defined HAVE_ISNAN && defined HAVE_COPYSIGN
1036 defsubr (&Sisnan);
1037 defsubr (&Scopysign);
1038 defsubr (&Sfrexp);
1039 defsubr (&Sldexp);
1040 #endif
1041 #if 0
1042 defsubr (&Sacosh);
1043 defsubr (&Sasinh);
1044 defsubr (&Satanh);
1045 defsubr (&Scosh);
1046 defsubr (&Ssinh);
1047 defsubr (&Stanh);
1048 defsubr (&Sbessel_y0);
1049 defsubr (&Sbessel_y1);
1050 defsubr (&Sbessel_yn);
1051 defsubr (&Sbessel_j0);
1052 defsubr (&Sbessel_j1);
1053 defsubr (&Sbessel_jn);
1054 defsubr (&Serf);
1055 defsubr (&Serfc);
1056 defsubr (&Slog_gamma);
1057 defsubr (&Scube_root);
1058 #endif
1059 defsubr (&Sfceiling);
1060 defsubr (&Sffloor);
1061 defsubr (&Sfround);
1062 defsubr (&Sftruncate);
1063 defsubr (&Sexp);
1064 defsubr (&Sexpt);
1065 defsubr (&Slog);
1066 defsubr (&Slog10);
1067 defsubr (&Ssqrt);
1068
1069 defsubr (&Sabs);
1070 defsubr (&Sfloat);
1071 defsubr (&Slogb);
1072 defsubr (&Sceiling);
1073 defsubr (&Sfloor);
1074 defsubr (&Sround);
1075 defsubr (&Struncate);
1076 }
1077