]> code.delx.au - gnu-emacs/blob - src/lisp.h
Port to MSB hosts without optimization
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2015 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
40 # define ID (some integer preprocessor expression of type TYPE)
41 DEFINE_GDB_SYMBOL_END (ID)
42
43 This hack is for the benefit of compilers that do not make macro
44 definitions or enums visible to the debugger. It's used for symbols
45 that .gdbinit needs. */
46
47 #define DECLARE_GDB_SYM(type, id) type const id EXTERNALLY_VISIBLE
48 #ifdef MAIN_PROGRAM
49 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) DECLARE_GDB_SYM (type, id)
50 # define DEFINE_GDB_SYMBOL_END(id) = id;
51 #else
52 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) extern DECLARE_GDB_SYM (type, id)
53 # define DEFINE_GDB_SYMBOL_END(val) ;
54 #endif
55
56 /* The ubiquitous max and min macros. */
57 #undef min
58 #undef max
59 #define max(a, b) ((a) > (b) ? (a) : (b))
60 #define min(a, b) ((a) < (b) ? (a) : (b))
61
62 /* Number of elements in an array. */
63 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
64
65 /* Number of bits in a Lisp_Object tag. */
66 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
67 #define GCTYPEBITS 3
68 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
69
70 /* The number of bits needed in an EMACS_INT over and above the number
71 of bits in a pointer. This is 0 on systems where:
72 1. We can specify multiple-of-8 alignment on static variables.
73 2. We know malloc returns a multiple of 8. */
74 #if (defined alignas \
75 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
76 || defined DARWIN_OS || defined __sun || defined __MINGW32__ \
77 || defined CYGWIN))
78 # define NONPOINTER_BITS 0
79 #else
80 # define NONPOINTER_BITS GCTYPEBITS
81 #endif
82
83 /* EMACS_INT - signed integer wide enough to hold an Emacs value
84 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
85 pI - printf length modifier for EMACS_INT
86 EMACS_UINT - unsigned variant of EMACS_INT */
87 #ifndef EMACS_INT_MAX
88 # if INTPTR_MAX <= 0
89 # error "INTPTR_MAX misconfigured"
90 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
91 typedef int EMACS_INT;
92 typedef unsigned int EMACS_UINT;
93 # define EMACS_INT_MAX INT_MAX
94 # define pI ""
95 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
96 typedef long int EMACS_INT;
97 typedef unsigned long EMACS_UINT;
98 # define EMACS_INT_MAX LONG_MAX
99 # define pI "l"
100 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
101 In theory this is not safe, but in practice it seems to be OK. */
102 # elif INTPTR_MAX <= LLONG_MAX
103 typedef long long int EMACS_INT;
104 typedef unsigned long long int EMACS_UINT;
105 # define EMACS_INT_MAX LLONG_MAX
106 # define pI "ll"
107 # else
108 # error "INTPTR_MAX too large"
109 # endif
110 #endif
111
112 /* Number of bits to put in each character in the internal representation
113 of bool vectors. This should not vary across implementations. */
114 enum { BOOL_VECTOR_BITS_PER_CHAR =
115 #define BOOL_VECTOR_BITS_PER_CHAR 8
116 BOOL_VECTOR_BITS_PER_CHAR
117 };
118
119 /* An unsigned integer type representing a fixed-length bit sequence,
120 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
121 for speed, but it is unsigned char on weird platforms. */
122 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
123 typedef size_t bits_word;
124 # define BITS_WORD_MAX SIZE_MAX
125 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
126 #else
127 typedef unsigned char bits_word;
128 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
129 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
130 #endif
131 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
132
133 /* Number of bits in some machine integer types. */
134 enum
135 {
136 BITS_PER_CHAR = CHAR_BIT,
137 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
138 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
139 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
140 };
141
142 /* printmax_t and uprintmax_t are types for printing large integers.
143 These are the widest integers that are supported for printing.
144 pMd etc. are conversions for printing them.
145 On C99 hosts, there's no problem, as even the widest integers work.
146 Fall back on EMACS_INT on pre-C99 hosts. */
147 #ifdef PRIdMAX
148 typedef intmax_t printmax_t;
149 typedef uintmax_t uprintmax_t;
150 # define pMd PRIdMAX
151 # define pMu PRIuMAX
152 #else
153 typedef EMACS_INT printmax_t;
154 typedef EMACS_UINT uprintmax_t;
155 # define pMd pI"d"
156 # define pMu pI"u"
157 #endif
158
159 /* Use pD to format ptrdiff_t values, which suffice for indexes into
160 buffers and strings. Emacs never allocates objects larger than
161 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
162 In C99, pD can always be "t"; configure it here for the sake of
163 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
164 #if PTRDIFF_MAX == INT_MAX
165 # define pD ""
166 #elif PTRDIFF_MAX == LONG_MAX
167 # define pD "l"
168 #elif PTRDIFF_MAX == LLONG_MAX
169 # define pD "ll"
170 #else
171 # define pD "t"
172 #endif
173
174 /* Extra internal type checking? */
175
176 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
177 'assume (COND)'. COND should be free of side effects, as it may or
178 may not be evaluated.
179
180 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
181 defined and suppress_checking is false, and does nothing otherwise.
182 Emacs dies if COND is checked and is false. The suppress_checking
183 variable is initialized to 0 in alloc.c. Set it to 1 using a
184 debugger to temporarily disable aborting on detected internal
185 inconsistencies or error conditions.
186
187 In some cases, a good compiler may be able to optimize away the
188 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
189 uses eassert to test STRINGP (x), but a particular use of XSTRING
190 is invoked only after testing that STRINGP (x) is true, making the
191 test redundant.
192
193 eassume is like eassert except that it also causes the compiler to
194 assume that COND is true afterwards, regardless of whether runtime
195 checking is enabled. This can improve performance in some cases,
196 though it can degrade performance in others. It's often suboptimal
197 for COND to call external functions or access volatile storage. */
198
199 #ifndef ENABLE_CHECKING
200 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
201 # define eassume(cond) assume (cond)
202 #else /* ENABLE_CHECKING */
203
204 extern _Noreturn void die (const char *, const char *, int);
205
206 extern bool suppress_checking EXTERNALLY_VISIBLE;
207
208 # define eassert(cond) \
209 (suppress_checking || (cond) \
210 ? (void) 0 \
211 : die (# cond, __FILE__, __LINE__))
212 # define eassume(cond) \
213 (suppress_checking \
214 ? assume (cond) \
215 : (cond) \
216 ? (void) 0 \
217 : die (# cond, __FILE__, __LINE__))
218 #endif /* ENABLE_CHECKING */
219
220 \f
221 /* Use the configure flag --enable-check-lisp-object-type to make
222 Lisp_Object use a struct type instead of the default int. The flag
223 causes CHECK_LISP_OBJECT_TYPE to be defined. */
224
225 /***** Select the tagging scheme. *****/
226 /* The following option controls the tagging scheme:
227 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
228 always 0, and we can thus use them to hold tag bits, without
229 restricting our addressing space.
230
231 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
232 restricting our possible address range.
233
234 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
235 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
236 on the few static Lisp_Objects used: lispsym, all the defsubr, and
237 the two special buffers buffer_defaults and buffer_local_symbols. */
238
239 enum Lisp_Bits
240 {
241 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
242 integer constant, for MSVC. */
243 #define GCALIGNMENT 8
244
245 /* Number of bits in a Lisp_Object value, not counting the tag. */
246 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
247
248 /* Number of bits in a Lisp fixnum tag. */
249 INTTYPEBITS = GCTYPEBITS - 1,
250
251 /* Number of bits in a Lisp fixnum value, not counting the tag. */
252 FIXNUM_BITS = VALBITS + 1
253 };
254
255 #if GCALIGNMENT != 1 << GCTYPEBITS
256 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
257 #endif
258
259 /* The maximum value that can be stored in a EMACS_INT, assuming all
260 bits other than the type bits contribute to a nonnegative signed value.
261 This can be used in #if, e.g., '#if USB_TAG' below expands to an
262 expression involving VAL_MAX. */
263 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
264
265 /* Whether the least-significant bits of an EMACS_INT contain the tag.
266 On hosts where pointers-as-ints do not exceed VAL_MAX / 2, USE_LSB_TAG is:
267 a. unnecessary, because the top bits of an EMACS_INT are unused, and
268 b. slower, because it typically requires extra masking.
269 So, USE_LSB_TAG is true only on hosts where it might be useful. */
270 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
271 #define USE_LSB_TAG (VAL_MAX / 2 < INTPTR_MAX)
272 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
273
274 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
275 # error "USE_LSB_TAG not supported on this platform; please report this." \
276 "Try 'configure --with-wide-int' to work around the problem."
277 error !;
278 #endif
279
280 #ifndef alignas
281 # define alignas(alignment) /* empty */
282 # if USE_LSB_TAG
283 # error "USE_LSB_TAG requires alignas"
284 # endif
285 #endif
286
287 #ifdef HAVE_STRUCT_ATTRIBUTE_ALIGNED
288 # define GCALIGNED __attribute__ ((aligned (GCALIGNMENT)))
289 #else
290 # define GCALIGNED /* empty */
291 #endif
292
293 /* Some operations are so commonly executed that they are implemented
294 as macros, not functions, because otherwise runtime performance would
295 suffer too much when compiling with GCC without optimization.
296 There's no need to inline everything, just the operations that
297 would otherwise cause a serious performance problem.
298
299 For each such operation OP, define a macro lisp_h_OP that contains
300 the operation's implementation. That way, OP can be implemented
301 via a macro definition like this:
302
303 #define OP(x) lisp_h_OP (x)
304
305 and/or via a function definition like this:
306
307 LISP_MACRO_DEFUN (OP, Lisp_Object, (Lisp_Object x), (x))
308
309 which macro-expands to this:
310
311 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
312
313 without worrying about the implementations diverging, since
314 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
315 are intended to be private to this include file, and should not be
316 used elsewhere.
317
318 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
319 functions, once most developers have access to GCC 4.8 or later and
320 can use "gcc -Og" to debug. Maybe in the year 2016. See
321 Bug#11935.
322
323 Commentary for these macros can be found near their corresponding
324 functions, below. */
325
326 #if CHECK_LISP_OBJECT_TYPE
327 # define lisp_h_XLI(o) ((o).i)
328 # define lisp_h_XIL(i) ((Lisp_Object) { i })
329 #else
330 # define lisp_h_XLI(o) (o)
331 # define lisp_h_XIL(i) (i)
332 #endif
333 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
334 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
335 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
336 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
337 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
338 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
339 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
340 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
341 #define lisp_h_INTEGERP(x) ((XTYPE (x) & (Lisp_Int0 | ~Lisp_Int1)) == Lisp_Int0)
342 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
343 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
344 #define lisp_h_NILP(x) EQ (x, Qnil)
345 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
346 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
347 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
348 #define lisp_h_SYMBOL_VAL(sym) \
349 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
350 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
351 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
352 #define lisp_h_XCAR(c) XCONS (c)->car
353 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
354 #define lisp_h_XCONS(a) \
355 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
356 #define lisp_h_XHASH(a) XUINT (a)
357 #define lisp_h_XPNTR(a) \
358 (SYMBOLP (a) ? XSYMBOL (a) : (void *) ((intptr_t) (XLI (a) & VALMASK)))
359 #ifndef GC_CHECK_CONS_LIST
360 # define lisp_h_check_cons_list() ((void) 0)
361 #endif
362 #if USE_LSB_TAG
363 # define lisp_h_make_number(n) \
364 XIL ((EMACS_INT) (((EMACS_UINT) (n) << INTTYPEBITS) + Lisp_Int0))
365 # define lisp_h_XFASTINT(a) XINT (a)
366 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
367 # define lisp_h_XSYMBOL(a) \
368 (eassert (SYMBOLP (a)), \
369 (struct Lisp_Symbol *) ((uintptr_t) XLI (a) - Lisp_Symbol \
370 + (char *) lispsym))
371 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
372 # define lisp_h_XUNTAG(a, type) ((void *) (intptr_t) (XLI (a) - (type)))
373 #endif
374
375 /* When compiling via gcc -O0, define the key operations as macros, as
376 Emacs is too slow otherwise. To disable this optimization, compile
377 with -DINLINING=false. */
378 #if (defined __NO_INLINE__ \
379 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
380 && ! (defined INLINING && ! INLINING))
381 # define XLI(o) lisp_h_XLI (o)
382 # define XIL(i) lisp_h_XIL (i)
383 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
384 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
385 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
386 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
387 # define CONSP(x) lisp_h_CONSP (x)
388 # define EQ(x, y) lisp_h_EQ (x, y)
389 # define FLOATP(x) lisp_h_FLOATP (x)
390 # define INTEGERP(x) lisp_h_INTEGERP (x)
391 # define MARKERP(x) lisp_h_MARKERP (x)
392 # define MISCP(x) lisp_h_MISCP (x)
393 # define NILP(x) lisp_h_NILP (x)
394 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
395 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
396 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
397 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
398 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
399 # define XCAR(c) lisp_h_XCAR (c)
400 # define XCDR(c) lisp_h_XCDR (c)
401 # define XCONS(a) lisp_h_XCONS (a)
402 # define XHASH(a) lisp_h_XHASH (a)
403 # define XPNTR(a) lisp_h_XPNTR (a)
404 # ifndef GC_CHECK_CONS_LIST
405 # define check_cons_list() lisp_h_check_cons_list ()
406 # endif
407 # if USE_LSB_TAG
408 # define make_number(n) lisp_h_make_number (n)
409 # define XFASTINT(a) lisp_h_XFASTINT (a)
410 # define XINT(a) lisp_h_XINT (a)
411 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
412 # define XTYPE(a) lisp_h_XTYPE (a)
413 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
414 # endif
415 #endif
416
417 /* Define NAME as a lisp.h inline function that returns TYPE and has
418 arguments declared as ARGDECLS and passed as ARGS. ARGDECLS and
419 ARGS should be parenthesized. Implement the function by calling
420 lisp_h_NAME ARGS. */
421 #define LISP_MACRO_DEFUN(name, type, argdecls, args) \
422 INLINE type (name) argdecls { return lisp_h_##name args; }
423
424 /* like LISP_MACRO_DEFUN, except NAME returns void. */
425 #define LISP_MACRO_DEFUN_VOID(name, argdecls, args) \
426 INLINE void (name) argdecls { lisp_h_##name args; }
427
428
429 /* Define the fundamental Lisp data structures. */
430
431 /* This is the set of Lisp data types. If you want to define a new
432 data type, read the comments after Lisp_Fwd_Type definition
433 below. */
434
435 /* Lisp integers use 2 tags, to give them one extra bit, thus
436 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
437 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
438 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
439
440 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
441 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
442 vociferously about them. */
443 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
444 || (defined __SUNPRO_C && __STDC__))
445 #define ENUM_BF(TYPE) unsigned int
446 #else
447 #define ENUM_BF(TYPE) enum TYPE
448 #endif
449
450
451 enum Lisp_Type
452 {
453 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
454 Lisp_Symbol = 0,
455
456 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
457 whose first member indicates the subtype. */
458 Lisp_Misc = 1,
459
460 /* Integer. XINT (obj) is the integer value. */
461 Lisp_Int0 = 2,
462 Lisp_Int1 = USE_LSB_TAG ? 6 : 3,
463
464 /* String. XSTRING (object) points to a struct Lisp_String.
465 The length of the string, and its contents, are stored therein. */
466 Lisp_String = 4,
467
468 /* Vector of Lisp objects, or something resembling it.
469 XVECTOR (object) points to a struct Lisp_Vector, which contains
470 the size and contents. The size field also contains the type
471 information, if it's not a real vector object. */
472 Lisp_Vectorlike = 5,
473
474 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
475 Lisp_Cons = USE_LSB_TAG ? 3 : 6,
476
477 Lisp_Float = 7
478 };
479
480 /* This is the set of data types that share a common structure.
481 The first member of the structure is a type code from this set.
482 The enum values are arbitrary, but we'll use large numbers to make it
483 more likely that we'll spot the error if a random word in memory is
484 mistakenly interpreted as a Lisp_Misc. */
485 enum Lisp_Misc_Type
486 {
487 Lisp_Misc_Free = 0x5eab,
488 Lisp_Misc_Marker,
489 Lisp_Misc_Overlay,
490 Lisp_Misc_Save_Value,
491 /* Currently floats are not a misc type,
492 but let's define this in case we want to change that. */
493 Lisp_Misc_Float,
494 /* This is not a type code. It is for range checking. */
495 Lisp_Misc_Limit
496 };
497
498 /* These are the types of forwarding objects used in the value slot
499 of symbols for special built-in variables whose value is stored in
500 C variables. */
501 enum Lisp_Fwd_Type
502 {
503 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
504 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
505 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
506 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
507 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
508 };
509
510 /* If you want to define a new Lisp data type, here are some
511 instructions. See the thread at
512 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
513 for more info.
514
515 First, there are already a couple of Lisp types that can be used if
516 your new type does not need to be exposed to Lisp programs nor
517 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
518 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
519 is suitable for temporarily stashing away pointers and integers in
520 a Lisp object. The latter is useful for vector-like Lisp objects
521 that need to be used as part of other objects, but which are never
522 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
523 an example).
524
525 These two types don't look pretty when printed, so they are
526 unsuitable for Lisp objects that can be exposed to users.
527
528 To define a new data type, add one more Lisp_Misc subtype or one
529 more pseudovector subtype. Pseudovectors are more suitable for
530 objects with several slots that need to support fast random access,
531 while Lisp_Misc types are for everything else. A pseudovector object
532 provides one or more slots for Lisp objects, followed by struct
533 members that are accessible only from C. A Lisp_Misc object is a
534 wrapper for a C struct that can contain anything you like.
535
536 Explicit freeing is discouraged for Lisp objects in general. But if
537 you really need to exploit this, use Lisp_Misc (check free_misc in
538 alloc.c to see why). There is no way to free a vectorlike object.
539
540 To add a new pseudovector type, extend the pvec_type enumeration;
541 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
542
543 For a Lisp_Misc, you will also need to add your entry to union
544 Lisp_Misc (but make sure the first word has the same structure as
545 the others, starting with a 16-bit member of the Lisp_Misc_Type
546 enumeration and a 1-bit GC markbit) and make sure the overall size
547 of the union is not increased by your addition.
548
549 For a new pseudovector, it's highly desirable to limit the size
550 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
551 Otherwise you will need to change sweep_vectors (also in alloc.c).
552
553 Then you will need to add switch branches in print.c (in
554 print_object, to print your object, and possibly also in
555 print_preprocess) and to alloc.c, to mark your object (in
556 mark_object) and to free it (in gc_sweep). The latter is also the
557 right place to call any code specific to your data type that needs
558 to run when the object is recycled -- e.g., free any additional
559 resources allocated for it that are not Lisp objects. You can even
560 make a pointer to the function that frees the resources a slot in
561 your object -- this way, the same object could be used to represent
562 several disparate C structures. */
563
564 #ifdef CHECK_LISP_OBJECT_TYPE
565
566 typedef struct { EMACS_INT i; } Lisp_Object;
567
568 #define LISP_INITIALLY(i) {i}
569
570 #undef CHECK_LISP_OBJECT_TYPE
571 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
572 #else /* CHECK_LISP_OBJECT_TYPE */
573
574 /* If a struct type is not wanted, define Lisp_Object as just a number. */
575
576 typedef EMACS_INT Lisp_Object;
577 #define LISP_INITIALLY(i) (i)
578 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
579 #endif /* CHECK_LISP_OBJECT_TYPE */
580
581 #define LISP_INITIALLY_ZERO LISP_INITIALLY (0)
582 \f
583 /* Forward declarations. */
584
585 /* Defined in this file. */
586 union Lisp_Fwd;
587 INLINE bool BOOL_VECTOR_P (Lisp_Object);
588 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
589 INLINE bool BUFFERP (Lisp_Object);
590 INLINE bool CHAR_TABLE_P (Lisp_Object);
591 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
592 INLINE bool (CONSP) (Lisp_Object);
593 INLINE bool (FLOATP) (Lisp_Object);
594 INLINE bool functionp (Lisp_Object);
595 INLINE bool (INTEGERP) (Lisp_Object);
596 INLINE bool (MARKERP) (Lisp_Object);
597 INLINE bool (MISCP) (Lisp_Object);
598 INLINE bool (NILP) (Lisp_Object);
599 INLINE bool OVERLAYP (Lisp_Object);
600 INLINE bool PROCESSP (Lisp_Object);
601 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
602 INLINE bool SAVE_VALUEP (Lisp_Object);
603 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
604 Lisp_Object);
605 INLINE bool STRINGP (Lisp_Object);
606 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
607 INLINE bool SUBRP (Lisp_Object);
608 INLINE bool (SYMBOLP) (Lisp_Object);
609 INLINE bool (VECTORLIKEP) (Lisp_Object);
610 INLINE bool WINDOWP (Lisp_Object);
611 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
612 INLINE struct Lisp_Symbol *(XSYMBOL) (Lisp_Object);
613 INLINE enum Lisp_Type (XTYPE) (Lisp_Object);
614 INLINE void *(XUNTAG) (Lisp_Object, int);
615
616 /* Defined in chartab.c. */
617 extern Lisp_Object char_table_ref (Lisp_Object, int);
618 extern void char_table_set (Lisp_Object, int, Lisp_Object);
619
620 /* Defined in data.c. */
621 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
622 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
623
624 /* Defined in emacs.c. */
625 extern bool might_dump;
626 /* True means Emacs has already been initialized.
627 Used during startup to detect startup of dumped Emacs. */
628 extern bool initialized;
629
630 /* Defined in floatfns.c. */
631 extern double extract_float (Lisp_Object);
632
633 \f
634 /* Interned state of a symbol. */
635
636 enum symbol_interned
637 {
638 SYMBOL_UNINTERNED = 0,
639 SYMBOL_INTERNED = 1,
640 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
641 };
642
643 enum symbol_redirect
644 {
645 SYMBOL_PLAINVAL = 4,
646 SYMBOL_VARALIAS = 1,
647 SYMBOL_LOCALIZED = 2,
648 SYMBOL_FORWARDED = 3
649 };
650
651 struct Lisp_Symbol
652 {
653 bool_bf gcmarkbit : 1;
654
655 /* Indicates where the value can be found:
656 0 : it's a plain var, the value is in the `value' field.
657 1 : it's a varalias, the value is really in the `alias' symbol.
658 2 : it's a localized var, the value is in the `blv' object.
659 3 : it's a forwarding variable, the value is in `forward'. */
660 ENUM_BF (symbol_redirect) redirect : 3;
661
662 /* Non-zero means symbol is constant, i.e. changing its value
663 should signal an error. If the value is 3, then the var
664 can be changed, but only by `defconst'. */
665 unsigned constant : 2;
666
667 /* Interned state of the symbol. This is an enumerator from
668 enum symbol_interned. */
669 unsigned interned : 2;
670
671 /* True means that this variable has been explicitly declared
672 special (with `defvar' etc), and shouldn't be lexically bound. */
673 bool_bf declared_special : 1;
674
675 /* True if pointed to from purespace and hence can't be GC'd. */
676 bool_bf pinned : 1;
677
678 /* The symbol's name, as a Lisp string. */
679 Lisp_Object name;
680
681 /* Value of the symbol or Qunbound if unbound. Which alternative of the
682 union is used depends on the `redirect' field above. */
683 union {
684 Lisp_Object value;
685 struct Lisp_Symbol *alias;
686 struct Lisp_Buffer_Local_Value *blv;
687 union Lisp_Fwd *fwd;
688 } val;
689
690 /* Function value of the symbol or Qnil if not fboundp. */
691 Lisp_Object function;
692
693 /* The symbol's property list. */
694 Lisp_Object plist;
695
696 /* Next symbol in obarray bucket, if the symbol is interned. */
697 struct Lisp_Symbol *next;
698 };
699
700 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
701 meaning as in the DEFUN macro, and is used to construct a prototype. */
702 /* We can use the same trick as in the DEFUN macro to generate the
703 appropriate prototype. */
704 #define EXFUN(fnname, maxargs) \
705 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
706
707 /* Note that the weird token-substitution semantics of ANSI C makes
708 this work for MANY and UNEVALLED. */
709 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
710 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
711 #define DEFUN_ARGS_0 (void)
712 #define DEFUN_ARGS_1 (Lisp_Object)
713 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
714 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
715 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
716 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
717 Lisp_Object)
718 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
719 Lisp_Object, Lisp_Object)
720 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
721 Lisp_Object, Lisp_Object, Lisp_Object)
722 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
723 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
724
725 /* Yield an integer that contains TAG along with PTR. */
726 #define TAG_PTR(tag, ptr) \
727 ((USE_LSB_TAG ? (tag) : (EMACS_UINT) (tag) << VALBITS) + (uintptr_t) (ptr))
728
729 /* Yield an integer that contains a symbol tag along with OFFSET.
730 OFFSET should be the offset in bytes from 'lispsym' to the symbol. */
731 #define TAG_SYMOFFSET(offset) \
732 TAG_PTR (Lisp_Symbol, \
733 ((uintptr_t) (offset) >> (USE_LSB_TAG ? 0 : GCTYPEBITS)))
734
735 /* Declare extern constants for Lisp symbols. These can be helpful
736 when using a debugger like GDB, on older platforms where the debug
737 format does not represent C macros. */
738 #define DEFINE_LISP_SYMBOL_BEGIN(name) \
739 DEFINE_GDB_SYMBOL_BEGIN (Lisp_Object, name)
740 #define DEFINE_LISP_SYMBOL_END(name) \
741 DEFINE_GDB_SYMBOL_END (LISP_INITIALLY (TAG_SYMOFFSET (i##name \
742 * sizeof *lispsym)))
743
744 #include "globals.h"
745
746 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
747 At the machine level, these operations are no-ops. */
748 LISP_MACRO_DEFUN (XLI, EMACS_INT, (Lisp_Object o), (o))
749 LISP_MACRO_DEFUN (XIL, Lisp_Object, (EMACS_INT i), (i))
750
751 /* In the size word of a vector, this bit means the vector has been marked. */
752
753 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
754 # define ARRAY_MARK_FLAG PTRDIFF_MIN
755 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
756
757 /* In the size word of a struct Lisp_Vector, this bit means it's really
758 some other vector-like object. */
759 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
760 # define PSEUDOVECTOR_FLAG (PTRDIFF_MAX - PTRDIFF_MAX / 2)
761 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
762
763 /* In a pseudovector, the size field actually contains a word with one
764 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
765 with PVEC_TYPE_MASK to indicate the actual type. */
766 enum pvec_type
767 {
768 PVEC_NORMAL_VECTOR,
769 PVEC_FREE,
770 PVEC_PROCESS,
771 PVEC_FRAME,
772 PVEC_WINDOW,
773 PVEC_BOOL_VECTOR,
774 PVEC_BUFFER,
775 PVEC_HASH_TABLE,
776 PVEC_TERMINAL,
777 PVEC_WINDOW_CONFIGURATION,
778 PVEC_SUBR,
779 PVEC_OTHER,
780 /* These should be last, check internal_equal to see why. */
781 PVEC_COMPILED,
782 PVEC_CHAR_TABLE,
783 PVEC_SUB_CHAR_TABLE,
784 PVEC_FONT /* Should be last because it's used for range checking. */
785 };
786
787 enum More_Lisp_Bits
788 {
789 /* For convenience, we also store the number of elements in these bits.
790 Note that this size is not necessarily the memory-footprint size, but
791 only the number of Lisp_Object fields (that need to be traced by GC).
792 The distinction is used, e.g., by Lisp_Process, which places extra
793 non-Lisp_Object fields at the end of the structure. */
794 PSEUDOVECTOR_SIZE_BITS = 12,
795 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
796
797 /* To calculate the memory footprint of the pseudovector, it's useful
798 to store the size of non-Lisp area in word_size units here. */
799 PSEUDOVECTOR_REST_BITS = 12,
800 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
801 << PSEUDOVECTOR_SIZE_BITS),
802
803 /* Used to extract pseudovector subtype information. */
804 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
805 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
806 };
807 \f
808 /* These functions extract various sorts of values from a Lisp_Object.
809 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
810 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
811 that cons. */
812
813 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
814 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
815 # define VALMASK (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
816 DEFINE_GDB_SYMBOL_END (VALMASK)
817
818 /* Largest and smallest representable fixnum values. These are the C
819 values. They are macros for use in static initializers. */
820 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
821 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
822
823 /* Extract the pointer hidden within A. */
824 LISP_MACRO_DEFUN (XPNTR, void *, (Lisp_Object a), (a))
825
826 #if USE_LSB_TAG
827
828 LISP_MACRO_DEFUN (make_number, Lisp_Object, (EMACS_INT n), (n))
829 LISP_MACRO_DEFUN (XINT, EMACS_INT, (Lisp_Object a), (a))
830 LISP_MACRO_DEFUN (XFASTINT, EMACS_INT, (Lisp_Object a), (a))
831 LISP_MACRO_DEFUN (XSYMBOL, struct Lisp_Symbol *, (Lisp_Object a), (a))
832 LISP_MACRO_DEFUN (XTYPE, enum Lisp_Type, (Lisp_Object a), (a))
833 LISP_MACRO_DEFUN (XUNTAG, void *, (Lisp_Object a, int type), (a, type))
834
835 #else /* ! USE_LSB_TAG */
836
837 /* Although compiled only if ! USE_LSB_TAG, the following functions
838 also work when USE_LSB_TAG; this is to aid future maintenance when
839 the lisp_h_* macros are eventually removed. */
840
841 /* Make a Lisp integer representing the value of the low order
842 bits of N. */
843 INLINE Lisp_Object
844 make_number (EMACS_INT n)
845 {
846 EMACS_INT int0 = Lisp_Int0;
847 if (USE_LSB_TAG)
848 {
849 EMACS_UINT u = n;
850 n = u << INTTYPEBITS;
851 n += int0;
852 }
853 else
854 {
855 n &= INTMASK;
856 n += (int0 << VALBITS);
857 }
858 return XIL (n);
859 }
860
861 /* Extract A's value as a signed integer. */
862 INLINE EMACS_INT
863 XINT (Lisp_Object a)
864 {
865 EMACS_INT i = XLI (a);
866 if (! USE_LSB_TAG)
867 {
868 EMACS_UINT u = i;
869 i = u << INTTYPEBITS;
870 }
871 return i >> INTTYPEBITS;
872 }
873
874 /* Like XINT (A), but may be faster. A must be nonnegative.
875 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
876 integers have zero-bits in their tags. */
877 INLINE EMACS_INT
878 XFASTINT (Lisp_Object a)
879 {
880 EMACS_INT int0 = Lisp_Int0;
881 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a) - (int0 << VALBITS);
882 eassert (0 <= n);
883 return n;
884 }
885
886 /* Extract A's value as a symbol. */
887 INLINE struct Lisp_Symbol *
888 XSYMBOL (Lisp_Object a)
889 {
890 uintptr_t i = (uintptr_t) XUNTAG (a, Lisp_Symbol);
891 if (! USE_LSB_TAG)
892 i <<= GCTYPEBITS;
893 void *p = (char *) lispsym + i;
894 return p;
895 }
896
897 /* Extract A's type. */
898 INLINE enum Lisp_Type
899 XTYPE (Lisp_Object a)
900 {
901 EMACS_UINT i = XLI (a);
902 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
903 }
904
905 /* Extract A's pointer value, assuming A's type is TYPE. */
906 INLINE void *
907 XUNTAG (Lisp_Object a, int type)
908 {
909 intptr_t i = USE_LSB_TAG ? XLI (a) - type : XLI (a) & VALMASK;
910 return (void *) i;
911 }
912
913 #endif /* ! USE_LSB_TAG */
914
915 /* Extract A's value as an unsigned integer. */
916 INLINE EMACS_UINT
917 XUINT (Lisp_Object a)
918 {
919 EMACS_UINT i = XLI (a);
920 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
921 }
922
923 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
924 right now, but XUINT should only be applied to objects we know are
925 integers. */
926 LISP_MACRO_DEFUN (XHASH, EMACS_INT, (Lisp_Object a), (a))
927
928 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
929 INLINE Lisp_Object
930 make_natnum (EMACS_INT n)
931 {
932 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
933 EMACS_INT int0 = Lisp_Int0;
934 return USE_LSB_TAG ? make_number (n) : XIL (n + (int0 << VALBITS));
935 }
936
937 /* Return true if X and Y are the same object. */
938 LISP_MACRO_DEFUN (EQ, bool, (Lisp_Object x, Lisp_Object y), (x, y))
939
940 /* Value is true if I doesn't fit into a Lisp fixnum. It is
941 written this way so that it also works if I is of unsigned
942 type or if I is a NaN. */
943
944 #define FIXNUM_OVERFLOW_P(i) \
945 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
946
947 INLINE ptrdiff_t
948 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
949 {
950 return num < lower ? lower : num <= upper ? num : upper;
951 }
952 \f
953
954 /* Extract a value or address from a Lisp_Object. */
955
956 LISP_MACRO_DEFUN (XCONS, struct Lisp_Cons *, (Lisp_Object a), (a))
957
958 INLINE struct Lisp_Vector *
959 XVECTOR (Lisp_Object a)
960 {
961 eassert (VECTORLIKEP (a));
962 return XUNTAG (a, Lisp_Vectorlike);
963 }
964
965 INLINE struct Lisp_String *
966 XSTRING (Lisp_Object a)
967 {
968 eassert (STRINGP (a));
969 return XUNTAG (a, Lisp_String);
970 }
971
972 /* The index of the C-defined Lisp symbol SYM.
973 This can be used in a static initializer. */
974 #define SYMBOL_INDEX(sym) i##sym
975
976 INLINE struct Lisp_Float *
977 XFLOAT (Lisp_Object a)
978 {
979 eassert (FLOATP (a));
980 return XUNTAG (a, Lisp_Float);
981 }
982
983 /* Pseudovector types. */
984
985 INLINE struct Lisp_Process *
986 XPROCESS (Lisp_Object a)
987 {
988 eassert (PROCESSP (a));
989 return XUNTAG (a, Lisp_Vectorlike);
990 }
991
992 INLINE struct window *
993 XWINDOW (Lisp_Object a)
994 {
995 eassert (WINDOWP (a));
996 return XUNTAG (a, Lisp_Vectorlike);
997 }
998
999 INLINE struct terminal *
1000 XTERMINAL (Lisp_Object a)
1001 {
1002 return XUNTAG (a, Lisp_Vectorlike);
1003 }
1004
1005 INLINE struct Lisp_Subr *
1006 XSUBR (Lisp_Object a)
1007 {
1008 eassert (SUBRP (a));
1009 return XUNTAG (a, Lisp_Vectorlike);
1010 }
1011
1012 INLINE struct buffer *
1013 XBUFFER (Lisp_Object a)
1014 {
1015 eassert (BUFFERP (a));
1016 return XUNTAG (a, Lisp_Vectorlike);
1017 }
1018
1019 INLINE struct Lisp_Char_Table *
1020 XCHAR_TABLE (Lisp_Object a)
1021 {
1022 eassert (CHAR_TABLE_P (a));
1023 return XUNTAG (a, Lisp_Vectorlike);
1024 }
1025
1026 INLINE struct Lisp_Sub_Char_Table *
1027 XSUB_CHAR_TABLE (Lisp_Object a)
1028 {
1029 eassert (SUB_CHAR_TABLE_P (a));
1030 return XUNTAG (a, Lisp_Vectorlike);
1031 }
1032
1033 INLINE struct Lisp_Bool_Vector *
1034 XBOOL_VECTOR (Lisp_Object a)
1035 {
1036 eassert (BOOL_VECTOR_P (a));
1037 return XUNTAG (a, Lisp_Vectorlike);
1038 }
1039
1040 /* Construct a Lisp_Object from a value or address. */
1041
1042 INLINE Lisp_Object
1043 make_lisp_ptr (void *ptr, enum Lisp_Type type)
1044 {
1045 Lisp_Object a = XIL (TAG_PTR (type, ptr));
1046 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
1047 return a;
1048 }
1049
1050 INLINE Lisp_Object
1051 make_lisp_symbol (struct Lisp_Symbol *sym)
1052 {
1053 Lisp_Object a = XIL (TAG_SYMOFFSET ((char *) sym - (char *) lispsym));
1054 eassert (XSYMBOL (a) == sym);
1055 return a;
1056 }
1057
1058 INLINE Lisp_Object
1059 builtin_lisp_symbol (int index)
1060 {
1061 return make_lisp_symbol (lispsym + index);
1062 }
1063
1064 INLINE Lisp_Object
1065 make_lisp_proc (struct Lisp_Process *p)
1066 {
1067 return make_lisp_ptr (p, Lisp_Vectorlike);
1068 }
1069
1070 #define XSETINT(a, b) ((a) = make_number (b))
1071 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
1072 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
1073 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
1074 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
1075 #define XSETSYMBOL(a, b) ((a) = make_lisp_symbol (b))
1076 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
1077 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
1078
1079 /* Pseudovector types. */
1080
1081 #define XSETPVECTYPE(v, code) \
1082 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
1083 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
1084 ((v)->header.size = (PSEUDOVECTOR_FLAG \
1085 | ((code) << PSEUDOVECTOR_AREA_BITS) \
1086 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
1087 | (lispsize)))
1088
1089 /* The cast to struct vectorlike_header * avoids aliasing issues. */
1090 #define XSETPSEUDOVECTOR(a, b, code) \
1091 XSETTYPED_PSEUDOVECTOR (a, b, \
1092 (((struct vectorlike_header *) \
1093 XUNTAG (a, Lisp_Vectorlike)) \
1094 ->size), \
1095 code)
1096 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
1097 (XSETVECTOR (a, b), \
1098 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
1099 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
1100
1101 #define XSETWINDOW_CONFIGURATION(a, b) \
1102 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
1103 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
1104 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
1105 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
1106 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
1107 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
1108 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
1109 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
1110 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
1111 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
1112
1113 /* Efficiently convert a pointer to a Lisp object and back. The
1114 pointer is represented as a Lisp integer, so the garbage collector
1115 does not know about it. The pointer should not have both Lisp_Int1
1116 bits set, which makes this conversion inherently unportable. */
1117
1118 INLINE void *
1119 XINTPTR (Lisp_Object a)
1120 {
1121 return XUNTAG (a, Lisp_Int0);
1122 }
1123
1124 INLINE Lisp_Object
1125 make_pointer_integer (void *p)
1126 {
1127 Lisp_Object a = XIL (TAG_PTR (Lisp_Int0, p));
1128 eassert (INTEGERP (a) && XINTPTR (a) == p);
1129 return a;
1130 }
1131
1132 /* Type checking. */
1133
1134 LISP_MACRO_DEFUN_VOID (CHECK_TYPE,
1135 (int ok, Lisp_Object predicate, Lisp_Object x),
1136 (ok, predicate, x))
1137
1138 /* Deprecated and will be removed soon. */
1139
1140 #define INTERNAL_FIELD(field) field ## _
1141
1142 /* See the macros in intervals.h. */
1143
1144 typedef struct interval *INTERVAL;
1145
1146 struct GCALIGNED Lisp_Cons
1147 {
1148 /* Car of this cons cell. */
1149 Lisp_Object car;
1150
1151 union
1152 {
1153 /* Cdr of this cons cell. */
1154 Lisp_Object cdr;
1155
1156 /* Used to chain conses on a free list. */
1157 struct Lisp_Cons *chain;
1158 } u;
1159 };
1160
1161 /* Take the car or cdr of something known to be a cons cell. */
1162 /* The _addr functions shouldn't be used outside of the minimal set
1163 of code that has to know what a cons cell looks like. Other code not
1164 part of the basic lisp implementation should assume that the car and cdr
1165 fields are not accessible. (What if we want to switch to
1166 a copying collector someday? Cached cons cell field addresses may be
1167 invalidated at arbitrary points.) */
1168 INLINE Lisp_Object *
1169 xcar_addr (Lisp_Object c)
1170 {
1171 return &XCONS (c)->car;
1172 }
1173 INLINE Lisp_Object *
1174 xcdr_addr (Lisp_Object c)
1175 {
1176 return &XCONS (c)->u.cdr;
1177 }
1178
1179 /* Use these from normal code. */
1180 LISP_MACRO_DEFUN (XCAR, Lisp_Object, (Lisp_Object c), (c))
1181 LISP_MACRO_DEFUN (XCDR, Lisp_Object, (Lisp_Object c), (c))
1182
1183 /* Use these to set the fields of a cons cell.
1184
1185 Note that both arguments may refer to the same object, so 'n'
1186 should not be read after 'c' is first modified. */
1187 INLINE void
1188 XSETCAR (Lisp_Object c, Lisp_Object n)
1189 {
1190 *xcar_addr (c) = n;
1191 }
1192 INLINE void
1193 XSETCDR (Lisp_Object c, Lisp_Object n)
1194 {
1195 *xcdr_addr (c) = n;
1196 }
1197
1198 /* Take the car or cdr of something whose type is not known. */
1199 INLINE Lisp_Object
1200 CAR (Lisp_Object c)
1201 {
1202 return (CONSP (c) ? XCAR (c)
1203 : NILP (c) ? Qnil
1204 : wrong_type_argument (Qlistp, c));
1205 }
1206 INLINE Lisp_Object
1207 CDR (Lisp_Object c)
1208 {
1209 return (CONSP (c) ? XCDR (c)
1210 : NILP (c) ? Qnil
1211 : wrong_type_argument (Qlistp, c));
1212 }
1213
1214 /* Take the car or cdr of something whose type is not known. */
1215 INLINE Lisp_Object
1216 CAR_SAFE (Lisp_Object c)
1217 {
1218 return CONSP (c) ? XCAR (c) : Qnil;
1219 }
1220 INLINE Lisp_Object
1221 CDR_SAFE (Lisp_Object c)
1222 {
1223 return CONSP (c) ? XCDR (c) : Qnil;
1224 }
1225
1226 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1227
1228 struct GCALIGNED Lisp_String
1229 {
1230 ptrdiff_t size;
1231 ptrdiff_t size_byte;
1232 INTERVAL intervals; /* Text properties in this string. */
1233 unsigned char *data;
1234 };
1235
1236 /* True if STR is a multibyte string. */
1237 INLINE bool
1238 STRING_MULTIBYTE (Lisp_Object str)
1239 {
1240 return 0 <= XSTRING (str)->size_byte;
1241 }
1242
1243 /* An upper bound on the number of bytes in a Lisp string, not
1244 counting the terminating null. This a tight enough bound to
1245 prevent integer overflow errors that would otherwise occur during
1246 string size calculations. A string cannot contain more bytes than
1247 a fixnum can represent, nor can it be so long that C pointer
1248 arithmetic stops working on the string plus its terminating null.
1249 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1250 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1251 would expose alloc.c internal details that we'd rather keep
1252 private.
1253
1254 This is a macro for use in static initializers. The cast to
1255 ptrdiff_t ensures that the macro is signed. */
1256 #define STRING_BYTES_BOUND \
1257 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1258
1259 /* Mark STR as a unibyte string. */
1260 #define STRING_SET_UNIBYTE(STR) \
1261 do { \
1262 if (EQ (STR, empty_multibyte_string)) \
1263 (STR) = empty_unibyte_string; \
1264 else \
1265 XSTRING (STR)->size_byte = -1; \
1266 } while (false)
1267
1268 /* Mark STR as a multibyte string. Assure that STR contains only
1269 ASCII characters in advance. */
1270 #define STRING_SET_MULTIBYTE(STR) \
1271 do { \
1272 if (EQ (STR, empty_unibyte_string)) \
1273 (STR) = empty_multibyte_string; \
1274 else \
1275 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1276 } while (false)
1277
1278 /* Convenience functions for dealing with Lisp strings. */
1279
1280 INLINE unsigned char *
1281 SDATA (Lisp_Object string)
1282 {
1283 return XSTRING (string)->data;
1284 }
1285 INLINE char *
1286 SSDATA (Lisp_Object string)
1287 {
1288 /* Avoid "differ in sign" warnings. */
1289 return (char *) SDATA (string);
1290 }
1291 INLINE unsigned char
1292 SREF (Lisp_Object string, ptrdiff_t index)
1293 {
1294 return SDATA (string)[index];
1295 }
1296 INLINE void
1297 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1298 {
1299 SDATA (string)[index] = new;
1300 }
1301 INLINE ptrdiff_t
1302 SCHARS (Lisp_Object string)
1303 {
1304 return XSTRING (string)->size;
1305 }
1306
1307 #ifdef GC_CHECK_STRING_BYTES
1308 extern ptrdiff_t string_bytes (struct Lisp_String *);
1309 #endif
1310 INLINE ptrdiff_t
1311 STRING_BYTES (struct Lisp_String *s)
1312 {
1313 #ifdef GC_CHECK_STRING_BYTES
1314 return string_bytes (s);
1315 #else
1316 return s->size_byte < 0 ? s->size : s->size_byte;
1317 #endif
1318 }
1319
1320 INLINE ptrdiff_t
1321 SBYTES (Lisp_Object string)
1322 {
1323 return STRING_BYTES (XSTRING (string));
1324 }
1325 INLINE void
1326 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1327 {
1328 XSTRING (string)->size = newsize;
1329 }
1330
1331 /* Header of vector-like objects. This documents the layout constraints on
1332 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1333 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1334 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1335 because when two such pointers potentially alias, a compiler won't
1336 incorrectly reorder loads and stores to their size fields. See
1337 Bug#8546. */
1338 struct vectorlike_header
1339 {
1340 /* The only field contains various pieces of information:
1341 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1342 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1343 vector (0) or a pseudovector (1).
1344 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1345 of slots) of the vector.
1346 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1347 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1348 - b) number of Lisp_Objects slots at the beginning of the object
1349 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1350 traced by the GC;
1351 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1352 measured in word_size units. Rest fields may also include
1353 Lisp_Objects, but these objects usually needs some special treatment
1354 during GC.
1355 There are some exceptions. For PVEC_FREE, b) is always zero. For
1356 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1357 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1358 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1359 ptrdiff_t size;
1360 };
1361
1362 /* A regular vector is just a header plus an array of Lisp_Objects. */
1363
1364 struct Lisp_Vector
1365 {
1366 struct vectorlike_header header;
1367 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1368 };
1369
1370 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1371 enum
1372 {
1373 ALIGNOF_STRUCT_LISP_VECTOR
1374 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1375 };
1376
1377 /* A boolvector is a kind of vectorlike, with contents like a string. */
1378
1379 struct Lisp_Bool_Vector
1380 {
1381 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1382 just the subtype information. */
1383 struct vectorlike_header header;
1384 /* This is the size in bits. */
1385 EMACS_INT size;
1386 /* The actual bits, packed into bytes.
1387 Zeros fill out the last word if needed.
1388 The bits are in little-endian order in the bytes, and
1389 the bytes are in little-endian order in the words. */
1390 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1391 };
1392
1393 INLINE EMACS_INT
1394 bool_vector_size (Lisp_Object a)
1395 {
1396 EMACS_INT size = XBOOL_VECTOR (a)->size;
1397 eassume (0 <= size);
1398 return size;
1399 }
1400
1401 INLINE bits_word *
1402 bool_vector_data (Lisp_Object a)
1403 {
1404 return XBOOL_VECTOR (a)->data;
1405 }
1406
1407 INLINE unsigned char *
1408 bool_vector_uchar_data (Lisp_Object a)
1409 {
1410 return (unsigned char *) bool_vector_data (a);
1411 }
1412
1413 /* The number of data words and bytes in a bool vector with SIZE bits. */
1414
1415 INLINE EMACS_INT
1416 bool_vector_words (EMACS_INT size)
1417 {
1418 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1419 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1420 }
1421
1422 INLINE EMACS_INT
1423 bool_vector_bytes (EMACS_INT size)
1424 {
1425 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1426 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1427 }
1428
1429 /* True if A's Ith bit is set. */
1430
1431 INLINE bool
1432 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1433 {
1434 eassume (0 <= i && i < bool_vector_size (a));
1435 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1436 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1437 }
1438
1439 INLINE Lisp_Object
1440 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1441 {
1442 return bool_vector_bitref (a, i) ? Qt : Qnil;
1443 }
1444
1445 /* Set A's Ith bit to B. */
1446
1447 INLINE void
1448 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1449 {
1450 unsigned char *addr;
1451
1452 eassume (0 <= i && i < bool_vector_size (a));
1453 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1454
1455 if (b)
1456 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1457 else
1458 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1459 }
1460
1461 /* Some handy constants for calculating sizes
1462 and offsets, mostly of vectorlike objects. */
1463
1464 enum
1465 {
1466 header_size = offsetof (struct Lisp_Vector, contents),
1467 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1468 word_size = sizeof (Lisp_Object)
1469 };
1470
1471 /* Conveniences for dealing with Lisp arrays. */
1472
1473 INLINE Lisp_Object
1474 AREF (Lisp_Object array, ptrdiff_t idx)
1475 {
1476 return XVECTOR (array)->contents[idx];
1477 }
1478
1479 INLINE Lisp_Object *
1480 aref_addr (Lisp_Object array, ptrdiff_t idx)
1481 {
1482 return & XVECTOR (array)->contents[idx];
1483 }
1484
1485 INLINE ptrdiff_t
1486 ASIZE (Lisp_Object array)
1487 {
1488 return XVECTOR (array)->header.size;
1489 }
1490
1491 INLINE void
1492 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1493 {
1494 eassert (0 <= idx && idx < ASIZE (array));
1495 XVECTOR (array)->contents[idx] = val;
1496 }
1497
1498 INLINE void
1499 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1500 {
1501 /* Like ASET, but also can be used in the garbage collector:
1502 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1503 eassert (0 <= idx && idx < (ASIZE (array) & ~ARRAY_MARK_FLAG));
1504 XVECTOR (array)->contents[idx] = val;
1505 }
1506
1507 /* If a struct is made to look like a vector, this macro returns the length
1508 of the shortest vector that would hold that struct. */
1509
1510 #define VECSIZE(type) \
1511 ((sizeof (type) - header_size + word_size - 1) / word_size)
1512
1513 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1514 at the end and we need to compute the number of Lisp_Object fields (the
1515 ones that the GC needs to trace). */
1516
1517 #define PSEUDOVECSIZE(type, nonlispfield) \
1518 ((offsetof (type, nonlispfield) - header_size) / word_size)
1519
1520 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1521 should be integer expressions. This is not the same as
1522 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1523 returns true. For efficiency, prefer plain unsigned comparison if A
1524 and B's sizes both fit (after integer promotion). */
1525 #define UNSIGNED_CMP(a, op, b) \
1526 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1527 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1528 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1529
1530 /* True iff C is an ASCII character. */
1531 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1532
1533 /* A char-table is a kind of vectorlike, with contents are like a
1534 vector but with a few other slots. For some purposes, it makes
1535 sense to handle a char-table with type struct Lisp_Vector. An
1536 element of a char table can be any Lisp objects, but if it is a sub
1537 char-table, we treat it a table that contains information of a
1538 specific range of characters. A sub char-table is like a vector but
1539 with two integer fields between the header and Lisp data, which means
1540 that it has to be marked with some precautions (see mark_char_table
1541 in alloc.c). A sub char-table appears only in an element of a char-table,
1542 and there's no way to access it directly from Emacs Lisp program. */
1543
1544 enum CHARTAB_SIZE_BITS
1545 {
1546 CHARTAB_SIZE_BITS_0 = 6,
1547 CHARTAB_SIZE_BITS_1 = 4,
1548 CHARTAB_SIZE_BITS_2 = 5,
1549 CHARTAB_SIZE_BITS_3 = 7
1550 };
1551
1552 extern const int chartab_size[4];
1553
1554 struct Lisp_Char_Table
1555 {
1556 /* HEADER.SIZE is the vector's size field, which also holds the
1557 pseudovector type information. It holds the size, too.
1558 The size counts the defalt, parent, purpose, ascii,
1559 contents, and extras slots. */
1560 struct vectorlike_header header;
1561
1562 /* This holds a default value,
1563 which is used whenever the value for a specific character is nil. */
1564 Lisp_Object defalt;
1565
1566 /* This points to another char table, which we inherit from when the
1567 value for a specific character is nil. The `defalt' slot takes
1568 precedence over this. */
1569 Lisp_Object parent;
1570
1571 /* This is a symbol which says what kind of use this char-table is
1572 meant for. */
1573 Lisp_Object purpose;
1574
1575 /* The bottom sub char-table for characters of the range 0..127. It
1576 is nil if none of ASCII character has a specific value. */
1577 Lisp_Object ascii;
1578
1579 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1580
1581 /* These hold additional data. It is a vector. */
1582 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1583 };
1584
1585 struct Lisp_Sub_Char_Table
1586 {
1587 /* HEADER.SIZE is the vector's size field, which also holds the
1588 pseudovector type information. It holds the size, too. */
1589 struct vectorlike_header header;
1590
1591 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1592 char-table of depth 1 contains 16 elements, and each element
1593 covers 4096 (128*32) characters. A sub char-table of depth 2
1594 contains 32 elements, and each element covers 128 characters. A
1595 sub char-table of depth 3 contains 128 elements, and each element
1596 is for one character. */
1597 int depth;
1598
1599 /* Minimum character covered by the sub char-table. */
1600 int min_char;
1601
1602 /* Use set_sub_char_table_contents to set this. */
1603 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1604 };
1605
1606 INLINE Lisp_Object
1607 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1608 {
1609 struct Lisp_Char_Table *tbl = NULL;
1610 Lisp_Object val;
1611 do
1612 {
1613 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1614 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1615 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1616 if (NILP (val))
1617 val = tbl->defalt;
1618 }
1619 while (NILP (val) && ! NILP (tbl->parent));
1620
1621 return val;
1622 }
1623
1624 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1625 characters. Do not check validity of CT. */
1626 INLINE Lisp_Object
1627 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1628 {
1629 return (ASCII_CHAR_P (idx)
1630 ? CHAR_TABLE_REF_ASCII (ct, idx)
1631 : char_table_ref (ct, idx));
1632 }
1633
1634 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1635 8-bit European characters. Do not check validity of CT. */
1636 INLINE void
1637 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1638 {
1639 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1640 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1641 else
1642 char_table_set (ct, idx, val);
1643 }
1644
1645 /* This structure describes a built-in function.
1646 It is generated by the DEFUN macro only.
1647 defsubr makes it into a Lisp object. */
1648
1649 struct Lisp_Subr
1650 {
1651 struct vectorlike_header header;
1652 union {
1653 Lisp_Object (*a0) (void);
1654 Lisp_Object (*a1) (Lisp_Object);
1655 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1656 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1657 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1658 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1659 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1660 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1661 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1662 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1663 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1664 } function;
1665 short min_args, max_args;
1666 const char *symbol_name;
1667 const char *intspec;
1668 const char *doc;
1669 };
1670
1671 enum char_table_specials
1672 {
1673 /* This is the number of slots that every char table must have. This
1674 counts the ordinary slots and the top, defalt, parent, and purpose
1675 slots. */
1676 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1677
1678 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1679 when the latter is treated as an ordinary Lisp_Vector. */
1680 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1681 };
1682
1683 /* Return the number of "extra" slots in the char table CT. */
1684
1685 INLINE int
1686 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1687 {
1688 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1689 - CHAR_TABLE_STANDARD_SLOTS);
1690 }
1691
1692 /* Make sure that sub char-table contents slot
1693 is aligned on a multiple of Lisp_Objects. */
1694 verify ((offsetof (struct Lisp_Sub_Char_Table, contents)
1695 - offsetof (struct Lisp_Sub_Char_Table, depth)) % word_size == 0);
1696
1697 /***********************************************************************
1698 Symbols
1699 ***********************************************************************/
1700
1701 /* Value is name of symbol. */
1702
1703 LISP_MACRO_DEFUN (SYMBOL_VAL, Lisp_Object, (struct Lisp_Symbol *sym), (sym))
1704
1705 INLINE struct Lisp_Symbol *
1706 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1707 {
1708 eassert (sym->redirect == SYMBOL_VARALIAS);
1709 return sym->val.alias;
1710 }
1711 INLINE struct Lisp_Buffer_Local_Value *
1712 SYMBOL_BLV (struct Lisp_Symbol *sym)
1713 {
1714 eassert (sym->redirect == SYMBOL_LOCALIZED);
1715 return sym->val.blv;
1716 }
1717 INLINE union Lisp_Fwd *
1718 SYMBOL_FWD (struct Lisp_Symbol *sym)
1719 {
1720 eassert (sym->redirect == SYMBOL_FORWARDED);
1721 return sym->val.fwd;
1722 }
1723
1724 LISP_MACRO_DEFUN_VOID (SET_SYMBOL_VAL,
1725 (struct Lisp_Symbol *sym, Lisp_Object v), (sym, v))
1726
1727 INLINE void
1728 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1729 {
1730 eassert (sym->redirect == SYMBOL_VARALIAS);
1731 sym->val.alias = v;
1732 }
1733 INLINE void
1734 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1735 {
1736 eassert (sym->redirect == SYMBOL_LOCALIZED);
1737 sym->val.blv = v;
1738 }
1739 INLINE void
1740 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1741 {
1742 eassert (sym->redirect == SYMBOL_FORWARDED);
1743 sym->val.fwd = v;
1744 }
1745
1746 INLINE Lisp_Object
1747 SYMBOL_NAME (Lisp_Object sym)
1748 {
1749 return XSYMBOL (sym)->name;
1750 }
1751
1752 /* Value is true if SYM is an interned symbol. */
1753
1754 INLINE bool
1755 SYMBOL_INTERNED_P (Lisp_Object sym)
1756 {
1757 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1758 }
1759
1760 /* Value is true if SYM is interned in initial_obarray. */
1761
1762 INLINE bool
1763 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1764 {
1765 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1766 }
1767
1768 /* Value is non-zero if symbol is considered a constant, i.e. its
1769 value cannot be changed (there is an exception for keyword symbols,
1770 whose value can be set to the keyword symbol itself). */
1771
1772 LISP_MACRO_DEFUN (SYMBOL_CONSTANT_P, int, (Lisp_Object sym), (sym))
1773
1774 /* Placeholder for make-docfile to process. The actual symbol
1775 definition is done by lread.c's defsym. */
1776 #define DEFSYM(sym, name) /* empty */
1777
1778 \f
1779 /***********************************************************************
1780 Hash Tables
1781 ***********************************************************************/
1782
1783 /* The structure of a Lisp hash table. */
1784
1785 struct hash_table_test
1786 {
1787 /* Name of the function used to compare keys. */
1788 Lisp_Object name;
1789
1790 /* User-supplied hash function, or nil. */
1791 Lisp_Object user_hash_function;
1792
1793 /* User-supplied key comparison function, or nil. */
1794 Lisp_Object user_cmp_function;
1795
1796 /* C function to compare two keys. */
1797 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1798
1799 /* C function to compute hash code. */
1800 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1801 };
1802
1803 struct Lisp_Hash_Table
1804 {
1805 /* This is for Lisp; the hash table code does not refer to it. */
1806 struct vectorlike_header header;
1807
1808 /* Nil if table is non-weak. Otherwise a symbol describing the
1809 weakness of the table. */
1810 Lisp_Object weak;
1811
1812 /* When the table is resized, and this is an integer, compute the
1813 new size by adding this to the old size. If a float, compute the
1814 new size by multiplying the old size with this factor. */
1815 Lisp_Object rehash_size;
1816
1817 /* Resize hash table when number of entries/ table size is >= this
1818 ratio, a float. */
1819 Lisp_Object rehash_threshold;
1820
1821 /* Vector of hash codes. If hash[I] is nil, this means that the
1822 I-th entry is unused. */
1823 Lisp_Object hash;
1824
1825 /* Vector used to chain entries. If entry I is free, next[I] is the
1826 entry number of the next free item. If entry I is non-free,
1827 next[I] is the index of the next entry in the collision chain. */
1828 Lisp_Object next;
1829
1830 /* Index of first free entry in free list. */
1831 Lisp_Object next_free;
1832
1833 /* Bucket vector. A non-nil entry is the index of the first item in
1834 a collision chain. This vector's size can be larger than the
1835 hash table size to reduce collisions. */
1836 Lisp_Object index;
1837
1838 /* Only the fields above are traced normally by the GC. The ones below
1839 `count' are special and are either ignored by the GC or traced in
1840 a special way (e.g. because of weakness). */
1841
1842 /* Number of key/value entries in the table. */
1843 ptrdiff_t count;
1844
1845 /* Vector of keys and values. The key of item I is found at index
1846 2 * I, the value is found at index 2 * I + 1.
1847 This is gc_marked specially if the table is weak. */
1848 Lisp_Object key_and_value;
1849
1850 /* The comparison and hash functions. */
1851 struct hash_table_test test;
1852
1853 /* Next weak hash table if this is a weak hash table. The head
1854 of the list is in weak_hash_tables. */
1855 struct Lisp_Hash_Table *next_weak;
1856 };
1857
1858
1859 INLINE struct Lisp_Hash_Table *
1860 XHASH_TABLE (Lisp_Object a)
1861 {
1862 return XUNTAG (a, Lisp_Vectorlike);
1863 }
1864
1865 #define XSET_HASH_TABLE(VAR, PTR) \
1866 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1867
1868 INLINE bool
1869 HASH_TABLE_P (Lisp_Object a)
1870 {
1871 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1872 }
1873
1874 /* Value is the key part of entry IDX in hash table H. */
1875 INLINE Lisp_Object
1876 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1877 {
1878 return AREF (h->key_and_value, 2 * idx);
1879 }
1880
1881 /* Value is the value part of entry IDX in hash table H. */
1882 INLINE Lisp_Object
1883 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1884 {
1885 return AREF (h->key_and_value, 2 * idx + 1);
1886 }
1887
1888 /* Value is the index of the next entry following the one at IDX
1889 in hash table H. */
1890 INLINE Lisp_Object
1891 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1892 {
1893 return AREF (h->next, idx);
1894 }
1895
1896 /* Value is the hash code computed for entry IDX in hash table H. */
1897 INLINE Lisp_Object
1898 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1899 {
1900 return AREF (h->hash, idx);
1901 }
1902
1903 /* Value is the index of the element in hash table H that is the
1904 start of the collision list at index IDX in the index vector of H. */
1905 INLINE Lisp_Object
1906 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1907 {
1908 return AREF (h->index, idx);
1909 }
1910
1911 /* Value is the size of hash table H. */
1912 INLINE ptrdiff_t
1913 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
1914 {
1915 return ASIZE (h->next);
1916 }
1917
1918 /* Default size for hash tables if not specified. */
1919
1920 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
1921
1922 /* Default threshold specifying when to resize a hash table. The
1923 value gives the ratio of current entries in the hash table and the
1924 size of the hash table. */
1925
1926 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
1927
1928 /* Default factor by which to increase the size of a hash table. */
1929
1930 static double const DEFAULT_REHASH_SIZE = 1.5;
1931
1932 /* Combine two integers X and Y for hashing. The result might not fit
1933 into a Lisp integer. */
1934
1935 INLINE EMACS_UINT
1936 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
1937 {
1938 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
1939 }
1940
1941 /* Hash X, returning a value that fits into a fixnum. */
1942
1943 INLINE EMACS_UINT
1944 SXHASH_REDUCE (EMACS_UINT x)
1945 {
1946 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
1947 }
1948
1949 /* These structures are used for various misc types. */
1950
1951 struct Lisp_Misc_Any /* Supertype of all Misc types. */
1952 {
1953 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
1954 bool_bf gcmarkbit : 1;
1955 unsigned spacer : 15;
1956 };
1957
1958 struct Lisp_Marker
1959 {
1960 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
1961 bool_bf gcmarkbit : 1;
1962 unsigned spacer : 13;
1963 /* This flag is temporarily used in the functions
1964 decode/encode_coding_object to record that the marker position
1965 must be adjusted after the conversion. */
1966 bool_bf need_adjustment : 1;
1967 /* True means normal insertion at the marker's position
1968 leaves the marker after the inserted text. */
1969 bool_bf insertion_type : 1;
1970 /* This is the buffer that the marker points into, or 0 if it points nowhere.
1971 Note: a chain of markers can contain markers pointing into different
1972 buffers (the chain is per buffer_text rather than per buffer, so it's
1973 shared between indirect buffers). */
1974 /* This is used for (other than NULL-checking):
1975 - Fmarker_buffer
1976 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
1977 - unchain_marker: to find the list from which to unchain.
1978 - Fkill_buffer: to only unchain the markers of current indirect buffer.
1979 */
1980 struct buffer *buffer;
1981
1982 /* The remaining fields are meaningless in a marker that
1983 does not point anywhere. */
1984
1985 /* For markers that point somewhere,
1986 this is used to chain of all the markers in a given buffer. */
1987 /* We could remove it and use an array in buffer_text instead.
1988 That would also allow to preserve it ordered. */
1989 struct Lisp_Marker *next;
1990 /* This is the char position where the marker points. */
1991 ptrdiff_t charpos;
1992 /* This is the byte position.
1993 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
1994 used to implement the functionality of markers, but rather to (ab)use
1995 markers as a cache for char<->byte mappings). */
1996 ptrdiff_t bytepos;
1997 };
1998
1999 /* START and END are markers in the overlay's buffer, and
2000 PLIST is the overlay's property list. */
2001 struct Lisp_Overlay
2002 /* An overlay's real data content is:
2003 - plist
2004 - buffer (really there are two buffer pointers, one per marker,
2005 and both points to the same buffer)
2006 - insertion type of both ends (per-marker fields)
2007 - start & start byte (of start marker)
2008 - end & end byte (of end marker)
2009 - next (singly linked list of overlays)
2010 - next fields of start and end markers (singly linked list of markers).
2011 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
2012 */
2013 {
2014 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
2015 bool_bf gcmarkbit : 1;
2016 unsigned spacer : 15;
2017 struct Lisp_Overlay *next;
2018 Lisp_Object start;
2019 Lisp_Object end;
2020 Lisp_Object plist;
2021 };
2022
2023 /* Types of data which may be saved in a Lisp_Save_Value. */
2024
2025 enum
2026 {
2027 SAVE_UNUSED,
2028 SAVE_INTEGER,
2029 SAVE_FUNCPOINTER,
2030 SAVE_POINTER,
2031 SAVE_OBJECT
2032 };
2033
2034 /* Number of bits needed to store one of the above values. */
2035 enum { SAVE_SLOT_BITS = 3 };
2036
2037 /* Number of slots in a save value where save_type is nonzero. */
2038 enum { SAVE_VALUE_SLOTS = 4 };
2039
2040 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
2041
2042 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
2043
2044 enum Lisp_Save_Type
2045 {
2046 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2047 SAVE_TYPE_INT_INT_INT
2048 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
2049 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
2050 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
2051 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
2052 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
2053 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2054 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
2055 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
2056 SAVE_TYPE_FUNCPTR_PTR_OBJ
2057 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
2058
2059 /* This has an extra bit indicating it's raw memory. */
2060 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
2061 };
2062
2063 /* Special object used to hold a different values for later use.
2064
2065 This is mostly used to package C integers and pointers to call
2066 record_unwind_protect when two or more values need to be saved.
2067 For example:
2068
2069 ...
2070 struct my_data *md = get_my_data ();
2071 ptrdiff_t mi = get_my_integer ();
2072 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2073 ...
2074
2075 Lisp_Object my_unwind (Lisp_Object arg)
2076 {
2077 struct my_data *md = XSAVE_POINTER (arg, 0);
2078 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2079 ...
2080 }
2081
2082 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2083 saved objects and raise eassert if type of the saved object doesn't match
2084 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2085 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2086 slot 0 is a pointer. */
2087
2088 typedef void (*voidfuncptr) (void);
2089
2090 struct Lisp_Save_Value
2091 {
2092 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2093 bool_bf gcmarkbit : 1;
2094 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2095
2096 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2097 V's data entries are determined by V->save_type. E.g., if
2098 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2099 V->data[1] is an integer, and V's other data entries are unused.
2100
2101 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2102 a memory area containing V->data[1].integer potential Lisp_Objects. */
2103 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2104 union {
2105 void *pointer;
2106 voidfuncptr funcpointer;
2107 ptrdiff_t integer;
2108 Lisp_Object object;
2109 } data[SAVE_VALUE_SLOTS];
2110 };
2111
2112 /* Return the type of V's Nth saved value. */
2113 INLINE int
2114 save_type (struct Lisp_Save_Value *v, int n)
2115 {
2116 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2117 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2118 }
2119
2120 /* Get and set the Nth saved pointer. */
2121
2122 INLINE void *
2123 XSAVE_POINTER (Lisp_Object obj, int n)
2124 {
2125 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2126 return XSAVE_VALUE (obj)->data[n].pointer;
2127 }
2128 INLINE void
2129 set_save_pointer (Lisp_Object obj, int n, void *val)
2130 {
2131 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2132 XSAVE_VALUE (obj)->data[n].pointer = val;
2133 }
2134 INLINE voidfuncptr
2135 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2136 {
2137 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2138 return XSAVE_VALUE (obj)->data[n].funcpointer;
2139 }
2140
2141 /* Likewise for the saved integer. */
2142
2143 INLINE ptrdiff_t
2144 XSAVE_INTEGER (Lisp_Object obj, int n)
2145 {
2146 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2147 return XSAVE_VALUE (obj)->data[n].integer;
2148 }
2149 INLINE void
2150 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2151 {
2152 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2153 XSAVE_VALUE (obj)->data[n].integer = val;
2154 }
2155
2156 /* Extract Nth saved object. */
2157
2158 INLINE Lisp_Object
2159 XSAVE_OBJECT (Lisp_Object obj, int n)
2160 {
2161 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2162 return XSAVE_VALUE (obj)->data[n].object;
2163 }
2164
2165 /* A miscellaneous object, when it's on the free list. */
2166 struct Lisp_Free
2167 {
2168 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2169 bool_bf gcmarkbit : 1;
2170 unsigned spacer : 15;
2171 union Lisp_Misc *chain;
2172 };
2173
2174 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2175 It uses one of these struct subtypes to get the type field. */
2176
2177 union Lisp_Misc
2178 {
2179 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2180 struct Lisp_Free u_free;
2181 struct Lisp_Marker u_marker;
2182 struct Lisp_Overlay u_overlay;
2183 struct Lisp_Save_Value u_save_value;
2184 };
2185
2186 INLINE union Lisp_Misc *
2187 XMISC (Lisp_Object a)
2188 {
2189 return XUNTAG (a, Lisp_Misc);
2190 }
2191
2192 INLINE struct Lisp_Misc_Any *
2193 XMISCANY (Lisp_Object a)
2194 {
2195 eassert (MISCP (a));
2196 return & XMISC (a)->u_any;
2197 }
2198
2199 INLINE enum Lisp_Misc_Type
2200 XMISCTYPE (Lisp_Object a)
2201 {
2202 return XMISCANY (a)->type;
2203 }
2204
2205 INLINE struct Lisp_Marker *
2206 XMARKER (Lisp_Object a)
2207 {
2208 eassert (MARKERP (a));
2209 return & XMISC (a)->u_marker;
2210 }
2211
2212 INLINE struct Lisp_Overlay *
2213 XOVERLAY (Lisp_Object a)
2214 {
2215 eassert (OVERLAYP (a));
2216 return & XMISC (a)->u_overlay;
2217 }
2218
2219 INLINE struct Lisp_Save_Value *
2220 XSAVE_VALUE (Lisp_Object a)
2221 {
2222 eassert (SAVE_VALUEP (a));
2223 return & XMISC (a)->u_save_value;
2224 }
2225 \f
2226 /* Forwarding pointer to an int variable.
2227 This is allowed only in the value cell of a symbol,
2228 and it means that the symbol's value really lives in the
2229 specified int variable. */
2230 struct Lisp_Intfwd
2231 {
2232 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2233 EMACS_INT *intvar;
2234 };
2235
2236 /* Boolean forwarding pointer to an int variable.
2237 This is like Lisp_Intfwd except that the ostensible
2238 "value" of the symbol is t if the bool variable is true,
2239 nil if it is false. */
2240 struct Lisp_Boolfwd
2241 {
2242 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2243 bool *boolvar;
2244 };
2245
2246 /* Forwarding pointer to a Lisp_Object variable.
2247 This is allowed only in the value cell of a symbol,
2248 and it means that the symbol's value really lives in the
2249 specified variable. */
2250 struct Lisp_Objfwd
2251 {
2252 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2253 Lisp_Object *objvar;
2254 };
2255
2256 /* Like Lisp_Objfwd except that value lives in a slot in the
2257 current buffer. Value is byte index of slot within buffer. */
2258 struct Lisp_Buffer_Objfwd
2259 {
2260 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2261 int offset;
2262 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2263 Lisp_Object predicate;
2264 };
2265
2266 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2267 the symbol has buffer-local or frame-local bindings. (Exception:
2268 some buffer-local variables are built-in, with their values stored
2269 in the buffer structure itself. They are handled differently,
2270 using struct Lisp_Buffer_Objfwd.)
2271
2272 The `realvalue' slot holds the variable's current value, or a
2273 forwarding pointer to where that value is kept. This value is the
2274 one that corresponds to the loaded binding. To read or set the
2275 variable, you must first make sure the right binding is loaded;
2276 then you can access the value in (or through) `realvalue'.
2277
2278 `buffer' and `frame' are the buffer and frame for which the loaded
2279 binding was found. If those have changed, to make sure the right
2280 binding is loaded it is necessary to find which binding goes with
2281 the current buffer and selected frame, then load it. To load it,
2282 first unload the previous binding, then copy the value of the new
2283 binding into `realvalue' (or through it). Also update
2284 LOADED-BINDING to point to the newly loaded binding.
2285
2286 `local_if_set' indicates that merely setting the variable creates a
2287 local binding for the current buffer. Otherwise the latter, setting
2288 the variable does not do that; only make-local-variable does that. */
2289
2290 struct Lisp_Buffer_Local_Value
2291 {
2292 /* True means that merely setting the variable creates a local
2293 binding for the current buffer. */
2294 bool_bf local_if_set : 1;
2295 /* True means this variable can have frame-local bindings, otherwise, it is
2296 can have buffer-local bindings. The two cannot be combined. */
2297 bool_bf frame_local : 1;
2298 /* True means that the binding now loaded was found.
2299 Presumably equivalent to (defcell!=valcell). */
2300 bool_bf found : 1;
2301 /* If non-NULL, a forwarding to the C var where it should also be set. */
2302 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2303 /* The buffer or frame for which the loaded binding was found. */
2304 Lisp_Object where;
2305 /* A cons cell that holds the default value. It has the form
2306 (SYMBOL . DEFAULT-VALUE). */
2307 Lisp_Object defcell;
2308 /* The cons cell from `where's parameter alist.
2309 It always has the form (SYMBOL . VALUE)
2310 Note that if `forward' is non-nil, VALUE may be out of date.
2311 Also if the currently loaded binding is the default binding, then
2312 this is `eq'ual to defcell. */
2313 Lisp_Object valcell;
2314 };
2315
2316 /* Like Lisp_Objfwd except that value lives in a slot in the
2317 current kboard. */
2318 struct Lisp_Kboard_Objfwd
2319 {
2320 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2321 int offset;
2322 };
2323
2324 union Lisp_Fwd
2325 {
2326 struct Lisp_Intfwd u_intfwd;
2327 struct Lisp_Boolfwd u_boolfwd;
2328 struct Lisp_Objfwd u_objfwd;
2329 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2330 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2331 };
2332
2333 INLINE enum Lisp_Fwd_Type
2334 XFWDTYPE (union Lisp_Fwd *a)
2335 {
2336 return a->u_intfwd.type;
2337 }
2338
2339 INLINE struct Lisp_Buffer_Objfwd *
2340 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2341 {
2342 eassert (BUFFER_OBJFWDP (a));
2343 return &a->u_buffer_objfwd;
2344 }
2345 \f
2346 /* Lisp floating point type. */
2347 struct Lisp_Float
2348 {
2349 union
2350 {
2351 double data;
2352 struct Lisp_Float *chain;
2353 } u;
2354 };
2355
2356 INLINE double
2357 XFLOAT_DATA (Lisp_Object f)
2358 {
2359 return XFLOAT (f)->u.data;
2360 }
2361
2362 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2363 representations, have infinities and NaNs, and do not trap on
2364 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2365 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2366 wanted here, but is not quite right because Emacs does not require
2367 all the features of C11 Annex F (and does not require C11 at all,
2368 for that matter). */
2369 enum
2370 {
2371 IEEE_FLOATING_POINT
2372 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2373 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2374 };
2375
2376 /* A character, declared with the following typedef, is a member
2377 of some character set associated with the current buffer. */
2378 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2379 #define _UCHAR_T
2380 typedef unsigned char UCHAR;
2381 #endif
2382
2383 /* Meanings of slots in a Lisp_Compiled: */
2384
2385 enum Lisp_Compiled
2386 {
2387 COMPILED_ARGLIST = 0,
2388 COMPILED_BYTECODE = 1,
2389 COMPILED_CONSTANTS = 2,
2390 COMPILED_STACK_DEPTH = 3,
2391 COMPILED_DOC_STRING = 4,
2392 COMPILED_INTERACTIVE = 5
2393 };
2394
2395 /* Flag bits in a character. These also get used in termhooks.h.
2396 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2397 (MUlti-Lingual Emacs) might need 22 bits for the character value
2398 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2399 enum char_bits
2400 {
2401 CHAR_ALT = 0x0400000,
2402 CHAR_SUPER = 0x0800000,
2403 CHAR_HYPER = 0x1000000,
2404 CHAR_SHIFT = 0x2000000,
2405 CHAR_CTL = 0x4000000,
2406 CHAR_META = 0x8000000,
2407
2408 CHAR_MODIFIER_MASK =
2409 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2410
2411 /* Actually, the current Emacs uses 22 bits for the character value
2412 itself. */
2413 CHARACTERBITS = 22
2414 };
2415 \f
2416 /* Data type checking. */
2417
2418 LISP_MACRO_DEFUN (NILP, bool, (Lisp_Object x), (x))
2419
2420 INLINE bool
2421 NUMBERP (Lisp_Object x)
2422 {
2423 return INTEGERP (x) || FLOATP (x);
2424 }
2425 INLINE bool
2426 NATNUMP (Lisp_Object x)
2427 {
2428 return INTEGERP (x) && 0 <= XINT (x);
2429 }
2430
2431 INLINE bool
2432 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2433 {
2434 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2435 }
2436
2437 #define TYPE_RANGED_INTEGERP(type, x) \
2438 (INTEGERP (x) \
2439 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2440 && XINT (x) <= TYPE_MAXIMUM (type))
2441
2442 LISP_MACRO_DEFUN (CONSP, bool, (Lisp_Object x), (x))
2443 LISP_MACRO_DEFUN (FLOATP, bool, (Lisp_Object x), (x))
2444 LISP_MACRO_DEFUN (MISCP, bool, (Lisp_Object x), (x))
2445 LISP_MACRO_DEFUN (SYMBOLP, bool, (Lisp_Object x), (x))
2446 LISP_MACRO_DEFUN (INTEGERP, bool, (Lisp_Object x), (x))
2447 LISP_MACRO_DEFUN (VECTORLIKEP, bool, (Lisp_Object x), (x))
2448 LISP_MACRO_DEFUN (MARKERP, bool, (Lisp_Object x), (x))
2449
2450 INLINE bool
2451 STRINGP (Lisp_Object x)
2452 {
2453 return XTYPE (x) == Lisp_String;
2454 }
2455 INLINE bool
2456 VECTORP (Lisp_Object x)
2457 {
2458 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2459 }
2460 INLINE bool
2461 OVERLAYP (Lisp_Object x)
2462 {
2463 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2464 }
2465 INLINE bool
2466 SAVE_VALUEP (Lisp_Object x)
2467 {
2468 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2469 }
2470
2471 INLINE bool
2472 AUTOLOADP (Lisp_Object x)
2473 {
2474 return CONSP (x) && EQ (Qautoload, XCAR (x));
2475 }
2476
2477 INLINE bool
2478 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2479 {
2480 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2481 }
2482
2483 INLINE bool
2484 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2485 {
2486 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2487 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2488 }
2489
2490 /* True if A is a pseudovector whose code is CODE. */
2491 INLINE bool
2492 PSEUDOVECTORP (Lisp_Object a, int code)
2493 {
2494 if (! VECTORLIKEP (a))
2495 return false;
2496 else
2497 {
2498 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2499 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2500 return PSEUDOVECTOR_TYPEP (h, code);
2501 }
2502 }
2503
2504
2505 /* Test for specific pseudovector types. */
2506
2507 INLINE bool
2508 WINDOW_CONFIGURATIONP (Lisp_Object a)
2509 {
2510 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2511 }
2512
2513 INLINE bool
2514 PROCESSP (Lisp_Object a)
2515 {
2516 return PSEUDOVECTORP (a, PVEC_PROCESS);
2517 }
2518
2519 INLINE bool
2520 WINDOWP (Lisp_Object a)
2521 {
2522 return PSEUDOVECTORP (a, PVEC_WINDOW);
2523 }
2524
2525 INLINE bool
2526 TERMINALP (Lisp_Object a)
2527 {
2528 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2529 }
2530
2531 INLINE bool
2532 SUBRP (Lisp_Object a)
2533 {
2534 return PSEUDOVECTORP (a, PVEC_SUBR);
2535 }
2536
2537 INLINE bool
2538 COMPILEDP (Lisp_Object a)
2539 {
2540 return PSEUDOVECTORP (a, PVEC_COMPILED);
2541 }
2542
2543 INLINE bool
2544 BUFFERP (Lisp_Object a)
2545 {
2546 return PSEUDOVECTORP (a, PVEC_BUFFER);
2547 }
2548
2549 INLINE bool
2550 CHAR_TABLE_P (Lisp_Object a)
2551 {
2552 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2553 }
2554
2555 INLINE bool
2556 SUB_CHAR_TABLE_P (Lisp_Object a)
2557 {
2558 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2559 }
2560
2561 INLINE bool
2562 BOOL_VECTOR_P (Lisp_Object a)
2563 {
2564 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2565 }
2566
2567 INLINE bool
2568 FRAMEP (Lisp_Object a)
2569 {
2570 return PSEUDOVECTORP (a, PVEC_FRAME);
2571 }
2572
2573 /* Test for image (image . spec) */
2574 INLINE bool
2575 IMAGEP (Lisp_Object x)
2576 {
2577 return CONSP (x) && EQ (XCAR (x), Qimage);
2578 }
2579
2580 /* Array types. */
2581 INLINE bool
2582 ARRAYP (Lisp_Object x)
2583 {
2584 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2585 }
2586 \f
2587 INLINE void
2588 CHECK_LIST (Lisp_Object x)
2589 {
2590 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2591 }
2592
2593 LISP_MACRO_DEFUN_VOID (CHECK_LIST_CONS, (Lisp_Object x, Lisp_Object y), (x, y))
2594 LISP_MACRO_DEFUN_VOID (CHECK_SYMBOL, (Lisp_Object x), (x))
2595 LISP_MACRO_DEFUN_VOID (CHECK_NUMBER, (Lisp_Object x), (x))
2596
2597 INLINE void
2598 CHECK_STRING (Lisp_Object x)
2599 {
2600 CHECK_TYPE (STRINGP (x), Qstringp, x);
2601 }
2602 INLINE void
2603 CHECK_STRING_CAR (Lisp_Object x)
2604 {
2605 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2606 }
2607 INLINE void
2608 CHECK_CONS (Lisp_Object x)
2609 {
2610 CHECK_TYPE (CONSP (x), Qconsp, x);
2611 }
2612 INLINE void
2613 CHECK_VECTOR (Lisp_Object x)
2614 {
2615 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2616 }
2617 INLINE void
2618 CHECK_BOOL_VECTOR (Lisp_Object x)
2619 {
2620 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2621 }
2622 /* This is a bit special because we always need size afterwards. */
2623 INLINE ptrdiff_t
2624 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2625 {
2626 if (VECTORP (x))
2627 return ASIZE (x);
2628 if (STRINGP (x))
2629 return SCHARS (x);
2630 wrong_type_argument (Qarrayp, x);
2631 }
2632 INLINE void
2633 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2634 {
2635 CHECK_TYPE (ARRAYP (x), predicate, x);
2636 }
2637 INLINE void
2638 CHECK_BUFFER (Lisp_Object x)
2639 {
2640 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2641 }
2642 INLINE void
2643 CHECK_WINDOW (Lisp_Object x)
2644 {
2645 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2646 }
2647 #ifdef subprocesses
2648 INLINE void
2649 CHECK_PROCESS (Lisp_Object x)
2650 {
2651 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2652 }
2653 #endif
2654 INLINE void
2655 CHECK_NATNUM (Lisp_Object x)
2656 {
2657 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2658 }
2659
2660 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2661 do { \
2662 CHECK_NUMBER (x); \
2663 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2664 args_out_of_range_3 \
2665 (x, \
2666 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2667 ? MOST_NEGATIVE_FIXNUM \
2668 : (lo)), \
2669 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2670 } while (false)
2671 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2672 do { \
2673 if (TYPE_SIGNED (type)) \
2674 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2675 else \
2676 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2677 } while (false)
2678
2679 #define CHECK_NUMBER_COERCE_MARKER(x) \
2680 do { \
2681 if (MARKERP ((x))) \
2682 XSETFASTINT (x, marker_position (x)); \
2683 else \
2684 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2685 } while (false)
2686
2687 INLINE double
2688 XFLOATINT (Lisp_Object n)
2689 {
2690 return extract_float (n);
2691 }
2692
2693 INLINE void
2694 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2695 {
2696 CHECK_TYPE (FLOATP (x) || INTEGERP (x), Qnumberp, x);
2697 }
2698
2699 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2700 do { \
2701 if (MARKERP (x)) \
2702 XSETFASTINT (x, marker_position (x)); \
2703 else \
2704 CHECK_TYPE (INTEGERP (x) || FLOATP (x), Qnumber_or_marker_p, x); \
2705 } while (false)
2706
2707 /* Since we can't assign directly to the CAR or CDR fields of a cons
2708 cell, use these when checking that those fields contain numbers. */
2709 INLINE void
2710 CHECK_NUMBER_CAR (Lisp_Object x)
2711 {
2712 Lisp_Object tmp = XCAR (x);
2713 CHECK_NUMBER (tmp);
2714 XSETCAR (x, tmp);
2715 }
2716
2717 INLINE void
2718 CHECK_NUMBER_CDR (Lisp_Object x)
2719 {
2720 Lisp_Object tmp = XCDR (x);
2721 CHECK_NUMBER (tmp);
2722 XSETCDR (x, tmp);
2723 }
2724 \f
2725 /* Define a built-in function for calling from Lisp.
2726 `lname' should be the name to give the function in Lisp,
2727 as a null-terminated C string.
2728 `fnname' should be the name of the function in C.
2729 By convention, it starts with F.
2730 `sname' should be the name for the C constant structure
2731 that records information on this function for internal use.
2732 By convention, it should be the same as `fnname' but with S instead of F.
2733 It's too bad that C macros can't compute this from `fnname'.
2734 `minargs' should be a number, the minimum number of arguments allowed.
2735 `maxargs' should be a number, the maximum number of arguments allowed,
2736 or else MANY or UNEVALLED.
2737 MANY means pass a vector of evaluated arguments,
2738 in the form of an integer number-of-arguments
2739 followed by the address of a vector of Lisp_Objects
2740 which contains the argument values.
2741 UNEVALLED means pass the list of unevaluated arguments
2742 `intspec' says how interactive arguments are to be fetched.
2743 If the string starts with a `(', `intspec' is evaluated and the resulting
2744 list is the list of arguments.
2745 If it's a string that doesn't start with `(', the value should follow
2746 the one of the doc string for `interactive'.
2747 A null string means call interactively with no arguments.
2748 `doc' is documentation for the user. */
2749
2750 /* This version of DEFUN declares a function prototype with the right
2751 arguments, so we can catch errors with maxargs at compile-time. */
2752 #ifdef _MSC_VER
2753 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2754 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2755 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2756 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2757 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2758 { (Lisp_Object (__cdecl *)(void))fnname }, \
2759 minargs, maxargs, lname, intspec, 0}; \
2760 Lisp_Object fnname
2761 #else /* not _MSC_VER */
2762 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2763 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2764 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2765 { .a ## maxargs = fnname }, \
2766 minargs, maxargs, lname, intspec, 0}; \
2767 Lisp_Object fnname
2768 #endif
2769
2770 /* True if OBJ is a Lisp function. */
2771 INLINE bool
2772 FUNCTIONP (Lisp_Object obj)
2773 {
2774 return functionp (obj);
2775 }
2776
2777 /* defsubr (Sname);
2778 is how we define the symbol for function `name' at start-up time. */
2779 extern void defsubr (struct Lisp_Subr *);
2780
2781 enum maxargs
2782 {
2783 MANY = -2,
2784 UNEVALLED = -1
2785 };
2786
2787 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2788 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2789 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
2790 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
2791 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
2792
2793 /* Macros we use to define forwarded Lisp variables.
2794 These are used in the syms_of_FILENAME functions.
2795
2796 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
2797 lisp variable is actually a field in `struct emacs_globals'. The
2798 field's name begins with "f_", which is a convention enforced by
2799 these macros. Each such global has a corresponding #define in
2800 globals.h; the plain name should be used in the code.
2801
2802 E.g., the global "cons_cells_consed" is declared as "int
2803 f_cons_cells_consed" in globals.h, but there is a define:
2804
2805 #define cons_cells_consed globals.f_cons_cells_consed
2806
2807 All C code uses the `cons_cells_consed' name. This is all done
2808 this way to support indirection for multi-threaded Emacs. */
2809
2810 #define DEFVAR_LISP(lname, vname, doc) \
2811 do { \
2812 static struct Lisp_Objfwd o_fwd; \
2813 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
2814 } while (false)
2815 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
2816 do { \
2817 static struct Lisp_Objfwd o_fwd; \
2818 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
2819 } while (false)
2820 #define DEFVAR_BOOL(lname, vname, doc) \
2821 do { \
2822 static struct Lisp_Boolfwd b_fwd; \
2823 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
2824 } while (false)
2825 #define DEFVAR_INT(lname, vname, doc) \
2826 do { \
2827 static struct Lisp_Intfwd i_fwd; \
2828 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
2829 } while (false)
2830
2831 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
2832 do { \
2833 static struct Lisp_Objfwd o_fwd; \
2834 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
2835 } while (false)
2836
2837 #define DEFVAR_KBOARD(lname, vname, doc) \
2838 do { \
2839 static struct Lisp_Kboard_Objfwd ko_fwd; \
2840 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
2841 } while (false)
2842 \f
2843 /* Save and restore the instruction and environment pointers,
2844 without affecting the signal mask. */
2845
2846 #ifdef HAVE__SETJMP
2847 typedef jmp_buf sys_jmp_buf;
2848 # define sys_setjmp(j) _setjmp (j)
2849 # define sys_longjmp(j, v) _longjmp (j, v)
2850 #elif defined HAVE_SIGSETJMP
2851 typedef sigjmp_buf sys_jmp_buf;
2852 # define sys_setjmp(j) sigsetjmp (j, 0)
2853 # define sys_longjmp(j, v) siglongjmp (j, v)
2854 #else
2855 /* A platform that uses neither _longjmp nor siglongjmp; assume
2856 longjmp does not affect the sigmask. */
2857 typedef jmp_buf sys_jmp_buf;
2858 # define sys_setjmp(j) setjmp (j)
2859 # define sys_longjmp(j, v) longjmp (j, v)
2860 #endif
2861
2862 \f
2863 /* Elisp uses several stacks:
2864 - the C stack.
2865 - the bytecode stack: used internally by the bytecode interpreter.
2866 Allocated from the C stack.
2867 - The specpdl stack: keeps track of active unwind-protect and
2868 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
2869 managed stack.
2870 - The handler stack: keeps track of active catch tags and condition-case
2871 handlers. Allocated in a manually managed stack implemented by a
2872 doubly-linked list allocated via xmalloc and never freed. */
2873
2874 /* Structure for recording Lisp call stack for backtrace purposes. */
2875
2876 /* The special binding stack holds the outer values of variables while
2877 they are bound by a function application or a let form, stores the
2878 code to be executed for unwind-protect forms.
2879
2880 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
2881 used all over the place, needs to be fast, and needs to know the size of
2882 union specbinding. But only eval.c should access it. */
2883
2884 enum specbind_tag {
2885 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
2886 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
2887 SPECPDL_UNWIND_INT, /* Likewise, on int. */
2888 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
2889 SPECPDL_BACKTRACE, /* An element of the backtrace. */
2890 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
2891 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
2892 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
2893 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
2894 };
2895
2896 union specbinding
2897 {
2898 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2899 struct {
2900 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2901 void (*func) (Lisp_Object);
2902 Lisp_Object arg;
2903 } unwind;
2904 struct {
2905 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2906 void (*func) (void *);
2907 void *arg;
2908 } unwind_ptr;
2909 struct {
2910 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2911 void (*func) (int);
2912 int arg;
2913 } unwind_int;
2914 struct {
2915 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2916 void (*func) (void);
2917 } unwind_void;
2918 struct {
2919 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2920 /* `where' is not used in the case of SPECPDL_LET. */
2921 Lisp_Object symbol, old_value, where;
2922 } let;
2923 struct {
2924 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2925 bool_bf debug_on_exit : 1;
2926 Lisp_Object function;
2927 Lisp_Object *args;
2928 ptrdiff_t nargs;
2929 } bt;
2930 };
2931
2932 extern union specbinding *specpdl;
2933 extern union specbinding *specpdl_ptr;
2934 extern ptrdiff_t specpdl_size;
2935
2936 INLINE ptrdiff_t
2937 SPECPDL_INDEX (void)
2938 {
2939 return specpdl_ptr - specpdl;
2940 }
2941
2942 /* This structure helps implement the `catch/throw' and `condition-case/signal'
2943 control structures. A struct handler contains all the information needed to
2944 restore the state of the interpreter after a non-local jump.
2945
2946 handler structures are chained together in a doubly linked list; the `next'
2947 member points to the next outer catchtag and the `nextfree' member points in
2948 the other direction to the next inner element (which is typically the next
2949 free element since we mostly use it on the deepest handler).
2950
2951 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
2952 member is TAG, and then unbinds to it. The `val' member is used to
2953 hold VAL while the stack is unwound; `val' is returned as the value
2954 of the catch form.
2955
2956 All the other members are concerned with restoring the interpreter
2957 state.
2958
2959 Members are volatile if their values need to survive _longjmp when
2960 a 'struct handler' is a local variable. */
2961
2962 enum handlertype { CATCHER, CONDITION_CASE };
2963
2964 struct handler
2965 {
2966 enum handlertype type;
2967 Lisp_Object tag_or_ch;
2968 Lisp_Object val;
2969 struct handler *next;
2970 struct handler *nextfree;
2971
2972 /* The bytecode interpreter can have several handlers active at the same
2973 time, so when we longjmp to one of them, it needs to know which handler
2974 this was and what was the corresponding internal state. This is stored
2975 here, and when we longjmp we make sure that handlerlist points to the
2976 proper handler. */
2977 Lisp_Object *bytecode_top;
2978 int bytecode_dest;
2979
2980 /* Most global vars are reset to their value via the specpdl mechanism,
2981 but a few others are handled by storing their value here. */
2982 #if true /* GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS, but defined later. */
2983 struct gcpro *gcpro;
2984 #endif
2985 sys_jmp_buf jmp;
2986 EMACS_INT lisp_eval_depth;
2987 ptrdiff_t pdlcount;
2988 int poll_suppress_count;
2989 int interrupt_input_blocked;
2990 struct byte_stack *byte_stack;
2991 };
2992
2993 /* Fill in the components of c, and put it on the list. */
2994 #define PUSH_HANDLER(c, tag_ch_val, handlertype) \
2995 if (handlerlist->nextfree) \
2996 (c) = handlerlist->nextfree; \
2997 else \
2998 { \
2999 (c) = xmalloc (sizeof (struct handler)); \
3000 (c)->nextfree = NULL; \
3001 handlerlist->nextfree = (c); \
3002 } \
3003 (c)->type = (handlertype); \
3004 (c)->tag_or_ch = (tag_ch_val); \
3005 (c)->val = Qnil; \
3006 (c)->next = handlerlist; \
3007 (c)->lisp_eval_depth = lisp_eval_depth; \
3008 (c)->pdlcount = SPECPDL_INDEX (); \
3009 (c)->poll_suppress_count = poll_suppress_count; \
3010 (c)->interrupt_input_blocked = interrupt_input_blocked;\
3011 (c)->gcpro = gcprolist; \
3012 (c)->byte_stack = byte_stack_list; \
3013 handlerlist = (c);
3014
3015
3016 extern Lisp_Object memory_signal_data;
3017
3018 /* An address near the bottom of the stack.
3019 Tells GC how to save a copy of the stack. */
3020 extern char *stack_bottom;
3021
3022 /* Check quit-flag and quit if it is non-nil.
3023 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
3024 So the program needs to do QUIT at times when it is safe to quit.
3025 Every loop that might run for a long time or might not exit
3026 ought to do QUIT at least once, at a safe place.
3027 Unless that is impossible, of course.
3028 But it is very desirable to avoid creating loops where QUIT is impossible.
3029
3030 Exception: if you set immediate_quit to true,
3031 then the handler that responds to the C-g does the quit itself.
3032 This is a good thing to do around a loop that has no side effects
3033 and (in particular) cannot call arbitrary Lisp code.
3034
3035 If quit-flag is set to `kill-emacs' the SIGINT handler has received
3036 a request to exit Emacs when it is safe to do. */
3037
3038 extern void process_pending_signals (void);
3039 extern bool volatile pending_signals;
3040
3041 extern void process_quit_flag (void);
3042 #define QUIT \
3043 do { \
3044 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
3045 process_quit_flag (); \
3046 else if (pending_signals) \
3047 process_pending_signals (); \
3048 } while (false)
3049
3050
3051 /* True if ought to quit now. */
3052
3053 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
3054 \f
3055 extern Lisp_Object Vascii_downcase_table;
3056 extern Lisp_Object Vascii_canon_table;
3057 \f
3058 /* Structure for recording stack slots that need marking. */
3059
3060 /* This is a chain of structures, each of which points at a Lisp_Object
3061 variable whose value should be marked in garbage collection.
3062 Normally every link of the chain is an automatic variable of a function,
3063 and its `val' points to some argument or local variable of the function.
3064 On exit to the function, the chain is set back to the value it had on entry.
3065 This way, no link remains in the chain when the stack frame containing the
3066 link disappears.
3067
3068 Every function that can call Feval must protect in this fashion all
3069 Lisp_Object variables whose contents will be used again. */
3070
3071 extern struct gcpro *gcprolist;
3072
3073 struct gcpro
3074 {
3075 struct gcpro *next;
3076
3077 /* Address of first protected variable. */
3078 volatile Lisp_Object *var;
3079
3080 /* Number of consecutive protected variables. */
3081 ptrdiff_t nvars;
3082
3083 #ifdef DEBUG_GCPRO
3084 /* File name where this record is used. */
3085 const char *name;
3086
3087 /* Line number in this file. */
3088 int lineno;
3089
3090 /* Index in the local chain of records. */
3091 int idx;
3092
3093 /* Nesting level. */
3094 int level;
3095 #endif
3096 };
3097
3098 /* Values of GC_MARK_STACK during compilation:
3099
3100 0 Use GCPRO as before
3101 1 Do the real thing, make GCPROs and UNGCPRO no-ops.
3102 2 Mark the stack, and check that everything GCPRO'd is
3103 marked.
3104 3 Mark using GCPRO's, mark stack last, and count how many
3105 dead objects are kept alive.
3106
3107 Formerly, method 0 was used. Currently, method 1 is used unless
3108 otherwise specified by hand when building, e.g.,
3109 "make CPPFLAGS='-DGC_MARK_STACK=GC_USE_GCPROS_AS_BEFORE'".
3110 Methods 2 and 3 are present mainly to debug the transition from 0 to 1. */
3111
3112 #define GC_USE_GCPROS_AS_BEFORE 0
3113 #define GC_MAKE_GCPROS_NOOPS 1
3114 #define GC_MARK_STACK_CHECK_GCPROS 2
3115 #define GC_USE_GCPROS_CHECK_ZOMBIES 3
3116
3117 #ifndef GC_MARK_STACK
3118 #define GC_MARK_STACK GC_MAKE_GCPROS_NOOPS
3119 #endif
3120
3121 /* Whether we do the stack marking manually. */
3122 #define BYTE_MARK_STACK !(GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
3123 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
3124
3125
3126 #if GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS
3127
3128 /* Do something silly with gcproN vars just so gcc shuts up. */
3129 /* You get warnings from MIPSPro... */
3130
3131 #define GCPRO1(varname) ((void) gcpro1)
3132 #define GCPRO2(varname1, varname2) ((void) gcpro2, (void) gcpro1)
3133 #define GCPRO3(varname1, varname2, varname3) \
3134 ((void) gcpro3, (void) gcpro2, (void) gcpro1)
3135 #define GCPRO4(varname1, varname2, varname3, varname4) \
3136 ((void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3137 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3138 ((void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3139 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3140 ((void) gcpro6, (void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, \
3141 (void) gcpro1)
3142 #define GCPRO7(a, b, c, d, e, f, g) (GCPRO6 (a, b, c, d, e, f), (void) gcpro7)
3143 #define UNGCPRO ((void) 0)
3144
3145 #else /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3146
3147 #ifndef DEBUG_GCPRO
3148
3149 #define GCPRO1(a) \
3150 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3151 gcprolist = &gcpro1; }
3152
3153 #define GCPRO2(a, b) \
3154 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3155 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3156 gcprolist = &gcpro2; }
3157
3158 #define GCPRO3(a, b, c) \
3159 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3160 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3161 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3162 gcprolist = &gcpro3; }
3163
3164 #define GCPRO4(a, b, c, d) \
3165 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3166 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3167 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3168 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3169 gcprolist = &gcpro4; }
3170
3171 #define GCPRO5(a, b, c, d, e) \
3172 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3173 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3174 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3175 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3176 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3177 gcprolist = &gcpro5; }
3178
3179 #define GCPRO6(a, b, c, d, e, f) \
3180 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3181 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3182 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3183 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3184 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3185 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3186 gcprolist = &gcpro6; }
3187
3188 #define GCPRO7(a, b, c, d, e, f, g) \
3189 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3190 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3191 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3192 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3193 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3194 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3195 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3196 gcprolist = &gcpro7; }
3197
3198 #define UNGCPRO (gcprolist = gcpro1.next)
3199
3200 #else /* !DEBUG_GCPRO */
3201
3202 extern int gcpro_level;
3203
3204 #define GCPRO1(a) \
3205 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3206 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3207 gcpro1.level = gcpro_level++; \
3208 gcprolist = &gcpro1; }
3209
3210 #define GCPRO2(a, b) \
3211 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3212 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3213 gcpro1.level = gcpro_level; \
3214 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3215 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3216 gcpro2.level = gcpro_level++; \
3217 gcprolist = &gcpro2; }
3218
3219 #define GCPRO3(a, b, c) \
3220 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3221 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3222 gcpro1.level = gcpro_level; \
3223 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3224 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3225 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3226 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3227 gcpro3.level = gcpro_level++; \
3228 gcprolist = &gcpro3; }
3229
3230 #define GCPRO4(a, b, c, d) \
3231 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3232 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3233 gcpro1.level = gcpro_level; \
3234 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3235 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3236 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3237 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3238 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3239 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3240 gcpro4.level = gcpro_level++; \
3241 gcprolist = &gcpro4; }
3242
3243 #define GCPRO5(a, b, c, d, e) \
3244 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3245 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3246 gcpro1.level = gcpro_level; \
3247 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3248 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3249 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3250 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3251 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3252 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3253 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3254 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3255 gcpro5.level = gcpro_level++; \
3256 gcprolist = &gcpro5; }
3257
3258 #define GCPRO6(a, b, c, d, e, f) \
3259 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3260 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3261 gcpro1.level = gcpro_level; \
3262 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3263 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3264 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3265 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3266 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3267 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3268 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3269 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3270 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3271 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3272 gcpro6.level = gcpro_level++; \
3273 gcprolist = &gcpro6; }
3274
3275 #define GCPRO7(a, b, c, d, e, f, g) \
3276 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3277 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3278 gcpro1.level = gcpro_level; \
3279 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3280 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3281 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3282 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3283 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3284 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3285 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3286 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3287 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3288 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3289 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3290 gcpro7.name = __FILE__; gcpro7.lineno = __LINE__; gcpro7.idx = 7; \
3291 gcpro7.level = gcpro_level++; \
3292 gcprolist = &gcpro7; }
3293
3294 #define UNGCPRO \
3295 (--gcpro_level != gcpro1.level \
3296 ? emacs_abort () \
3297 : (void) (gcprolist = gcpro1.next))
3298
3299 #endif /* DEBUG_GCPRO */
3300 #endif /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3301
3302
3303 /* Evaluate expr, UNGCPRO, and then return the value of expr. */
3304 #define RETURN_UNGCPRO(expr) \
3305 do \
3306 { \
3307 Lisp_Object ret_ungc_val; \
3308 ret_ungc_val = (expr); \
3309 UNGCPRO; \
3310 return ret_ungc_val; \
3311 } \
3312 while (false)
3313
3314 /* Call staticpro (&var) to protect static variable `var'. */
3315
3316 void staticpro (Lisp_Object *);
3317 \f
3318 /* Forward declarations for prototypes. */
3319 struct window;
3320 struct frame;
3321
3322 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3323
3324 INLINE void
3325 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3326 {
3327 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3328 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3329 }
3330
3331 /* Functions to modify hash tables. */
3332
3333 INLINE void
3334 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3335 {
3336 gc_aset (h->key_and_value, 2 * idx, val);
3337 }
3338
3339 INLINE void
3340 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3341 {
3342 gc_aset (h->key_and_value, 2 * idx + 1, val);
3343 }
3344
3345 /* Use these functions to set Lisp_Object
3346 or pointer slots of struct Lisp_Symbol. */
3347
3348 INLINE void
3349 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3350 {
3351 XSYMBOL (sym)->function = function;
3352 }
3353
3354 INLINE void
3355 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3356 {
3357 XSYMBOL (sym)->plist = plist;
3358 }
3359
3360 INLINE void
3361 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3362 {
3363 XSYMBOL (sym)->next = next;
3364 }
3365
3366 /* Buffer-local (also frame-local) variable access functions. */
3367
3368 INLINE int
3369 blv_found (struct Lisp_Buffer_Local_Value *blv)
3370 {
3371 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3372 return blv->found;
3373 }
3374
3375 /* Set overlay's property list. */
3376
3377 INLINE void
3378 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3379 {
3380 XOVERLAY (overlay)->plist = plist;
3381 }
3382
3383 /* Get text properties of S. */
3384
3385 INLINE INTERVAL
3386 string_intervals (Lisp_Object s)
3387 {
3388 return XSTRING (s)->intervals;
3389 }
3390
3391 /* Set text properties of S to I. */
3392
3393 INLINE void
3394 set_string_intervals (Lisp_Object s, INTERVAL i)
3395 {
3396 XSTRING (s)->intervals = i;
3397 }
3398
3399 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3400 of setting slots directly. */
3401
3402 INLINE void
3403 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3404 {
3405 XCHAR_TABLE (table)->defalt = val;
3406 }
3407 INLINE void
3408 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3409 {
3410 XCHAR_TABLE (table)->purpose = val;
3411 }
3412
3413 /* Set different slots in (sub)character tables. */
3414
3415 INLINE void
3416 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3417 {
3418 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3419 XCHAR_TABLE (table)->extras[idx] = val;
3420 }
3421
3422 INLINE void
3423 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3424 {
3425 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3426 XCHAR_TABLE (table)->contents[idx] = val;
3427 }
3428
3429 INLINE void
3430 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3431 {
3432 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3433 }
3434
3435 /* Defined in data.c. */
3436 extern Lisp_Object indirect_function (Lisp_Object);
3437 extern Lisp_Object find_symbol_value (Lisp_Object);
3438 enum Arith_Comparison {
3439 ARITH_EQUAL,
3440 ARITH_NOTEQUAL,
3441 ARITH_LESS,
3442 ARITH_GRTR,
3443 ARITH_LESS_OR_EQUAL,
3444 ARITH_GRTR_OR_EQUAL
3445 };
3446 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3447 enum Arith_Comparison comparison);
3448
3449 /* Convert the integer I to an Emacs representation, either the integer
3450 itself, or a cons of two or three integers, or if all else fails a float.
3451 I should not have side effects. */
3452 #define INTEGER_TO_CONS(i) \
3453 (! FIXNUM_OVERFLOW_P (i) \
3454 ? make_number (i) \
3455 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16) \
3456 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16)) \
3457 && FIXNUM_OVERFLOW_P ((i) >> 16)) \
3458 ? Fcons (make_number ((i) >> 16), make_number ((i) & 0xffff)) \
3459 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16 >> 24) \
3460 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16 >> 24)) \
3461 && FIXNUM_OVERFLOW_P ((i) >> 16 >> 24)) \
3462 ? Fcons (make_number ((i) >> 16 >> 24), \
3463 Fcons (make_number ((i) >> 16 & 0xffffff), \
3464 make_number ((i) & 0xffff))) \
3465 : make_float (i))
3466
3467 /* Convert the Emacs representation CONS back to an integer of type
3468 TYPE, storing the result the variable VAR. Signal an error if CONS
3469 is not a valid representation or is out of range for TYPE. */
3470 #define CONS_TO_INTEGER(cons, type, var) \
3471 (TYPE_SIGNED (type) \
3472 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3473 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3474 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3475 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3476
3477 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3478 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3479 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3480 Lisp_Object);
3481 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3482 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3483 extern void syms_of_data (void);
3484 extern void swap_in_global_binding (struct Lisp_Symbol *);
3485
3486 /* Defined in cmds.c */
3487 extern void syms_of_cmds (void);
3488 extern void keys_of_cmds (void);
3489
3490 /* Defined in coding.c. */
3491 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3492 ptrdiff_t, bool, bool, Lisp_Object);
3493 extern void init_coding (void);
3494 extern void init_coding_once (void);
3495 extern void syms_of_coding (void);
3496
3497 /* Defined in character.c. */
3498 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3499 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3500 extern void syms_of_character (void);
3501
3502 /* Defined in charset.c. */
3503 extern void init_charset (void);
3504 extern void init_charset_once (void);
3505 extern void syms_of_charset (void);
3506 /* Structure forward declarations. */
3507 struct charset;
3508
3509 /* Defined in syntax.c. */
3510 extern void init_syntax_once (void);
3511 extern void syms_of_syntax (void);
3512
3513 /* Defined in fns.c. */
3514 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3515 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3516 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3517 extern void sweep_weak_hash_tables (void);
3518 EMACS_UINT hash_string (char const *, ptrdiff_t);
3519 EMACS_UINT sxhash (Lisp_Object, int);
3520 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3521 Lisp_Object, Lisp_Object);
3522 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3523 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3524 EMACS_UINT);
3525 extern struct hash_table_test hashtest_eql, hashtest_equal;
3526 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3527 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3528 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3529 ptrdiff_t, ptrdiff_t);
3530 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3531 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3532 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3533 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3534 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3535 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3536 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3537 extern void clear_string_char_byte_cache (void);
3538 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3539 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3540 extern Lisp_Object string_to_multibyte (Lisp_Object);
3541 extern Lisp_Object string_make_unibyte (Lisp_Object);
3542 extern void syms_of_fns (void);
3543
3544 /* Defined in floatfns.c. */
3545 extern void syms_of_floatfns (void);
3546 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3547
3548 /* Defined in fringe.c. */
3549 extern void syms_of_fringe (void);
3550 extern void init_fringe (void);
3551 #ifdef HAVE_WINDOW_SYSTEM
3552 extern void mark_fringe_data (void);
3553 extern void init_fringe_once (void);
3554 #endif /* HAVE_WINDOW_SYSTEM */
3555
3556 /* Defined in image.c. */
3557 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3558 extern void reset_image_types (void);
3559 extern void syms_of_image (void);
3560
3561 /* Defined in insdel.c. */
3562 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3563 extern _Noreturn void buffer_overflow (void);
3564 extern void make_gap (ptrdiff_t);
3565 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3566 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3567 ptrdiff_t, bool, bool);
3568 extern int count_combining_before (const unsigned char *,
3569 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3570 extern int count_combining_after (const unsigned char *,
3571 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3572 extern void insert (const char *, ptrdiff_t);
3573 extern void insert_and_inherit (const char *, ptrdiff_t);
3574 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3575 bool, bool, bool);
3576 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3577 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3578 ptrdiff_t, ptrdiff_t, bool);
3579 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3580 extern void insert_char (int);
3581 extern void insert_string (const char *);
3582 extern void insert_before_markers (const char *, ptrdiff_t);
3583 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3584 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3585 ptrdiff_t, ptrdiff_t,
3586 ptrdiff_t, bool);
3587 extern void del_range (ptrdiff_t, ptrdiff_t);
3588 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3589 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3590 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3591 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3592 ptrdiff_t, ptrdiff_t, bool);
3593 extern void modify_text (ptrdiff_t, ptrdiff_t);
3594 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3595 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3596 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3597 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3598 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3599 ptrdiff_t, ptrdiff_t);
3600 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3601 ptrdiff_t, ptrdiff_t);
3602 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3603 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3604 const char *, ptrdiff_t, ptrdiff_t, bool);
3605 extern void syms_of_insdel (void);
3606
3607 /* Defined in dispnew.c. */
3608 #if (defined PROFILING \
3609 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3610 _Noreturn void __executable_start (void);
3611 #endif
3612 extern Lisp_Object Vwindow_system;
3613 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3614
3615 /* Defined in xdisp.c. */
3616 extern bool noninteractive_need_newline;
3617 extern Lisp_Object echo_area_buffer[2];
3618 extern void add_to_log (const char *, Lisp_Object, Lisp_Object);
3619 extern void check_message_stack (void);
3620 extern void setup_echo_area_for_printing (int);
3621 extern bool push_message (void);
3622 extern void pop_message_unwind (void);
3623 extern Lisp_Object restore_message_unwind (Lisp_Object);
3624 extern void restore_message (void);
3625 extern Lisp_Object current_message (void);
3626 extern void clear_message (bool, bool);
3627 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3628 extern void message1 (const char *);
3629 extern void message1_nolog (const char *);
3630 extern void message3 (Lisp_Object);
3631 extern void message3_nolog (Lisp_Object);
3632 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3633 extern void message_with_string (const char *, Lisp_Object, int);
3634 extern void message_log_maybe_newline (void);
3635 extern void update_echo_area (void);
3636 extern void truncate_echo_area (ptrdiff_t);
3637 extern void redisplay (void);
3638
3639 void set_frame_cursor_types (struct frame *, Lisp_Object);
3640 extern void syms_of_xdisp (void);
3641 extern void init_xdisp (void);
3642 extern Lisp_Object safe_eval (Lisp_Object);
3643 extern int pos_visible_p (struct window *, ptrdiff_t, int *,
3644 int *, int *, int *, int *, int *);
3645
3646 /* Defined in xsettings.c. */
3647 extern void syms_of_xsettings (void);
3648
3649 /* Defined in vm-limit.c. */
3650 extern void memory_warnings (void *, void (*warnfun) (const char *));
3651
3652 /* Defined in character.c. */
3653 extern void parse_str_as_multibyte (const unsigned char *, ptrdiff_t,
3654 ptrdiff_t *, ptrdiff_t *);
3655
3656 /* Defined in alloc.c. */
3657 extern void check_pure_size (void);
3658 extern void free_misc (Lisp_Object);
3659 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3660 extern void malloc_warning (const char *);
3661 extern _Noreturn void memory_full (size_t);
3662 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3663 extern bool survives_gc_p (Lisp_Object);
3664 extern void mark_object (Lisp_Object);
3665 #if defined REL_ALLOC && !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3666 extern void refill_memory_reserve (void);
3667 #endif
3668 extern const char *pending_malloc_warning;
3669 extern Lisp_Object zero_vector;
3670 extern Lisp_Object *stack_base;
3671 extern EMACS_INT consing_since_gc;
3672 extern EMACS_INT gc_relative_threshold;
3673 extern EMACS_INT memory_full_cons_threshold;
3674 extern Lisp_Object list1 (Lisp_Object);
3675 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3676 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3677 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3678 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3679 Lisp_Object);
3680 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3681 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3682
3683 /* Build a frequently used 2/3/4-integer lists. */
3684
3685 INLINE Lisp_Object
3686 list2i (EMACS_INT x, EMACS_INT y)
3687 {
3688 return list2 (make_number (x), make_number (y));
3689 }
3690
3691 INLINE Lisp_Object
3692 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3693 {
3694 return list3 (make_number (x), make_number (y), make_number (w));
3695 }
3696
3697 INLINE Lisp_Object
3698 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3699 {
3700 return list4 (make_number (x), make_number (y),
3701 make_number (w), make_number (h));
3702 }
3703
3704 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3705 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3706 extern _Noreturn void string_overflow (void);
3707 extern Lisp_Object make_string (const char *, ptrdiff_t);
3708 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3709 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3710 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3711
3712 /* Make unibyte string from C string when the length isn't known. */
3713
3714 INLINE Lisp_Object
3715 build_unibyte_string (const char *str)
3716 {
3717 return make_unibyte_string (str, strlen (str));
3718 }
3719
3720 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3721 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3722 extern Lisp_Object make_uninit_string (EMACS_INT);
3723 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3724 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3725 extern Lisp_Object make_specified_string (const char *,
3726 ptrdiff_t, ptrdiff_t, bool);
3727 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3728 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3729
3730 /* Make a string allocated in pure space, use STR as string data. */
3731
3732 INLINE Lisp_Object
3733 build_pure_c_string (const char *str)
3734 {
3735 return make_pure_c_string (str, strlen (str));
3736 }
3737
3738 /* Make a string from the data at STR, treating it as multibyte if the
3739 data warrants. */
3740
3741 INLINE Lisp_Object
3742 build_string (const char *str)
3743 {
3744 return make_string (str, strlen (str));
3745 }
3746
3747 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3748 extern void make_byte_code (struct Lisp_Vector *);
3749 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3750
3751 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3752 be sure that GC cannot happen until the vector is completely
3753 initialized. E.g. the following code is likely to crash:
3754
3755 v = make_uninit_vector (3);
3756 ASET (v, 0, obj0);
3757 ASET (v, 1, Ffunction_can_gc ());
3758 ASET (v, 2, obj1); */
3759
3760 INLINE Lisp_Object
3761 make_uninit_vector (ptrdiff_t size)
3762 {
3763 Lisp_Object v;
3764 struct Lisp_Vector *p;
3765
3766 p = allocate_vector (size);
3767 XSETVECTOR (v, p);
3768 return v;
3769 }
3770
3771 /* Like above, but special for sub char-tables. */
3772
3773 INLINE Lisp_Object
3774 make_uninit_sub_char_table (int depth, int min_char)
3775 {
3776 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3777 Lisp_Object v = make_uninit_vector (slots);
3778
3779 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3780 XSUB_CHAR_TABLE (v)->depth = depth;
3781 XSUB_CHAR_TABLE (v)->min_char = min_char;
3782 return v;
3783 }
3784
3785 extern struct Lisp_Vector *allocate_pseudovector (int, int, enum pvec_type);
3786 #define ALLOCATE_PSEUDOVECTOR(typ,field,tag) \
3787 ((typ*) \
3788 allocate_pseudovector \
3789 (VECSIZE (typ), PSEUDOVECSIZE (typ, field), tag))
3790 extern struct Lisp_Hash_Table *allocate_hash_table (void);
3791 extern struct window *allocate_window (void);
3792 extern struct frame *allocate_frame (void);
3793 extern struct Lisp_Process *allocate_process (void);
3794 extern struct terminal *allocate_terminal (void);
3795 extern bool gc_in_progress;
3796 extern bool abort_on_gc;
3797 extern Lisp_Object make_float (double);
3798 extern void display_malloc_warning (void);
3799 extern ptrdiff_t inhibit_garbage_collection (void);
3800 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3801 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3802 Lisp_Object, Lisp_Object);
3803 extern Lisp_Object make_save_ptr (void *);
3804 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3805 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3806 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3807 Lisp_Object);
3808 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3809 extern void free_save_value (Lisp_Object);
3810 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3811 extern void free_marker (Lisp_Object);
3812 extern void free_cons (struct Lisp_Cons *);
3813 extern void init_alloc_once (void);
3814 extern void init_alloc (void);
3815 extern void syms_of_alloc (void);
3816 extern struct buffer * allocate_buffer (void);
3817 extern int valid_lisp_object_p (Lisp_Object);
3818 extern int relocatable_string_data_p (const char *);
3819 #ifdef GC_CHECK_CONS_LIST
3820 extern void check_cons_list (void);
3821 #else
3822 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3823 #endif
3824
3825 #ifdef REL_ALLOC
3826 /* Defined in ralloc.c. */
3827 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3828 extern void r_alloc_free (void **);
3829 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3830 extern void r_alloc_reset_variable (void **, void **);
3831 extern void r_alloc_inhibit_buffer_relocation (int);
3832 #endif
3833
3834 /* Defined in chartab.c. */
3835 extern Lisp_Object copy_char_table (Lisp_Object);
3836 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3837 int *, int *);
3838 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3839 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3840 Lisp_Object),
3841 Lisp_Object, Lisp_Object, Lisp_Object);
3842 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3843 Lisp_Object, Lisp_Object,
3844 Lisp_Object, struct charset *,
3845 unsigned, unsigned);
3846 extern Lisp_Object uniprop_table (Lisp_Object);
3847 extern void syms_of_chartab (void);
3848
3849 /* Defined in print.c. */
3850 extern Lisp_Object Vprin1_to_string_buffer;
3851 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3852 extern void temp_output_buffer_setup (const char *);
3853 extern int print_level;
3854 extern void write_string (const char *, int);
3855 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3856 Lisp_Object);
3857 extern Lisp_Object internal_with_output_to_temp_buffer
3858 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3859 #define FLOAT_TO_STRING_BUFSIZE 350
3860 extern int float_to_string (char *, double);
3861 extern void init_print_once (void);
3862 extern void syms_of_print (void);
3863
3864 /* Defined in doprnt.c. */
3865 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3866 va_list);
3867 extern ptrdiff_t esprintf (char *, char const *, ...)
3868 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3869 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3870 char const *, ...)
3871 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3872 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3873 char const *, va_list)
3874 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3875
3876 /* Defined in lread.c. */
3877 extern Lisp_Object check_obarray (Lisp_Object);
3878 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3879 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3880 extern Lisp_Object intern_driver (Lisp_Object, Lisp_Object, Lisp_Object);
3881 extern void init_symbol (Lisp_Object, Lisp_Object);
3882 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3883 INLINE void
3884 LOADHIST_ATTACH (Lisp_Object x)
3885 {
3886 if (initialized)
3887 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3888 }
3889 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3890 Lisp_Object *, Lisp_Object, bool);
3891 extern Lisp_Object string_to_number (char const *, int, bool);
3892 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3893 Lisp_Object);
3894 extern void dir_warning (const char *, Lisp_Object);
3895 extern void init_obarray (void);
3896 extern void init_lread (void);
3897 extern void syms_of_lread (void);
3898
3899 INLINE Lisp_Object
3900 intern (const char *str)
3901 {
3902 return intern_1 (str, strlen (str));
3903 }
3904
3905 INLINE Lisp_Object
3906 intern_c_string (const char *str)
3907 {
3908 return intern_c_string_1 (str, strlen (str));
3909 }
3910
3911 /* Defined in eval.c. */
3912 extern EMACS_INT lisp_eval_depth;
3913 extern Lisp_Object Vautoload_queue;
3914 extern Lisp_Object Vrun_hooks;
3915 extern Lisp_Object Vsignaling_function;
3916 extern Lisp_Object inhibit_lisp_code;
3917 extern struct handler *handlerlist;
3918
3919 /* To run a normal hook, use the appropriate function from the list below.
3920 The calling convention:
3921
3922 if (!NILP (Vrun_hooks))
3923 call1 (Vrun_hooks, Qmy_funny_hook);
3924
3925 should no longer be used. */
3926 extern void run_hook (Lisp_Object);
3927 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3928 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3929 Lisp_Object (*funcall)
3930 (ptrdiff_t nargs, Lisp_Object *args));
3931 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3932 extern _Noreturn void xsignal0 (Lisp_Object);
3933 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3934 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3935 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3936 Lisp_Object);
3937 extern _Noreturn void signal_error (const char *, Lisp_Object);
3938 extern Lisp_Object eval_sub (Lisp_Object form);
3939 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3940 extern Lisp_Object call0 (Lisp_Object);
3941 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3942 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3943 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3944 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3945 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3946 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3947 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3948 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3949 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3950 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3951 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3952 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3953 extern Lisp_Object internal_condition_case_n
3954 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3955 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3956 extern void specbind (Lisp_Object, Lisp_Object);
3957 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3958 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3959 extern void record_unwind_protect_int (void (*) (int), int);
3960 extern void record_unwind_protect_void (void (*) (void));
3961 extern void record_unwind_protect_nothing (void);
3962 extern void clear_unwind_protect (ptrdiff_t);
3963 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3964 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3965 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3966 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3967 extern _Noreturn void verror (const char *, va_list)
3968 ATTRIBUTE_FORMAT_PRINTF (1, 0);
3969 extern void un_autoload (Lisp_Object);
3970 extern Lisp_Object call_debugger (Lisp_Object arg);
3971 extern void init_eval_once (void);
3972 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
3973 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
3974 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3975 extern void init_eval (void);
3976 extern void syms_of_eval (void);
3977 extern void unwind_body (Lisp_Object);
3978 extern ptrdiff_t record_in_backtrace (Lisp_Object, Lisp_Object *, ptrdiff_t);
3979 extern void mark_specpdl (void);
3980 extern void get_backtrace (Lisp_Object array);
3981 Lisp_Object backtrace_top_function (void);
3982 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
3983 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
3984
3985
3986 /* Defined in editfns.c. */
3987 extern void insert1 (Lisp_Object);
3988 extern Lisp_Object format2 (const char *, Lisp_Object, Lisp_Object);
3989 extern Lisp_Object save_excursion_save (void);
3990 extern Lisp_Object save_restriction_save (void);
3991 extern void save_excursion_restore (Lisp_Object);
3992 extern void save_restriction_restore (Lisp_Object);
3993 extern _Noreturn void time_overflow (void);
3994 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
3995 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3996 ptrdiff_t, bool);
3997 extern void init_editfns (void);
3998 extern void syms_of_editfns (void);
3999
4000 /* Defined in buffer.c. */
4001 extern bool mouse_face_overlay_overlaps (Lisp_Object);
4002 extern _Noreturn void nsberror (Lisp_Object);
4003 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
4004 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
4005 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
4006 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
4007 Lisp_Object, Lisp_Object, Lisp_Object);
4008 extern bool overlay_touches_p (ptrdiff_t);
4009 extern Lisp_Object other_buffer_safely (Lisp_Object);
4010 extern Lisp_Object get_truename_buffer (Lisp_Object);
4011 extern void init_buffer_once (void);
4012 extern void init_buffer (int);
4013 extern void syms_of_buffer (void);
4014 extern void keys_of_buffer (void);
4015
4016 /* Defined in marker.c. */
4017
4018 extern ptrdiff_t marker_position (Lisp_Object);
4019 extern ptrdiff_t marker_byte_position (Lisp_Object);
4020 extern void clear_charpos_cache (struct buffer *);
4021 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
4022 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
4023 extern void unchain_marker (struct Lisp_Marker *marker);
4024 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
4025 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
4026 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
4027 ptrdiff_t, ptrdiff_t);
4028 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
4029 extern void syms_of_marker (void);
4030
4031 /* Defined in fileio.c. */
4032
4033 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
4034 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
4035 Lisp_Object, Lisp_Object, Lisp_Object,
4036 Lisp_Object, int);
4037 extern void close_file_unwind (int);
4038 extern void fclose_unwind (void *);
4039 extern void restore_point_unwind (Lisp_Object);
4040 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
4041 extern _Noreturn void report_file_error (const char *, Lisp_Object);
4042 extern bool internal_delete_file (Lisp_Object);
4043 extern Lisp_Object emacs_readlinkat (int, const char *);
4044 extern bool file_directory_p (const char *);
4045 extern bool file_accessible_directory_p (Lisp_Object);
4046 extern void init_fileio (void);
4047 extern void syms_of_fileio (void);
4048 extern Lisp_Object make_temp_name (Lisp_Object, bool);
4049
4050 /* Defined in search.c. */
4051 extern void shrink_regexp_cache (void);
4052 extern void restore_search_regs (void);
4053 extern void record_unwind_save_match_data (void);
4054 struct re_registers;
4055 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
4056 struct re_registers *,
4057 Lisp_Object, bool, bool);
4058 extern ptrdiff_t fast_string_match (Lisp_Object, Lisp_Object);
4059 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4060 ptrdiff_t);
4061 extern ptrdiff_t fast_string_match_ignore_case (Lisp_Object, Lisp_Object);
4062 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4063 ptrdiff_t, ptrdiff_t, Lisp_Object);
4064 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4065 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4066 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4067 ptrdiff_t, bool);
4068 extern ptrdiff_t scan_newline_from_point (ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
4069 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4070 ptrdiff_t, ptrdiff_t *);
4071 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4072 ptrdiff_t, ptrdiff_t *);
4073 extern void syms_of_search (void);
4074 extern void clear_regexp_cache (void);
4075
4076 /* Defined in minibuf.c. */
4077
4078 extern Lisp_Object Vminibuffer_list;
4079 extern Lisp_Object last_minibuf_string;
4080 extern Lisp_Object get_minibuffer (EMACS_INT);
4081 extern void init_minibuf_once (void);
4082 extern void syms_of_minibuf (void);
4083
4084 /* Defined in callint.c. */
4085
4086 extern void syms_of_callint (void);
4087
4088 /* Defined in casefiddle.c. */
4089
4090 extern void syms_of_casefiddle (void);
4091 extern void keys_of_casefiddle (void);
4092
4093 /* Defined in casetab.c. */
4094
4095 extern void init_casetab_once (void);
4096 extern void syms_of_casetab (void);
4097
4098 /* Defined in keyboard.c. */
4099
4100 extern Lisp_Object echo_message_buffer;
4101 extern struct kboard *echo_kboard;
4102 extern void cancel_echoing (void);
4103 extern Lisp_Object last_undo_boundary;
4104 extern bool input_pending;
4105 #ifdef HAVE_STACK_OVERFLOW_HANDLING
4106 extern sigjmp_buf return_to_command_loop;
4107 #endif
4108 extern Lisp_Object menu_bar_items (Lisp_Object);
4109 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4110 extern void discard_mouse_events (void);
4111 #ifdef USABLE_SIGIO
4112 void handle_input_available_signal (int);
4113 #endif
4114 extern Lisp_Object pending_funcalls;
4115 extern bool detect_input_pending (void);
4116 extern bool detect_input_pending_ignore_squeezables (void);
4117 extern bool detect_input_pending_run_timers (bool);
4118 extern void safe_run_hooks (Lisp_Object);
4119 extern void cmd_error_internal (Lisp_Object, const char *);
4120 extern Lisp_Object command_loop_1 (void);
4121 extern Lisp_Object read_menu_command (void);
4122 extern Lisp_Object recursive_edit_1 (void);
4123 extern void record_auto_save (void);
4124 extern void force_auto_save_soon (void);
4125 extern void init_keyboard (void);
4126 extern void syms_of_keyboard (void);
4127 extern void keys_of_keyboard (void);
4128
4129 /* Defined in indent.c. */
4130 extern ptrdiff_t current_column (void);
4131 extern void invalidate_current_column (void);
4132 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4133 extern void syms_of_indent (void);
4134
4135 /* Defined in frame.c. */
4136 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4137 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4138 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4139 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4140 extern void frames_discard_buffer (Lisp_Object);
4141 extern void syms_of_frame (void);
4142
4143 /* Defined in emacs.c. */
4144 extern char **initial_argv;
4145 extern int initial_argc;
4146 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4147 extern bool display_arg;
4148 #endif
4149 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4150 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4151 extern _Noreturn void terminate_due_to_signal (int, int);
4152 #ifdef WINDOWSNT
4153 extern Lisp_Object Vlibrary_cache;
4154 #endif
4155 #if HAVE_SETLOCALE
4156 void fixup_locale (void);
4157 void synchronize_system_messages_locale (void);
4158 void synchronize_system_time_locale (void);
4159 #else
4160 INLINE void fixup_locale (void) {}
4161 INLINE void synchronize_system_messages_locale (void) {}
4162 INLINE void synchronize_system_time_locale (void) {}
4163 #endif
4164 extern void shut_down_emacs (int, Lisp_Object);
4165
4166 /* True means don't do interactive redisplay and don't change tty modes. */
4167 extern bool noninteractive;
4168
4169 /* True means remove site-lisp directories from load-path. */
4170 extern bool no_site_lisp;
4171
4172 /* Pipe used to send exit notification to the daemon parent at
4173 startup. */
4174 extern int daemon_pipe[2];
4175 #define IS_DAEMON (daemon_pipe[1] != 0)
4176
4177 /* True if handling a fatal error already. */
4178 extern bool fatal_error_in_progress;
4179
4180 /* True means don't do use window-system-specific display code. */
4181 extern bool inhibit_window_system;
4182 /* True means that a filter or a sentinel is running. */
4183 extern bool running_asynch_code;
4184
4185 /* Defined in process.c. */
4186 extern void kill_buffer_processes (Lisp_Object);
4187 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4188 struct Lisp_Process *, int);
4189 /* Max value for the first argument of wait_reading_process_output. */
4190 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4191 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4192 The bug merely causes a bogus warning, but the warning is annoying. */
4193 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4194 #else
4195 # define WAIT_READING_MAX INTMAX_MAX
4196 #endif
4197 #ifdef HAVE_TIMERFD
4198 extern void add_timer_wait_descriptor (int);
4199 #endif
4200 extern void add_keyboard_wait_descriptor (int);
4201 extern void delete_keyboard_wait_descriptor (int);
4202 #ifdef HAVE_GPM
4203 extern void add_gpm_wait_descriptor (int);
4204 extern void delete_gpm_wait_descriptor (int);
4205 #endif
4206 extern void init_process_emacs (void);
4207 extern void syms_of_process (void);
4208 extern void setup_process_coding_systems (Lisp_Object);
4209
4210 /* Defined in callproc.c. */
4211 #ifndef DOS_NT
4212 _Noreturn
4213 #endif
4214 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4215 extern void init_callproc_1 (void);
4216 extern void init_callproc (void);
4217 extern void set_initial_environment (void);
4218 extern void syms_of_callproc (void);
4219
4220 /* Defined in doc.c. */
4221 extern Lisp_Object read_doc_string (Lisp_Object);
4222 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4223 extern void syms_of_doc (void);
4224 extern int read_bytecode_char (bool);
4225
4226 /* Defined in bytecode.c. */
4227 extern void syms_of_bytecode (void);
4228 extern struct byte_stack *byte_stack_list;
4229 #if BYTE_MARK_STACK
4230 extern void mark_byte_stack (void);
4231 #endif
4232 extern void unmark_byte_stack (void);
4233 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4234 Lisp_Object, ptrdiff_t, Lisp_Object *);
4235
4236 /* Defined in macros.c. */
4237 extern void init_macros (void);
4238 extern void syms_of_macros (void);
4239
4240 /* Defined in undo.c. */
4241 extern void truncate_undo_list (struct buffer *);
4242 extern void record_insert (ptrdiff_t, ptrdiff_t);
4243 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4244 extern void record_first_change (void);
4245 extern void record_change (ptrdiff_t, ptrdiff_t);
4246 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4247 Lisp_Object, Lisp_Object,
4248 Lisp_Object);
4249 extern void syms_of_undo (void);
4250
4251 /* Defined in textprop.c. */
4252 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4253
4254 /* Defined in menu.c. */
4255 extern void syms_of_menu (void);
4256
4257 /* Defined in xmenu.c. */
4258 extern void syms_of_xmenu (void);
4259
4260 /* Defined in termchar.h. */
4261 struct tty_display_info;
4262
4263 /* Defined in termhooks.h. */
4264 struct terminal;
4265
4266 /* Defined in sysdep.c. */
4267 #ifndef HAVE_GET_CURRENT_DIR_NAME
4268 extern char *get_current_dir_name (void);
4269 #endif
4270 extern void stuff_char (char c);
4271 extern void init_foreground_group (void);
4272 extern void sys_subshell (void);
4273 extern void sys_suspend (void);
4274 extern void discard_tty_input (void);
4275 extern void init_sys_modes (struct tty_display_info *);
4276 extern void reset_sys_modes (struct tty_display_info *);
4277 extern void init_all_sys_modes (void);
4278 extern void reset_all_sys_modes (void);
4279 extern void child_setup_tty (int);
4280 extern void setup_pty (int);
4281 extern int set_window_size (int, int, int);
4282 extern EMACS_INT get_random (void);
4283 extern void seed_random (void *, ptrdiff_t);
4284 extern void init_random (void);
4285 extern void emacs_backtrace (int);
4286 extern _Noreturn void emacs_abort (void) NO_INLINE;
4287 extern int emacs_open (const char *, int, int);
4288 extern int emacs_pipe (int[2]);
4289 extern int emacs_close (int);
4290 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4291 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4292 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4293 extern void emacs_perror (char const *);
4294
4295 extern void unlock_all_files (void);
4296 extern void lock_file (Lisp_Object);
4297 extern void unlock_file (Lisp_Object);
4298 extern void unlock_buffer (struct buffer *);
4299 extern void syms_of_filelock (void);
4300 extern int str_collate (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4301
4302 /* Defined in sound.c. */
4303 extern void syms_of_sound (void);
4304
4305 /* Defined in category.c. */
4306 extern void init_category_once (void);
4307 extern Lisp_Object char_category_set (int);
4308 extern void syms_of_category (void);
4309
4310 /* Defined in ccl.c. */
4311 extern void syms_of_ccl (void);
4312
4313 /* Defined in dired.c. */
4314 extern void syms_of_dired (void);
4315 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4316 Lisp_Object, Lisp_Object,
4317 bool, Lisp_Object);
4318
4319 /* Defined in term.c. */
4320 extern int *char_ins_del_vector;
4321 extern void syms_of_term (void);
4322 extern _Noreturn void fatal (const char *msgid, ...)
4323 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4324
4325 /* Defined in terminal.c. */
4326 extern void syms_of_terminal (void);
4327
4328 /* Defined in font.c. */
4329 extern void syms_of_font (void);
4330 extern void init_font (void);
4331
4332 #ifdef HAVE_WINDOW_SYSTEM
4333 /* Defined in fontset.c. */
4334 extern void syms_of_fontset (void);
4335 #endif
4336
4337 /* Defined in gfilenotify.c */
4338 #ifdef HAVE_GFILENOTIFY
4339 extern void globals_of_gfilenotify (void);
4340 extern void syms_of_gfilenotify (void);
4341 #endif
4342
4343 /* Defined in inotify.c */
4344 #ifdef HAVE_INOTIFY
4345 extern void syms_of_inotify (void);
4346 #endif
4347
4348 #ifdef HAVE_W32NOTIFY
4349 /* Defined on w32notify.c. */
4350 extern void syms_of_w32notify (void);
4351 #endif
4352
4353 /* Defined in xfaces.c. */
4354 extern Lisp_Object Vface_alternative_font_family_alist;
4355 extern Lisp_Object Vface_alternative_font_registry_alist;
4356 extern void syms_of_xfaces (void);
4357
4358 #ifdef HAVE_X_WINDOWS
4359 /* Defined in xfns.c. */
4360 extern void syms_of_xfns (void);
4361
4362 /* Defined in xsmfns.c. */
4363 extern void syms_of_xsmfns (void);
4364
4365 /* Defined in xselect.c. */
4366 extern void syms_of_xselect (void);
4367
4368 /* Defined in xterm.c. */
4369 extern void init_xterm (void);
4370 extern void syms_of_xterm (void);
4371 #endif /* HAVE_X_WINDOWS */
4372
4373 #ifdef HAVE_WINDOW_SYSTEM
4374 /* Defined in xterm.c, nsterm.m, w32term.c. */
4375 extern char *x_get_keysym_name (int);
4376 #endif /* HAVE_WINDOW_SYSTEM */
4377
4378 #ifdef HAVE_LIBXML2
4379 /* Defined in xml.c. */
4380 extern void syms_of_xml (void);
4381 extern void xml_cleanup_parser (void);
4382 #endif
4383
4384 #ifdef HAVE_ZLIB
4385 /* Defined in decompress.c. */
4386 extern void syms_of_decompress (void);
4387 #endif
4388
4389 #ifdef HAVE_DBUS
4390 /* Defined in dbusbind.c. */
4391 void init_dbusbind (void);
4392 void syms_of_dbusbind (void);
4393 #endif
4394
4395
4396 /* Defined in profiler.c. */
4397 extern bool profiler_memory_running;
4398 extern void malloc_probe (size_t);
4399 extern void syms_of_profiler (void);
4400
4401
4402 #ifdef DOS_NT
4403 /* Defined in msdos.c, w32.c. */
4404 extern char *emacs_root_dir (void);
4405 #endif /* DOS_NT */
4406
4407 /* Defined in lastfile.c. */
4408 extern char my_edata[];
4409 extern char my_endbss[];
4410 extern char *my_endbss_static;
4411
4412 /* True means ^G can quit instantly. */
4413 extern bool immediate_quit;
4414
4415 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4416 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4417 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4418 extern void xfree (void *);
4419 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4420 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4421 ATTRIBUTE_ALLOC_SIZE ((2,3));
4422 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4423
4424 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4425 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4426 extern void dupstring (char **, char const *);
4427
4428 /* Make DEST a copy of STRING's data. Return a pointer to DEST's terminating
4429 null byte. This is like stpcpy, except the source is a Lisp string. */
4430
4431 INLINE char *
4432 lispstpcpy (char *dest, Lisp_Object string)
4433 {
4434 ptrdiff_t len = SBYTES (string);
4435 memcpy (dest, SDATA (string), len + 1);
4436 return dest + len;
4437 }
4438
4439 extern void xputenv (const char *);
4440
4441 extern char *egetenv_internal (const char *, ptrdiff_t);
4442
4443 INLINE char *
4444 egetenv (const char *var)
4445 {
4446 /* When VAR is a string literal, strlen can be optimized away. */
4447 return egetenv_internal (var, strlen (var));
4448 }
4449
4450 /* Set up the name of the machine we're running on. */
4451 extern void init_system_name (void);
4452
4453 /* Return the absolute value of X. X should be a signed integer
4454 expression without side effects, and X's absolute value should not
4455 exceed the maximum for its promoted type. This is called 'eabs'
4456 because 'abs' is reserved by the C standard. */
4457 #define eabs(x) ((x) < 0 ? -(x) : (x))
4458
4459 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4460 fixnum. */
4461
4462 #define make_fixnum_or_float(val) \
4463 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4464
4465 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4466 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4467
4468 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4469
4470 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4471
4472 #define USE_SAFE_ALLOCA \
4473 ptrdiff_t sa_avail = MAX_ALLOCA; \
4474 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4475
4476 #define AVAIL_ALLOCA(size) (sa_avail -= (size), alloca (size))
4477
4478 /* SAFE_ALLOCA allocates a simple buffer. */
4479
4480 #define SAFE_ALLOCA(size) ((size) <= sa_avail \
4481 ? AVAIL_ALLOCA (size) \
4482 : (sa_must_free = true, record_xmalloc (size)))
4483
4484 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4485 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4486 positive. The code is tuned for MULTIPLIER being a constant. */
4487
4488 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4489 do { \
4490 if ((nitems) <= sa_avail / sizeof *(buf) / (multiplier)) \
4491 (buf) = AVAIL_ALLOCA (sizeof *(buf) * (multiplier) * (nitems)); \
4492 else \
4493 { \
4494 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4495 sa_must_free = true; \
4496 record_unwind_protect_ptr (xfree, buf); \
4497 } \
4498 } while (false)
4499
4500 /* SAFE_ALLOCA_STRING allocates a C copy of a Lisp string. */
4501
4502 #define SAFE_ALLOCA_STRING(ptr, string) \
4503 do { \
4504 (ptr) = SAFE_ALLOCA (SBYTES (string) + 1); \
4505 memcpy (ptr, SDATA (string), SBYTES (string) + 1); \
4506 } while (false)
4507
4508 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4509
4510 #define SAFE_FREE() \
4511 do { \
4512 if (sa_must_free) { \
4513 sa_must_free = false; \
4514 unbind_to (sa_count, Qnil); \
4515 } \
4516 } while (false)
4517
4518
4519 /* Return floor (NBYTES / WORD_SIZE). */
4520
4521 INLINE ptrdiff_t
4522 lisp_word_count (ptrdiff_t nbytes)
4523 {
4524 if (-1 >> 1 == -1)
4525 switch (word_size)
4526 {
4527 case 2: return nbytes >> 1;
4528 case 4: return nbytes >> 2;
4529 case 8: return nbytes >> 3;
4530 case 16: return nbytes >> 4;
4531 }
4532 return nbytes / word_size - (nbytes % word_size < 0);
4533 }
4534
4535 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4536
4537 #define SAFE_ALLOCA_LISP(buf, nelt) \
4538 do { \
4539 if ((nelt) <= lisp_word_count (sa_avail)) \
4540 (buf) = AVAIL_ALLOCA ((nelt) * word_size); \
4541 else if ((nelt) <= min (PTRDIFF_MAX, SIZE_MAX) / word_size) \
4542 { \
4543 Lisp_Object arg_; \
4544 (buf) = xmalloc ((nelt) * word_size); \
4545 arg_ = make_save_memory (buf, nelt); \
4546 sa_must_free = true; \
4547 record_unwind_protect (free_save_value, arg_); \
4548 } \
4549 else \
4550 memory_full (SIZE_MAX); \
4551 } while (false)
4552
4553
4554 /* If USE_STACK_LISP_OBJECTS, define macros that and functions that allocate
4555 block-scoped conses and strings. These objects are not
4556 managed by the garbage collector, so they are dangerous: passing them
4557 out of their scope (e.g., to user code) results in undefined behavior.
4558 Conversely, they have better performance because GC is not involved.
4559
4560 This feature is experimental and requires careful debugging.
4561 Build with CPPFLAGS='-DUSE_STACK_LISP_OBJECTS=0' to disable it. */
4562
4563 #ifndef USE_STACK_LISP_OBJECTS
4564 # define USE_STACK_LISP_OBJECTS true
4565 #endif
4566
4567 /* USE_STACK_LISP_OBJECTS requires GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS. */
4568
4569 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
4570 # undef USE_STACK_LISP_OBJECTS
4571 # define USE_STACK_LISP_OBJECTS false
4572 #endif
4573
4574 #ifdef GC_CHECK_STRING_BYTES
4575 enum { defined_GC_CHECK_STRING_BYTES = true };
4576 #else
4577 enum { defined_GC_CHECK_STRING_BYTES = false };
4578 #endif
4579
4580 /* Struct inside unions that are typically no larger and aligned enough. */
4581
4582 union Aligned_Cons
4583 {
4584 struct Lisp_Cons s;
4585 double d; intmax_t i; void *p;
4586 };
4587
4588 union Aligned_String
4589 {
4590 struct Lisp_String s;
4591 double d; intmax_t i; void *p;
4592 };
4593
4594 /* True for stack-based cons and string implementations, respectively.
4595 Use stack-based strings only if stack-based cons also works.
4596 Otherwise, STACK_CONS would create heap-based cons cells that
4597 could point to stack-based strings, which is a no-no. */
4598
4599 enum
4600 {
4601 USE_STACK_CONS = (USE_STACK_LISP_OBJECTS
4602 && alignof (union Aligned_Cons) % GCALIGNMENT == 0),
4603 USE_STACK_STRING = (USE_STACK_CONS
4604 && !defined_GC_CHECK_STRING_BYTES
4605 && alignof (union Aligned_String) % GCALIGNMENT == 0)
4606 };
4607
4608 /* Auxiliary macros used for auto allocation of Lisp objects. Please
4609 use these only in macros like AUTO_CONS that declare a local
4610 variable whose lifetime will be clear to the programmer. */
4611 #define STACK_CONS(a, b) \
4612 make_lisp_ptr (&(union Aligned_Cons) { { a, { b } } }.s, Lisp_Cons)
4613 #define AUTO_CONS_EXPR(a, b) \
4614 (USE_STACK_CONS ? STACK_CONS (a, b) : Fcons (a, b))
4615
4616 /* Declare NAME as an auto Lisp cons or short list if possible, a
4617 GC-based one otherwise. This is in the sense of the C keyword
4618 'auto'; i.e., the object has the lifetime of the containing block.
4619 The resulting object should not be made visible to user Lisp code. */
4620
4621 #define AUTO_CONS(name, a, b) Lisp_Object name = AUTO_CONS_EXPR (a, b)
4622 #define AUTO_LIST1(name, a) \
4623 Lisp_Object name = (USE_STACK_CONS ? STACK_CONS (a, Qnil) : list1 (a))
4624 #define AUTO_LIST2(name, a, b) \
4625 Lisp_Object name = (USE_STACK_CONS \
4626 ? STACK_CONS (a, STACK_CONS (b, Qnil)) \
4627 : list2 (a, b))
4628 #define AUTO_LIST3(name, a, b, c) \
4629 Lisp_Object name = (USE_STACK_CONS \
4630 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, Qnil))) \
4631 : list3 (a, b, c))
4632 #define AUTO_LIST4(name, a, b, c, d) \
4633 Lisp_Object name \
4634 = (USE_STACK_CONS \
4635 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, \
4636 STACK_CONS (d, Qnil)))) \
4637 : list4 (a, b, c, d))
4638
4639 /* Check whether stack-allocated strings are ASCII-only. */
4640
4641 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
4642 extern const char *verify_ascii (const char *);
4643 #else
4644 # define verify_ascii(str) (str)
4645 #endif
4646
4647 /* Declare NAME as an auto Lisp string if possible, a GC-based one if not.
4648 Take its value from STR. STR is not necessarily copied and should
4649 contain only ASCII characters. The resulting Lisp string should
4650 not be modified or made visible to user code. */
4651
4652 #define AUTO_STRING(name, str) \
4653 Lisp_Object name = \
4654 (USE_STACK_STRING \
4655 ? (make_lisp_ptr \
4656 ((&(union Aligned_String) \
4657 {{strlen (str), -1, 0, (unsigned char *) verify_ascii (str)}}.s), \
4658 Lisp_String)) \
4659 : build_string (verify_ascii (str)))
4660
4661 /* Loop over all tails of a list, checking for cycles.
4662 FIXME: Make tortoise and n internal declarations.
4663 FIXME: Unroll the loop body so we don't need `n'. */
4664 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4665 for ((tortoise) = (hare) = (list), (n) = true; \
4666 CONSP (hare); \
4667 (hare = XCDR (hare), (n) = !(n), \
4668 ((n) \
4669 ? (EQ (hare, tortoise) \
4670 ? xsignal1 (Qcircular_list, list) \
4671 : (void) 0) \
4672 /* Move tortoise before the next iteration, in case */ \
4673 /* the next iteration does an Fsetcdr. */ \
4674 : (void) ((tortoise) = XCDR (tortoise)))))
4675
4676 /* Do a `for' loop over alist values. */
4677
4678 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4679 for ((list_var) = (head_var); \
4680 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4681 (list_var) = XCDR (list_var))
4682
4683 /* Check whether it's time for GC, and run it if so. */
4684
4685 INLINE void
4686 maybe_gc (void)
4687 {
4688 if ((consing_since_gc > gc_cons_threshold
4689 && consing_since_gc > gc_relative_threshold)
4690 || (!NILP (Vmemory_full)
4691 && consing_since_gc > memory_full_cons_threshold))
4692 Fgarbage_collect ();
4693 }
4694
4695 INLINE bool
4696 functionp (Lisp_Object object)
4697 {
4698 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4699 {
4700 object = Findirect_function (object, Qt);
4701
4702 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4703 {
4704 /* Autoloaded symbols are functions, except if they load
4705 macros or keymaps. */
4706 int i;
4707 for (i = 0; i < 4 && CONSP (object); i++)
4708 object = XCDR (object);
4709
4710 return ! (CONSP (object) && !NILP (XCAR (object)));
4711 }
4712 }
4713
4714 if (SUBRP (object))
4715 return XSUBR (object)->max_args != UNEVALLED;
4716 else if (COMPILEDP (object))
4717 return true;
4718 else if (CONSP (object))
4719 {
4720 Lisp_Object car = XCAR (object);
4721 return EQ (car, Qlambda) || EQ (car, Qclosure);
4722 }
4723 else
4724 return false;
4725 }
4726
4727 INLINE_HEADER_END
4728
4729 #endif /* EMACS_LISP_H */