]> code.delx.au - gnu-emacs/blob - src/fns.c
Merge from emacs-24; up to 2014-06-11T19:33:14Z!rgm@gnu.org
[gnu-emacs] / src / fns.c
1 /* Random utility Lisp functions.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2014 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <unistd.h>
24 #include <time.h>
25
26 #include <intprops.h>
27
28 #include "lisp.h"
29 #include "commands.h"
30 #include "character.h"
31 #include "coding.h"
32 #include "buffer.h"
33 #include "keyboard.h"
34 #include "keymap.h"
35 #include "intervals.h"
36 #include "frame.h"
37 #include "window.h"
38 #include "blockinput.h"
39 #if defined (HAVE_X_WINDOWS)
40 #include "xterm.h"
41 #endif
42
43 Lisp_Object Qstring_lessp;
44 static Lisp_Object Qprovide, Qrequire;
45 static Lisp_Object Qyes_or_no_p_history;
46 Lisp_Object Qcursor_in_echo_area;
47 static Lisp_Object Qwidget_type;
48 static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
49
50 static Lisp_Object Qmd5, Qsha1, Qsha224, Qsha256, Qsha384, Qsha512;
51
52 static bool internal_equal (Lisp_Object, Lisp_Object, int, bool, Lisp_Object);
53
54 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
55 doc: /* Return the argument unchanged. */)
56 (Lisp_Object arg)
57 {
58 return arg;
59 }
60
61 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
62 doc: /* Return a pseudo-random number.
63 All integers representable in Lisp, i.e. between `most-negative-fixnum'
64 and `most-positive-fixnum', inclusive, are equally likely.
65
66 With positive integer LIMIT, return random number in interval [0,LIMIT).
67 With argument t, set the random number seed from the current time and pid.
68 With a string argument, set the seed based on the string's contents.
69 Other values of LIMIT are ignored.
70
71 See Info node `(elisp)Random Numbers' for more details. */)
72 (Lisp_Object limit)
73 {
74 EMACS_INT val;
75
76 if (EQ (limit, Qt))
77 init_random ();
78 else if (STRINGP (limit))
79 seed_random (SSDATA (limit), SBYTES (limit));
80
81 val = get_random ();
82 if (INTEGERP (limit) && 0 < XINT (limit))
83 while (true)
84 {
85 /* Return the remainder, except reject the rare case where
86 get_random returns a number so close to INTMASK that the
87 remainder isn't random. */
88 EMACS_INT remainder = val % XINT (limit);
89 if (val - remainder <= INTMASK - XINT (limit) + 1)
90 return make_number (remainder);
91 val = get_random ();
92 }
93 return make_number (val);
94 }
95 \f
96 /* Heuristic on how many iterations of a tight loop can be safely done
97 before it's time to do a QUIT. This must be a power of 2. */
98 enum { QUIT_COUNT_HEURISTIC = 1 << 16 };
99
100 /* Random data-structure functions. */
101
102 static void
103 CHECK_LIST_END (Lisp_Object x, Lisp_Object y)
104 {
105 CHECK_TYPE (NILP (x), Qlistp, y);
106 }
107
108 DEFUN ("length", Flength, Slength, 1, 1, 0,
109 doc: /* Return the length of vector, list or string SEQUENCE.
110 A byte-code function object is also allowed.
111 If the string contains multibyte characters, this is not necessarily
112 the number of bytes in the string; it is the number of characters.
113 To get the number of bytes, use `string-bytes'. */)
114 (register Lisp_Object sequence)
115 {
116 register Lisp_Object val;
117
118 if (STRINGP (sequence))
119 XSETFASTINT (val, SCHARS (sequence));
120 else if (VECTORP (sequence))
121 XSETFASTINT (val, ASIZE (sequence));
122 else if (CHAR_TABLE_P (sequence))
123 XSETFASTINT (val, MAX_CHAR);
124 else if (BOOL_VECTOR_P (sequence))
125 XSETFASTINT (val, bool_vector_size (sequence));
126 else if (COMPILEDP (sequence))
127 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
128 else if (CONSP (sequence))
129 {
130 EMACS_INT i = 0;
131
132 do
133 {
134 ++i;
135 if ((i & (QUIT_COUNT_HEURISTIC - 1)) == 0)
136 {
137 if (MOST_POSITIVE_FIXNUM < i)
138 error ("List too long");
139 QUIT;
140 }
141 sequence = XCDR (sequence);
142 }
143 while (CONSP (sequence));
144
145 CHECK_LIST_END (sequence, sequence);
146
147 val = make_number (i);
148 }
149 else if (NILP (sequence))
150 XSETFASTINT (val, 0);
151 else
152 wrong_type_argument (Qsequencep, sequence);
153
154 return val;
155 }
156
157 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
158 doc: /* Return the length of a list, but avoid error or infinite loop.
159 This function never gets an error. If LIST is not really a list,
160 it returns 0. If LIST is circular, it returns a finite value
161 which is at least the number of distinct elements. */)
162 (Lisp_Object list)
163 {
164 Lisp_Object tail, halftail;
165 double hilen = 0;
166 uintmax_t lolen = 1;
167
168 if (! CONSP (list))
169 return make_number (0);
170
171 /* halftail is used to detect circular lists. */
172 for (tail = halftail = list; ; )
173 {
174 tail = XCDR (tail);
175 if (! CONSP (tail))
176 break;
177 if (EQ (tail, halftail))
178 break;
179 lolen++;
180 if ((lolen & 1) == 0)
181 {
182 halftail = XCDR (halftail);
183 if ((lolen & (QUIT_COUNT_HEURISTIC - 1)) == 0)
184 {
185 QUIT;
186 if (lolen == 0)
187 hilen += UINTMAX_MAX + 1.0;
188 }
189 }
190 }
191
192 /* If the length does not fit into a fixnum, return a float.
193 On all known practical machines this returns an upper bound on
194 the true length. */
195 return hilen ? make_float (hilen + lolen) : make_fixnum_or_float (lolen);
196 }
197
198 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
199 doc: /* Return the number of bytes in STRING.
200 If STRING is multibyte, this may be greater than the length of STRING. */)
201 (Lisp_Object string)
202 {
203 CHECK_STRING (string);
204 return make_number (SBYTES (string));
205 }
206
207 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
208 doc: /* Return t if two strings have identical contents.
209 Case is significant, but text properties are ignored.
210 Symbols are also allowed; their print names are used instead. */)
211 (register Lisp_Object s1, Lisp_Object s2)
212 {
213 if (SYMBOLP (s1))
214 s1 = SYMBOL_NAME (s1);
215 if (SYMBOLP (s2))
216 s2 = SYMBOL_NAME (s2);
217 CHECK_STRING (s1);
218 CHECK_STRING (s2);
219
220 if (SCHARS (s1) != SCHARS (s2)
221 || SBYTES (s1) != SBYTES (s2)
222 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
223 return Qnil;
224 return Qt;
225 }
226
227 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
228 doc: /* Compare the contents of two strings, converting to multibyte if needed.
229 The arguments START1, END1, START2, and END2, if non-nil, are
230 positions specifying which parts of STR1 or STR2 to compare. In
231 string STR1, compare the part between START1 (inclusive) and END1
232 \(exclusive). If START1 is nil, it defaults to 0, the beginning of
233 the string; if END1 is nil, it defaults to the length of the string.
234 Likewise, in string STR2, compare the part between START2 and END2.
235 Like in `substring', negative values are counted from the end.
236
237 The strings are compared by the numeric values of their characters.
238 For instance, STR1 is "less than" STR2 if its first differing
239 character has a smaller numeric value. If IGNORE-CASE is non-nil,
240 characters are converted to lower-case before comparing them. Unibyte
241 strings are converted to multibyte for comparison.
242
243 The value is t if the strings (or specified portions) match.
244 If string STR1 is less, the value is a negative number N;
245 - 1 - N is the number of characters that match at the beginning.
246 If string STR1 is greater, the value is a positive number N;
247 N - 1 is the number of characters that match at the beginning. */)
248 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2,
249 Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
250 {
251 ptrdiff_t from1, to1, from2, to2, i1, i1_byte, i2, i2_byte;
252
253 CHECK_STRING (str1);
254 CHECK_STRING (str2);
255
256 validate_subarray (str1, start1, end1, SCHARS (str1), &from1, &to1);
257 validate_subarray (str2, start2, end2, SCHARS (str2), &from2, &to2);
258
259 i1 = from1;
260 i2 = from2;
261
262 i1_byte = string_char_to_byte (str1, i1);
263 i2_byte = string_char_to_byte (str2, i2);
264
265 while (i1 < to1 && i2 < to2)
266 {
267 /* When we find a mismatch, we must compare the
268 characters, not just the bytes. */
269 int c1, c2;
270
271 if (STRING_MULTIBYTE (str1))
272 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
273 else
274 {
275 c1 = SREF (str1, i1++);
276 MAKE_CHAR_MULTIBYTE (c1);
277 }
278
279 if (STRING_MULTIBYTE (str2))
280 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
281 else
282 {
283 c2 = SREF (str2, i2++);
284 MAKE_CHAR_MULTIBYTE (c2);
285 }
286
287 if (c1 == c2)
288 continue;
289
290 if (! NILP (ignore_case))
291 {
292 c1 = XINT (Fupcase (make_number (c1)));
293 c2 = XINT (Fupcase (make_number (c2)));
294 }
295
296 if (c1 == c2)
297 continue;
298
299 /* Note that I1 has already been incremented
300 past the character that we are comparing;
301 hence we don't add or subtract 1 here. */
302 if (c1 < c2)
303 return make_number (- i1 + from1);
304 else
305 return make_number (i1 - from1);
306 }
307
308 if (i1 < to1)
309 return make_number (i1 - from1 + 1);
310 if (i2 < to2)
311 return make_number (- i1 + from1 - 1);
312
313 return Qt;
314 }
315
316 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
317 doc: /* Return t if first arg string is less than second in lexicographic order.
318 Case is significant.
319 Symbols are also allowed; their print names are used instead. */)
320 (register Lisp_Object s1, Lisp_Object s2)
321 {
322 register ptrdiff_t end;
323 register ptrdiff_t i1, i1_byte, i2, i2_byte;
324
325 if (SYMBOLP (s1))
326 s1 = SYMBOL_NAME (s1);
327 if (SYMBOLP (s2))
328 s2 = SYMBOL_NAME (s2);
329 CHECK_STRING (s1);
330 CHECK_STRING (s2);
331
332 i1 = i1_byte = i2 = i2_byte = 0;
333
334 end = SCHARS (s1);
335 if (end > SCHARS (s2))
336 end = SCHARS (s2);
337
338 while (i1 < end)
339 {
340 /* When we find a mismatch, we must compare the
341 characters, not just the bytes. */
342 int c1, c2;
343
344 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
345 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
346
347 if (c1 != c2)
348 return c1 < c2 ? Qt : Qnil;
349 }
350 return i1 < SCHARS (s2) ? Qt : Qnil;
351 }
352 \f
353 static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
354 enum Lisp_Type target_type, bool last_special);
355
356 /* ARGSUSED */
357 Lisp_Object
358 concat2 (Lisp_Object s1, Lisp_Object s2)
359 {
360 Lisp_Object args[2];
361 args[0] = s1;
362 args[1] = s2;
363 return concat (2, args, Lisp_String, 0);
364 }
365
366 /* ARGSUSED */
367 Lisp_Object
368 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
369 {
370 Lisp_Object args[3];
371 args[0] = s1;
372 args[1] = s2;
373 args[2] = s3;
374 return concat (3, args, Lisp_String, 0);
375 }
376
377 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
378 doc: /* Concatenate all the arguments and make the result a list.
379 The result is a list whose elements are the elements of all the arguments.
380 Each argument may be a list, vector or string.
381 The last argument is not copied, just used as the tail of the new list.
382 usage: (append &rest SEQUENCES) */)
383 (ptrdiff_t nargs, Lisp_Object *args)
384 {
385 return concat (nargs, args, Lisp_Cons, 1);
386 }
387
388 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
389 doc: /* Concatenate all the arguments and make the result a string.
390 The result is a string whose elements are the elements of all the arguments.
391 Each argument may be a string or a list or vector of characters (integers).
392 usage: (concat &rest SEQUENCES) */)
393 (ptrdiff_t nargs, Lisp_Object *args)
394 {
395 return concat (nargs, args, Lisp_String, 0);
396 }
397
398 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
399 doc: /* Concatenate all the arguments and make the result a vector.
400 The result is a vector whose elements are the elements of all the arguments.
401 Each argument may be a list, vector or string.
402 usage: (vconcat &rest SEQUENCES) */)
403 (ptrdiff_t nargs, Lisp_Object *args)
404 {
405 return concat (nargs, args, Lisp_Vectorlike, 0);
406 }
407
408
409 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
410 doc: /* Return a copy of a list, vector, string or char-table.
411 The elements of a list or vector are not copied; they are shared
412 with the original. */)
413 (Lisp_Object arg)
414 {
415 if (NILP (arg)) return arg;
416
417 if (CHAR_TABLE_P (arg))
418 {
419 return copy_char_table (arg);
420 }
421
422 if (BOOL_VECTOR_P (arg))
423 {
424 EMACS_INT nbits = bool_vector_size (arg);
425 ptrdiff_t nbytes = bool_vector_bytes (nbits);
426 Lisp_Object val = make_uninit_bool_vector (nbits);
427 memcpy (bool_vector_data (val), bool_vector_data (arg), nbytes);
428 return val;
429 }
430
431 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
432 wrong_type_argument (Qsequencep, arg);
433
434 return concat (1, &arg, XTYPE (arg), 0);
435 }
436
437 /* This structure holds information of an argument of `concat' that is
438 a string and has text properties to be copied. */
439 struct textprop_rec
440 {
441 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
442 ptrdiff_t from; /* refer to ARGS[argnum] (argument string) */
443 ptrdiff_t to; /* refer to VAL (the target string) */
444 };
445
446 static Lisp_Object
447 concat (ptrdiff_t nargs, Lisp_Object *args,
448 enum Lisp_Type target_type, bool last_special)
449 {
450 Lisp_Object val;
451 Lisp_Object tail;
452 Lisp_Object this;
453 ptrdiff_t toindex;
454 ptrdiff_t toindex_byte = 0;
455 EMACS_INT result_len;
456 EMACS_INT result_len_byte;
457 ptrdiff_t argnum;
458 Lisp_Object last_tail;
459 Lisp_Object prev;
460 bool some_multibyte;
461 /* When we make a multibyte string, we can't copy text properties
462 while concatenating each string because the length of resulting
463 string can't be decided until we finish the whole concatenation.
464 So, we record strings that have text properties to be copied
465 here, and copy the text properties after the concatenation. */
466 struct textprop_rec *textprops = NULL;
467 /* Number of elements in textprops. */
468 ptrdiff_t num_textprops = 0;
469 USE_SAFE_ALLOCA;
470
471 tail = Qnil;
472
473 /* In append, the last arg isn't treated like the others */
474 if (last_special && nargs > 0)
475 {
476 nargs--;
477 last_tail = args[nargs];
478 }
479 else
480 last_tail = Qnil;
481
482 /* Check each argument. */
483 for (argnum = 0; argnum < nargs; argnum++)
484 {
485 this = args[argnum];
486 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
487 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
488 wrong_type_argument (Qsequencep, this);
489 }
490
491 /* Compute total length in chars of arguments in RESULT_LEN.
492 If desired output is a string, also compute length in bytes
493 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
494 whether the result should be a multibyte string. */
495 result_len_byte = 0;
496 result_len = 0;
497 some_multibyte = 0;
498 for (argnum = 0; argnum < nargs; argnum++)
499 {
500 EMACS_INT len;
501 this = args[argnum];
502 len = XFASTINT (Flength (this));
503 if (target_type == Lisp_String)
504 {
505 /* We must count the number of bytes needed in the string
506 as well as the number of characters. */
507 ptrdiff_t i;
508 Lisp_Object ch;
509 int c;
510 ptrdiff_t this_len_byte;
511
512 if (VECTORP (this) || COMPILEDP (this))
513 for (i = 0; i < len; i++)
514 {
515 ch = AREF (this, i);
516 CHECK_CHARACTER (ch);
517 c = XFASTINT (ch);
518 this_len_byte = CHAR_BYTES (c);
519 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
520 string_overflow ();
521 result_len_byte += this_len_byte;
522 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
523 some_multibyte = 1;
524 }
525 else if (BOOL_VECTOR_P (this) && bool_vector_size (this) > 0)
526 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
527 else if (CONSP (this))
528 for (; CONSP (this); this = XCDR (this))
529 {
530 ch = XCAR (this);
531 CHECK_CHARACTER (ch);
532 c = XFASTINT (ch);
533 this_len_byte = CHAR_BYTES (c);
534 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
535 string_overflow ();
536 result_len_byte += this_len_byte;
537 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
538 some_multibyte = 1;
539 }
540 else if (STRINGP (this))
541 {
542 if (STRING_MULTIBYTE (this))
543 {
544 some_multibyte = 1;
545 this_len_byte = SBYTES (this);
546 }
547 else
548 this_len_byte = count_size_as_multibyte (SDATA (this),
549 SCHARS (this));
550 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
551 string_overflow ();
552 result_len_byte += this_len_byte;
553 }
554 }
555
556 result_len += len;
557 if (MOST_POSITIVE_FIXNUM < result_len)
558 memory_full (SIZE_MAX);
559 }
560
561 if (! some_multibyte)
562 result_len_byte = result_len;
563
564 /* Create the output object. */
565 if (target_type == Lisp_Cons)
566 val = Fmake_list (make_number (result_len), Qnil);
567 else if (target_type == Lisp_Vectorlike)
568 val = Fmake_vector (make_number (result_len), Qnil);
569 else if (some_multibyte)
570 val = make_uninit_multibyte_string (result_len, result_len_byte);
571 else
572 val = make_uninit_string (result_len);
573
574 /* In `append', if all but last arg are nil, return last arg. */
575 if (target_type == Lisp_Cons && EQ (val, Qnil))
576 return last_tail;
577
578 /* Copy the contents of the args into the result. */
579 if (CONSP (val))
580 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
581 else
582 toindex = 0, toindex_byte = 0;
583
584 prev = Qnil;
585 if (STRINGP (val))
586 SAFE_NALLOCA (textprops, 1, nargs);
587
588 for (argnum = 0; argnum < nargs; argnum++)
589 {
590 Lisp_Object thislen;
591 ptrdiff_t thisleni = 0;
592 register ptrdiff_t thisindex = 0;
593 register ptrdiff_t thisindex_byte = 0;
594
595 this = args[argnum];
596 if (!CONSP (this))
597 thislen = Flength (this), thisleni = XINT (thislen);
598
599 /* Between strings of the same kind, copy fast. */
600 if (STRINGP (this) && STRINGP (val)
601 && STRING_MULTIBYTE (this) == some_multibyte)
602 {
603 ptrdiff_t thislen_byte = SBYTES (this);
604
605 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
606 if (string_intervals (this))
607 {
608 textprops[num_textprops].argnum = argnum;
609 textprops[num_textprops].from = 0;
610 textprops[num_textprops++].to = toindex;
611 }
612 toindex_byte += thislen_byte;
613 toindex += thisleni;
614 }
615 /* Copy a single-byte string to a multibyte string. */
616 else if (STRINGP (this) && STRINGP (val))
617 {
618 if (string_intervals (this))
619 {
620 textprops[num_textprops].argnum = argnum;
621 textprops[num_textprops].from = 0;
622 textprops[num_textprops++].to = toindex;
623 }
624 toindex_byte += copy_text (SDATA (this),
625 SDATA (val) + toindex_byte,
626 SCHARS (this), 0, 1);
627 toindex += thisleni;
628 }
629 else
630 /* Copy element by element. */
631 while (1)
632 {
633 register Lisp_Object elt;
634
635 /* Fetch next element of `this' arg into `elt', or break if
636 `this' is exhausted. */
637 if (NILP (this)) break;
638 if (CONSP (this))
639 elt = XCAR (this), this = XCDR (this);
640 else if (thisindex >= thisleni)
641 break;
642 else if (STRINGP (this))
643 {
644 int c;
645 if (STRING_MULTIBYTE (this))
646 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
647 thisindex,
648 thisindex_byte);
649 else
650 {
651 c = SREF (this, thisindex); thisindex++;
652 if (some_multibyte && !ASCII_CHAR_P (c))
653 c = BYTE8_TO_CHAR (c);
654 }
655 XSETFASTINT (elt, c);
656 }
657 else if (BOOL_VECTOR_P (this))
658 {
659 elt = bool_vector_ref (this, thisindex);
660 thisindex++;
661 }
662 else
663 {
664 elt = AREF (this, thisindex);
665 thisindex++;
666 }
667
668 /* Store this element into the result. */
669 if (toindex < 0)
670 {
671 XSETCAR (tail, elt);
672 prev = tail;
673 tail = XCDR (tail);
674 }
675 else if (VECTORP (val))
676 {
677 ASET (val, toindex, elt);
678 toindex++;
679 }
680 else
681 {
682 int c;
683 CHECK_CHARACTER (elt);
684 c = XFASTINT (elt);
685 if (some_multibyte)
686 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
687 else
688 SSET (val, toindex_byte++, c);
689 toindex++;
690 }
691 }
692 }
693 if (!NILP (prev))
694 XSETCDR (prev, last_tail);
695
696 if (num_textprops > 0)
697 {
698 Lisp_Object props;
699 ptrdiff_t last_to_end = -1;
700
701 for (argnum = 0; argnum < num_textprops; argnum++)
702 {
703 this = args[textprops[argnum].argnum];
704 props = text_property_list (this,
705 make_number (0),
706 make_number (SCHARS (this)),
707 Qnil);
708 /* If successive arguments have properties, be sure that the
709 value of `composition' property be the copy. */
710 if (last_to_end == textprops[argnum].to)
711 make_composition_value_copy (props);
712 add_text_properties_from_list (val, props,
713 make_number (textprops[argnum].to));
714 last_to_end = textprops[argnum].to + SCHARS (this);
715 }
716 }
717
718 SAFE_FREE ();
719 return val;
720 }
721 \f
722 static Lisp_Object string_char_byte_cache_string;
723 static ptrdiff_t string_char_byte_cache_charpos;
724 static ptrdiff_t string_char_byte_cache_bytepos;
725
726 void
727 clear_string_char_byte_cache (void)
728 {
729 string_char_byte_cache_string = Qnil;
730 }
731
732 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
733
734 ptrdiff_t
735 string_char_to_byte (Lisp_Object string, ptrdiff_t char_index)
736 {
737 ptrdiff_t i_byte;
738 ptrdiff_t best_below, best_below_byte;
739 ptrdiff_t best_above, best_above_byte;
740
741 best_below = best_below_byte = 0;
742 best_above = SCHARS (string);
743 best_above_byte = SBYTES (string);
744 if (best_above == best_above_byte)
745 return char_index;
746
747 if (EQ (string, string_char_byte_cache_string))
748 {
749 if (string_char_byte_cache_charpos < char_index)
750 {
751 best_below = string_char_byte_cache_charpos;
752 best_below_byte = string_char_byte_cache_bytepos;
753 }
754 else
755 {
756 best_above = string_char_byte_cache_charpos;
757 best_above_byte = string_char_byte_cache_bytepos;
758 }
759 }
760
761 if (char_index - best_below < best_above - char_index)
762 {
763 unsigned char *p = SDATA (string) + best_below_byte;
764
765 while (best_below < char_index)
766 {
767 p += BYTES_BY_CHAR_HEAD (*p);
768 best_below++;
769 }
770 i_byte = p - SDATA (string);
771 }
772 else
773 {
774 unsigned char *p = SDATA (string) + best_above_byte;
775
776 while (best_above > char_index)
777 {
778 p--;
779 while (!CHAR_HEAD_P (*p)) p--;
780 best_above--;
781 }
782 i_byte = p - SDATA (string);
783 }
784
785 string_char_byte_cache_bytepos = i_byte;
786 string_char_byte_cache_charpos = char_index;
787 string_char_byte_cache_string = string;
788
789 return i_byte;
790 }
791 \f
792 /* Return the character index corresponding to BYTE_INDEX in STRING. */
793
794 ptrdiff_t
795 string_byte_to_char (Lisp_Object string, ptrdiff_t byte_index)
796 {
797 ptrdiff_t i, i_byte;
798 ptrdiff_t best_below, best_below_byte;
799 ptrdiff_t best_above, best_above_byte;
800
801 best_below = best_below_byte = 0;
802 best_above = SCHARS (string);
803 best_above_byte = SBYTES (string);
804 if (best_above == best_above_byte)
805 return byte_index;
806
807 if (EQ (string, string_char_byte_cache_string))
808 {
809 if (string_char_byte_cache_bytepos < byte_index)
810 {
811 best_below = string_char_byte_cache_charpos;
812 best_below_byte = string_char_byte_cache_bytepos;
813 }
814 else
815 {
816 best_above = string_char_byte_cache_charpos;
817 best_above_byte = string_char_byte_cache_bytepos;
818 }
819 }
820
821 if (byte_index - best_below_byte < best_above_byte - byte_index)
822 {
823 unsigned char *p = SDATA (string) + best_below_byte;
824 unsigned char *pend = SDATA (string) + byte_index;
825
826 while (p < pend)
827 {
828 p += BYTES_BY_CHAR_HEAD (*p);
829 best_below++;
830 }
831 i = best_below;
832 i_byte = p - SDATA (string);
833 }
834 else
835 {
836 unsigned char *p = SDATA (string) + best_above_byte;
837 unsigned char *pbeg = SDATA (string) + byte_index;
838
839 while (p > pbeg)
840 {
841 p--;
842 while (!CHAR_HEAD_P (*p)) p--;
843 best_above--;
844 }
845 i = best_above;
846 i_byte = p - SDATA (string);
847 }
848
849 string_char_byte_cache_bytepos = i_byte;
850 string_char_byte_cache_charpos = i;
851 string_char_byte_cache_string = string;
852
853 return i;
854 }
855 \f
856 /* Convert STRING to a multibyte string. */
857
858 static Lisp_Object
859 string_make_multibyte (Lisp_Object string)
860 {
861 unsigned char *buf;
862 ptrdiff_t nbytes;
863 Lisp_Object ret;
864 USE_SAFE_ALLOCA;
865
866 if (STRING_MULTIBYTE (string))
867 return string;
868
869 nbytes = count_size_as_multibyte (SDATA (string),
870 SCHARS (string));
871 /* If all the chars are ASCII, they won't need any more bytes
872 once converted. In that case, we can return STRING itself. */
873 if (nbytes == SBYTES (string))
874 return string;
875
876 buf = SAFE_ALLOCA (nbytes);
877 copy_text (SDATA (string), buf, SBYTES (string),
878 0, 1);
879
880 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
881 SAFE_FREE ();
882
883 return ret;
884 }
885
886
887 /* Convert STRING (if unibyte) to a multibyte string without changing
888 the number of characters. Characters 0200 trough 0237 are
889 converted to eight-bit characters. */
890
891 Lisp_Object
892 string_to_multibyte (Lisp_Object string)
893 {
894 unsigned char *buf;
895 ptrdiff_t nbytes;
896 Lisp_Object ret;
897 USE_SAFE_ALLOCA;
898
899 if (STRING_MULTIBYTE (string))
900 return string;
901
902 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
903 /* If all the chars are ASCII, they won't need any more bytes once
904 converted. */
905 if (nbytes == SBYTES (string))
906 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
907
908 buf = SAFE_ALLOCA (nbytes);
909 memcpy (buf, SDATA (string), SBYTES (string));
910 str_to_multibyte (buf, nbytes, SBYTES (string));
911
912 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
913 SAFE_FREE ();
914
915 return ret;
916 }
917
918
919 /* Convert STRING to a single-byte string. */
920
921 Lisp_Object
922 string_make_unibyte (Lisp_Object string)
923 {
924 ptrdiff_t nchars;
925 unsigned char *buf;
926 Lisp_Object ret;
927 USE_SAFE_ALLOCA;
928
929 if (! STRING_MULTIBYTE (string))
930 return string;
931
932 nchars = SCHARS (string);
933
934 buf = SAFE_ALLOCA (nchars);
935 copy_text (SDATA (string), buf, SBYTES (string),
936 1, 0);
937
938 ret = make_unibyte_string ((char *) buf, nchars);
939 SAFE_FREE ();
940
941 return ret;
942 }
943
944 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
945 1, 1, 0,
946 doc: /* Return the multibyte equivalent of STRING.
947 If STRING is unibyte and contains non-ASCII characters, the function
948 `unibyte-char-to-multibyte' is used to convert each unibyte character
949 to a multibyte character. In this case, the returned string is a
950 newly created string with no text properties. If STRING is multibyte
951 or entirely ASCII, it is returned unchanged. In particular, when
952 STRING is unibyte and entirely ASCII, the returned string is unibyte.
953 \(When the characters are all ASCII, Emacs primitives will treat the
954 string the same way whether it is unibyte or multibyte.) */)
955 (Lisp_Object string)
956 {
957 CHECK_STRING (string);
958
959 return string_make_multibyte (string);
960 }
961
962 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
963 1, 1, 0,
964 doc: /* Return the unibyte equivalent of STRING.
965 Multibyte character codes are converted to unibyte according to
966 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
967 If the lookup in the translation table fails, this function takes just
968 the low 8 bits of each character. */)
969 (Lisp_Object string)
970 {
971 CHECK_STRING (string);
972
973 return string_make_unibyte (string);
974 }
975
976 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
977 1, 1, 0,
978 doc: /* Return a unibyte string with the same individual bytes as STRING.
979 If STRING is unibyte, the result is STRING itself.
980 Otherwise it is a newly created string, with no text properties.
981 If STRING is multibyte and contains a character of charset
982 `eight-bit', it is converted to the corresponding single byte. */)
983 (Lisp_Object string)
984 {
985 CHECK_STRING (string);
986
987 if (STRING_MULTIBYTE (string))
988 {
989 unsigned char *str = (unsigned char *) xlispstrdup (string);
990 ptrdiff_t bytes = str_as_unibyte (str, SBYTES (string));
991
992 string = make_unibyte_string ((char *) str, bytes);
993 xfree (str);
994 }
995 return string;
996 }
997
998 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
999 1, 1, 0,
1000 doc: /* Return a multibyte string with the same individual bytes as STRING.
1001 If STRING is multibyte, the result is STRING itself.
1002 Otherwise it is a newly created string, with no text properties.
1003
1004 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1005 part of a correct utf-8 sequence), it is converted to the corresponding
1006 multibyte character of charset `eight-bit'.
1007 See also `string-to-multibyte'.
1008
1009 Beware, this often doesn't really do what you think it does.
1010 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1011 If you're not sure, whether to use `string-as-multibyte' or
1012 `string-to-multibyte', use `string-to-multibyte'. */)
1013 (Lisp_Object string)
1014 {
1015 CHECK_STRING (string);
1016
1017 if (! STRING_MULTIBYTE (string))
1018 {
1019 Lisp_Object new_string;
1020 ptrdiff_t nchars, nbytes;
1021
1022 parse_str_as_multibyte (SDATA (string),
1023 SBYTES (string),
1024 &nchars, &nbytes);
1025 new_string = make_uninit_multibyte_string (nchars, nbytes);
1026 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1027 if (nbytes != SBYTES (string))
1028 str_as_multibyte (SDATA (new_string), nbytes,
1029 SBYTES (string), NULL);
1030 string = new_string;
1031 set_string_intervals (string, NULL);
1032 }
1033 return string;
1034 }
1035
1036 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1037 1, 1, 0,
1038 doc: /* Return a multibyte string with the same individual chars as STRING.
1039 If STRING is multibyte, the result is STRING itself.
1040 Otherwise it is a newly created string, with no text properties.
1041
1042 If STRING is unibyte and contains an 8-bit byte, it is converted to
1043 the corresponding multibyte character of charset `eight-bit'.
1044
1045 This differs from `string-as-multibyte' by converting each byte of a correct
1046 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1047 correct sequence. */)
1048 (Lisp_Object string)
1049 {
1050 CHECK_STRING (string);
1051
1052 return string_to_multibyte (string);
1053 }
1054
1055 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1056 1, 1, 0,
1057 doc: /* Return a unibyte string with the same individual chars as STRING.
1058 If STRING is unibyte, the result is STRING itself.
1059 Otherwise it is a newly created string, with no text properties,
1060 where each `eight-bit' character is converted to the corresponding byte.
1061 If STRING contains a non-ASCII, non-`eight-bit' character,
1062 an error is signaled. */)
1063 (Lisp_Object string)
1064 {
1065 CHECK_STRING (string);
1066
1067 if (STRING_MULTIBYTE (string))
1068 {
1069 ptrdiff_t chars = SCHARS (string);
1070 unsigned char *str = xmalloc (chars);
1071 ptrdiff_t converted = str_to_unibyte (SDATA (string), str, chars);
1072
1073 if (converted < chars)
1074 error ("Can't convert the %"pD"dth character to unibyte", converted);
1075 string = make_unibyte_string ((char *) str, chars);
1076 xfree (str);
1077 }
1078 return string;
1079 }
1080
1081 \f
1082 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1083 doc: /* Return a copy of ALIST.
1084 This is an alist which represents the same mapping from objects to objects,
1085 but does not share the alist structure with ALIST.
1086 The objects mapped (cars and cdrs of elements of the alist)
1087 are shared, however.
1088 Elements of ALIST that are not conses are also shared. */)
1089 (Lisp_Object alist)
1090 {
1091 register Lisp_Object tem;
1092
1093 CHECK_LIST (alist);
1094 if (NILP (alist))
1095 return alist;
1096 alist = concat (1, &alist, Lisp_Cons, 0);
1097 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1098 {
1099 register Lisp_Object car;
1100 car = XCAR (tem);
1101
1102 if (CONSP (car))
1103 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1104 }
1105 return alist;
1106 }
1107
1108 /* Check that ARRAY can have a valid subarray [FROM..TO),
1109 given that its size is SIZE.
1110 If FROM is nil, use 0; if TO is nil, use SIZE.
1111 Count negative values backwards from the end.
1112 Set *IFROM and *ITO to the two indexes used. */
1113
1114 void
1115 validate_subarray (Lisp_Object array, Lisp_Object from, Lisp_Object to,
1116 ptrdiff_t size, ptrdiff_t *ifrom, ptrdiff_t *ito)
1117 {
1118 EMACS_INT f, t;
1119
1120 if (INTEGERP (from))
1121 {
1122 f = XINT (from);
1123 if (f < 0)
1124 f += size;
1125 }
1126 else if (NILP (from))
1127 f = 0;
1128 else
1129 wrong_type_argument (Qintegerp, from);
1130
1131 if (INTEGERP (to))
1132 {
1133 t = XINT (to);
1134 if (t < 0)
1135 t += size;
1136 }
1137 else if (NILP (to))
1138 t = size;
1139 else
1140 wrong_type_argument (Qintegerp, to);
1141
1142 if (! (0 <= f && f <= t && t <= size))
1143 args_out_of_range_3 (array, from, to);
1144
1145 *ifrom = f;
1146 *ito = t;
1147 }
1148
1149 DEFUN ("substring", Fsubstring, Ssubstring, 1, 3, 0,
1150 doc: /* Return a new string whose contents are a substring of STRING.
1151 The returned string consists of the characters between index FROM
1152 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1153 zero-indexed: 0 means the first character of STRING. Negative values
1154 are counted from the end of STRING. If TO is nil, the substring runs
1155 to the end of STRING.
1156
1157 The STRING argument may also be a vector. In that case, the return
1158 value is a new vector that contains the elements between index FROM
1159 \(inclusive) and index TO (exclusive) of that vector argument.
1160
1161 With one argument, just copy STRING (with properties, if any). */)
1162 (Lisp_Object string, Lisp_Object from, Lisp_Object to)
1163 {
1164 Lisp_Object res;
1165 ptrdiff_t size, ifrom, ito;
1166
1167 if (STRINGP (string))
1168 size = SCHARS (string);
1169 else if (VECTORP (string))
1170 size = ASIZE (string);
1171 else
1172 wrong_type_argument (Qarrayp, string);
1173
1174 validate_subarray (string, from, to, size, &ifrom, &ito);
1175
1176 if (STRINGP (string))
1177 {
1178 ptrdiff_t from_byte
1179 = !ifrom ? 0 : string_char_to_byte (string, ifrom);
1180 ptrdiff_t to_byte
1181 = ito == size ? SBYTES (string) : string_char_to_byte (string, ito);
1182 res = make_specified_string (SSDATA (string) + from_byte,
1183 ito - ifrom, to_byte - from_byte,
1184 STRING_MULTIBYTE (string));
1185 copy_text_properties (make_number (ifrom), make_number (ito),
1186 string, make_number (0), res, Qnil);
1187 }
1188 else
1189 res = Fvector (ito - ifrom, aref_addr (string, ifrom));
1190
1191 return res;
1192 }
1193
1194
1195 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1196 doc: /* Return a substring of STRING, without text properties.
1197 It starts at index FROM and ends before TO.
1198 TO may be nil or omitted; then the substring runs to the end of STRING.
1199 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1200 If FROM or TO is negative, it counts from the end.
1201
1202 With one argument, just copy STRING without its properties. */)
1203 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1204 {
1205 ptrdiff_t from_char, to_char, from_byte, to_byte, size;
1206
1207 CHECK_STRING (string);
1208
1209 size = SCHARS (string);
1210 validate_subarray (string, from, to, size, &from_char, &to_char);
1211
1212 from_byte = !from_char ? 0 : string_char_to_byte (string, from_char);
1213 to_byte =
1214 to_char == size ? SBYTES (string) : string_char_to_byte (string, to_char);
1215 return make_specified_string (SSDATA (string) + from_byte,
1216 to_char - from_char, to_byte - from_byte,
1217 STRING_MULTIBYTE (string));
1218 }
1219
1220 /* Extract a substring of STRING, giving start and end positions
1221 both in characters and in bytes. */
1222
1223 Lisp_Object
1224 substring_both (Lisp_Object string, ptrdiff_t from, ptrdiff_t from_byte,
1225 ptrdiff_t to, ptrdiff_t to_byte)
1226 {
1227 Lisp_Object res;
1228 ptrdiff_t size;
1229
1230 CHECK_VECTOR_OR_STRING (string);
1231
1232 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1233
1234 if (!(0 <= from && from <= to && to <= size))
1235 args_out_of_range_3 (string, make_number (from), make_number (to));
1236
1237 if (STRINGP (string))
1238 {
1239 res = make_specified_string (SSDATA (string) + from_byte,
1240 to - from, to_byte - from_byte,
1241 STRING_MULTIBYTE (string));
1242 copy_text_properties (make_number (from), make_number (to),
1243 string, make_number (0), res, Qnil);
1244 }
1245 else
1246 res = Fvector (to - from, aref_addr (string, from));
1247
1248 return res;
1249 }
1250 \f
1251 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1252 doc: /* Take cdr N times on LIST, return the result. */)
1253 (Lisp_Object n, Lisp_Object list)
1254 {
1255 EMACS_INT i, num;
1256 CHECK_NUMBER (n);
1257 num = XINT (n);
1258 for (i = 0; i < num && !NILP (list); i++)
1259 {
1260 QUIT;
1261 CHECK_LIST_CONS (list, list);
1262 list = XCDR (list);
1263 }
1264 return list;
1265 }
1266
1267 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1268 doc: /* Return the Nth element of LIST.
1269 N counts from zero. If LIST is not that long, nil is returned. */)
1270 (Lisp_Object n, Lisp_Object list)
1271 {
1272 return Fcar (Fnthcdr (n, list));
1273 }
1274
1275 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1276 doc: /* Return element of SEQUENCE at index N. */)
1277 (register Lisp_Object sequence, Lisp_Object n)
1278 {
1279 CHECK_NUMBER (n);
1280 if (CONSP (sequence) || NILP (sequence))
1281 return Fcar (Fnthcdr (n, sequence));
1282
1283 /* Faref signals a "not array" error, so check here. */
1284 CHECK_ARRAY (sequence, Qsequencep);
1285 return Faref (sequence, n);
1286 }
1287
1288 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1289 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1290 The value is actually the tail of LIST whose car is ELT. */)
1291 (register Lisp_Object elt, Lisp_Object list)
1292 {
1293 register Lisp_Object tail;
1294 for (tail = list; CONSP (tail); tail = XCDR (tail))
1295 {
1296 register Lisp_Object tem;
1297 CHECK_LIST_CONS (tail, list);
1298 tem = XCAR (tail);
1299 if (! NILP (Fequal (elt, tem)))
1300 return tail;
1301 QUIT;
1302 }
1303 return Qnil;
1304 }
1305
1306 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1307 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1308 The value is actually the tail of LIST whose car is ELT. */)
1309 (register Lisp_Object elt, Lisp_Object list)
1310 {
1311 while (1)
1312 {
1313 if (!CONSP (list) || EQ (XCAR (list), elt))
1314 break;
1315
1316 list = XCDR (list);
1317 if (!CONSP (list) || EQ (XCAR (list), elt))
1318 break;
1319
1320 list = XCDR (list);
1321 if (!CONSP (list) || EQ (XCAR (list), elt))
1322 break;
1323
1324 list = XCDR (list);
1325 QUIT;
1326 }
1327
1328 CHECK_LIST (list);
1329 return list;
1330 }
1331
1332 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1333 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1334 The value is actually the tail of LIST whose car is ELT. */)
1335 (register Lisp_Object elt, Lisp_Object list)
1336 {
1337 register Lisp_Object tail;
1338
1339 if (!FLOATP (elt))
1340 return Fmemq (elt, list);
1341
1342 for (tail = list; CONSP (tail); tail = XCDR (tail))
1343 {
1344 register Lisp_Object tem;
1345 CHECK_LIST_CONS (tail, list);
1346 tem = XCAR (tail);
1347 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0, Qnil))
1348 return tail;
1349 QUIT;
1350 }
1351 return Qnil;
1352 }
1353
1354 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1355 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1356 The value is actually the first element of LIST whose car is KEY.
1357 Elements of LIST that are not conses are ignored. */)
1358 (Lisp_Object key, Lisp_Object list)
1359 {
1360 while (1)
1361 {
1362 if (!CONSP (list)
1363 || (CONSP (XCAR (list))
1364 && EQ (XCAR (XCAR (list)), key)))
1365 break;
1366
1367 list = XCDR (list);
1368 if (!CONSP (list)
1369 || (CONSP (XCAR (list))
1370 && EQ (XCAR (XCAR (list)), key)))
1371 break;
1372
1373 list = XCDR (list);
1374 if (!CONSP (list)
1375 || (CONSP (XCAR (list))
1376 && EQ (XCAR (XCAR (list)), key)))
1377 break;
1378
1379 list = XCDR (list);
1380 QUIT;
1381 }
1382
1383 return CAR (list);
1384 }
1385
1386 /* Like Fassq but never report an error and do not allow quits.
1387 Use only on lists known never to be circular. */
1388
1389 Lisp_Object
1390 assq_no_quit (Lisp_Object key, Lisp_Object list)
1391 {
1392 while (CONSP (list)
1393 && (!CONSP (XCAR (list))
1394 || !EQ (XCAR (XCAR (list)), key)))
1395 list = XCDR (list);
1396
1397 return CAR_SAFE (list);
1398 }
1399
1400 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1401 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1402 The value is actually the first element of LIST whose car equals KEY. */)
1403 (Lisp_Object key, Lisp_Object list)
1404 {
1405 Lisp_Object car;
1406
1407 while (1)
1408 {
1409 if (!CONSP (list)
1410 || (CONSP (XCAR (list))
1411 && (car = XCAR (XCAR (list)),
1412 EQ (car, key) || !NILP (Fequal (car, key)))))
1413 break;
1414
1415 list = XCDR (list);
1416 if (!CONSP (list)
1417 || (CONSP (XCAR (list))
1418 && (car = XCAR (XCAR (list)),
1419 EQ (car, key) || !NILP (Fequal (car, key)))))
1420 break;
1421
1422 list = XCDR (list);
1423 if (!CONSP (list)
1424 || (CONSP (XCAR (list))
1425 && (car = XCAR (XCAR (list)),
1426 EQ (car, key) || !NILP (Fequal (car, key)))))
1427 break;
1428
1429 list = XCDR (list);
1430 QUIT;
1431 }
1432
1433 return CAR (list);
1434 }
1435
1436 /* Like Fassoc but never report an error and do not allow quits.
1437 Use only on lists known never to be circular. */
1438
1439 Lisp_Object
1440 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1441 {
1442 while (CONSP (list)
1443 && (!CONSP (XCAR (list))
1444 || (!EQ (XCAR (XCAR (list)), key)
1445 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1446 list = XCDR (list);
1447
1448 return CONSP (list) ? XCAR (list) : Qnil;
1449 }
1450
1451 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1452 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1453 The value is actually the first element of LIST whose cdr is KEY. */)
1454 (register Lisp_Object key, Lisp_Object list)
1455 {
1456 while (1)
1457 {
1458 if (!CONSP (list)
1459 || (CONSP (XCAR (list))
1460 && EQ (XCDR (XCAR (list)), key)))
1461 break;
1462
1463 list = XCDR (list);
1464 if (!CONSP (list)
1465 || (CONSP (XCAR (list))
1466 && EQ (XCDR (XCAR (list)), key)))
1467 break;
1468
1469 list = XCDR (list);
1470 if (!CONSP (list)
1471 || (CONSP (XCAR (list))
1472 && EQ (XCDR (XCAR (list)), key)))
1473 break;
1474
1475 list = XCDR (list);
1476 QUIT;
1477 }
1478
1479 return CAR (list);
1480 }
1481
1482 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1483 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1484 The value is actually the first element of LIST whose cdr equals KEY. */)
1485 (Lisp_Object key, Lisp_Object list)
1486 {
1487 Lisp_Object cdr;
1488
1489 while (1)
1490 {
1491 if (!CONSP (list)
1492 || (CONSP (XCAR (list))
1493 && (cdr = XCDR (XCAR (list)),
1494 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1495 break;
1496
1497 list = XCDR (list);
1498 if (!CONSP (list)
1499 || (CONSP (XCAR (list))
1500 && (cdr = XCDR (XCAR (list)),
1501 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1502 break;
1503
1504 list = XCDR (list);
1505 if (!CONSP (list)
1506 || (CONSP (XCAR (list))
1507 && (cdr = XCDR (XCAR (list)),
1508 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1509 break;
1510
1511 list = XCDR (list);
1512 QUIT;
1513 }
1514
1515 return CAR (list);
1516 }
1517 \f
1518 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1519 doc: /* Delete members of LIST which are `eq' to ELT, and return the result.
1520 More precisely, this function skips any members `eq' to ELT at the
1521 front of LIST, then removes members `eq' to ELT from the remaining
1522 sublist by modifying its list structure, then returns the resulting
1523 list.
1524
1525 Write `(setq foo (delq element foo))' to be sure of correctly changing
1526 the value of a list `foo'. */)
1527 (register Lisp_Object elt, Lisp_Object list)
1528 {
1529 Lisp_Object tail, tortoise, prev = Qnil;
1530 bool skip;
1531
1532 FOR_EACH_TAIL (tail, list, tortoise, skip)
1533 {
1534 Lisp_Object tem = XCAR (tail);
1535 if (EQ (elt, tem))
1536 {
1537 if (NILP (prev))
1538 list = XCDR (tail);
1539 else
1540 Fsetcdr (prev, XCDR (tail));
1541 }
1542 else
1543 prev = tail;
1544 }
1545 return list;
1546 }
1547
1548 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1549 doc: /* Delete members of SEQ which are `equal' to ELT, and return the result.
1550 SEQ must be a sequence (i.e. a list, a vector, or a string).
1551 The return value is a sequence of the same type.
1552
1553 If SEQ is a list, this behaves like `delq', except that it compares
1554 with `equal' instead of `eq'. In particular, it may remove elements
1555 by altering the list structure.
1556
1557 If SEQ is not a list, deletion is never performed destructively;
1558 instead this function creates and returns a new vector or string.
1559
1560 Write `(setq foo (delete element foo))' to be sure of correctly
1561 changing the value of a sequence `foo'. */)
1562 (Lisp_Object elt, Lisp_Object seq)
1563 {
1564 if (VECTORP (seq))
1565 {
1566 ptrdiff_t i, n;
1567
1568 for (i = n = 0; i < ASIZE (seq); ++i)
1569 if (NILP (Fequal (AREF (seq, i), elt)))
1570 ++n;
1571
1572 if (n != ASIZE (seq))
1573 {
1574 struct Lisp_Vector *p = allocate_vector (n);
1575
1576 for (i = n = 0; i < ASIZE (seq); ++i)
1577 if (NILP (Fequal (AREF (seq, i), elt)))
1578 p->contents[n++] = AREF (seq, i);
1579
1580 XSETVECTOR (seq, p);
1581 }
1582 }
1583 else if (STRINGP (seq))
1584 {
1585 ptrdiff_t i, ibyte, nchars, nbytes, cbytes;
1586 int c;
1587
1588 for (i = nchars = nbytes = ibyte = 0;
1589 i < SCHARS (seq);
1590 ++i, ibyte += cbytes)
1591 {
1592 if (STRING_MULTIBYTE (seq))
1593 {
1594 c = STRING_CHAR (SDATA (seq) + ibyte);
1595 cbytes = CHAR_BYTES (c);
1596 }
1597 else
1598 {
1599 c = SREF (seq, i);
1600 cbytes = 1;
1601 }
1602
1603 if (!INTEGERP (elt) || c != XINT (elt))
1604 {
1605 ++nchars;
1606 nbytes += cbytes;
1607 }
1608 }
1609
1610 if (nchars != SCHARS (seq))
1611 {
1612 Lisp_Object tem;
1613
1614 tem = make_uninit_multibyte_string (nchars, nbytes);
1615 if (!STRING_MULTIBYTE (seq))
1616 STRING_SET_UNIBYTE (tem);
1617
1618 for (i = nchars = nbytes = ibyte = 0;
1619 i < SCHARS (seq);
1620 ++i, ibyte += cbytes)
1621 {
1622 if (STRING_MULTIBYTE (seq))
1623 {
1624 c = STRING_CHAR (SDATA (seq) + ibyte);
1625 cbytes = CHAR_BYTES (c);
1626 }
1627 else
1628 {
1629 c = SREF (seq, i);
1630 cbytes = 1;
1631 }
1632
1633 if (!INTEGERP (elt) || c != XINT (elt))
1634 {
1635 unsigned char *from = SDATA (seq) + ibyte;
1636 unsigned char *to = SDATA (tem) + nbytes;
1637 ptrdiff_t n;
1638
1639 ++nchars;
1640 nbytes += cbytes;
1641
1642 for (n = cbytes; n--; )
1643 *to++ = *from++;
1644 }
1645 }
1646
1647 seq = tem;
1648 }
1649 }
1650 else
1651 {
1652 Lisp_Object tail, prev;
1653
1654 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1655 {
1656 CHECK_LIST_CONS (tail, seq);
1657
1658 if (!NILP (Fequal (elt, XCAR (tail))))
1659 {
1660 if (NILP (prev))
1661 seq = XCDR (tail);
1662 else
1663 Fsetcdr (prev, XCDR (tail));
1664 }
1665 else
1666 prev = tail;
1667 QUIT;
1668 }
1669 }
1670
1671 return seq;
1672 }
1673
1674 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1675 doc: /* Reverse order of items in a list, vector or string SEQ.
1676 If SEQ is a list, it should be nil-terminated.
1677 This function may destructively modify SEQ to produce the value. */)
1678 (Lisp_Object seq)
1679 {
1680 if (NILP (seq))
1681 return seq;
1682 else if (STRINGP (seq))
1683 return Freverse (seq);
1684 else if (CONSP (seq))
1685 {
1686 Lisp_Object prev, tail, next;
1687
1688 for (prev = Qnil, tail = seq; !NILP (tail); tail = next)
1689 {
1690 QUIT;
1691 CHECK_LIST_CONS (tail, tail);
1692 next = XCDR (tail);
1693 Fsetcdr (tail, prev);
1694 prev = tail;
1695 }
1696 seq = prev;
1697 }
1698 else if (VECTORP (seq))
1699 {
1700 ptrdiff_t i, size = ASIZE (seq);
1701
1702 for (i = 0; i < size / 2; i++)
1703 {
1704 Lisp_Object tem = AREF (seq, i);
1705 ASET (seq, i, AREF (seq, size - i - 1));
1706 ASET (seq, size - i - 1, tem);
1707 }
1708 }
1709 else if (BOOL_VECTOR_P (seq))
1710 {
1711 ptrdiff_t i, size = bool_vector_size (seq);
1712
1713 for (i = 0; i < size / 2; i++)
1714 {
1715 bool tem = bool_vector_bitref (seq, i);
1716 bool_vector_set (seq, i, bool_vector_bitref (seq, size - i - 1));
1717 bool_vector_set (seq, size - i - 1, tem);
1718 }
1719 }
1720 else
1721 wrong_type_argument (Qarrayp, seq);
1722 return seq;
1723 }
1724
1725 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1726 doc: /* Return the reversed copy of list, vector, or string SEQ.
1727 See also the function `nreverse', which is used more often. */)
1728 (Lisp_Object seq)
1729 {
1730 Lisp_Object new;
1731
1732 if (NILP (seq))
1733 return Qnil;
1734 else if (CONSP (seq))
1735 {
1736 for (new = Qnil; CONSP (seq); seq = XCDR (seq))
1737 {
1738 QUIT;
1739 new = Fcons (XCAR (seq), new);
1740 }
1741 CHECK_LIST_END (seq, seq);
1742 }
1743 else if (VECTORP (seq))
1744 {
1745 ptrdiff_t i, size = ASIZE (seq);
1746
1747 new = make_uninit_vector (size);
1748 for (i = 0; i < size; i++)
1749 ASET (new, i, AREF (seq, size - i - 1));
1750 }
1751 else if (BOOL_VECTOR_P (seq))
1752 {
1753 ptrdiff_t i;
1754 EMACS_INT nbits = bool_vector_size (seq);
1755
1756 new = make_uninit_bool_vector (nbits);
1757 for (i = 0; i < nbits; i++)
1758 bool_vector_set (new, i, bool_vector_bitref (seq, nbits - i - 1));
1759 }
1760 else if (STRINGP (seq))
1761 {
1762 ptrdiff_t size = SCHARS (seq), bytes = SBYTES (seq);
1763
1764 if (size == bytes)
1765 {
1766 ptrdiff_t i;
1767
1768 new = make_uninit_string (size);
1769 for (i = 0; i < size; i++)
1770 SSET (new, i, SREF (seq, size - i - 1));
1771 }
1772 else
1773 {
1774 unsigned char *p, *q;
1775
1776 new = make_uninit_multibyte_string (size, bytes);
1777 p = SDATA (seq), q = SDATA (new) + bytes;
1778 while (q > SDATA (new))
1779 {
1780 int ch, len;
1781
1782 ch = STRING_CHAR_AND_LENGTH (p, len);
1783 p += len, q -= len;
1784 CHAR_STRING (ch, q);
1785 }
1786 }
1787 }
1788 else
1789 wrong_type_argument (Qsequencep, seq);
1790 return new;
1791 }
1792 \f
1793 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1794 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1795 Returns the sorted list. LIST is modified by side effects.
1796 PREDICATE is called with two elements of LIST, and should return non-nil
1797 if the first element should sort before the second. */)
1798 (Lisp_Object list, Lisp_Object predicate)
1799 {
1800 Lisp_Object front, back;
1801 register Lisp_Object len, tem;
1802 struct gcpro gcpro1, gcpro2;
1803 EMACS_INT length;
1804
1805 front = list;
1806 len = Flength (list);
1807 length = XINT (len);
1808 if (length < 2)
1809 return list;
1810
1811 XSETINT (len, (length / 2) - 1);
1812 tem = Fnthcdr (len, list);
1813 back = Fcdr (tem);
1814 Fsetcdr (tem, Qnil);
1815
1816 GCPRO2 (front, back);
1817 front = Fsort (front, predicate);
1818 back = Fsort (back, predicate);
1819 UNGCPRO;
1820 return merge (front, back, predicate);
1821 }
1822
1823 Lisp_Object
1824 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1825 {
1826 Lisp_Object value;
1827 register Lisp_Object tail;
1828 Lisp_Object tem;
1829 register Lisp_Object l1, l2;
1830 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1831
1832 l1 = org_l1;
1833 l2 = org_l2;
1834 tail = Qnil;
1835 value = Qnil;
1836
1837 /* It is sufficient to protect org_l1 and org_l2.
1838 When l1 and l2 are updated, we copy the new values
1839 back into the org_ vars. */
1840 GCPRO4 (org_l1, org_l2, pred, value);
1841
1842 while (1)
1843 {
1844 if (NILP (l1))
1845 {
1846 UNGCPRO;
1847 if (NILP (tail))
1848 return l2;
1849 Fsetcdr (tail, l2);
1850 return value;
1851 }
1852 if (NILP (l2))
1853 {
1854 UNGCPRO;
1855 if (NILP (tail))
1856 return l1;
1857 Fsetcdr (tail, l1);
1858 return value;
1859 }
1860 tem = call2 (pred, Fcar (l2), Fcar (l1));
1861 if (NILP (tem))
1862 {
1863 tem = l1;
1864 l1 = Fcdr (l1);
1865 org_l1 = l1;
1866 }
1867 else
1868 {
1869 tem = l2;
1870 l2 = Fcdr (l2);
1871 org_l2 = l2;
1872 }
1873 if (NILP (tail))
1874 value = tem;
1875 else
1876 Fsetcdr (tail, tem);
1877 tail = tem;
1878 }
1879 }
1880
1881 \f
1882 /* This does not check for quits. That is safe since it must terminate. */
1883
1884 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1885 doc: /* Extract a value from a property list.
1886 PLIST is a property list, which is a list of the form
1887 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1888 corresponding to the given PROP, or nil if PROP is not one of the
1889 properties on the list. This function never signals an error. */)
1890 (Lisp_Object plist, Lisp_Object prop)
1891 {
1892 Lisp_Object tail, halftail;
1893
1894 /* halftail is used to detect circular lists. */
1895 tail = halftail = plist;
1896 while (CONSP (tail) && CONSP (XCDR (tail)))
1897 {
1898 if (EQ (prop, XCAR (tail)))
1899 return XCAR (XCDR (tail));
1900
1901 tail = XCDR (XCDR (tail));
1902 halftail = XCDR (halftail);
1903 if (EQ (tail, halftail))
1904 break;
1905 }
1906
1907 return Qnil;
1908 }
1909
1910 DEFUN ("get", Fget, Sget, 2, 2, 0,
1911 doc: /* Return the value of SYMBOL's PROPNAME property.
1912 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1913 (Lisp_Object symbol, Lisp_Object propname)
1914 {
1915 CHECK_SYMBOL (symbol);
1916 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1917 }
1918
1919 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1920 doc: /* Change value in PLIST of PROP to VAL.
1921 PLIST is a property list, which is a list of the form
1922 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1923 If PROP is already a property on the list, its value is set to VAL,
1924 otherwise the new PROP VAL pair is added. The new plist is returned;
1925 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1926 The PLIST is modified by side effects. */)
1927 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1928 {
1929 register Lisp_Object tail, prev;
1930 Lisp_Object newcell;
1931 prev = Qnil;
1932 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1933 tail = XCDR (XCDR (tail)))
1934 {
1935 if (EQ (prop, XCAR (tail)))
1936 {
1937 Fsetcar (XCDR (tail), val);
1938 return plist;
1939 }
1940
1941 prev = tail;
1942 QUIT;
1943 }
1944 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1945 if (NILP (prev))
1946 return newcell;
1947 else
1948 Fsetcdr (XCDR (prev), newcell);
1949 return plist;
1950 }
1951
1952 DEFUN ("put", Fput, Sput, 3, 3, 0,
1953 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1954 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1955 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1956 {
1957 CHECK_SYMBOL (symbol);
1958 set_symbol_plist
1959 (symbol, Fplist_put (XSYMBOL (symbol)->plist, propname, value));
1960 return value;
1961 }
1962 \f
1963 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1964 doc: /* Extract a value from a property list, comparing with `equal'.
1965 PLIST is a property list, which is a list of the form
1966 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1967 corresponding to the given PROP, or nil if PROP is not
1968 one of the properties on the list. */)
1969 (Lisp_Object plist, Lisp_Object prop)
1970 {
1971 Lisp_Object tail;
1972
1973 for (tail = plist;
1974 CONSP (tail) && CONSP (XCDR (tail));
1975 tail = XCDR (XCDR (tail)))
1976 {
1977 if (! NILP (Fequal (prop, XCAR (tail))))
1978 return XCAR (XCDR (tail));
1979
1980 QUIT;
1981 }
1982
1983 CHECK_LIST_END (tail, prop);
1984
1985 return Qnil;
1986 }
1987
1988 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1989 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1990 PLIST is a property list, which is a list of the form
1991 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1992 If PROP is already a property on the list, its value is set to VAL,
1993 otherwise the new PROP VAL pair is added. The new plist is returned;
1994 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1995 The PLIST is modified by side effects. */)
1996 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1997 {
1998 register Lisp_Object tail, prev;
1999 Lisp_Object newcell;
2000 prev = Qnil;
2001 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2002 tail = XCDR (XCDR (tail)))
2003 {
2004 if (! NILP (Fequal (prop, XCAR (tail))))
2005 {
2006 Fsetcar (XCDR (tail), val);
2007 return plist;
2008 }
2009
2010 prev = tail;
2011 QUIT;
2012 }
2013 newcell = list2 (prop, val);
2014 if (NILP (prev))
2015 return newcell;
2016 else
2017 Fsetcdr (XCDR (prev), newcell);
2018 return plist;
2019 }
2020 \f
2021 DEFUN ("eql", Feql, Seql, 2, 2, 0,
2022 doc: /* Return t if the two args are the same Lisp object.
2023 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
2024 (Lisp_Object obj1, Lisp_Object obj2)
2025 {
2026 if (FLOATP (obj1))
2027 return internal_equal (obj1, obj2, 0, 0, Qnil) ? Qt : Qnil;
2028 else
2029 return EQ (obj1, obj2) ? Qt : Qnil;
2030 }
2031
2032 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
2033 doc: /* Return t if two Lisp objects have similar structure and contents.
2034 They must have the same data type.
2035 Conses are compared by comparing the cars and the cdrs.
2036 Vectors and strings are compared element by element.
2037 Numbers are compared by value, but integers cannot equal floats.
2038 (Use `=' if you want integers and floats to be able to be equal.)
2039 Symbols must match exactly. */)
2040 (register Lisp_Object o1, Lisp_Object o2)
2041 {
2042 return internal_equal (o1, o2, 0, 0, Qnil) ? Qt : Qnil;
2043 }
2044
2045 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2046 doc: /* Return t if two Lisp objects have similar structure and contents.
2047 This is like `equal' except that it compares the text properties
2048 of strings. (`equal' ignores text properties.) */)
2049 (register Lisp_Object o1, Lisp_Object o2)
2050 {
2051 return internal_equal (o1, o2, 0, 1, Qnil) ? Qt : Qnil;
2052 }
2053
2054 /* DEPTH is current depth of recursion. Signal an error if it
2055 gets too deep.
2056 PROPS means compare string text properties too. */
2057
2058 static bool
2059 internal_equal (Lisp_Object o1, Lisp_Object o2, int depth, bool props,
2060 Lisp_Object ht)
2061 {
2062 if (depth > 10)
2063 {
2064 if (depth > 200)
2065 error ("Stack overflow in equal");
2066 if (NILP (ht))
2067 {
2068 Lisp_Object args[2];
2069 args[0] = QCtest;
2070 args[1] = Qeq;
2071 ht = Fmake_hash_table (2, args);
2072 }
2073 switch (XTYPE (o1))
2074 {
2075 case Lisp_Cons: case Lisp_Misc: case Lisp_Vectorlike:
2076 {
2077 struct Lisp_Hash_Table *h = XHASH_TABLE (ht);
2078 EMACS_UINT hash;
2079 ptrdiff_t i = hash_lookup (h, o1, &hash);
2080 if (i >= 0)
2081 { /* `o1' was seen already. */
2082 Lisp_Object o2s = HASH_VALUE (h, i);
2083 if (!NILP (Fmemq (o2, o2s)))
2084 return 1;
2085 else
2086 set_hash_value_slot (h, i, Fcons (o2, o2s));
2087 }
2088 else
2089 hash_put (h, o1, Fcons (o2, Qnil), hash);
2090 }
2091 default: ;
2092 }
2093 }
2094
2095 tail_recurse:
2096 QUIT;
2097 if (EQ (o1, o2))
2098 return 1;
2099 if (XTYPE (o1) != XTYPE (o2))
2100 return 0;
2101
2102 switch (XTYPE (o1))
2103 {
2104 case Lisp_Float:
2105 {
2106 double d1, d2;
2107
2108 d1 = extract_float (o1);
2109 d2 = extract_float (o2);
2110 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2111 though they are not =. */
2112 return d1 == d2 || (d1 != d1 && d2 != d2);
2113 }
2114
2115 case Lisp_Cons:
2116 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props, ht))
2117 return 0;
2118 o1 = XCDR (o1);
2119 o2 = XCDR (o2);
2120 /* FIXME: This inf-loops in a circular list! */
2121 goto tail_recurse;
2122
2123 case Lisp_Misc:
2124 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2125 return 0;
2126 if (OVERLAYP (o1))
2127 {
2128 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2129 depth + 1, props, ht)
2130 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2131 depth + 1, props, ht))
2132 return 0;
2133 o1 = XOVERLAY (o1)->plist;
2134 o2 = XOVERLAY (o2)->plist;
2135 goto tail_recurse;
2136 }
2137 if (MARKERP (o1))
2138 {
2139 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2140 && (XMARKER (o1)->buffer == 0
2141 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2142 }
2143 break;
2144
2145 case Lisp_Vectorlike:
2146 {
2147 register int i;
2148 ptrdiff_t size = ASIZE (o1);
2149 /* Pseudovectors have the type encoded in the size field, so this test
2150 actually checks that the objects have the same type as well as the
2151 same size. */
2152 if (ASIZE (o2) != size)
2153 return 0;
2154 /* Boolvectors are compared much like strings. */
2155 if (BOOL_VECTOR_P (o1))
2156 {
2157 EMACS_INT size = bool_vector_size (o1);
2158 if (size != bool_vector_size (o2))
2159 return 0;
2160 if (memcmp (bool_vector_data (o1), bool_vector_data (o2),
2161 bool_vector_bytes (size)))
2162 return 0;
2163 return 1;
2164 }
2165 if (WINDOW_CONFIGURATIONP (o1))
2166 return compare_window_configurations (o1, o2, 0);
2167
2168 /* Aside from them, only true vectors, char-tables, compiled
2169 functions, and fonts (font-spec, font-entity, font-object)
2170 are sensible to compare, so eliminate the others now. */
2171 if (size & PSEUDOVECTOR_FLAG)
2172 {
2173 if (((size & PVEC_TYPE_MASK) >> PSEUDOVECTOR_AREA_BITS)
2174 < PVEC_COMPILED)
2175 return 0;
2176 size &= PSEUDOVECTOR_SIZE_MASK;
2177 }
2178 for (i = 0; i < size; i++)
2179 {
2180 Lisp_Object v1, v2;
2181 v1 = AREF (o1, i);
2182 v2 = AREF (o2, i);
2183 if (!internal_equal (v1, v2, depth + 1, props, ht))
2184 return 0;
2185 }
2186 return 1;
2187 }
2188 break;
2189
2190 case Lisp_String:
2191 if (SCHARS (o1) != SCHARS (o2))
2192 return 0;
2193 if (SBYTES (o1) != SBYTES (o2))
2194 return 0;
2195 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2196 return 0;
2197 if (props && !compare_string_intervals (o1, o2))
2198 return 0;
2199 return 1;
2200
2201 default:
2202 break;
2203 }
2204
2205 return 0;
2206 }
2207 \f
2208
2209 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2210 doc: /* Store each element of ARRAY with ITEM.
2211 ARRAY is a vector, string, char-table, or bool-vector. */)
2212 (Lisp_Object array, Lisp_Object item)
2213 {
2214 register ptrdiff_t size, idx;
2215
2216 if (VECTORP (array))
2217 for (idx = 0, size = ASIZE (array); idx < size; idx++)
2218 ASET (array, idx, item);
2219 else if (CHAR_TABLE_P (array))
2220 {
2221 int i;
2222
2223 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2224 set_char_table_contents (array, i, item);
2225 set_char_table_defalt (array, item);
2226 }
2227 else if (STRINGP (array))
2228 {
2229 register unsigned char *p = SDATA (array);
2230 int charval;
2231 CHECK_CHARACTER (item);
2232 charval = XFASTINT (item);
2233 size = SCHARS (array);
2234 if (STRING_MULTIBYTE (array))
2235 {
2236 unsigned char str[MAX_MULTIBYTE_LENGTH];
2237 int len = CHAR_STRING (charval, str);
2238 ptrdiff_t size_byte = SBYTES (array);
2239
2240 if (INT_MULTIPLY_OVERFLOW (SCHARS (array), len)
2241 || SCHARS (array) * len != size_byte)
2242 error ("Attempt to change byte length of a string");
2243 for (idx = 0; idx < size_byte; idx++)
2244 *p++ = str[idx % len];
2245 }
2246 else
2247 for (idx = 0; idx < size; idx++)
2248 p[idx] = charval;
2249 }
2250 else if (BOOL_VECTOR_P (array))
2251 return bool_vector_fill (array, item);
2252 else
2253 wrong_type_argument (Qarrayp, array);
2254 return array;
2255 }
2256
2257 DEFUN ("clear-string", Fclear_string, Sclear_string,
2258 1, 1, 0,
2259 doc: /* Clear the contents of STRING.
2260 This makes STRING unibyte and may change its length. */)
2261 (Lisp_Object string)
2262 {
2263 ptrdiff_t len;
2264 CHECK_STRING (string);
2265 len = SBYTES (string);
2266 memset (SDATA (string), 0, len);
2267 STRING_SET_CHARS (string, len);
2268 STRING_SET_UNIBYTE (string);
2269 return Qnil;
2270 }
2271 \f
2272 /* ARGSUSED */
2273 Lisp_Object
2274 nconc2 (Lisp_Object s1, Lisp_Object s2)
2275 {
2276 Lisp_Object args[2];
2277 args[0] = s1;
2278 args[1] = s2;
2279 return Fnconc (2, args);
2280 }
2281
2282 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2283 doc: /* Concatenate any number of lists by altering them.
2284 Only the last argument is not altered, and need not be a list.
2285 usage: (nconc &rest LISTS) */)
2286 (ptrdiff_t nargs, Lisp_Object *args)
2287 {
2288 ptrdiff_t argnum;
2289 register Lisp_Object tail, tem, val;
2290
2291 val = tail = Qnil;
2292
2293 for (argnum = 0; argnum < nargs; argnum++)
2294 {
2295 tem = args[argnum];
2296 if (NILP (tem)) continue;
2297
2298 if (NILP (val))
2299 val = tem;
2300
2301 if (argnum + 1 == nargs) break;
2302
2303 CHECK_LIST_CONS (tem, tem);
2304
2305 while (CONSP (tem))
2306 {
2307 tail = tem;
2308 tem = XCDR (tail);
2309 QUIT;
2310 }
2311
2312 tem = args[argnum + 1];
2313 Fsetcdr (tail, tem);
2314 if (NILP (tem))
2315 args[argnum + 1] = tail;
2316 }
2317
2318 return val;
2319 }
2320 \f
2321 /* This is the guts of all mapping functions.
2322 Apply FN to each element of SEQ, one by one,
2323 storing the results into elements of VALS, a C vector of Lisp_Objects.
2324 LENI is the length of VALS, which should also be the length of SEQ. */
2325
2326 static void
2327 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2328 {
2329 register Lisp_Object tail;
2330 Lisp_Object dummy;
2331 register EMACS_INT i;
2332 struct gcpro gcpro1, gcpro2, gcpro3;
2333
2334 if (vals)
2335 {
2336 /* Don't let vals contain any garbage when GC happens. */
2337 for (i = 0; i < leni; i++)
2338 vals[i] = Qnil;
2339
2340 GCPRO3 (dummy, fn, seq);
2341 gcpro1.var = vals;
2342 gcpro1.nvars = leni;
2343 }
2344 else
2345 GCPRO2 (fn, seq);
2346 /* We need not explicitly protect `tail' because it is used only on lists, and
2347 1) lists are not relocated and 2) the list is marked via `seq' so will not
2348 be freed */
2349
2350 if (VECTORP (seq) || COMPILEDP (seq))
2351 {
2352 for (i = 0; i < leni; i++)
2353 {
2354 dummy = call1 (fn, AREF (seq, i));
2355 if (vals)
2356 vals[i] = dummy;
2357 }
2358 }
2359 else if (BOOL_VECTOR_P (seq))
2360 {
2361 for (i = 0; i < leni; i++)
2362 {
2363 dummy = call1 (fn, bool_vector_ref (seq, i));
2364 if (vals)
2365 vals[i] = dummy;
2366 }
2367 }
2368 else if (STRINGP (seq))
2369 {
2370 ptrdiff_t i_byte;
2371
2372 for (i = 0, i_byte = 0; i < leni;)
2373 {
2374 int c;
2375 ptrdiff_t i_before = i;
2376
2377 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2378 XSETFASTINT (dummy, c);
2379 dummy = call1 (fn, dummy);
2380 if (vals)
2381 vals[i_before] = dummy;
2382 }
2383 }
2384 else /* Must be a list, since Flength did not get an error */
2385 {
2386 tail = seq;
2387 for (i = 0; i < leni && CONSP (tail); i++)
2388 {
2389 dummy = call1 (fn, XCAR (tail));
2390 if (vals)
2391 vals[i] = dummy;
2392 tail = XCDR (tail);
2393 }
2394 }
2395
2396 UNGCPRO;
2397 }
2398
2399 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2400 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2401 In between each pair of results, stick in SEPARATOR. Thus, " " as
2402 SEPARATOR results in spaces between the values returned by FUNCTION.
2403 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2404 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2405 {
2406 Lisp_Object len;
2407 register EMACS_INT leni;
2408 EMACS_INT nargs;
2409 ptrdiff_t i;
2410 register Lisp_Object *args;
2411 struct gcpro gcpro1;
2412 Lisp_Object ret;
2413 USE_SAFE_ALLOCA;
2414
2415 len = Flength (sequence);
2416 if (CHAR_TABLE_P (sequence))
2417 wrong_type_argument (Qlistp, sequence);
2418 leni = XINT (len);
2419 nargs = leni + leni - 1;
2420 if (nargs < 0) return empty_unibyte_string;
2421
2422 SAFE_ALLOCA_LISP (args, nargs);
2423
2424 GCPRO1 (separator);
2425 mapcar1 (leni, args, function, sequence);
2426 UNGCPRO;
2427
2428 for (i = leni - 1; i > 0; i--)
2429 args[i + i] = args[i];
2430
2431 for (i = 1; i < nargs; i += 2)
2432 args[i] = separator;
2433
2434 ret = Fconcat (nargs, args);
2435 SAFE_FREE ();
2436
2437 return ret;
2438 }
2439
2440 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2441 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2442 The result is a list just as long as SEQUENCE.
2443 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2444 (Lisp_Object function, Lisp_Object sequence)
2445 {
2446 register Lisp_Object len;
2447 register EMACS_INT leni;
2448 register Lisp_Object *args;
2449 Lisp_Object ret;
2450 USE_SAFE_ALLOCA;
2451
2452 len = Flength (sequence);
2453 if (CHAR_TABLE_P (sequence))
2454 wrong_type_argument (Qlistp, sequence);
2455 leni = XFASTINT (len);
2456
2457 SAFE_ALLOCA_LISP (args, leni);
2458
2459 mapcar1 (leni, args, function, sequence);
2460
2461 ret = Flist (leni, args);
2462 SAFE_FREE ();
2463
2464 return ret;
2465 }
2466
2467 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2468 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2469 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2470 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2471 (Lisp_Object function, Lisp_Object sequence)
2472 {
2473 register EMACS_INT leni;
2474
2475 leni = XFASTINT (Flength (sequence));
2476 if (CHAR_TABLE_P (sequence))
2477 wrong_type_argument (Qlistp, sequence);
2478 mapcar1 (leni, 0, function, sequence);
2479
2480 return sequence;
2481 }
2482 \f
2483 /* This is how C code calls `yes-or-no-p' and allows the user
2484 to redefined it.
2485
2486 Anything that calls this function must protect from GC! */
2487
2488 Lisp_Object
2489 do_yes_or_no_p (Lisp_Object prompt)
2490 {
2491 return call1 (intern ("yes-or-no-p"), prompt);
2492 }
2493
2494 /* Anything that calls this function must protect from GC! */
2495
2496 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2497 doc: /* Ask user a yes-or-no question.
2498 Return t if answer is yes, and nil if the answer is no.
2499 PROMPT is the string to display to ask the question. It should end in
2500 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2501
2502 The user must confirm the answer with RET, and can edit it until it
2503 has been confirmed.
2504
2505 If dialog boxes are supported, a dialog box will be used
2506 if `last-nonmenu-event' is nil, and `use-dialog-box' is non-nil. */)
2507 (Lisp_Object prompt)
2508 {
2509 register Lisp_Object ans;
2510 Lisp_Object args[2];
2511 struct gcpro gcpro1;
2512
2513 CHECK_STRING (prompt);
2514
2515 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2516 && use_dialog_box)
2517 {
2518 Lisp_Object pane, menu, obj;
2519 redisplay_preserve_echo_area (4);
2520 pane = list2 (Fcons (build_string ("Yes"), Qt),
2521 Fcons (build_string ("No"), Qnil));
2522 GCPRO1 (pane);
2523 menu = Fcons (prompt, pane);
2524 obj = Fx_popup_dialog (Qt, menu, Qnil);
2525 UNGCPRO;
2526 return obj;
2527 }
2528
2529 args[0] = prompt;
2530 args[1] = build_string ("(yes or no) ");
2531 prompt = Fconcat (2, args);
2532
2533 GCPRO1 (prompt);
2534
2535 while (1)
2536 {
2537 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2538 Qyes_or_no_p_history, Qnil,
2539 Qnil));
2540 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2541 {
2542 UNGCPRO;
2543 return Qt;
2544 }
2545 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2546 {
2547 UNGCPRO;
2548 return Qnil;
2549 }
2550
2551 Fding (Qnil);
2552 Fdiscard_input ();
2553 message1 ("Please answer yes or no.");
2554 Fsleep_for (make_number (2), Qnil);
2555 }
2556 }
2557 \f
2558 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2559 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2560
2561 Each of the three load averages is multiplied by 100, then converted
2562 to integer.
2563
2564 When USE-FLOATS is non-nil, floats will be used instead of integers.
2565 These floats are not multiplied by 100.
2566
2567 If the 5-minute or 15-minute load averages are not available, return a
2568 shortened list, containing only those averages which are available.
2569
2570 An error is thrown if the load average can't be obtained. In some
2571 cases making it work would require Emacs being installed setuid or
2572 setgid so that it can read kernel information, and that usually isn't
2573 advisable. */)
2574 (Lisp_Object use_floats)
2575 {
2576 double load_ave[3];
2577 int loads = getloadavg (load_ave, 3);
2578 Lisp_Object ret = Qnil;
2579
2580 if (loads < 0)
2581 error ("load-average not implemented for this operating system");
2582
2583 while (loads-- > 0)
2584 {
2585 Lisp_Object load = (NILP (use_floats)
2586 ? make_number (100.0 * load_ave[loads])
2587 : make_float (load_ave[loads]));
2588 ret = Fcons (load, ret);
2589 }
2590
2591 return ret;
2592 }
2593 \f
2594 static Lisp_Object Qsubfeatures;
2595
2596 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2597 doc: /* Return t if FEATURE is present in this Emacs.
2598
2599 Use this to conditionalize execution of lisp code based on the
2600 presence or absence of Emacs or environment extensions.
2601 Use `provide' to declare that a feature is available. This function
2602 looks at the value of the variable `features'. The optional argument
2603 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2604 (Lisp_Object feature, Lisp_Object subfeature)
2605 {
2606 register Lisp_Object tem;
2607 CHECK_SYMBOL (feature);
2608 tem = Fmemq (feature, Vfeatures);
2609 if (!NILP (tem) && !NILP (subfeature))
2610 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2611 return (NILP (tem)) ? Qnil : Qt;
2612 }
2613
2614 static Lisp_Object Qfuncall;
2615
2616 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2617 doc: /* Announce that FEATURE is a feature of the current Emacs.
2618 The optional argument SUBFEATURES should be a list of symbols listing
2619 particular subfeatures supported in this version of FEATURE. */)
2620 (Lisp_Object feature, Lisp_Object subfeatures)
2621 {
2622 register Lisp_Object tem;
2623 CHECK_SYMBOL (feature);
2624 CHECK_LIST (subfeatures);
2625 if (!NILP (Vautoload_queue))
2626 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2627 Vautoload_queue);
2628 tem = Fmemq (feature, Vfeatures);
2629 if (NILP (tem))
2630 Vfeatures = Fcons (feature, Vfeatures);
2631 if (!NILP (subfeatures))
2632 Fput (feature, Qsubfeatures, subfeatures);
2633 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2634
2635 /* Run any load-hooks for this file. */
2636 tem = Fassq (feature, Vafter_load_alist);
2637 if (CONSP (tem))
2638 Fmapc (Qfuncall, XCDR (tem));
2639
2640 return feature;
2641 }
2642 \f
2643 /* `require' and its subroutines. */
2644
2645 /* List of features currently being require'd, innermost first. */
2646
2647 static Lisp_Object require_nesting_list;
2648
2649 static void
2650 require_unwind (Lisp_Object old_value)
2651 {
2652 require_nesting_list = old_value;
2653 }
2654
2655 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2656 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2657 If FEATURE is not a member of the list `features', then the feature
2658 is not loaded; so load the file FILENAME.
2659 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2660 and `load' will try to load this name appended with the suffix `.elc' or
2661 `.el', in that order. The name without appended suffix will not be used.
2662 See `get-load-suffixes' for the complete list of suffixes.
2663 If the optional third argument NOERROR is non-nil,
2664 then return nil if the file is not found instead of signaling an error.
2665 Normally the return value is FEATURE.
2666 The normal messages at start and end of loading FILENAME are suppressed. */)
2667 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2668 {
2669 Lisp_Object tem;
2670 struct gcpro gcpro1, gcpro2;
2671 bool from_file = load_in_progress;
2672
2673 CHECK_SYMBOL (feature);
2674
2675 /* Record the presence of `require' in this file
2676 even if the feature specified is already loaded.
2677 But not more than once in any file,
2678 and not when we aren't loading or reading from a file. */
2679 if (!from_file)
2680 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2681 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2682 from_file = 1;
2683
2684 if (from_file)
2685 {
2686 tem = Fcons (Qrequire, feature);
2687 if (NILP (Fmember (tem, Vcurrent_load_list)))
2688 LOADHIST_ATTACH (tem);
2689 }
2690 tem = Fmemq (feature, Vfeatures);
2691
2692 if (NILP (tem))
2693 {
2694 ptrdiff_t count = SPECPDL_INDEX ();
2695 int nesting = 0;
2696
2697 /* This is to make sure that loadup.el gives a clear picture
2698 of what files are preloaded and when. */
2699 if (! NILP (Vpurify_flag))
2700 error ("(require %s) while preparing to dump",
2701 SDATA (SYMBOL_NAME (feature)));
2702
2703 /* A certain amount of recursive `require' is legitimate,
2704 but if we require the same feature recursively 3 times,
2705 signal an error. */
2706 tem = require_nesting_list;
2707 while (! NILP (tem))
2708 {
2709 if (! NILP (Fequal (feature, XCAR (tem))))
2710 nesting++;
2711 tem = XCDR (tem);
2712 }
2713 if (nesting > 3)
2714 error ("Recursive `require' for feature `%s'",
2715 SDATA (SYMBOL_NAME (feature)));
2716
2717 /* Update the list for any nested `require's that occur. */
2718 record_unwind_protect (require_unwind, require_nesting_list);
2719 require_nesting_list = Fcons (feature, require_nesting_list);
2720
2721 /* Value saved here is to be restored into Vautoload_queue */
2722 record_unwind_protect (un_autoload, Vautoload_queue);
2723 Vautoload_queue = Qt;
2724
2725 /* Load the file. */
2726 GCPRO2 (feature, filename);
2727 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2728 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2729 UNGCPRO;
2730
2731 /* If load failed entirely, return nil. */
2732 if (NILP (tem))
2733 return unbind_to (count, Qnil);
2734
2735 tem = Fmemq (feature, Vfeatures);
2736 if (NILP (tem))
2737 error ("Required feature `%s' was not provided",
2738 SDATA (SYMBOL_NAME (feature)));
2739
2740 /* Once loading finishes, don't undo it. */
2741 Vautoload_queue = Qt;
2742 feature = unbind_to (count, feature);
2743 }
2744
2745 return feature;
2746 }
2747 \f
2748 /* Primitives for work of the "widget" library.
2749 In an ideal world, this section would not have been necessary.
2750 However, lisp function calls being as slow as they are, it turns
2751 out that some functions in the widget library (wid-edit.el) are the
2752 bottleneck of Widget operation. Here is their translation to C,
2753 for the sole reason of efficiency. */
2754
2755 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2756 doc: /* Return non-nil if PLIST has the property PROP.
2757 PLIST is a property list, which is a list of the form
2758 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2759 Unlike `plist-get', this allows you to distinguish between a missing
2760 property and a property with the value nil.
2761 The value is actually the tail of PLIST whose car is PROP. */)
2762 (Lisp_Object plist, Lisp_Object prop)
2763 {
2764 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2765 {
2766 QUIT;
2767 plist = XCDR (plist);
2768 plist = CDR (plist);
2769 }
2770 return plist;
2771 }
2772
2773 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2774 doc: /* In WIDGET, set PROPERTY to VALUE.
2775 The value can later be retrieved with `widget-get'. */)
2776 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2777 {
2778 CHECK_CONS (widget);
2779 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2780 return value;
2781 }
2782
2783 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2784 doc: /* In WIDGET, get the value of PROPERTY.
2785 The value could either be specified when the widget was created, or
2786 later with `widget-put'. */)
2787 (Lisp_Object widget, Lisp_Object property)
2788 {
2789 Lisp_Object tmp;
2790
2791 while (1)
2792 {
2793 if (NILP (widget))
2794 return Qnil;
2795 CHECK_CONS (widget);
2796 tmp = Fplist_member (XCDR (widget), property);
2797 if (CONSP (tmp))
2798 {
2799 tmp = XCDR (tmp);
2800 return CAR (tmp);
2801 }
2802 tmp = XCAR (widget);
2803 if (NILP (tmp))
2804 return Qnil;
2805 widget = Fget (tmp, Qwidget_type);
2806 }
2807 }
2808
2809 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2810 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2811 ARGS are passed as extra arguments to the function.
2812 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2813 (ptrdiff_t nargs, Lisp_Object *args)
2814 {
2815 /* This function can GC. */
2816 Lisp_Object newargs[3];
2817 struct gcpro gcpro1, gcpro2;
2818 Lisp_Object result;
2819
2820 newargs[0] = Fwidget_get (args[0], args[1]);
2821 newargs[1] = args[0];
2822 newargs[2] = Flist (nargs - 2, args + 2);
2823 GCPRO2 (newargs[0], newargs[2]);
2824 result = Fapply (3, newargs);
2825 UNGCPRO;
2826 return result;
2827 }
2828
2829 #ifdef HAVE_LANGINFO_CODESET
2830 #include <langinfo.h>
2831 #endif
2832
2833 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2834 doc: /* Access locale data ITEM for the current C locale, if available.
2835 ITEM should be one of the following:
2836
2837 `codeset', returning the character set as a string (locale item CODESET);
2838
2839 `days', returning a 7-element vector of day names (locale items DAY_n);
2840
2841 `months', returning a 12-element vector of month names (locale items MON_n);
2842
2843 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2844 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2845
2846 If the system can't provide such information through a call to
2847 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2848
2849 See also Info node `(libc)Locales'.
2850
2851 The data read from the system are decoded using `locale-coding-system'. */)
2852 (Lisp_Object item)
2853 {
2854 char *str = NULL;
2855 #ifdef HAVE_LANGINFO_CODESET
2856 Lisp_Object val;
2857 if (EQ (item, Qcodeset))
2858 {
2859 str = nl_langinfo (CODESET);
2860 return build_string (str);
2861 }
2862 #ifdef DAY_1
2863 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2864 {
2865 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2866 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2867 int i;
2868 struct gcpro gcpro1;
2869 GCPRO1 (v);
2870 synchronize_system_time_locale ();
2871 for (i = 0; i < 7; i++)
2872 {
2873 str = nl_langinfo (days[i]);
2874 val = build_unibyte_string (str);
2875 /* Fixme: Is this coding system necessarily right, even if
2876 it is consistent with CODESET? If not, what to do? */
2877 ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
2878 0));
2879 }
2880 UNGCPRO;
2881 return v;
2882 }
2883 #endif /* DAY_1 */
2884 #ifdef MON_1
2885 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2886 {
2887 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2888 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2889 MON_8, MON_9, MON_10, MON_11, MON_12};
2890 int i;
2891 struct gcpro gcpro1;
2892 GCPRO1 (v);
2893 synchronize_system_time_locale ();
2894 for (i = 0; i < 12; i++)
2895 {
2896 str = nl_langinfo (months[i]);
2897 val = build_unibyte_string (str);
2898 ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
2899 0));
2900 }
2901 UNGCPRO;
2902 return v;
2903 }
2904 #endif /* MON_1 */
2905 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2906 but is in the locale files. This could be used by ps-print. */
2907 #ifdef PAPER_WIDTH
2908 else if (EQ (item, Qpaper))
2909 return list2i (nl_langinfo (PAPER_WIDTH), nl_langinfo (PAPER_HEIGHT));
2910 #endif /* PAPER_WIDTH */
2911 #endif /* HAVE_LANGINFO_CODESET*/
2912 return Qnil;
2913 }
2914 \f
2915 /* base64 encode/decode functions (RFC 2045).
2916 Based on code from GNU recode. */
2917
2918 #define MIME_LINE_LENGTH 76
2919
2920 #define IS_ASCII(Character) \
2921 ((Character) < 128)
2922 #define IS_BASE64(Character) \
2923 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2924 #define IS_BASE64_IGNORABLE(Character) \
2925 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2926 || (Character) == '\f' || (Character) == '\r')
2927
2928 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2929 character or return retval if there are no characters left to
2930 process. */
2931 #define READ_QUADRUPLET_BYTE(retval) \
2932 do \
2933 { \
2934 if (i == length) \
2935 { \
2936 if (nchars_return) \
2937 *nchars_return = nchars; \
2938 return (retval); \
2939 } \
2940 c = from[i++]; \
2941 } \
2942 while (IS_BASE64_IGNORABLE (c))
2943
2944 /* Table of characters coding the 64 values. */
2945 static const char base64_value_to_char[64] =
2946 {
2947 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2948 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2949 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2950 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2951 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2952 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2953 '8', '9', '+', '/' /* 60-63 */
2954 };
2955
2956 /* Table of base64 values for first 128 characters. */
2957 static const short base64_char_to_value[128] =
2958 {
2959 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2960 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2961 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2962 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2963 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2964 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2965 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2966 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2967 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2968 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2969 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2970 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2971 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2972 };
2973
2974 /* The following diagram shows the logical steps by which three octets
2975 get transformed into four base64 characters.
2976
2977 .--------. .--------. .--------.
2978 |aaaaaabb| |bbbbcccc| |ccdddddd|
2979 `--------' `--------' `--------'
2980 6 2 4 4 2 6
2981 .--------+--------+--------+--------.
2982 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2983 `--------+--------+--------+--------'
2984
2985 .--------+--------+--------+--------.
2986 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2987 `--------+--------+--------+--------'
2988
2989 The octets are divided into 6 bit chunks, which are then encoded into
2990 base64 characters. */
2991
2992
2993 static ptrdiff_t base64_encode_1 (const char *, char *, ptrdiff_t, bool, bool);
2994 static ptrdiff_t base64_decode_1 (const char *, char *, ptrdiff_t, bool,
2995 ptrdiff_t *);
2996
2997 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2998 2, 3, "r",
2999 doc: /* Base64-encode the region between BEG and END.
3000 Return the length of the encoded text.
3001 Optional third argument NO-LINE-BREAK means do not break long lines
3002 into shorter lines. */)
3003 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
3004 {
3005 char *encoded;
3006 ptrdiff_t allength, length;
3007 ptrdiff_t ibeg, iend, encoded_length;
3008 ptrdiff_t old_pos = PT;
3009 USE_SAFE_ALLOCA;
3010
3011 validate_region (&beg, &end);
3012
3013 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3014 iend = CHAR_TO_BYTE (XFASTINT (end));
3015 move_gap_both (XFASTINT (beg), ibeg);
3016
3017 /* We need to allocate enough room for encoding the text.
3018 We need 33 1/3% more space, plus a newline every 76
3019 characters, and then we round up. */
3020 length = iend - ibeg;
3021 allength = length + length/3 + 1;
3022 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3023
3024 encoded = SAFE_ALLOCA (allength);
3025 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
3026 encoded, length, NILP (no_line_break),
3027 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
3028 if (encoded_length > allength)
3029 emacs_abort ();
3030
3031 if (encoded_length < 0)
3032 {
3033 /* The encoding wasn't possible. */
3034 SAFE_FREE ();
3035 error ("Multibyte character in data for base64 encoding");
3036 }
3037
3038 /* Now we have encoded the region, so we insert the new contents
3039 and delete the old. (Insert first in order to preserve markers.) */
3040 SET_PT_BOTH (XFASTINT (beg), ibeg);
3041 insert (encoded, encoded_length);
3042 SAFE_FREE ();
3043 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3044
3045 /* If point was outside of the region, restore it exactly; else just
3046 move to the beginning of the region. */
3047 if (old_pos >= XFASTINT (end))
3048 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3049 else if (old_pos > XFASTINT (beg))
3050 old_pos = XFASTINT (beg);
3051 SET_PT (old_pos);
3052
3053 /* We return the length of the encoded text. */
3054 return make_number (encoded_length);
3055 }
3056
3057 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3058 1, 2, 0,
3059 doc: /* Base64-encode STRING and return the result.
3060 Optional second argument NO-LINE-BREAK means do not break long lines
3061 into shorter lines. */)
3062 (Lisp_Object string, Lisp_Object no_line_break)
3063 {
3064 ptrdiff_t allength, length, encoded_length;
3065 char *encoded;
3066 Lisp_Object encoded_string;
3067 USE_SAFE_ALLOCA;
3068
3069 CHECK_STRING (string);
3070
3071 /* We need to allocate enough room for encoding the text.
3072 We need 33 1/3% more space, plus a newline every 76
3073 characters, and then we round up. */
3074 length = SBYTES (string);
3075 allength = length + length/3 + 1;
3076 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3077
3078 /* We need to allocate enough room for decoding the text. */
3079 encoded = SAFE_ALLOCA (allength);
3080
3081 encoded_length = base64_encode_1 (SSDATA (string),
3082 encoded, length, NILP (no_line_break),
3083 STRING_MULTIBYTE (string));
3084 if (encoded_length > allength)
3085 emacs_abort ();
3086
3087 if (encoded_length < 0)
3088 {
3089 /* The encoding wasn't possible. */
3090 SAFE_FREE ();
3091 error ("Multibyte character in data for base64 encoding");
3092 }
3093
3094 encoded_string = make_unibyte_string (encoded, encoded_length);
3095 SAFE_FREE ();
3096
3097 return encoded_string;
3098 }
3099
3100 static ptrdiff_t
3101 base64_encode_1 (const char *from, char *to, ptrdiff_t length,
3102 bool line_break, bool multibyte)
3103 {
3104 int counter = 0;
3105 ptrdiff_t i = 0;
3106 char *e = to;
3107 int c;
3108 unsigned int value;
3109 int bytes;
3110
3111 while (i < length)
3112 {
3113 if (multibyte)
3114 {
3115 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3116 if (CHAR_BYTE8_P (c))
3117 c = CHAR_TO_BYTE8 (c);
3118 else if (c >= 256)
3119 return -1;
3120 i += bytes;
3121 }
3122 else
3123 c = from[i++];
3124
3125 /* Wrap line every 76 characters. */
3126
3127 if (line_break)
3128 {
3129 if (counter < MIME_LINE_LENGTH / 4)
3130 counter++;
3131 else
3132 {
3133 *e++ = '\n';
3134 counter = 1;
3135 }
3136 }
3137
3138 /* Process first byte of a triplet. */
3139
3140 *e++ = base64_value_to_char[0x3f & c >> 2];
3141 value = (0x03 & c) << 4;
3142
3143 /* Process second byte of a triplet. */
3144
3145 if (i == length)
3146 {
3147 *e++ = base64_value_to_char[value];
3148 *e++ = '=';
3149 *e++ = '=';
3150 break;
3151 }
3152
3153 if (multibyte)
3154 {
3155 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3156 if (CHAR_BYTE8_P (c))
3157 c = CHAR_TO_BYTE8 (c);
3158 else if (c >= 256)
3159 return -1;
3160 i += bytes;
3161 }
3162 else
3163 c = from[i++];
3164
3165 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3166 value = (0x0f & c) << 2;
3167
3168 /* Process third byte of a triplet. */
3169
3170 if (i == length)
3171 {
3172 *e++ = base64_value_to_char[value];
3173 *e++ = '=';
3174 break;
3175 }
3176
3177 if (multibyte)
3178 {
3179 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3180 if (CHAR_BYTE8_P (c))
3181 c = CHAR_TO_BYTE8 (c);
3182 else if (c >= 256)
3183 return -1;
3184 i += bytes;
3185 }
3186 else
3187 c = from[i++];
3188
3189 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3190 *e++ = base64_value_to_char[0x3f & c];
3191 }
3192
3193 return e - to;
3194 }
3195
3196
3197 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3198 2, 2, "r",
3199 doc: /* Base64-decode the region between BEG and END.
3200 Return the length of the decoded text.
3201 If the region can't be decoded, signal an error and don't modify the buffer. */)
3202 (Lisp_Object beg, Lisp_Object end)
3203 {
3204 ptrdiff_t ibeg, iend, length, allength;
3205 char *decoded;
3206 ptrdiff_t old_pos = PT;
3207 ptrdiff_t decoded_length;
3208 ptrdiff_t inserted_chars;
3209 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3210 USE_SAFE_ALLOCA;
3211
3212 validate_region (&beg, &end);
3213
3214 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3215 iend = CHAR_TO_BYTE (XFASTINT (end));
3216
3217 length = iend - ibeg;
3218
3219 /* We need to allocate enough room for decoding the text. If we are
3220 working on a multibyte buffer, each decoded code may occupy at
3221 most two bytes. */
3222 allength = multibyte ? length * 2 : length;
3223 decoded = SAFE_ALLOCA (allength);
3224
3225 move_gap_both (XFASTINT (beg), ibeg);
3226 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3227 decoded, length,
3228 multibyte, &inserted_chars);
3229 if (decoded_length > allength)
3230 emacs_abort ();
3231
3232 if (decoded_length < 0)
3233 {
3234 /* The decoding wasn't possible. */
3235 SAFE_FREE ();
3236 error ("Invalid base64 data");
3237 }
3238
3239 /* Now we have decoded the region, so we insert the new contents
3240 and delete the old. (Insert first in order to preserve markers.) */
3241 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3242 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3243 SAFE_FREE ();
3244
3245 /* Delete the original text. */
3246 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3247 iend + decoded_length, 1);
3248
3249 /* If point was outside of the region, restore it exactly; else just
3250 move to the beginning of the region. */
3251 if (old_pos >= XFASTINT (end))
3252 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3253 else if (old_pos > XFASTINT (beg))
3254 old_pos = XFASTINT (beg);
3255 SET_PT (old_pos > ZV ? ZV : old_pos);
3256
3257 return make_number (inserted_chars);
3258 }
3259
3260 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3261 1, 1, 0,
3262 doc: /* Base64-decode STRING and return the result. */)
3263 (Lisp_Object string)
3264 {
3265 char *decoded;
3266 ptrdiff_t length, decoded_length;
3267 Lisp_Object decoded_string;
3268 USE_SAFE_ALLOCA;
3269
3270 CHECK_STRING (string);
3271
3272 length = SBYTES (string);
3273 /* We need to allocate enough room for decoding the text. */
3274 decoded = SAFE_ALLOCA (length);
3275
3276 /* The decoded result should be unibyte. */
3277 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3278 0, NULL);
3279 if (decoded_length > length)
3280 emacs_abort ();
3281 else if (decoded_length >= 0)
3282 decoded_string = make_unibyte_string (decoded, decoded_length);
3283 else
3284 decoded_string = Qnil;
3285
3286 SAFE_FREE ();
3287 if (!STRINGP (decoded_string))
3288 error ("Invalid base64 data");
3289
3290 return decoded_string;
3291 }
3292
3293 /* Base64-decode the data at FROM of LENGTH bytes into TO. If
3294 MULTIBYTE, the decoded result should be in multibyte
3295 form. If NCHARS_RETURN is not NULL, store the number of produced
3296 characters in *NCHARS_RETURN. */
3297
3298 static ptrdiff_t
3299 base64_decode_1 (const char *from, char *to, ptrdiff_t length,
3300 bool multibyte, ptrdiff_t *nchars_return)
3301 {
3302 ptrdiff_t i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3303 char *e = to;
3304 unsigned char c;
3305 unsigned long value;
3306 ptrdiff_t nchars = 0;
3307
3308 while (1)
3309 {
3310 /* Process first byte of a quadruplet. */
3311
3312 READ_QUADRUPLET_BYTE (e-to);
3313
3314 if (!IS_BASE64 (c))
3315 return -1;
3316 value = base64_char_to_value[c] << 18;
3317
3318 /* Process second byte of a quadruplet. */
3319
3320 READ_QUADRUPLET_BYTE (-1);
3321
3322 if (!IS_BASE64 (c))
3323 return -1;
3324 value |= base64_char_to_value[c] << 12;
3325
3326 c = (unsigned char) (value >> 16);
3327 if (multibyte && c >= 128)
3328 e += BYTE8_STRING (c, e);
3329 else
3330 *e++ = c;
3331 nchars++;
3332
3333 /* Process third byte of a quadruplet. */
3334
3335 READ_QUADRUPLET_BYTE (-1);
3336
3337 if (c == '=')
3338 {
3339 READ_QUADRUPLET_BYTE (-1);
3340
3341 if (c != '=')
3342 return -1;
3343 continue;
3344 }
3345
3346 if (!IS_BASE64 (c))
3347 return -1;
3348 value |= base64_char_to_value[c] << 6;
3349
3350 c = (unsigned char) (0xff & value >> 8);
3351 if (multibyte && c >= 128)
3352 e += BYTE8_STRING (c, e);
3353 else
3354 *e++ = c;
3355 nchars++;
3356
3357 /* Process fourth byte of a quadruplet. */
3358
3359 READ_QUADRUPLET_BYTE (-1);
3360
3361 if (c == '=')
3362 continue;
3363
3364 if (!IS_BASE64 (c))
3365 return -1;
3366 value |= base64_char_to_value[c];
3367
3368 c = (unsigned char) (0xff & value);
3369 if (multibyte && c >= 128)
3370 e += BYTE8_STRING (c, e);
3371 else
3372 *e++ = c;
3373 nchars++;
3374 }
3375 }
3376
3377
3378 \f
3379 /***********************************************************************
3380 ***** *****
3381 ***** Hash Tables *****
3382 ***** *****
3383 ***********************************************************************/
3384
3385 /* Implemented by gerd@gnu.org. This hash table implementation was
3386 inspired by CMUCL hash tables. */
3387
3388 /* Ideas:
3389
3390 1. For small tables, association lists are probably faster than
3391 hash tables because they have lower overhead.
3392
3393 For uses of hash tables where the O(1) behavior of table
3394 operations is not a requirement, it might therefore be a good idea
3395 not to hash. Instead, we could just do a linear search in the
3396 key_and_value vector of the hash table. This could be done
3397 if a `:linear-search t' argument is given to make-hash-table. */
3398
3399
3400 /* The list of all weak hash tables. Don't staticpro this one. */
3401
3402 static struct Lisp_Hash_Table *weak_hash_tables;
3403
3404 /* Various symbols. */
3405
3406 static Lisp_Object Qhash_table_p;
3407 static Lisp_Object Qkey, Qvalue, Qeql;
3408 Lisp_Object Qeq, Qequal;
3409 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3410 static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3411
3412 \f
3413 /***********************************************************************
3414 Utilities
3415 ***********************************************************************/
3416
3417 static void
3418 CHECK_HASH_TABLE (Lisp_Object x)
3419 {
3420 CHECK_TYPE (HASH_TABLE_P (x), Qhash_table_p, x);
3421 }
3422
3423 static void
3424 set_hash_key_and_value (struct Lisp_Hash_Table *h, Lisp_Object key_and_value)
3425 {
3426 h->key_and_value = key_and_value;
3427 }
3428 static void
3429 set_hash_next (struct Lisp_Hash_Table *h, Lisp_Object next)
3430 {
3431 h->next = next;
3432 }
3433 static void
3434 set_hash_next_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3435 {
3436 gc_aset (h->next, idx, val);
3437 }
3438 static void
3439 set_hash_hash (struct Lisp_Hash_Table *h, Lisp_Object hash)
3440 {
3441 h->hash = hash;
3442 }
3443 static void
3444 set_hash_hash_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3445 {
3446 gc_aset (h->hash, idx, val);
3447 }
3448 static void
3449 set_hash_index (struct Lisp_Hash_Table *h, Lisp_Object index)
3450 {
3451 h->index = index;
3452 }
3453 static void
3454 set_hash_index_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3455 {
3456 gc_aset (h->index, idx, val);
3457 }
3458
3459 /* If OBJ is a Lisp hash table, return a pointer to its struct
3460 Lisp_Hash_Table. Otherwise, signal an error. */
3461
3462 static struct Lisp_Hash_Table *
3463 check_hash_table (Lisp_Object obj)
3464 {
3465 CHECK_HASH_TABLE (obj);
3466 return XHASH_TABLE (obj);
3467 }
3468
3469
3470 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3471 number. A number is "almost" a prime number if it is not divisible
3472 by any integer in the range 2 .. (NEXT_ALMOST_PRIME_LIMIT - 1). */
3473
3474 EMACS_INT
3475 next_almost_prime (EMACS_INT n)
3476 {
3477 verify (NEXT_ALMOST_PRIME_LIMIT == 11);
3478 for (n |= 1; ; n += 2)
3479 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3480 return n;
3481 }
3482
3483
3484 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3485 which USED[I] is non-zero. If found at index I in ARGS, set
3486 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3487 0. This function is used to extract a keyword/argument pair from
3488 a DEFUN parameter list. */
3489
3490 static ptrdiff_t
3491 get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3492 {
3493 ptrdiff_t i;
3494
3495 for (i = 1; i < nargs; i++)
3496 if (!used[i - 1] && EQ (args[i - 1], key))
3497 {
3498 used[i - 1] = 1;
3499 used[i] = 1;
3500 return i;
3501 }
3502
3503 return 0;
3504 }
3505
3506
3507 /* Return a Lisp vector which has the same contents as VEC but has
3508 at least INCR_MIN more entries, where INCR_MIN is positive.
3509 If NITEMS_MAX is not -1, do not grow the vector to be any larger
3510 than NITEMS_MAX. Entries in the resulting
3511 vector that are not copied from VEC are set to nil. */
3512
3513 Lisp_Object
3514 larger_vector (Lisp_Object vec, ptrdiff_t incr_min, ptrdiff_t nitems_max)
3515 {
3516 struct Lisp_Vector *v;
3517 ptrdiff_t i, incr, incr_max, old_size, new_size;
3518 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / sizeof *v->contents;
3519 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
3520 ? nitems_max : C_language_max);
3521 eassert (VECTORP (vec));
3522 eassert (0 < incr_min && -1 <= nitems_max);
3523 old_size = ASIZE (vec);
3524 incr_max = n_max - old_size;
3525 incr = max (incr_min, min (old_size >> 1, incr_max));
3526 if (incr_max < incr)
3527 memory_full (SIZE_MAX);
3528 new_size = old_size + incr;
3529 v = allocate_vector (new_size);
3530 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3531 for (i = old_size; i < new_size; ++i)
3532 v->contents[i] = Qnil;
3533 XSETVECTOR (vec, v);
3534 return vec;
3535 }
3536
3537
3538 /***********************************************************************
3539 Low-level Functions
3540 ***********************************************************************/
3541
3542 static struct hash_table_test hashtest_eq;
3543 struct hash_table_test hashtest_eql, hashtest_equal;
3544
3545 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3546 HASH2 in hash table H using `eql'. Value is true if KEY1 and
3547 KEY2 are the same. */
3548
3549 static bool
3550 cmpfn_eql (struct hash_table_test *ht,
3551 Lisp_Object key1,
3552 Lisp_Object key2)
3553 {
3554 return (FLOATP (key1)
3555 && FLOATP (key2)
3556 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3557 }
3558
3559
3560 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3561 HASH2 in hash table H using `equal'. Value is true if KEY1 and
3562 KEY2 are the same. */
3563
3564 static bool
3565 cmpfn_equal (struct hash_table_test *ht,
3566 Lisp_Object key1,
3567 Lisp_Object key2)
3568 {
3569 return !NILP (Fequal (key1, key2));
3570 }
3571
3572
3573 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3574 HASH2 in hash table H using H->user_cmp_function. Value is true
3575 if KEY1 and KEY2 are the same. */
3576
3577 static bool
3578 cmpfn_user_defined (struct hash_table_test *ht,
3579 Lisp_Object key1,
3580 Lisp_Object key2)
3581 {
3582 Lisp_Object args[3];
3583
3584 args[0] = ht->user_cmp_function;
3585 args[1] = key1;
3586 args[2] = key2;
3587 return !NILP (Ffuncall (3, args));
3588 }
3589
3590
3591 /* Value is a hash code for KEY for use in hash table H which uses
3592 `eq' to compare keys. The hash code returned is guaranteed to fit
3593 in a Lisp integer. */
3594
3595 static EMACS_UINT
3596 hashfn_eq (struct hash_table_test *ht, Lisp_Object key)
3597 {
3598 EMACS_UINT hash = XHASH (key) ^ XTYPE (key);
3599 return hash;
3600 }
3601
3602 /* Value is a hash code for KEY for use in hash table H which uses
3603 `eql' to compare keys. The hash code returned is guaranteed to fit
3604 in a Lisp integer. */
3605
3606 static EMACS_UINT
3607 hashfn_eql (struct hash_table_test *ht, Lisp_Object key)
3608 {
3609 EMACS_UINT hash;
3610 if (FLOATP (key))
3611 hash = sxhash (key, 0);
3612 else
3613 hash = XHASH (key) ^ XTYPE (key);
3614 return hash;
3615 }
3616
3617 /* Value is a hash code for KEY for use in hash table H which uses
3618 `equal' to compare keys. The hash code returned is guaranteed to fit
3619 in a Lisp integer. */
3620
3621 static EMACS_UINT
3622 hashfn_equal (struct hash_table_test *ht, Lisp_Object key)
3623 {
3624 EMACS_UINT hash = sxhash (key, 0);
3625 return hash;
3626 }
3627
3628 /* Value is a hash code for KEY for use in hash table H which uses as
3629 user-defined function to compare keys. The hash code returned is
3630 guaranteed to fit in a Lisp integer. */
3631
3632 static EMACS_UINT
3633 hashfn_user_defined (struct hash_table_test *ht, Lisp_Object key)
3634 {
3635 Lisp_Object args[2], hash;
3636
3637 args[0] = ht->user_hash_function;
3638 args[1] = key;
3639 hash = Ffuncall (2, args);
3640 return hashfn_eq (ht, hash);
3641 }
3642
3643 /* An upper bound on the size of a hash table index. It must fit in
3644 ptrdiff_t and be a valid Emacs fixnum. */
3645 #define INDEX_SIZE_BOUND \
3646 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, PTRDIFF_MAX / word_size))
3647
3648 /* Create and initialize a new hash table.
3649
3650 TEST specifies the test the hash table will use to compare keys.
3651 It must be either one of the predefined tests `eq', `eql' or
3652 `equal' or a symbol denoting a user-defined test named TEST with
3653 test and hash functions USER_TEST and USER_HASH.
3654
3655 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3656
3657 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3658 new size when it becomes full is computed by adding REHASH_SIZE to
3659 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3660 table's new size is computed by multiplying its old size with
3661 REHASH_SIZE.
3662
3663 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3664 be resized when the ratio of (number of entries in the table) /
3665 (table size) is >= REHASH_THRESHOLD.
3666
3667 WEAK specifies the weakness of the table. If non-nil, it must be
3668 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3669
3670 Lisp_Object
3671 make_hash_table (struct hash_table_test test,
3672 Lisp_Object size, Lisp_Object rehash_size,
3673 Lisp_Object rehash_threshold, Lisp_Object weak)
3674 {
3675 struct Lisp_Hash_Table *h;
3676 Lisp_Object table;
3677 EMACS_INT index_size, sz;
3678 ptrdiff_t i;
3679 double index_float;
3680
3681 /* Preconditions. */
3682 eassert (SYMBOLP (test.name));
3683 eassert (INTEGERP (size) && XINT (size) >= 0);
3684 eassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3685 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3686 eassert (FLOATP (rehash_threshold)
3687 && 0 < XFLOAT_DATA (rehash_threshold)
3688 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3689
3690 if (XFASTINT (size) == 0)
3691 size = make_number (1);
3692
3693 sz = XFASTINT (size);
3694 index_float = sz / XFLOAT_DATA (rehash_threshold);
3695 index_size = (index_float < INDEX_SIZE_BOUND + 1
3696 ? next_almost_prime (index_float)
3697 : INDEX_SIZE_BOUND + 1);
3698 if (INDEX_SIZE_BOUND < max (index_size, 2 * sz))
3699 error ("Hash table too large");
3700
3701 /* Allocate a table and initialize it. */
3702 h = allocate_hash_table ();
3703
3704 /* Initialize hash table slots. */
3705 h->test = test;
3706 h->weak = weak;
3707 h->rehash_threshold = rehash_threshold;
3708 h->rehash_size = rehash_size;
3709 h->count = 0;
3710 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3711 h->hash = Fmake_vector (size, Qnil);
3712 h->next = Fmake_vector (size, Qnil);
3713 h->index = Fmake_vector (make_number (index_size), Qnil);
3714
3715 /* Set up the free list. */
3716 for (i = 0; i < sz - 1; ++i)
3717 set_hash_next_slot (h, i, make_number (i + 1));
3718 h->next_free = make_number (0);
3719
3720 XSET_HASH_TABLE (table, h);
3721 eassert (HASH_TABLE_P (table));
3722 eassert (XHASH_TABLE (table) == h);
3723
3724 /* Maybe add this hash table to the list of all weak hash tables. */
3725 if (NILP (h->weak))
3726 h->next_weak = NULL;
3727 else
3728 {
3729 h->next_weak = weak_hash_tables;
3730 weak_hash_tables = h;
3731 }
3732
3733 return table;
3734 }
3735
3736
3737 /* Return a copy of hash table H1. Keys and values are not copied,
3738 only the table itself is. */
3739
3740 static Lisp_Object
3741 copy_hash_table (struct Lisp_Hash_Table *h1)
3742 {
3743 Lisp_Object table;
3744 struct Lisp_Hash_Table *h2;
3745
3746 h2 = allocate_hash_table ();
3747 *h2 = *h1;
3748 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3749 h2->hash = Fcopy_sequence (h1->hash);
3750 h2->next = Fcopy_sequence (h1->next);
3751 h2->index = Fcopy_sequence (h1->index);
3752 XSET_HASH_TABLE (table, h2);
3753
3754 /* Maybe add this hash table to the list of all weak hash tables. */
3755 if (!NILP (h2->weak))
3756 {
3757 h2->next_weak = weak_hash_tables;
3758 weak_hash_tables = h2;
3759 }
3760
3761 return table;
3762 }
3763
3764
3765 /* Resize hash table H if it's too full. If H cannot be resized
3766 because it's already too large, throw an error. */
3767
3768 static void
3769 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3770 {
3771 if (NILP (h->next_free))
3772 {
3773 ptrdiff_t old_size = HASH_TABLE_SIZE (h);
3774 EMACS_INT new_size, index_size, nsize;
3775 ptrdiff_t i;
3776 double index_float;
3777
3778 if (INTEGERP (h->rehash_size))
3779 new_size = old_size + XFASTINT (h->rehash_size);
3780 else
3781 {
3782 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3783 if (float_new_size < INDEX_SIZE_BOUND + 1)
3784 {
3785 new_size = float_new_size;
3786 if (new_size <= old_size)
3787 new_size = old_size + 1;
3788 }
3789 else
3790 new_size = INDEX_SIZE_BOUND + 1;
3791 }
3792 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3793 index_size = (index_float < INDEX_SIZE_BOUND + 1
3794 ? next_almost_prime (index_float)
3795 : INDEX_SIZE_BOUND + 1);
3796 nsize = max (index_size, 2 * new_size);
3797 if (INDEX_SIZE_BOUND < nsize)
3798 error ("Hash table too large to resize");
3799
3800 #ifdef ENABLE_CHECKING
3801 if (HASH_TABLE_P (Vpurify_flag)
3802 && XHASH_TABLE (Vpurify_flag) == h)
3803 {
3804 Lisp_Object args[2];
3805 args[0] = build_string ("Growing hash table to: %d");
3806 args[1] = make_number (new_size);
3807 Fmessage (2, args);
3808 }
3809 #endif
3810
3811 set_hash_key_and_value (h, larger_vector (h->key_and_value,
3812 2 * (new_size - old_size), -1));
3813 set_hash_next (h, larger_vector (h->next, new_size - old_size, -1));
3814 set_hash_hash (h, larger_vector (h->hash, new_size - old_size, -1));
3815 set_hash_index (h, Fmake_vector (make_number (index_size), Qnil));
3816
3817 /* Update the free list. Do it so that new entries are added at
3818 the end of the free list. This makes some operations like
3819 maphash faster. */
3820 for (i = old_size; i < new_size - 1; ++i)
3821 set_hash_next_slot (h, i, make_number (i + 1));
3822
3823 if (!NILP (h->next_free))
3824 {
3825 Lisp_Object last, next;
3826
3827 last = h->next_free;
3828 while (next = HASH_NEXT (h, XFASTINT (last)),
3829 !NILP (next))
3830 last = next;
3831
3832 set_hash_next_slot (h, XFASTINT (last), make_number (old_size));
3833 }
3834 else
3835 XSETFASTINT (h->next_free, old_size);
3836
3837 /* Rehash. */
3838 for (i = 0; i < old_size; ++i)
3839 if (!NILP (HASH_HASH (h, i)))
3840 {
3841 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3842 ptrdiff_t start_of_bucket = hash_code % ASIZE (h->index);
3843 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3844 set_hash_index_slot (h, start_of_bucket, make_number (i));
3845 }
3846 }
3847 }
3848
3849
3850 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3851 the hash code of KEY. Value is the index of the entry in H
3852 matching KEY, or -1 if not found. */
3853
3854 ptrdiff_t
3855 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3856 {
3857 EMACS_UINT hash_code;
3858 ptrdiff_t start_of_bucket;
3859 Lisp_Object idx;
3860
3861 hash_code = h->test.hashfn (&h->test, key);
3862 eassert ((hash_code & ~INTMASK) == 0);
3863 if (hash)
3864 *hash = hash_code;
3865
3866 start_of_bucket = hash_code % ASIZE (h->index);
3867 idx = HASH_INDEX (h, start_of_bucket);
3868
3869 /* We need not gcpro idx since it's either an integer or nil. */
3870 while (!NILP (idx))
3871 {
3872 ptrdiff_t i = XFASTINT (idx);
3873 if (EQ (key, HASH_KEY (h, i))
3874 || (h->test.cmpfn
3875 && hash_code == XUINT (HASH_HASH (h, i))
3876 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
3877 break;
3878 idx = HASH_NEXT (h, i);
3879 }
3880
3881 return NILP (idx) ? -1 : XFASTINT (idx);
3882 }
3883
3884
3885 /* Put an entry into hash table H that associates KEY with VALUE.
3886 HASH is a previously computed hash code of KEY.
3887 Value is the index of the entry in H matching KEY. */
3888
3889 ptrdiff_t
3890 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3891 EMACS_UINT hash)
3892 {
3893 ptrdiff_t start_of_bucket, i;
3894
3895 eassert ((hash & ~INTMASK) == 0);
3896
3897 /* Increment count after resizing because resizing may fail. */
3898 maybe_resize_hash_table (h);
3899 h->count++;
3900
3901 /* Store key/value in the key_and_value vector. */
3902 i = XFASTINT (h->next_free);
3903 h->next_free = HASH_NEXT (h, i);
3904 set_hash_key_slot (h, i, key);
3905 set_hash_value_slot (h, i, value);
3906
3907 /* Remember its hash code. */
3908 set_hash_hash_slot (h, i, make_number (hash));
3909
3910 /* Add new entry to its collision chain. */
3911 start_of_bucket = hash % ASIZE (h->index);
3912 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3913 set_hash_index_slot (h, start_of_bucket, make_number (i));
3914 return i;
3915 }
3916
3917
3918 /* Remove the entry matching KEY from hash table H, if there is one. */
3919
3920 static void
3921 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3922 {
3923 EMACS_UINT hash_code;
3924 ptrdiff_t start_of_bucket;
3925 Lisp_Object idx, prev;
3926
3927 hash_code = h->test.hashfn (&h->test, key);
3928 eassert ((hash_code & ~INTMASK) == 0);
3929 start_of_bucket = hash_code % ASIZE (h->index);
3930 idx = HASH_INDEX (h, start_of_bucket);
3931 prev = Qnil;
3932
3933 /* We need not gcpro idx, prev since they're either integers or nil. */
3934 while (!NILP (idx))
3935 {
3936 ptrdiff_t i = XFASTINT (idx);
3937
3938 if (EQ (key, HASH_KEY (h, i))
3939 || (h->test.cmpfn
3940 && hash_code == XUINT (HASH_HASH (h, i))
3941 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
3942 {
3943 /* Take entry out of collision chain. */
3944 if (NILP (prev))
3945 set_hash_index_slot (h, start_of_bucket, HASH_NEXT (h, i));
3946 else
3947 set_hash_next_slot (h, XFASTINT (prev), HASH_NEXT (h, i));
3948
3949 /* Clear slots in key_and_value and add the slots to
3950 the free list. */
3951 set_hash_key_slot (h, i, Qnil);
3952 set_hash_value_slot (h, i, Qnil);
3953 set_hash_hash_slot (h, i, Qnil);
3954 set_hash_next_slot (h, i, h->next_free);
3955 h->next_free = make_number (i);
3956 h->count--;
3957 eassert (h->count >= 0);
3958 break;
3959 }
3960 else
3961 {
3962 prev = idx;
3963 idx = HASH_NEXT (h, i);
3964 }
3965 }
3966 }
3967
3968
3969 /* Clear hash table H. */
3970
3971 static void
3972 hash_clear (struct Lisp_Hash_Table *h)
3973 {
3974 if (h->count > 0)
3975 {
3976 ptrdiff_t i, size = HASH_TABLE_SIZE (h);
3977
3978 for (i = 0; i < size; ++i)
3979 {
3980 set_hash_next_slot (h, i, i < size - 1 ? make_number (i + 1) : Qnil);
3981 set_hash_key_slot (h, i, Qnil);
3982 set_hash_value_slot (h, i, Qnil);
3983 set_hash_hash_slot (h, i, Qnil);
3984 }
3985
3986 for (i = 0; i < ASIZE (h->index); ++i)
3987 ASET (h->index, i, Qnil);
3988
3989 h->next_free = make_number (0);
3990 h->count = 0;
3991 }
3992 }
3993
3994
3995 \f
3996 /************************************************************************
3997 Weak Hash Tables
3998 ************************************************************************/
3999
4000 /* Sweep weak hash table H. REMOVE_ENTRIES_P means remove
4001 entries from the table that don't survive the current GC.
4002 !REMOVE_ENTRIES_P means mark entries that are in use. Value is
4003 true if anything was marked. */
4004
4005 static bool
4006 sweep_weak_table (struct Lisp_Hash_Table *h, bool remove_entries_p)
4007 {
4008 ptrdiff_t bucket, n;
4009 bool marked;
4010
4011 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
4012 marked = 0;
4013
4014 for (bucket = 0; bucket < n; ++bucket)
4015 {
4016 Lisp_Object idx, next, prev;
4017
4018 /* Follow collision chain, removing entries that
4019 don't survive this garbage collection. */
4020 prev = Qnil;
4021 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
4022 {
4023 ptrdiff_t i = XFASTINT (idx);
4024 bool key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
4025 bool value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
4026 bool remove_p;
4027
4028 if (EQ (h->weak, Qkey))
4029 remove_p = !key_known_to_survive_p;
4030 else if (EQ (h->weak, Qvalue))
4031 remove_p = !value_known_to_survive_p;
4032 else if (EQ (h->weak, Qkey_or_value))
4033 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
4034 else if (EQ (h->weak, Qkey_and_value))
4035 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
4036 else
4037 emacs_abort ();
4038
4039 next = HASH_NEXT (h, i);
4040
4041 if (remove_entries_p)
4042 {
4043 if (remove_p)
4044 {
4045 /* Take out of collision chain. */
4046 if (NILP (prev))
4047 set_hash_index_slot (h, bucket, next);
4048 else
4049 set_hash_next_slot (h, XFASTINT (prev), next);
4050
4051 /* Add to free list. */
4052 set_hash_next_slot (h, i, h->next_free);
4053 h->next_free = idx;
4054
4055 /* Clear key, value, and hash. */
4056 set_hash_key_slot (h, i, Qnil);
4057 set_hash_value_slot (h, i, Qnil);
4058 set_hash_hash_slot (h, i, Qnil);
4059
4060 h->count--;
4061 }
4062 else
4063 {
4064 prev = idx;
4065 }
4066 }
4067 else
4068 {
4069 if (!remove_p)
4070 {
4071 /* Make sure key and value survive. */
4072 if (!key_known_to_survive_p)
4073 {
4074 mark_object (HASH_KEY (h, i));
4075 marked = 1;
4076 }
4077
4078 if (!value_known_to_survive_p)
4079 {
4080 mark_object (HASH_VALUE (h, i));
4081 marked = 1;
4082 }
4083 }
4084 }
4085 }
4086 }
4087
4088 return marked;
4089 }
4090
4091 /* Remove elements from weak hash tables that don't survive the
4092 current garbage collection. Remove weak tables that don't survive
4093 from Vweak_hash_tables. Called from gc_sweep. */
4094
4095 NO_INLINE /* For better stack traces */
4096 void
4097 sweep_weak_hash_tables (void)
4098 {
4099 struct Lisp_Hash_Table *h, *used, *next;
4100 bool marked;
4101
4102 /* Mark all keys and values that are in use. Keep on marking until
4103 there is no more change. This is necessary for cases like
4104 value-weak table A containing an entry X -> Y, where Y is used in a
4105 key-weak table B, Z -> Y. If B comes after A in the list of weak
4106 tables, X -> Y might be removed from A, although when looking at B
4107 one finds that it shouldn't. */
4108 do
4109 {
4110 marked = 0;
4111 for (h = weak_hash_tables; h; h = h->next_weak)
4112 {
4113 if (h->header.size & ARRAY_MARK_FLAG)
4114 marked |= sweep_weak_table (h, 0);
4115 }
4116 }
4117 while (marked);
4118
4119 /* Remove tables and entries that aren't used. */
4120 for (h = weak_hash_tables, used = NULL; h; h = next)
4121 {
4122 next = h->next_weak;
4123
4124 if (h->header.size & ARRAY_MARK_FLAG)
4125 {
4126 /* TABLE is marked as used. Sweep its contents. */
4127 if (h->count > 0)
4128 sweep_weak_table (h, 1);
4129
4130 /* Add table to the list of used weak hash tables. */
4131 h->next_weak = used;
4132 used = h;
4133 }
4134 }
4135
4136 weak_hash_tables = used;
4137 }
4138
4139
4140 \f
4141 /***********************************************************************
4142 Hash Code Computation
4143 ***********************************************************************/
4144
4145 /* Maximum depth up to which to dive into Lisp structures. */
4146
4147 #define SXHASH_MAX_DEPTH 3
4148
4149 /* Maximum length up to which to take list and vector elements into
4150 account. */
4151
4152 #define SXHASH_MAX_LEN 7
4153
4154 /* Return a hash for string PTR which has length LEN. The hash value
4155 can be any EMACS_UINT value. */
4156
4157 EMACS_UINT
4158 hash_string (char const *ptr, ptrdiff_t len)
4159 {
4160 char const *p = ptr;
4161 char const *end = p + len;
4162 unsigned char c;
4163 EMACS_UINT hash = 0;
4164
4165 while (p != end)
4166 {
4167 c = *p++;
4168 hash = sxhash_combine (hash, c);
4169 }
4170
4171 return hash;
4172 }
4173
4174 /* Return a hash for string PTR which has length LEN. The hash
4175 code returned is guaranteed to fit in a Lisp integer. */
4176
4177 static EMACS_UINT
4178 sxhash_string (char const *ptr, ptrdiff_t len)
4179 {
4180 EMACS_UINT hash = hash_string (ptr, len);
4181 return SXHASH_REDUCE (hash);
4182 }
4183
4184 /* Return a hash for the floating point value VAL. */
4185
4186 static EMACS_UINT
4187 sxhash_float (double val)
4188 {
4189 EMACS_UINT hash = 0;
4190 enum {
4191 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4192 + (sizeof val % sizeof hash != 0))
4193 };
4194 union {
4195 double val;
4196 EMACS_UINT word[WORDS_PER_DOUBLE];
4197 } u;
4198 int i;
4199 u.val = val;
4200 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4201 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4202 hash = sxhash_combine (hash, u.word[i]);
4203 return SXHASH_REDUCE (hash);
4204 }
4205
4206 /* Return a hash for list LIST. DEPTH is the current depth in the
4207 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4208
4209 static EMACS_UINT
4210 sxhash_list (Lisp_Object list, int depth)
4211 {
4212 EMACS_UINT hash = 0;
4213 int i;
4214
4215 if (depth < SXHASH_MAX_DEPTH)
4216 for (i = 0;
4217 CONSP (list) && i < SXHASH_MAX_LEN;
4218 list = XCDR (list), ++i)
4219 {
4220 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4221 hash = sxhash_combine (hash, hash2);
4222 }
4223
4224 if (!NILP (list))
4225 {
4226 EMACS_UINT hash2 = sxhash (list, depth + 1);
4227 hash = sxhash_combine (hash, hash2);
4228 }
4229
4230 return SXHASH_REDUCE (hash);
4231 }
4232
4233
4234 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4235 the Lisp structure. */
4236
4237 static EMACS_UINT
4238 sxhash_vector (Lisp_Object vec, int depth)
4239 {
4240 EMACS_UINT hash = ASIZE (vec);
4241 int i, n;
4242
4243 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4244 for (i = 0; i < n; ++i)
4245 {
4246 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4247 hash = sxhash_combine (hash, hash2);
4248 }
4249
4250 return SXHASH_REDUCE (hash);
4251 }
4252
4253 /* Return a hash for bool-vector VECTOR. */
4254
4255 static EMACS_UINT
4256 sxhash_bool_vector (Lisp_Object vec)
4257 {
4258 EMACS_INT size = bool_vector_size (vec);
4259 EMACS_UINT hash = size;
4260 int i, n;
4261
4262 n = min (SXHASH_MAX_LEN, bool_vector_words (size));
4263 for (i = 0; i < n; ++i)
4264 hash = sxhash_combine (hash, bool_vector_data (vec)[i]);
4265
4266 return SXHASH_REDUCE (hash);
4267 }
4268
4269
4270 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4271 structure. Value is an unsigned integer clipped to INTMASK. */
4272
4273 EMACS_UINT
4274 sxhash (Lisp_Object obj, int depth)
4275 {
4276 EMACS_UINT hash;
4277
4278 if (depth > SXHASH_MAX_DEPTH)
4279 return 0;
4280
4281 switch (XTYPE (obj))
4282 {
4283 case_Lisp_Int:
4284 hash = XUINT (obj);
4285 break;
4286
4287 case Lisp_Misc:
4288 hash = XHASH (obj);
4289 break;
4290
4291 case Lisp_Symbol:
4292 obj = SYMBOL_NAME (obj);
4293 /* Fall through. */
4294
4295 case Lisp_String:
4296 hash = sxhash_string (SSDATA (obj), SBYTES (obj));
4297 break;
4298
4299 /* This can be everything from a vector to an overlay. */
4300 case Lisp_Vectorlike:
4301 if (VECTORP (obj))
4302 /* According to the CL HyperSpec, two arrays are equal only if
4303 they are `eq', except for strings and bit-vectors. In
4304 Emacs, this works differently. We have to compare element
4305 by element. */
4306 hash = sxhash_vector (obj, depth);
4307 else if (BOOL_VECTOR_P (obj))
4308 hash = sxhash_bool_vector (obj);
4309 else
4310 /* Others are `equal' if they are `eq', so let's take their
4311 address as hash. */
4312 hash = XHASH (obj);
4313 break;
4314
4315 case Lisp_Cons:
4316 hash = sxhash_list (obj, depth);
4317 break;
4318
4319 case Lisp_Float:
4320 hash = sxhash_float (XFLOAT_DATA (obj));
4321 break;
4322
4323 default:
4324 emacs_abort ();
4325 }
4326
4327 return hash;
4328 }
4329
4330
4331 \f
4332 /***********************************************************************
4333 Lisp Interface
4334 ***********************************************************************/
4335
4336
4337 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4338 doc: /* Compute a hash code for OBJ and return it as integer. */)
4339 (Lisp_Object obj)
4340 {
4341 EMACS_UINT hash = sxhash (obj, 0);
4342 return make_number (hash);
4343 }
4344
4345
4346 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4347 doc: /* Create and return a new hash table.
4348
4349 Arguments are specified as keyword/argument pairs. The following
4350 arguments are defined:
4351
4352 :test TEST -- TEST must be a symbol that specifies how to compare
4353 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4354 `equal'. User-supplied test and hash functions can be specified via
4355 `define-hash-table-test'.
4356
4357 :size SIZE -- A hint as to how many elements will be put in the table.
4358 Default is 65.
4359
4360 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4361 fills up. If REHASH-SIZE is an integer, increase the size by that
4362 amount. If it is a float, it must be > 1.0, and the new size is the
4363 old size multiplied by that factor. Default is 1.5.
4364
4365 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4366 Resize the hash table when the ratio (number of entries / table size)
4367 is greater than or equal to THRESHOLD. Default is 0.8.
4368
4369 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4370 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4371 returned is a weak table. Key/value pairs are removed from a weak
4372 hash table when there are no non-weak references pointing to their
4373 key, value, one of key or value, or both key and value, depending on
4374 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4375 is nil.
4376
4377 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4378 (ptrdiff_t nargs, Lisp_Object *args)
4379 {
4380 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4381 struct hash_table_test testdesc;
4382 char *used;
4383 ptrdiff_t i;
4384
4385 /* The vector `used' is used to keep track of arguments that
4386 have been consumed. */
4387 used = alloca (nargs * sizeof *used);
4388 memset (used, 0, nargs * sizeof *used);
4389
4390 /* See if there's a `:test TEST' among the arguments. */
4391 i = get_key_arg (QCtest, nargs, args, used);
4392 test = i ? args[i] : Qeql;
4393 if (EQ (test, Qeq))
4394 testdesc = hashtest_eq;
4395 else if (EQ (test, Qeql))
4396 testdesc = hashtest_eql;
4397 else if (EQ (test, Qequal))
4398 testdesc = hashtest_equal;
4399 else
4400 {
4401 /* See if it is a user-defined test. */
4402 Lisp_Object prop;
4403
4404 prop = Fget (test, Qhash_table_test);
4405 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4406 signal_error ("Invalid hash table test", test);
4407 testdesc.name = test;
4408 testdesc.user_cmp_function = XCAR (prop);
4409 testdesc.user_hash_function = XCAR (XCDR (prop));
4410 testdesc.hashfn = hashfn_user_defined;
4411 testdesc.cmpfn = cmpfn_user_defined;
4412 }
4413
4414 /* See if there's a `:size SIZE' argument. */
4415 i = get_key_arg (QCsize, nargs, args, used);
4416 size = i ? args[i] : Qnil;
4417 if (NILP (size))
4418 size = make_number (DEFAULT_HASH_SIZE);
4419 else if (!INTEGERP (size) || XINT (size) < 0)
4420 signal_error ("Invalid hash table size", size);
4421
4422 /* Look for `:rehash-size SIZE'. */
4423 i = get_key_arg (QCrehash_size, nargs, args, used);
4424 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4425 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4426 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4427 signal_error ("Invalid hash table rehash size", rehash_size);
4428
4429 /* Look for `:rehash-threshold THRESHOLD'. */
4430 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4431 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4432 if (! (FLOATP (rehash_threshold)
4433 && 0 < XFLOAT_DATA (rehash_threshold)
4434 && XFLOAT_DATA (rehash_threshold) <= 1))
4435 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4436
4437 /* Look for `:weakness WEAK'. */
4438 i = get_key_arg (QCweakness, nargs, args, used);
4439 weak = i ? args[i] : Qnil;
4440 if (EQ (weak, Qt))
4441 weak = Qkey_and_value;
4442 if (!NILP (weak)
4443 && !EQ (weak, Qkey)
4444 && !EQ (weak, Qvalue)
4445 && !EQ (weak, Qkey_or_value)
4446 && !EQ (weak, Qkey_and_value))
4447 signal_error ("Invalid hash table weakness", weak);
4448
4449 /* Now, all args should have been used up, or there's a problem. */
4450 for (i = 0; i < nargs; ++i)
4451 if (!used[i])
4452 signal_error ("Invalid argument list", args[i]);
4453
4454 return make_hash_table (testdesc, size, rehash_size, rehash_threshold, weak);
4455 }
4456
4457
4458 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4459 doc: /* Return a copy of hash table TABLE. */)
4460 (Lisp_Object table)
4461 {
4462 return copy_hash_table (check_hash_table (table));
4463 }
4464
4465
4466 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4467 doc: /* Return the number of elements in TABLE. */)
4468 (Lisp_Object table)
4469 {
4470 return make_number (check_hash_table (table)->count);
4471 }
4472
4473
4474 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4475 Shash_table_rehash_size, 1, 1, 0,
4476 doc: /* Return the current rehash size of TABLE. */)
4477 (Lisp_Object table)
4478 {
4479 return check_hash_table (table)->rehash_size;
4480 }
4481
4482
4483 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4484 Shash_table_rehash_threshold, 1, 1, 0,
4485 doc: /* Return the current rehash threshold of TABLE. */)
4486 (Lisp_Object table)
4487 {
4488 return check_hash_table (table)->rehash_threshold;
4489 }
4490
4491
4492 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4493 doc: /* Return the size of TABLE.
4494 The size can be used as an argument to `make-hash-table' to create
4495 a hash table than can hold as many elements as TABLE holds
4496 without need for resizing. */)
4497 (Lisp_Object table)
4498 {
4499 struct Lisp_Hash_Table *h = check_hash_table (table);
4500 return make_number (HASH_TABLE_SIZE (h));
4501 }
4502
4503
4504 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4505 doc: /* Return the test TABLE uses. */)
4506 (Lisp_Object table)
4507 {
4508 return check_hash_table (table)->test.name;
4509 }
4510
4511
4512 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4513 1, 1, 0,
4514 doc: /* Return the weakness of TABLE. */)
4515 (Lisp_Object table)
4516 {
4517 return check_hash_table (table)->weak;
4518 }
4519
4520
4521 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4522 doc: /* Return t if OBJ is a Lisp hash table object. */)
4523 (Lisp_Object obj)
4524 {
4525 return HASH_TABLE_P (obj) ? Qt : Qnil;
4526 }
4527
4528
4529 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4530 doc: /* Clear hash table TABLE and return it. */)
4531 (Lisp_Object table)
4532 {
4533 hash_clear (check_hash_table (table));
4534 /* Be compatible with XEmacs. */
4535 return table;
4536 }
4537
4538
4539 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4540 doc: /* Look up KEY in TABLE and return its associated value.
4541 If KEY is not found, return DFLT which defaults to nil. */)
4542 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4543 {
4544 struct Lisp_Hash_Table *h = check_hash_table (table);
4545 ptrdiff_t i = hash_lookup (h, key, NULL);
4546 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4547 }
4548
4549
4550 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4551 doc: /* Associate KEY with VALUE in hash table TABLE.
4552 If KEY is already present in table, replace its current value with
4553 VALUE. In any case, return VALUE. */)
4554 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4555 {
4556 struct Lisp_Hash_Table *h = check_hash_table (table);
4557 ptrdiff_t i;
4558 EMACS_UINT hash;
4559
4560 i = hash_lookup (h, key, &hash);
4561 if (i >= 0)
4562 set_hash_value_slot (h, i, value);
4563 else
4564 hash_put (h, key, value, hash);
4565
4566 return value;
4567 }
4568
4569
4570 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4571 doc: /* Remove KEY from TABLE. */)
4572 (Lisp_Object key, Lisp_Object table)
4573 {
4574 struct Lisp_Hash_Table *h = check_hash_table (table);
4575 hash_remove_from_table (h, key);
4576 return Qnil;
4577 }
4578
4579
4580 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4581 doc: /* Call FUNCTION for all entries in hash table TABLE.
4582 FUNCTION is called with two arguments, KEY and VALUE.
4583 `maphash' always returns nil. */)
4584 (Lisp_Object function, Lisp_Object table)
4585 {
4586 struct Lisp_Hash_Table *h = check_hash_table (table);
4587 Lisp_Object args[3];
4588 ptrdiff_t i;
4589
4590 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4591 if (!NILP (HASH_HASH (h, i)))
4592 {
4593 args[0] = function;
4594 args[1] = HASH_KEY (h, i);
4595 args[2] = HASH_VALUE (h, i);
4596 Ffuncall (3, args);
4597 }
4598
4599 return Qnil;
4600 }
4601
4602
4603 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4604 Sdefine_hash_table_test, 3, 3, 0,
4605 doc: /* Define a new hash table test with name NAME, a symbol.
4606
4607 In hash tables created with NAME specified as test, use TEST to
4608 compare keys, and HASH for computing hash codes of keys.
4609
4610 TEST must be a function taking two arguments and returning non-nil if
4611 both arguments are the same. HASH must be a function taking one
4612 argument and returning an object that is the hash code of the argument.
4613 It should be the case that if (eq (funcall HASH x1) (funcall HASH x2))
4614 returns nil, then (funcall TEST x1 x2) also returns nil. */)
4615 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4616 {
4617 return Fput (name, Qhash_table_test, list2 (test, hash));
4618 }
4619
4620
4621 \f
4622 /************************************************************************
4623 MD5, SHA-1, and SHA-2
4624 ************************************************************************/
4625
4626 #include "md5.h"
4627 #include "sha1.h"
4628 #include "sha256.h"
4629 #include "sha512.h"
4630
4631 /* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4632
4633 static Lisp_Object
4634 secure_hash (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start,
4635 Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror,
4636 Lisp_Object binary)
4637 {
4638 int i;
4639 ptrdiff_t size, start_char = 0, start_byte, end_char = 0, end_byte;
4640 register EMACS_INT b, e;
4641 register struct buffer *bp;
4642 EMACS_INT temp;
4643 int digest_size;
4644 void *(*hash_func) (const char *, size_t, void *);
4645 Lisp_Object digest;
4646
4647 CHECK_SYMBOL (algorithm);
4648
4649 if (STRINGP (object))
4650 {
4651 if (NILP (coding_system))
4652 {
4653 /* Decide the coding-system to encode the data with. */
4654
4655 if (STRING_MULTIBYTE (object))
4656 /* use default, we can't guess correct value */
4657 coding_system = preferred_coding_system ();
4658 else
4659 coding_system = Qraw_text;
4660 }
4661
4662 if (NILP (Fcoding_system_p (coding_system)))
4663 {
4664 /* Invalid coding system. */
4665
4666 if (!NILP (noerror))
4667 coding_system = Qraw_text;
4668 else
4669 xsignal1 (Qcoding_system_error, coding_system);
4670 }
4671
4672 if (STRING_MULTIBYTE (object))
4673 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4674
4675 size = SCHARS (object);
4676 validate_subarray (object, start, end, size, &start_char, &end_char);
4677
4678 start_byte = !start_char ? 0 : string_char_to_byte (object, start_char);
4679 end_byte = (end_char == size
4680 ? SBYTES (object)
4681 : string_char_to_byte (object, end_char));
4682 }
4683 else
4684 {
4685 struct buffer *prev = current_buffer;
4686
4687 record_unwind_current_buffer ();
4688
4689 CHECK_BUFFER (object);
4690
4691 bp = XBUFFER (object);
4692 set_buffer_internal (bp);
4693
4694 if (NILP (start))
4695 b = BEGV;
4696 else
4697 {
4698 CHECK_NUMBER_COERCE_MARKER (start);
4699 b = XINT (start);
4700 }
4701
4702 if (NILP (end))
4703 e = ZV;
4704 else
4705 {
4706 CHECK_NUMBER_COERCE_MARKER (end);
4707 e = XINT (end);
4708 }
4709
4710 if (b > e)
4711 temp = b, b = e, e = temp;
4712
4713 if (!(BEGV <= b && e <= ZV))
4714 args_out_of_range (start, end);
4715
4716 if (NILP (coding_system))
4717 {
4718 /* Decide the coding-system to encode the data with.
4719 See fileio.c:Fwrite-region */
4720
4721 if (!NILP (Vcoding_system_for_write))
4722 coding_system = Vcoding_system_for_write;
4723 else
4724 {
4725 bool force_raw_text = 0;
4726
4727 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4728 if (NILP (coding_system)
4729 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4730 {
4731 coding_system = Qnil;
4732 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4733 force_raw_text = 1;
4734 }
4735
4736 if (NILP (coding_system) && !NILP (Fbuffer_file_name (object)))
4737 {
4738 /* Check file-coding-system-alist. */
4739 Lisp_Object args[4], val;
4740
4741 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4742 args[3] = Fbuffer_file_name (object);
4743 val = Ffind_operation_coding_system (4, args);
4744 if (CONSP (val) && !NILP (XCDR (val)))
4745 coding_system = XCDR (val);
4746 }
4747
4748 if (NILP (coding_system)
4749 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4750 {
4751 /* If we still have not decided a coding system, use the
4752 default value of buffer-file-coding-system. */
4753 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4754 }
4755
4756 if (!force_raw_text
4757 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4758 /* Confirm that VAL can surely encode the current region. */
4759 coding_system = call4 (Vselect_safe_coding_system_function,
4760 make_number (b), make_number (e),
4761 coding_system, Qnil);
4762
4763 if (force_raw_text)
4764 coding_system = Qraw_text;
4765 }
4766
4767 if (NILP (Fcoding_system_p (coding_system)))
4768 {
4769 /* Invalid coding system. */
4770
4771 if (!NILP (noerror))
4772 coding_system = Qraw_text;
4773 else
4774 xsignal1 (Qcoding_system_error, coding_system);
4775 }
4776 }
4777
4778 object = make_buffer_string (b, e, 0);
4779 set_buffer_internal (prev);
4780 /* Discard the unwind protect for recovering the current
4781 buffer. */
4782 specpdl_ptr--;
4783
4784 if (STRING_MULTIBYTE (object))
4785 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4786 start_byte = 0;
4787 end_byte = SBYTES (object);
4788 }
4789
4790 if (EQ (algorithm, Qmd5))
4791 {
4792 digest_size = MD5_DIGEST_SIZE;
4793 hash_func = md5_buffer;
4794 }
4795 else if (EQ (algorithm, Qsha1))
4796 {
4797 digest_size = SHA1_DIGEST_SIZE;
4798 hash_func = sha1_buffer;
4799 }
4800 else if (EQ (algorithm, Qsha224))
4801 {
4802 digest_size = SHA224_DIGEST_SIZE;
4803 hash_func = sha224_buffer;
4804 }
4805 else if (EQ (algorithm, Qsha256))
4806 {
4807 digest_size = SHA256_DIGEST_SIZE;
4808 hash_func = sha256_buffer;
4809 }
4810 else if (EQ (algorithm, Qsha384))
4811 {
4812 digest_size = SHA384_DIGEST_SIZE;
4813 hash_func = sha384_buffer;
4814 }
4815 else if (EQ (algorithm, Qsha512))
4816 {
4817 digest_size = SHA512_DIGEST_SIZE;
4818 hash_func = sha512_buffer;
4819 }
4820 else
4821 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm)));
4822
4823 /* allocate 2 x digest_size so that it can be re-used to hold the
4824 hexified value */
4825 digest = make_uninit_string (digest_size * 2);
4826
4827 hash_func (SSDATA (object) + start_byte,
4828 end_byte - start_byte,
4829 SSDATA (digest));
4830
4831 if (NILP (binary))
4832 {
4833 unsigned char *p = SDATA (digest);
4834 for (i = digest_size - 1; i >= 0; i--)
4835 {
4836 static char const hexdigit[16] = "0123456789abcdef";
4837 int p_i = p[i];
4838 p[2 * i] = hexdigit[p_i >> 4];
4839 p[2 * i + 1] = hexdigit[p_i & 0xf];
4840 }
4841 return digest;
4842 }
4843 else
4844 return make_unibyte_string (SSDATA (digest), digest_size);
4845 }
4846
4847 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4848 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4849
4850 A message digest is a cryptographic checksum of a document, and the
4851 algorithm to calculate it is defined in RFC 1321.
4852
4853 The two optional arguments START and END are character positions
4854 specifying for which part of OBJECT the message digest should be
4855 computed. If nil or omitted, the digest is computed for the whole
4856 OBJECT.
4857
4858 The MD5 message digest is computed from the result of encoding the
4859 text in a coding system, not directly from the internal Emacs form of
4860 the text. The optional fourth argument CODING-SYSTEM specifies which
4861 coding system to encode the text with. It should be the same coding
4862 system that you used or will use when actually writing the text into a
4863 file.
4864
4865 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4866 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4867 system would be chosen by default for writing this text into a file.
4868
4869 If OBJECT is a string, the most preferred coding system (see the
4870 command `prefer-coding-system') is used.
4871
4872 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4873 guesswork fails. Normally, an error is signaled in such case. */)
4874 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4875 {
4876 return secure_hash (Qmd5, object, start, end, coding_system, noerror, Qnil);
4877 }
4878
4879 DEFUN ("secure-hash", Fsecure_hash, Ssecure_hash, 2, 5, 0,
4880 doc: /* Return the secure hash of OBJECT, a buffer or string.
4881 ALGORITHM is a symbol specifying the hash to use:
4882 md5, sha1, sha224, sha256, sha384 or sha512.
4883
4884 The two optional arguments START and END are positions specifying for
4885 which part of OBJECT to compute the hash. If nil or omitted, uses the
4886 whole OBJECT.
4887
4888 If BINARY is non-nil, returns a string in binary form. */)
4889 (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4890 {
4891 return secure_hash (algorithm, object, start, end, Qnil, Qnil, binary);
4892 }
4893 \f
4894 void
4895 syms_of_fns (void)
4896 {
4897 DEFSYM (Qmd5, "md5");
4898 DEFSYM (Qsha1, "sha1");
4899 DEFSYM (Qsha224, "sha224");
4900 DEFSYM (Qsha256, "sha256");
4901 DEFSYM (Qsha384, "sha384");
4902 DEFSYM (Qsha512, "sha512");
4903
4904 /* Hash table stuff. */
4905 DEFSYM (Qhash_table_p, "hash-table-p");
4906 DEFSYM (Qeq, "eq");
4907 DEFSYM (Qeql, "eql");
4908 DEFSYM (Qequal, "equal");
4909 DEFSYM (QCtest, ":test");
4910 DEFSYM (QCsize, ":size");
4911 DEFSYM (QCrehash_size, ":rehash-size");
4912 DEFSYM (QCrehash_threshold, ":rehash-threshold");
4913 DEFSYM (QCweakness, ":weakness");
4914 DEFSYM (Qkey, "key");
4915 DEFSYM (Qvalue, "value");
4916 DEFSYM (Qhash_table_test, "hash-table-test");
4917 DEFSYM (Qkey_or_value, "key-or-value");
4918 DEFSYM (Qkey_and_value, "key-and-value");
4919
4920 defsubr (&Ssxhash);
4921 defsubr (&Smake_hash_table);
4922 defsubr (&Scopy_hash_table);
4923 defsubr (&Shash_table_count);
4924 defsubr (&Shash_table_rehash_size);
4925 defsubr (&Shash_table_rehash_threshold);
4926 defsubr (&Shash_table_size);
4927 defsubr (&Shash_table_test);
4928 defsubr (&Shash_table_weakness);
4929 defsubr (&Shash_table_p);
4930 defsubr (&Sclrhash);
4931 defsubr (&Sgethash);
4932 defsubr (&Sputhash);
4933 defsubr (&Sremhash);
4934 defsubr (&Smaphash);
4935 defsubr (&Sdefine_hash_table_test);
4936
4937 DEFSYM (Qstring_lessp, "string-lessp");
4938 DEFSYM (Qprovide, "provide");
4939 DEFSYM (Qrequire, "require");
4940 DEFSYM (Qyes_or_no_p_history, "yes-or-no-p-history");
4941 DEFSYM (Qcursor_in_echo_area, "cursor-in-echo-area");
4942 DEFSYM (Qwidget_type, "widget-type");
4943
4944 staticpro (&string_char_byte_cache_string);
4945 string_char_byte_cache_string = Qnil;
4946
4947 require_nesting_list = Qnil;
4948 staticpro (&require_nesting_list);
4949
4950 Fset (Qyes_or_no_p_history, Qnil);
4951
4952 DEFVAR_LISP ("features", Vfeatures,
4953 doc: /* A list of symbols which are the features of the executing Emacs.
4954 Used by `featurep' and `require', and altered by `provide'. */);
4955 Vfeatures = list1 (intern_c_string ("emacs"));
4956 DEFSYM (Qsubfeatures, "subfeatures");
4957 DEFSYM (Qfuncall, "funcall");
4958
4959 #ifdef HAVE_LANGINFO_CODESET
4960 DEFSYM (Qcodeset, "codeset");
4961 DEFSYM (Qdays, "days");
4962 DEFSYM (Qmonths, "months");
4963 DEFSYM (Qpaper, "paper");
4964 #endif /* HAVE_LANGINFO_CODESET */
4965
4966 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4967 doc: /* Non-nil means mouse commands use dialog boxes to ask questions.
4968 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4969 invoked by mouse clicks and mouse menu items.
4970
4971 On some platforms, file selection dialogs are also enabled if this is
4972 non-nil. */);
4973 use_dialog_box = 1;
4974
4975 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4976 doc: /* Non-nil means mouse commands use a file dialog to ask for files.
4977 This applies to commands from menus and tool bar buttons even when
4978 they are initiated from the keyboard. If `use-dialog-box' is nil,
4979 that disables the use of a file dialog, regardless of the value of
4980 this variable. */);
4981 use_file_dialog = 1;
4982
4983 defsubr (&Sidentity);
4984 defsubr (&Srandom);
4985 defsubr (&Slength);
4986 defsubr (&Ssafe_length);
4987 defsubr (&Sstring_bytes);
4988 defsubr (&Sstring_equal);
4989 defsubr (&Scompare_strings);
4990 defsubr (&Sstring_lessp);
4991 defsubr (&Sappend);
4992 defsubr (&Sconcat);
4993 defsubr (&Svconcat);
4994 defsubr (&Scopy_sequence);
4995 defsubr (&Sstring_make_multibyte);
4996 defsubr (&Sstring_make_unibyte);
4997 defsubr (&Sstring_as_multibyte);
4998 defsubr (&Sstring_as_unibyte);
4999 defsubr (&Sstring_to_multibyte);
5000 defsubr (&Sstring_to_unibyte);
5001 defsubr (&Scopy_alist);
5002 defsubr (&Ssubstring);
5003 defsubr (&Ssubstring_no_properties);
5004 defsubr (&Snthcdr);
5005 defsubr (&Snth);
5006 defsubr (&Selt);
5007 defsubr (&Smember);
5008 defsubr (&Smemq);
5009 defsubr (&Smemql);
5010 defsubr (&Sassq);
5011 defsubr (&Sassoc);
5012 defsubr (&Srassq);
5013 defsubr (&Srassoc);
5014 defsubr (&Sdelq);
5015 defsubr (&Sdelete);
5016 defsubr (&Snreverse);
5017 defsubr (&Sreverse);
5018 defsubr (&Ssort);
5019 defsubr (&Splist_get);
5020 defsubr (&Sget);
5021 defsubr (&Splist_put);
5022 defsubr (&Sput);
5023 defsubr (&Slax_plist_get);
5024 defsubr (&Slax_plist_put);
5025 defsubr (&Seql);
5026 defsubr (&Sequal);
5027 defsubr (&Sequal_including_properties);
5028 defsubr (&Sfillarray);
5029 defsubr (&Sclear_string);
5030 defsubr (&Snconc);
5031 defsubr (&Smapcar);
5032 defsubr (&Smapc);
5033 defsubr (&Smapconcat);
5034 defsubr (&Syes_or_no_p);
5035 defsubr (&Sload_average);
5036 defsubr (&Sfeaturep);
5037 defsubr (&Srequire);
5038 defsubr (&Sprovide);
5039 defsubr (&Splist_member);
5040 defsubr (&Swidget_put);
5041 defsubr (&Swidget_get);
5042 defsubr (&Swidget_apply);
5043 defsubr (&Sbase64_encode_region);
5044 defsubr (&Sbase64_decode_region);
5045 defsubr (&Sbase64_encode_string);
5046 defsubr (&Sbase64_decode_string);
5047 defsubr (&Smd5);
5048 defsubr (&Ssecure_hash);
5049 defsubr (&Slocale_info);
5050
5051 hashtest_eq.name = Qeq;
5052 hashtest_eq.user_hash_function = Qnil;
5053 hashtest_eq.user_cmp_function = Qnil;
5054 hashtest_eq.cmpfn = 0;
5055 hashtest_eq.hashfn = hashfn_eq;
5056
5057 hashtest_eql.name = Qeql;
5058 hashtest_eql.user_hash_function = Qnil;
5059 hashtest_eql.user_cmp_function = Qnil;
5060 hashtest_eql.cmpfn = cmpfn_eql;
5061 hashtest_eql.hashfn = hashfn_eql;
5062
5063 hashtest_equal.name = Qequal;
5064 hashtest_equal.user_hash_function = Qnil;
5065 hashtest_equal.user_cmp_function = Qnil;
5066 hashtest_equal.cmpfn = cmpfn_equal;
5067 hashtest_equal.hashfn = hashfn_equal;
5068 }