]> code.delx.au - gnu-emacs/blob - doc/lispref/numbers.texi
Improve documentation of `special' modes.
[gnu-emacs] / doc / lispref / numbers.texi
1 @c -*-texinfo-*-
2 @c This is part of the GNU Emacs Lisp Reference Manual.
3 @c Copyright (C) 1990-1995, 1998-1999, 2001-2011
4 @c Free Software Foundation, Inc.
5 @c See the file elisp.texi for copying conditions.
6 @setfilename ../../info/numbers
7 @node Numbers, Strings and Characters, Lisp Data Types, Top
8 @chapter Numbers
9 @cindex integers
10 @cindex numbers
11
12 GNU Emacs supports two numeric data types: @dfn{integers} and
13 @dfn{floating point numbers}. Integers are whole numbers such as
14 @minus{}3, 0, 7, 13, and 511. Their values are exact. Floating point
15 numbers are numbers with fractional parts, such as @minus{}4.5, 0.0, or
16 2.71828. They can also be expressed in exponential notation: 1.5e2
17 equals 150; in this example, @samp{e2} stands for ten to the second
18 power, and that is multiplied by 1.5. Floating point values are not
19 exact; they have a fixed, limited amount of precision.
20
21 @menu
22 * Integer Basics:: Representation and range of integers.
23 * Float Basics:: Representation and range of floating point.
24 * Predicates on Numbers:: Testing for numbers.
25 * Comparison of Numbers:: Equality and inequality predicates.
26 * Numeric Conversions:: Converting float to integer and vice versa.
27 * Arithmetic Operations:: How to add, subtract, multiply and divide.
28 * Rounding Operations:: Explicitly rounding floating point numbers.
29 * Bitwise Operations:: Logical and, or, not, shifting.
30 * Math Functions:: Trig, exponential and logarithmic functions.
31 * Random Numbers:: Obtaining random integers, predictable or not.
32 @end menu
33
34 @node Integer Basics
35 @comment node-name, next, previous, up
36 @section Integer Basics
37
38 The range of values for an integer depends on the machine. The
39 minimum range is @minus{}536870912 to 536870911 (30 bits; i.e.,
40 @ifnottex
41 -2**29
42 @end ifnottex
43 @tex
44 @math{-2^{29}}
45 @end tex
46 to
47 @ifnottex
48 2**29 - 1),
49 @end ifnottex
50 @tex
51 @math{2^{29}-1}),
52 @end tex
53 but some machines provide a wider range. Many examples in this
54 chapter assume that an integer has 30 bits and that floating point
55 numbers are IEEE double precision.
56 @cindex overflow
57
58 The Lisp reader reads an integer as a sequence of digits with optional
59 initial sign and optional final period. An integer that is out of the
60 Emacs range is treated as a floating-point number.
61
62 @example
63 1 ; @r{The integer 1.}
64 1. ; @r{The integer 1.}
65 +1 ; @r{Also the integer 1.}
66 -1 ; @r{The integer @minus{}1.}
67 1073741825 ; @r{The floating point number 1073741825.0.}
68 0 ; @r{The integer 0.}
69 -0 ; @r{The integer 0.}
70 @end example
71
72 @cindex integers in specific radix
73 @cindex radix for reading an integer
74 @cindex base for reading an integer
75 @cindex hex numbers
76 @cindex octal numbers
77 @cindex reading numbers in hex, octal, and binary
78 The syntax for integers in bases other than 10 uses @samp{#}
79 followed by a letter that specifies the radix: @samp{b} for binary,
80 @samp{o} for octal, @samp{x} for hex, or @samp{@var{radix}r} to
81 specify radix @var{radix}. Case is not significant for the letter
82 that specifies the radix. Thus, @samp{#b@var{integer}} reads
83 @var{integer} in binary, and @samp{#@var{radix}r@var{integer}} reads
84 @var{integer} in radix @var{radix}. Allowed values of @var{radix} run
85 from 2 to 36. For example:
86
87 @example
88 #b101100 @result{} 44
89 #o54 @result{} 44
90 #x2c @result{} 44
91 #24r1k @result{} 44
92 @end example
93
94 To understand how various functions work on integers, especially the
95 bitwise operators (@pxref{Bitwise Operations}), it is often helpful to
96 view the numbers in their binary form.
97
98 In 30-bit binary, the decimal integer 5 looks like this:
99
100 @example
101 0000...000101 (30 bits total)
102 @end example
103
104 @noindent
105 (The @samp{...} stands for enough bits to fill out a 30-bit word; in
106 this case, @samp{...} stands for twenty 0 bits. Later examples also
107 use the @samp{...} notation to make binary integers easier to read.)
108
109 The integer @minus{}1 looks like this:
110
111 @example
112 1111...111111 (30 bits total)
113 @end example
114
115 @noindent
116 @cindex two's complement
117 @minus{}1 is represented as 30 ones. (This is called @dfn{two's
118 complement} notation.)
119
120 The negative integer, @minus{}5, is creating by subtracting 4 from
121 @minus{}1. In binary, the decimal integer 4 is 100. Consequently,
122 @minus{}5 looks like this:
123
124 @example
125 1111...111011 (30 bits total)
126 @end example
127
128 In this implementation, the largest 30-bit binary integer value is
129 536,870,911 in decimal. In binary, it looks like this:
130
131 @example
132 0111...111111 (30 bits total)
133 @end example
134
135 Since the arithmetic functions do not check whether integers go
136 outside their range, when you add 1 to 536,870,911, the value is the
137 negative integer @minus{}536,870,912:
138
139 @example
140 (+ 1 536870911)
141 @result{} -536870912
142 @result{} 1000...000000 (30 bits total)
143 @end example
144
145 Many of the functions described in this chapter accept markers for
146 arguments in place of numbers. (@xref{Markers}.) Since the actual
147 arguments to such functions may be either numbers or markers, we often
148 give these arguments the name @var{number-or-marker}. When the argument
149 value is a marker, its position value is used and its buffer is ignored.
150
151 @defvar most-positive-fixnum
152 The value of this variable is the largest integer that Emacs Lisp
153 can handle.
154 @end defvar
155
156 @defvar most-negative-fixnum
157 The value of this variable is the smallest integer that Emacs Lisp can
158 handle. It is negative.
159 @end defvar
160
161 @xref{Character Codes, max-char}, for the maximum value of a valid
162 character codepoint.
163
164 @node Float Basics
165 @section Floating Point Basics
166
167 Floating point numbers are useful for representing numbers that are
168 not integral. The precise range of floating point numbers is
169 machine-specific; it is the same as the range of the C data type
170 @code{double} on the machine you are using.
171
172 The read-syntax for floating point numbers requires either a decimal
173 point (with at least one digit following), an exponent, or both. For
174 example, @samp{1500.0}, @samp{15e2}, @samp{15.0e2}, @samp{1.5e3}, and
175 @samp{.15e4} are five ways of writing a floating point number whose
176 value is 1500. They are all equivalent. You can also use a minus sign
177 to write negative floating point numbers, as in @samp{-1.0}.
178
179 @cindex @acronym{IEEE} floating point
180 @cindex positive infinity
181 @cindex negative infinity
182 @cindex infinity
183 @cindex NaN
184 Most modern computers support the @acronym{IEEE} floating point standard,
185 which provides for positive infinity and negative infinity as floating point
186 values. It also provides for a class of values called NaN or
187 ``not-a-number''; numerical functions return such values in cases where
188 there is no correct answer. For example, @code{(/ 0.0 0.0)} returns a
189 NaN. For practical purposes, there's no significant difference between
190 different NaN values in Emacs Lisp, and there's no rule for precisely
191 which NaN value should be used in a particular case, so Emacs Lisp
192 doesn't try to distinguish them (but it does report the sign, if you
193 print it). Here are the read syntaxes for these special floating
194 point values:
195
196 @table @asis
197 @item positive infinity
198 @samp{1.0e+INF}
199 @item negative infinity
200 @samp{-1.0e+INF}
201 @item Not-a-number
202 @samp{0.0e+NaN} or @samp{-0.0e+NaN}.
203 @end table
204
205 To test whether a floating point value is a NaN, compare it with
206 itself using @code{=}. That returns @code{nil} for a NaN, and
207 @code{t} for any other floating point value.
208
209 The value @code{-0.0} is distinguishable from ordinary zero in
210 @acronym{IEEE} floating point, but Emacs Lisp @code{equal} and
211 @code{=} consider them equal values.
212
213 You can use @code{logb} to extract the binary exponent of a floating
214 point number (or estimate the logarithm of an integer):
215
216 @defun logb number
217 This function returns the binary exponent of @var{number}. More
218 precisely, the value is the logarithm of @var{number} base 2, rounded
219 down to an integer.
220
221 @example
222 (logb 10)
223 @result{} 3
224 (logb 10.0e20)
225 @result{} 69
226 @end example
227 @end defun
228
229 @defvar float-e
230 The mathematical constant @math{e} (2.71828@dots{}).
231 @end defvar
232
233 @defvar float-pi
234 The mathematical constant @math{pi} (3.14159@dots{}).
235 @end defvar
236
237 @node Predicates on Numbers
238 @section Type Predicates for Numbers
239 @cindex predicates for numbers
240
241 The functions in this section test for numbers, or for a specific
242 type of number. The functions @code{integerp} and @code{floatp} can
243 take any type of Lisp object as argument (they would not be of much
244 use otherwise), but the @code{zerop} predicate requires a number as
245 its argument. See also @code{integer-or-marker-p} and
246 @code{number-or-marker-p}, in @ref{Predicates on Markers}.
247
248 @defun floatp object
249 This predicate tests whether its argument is a floating point
250 number and returns @code{t} if so, @code{nil} otherwise.
251
252 @code{floatp} does not exist in Emacs versions 18 and earlier.
253 @end defun
254
255 @defun integerp object
256 This predicate tests whether its argument is an integer, and returns
257 @code{t} if so, @code{nil} otherwise.
258 @end defun
259
260 @defun numberp object
261 This predicate tests whether its argument is a number (either integer or
262 floating point), and returns @code{t} if so, @code{nil} otherwise.
263 @end defun
264
265 @defun wholenump object
266 @cindex natural numbers
267 The @code{wholenump} predicate (whose name comes from the phrase
268 ``whole-number-p'') tests to see whether its argument is a nonnegative
269 integer, and returns @code{t} if so, @code{nil} otherwise. 0 is
270 considered non-negative.
271
272 @findex natnump
273 @code{natnump} is an obsolete synonym for @code{wholenump}.
274 @end defun
275
276 @defun zerop number
277 This predicate tests whether its argument is zero, and returns @code{t}
278 if so, @code{nil} otherwise. The argument must be a number.
279
280 @code{(zerop x)} is equivalent to @code{(= x 0)}.
281 @end defun
282
283 @node Comparison of Numbers
284 @section Comparison of Numbers
285 @cindex number comparison
286 @cindex comparing numbers
287
288 To test numbers for numerical equality, you should normally use
289 @code{=}, not @code{eq}. There can be many distinct floating point
290 number objects with the same numeric value. If you use @code{eq} to
291 compare them, then you test whether two values are the same
292 @emph{object}. By contrast, @code{=} compares only the numeric values
293 of the objects.
294
295 At present, each integer value has a unique Lisp object in Emacs Lisp.
296 Therefore, @code{eq} is equivalent to @code{=} where integers are
297 concerned. It is sometimes convenient to use @code{eq} for comparing an
298 unknown value with an integer, because @code{eq} does not report an
299 error if the unknown value is not a number---it accepts arguments of any
300 type. By contrast, @code{=} signals an error if the arguments are not
301 numbers or markers. However, it is a good idea to use @code{=} if you
302 can, even for comparing integers, just in case we change the
303 representation of integers in a future Emacs version.
304
305 Sometimes it is useful to compare numbers with @code{equal}; it
306 treats two numbers as equal if they have the same data type (both
307 integers, or both floating point) and the same value. By contrast,
308 @code{=} can treat an integer and a floating point number as equal.
309 @xref{Equality Predicates}.
310
311 There is another wrinkle: because floating point arithmetic is not
312 exact, it is often a bad idea to check for equality of two floating
313 point values. Usually it is better to test for approximate equality.
314 Here's a function to do this:
315
316 @example
317 (defvar fuzz-factor 1.0e-6)
318 (defun approx-equal (x y)
319 (or (and (= x 0) (= y 0))
320 (< (/ (abs (- x y))
321 (max (abs x) (abs y)))
322 fuzz-factor)))
323 @end example
324
325 @cindex CL note---integers vrs @code{eq}
326 @quotation
327 @b{Common Lisp note:} Comparing numbers in Common Lisp always requires
328 @code{=} because Common Lisp implements multi-word integers, and two
329 distinct integer objects can have the same numeric value. Emacs Lisp
330 can have just one integer object for any given value because it has a
331 limited range of integer values.
332 @end quotation
333
334 @defun = number-or-marker1 number-or-marker2
335 This function tests whether its arguments are numerically equal, and
336 returns @code{t} if so, @code{nil} otherwise.
337 @end defun
338
339 @defun eql value1 value2
340 This function acts like @code{eq} except when both arguments are
341 numbers. It compares numbers by type and numeric value, so that
342 @code{(eql 1.0 1)} returns @code{nil}, but @code{(eql 1.0 1.0)} and
343 @code{(eql 1 1)} both return @code{t}.
344 @end defun
345
346 @defun /= number-or-marker1 number-or-marker2
347 This function tests whether its arguments are numerically equal, and
348 returns @code{t} if they are not, and @code{nil} if they are.
349 @end defun
350
351 @defun < number-or-marker1 number-or-marker2
352 This function tests whether its first argument is strictly less than
353 its second argument. It returns @code{t} if so, @code{nil} otherwise.
354 @end defun
355
356 @defun <= number-or-marker1 number-or-marker2
357 This function tests whether its first argument is less than or equal
358 to its second argument. It returns @code{t} if so, @code{nil}
359 otherwise.
360 @end defun
361
362 @defun > number-or-marker1 number-or-marker2
363 This function tests whether its first argument is strictly greater
364 than its second argument. It returns @code{t} if so, @code{nil}
365 otherwise.
366 @end defun
367
368 @defun >= number-or-marker1 number-or-marker2
369 This function tests whether its first argument is greater than or
370 equal to its second argument. It returns @code{t} if so, @code{nil}
371 otherwise.
372 @end defun
373
374 @defun max number-or-marker &rest numbers-or-markers
375 This function returns the largest of its arguments.
376 If any of the arguments is floating-point, the value is returned
377 as floating point, even if it was given as an integer.
378
379 @example
380 (max 20)
381 @result{} 20
382 (max 1 2.5)
383 @result{} 2.5
384 (max 1 3 2.5)
385 @result{} 3.0
386 @end example
387 @end defun
388
389 @defun min number-or-marker &rest numbers-or-markers
390 This function returns the smallest of its arguments.
391 If any of the arguments is floating-point, the value is returned
392 as floating point, even if it was given as an integer.
393
394 @example
395 (min -4 1)
396 @result{} -4
397 @end example
398 @end defun
399
400 @defun abs number
401 This function returns the absolute value of @var{number}.
402 @end defun
403
404 @node Numeric Conversions
405 @section Numeric Conversions
406 @cindex rounding in conversions
407 @cindex number conversions
408 @cindex converting numbers
409
410 To convert an integer to floating point, use the function @code{float}.
411
412 @defun float number
413 This returns @var{number} converted to floating point.
414 If @var{number} is already a floating point number, @code{float} returns
415 it unchanged.
416 @end defun
417
418 There are four functions to convert floating point numbers to integers;
419 they differ in how they round. All accept an argument @var{number}
420 and an optional argument @var{divisor}. Both arguments may be
421 integers or floating point numbers. @var{divisor} may also be
422 @code{nil}. If @var{divisor} is @code{nil} or omitted, these
423 functions convert @var{number} to an integer, or return it unchanged
424 if it already is an integer. If @var{divisor} is non-@code{nil}, they
425 divide @var{number} by @var{divisor} and convert the result to an
426 integer. An @code{arith-error} results if @var{divisor} is 0.
427
428 @defun truncate number &optional divisor
429 This returns @var{number}, converted to an integer by rounding towards
430 zero.
431
432 @example
433 (truncate 1.2)
434 @result{} 1
435 (truncate 1.7)
436 @result{} 1
437 (truncate -1.2)
438 @result{} -1
439 (truncate -1.7)
440 @result{} -1
441 @end example
442 @end defun
443
444 @defun floor number &optional divisor
445 This returns @var{number}, converted to an integer by rounding downward
446 (towards negative infinity).
447
448 If @var{divisor} is specified, this uses the kind of division
449 operation that corresponds to @code{mod}, rounding downward.
450
451 @example
452 (floor 1.2)
453 @result{} 1
454 (floor 1.7)
455 @result{} 1
456 (floor -1.2)
457 @result{} -2
458 (floor -1.7)
459 @result{} -2
460 (floor 5.99 3)
461 @result{} 1
462 @end example
463 @end defun
464
465 @defun ceiling number &optional divisor
466 This returns @var{number}, converted to an integer by rounding upward
467 (towards positive infinity).
468
469 @example
470 (ceiling 1.2)
471 @result{} 2
472 (ceiling 1.7)
473 @result{} 2
474 (ceiling -1.2)
475 @result{} -1
476 (ceiling -1.7)
477 @result{} -1
478 @end example
479 @end defun
480
481 @defun round number &optional divisor
482 This returns @var{number}, converted to an integer by rounding towards the
483 nearest integer. Rounding a value equidistant between two integers
484 may choose the integer closer to zero, or it may prefer an even integer,
485 depending on your machine.
486
487 @example
488 (round 1.2)
489 @result{} 1
490 (round 1.7)
491 @result{} 2
492 (round -1.2)
493 @result{} -1
494 (round -1.7)
495 @result{} -2
496 @end example
497 @end defun
498
499 @node Arithmetic Operations
500 @section Arithmetic Operations
501 @cindex arithmetic operations
502
503 Emacs Lisp provides the traditional four arithmetic operations:
504 addition, subtraction, multiplication, and division. Remainder and modulus
505 functions supplement the division functions. The functions to
506 add or subtract 1 are provided because they are traditional in Lisp and
507 commonly used.
508
509 All of these functions except @code{%} return a floating point value
510 if any argument is floating.
511
512 It is important to note that in Emacs Lisp, arithmetic functions
513 do not check for overflow. Thus @code{(1+ 536870911)} may evaluate to
514 @minus{}536870912, depending on your hardware.
515
516 @defun 1+ number-or-marker
517 This function returns @var{number-or-marker} plus 1.
518 For example,
519
520 @example
521 (setq foo 4)
522 @result{} 4
523 (1+ foo)
524 @result{} 5
525 @end example
526
527 This function is not analogous to the C operator @code{++}---it does not
528 increment a variable. It just computes a sum. Thus, if we continue,
529
530 @example
531 foo
532 @result{} 4
533 @end example
534
535 If you want to increment the variable, you must use @code{setq},
536 like this:
537
538 @example
539 (setq foo (1+ foo))
540 @result{} 5
541 @end example
542 @end defun
543
544 @defun 1- number-or-marker
545 This function returns @var{number-or-marker} minus 1.
546 @end defun
547
548 @defun + &rest numbers-or-markers
549 This function adds its arguments together. When given no arguments,
550 @code{+} returns 0.
551
552 @example
553 (+)
554 @result{} 0
555 (+ 1)
556 @result{} 1
557 (+ 1 2 3 4)
558 @result{} 10
559 @end example
560 @end defun
561
562 @defun - &optional number-or-marker &rest more-numbers-or-markers
563 The @code{-} function serves two purposes: negation and subtraction.
564 When @code{-} has a single argument, the value is the negative of the
565 argument. When there are multiple arguments, @code{-} subtracts each of
566 the @var{more-numbers-or-markers} from @var{number-or-marker},
567 cumulatively. If there are no arguments, the result is 0.
568
569 @example
570 (- 10 1 2 3 4)
571 @result{} 0
572 (- 10)
573 @result{} -10
574 (-)
575 @result{} 0
576 @end example
577 @end defun
578
579 @defun * &rest numbers-or-markers
580 This function multiplies its arguments together, and returns the
581 product. When given no arguments, @code{*} returns 1.
582
583 @example
584 (*)
585 @result{} 1
586 (* 1)
587 @result{} 1
588 (* 1 2 3 4)
589 @result{} 24
590 @end example
591 @end defun
592
593 @defun / dividend divisor &rest divisors
594 This function divides @var{dividend} by @var{divisor} and returns the
595 quotient. If there are additional arguments @var{divisors}, then it
596 divides @var{dividend} by each divisor in turn. Each argument may be a
597 number or a marker.
598
599 If all the arguments are integers, then the result is an integer too.
600 This means the result has to be rounded. On most machines, the result
601 is rounded towards zero after each division, but some machines may round
602 differently with negative arguments. This is because the Lisp function
603 @code{/} is implemented using the C division operator, which also
604 permits machine-dependent rounding. As a practical matter, all known
605 machines round in the standard fashion.
606
607 @cindex @code{arith-error} in division
608 If you divide an integer by 0, an @code{arith-error} error is signaled.
609 (@xref{Errors}.) Floating point division by zero returns either
610 infinity or a NaN if your machine supports @acronym{IEEE} floating point;
611 otherwise, it signals an @code{arith-error} error.
612
613 @example
614 @group
615 (/ 6 2)
616 @result{} 3
617 @end group
618 (/ 5 2)
619 @result{} 2
620 (/ 5.0 2)
621 @result{} 2.5
622 (/ 5 2.0)
623 @result{} 2.5
624 (/ 5.0 2.0)
625 @result{} 2.5
626 (/ 25 3 2)
627 @result{} 4
628 @group
629 (/ -17 6)
630 @result{} -2 @r{(could in theory be @minus{}3 on some machines)}
631 @end group
632 @end example
633 @end defun
634
635 @defun % dividend divisor
636 @cindex remainder
637 This function returns the integer remainder after division of @var{dividend}
638 by @var{divisor}. The arguments must be integers or markers.
639
640 For negative arguments, the remainder is in principle machine-dependent
641 since the quotient is; but in practice, all known machines behave alike.
642
643 An @code{arith-error} results if @var{divisor} is 0.
644
645 @example
646 (% 9 4)
647 @result{} 1
648 (% -9 4)
649 @result{} -1
650 (% 9 -4)
651 @result{} 1
652 (% -9 -4)
653 @result{} -1
654 @end example
655
656 For any two integers @var{dividend} and @var{divisor},
657
658 @example
659 @group
660 (+ (% @var{dividend} @var{divisor})
661 (* (/ @var{dividend} @var{divisor}) @var{divisor}))
662 @end group
663 @end example
664
665 @noindent
666 always equals @var{dividend}.
667 @end defun
668
669 @defun mod dividend divisor
670 @cindex modulus
671 This function returns the value of @var{dividend} modulo @var{divisor};
672 in other words, the remainder after division of @var{dividend}
673 by @var{divisor}, but with the same sign as @var{divisor}.
674 The arguments must be numbers or markers.
675
676 Unlike @code{%}, @code{mod} returns a well-defined result for negative
677 arguments. It also permits floating point arguments; it rounds the
678 quotient downward (towards minus infinity) to an integer, and uses that
679 quotient to compute the remainder.
680
681 An @code{arith-error} results if @var{divisor} is 0.
682
683 @example
684 @group
685 (mod 9 4)
686 @result{} 1
687 @end group
688 @group
689 (mod -9 4)
690 @result{} 3
691 @end group
692 @group
693 (mod 9 -4)
694 @result{} -3
695 @end group
696 @group
697 (mod -9 -4)
698 @result{} -1
699 @end group
700 @group
701 (mod 5.5 2.5)
702 @result{} .5
703 @end group
704 @end example
705
706 For any two numbers @var{dividend} and @var{divisor},
707
708 @example
709 @group
710 (+ (mod @var{dividend} @var{divisor})
711 (* (floor @var{dividend} @var{divisor}) @var{divisor}))
712 @end group
713 @end example
714
715 @noindent
716 always equals @var{dividend}, subject to rounding error if either
717 argument is floating point. For @code{floor}, see @ref{Numeric
718 Conversions}.
719 @end defun
720
721 @node Rounding Operations
722 @section Rounding Operations
723 @cindex rounding without conversion
724
725 The functions @code{ffloor}, @code{fceiling}, @code{fround}, and
726 @code{ftruncate} take a floating point argument and return a floating
727 point result whose value is a nearby integer. @code{ffloor} returns the
728 nearest integer below; @code{fceiling}, the nearest integer above;
729 @code{ftruncate}, the nearest integer in the direction towards zero;
730 @code{fround}, the nearest integer.
731
732 @defun ffloor float
733 This function rounds @var{float} to the next lower integral value, and
734 returns that value as a floating point number.
735 @end defun
736
737 @defun fceiling float
738 This function rounds @var{float} to the next higher integral value, and
739 returns that value as a floating point number.
740 @end defun
741
742 @defun ftruncate float
743 This function rounds @var{float} towards zero to an integral value, and
744 returns that value as a floating point number.
745 @end defun
746
747 @defun fround float
748 This function rounds @var{float} to the nearest integral value,
749 and returns that value as a floating point number.
750 @end defun
751
752 @node Bitwise Operations
753 @section Bitwise Operations on Integers
754 @cindex bitwise arithmetic
755 @cindex logical arithmetic
756
757 In a computer, an integer is represented as a binary number, a
758 sequence of @dfn{bits} (digits which are either zero or one). A bitwise
759 operation acts on the individual bits of such a sequence. For example,
760 @dfn{shifting} moves the whole sequence left or right one or more places,
761 reproducing the same pattern ``moved over.''
762
763 The bitwise operations in Emacs Lisp apply only to integers.
764
765 @defun lsh integer1 count
766 @cindex logical shift
767 @code{lsh}, which is an abbreviation for @dfn{logical shift}, shifts the
768 bits in @var{integer1} to the left @var{count} places, or to the right
769 if @var{count} is negative, bringing zeros into the vacated bits. If
770 @var{count} is negative, @code{lsh} shifts zeros into the leftmost
771 (most-significant) bit, producing a positive result even if
772 @var{integer1} is negative. Contrast this with @code{ash}, below.
773
774 Here are two examples of @code{lsh}, shifting a pattern of bits one
775 place to the left. We show only the low-order eight bits of the binary
776 pattern; the rest are all zero.
777
778 @example
779 @group
780 (lsh 5 1)
781 @result{} 10
782 ;; @r{Decimal 5 becomes decimal 10.}
783 00000101 @result{} 00001010
784
785 (lsh 7 1)
786 @result{} 14
787 ;; @r{Decimal 7 becomes decimal 14.}
788 00000111 @result{} 00001110
789 @end group
790 @end example
791
792 @noindent
793 As the examples illustrate, shifting the pattern of bits one place to
794 the left produces a number that is twice the value of the previous
795 number.
796
797 Shifting a pattern of bits two places to the left produces results
798 like this (with 8-bit binary numbers):
799
800 @example
801 @group
802 (lsh 3 2)
803 @result{} 12
804 ;; @r{Decimal 3 becomes decimal 12.}
805 00000011 @result{} 00001100
806 @end group
807 @end example
808
809 On the other hand, shifting one place to the right looks like this:
810
811 @example
812 @group
813 (lsh 6 -1)
814 @result{} 3
815 ;; @r{Decimal 6 becomes decimal 3.}
816 00000110 @result{} 00000011
817 @end group
818
819 @group
820 (lsh 5 -1)
821 @result{} 2
822 ;; @r{Decimal 5 becomes decimal 2.}
823 00000101 @result{} 00000010
824 @end group
825 @end example
826
827 @noindent
828 As the example illustrates, shifting one place to the right divides the
829 value of a positive integer by two, rounding downward.
830
831 The function @code{lsh}, like all Emacs Lisp arithmetic functions, does
832 not check for overflow, so shifting left can discard significant bits
833 and change the sign of the number. For example, left shifting
834 536,870,911 produces @minus{}2 in the 30-bit implementation:
835
836 @example
837 (lsh 536870911 1) ; @r{left shift}
838 @result{} -2
839 @end example
840
841 In binary, the argument looks like this:
842
843 @example
844 @group
845 ;; @r{Decimal 536,870,911}
846 0111...111111 (30 bits total)
847 @end group
848 @end example
849
850 @noindent
851 which becomes the following when left shifted:
852
853 @example
854 @group
855 ;; @r{Decimal @minus{}2}
856 1111...111110 (30 bits total)
857 @end group
858 @end example
859 @end defun
860
861 @defun ash integer1 count
862 @cindex arithmetic shift
863 @code{ash} (@dfn{arithmetic shift}) shifts the bits in @var{integer1}
864 to the left @var{count} places, or to the right if @var{count}
865 is negative.
866
867 @code{ash} gives the same results as @code{lsh} except when
868 @var{integer1} and @var{count} are both negative. In that case,
869 @code{ash} puts ones in the empty bit positions on the left, while
870 @code{lsh} puts zeros in those bit positions.
871
872 Thus, with @code{ash}, shifting the pattern of bits one place to the right
873 looks like this:
874
875 @example
876 @group
877 (ash -6 -1) @result{} -3
878 ;; @r{Decimal @minus{}6 becomes decimal @minus{}3.}
879 1111...111010 (30 bits total)
880 @result{}
881 1111...111101 (30 bits total)
882 @end group
883 @end example
884
885 In contrast, shifting the pattern of bits one place to the right with
886 @code{lsh} looks like this:
887
888 @example
889 @group
890 (lsh -6 -1) @result{} 536870909
891 ;; @r{Decimal @minus{}6 becomes decimal 536,870,909.}
892 1111...111010 (30 bits total)
893 @result{}
894 0111...111101 (30 bits total)
895 @end group
896 @end example
897
898 Here are other examples:
899
900 @c !!! Check if lined up in smallbook format! XDVI shows problem
901 @c with smallbook but not with regular book! --rjc 16mar92
902 @smallexample
903 @group
904 ; @r{ 30-bit binary values}
905
906 (lsh 5 2) ; 5 = @r{0000...000101}
907 @result{} 20 ; = @r{0000...010100}
908 @end group
909 @group
910 (ash 5 2)
911 @result{} 20
912 (lsh -5 2) ; -5 = @r{1111...111011}
913 @result{} -20 ; = @r{1111...101100}
914 (ash -5 2)
915 @result{} -20
916 @end group
917 @group
918 (lsh 5 -2) ; 5 = @r{0000...000101}
919 @result{} 1 ; = @r{0000...000001}
920 @end group
921 @group
922 (ash 5 -2)
923 @result{} 1
924 @end group
925 @group
926 (lsh -5 -2) ; -5 = @r{1111...111011}
927 @result{} 268435454
928 ; = @r{0011...111110}
929 @end group
930 @group
931 (ash -5 -2) ; -5 = @r{1111...111011}
932 @result{} -2 ; = @r{1111...111110}
933 @end group
934 @end smallexample
935 @end defun
936
937 @defun logand &rest ints-or-markers
938 This function returns the ``logical and'' of the arguments: the
939 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is
940 set in all the arguments. (``Set'' means that the value of the bit is 1
941 rather than 0.)
942
943 For example, using 4-bit binary numbers, the ``logical and'' of 13 and
944 12 is 12: 1101 combined with 1100 produces 1100.
945 In both the binary numbers, the leftmost two bits are set (i.e., they
946 are 1's), so the leftmost two bits of the returned value are set.
947 However, for the rightmost two bits, each is zero in at least one of
948 the arguments, so the rightmost two bits of the returned value are 0's.
949
950 @noindent
951 Therefore,
952
953 @example
954 @group
955 (logand 13 12)
956 @result{} 12
957 @end group
958 @end example
959
960 If @code{logand} is not passed any argument, it returns a value of
961 @minus{}1. This number is an identity element for @code{logand}
962 because its binary representation consists entirely of ones. If
963 @code{logand} is passed just one argument, it returns that argument.
964
965 @smallexample
966 @group
967 ; @r{ 30-bit binary values}
968
969 (logand 14 13) ; 14 = @r{0000...001110}
970 ; 13 = @r{0000...001101}
971 @result{} 12 ; 12 = @r{0000...001100}
972 @end group
973
974 @group
975 (logand 14 13 4) ; 14 = @r{0000...001110}
976 ; 13 = @r{0000...001101}
977 ; 4 = @r{0000...000100}
978 @result{} 4 ; 4 = @r{0000...000100}
979 @end group
980
981 @group
982 (logand)
983 @result{} -1 ; -1 = @r{1111...111111}
984 @end group
985 @end smallexample
986 @end defun
987
988 @defun logior &rest ints-or-markers
989 This function returns the ``inclusive or'' of its arguments: the @var{n}th bit
990 is set in the result if, and only if, the @var{n}th bit is set in at least
991 one of the arguments. If there are no arguments, the result is zero,
992 which is an identity element for this operation. If @code{logior} is
993 passed just one argument, it returns that argument.
994
995 @smallexample
996 @group
997 ; @r{ 30-bit binary values}
998
999 (logior 12 5) ; 12 = @r{0000...001100}
1000 ; 5 = @r{0000...000101}
1001 @result{} 13 ; 13 = @r{0000...001101}
1002 @end group
1003
1004 @group
1005 (logior 12 5 7) ; 12 = @r{0000...001100}
1006 ; 5 = @r{0000...000101}
1007 ; 7 = @r{0000...000111}
1008 @result{} 15 ; 15 = @r{0000...001111}
1009 @end group
1010 @end smallexample
1011 @end defun
1012
1013 @defun logxor &rest ints-or-markers
1014 This function returns the ``exclusive or'' of its arguments: the
1015 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is
1016 set in an odd number of the arguments. If there are no arguments, the
1017 result is 0, which is an identity element for this operation. If
1018 @code{logxor} is passed just one argument, it returns that argument.
1019
1020 @smallexample
1021 @group
1022 ; @r{ 30-bit binary values}
1023
1024 (logxor 12 5) ; 12 = @r{0000...001100}
1025 ; 5 = @r{0000...000101}
1026 @result{} 9 ; 9 = @r{0000...001001}
1027 @end group
1028
1029 @group
1030 (logxor 12 5 7) ; 12 = @r{0000...001100}
1031 ; 5 = @r{0000...000101}
1032 ; 7 = @r{0000...000111}
1033 @result{} 14 ; 14 = @r{0000...001110}
1034 @end group
1035 @end smallexample
1036 @end defun
1037
1038 @defun lognot integer
1039 This function returns the logical complement of its argument: the @var{n}th
1040 bit is one in the result if, and only if, the @var{n}th bit is zero in
1041 @var{integer}, and vice-versa.
1042
1043 @example
1044 (lognot 5)
1045 @result{} -6
1046 ;; 5 = @r{0000...000101} (30 bits total)
1047 ;; @r{becomes}
1048 ;; -6 = @r{1111...111010} (30 bits total)
1049 @end example
1050 @end defun
1051
1052 @node Math Functions
1053 @section Standard Mathematical Functions
1054 @cindex transcendental functions
1055 @cindex mathematical functions
1056 @cindex floating-point functions
1057
1058 These mathematical functions allow integers as well as floating point
1059 numbers as arguments.
1060
1061 @defun sin arg
1062 @defunx cos arg
1063 @defunx tan arg
1064 These are the ordinary trigonometric functions, with argument measured
1065 in radians.
1066 @end defun
1067
1068 @defun asin arg
1069 The value of @code{(asin @var{arg})} is a number between
1070 @ifnottex
1071 @minus{}pi/2
1072 @end ifnottex
1073 @tex
1074 @math{-\pi/2}
1075 @end tex
1076 and
1077 @ifnottex
1078 pi/2
1079 @end ifnottex
1080 @tex
1081 @math{\pi/2}
1082 @end tex
1083 (inclusive) whose sine is @var{arg}; if, however, @var{arg} is out of
1084 range (outside [@minus{}1, 1]), it signals a @code{domain-error} error.
1085 @end defun
1086
1087 @defun acos arg
1088 The value of @code{(acos @var{arg})} is a number between 0 and
1089 @ifnottex
1090 pi
1091 @end ifnottex
1092 @tex
1093 @math{\pi}
1094 @end tex
1095 (inclusive) whose cosine is @var{arg}; if, however, @var{arg} is out
1096 of range (outside [@minus{}1, 1]), it signals a @code{domain-error} error.
1097 @end defun
1098
1099 @defun atan y &optional x
1100 The value of @code{(atan @var{y})} is a number between
1101 @ifnottex
1102 @minus{}pi/2
1103 @end ifnottex
1104 @tex
1105 @math{-\pi/2}
1106 @end tex
1107 and
1108 @ifnottex
1109 pi/2
1110 @end ifnottex
1111 @tex
1112 @math{\pi/2}
1113 @end tex
1114 (exclusive) whose tangent is @var{y}. If the optional second
1115 argument @var{x} is given, the value of @code{(atan y x)} is the
1116 angle in radians between the vector @code{[@var{x}, @var{y}]} and the
1117 @code{X} axis.
1118 @end defun
1119
1120 @defun exp arg
1121 This is the exponential function; it returns
1122 @tex
1123 @math{e}
1124 @end tex
1125 @ifnottex
1126 @i{e}
1127 @end ifnottex
1128 to the power @var{arg}.
1129 @tex
1130 @math{e}
1131 @end tex
1132 @ifnottex
1133 @i{e}
1134 @end ifnottex
1135 is a fundamental mathematical constant also called the base of natural
1136 logarithms.
1137 @end defun
1138
1139 @defun log arg &optional base
1140 This function returns the logarithm of @var{arg}, with base @var{base}.
1141 If you don't specify @var{base}, the base
1142 @tex
1143 @math{e}
1144 @end tex
1145 @ifnottex
1146 @i{e}
1147 @end ifnottex
1148 is used. If @var{arg} is negative, it signals a @code{domain-error}
1149 error.
1150 @end defun
1151
1152 @ignore
1153 @defun expm1 arg
1154 This function returns @code{(1- (exp @var{arg}))}, but it is more
1155 accurate than that when @var{arg} is negative and @code{(exp @var{arg})}
1156 is close to 1.
1157 @end defun
1158
1159 @defun log1p arg
1160 This function returns @code{(log (1+ @var{arg}))}, but it is more
1161 accurate than that when @var{arg} is so small that adding 1 to it would
1162 lose accuracy.
1163 @end defun
1164 @end ignore
1165
1166 @defun log10 arg
1167 This function returns the logarithm of @var{arg}, with base 10. If
1168 @var{arg} is negative, it signals a @code{domain-error} error.
1169 @code{(log10 @var{x})} @equiv{} @code{(log @var{x} 10)}, at least
1170 approximately.
1171 @end defun
1172
1173 @defun expt x y
1174 This function returns @var{x} raised to power @var{y}. If both
1175 arguments are integers and @var{y} is positive, the result is an
1176 integer; in this case, overflow causes truncation, so watch out.
1177 @end defun
1178
1179 @defun sqrt arg
1180 This returns the square root of @var{arg}. If @var{arg} is negative,
1181 it signals a @code{domain-error} error.
1182 @end defun
1183
1184 @node Random Numbers
1185 @section Random Numbers
1186 @cindex random numbers
1187
1188 A deterministic computer program cannot generate true random numbers.
1189 For most purposes, @dfn{pseudo-random numbers} suffice. A series of
1190 pseudo-random numbers is generated in a deterministic fashion. The
1191 numbers are not truly random, but they have certain properties that
1192 mimic a random series. For example, all possible values occur equally
1193 often in a pseudo-random series.
1194
1195 In Emacs, pseudo-random numbers are generated from a ``seed'' number.
1196 Starting from any given seed, the @code{random} function always
1197 generates the same sequence of numbers. Emacs always starts with the
1198 same seed value, so the sequence of values of @code{random} is actually
1199 the same in each Emacs run! For example, in one operating system, the
1200 first call to @code{(random)} after you start Emacs always returns
1201 @minus{}1457731, and the second one always returns @minus{}7692030. This
1202 repeatability is helpful for debugging.
1203
1204 If you want random numbers that don't always come out the same, execute
1205 @code{(random t)}. This chooses a new seed based on the current time of
1206 day and on Emacs's process @acronym{ID} number.
1207
1208 @defun random &optional limit
1209 This function returns a pseudo-random integer. Repeated calls return a
1210 series of pseudo-random integers.
1211
1212 If @var{limit} is a positive integer, the value is chosen to be
1213 nonnegative and less than @var{limit}.
1214
1215 If @var{limit} is @code{t}, it means to choose a new seed based on the
1216 current time of day and on Emacs's process @acronym{ID} number.
1217 @c "Emacs'" is incorrect usage!
1218
1219 On some machines, any integer representable in Lisp may be the result
1220 of @code{random}. On other machines, the result can never be larger
1221 than a certain maximum or less than a certain (negative) minimum.
1222 @end defun