]> code.delx.au - gnu-emacs/blob - src/fns.c
(Feql): New function.
[gnu-emacs] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985, 86, 87, 93, 94, 95, 97, 98, 99, 2000, 2001, 02, 2003
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23
24 #ifdef HAVE_UNISTD_H
25 #include <unistd.h>
26 #endif
27 #include <time.h>
28
29 #ifndef MAC_OSX
30 /* On Mac OS X, defining this conflicts with precompiled headers. */
31
32 /* Note on some machines this defines `vector' as a typedef,
33 so make sure we don't use that name in this file. */
34 #undef vector
35 #define vector *****
36
37 #endif /* ! MAC_OSX */
38
39 #include "lisp.h"
40 #include "commands.h"
41 #include "charset.h"
42 #include "coding.h"
43 #include "buffer.h"
44 #include "keyboard.h"
45 #include "keymap.h"
46 #include "intervals.h"
47 #include "frame.h"
48 #include "window.h"
49 #include "blockinput.h"
50 #if defined (HAVE_MENUS) && defined (HAVE_X_WINDOWS)
51 #include "xterm.h"
52 #endif
53
54 #ifndef NULL
55 #define NULL ((POINTER_TYPE *)0)
56 #endif
57
58 /* Nonzero enables use of dialog boxes for questions
59 asked by mouse commands. */
60 int use_dialog_box;
61
62 /* Nonzero enables use of a file dialog for file name
63 questions asked by mouse commands. */
64 int use_file_dialog;
65
66 extern int minibuffer_auto_raise;
67 extern Lisp_Object minibuf_window;
68 extern Lisp_Object Vlocale_coding_system;
69
70 Lisp_Object Qstring_lessp, Qprovide, Qrequire;
71 Lisp_Object Qyes_or_no_p_history;
72 Lisp_Object Qcursor_in_echo_area;
73 Lisp_Object Qwidget_type;
74 Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
75
76 extern Lisp_Object Qinput_method_function;
77
78 static int internal_equal ();
79
80 extern long get_random ();
81 extern void seed_random ();
82
83 #ifndef HAVE_UNISTD_H
84 extern long time ();
85 #endif
86 \f
87 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
88 doc: /* Return the argument unchanged. */)
89 (arg)
90 Lisp_Object arg;
91 {
92 return arg;
93 }
94
95 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
96 doc: /* Return a pseudo-random number.
97 All integers representable in Lisp are equally likely.
98 On most systems, this is 29 bits' worth.
99 With positive integer argument N, return random number in interval [0,N).
100 With argument t, set the random number seed from the current time and pid. */)
101 (n)
102 Lisp_Object n;
103 {
104 EMACS_INT val;
105 Lisp_Object lispy_val;
106 unsigned long denominator;
107
108 if (EQ (n, Qt))
109 seed_random (getpid () + time (NULL));
110 if (NATNUMP (n) && XFASTINT (n) != 0)
111 {
112 /* Try to take our random number from the higher bits of VAL,
113 not the lower, since (says Gentzel) the low bits of `random'
114 are less random than the higher ones. We do this by using the
115 quotient rather than the remainder. At the high end of the RNG
116 it's possible to get a quotient larger than n; discarding
117 these values eliminates the bias that would otherwise appear
118 when using a large n. */
119 denominator = ((unsigned long)1 << VALBITS) / XFASTINT (n);
120 do
121 val = get_random () / denominator;
122 while (val >= XFASTINT (n));
123 }
124 else
125 val = get_random ();
126 XSETINT (lispy_val, val);
127 return lispy_val;
128 }
129 \f
130 /* Random data-structure functions */
131
132 DEFUN ("length", Flength, Slength, 1, 1, 0,
133 doc: /* Return the length of vector, list or string SEQUENCE.
134 A byte-code function object is also allowed.
135 If the string contains multibyte characters, this is not necessarily
136 the number of bytes in the string; it is the number of characters.
137 To get the number of bytes, use `string-bytes'. */)
138 (sequence)
139 register Lisp_Object sequence;
140 {
141 register Lisp_Object val;
142 register int i;
143
144 retry:
145 if (STRINGP (sequence))
146 XSETFASTINT (val, SCHARS (sequence));
147 else if (VECTORP (sequence))
148 XSETFASTINT (val, XVECTOR (sequence)->size);
149 else if (SUB_CHAR_TABLE_P (sequence))
150 XSETFASTINT (val, SUB_CHAR_TABLE_ORDINARY_SLOTS);
151 else if (CHAR_TABLE_P (sequence))
152 XSETFASTINT (val, MAX_CHAR);
153 else if (BOOL_VECTOR_P (sequence))
154 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
155 else if (COMPILEDP (sequence))
156 XSETFASTINT (val, XVECTOR (sequence)->size & PSEUDOVECTOR_SIZE_MASK);
157 else if (CONSP (sequence))
158 {
159 i = 0;
160 while (CONSP (sequence))
161 {
162 sequence = XCDR (sequence);
163 ++i;
164
165 if (!CONSP (sequence))
166 break;
167
168 sequence = XCDR (sequence);
169 ++i;
170 QUIT;
171 }
172
173 if (!NILP (sequence))
174 wrong_type_argument (Qlistp, sequence);
175
176 val = make_number (i);
177 }
178 else if (NILP (sequence))
179 XSETFASTINT (val, 0);
180 else
181 {
182 sequence = wrong_type_argument (Qsequencep, sequence);
183 goto retry;
184 }
185 return val;
186 }
187
188 /* This does not check for quits. That is safe
189 since it must terminate. */
190
191 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
192 doc: /* Return the length of a list, but avoid error or infinite loop.
193 This function never gets an error. If LIST is not really a list,
194 it returns 0. If LIST is circular, it returns a finite value
195 which is at least the number of distinct elements. */)
196 (list)
197 Lisp_Object list;
198 {
199 Lisp_Object tail, halftail, length;
200 int len = 0;
201
202 /* halftail is used to detect circular lists. */
203 halftail = list;
204 for (tail = list; CONSP (tail); tail = XCDR (tail))
205 {
206 if (EQ (tail, halftail) && len != 0)
207 break;
208 len++;
209 if ((len & 1) == 0)
210 halftail = XCDR (halftail);
211 }
212
213 XSETINT (length, len);
214 return length;
215 }
216
217 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
218 doc: /* Return the number of bytes in STRING.
219 If STRING is a multibyte string, this is greater than the length of STRING. */)
220 (string)
221 Lisp_Object string;
222 {
223 CHECK_STRING (string);
224 return make_number (SBYTES (string));
225 }
226
227 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
228 doc: /* Return t if two strings have identical contents.
229 Case is significant, but text properties are ignored.
230 Symbols are also allowed; their print names are used instead. */)
231 (s1, s2)
232 register Lisp_Object s1, s2;
233 {
234 if (SYMBOLP (s1))
235 s1 = SYMBOL_NAME (s1);
236 if (SYMBOLP (s2))
237 s2 = SYMBOL_NAME (s2);
238 CHECK_STRING (s1);
239 CHECK_STRING (s2);
240
241 if (SCHARS (s1) != SCHARS (s2)
242 || SBYTES (s1) != SBYTES (s2)
243 || bcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
244 return Qnil;
245 return Qt;
246 }
247
248 DEFUN ("compare-strings", Fcompare_strings,
249 Scompare_strings, 6, 7, 0,
250 doc: /* Compare the contents of two strings, converting to multibyte if needed.
251 In string STR1, skip the first START1 characters and stop at END1.
252 In string STR2, skip the first START2 characters and stop at END2.
253 END1 and END2 default to the full lengths of the respective strings.
254
255 Case is significant in this comparison if IGNORE-CASE is nil.
256 Unibyte strings are converted to multibyte for comparison.
257
258 The value is t if the strings (or specified portions) match.
259 If string STR1 is less, the value is a negative number N;
260 - 1 - N is the number of characters that match at the beginning.
261 If string STR1 is greater, the value is a positive number N;
262 N - 1 is the number of characters that match at the beginning. */)
263 (str1, start1, end1, str2, start2, end2, ignore_case)
264 Lisp_Object str1, start1, end1, start2, str2, end2, ignore_case;
265 {
266 register int end1_char, end2_char;
267 register int i1, i1_byte, i2, i2_byte;
268
269 CHECK_STRING (str1);
270 CHECK_STRING (str2);
271 if (NILP (start1))
272 start1 = make_number (0);
273 if (NILP (start2))
274 start2 = make_number (0);
275 CHECK_NATNUM (start1);
276 CHECK_NATNUM (start2);
277 if (! NILP (end1))
278 CHECK_NATNUM (end1);
279 if (! NILP (end2))
280 CHECK_NATNUM (end2);
281
282 i1 = XINT (start1);
283 i2 = XINT (start2);
284
285 i1_byte = string_char_to_byte (str1, i1);
286 i2_byte = string_char_to_byte (str2, i2);
287
288 end1_char = SCHARS (str1);
289 if (! NILP (end1) && end1_char > XINT (end1))
290 end1_char = XINT (end1);
291
292 end2_char = SCHARS (str2);
293 if (! NILP (end2) && end2_char > XINT (end2))
294 end2_char = XINT (end2);
295
296 while (i1 < end1_char && i2 < end2_char)
297 {
298 /* When we find a mismatch, we must compare the
299 characters, not just the bytes. */
300 int c1, c2;
301
302 if (STRING_MULTIBYTE (str1))
303 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
304 else
305 {
306 c1 = SREF (str1, i1++);
307 c1 = unibyte_char_to_multibyte (c1);
308 }
309
310 if (STRING_MULTIBYTE (str2))
311 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
312 else
313 {
314 c2 = SREF (str2, i2++);
315 c2 = unibyte_char_to_multibyte (c2);
316 }
317
318 if (c1 == c2)
319 continue;
320
321 if (! NILP (ignore_case))
322 {
323 Lisp_Object tem;
324
325 tem = Fupcase (make_number (c1));
326 c1 = XINT (tem);
327 tem = Fupcase (make_number (c2));
328 c2 = XINT (tem);
329 }
330
331 if (c1 == c2)
332 continue;
333
334 /* Note that I1 has already been incremented
335 past the character that we are comparing;
336 hence we don't add or subtract 1 here. */
337 if (c1 < c2)
338 return make_number (- i1 + XINT (start1));
339 else
340 return make_number (i1 - XINT (start1));
341 }
342
343 if (i1 < end1_char)
344 return make_number (i1 - XINT (start1) + 1);
345 if (i2 < end2_char)
346 return make_number (- i1 + XINT (start1) - 1);
347
348 return Qt;
349 }
350
351 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
352 doc: /* Return t if first arg string is less than second in lexicographic order.
353 Case is significant.
354 Symbols are also allowed; their print names are used instead. */)
355 (s1, s2)
356 register Lisp_Object s1, s2;
357 {
358 register int end;
359 register int i1, i1_byte, i2, i2_byte;
360
361 if (SYMBOLP (s1))
362 s1 = SYMBOL_NAME (s1);
363 if (SYMBOLP (s2))
364 s2 = SYMBOL_NAME (s2);
365 CHECK_STRING (s1);
366 CHECK_STRING (s2);
367
368 i1 = i1_byte = i2 = i2_byte = 0;
369
370 end = SCHARS (s1);
371 if (end > SCHARS (s2))
372 end = SCHARS (s2);
373
374 while (i1 < end)
375 {
376 /* When we find a mismatch, we must compare the
377 characters, not just the bytes. */
378 int c1, c2;
379
380 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
381 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
382
383 if (c1 != c2)
384 return c1 < c2 ? Qt : Qnil;
385 }
386 return i1 < SCHARS (s2) ? Qt : Qnil;
387 }
388 \f
389 static Lisp_Object concat ();
390
391 /* ARGSUSED */
392 Lisp_Object
393 concat2 (s1, s2)
394 Lisp_Object s1, s2;
395 {
396 #ifdef NO_ARG_ARRAY
397 Lisp_Object args[2];
398 args[0] = s1;
399 args[1] = s2;
400 return concat (2, args, Lisp_String, 0);
401 #else
402 return concat (2, &s1, Lisp_String, 0);
403 #endif /* NO_ARG_ARRAY */
404 }
405
406 /* ARGSUSED */
407 Lisp_Object
408 concat3 (s1, s2, s3)
409 Lisp_Object s1, s2, s3;
410 {
411 #ifdef NO_ARG_ARRAY
412 Lisp_Object args[3];
413 args[0] = s1;
414 args[1] = s2;
415 args[2] = s3;
416 return concat (3, args, Lisp_String, 0);
417 #else
418 return concat (3, &s1, Lisp_String, 0);
419 #endif /* NO_ARG_ARRAY */
420 }
421
422 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
423 doc: /* Concatenate all the arguments and make the result a list.
424 The result is a list whose elements are the elements of all the arguments.
425 Each argument may be a list, vector or string.
426 The last argument is not copied, just used as the tail of the new list.
427 usage: (append &rest SEQUENCES) */)
428 (nargs, args)
429 int nargs;
430 Lisp_Object *args;
431 {
432 return concat (nargs, args, Lisp_Cons, 1);
433 }
434
435 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
436 doc: /* Concatenate all the arguments and make the result a string.
437 The result is a string whose elements are the elements of all the arguments.
438 Each argument may be a string or a list or vector of characters (integers).
439 usage: (concat &rest SEQUENCES) */)
440 (nargs, args)
441 int nargs;
442 Lisp_Object *args;
443 {
444 return concat (nargs, args, Lisp_String, 0);
445 }
446
447 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
448 doc: /* Concatenate all the arguments and make the result a vector.
449 The result is a vector whose elements are the elements of all the arguments.
450 Each argument may be a list, vector or string.
451 usage: (vconcat &rest SEQUENCES) */)
452 (nargs, args)
453 int nargs;
454 Lisp_Object *args;
455 {
456 return concat (nargs, args, Lisp_Vectorlike, 0);
457 }
458
459 /* Return a copy of a sub char table ARG. The elements except for a
460 nested sub char table are not copied. */
461 static Lisp_Object
462 copy_sub_char_table (arg)
463 Lisp_Object arg;
464 {
465 Lisp_Object copy = make_sub_char_table (XCHAR_TABLE (arg)->defalt);
466 int i;
467
468 /* Copy all the contents. */
469 bcopy (XCHAR_TABLE (arg)->contents, XCHAR_TABLE (copy)->contents,
470 SUB_CHAR_TABLE_ORDINARY_SLOTS * sizeof (Lisp_Object));
471 /* Recursively copy any sub char-tables in the ordinary slots. */
472 for (i = 32; i < SUB_CHAR_TABLE_ORDINARY_SLOTS; i++)
473 if (SUB_CHAR_TABLE_P (XCHAR_TABLE (arg)->contents[i]))
474 XCHAR_TABLE (copy)->contents[i]
475 = copy_sub_char_table (XCHAR_TABLE (copy)->contents[i]);
476
477 return copy;
478 }
479
480
481 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
482 doc: /* Return a copy of a list, vector, string or char-table.
483 The elements of a list or vector are not copied; they are shared
484 with the original. */)
485 (arg)
486 Lisp_Object arg;
487 {
488 if (NILP (arg)) return arg;
489
490 if (CHAR_TABLE_P (arg))
491 {
492 int i;
493 Lisp_Object copy;
494
495 copy = Fmake_char_table (XCHAR_TABLE (arg)->purpose, Qnil);
496 /* Copy all the slots, including the extra ones. */
497 bcopy (XVECTOR (arg)->contents, XVECTOR (copy)->contents,
498 ((XCHAR_TABLE (arg)->size & PSEUDOVECTOR_SIZE_MASK)
499 * sizeof (Lisp_Object)));
500
501 /* Recursively copy any sub char tables in the ordinary slots
502 for multibyte characters. */
503 for (i = CHAR_TABLE_SINGLE_BYTE_SLOTS;
504 i < CHAR_TABLE_ORDINARY_SLOTS; i++)
505 if (SUB_CHAR_TABLE_P (XCHAR_TABLE (arg)->contents[i]))
506 XCHAR_TABLE (copy)->contents[i]
507 = copy_sub_char_table (XCHAR_TABLE (copy)->contents[i]);
508
509 return copy;
510 }
511
512 if (BOOL_VECTOR_P (arg))
513 {
514 Lisp_Object val;
515 int size_in_chars
516 = (XBOOL_VECTOR (arg)->size + BITS_PER_CHAR - 1) / BITS_PER_CHAR;
517
518 val = Fmake_bool_vector (Flength (arg), Qnil);
519 bcopy (XBOOL_VECTOR (arg)->data, XBOOL_VECTOR (val)->data,
520 size_in_chars);
521 return val;
522 }
523
524 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
525 arg = wrong_type_argument (Qsequencep, arg);
526 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
527 }
528
529 /* In string STR of length LEN, see if bytes before STR[I] combine
530 with bytes after STR[I] to form a single character. If so, return
531 the number of bytes after STR[I] which combine in this way.
532 Otherwize, return 0. */
533
534 static int
535 count_combining (str, len, i)
536 unsigned char *str;
537 int len, i;
538 {
539 int j = i - 1, bytes;
540
541 if (i == 0 || i == len || CHAR_HEAD_P (str[i]))
542 return 0;
543 while (j >= 0 && !CHAR_HEAD_P (str[j])) j--;
544 if (j < 0 || ! BASE_LEADING_CODE_P (str[j]))
545 return 0;
546 PARSE_MULTIBYTE_SEQ (str + j, len - j, bytes);
547 return (bytes <= i - j ? 0 : bytes - (i - j));
548 }
549
550 /* This structure holds information of an argument of `concat' that is
551 a string and has text properties to be copied. */
552 struct textprop_rec
553 {
554 int argnum; /* refer to ARGS (arguments of `concat') */
555 int from; /* refer to ARGS[argnum] (argument string) */
556 int to; /* refer to VAL (the target string) */
557 };
558
559 static Lisp_Object
560 concat (nargs, args, target_type, last_special)
561 int nargs;
562 Lisp_Object *args;
563 enum Lisp_Type target_type;
564 int last_special;
565 {
566 Lisp_Object val;
567 register Lisp_Object tail;
568 register Lisp_Object this;
569 int toindex;
570 int toindex_byte = 0;
571 register int result_len;
572 register int result_len_byte;
573 register int argnum;
574 Lisp_Object last_tail;
575 Lisp_Object prev;
576 int some_multibyte;
577 /* When we make a multibyte string, we can't copy text properties
578 while concatinating each string because the length of resulting
579 string can't be decided until we finish the whole concatination.
580 So, we record strings that have text properties to be copied
581 here, and copy the text properties after the concatination. */
582 struct textprop_rec *textprops = NULL;
583 /* Number of elments in textprops. */
584 int num_textprops = 0;
585
586 tail = Qnil;
587
588 /* In append, the last arg isn't treated like the others */
589 if (last_special && nargs > 0)
590 {
591 nargs--;
592 last_tail = args[nargs];
593 }
594 else
595 last_tail = Qnil;
596
597 /* Canonicalize each argument. */
598 for (argnum = 0; argnum < nargs; argnum++)
599 {
600 this = args[argnum];
601 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
602 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
603 {
604 args[argnum] = wrong_type_argument (Qsequencep, this);
605 }
606 }
607
608 /* Compute total length in chars of arguments in RESULT_LEN.
609 If desired output is a string, also compute length in bytes
610 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
611 whether the result should be a multibyte string. */
612 result_len_byte = 0;
613 result_len = 0;
614 some_multibyte = 0;
615 for (argnum = 0; argnum < nargs; argnum++)
616 {
617 int len;
618 this = args[argnum];
619 len = XFASTINT (Flength (this));
620 if (target_type == Lisp_String)
621 {
622 /* We must count the number of bytes needed in the string
623 as well as the number of characters. */
624 int i;
625 Lisp_Object ch;
626 int this_len_byte;
627
628 if (VECTORP (this))
629 for (i = 0; i < len; i++)
630 {
631 ch = XVECTOR (this)->contents[i];
632 if (! INTEGERP (ch))
633 wrong_type_argument (Qintegerp, ch);
634 this_len_byte = CHAR_BYTES (XINT (ch));
635 result_len_byte += this_len_byte;
636 if (!SINGLE_BYTE_CHAR_P (XINT (ch)))
637 some_multibyte = 1;
638 }
639 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
640 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
641 else if (CONSP (this))
642 for (; CONSP (this); this = XCDR (this))
643 {
644 ch = XCAR (this);
645 if (! INTEGERP (ch))
646 wrong_type_argument (Qintegerp, ch);
647 this_len_byte = CHAR_BYTES (XINT (ch));
648 result_len_byte += this_len_byte;
649 if (!SINGLE_BYTE_CHAR_P (XINT (ch)))
650 some_multibyte = 1;
651 }
652 else if (STRINGP (this))
653 {
654 if (STRING_MULTIBYTE (this))
655 {
656 some_multibyte = 1;
657 result_len_byte += SBYTES (this);
658 }
659 else
660 result_len_byte += count_size_as_multibyte (SDATA (this),
661 SCHARS (this));
662 }
663 }
664
665 result_len += len;
666 }
667
668 if (! some_multibyte)
669 result_len_byte = result_len;
670
671 /* Create the output object. */
672 if (target_type == Lisp_Cons)
673 val = Fmake_list (make_number (result_len), Qnil);
674 else if (target_type == Lisp_Vectorlike)
675 val = Fmake_vector (make_number (result_len), Qnil);
676 else if (some_multibyte)
677 val = make_uninit_multibyte_string (result_len, result_len_byte);
678 else
679 val = make_uninit_string (result_len);
680
681 /* In `append', if all but last arg are nil, return last arg. */
682 if (target_type == Lisp_Cons && EQ (val, Qnil))
683 return last_tail;
684
685 /* Copy the contents of the args into the result. */
686 if (CONSP (val))
687 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
688 else
689 toindex = 0, toindex_byte = 0;
690
691 prev = Qnil;
692 if (STRINGP (val))
693 textprops
694 = (struct textprop_rec *) alloca (sizeof (struct textprop_rec) * nargs);
695
696 for (argnum = 0; argnum < nargs; argnum++)
697 {
698 Lisp_Object thislen;
699 int thisleni = 0;
700 register unsigned int thisindex = 0;
701 register unsigned int thisindex_byte = 0;
702
703 this = args[argnum];
704 if (!CONSP (this))
705 thislen = Flength (this), thisleni = XINT (thislen);
706
707 /* Between strings of the same kind, copy fast. */
708 if (STRINGP (this) && STRINGP (val)
709 && STRING_MULTIBYTE (this) == some_multibyte)
710 {
711 int thislen_byte = SBYTES (this);
712 int combined;
713
714 bcopy (SDATA (this), SDATA (val) + toindex_byte,
715 SBYTES (this));
716 combined = (some_multibyte && toindex_byte > 0
717 ? count_combining (SDATA (val),
718 toindex_byte + thislen_byte,
719 toindex_byte)
720 : 0);
721 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
722 {
723 textprops[num_textprops].argnum = argnum;
724 /* We ignore text properties on characters being combined. */
725 textprops[num_textprops].from = combined;
726 textprops[num_textprops++].to = toindex;
727 }
728 toindex_byte += thislen_byte;
729 toindex += thisleni - combined;
730 STRING_SET_CHARS (val, SCHARS (val) - combined);
731 }
732 /* Copy a single-byte string to a multibyte string. */
733 else if (STRINGP (this) && STRINGP (val))
734 {
735 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
736 {
737 textprops[num_textprops].argnum = argnum;
738 textprops[num_textprops].from = 0;
739 textprops[num_textprops++].to = toindex;
740 }
741 toindex_byte += copy_text (SDATA (this),
742 SDATA (val) + toindex_byte,
743 SCHARS (this), 0, 1);
744 toindex += thisleni;
745 }
746 else
747 /* Copy element by element. */
748 while (1)
749 {
750 register Lisp_Object elt;
751
752 /* Fetch next element of `this' arg into `elt', or break if
753 `this' is exhausted. */
754 if (NILP (this)) break;
755 if (CONSP (this))
756 elt = XCAR (this), this = XCDR (this);
757 else if (thisindex >= thisleni)
758 break;
759 else if (STRINGP (this))
760 {
761 int c;
762 if (STRING_MULTIBYTE (this))
763 {
764 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
765 thisindex,
766 thisindex_byte);
767 XSETFASTINT (elt, c);
768 }
769 else
770 {
771 XSETFASTINT (elt, SREF (this, thisindex++));
772 if (some_multibyte
773 && (XINT (elt) >= 0240
774 || (XINT (elt) >= 0200
775 && ! NILP (Vnonascii_translation_table)))
776 && XINT (elt) < 0400)
777 {
778 c = unibyte_char_to_multibyte (XINT (elt));
779 XSETINT (elt, c);
780 }
781 }
782 }
783 else if (BOOL_VECTOR_P (this))
784 {
785 int byte;
786 byte = XBOOL_VECTOR (this)->data[thisindex / BITS_PER_CHAR];
787 if (byte & (1 << (thisindex % BITS_PER_CHAR)))
788 elt = Qt;
789 else
790 elt = Qnil;
791 thisindex++;
792 }
793 else
794 elt = XVECTOR (this)->contents[thisindex++];
795
796 /* Store this element into the result. */
797 if (toindex < 0)
798 {
799 XSETCAR (tail, elt);
800 prev = tail;
801 tail = XCDR (tail);
802 }
803 else if (VECTORP (val))
804 XVECTOR (val)->contents[toindex++] = elt;
805 else
806 {
807 CHECK_NUMBER (elt);
808 if (SINGLE_BYTE_CHAR_P (XINT (elt)))
809 {
810 if (some_multibyte)
811 toindex_byte
812 += CHAR_STRING (XINT (elt),
813 SDATA (val) + toindex_byte);
814 else
815 SSET (val, toindex_byte++, XINT (elt));
816 if (some_multibyte
817 && toindex_byte > 0
818 && count_combining (SDATA (val),
819 toindex_byte, toindex_byte - 1))
820 STRING_SET_CHARS (val, SCHARS (val) - 1);
821 else
822 toindex++;
823 }
824 else
825 /* If we have any multibyte characters,
826 we already decided to make a multibyte string. */
827 {
828 int c = XINT (elt);
829 /* P exists as a variable
830 to avoid a bug on the Masscomp C compiler. */
831 unsigned char *p = SDATA (val) + toindex_byte;
832
833 toindex_byte += CHAR_STRING (c, p);
834 toindex++;
835 }
836 }
837 }
838 }
839 if (!NILP (prev))
840 XSETCDR (prev, last_tail);
841
842 if (num_textprops > 0)
843 {
844 Lisp_Object props;
845 int last_to_end = -1;
846
847 for (argnum = 0; argnum < num_textprops; argnum++)
848 {
849 this = args[textprops[argnum].argnum];
850 props = text_property_list (this,
851 make_number (0),
852 make_number (SCHARS (this)),
853 Qnil);
854 /* If successive arguments have properites, be sure that the
855 value of `composition' property be the copy. */
856 if (last_to_end == textprops[argnum].to)
857 make_composition_value_copy (props);
858 add_text_properties_from_list (val, props,
859 make_number (textprops[argnum].to));
860 last_to_end = textprops[argnum].to + SCHARS (this);
861 }
862 }
863 return val;
864 }
865 \f
866 static Lisp_Object string_char_byte_cache_string;
867 static int string_char_byte_cache_charpos;
868 static int string_char_byte_cache_bytepos;
869
870 void
871 clear_string_char_byte_cache ()
872 {
873 string_char_byte_cache_string = Qnil;
874 }
875
876 /* Return the character index corresponding to CHAR_INDEX in STRING. */
877
878 int
879 string_char_to_byte (string, char_index)
880 Lisp_Object string;
881 int char_index;
882 {
883 int i, i_byte;
884 int best_below, best_below_byte;
885 int best_above, best_above_byte;
886
887 best_below = best_below_byte = 0;
888 best_above = SCHARS (string);
889 best_above_byte = SBYTES (string);
890 if (best_above == best_above_byte)
891 return char_index;
892
893 if (EQ (string, string_char_byte_cache_string))
894 {
895 if (string_char_byte_cache_charpos < char_index)
896 {
897 best_below = string_char_byte_cache_charpos;
898 best_below_byte = string_char_byte_cache_bytepos;
899 }
900 else
901 {
902 best_above = string_char_byte_cache_charpos;
903 best_above_byte = string_char_byte_cache_bytepos;
904 }
905 }
906
907 if (char_index - best_below < best_above - char_index)
908 {
909 while (best_below < char_index)
910 {
911 int c;
912 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, string,
913 best_below, best_below_byte);
914 }
915 i = best_below;
916 i_byte = best_below_byte;
917 }
918 else
919 {
920 while (best_above > char_index)
921 {
922 unsigned char *pend = SDATA (string) + best_above_byte;
923 unsigned char *pbeg = pend - best_above_byte;
924 unsigned char *p = pend - 1;
925 int bytes;
926
927 while (p > pbeg && !CHAR_HEAD_P (*p)) p--;
928 PARSE_MULTIBYTE_SEQ (p, pend - p, bytes);
929 if (bytes == pend - p)
930 best_above_byte -= bytes;
931 else if (bytes > pend - p)
932 best_above_byte -= (pend - p);
933 else
934 best_above_byte--;
935 best_above--;
936 }
937 i = best_above;
938 i_byte = best_above_byte;
939 }
940
941 string_char_byte_cache_bytepos = i_byte;
942 string_char_byte_cache_charpos = i;
943 string_char_byte_cache_string = string;
944
945 return i_byte;
946 }
947 \f
948 /* Return the character index corresponding to BYTE_INDEX in STRING. */
949
950 int
951 string_byte_to_char (string, byte_index)
952 Lisp_Object string;
953 int byte_index;
954 {
955 int i, i_byte;
956 int best_below, best_below_byte;
957 int best_above, best_above_byte;
958
959 best_below = best_below_byte = 0;
960 best_above = SCHARS (string);
961 best_above_byte = SBYTES (string);
962 if (best_above == best_above_byte)
963 return byte_index;
964
965 if (EQ (string, string_char_byte_cache_string))
966 {
967 if (string_char_byte_cache_bytepos < byte_index)
968 {
969 best_below = string_char_byte_cache_charpos;
970 best_below_byte = string_char_byte_cache_bytepos;
971 }
972 else
973 {
974 best_above = string_char_byte_cache_charpos;
975 best_above_byte = string_char_byte_cache_bytepos;
976 }
977 }
978
979 if (byte_index - best_below_byte < best_above_byte - byte_index)
980 {
981 while (best_below_byte < byte_index)
982 {
983 int c;
984 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, string,
985 best_below, best_below_byte);
986 }
987 i = best_below;
988 i_byte = best_below_byte;
989 }
990 else
991 {
992 while (best_above_byte > byte_index)
993 {
994 unsigned char *pend = SDATA (string) + best_above_byte;
995 unsigned char *pbeg = pend - best_above_byte;
996 unsigned char *p = pend - 1;
997 int bytes;
998
999 while (p > pbeg && !CHAR_HEAD_P (*p)) p--;
1000 PARSE_MULTIBYTE_SEQ (p, pend - p, bytes);
1001 if (bytes == pend - p)
1002 best_above_byte -= bytes;
1003 else if (bytes > pend - p)
1004 best_above_byte -= (pend - p);
1005 else
1006 best_above_byte--;
1007 best_above--;
1008 }
1009 i = best_above;
1010 i_byte = best_above_byte;
1011 }
1012
1013 string_char_byte_cache_bytepos = i_byte;
1014 string_char_byte_cache_charpos = i;
1015 string_char_byte_cache_string = string;
1016
1017 return i;
1018 }
1019 \f
1020 /* Convert STRING to a multibyte string.
1021 Single-byte characters 0240 through 0377 are converted
1022 by adding nonascii_insert_offset to each. */
1023
1024 Lisp_Object
1025 string_make_multibyte (string)
1026 Lisp_Object string;
1027 {
1028 unsigned char *buf;
1029 int nbytes;
1030
1031 if (STRING_MULTIBYTE (string))
1032 return string;
1033
1034 nbytes = count_size_as_multibyte (SDATA (string),
1035 SCHARS (string));
1036 /* If all the chars are ASCII, they won't need any more bytes
1037 once converted. In that case, we can return STRING itself. */
1038 if (nbytes == SBYTES (string))
1039 return string;
1040
1041 buf = (unsigned char *) alloca (nbytes);
1042 copy_text (SDATA (string), buf, SBYTES (string),
1043 0, 1);
1044
1045 return make_multibyte_string (buf, SCHARS (string), nbytes);
1046 }
1047
1048
1049 /* Convert STRING to a multibyte string without changing each
1050 character codes. Thus, characters 0200 trough 0237 are converted
1051 to eight-bit-control characters, and characters 0240 through 0377
1052 are converted eight-bit-graphic characters. */
1053
1054 Lisp_Object
1055 string_to_multibyte (string)
1056 Lisp_Object string;
1057 {
1058 unsigned char *buf;
1059 int nbytes;
1060
1061 if (STRING_MULTIBYTE (string))
1062 return string;
1063
1064 nbytes = parse_str_to_multibyte (SDATA (string), SBYTES (string));
1065 /* If all the chars are ASCII or eight-bit-graphic, they won't need
1066 any more bytes once converted. */
1067 if (nbytes == SBYTES (string))
1068 return make_multibyte_string (SDATA (string), nbytes, nbytes);
1069
1070 buf = (unsigned char *) alloca (nbytes);
1071 bcopy (SDATA (string), buf, SBYTES (string));
1072 str_to_multibyte (buf, nbytes, SBYTES (string));
1073
1074 return make_multibyte_string (buf, SCHARS (string), nbytes);
1075 }
1076
1077
1078 /* Convert STRING to a single-byte string. */
1079
1080 Lisp_Object
1081 string_make_unibyte (string)
1082 Lisp_Object string;
1083 {
1084 unsigned char *buf;
1085
1086 if (! STRING_MULTIBYTE (string))
1087 return string;
1088
1089 buf = (unsigned char *) alloca (SCHARS (string));
1090
1091 copy_text (SDATA (string), buf, SBYTES (string),
1092 1, 0);
1093
1094 return make_unibyte_string (buf, SCHARS (string));
1095 }
1096
1097 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
1098 1, 1, 0,
1099 doc: /* Return the multibyte equivalent of STRING.
1100 If STRING is unibyte and contains non-ASCII characters, the function
1101 `unibyte-char-to-multibyte' is used to convert each unibyte character
1102 to a multibyte character. In this case, the returned string is a
1103 newly created string with no text properties. If STRING is multibyte
1104 or entirely ASCII, it is returned unchanged. In particular, when
1105 STRING is unibyte and entirely ASCII, the returned string is unibyte.
1106 \(When the characters are all ASCII, Emacs primitives will treat the
1107 string the same way whether it is unibyte or multibyte.) */)
1108 (string)
1109 Lisp_Object string;
1110 {
1111 CHECK_STRING (string);
1112
1113 return string_make_multibyte (string);
1114 }
1115
1116 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
1117 1, 1, 0,
1118 doc: /* Return the unibyte equivalent of STRING.
1119 Multibyte character codes are converted to unibyte according to
1120 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
1121 If the lookup in the translation table fails, this function takes just
1122 the low 8 bits of each character. */)
1123 (string)
1124 Lisp_Object string;
1125 {
1126 CHECK_STRING (string);
1127
1128 return string_make_unibyte (string);
1129 }
1130
1131 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1132 1, 1, 0,
1133 doc: /* Return a unibyte string with the same individual bytes as STRING.
1134 If STRING is unibyte, the result is STRING itself.
1135 Otherwise it is a newly created string, with no text properties.
1136 If STRING is multibyte and contains a character of charset
1137 `eight-bit-control' or `eight-bit-graphic', it is converted to the
1138 corresponding single byte. */)
1139 (string)
1140 Lisp_Object string;
1141 {
1142 CHECK_STRING (string);
1143
1144 if (STRING_MULTIBYTE (string))
1145 {
1146 int bytes = SBYTES (string);
1147 unsigned char *str = (unsigned char *) xmalloc (bytes);
1148
1149 bcopy (SDATA (string), str, bytes);
1150 bytes = str_as_unibyte (str, bytes);
1151 string = make_unibyte_string (str, bytes);
1152 xfree (str);
1153 }
1154 return string;
1155 }
1156
1157 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1158 1, 1, 0,
1159 doc: /* Return a multibyte string with the same individual bytes as STRING.
1160 If STRING is multibyte, the result is STRING itself.
1161 Otherwise it is a newly created string, with no text properties.
1162 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1163 part of a multibyte form), it is converted to the corresponding
1164 multibyte character of charset `eight-bit-control' or `eight-bit-graphic'. */)
1165 (string)
1166 Lisp_Object string;
1167 {
1168 CHECK_STRING (string);
1169
1170 if (! STRING_MULTIBYTE (string))
1171 {
1172 Lisp_Object new_string;
1173 int nchars, nbytes;
1174
1175 parse_str_as_multibyte (SDATA (string),
1176 SBYTES (string),
1177 &nchars, &nbytes);
1178 new_string = make_uninit_multibyte_string (nchars, nbytes);
1179 bcopy (SDATA (string), SDATA (new_string),
1180 SBYTES (string));
1181 if (nbytes != SBYTES (string))
1182 str_as_multibyte (SDATA (new_string), nbytes,
1183 SBYTES (string), NULL);
1184 string = new_string;
1185 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1186 }
1187 return string;
1188 }
1189
1190 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1191 1, 1, 0,
1192 doc: /* Return a multibyte string with the same individual chars as STRING.
1193 If STRING is multibyte, the result is STRING itself.
1194 Otherwise it is a newly created string, with no text properties.
1195 Characters 0200 through 0237 are converted to eight-bit-control
1196 characters of the same character code. Characters 0240 through 0377
1197 are converted to eight-bit-graphic characters of the same character
1198 codes. */)
1199 (string)
1200 Lisp_Object string;
1201 {
1202 CHECK_STRING (string);
1203
1204 return string_to_multibyte (string);
1205 }
1206
1207 \f
1208 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1209 doc: /* Return a copy of ALIST.
1210 This is an alist which represents the same mapping from objects to objects,
1211 but does not share the alist structure with ALIST.
1212 The objects mapped (cars and cdrs of elements of the alist)
1213 are shared, however.
1214 Elements of ALIST that are not conses are also shared. */)
1215 (alist)
1216 Lisp_Object alist;
1217 {
1218 register Lisp_Object tem;
1219
1220 CHECK_LIST (alist);
1221 if (NILP (alist))
1222 return alist;
1223 alist = concat (1, &alist, Lisp_Cons, 0);
1224 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1225 {
1226 register Lisp_Object car;
1227 car = XCAR (tem);
1228
1229 if (CONSP (car))
1230 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1231 }
1232 return alist;
1233 }
1234
1235 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1236 doc: /* Return a substring of STRING, starting at index FROM and ending before TO.
1237 TO may be nil or omitted; then the substring runs to the end of STRING.
1238 FROM and TO start at 0. If either is negative, it counts from the end.
1239
1240 This function allows vectors as well as strings. */)
1241 (string, from, to)
1242 Lisp_Object string;
1243 register Lisp_Object from, to;
1244 {
1245 Lisp_Object res;
1246 int size;
1247 int size_byte = 0;
1248 int from_char, to_char;
1249 int from_byte = 0, to_byte = 0;
1250
1251 if (! (STRINGP (string) || VECTORP (string)))
1252 wrong_type_argument (Qarrayp, string);
1253
1254 CHECK_NUMBER (from);
1255
1256 if (STRINGP (string))
1257 {
1258 size = SCHARS (string);
1259 size_byte = SBYTES (string);
1260 }
1261 else
1262 size = XVECTOR (string)->size;
1263
1264 if (NILP (to))
1265 {
1266 to_char = size;
1267 to_byte = size_byte;
1268 }
1269 else
1270 {
1271 CHECK_NUMBER (to);
1272
1273 to_char = XINT (to);
1274 if (to_char < 0)
1275 to_char += size;
1276
1277 if (STRINGP (string))
1278 to_byte = string_char_to_byte (string, to_char);
1279 }
1280
1281 from_char = XINT (from);
1282 if (from_char < 0)
1283 from_char += size;
1284 if (STRINGP (string))
1285 from_byte = string_char_to_byte (string, from_char);
1286
1287 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1288 args_out_of_range_3 (string, make_number (from_char),
1289 make_number (to_char));
1290
1291 if (STRINGP (string))
1292 {
1293 res = make_specified_string (SDATA (string) + from_byte,
1294 to_char - from_char, to_byte - from_byte,
1295 STRING_MULTIBYTE (string));
1296 copy_text_properties (make_number (from_char), make_number (to_char),
1297 string, make_number (0), res, Qnil);
1298 }
1299 else
1300 res = Fvector (to_char - from_char,
1301 XVECTOR (string)->contents + from_char);
1302
1303 return res;
1304 }
1305
1306
1307 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1308 doc: /* Return a substring of STRING, without text properties.
1309 It starts at index FROM and ending before TO.
1310 TO may be nil or omitted; then the substring runs to the end of STRING.
1311 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1312 If FROM or TO is negative, it counts from the end.
1313
1314 With one argument, just copy STRING without its properties. */)
1315 (string, from, to)
1316 Lisp_Object string;
1317 register Lisp_Object from, to;
1318 {
1319 int size, size_byte;
1320 int from_char, to_char;
1321 int from_byte, to_byte;
1322
1323 CHECK_STRING (string);
1324
1325 size = SCHARS (string);
1326 size_byte = SBYTES (string);
1327
1328 if (NILP (from))
1329 from_char = from_byte = 0;
1330 else
1331 {
1332 CHECK_NUMBER (from);
1333 from_char = XINT (from);
1334 if (from_char < 0)
1335 from_char += size;
1336
1337 from_byte = string_char_to_byte (string, from_char);
1338 }
1339
1340 if (NILP (to))
1341 {
1342 to_char = size;
1343 to_byte = size_byte;
1344 }
1345 else
1346 {
1347 CHECK_NUMBER (to);
1348
1349 to_char = XINT (to);
1350 if (to_char < 0)
1351 to_char += size;
1352
1353 to_byte = string_char_to_byte (string, to_char);
1354 }
1355
1356 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1357 args_out_of_range_3 (string, make_number (from_char),
1358 make_number (to_char));
1359
1360 return make_specified_string (SDATA (string) + from_byte,
1361 to_char - from_char, to_byte - from_byte,
1362 STRING_MULTIBYTE (string));
1363 }
1364
1365 /* Extract a substring of STRING, giving start and end positions
1366 both in characters and in bytes. */
1367
1368 Lisp_Object
1369 substring_both (string, from, from_byte, to, to_byte)
1370 Lisp_Object string;
1371 int from, from_byte, to, to_byte;
1372 {
1373 Lisp_Object res;
1374 int size;
1375 int size_byte;
1376
1377 if (! (STRINGP (string) || VECTORP (string)))
1378 wrong_type_argument (Qarrayp, string);
1379
1380 if (STRINGP (string))
1381 {
1382 size = SCHARS (string);
1383 size_byte = SBYTES (string);
1384 }
1385 else
1386 size = XVECTOR (string)->size;
1387
1388 if (!(0 <= from && from <= to && to <= size))
1389 args_out_of_range_3 (string, make_number (from), make_number (to));
1390
1391 if (STRINGP (string))
1392 {
1393 res = make_specified_string (SDATA (string) + from_byte,
1394 to - from, to_byte - from_byte,
1395 STRING_MULTIBYTE (string));
1396 copy_text_properties (make_number (from), make_number (to),
1397 string, make_number (0), res, Qnil);
1398 }
1399 else
1400 res = Fvector (to - from,
1401 XVECTOR (string)->contents + from);
1402
1403 return res;
1404 }
1405 \f
1406 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1407 doc: /* Take cdr N times on LIST, returns the result. */)
1408 (n, list)
1409 Lisp_Object n;
1410 register Lisp_Object list;
1411 {
1412 register int i, num;
1413 CHECK_NUMBER (n);
1414 num = XINT (n);
1415 for (i = 0; i < num && !NILP (list); i++)
1416 {
1417 QUIT;
1418 if (! CONSP (list))
1419 wrong_type_argument (Qlistp, list);
1420 list = XCDR (list);
1421 }
1422 return list;
1423 }
1424
1425 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1426 doc: /* Return the Nth element of LIST.
1427 N counts from zero. If LIST is not that long, nil is returned. */)
1428 (n, list)
1429 Lisp_Object n, list;
1430 {
1431 return Fcar (Fnthcdr (n, list));
1432 }
1433
1434 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1435 doc: /* Return element of SEQUENCE at index N. */)
1436 (sequence, n)
1437 register Lisp_Object sequence, n;
1438 {
1439 CHECK_NUMBER (n);
1440 while (1)
1441 {
1442 if (CONSP (sequence) || NILP (sequence))
1443 return Fcar (Fnthcdr (n, sequence));
1444 else if (STRINGP (sequence) || VECTORP (sequence)
1445 || BOOL_VECTOR_P (sequence) || CHAR_TABLE_P (sequence))
1446 return Faref (sequence, n);
1447 else
1448 sequence = wrong_type_argument (Qsequencep, sequence);
1449 }
1450 }
1451
1452 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1453 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1454 The value is actually the tail of LIST whose car is ELT. */)
1455 (elt, list)
1456 register Lisp_Object elt;
1457 Lisp_Object list;
1458 {
1459 register Lisp_Object tail;
1460 for (tail = list; !NILP (tail); tail = XCDR (tail))
1461 {
1462 register Lisp_Object tem;
1463 if (! CONSP (tail))
1464 wrong_type_argument (Qlistp, list);
1465 tem = XCAR (tail);
1466 if (! NILP (Fequal (elt, tem)))
1467 return tail;
1468 QUIT;
1469 }
1470 return Qnil;
1471 }
1472
1473 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1474 doc: /* Return non-nil if ELT is an element of LIST.
1475 Comparison done with EQ. The value is actually the tail of LIST
1476 whose car is ELT. */)
1477 (elt, list)
1478 Lisp_Object elt, list;
1479 {
1480 while (1)
1481 {
1482 if (!CONSP (list) || EQ (XCAR (list), elt))
1483 break;
1484
1485 list = XCDR (list);
1486 if (!CONSP (list) || EQ (XCAR (list), elt))
1487 break;
1488
1489 list = XCDR (list);
1490 if (!CONSP (list) || EQ (XCAR (list), elt))
1491 break;
1492
1493 list = XCDR (list);
1494 QUIT;
1495 }
1496
1497 if (!CONSP (list) && !NILP (list))
1498 list = wrong_type_argument (Qlistp, list);
1499
1500 return list;
1501 }
1502
1503 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1504 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1505 The value is actually the first element of LIST whose car is KEY.
1506 Elements of LIST that are not conses are ignored. */)
1507 (key, list)
1508 Lisp_Object key, list;
1509 {
1510 Lisp_Object result;
1511
1512 while (1)
1513 {
1514 if (!CONSP (list)
1515 || (CONSP (XCAR (list))
1516 && EQ (XCAR (XCAR (list)), key)))
1517 break;
1518
1519 list = XCDR (list);
1520 if (!CONSP (list)
1521 || (CONSP (XCAR (list))
1522 && EQ (XCAR (XCAR (list)), key)))
1523 break;
1524
1525 list = XCDR (list);
1526 if (!CONSP (list)
1527 || (CONSP (XCAR (list))
1528 && EQ (XCAR (XCAR (list)), key)))
1529 break;
1530
1531 list = XCDR (list);
1532 QUIT;
1533 }
1534
1535 if (CONSP (list))
1536 result = XCAR (list);
1537 else if (NILP (list))
1538 result = Qnil;
1539 else
1540 result = wrong_type_argument (Qlistp, list);
1541
1542 return result;
1543 }
1544
1545 /* Like Fassq but never report an error and do not allow quits.
1546 Use only on lists known never to be circular. */
1547
1548 Lisp_Object
1549 assq_no_quit (key, list)
1550 Lisp_Object key, list;
1551 {
1552 while (CONSP (list)
1553 && (!CONSP (XCAR (list))
1554 || !EQ (XCAR (XCAR (list)), key)))
1555 list = XCDR (list);
1556
1557 return CONSP (list) ? XCAR (list) : Qnil;
1558 }
1559
1560 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1561 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1562 The value is actually the first element of LIST whose car equals KEY. */)
1563 (key, list)
1564 Lisp_Object key, list;
1565 {
1566 Lisp_Object result, car;
1567
1568 while (1)
1569 {
1570 if (!CONSP (list)
1571 || (CONSP (XCAR (list))
1572 && (car = XCAR (XCAR (list)),
1573 EQ (car, key) || !NILP (Fequal (car, key)))))
1574 break;
1575
1576 list = XCDR (list);
1577 if (!CONSP (list)
1578 || (CONSP (XCAR (list))
1579 && (car = XCAR (XCAR (list)),
1580 EQ (car, key) || !NILP (Fequal (car, key)))))
1581 break;
1582
1583 list = XCDR (list);
1584 if (!CONSP (list)
1585 || (CONSP (XCAR (list))
1586 && (car = XCAR (XCAR (list)),
1587 EQ (car, key) || !NILP (Fequal (car, key)))))
1588 break;
1589
1590 list = XCDR (list);
1591 QUIT;
1592 }
1593
1594 if (CONSP (list))
1595 result = XCAR (list);
1596 else if (NILP (list))
1597 result = Qnil;
1598 else
1599 result = wrong_type_argument (Qlistp, list);
1600
1601 return result;
1602 }
1603
1604 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1605 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1606 The value is actually the first element of LIST whose cdr is KEY. */)
1607 (key, list)
1608 register Lisp_Object key;
1609 Lisp_Object list;
1610 {
1611 Lisp_Object result;
1612
1613 while (1)
1614 {
1615 if (!CONSP (list)
1616 || (CONSP (XCAR (list))
1617 && EQ (XCDR (XCAR (list)), key)))
1618 break;
1619
1620 list = XCDR (list);
1621 if (!CONSP (list)
1622 || (CONSP (XCAR (list))
1623 && EQ (XCDR (XCAR (list)), key)))
1624 break;
1625
1626 list = XCDR (list);
1627 if (!CONSP (list)
1628 || (CONSP (XCAR (list))
1629 && EQ (XCDR (XCAR (list)), key)))
1630 break;
1631
1632 list = XCDR (list);
1633 QUIT;
1634 }
1635
1636 if (NILP (list))
1637 result = Qnil;
1638 else if (CONSP (list))
1639 result = XCAR (list);
1640 else
1641 result = wrong_type_argument (Qlistp, list);
1642
1643 return result;
1644 }
1645
1646 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1647 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1648 The value is actually the first element of LIST whose cdr equals KEY. */)
1649 (key, list)
1650 Lisp_Object key, list;
1651 {
1652 Lisp_Object result, cdr;
1653
1654 while (1)
1655 {
1656 if (!CONSP (list)
1657 || (CONSP (XCAR (list))
1658 && (cdr = XCDR (XCAR (list)),
1659 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1660 break;
1661
1662 list = XCDR (list);
1663 if (!CONSP (list)
1664 || (CONSP (XCAR (list))
1665 && (cdr = XCDR (XCAR (list)),
1666 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1667 break;
1668
1669 list = XCDR (list);
1670 if (!CONSP (list)
1671 || (CONSP (XCAR (list))
1672 && (cdr = XCDR (XCAR (list)),
1673 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1674 break;
1675
1676 list = XCDR (list);
1677 QUIT;
1678 }
1679
1680 if (CONSP (list))
1681 result = XCAR (list);
1682 else if (NILP (list))
1683 result = Qnil;
1684 else
1685 result = wrong_type_argument (Qlistp, list);
1686
1687 return result;
1688 }
1689 \f
1690 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1691 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1692 The modified LIST is returned. Comparison is done with `eq'.
1693 If the first member of LIST is ELT, there is no way to remove it by side effect;
1694 therefore, write `(setq foo (delq element foo))'
1695 to be sure of changing the value of `foo'. */)
1696 (elt, list)
1697 register Lisp_Object elt;
1698 Lisp_Object list;
1699 {
1700 register Lisp_Object tail, prev;
1701 register Lisp_Object tem;
1702
1703 tail = list;
1704 prev = Qnil;
1705 while (!NILP (tail))
1706 {
1707 if (! CONSP (tail))
1708 wrong_type_argument (Qlistp, list);
1709 tem = XCAR (tail);
1710 if (EQ (elt, tem))
1711 {
1712 if (NILP (prev))
1713 list = XCDR (tail);
1714 else
1715 Fsetcdr (prev, XCDR (tail));
1716 }
1717 else
1718 prev = tail;
1719 tail = XCDR (tail);
1720 QUIT;
1721 }
1722 return list;
1723 }
1724
1725 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1726 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1727 SEQ must be a list, a vector, or a string.
1728 The modified SEQ is returned. Comparison is done with `equal'.
1729 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1730 is not a side effect; it is simply using a different sequence.
1731 Therefore, write `(setq foo (delete element foo))'
1732 to be sure of changing the value of `foo'. */)
1733 (elt, seq)
1734 Lisp_Object elt, seq;
1735 {
1736 if (VECTORP (seq))
1737 {
1738 EMACS_INT i, n;
1739
1740 for (i = n = 0; i < ASIZE (seq); ++i)
1741 if (NILP (Fequal (AREF (seq, i), elt)))
1742 ++n;
1743
1744 if (n != ASIZE (seq))
1745 {
1746 struct Lisp_Vector *p = allocate_vector (n);
1747
1748 for (i = n = 0; i < ASIZE (seq); ++i)
1749 if (NILP (Fequal (AREF (seq, i), elt)))
1750 p->contents[n++] = AREF (seq, i);
1751
1752 XSETVECTOR (seq, p);
1753 }
1754 }
1755 else if (STRINGP (seq))
1756 {
1757 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1758 int c;
1759
1760 for (i = nchars = nbytes = ibyte = 0;
1761 i < SCHARS (seq);
1762 ++i, ibyte += cbytes)
1763 {
1764 if (STRING_MULTIBYTE (seq))
1765 {
1766 c = STRING_CHAR (SDATA (seq) + ibyte,
1767 SBYTES (seq) - ibyte);
1768 cbytes = CHAR_BYTES (c);
1769 }
1770 else
1771 {
1772 c = SREF (seq, i);
1773 cbytes = 1;
1774 }
1775
1776 if (!INTEGERP (elt) || c != XINT (elt))
1777 {
1778 ++nchars;
1779 nbytes += cbytes;
1780 }
1781 }
1782
1783 if (nchars != SCHARS (seq))
1784 {
1785 Lisp_Object tem;
1786
1787 tem = make_uninit_multibyte_string (nchars, nbytes);
1788 if (!STRING_MULTIBYTE (seq))
1789 STRING_SET_UNIBYTE (tem);
1790
1791 for (i = nchars = nbytes = ibyte = 0;
1792 i < SCHARS (seq);
1793 ++i, ibyte += cbytes)
1794 {
1795 if (STRING_MULTIBYTE (seq))
1796 {
1797 c = STRING_CHAR (SDATA (seq) + ibyte,
1798 SBYTES (seq) - ibyte);
1799 cbytes = CHAR_BYTES (c);
1800 }
1801 else
1802 {
1803 c = SREF (seq, i);
1804 cbytes = 1;
1805 }
1806
1807 if (!INTEGERP (elt) || c != XINT (elt))
1808 {
1809 unsigned char *from = SDATA (seq) + ibyte;
1810 unsigned char *to = SDATA (tem) + nbytes;
1811 EMACS_INT n;
1812
1813 ++nchars;
1814 nbytes += cbytes;
1815
1816 for (n = cbytes; n--; )
1817 *to++ = *from++;
1818 }
1819 }
1820
1821 seq = tem;
1822 }
1823 }
1824 else
1825 {
1826 Lisp_Object tail, prev;
1827
1828 for (tail = seq, prev = Qnil; !NILP (tail); tail = XCDR (tail))
1829 {
1830 if (!CONSP (tail))
1831 wrong_type_argument (Qlistp, seq);
1832
1833 if (!NILP (Fequal (elt, XCAR (tail))))
1834 {
1835 if (NILP (prev))
1836 seq = XCDR (tail);
1837 else
1838 Fsetcdr (prev, XCDR (tail));
1839 }
1840 else
1841 prev = tail;
1842 QUIT;
1843 }
1844 }
1845
1846 return seq;
1847 }
1848
1849 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1850 doc: /* Reverse LIST by modifying cdr pointers.
1851 Return the reversed list. */)
1852 (list)
1853 Lisp_Object list;
1854 {
1855 register Lisp_Object prev, tail, next;
1856
1857 if (NILP (list)) return list;
1858 prev = Qnil;
1859 tail = list;
1860 while (!NILP (tail))
1861 {
1862 QUIT;
1863 if (! CONSP (tail))
1864 wrong_type_argument (Qlistp, list);
1865 next = XCDR (tail);
1866 Fsetcdr (tail, prev);
1867 prev = tail;
1868 tail = next;
1869 }
1870 return prev;
1871 }
1872
1873 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1874 doc: /* Reverse LIST, copying. Return the reversed list.
1875 See also the function `nreverse', which is used more often. */)
1876 (list)
1877 Lisp_Object list;
1878 {
1879 Lisp_Object new;
1880
1881 for (new = Qnil; CONSP (list); list = XCDR (list))
1882 {
1883 QUIT;
1884 new = Fcons (XCAR (list), new);
1885 }
1886 if (!NILP (list))
1887 wrong_type_argument (Qconsp, list);
1888 return new;
1889 }
1890 \f
1891 Lisp_Object merge ();
1892
1893 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1894 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1895 Returns the sorted list. LIST is modified by side effects.
1896 PREDICATE is called with two elements of LIST, and should return t
1897 if the first element is "less" than the second. */)
1898 (list, predicate)
1899 Lisp_Object list, predicate;
1900 {
1901 Lisp_Object front, back;
1902 register Lisp_Object len, tem;
1903 struct gcpro gcpro1, gcpro2;
1904 register int length;
1905
1906 front = list;
1907 len = Flength (list);
1908 length = XINT (len);
1909 if (length < 2)
1910 return list;
1911
1912 XSETINT (len, (length / 2) - 1);
1913 tem = Fnthcdr (len, list);
1914 back = Fcdr (tem);
1915 Fsetcdr (tem, Qnil);
1916
1917 GCPRO2 (front, back);
1918 front = Fsort (front, predicate);
1919 back = Fsort (back, predicate);
1920 UNGCPRO;
1921 return merge (front, back, predicate);
1922 }
1923
1924 Lisp_Object
1925 merge (org_l1, org_l2, pred)
1926 Lisp_Object org_l1, org_l2;
1927 Lisp_Object pred;
1928 {
1929 Lisp_Object value;
1930 register Lisp_Object tail;
1931 Lisp_Object tem;
1932 register Lisp_Object l1, l2;
1933 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1934
1935 l1 = org_l1;
1936 l2 = org_l2;
1937 tail = Qnil;
1938 value = Qnil;
1939
1940 /* It is sufficient to protect org_l1 and org_l2.
1941 When l1 and l2 are updated, we copy the new values
1942 back into the org_ vars. */
1943 GCPRO4 (org_l1, org_l2, pred, value);
1944
1945 while (1)
1946 {
1947 if (NILP (l1))
1948 {
1949 UNGCPRO;
1950 if (NILP (tail))
1951 return l2;
1952 Fsetcdr (tail, l2);
1953 return value;
1954 }
1955 if (NILP (l2))
1956 {
1957 UNGCPRO;
1958 if (NILP (tail))
1959 return l1;
1960 Fsetcdr (tail, l1);
1961 return value;
1962 }
1963 tem = call2 (pred, Fcar (l2), Fcar (l1));
1964 if (NILP (tem))
1965 {
1966 tem = l1;
1967 l1 = Fcdr (l1);
1968 org_l1 = l1;
1969 }
1970 else
1971 {
1972 tem = l2;
1973 l2 = Fcdr (l2);
1974 org_l2 = l2;
1975 }
1976 if (NILP (tail))
1977 value = tem;
1978 else
1979 Fsetcdr (tail, tem);
1980 tail = tem;
1981 }
1982 }
1983
1984 \f
1985 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1986 doc: /* Extract a value from a property list.
1987 PLIST is a property list, which is a list of the form
1988 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1989 corresponding to the given PROP, or nil if PROP is not
1990 one of the properties on the list. */)
1991 (plist, prop)
1992 Lisp_Object plist;
1993 Lisp_Object prop;
1994 {
1995 Lisp_Object tail;
1996
1997 for (tail = plist;
1998 CONSP (tail) && CONSP (XCDR (tail));
1999 tail = XCDR (XCDR (tail)))
2000 {
2001 if (EQ (prop, XCAR (tail)))
2002 return XCAR (XCDR (tail));
2003
2004 /* This function can be called asynchronously
2005 (setup_coding_system). Don't QUIT in that case. */
2006 if (!interrupt_input_blocked)
2007 QUIT;
2008 }
2009
2010 if (!NILP (tail))
2011 wrong_type_argument (Qlistp, prop);
2012
2013 return Qnil;
2014 }
2015
2016 DEFUN ("get", Fget, Sget, 2, 2, 0,
2017 doc: /* Return the value of SYMBOL's PROPNAME property.
2018 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
2019 (symbol, propname)
2020 Lisp_Object symbol, propname;
2021 {
2022 CHECK_SYMBOL (symbol);
2023 return Fplist_get (XSYMBOL (symbol)->plist, propname);
2024 }
2025
2026 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
2027 doc: /* Change value in PLIST of PROP to VAL.
2028 PLIST is a property list, which is a list of the form
2029 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
2030 If PROP is already a property on the list, its value is set to VAL,
2031 otherwise the new PROP VAL pair is added. The new plist is returned;
2032 use `(setq x (plist-put x prop val))' to be sure to use the new value.
2033 The PLIST is modified by side effects. */)
2034 (plist, prop, val)
2035 Lisp_Object plist;
2036 register Lisp_Object prop;
2037 Lisp_Object val;
2038 {
2039 register Lisp_Object tail, prev;
2040 Lisp_Object newcell;
2041 prev = Qnil;
2042 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2043 tail = XCDR (XCDR (tail)))
2044 {
2045 if (EQ (prop, XCAR (tail)))
2046 {
2047 Fsetcar (XCDR (tail), val);
2048 return plist;
2049 }
2050
2051 prev = tail;
2052 QUIT;
2053 }
2054 newcell = Fcons (prop, Fcons (val, Qnil));
2055 if (NILP (prev))
2056 return newcell;
2057 else
2058 Fsetcdr (XCDR (prev), newcell);
2059 return plist;
2060 }
2061
2062 DEFUN ("put", Fput, Sput, 3, 3, 0,
2063 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
2064 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
2065 (symbol, propname, value)
2066 Lisp_Object symbol, propname, value;
2067 {
2068 CHECK_SYMBOL (symbol);
2069 XSYMBOL (symbol)->plist
2070 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
2071 return value;
2072 }
2073 \f
2074 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
2075 doc: /* Extract a value from a property list, comparing with `equal'.
2076 PLIST is a property list, which is a list of the form
2077 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
2078 corresponding to the given PROP, or nil if PROP is not
2079 one of the properties on the list. */)
2080 (plist, prop)
2081 Lisp_Object plist;
2082 Lisp_Object prop;
2083 {
2084 Lisp_Object tail;
2085
2086 for (tail = plist;
2087 CONSP (tail) && CONSP (XCDR (tail));
2088 tail = XCDR (XCDR (tail)))
2089 {
2090 if (! NILP (Fequal (prop, XCAR (tail))))
2091 return XCAR (XCDR (tail));
2092
2093 QUIT;
2094 }
2095
2096 if (!NILP (tail))
2097 wrong_type_argument (Qlistp, prop);
2098
2099 return Qnil;
2100 }
2101
2102 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
2103 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
2104 PLIST is a property list, which is a list of the form
2105 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
2106 If PROP is already a property on the list, its value is set to VAL,
2107 otherwise the new PROP VAL pair is added. The new plist is returned;
2108 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
2109 The PLIST is modified by side effects. */)
2110 (plist, prop, val)
2111 Lisp_Object plist;
2112 register Lisp_Object prop;
2113 Lisp_Object val;
2114 {
2115 register Lisp_Object tail, prev;
2116 Lisp_Object newcell;
2117 prev = Qnil;
2118 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2119 tail = XCDR (XCDR (tail)))
2120 {
2121 if (! NILP (Fequal (prop, XCAR (tail))))
2122 {
2123 Fsetcar (XCDR (tail), val);
2124 return plist;
2125 }
2126
2127 prev = tail;
2128 QUIT;
2129 }
2130 newcell = Fcons (prop, Fcons (val, Qnil));
2131 if (NILP (prev))
2132 return newcell;
2133 else
2134 Fsetcdr (XCDR (prev), newcell);
2135 return plist;
2136 }
2137 \f
2138 DEFUN ("eql", Feql, Seql, 2, 2, 0,
2139 doc: /* Return t if the two args are the same Lisp object.
2140 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
2141 (obj1, obj2)
2142 Lisp_Object obj1, obj2;
2143 {
2144 if (FLOATP (obj1))
2145 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
2146 else
2147 return EQ (obj1, obj2) ? Qt : Qnil;
2148 }
2149
2150 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
2151 doc: /* Return t if two Lisp objects have similar structure and contents.
2152 They must have the same data type.
2153 Conses are compared by comparing the cars and the cdrs.
2154 Vectors and strings are compared element by element.
2155 Numbers are compared by value, but integers cannot equal floats.
2156 (Use `=' if you want integers and floats to be able to be equal.)
2157 Symbols must match exactly. */)
2158 (o1, o2)
2159 register Lisp_Object o1, o2;
2160 {
2161 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
2162 }
2163
2164 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2165 doc: /* Return t if two Lisp objects have similar structure and contents.
2166 This is like `equal' except that it compares the text properties
2167 of strings. (`equal' ignores text properties.) */)
2168 (o1, o2)
2169 register Lisp_Object o1, o2;
2170 {
2171 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2172 }
2173
2174 /* DEPTH is current depth of recursion. Signal an error if it
2175 gets too deep.
2176 PROPS, if non-nil, means compare string text properties too. */
2177
2178 static int
2179 internal_equal (o1, o2, depth, props)
2180 register Lisp_Object o1, o2;
2181 int depth, props;
2182 {
2183 if (depth > 200)
2184 error ("Stack overflow in equal");
2185
2186 tail_recurse:
2187 QUIT;
2188 if (EQ (o1, o2))
2189 return 1;
2190 if (XTYPE (o1) != XTYPE (o2))
2191 return 0;
2192
2193 switch (XTYPE (o1))
2194 {
2195 case Lisp_Float:
2196 {
2197 double d1, d2;
2198
2199 d1 = extract_float (o1);
2200 d2 = extract_float (o2);
2201 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2202 though they are not =. */
2203 return d1 == d2 || (d1 != d1 && d2 != d2);
2204 }
2205
2206 case Lisp_Cons:
2207 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2208 return 0;
2209 o1 = XCDR (o1);
2210 o2 = XCDR (o2);
2211 goto tail_recurse;
2212
2213 case Lisp_Misc:
2214 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2215 return 0;
2216 if (OVERLAYP (o1))
2217 {
2218 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2219 depth + 1, props)
2220 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2221 depth + 1))
2222 return 0;
2223 o1 = XOVERLAY (o1)->plist;
2224 o2 = XOVERLAY (o2)->plist;
2225 goto tail_recurse;
2226 }
2227 if (MARKERP (o1))
2228 {
2229 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2230 && (XMARKER (o1)->buffer == 0
2231 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2232 }
2233 break;
2234
2235 case Lisp_Vectorlike:
2236 {
2237 register int i;
2238 EMACS_INT size = XVECTOR (o1)->size;
2239 /* Pseudovectors have the type encoded in the size field, so this test
2240 actually checks that the objects have the same type as well as the
2241 same size. */
2242 if (XVECTOR (o2)->size != size)
2243 return 0;
2244 /* Boolvectors are compared much like strings. */
2245 if (BOOL_VECTOR_P (o1))
2246 {
2247 int size_in_chars
2248 = (XBOOL_VECTOR (o1)->size + BITS_PER_CHAR - 1) / BITS_PER_CHAR;
2249
2250 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2251 return 0;
2252 if (bcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2253 size_in_chars))
2254 return 0;
2255 return 1;
2256 }
2257 if (WINDOW_CONFIGURATIONP (o1))
2258 return compare_window_configurations (o1, o2, 0);
2259
2260 /* Aside from them, only true vectors, char-tables, and compiled
2261 functions are sensible to compare, so eliminate the others now. */
2262 if (size & PSEUDOVECTOR_FLAG)
2263 {
2264 if (!(size & (PVEC_COMPILED | PVEC_CHAR_TABLE)))
2265 return 0;
2266 size &= PSEUDOVECTOR_SIZE_MASK;
2267 }
2268 for (i = 0; i < size; i++)
2269 {
2270 Lisp_Object v1, v2;
2271 v1 = XVECTOR (o1)->contents [i];
2272 v2 = XVECTOR (o2)->contents [i];
2273 if (!internal_equal (v1, v2, depth + 1, props))
2274 return 0;
2275 }
2276 return 1;
2277 }
2278 break;
2279
2280 case Lisp_String:
2281 if (SCHARS (o1) != SCHARS (o2))
2282 return 0;
2283 if (SBYTES (o1) != SBYTES (o2))
2284 return 0;
2285 if (bcmp (SDATA (o1), SDATA (o2),
2286 SBYTES (o1)))
2287 return 0;
2288 if (props && !compare_string_intervals (o1, o2))
2289 return 0;
2290 return 1;
2291
2292 case Lisp_Int:
2293 case Lisp_Symbol:
2294 case Lisp_Type_Limit:
2295 break;
2296 }
2297
2298 return 0;
2299 }
2300 \f
2301 extern Lisp_Object Fmake_char_internal ();
2302
2303 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2304 doc: /* Store each element of ARRAY with ITEM.
2305 ARRAY is a vector, string, char-table, or bool-vector. */)
2306 (array, item)
2307 Lisp_Object array, item;
2308 {
2309 register int size, index, charval;
2310 retry:
2311 if (VECTORP (array))
2312 {
2313 register Lisp_Object *p = XVECTOR (array)->contents;
2314 size = XVECTOR (array)->size;
2315 for (index = 0; index < size; index++)
2316 p[index] = item;
2317 }
2318 else if (CHAR_TABLE_P (array))
2319 {
2320 register Lisp_Object *p = XCHAR_TABLE (array)->contents;
2321 size = CHAR_TABLE_ORDINARY_SLOTS;
2322 for (index = 0; index < size; index++)
2323 p[index] = item;
2324 XCHAR_TABLE (array)->defalt = Qnil;
2325 }
2326 else if (STRINGP (array))
2327 {
2328 register unsigned char *p = SDATA (array);
2329 CHECK_NUMBER (item);
2330 charval = XINT (item);
2331 size = SCHARS (array);
2332 if (STRING_MULTIBYTE (array))
2333 {
2334 unsigned char str[MAX_MULTIBYTE_LENGTH];
2335 int len = CHAR_STRING (charval, str);
2336 int size_byte = SBYTES (array);
2337 unsigned char *p1 = p, *endp = p + size_byte;
2338 int i;
2339
2340 if (size != size_byte)
2341 while (p1 < endp)
2342 {
2343 int this_len = MULTIBYTE_FORM_LENGTH (p1, endp - p1);
2344 if (len != this_len)
2345 error ("Attempt to change byte length of a string");
2346 p1 += this_len;
2347 }
2348 for (i = 0; i < size_byte; i++)
2349 *p++ = str[i % len];
2350 }
2351 else
2352 for (index = 0; index < size; index++)
2353 p[index] = charval;
2354 }
2355 else if (BOOL_VECTOR_P (array))
2356 {
2357 register unsigned char *p = XBOOL_VECTOR (array)->data;
2358 int size_in_chars
2359 = (XBOOL_VECTOR (array)->size + BITS_PER_CHAR - 1) / BITS_PER_CHAR;
2360
2361 charval = (! NILP (item) ? -1 : 0);
2362 for (index = 0; index < size_in_chars - 1; index++)
2363 p[index] = charval;
2364 if (index < size_in_chars)
2365 {
2366 /* Mask out bits beyond the vector size. */
2367 if (XBOOL_VECTOR (array)->size % BITS_PER_CHAR)
2368 charval &= (1 << (XBOOL_VECTOR (array)->size % BITS_PER_CHAR)) - 1;
2369 p[index] = charval;
2370 }
2371 }
2372 else
2373 {
2374 array = wrong_type_argument (Qarrayp, array);
2375 goto retry;
2376 }
2377 return array;
2378 }
2379
2380 DEFUN ("clear-string", Fclear_string, Sclear_string,
2381 1, 1, 0,
2382 doc: /* Clear the contents of STRING.
2383 This makes STRING unibyte and may change its length. */)
2384 (string)
2385 Lisp_Object string;
2386 {
2387 int len = SBYTES (string);
2388 bzero (SDATA (string), len);
2389 STRING_SET_CHARS (string, len);
2390 STRING_SET_UNIBYTE (string);
2391 return Qnil;
2392 }
2393 \f
2394 DEFUN ("char-table-subtype", Fchar_table_subtype, Schar_table_subtype,
2395 1, 1, 0,
2396 doc: /* Return the subtype of char-table CHAR-TABLE. The value is a symbol. */)
2397 (char_table)
2398 Lisp_Object char_table;
2399 {
2400 CHECK_CHAR_TABLE (char_table);
2401
2402 return XCHAR_TABLE (char_table)->purpose;
2403 }
2404
2405 DEFUN ("char-table-parent", Fchar_table_parent, Schar_table_parent,
2406 1, 1, 0,
2407 doc: /* Return the parent char-table of CHAR-TABLE.
2408 The value is either nil or another char-table.
2409 If CHAR-TABLE holds nil for a given character,
2410 then the actual applicable value is inherited from the parent char-table
2411 \(or from its parents, if necessary). */)
2412 (char_table)
2413 Lisp_Object char_table;
2414 {
2415 CHECK_CHAR_TABLE (char_table);
2416
2417 return XCHAR_TABLE (char_table)->parent;
2418 }
2419
2420 DEFUN ("set-char-table-parent", Fset_char_table_parent, Sset_char_table_parent,
2421 2, 2, 0,
2422 doc: /* Set the parent char-table of CHAR-TABLE to PARENT.
2423 Return PARENT. PARENT must be either nil or another char-table. */)
2424 (char_table, parent)
2425 Lisp_Object char_table, parent;
2426 {
2427 Lisp_Object temp;
2428
2429 CHECK_CHAR_TABLE (char_table);
2430
2431 if (!NILP (parent))
2432 {
2433 CHECK_CHAR_TABLE (parent);
2434
2435 for (temp = parent; !NILP (temp); temp = XCHAR_TABLE (temp)->parent)
2436 if (EQ (temp, char_table))
2437 error ("Attempt to make a chartable be its own parent");
2438 }
2439
2440 XCHAR_TABLE (char_table)->parent = parent;
2441
2442 return parent;
2443 }
2444
2445 DEFUN ("char-table-extra-slot", Fchar_table_extra_slot, Schar_table_extra_slot,
2446 2, 2, 0,
2447 doc: /* Return the value of CHAR-TABLE's extra-slot number N. */)
2448 (char_table, n)
2449 Lisp_Object char_table, n;
2450 {
2451 CHECK_CHAR_TABLE (char_table);
2452 CHECK_NUMBER (n);
2453 if (XINT (n) < 0
2454 || XINT (n) >= CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (char_table)))
2455 args_out_of_range (char_table, n);
2456
2457 return XCHAR_TABLE (char_table)->extras[XINT (n)];
2458 }
2459
2460 DEFUN ("set-char-table-extra-slot", Fset_char_table_extra_slot,
2461 Sset_char_table_extra_slot,
2462 3, 3, 0,
2463 doc: /* Set CHAR-TABLE's extra-slot number N to VALUE. */)
2464 (char_table, n, value)
2465 Lisp_Object char_table, n, value;
2466 {
2467 CHECK_CHAR_TABLE (char_table);
2468 CHECK_NUMBER (n);
2469 if (XINT (n) < 0
2470 || XINT (n) >= CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (char_table)))
2471 args_out_of_range (char_table, n);
2472
2473 return XCHAR_TABLE (char_table)->extras[XINT (n)] = value;
2474 }
2475 \f
2476 DEFUN ("char-table-range", Fchar_table_range, Schar_table_range,
2477 2, 2, 0,
2478 doc: /* Return the value in CHAR-TABLE for a range of characters RANGE.
2479 RANGE should be nil (for the default value)
2480 a vector which identifies a character set or a row of a character set,
2481 a character set name, or a character code. */)
2482 (char_table, range)
2483 Lisp_Object char_table, range;
2484 {
2485 CHECK_CHAR_TABLE (char_table);
2486
2487 if (EQ (range, Qnil))
2488 return XCHAR_TABLE (char_table)->defalt;
2489 else if (INTEGERP (range))
2490 return Faref (char_table, range);
2491 else if (SYMBOLP (range))
2492 {
2493 Lisp_Object charset_info;
2494
2495 charset_info = Fget (range, Qcharset);
2496 CHECK_VECTOR (charset_info);
2497
2498 return Faref (char_table,
2499 make_number (XINT (XVECTOR (charset_info)->contents[0])
2500 + 128));
2501 }
2502 else if (VECTORP (range))
2503 {
2504 if (XVECTOR (range)->size == 1)
2505 return Faref (char_table,
2506 make_number (XINT (XVECTOR (range)->contents[0]) + 128));
2507 else
2508 {
2509 int size = XVECTOR (range)->size;
2510 Lisp_Object *val = XVECTOR (range)->contents;
2511 Lisp_Object ch = Fmake_char_internal (size <= 0 ? Qnil : val[0],
2512 size <= 1 ? Qnil : val[1],
2513 size <= 2 ? Qnil : val[2]);
2514 return Faref (char_table, ch);
2515 }
2516 }
2517 else
2518 error ("Invalid RANGE argument to `char-table-range'");
2519 return Qt;
2520 }
2521
2522 DEFUN ("set-char-table-range", Fset_char_table_range, Sset_char_table_range,
2523 3, 3, 0,
2524 doc: /* Set the value in CHAR-TABLE for a range of characters RANGE to VALUE.
2525 RANGE should be t (for all characters), nil (for the default value),
2526 a character set, a vector which identifies a character set, a row of a
2527 character set, or a character code. Return VALUE. */)
2528 (char_table, range, value)
2529 Lisp_Object char_table, range, value;
2530 {
2531 int i;
2532
2533 CHECK_CHAR_TABLE (char_table);
2534
2535 if (EQ (range, Qt))
2536 for (i = 0; i < CHAR_TABLE_ORDINARY_SLOTS; i++)
2537 XCHAR_TABLE (char_table)->contents[i] = value;
2538 else if (EQ (range, Qnil))
2539 XCHAR_TABLE (char_table)->defalt = value;
2540 else if (SYMBOLP (range))
2541 {
2542 Lisp_Object charset_info;
2543 int charset_id;
2544
2545 charset_info = Fget (range, Qcharset);
2546 if (! VECTORP (charset_info)
2547 || ! NATNUMP (AREF (charset_info, 0))
2548 || (charset_id = XINT (AREF (charset_info, 0)),
2549 ! CHARSET_DEFINED_P (charset_id)))
2550 error ("Invalid charset: %s", SDATA (SYMBOL_NAME (range)));
2551
2552 if (charset_id == CHARSET_ASCII)
2553 for (i = 0; i < 128; i++)
2554 XCHAR_TABLE (char_table)->contents[i] = value;
2555 else if (charset_id == CHARSET_8_BIT_CONTROL)
2556 for (i = 128; i < 160; i++)
2557 XCHAR_TABLE (char_table)->contents[i] = value;
2558 else if (charset_id == CHARSET_8_BIT_GRAPHIC)
2559 for (i = 160; i < 256; i++)
2560 XCHAR_TABLE (char_table)->contents[i] = value;
2561 else
2562 XCHAR_TABLE (char_table)->contents[charset_id + 128] = value;
2563 }
2564 else if (INTEGERP (range))
2565 Faset (char_table, range, value);
2566 else if (VECTORP (range))
2567 {
2568 if (XVECTOR (range)->size == 1)
2569 return Faset (char_table,
2570 make_number (XINT (XVECTOR (range)->contents[0]) + 128),
2571 value);
2572 else
2573 {
2574 int size = XVECTOR (range)->size;
2575 Lisp_Object *val = XVECTOR (range)->contents;
2576 Lisp_Object ch = Fmake_char_internal (size <= 0 ? Qnil : val[0],
2577 size <= 1 ? Qnil : val[1],
2578 size <= 2 ? Qnil : val[2]);
2579 return Faset (char_table, ch, value);
2580 }
2581 }
2582 else
2583 error ("Invalid RANGE argument to `set-char-table-range'");
2584
2585 return value;
2586 }
2587
2588 DEFUN ("set-char-table-default", Fset_char_table_default,
2589 Sset_char_table_default, 3, 3, 0,
2590 doc: /* Set the default value in CHAR-TABLE for generic character CH to VALUE.
2591 The generic character specifies the group of characters.
2592 See also the documentation of `make-char'. */)
2593 (char_table, ch, value)
2594 Lisp_Object char_table, ch, value;
2595 {
2596 int c, charset, code1, code2;
2597 Lisp_Object temp;
2598
2599 CHECK_CHAR_TABLE (char_table);
2600 CHECK_NUMBER (ch);
2601
2602 c = XINT (ch);
2603 SPLIT_CHAR (c, charset, code1, code2);
2604
2605 /* Since we may want to set the default value for a character set
2606 not yet defined, we check only if the character set is in the
2607 valid range or not, instead of it is already defined or not. */
2608 if (! CHARSET_VALID_P (charset))
2609 invalid_character (c);
2610
2611 if (charset == CHARSET_ASCII)
2612 return (XCHAR_TABLE (char_table)->defalt = value);
2613
2614 /* Even if C is not a generic char, we had better behave as if a
2615 generic char is specified. */
2616 if (!CHARSET_DEFINED_P (charset) || CHARSET_DIMENSION (charset) == 1)
2617 code1 = 0;
2618 temp = XCHAR_TABLE (char_table)->contents[charset + 128];
2619 if (!code1)
2620 {
2621 if (SUB_CHAR_TABLE_P (temp))
2622 XCHAR_TABLE (temp)->defalt = value;
2623 else
2624 XCHAR_TABLE (char_table)->contents[charset + 128] = value;
2625 return value;
2626 }
2627 if (SUB_CHAR_TABLE_P (temp))
2628 char_table = temp;
2629 else
2630 char_table = (XCHAR_TABLE (char_table)->contents[charset + 128]
2631 = make_sub_char_table (temp));
2632 temp = XCHAR_TABLE (char_table)->contents[code1];
2633 if (SUB_CHAR_TABLE_P (temp))
2634 XCHAR_TABLE (temp)->defalt = value;
2635 else
2636 XCHAR_TABLE (char_table)->contents[code1] = value;
2637 return value;
2638 }
2639
2640 /* Look up the element in TABLE at index CH,
2641 and return it as an integer.
2642 If the element is nil, return CH itself.
2643 (Actually we do that for any non-integer.) */
2644
2645 int
2646 char_table_translate (table, ch)
2647 Lisp_Object table;
2648 int ch;
2649 {
2650 Lisp_Object value;
2651 value = Faref (table, make_number (ch));
2652 if (! INTEGERP (value))
2653 return ch;
2654 return XINT (value);
2655 }
2656
2657 static void
2658 optimize_sub_char_table (table, chars)
2659 Lisp_Object *table;
2660 int chars;
2661 {
2662 Lisp_Object elt;
2663 int from, to;
2664
2665 if (chars == 94)
2666 from = 33, to = 127;
2667 else
2668 from = 32, to = 128;
2669
2670 if (!SUB_CHAR_TABLE_P (*table))
2671 return;
2672 elt = XCHAR_TABLE (*table)->contents[from++];
2673 for (; from < to; from++)
2674 if (NILP (Fequal (elt, XCHAR_TABLE (*table)->contents[from])))
2675 return;
2676 *table = elt;
2677 }
2678
2679 DEFUN ("optimize-char-table", Foptimize_char_table, Soptimize_char_table,
2680 1, 1, 0, doc: /* Optimize char table TABLE. */)
2681 (table)
2682 Lisp_Object table;
2683 {
2684 Lisp_Object elt;
2685 int dim;
2686 int i, j;
2687
2688 CHECK_CHAR_TABLE (table);
2689
2690 for (i = CHAR_TABLE_SINGLE_BYTE_SLOTS; i < CHAR_TABLE_ORDINARY_SLOTS; i++)
2691 {
2692 elt = XCHAR_TABLE (table)->contents[i];
2693 if (!SUB_CHAR_TABLE_P (elt))
2694 continue;
2695 dim = CHARSET_DIMENSION (i - 128);
2696 if (dim == 2)
2697 for (j = 32; j < SUB_CHAR_TABLE_ORDINARY_SLOTS; j++)
2698 optimize_sub_char_table (XCHAR_TABLE (elt)->contents + j, dim);
2699 optimize_sub_char_table (XCHAR_TABLE (table)->contents + i, dim);
2700 }
2701 return Qnil;
2702 }
2703
2704 \f
2705 /* Map C_FUNCTION or FUNCTION over SUBTABLE, calling it for each
2706 character or group of characters that share a value.
2707 DEPTH is the current depth in the originally specified
2708 chartable, and INDICES contains the vector indices
2709 for the levels our callers have descended.
2710
2711 ARG is passed to C_FUNCTION when that is called. */
2712
2713 void
2714 map_char_table (c_function, function, table, subtable, arg, depth, indices)
2715 void (*c_function) P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
2716 Lisp_Object function, table, subtable, arg, *indices;
2717 int depth;
2718 {
2719 int i, to;
2720
2721 if (depth == 0)
2722 {
2723 /* At first, handle ASCII and 8-bit European characters. */
2724 for (i = 0; i < CHAR_TABLE_SINGLE_BYTE_SLOTS; i++)
2725 {
2726 Lisp_Object elt= XCHAR_TABLE (subtable)->contents[i];
2727 if (NILP (elt))
2728 elt = XCHAR_TABLE (subtable)->defalt;
2729 if (NILP (elt))
2730 elt = Faref (subtable, make_number (i));
2731 if (c_function)
2732 (*c_function) (arg, make_number (i), elt);
2733 else
2734 call2 (function, make_number (i), elt);
2735 }
2736 #if 0 /* If the char table has entries for higher characters,
2737 we should report them. */
2738 if (NILP (current_buffer->enable_multibyte_characters))
2739 return;
2740 #endif
2741 to = CHAR_TABLE_ORDINARY_SLOTS;
2742 }
2743 else
2744 {
2745 int charset = XFASTINT (indices[0]) - 128;
2746
2747 i = 32;
2748 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
2749 if (CHARSET_CHARS (charset) == 94)
2750 i++, to--;
2751 }
2752
2753 for (; i < to; i++)
2754 {
2755 Lisp_Object elt;
2756 int charset;
2757
2758 elt = XCHAR_TABLE (subtable)->contents[i];
2759 XSETFASTINT (indices[depth], i);
2760 charset = XFASTINT (indices[0]) - 128;
2761 if (depth == 0
2762 && (!CHARSET_DEFINED_P (charset)
2763 || charset == CHARSET_8_BIT_CONTROL
2764 || charset == CHARSET_8_BIT_GRAPHIC))
2765 continue;
2766
2767 if (SUB_CHAR_TABLE_P (elt))
2768 {
2769 if (depth >= 3)
2770 error ("Too deep char table");
2771 map_char_table (c_function, function, table, elt, arg, depth + 1, indices);
2772 }
2773 else
2774 {
2775 int c1, c2, c;
2776
2777 c1 = depth >= 1 ? XFASTINT (indices[1]) : 0;
2778 c2 = depth >= 2 ? XFASTINT (indices[2]) : 0;
2779 c = MAKE_CHAR (charset, c1, c2);
2780
2781 if (NILP (elt))
2782 elt = XCHAR_TABLE (subtable)->defalt;
2783 if (NILP (elt))
2784 elt = Faref (table, make_number (c));
2785
2786 if (c_function)
2787 (*c_function) (arg, make_number (c), elt);
2788 else
2789 call2 (function, make_number (c), elt);
2790 }
2791 }
2792 }
2793
2794 static void void_call2 P_ ((Lisp_Object a, Lisp_Object b, Lisp_Object c));
2795 static void
2796 void_call2 (a, b, c)
2797 Lisp_Object a, b, c;
2798 {
2799 call2 (a, b, c);
2800 }
2801
2802 DEFUN ("map-char-table", Fmap_char_table, Smap_char_table,
2803 2, 2, 0,
2804 doc: /* Call FUNCTION for each (normal and generic) characters in CHAR-TABLE.
2805 FUNCTION is called with two arguments--a key and a value.
2806 The key is always a possible IDX argument to `aref'. */)
2807 (function, char_table)
2808 Lisp_Object function, char_table;
2809 {
2810 /* The depth of char table is at most 3. */
2811 Lisp_Object indices[3];
2812
2813 CHECK_CHAR_TABLE (char_table);
2814
2815 /* When Lisp_Object is represented as a union, `call2' cannot directly
2816 be passed to map_char_table because it returns a Lisp_Object rather
2817 than returning nothing.
2818 Casting leads to crashes on some architectures. -stef */
2819 map_char_table (void_call2, Qnil, char_table, char_table, function, 0, indices);
2820 return Qnil;
2821 }
2822
2823 /* Return a value for character C in char-table TABLE. Store the
2824 actual index for that value in *IDX. Ignore the default value of
2825 TABLE. */
2826
2827 Lisp_Object
2828 char_table_ref_and_index (table, c, idx)
2829 Lisp_Object table;
2830 int c, *idx;
2831 {
2832 int charset, c1, c2;
2833 Lisp_Object elt;
2834
2835 if (SINGLE_BYTE_CHAR_P (c))
2836 {
2837 *idx = c;
2838 return XCHAR_TABLE (table)->contents[c];
2839 }
2840 SPLIT_CHAR (c, charset, c1, c2);
2841 elt = XCHAR_TABLE (table)->contents[charset + 128];
2842 *idx = MAKE_CHAR (charset, 0, 0);
2843 if (!SUB_CHAR_TABLE_P (elt))
2844 return elt;
2845 if (c1 < 32 || NILP (XCHAR_TABLE (elt)->contents[c1]))
2846 return XCHAR_TABLE (elt)->defalt;
2847 elt = XCHAR_TABLE (elt)->contents[c1];
2848 *idx = MAKE_CHAR (charset, c1, 0);
2849 if (!SUB_CHAR_TABLE_P (elt))
2850 return elt;
2851 if (c2 < 32 || NILP (XCHAR_TABLE (elt)->contents[c2]))
2852 return XCHAR_TABLE (elt)->defalt;
2853 *idx = c;
2854 return XCHAR_TABLE (elt)->contents[c2];
2855 }
2856
2857 \f
2858 /* ARGSUSED */
2859 Lisp_Object
2860 nconc2 (s1, s2)
2861 Lisp_Object s1, s2;
2862 {
2863 #ifdef NO_ARG_ARRAY
2864 Lisp_Object args[2];
2865 args[0] = s1;
2866 args[1] = s2;
2867 return Fnconc (2, args);
2868 #else
2869 return Fnconc (2, &s1);
2870 #endif /* NO_ARG_ARRAY */
2871 }
2872
2873 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2874 doc: /* Concatenate any number of lists by altering them.
2875 Only the last argument is not altered, and need not be a list.
2876 usage: (nconc &rest LISTS) */)
2877 (nargs, args)
2878 int nargs;
2879 Lisp_Object *args;
2880 {
2881 register int argnum;
2882 register Lisp_Object tail, tem, val;
2883
2884 val = tail = Qnil;
2885
2886 for (argnum = 0; argnum < nargs; argnum++)
2887 {
2888 tem = args[argnum];
2889 if (NILP (tem)) continue;
2890
2891 if (NILP (val))
2892 val = tem;
2893
2894 if (argnum + 1 == nargs) break;
2895
2896 if (!CONSP (tem))
2897 tem = wrong_type_argument (Qlistp, tem);
2898
2899 while (CONSP (tem))
2900 {
2901 tail = tem;
2902 tem = XCDR (tail);
2903 QUIT;
2904 }
2905
2906 tem = args[argnum + 1];
2907 Fsetcdr (tail, tem);
2908 if (NILP (tem))
2909 args[argnum + 1] = tail;
2910 }
2911
2912 return val;
2913 }
2914 \f
2915 /* This is the guts of all mapping functions.
2916 Apply FN to each element of SEQ, one by one,
2917 storing the results into elements of VALS, a C vector of Lisp_Objects.
2918 LENI is the length of VALS, which should also be the length of SEQ. */
2919
2920 static void
2921 mapcar1 (leni, vals, fn, seq)
2922 int leni;
2923 Lisp_Object *vals;
2924 Lisp_Object fn, seq;
2925 {
2926 register Lisp_Object tail;
2927 Lisp_Object dummy;
2928 register int i;
2929 struct gcpro gcpro1, gcpro2, gcpro3;
2930
2931 if (vals)
2932 {
2933 /* Don't let vals contain any garbage when GC happens. */
2934 for (i = 0; i < leni; i++)
2935 vals[i] = Qnil;
2936
2937 GCPRO3 (dummy, fn, seq);
2938 gcpro1.var = vals;
2939 gcpro1.nvars = leni;
2940 }
2941 else
2942 GCPRO2 (fn, seq);
2943 /* We need not explicitly protect `tail' because it is used only on lists, and
2944 1) lists are not relocated and 2) the list is marked via `seq' so will not be freed */
2945
2946 if (VECTORP (seq))
2947 {
2948 for (i = 0; i < leni; i++)
2949 {
2950 dummy = XVECTOR (seq)->contents[i];
2951 dummy = call1 (fn, dummy);
2952 if (vals)
2953 vals[i] = dummy;
2954 }
2955 }
2956 else if (BOOL_VECTOR_P (seq))
2957 {
2958 for (i = 0; i < leni; i++)
2959 {
2960 int byte;
2961 byte = XBOOL_VECTOR (seq)->data[i / BITS_PER_CHAR];
2962 if (byte & (1 << (i % BITS_PER_CHAR)))
2963 dummy = Qt;
2964 else
2965 dummy = Qnil;
2966
2967 dummy = call1 (fn, dummy);
2968 if (vals)
2969 vals[i] = dummy;
2970 }
2971 }
2972 else if (STRINGP (seq))
2973 {
2974 int i_byte;
2975
2976 for (i = 0, i_byte = 0; i < leni;)
2977 {
2978 int c;
2979 int i_before = i;
2980
2981 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2982 XSETFASTINT (dummy, c);
2983 dummy = call1 (fn, dummy);
2984 if (vals)
2985 vals[i_before] = dummy;
2986 }
2987 }
2988 else /* Must be a list, since Flength did not get an error */
2989 {
2990 tail = seq;
2991 for (i = 0; i < leni; i++)
2992 {
2993 dummy = call1 (fn, Fcar (tail));
2994 if (vals)
2995 vals[i] = dummy;
2996 tail = XCDR (tail);
2997 }
2998 }
2999
3000 UNGCPRO;
3001 }
3002
3003 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
3004 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
3005 In between each pair of results, stick in SEPARATOR. Thus, " " as
3006 SEPARATOR results in spaces between the values returned by FUNCTION.
3007 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
3008 (function, sequence, separator)
3009 Lisp_Object function, sequence, separator;
3010 {
3011 Lisp_Object len;
3012 register int leni;
3013 int nargs;
3014 register Lisp_Object *args;
3015 register int i;
3016 struct gcpro gcpro1;
3017
3018 len = Flength (sequence);
3019 leni = XINT (len);
3020 nargs = leni + leni - 1;
3021 if (nargs < 0) return build_string ("");
3022
3023 args = (Lisp_Object *) alloca (nargs * sizeof (Lisp_Object));
3024
3025 GCPRO1 (separator);
3026 mapcar1 (leni, args, function, sequence);
3027 UNGCPRO;
3028
3029 for (i = leni - 1; i >= 0; i--)
3030 args[i + i] = args[i];
3031
3032 for (i = 1; i < nargs; i += 2)
3033 args[i] = separator;
3034
3035 return Fconcat (nargs, args);
3036 }
3037
3038 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
3039 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
3040 The result is a list just as long as SEQUENCE.
3041 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
3042 (function, sequence)
3043 Lisp_Object function, sequence;
3044 {
3045 register Lisp_Object len;
3046 register int leni;
3047 register Lisp_Object *args;
3048
3049 len = Flength (sequence);
3050 leni = XFASTINT (len);
3051 args = (Lisp_Object *) alloca (leni * sizeof (Lisp_Object));
3052
3053 mapcar1 (leni, args, function, sequence);
3054
3055 return Flist (leni, args);
3056 }
3057
3058 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
3059 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
3060 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
3061 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
3062 (function, sequence)
3063 Lisp_Object function, sequence;
3064 {
3065 register int leni;
3066
3067 leni = XFASTINT (Flength (sequence));
3068 mapcar1 (leni, 0, function, sequence);
3069
3070 return sequence;
3071 }
3072 \f
3073 /* Anything that calls this function must protect from GC! */
3074
3075 DEFUN ("y-or-n-p", Fy_or_n_p, Sy_or_n_p, 1, 1, 0,
3076 doc: /* Ask user a "y or n" question. Return t if answer is "y".
3077 Takes one argument, which is the string to display to ask the question.
3078 It should end in a space; `y-or-n-p' adds `(y or n) ' to it.
3079 No confirmation of the answer is requested; a single character is enough.
3080 Also accepts Space to mean yes, or Delete to mean no. \(Actually, it uses
3081 the bindings in `query-replace-map'; see the documentation of that variable
3082 for more information. In this case, the useful bindings are `act', `skip',
3083 `recenter', and `quit'.\)
3084
3085 Under a windowing system a dialog box will be used if `last-nonmenu-event'
3086 is nil and `use-dialog-box' is non-nil. */)
3087 (prompt)
3088 Lisp_Object prompt;
3089 {
3090 register Lisp_Object obj, key, def, map;
3091 register int answer;
3092 Lisp_Object xprompt;
3093 Lisp_Object args[2];
3094 struct gcpro gcpro1, gcpro2;
3095 int count = SPECPDL_INDEX ();
3096
3097 specbind (Qcursor_in_echo_area, Qt);
3098
3099 map = Fsymbol_value (intern ("query-replace-map"));
3100
3101 CHECK_STRING (prompt);
3102 xprompt = prompt;
3103 GCPRO2 (prompt, xprompt);
3104
3105 #ifdef HAVE_X_WINDOWS
3106 if (display_hourglass_p)
3107 cancel_hourglass ();
3108 #endif
3109
3110 while (1)
3111 {
3112
3113 #ifdef HAVE_MENUS
3114 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3115 && use_dialog_box
3116 && have_menus_p ())
3117 {
3118 Lisp_Object pane, menu;
3119 redisplay_preserve_echo_area (3);
3120 pane = Fcons (Fcons (build_string ("Yes"), Qt),
3121 Fcons (Fcons (build_string ("No"), Qnil),
3122 Qnil));
3123 menu = Fcons (prompt, pane);
3124 obj = Fx_popup_dialog (Qt, menu);
3125 answer = !NILP (obj);
3126 break;
3127 }
3128 #endif /* HAVE_MENUS */
3129 cursor_in_echo_area = 1;
3130 choose_minibuf_frame ();
3131
3132 {
3133 Lisp_Object pargs[3];
3134
3135 /* Colorize prompt according to `minibuffer-prompt' face. */
3136 pargs[0] = build_string ("%s(y or n) ");
3137 pargs[1] = intern ("face");
3138 pargs[2] = intern ("minibuffer-prompt");
3139 args[0] = Fpropertize (3, pargs);
3140 args[1] = xprompt;
3141 Fmessage (2, args);
3142 }
3143
3144 if (minibuffer_auto_raise)
3145 {
3146 Lisp_Object mini_frame;
3147
3148 mini_frame = WINDOW_FRAME (XWINDOW (minibuf_window));
3149
3150 Fraise_frame (mini_frame);
3151 }
3152
3153 obj = read_filtered_event (1, 0, 0, 0);
3154 cursor_in_echo_area = 0;
3155 /* If we need to quit, quit with cursor_in_echo_area = 0. */
3156 QUIT;
3157
3158 key = Fmake_vector (make_number (1), obj);
3159 def = Flookup_key (map, key, Qt);
3160
3161 if (EQ (def, intern ("skip")))
3162 {
3163 answer = 0;
3164 break;
3165 }
3166 else if (EQ (def, intern ("act")))
3167 {
3168 answer = 1;
3169 break;
3170 }
3171 else if (EQ (def, intern ("recenter")))
3172 {
3173 Frecenter (Qnil);
3174 xprompt = prompt;
3175 continue;
3176 }
3177 else if (EQ (def, intern ("quit")))
3178 Vquit_flag = Qt;
3179 /* We want to exit this command for exit-prefix,
3180 and this is the only way to do it. */
3181 else if (EQ (def, intern ("exit-prefix")))
3182 Vquit_flag = Qt;
3183
3184 QUIT;
3185
3186 /* If we don't clear this, then the next call to read_char will
3187 return quit_char again, and we'll enter an infinite loop. */
3188 Vquit_flag = Qnil;
3189
3190 Fding (Qnil);
3191 Fdiscard_input ();
3192 if (EQ (xprompt, prompt))
3193 {
3194 args[0] = build_string ("Please answer y or n. ");
3195 args[1] = prompt;
3196 xprompt = Fconcat (2, args);
3197 }
3198 }
3199 UNGCPRO;
3200
3201 if (! noninteractive)
3202 {
3203 cursor_in_echo_area = -1;
3204 message_with_string (answer ? "%s(y or n) y" : "%s(y or n) n",
3205 xprompt, 0);
3206 }
3207
3208 unbind_to (count, Qnil);
3209 return answer ? Qt : Qnil;
3210 }
3211 \f
3212 /* This is how C code calls `yes-or-no-p' and allows the user
3213 to redefined it.
3214
3215 Anything that calls this function must protect from GC! */
3216
3217 Lisp_Object
3218 do_yes_or_no_p (prompt)
3219 Lisp_Object prompt;
3220 {
3221 return call1 (intern ("yes-or-no-p"), prompt);
3222 }
3223
3224 /* Anything that calls this function must protect from GC! */
3225
3226 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
3227 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
3228 Takes one argument, which is the string to display to ask the question.
3229 It should end in a space; `yes-or-no-p' adds `(yes or no) ' to it.
3230 The user must confirm the answer with RET,
3231 and can edit it until it has been confirmed.
3232
3233 Under a windowing system a dialog box will be used if `last-nonmenu-event'
3234 is nil, and `use-dialog-box' is non-nil. */)
3235 (prompt)
3236 Lisp_Object prompt;
3237 {
3238 register Lisp_Object ans;
3239 Lisp_Object args[2];
3240 struct gcpro gcpro1;
3241
3242 CHECK_STRING (prompt);
3243
3244 #ifdef HAVE_MENUS
3245 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3246 && use_dialog_box
3247 && have_menus_p ())
3248 {
3249 Lisp_Object pane, menu, obj;
3250 redisplay_preserve_echo_area (4);
3251 pane = Fcons (Fcons (build_string ("Yes"), Qt),
3252 Fcons (Fcons (build_string ("No"), Qnil),
3253 Qnil));
3254 GCPRO1 (pane);
3255 menu = Fcons (prompt, pane);
3256 obj = Fx_popup_dialog (Qt, menu);
3257 UNGCPRO;
3258 return obj;
3259 }
3260 #endif /* HAVE_MENUS */
3261
3262 args[0] = prompt;
3263 args[1] = build_string ("(yes or no) ");
3264 prompt = Fconcat (2, args);
3265
3266 GCPRO1 (prompt);
3267
3268 while (1)
3269 {
3270 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
3271 Qyes_or_no_p_history, Qnil,
3272 Qnil));
3273 if (SCHARS (ans) == 3 && !strcmp (SDATA (ans), "yes"))
3274 {
3275 UNGCPRO;
3276 return Qt;
3277 }
3278 if (SCHARS (ans) == 2 && !strcmp (SDATA (ans), "no"))
3279 {
3280 UNGCPRO;
3281 return Qnil;
3282 }
3283
3284 Fding (Qnil);
3285 Fdiscard_input ();
3286 message ("Please answer yes or no.");
3287 Fsleep_for (make_number (2), Qnil);
3288 }
3289 }
3290 \f
3291 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
3292 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
3293
3294 Each of the three load averages is multiplied by 100, then converted
3295 to integer.
3296
3297 When USE-FLOATS is non-nil, floats will be used instead of integers.
3298 These floats are not multiplied by 100.
3299
3300 If the 5-minute or 15-minute load averages are not available, return a
3301 shortened list, containing only those averages which are available.
3302
3303 An error is thrown if the load average can't be obtained. In some
3304 cases making it work would require Emacs being installed setuid or
3305 setgid so that it can read kernel information, and that usually isn't
3306 advisable. */)
3307 (use_floats)
3308 Lisp_Object use_floats;
3309 {
3310 double load_ave[3];
3311 int loads = getloadavg (load_ave, 3);
3312 Lisp_Object ret = Qnil;
3313
3314 if (loads < 0)
3315 error ("load-average not implemented for this operating system");
3316
3317 while (loads-- > 0)
3318 {
3319 Lisp_Object load = (NILP (use_floats) ?
3320 make_number ((int) (100.0 * load_ave[loads]))
3321 : make_float (load_ave[loads]));
3322 ret = Fcons (load, ret);
3323 }
3324
3325 return ret;
3326 }
3327 \f
3328 Lisp_Object Vfeatures, Qsubfeatures;
3329 extern Lisp_Object Vafter_load_alist;
3330
3331 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
3332 doc: /* Returns t if FEATURE is present in this Emacs.
3333
3334 Use this to conditionalize execution of lisp code based on the
3335 presence or absence of emacs or environment extensions.
3336 Use `provide' to declare that a feature is available. This function
3337 looks at the value of the variable `features'. The optional argument
3338 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
3339 (feature, subfeature)
3340 Lisp_Object feature, subfeature;
3341 {
3342 register Lisp_Object tem;
3343 CHECK_SYMBOL (feature);
3344 tem = Fmemq (feature, Vfeatures);
3345 if (!NILP (tem) && !NILP (subfeature))
3346 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
3347 return (NILP (tem)) ? Qnil : Qt;
3348 }
3349
3350 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
3351 doc: /* Announce that FEATURE is a feature of the current Emacs.
3352 The optional argument SUBFEATURES should be a list of symbols listing
3353 particular subfeatures supported in this version of FEATURE. */)
3354 (feature, subfeatures)
3355 Lisp_Object feature, subfeatures;
3356 {
3357 register Lisp_Object tem;
3358 CHECK_SYMBOL (feature);
3359 CHECK_LIST (subfeatures);
3360 if (!NILP (Vautoload_queue))
3361 Vautoload_queue = Fcons (Fcons (Vfeatures, Qnil), Vautoload_queue);
3362 tem = Fmemq (feature, Vfeatures);
3363 if (NILP (tem))
3364 Vfeatures = Fcons (feature, Vfeatures);
3365 if (!NILP (subfeatures))
3366 Fput (feature, Qsubfeatures, subfeatures);
3367 LOADHIST_ATTACH (Fcons (Qprovide, feature));
3368
3369 /* Run any load-hooks for this file. */
3370 tem = Fassq (feature, Vafter_load_alist);
3371 if (CONSP (tem))
3372 Fprogn (XCDR (tem));
3373
3374 return feature;
3375 }
3376 \f
3377 /* `require' and its subroutines. */
3378
3379 /* List of features currently being require'd, innermost first. */
3380
3381 Lisp_Object require_nesting_list;
3382
3383 Lisp_Object
3384 require_unwind (old_value)
3385 Lisp_Object old_value;
3386 {
3387 return require_nesting_list = old_value;
3388 }
3389
3390 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
3391 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
3392 If FEATURE is not a member of the list `features', then the feature
3393 is not loaded; so load the file FILENAME.
3394 If FILENAME is omitted, the printname of FEATURE is used as the file name,
3395 and `load' will try to load this name appended with the suffix `.elc' or
3396 `.el', in that order. The name without appended suffix will not be used.
3397 If the optional third argument NOERROR is non-nil,
3398 then return nil if the file is not found instead of signaling an error.
3399 Normally the return value is FEATURE.
3400 The normal messages at start and end of loading FILENAME are suppressed. */)
3401 (feature, filename, noerror)
3402 Lisp_Object feature, filename, noerror;
3403 {
3404 register Lisp_Object tem;
3405 struct gcpro gcpro1, gcpro2;
3406
3407 CHECK_SYMBOL (feature);
3408
3409 tem = Fmemq (feature, Vfeatures);
3410
3411 if (NILP (tem))
3412 {
3413 int count = SPECPDL_INDEX ();
3414 int nesting = 0;
3415
3416 LOADHIST_ATTACH (Fcons (Qrequire, feature));
3417
3418 /* This is to make sure that loadup.el gives a clear picture
3419 of what files are preloaded and when. */
3420 if (! NILP (Vpurify_flag))
3421 error ("(require %s) while preparing to dump",
3422 SDATA (SYMBOL_NAME (feature)));
3423
3424 /* A certain amount of recursive `require' is legitimate,
3425 but if we require the same feature recursively 3 times,
3426 signal an error. */
3427 tem = require_nesting_list;
3428 while (! NILP (tem))
3429 {
3430 if (! NILP (Fequal (feature, XCAR (tem))))
3431 nesting++;
3432 tem = XCDR (tem);
3433 }
3434 if (nesting > 3)
3435 error ("Recursive `require' for feature `%s'",
3436 SDATA (SYMBOL_NAME (feature)));
3437
3438 /* Update the list for any nested `require's that occur. */
3439 record_unwind_protect (require_unwind, require_nesting_list);
3440 require_nesting_list = Fcons (feature, require_nesting_list);
3441
3442 /* Value saved here is to be restored into Vautoload_queue */
3443 record_unwind_protect (un_autoload, Vautoload_queue);
3444 Vautoload_queue = Qt;
3445
3446 /* Load the file. */
3447 GCPRO2 (feature, filename);
3448 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
3449 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
3450 UNGCPRO;
3451
3452 /* If load failed entirely, return nil. */
3453 if (NILP (tem))
3454 return unbind_to (count, Qnil);
3455
3456 tem = Fmemq (feature, Vfeatures);
3457 if (NILP (tem))
3458 error ("Required feature `%s' was not provided",
3459 SDATA (SYMBOL_NAME (feature)));
3460
3461 /* Once loading finishes, don't undo it. */
3462 Vautoload_queue = Qt;
3463 feature = unbind_to (count, feature);
3464 }
3465
3466 return feature;
3467 }
3468 \f
3469 /* Primitives for work of the "widget" library.
3470 In an ideal world, this section would not have been necessary.
3471 However, lisp function calls being as slow as they are, it turns
3472 out that some functions in the widget library (wid-edit.el) are the
3473 bottleneck of Widget operation. Here is their translation to C,
3474 for the sole reason of efficiency. */
3475
3476 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
3477 doc: /* Return non-nil if PLIST has the property PROP.
3478 PLIST is a property list, which is a list of the form
3479 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
3480 Unlike `plist-get', this allows you to distinguish between a missing
3481 property and a property with the value nil.
3482 The value is actually the tail of PLIST whose car is PROP. */)
3483 (plist, prop)
3484 Lisp_Object plist, prop;
3485 {
3486 while (CONSP (plist) && !EQ (XCAR (plist), prop))
3487 {
3488 QUIT;
3489 plist = XCDR (plist);
3490 plist = CDR (plist);
3491 }
3492 return plist;
3493 }
3494
3495 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
3496 doc: /* In WIDGET, set PROPERTY to VALUE.
3497 The value can later be retrieved with `widget-get'. */)
3498 (widget, property, value)
3499 Lisp_Object widget, property, value;
3500 {
3501 CHECK_CONS (widget);
3502 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
3503 return value;
3504 }
3505
3506 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
3507 doc: /* In WIDGET, get the value of PROPERTY.
3508 The value could either be specified when the widget was created, or
3509 later with `widget-put'. */)
3510 (widget, property)
3511 Lisp_Object widget, property;
3512 {
3513 Lisp_Object tmp;
3514
3515 while (1)
3516 {
3517 if (NILP (widget))
3518 return Qnil;
3519 CHECK_CONS (widget);
3520 tmp = Fplist_member (XCDR (widget), property);
3521 if (CONSP (tmp))
3522 {
3523 tmp = XCDR (tmp);
3524 return CAR (tmp);
3525 }
3526 tmp = XCAR (widget);
3527 if (NILP (tmp))
3528 return Qnil;
3529 widget = Fget (tmp, Qwidget_type);
3530 }
3531 }
3532
3533 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
3534 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
3535 ARGS are passed as extra arguments to the function.
3536 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
3537 (nargs, args)
3538 int nargs;
3539 Lisp_Object *args;
3540 {
3541 /* This function can GC. */
3542 Lisp_Object newargs[3];
3543 struct gcpro gcpro1, gcpro2;
3544 Lisp_Object result;
3545
3546 newargs[0] = Fwidget_get (args[0], args[1]);
3547 newargs[1] = args[0];
3548 newargs[2] = Flist (nargs - 2, args + 2);
3549 GCPRO2 (newargs[0], newargs[2]);
3550 result = Fapply (3, newargs);
3551 UNGCPRO;
3552 return result;
3553 }
3554
3555 #ifdef HAVE_LANGINFO_CODESET
3556 #include <langinfo.h>
3557 #endif
3558
3559 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
3560 doc: /* Access locale data ITEM for the current C locale, if available.
3561 ITEM should be one of the following:
3562
3563 `codeset', returning the character set as a string (locale item CODESET);
3564
3565 `days', returning a 7-element vector of day names (locale items DAY_n);
3566
3567 `months', returning a 12-element vector of month names (locale items MON_n);
3568
3569 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
3570 both measured in milimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
3571
3572 If the system can't provide such information through a call to
3573 `nl_langinfo', or if ITEM isn't from the list above, return nil.
3574
3575 See also Info node `(libc)Locales'.
3576
3577 The data read from the system are decoded using `locale-coding-system'. */)
3578 (item)
3579 Lisp_Object item;
3580 {
3581 char *str = NULL;
3582 #ifdef HAVE_LANGINFO_CODESET
3583 Lisp_Object val;
3584 if (EQ (item, Qcodeset))
3585 {
3586 str = nl_langinfo (CODESET);
3587 return build_string (str);
3588 }
3589 #ifdef DAY_1
3590 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
3591 {
3592 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
3593 int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
3594 int i;
3595 synchronize_system_time_locale ();
3596 for (i = 0; i < 7; i++)
3597 {
3598 str = nl_langinfo (days[i]);
3599 val = make_unibyte_string (str, strlen (str));
3600 /* Fixme: Is this coding system necessarily right, even if
3601 it is consistent with CODESET? If not, what to do? */
3602 Faset (v, make_number (i),
3603 code_convert_string_norecord (val, Vlocale_coding_system,
3604 0));
3605 }
3606 return v;
3607 }
3608 #endif /* DAY_1 */
3609 #ifdef MON_1
3610 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
3611 {
3612 struct Lisp_Vector *p = allocate_vector (12);
3613 int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
3614 MON_8, MON_9, MON_10, MON_11, MON_12};
3615 int i;
3616 synchronize_system_time_locale ();
3617 for (i = 0; i < 12; i++)
3618 {
3619 str = nl_langinfo (months[i]);
3620 val = make_unibyte_string (str, strlen (str));
3621 p->contents[i] =
3622 code_convert_string_norecord (val, Vlocale_coding_system, 0);
3623 }
3624 XSETVECTOR (val, p);
3625 return val;
3626 }
3627 #endif /* MON_1 */
3628 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
3629 but is in the locale files. This could be used by ps-print. */
3630 #ifdef PAPER_WIDTH
3631 else if (EQ (item, Qpaper))
3632 {
3633 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
3634 make_number (nl_langinfo (PAPER_HEIGHT)));
3635 }
3636 #endif /* PAPER_WIDTH */
3637 #endif /* HAVE_LANGINFO_CODESET*/
3638 return Qnil;
3639 }
3640 \f
3641 /* base64 encode/decode functions (RFC 2045).
3642 Based on code from GNU recode. */
3643
3644 #define MIME_LINE_LENGTH 76
3645
3646 #define IS_ASCII(Character) \
3647 ((Character) < 128)
3648 #define IS_BASE64(Character) \
3649 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
3650 #define IS_BASE64_IGNORABLE(Character) \
3651 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
3652 || (Character) == '\f' || (Character) == '\r')
3653
3654 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
3655 character or return retval if there are no characters left to
3656 process. */
3657 #define READ_QUADRUPLET_BYTE(retval) \
3658 do \
3659 { \
3660 if (i == length) \
3661 { \
3662 if (nchars_return) \
3663 *nchars_return = nchars; \
3664 return (retval); \
3665 } \
3666 c = from[i++]; \
3667 } \
3668 while (IS_BASE64_IGNORABLE (c))
3669
3670 /* Don't use alloca for regions larger than this, lest we overflow
3671 their stack. */
3672 #define MAX_ALLOCA 16*1024
3673
3674 /* Table of characters coding the 64 values. */
3675 static char base64_value_to_char[64] =
3676 {
3677 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
3678 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
3679 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
3680 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
3681 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
3682 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
3683 '8', '9', '+', '/' /* 60-63 */
3684 };
3685
3686 /* Table of base64 values for first 128 characters. */
3687 static short base64_char_to_value[128] =
3688 {
3689 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
3690 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
3691 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
3692 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
3693 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
3694 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
3695 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
3696 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
3697 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
3698 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
3699 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
3700 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
3701 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
3702 };
3703
3704 /* The following diagram shows the logical steps by which three octets
3705 get transformed into four base64 characters.
3706
3707 .--------. .--------. .--------.
3708 |aaaaaabb| |bbbbcccc| |ccdddddd|
3709 `--------' `--------' `--------'
3710 6 2 4 4 2 6
3711 .--------+--------+--------+--------.
3712 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
3713 `--------+--------+--------+--------'
3714
3715 .--------+--------+--------+--------.
3716 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
3717 `--------+--------+--------+--------'
3718
3719 The octets are divided into 6 bit chunks, which are then encoded into
3720 base64 characters. */
3721
3722
3723 static int base64_encode_1 P_ ((const char *, char *, int, int, int));
3724 static int base64_decode_1 P_ ((const char *, char *, int, int, int *));
3725
3726 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
3727 2, 3, "r",
3728 doc: /* Base64-encode the region between BEG and END.
3729 Return the length of the encoded text.
3730 Optional third argument NO-LINE-BREAK means do not break long lines
3731 into shorter lines. */)
3732 (beg, end, no_line_break)
3733 Lisp_Object beg, end, no_line_break;
3734 {
3735 char *encoded;
3736 int allength, length;
3737 int ibeg, iend, encoded_length;
3738 int old_pos = PT;
3739
3740 validate_region (&beg, &end);
3741
3742 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3743 iend = CHAR_TO_BYTE (XFASTINT (end));
3744 move_gap_both (XFASTINT (beg), ibeg);
3745
3746 /* We need to allocate enough room for encoding the text.
3747 We need 33 1/3% more space, plus a newline every 76
3748 characters, and then we round up. */
3749 length = iend - ibeg;
3750 allength = length + length/3 + 1;
3751 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3752
3753 if (allength <= MAX_ALLOCA)
3754 encoded = (char *) alloca (allength);
3755 else
3756 encoded = (char *) xmalloc (allength);
3757 encoded_length = base64_encode_1 (BYTE_POS_ADDR (ibeg), encoded, length,
3758 NILP (no_line_break),
3759 !NILP (current_buffer->enable_multibyte_characters));
3760 if (encoded_length > allength)
3761 abort ();
3762
3763 if (encoded_length < 0)
3764 {
3765 /* The encoding wasn't possible. */
3766 if (length > MAX_ALLOCA)
3767 xfree (encoded);
3768 error ("Multibyte character in data for base64 encoding");
3769 }
3770
3771 /* Now we have encoded the region, so we insert the new contents
3772 and delete the old. (Insert first in order to preserve markers.) */
3773 SET_PT_BOTH (XFASTINT (beg), ibeg);
3774 insert (encoded, encoded_length);
3775 if (allength > MAX_ALLOCA)
3776 xfree (encoded);
3777 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3778
3779 /* If point was outside of the region, restore it exactly; else just
3780 move to the beginning of the region. */
3781 if (old_pos >= XFASTINT (end))
3782 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3783 else if (old_pos > XFASTINT (beg))
3784 old_pos = XFASTINT (beg);
3785 SET_PT (old_pos);
3786
3787 /* We return the length of the encoded text. */
3788 return make_number (encoded_length);
3789 }
3790
3791 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3792 1, 2, 0,
3793 doc: /* Base64-encode STRING and return the result.
3794 Optional second argument NO-LINE-BREAK means do not break long lines
3795 into shorter lines. */)
3796 (string, no_line_break)
3797 Lisp_Object string, no_line_break;
3798 {
3799 int allength, length, encoded_length;
3800 char *encoded;
3801 Lisp_Object encoded_string;
3802
3803 CHECK_STRING (string);
3804
3805 /* We need to allocate enough room for encoding the text.
3806 We need 33 1/3% more space, plus a newline every 76
3807 characters, and then we round up. */
3808 length = SBYTES (string);
3809 allength = length + length/3 + 1;
3810 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3811
3812 /* We need to allocate enough room for decoding the text. */
3813 if (allength <= MAX_ALLOCA)
3814 encoded = (char *) alloca (allength);
3815 else
3816 encoded = (char *) xmalloc (allength);
3817
3818 encoded_length = base64_encode_1 (SDATA (string),
3819 encoded, length, NILP (no_line_break),
3820 STRING_MULTIBYTE (string));
3821 if (encoded_length > allength)
3822 abort ();
3823
3824 if (encoded_length < 0)
3825 {
3826 /* The encoding wasn't possible. */
3827 if (length > MAX_ALLOCA)
3828 xfree (encoded);
3829 error ("Multibyte character in data for base64 encoding");
3830 }
3831
3832 encoded_string = make_unibyte_string (encoded, encoded_length);
3833 if (allength > MAX_ALLOCA)
3834 xfree (encoded);
3835
3836 return encoded_string;
3837 }
3838
3839 static int
3840 base64_encode_1 (from, to, length, line_break, multibyte)
3841 const char *from;
3842 char *to;
3843 int length;
3844 int line_break;
3845 int multibyte;
3846 {
3847 int counter = 0, i = 0;
3848 char *e = to;
3849 int c;
3850 unsigned int value;
3851 int bytes;
3852
3853 while (i < length)
3854 {
3855 if (multibyte)
3856 {
3857 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3858 if (c >= 256)
3859 return -1;
3860 i += bytes;
3861 }
3862 else
3863 c = from[i++];
3864
3865 /* Wrap line every 76 characters. */
3866
3867 if (line_break)
3868 {
3869 if (counter < MIME_LINE_LENGTH / 4)
3870 counter++;
3871 else
3872 {
3873 *e++ = '\n';
3874 counter = 1;
3875 }
3876 }
3877
3878 /* Process first byte of a triplet. */
3879
3880 *e++ = base64_value_to_char[0x3f & c >> 2];
3881 value = (0x03 & c) << 4;
3882
3883 /* Process second byte of a triplet. */
3884
3885 if (i == length)
3886 {
3887 *e++ = base64_value_to_char[value];
3888 *e++ = '=';
3889 *e++ = '=';
3890 break;
3891 }
3892
3893 if (multibyte)
3894 {
3895 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3896 if (c >= 256)
3897 return -1;
3898 i += bytes;
3899 }
3900 else
3901 c = from[i++];
3902
3903 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3904 value = (0x0f & c) << 2;
3905
3906 /* Process third byte of a triplet. */
3907
3908 if (i == length)
3909 {
3910 *e++ = base64_value_to_char[value];
3911 *e++ = '=';
3912 break;
3913 }
3914
3915 if (multibyte)
3916 {
3917 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3918 if (c >= 256)
3919 return -1;
3920 i += bytes;
3921 }
3922 else
3923 c = from[i++];
3924
3925 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3926 *e++ = base64_value_to_char[0x3f & c];
3927 }
3928
3929 return e - to;
3930 }
3931
3932
3933 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3934 2, 2, "r",
3935 doc: /* Base64-decode the region between BEG and END.
3936 Return the length of the decoded text.
3937 If the region can't be decoded, signal an error and don't modify the buffer. */)
3938 (beg, end)
3939 Lisp_Object beg, end;
3940 {
3941 int ibeg, iend, length, allength;
3942 char *decoded;
3943 int old_pos = PT;
3944 int decoded_length;
3945 int inserted_chars;
3946 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
3947
3948 validate_region (&beg, &end);
3949
3950 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3951 iend = CHAR_TO_BYTE (XFASTINT (end));
3952
3953 length = iend - ibeg;
3954
3955 /* We need to allocate enough room for decoding the text. If we are
3956 working on a multibyte buffer, each decoded code may occupy at
3957 most two bytes. */
3958 allength = multibyte ? length * 2 : length;
3959 if (allength <= MAX_ALLOCA)
3960 decoded = (char *) alloca (allength);
3961 else
3962 decoded = (char *) xmalloc (allength);
3963
3964 move_gap_both (XFASTINT (beg), ibeg);
3965 decoded_length = base64_decode_1 (BYTE_POS_ADDR (ibeg), decoded, length,
3966 multibyte, &inserted_chars);
3967 if (decoded_length > allength)
3968 abort ();
3969
3970 if (decoded_length < 0)
3971 {
3972 /* The decoding wasn't possible. */
3973 if (allength > MAX_ALLOCA)
3974 xfree (decoded);
3975 error ("Invalid base64 data");
3976 }
3977
3978 /* Now we have decoded the region, so we insert the new contents
3979 and delete the old. (Insert first in order to preserve markers.) */
3980 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3981 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3982 if (allength > MAX_ALLOCA)
3983 xfree (decoded);
3984 /* Delete the original text. */
3985 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3986 iend + decoded_length, 1);
3987
3988 /* If point was outside of the region, restore it exactly; else just
3989 move to the beginning of the region. */
3990 if (old_pos >= XFASTINT (end))
3991 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3992 else if (old_pos > XFASTINT (beg))
3993 old_pos = XFASTINT (beg);
3994 SET_PT (old_pos > ZV ? ZV : old_pos);
3995
3996 return make_number (inserted_chars);
3997 }
3998
3999 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
4000 1, 1, 0,
4001 doc: /* Base64-decode STRING and return the result. */)
4002 (string)
4003 Lisp_Object string;
4004 {
4005 char *decoded;
4006 int length, decoded_length;
4007 Lisp_Object decoded_string;
4008
4009 CHECK_STRING (string);
4010
4011 length = SBYTES (string);
4012 /* We need to allocate enough room for decoding the text. */
4013 if (length <= MAX_ALLOCA)
4014 decoded = (char *) alloca (length);
4015 else
4016 decoded = (char *) xmalloc (length);
4017
4018 /* The decoded result should be unibyte. */
4019 decoded_length = base64_decode_1 (SDATA (string), decoded, length,
4020 0, NULL);
4021 if (decoded_length > length)
4022 abort ();
4023 else if (decoded_length >= 0)
4024 decoded_string = make_unibyte_string (decoded, decoded_length);
4025 else
4026 decoded_string = Qnil;
4027
4028 if (length > MAX_ALLOCA)
4029 xfree (decoded);
4030 if (!STRINGP (decoded_string))
4031 error ("Invalid base64 data");
4032
4033 return decoded_string;
4034 }
4035
4036 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
4037 MULTIBYTE is nonzero, the decoded result should be in multibyte
4038 form. If NCHARS_RETRUN is not NULL, store the number of produced
4039 characters in *NCHARS_RETURN. */
4040
4041 static int
4042 base64_decode_1 (from, to, length, multibyte, nchars_return)
4043 const char *from;
4044 char *to;
4045 int length;
4046 int multibyte;
4047 int *nchars_return;
4048 {
4049 int i = 0;
4050 char *e = to;
4051 unsigned char c;
4052 unsigned long value;
4053 int nchars = 0;
4054
4055 while (1)
4056 {
4057 /* Process first byte of a quadruplet. */
4058
4059 READ_QUADRUPLET_BYTE (e-to);
4060
4061 if (!IS_BASE64 (c))
4062 return -1;
4063 value = base64_char_to_value[c] << 18;
4064
4065 /* Process second byte of a quadruplet. */
4066
4067 READ_QUADRUPLET_BYTE (-1);
4068
4069 if (!IS_BASE64 (c))
4070 return -1;
4071 value |= base64_char_to_value[c] << 12;
4072
4073 c = (unsigned char) (value >> 16);
4074 if (multibyte)
4075 e += CHAR_STRING (c, e);
4076 else
4077 *e++ = c;
4078 nchars++;
4079
4080 /* Process third byte of a quadruplet. */
4081
4082 READ_QUADRUPLET_BYTE (-1);
4083
4084 if (c == '=')
4085 {
4086 READ_QUADRUPLET_BYTE (-1);
4087
4088 if (c != '=')
4089 return -1;
4090 continue;
4091 }
4092
4093 if (!IS_BASE64 (c))
4094 return -1;
4095 value |= base64_char_to_value[c] << 6;
4096
4097 c = (unsigned char) (0xff & value >> 8);
4098 if (multibyte)
4099 e += CHAR_STRING (c, e);
4100 else
4101 *e++ = c;
4102 nchars++;
4103
4104 /* Process fourth byte of a quadruplet. */
4105
4106 READ_QUADRUPLET_BYTE (-1);
4107
4108 if (c == '=')
4109 continue;
4110
4111 if (!IS_BASE64 (c))
4112 return -1;
4113 value |= base64_char_to_value[c];
4114
4115 c = (unsigned char) (0xff & value);
4116 if (multibyte)
4117 e += CHAR_STRING (c, e);
4118 else
4119 *e++ = c;
4120 nchars++;
4121 }
4122 }
4123
4124
4125 \f
4126 /***********************************************************************
4127 ***** *****
4128 ***** Hash Tables *****
4129 ***** *****
4130 ***********************************************************************/
4131
4132 /* Implemented by gerd@gnu.org. This hash table implementation was
4133 inspired by CMUCL hash tables. */
4134
4135 /* Ideas:
4136
4137 1. For small tables, association lists are probably faster than
4138 hash tables because they have lower overhead.
4139
4140 For uses of hash tables where the O(1) behavior of table
4141 operations is not a requirement, it might therefore be a good idea
4142 not to hash. Instead, we could just do a linear search in the
4143 key_and_value vector of the hash table. This could be done
4144 if a `:linear-search t' argument is given to make-hash-table. */
4145
4146
4147 /* The list of all weak hash tables. Don't staticpro this one. */
4148
4149 Lisp_Object Vweak_hash_tables;
4150
4151 /* Various symbols. */
4152
4153 Lisp_Object Qhash_table_p, Qeq, Qeql, Qequal, Qkey, Qvalue;
4154 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
4155 Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
4156
4157 /* Function prototypes. */
4158
4159 static struct Lisp_Hash_Table *check_hash_table P_ ((Lisp_Object));
4160 static int get_key_arg P_ ((Lisp_Object, int, Lisp_Object *, char *));
4161 static void maybe_resize_hash_table P_ ((struct Lisp_Hash_Table *));
4162 static int cmpfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
4163 Lisp_Object, unsigned));
4164 static int cmpfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
4165 Lisp_Object, unsigned));
4166 static int cmpfn_user_defined P_ ((struct Lisp_Hash_Table *, Lisp_Object,
4167 unsigned, Lisp_Object, unsigned));
4168 static unsigned hashfn_eq P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4169 static unsigned hashfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4170 static unsigned hashfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4171 static unsigned hashfn_user_defined P_ ((struct Lisp_Hash_Table *,
4172 Lisp_Object));
4173 static unsigned sxhash_string P_ ((unsigned char *, int));
4174 static unsigned sxhash_list P_ ((Lisp_Object, int));
4175 static unsigned sxhash_vector P_ ((Lisp_Object, int));
4176 static unsigned sxhash_bool_vector P_ ((Lisp_Object));
4177 static int sweep_weak_table P_ ((struct Lisp_Hash_Table *, int));
4178
4179
4180 \f
4181 /***********************************************************************
4182 Utilities
4183 ***********************************************************************/
4184
4185 /* If OBJ is a Lisp hash table, return a pointer to its struct
4186 Lisp_Hash_Table. Otherwise, signal an error. */
4187
4188 static struct Lisp_Hash_Table *
4189 check_hash_table (obj)
4190 Lisp_Object obj;
4191 {
4192 CHECK_HASH_TABLE (obj);
4193 return XHASH_TABLE (obj);
4194 }
4195
4196
4197 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
4198 number. */
4199
4200 int
4201 next_almost_prime (n)
4202 int n;
4203 {
4204 if (n % 2 == 0)
4205 n += 1;
4206 if (n % 3 == 0)
4207 n += 2;
4208 if (n % 7 == 0)
4209 n += 4;
4210 return n;
4211 }
4212
4213
4214 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
4215 which USED[I] is non-zero. If found at index I in ARGS, set
4216 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
4217 -1. This function is used to extract a keyword/argument pair from
4218 a DEFUN parameter list. */
4219
4220 static int
4221 get_key_arg (key, nargs, args, used)
4222 Lisp_Object key;
4223 int nargs;
4224 Lisp_Object *args;
4225 char *used;
4226 {
4227 int i;
4228
4229 for (i = 0; i < nargs - 1; ++i)
4230 if (!used[i] && EQ (args[i], key))
4231 break;
4232
4233 if (i >= nargs - 1)
4234 i = -1;
4235 else
4236 {
4237 used[i++] = 1;
4238 used[i] = 1;
4239 }
4240
4241 return i;
4242 }
4243
4244
4245 /* Return a Lisp vector which has the same contents as VEC but has
4246 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
4247 vector that are not copied from VEC are set to INIT. */
4248
4249 Lisp_Object
4250 larger_vector (vec, new_size, init)
4251 Lisp_Object vec;
4252 int new_size;
4253 Lisp_Object init;
4254 {
4255 struct Lisp_Vector *v;
4256 int i, old_size;
4257
4258 xassert (VECTORP (vec));
4259 old_size = XVECTOR (vec)->size;
4260 xassert (new_size >= old_size);
4261
4262 v = allocate_vector (new_size);
4263 bcopy (XVECTOR (vec)->contents, v->contents,
4264 old_size * sizeof *v->contents);
4265 for (i = old_size; i < new_size; ++i)
4266 v->contents[i] = init;
4267 XSETVECTOR (vec, v);
4268 return vec;
4269 }
4270
4271
4272 /***********************************************************************
4273 Low-level Functions
4274 ***********************************************************************/
4275
4276 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
4277 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
4278 KEY2 are the same. */
4279
4280 static int
4281 cmpfn_eql (h, key1, hash1, key2, hash2)
4282 struct Lisp_Hash_Table *h;
4283 Lisp_Object key1, key2;
4284 unsigned hash1, hash2;
4285 {
4286 return (FLOATP (key1)
4287 && FLOATP (key2)
4288 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
4289 }
4290
4291
4292 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
4293 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
4294 KEY2 are the same. */
4295
4296 static int
4297 cmpfn_equal (h, key1, hash1, key2, hash2)
4298 struct Lisp_Hash_Table *h;
4299 Lisp_Object key1, key2;
4300 unsigned hash1, hash2;
4301 {
4302 return hash1 == hash2 && !NILP (Fequal (key1, key2));
4303 }
4304
4305
4306 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
4307 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
4308 if KEY1 and KEY2 are the same. */
4309
4310 static int
4311 cmpfn_user_defined (h, key1, hash1, key2, hash2)
4312 struct Lisp_Hash_Table *h;
4313 Lisp_Object key1, key2;
4314 unsigned hash1, hash2;
4315 {
4316 if (hash1 == hash2)
4317 {
4318 Lisp_Object args[3];
4319
4320 args[0] = h->user_cmp_function;
4321 args[1] = key1;
4322 args[2] = key2;
4323 return !NILP (Ffuncall (3, args));
4324 }
4325 else
4326 return 0;
4327 }
4328
4329
4330 /* Value is a hash code for KEY for use in hash table H which uses
4331 `eq' to compare keys. The hash code returned is guaranteed to fit
4332 in a Lisp integer. */
4333
4334 static unsigned
4335 hashfn_eq (h, key)
4336 struct Lisp_Hash_Table *h;
4337 Lisp_Object key;
4338 {
4339 unsigned hash = XUINT (key) ^ XGCTYPE (key);
4340 xassert ((hash & ~INTMASK) == 0);
4341 return hash;
4342 }
4343
4344
4345 /* Value is a hash code for KEY for use in hash table H which uses
4346 `eql' to compare keys. The hash code returned is guaranteed to fit
4347 in a Lisp integer. */
4348
4349 static unsigned
4350 hashfn_eql (h, key)
4351 struct Lisp_Hash_Table *h;
4352 Lisp_Object key;
4353 {
4354 unsigned hash;
4355 if (FLOATP (key))
4356 hash = sxhash (key, 0);
4357 else
4358 hash = XUINT (key) ^ XGCTYPE (key);
4359 xassert ((hash & ~INTMASK) == 0);
4360 return hash;
4361 }
4362
4363
4364 /* Value is a hash code for KEY for use in hash table H which uses
4365 `equal' to compare keys. The hash code returned is guaranteed to fit
4366 in a Lisp integer. */
4367
4368 static unsigned
4369 hashfn_equal (h, key)
4370 struct Lisp_Hash_Table *h;
4371 Lisp_Object key;
4372 {
4373 unsigned hash = sxhash (key, 0);
4374 xassert ((hash & ~INTMASK) == 0);
4375 return hash;
4376 }
4377
4378
4379 /* Value is a hash code for KEY for use in hash table H which uses as
4380 user-defined function to compare keys. The hash code returned is
4381 guaranteed to fit in a Lisp integer. */
4382
4383 static unsigned
4384 hashfn_user_defined (h, key)
4385 struct Lisp_Hash_Table *h;
4386 Lisp_Object key;
4387 {
4388 Lisp_Object args[2], hash;
4389
4390 args[0] = h->user_hash_function;
4391 args[1] = key;
4392 hash = Ffuncall (2, args);
4393 if (!INTEGERP (hash))
4394 Fsignal (Qerror,
4395 list2 (build_string ("Invalid hash code returned from \
4396 user-supplied hash function"),
4397 hash));
4398 return XUINT (hash);
4399 }
4400
4401
4402 /* Create and initialize a new hash table.
4403
4404 TEST specifies the test the hash table will use to compare keys.
4405 It must be either one of the predefined tests `eq', `eql' or
4406 `equal' or a symbol denoting a user-defined test named TEST with
4407 test and hash functions USER_TEST and USER_HASH.
4408
4409 Give the table initial capacity SIZE, SIZE >= 0, an integer.
4410
4411 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
4412 new size when it becomes full is computed by adding REHASH_SIZE to
4413 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
4414 table's new size is computed by multiplying its old size with
4415 REHASH_SIZE.
4416
4417 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
4418 be resized when the ratio of (number of entries in the table) /
4419 (table size) is >= REHASH_THRESHOLD.
4420
4421 WEAK specifies the weakness of the table. If non-nil, it must be
4422 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
4423
4424 Lisp_Object
4425 make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4426 user_test, user_hash)
4427 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4428 Lisp_Object user_test, user_hash;
4429 {
4430 struct Lisp_Hash_Table *h;
4431 Lisp_Object table;
4432 int index_size, i, sz;
4433
4434 /* Preconditions. */
4435 xassert (SYMBOLP (test));
4436 xassert (INTEGERP (size) && XINT (size) >= 0);
4437 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
4438 || (FLOATP (rehash_size) && XFLOATINT (rehash_size) > 1.0));
4439 xassert (FLOATP (rehash_threshold)
4440 && XFLOATINT (rehash_threshold) > 0
4441 && XFLOATINT (rehash_threshold) <= 1.0);
4442
4443 if (XFASTINT (size) == 0)
4444 size = make_number (1);
4445
4446 /* Allocate a table and initialize it. */
4447 h = allocate_hash_table ();
4448
4449 /* Initialize hash table slots. */
4450 sz = XFASTINT (size);
4451
4452 h->test = test;
4453 if (EQ (test, Qeql))
4454 {
4455 h->cmpfn = cmpfn_eql;
4456 h->hashfn = hashfn_eql;
4457 }
4458 else if (EQ (test, Qeq))
4459 {
4460 h->cmpfn = NULL;
4461 h->hashfn = hashfn_eq;
4462 }
4463 else if (EQ (test, Qequal))
4464 {
4465 h->cmpfn = cmpfn_equal;
4466 h->hashfn = hashfn_equal;
4467 }
4468 else
4469 {
4470 h->user_cmp_function = user_test;
4471 h->user_hash_function = user_hash;
4472 h->cmpfn = cmpfn_user_defined;
4473 h->hashfn = hashfn_user_defined;
4474 }
4475
4476 h->weak = weak;
4477 h->rehash_threshold = rehash_threshold;
4478 h->rehash_size = rehash_size;
4479 h->count = make_number (0);
4480 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
4481 h->hash = Fmake_vector (size, Qnil);
4482 h->next = Fmake_vector (size, Qnil);
4483 /* Cast to int here avoids losing with gcc 2.95 on Tru64/Alpha... */
4484 index_size = next_almost_prime ((int) (sz / XFLOATINT (rehash_threshold)));
4485 h->index = Fmake_vector (make_number (index_size), Qnil);
4486
4487 /* Set up the free list. */
4488 for (i = 0; i < sz - 1; ++i)
4489 HASH_NEXT (h, i) = make_number (i + 1);
4490 h->next_free = make_number (0);
4491
4492 XSET_HASH_TABLE (table, h);
4493 xassert (HASH_TABLE_P (table));
4494 xassert (XHASH_TABLE (table) == h);
4495
4496 /* Maybe add this hash table to the list of all weak hash tables. */
4497 if (NILP (h->weak))
4498 h->next_weak = Qnil;
4499 else
4500 {
4501 h->next_weak = Vweak_hash_tables;
4502 Vweak_hash_tables = table;
4503 }
4504
4505 return table;
4506 }
4507
4508
4509 /* Return a copy of hash table H1. Keys and values are not copied,
4510 only the table itself is. */
4511
4512 Lisp_Object
4513 copy_hash_table (h1)
4514 struct Lisp_Hash_Table *h1;
4515 {
4516 Lisp_Object table;
4517 struct Lisp_Hash_Table *h2;
4518 struct Lisp_Vector *next;
4519
4520 h2 = allocate_hash_table ();
4521 next = h2->vec_next;
4522 bcopy (h1, h2, sizeof *h2);
4523 h2->vec_next = next;
4524 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
4525 h2->hash = Fcopy_sequence (h1->hash);
4526 h2->next = Fcopy_sequence (h1->next);
4527 h2->index = Fcopy_sequence (h1->index);
4528 XSET_HASH_TABLE (table, h2);
4529
4530 /* Maybe add this hash table to the list of all weak hash tables. */
4531 if (!NILP (h2->weak))
4532 {
4533 h2->next_weak = Vweak_hash_tables;
4534 Vweak_hash_tables = table;
4535 }
4536
4537 return table;
4538 }
4539
4540
4541 /* Resize hash table H if it's too full. If H cannot be resized
4542 because it's already too large, throw an error. */
4543
4544 static INLINE void
4545 maybe_resize_hash_table (h)
4546 struct Lisp_Hash_Table *h;
4547 {
4548 if (NILP (h->next_free))
4549 {
4550 int old_size = HASH_TABLE_SIZE (h);
4551 int i, new_size, index_size;
4552
4553 if (INTEGERP (h->rehash_size))
4554 new_size = old_size + XFASTINT (h->rehash_size);
4555 else
4556 new_size = old_size * XFLOATINT (h->rehash_size);
4557 new_size = max (old_size + 1, new_size);
4558 index_size = next_almost_prime ((int)
4559 (new_size
4560 / XFLOATINT (h->rehash_threshold)));
4561 if (max (index_size, 2 * new_size) > MOST_POSITIVE_FIXNUM)
4562 error ("Hash table too large to resize");
4563
4564 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
4565 h->next = larger_vector (h->next, new_size, Qnil);
4566 h->hash = larger_vector (h->hash, new_size, Qnil);
4567 h->index = Fmake_vector (make_number (index_size), Qnil);
4568
4569 /* Update the free list. Do it so that new entries are added at
4570 the end of the free list. This makes some operations like
4571 maphash faster. */
4572 for (i = old_size; i < new_size - 1; ++i)
4573 HASH_NEXT (h, i) = make_number (i + 1);
4574
4575 if (!NILP (h->next_free))
4576 {
4577 Lisp_Object last, next;
4578
4579 last = h->next_free;
4580 while (next = HASH_NEXT (h, XFASTINT (last)),
4581 !NILP (next))
4582 last = next;
4583
4584 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
4585 }
4586 else
4587 XSETFASTINT (h->next_free, old_size);
4588
4589 /* Rehash. */
4590 for (i = 0; i < old_size; ++i)
4591 if (!NILP (HASH_HASH (h, i)))
4592 {
4593 unsigned hash_code = XUINT (HASH_HASH (h, i));
4594 int start_of_bucket = hash_code % XVECTOR (h->index)->size;
4595 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4596 HASH_INDEX (h, start_of_bucket) = make_number (i);
4597 }
4598 }
4599 }
4600
4601
4602 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
4603 the hash code of KEY. Value is the index of the entry in H
4604 matching KEY, or -1 if not found. */
4605
4606 int
4607 hash_lookup (h, key, hash)
4608 struct Lisp_Hash_Table *h;
4609 Lisp_Object key;
4610 unsigned *hash;
4611 {
4612 unsigned hash_code;
4613 int start_of_bucket;
4614 Lisp_Object idx;
4615
4616 hash_code = h->hashfn (h, key);
4617 if (hash)
4618 *hash = hash_code;
4619
4620 start_of_bucket = hash_code % XVECTOR (h->index)->size;
4621 idx = HASH_INDEX (h, start_of_bucket);
4622
4623 /* We need not gcpro idx since it's either an integer or nil. */
4624 while (!NILP (idx))
4625 {
4626 int i = XFASTINT (idx);
4627 if (EQ (key, HASH_KEY (h, i))
4628 || (h->cmpfn
4629 && h->cmpfn (h, key, hash_code,
4630 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4631 break;
4632 idx = HASH_NEXT (h, i);
4633 }
4634
4635 return NILP (idx) ? -1 : XFASTINT (idx);
4636 }
4637
4638
4639 /* Put an entry into hash table H that associates KEY with VALUE.
4640 HASH is a previously computed hash code of KEY.
4641 Value is the index of the entry in H matching KEY. */
4642
4643 int
4644 hash_put (h, key, value, hash)
4645 struct Lisp_Hash_Table *h;
4646 Lisp_Object key, value;
4647 unsigned hash;
4648 {
4649 int start_of_bucket, i;
4650
4651 xassert ((hash & ~INTMASK) == 0);
4652
4653 /* Increment count after resizing because resizing may fail. */
4654 maybe_resize_hash_table (h);
4655 h->count = make_number (XFASTINT (h->count) + 1);
4656
4657 /* Store key/value in the key_and_value vector. */
4658 i = XFASTINT (h->next_free);
4659 h->next_free = HASH_NEXT (h, i);
4660 HASH_KEY (h, i) = key;
4661 HASH_VALUE (h, i) = value;
4662
4663 /* Remember its hash code. */
4664 HASH_HASH (h, i) = make_number (hash);
4665
4666 /* Add new entry to its collision chain. */
4667 start_of_bucket = hash % XVECTOR (h->index)->size;
4668 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4669 HASH_INDEX (h, start_of_bucket) = make_number (i);
4670 return i;
4671 }
4672
4673
4674 /* Remove the entry matching KEY from hash table H, if there is one. */
4675
4676 void
4677 hash_remove (h, key)
4678 struct Lisp_Hash_Table *h;
4679 Lisp_Object key;
4680 {
4681 unsigned hash_code;
4682 int start_of_bucket;
4683 Lisp_Object idx, prev;
4684
4685 hash_code = h->hashfn (h, key);
4686 start_of_bucket = hash_code % XVECTOR (h->index)->size;
4687 idx = HASH_INDEX (h, start_of_bucket);
4688 prev = Qnil;
4689
4690 /* We need not gcpro idx, prev since they're either integers or nil. */
4691 while (!NILP (idx))
4692 {
4693 int i = XFASTINT (idx);
4694
4695 if (EQ (key, HASH_KEY (h, i))
4696 || (h->cmpfn
4697 && h->cmpfn (h, key, hash_code,
4698 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4699 {
4700 /* Take entry out of collision chain. */
4701 if (NILP (prev))
4702 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
4703 else
4704 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
4705
4706 /* Clear slots in key_and_value and add the slots to
4707 the free list. */
4708 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
4709 HASH_NEXT (h, i) = h->next_free;
4710 h->next_free = make_number (i);
4711 h->count = make_number (XFASTINT (h->count) - 1);
4712 xassert (XINT (h->count) >= 0);
4713 break;
4714 }
4715 else
4716 {
4717 prev = idx;
4718 idx = HASH_NEXT (h, i);
4719 }
4720 }
4721 }
4722
4723
4724 /* Clear hash table H. */
4725
4726 void
4727 hash_clear (h)
4728 struct Lisp_Hash_Table *h;
4729 {
4730 if (XFASTINT (h->count) > 0)
4731 {
4732 int i, size = HASH_TABLE_SIZE (h);
4733
4734 for (i = 0; i < size; ++i)
4735 {
4736 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
4737 HASH_KEY (h, i) = Qnil;
4738 HASH_VALUE (h, i) = Qnil;
4739 HASH_HASH (h, i) = Qnil;
4740 }
4741
4742 for (i = 0; i < XVECTOR (h->index)->size; ++i)
4743 XVECTOR (h->index)->contents[i] = Qnil;
4744
4745 h->next_free = make_number (0);
4746 h->count = make_number (0);
4747 }
4748 }
4749
4750
4751 \f
4752 /************************************************************************
4753 Weak Hash Tables
4754 ************************************************************************/
4755
4756 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
4757 entries from the table that don't survive the current GC.
4758 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
4759 non-zero if anything was marked. */
4760
4761 static int
4762 sweep_weak_table (h, remove_entries_p)
4763 struct Lisp_Hash_Table *h;
4764 int remove_entries_p;
4765 {
4766 int bucket, n, marked;
4767
4768 n = XVECTOR (h->index)->size & ~ARRAY_MARK_FLAG;
4769 marked = 0;
4770
4771 for (bucket = 0; bucket < n; ++bucket)
4772 {
4773 Lisp_Object idx, next, prev;
4774
4775 /* Follow collision chain, removing entries that
4776 don't survive this garbage collection. */
4777 prev = Qnil;
4778 for (idx = HASH_INDEX (h, bucket); !GC_NILP (idx); idx = next)
4779 {
4780 int i = XFASTINT (idx);
4781 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
4782 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
4783 int remove_p;
4784
4785 if (EQ (h->weak, Qkey))
4786 remove_p = !key_known_to_survive_p;
4787 else if (EQ (h->weak, Qvalue))
4788 remove_p = !value_known_to_survive_p;
4789 else if (EQ (h->weak, Qkey_or_value))
4790 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
4791 else if (EQ (h->weak, Qkey_and_value))
4792 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
4793 else
4794 abort ();
4795
4796 next = HASH_NEXT (h, i);
4797
4798 if (remove_entries_p)
4799 {
4800 if (remove_p)
4801 {
4802 /* Take out of collision chain. */
4803 if (GC_NILP (prev))
4804 HASH_INDEX (h, bucket) = next;
4805 else
4806 HASH_NEXT (h, XFASTINT (prev)) = next;
4807
4808 /* Add to free list. */
4809 HASH_NEXT (h, i) = h->next_free;
4810 h->next_free = idx;
4811
4812 /* Clear key, value, and hash. */
4813 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
4814 HASH_HASH (h, i) = Qnil;
4815
4816 h->count = make_number (XFASTINT (h->count) - 1);
4817 }
4818 }
4819 else
4820 {
4821 if (!remove_p)
4822 {
4823 /* Make sure key and value survive. */
4824 if (!key_known_to_survive_p)
4825 {
4826 mark_object (HASH_KEY (h, i));
4827 marked = 1;
4828 }
4829
4830 if (!value_known_to_survive_p)
4831 {
4832 mark_object (HASH_VALUE (h, i));
4833 marked = 1;
4834 }
4835 }
4836 }
4837 }
4838 }
4839
4840 return marked;
4841 }
4842
4843 /* Remove elements from weak hash tables that don't survive the
4844 current garbage collection. Remove weak tables that don't survive
4845 from Vweak_hash_tables. Called from gc_sweep. */
4846
4847 void
4848 sweep_weak_hash_tables ()
4849 {
4850 Lisp_Object table, used, next;
4851 struct Lisp_Hash_Table *h;
4852 int marked;
4853
4854 /* Mark all keys and values that are in use. Keep on marking until
4855 there is no more change. This is necessary for cases like
4856 value-weak table A containing an entry X -> Y, where Y is used in a
4857 key-weak table B, Z -> Y. If B comes after A in the list of weak
4858 tables, X -> Y might be removed from A, although when looking at B
4859 one finds that it shouldn't. */
4860 do
4861 {
4862 marked = 0;
4863 for (table = Vweak_hash_tables; !GC_NILP (table); table = h->next_weak)
4864 {
4865 h = XHASH_TABLE (table);
4866 if (h->size & ARRAY_MARK_FLAG)
4867 marked |= sweep_weak_table (h, 0);
4868 }
4869 }
4870 while (marked);
4871
4872 /* Remove tables and entries that aren't used. */
4873 for (table = Vweak_hash_tables, used = Qnil; !GC_NILP (table); table = next)
4874 {
4875 h = XHASH_TABLE (table);
4876 next = h->next_weak;
4877
4878 if (h->size & ARRAY_MARK_FLAG)
4879 {
4880 /* TABLE is marked as used. Sweep its contents. */
4881 if (XFASTINT (h->count) > 0)
4882 sweep_weak_table (h, 1);
4883
4884 /* Add table to the list of used weak hash tables. */
4885 h->next_weak = used;
4886 used = table;
4887 }
4888 }
4889
4890 Vweak_hash_tables = used;
4891 }
4892
4893
4894 \f
4895 /***********************************************************************
4896 Hash Code Computation
4897 ***********************************************************************/
4898
4899 /* Maximum depth up to which to dive into Lisp structures. */
4900
4901 #define SXHASH_MAX_DEPTH 3
4902
4903 /* Maximum length up to which to take list and vector elements into
4904 account. */
4905
4906 #define SXHASH_MAX_LEN 7
4907
4908 /* Combine two integers X and Y for hashing. */
4909
4910 #define SXHASH_COMBINE(X, Y) \
4911 ((((unsigned)(X) << 4) + (((unsigned)(X) >> 24) & 0x0fffffff)) \
4912 + (unsigned)(Y))
4913
4914
4915 /* Return a hash for string PTR which has length LEN. The hash
4916 code returned is guaranteed to fit in a Lisp integer. */
4917
4918 static unsigned
4919 sxhash_string (ptr, len)
4920 unsigned char *ptr;
4921 int len;
4922 {
4923 unsigned char *p = ptr;
4924 unsigned char *end = p + len;
4925 unsigned char c;
4926 unsigned hash = 0;
4927
4928 while (p != end)
4929 {
4930 c = *p++;
4931 if (c >= 0140)
4932 c -= 40;
4933 hash = ((hash << 3) + (hash >> 28) + c);
4934 }
4935
4936 return hash & INTMASK;
4937 }
4938
4939
4940 /* Return a hash for list LIST. DEPTH is the current depth in the
4941 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4942
4943 static unsigned
4944 sxhash_list (list, depth)
4945 Lisp_Object list;
4946 int depth;
4947 {
4948 unsigned hash = 0;
4949 int i;
4950
4951 if (depth < SXHASH_MAX_DEPTH)
4952 for (i = 0;
4953 CONSP (list) && i < SXHASH_MAX_LEN;
4954 list = XCDR (list), ++i)
4955 {
4956 unsigned hash2 = sxhash (XCAR (list), depth + 1);
4957 hash = SXHASH_COMBINE (hash, hash2);
4958 }
4959
4960 return hash;
4961 }
4962
4963
4964 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4965 the Lisp structure. */
4966
4967 static unsigned
4968 sxhash_vector (vec, depth)
4969 Lisp_Object vec;
4970 int depth;
4971 {
4972 unsigned hash = XVECTOR (vec)->size;
4973 int i, n;
4974
4975 n = min (SXHASH_MAX_LEN, XVECTOR (vec)->size);
4976 for (i = 0; i < n; ++i)
4977 {
4978 unsigned hash2 = sxhash (XVECTOR (vec)->contents[i], depth + 1);
4979 hash = SXHASH_COMBINE (hash, hash2);
4980 }
4981
4982 return hash;
4983 }
4984
4985
4986 /* Return a hash for bool-vector VECTOR. */
4987
4988 static unsigned
4989 sxhash_bool_vector (vec)
4990 Lisp_Object vec;
4991 {
4992 unsigned hash = XBOOL_VECTOR (vec)->size;
4993 int i, n;
4994
4995 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->vector_size);
4996 for (i = 0; i < n; ++i)
4997 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4998
4999 return hash;
5000 }
5001
5002
5003 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
5004 structure. Value is an unsigned integer clipped to INTMASK. */
5005
5006 unsigned
5007 sxhash (obj, depth)
5008 Lisp_Object obj;
5009 int depth;
5010 {
5011 unsigned hash;
5012
5013 if (depth > SXHASH_MAX_DEPTH)
5014 return 0;
5015
5016 switch (XTYPE (obj))
5017 {
5018 case Lisp_Int:
5019 hash = XUINT (obj);
5020 break;
5021
5022 case Lisp_Symbol:
5023 hash = sxhash_string (SDATA (SYMBOL_NAME (obj)),
5024 SCHARS (SYMBOL_NAME (obj)));
5025 break;
5026
5027 case Lisp_Misc:
5028 hash = XUINT (obj);
5029 break;
5030
5031 case Lisp_String:
5032 hash = sxhash_string (SDATA (obj), SCHARS (obj));
5033 break;
5034
5035 /* This can be everything from a vector to an overlay. */
5036 case Lisp_Vectorlike:
5037 if (VECTORP (obj))
5038 /* According to the CL HyperSpec, two arrays are equal only if
5039 they are `eq', except for strings and bit-vectors. In
5040 Emacs, this works differently. We have to compare element
5041 by element. */
5042 hash = sxhash_vector (obj, depth);
5043 else if (BOOL_VECTOR_P (obj))
5044 hash = sxhash_bool_vector (obj);
5045 else
5046 /* Others are `equal' if they are `eq', so let's take their
5047 address as hash. */
5048 hash = XUINT (obj);
5049 break;
5050
5051 case Lisp_Cons:
5052 hash = sxhash_list (obj, depth);
5053 break;
5054
5055 case Lisp_Float:
5056 {
5057 unsigned char *p = (unsigned char *) &XFLOAT_DATA (obj);
5058 unsigned char *e = p + sizeof XFLOAT_DATA (obj);
5059 for (hash = 0; p < e; ++p)
5060 hash = SXHASH_COMBINE (hash, *p);
5061 break;
5062 }
5063
5064 default:
5065 abort ();
5066 }
5067
5068 return hash & INTMASK;
5069 }
5070
5071
5072 \f
5073 /***********************************************************************
5074 Lisp Interface
5075 ***********************************************************************/
5076
5077
5078 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
5079 doc: /* Compute a hash code for OBJ and return it as integer. */)
5080 (obj)
5081 Lisp_Object obj;
5082 {
5083 unsigned hash = sxhash (obj, 0);;
5084 return make_number (hash);
5085 }
5086
5087
5088 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
5089 doc: /* Create and return a new hash table.
5090
5091 Arguments are specified as keyword/argument pairs. The following
5092 arguments are defined:
5093
5094 :test TEST -- TEST must be a symbol that specifies how to compare
5095 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
5096 `equal'. User-supplied test and hash functions can be specified via
5097 `define-hash-table-test'.
5098
5099 :size SIZE -- A hint as to how many elements will be put in the table.
5100 Default is 65.
5101
5102 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
5103 fills up. If REHASH-SIZE is an integer, add that many space. If it
5104 is a float, it must be > 1.0, and the new size is computed by
5105 multiplying the old size with that factor. Default is 1.5.
5106
5107 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
5108 Resize the hash table when ratio of the number of entries in the
5109 table. Default is 0.8.
5110
5111 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
5112 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
5113 returned is a weak table. Key/value pairs are removed from a weak
5114 hash table when there are no non-weak references pointing to their
5115 key, value, one of key or value, or both key and value, depending on
5116 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
5117 is nil.
5118
5119 usage: (make-hash-table &rest KEYWORD-ARGS) */)
5120 (nargs, args)
5121 int nargs;
5122 Lisp_Object *args;
5123 {
5124 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
5125 Lisp_Object user_test, user_hash;
5126 char *used;
5127 int i;
5128
5129 /* The vector `used' is used to keep track of arguments that
5130 have been consumed. */
5131 used = (char *) alloca (nargs * sizeof *used);
5132 bzero (used, nargs * sizeof *used);
5133
5134 /* See if there's a `:test TEST' among the arguments. */
5135 i = get_key_arg (QCtest, nargs, args, used);
5136 test = i < 0 ? Qeql : args[i];
5137 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
5138 {
5139 /* See if it is a user-defined test. */
5140 Lisp_Object prop;
5141
5142 prop = Fget (test, Qhash_table_test);
5143 if (!CONSP (prop) || !CONSP (XCDR (prop)))
5144 Fsignal (Qerror, list2 (build_string ("Invalid hash table test"),
5145 test));
5146 user_test = XCAR (prop);
5147 user_hash = XCAR (XCDR (prop));
5148 }
5149 else
5150 user_test = user_hash = Qnil;
5151
5152 /* See if there's a `:size SIZE' argument. */
5153 i = get_key_arg (QCsize, nargs, args, used);
5154 size = i < 0 ? Qnil : args[i];
5155 if (NILP (size))
5156 size = make_number (DEFAULT_HASH_SIZE);
5157 else if (!INTEGERP (size) || XINT (size) < 0)
5158 Fsignal (Qerror,
5159 list2 (build_string ("Invalid hash table size"),
5160 size));
5161
5162 /* Look for `:rehash-size SIZE'. */
5163 i = get_key_arg (QCrehash_size, nargs, args, used);
5164 rehash_size = i < 0 ? make_float (DEFAULT_REHASH_SIZE) : args[i];
5165 if (!NUMBERP (rehash_size)
5166 || (INTEGERP (rehash_size) && XINT (rehash_size) <= 0)
5167 || XFLOATINT (rehash_size) <= 1.0)
5168 Fsignal (Qerror,
5169 list2 (build_string ("Invalid hash table rehash size"),
5170 rehash_size));
5171
5172 /* Look for `:rehash-threshold THRESHOLD'. */
5173 i = get_key_arg (QCrehash_threshold, nargs, args, used);
5174 rehash_threshold = i < 0 ? make_float (DEFAULT_REHASH_THRESHOLD) : args[i];
5175 if (!FLOATP (rehash_threshold)
5176 || XFLOATINT (rehash_threshold) <= 0.0
5177 || XFLOATINT (rehash_threshold) > 1.0)
5178 Fsignal (Qerror,
5179 list2 (build_string ("Invalid hash table rehash threshold"),
5180 rehash_threshold));
5181
5182 /* Look for `:weakness WEAK'. */
5183 i = get_key_arg (QCweakness, nargs, args, used);
5184 weak = i < 0 ? Qnil : args[i];
5185 if (EQ (weak, Qt))
5186 weak = Qkey_and_value;
5187 if (!NILP (weak)
5188 && !EQ (weak, Qkey)
5189 && !EQ (weak, Qvalue)
5190 && !EQ (weak, Qkey_or_value)
5191 && !EQ (weak, Qkey_and_value))
5192 Fsignal (Qerror, list2 (build_string ("Invalid hash table weakness"),
5193 weak));
5194
5195 /* Now, all args should have been used up, or there's a problem. */
5196 for (i = 0; i < nargs; ++i)
5197 if (!used[i])
5198 Fsignal (Qerror,
5199 list2 (build_string ("Invalid argument list"), args[i]));
5200
5201 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
5202 user_test, user_hash);
5203 }
5204
5205
5206 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
5207 doc: /* Return a copy of hash table TABLE. */)
5208 (table)
5209 Lisp_Object table;
5210 {
5211 return copy_hash_table (check_hash_table (table));
5212 }
5213
5214
5215 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
5216 doc: /* Return the number of elements in TABLE. */)
5217 (table)
5218 Lisp_Object table;
5219 {
5220 return check_hash_table (table)->count;
5221 }
5222
5223
5224 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
5225 Shash_table_rehash_size, 1, 1, 0,
5226 doc: /* Return the current rehash size of TABLE. */)
5227 (table)
5228 Lisp_Object table;
5229 {
5230 return check_hash_table (table)->rehash_size;
5231 }
5232
5233
5234 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
5235 Shash_table_rehash_threshold, 1, 1, 0,
5236 doc: /* Return the current rehash threshold of TABLE. */)
5237 (table)
5238 Lisp_Object table;
5239 {
5240 return check_hash_table (table)->rehash_threshold;
5241 }
5242
5243
5244 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
5245 doc: /* Return the size of TABLE.
5246 The size can be used as an argument to `make-hash-table' to create
5247 a hash table than can hold as many elements of TABLE holds
5248 without need for resizing. */)
5249 (table)
5250 Lisp_Object table;
5251 {
5252 struct Lisp_Hash_Table *h = check_hash_table (table);
5253 return make_number (HASH_TABLE_SIZE (h));
5254 }
5255
5256
5257 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
5258 doc: /* Return the test TABLE uses. */)
5259 (table)
5260 Lisp_Object table;
5261 {
5262 return check_hash_table (table)->test;
5263 }
5264
5265
5266 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
5267 1, 1, 0,
5268 doc: /* Return the weakness of TABLE. */)
5269 (table)
5270 Lisp_Object table;
5271 {
5272 return check_hash_table (table)->weak;
5273 }
5274
5275
5276 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
5277 doc: /* Return t if OBJ is a Lisp hash table object. */)
5278 (obj)
5279 Lisp_Object obj;
5280 {
5281 return HASH_TABLE_P (obj) ? Qt : Qnil;
5282 }
5283
5284
5285 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
5286 doc: /* Clear hash table TABLE. */)
5287 (table)
5288 Lisp_Object table;
5289 {
5290 hash_clear (check_hash_table (table));
5291 return Qnil;
5292 }
5293
5294
5295 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
5296 doc: /* Look up KEY in TABLE and return its associated value.
5297 If KEY is not found, return DFLT which defaults to nil. */)
5298 (key, table, dflt)
5299 Lisp_Object key, table, dflt;
5300 {
5301 struct Lisp_Hash_Table *h = check_hash_table (table);
5302 int i = hash_lookup (h, key, NULL);
5303 return i >= 0 ? HASH_VALUE (h, i) : dflt;
5304 }
5305
5306
5307 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
5308 doc: /* Associate KEY with VALUE in hash table TABLE.
5309 If KEY is already present in table, replace its current value with
5310 VALUE. */)
5311 (key, value, table)
5312 Lisp_Object key, value, table;
5313 {
5314 struct Lisp_Hash_Table *h = check_hash_table (table);
5315 int i;
5316 unsigned hash;
5317
5318 i = hash_lookup (h, key, &hash);
5319 if (i >= 0)
5320 HASH_VALUE (h, i) = value;
5321 else
5322 hash_put (h, key, value, hash);
5323
5324 return value;
5325 }
5326
5327
5328 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
5329 doc: /* Remove KEY from TABLE. */)
5330 (key, table)
5331 Lisp_Object key, table;
5332 {
5333 struct Lisp_Hash_Table *h = check_hash_table (table);
5334 hash_remove (h, key);
5335 return Qnil;
5336 }
5337
5338
5339 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
5340 doc: /* Call FUNCTION for all entries in hash table TABLE.
5341 FUNCTION is called with 2 arguments KEY and VALUE. */)
5342 (function, table)
5343 Lisp_Object function, table;
5344 {
5345 struct Lisp_Hash_Table *h = check_hash_table (table);
5346 Lisp_Object args[3];
5347 int i;
5348
5349 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
5350 if (!NILP (HASH_HASH (h, i)))
5351 {
5352 args[0] = function;
5353 args[1] = HASH_KEY (h, i);
5354 args[2] = HASH_VALUE (h, i);
5355 Ffuncall (3, args);
5356 }
5357
5358 return Qnil;
5359 }
5360
5361
5362 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
5363 Sdefine_hash_table_test, 3, 3, 0,
5364 doc: /* Define a new hash table test with name NAME, a symbol.
5365
5366 In hash tables created with NAME specified as test, use TEST to
5367 compare keys, and HASH for computing hash codes of keys.
5368
5369 TEST must be a function taking two arguments and returning non-nil if
5370 both arguments are the same. HASH must be a function taking one
5371 argument and return an integer that is the hash code of the argument.
5372 Hash code computation should use the whole value range of integers,
5373 including negative integers. */)
5374 (name, test, hash)
5375 Lisp_Object name, test, hash;
5376 {
5377 return Fput (name, Qhash_table_test, list2 (test, hash));
5378 }
5379
5380
5381 \f
5382 /************************************************************************
5383 MD5
5384 ************************************************************************/
5385
5386 #include "md5.h"
5387 #include "coding.h"
5388
5389 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
5390 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
5391
5392 A message digest is a cryptographic checksum of a document, and the
5393 algorithm to calculate it is defined in RFC 1321.
5394
5395 The two optional arguments START and END are character positions
5396 specifying for which part of OBJECT the message digest should be
5397 computed. If nil or omitted, the digest is computed for the whole
5398 OBJECT.
5399
5400 The MD5 message digest is computed from the result of encoding the
5401 text in a coding system, not directly from the internal Emacs form of
5402 the text. The optional fourth argument CODING-SYSTEM specifies which
5403 coding system to encode the text with. It should be the same coding
5404 system that you used or will use when actually writing the text into a
5405 file.
5406
5407 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
5408 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
5409 system would be chosen by default for writing this text into a file.
5410
5411 If OBJECT is a string, the most preferred coding system (see the
5412 command `prefer-coding-system') is used.
5413
5414 If NOERROR is non-nil, silently assume the `raw-text' coding if the
5415 guesswork fails. Normally, an error is signaled in such case. */)
5416 (object, start, end, coding_system, noerror)
5417 Lisp_Object object, start, end, coding_system, noerror;
5418 {
5419 unsigned char digest[16];
5420 unsigned char value[33];
5421 int i;
5422 int size;
5423 int size_byte = 0;
5424 int start_char = 0, end_char = 0;
5425 int start_byte = 0, end_byte = 0;
5426 register int b, e;
5427 register struct buffer *bp;
5428 int temp;
5429
5430 if (STRINGP (object))
5431 {
5432 if (NILP (coding_system))
5433 {
5434 /* Decide the coding-system to encode the data with. */
5435
5436 if (STRING_MULTIBYTE (object))
5437 /* use default, we can't guess correct value */
5438 coding_system = SYMBOL_VALUE (XCAR (Vcoding_category_list));
5439 else
5440 coding_system = Qraw_text;
5441 }
5442
5443 if (NILP (Fcoding_system_p (coding_system)))
5444 {
5445 /* Invalid coding system. */
5446
5447 if (!NILP (noerror))
5448 coding_system = Qraw_text;
5449 else
5450 while (1)
5451 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
5452 }
5453
5454 if (STRING_MULTIBYTE (object))
5455 object = code_convert_string1 (object, coding_system, Qnil, 1);
5456
5457 size = SCHARS (object);
5458 size_byte = SBYTES (object);
5459
5460 if (!NILP (start))
5461 {
5462 CHECK_NUMBER (start);
5463
5464 start_char = XINT (start);
5465
5466 if (start_char < 0)
5467 start_char += size;
5468
5469 start_byte = string_char_to_byte (object, start_char);
5470 }
5471
5472 if (NILP (end))
5473 {
5474 end_char = size;
5475 end_byte = size_byte;
5476 }
5477 else
5478 {
5479 CHECK_NUMBER (end);
5480
5481 end_char = XINT (end);
5482
5483 if (end_char < 0)
5484 end_char += size;
5485
5486 end_byte = string_char_to_byte (object, end_char);
5487 }
5488
5489 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
5490 args_out_of_range_3 (object, make_number (start_char),
5491 make_number (end_char));
5492 }
5493 else
5494 {
5495 struct buffer *prev = current_buffer;
5496
5497 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
5498
5499 CHECK_BUFFER (object);
5500
5501 bp = XBUFFER (object);
5502 if (bp != current_buffer)
5503 set_buffer_internal (bp);
5504
5505 if (NILP (start))
5506 b = BEGV;
5507 else
5508 {
5509 CHECK_NUMBER_COERCE_MARKER (start);
5510 b = XINT (start);
5511 }
5512
5513 if (NILP (end))
5514 e = ZV;
5515 else
5516 {
5517 CHECK_NUMBER_COERCE_MARKER (end);
5518 e = XINT (end);
5519 }
5520
5521 if (b > e)
5522 temp = b, b = e, e = temp;
5523
5524 if (!(BEGV <= b && e <= ZV))
5525 args_out_of_range (start, end);
5526
5527 if (NILP (coding_system))
5528 {
5529 /* Decide the coding-system to encode the data with.
5530 See fileio.c:Fwrite-region */
5531
5532 if (!NILP (Vcoding_system_for_write))
5533 coding_system = Vcoding_system_for_write;
5534 else
5535 {
5536 int force_raw_text = 0;
5537
5538 coding_system = XBUFFER (object)->buffer_file_coding_system;
5539 if (NILP (coding_system)
5540 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
5541 {
5542 coding_system = Qnil;
5543 if (NILP (current_buffer->enable_multibyte_characters))
5544 force_raw_text = 1;
5545 }
5546
5547 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
5548 {
5549 /* Check file-coding-system-alist. */
5550 Lisp_Object args[4], val;
5551
5552 args[0] = Qwrite_region; args[1] = start; args[2] = end;
5553 args[3] = Fbuffer_file_name(object);
5554 val = Ffind_operation_coding_system (4, args);
5555 if (CONSP (val) && !NILP (XCDR (val)))
5556 coding_system = XCDR (val);
5557 }
5558
5559 if (NILP (coding_system)
5560 && !NILP (XBUFFER (object)->buffer_file_coding_system))
5561 {
5562 /* If we still have not decided a coding system, use the
5563 default value of buffer-file-coding-system. */
5564 coding_system = XBUFFER (object)->buffer_file_coding_system;
5565 }
5566
5567 if (!force_raw_text
5568 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
5569 /* Confirm that VAL can surely encode the current region. */
5570 coding_system = call4 (Vselect_safe_coding_system_function,
5571 make_number (b), make_number (e),
5572 coding_system, Qnil);
5573
5574 if (force_raw_text)
5575 coding_system = Qraw_text;
5576 }
5577
5578 if (NILP (Fcoding_system_p (coding_system)))
5579 {
5580 /* Invalid coding system. */
5581
5582 if (!NILP (noerror))
5583 coding_system = Qraw_text;
5584 else
5585 while (1)
5586 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
5587 }
5588 }
5589
5590 object = make_buffer_string (b, e, 0);
5591 if (prev != current_buffer)
5592 set_buffer_internal (prev);
5593 /* Discard the unwind protect for recovering the current
5594 buffer. */
5595 specpdl_ptr--;
5596
5597 if (STRING_MULTIBYTE (object))
5598 object = code_convert_string1 (object, coding_system, Qnil, 1);
5599 }
5600
5601 md5_buffer (SDATA (object) + start_byte,
5602 SBYTES (object) - (size_byte - end_byte),
5603 digest);
5604
5605 for (i = 0; i < 16; i++)
5606 sprintf (&value[2 * i], "%02x", digest[i]);
5607 value[32] = '\0';
5608
5609 return make_string (value, 32);
5610 }
5611
5612 \f
5613 void
5614 syms_of_fns ()
5615 {
5616 /* Hash table stuff. */
5617 Qhash_table_p = intern ("hash-table-p");
5618 staticpro (&Qhash_table_p);
5619 Qeq = intern ("eq");
5620 staticpro (&Qeq);
5621 Qeql = intern ("eql");
5622 staticpro (&Qeql);
5623 Qequal = intern ("equal");
5624 staticpro (&Qequal);
5625 QCtest = intern (":test");
5626 staticpro (&QCtest);
5627 QCsize = intern (":size");
5628 staticpro (&QCsize);
5629 QCrehash_size = intern (":rehash-size");
5630 staticpro (&QCrehash_size);
5631 QCrehash_threshold = intern (":rehash-threshold");
5632 staticpro (&QCrehash_threshold);
5633 QCweakness = intern (":weakness");
5634 staticpro (&QCweakness);
5635 Qkey = intern ("key");
5636 staticpro (&Qkey);
5637 Qvalue = intern ("value");
5638 staticpro (&Qvalue);
5639 Qhash_table_test = intern ("hash-table-test");
5640 staticpro (&Qhash_table_test);
5641 Qkey_or_value = intern ("key-or-value");
5642 staticpro (&Qkey_or_value);
5643 Qkey_and_value = intern ("key-and-value");
5644 staticpro (&Qkey_and_value);
5645
5646 defsubr (&Ssxhash);
5647 defsubr (&Smake_hash_table);
5648 defsubr (&Scopy_hash_table);
5649 defsubr (&Shash_table_count);
5650 defsubr (&Shash_table_rehash_size);
5651 defsubr (&Shash_table_rehash_threshold);
5652 defsubr (&Shash_table_size);
5653 defsubr (&Shash_table_test);
5654 defsubr (&Shash_table_weakness);
5655 defsubr (&Shash_table_p);
5656 defsubr (&Sclrhash);
5657 defsubr (&Sgethash);
5658 defsubr (&Sputhash);
5659 defsubr (&Sremhash);
5660 defsubr (&Smaphash);
5661 defsubr (&Sdefine_hash_table_test);
5662
5663 Qstring_lessp = intern ("string-lessp");
5664 staticpro (&Qstring_lessp);
5665 Qprovide = intern ("provide");
5666 staticpro (&Qprovide);
5667 Qrequire = intern ("require");
5668 staticpro (&Qrequire);
5669 Qyes_or_no_p_history = intern ("yes-or-no-p-history");
5670 staticpro (&Qyes_or_no_p_history);
5671 Qcursor_in_echo_area = intern ("cursor-in-echo-area");
5672 staticpro (&Qcursor_in_echo_area);
5673 Qwidget_type = intern ("widget-type");
5674 staticpro (&Qwidget_type);
5675
5676 staticpro (&string_char_byte_cache_string);
5677 string_char_byte_cache_string = Qnil;
5678
5679 require_nesting_list = Qnil;
5680 staticpro (&require_nesting_list);
5681
5682 Fset (Qyes_or_no_p_history, Qnil);
5683
5684 DEFVAR_LISP ("features", &Vfeatures,
5685 doc: /* A list of symbols which are the features of the executing emacs.
5686 Used by `featurep' and `require', and altered by `provide'. */);
5687 Vfeatures = Qnil;
5688 Qsubfeatures = intern ("subfeatures");
5689 staticpro (&Qsubfeatures);
5690
5691 #ifdef HAVE_LANGINFO_CODESET
5692 Qcodeset = intern ("codeset");
5693 staticpro (&Qcodeset);
5694 Qdays = intern ("days");
5695 staticpro (&Qdays);
5696 Qmonths = intern ("months");
5697 staticpro (&Qmonths);
5698 Qpaper = intern ("paper");
5699 staticpro (&Qpaper);
5700 #endif /* HAVE_LANGINFO_CODESET */
5701
5702 DEFVAR_BOOL ("use-dialog-box", &use_dialog_box,
5703 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
5704 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
5705 invoked by mouse clicks and mouse menu items. */);
5706 use_dialog_box = 1;
5707
5708 DEFVAR_BOOL ("use-file-dialog", &use_file_dialog,
5709 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
5710 This applies to commands from menus and tool bar buttons. The value of
5711 `use-dialog-box' takes precedence over this variable, so a file dialog is only
5712 used if both `use-dialog-box' and this variable are non-nil. */);
5713 use_file_dialog = 1;
5714
5715 defsubr (&Sidentity);
5716 defsubr (&Srandom);
5717 defsubr (&Slength);
5718 defsubr (&Ssafe_length);
5719 defsubr (&Sstring_bytes);
5720 defsubr (&Sstring_equal);
5721 defsubr (&Scompare_strings);
5722 defsubr (&Sstring_lessp);
5723 defsubr (&Sappend);
5724 defsubr (&Sconcat);
5725 defsubr (&Svconcat);
5726 defsubr (&Scopy_sequence);
5727 defsubr (&Sstring_make_multibyte);
5728 defsubr (&Sstring_make_unibyte);
5729 defsubr (&Sstring_as_multibyte);
5730 defsubr (&Sstring_as_unibyte);
5731 defsubr (&Sstring_to_multibyte);
5732 defsubr (&Scopy_alist);
5733 defsubr (&Ssubstring);
5734 defsubr (&Ssubstring_no_properties);
5735 defsubr (&Snthcdr);
5736 defsubr (&Snth);
5737 defsubr (&Selt);
5738 defsubr (&Smember);
5739 defsubr (&Smemq);
5740 defsubr (&Sassq);
5741 defsubr (&Sassoc);
5742 defsubr (&Srassq);
5743 defsubr (&Srassoc);
5744 defsubr (&Sdelq);
5745 defsubr (&Sdelete);
5746 defsubr (&Snreverse);
5747 defsubr (&Sreverse);
5748 defsubr (&Ssort);
5749 defsubr (&Splist_get);
5750 defsubr (&Sget);
5751 defsubr (&Splist_put);
5752 defsubr (&Sput);
5753 defsubr (&Slax_plist_get);
5754 defsubr (&Slax_plist_put);
5755 defsubr (&Seql);
5756 defsubr (&Sequal);
5757 defsubr (&Sequal_including_properties);
5758 defsubr (&Sfillarray);
5759 defsubr (&Sclear_string);
5760 defsubr (&Schar_table_subtype);
5761 defsubr (&Schar_table_parent);
5762 defsubr (&Sset_char_table_parent);
5763 defsubr (&Schar_table_extra_slot);
5764 defsubr (&Sset_char_table_extra_slot);
5765 defsubr (&Schar_table_range);
5766 defsubr (&Sset_char_table_range);
5767 defsubr (&Sset_char_table_default);
5768 defsubr (&Soptimize_char_table);
5769 defsubr (&Smap_char_table);
5770 defsubr (&Snconc);
5771 defsubr (&Smapcar);
5772 defsubr (&Smapc);
5773 defsubr (&Smapconcat);
5774 defsubr (&Sy_or_n_p);
5775 defsubr (&Syes_or_no_p);
5776 defsubr (&Sload_average);
5777 defsubr (&Sfeaturep);
5778 defsubr (&Srequire);
5779 defsubr (&Sprovide);
5780 defsubr (&Splist_member);
5781 defsubr (&Swidget_put);
5782 defsubr (&Swidget_get);
5783 defsubr (&Swidget_apply);
5784 defsubr (&Sbase64_encode_region);
5785 defsubr (&Sbase64_decode_region);
5786 defsubr (&Sbase64_encode_string);
5787 defsubr (&Sbase64_decode_string);
5788 defsubr (&Smd5);
5789 defsubr (&Slocale_info);
5790 }
5791
5792
5793 void
5794 init_fns ()
5795 {
5796 Vweak_hash_tables = Qnil;
5797 }
5798
5799 /* arch-tag: 787f8219-5b74-46bd-8469-7e1cc475fa31
5800 (do not change this comment) */