]> code.delx.au - gnu-emacs/blob - src/keymap.c
(mmap_enlarge): Don't return 0 if successful.
[gnu-emacs] / src / keymap.c
1 /* Manipulation of keymaps
2 Copyright (C) 1985, 86,87,88,93,94,95,98,99 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 #include <config.h>
23 #include <stdio.h>
24 #undef NULL
25 #include "lisp.h"
26 #include "commands.h"
27 #include "buffer.h"
28 #include "charset.h"
29 #include "keyboard.h"
30 #include "termhooks.h"
31 #include "blockinput.h"
32 #include "puresize.h"
33 #include "intervals.h"
34
35 #define min(a, b) ((a) < (b) ? (a) : (b))
36 #define KEYMAPP(m) (!NILP (Fkeymapp (m)))
37
38 /* The number of elements in keymap vectors. */
39 #define DENSE_TABLE_SIZE (0200)
40
41 /* Actually allocate storage for these variables */
42
43 Lisp_Object current_global_map; /* Current global keymap */
44
45 Lisp_Object global_map; /* default global key bindings */
46
47 Lisp_Object meta_map; /* The keymap used for globally bound
48 ESC-prefixed default commands */
49
50 Lisp_Object control_x_map; /* The keymap used for globally bound
51 C-x-prefixed default commands */
52
53 /* was MinibufLocalMap */
54 Lisp_Object Vminibuffer_local_map;
55 /* The keymap used by the minibuf for local
56 bindings when spaces are allowed in the
57 minibuf */
58
59 /* was MinibufLocalNSMap */
60 Lisp_Object Vminibuffer_local_ns_map;
61 /* The keymap used by the minibuf for local
62 bindings when spaces are not encouraged
63 in the minibuf */
64
65 /* keymap used for minibuffers when doing completion */
66 /* was MinibufLocalCompletionMap */
67 Lisp_Object Vminibuffer_local_completion_map;
68
69 /* keymap used for minibuffers when doing completion and require a match */
70 /* was MinibufLocalMustMatchMap */
71 Lisp_Object Vminibuffer_local_must_match_map;
72
73 /* Alist of minor mode variables and keymaps. */
74 Lisp_Object Vminor_mode_map_alist;
75
76 /* Alist of major-mode-specific overrides for
77 minor mode variables and keymaps. */
78 Lisp_Object Vminor_mode_overriding_map_alist;
79
80 /* Keymap mapping ASCII function key sequences onto their preferred forms.
81 Initialized by the terminal-specific lisp files. See DEFVAR for more
82 documentation. */
83 Lisp_Object Vfunction_key_map;
84
85 /* Keymap mapping ASCII function key sequences onto their preferred forms. */
86 Lisp_Object Vkey_translation_map;
87
88 /* A list of all commands given new bindings since a certain time
89 when nil was stored here.
90 This is used to speed up recomputation of menu key equivalents
91 when Emacs starts up. t means don't record anything here. */
92 Lisp_Object Vdefine_key_rebound_commands;
93
94 Lisp_Object Qkeymapp, Qkeymap, Qnon_ascii, Qmenu_item;
95
96 /* A char with the CHAR_META bit set in a vector or the 0200 bit set
97 in a string key sequence is equivalent to prefixing with this
98 character. */
99 extern Lisp_Object meta_prefix_char;
100
101 extern Lisp_Object Voverriding_local_map;
102
103 static Lisp_Object store_in_keymap P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
104 static void fix_submap_inheritance P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
105
106 static Lisp_Object define_as_prefix P_ ((Lisp_Object, Lisp_Object));
107 static Lisp_Object describe_buffer_bindings P_ ((Lisp_Object));
108 static void describe_command P_ ((Lisp_Object));
109 static void describe_translation P_ ((Lisp_Object));
110 static void describe_map P_ ((Lisp_Object, Lisp_Object,
111 void (*) P_ ((Lisp_Object)),
112 int, Lisp_Object, Lisp_Object*, int));
113 \f
114 /* Keymap object support - constructors and predicates. */
115
116 DEFUN ("make-keymap", Fmake_keymap, Smake_keymap, 0, 1, 0,
117 "Construct and return a new keymap, of the form (keymap CHARTABLE . ALIST).\n\
118 CHARTABLE is a char-table that holds the bindings for the ASCII\n\
119 characters. ALIST is an assoc-list which holds bindings for function keys,\n\
120 mouse events, and any other things that appear in the input stream.\n\
121 All entries in it are initially nil, meaning \"command undefined\".\n\n\
122 The optional arg STRING supplies a menu name for the keymap\n\
123 in case you use it as a menu with `x-popup-menu'.")
124 (string)
125 Lisp_Object string;
126 {
127 Lisp_Object tail;
128 if (!NILP (string))
129 tail = Fcons (string, Qnil);
130 else
131 tail = Qnil;
132 return Fcons (Qkeymap,
133 Fcons (Fmake_char_table (Qkeymap, Qnil), tail));
134 }
135
136 DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, Smake_sparse_keymap, 0, 1, 0,
137 "Construct and return a new sparse-keymap list.\n\
138 Its car is `keymap' and its cdr is an alist of (CHAR . DEFINITION),\n\
139 which binds the character CHAR to DEFINITION, or (SYMBOL . DEFINITION),\n\
140 which binds the function key or mouse event SYMBOL to DEFINITION.\n\
141 Initially the alist is nil.\n\n\
142 The optional arg STRING supplies a menu name for the keymap\n\
143 in case you use it as a menu with `x-popup-menu'.")
144 (string)
145 Lisp_Object string;
146 {
147 if (!NILP (string))
148 return Fcons (Qkeymap, Fcons (string, Qnil));
149 return Fcons (Qkeymap, Qnil);
150 }
151
152 /* This function is used for installing the standard key bindings
153 at initialization time.
154
155 For example:
156
157 initial_define_key (control_x_map, Ctl('X'), "exchange-point-and-mark"); */
158
159 void
160 initial_define_key (keymap, key, defname)
161 Lisp_Object keymap;
162 int key;
163 char *defname;
164 {
165 store_in_keymap (keymap, make_number (key), intern (defname));
166 }
167
168 void
169 initial_define_lispy_key (keymap, keyname, defname)
170 Lisp_Object keymap;
171 char *keyname;
172 char *defname;
173 {
174 store_in_keymap (keymap, intern (keyname), intern (defname));
175 }
176
177 /* Define character fromchar in map frommap as an alias for character
178 tochar in map tomap. Subsequent redefinitions of the latter WILL
179 affect the former. */
180
181 #if 0
182 void
183 synkey (frommap, fromchar, tomap, tochar)
184 struct Lisp_Vector *frommap, *tomap;
185 int fromchar, tochar;
186 {
187 Lisp_Object v, c;
188 XSETVECTOR (v, tomap);
189 XSETFASTINT (c, tochar);
190 frommap->contents[fromchar] = Fcons (v, c);
191 }
192 #endif /* 0 */
193
194 DEFUN ("keymapp", Fkeymapp, Skeymapp, 1, 1, 0,
195 "Return t if OBJECT is a keymap.\n\
196 \n\
197 A keymap is a list (keymap . ALIST),\n\
198 or a symbol whose function definition is itself a keymap.\n\
199 ALIST elements look like (CHAR . DEFN) or (SYMBOL . DEFN);\n\
200 a vector of densely packed bindings for small character codes\n\
201 is also allowed as an element.")
202 (object)
203 Lisp_Object object;
204 {
205 /* FIXME: Maybe this should return t for autoloaded keymaps? -sm */
206 return (NILP (get_keymap_1 (object, 0, 0)) ? Qnil : Qt);
207 }
208
209 /* Check that OBJECT is a keymap (after dereferencing through any
210 symbols). If it is, return it.
211
212 If AUTOLOAD is non-zero and OBJECT is a symbol whose function value
213 is an autoload form, do the autoload and try again.
214 If AUTOLOAD is nonzero, callers must assume GC is possible.
215
216 ERROR controls how we respond if OBJECT isn't a keymap.
217 If ERROR is non-zero, signal an error; otherwise, just return Qnil.
218
219 Note that most of the time, we don't want to pursue autoloads.
220 Functions like Faccessible_keymaps which scan entire keymap trees
221 shouldn't load every autoloaded keymap. I'm not sure about this,
222 but it seems to me that only read_key_sequence, Flookup_key, and
223 Fdefine_key should cause keymaps to be autoloaded.
224
225 This function can GC when AUTOLOAD is non-zero, because it calls
226 do_autoload which can GC. */
227
228 Lisp_Object
229 get_keymap_1 (object, error, autoload)
230 Lisp_Object object;
231 int error, autoload;
232 {
233 Lisp_Object tem;
234
235 autoload_retry:
236 if (NILP (object))
237 goto end;
238 if (CONSP (object) && EQ (XCAR (object), Qkeymap))
239 return object;
240 else
241 {
242 tem = indirect_function (object);
243 if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
244 return tem;
245 }
246
247 /* Should we do an autoload? Autoload forms for keymaps have
248 Qkeymap as their fifth element. */
249 if (autoload
250 && SYMBOLP (object)
251 && CONSP (tem)
252 && EQ (XCAR (tem), Qautoload))
253 {
254 Lisp_Object tail;
255
256 tail = Fnth (make_number (4), tem);
257 if (EQ (tail, Qkeymap))
258 {
259 struct gcpro gcpro1, gcpro2;
260
261 GCPRO2 (tem, object);
262 do_autoload (tem, object);
263 UNGCPRO;
264
265 goto autoload_retry;
266 }
267 }
268
269 end:
270 if (error)
271 wrong_type_argument (Qkeymapp, object);
272 else
273 return Qnil;
274 }
275
276
277 /* Follow any symbol chaining, and return the keymap denoted by OBJECT.
278 If OBJECT doesn't denote a keymap at all, signal an error. */
279 Lisp_Object
280 get_keymap (object)
281 Lisp_Object object;
282 {
283 return get_keymap_1 (object, 1, 0);
284 }
285 \f
286 /* Return the parent map of the keymap MAP, or nil if it has none.
287 We assume that MAP is a valid keymap. */
288
289 DEFUN ("keymap-parent", Fkeymap_parent, Skeymap_parent, 1, 1, 0,
290 "Return the parent keymap of KEYMAP.")
291 (keymap)
292 Lisp_Object keymap;
293 {
294 Lisp_Object list;
295
296 keymap = get_keymap_1 (keymap, 1, 1);
297
298 /* Skip past the initial element `keymap'. */
299 list = XCDR (keymap);
300 for (; CONSP (list); list = XCDR (list))
301 {
302 /* See if there is another `keymap'. */
303 if (KEYMAPP (list))
304 return list;
305 }
306
307 return Qnil;
308 }
309
310
311 /* Set the parent keymap of MAP to PARENT. */
312
313 DEFUN ("set-keymap-parent", Fset_keymap_parent, Sset_keymap_parent, 2, 2, 0,
314 "Modify KEYMAP to set its parent map to PARENT.\n\
315 PARENT should be nil or another keymap.")
316 (keymap, parent)
317 Lisp_Object keymap, parent;
318 {
319 Lisp_Object list, prev;
320 struct gcpro gcpro1;
321 int i;
322
323 keymap = get_keymap_1 (keymap, 1, 1);
324 GCPRO1 (keymap);
325
326 if (!NILP (parent))
327 {
328 Lisp_Object k;
329
330 parent = get_keymap_1 (parent, 1, 1);
331
332 /* Check for cycles. */
333 k = parent;
334 while (KEYMAPP (k) && !EQ (keymap, k))
335 k = Fkeymap_parent (k);
336 if (EQ (keymap, k))
337 error ("Cyclic keymap inheritance");
338 }
339
340 /* Skip past the initial element `keymap'. */
341 prev = keymap;
342 while (1)
343 {
344 list = XCDR (prev);
345 /* If there is a parent keymap here, replace it.
346 If we came to the end, add the parent in PREV. */
347 if (! CONSP (list) || KEYMAPP (list))
348 {
349 /* If we already have the right parent, return now
350 so that we avoid the loops below. */
351 if (EQ (XCDR (prev), parent))
352 RETURN_UNGCPRO (parent);
353
354 XCDR (prev) = parent;
355 break;
356 }
357 prev = list;
358 }
359
360 /* Scan through for submaps, and set their parents too. */
361
362 for (list = XCDR (keymap); CONSP (list); list = XCDR (list))
363 {
364 /* Stop the scan when we come to the parent. */
365 if (EQ (XCAR (list), Qkeymap))
366 break;
367
368 /* If this element holds a prefix map, deal with it. */
369 if (CONSP (XCAR (list))
370 && CONSP (XCDR (XCAR (list))))
371 fix_submap_inheritance (keymap, XCAR (XCAR (list)),
372 XCDR (XCAR (list)));
373
374 if (VECTORP (XCAR (list)))
375 for (i = 0; i < XVECTOR (XCAR (list))->size; i++)
376 if (CONSP (XVECTOR (XCAR (list))->contents[i]))
377 fix_submap_inheritance (keymap, make_number (i),
378 XVECTOR (XCAR (list))->contents[i]);
379
380 if (CHAR_TABLE_P (XCAR (list)))
381 {
382 Lisp_Object indices[3];
383
384 map_char_table (fix_submap_inheritance, Qnil, XCAR (list),
385 keymap, 0, indices);
386 }
387 }
388
389 RETURN_UNGCPRO (parent);
390 }
391
392 /* EVENT is defined in MAP as a prefix, and SUBMAP is its definition.
393 if EVENT is also a prefix in MAP's parent,
394 make sure that SUBMAP inherits that definition as its own parent. */
395
396 static void
397 fix_submap_inheritance (map, event, submap)
398 Lisp_Object map, event, submap;
399 {
400 Lisp_Object map_parent, parent_entry;
401
402 /* SUBMAP is a cons that we found as a key binding.
403 Discard the other things found in a menu key binding. */
404
405 if (CONSP (submap))
406 {
407 /* May be an old format menu item */
408 if (STRINGP (XCAR (submap)))
409 {
410 submap = XCDR (submap);
411 /* Also remove a menu help string, if any,
412 following the menu item name. */
413 if (CONSP (submap) && STRINGP (XCAR (submap)))
414 submap = XCDR (submap);
415 /* Also remove the sublist that caches key equivalences, if any. */
416 if (CONSP (submap)
417 && CONSP (XCAR (submap)))
418 {
419 Lisp_Object carcar;
420 carcar = XCAR (XCAR (submap));
421 if (NILP (carcar) || VECTORP (carcar))
422 submap = XCDR (submap);
423 }
424 }
425
426 /* Or a new format menu item */
427 else if (EQ (XCAR (submap), Qmenu_item)
428 && CONSP (XCDR (submap)))
429 {
430 submap = XCDR (XCDR (submap));
431 if (CONSP (submap))
432 submap = XCAR (submap);
433 }
434 }
435
436 /* If it isn't a keymap now, there's no work to do. */
437 if (! CONSP (submap)
438 || ! EQ (XCAR (submap), Qkeymap))
439 return;
440
441 map_parent = Fkeymap_parent (map);
442 if (! NILP (map_parent))
443 parent_entry = access_keymap (map_parent, event, 0, 0);
444 else
445 parent_entry = Qnil;
446
447 /* If MAP's parent has something other than a keymap,
448 our own submap shadows it completely, so use nil as SUBMAP's parent. */
449 if (! (CONSP (parent_entry) && EQ (XCAR (parent_entry), Qkeymap)))
450 parent_entry = Qnil;
451
452 if (! EQ (parent_entry, submap))
453 {
454 Lisp_Object submap_parent;
455 submap_parent = submap;
456 while (1)
457 {
458 Lisp_Object tem;
459 tem = Fkeymap_parent (submap_parent);
460 if (EQ (tem, parent_entry))
461 return;
462 if (CONSP (tem)
463 && EQ (XCAR (tem), Qkeymap))
464 submap_parent = tem;
465 else
466 break;
467 }
468 Fset_keymap_parent (submap_parent, parent_entry);
469 }
470 }
471 \f
472 /* Look up IDX in MAP. IDX may be any sort of event.
473 Note that this does only one level of lookup; IDX must be a single
474 event, not a sequence.
475
476 If T_OK is non-zero, bindings for Qt are treated as default
477 bindings; any key left unmentioned by other tables and bindings is
478 given the binding of Qt.
479
480 If T_OK is zero, bindings for Qt are not treated specially.
481
482 If NOINHERIT, don't accept a subkeymap found in an inherited keymap. */
483
484 Lisp_Object
485 access_keymap (map, idx, t_ok, noinherit)
486 Lisp_Object map;
487 Lisp_Object idx;
488 int t_ok;
489 int noinherit;
490 {
491 int noprefix = 0;
492 Lisp_Object val;
493
494 /* If idx is a list (some sort of mouse click, perhaps?),
495 the index we want to use is the car of the list, which
496 ought to be a symbol. */
497 idx = EVENT_HEAD (idx);
498
499 /* If idx is a symbol, it might have modifiers, which need to
500 be put in the canonical order. */
501 if (SYMBOLP (idx))
502 idx = reorder_modifiers (idx);
503 else if (INTEGERP (idx))
504 /* Clobber the high bits that can be present on a machine
505 with more than 24 bits of integer. */
506 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
507
508 {
509 Lisp_Object tail;
510 Lisp_Object t_binding;
511
512 t_binding = Qnil;
513 for (tail = map; CONSP (tail); tail = XCDR (tail))
514 {
515 Lisp_Object binding;
516
517 binding = XCAR (tail);
518 if (SYMBOLP (binding))
519 {
520 /* If NOINHERIT, stop finding prefix definitions
521 after we pass a second occurrence of the `keymap' symbol. */
522 if (noinherit && EQ (binding, Qkeymap) && ! EQ (tail, map))
523 noprefix = 1;
524 }
525 else if (CONSP (binding))
526 {
527 if (EQ (XCAR (binding), idx))
528 {
529 val = XCDR (binding);
530 if (noprefix && CONSP (val) && EQ (XCAR (val), Qkeymap))
531 return Qnil;
532 if (CONSP (val))
533 fix_submap_inheritance (map, idx, val);
534 return val;
535 }
536 if (t_ok && EQ (XCAR (binding), Qt))
537 t_binding = XCDR (binding);
538 }
539 else if (VECTORP (binding))
540 {
541 if (NATNUMP (idx) && XFASTINT (idx) < XVECTOR (binding)->size)
542 {
543 val = XVECTOR (binding)->contents[XFASTINT (idx)];
544 if (noprefix && CONSP (val) && EQ (XCAR (val), Qkeymap))
545 return Qnil;
546 if (CONSP (val))
547 fix_submap_inheritance (map, idx, val);
548 return val;
549 }
550 }
551 else if (CHAR_TABLE_P (binding))
552 {
553 /* Character codes with modifiers
554 are not included in a char-table.
555 All character codes without modifiers are included. */
556 if (NATNUMP (idx)
557 && ! (XFASTINT (idx)
558 & (CHAR_ALT | CHAR_SUPER | CHAR_HYPER
559 | CHAR_SHIFT | CHAR_CTL | CHAR_META)))
560 {
561 val = Faref (binding, idx);
562 if (noprefix && CONSP (val) && EQ (XCAR (val), Qkeymap))
563 return Qnil;
564 if (CONSP (val))
565 fix_submap_inheritance (map, idx, val);
566 return val;
567 }
568 }
569
570 QUIT;
571 }
572
573 return t_binding;
574 }
575 }
576
577 /* Given OBJECT which was found in a slot in a keymap,
578 trace indirect definitions to get the actual definition of that slot.
579 An indirect definition is a list of the form
580 (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one
581 and INDEX is the object to look up in KEYMAP to yield the definition.
582
583 Also if OBJECT has a menu string as the first element,
584 remove that. Also remove a menu help string as second element.
585
586 If AUTOLOAD is nonzero, load autoloadable keymaps
587 that are referred to with indirection. */
588
589 Lisp_Object
590 get_keyelt (object, autoload)
591 register Lisp_Object object;
592 int autoload;
593 {
594 while (1)
595 {
596 if (!(CONSP (object)))
597 /* This is really the value. */
598 return object;
599
600 /* If the keymap contents looks like (keymap ...) or (lambda ...)
601 then use itself. */
602 else if (EQ (XCAR (object), Qkeymap) || EQ (XCAR (object), Qlambda))
603 return object;
604
605 /* If the keymap contents looks like (menu-item name . DEFN)
606 or (menu-item name DEFN ...) then use DEFN.
607 This is a new format menu item. */
608 else if (EQ (XCAR (object), Qmenu_item))
609 {
610 if (CONSP (XCDR (object)))
611 {
612 Lisp_Object tem;
613
614 object = XCDR (XCDR (object));
615 tem = object;
616 if (CONSP (object))
617 object = XCAR (object);
618
619 /* If there's a `:filter FILTER', apply FILTER to the
620 menu-item's definition to get the real definition to
621 use. Temporarily inhibit GC while evaluating FILTER,
622 because not functions calling get_keyelt are prepared
623 for a GC. */
624 for (; CONSP (tem) && CONSP (XCDR (tem)); tem = XCDR (tem))
625 if (EQ (XCAR (tem), QCfilter))
626 {
627 int count = inhibit_garbage_collection ();
628 Lisp_Object filter;
629 filter = XCAR (XCDR (tem));
630 filter = list2 (filter, list2 (Qquote, object));
631 object = menu_item_eval_property (filter);
632 unbind_to (count, Qnil);
633 break;
634 }
635 }
636 else
637 /* Invalid keymap */
638 return object;
639 }
640
641 /* If the keymap contents looks like (STRING . DEFN), use DEFN.
642 Keymap alist elements like (CHAR MENUSTRING . DEFN)
643 will be used by HierarKey menus. */
644 else if (STRINGP (XCAR (object)))
645 {
646 object = XCDR (object);
647 /* Also remove a menu help string, if any,
648 following the menu item name. */
649 if (CONSP (object) && STRINGP (XCAR (object)))
650 object = XCDR (object);
651 /* Also remove the sublist that caches key equivalences, if any. */
652 if (CONSP (object) && CONSP (XCAR (object)))
653 {
654 Lisp_Object carcar;
655 carcar = XCAR (XCAR (object));
656 if (NILP (carcar) || VECTORP (carcar))
657 object = XCDR (object);
658 }
659 }
660
661 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
662 else
663 {
664 Lisp_Object map;
665
666 map = get_keymap_1 (Fcar_safe (object), 0, autoload);
667 if (NILP (map))
668 /* Invalid keymap */
669 return object;
670 else
671 {
672 Lisp_Object key;
673 key = Fcdr (object);
674 if (INTEGERP (key) && (XUINT (key) & meta_modifier))
675 {
676 object = access_keymap (map, meta_prefix_char, 0, 0);
677 map = get_keymap_1 (object, 0, autoload);
678 object = access_keymap (map, make_number (XINT (key)
679 & ~meta_modifier),
680 0, 0);
681 }
682 else
683 object = access_keymap (map, key, 0, 0);
684 }
685 }
686 }
687 }
688
689 static Lisp_Object
690 store_in_keymap (keymap, idx, def)
691 Lisp_Object keymap;
692 register Lisp_Object idx;
693 register Lisp_Object def;
694 {
695 /* If we are preparing to dump, and DEF is a menu element
696 with a menu item indicator, copy it to ensure it is not pure. */
697 if (CONSP (def) && PURE_P (def)
698 && (EQ (XCAR (def), Qmenu_item) || STRINGP (XCAR (def))))
699 def = Fcons (XCAR (def), XCDR (def));
700
701 if (!CONSP (keymap) || ! EQ (XCAR (keymap), Qkeymap))
702 error ("attempt to define a key in a non-keymap");
703
704 /* If idx is a list (some sort of mouse click, perhaps?),
705 the index we want to use is the car of the list, which
706 ought to be a symbol. */
707 idx = EVENT_HEAD (idx);
708
709 /* If idx is a symbol, it might have modifiers, which need to
710 be put in the canonical order. */
711 if (SYMBOLP (idx))
712 idx = reorder_modifiers (idx);
713 else if (INTEGERP (idx))
714 /* Clobber the high bits that can be present on a machine
715 with more than 24 bits of integer. */
716 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
717
718 /* Scan the keymap for a binding of idx. */
719 {
720 Lisp_Object tail;
721
722 /* The cons after which we should insert new bindings. If the
723 keymap has a table element, we record its position here, so new
724 bindings will go after it; this way, the table will stay
725 towards the front of the alist and character lookups in dense
726 keymaps will remain fast. Otherwise, this just points at the
727 front of the keymap. */
728 Lisp_Object insertion_point;
729
730 insertion_point = keymap;
731 for (tail = XCDR (keymap); CONSP (tail); tail = XCDR (tail))
732 {
733 Lisp_Object elt;
734
735 elt = XCAR (tail);
736 if (VECTORP (elt))
737 {
738 if (NATNUMP (idx) && XFASTINT (idx) < XVECTOR (elt)->size)
739 {
740 XVECTOR (elt)->contents[XFASTINT (idx)] = def;
741 return def;
742 }
743 insertion_point = tail;
744 }
745 else if (CHAR_TABLE_P (elt))
746 {
747 /* Character codes with modifiers
748 are not included in a char-table.
749 All character codes without modifiers are included. */
750 if (NATNUMP (idx)
751 && ! (XFASTINT (idx)
752 & (CHAR_ALT | CHAR_SUPER | CHAR_HYPER
753 | CHAR_SHIFT | CHAR_CTL | CHAR_META)))
754 {
755 Faset (elt, idx, def);
756 return def;
757 }
758 insertion_point = tail;
759 }
760 else if (CONSP (elt))
761 {
762 if (EQ (idx, XCAR (elt)))
763 {
764 XCDR (elt) = def;
765 return def;
766 }
767 }
768 else if (SYMBOLP (elt))
769 {
770 /* If we find a 'keymap' symbol in the spine of KEYMAP,
771 then we must have found the start of a second keymap
772 being used as the tail of KEYMAP, and a binding for IDX
773 should be inserted before it. */
774 if (EQ (elt, Qkeymap))
775 goto keymap_end;
776 }
777
778 QUIT;
779 }
780
781 keymap_end:
782 /* We have scanned the entire keymap, and not found a binding for
783 IDX. Let's add one. */
784 XCDR (insertion_point)
785 = Fcons (Fcons (idx, def), XCDR (insertion_point));
786 }
787
788 return def;
789 }
790
791 void
792 copy_keymap_1 (chartable, idx, elt)
793 Lisp_Object chartable, idx, elt;
794 {
795 if (!SYMBOLP (elt) && ! NILP (Fkeymapp (elt)))
796 Faset (chartable, idx, Fcopy_keymap (elt));
797 }
798
799 DEFUN ("copy-keymap", Fcopy_keymap, Scopy_keymap, 1, 1, 0,
800 "Return a copy of the keymap KEYMAP.\n\
801 The copy starts out with the same definitions of KEYMAP,\n\
802 but changing either the copy or KEYMAP does not affect the other.\n\
803 Any key definitions that are subkeymaps are recursively copied.\n\
804 However, a key definition which is a symbol whose definition is a keymap\n\
805 is not copied.")
806 (keymap)
807 Lisp_Object keymap;
808 {
809 register Lisp_Object copy, tail;
810
811 copy = Fcopy_alist (get_keymap (keymap));
812
813 for (tail = copy; CONSP (tail); tail = XCDR (tail))
814 {
815 Lisp_Object elt;
816
817 elt = XCAR (tail);
818 if (CHAR_TABLE_P (elt))
819 {
820 Lisp_Object indices[3];
821
822 elt = Fcopy_sequence (elt);
823 XCAR (tail) = elt;
824
825 map_char_table (copy_keymap_1, Qnil, elt, elt, 0, indices);
826 }
827 else if (VECTORP (elt))
828 {
829 int i;
830
831 elt = Fcopy_sequence (elt);
832 XCAR (tail) = elt;
833
834 for (i = 0; i < XVECTOR (elt)->size; i++)
835 if (!SYMBOLP (XVECTOR (elt)->contents[i])
836 && ! NILP (Fkeymapp (XVECTOR (elt)->contents[i])))
837 XVECTOR (elt)->contents[i]
838 = Fcopy_keymap (XVECTOR (elt)->contents[i]);
839 }
840 else if (CONSP (elt) && CONSP (XCDR (elt)))
841 {
842 Lisp_Object tem;
843 tem = XCDR (elt);
844
845 /* Is this a new format menu item. */
846 if (EQ (XCAR (tem),Qmenu_item))
847 {
848 /* Copy cell with menu-item marker. */
849 XCDR (elt)
850 = Fcons (XCAR (tem), XCDR (tem));
851 elt = XCDR (elt);
852 tem = XCDR (elt);
853 if (CONSP (tem))
854 {
855 /* Copy cell with menu-item name. */
856 XCDR (elt)
857 = Fcons (XCAR (tem), XCDR (tem));
858 elt = XCDR (elt);
859 tem = XCDR (elt);
860 };
861 if (CONSP (tem))
862 {
863 /* Copy cell with binding and if the binding is a keymap,
864 copy that. */
865 XCDR (elt)
866 = Fcons (XCAR (tem), XCDR (tem));
867 elt = XCDR (elt);
868 tem = XCAR (elt);
869 if (!(SYMBOLP (tem) || NILP (Fkeymapp (tem))))
870 XCAR (elt) = Fcopy_keymap (tem);
871 tem = XCDR (elt);
872 if (CONSP (tem) && CONSP (XCAR (tem)))
873 /* Delete cache for key equivalences. */
874 XCDR (elt) = XCDR (tem);
875 }
876 }
877 else
878 {
879 /* It may be an old fomat menu item.
880 Skip the optional menu string.
881 */
882 if (STRINGP (XCAR (tem)))
883 {
884 /* Copy the cell, since copy-alist didn't go this deep. */
885 XCDR (elt)
886 = Fcons (XCAR (tem), XCDR (tem));
887 elt = XCDR (elt);
888 tem = XCDR (elt);
889 /* Also skip the optional menu help string. */
890 if (CONSP (tem) && STRINGP (XCAR (tem)))
891 {
892 XCDR (elt)
893 = Fcons (XCAR (tem), XCDR (tem));
894 elt = XCDR (elt);
895 tem = XCDR (elt);
896 }
897 /* There may also be a list that caches key equivalences.
898 Just delete it for the new keymap. */
899 if (CONSP (tem)
900 && CONSP (XCAR (tem))
901 && (NILP (XCAR (XCAR (tem)))
902 || VECTORP (XCAR (XCAR (tem)))))
903 XCDR (elt) = XCDR (tem);
904 }
905 if (CONSP (elt)
906 && ! SYMBOLP (XCDR (elt))
907 && ! NILP (Fkeymapp (XCDR (elt))))
908 XCDR (elt) = Fcopy_keymap (XCDR (elt));
909 }
910
911 }
912 }
913
914 return copy;
915 }
916 \f
917 /* Simple Keymap mutators and accessors. */
918
919 /* GC is possible in this function if it autoloads a keymap. */
920
921 DEFUN ("define-key", Fdefine_key, Sdefine_key, 3, 3, 0,
922 "Args KEYMAP, KEY, DEF. Define key sequence KEY, in KEYMAP, as DEF.\n\
923 KEYMAP is a keymap. KEY is a string or a vector of symbols and characters\n\
924 meaning a sequence of keystrokes and events.\n\
925 Non-ASCII characters with codes above 127 (such as ISO Latin-1)\n\
926 can be included if you use a vector.\n\
927 DEF is anything that can be a key's definition:\n\
928 nil (means key is undefined in this keymap),\n\
929 a command (a Lisp function suitable for interactive calling)\n\
930 a string (treated as a keyboard macro),\n\
931 a keymap (to define a prefix key),\n\
932 a symbol. When the key is looked up, the symbol will stand for its\n\
933 function definition, which should at that time be one of the above,\n\
934 or another symbol whose function definition is used, etc.\n\
935 a cons (STRING . DEFN), meaning that DEFN is the definition\n\
936 (DEFN should be a valid definition in its own right),\n\
937 or a cons (KEYMAP . CHAR), meaning use definition of CHAR in map KEYMAP.\n\
938 \n\
939 If KEYMAP is a sparse keymap, the pair binding KEY to DEF is added at\n\
940 the front of KEYMAP.")
941 (keymap, key, def)
942 Lisp_Object keymap;
943 Lisp_Object key;
944 Lisp_Object def;
945 {
946 register int idx;
947 register Lisp_Object c;
948 register Lisp_Object cmd;
949 int metized = 0;
950 int meta_bit;
951 int length;
952 struct gcpro gcpro1, gcpro2, gcpro3;
953
954 keymap = get_keymap_1 (keymap, 1, 1);
955
956 if (!VECTORP (key) && !STRINGP (key))
957 key = wrong_type_argument (Qarrayp, key);
958
959 length = XFASTINT (Flength (key));
960 if (length == 0)
961 return Qnil;
962
963 if (SYMBOLP (def) && !EQ (Vdefine_key_rebound_commands, Qt))
964 Vdefine_key_rebound_commands = Fcons (def, Vdefine_key_rebound_commands);
965
966 GCPRO3 (keymap, key, def);
967
968 if (VECTORP (key))
969 meta_bit = meta_modifier;
970 else
971 meta_bit = 0x80;
972
973 idx = 0;
974 while (1)
975 {
976 c = Faref (key, make_number (idx));
977
978 if (CONSP (c) && lucid_event_type_list_p (c))
979 c = Fevent_convert_list (c);
980
981 if (INTEGERP (c)
982 && (XINT (c) & meta_bit)
983 && !metized)
984 {
985 c = meta_prefix_char;
986 metized = 1;
987 }
988 else
989 {
990 if (INTEGERP (c))
991 XSETINT (c, XINT (c) & ~meta_bit);
992
993 metized = 0;
994 idx++;
995 }
996
997 if (! INTEGERP (c) && ! SYMBOLP (c) && ! CONSP (c))
998 error ("Key sequence contains invalid events");
999
1000 if (idx == length)
1001 RETURN_UNGCPRO (store_in_keymap (keymap, c, def));
1002
1003 cmd = get_keyelt (access_keymap (keymap, c, 0, 1), 1);
1004
1005 /* If this key is undefined, make it a prefix. */
1006 if (NILP (cmd))
1007 cmd = define_as_prefix (keymap, c);
1008
1009 keymap = get_keymap_1 (cmd, 0, 1);
1010 if (NILP (keymap))
1011 /* We must use Fkey_description rather than just passing key to
1012 error; key might be a vector, not a string. */
1013 error ("Key sequence %s uses invalid prefix characters",
1014 XSTRING (Fkey_description (key))->data);
1015 }
1016 }
1017
1018 /* Value is number if KEY is too long; NIL if valid but has no definition. */
1019 /* GC is possible in this function if it autoloads a keymap. */
1020
1021 DEFUN ("lookup-key", Flookup_key, Slookup_key, 2, 3, 0,
1022 "In keymap KEYMAP, look up key sequence KEY. Return the definition.\n\
1023 nil means undefined. See doc of `define-key' for kinds of definitions.\n\
1024 \n\
1025 A number as value means KEY is \"too long\";\n\
1026 that is, characters or symbols in it except for the last one\n\
1027 fail to be a valid sequence of prefix characters in KEYMAP.\n\
1028 The number is how many characters at the front of KEY\n\
1029 it takes to reach a non-prefix command.\n\
1030 \n\
1031 Normally, `lookup-key' ignores bindings for t, which act as default\n\
1032 bindings, used when nothing else in the keymap applies; this makes it\n\
1033 usable as a general function for probing keymaps. However, if the\n\
1034 third optional argument ACCEPT-DEFAULT is non-nil, `lookup-key' will\n\
1035 recognize the default bindings, just as `read-key-sequence' does.")
1036 (keymap, key, accept_default)
1037 register Lisp_Object keymap;
1038 Lisp_Object key;
1039 Lisp_Object accept_default;
1040 {
1041 register int idx;
1042 register Lisp_Object cmd;
1043 register Lisp_Object c;
1044 int metized = 0;
1045 int length;
1046 int t_ok = ! NILP (accept_default);
1047 int meta_bit;
1048 struct gcpro gcpro1;
1049
1050 keymap = get_keymap_1 (keymap, 1, 1);
1051
1052 if (!VECTORP (key) && !STRINGP (key))
1053 key = wrong_type_argument (Qarrayp, key);
1054
1055 length = XFASTINT (Flength (key));
1056 if (length == 0)
1057 return keymap;
1058
1059 if (VECTORP (key))
1060 meta_bit = meta_modifier;
1061 else
1062 meta_bit = 0x80;
1063
1064 GCPRO1 (key);
1065
1066 idx = 0;
1067 while (1)
1068 {
1069 c = Faref (key, make_number (idx));
1070
1071 if (CONSP (c) && lucid_event_type_list_p (c))
1072 c = Fevent_convert_list (c);
1073
1074 if (INTEGERP (c)
1075 && (XINT (c) & meta_bit)
1076 && !metized)
1077 {
1078 c = meta_prefix_char;
1079 metized = 1;
1080 }
1081 else
1082 {
1083 if (INTEGERP (c))
1084 XSETINT (c, XINT (c) & ~meta_bit);
1085
1086 metized = 0;
1087 idx++;
1088 }
1089
1090 cmd = get_keyelt (access_keymap (keymap, c, t_ok, 0), 1);
1091 if (idx == length)
1092 RETURN_UNGCPRO (cmd);
1093
1094 keymap = get_keymap_1 (cmd, 0, 1);
1095 if (NILP (keymap))
1096 RETURN_UNGCPRO (make_number (idx));
1097
1098 QUIT;
1099 }
1100 }
1101
1102 /* Make KEYMAP define event C as a keymap (i.e., as a prefix).
1103 Assume that currently it does not define C at all.
1104 Return the keymap. */
1105
1106 static Lisp_Object
1107 define_as_prefix (keymap, c)
1108 Lisp_Object keymap, c;
1109 {
1110 Lisp_Object inherit, cmd;
1111
1112 cmd = Fmake_sparse_keymap (Qnil);
1113 /* If this key is defined as a prefix in an inherited keymap,
1114 make it a prefix in this map, and make its definition
1115 inherit the other prefix definition. */
1116 inherit = access_keymap (keymap, c, 0, 0);
1117 #if 0
1118 /* This code is needed to do the right thing in the following case:
1119 keymap A inherits from B,
1120 you define KEY as a prefix in A,
1121 then later you define KEY as a prefix in B.
1122 We want the old prefix definition in A to inherit from that in B.
1123 It is hard to do that retroactively, so this code
1124 creates the prefix in B right away.
1125
1126 But it turns out that this code causes problems immediately
1127 when the prefix in A is defined: it causes B to define KEY
1128 as a prefix with no subcommands.
1129
1130 So I took out this code. */
1131 if (NILP (inherit))
1132 {
1133 /* If there's an inherited keymap
1134 and it doesn't define this key,
1135 make it define this key. */
1136 Lisp_Object tail;
1137
1138 for (tail = Fcdr (keymap); CONSP (tail); tail = XCDR (tail))
1139 if (EQ (XCAR (tail), Qkeymap))
1140 break;
1141
1142 if (!NILP (tail))
1143 inherit = define_as_prefix (tail, c);
1144 }
1145 #endif
1146
1147 cmd = nconc2 (cmd, inherit);
1148 store_in_keymap (keymap, c, cmd);
1149
1150 return cmd;
1151 }
1152
1153 /* Append a key to the end of a key sequence. We always make a vector. */
1154
1155 Lisp_Object
1156 append_key (key_sequence, key)
1157 Lisp_Object key_sequence, key;
1158 {
1159 Lisp_Object args[2];
1160
1161 args[0] = key_sequence;
1162
1163 args[1] = Fcons (key, Qnil);
1164 return Fvconcat (2, args);
1165 }
1166
1167 \f
1168 /* Global, local, and minor mode keymap stuff. */
1169
1170 /* We can't put these variables inside current_minor_maps, since under
1171 some systems, static gets macro-defined to be the empty string.
1172 Ickypoo. */
1173 static Lisp_Object *cmm_modes, *cmm_maps;
1174 static int cmm_size;
1175
1176 /* Error handler used in current_minor_maps. */
1177 static Lisp_Object
1178 current_minor_maps_error ()
1179 {
1180 return Qnil;
1181 }
1182
1183 /* Store a pointer to an array of the keymaps of the currently active
1184 minor modes in *buf, and return the number of maps it contains.
1185
1186 This function always returns a pointer to the same buffer, and may
1187 free or reallocate it, so if you want to keep it for a long time or
1188 hand it out to lisp code, copy it. This procedure will be called
1189 for every key sequence read, so the nice lispy approach (return a
1190 new assoclist, list, what have you) for each invocation would
1191 result in a lot of consing over time.
1192
1193 If we used xrealloc/xmalloc and ran out of memory, they would throw
1194 back to the command loop, which would try to read a key sequence,
1195 which would call this function again, resulting in an infinite
1196 loop. Instead, we'll use realloc/malloc and silently truncate the
1197 list, let the key sequence be read, and hope some other piece of
1198 code signals the error. */
1199 int
1200 current_minor_maps (modeptr, mapptr)
1201 Lisp_Object **modeptr, **mapptr;
1202 {
1203 int i = 0;
1204 int list_number = 0;
1205 Lisp_Object alist, assoc, var, val;
1206 Lisp_Object lists[2];
1207
1208 lists[0] = Vminor_mode_overriding_map_alist;
1209 lists[1] = Vminor_mode_map_alist;
1210
1211 for (list_number = 0; list_number < 2; list_number++)
1212 for (alist = lists[list_number];
1213 CONSP (alist);
1214 alist = XCDR (alist))
1215 if ((assoc = XCAR (alist), CONSP (assoc))
1216 && (var = XCAR (assoc), SYMBOLP (var))
1217 && (val = find_symbol_value (var), ! EQ (val, Qunbound))
1218 && ! NILP (val))
1219 {
1220 Lisp_Object temp;
1221
1222 /* If a variable has an entry in Vminor_mode_overriding_map_alist,
1223 and also an entry in Vminor_mode_map_alist,
1224 ignore the latter. */
1225 if (list_number == 1)
1226 {
1227 val = assq_no_quit (var, lists[0]);
1228 if (!NILP (val))
1229 break;
1230 }
1231
1232 if (i >= cmm_size)
1233 {
1234 Lisp_Object *newmodes, *newmaps;
1235
1236 if (cmm_maps)
1237 {
1238 BLOCK_INPUT;
1239 cmm_size *= 2;
1240 newmodes
1241 = (Lisp_Object *) realloc (cmm_modes,
1242 cmm_size * sizeof (Lisp_Object));
1243 newmaps
1244 = (Lisp_Object *) realloc (cmm_maps,
1245 cmm_size * sizeof (Lisp_Object));
1246 UNBLOCK_INPUT;
1247 }
1248 else
1249 {
1250 BLOCK_INPUT;
1251 cmm_size = 30;
1252 newmodes
1253 = (Lisp_Object *) xmalloc (cmm_size * sizeof (Lisp_Object));
1254 newmaps
1255 = (Lisp_Object *) xmalloc (cmm_size * sizeof (Lisp_Object));
1256 UNBLOCK_INPUT;
1257 }
1258
1259 if (newmaps && newmodes)
1260 {
1261 cmm_modes = newmodes;
1262 cmm_maps = newmaps;
1263 }
1264 else
1265 break;
1266 }
1267
1268 /* Get the keymap definition--or nil if it is not defined. */
1269 temp = internal_condition_case_1 (Findirect_function,
1270 XCDR (assoc),
1271 Qerror, current_minor_maps_error);
1272 if (!NILP (temp))
1273 {
1274 cmm_modes[i] = var;
1275 cmm_maps [i] = temp;
1276 i++;
1277 }
1278 }
1279
1280 if (modeptr) *modeptr = cmm_modes;
1281 if (mapptr) *mapptr = cmm_maps;
1282 return i;
1283 }
1284
1285 /* GC is possible in this function if it autoloads a keymap. */
1286
1287 DEFUN ("key-binding", Fkey_binding, Skey_binding, 1, 2, 0,
1288 "Return the binding for command KEY in current keymaps.\n\
1289 KEY is a string or vector, a sequence of keystrokes.\n\
1290 The binding is probably a symbol with a function definition.\n\
1291 \n\
1292 Normally, `key-binding' ignores bindings for t, which act as default\n\
1293 bindings, used when nothing else in the keymap applies; this makes it\n\
1294 usable as a general function for probing keymaps. However, if the\n\
1295 optional second argument ACCEPT-DEFAULT is non-nil, `key-binding' does\n\
1296 recognize the default bindings, just as `read-key-sequence' does.")
1297 (key, accept_default)
1298 Lisp_Object key, accept_default;
1299 {
1300 Lisp_Object *maps, value;
1301 int nmaps, i;
1302 struct gcpro gcpro1;
1303
1304 GCPRO1 (key);
1305
1306 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1307 {
1308 value = Flookup_key (current_kboard->Voverriding_terminal_local_map,
1309 key, accept_default);
1310 if (! NILP (value) && !INTEGERP (value))
1311 RETURN_UNGCPRO (value);
1312 }
1313 else if (!NILP (Voverriding_local_map))
1314 {
1315 value = Flookup_key (Voverriding_local_map, key, accept_default);
1316 if (! NILP (value) && !INTEGERP (value))
1317 RETURN_UNGCPRO (value);
1318 }
1319 else
1320 {
1321 Lisp_Object local;
1322
1323 nmaps = current_minor_maps (0, &maps);
1324 /* Note that all these maps are GCPRO'd
1325 in the places where we found them. */
1326
1327 for (i = 0; i < nmaps; i++)
1328 if (! NILP (maps[i]))
1329 {
1330 value = Flookup_key (maps[i], key, accept_default);
1331 if (! NILP (value) && !INTEGERP (value))
1332 RETURN_UNGCPRO (value);
1333 }
1334
1335 local = get_local_map (PT, current_buffer, keymap);
1336 if (! NILP (local))
1337 {
1338 value = Flookup_key (local, key, accept_default);
1339 if (! NILP (value) && !INTEGERP (value))
1340 RETURN_UNGCPRO (value);
1341 }
1342
1343 local = get_local_map (PT, current_buffer, local_map);
1344
1345 if (! NILP (local))
1346 {
1347 value = Flookup_key (local, key, accept_default);
1348 if (! NILP (value) && !INTEGERP (value))
1349 RETURN_UNGCPRO (value);
1350 }
1351 }
1352
1353 value = Flookup_key (current_global_map, key, accept_default);
1354 UNGCPRO;
1355 if (! NILP (value) && !INTEGERP (value))
1356 return value;
1357
1358 return Qnil;
1359 }
1360
1361 /* GC is possible in this function if it autoloads a keymap. */
1362
1363 DEFUN ("local-key-binding", Flocal_key_binding, Slocal_key_binding, 1, 2, 0,
1364 "Return the binding for command KEYS in current local keymap only.\n\
1365 KEYS is a string, a sequence of keystrokes.\n\
1366 The binding is probably a symbol with a function definition.\n\
1367 \n\
1368 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1369 bindings; see the description of `lookup-key' for more details about this.")
1370 (keys, accept_default)
1371 Lisp_Object keys, accept_default;
1372 {
1373 register Lisp_Object map;
1374 map = current_buffer->keymap;
1375 if (NILP (map))
1376 return Qnil;
1377 return Flookup_key (map, keys, accept_default);
1378 }
1379
1380 /* GC is possible in this function if it autoloads a keymap. */
1381
1382 DEFUN ("global-key-binding", Fglobal_key_binding, Sglobal_key_binding, 1, 2, 0,
1383 "Return the binding for command KEYS in current global keymap only.\n\
1384 KEYS is a string, a sequence of keystrokes.\n\
1385 The binding is probably a symbol with a function definition.\n\
1386 This function's return values are the same as those of lookup-key\n\
1387 \(which see).\n\
1388 \n\
1389 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1390 bindings; see the description of `lookup-key' for more details about this.")
1391 (keys, accept_default)
1392 Lisp_Object keys, accept_default;
1393 {
1394 return Flookup_key (current_global_map, keys, accept_default);
1395 }
1396
1397 /* GC is possible in this function if it autoloads a keymap. */
1398
1399 DEFUN ("minor-mode-key-binding", Fminor_mode_key_binding, Sminor_mode_key_binding, 1, 2, 0,
1400 "Find the visible minor mode bindings of KEY.\n\
1401 Return an alist of pairs (MODENAME . BINDING), where MODENAME is the\n\
1402 the symbol which names the minor mode binding KEY, and BINDING is\n\
1403 KEY's definition in that mode. In particular, if KEY has no\n\
1404 minor-mode bindings, return nil. If the first binding is a\n\
1405 non-prefix, all subsequent bindings will be omitted, since they would\n\
1406 be ignored. Similarly, the list doesn't include non-prefix bindings\n\
1407 that come after prefix bindings.\n\
1408 \n\
1409 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1410 bindings; see the description of `lookup-key' for more details about this.")
1411 (key, accept_default)
1412 Lisp_Object key, accept_default;
1413 {
1414 Lisp_Object *modes, *maps;
1415 int nmaps;
1416 Lisp_Object binding;
1417 int i, j;
1418 struct gcpro gcpro1, gcpro2;
1419
1420 nmaps = current_minor_maps (&modes, &maps);
1421 /* Note that all these maps are GCPRO'd
1422 in the places where we found them. */
1423
1424 binding = Qnil;
1425 GCPRO2 (key, binding);
1426
1427 for (i = j = 0; i < nmaps; i++)
1428 if (! NILP (maps[i])
1429 && ! NILP (binding = Flookup_key (maps[i], key, accept_default))
1430 && !INTEGERP (binding))
1431 {
1432 if (! NILP (get_keymap (binding)))
1433 maps[j++] = Fcons (modes[i], binding);
1434 else if (j == 0)
1435 RETURN_UNGCPRO (Fcons (Fcons (modes[i], binding), Qnil));
1436 }
1437
1438 UNGCPRO;
1439 return Flist (j, maps);
1440 }
1441
1442 DEFUN ("define-prefix-command", Fdefine_prefix_command, Sdefine_prefix_command, 1, 3, 0,
1443 "Define COMMAND as a prefix command. COMMAND should be a symbol.\n\
1444 A new sparse keymap is stored as COMMAND's function definition and its value.\n\
1445 If a second optional argument MAPVAR is given, the map is stored as\n\
1446 its value instead of as COMMAND's value; but COMMAND is still defined\n\
1447 as a function.\n\
1448 The third optional argument NAME, if given, supplies a menu name\n\
1449 string for the map. This is required to use the keymap as a menu.")
1450 (command, mapvar, name)
1451 Lisp_Object command, mapvar, name;
1452 {
1453 Lisp_Object map;
1454 map = Fmake_sparse_keymap (name);
1455 Ffset (command, map);
1456 if (!NILP (mapvar))
1457 Fset (mapvar, map);
1458 else
1459 Fset (command, map);
1460 return command;
1461 }
1462
1463 DEFUN ("use-global-map", Fuse_global_map, Suse_global_map, 1, 1, 0,
1464 "Select KEYMAP as the global keymap.")
1465 (keymap)
1466 Lisp_Object keymap;
1467 {
1468 keymap = get_keymap (keymap);
1469 current_global_map = keymap;
1470
1471 return Qnil;
1472 }
1473
1474 DEFUN ("use-local-map", Fuse_local_map, Suse_local_map, 1, 1, 0,
1475 "Select KEYMAP as the local keymap.\n\
1476 If KEYMAP is nil, that means no local keymap.")
1477 (keymap)
1478 Lisp_Object keymap;
1479 {
1480 if (!NILP (keymap))
1481 keymap = get_keymap (keymap);
1482
1483 current_buffer->keymap = keymap;
1484
1485 return Qnil;
1486 }
1487
1488 DEFUN ("current-local-map", Fcurrent_local_map, Scurrent_local_map, 0, 0, 0,
1489 "Return current buffer's local keymap, or nil if it has none.")
1490 ()
1491 {
1492 return current_buffer->keymap;
1493 }
1494
1495 DEFUN ("current-global-map", Fcurrent_global_map, Scurrent_global_map, 0, 0, 0,
1496 "Return the current global keymap.")
1497 ()
1498 {
1499 return current_global_map;
1500 }
1501
1502 DEFUN ("current-minor-mode-maps", Fcurrent_minor_mode_maps, Scurrent_minor_mode_maps, 0, 0, 0,
1503 "Return a list of keymaps for the minor modes of the current buffer.")
1504 ()
1505 {
1506 Lisp_Object *maps;
1507 int nmaps = current_minor_maps (0, &maps);
1508
1509 return Flist (nmaps, maps);
1510 }
1511 \f
1512 /* Help functions for describing and documenting keymaps. */
1513
1514 static void accessible_keymaps_char_table ();
1515
1516 /* This function cannot GC. */
1517
1518 DEFUN ("accessible-keymaps", Faccessible_keymaps, Saccessible_keymaps,
1519 1, 2, 0,
1520 "Find all keymaps accessible via prefix characters from KEYMAP.\n\
1521 Returns a list of elements of the form (KEYS . MAP), where the sequence\n\
1522 KEYS starting from KEYMAP gets you to MAP. These elements are ordered\n\
1523 so that the KEYS increase in length. The first element is ([] . KEYMAP).\n\
1524 An optional argument PREFIX, if non-nil, should be a key sequence;\n\
1525 then the value includes only maps for prefixes that start with PREFIX.")
1526 (keymap, prefix)
1527 Lisp_Object keymap, prefix;
1528 {
1529 Lisp_Object maps, good_maps, tail;
1530 int prefixlen = 0;
1531
1532 /* no need for gcpro because we don't autoload any keymaps. */
1533
1534 if (!NILP (prefix))
1535 prefixlen = XINT (Flength (prefix));
1536
1537 if (!NILP (prefix))
1538 {
1539 /* If a prefix was specified, start with the keymap (if any) for
1540 that prefix, so we don't waste time considering other prefixes. */
1541 Lisp_Object tem;
1542 tem = Flookup_key (keymap, prefix, Qt);
1543 /* Flookup_key may give us nil, or a number,
1544 if the prefix is not defined in this particular map.
1545 It might even give us a list that isn't a keymap. */
1546 tem = get_keymap_1 (tem, 0, 0);
1547 if (!NILP (tem))
1548 {
1549 /* Convert PREFIX to a vector now, so that later on
1550 we don't have to deal with the possibility of a string. */
1551 if (STRINGP (prefix))
1552 {
1553 int i, i_byte, c;
1554 Lisp_Object copy;
1555
1556 copy = Fmake_vector (make_number (XSTRING (prefix)->size), Qnil);
1557 for (i = 0, i_byte = 0; i < XSTRING (prefix)->size;)
1558 {
1559 int i_before = i;
1560
1561 FETCH_STRING_CHAR_ADVANCE (c, prefix, i, i_byte);
1562 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
1563 c ^= 0200 | meta_modifier;
1564 XVECTOR (copy)->contents[i_before] = make_number (c);
1565 }
1566 prefix = copy;
1567 }
1568 maps = Fcons (Fcons (prefix, tem), Qnil);
1569 }
1570 else
1571 return Qnil;
1572 }
1573 else
1574 maps = Fcons (Fcons (Fmake_vector (make_number (0), Qnil),
1575 get_keymap (keymap)),
1576 Qnil);
1577
1578 /* For each map in the list maps,
1579 look at any other maps it points to,
1580 and stick them at the end if they are not already in the list.
1581
1582 This is a breadth-first traversal, where tail is the queue of
1583 nodes, and maps accumulates a list of all nodes visited. */
1584
1585 for (tail = maps; CONSP (tail); tail = XCDR (tail))
1586 {
1587 register Lisp_Object thisseq, thismap;
1588 Lisp_Object last;
1589 /* Does the current sequence end in the meta-prefix-char? */
1590 int is_metized;
1591
1592 thisseq = Fcar (Fcar (tail));
1593 thismap = Fcdr (Fcar (tail));
1594 last = make_number (XINT (Flength (thisseq)) - 1);
1595 is_metized = (XINT (last) >= 0
1596 /* Don't metize the last char of PREFIX. */
1597 && XINT (last) >= prefixlen
1598 && EQ (Faref (thisseq, last), meta_prefix_char));
1599
1600 for (; CONSP (thismap); thismap = XCDR (thismap))
1601 {
1602 Lisp_Object elt;
1603
1604 elt = XCAR (thismap);
1605
1606 QUIT;
1607
1608 if (CHAR_TABLE_P (elt))
1609 {
1610 Lisp_Object indices[3];
1611
1612 map_char_table (accessible_keymaps_char_table, Qnil,
1613 elt, Fcons (maps, Fcons (tail, thisseq)),
1614 0, indices);
1615 }
1616 else if (VECTORP (elt))
1617 {
1618 register int i;
1619
1620 /* Vector keymap. Scan all the elements. */
1621 for (i = 0; i < XVECTOR (elt)->size; i++)
1622 {
1623 register Lisp_Object tem;
1624 register Lisp_Object cmd;
1625
1626 cmd = get_keyelt (XVECTOR (elt)->contents[i], 0);
1627 if (NILP (cmd)) continue;
1628 tem = Fkeymapp (cmd);
1629 if (!NILP (tem))
1630 {
1631 cmd = get_keymap (cmd);
1632 /* Ignore keymaps that are already added to maps. */
1633 tem = Frassq (cmd, maps);
1634 if (NILP (tem))
1635 {
1636 /* If the last key in thisseq is meta-prefix-char,
1637 turn it into a meta-ized keystroke. We know
1638 that the event we're about to append is an
1639 ascii keystroke since we're processing a
1640 keymap table. */
1641 if (is_metized)
1642 {
1643 int meta_bit = meta_modifier;
1644 tem = Fcopy_sequence (thisseq);
1645
1646 Faset (tem, last, make_number (i | meta_bit));
1647
1648 /* This new sequence is the same length as
1649 thisseq, so stick it in the list right
1650 after this one. */
1651 XCDR (tail)
1652 = Fcons (Fcons (tem, cmd), XCDR (tail));
1653 }
1654 else
1655 {
1656 tem = append_key (thisseq, make_number (i));
1657 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1658 }
1659 }
1660 }
1661 }
1662 }
1663 else if (CONSP (elt))
1664 {
1665 register Lisp_Object cmd, tem;
1666
1667 cmd = get_keyelt (XCDR (elt), 0);
1668 /* Ignore definitions that aren't keymaps themselves. */
1669 tem = Fkeymapp (cmd);
1670 if (!NILP (tem))
1671 {
1672 /* Ignore keymaps that have been seen already. */
1673 cmd = get_keymap (cmd);
1674 tem = Frassq (cmd, maps);
1675 if (NILP (tem))
1676 {
1677 /* Let elt be the event defined by this map entry. */
1678 elt = XCAR (elt);
1679
1680 /* If the last key in thisseq is meta-prefix-char, and
1681 this entry is a binding for an ascii keystroke,
1682 turn it into a meta-ized keystroke. */
1683 if (is_metized && INTEGERP (elt))
1684 {
1685 Lisp_Object element;
1686
1687 element = thisseq;
1688 tem = Fvconcat (1, &element);
1689 XSETFASTINT (XVECTOR (tem)->contents[XINT (last)],
1690 XINT (elt) | meta_modifier);
1691
1692 /* This new sequence is the same length as
1693 thisseq, so stick it in the list right
1694 after this one. */
1695 XCDR (tail)
1696 = Fcons (Fcons (tem, cmd), XCDR (tail));
1697 }
1698 else
1699 nconc2 (tail,
1700 Fcons (Fcons (append_key (thisseq, elt), cmd),
1701 Qnil));
1702 }
1703 }
1704 }
1705 }
1706 }
1707
1708 if (NILP (prefix))
1709 return maps;
1710
1711 /* Now find just the maps whose access prefixes start with PREFIX. */
1712
1713 good_maps = Qnil;
1714 for (; CONSP (maps); maps = XCDR (maps))
1715 {
1716 Lisp_Object elt, thisseq;
1717 elt = XCAR (maps);
1718 thisseq = XCAR (elt);
1719 /* The access prefix must be at least as long as PREFIX,
1720 and the first elements must match those of PREFIX. */
1721 if (XINT (Flength (thisseq)) >= prefixlen)
1722 {
1723 int i;
1724 for (i = 0; i < prefixlen; i++)
1725 {
1726 Lisp_Object i1;
1727 XSETFASTINT (i1, i);
1728 if (!EQ (Faref (thisseq, i1), Faref (prefix, i1)))
1729 break;
1730 }
1731 if (i == prefixlen)
1732 good_maps = Fcons (elt, good_maps);
1733 }
1734 }
1735
1736 return Fnreverse (good_maps);
1737 }
1738
1739 static void
1740 accessible_keymaps_char_table (args, index, cmd)
1741 Lisp_Object args, index, cmd;
1742 {
1743 Lisp_Object tem;
1744 Lisp_Object maps, tail, thisseq;
1745
1746 if (NILP (cmd))
1747 return;
1748
1749 maps = XCAR (args);
1750 tail = XCAR (XCDR (args));
1751 thisseq = XCDR (XCDR (args));
1752
1753 tem = Fkeymapp (cmd);
1754 if (!NILP (tem))
1755 {
1756 cmd = get_keymap (cmd);
1757 /* Ignore keymaps that are already added to maps. */
1758 tem = Frassq (cmd, maps);
1759 if (NILP (tem))
1760 {
1761 tem = append_key (thisseq, index);
1762 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1763 }
1764 }
1765 }
1766 \f
1767 Lisp_Object Qsingle_key_description, Qkey_description;
1768
1769 /* This function cannot GC. */
1770
1771 DEFUN ("key-description", Fkey_description, Skey_description, 1, 1, 0,
1772 "Return a pretty description of key-sequence KEYS.\n\
1773 Control characters turn into \"C-foo\" sequences, meta into \"M-foo\"\n\
1774 spaces are put between sequence elements, etc.")
1775 (keys)
1776 Lisp_Object keys;
1777 {
1778 int len;
1779 int i, i_byte;
1780 Lisp_Object sep;
1781 Lisp_Object *args;
1782
1783 if (STRINGP (keys))
1784 {
1785 Lisp_Object vector;
1786 vector = Fmake_vector (Flength (keys), Qnil);
1787 for (i = 0, i_byte = 0; i < XSTRING (keys)->size; )
1788 {
1789 int c;
1790 int i_before = i;
1791
1792 FETCH_STRING_CHAR_ADVANCE (c, keys, i, i_byte);
1793 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
1794 c ^= 0200 | meta_modifier;
1795 XSETFASTINT (XVECTOR (vector)->contents[i_before], c);
1796 }
1797 keys = vector;
1798 }
1799
1800 if (VECTORP (keys))
1801 {
1802 /* In effect, this computes
1803 (mapconcat 'single-key-description keys " ")
1804 but we shouldn't use mapconcat because it can do GC. */
1805
1806 len = XVECTOR (keys)->size;
1807 sep = build_string (" ");
1808 /* This has one extra element at the end that we don't pass to Fconcat. */
1809 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1810
1811 for (i = 0; i < len; i++)
1812 {
1813 args[i * 2] = Fsingle_key_description (XVECTOR (keys)->contents[i],
1814 Qnil);
1815 args[i * 2 + 1] = sep;
1816 }
1817 }
1818 else if (CONSP (keys))
1819 {
1820 /* In effect, this computes
1821 (mapconcat 'single-key-description keys " ")
1822 but we shouldn't use mapconcat because it can do GC. */
1823
1824 len = XFASTINT (Flength (keys));
1825 sep = build_string (" ");
1826 /* This has one extra element at the end that we don't pass to Fconcat. */
1827 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1828
1829 for (i = 0; i < len; i++)
1830 {
1831 args[i * 2] = Fsingle_key_description (XCAR (keys), Qnil);
1832 args[i * 2 + 1] = sep;
1833 keys = XCDR (keys);
1834 }
1835 }
1836 else
1837 keys = wrong_type_argument (Qarrayp, keys);
1838
1839 return Fconcat (len * 2 - 1, args);
1840 }
1841
1842 char *
1843 push_key_description (c, p)
1844 register unsigned int c;
1845 register char *p;
1846 {
1847 unsigned c2;
1848
1849 /* Clear all the meaningless bits above the meta bit. */
1850 c &= meta_modifier | ~ - meta_modifier;
1851 c2 = c & ~(alt_modifier | ctrl_modifier | hyper_modifier
1852 | meta_modifier | shift_modifier | super_modifier);
1853
1854 if (c & alt_modifier)
1855 {
1856 *p++ = 'A';
1857 *p++ = '-';
1858 c -= alt_modifier;
1859 }
1860 if ((c & ctrl_modifier) != 0
1861 || (c2 < ' ' && c2 != 27 && c2 != '\t' && c2 != Ctl ('M')))
1862 {
1863 *p++ = 'C';
1864 *p++ = '-';
1865 c &= ~ctrl_modifier;
1866 }
1867 if (c & hyper_modifier)
1868 {
1869 *p++ = 'H';
1870 *p++ = '-';
1871 c -= hyper_modifier;
1872 }
1873 if (c & meta_modifier)
1874 {
1875 *p++ = 'M';
1876 *p++ = '-';
1877 c -= meta_modifier;
1878 }
1879 if (c & shift_modifier)
1880 {
1881 *p++ = 'S';
1882 *p++ = '-';
1883 c -= shift_modifier;
1884 }
1885 if (c & super_modifier)
1886 {
1887 *p++ = 's';
1888 *p++ = '-';
1889 c -= super_modifier;
1890 }
1891 if (c < 040)
1892 {
1893 if (c == 033)
1894 {
1895 *p++ = 'E';
1896 *p++ = 'S';
1897 *p++ = 'C';
1898 }
1899 else if (c == '\t')
1900 {
1901 *p++ = 'T';
1902 *p++ = 'A';
1903 *p++ = 'B';
1904 }
1905 else if (c == Ctl ('M'))
1906 {
1907 *p++ = 'R';
1908 *p++ = 'E';
1909 *p++ = 'T';
1910 }
1911 else
1912 {
1913 /* `C-' already added above. */
1914 if (c > 0 && c <= Ctl ('Z'))
1915 *p++ = c + 0140;
1916 else
1917 *p++ = c + 0100;
1918 }
1919 }
1920 else if (c == 0177)
1921 {
1922 *p++ = 'D';
1923 *p++ = 'E';
1924 *p++ = 'L';
1925 }
1926 else if (c == ' ')
1927 {
1928 *p++ = 'S';
1929 *p++ = 'P';
1930 *p++ = 'C';
1931 }
1932 else if (c < 128
1933 || (NILP (current_buffer->enable_multibyte_characters)
1934 && SINGLE_BYTE_CHAR_P (c)))
1935 *p++ = c;
1936 else
1937 {
1938 if (! NILP (current_buffer->enable_multibyte_characters))
1939 c = unibyte_char_to_multibyte (c);
1940
1941 if (NILP (current_buffer->enable_multibyte_characters)
1942 || SINGLE_BYTE_CHAR_P (c)
1943 || ! char_valid_p (c, 0))
1944 {
1945 int bit_offset;
1946 *p++ = '\\';
1947 /* The biggest character code uses 19 bits. */
1948 for (bit_offset = 18; bit_offset >= 0; bit_offset -= 3)
1949 {
1950 if (c >= (1 << bit_offset))
1951 *p++ = ((c & (7 << bit_offset)) >> bit_offset) + '0';
1952 }
1953 }
1954 else
1955 {
1956 p += CHAR_STRING (c, p);
1957 }
1958 }
1959
1960 return p;
1961 }
1962
1963 /* This function cannot GC. */
1964
1965 DEFUN ("single-key-description", Fsingle_key_description,
1966 Ssingle_key_description, 1, 2, 0,
1967 "Return a pretty description of command character KEY.\n\
1968 Control characters turn into C-whatever, etc.\n\
1969 Optional argument NO-ANGLES non-nil means don't put angle brackets\n\
1970 around function keys and event symbols.")
1971 (key, no_angles)
1972 Lisp_Object key, no_angles;
1973 {
1974 if (CONSP (key) && lucid_event_type_list_p (key))
1975 key = Fevent_convert_list (key);
1976
1977 key = EVENT_HEAD (key);
1978
1979 if (INTEGERP (key)) /* Normal character */
1980 {
1981 unsigned int charset, c1, c2;
1982 int without_bits = XINT (key) & ~((-1) << CHARACTERBITS);
1983
1984 if (SINGLE_BYTE_CHAR_P (without_bits))
1985 charset = 0;
1986 else
1987 SPLIT_CHAR (without_bits, charset, c1, c2);
1988
1989 if (charset
1990 && CHARSET_DEFINED_P (charset)
1991 && ((c1 >= 0 && c1 < 32)
1992 || (c2 >= 0 && c2 < 32)))
1993 {
1994 /* Handle a generic character. */
1995 Lisp_Object name;
1996 name = CHARSET_TABLE_INFO (charset, CHARSET_LONG_NAME_IDX);
1997 CHECK_STRING (name, 0);
1998 return concat2 (build_string ("Character set "), name);
1999 }
2000 else
2001 {
2002 char tem[KEY_DESCRIPTION_SIZE];
2003
2004 *push_key_description (XUINT (key), tem) = 0;
2005 return build_string (tem);
2006 }
2007 }
2008 else if (SYMBOLP (key)) /* Function key or event-symbol */
2009 {
2010 if (NILP (no_angles))
2011 {
2012 char *buffer
2013 = (char *) alloca (STRING_BYTES (XSYMBOL (key)->name) + 5);
2014 sprintf (buffer, "<%s>", XSYMBOL (key)->name->data);
2015 return build_string (buffer);
2016 }
2017 else
2018 return Fsymbol_name (key);
2019 }
2020 else if (STRINGP (key)) /* Buffer names in the menubar. */
2021 return Fcopy_sequence (key);
2022 else
2023 error ("KEY must be an integer, cons, symbol, or string");
2024 }
2025
2026 char *
2027 push_text_char_description (c, p)
2028 register unsigned int c;
2029 register char *p;
2030 {
2031 if (c >= 0200)
2032 {
2033 *p++ = 'M';
2034 *p++ = '-';
2035 c -= 0200;
2036 }
2037 if (c < 040)
2038 {
2039 *p++ = '^';
2040 *p++ = c + 64; /* 'A' - 1 */
2041 }
2042 else if (c == 0177)
2043 {
2044 *p++ = '^';
2045 *p++ = '?';
2046 }
2047 else
2048 *p++ = c;
2049 return p;
2050 }
2051
2052 /* This function cannot GC. */
2053
2054 DEFUN ("text-char-description", Ftext_char_description, Stext_char_description, 1, 1, 0,
2055 "Return a pretty description of file-character CHARACTER.\n\
2056 Control characters turn into \"^char\", etc.")
2057 (character)
2058 Lisp_Object character;
2059 {
2060 /* Currently MAX_MULTIBYTE_LENGTH is 4 (< 6). */
2061 unsigned char str[6];
2062 int c;
2063
2064 CHECK_NUMBER (character, 0);
2065
2066 c = XINT (character);
2067 if (!SINGLE_BYTE_CHAR_P (c))
2068 {
2069 int len = CHAR_STRING (c, str);
2070
2071 return make_multibyte_string (str, 1, len);
2072 }
2073
2074 *push_text_char_description (c & 0377, str) = 0;
2075
2076 return build_string (str);
2077 }
2078
2079 /* Return non-zero if SEQ contains only ASCII characters, perhaps with
2080 a meta bit. */
2081 static int
2082 ascii_sequence_p (seq)
2083 Lisp_Object seq;
2084 {
2085 int i;
2086 int len = XINT (Flength (seq));
2087
2088 for (i = 0; i < len; i++)
2089 {
2090 Lisp_Object ii, elt;
2091
2092 XSETFASTINT (ii, i);
2093 elt = Faref (seq, ii);
2094
2095 if (!INTEGERP (elt)
2096 || (XUINT (elt) & ~CHAR_META) >= 0x80)
2097 return 0;
2098 }
2099
2100 return 1;
2101 }
2102
2103 \f
2104 /* where-is - finding a command in a set of keymaps. */
2105
2106 static Lisp_Object where_is_internal_1 ();
2107 static void where_is_internal_2 ();
2108
2109 /* This function can GC if Flookup_key autoloads any keymaps. */
2110
2111 DEFUN ("where-is-internal", Fwhere_is_internal, Swhere_is_internal, 1, 4, 0,
2112 "Return list of keys that invoke DEFINITION.\n\
2113 If KEYMAP is non-nil, search only KEYMAP and the global keymap.\n\
2114 If KEYMAP is nil, search all the currently active keymaps.\n\
2115 \n\
2116 If optional 3rd arg FIRSTONLY is non-nil, return the first key sequence found,\n\
2117 rather than a list of all possible key sequences.\n\
2118 If FIRSTONLY is the symbol `non-ascii', return the first binding found,\n\
2119 no matter what it is.\n\
2120 If FIRSTONLY has another non-nil value, prefer sequences of ASCII characters,\n\
2121 and entirely reject menu bindings.\n\
2122 \n\
2123 If optional 4th arg NOINDIRECT is non-nil, don't follow indirections\n\
2124 to other keymaps or slots. This makes it possible to search for an\n\
2125 indirect definition itself.")
2126 (definition, xkeymap, firstonly, noindirect)
2127 Lisp_Object definition, xkeymap;
2128 Lisp_Object firstonly, noindirect;
2129 {
2130 Lisp_Object maps;
2131 Lisp_Object found, sequences;
2132 Lisp_Object keymap1;
2133 int keymap_specified = !NILP (xkeymap);
2134 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2135 /* 1 means ignore all menu bindings entirely. */
2136 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2137
2138 /* Find keymaps accessible from `keymap' or the current
2139 context. But don't muck with the value of `keymap',
2140 because `where_is_internal_1' uses it to check for
2141 shadowed bindings. */
2142 keymap1 = xkeymap;
2143 if (! keymap_specified)
2144 keymap1 = get_local_map (PT, current_buffer, keymap);
2145
2146 if (!NILP (keymap1))
2147 maps = nconc2 (Faccessible_keymaps (get_keymap (keymap1), Qnil),
2148 Faccessible_keymaps (get_keymap (current_global_map),
2149 Qnil));
2150 else
2151 {
2152 keymap1 = xkeymap;
2153 if (! keymap_specified)
2154 keymap1 = get_local_map (PT, current_buffer, local_map);
2155
2156 if (!NILP (keymap1))
2157 maps = nconc2 (Faccessible_keymaps (get_keymap (keymap1), Qnil),
2158 Faccessible_keymaps (get_keymap (current_global_map),
2159 Qnil));
2160 else
2161 maps = Faccessible_keymaps (get_keymap (current_global_map), Qnil);
2162 }
2163
2164 /* Put the minor mode keymaps on the front. */
2165 if (! keymap_specified)
2166 {
2167 Lisp_Object minors;
2168 minors = Fnreverse (Fcurrent_minor_mode_maps ());
2169 while (!NILP (minors))
2170 {
2171 maps = nconc2 (Faccessible_keymaps (get_keymap (XCAR (minors)),
2172 Qnil),
2173 maps);
2174 minors = XCDR (minors);
2175 }
2176 }
2177
2178 GCPRO5 (definition, xkeymap, maps, found, sequences);
2179 found = Qnil;
2180 sequences = Qnil;
2181
2182 for (; !NILP (maps); maps = Fcdr (maps))
2183 {
2184 /* Key sequence to reach map, and the map that it reaches */
2185 register Lisp_Object this, map;
2186
2187 /* In order to fold [META-PREFIX-CHAR CHAR] sequences into
2188 [M-CHAR] sequences, check if last character of the sequence
2189 is the meta-prefix char. */
2190 Lisp_Object last;
2191 int last_is_meta;
2192
2193 this = Fcar (Fcar (maps));
2194 map = Fcdr (Fcar (maps));
2195 last = make_number (XINT (Flength (this)) - 1);
2196 last_is_meta = (XINT (last) >= 0
2197 && EQ (Faref (this, last), meta_prefix_char));
2198
2199 QUIT;
2200
2201 while (CONSP (map))
2202 {
2203 /* Because the code we want to run on each binding is rather
2204 large, we don't want to have two separate loop bodies for
2205 sparse keymap bindings and tables; we want to iterate one
2206 loop body over both keymap and vector bindings.
2207
2208 For this reason, if Fcar (map) is a vector, we don't
2209 advance map to the next element until i indicates that we
2210 have finished off the vector. */
2211 Lisp_Object elt, key, binding;
2212 elt = XCAR (map);
2213 map = XCDR (map);
2214
2215 sequences = Qnil;
2216
2217 QUIT;
2218
2219 /* Set key and binding to the current key and binding, and
2220 advance map and i to the next binding. */
2221 if (VECTORP (elt))
2222 {
2223 Lisp_Object sequence;
2224 int i;
2225 /* In a vector, look at each element. */
2226 for (i = 0; i < XVECTOR (elt)->size; i++)
2227 {
2228 binding = XVECTOR (elt)->contents[i];
2229 XSETFASTINT (key, i);
2230 sequence = where_is_internal_1 (binding, key, definition,
2231 noindirect, xkeymap, this,
2232 last, nomenus, last_is_meta);
2233 if (!NILP (sequence))
2234 sequences = Fcons (sequence, sequences);
2235 }
2236 }
2237 else if (CHAR_TABLE_P (elt))
2238 {
2239 Lisp_Object indices[3];
2240 Lisp_Object args;
2241
2242 args = Fcons (Fcons (Fcons (definition, noindirect),
2243 Fcons (xkeymap, Qnil)),
2244 Fcons (Fcons (this, last),
2245 Fcons (make_number (nomenus),
2246 make_number (last_is_meta))));
2247 map_char_table (where_is_internal_2, Qnil, elt, args,
2248 0, indices);
2249 sequences = XCDR (XCDR (XCAR (args)));
2250 }
2251 else if (CONSP (elt))
2252 {
2253 Lisp_Object sequence;
2254
2255 key = XCAR (elt);
2256 binding = XCDR (elt);
2257
2258 sequence = where_is_internal_1 (binding, key, definition,
2259 noindirect, xkeymap, this,
2260 last, nomenus, last_is_meta);
2261 if (!NILP (sequence))
2262 sequences = Fcons (sequence, sequences);
2263 }
2264
2265
2266 for (; ! NILP (sequences); sequences = XCDR (sequences))
2267 {
2268 Lisp_Object sequence;
2269
2270 sequence = XCAR (sequences);
2271
2272 /* It is a true unshadowed match. Record it, unless it's already
2273 been seen (as could happen when inheriting keymaps). */
2274 if (NILP (Fmember (sequence, found)))
2275 found = Fcons (sequence, found);
2276
2277 /* If firstonly is Qnon_ascii, then we can return the first
2278 binding we find. If firstonly is not Qnon_ascii but not
2279 nil, then we should return the first ascii-only binding
2280 we find. */
2281 if (EQ (firstonly, Qnon_ascii))
2282 RETURN_UNGCPRO (sequence);
2283 else if (! NILP (firstonly) && ascii_sequence_p (sequence))
2284 RETURN_UNGCPRO (sequence);
2285 }
2286 }
2287 }
2288
2289 UNGCPRO;
2290
2291 found = Fnreverse (found);
2292
2293 /* firstonly may have been t, but we may have gone all the way through
2294 the keymaps without finding an all-ASCII key sequence. So just
2295 return the best we could find. */
2296 if (! NILP (firstonly))
2297 return Fcar (found);
2298
2299 return found;
2300 }
2301
2302 /* This is the function that Fwhere_is_internal calls using map_char_table.
2303 ARGS has the form
2304 (((DEFINITION . NOINDIRECT) . (KEYMAP . RESULT))
2305 .
2306 ((THIS . LAST) . (NOMENUS . LAST_IS_META)))
2307 Since map_char_table doesn't really use the return value from this function,
2308 we the result append to RESULT, the slot in ARGS.
2309
2310 This function can GC because it calls where_is_internal_1 which can
2311 GC. */
2312
2313 static void
2314 where_is_internal_2 (args, key, binding)
2315 Lisp_Object args, key, binding;
2316 {
2317 Lisp_Object definition, noindirect, keymap, this, last;
2318 Lisp_Object result, sequence;
2319 int nomenus, last_is_meta;
2320 struct gcpro gcpro1, gcpro2, gcpro3;
2321
2322 GCPRO3 (args, key, binding);
2323 result = XCDR (XCDR (XCAR (args)));
2324 definition = XCAR (XCAR (XCAR (args)));
2325 noindirect = XCDR (XCAR (XCAR (args)));
2326 keymap = XCAR (XCDR (XCAR (args)));
2327 this = XCAR (XCAR (XCDR (args)));
2328 last = XCDR (XCAR (XCDR (args)));
2329 nomenus = XFASTINT (XCAR (XCDR (XCDR (args))));
2330 last_is_meta = XFASTINT (XCDR (XCDR (XCDR (args))));
2331
2332 sequence = where_is_internal_1 (binding, key, definition, noindirect, keymap,
2333 this, last, nomenus, last_is_meta);
2334
2335 if (!NILP (sequence))
2336 XCDR (XCDR (XCAR (args))) = Fcons (sequence, result);
2337
2338 UNGCPRO;
2339 }
2340
2341
2342 /* This function can GC.because Flookup_key calls get_keymap_1 with
2343 non-zero argument AUTOLOAD. */
2344
2345 static Lisp_Object
2346 where_is_internal_1 (binding, key, definition, noindirect, keymap, this, last,
2347 nomenus, last_is_meta)
2348 Lisp_Object binding, key, definition, noindirect, keymap, this, last;
2349 int nomenus, last_is_meta;
2350 {
2351 Lisp_Object sequence;
2352 int keymap_specified = !NILP (keymap);
2353 struct gcpro gcpro1, gcpro2;
2354
2355 /* Search through indirections unless that's not wanted. */
2356 if (NILP (noindirect))
2357 {
2358 if (nomenus)
2359 {
2360 while (1)
2361 {
2362 Lisp_Object map, tem;
2363 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
2364 map = get_keymap_1 (Fcar_safe (definition), 0, 0);
2365 tem = Fkeymapp (map);
2366 if (!NILP (tem))
2367 definition = access_keymap (map, Fcdr (definition), 0, 0);
2368 else
2369 break;
2370 }
2371 /* If the contents are (menu-item ...) or (STRING ...), reject. */
2372 if (CONSP (definition)
2373 && (EQ (XCAR (definition),Qmenu_item)
2374 || STRINGP (XCAR (definition))))
2375 return Qnil;
2376 }
2377 else
2378 binding = get_keyelt (binding, 0);
2379 }
2380
2381 /* End this iteration if this element does not match
2382 the target. */
2383
2384 if (CONSP (definition))
2385 {
2386 Lisp_Object tem;
2387 tem = Fequal (binding, definition);
2388 if (NILP (tem))
2389 return Qnil;
2390 }
2391 else
2392 if (!EQ (binding, definition))
2393 return Qnil;
2394
2395 /* We have found a match.
2396 Construct the key sequence where we found it. */
2397 if (INTEGERP (key) && last_is_meta)
2398 {
2399 sequence = Fcopy_sequence (this);
2400 Faset (sequence, last, make_number (XINT (key) | meta_modifier));
2401 }
2402 else
2403 sequence = append_key (this, key);
2404
2405 /* Verify that this key binding is not shadowed by another
2406 binding for the same key, before we say it exists.
2407
2408 Mechanism: look for local definition of this key and if
2409 it is defined and does not match what we found then
2410 ignore this key.
2411
2412 Either nil or number as value from Flookup_key
2413 means undefined. */
2414 GCPRO2 (sequence, binding);
2415 if (keymap_specified)
2416 {
2417 binding = Flookup_key (keymap, sequence, Qnil);
2418 if (!NILP (binding) && !INTEGERP (binding))
2419 {
2420 if (CONSP (definition))
2421 {
2422 Lisp_Object tem;
2423 tem = Fequal (binding, definition);
2424 if (NILP (tem))
2425 RETURN_UNGCPRO (Qnil);
2426 }
2427 else
2428 if (!EQ (binding, definition))
2429 RETURN_UNGCPRO (Qnil);
2430 }
2431 }
2432 else
2433 {
2434 binding = Fkey_binding (sequence, Qnil);
2435 if (!EQ (binding, definition))
2436 RETURN_UNGCPRO (Qnil);
2437 }
2438
2439 RETURN_UNGCPRO (sequence);
2440 }
2441 \f
2442 /* describe-bindings - summarizing all the bindings in a set of keymaps. */
2443
2444 DEFUN ("describe-bindings-internal", Fdescribe_bindings_internal, Sdescribe_bindings_internal, 0, 2, "",
2445 "Show a list of all defined keys, and their definitions.\n\
2446 We put that list in a buffer, and display the buffer.\n\
2447 \n\
2448 The optional argument MENUS, if non-nil, says to mention menu bindings.\n\
2449 \(Ordinarily these are omitted from the output.)\n\
2450 The optional argument PREFIX, if non-nil, should be a key sequence;\n\
2451 then we display only bindings that start with that prefix.")
2452 (menus, prefix)
2453 Lisp_Object menus, prefix;
2454 {
2455 register Lisp_Object thisbuf;
2456 XSETBUFFER (thisbuf, current_buffer);
2457 internal_with_output_to_temp_buffer ("*Help*",
2458 describe_buffer_bindings,
2459 list3 (thisbuf, prefix, menus));
2460 return Qnil;
2461 }
2462
2463 /* ARG is (BUFFER PREFIX MENU-FLAG). */
2464
2465 static Lisp_Object
2466 describe_buffer_bindings (arg)
2467 Lisp_Object arg;
2468 {
2469 Lisp_Object descbuf, prefix, shadow;
2470 int nomenu;
2471 register Lisp_Object start1;
2472 struct gcpro gcpro1;
2473
2474 char *alternate_heading
2475 = "\
2476 Keyboard translations:\n\n\
2477 You type Translation\n\
2478 -------- -----------\n";
2479
2480 descbuf = XCAR (arg);
2481 arg = XCDR (arg);
2482 prefix = XCAR (arg);
2483 arg = XCDR (arg);
2484 nomenu = NILP (XCAR (arg));
2485
2486 shadow = Qnil;
2487 GCPRO1 (shadow);
2488
2489 Fset_buffer (Vstandard_output);
2490
2491 /* Report on alternates for keys. */
2492 if (STRINGP (Vkeyboard_translate_table) && !NILP (prefix))
2493 {
2494 int c;
2495 unsigned char *translate = XSTRING (Vkeyboard_translate_table)->data;
2496 int translate_len = XSTRING (Vkeyboard_translate_table)->size;
2497
2498 for (c = 0; c < translate_len; c++)
2499 if (translate[c] != c)
2500 {
2501 char buf[KEY_DESCRIPTION_SIZE];
2502 char *bufend;
2503
2504 if (alternate_heading)
2505 {
2506 insert_string (alternate_heading);
2507 alternate_heading = 0;
2508 }
2509
2510 bufend = push_key_description (translate[c], buf);
2511 insert (buf, bufend - buf);
2512 Findent_to (make_number (16), make_number (1));
2513 bufend = push_key_description (c, buf);
2514 insert (buf, bufend - buf);
2515
2516 insert ("\n", 1);
2517 }
2518
2519 insert ("\n", 1);
2520 }
2521
2522 if (!NILP (Vkey_translation_map))
2523 describe_map_tree (Vkey_translation_map, 0, Qnil, prefix,
2524 "Key translations", nomenu, 1, 0);
2525
2526 {
2527 int i, nmaps;
2528 Lisp_Object *modes, *maps;
2529
2530 /* Temporarily switch to descbuf, so that we can get that buffer's
2531 minor modes correctly. */
2532 Fset_buffer (descbuf);
2533
2534 if (!NILP (current_kboard->Voverriding_terminal_local_map)
2535 || !NILP (Voverriding_local_map))
2536 nmaps = 0;
2537 else
2538 nmaps = current_minor_maps (&modes, &maps);
2539 Fset_buffer (Vstandard_output);
2540
2541 /* Print the minor mode maps. */
2542 for (i = 0; i < nmaps; i++)
2543 {
2544 /* The title for a minor mode keymap
2545 is constructed at run time.
2546 We let describe_map_tree do the actual insertion
2547 because it takes care of other features when doing so. */
2548 char *title, *p;
2549
2550 if (!SYMBOLP (modes[i]))
2551 abort();
2552
2553 p = title = (char *) alloca (42 + XSYMBOL (modes[i])->name->size);
2554 *p++ = '\f';
2555 *p++ = '\n';
2556 *p++ = '`';
2557 bcopy (XSYMBOL (modes[i])->name->data, p,
2558 XSYMBOL (modes[i])->name->size);
2559 p += XSYMBOL (modes[i])->name->size;
2560 *p++ = '\'';
2561 bcopy (" Minor Mode Bindings", p, sizeof (" Minor Mode Bindings") - 1);
2562 p += sizeof (" Minor Mode Bindings") - 1;
2563 *p = 0;
2564
2565 describe_map_tree (maps[i], 1, shadow, prefix, title, nomenu, 0, 0);
2566 shadow = Fcons (maps[i], shadow);
2567 }
2568 }
2569
2570 /* Print the (major mode) local map. */
2571 if (!NILP (current_kboard->Voverriding_terminal_local_map))
2572 start1 = current_kboard->Voverriding_terminal_local_map;
2573 else if (!NILP (Voverriding_local_map))
2574 start1 = Voverriding_local_map;
2575 else
2576 start1 = XBUFFER (descbuf)->keymap;
2577
2578 if (!NILP (start1))
2579 {
2580 describe_map_tree (start1, 1, shadow, prefix,
2581 "\f\nMajor Mode Bindings", nomenu, 0, 0);
2582 shadow = Fcons (start1, shadow);
2583 }
2584
2585 describe_map_tree (current_global_map, 1, shadow, prefix,
2586 "\f\nGlobal Bindings", nomenu, 0, 1);
2587
2588 /* Print the function-key-map translations under this prefix. */
2589 if (!NILP (Vfunction_key_map))
2590 describe_map_tree (Vfunction_key_map, 0, Qnil, prefix,
2591 "\f\nFunction key map translations", nomenu, 1, 0);
2592
2593 call0 (intern ("help-mode"));
2594 Fset_buffer (descbuf);
2595 UNGCPRO;
2596 return Qnil;
2597 }
2598
2599 /* Insert a description of the key bindings in STARTMAP,
2600 followed by those of all maps reachable through STARTMAP.
2601 If PARTIAL is nonzero, omit certain "uninteresting" commands
2602 (such as `undefined').
2603 If SHADOW is non-nil, it is a list of maps;
2604 don't mention keys which would be shadowed by any of them.
2605 PREFIX, if non-nil, says mention only keys that start with PREFIX.
2606 TITLE, if not 0, is a string to insert at the beginning.
2607 TITLE should not end with a colon or a newline; we supply that.
2608 If NOMENU is not 0, then omit menu-bar commands.
2609
2610 If TRANSL is nonzero, the definitions are actually key translations
2611 so print strings and vectors differently.
2612
2613 If ALWAYS_TITLE is nonzero, print the title even if there are no maps
2614 to look through. */
2615
2616 void
2617 describe_map_tree (startmap, partial, shadow, prefix, title, nomenu, transl,
2618 always_title)
2619 Lisp_Object startmap, shadow, prefix;
2620 int partial;
2621 char *title;
2622 int nomenu;
2623 int transl;
2624 int always_title;
2625 {
2626 Lisp_Object maps, orig_maps, seen, sub_shadows;
2627 struct gcpro gcpro1, gcpro2, gcpro3;
2628 int something = 0;
2629 char *key_heading
2630 = "\
2631 key binding\n\
2632 --- -------\n";
2633
2634 orig_maps = maps = Faccessible_keymaps (startmap, prefix);
2635 seen = Qnil;
2636 sub_shadows = Qnil;
2637 GCPRO3 (maps, seen, sub_shadows);
2638
2639 if (nomenu)
2640 {
2641 Lisp_Object list;
2642
2643 /* Delete from MAPS each element that is for the menu bar. */
2644 for (list = maps; !NILP (list); list = XCDR (list))
2645 {
2646 Lisp_Object elt, prefix, tem;
2647
2648 elt = Fcar (list);
2649 prefix = Fcar (elt);
2650 if (XVECTOR (prefix)->size >= 1)
2651 {
2652 tem = Faref (prefix, make_number (0));
2653 if (EQ (tem, Qmenu_bar))
2654 maps = Fdelq (elt, maps);
2655 }
2656 }
2657 }
2658
2659 if (!NILP (maps) || always_title)
2660 {
2661 if (title)
2662 {
2663 insert_string (title);
2664 if (!NILP (prefix))
2665 {
2666 insert_string (" Starting With ");
2667 insert1 (Fkey_description (prefix));
2668 }
2669 insert_string (":\n");
2670 }
2671 insert_string (key_heading);
2672 something = 1;
2673 }
2674
2675 for (; !NILP (maps); maps = Fcdr (maps))
2676 {
2677 register Lisp_Object elt, prefix, tail;
2678
2679 elt = Fcar (maps);
2680 prefix = Fcar (elt);
2681
2682 sub_shadows = Qnil;
2683
2684 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2685 {
2686 Lisp_Object shmap;
2687
2688 shmap = XCAR (tail);
2689
2690 /* If the sequence by which we reach this keymap is zero-length,
2691 then the shadow map for this keymap is just SHADOW. */
2692 if ((STRINGP (prefix) && XSTRING (prefix)->size == 0)
2693 || (VECTORP (prefix) && XVECTOR (prefix)->size == 0))
2694 ;
2695 /* If the sequence by which we reach this keymap actually has
2696 some elements, then the sequence's definition in SHADOW is
2697 what we should use. */
2698 else
2699 {
2700 shmap = Flookup_key (shmap, Fcar (elt), Qt);
2701 if (INTEGERP (shmap))
2702 shmap = Qnil;
2703 }
2704
2705 /* If shmap is not nil and not a keymap,
2706 it completely shadows this map, so don't
2707 describe this map at all. */
2708 if (!NILP (shmap) && NILP (Fkeymapp (shmap)))
2709 goto skip;
2710
2711 if (!NILP (shmap))
2712 sub_shadows = Fcons (shmap, sub_shadows);
2713 }
2714
2715 /* Maps we have already listed in this loop shadow this map. */
2716 for (tail = orig_maps; ! EQ (tail, maps); tail = XCDR (tail))
2717 {
2718 Lisp_Object tem;
2719 tem = Fequal (Fcar (XCAR (tail)), prefix);
2720 if (! NILP (tem))
2721 sub_shadows = Fcons (XCDR (XCAR (tail)), sub_shadows);
2722 }
2723
2724 describe_map (Fcdr (elt), prefix,
2725 transl ? describe_translation : describe_command,
2726 partial, sub_shadows, &seen, nomenu);
2727
2728 skip: ;
2729 }
2730
2731 if (something)
2732 insert_string ("\n");
2733
2734 UNGCPRO;
2735 }
2736
2737 static int previous_description_column;
2738
2739 static void
2740 describe_command (definition)
2741 Lisp_Object definition;
2742 {
2743 register Lisp_Object tem1;
2744 int column = current_column ();
2745 int description_column;
2746
2747 /* If column 16 is no good, go to col 32;
2748 but don't push beyond that--go to next line instead. */
2749 if (column > 30)
2750 {
2751 insert_char ('\n');
2752 description_column = 32;
2753 }
2754 else if (column > 14 || (column > 10 && previous_description_column == 32))
2755 description_column = 32;
2756 else
2757 description_column = 16;
2758
2759 Findent_to (make_number (description_column), make_number (1));
2760 previous_description_column = description_column;
2761
2762 if (SYMBOLP (definition))
2763 {
2764 XSETSTRING (tem1, XSYMBOL (definition)->name);
2765 insert1 (tem1);
2766 insert_string ("\n");
2767 }
2768 else if (STRINGP (definition) || VECTORP (definition))
2769 insert_string ("Keyboard Macro\n");
2770 else
2771 {
2772 tem1 = Fkeymapp (definition);
2773 if (!NILP (tem1))
2774 insert_string ("Prefix Command\n");
2775 else
2776 insert_string ("??\n");
2777 }
2778 }
2779
2780 static void
2781 describe_translation (definition)
2782 Lisp_Object definition;
2783 {
2784 register Lisp_Object tem1;
2785
2786 Findent_to (make_number (16), make_number (1));
2787
2788 if (SYMBOLP (definition))
2789 {
2790 XSETSTRING (tem1, XSYMBOL (definition)->name);
2791 insert1 (tem1);
2792 insert_string ("\n");
2793 }
2794 else if (STRINGP (definition) || VECTORP (definition))
2795 {
2796 insert1 (Fkey_description (definition));
2797 insert_string ("\n");
2798 }
2799 else
2800 {
2801 tem1 = Fkeymapp (definition);
2802 if (!NILP (tem1))
2803 insert_string ("Prefix Command\n");
2804 else
2805 insert_string ("??\n");
2806 }
2807 }
2808
2809 /* Like Flookup_key, but uses a list of keymaps SHADOW instead of a single map.
2810 Returns the first non-nil binding found in any of those maps. */
2811
2812 static Lisp_Object
2813 shadow_lookup (shadow, key, flag)
2814 Lisp_Object shadow, key, flag;
2815 {
2816 Lisp_Object tail, value;
2817
2818 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2819 {
2820 value = Flookup_key (XCAR (tail), key, flag);
2821 if (!NILP (value))
2822 return value;
2823 }
2824 return Qnil;
2825 }
2826
2827 /* Describe the contents of map MAP, assuming that this map itself is
2828 reached by the sequence of prefix keys KEYS (a string or vector).
2829 PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */
2830
2831 static void
2832 describe_map (map, keys, elt_describer, partial, shadow, seen, nomenu)
2833 register Lisp_Object map;
2834 Lisp_Object keys;
2835 void (*elt_describer) P_ ((Lisp_Object));
2836 int partial;
2837 Lisp_Object shadow;
2838 Lisp_Object *seen;
2839 int nomenu;
2840 {
2841 Lisp_Object elt_prefix;
2842 Lisp_Object tail, definition, event;
2843 Lisp_Object tem;
2844 Lisp_Object suppress;
2845 Lisp_Object kludge;
2846 int first = 1;
2847 struct gcpro gcpro1, gcpro2, gcpro3;
2848
2849 if (!NILP (keys) && XFASTINT (Flength (keys)) > 0)
2850 {
2851 /* Call Fkey_description first, to avoid GC bug for the other string. */
2852 tem = Fkey_description (keys);
2853 elt_prefix = concat2 (tem, build_string (" "));
2854 }
2855 else
2856 elt_prefix = Qnil;
2857
2858 if (partial)
2859 suppress = intern ("suppress-keymap");
2860
2861 /* This vector gets used to present single keys to Flookup_key. Since
2862 that is done once per keymap element, we don't want to cons up a
2863 fresh vector every time. */
2864 kludge = Fmake_vector (make_number (1), Qnil);
2865 definition = Qnil;
2866
2867 GCPRO3 (elt_prefix, definition, kludge);
2868
2869 for (tail = map; CONSP (tail); tail = XCDR (tail))
2870 {
2871 QUIT;
2872
2873 if (VECTORP (XCAR (tail))
2874 || CHAR_TABLE_P (XCAR (tail)))
2875 describe_vector (XCAR (tail),
2876 elt_prefix, elt_describer, partial, shadow, map,
2877 (int *)0, 0);
2878 else if (CONSP (XCAR (tail)))
2879 {
2880 event = XCAR (XCAR (tail));
2881
2882 /* Ignore bindings whose "keys" are not really valid events.
2883 (We get these in the frames and buffers menu.) */
2884 if (! (SYMBOLP (event) || INTEGERP (event)))
2885 continue;
2886
2887 if (nomenu && EQ (event, Qmenu_bar))
2888 continue;
2889
2890 definition = get_keyelt (XCDR (XCAR (tail)), 0);
2891
2892 /* Don't show undefined commands or suppressed commands. */
2893 if (NILP (definition)) continue;
2894 if (SYMBOLP (definition) && partial)
2895 {
2896 tem = Fget (definition, suppress);
2897 if (!NILP (tem))
2898 continue;
2899 }
2900
2901 /* Don't show a command that isn't really visible
2902 because a local definition of the same key shadows it. */
2903
2904 XVECTOR (kludge)->contents[0] = event;
2905 if (!NILP (shadow))
2906 {
2907 tem = shadow_lookup (shadow, kludge, Qt);
2908 if (!NILP (tem)) continue;
2909 }
2910
2911 tem = Flookup_key (map, kludge, Qt);
2912 if (! EQ (tem, definition)) continue;
2913
2914 if (first)
2915 {
2916 previous_description_column = 0;
2917 insert ("\n", 1);
2918 first = 0;
2919 }
2920
2921 if (!NILP (elt_prefix))
2922 insert1 (elt_prefix);
2923
2924 /* THIS gets the string to describe the character EVENT. */
2925 insert1 (Fsingle_key_description (event, Qnil));
2926
2927 /* Print a description of the definition of this character.
2928 elt_describer will take care of spacing out far enough
2929 for alignment purposes. */
2930 (*elt_describer) (definition);
2931 }
2932 else if (EQ (XCAR (tail), Qkeymap))
2933 {
2934 /* The same keymap might be in the structure twice, if we're
2935 using an inherited keymap. So skip anything we've already
2936 encountered. */
2937 tem = Fassq (tail, *seen);
2938 if (CONSP (tem) && !NILP (Fequal (XCAR (tem), keys)))
2939 break;
2940 *seen = Fcons (Fcons (tail, keys), *seen);
2941 }
2942 }
2943
2944 UNGCPRO;
2945 }
2946
2947 static void
2948 describe_vector_princ (elt)
2949 Lisp_Object elt;
2950 {
2951 Findent_to (make_number (16), make_number (1));
2952 Fprinc (elt, Qnil);
2953 Fterpri (Qnil);
2954 }
2955
2956 DEFUN ("describe-vector", Fdescribe_vector, Sdescribe_vector, 1, 1, 0,
2957 "Insert a description of contents of VECTOR.\n\
2958 This is text showing the elements of vector matched against indices.")
2959 (vector)
2960 Lisp_Object vector;
2961 {
2962 int count = specpdl_ptr - specpdl;
2963
2964 specbind (Qstandard_output, Fcurrent_buffer ());
2965 CHECK_VECTOR_OR_CHAR_TABLE (vector, 0);
2966 describe_vector (vector, Qnil, describe_vector_princ, 0,
2967 Qnil, Qnil, (int *)0, 0);
2968
2969 return unbind_to (count, Qnil);
2970 }
2971
2972 /* Insert in the current buffer a description of the contents of VECTOR.
2973 We call ELT_DESCRIBER to insert the description of one value found
2974 in VECTOR.
2975
2976 ELT_PREFIX describes what "comes before" the keys or indices defined
2977 by this vector. This is a human-readable string whose size
2978 is not necessarily related to the situation.
2979
2980 If the vector is in a keymap, ELT_PREFIX is a prefix key which
2981 leads to this keymap.
2982
2983 If the vector is a chartable, ELT_PREFIX is the vector
2984 of bytes that lead to the character set or portion of a character
2985 set described by this chartable.
2986
2987 If PARTIAL is nonzero, it means do not mention suppressed commands
2988 (that assumes the vector is in a keymap).
2989
2990 SHADOW is a list of keymaps that shadow this map.
2991 If it is non-nil, then we look up the key in those maps
2992 and we don't mention it now if it is defined by any of them.
2993
2994 ENTIRE_MAP is the keymap in which this vector appears.
2995 If the definition in effect in the whole map does not match
2996 the one in this vector, we ignore this one.
2997
2998 When describing a sub-char-table, INDICES is a list of
2999 indices at higher levels in this char-table,
3000 and CHAR_TABLE_DEPTH says how many levels down we have gone. */
3001
3002 void
3003 describe_vector (vector, elt_prefix, elt_describer,
3004 partial, shadow, entire_map,
3005 indices, char_table_depth)
3006 register Lisp_Object vector;
3007 Lisp_Object elt_prefix;
3008 void (*elt_describer) P_ ((Lisp_Object));
3009 int partial;
3010 Lisp_Object shadow;
3011 Lisp_Object entire_map;
3012 int *indices;
3013 int char_table_depth;
3014 {
3015 Lisp_Object definition;
3016 Lisp_Object tem2;
3017 register int i;
3018 Lisp_Object suppress;
3019 Lisp_Object kludge;
3020 int first = 1;
3021 struct gcpro gcpro1, gcpro2, gcpro3;
3022 /* Range of elements to be handled. */
3023 int from, to;
3024 /* A flag to tell if a leaf in this level of char-table is not a
3025 generic character (i.e. a complete multibyte character). */
3026 int complete_char;
3027 int character;
3028 int starting_i;
3029
3030 if (indices == 0)
3031 indices = (int *) alloca (3 * sizeof (int));
3032
3033 definition = Qnil;
3034
3035 /* This vector gets used to present single keys to Flookup_key. Since
3036 that is done once per vector element, we don't want to cons up a
3037 fresh vector every time. */
3038 kludge = Fmake_vector (make_number (1), Qnil);
3039 GCPRO3 (elt_prefix, definition, kludge);
3040
3041 if (partial)
3042 suppress = intern ("suppress-keymap");
3043
3044 if (CHAR_TABLE_P (vector))
3045 {
3046 if (char_table_depth == 0)
3047 {
3048 /* VECTOR is a top level char-table. */
3049 complete_char = 1;
3050 from = 0;
3051 to = CHAR_TABLE_ORDINARY_SLOTS;
3052 }
3053 else
3054 {
3055 /* VECTOR is a sub char-table. */
3056 if (char_table_depth >= 3)
3057 /* A char-table is never that deep. */
3058 error ("Too deep char table");
3059
3060 complete_char
3061 = (CHARSET_VALID_P (indices[0])
3062 && ((CHARSET_DIMENSION (indices[0]) == 1
3063 && char_table_depth == 1)
3064 || char_table_depth == 2));
3065
3066 /* Meaningful elements are from 32th to 127th. */
3067 from = 32;
3068 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
3069 }
3070 }
3071 else
3072 {
3073 /* This does the right thing for ordinary vectors. */
3074
3075 complete_char = 1;
3076 from = 0;
3077 to = XVECTOR (vector)->size;
3078 }
3079
3080 for (i = from; i < to; i++)
3081 {
3082 QUIT;
3083
3084 if (CHAR_TABLE_P (vector))
3085 {
3086 if (char_table_depth == 0 && i >= CHAR_TABLE_SINGLE_BYTE_SLOTS)
3087 complete_char = 0;
3088
3089 if (i >= CHAR_TABLE_SINGLE_BYTE_SLOTS
3090 && !CHARSET_DEFINED_P (i - 128))
3091 continue;
3092
3093 definition
3094 = get_keyelt (XCHAR_TABLE (vector)->contents[i], 0);
3095 }
3096 else
3097 definition = get_keyelt (XVECTOR (vector)->contents[i], 0);
3098
3099 if (NILP (definition)) continue;
3100
3101 /* Don't mention suppressed commands. */
3102 if (SYMBOLP (definition) && partial)
3103 {
3104 Lisp_Object tem;
3105
3106 tem = Fget (definition, suppress);
3107
3108 if (!NILP (tem)) continue;
3109 }
3110
3111 /* Set CHARACTER to the character this entry describes, if any.
3112 Also update *INDICES. */
3113 if (CHAR_TABLE_P (vector))
3114 {
3115 indices[char_table_depth] = i;
3116
3117 if (char_table_depth == 0)
3118 {
3119 character = i;
3120 indices[0] = i - 128;
3121 }
3122 else if (complete_char)
3123 {
3124 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3125 }
3126 else
3127 character = 0;
3128 }
3129 else
3130 character = i;
3131
3132 /* If this binding is shadowed by some other map, ignore it. */
3133 if (!NILP (shadow) && complete_char)
3134 {
3135 Lisp_Object tem;
3136
3137 XVECTOR (kludge)->contents[0] = make_number (character);
3138 tem = shadow_lookup (shadow, kludge, Qt);
3139
3140 if (!NILP (tem)) continue;
3141 }
3142
3143 /* Ignore this definition if it is shadowed by an earlier
3144 one in the same keymap. */
3145 if (!NILP (entire_map) && complete_char)
3146 {
3147 Lisp_Object tem;
3148
3149 XVECTOR (kludge)->contents[0] = make_number (character);
3150 tem = Flookup_key (entire_map, kludge, Qt);
3151
3152 if (! EQ (tem, definition))
3153 continue;
3154 }
3155
3156 if (first)
3157 {
3158 if (char_table_depth == 0)
3159 insert ("\n", 1);
3160 first = 0;
3161 }
3162
3163 /* For a sub char-table, show the depth by indentation.
3164 CHAR_TABLE_DEPTH can be greater than 0 only for a char-table. */
3165 if (char_table_depth > 0)
3166 insert (" ", char_table_depth * 2); /* depth is 1 or 2. */
3167
3168 /* Output the prefix that applies to every entry in this map. */
3169 if (!NILP (elt_prefix))
3170 insert1 (elt_prefix);
3171
3172 /* Insert or describe the character this slot is for,
3173 or a description of what it is for. */
3174 if (SUB_CHAR_TABLE_P (vector))
3175 {
3176 if (complete_char)
3177 insert_char (character);
3178 else
3179 {
3180 /* We need an octal representation for this block of
3181 characters. */
3182 char work[16];
3183 sprintf (work, "(row %d)", i);
3184 insert (work, strlen (work));
3185 }
3186 }
3187 else if (CHAR_TABLE_P (vector))
3188 {
3189 if (complete_char)
3190 insert1 (Fsingle_key_description (make_number (character), Qnil));
3191 else
3192 {
3193 /* Print the information for this character set. */
3194 insert_string ("<");
3195 tem2 = CHARSET_TABLE_INFO (i - 128, CHARSET_SHORT_NAME_IDX);
3196 if (STRINGP (tem2))
3197 insert_from_string (tem2, 0, 0, XSTRING (tem2)->size,
3198 STRING_BYTES (XSTRING (tem2)), 0);
3199 else
3200 insert ("?", 1);
3201 insert (">", 1);
3202 }
3203 }
3204 else
3205 {
3206 insert1 (Fsingle_key_description (make_number (character), Qnil));
3207 }
3208
3209 /* If we find a sub char-table within a char-table,
3210 scan it recursively; it defines the details for
3211 a character set or a portion of a character set. */
3212 if (CHAR_TABLE_P (vector) && SUB_CHAR_TABLE_P (definition))
3213 {
3214 insert ("\n", 1);
3215 describe_vector (definition, elt_prefix, elt_describer,
3216 partial, shadow, entire_map,
3217 indices, char_table_depth + 1);
3218 continue;
3219 }
3220
3221 starting_i = i;
3222
3223 /* Find all consecutive characters or rows that have the same
3224 definition. But, for elements of a top level char table, if
3225 they are for charsets, we had better describe one by one even
3226 if they have the same definition. */
3227 if (CHAR_TABLE_P (vector))
3228 {
3229 int limit = to;
3230
3231 if (char_table_depth == 0)
3232 limit = CHAR_TABLE_SINGLE_BYTE_SLOTS;
3233
3234 while (i + 1 < limit
3235 && (tem2 = get_keyelt (XCHAR_TABLE (vector)->contents[i + 1], 0),
3236 !NILP (tem2))
3237 && !NILP (Fequal (tem2, definition)))
3238 i++;
3239 }
3240 else
3241 while (i + 1 < to
3242 && (tem2 = get_keyelt (XVECTOR (vector)->contents[i + 1], 0),
3243 !NILP (tem2))
3244 && !NILP (Fequal (tem2, definition)))
3245 i++;
3246
3247
3248 /* If we have a range of more than one character,
3249 print where the range reaches to. */
3250
3251 if (i != starting_i)
3252 {
3253 insert (" .. ", 4);
3254
3255 if (!NILP (elt_prefix))
3256 insert1 (elt_prefix);
3257
3258 if (CHAR_TABLE_P (vector))
3259 {
3260 if (char_table_depth == 0)
3261 {
3262 insert1 (Fsingle_key_description (make_number (i), Qnil));
3263 }
3264 else if (complete_char)
3265 {
3266 indices[char_table_depth] = i;
3267 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3268 insert_char (character);
3269 }
3270 else
3271 {
3272 /* We need an octal representation for this block of
3273 characters. */
3274 char work[16];
3275 sprintf (work, "(row %d)", i);
3276 insert (work, strlen (work));
3277 }
3278 }
3279 else
3280 {
3281 insert1 (Fsingle_key_description (make_number (i), Qnil));
3282 }
3283 }
3284
3285 /* Print a description of the definition of this character.
3286 elt_describer will take care of spacing out far enough
3287 for alignment purposes. */
3288 (*elt_describer) (definition);
3289 }
3290
3291 /* For (sub) char-table, print `defalt' slot at last. */
3292 if (CHAR_TABLE_P (vector) && !NILP (XCHAR_TABLE (vector)->defalt))
3293 {
3294 insert (" ", char_table_depth * 2);
3295 insert_string ("<<default>>");
3296 (*elt_describer) (XCHAR_TABLE (vector)->defalt);
3297 }
3298
3299 UNGCPRO;
3300 }
3301 \f
3302 /* Apropos - finding all symbols whose names match a regexp. */
3303 Lisp_Object apropos_predicate;
3304 Lisp_Object apropos_accumulate;
3305
3306 static void
3307 apropos_accum (symbol, string)
3308 Lisp_Object symbol, string;
3309 {
3310 register Lisp_Object tem;
3311
3312 tem = Fstring_match (string, Fsymbol_name (symbol), Qnil);
3313 if (!NILP (tem) && !NILP (apropos_predicate))
3314 tem = call1 (apropos_predicate, symbol);
3315 if (!NILP (tem))
3316 apropos_accumulate = Fcons (symbol, apropos_accumulate);
3317 }
3318
3319 DEFUN ("apropos-internal", Fapropos_internal, Sapropos_internal, 1, 2, 0,
3320 "Show all symbols whose names contain match for REGEXP.\n\
3321 If optional 2nd arg PREDICATE is non-nil, (funcall PREDICATE SYMBOL) is done\n\
3322 for each symbol and a symbol is mentioned only if that returns non-nil.\n\
3323 Return list of symbols found.")
3324 (regexp, predicate)
3325 Lisp_Object regexp, predicate;
3326 {
3327 struct gcpro gcpro1, gcpro2;
3328 CHECK_STRING (regexp, 0);
3329 apropos_predicate = predicate;
3330 GCPRO2 (apropos_predicate, apropos_accumulate);
3331 apropos_accumulate = Qnil;
3332 map_obarray (Vobarray, apropos_accum, regexp);
3333 apropos_accumulate = Fsort (apropos_accumulate, Qstring_lessp);
3334 UNGCPRO;
3335 return apropos_accumulate;
3336 }
3337 \f
3338 void
3339 syms_of_keymap ()
3340 {
3341 Qkeymap = intern ("keymap");
3342 staticpro (&Qkeymap);
3343
3344 /* Now we are ready to set up this property, so we can
3345 create char tables. */
3346 Fput (Qkeymap, Qchar_table_extra_slots, make_number (0));
3347
3348 /* Initialize the keymaps standardly used.
3349 Each one is the value of a Lisp variable, and is also
3350 pointed to by a C variable */
3351
3352 global_map = Fmake_keymap (Qnil);
3353 Fset (intern ("global-map"), global_map);
3354
3355 current_global_map = global_map;
3356 staticpro (&global_map);
3357 staticpro (&current_global_map);
3358
3359 meta_map = Fmake_keymap (Qnil);
3360 Fset (intern ("esc-map"), meta_map);
3361 Ffset (intern ("ESC-prefix"), meta_map);
3362
3363 control_x_map = Fmake_keymap (Qnil);
3364 Fset (intern ("ctl-x-map"), control_x_map);
3365 Ffset (intern ("Control-X-prefix"), control_x_map);
3366
3367 DEFVAR_LISP ("define-key-rebound-commands", &Vdefine_key_rebound_commands,
3368 "List of commands given new key bindings recently.\n\
3369 This is used for internal purposes during Emacs startup;\n\
3370 don't alter it yourself.");
3371 Vdefine_key_rebound_commands = Qt;
3372
3373 DEFVAR_LISP ("minibuffer-local-map", &Vminibuffer_local_map,
3374 "Default keymap to use when reading from the minibuffer.");
3375 Vminibuffer_local_map = Fmake_sparse_keymap (Qnil);
3376
3377 DEFVAR_LISP ("minibuffer-local-ns-map", &Vminibuffer_local_ns_map,
3378 "Local keymap for the minibuffer when spaces are not allowed.");
3379 Vminibuffer_local_ns_map = Fmake_sparse_keymap (Qnil);
3380
3381 DEFVAR_LISP ("minibuffer-local-completion-map", &Vminibuffer_local_completion_map,
3382 "Local keymap for minibuffer input with completion.");
3383 Vminibuffer_local_completion_map = Fmake_sparse_keymap (Qnil);
3384
3385 DEFVAR_LISP ("minibuffer-local-must-match-map", &Vminibuffer_local_must_match_map,
3386 "Local keymap for minibuffer input with completion, for exact match.");
3387 Vminibuffer_local_must_match_map = Fmake_sparse_keymap (Qnil);
3388
3389 DEFVAR_LISP ("minor-mode-map-alist", &Vminor_mode_map_alist,
3390 "Alist of keymaps to use for minor modes.\n\
3391 Each element looks like (VARIABLE . KEYMAP); KEYMAP is used to read\n\
3392 key sequences and look up bindings iff VARIABLE's value is non-nil.\n\
3393 If two active keymaps bind the same key, the keymap appearing earlier\n\
3394 in the list takes precedence.");
3395 Vminor_mode_map_alist = Qnil;
3396
3397 DEFVAR_LISP ("minor-mode-overriding-map-alist", &Vminor_mode_overriding_map_alist,
3398 "Alist of keymaps to use for minor modes, in current major mode.\n\
3399 This variable is a alist just like `minor-mode-map-alist', and it is\n\
3400 used the same way (and before `minor-mode-map-alist'); however,\n\
3401 it is provided for major modes to bind locally.");
3402 Vminor_mode_overriding_map_alist = Qnil;
3403
3404 DEFVAR_LISP ("function-key-map", &Vfunction_key_map,
3405 "Keymap mapping ASCII function key sequences onto their preferred forms.\n\
3406 This allows Emacs to recognize function keys sent from ASCII\n\
3407 terminals at any point in a key sequence.\n\
3408 \n\
3409 The `read-key-sequence' function replaces any subsequence bound by\n\
3410 `function-key-map' with its binding. More precisely, when the active\n\
3411 keymaps have no binding for the current key sequence but\n\
3412 `function-key-map' binds a suffix of the sequence to a vector or string,\n\
3413 `read-key-sequence' replaces the matching suffix with its binding, and\n\
3414 continues with the new sequence.\n\
3415 \n\
3416 The events that come from bindings in `function-key-map' are not\n\
3417 themselves looked up in `function-key-map'.\n\
3418 \n\
3419 For example, suppose `function-key-map' binds `ESC O P' to [f1].\n\
3420 Typing `ESC O P' to `read-key-sequence' would return [f1]. Typing\n\
3421 `C-x ESC O P' would return [?\\C-x f1]. If [f1] were a prefix\n\
3422 key, typing `ESC O P x' would return [f1 x].");
3423 Vfunction_key_map = Fmake_sparse_keymap (Qnil);
3424
3425 DEFVAR_LISP ("key-translation-map", &Vkey_translation_map,
3426 "Keymap of key translations that can override keymaps.\n\
3427 This keymap works like `function-key-map', but comes after that,\n\
3428 and applies even for keys that have ordinary bindings.");
3429 Vkey_translation_map = Qnil;
3430
3431 Qsingle_key_description = intern ("single-key-description");
3432 staticpro (&Qsingle_key_description);
3433
3434 Qkey_description = intern ("key-description");
3435 staticpro (&Qkey_description);
3436
3437 Qkeymapp = intern ("keymapp");
3438 staticpro (&Qkeymapp);
3439
3440 Qnon_ascii = intern ("non-ascii");
3441 staticpro (&Qnon_ascii);
3442
3443 Qmenu_item = intern ("menu-item");
3444 staticpro (&Qmenu_item);
3445
3446 defsubr (&Skeymapp);
3447 defsubr (&Skeymap_parent);
3448 defsubr (&Sset_keymap_parent);
3449 defsubr (&Smake_keymap);
3450 defsubr (&Smake_sparse_keymap);
3451 defsubr (&Scopy_keymap);
3452 defsubr (&Skey_binding);
3453 defsubr (&Slocal_key_binding);
3454 defsubr (&Sglobal_key_binding);
3455 defsubr (&Sminor_mode_key_binding);
3456 defsubr (&Sdefine_key);
3457 defsubr (&Slookup_key);
3458 defsubr (&Sdefine_prefix_command);
3459 defsubr (&Suse_global_map);
3460 defsubr (&Suse_local_map);
3461 defsubr (&Scurrent_local_map);
3462 defsubr (&Scurrent_global_map);
3463 defsubr (&Scurrent_minor_mode_maps);
3464 defsubr (&Saccessible_keymaps);
3465 defsubr (&Skey_description);
3466 defsubr (&Sdescribe_vector);
3467 defsubr (&Ssingle_key_description);
3468 defsubr (&Stext_char_description);
3469 defsubr (&Swhere_is_internal);
3470 defsubr (&Sdescribe_bindings_internal);
3471 defsubr (&Sapropos_internal);
3472 }
3473
3474 void
3475 keys_of_keymap ()
3476 {
3477 initial_define_key (global_map, 033, "ESC-prefix");
3478 initial_define_key (global_map, Ctl('X'), "Control-X-prefix");
3479 }