]> code.delx.au - gnu-emacs/blob - src/alloc.c
Merge from emacs--devo--0
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef STDC_HEADERS
27 #include <stddef.h> /* For offsetof, used by PSEUDOVECSIZE. */
28 #endif
29
30 #ifdef ALLOC_DEBUG
31 #undef INLINE
32 #endif
33
34 /* Note that this declares bzero on OSF/1. How dumb. */
35
36 #include <signal.h>
37
38 #ifdef HAVE_GTK_AND_PTHREAD
39 #include <pthread.h>
40 #endif
41
42 /* This file is part of the core Lisp implementation, and thus must
43 deal with the real data structures. If the Lisp implementation is
44 replaced, this file likely will not be used. */
45
46 #undef HIDE_LISP_IMPLEMENTATION
47 #include "lisp.h"
48 #include "process.h"
49 #include "intervals.h"
50 #include "puresize.h"
51 #include "buffer.h"
52 #include "window.h"
53 #include "keyboard.h"
54 #include "frame.h"
55 #include "blockinput.h"
56 #include "character.h"
57 #include "syssignal.h"
58 #include "termhooks.h" /* For struct terminal. */
59 #include <setjmp.h>
60
61 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
62 memory. Can do this only if using gmalloc.c. */
63
64 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
65 #undef GC_MALLOC_CHECK
66 #endif
67
68 #ifdef HAVE_UNISTD_H
69 #include <unistd.h>
70 #else
71 extern POINTER_TYPE *sbrk ();
72 #endif
73
74 #ifdef HAVE_FCNTL_H
75 #define INCLUDED_FCNTL
76 #include <fcntl.h>
77 #endif
78 #ifndef O_WRONLY
79 #define O_WRONLY 1
80 #endif
81
82 #ifdef WINDOWSNT
83 #include <fcntl.h>
84 #include "w32.h"
85 #endif
86
87 #ifdef DOUG_LEA_MALLOC
88
89 #include <malloc.h>
90 /* malloc.h #defines this as size_t, at least in glibc2. */
91 #ifndef __malloc_size_t
92 #define __malloc_size_t int
93 #endif
94
95 /* Specify maximum number of areas to mmap. It would be nice to use a
96 value that explicitly means "no limit". */
97
98 #define MMAP_MAX_AREAS 100000000
99
100 #else /* not DOUG_LEA_MALLOC */
101
102 /* The following come from gmalloc.c. */
103
104 #define __malloc_size_t size_t
105 extern __malloc_size_t _bytes_used;
106 extern __malloc_size_t __malloc_extra_blocks;
107
108 #endif /* not DOUG_LEA_MALLOC */
109
110 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
111
112 /* When GTK uses the file chooser dialog, different backends can be loaded
113 dynamically. One such a backend is the Gnome VFS backend that gets loaded
114 if you run Gnome. That backend creates several threads and also allocates
115 memory with malloc.
116
117 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
118 functions below are called from malloc, there is a chance that one
119 of these threads preempts the Emacs main thread and the hook variables
120 end up in an inconsistent state. So we have a mutex to prevent that (note
121 that the backend handles concurrent access to malloc within its own threads
122 but Emacs code running in the main thread is not included in that control).
123
124 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
125 happens in one of the backend threads we will have two threads that tries
126 to run Emacs code at once, and the code is not prepared for that.
127 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
128
129 static pthread_mutex_t alloc_mutex;
130
131 #define BLOCK_INPUT_ALLOC \
132 do \
133 { \
134 if (pthread_equal (pthread_self (), main_thread)) \
135 BLOCK_INPUT; \
136 pthread_mutex_lock (&alloc_mutex); \
137 } \
138 while (0)
139 #define UNBLOCK_INPUT_ALLOC \
140 do \
141 { \
142 pthread_mutex_unlock (&alloc_mutex); \
143 if (pthread_equal (pthread_self (), main_thread)) \
144 UNBLOCK_INPUT; \
145 } \
146 while (0)
147
148 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
149
150 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
151 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
152
153 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
154
155 /* Value of _bytes_used, when spare_memory was freed. */
156
157 static __malloc_size_t bytes_used_when_full;
158
159 static __malloc_size_t bytes_used_when_reconsidered;
160
161 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
162 to a struct Lisp_String. */
163
164 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
165 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
166 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
167
168 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
169 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
170 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
171
172 /* Value is the number of bytes/chars of S, a pointer to a struct
173 Lisp_String. This must be used instead of STRING_BYTES (S) or
174 S->size during GC, because S->size contains the mark bit for
175 strings. */
176
177 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
178 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
179
180 /* Number of bytes of consing done since the last gc. */
181
182 int consing_since_gc;
183
184 /* Count the amount of consing of various sorts of space. */
185
186 EMACS_INT cons_cells_consed;
187 EMACS_INT floats_consed;
188 EMACS_INT vector_cells_consed;
189 EMACS_INT symbols_consed;
190 EMACS_INT string_chars_consed;
191 EMACS_INT misc_objects_consed;
192 EMACS_INT intervals_consed;
193 EMACS_INT strings_consed;
194
195 /* Minimum number of bytes of consing since GC before next GC. */
196
197 EMACS_INT gc_cons_threshold;
198
199 /* Similar minimum, computed from Vgc_cons_percentage. */
200
201 EMACS_INT gc_relative_threshold;
202
203 static Lisp_Object Vgc_cons_percentage;
204
205 /* Minimum number of bytes of consing since GC before next GC,
206 when memory is full. */
207
208 EMACS_INT memory_full_cons_threshold;
209
210 /* Nonzero during GC. */
211
212 int gc_in_progress;
213
214 /* Nonzero means abort if try to GC.
215 This is for code which is written on the assumption that
216 no GC will happen, so as to verify that assumption. */
217
218 int abort_on_gc;
219
220 /* Nonzero means display messages at beginning and end of GC. */
221
222 int garbage_collection_messages;
223
224 #ifndef VIRT_ADDR_VARIES
225 extern
226 #endif /* VIRT_ADDR_VARIES */
227 int malloc_sbrk_used;
228
229 #ifndef VIRT_ADDR_VARIES
230 extern
231 #endif /* VIRT_ADDR_VARIES */
232 int malloc_sbrk_unused;
233
234 /* Number of live and free conses etc. */
235
236 static int total_conses, total_markers, total_symbols, total_vector_size;
237 static int total_free_conses, total_free_markers, total_free_symbols;
238 static int total_free_floats, total_floats;
239
240 /* Points to memory space allocated as "spare", to be freed if we run
241 out of memory. We keep one large block, four cons-blocks, and
242 two string blocks. */
243
244 char *spare_memory[7];
245
246 /* Amount of spare memory to keep in large reserve block. */
247
248 #define SPARE_MEMORY (1 << 14)
249
250 /* Number of extra blocks malloc should get when it needs more core. */
251
252 static int malloc_hysteresis;
253
254 /* Non-nil means defun should do purecopy on the function definition. */
255
256 Lisp_Object Vpurify_flag;
257
258 /* Non-nil means we are handling a memory-full error. */
259
260 Lisp_Object Vmemory_full;
261
262 #ifndef HAVE_SHM
263
264 /* Initialize it to a nonzero value to force it into data space
265 (rather than bss space). That way unexec will remap it into text
266 space (pure), on some systems. We have not implemented the
267 remapping on more recent systems because this is less important
268 nowadays than in the days of small memories and timesharing. */
269
270 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
271 #define PUREBEG (char *) pure
272
273 #else /* HAVE_SHM */
274
275 #define pure PURE_SEG_BITS /* Use shared memory segment */
276 #define PUREBEG (char *)PURE_SEG_BITS
277
278 #endif /* HAVE_SHM */
279
280 /* Pointer to the pure area, and its size. */
281
282 static char *purebeg;
283 static size_t pure_size;
284
285 /* Number of bytes of pure storage used before pure storage overflowed.
286 If this is non-zero, this implies that an overflow occurred. */
287
288 static size_t pure_bytes_used_before_overflow;
289
290 /* Value is non-zero if P points into pure space. */
291
292 #define PURE_POINTER_P(P) \
293 (((PNTR_COMPARISON_TYPE) (P) \
294 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
295 && ((PNTR_COMPARISON_TYPE) (P) \
296 >= (PNTR_COMPARISON_TYPE) purebeg))
297
298 /* Total number of bytes allocated in pure storage. */
299
300 EMACS_INT pure_bytes_used;
301
302 /* Index in pure at which next pure Lisp object will be allocated.. */
303
304 static EMACS_INT pure_bytes_used_lisp;
305
306 /* Number of bytes allocated for non-Lisp objects in pure storage. */
307
308 static EMACS_INT pure_bytes_used_non_lisp;
309
310 /* If nonzero, this is a warning delivered by malloc and not yet
311 displayed. */
312
313 char *pending_malloc_warning;
314
315 /* Pre-computed signal argument for use when memory is exhausted. */
316
317 Lisp_Object Vmemory_signal_data;
318
319 /* Maximum amount of C stack to save when a GC happens. */
320
321 #ifndef MAX_SAVE_STACK
322 #define MAX_SAVE_STACK 16000
323 #endif
324
325 /* Buffer in which we save a copy of the C stack at each GC. */
326
327 char *stack_copy;
328 int stack_copy_size;
329
330 /* Non-zero means ignore malloc warnings. Set during initialization.
331 Currently not used. */
332
333 int ignore_warnings;
334
335 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
336
337 /* Hook run after GC has finished. */
338
339 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
340
341 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
342 EMACS_INT gcs_done; /* accumulated GCs */
343
344 static void mark_buffer P_ ((Lisp_Object));
345 static void mark_terminals P_ ((void));
346 extern void mark_kboards P_ ((void));
347 extern void mark_ttys P_ ((void));
348 extern void mark_backtrace P_ ((void));
349 static void gc_sweep P_ ((void));
350 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
351 static void mark_face_cache P_ ((struct face_cache *));
352
353 #ifdef HAVE_WINDOW_SYSTEM
354 extern void mark_fringe_data P_ ((void));
355 static void mark_image P_ ((struct image *));
356 static void mark_image_cache P_ ((struct frame *));
357 #endif /* HAVE_WINDOW_SYSTEM */
358
359 static struct Lisp_String *allocate_string P_ ((void));
360 static void compact_small_strings P_ ((void));
361 static void free_large_strings P_ ((void));
362 static void sweep_strings P_ ((void));
363
364 extern int message_enable_multibyte;
365
366 /* When scanning the C stack for live Lisp objects, Emacs keeps track
367 of what memory allocated via lisp_malloc is intended for what
368 purpose. This enumeration specifies the type of memory. */
369
370 enum mem_type
371 {
372 MEM_TYPE_NON_LISP,
373 MEM_TYPE_BUFFER,
374 MEM_TYPE_CONS,
375 MEM_TYPE_STRING,
376 MEM_TYPE_MISC,
377 MEM_TYPE_SYMBOL,
378 MEM_TYPE_FLOAT,
379 /* We used to keep separate mem_types for subtypes of vectors such as
380 process, hash_table, frame, terminal, and window, but we never made
381 use of the distinction, so it only caused source-code complexity
382 and runtime slowdown. Minor but pointless. */
383 MEM_TYPE_VECTORLIKE
384 };
385
386 static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
387 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
388 void refill_memory_reserve ();
389
390
391 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
392
393 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
394 #include <stdio.h> /* For fprintf. */
395 #endif
396
397 /* A unique object in pure space used to make some Lisp objects
398 on free lists recognizable in O(1). */
399
400 Lisp_Object Vdead;
401
402 #ifdef GC_MALLOC_CHECK
403
404 enum mem_type allocated_mem_type;
405 int dont_register_blocks;
406
407 #endif /* GC_MALLOC_CHECK */
408
409 /* A node in the red-black tree describing allocated memory containing
410 Lisp data. Each such block is recorded with its start and end
411 address when it is allocated, and removed from the tree when it
412 is freed.
413
414 A red-black tree is a balanced binary tree with the following
415 properties:
416
417 1. Every node is either red or black.
418 2. Every leaf is black.
419 3. If a node is red, then both of its children are black.
420 4. Every simple path from a node to a descendant leaf contains
421 the same number of black nodes.
422 5. The root is always black.
423
424 When nodes are inserted into the tree, or deleted from the tree,
425 the tree is "fixed" so that these properties are always true.
426
427 A red-black tree with N internal nodes has height at most 2
428 log(N+1). Searches, insertions and deletions are done in O(log N).
429 Please see a text book about data structures for a detailed
430 description of red-black trees. Any book worth its salt should
431 describe them. */
432
433 struct mem_node
434 {
435 /* Children of this node. These pointers are never NULL. When there
436 is no child, the value is MEM_NIL, which points to a dummy node. */
437 struct mem_node *left, *right;
438
439 /* The parent of this node. In the root node, this is NULL. */
440 struct mem_node *parent;
441
442 /* Start and end of allocated region. */
443 void *start, *end;
444
445 /* Node color. */
446 enum {MEM_BLACK, MEM_RED} color;
447
448 /* Memory type. */
449 enum mem_type type;
450 };
451
452 /* Base address of stack. Set in main. */
453
454 Lisp_Object *stack_base;
455
456 /* Root of the tree describing allocated Lisp memory. */
457
458 static struct mem_node *mem_root;
459
460 /* Lowest and highest known address in the heap. */
461
462 static void *min_heap_address, *max_heap_address;
463
464 /* Sentinel node of the tree. */
465
466 static struct mem_node mem_z;
467 #define MEM_NIL &mem_z
468
469 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
470 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT));
471 static void lisp_free P_ ((POINTER_TYPE *));
472 static void mark_stack P_ ((void));
473 static int live_vector_p P_ ((struct mem_node *, void *));
474 static int live_buffer_p P_ ((struct mem_node *, void *));
475 static int live_string_p P_ ((struct mem_node *, void *));
476 static int live_cons_p P_ ((struct mem_node *, void *));
477 static int live_symbol_p P_ ((struct mem_node *, void *));
478 static int live_float_p P_ ((struct mem_node *, void *));
479 static int live_misc_p P_ ((struct mem_node *, void *));
480 static void mark_maybe_object P_ ((Lisp_Object));
481 static void mark_memory P_ ((void *, void *, int));
482 static void mem_init P_ ((void));
483 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
484 static void mem_insert_fixup P_ ((struct mem_node *));
485 static void mem_rotate_left P_ ((struct mem_node *));
486 static void mem_rotate_right P_ ((struct mem_node *));
487 static void mem_delete P_ ((struct mem_node *));
488 static void mem_delete_fixup P_ ((struct mem_node *));
489 static INLINE struct mem_node *mem_find P_ ((void *));
490
491
492 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
493 static void check_gcpros P_ ((void));
494 #endif
495
496 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
497
498 /* Recording what needs to be marked for gc. */
499
500 struct gcpro *gcprolist;
501
502 /* Addresses of staticpro'd variables. Initialize it to a nonzero
503 value; otherwise some compilers put it into BSS. */
504
505 #define NSTATICS 0x600
506 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
507
508 /* Index of next unused slot in staticvec. */
509
510 int staticidx = 0;
511
512 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
513
514
515 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
516 ALIGNMENT must be a power of 2. */
517
518 #define ALIGN(ptr, ALIGNMENT) \
519 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
520 & ~((ALIGNMENT) - 1)))
521
522
523 \f
524 /************************************************************************
525 Malloc
526 ************************************************************************/
527
528 /* Function malloc calls this if it finds we are near exhausting storage. */
529
530 void
531 malloc_warning (str)
532 char *str;
533 {
534 pending_malloc_warning = str;
535 }
536
537
538 /* Display an already-pending malloc warning. */
539
540 void
541 display_malloc_warning ()
542 {
543 call3 (intern ("display-warning"),
544 intern ("alloc"),
545 build_string (pending_malloc_warning),
546 intern ("emergency"));
547 pending_malloc_warning = 0;
548 }
549
550
551 #ifdef DOUG_LEA_MALLOC
552 # define BYTES_USED (mallinfo ().uordblks)
553 #else
554 # define BYTES_USED _bytes_used
555 #endif
556 \f
557 /* Called if we can't allocate relocatable space for a buffer. */
558
559 void
560 buffer_memory_full ()
561 {
562 /* If buffers use the relocating allocator, no need to free
563 spare_memory, because we may have plenty of malloc space left
564 that we could get, and if we don't, the malloc that fails will
565 itself cause spare_memory to be freed. If buffers don't use the
566 relocating allocator, treat this like any other failing
567 malloc. */
568
569 #ifndef REL_ALLOC
570 memory_full ();
571 #endif
572
573 /* This used to call error, but if we've run out of memory, we could
574 get infinite recursion trying to build the string. */
575 xsignal (Qnil, Vmemory_signal_data);
576 }
577
578
579 #ifdef XMALLOC_OVERRUN_CHECK
580
581 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
582 and a 16 byte trailer around each block.
583
584 The header consists of 12 fixed bytes + a 4 byte integer contaning the
585 original block size, while the trailer consists of 16 fixed bytes.
586
587 The header is used to detect whether this block has been allocated
588 through these functions -- as it seems that some low-level libc
589 functions may bypass the malloc hooks.
590 */
591
592
593 #define XMALLOC_OVERRUN_CHECK_SIZE 16
594
595 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
596 { 0x9a, 0x9b, 0xae, 0xaf,
597 0xbf, 0xbe, 0xce, 0xcf,
598 0xea, 0xeb, 0xec, 0xed };
599
600 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
601 { 0xaa, 0xab, 0xac, 0xad,
602 0xba, 0xbb, 0xbc, 0xbd,
603 0xca, 0xcb, 0xcc, 0xcd,
604 0xda, 0xdb, 0xdc, 0xdd };
605
606 /* Macros to insert and extract the block size in the header. */
607
608 #define XMALLOC_PUT_SIZE(ptr, size) \
609 (ptr[-1] = (size & 0xff), \
610 ptr[-2] = ((size >> 8) & 0xff), \
611 ptr[-3] = ((size >> 16) & 0xff), \
612 ptr[-4] = ((size >> 24) & 0xff))
613
614 #define XMALLOC_GET_SIZE(ptr) \
615 (size_t)((unsigned)(ptr[-1]) | \
616 ((unsigned)(ptr[-2]) << 8) | \
617 ((unsigned)(ptr[-3]) << 16) | \
618 ((unsigned)(ptr[-4]) << 24))
619
620
621 /* The call depth in overrun_check functions. For example, this might happen:
622 xmalloc()
623 overrun_check_malloc()
624 -> malloc -> (via hook)_-> emacs_blocked_malloc
625 -> overrun_check_malloc
626 call malloc (hooks are NULL, so real malloc is called).
627 malloc returns 10000.
628 add overhead, return 10016.
629 <- (back in overrun_check_malloc)
630 add overhead again, return 10032
631 xmalloc returns 10032.
632
633 (time passes).
634
635 xfree(10032)
636 overrun_check_free(10032)
637 decrease overhed
638 free(10016) <- crash, because 10000 is the original pointer. */
639
640 static int check_depth;
641
642 /* Like malloc, but wraps allocated block with header and trailer. */
643
644 POINTER_TYPE *
645 overrun_check_malloc (size)
646 size_t size;
647 {
648 register unsigned char *val;
649 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
650
651 val = (unsigned char *) malloc (size + overhead);
652 if (val && check_depth == 1)
653 {
654 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
655 val += XMALLOC_OVERRUN_CHECK_SIZE;
656 XMALLOC_PUT_SIZE(val, size);
657 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
658 }
659 --check_depth;
660 return (POINTER_TYPE *)val;
661 }
662
663
664 /* Like realloc, but checks old block for overrun, and wraps new block
665 with header and trailer. */
666
667 POINTER_TYPE *
668 overrun_check_realloc (block, size)
669 POINTER_TYPE *block;
670 size_t size;
671 {
672 register unsigned char *val = (unsigned char *)block;
673 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
674
675 if (val
676 && check_depth == 1
677 && bcmp (xmalloc_overrun_check_header,
678 val - XMALLOC_OVERRUN_CHECK_SIZE,
679 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
680 {
681 size_t osize = XMALLOC_GET_SIZE (val);
682 if (bcmp (xmalloc_overrun_check_trailer,
683 val + osize,
684 XMALLOC_OVERRUN_CHECK_SIZE))
685 abort ();
686 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
687 val -= XMALLOC_OVERRUN_CHECK_SIZE;
688 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
689 }
690
691 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
692
693 if (val && check_depth == 1)
694 {
695 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
696 val += XMALLOC_OVERRUN_CHECK_SIZE;
697 XMALLOC_PUT_SIZE(val, size);
698 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
699 }
700 --check_depth;
701 return (POINTER_TYPE *)val;
702 }
703
704 /* Like free, but checks block for overrun. */
705
706 void
707 overrun_check_free (block)
708 POINTER_TYPE *block;
709 {
710 unsigned char *val = (unsigned char *)block;
711
712 ++check_depth;
713 if (val
714 && check_depth == 1
715 && bcmp (xmalloc_overrun_check_header,
716 val - XMALLOC_OVERRUN_CHECK_SIZE,
717 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
718 {
719 size_t osize = XMALLOC_GET_SIZE (val);
720 if (bcmp (xmalloc_overrun_check_trailer,
721 val + osize,
722 XMALLOC_OVERRUN_CHECK_SIZE))
723 abort ();
724 #ifdef XMALLOC_CLEAR_FREE_MEMORY
725 val -= XMALLOC_OVERRUN_CHECK_SIZE;
726 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
727 #else
728 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
729 val -= XMALLOC_OVERRUN_CHECK_SIZE;
730 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
731 #endif
732 }
733
734 free (val);
735 --check_depth;
736 }
737
738 #undef malloc
739 #undef realloc
740 #undef free
741 #define malloc overrun_check_malloc
742 #define realloc overrun_check_realloc
743 #define free overrun_check_free
744 #endif
745
746 #ifdef SYNC_INPUT
747 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
748 there's no need to block input around malloc. */
749 #define MALLOC_BLOCK_INPUT ((void)0)
750 #define MALLOC_UNBLOCK_INPUT ((void)0)
751 #else
752 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
753 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
754 #endif
755
756 /* Like malloc but check for no memory and block interrupt input.. */
757
758 POINTER_TYPE *
759 xmalloc (size)
760 size_t size;
761 {
762 register POINTER_TYPE *val;
763
764 MALLOC_BLOCK_INPUT;
765 val = (POINTER_TYPE *) malloc (size);
766 MALLOC_UNBLOCK_INPUT;
767
768 if (!val && size)
769 memory_full ();
770 return val;
771 }
772
773
774 /* Like realloc but check for no memory and block interrupt input.. */
775
776 POINTER_TYPE *
777 xrealloc (block, size)
778 POINTER_TYPE *block;
779 size_t size;
780 {
781 register POINTER_TYPE *val;
782
783 MALLOC_BLOCK_INPUT;
784 /* We must call malloc explicitly when BLOCK is 0, since some
785 reallocs don't do this. */
786 if (! block)
787 val = (POINTER_TYPE *) malloc (size);
788 else
789 val = (POINTER_TYPE *) realloc (block, size);
790 MALLOC_UNBLOCK_INPUT;
791
792 if (!val && size) memory_full ();
793 return val;
794 }
795
796
797 /* Like free but block interrupt input. */
798
799 void
800 xfree (block)
801 POINTER_TYPE *block;
802 {
803 MALLOC_BLOCK_INPUT;
804 free (block);
805 MALLOC_UNBLOCK_INPUT;
806 /* We don't call refill_memory_reserve here
807 because that duplicates doing so in emacs_blocked_free
808 and the criterion should go there. */
809 }
810
811
812 /* Like strdup, but uses xmalloc. */
813
814 char *
815 xstrdup (s)
816 const char *s;
817 {
818 size_t len = strlen (s) + 1;
819 char *p = (char *) xmalloc (len);
820 bcopy (s, p, len);
821 return p;
822 }
823
824
825 /* Unwind for SAFE_ALLOCA */
826
827 Lisp_Object
828 safe_alloca_unwind (arg)
829 Lisp_Object arg;
830 {
831 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
832
833 p->dogc = 0;
834 xfree (p->pointer);
835 p->pointer = 0;
836 free_misc (arg);
837 return Qnil;
838 }
839
840
841 /* Like malloc but used for allocating Lisp data. NBYTES is the
842 number of bytes to allocate, TYPE describes the intended use of the
843 allcated memory block (for strings, for conses, ...). */
844
845 #ifndef USE_LSB_TAG
846 static void *lisp_malloc_loser;
847 #endif
848
849 static POINTER_TYPE *
850 lisp_malloc (nbytes, type)
851 size_t nbytes;
852 enum mem_type type;
853 {
854 register void *val;
855
856 MALLOC_BLOCK_INPUT;
857
858 #ifdef GC_MALLOC_CHECK
859 allocated_mem_type = type;
860 #endif
861
862 val = (void *) malloc (nbytes);
863
864 #ifndef USE_LSB_TAG
865 /* If the memory just allocated cannot be addressed thru a Lisp
866 object's pointer, and it needs to be,
867 that's equivalent to running out of memory. */
868 if (val && type != MEM_TYPE_NON_LISP)
869 {
870 Lisp_Object tem;
871 XSETCONS (tem, (char *) val + nbytes - 1);
872 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
873 {
874 lisp_malloc_loser = val;
875 free (val);
876 val = 0;
877 }
878 }
879 #endif
880
881 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
882 if (val && type != MEM_TYPE_NON_LISP)
883 mem_insert (val, (char *) val + nbytes, type);
884 #endif
885
886 MALLOC_UNBLOCK_INPUT;
887 if (!val && nbytes)
888 memory_full ();
889 return val;
890 }
891
892 /* Free BLOCK. This must be called to free memory allocated with a
893 call to lisp_malloc. */
894
895 static void
896 lisp_free (block)
897 POINTER_TYPE *block;
898 {
899 MALLOC_BLOCK_INPUT;
900 free (block);
901 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
902 mem_delete (mem_find (block));
903 #endif
904 MALLOC_UNBLOCK_INPUT;
905 }
906
907 /* Allocation of aligned blocks of memory to store Lisp data. */
908 /* The entry point is lisp_align_malloc which returns blocks of at most */
909 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
910
911 /* Use posix_memalloc if the system has it and we're using the system's
912 malloc (because our gmalloc.c routines don't have posix_memalign although
913 its memalloc could be used). */
914 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
915 #define USE_POSIX_MEMALIGN 1
916 #endif
917
918 /* BLOCK_ALIGN has to be a power of 2. */
919 #define BLOCK_ALIGN (1 << 10)
920
921 /* Padding to leave at the end of a malloc'd block. This is to give
922 malloc a chance to minimize the amount of memory wasted to alignment.
923 It should be tuned to the particular malloc library used.
924 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
925 posix_memalign on the other hand would ideally prefer a value of 4
926 because otherwise, there's 1020 bytes wasted between each ablocks.
927 In Emacs, testing shows that those 1020 can most of the time be
928 efficiently used by malloc to place other objects, so a value of 0 can
929 still preferable unless you have a lot of aligned blocks and virtually
930 nothing else. */
931 #define BLOCK_PADDING 0
932 #define BLOCK_BYTES \
933 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
934
935 /* Internal data structures and constants. */
936
937 #define ABLOCKS_SIZE 16
938
939 /* An aligned block of memory. */
940 struct ablock
941 {
942 union
943 {
944 char payload[BLOCK_BYTES];
945 struct ablock *next_free;
946 } x;
947 /* `abase' is the aligned base of the ablocks. */
948 /* It is overloaded to hold the virtual `busy' field that counts
949 the number of used ablock in the parent ablocks.
950 The first ablock has the `busy' field, the others have the `abase'
951 field. To tell the difference, we assume that pointers will have
952 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
953 is used to tell whether the real base of the parent ablocks is `abase'
954 (if not, the word before the first ablock holds a pointer to the
955 real base). */
956 struct ablocks *abase;
957 /* The padding of all but the last ablock is unused. The padding of
958 the last ablock in an ablocks is not allocated. */
959 #if BLOCK_PADDING
960 char padding[BLOCK_PADDING];
961 #endif
962 };
963
964 /* A bunch of consecutive aligned blocks. */
965 struct ablocks
966 {
967 struct ablock blocks[ABLOCKS_SIZE];
968 };
969
970 /* Size of the block requested from malloc or memalign. */
971 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
972
973 #define ABLOCK_ABASE(block) \
974 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
975 ? (struct ablocks *)(block) \
976 : (block)->abase)
977
978 /* Virtual `busy' field. */
979 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
980
981 /* Pointer to the (not necessarily aligned) malloc block. */
982 #ifdef USE_POSIX_MEMALIGN
983 #define ABLOCKS_BASE(abase) (abase)
984 #else
985 #define ABLOCKS_BASE(abase) \
986 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
987 #endif
988
989 /* The list of free ablock. */
990 static struct ablock *free_ablock;
991
992 /* Allocate an aligned block of nbytes.
993 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
994 smaller or equal to BLOCK_BYTES. */
995 static POINTER_TYPE *
996 lisp_align_malloc (nbytes, type)
997 size_t nbytes;
998 enum mem_type type;
999 {
1000 void *base, *val;
1001 struct ablocks *abase;
1002
1003 eassert (nbytes <= BLOCK_BYTES);
1004
1005 MALLOC_BLOCK_INPUT;
1006
1007 #ifdef GC_MALLOC_CHECK
1008 allocated_mem_type = type;
1009 #endif
1010
1011 if (!free_ablock)
1012 {
1013 int i;
1014 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
1015
1016 #ifdef DOUG_LEA_MALLOC
1017 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1018 because mapped region contents are not preserved in
1019 a dumped Emacs. */
1020 mallopt (M_MMAP_MAX, 0);
1021 #endif
1022
1023 #ifdef USE_POSIX_MEMALIGN
1024 {
1025 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1026 if (err)
1027 base = NULL;
1028 abase = base;
1029 }
1030 #else
1031 base = malloc (ABLOCKS_BYTES);
1032 abase = ALIGN (base, BLOCK_ALIGN);
1033 #endif
1034
1035 if (base == 0)
1036 {
1037 MALLOC_UNBLOCK_INPUT;
1038 memory_full ();
1039 }
1040
1041 aligned = (base == abase);
1042 if (!aligned)
1043 ((void**)abase)[-1] = base;
1044
1045 #ifdef DOUG_LEA_MALLOC
1046 /* Back to a reasonable maximum of mmap'ed areas. */
1047 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1048 #endif
1049
1050 #ifndef USE_LSB_TAG
1051 /* If the memory just allocated cannot be addressed thru a Lisp
1052 object's pointer, and it needs to be, that's equivalent to
1053 running out of memory. */
1054 if (type != MEM_TYPE_NON_LISP)
1055 {
1056 Lisp_Object tem;
1057 char *end = (char *) base + ABLOCKS_BYTES - 1;
1058 XSETCONS (tem, end);
1059 if ((char *) XCONS (tem) != end)
1060 {
1061 lisp_malloc_loser = base;
1062 free (base);
1063 MALLOC_UNBLOCK_INPUT;
1064 memory_full ();
1065 }
1066 }
1067 #endif
1068
1069 /* Initialize the blocks and put them on the free list.
1070 Is `base' was not properly aligned, we can't use the last block. */
1071 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1072 {
1073 abase->blocks[i].abase = abase;
1074 abase->blocks[i].x.next_free = free_ablock;
1075 free_ablock = &abase->blocks[i];
1076 }
1077 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1078
1079 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1080 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1081 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1082 eassert (ABLOCKS_BASE (abase) == base);
1083 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1084 }
1085
1086 abase = ABLOCK_ABASE (free_ablock);
1087 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1088 val = free_ablock;
1089 free_ablock = free_ablock->x.next_free;
1090
1091 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1092 if (val && type != MEM_TYPE_NON_LISP)
1093 mem_insert (val, (char *) val + nbytes, type);
1094 #endif
1095
1096 MALLOC_UNBLOCK_INPUT;
1097 if (!val && nbytes)
1098 memory_full ();
1099
1100 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1101 return val;
1102 }
1103
1104 static void
1105 lisp_align_free (block)
1106 POINTER_TYPE *block;
1107 {
1108 struct ablock *ablock = block;
1109 struct ablocks *abase = ABLOCK_ABASE (ablock);
1110
1111 MALLOC_BLOCK_INPUT;
1112 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1113 mem_delete (mem_find (block));
1114 #endif
1115 /* Put on free list. */
1116 ablock->x.next_free = free_ablock;
1117 free_ablock = ablock;
1118 /* Update busy count. */
1119 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1120
1121 if (2 > (long) ABLOCKS_BUSY (abase))
1122 { /* All the blocks are free. */
1123 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1124 struct ablock **tem = &free_ablock;
1125 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1126
1127 while (*tem)
1128 {
1129 if (*tem >= (struct ablock *) abase && *tem < atop)
1130 {
1131 i++;
1132 *tem = (*tem)->x.next_free;
1133 }
1134 else
1135 tem = &(*tem)->x.next_free;
1136 }
1137 eassert ((aligned & 1) == aligned);
1138 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1139 #ifdef USE_POSIX_MEMALIGN
1140 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1141 #endif
1142 free (ABLOCKS_BASE (abase));
1143 }
1144 MALLOC_UNBLOCK_INPUT;
1145 }
1146
1147 /* Return a new buffer structure allocated from the heap with
1148 a call to lisp_malloc. */
1149
1150 struct buffer *
1151 allocate_buffer ()
1152 {
1153 struct buffer *b
1154 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1155 MEM_TYPE_BUFFER);
1156 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1157 XSETPVECTYPE (b, PVEC_BUFFER);
1158 return b;
1159 }
1160
1161 \f
1162 #ifndef SYSTEM_MALLOC
1163
1164 /* Arranging to disable input signals while we're in malloc.
1165
1166 This only works with GNU malloc. To help out systems which can't
1167 use GNU malloc, all the calls to malloc, realloc, and free
1168 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1169 pair; unfortunately, we have no idea what C library functions
1170 might call malloc, so we can't really protect them unless you're
1171 using GNU malloc. Fortunately, most of the major operating systems
1172 can use GNU malloc. */
1173
1174 #ifndef SYNC_INPUT
1175 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1176 there's no need to block input around malloc. */
1177
1178 #ifndef DOUG_LEA_MALLOC
1179 extern void * (*__malloc_hook) P_ ((size_t, const void *));
1180 extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1181 extern void (*__free_hook) P_ ((void *, const void *));
1182 /* Else declared in malloc.h, perhaps with an extra arg. */
1183 #endif /* DOUG_LEA_MALLOC */
1184 static void * (*old_malloc_hook) P_ ((size_t, const void *));
1185 static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
1186 static void (*old_free_hook) P_ ((void*, const void*));
1187
1188 /* This function is used as the hook for free to call. */
1189
1190 static void
1191 emacs_blocked_free (ptr, ptr2)
1192 void *ptr;
1193 const void *ptr2;
1194 {
1195 BLOCK_INPUT_ALLOC;
1196
1197 #ifdef GC_MALLOC_CHECK
1198 if (ptr)
1199 {
1200 struct mem_node *m;
1201
1202 m = mem_find (ptr);
1203 if (m == MEM_NIL || m->start != ptr)
1204 {
1205 fprintf (stderr,
1206 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1207 abort ();
1208 }
1209 else
1210 {
1211 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1212 mem_delete (m);
1213 }
1214 }
1215 #endif /* GC_MALLOC_CHECK */
1216
1217 __free_hook = old_free_hook;
1218 free (ptr);
1219
1220 /* If we released our reserve (due to running out of memory),
1221 and we have a fair amount free once again,
1222 try to set aside another reserve in case we run out once more. */
1223 if (! NILP (Vmemory_full)
1224 /* Verify there is enough space that even with the malloc
1225 hysteresis this call won't run out again.
1226 The code here is correct as long as SPARE_MEMORY
1227 is substantially larger than the block size malloc uses. */
1228 && (bytes_used_when_full
1229 > ((bytes_used_when_reconsidered = BYTES_USED)
1230 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1231 refill_memory_reserve ();
1232
1233 __free_hook = emacs_blocked_free;
1234 UNBLOCK_INPUT_ALLOC;
1235 }
1236
1237
1238 /* This function is the malloc hook that Emacs uses. */
1239
1240 static void *
1241 emacs_blocked_malloc (size, ptr)
1242 size_t size;
1243 const void *ptr;
1244 {
1245 void *value;
1246
1247 BLOCK_INPUT_ALLOC;
1248 __malloc_hook = old_malloc_hook;
1249 #ifdef DOUG_LEA_MALLOC
1250 /* Segfaults on my system. --lorentey */
1251 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1252 #else
1253 __malloc_extra_blocks = malloc_hysteresis;
1254 #endif
1255
1256 value = (void *) malloc (size);
1257
1258 #ifdef GC_MALLOC_CHECK
1259 {
1260 struct mem_node *m = mem_find (value);
1261 if (m != MEM_NIL)
1262 {
1263 fprintf (stderr, "Malloc returned %p which is already in use\n",
1264 value);
1265 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1266 m->start, m->end, (char *) m->end - (char *) m->start,
1267 m->type);
1268 abort ();
1269 }
1270
1271 if (!dont_register_blocks)
1272 {
1273 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1274 allocated_mem_type = MEM_TYPE_NON_LISP;
1275 }
1276 }
1277 #endif /* GC_MALLOC_CHECK */
1278
1279 __malloc_hook = emacs_blocked_malloc;
1280 UNBLOCK_INPUT_ALLOC;
1281
1282 /* fprintf (stderr, "%p malloc\n", value); */
1283 return value;
1284 }
1285
1286
1287 /* This function is the realloc hook that Emacs uses. */
1288
1289 static void *
1290 emacs_blocked_realloc (ptr, size, ptr2)
1291 void *ptr;
1292 size_t size;
1293 const void *ptr2;
1294 {
1295 void *value;
1296
1297 BLOCK_INPUT_ALLOC;
1298 __realloc_hook = old_realloc_hook;
1299
1300 #ifdef GC_MALLOC_CHECK
1301 if (ptr)
1302 {
1303 struct mem_node *m = mem_find (ptr);
1304 if (m == MEM_NIL || m->start != ptr)
1305 {
1306 fprintf (stderr,
1307 "Realloc of %p which wasn't allocated with malloc\n",
1308 ptr);
1309 abort ();
1310 }
1311
1312 mem_delete (m);
1313 }
1314
1315 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1316
1317 /* Prevent malloc from registering blocks. */
1318 dont_register_blocks = 1;
1319 #endif /* GC_MALLOC_CHECK */
1320
1321 value = (void *) realloc (ptr, size);
1322
1323 #ifdef GC_MALLOC_CHECK
1324 dont_register_blocks = 0;
1325
1326 {
1327 struct mem_node *m = mem_find (value);
1328 if (m != MEM_NIL)
1329 {
1330 fprintf (stderr, "Realloc returns memory that is already in use\n");
1331 abort ();
1332 }
1333
1334 /* Can't handle zero size regions in the red-black tree. */
1335 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1336 }
1337
1338 /* fprintf (stderr, "%p <- realloc\n", value); */
1339 #endif /* GC_MALLOC_CHECK */
1340
1341 __realloc_hook = emacs_blocked_realloc;
1342 UNBLOCK_INPUT_ALLOC;
1343
1344 return value;
1345 }
1346
1347
1348 #ifdef HAVE_GTK_AND_PTHREAD
1349 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1350 normal malloc. Some thread implementations need this as they call
1351 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1352 calls malloc because it is the first call, and we have an endless loop. */
1353
1354 void
1355 reset_malloc_hooks ()
1356 {
1357 __free_hook = old_free_hook;
1358 __malloc_hook = old_malloc_hook;
1359 __realloc_hook = old_realloc_hook;
1360 }
1361 #endif /* HAVE_GTK_AND_PTHREAD */
1362
1363
1364 /* Called from main to set up malloc to use our hooks. */
1365
1366 void
1367 uninterrupt_malloc ()
1368 {
1369 #ifdef HAVE_GTK_AND_PTHREAD
1370 pthread_mutexattr_t attr;
1371
1372 /* GLIBC has a faster way to do this, but lets keep it portable.
1373 This is according to the Single UNIX Specification. */
1374 pthread_mutexattr_init (&attr);
1375 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1376 pthread_mutex_init (&alloc_mutex, &attr);
1377 #endif /* HAVE_GTK_AND_PTHREAD */
1378
1379 if (__free_hook != emacs_blocked_free)
1380 old_free_hook = __free_hook;
1381 __free_hook = emacs_blocked_free;
1382
1383 if (__malloc_hook != emacs_blocked_malloc)
1384 old_malloc_hook = __malloc_hook;
1385 __malloc_hook = emacs_blocked_malloc;
1386
1387 if (__realloc_hook != emacs_blocked_realloc)
1388 old_realloc_hook = __realloc_hook;
1389 __realloc_hook = emacs_blocked_realloc;
1390 }
1391
1392 #endif /* not SYNC_INPUT */
1393 #endif /* not SYSTEM_MALLOC */
1394
1395
1396 \f
1397 /***********************************************************************
1398 Interval Allocation
1399 ***********************************************************************/
1400
1401 /* Number of intervals allocated in an interval_block structure.
1402 The 1020 is 1024 minus malloc overhead. */
1403
1404 #define INTERVAL_BLOCK_SIZE \
1405 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1406
1407 /* Intervals are allocated in chunks in form of an interval_block
1408 structure. */
1409
1410 struct interval_block
1411 {
1412 /* Place `intervals' first, to preserve alignment. */
1413 struct interval intervals[INTERVAL_BLOCK_SIZE];
1414 struct interval_block *next;
1415 };
1416
1417 /* Current interval block. Its `next' pointer points to older
1418 blocks. */
1419
1420 struct interval_block *interval_block;
1421
1422 /* Index in interval_block above of the next unused interval
1423 structure. */
1424
1425 static int interval_block_index;
1426
1427 /* Number of free and live intervals. */
1428
1429 static int total_free_intervals, total_intervals;
1430
1431 /* List of free intervals. */
1432
1433 INTERVAL interval_free_list;
1434
1435 /* Total number of interval blocks now in use. */
1436
1437 int n_interval_blocks;
1438
1439
1440 /* Initialize interval allocation. */
1441
1442 static void
1443 init_intervals ()
1444 {
1445 interval_block = NULL;
1446 interval_block_index = INTERVAL_BLOCK_SIZE;
1447 interval_free_list = 0;
1448 n_interval_blocks = 0;
1449 }
1450
1451
1452 /* Return a new interval. */
1453
1454 INTERVAL
1455 make_interval ()
1456 {
1457 INTERVAL val;
1458
1459 /* eassert (!handling_signal); */
1460
1461 MALLOC_BLOCK_INPUT;
1462
1463 if (interval_free_list)
1464 {
1465 val = interval_free_list;
1466 interval_free_list = INTERVAL_PARENT (interval_free_list);
1467 }
1468 else
1469 {
1470 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1471 {
1472 register struct interval_block *newi;
1473
1474 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1475 MEM_TYPE_NON_LISP);
1476
1477 newi->next = interval_block;
1478 interval_block = newi;
1479 interval_block_index = 0;
1480 n_interval_blocks++;
1481 }
1482 val = &interval_block->intervals[interval_block_index++];
1483 }
1484
1485 MALLOC_UNBLOCK_INPUT;
1486
1487 consing_since_gc += sizeof (struct interval);
1488 intervals_consed++;
1489 RESET_INTERVAL (val);
1490 val->gcmarkbit = 0;
1491 return val;
1492 }
1493
1494
1495 /* Mark Lisp objects in interval I. */
1496
1497 static void
1498 mark_interval (i, dummy)
1499 register INTERVAL i;
1500 Lisp_Object dummy;
1501 {
1502 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1503 i->gcmarkbit = 1;
1504 mark_object (i->plist);
1505 }
1506
1507
1508 /* Mark the interval tree rooted in TREE. Don't call this directly;
1509 use the macro MARK_INTERVAL_TREE instead. */
1510
1511 static void
1512 mark_interval_tree (tree)
1513 register INTERVAL tree;
1514 {
1515 /* No need to test if this tree has been marked already; this
1516 function is always called through the MARK_INTERVAL_TREE macro,
1517 which takes care of that. */
1518
1519 traverse_intervals_noorder (tree, mark_interval, Qnil);
1520 }
1521
1522
1523 /* Mark the interval tree rooted in I. */
1524
1525 #define MARK_INTERVAL_TREE(i) \
1526 do { \
1527 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1528 mark_interval_tree (i); \
1529 } while (0)
1530
1531
1532 #define UNMARK_BALANCE_INTERVALS(i) \
1533 do { \
1534 if (! NULL_INTERVAL_P (i)) \
1535 (i) = balance_intervals (i); \
1536 } while (0)
1537
1538 \f
1539 /* Number support. If NO_UNION_TYPE isn't in effect, we
1540 can't create number objects in macros. */
1541 #ifndef make_number
1542 Lisp_Object
1543 make_number (n)
1544 EMACS_INT n;
1545 {
1546 Lisp_Object obj;
1547 obj.s.val = n;
1548 obj.s.type = Lisp_Int;
1549 return obj;
1550 }
1551 #endif
1552 \f
1553 /***********************************************************************
1554 String Allocation
1555 ***********************************************************************/
1556
1557 /* Lisp_Strings are allocated in string_block structures. When a new
1558 string_block is allocated, all the Lisp_Strings it contains are
1559 added to a free-list string_free_list. When a new Lisp_String is
1560 needed, it is taken from that list. During the sweep phase of GC,
1561 string_blocks that are entirely free are freed, except two which
1562 we keep.
1563
1564 String data is allocated from sblock structures. Strings larger
1565 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1566 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1567
1568 Sblocks consist internally of sdata structures, one for each
1569 Lisp_String. The sdata structure points to the Lisp_String it
1570 belongs to. The Lisp_String points back to the `u.data' member of
1571 its sdata structure.
1572
1573 When a Lisp_String is freed during GC, it is put back on
1574 string_free_list, and its `data' member and its sdata's `string'
1575 pointer is set to null. The size of the string is recorded in the
1576 `u.nbytes' member of the sdata. So, sdata structures that are no
1577 longer used, can be easily recognized, and it's easy to compact the
1578 sblocks of small strings which we do in compact_small_strings. */
1579
1580 /* Size in bytes of an sblock structure used for small strings. This
1581 is 8192 minus malloc overhead. */
1582
1583 #define SBLOCK_SIZE 8188
1584
1585 /* Strings larger than this are considered large strings. String data
1586 for large strings is allocated from individual sblocks. */
1587
1588 #define LARGE_STRING_BYTES 1024
1589
1590 /* Structure describing string memory sub-allocated from an sblock.
1591 This is where the contents of Lisp strings are stored. */
1592
1593 struct sdata
1594 {
1595 /* Back-pointer to the string this sdata belongs to. If null, this
1596 structure is free, and the NBYTES member of the union below
1597 contains the string's byte size (the same value that STRING_BYTES
1598 would return if STRING were non-null). If non-null, STRING_BYTES
1599 (STRING) is the size of the data, and DATA contains the string's
1600 contents. */
1601 struct Lisp_String *string;
1602
1603 #ifdef GC_CHECK_STRING_BYTES
1604
1605 EMACS_INT nbytes;
1606 unsigned char data[1];
1607
1608 #define SDATA_NBYTES(S) (S)->nbytes
1609 #define SDATA_DATA(S) (S)->data
1610
1611 #else /* not GC_CHECK_STRING_BYTES */
1612
1613 union
1614 {
1615 /* When STRING in non-null. */
1616 unsigned char data[1];
1617
1618 /* When STRING is null. */
1619 EMACS_INT nbytes;
1620 } u;
1621
1622
1623 #define SDATA_NBYTES(S) (S)->u.nbytes
1624 #define SDATA_DATA(S) (S)->u.data
1625
1626 #endif /* not GC_CHECK_STRING_BYTES */
1627 };
1628
1629
1630 /* Structure describing a block of memory which is sub-allocated to
1631 obtain string data memory for strings. Blocks for small strings
1632 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1633 as large as needed. */
1634
1635 struct sblock
1636 {
1637 /* Next in list. */
1638 struct sblock *next;
1639
1640 /* Pointer to the next free sdata block. This points past the end
1641 of the sblock if there isn't any space left in this block. */
1642 struct sdata *next_free;
1643
1644 /* Start of data. */
1645 struct sdata first_data;
1646 };
1647
1648 /* Number of Lisp strings in a string_block structure. The 1020 is
1649 1024 minus malloc overhead. */
1650
1651 #define STRING_BLOCK_SIZE \
1652 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1653
1654 /* Structure describing a block from which Lisp_String structures
1655 are allocated. */
1656
1657 struct string_block
1658 {
1659 /* Place `strings' first, to preserve alignment. */
1660 struct Lisp_String strings[STRING_BLOCK_SIZE];
1661 struct string_block *next;
1662 };
1663
1664 /* Head and tail of the list of sblock structures holding Lisp string
1665 data. We always allocate from current_sblock. The NEXT pointers
1666 in the sblock structures go from oldest_sblock to current_sblock. */
1667
1668 static struct sblock *oldest_sblock, *current_sblock;
1669
1670 /* List of sblocks for large strings. */
1671
1672 static struct sblock *large_sblocks;
1673
1674 /* List of string_block structures, and how many there are. */
1675
1676 static struct string_block *string_blocks;
1677 static int n_string_blocks;
1678
1679 /* Free-list of Lisp_Strings. */
1680
1681 static struct Lisp_String *string_free_list;
1682
1683 /* Number of live and free Lisp_Strings. */
1684
1685 static int total_strings, total_free_strings;
1686
1687 /* Number of bytes used by live strings. */
1688
1689 static int total_string_size;
1690
1691 /* Given a pointer to a Lisp_String S which is on the free-list
1692 string_free_list, return a pointer to its successor in the
1693 free-list. */
1694
1695 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1696
1697 /* Return a pointer to the sdata structure belonging to Lisp string S.
1698 S must be live, i.e. S->data must not be null. S->data is actually
1699 a pointer to the `u.data' member of its sdata structure; the
1700 structure starts at a constant offset in front of that. */
1701
1702 #ifdef GC_CHECK_STRING_BYTES
1703
1704 #define SDATA_OF_STRING(S) \
1705 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1706 - sizeof (EMACS_INT)))
1707
1708 #else /* not GC_CHECK_STRING_BYTES */
1709
1710 #define SDATA_OF_STRING(S) \
1711 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1712
1713 #endif /* not GC_CHECK_STRING_BYTES */
1714
1715
1716 #ifdef GC_CHECK_STRING_OVERRUN
1717
1718 /* We check for overrun in string data blocks by appending a small
1719 "cookie" after each allocated string data block, and check for the
1720 presence of this cookie during GC. */
1721
1722 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1723 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1724 { 0xde, 0xad, 0xbe, 0xef };
1725
1726 #else
1727 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1728 #endif
1729
1730 /* Value is the size of an sdata structure large enough to hold NBYTES
1731 bytes of string data. The value returned includes a terminating
1732 NUL byte, the size of the sdata structure, and padding. */
1733
1734 #ifdef GC_CHECK_STRING_BYTES
1735
1736 #define SDATA_SIZE(NBYTES) \
1737 ((sizeof (struct Lisp_String *) \
1738 + (NBYTES) + 1 \
1739 + sizeof (EMACS_INT) \
1740 + sizeof (EMACS_INT) - 1) \
1741 & ~(sizeof (EMACS_INT) - 1))
1742
1743 #else /* not GC_CHECK_STRING_BYTES */
1744
1745 #define SDATA_SIZE(NBYTES) \
1746 ((sizeof (struct Lisp_String *) \
1747 + (NBYTES) + 1 \
1748 + sizeof (EMACS_INT) - 1) \
1749 & ~(sizeof (EMACS_INT) - 1))
1750
1751 #endif /* not GC_CHECK_STRING_BYTES */
1752
1753 /* Extra bytes to allocate for each string. */
1754
1755 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1756
1757 /* Initialize string allocation. Called from init_alloc_once. */
1758
1759 void
1760 init_strings ()
1761 {
1762 total_strings = total_free_strings = total_string_size = 0;
1763 oldest_sblock = current_sblock = large_sblocks = NULL;
1764 string_blocks = NULL;
1765 n_string_blocks = 0;
1766 string_free_list = NULL;
1767 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1768 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1769 }
1770
1771
1772 #ifdef GC_CHECK_STRING_BYTES
1773
1774 static int check_string_bytes_count;
1775
1776 void check_string_bytes P_ ((int));
1777 void check_sblock P_ ((struct sblock *));
1778
1779 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1780
1781
1782 /* Like GC_STRING_BYTES, but with debugging check. */
1783
1784 int
1785 string_bytes (s)
1786 struct Lisp_String *s;
1787 {
1788 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1789 if (!PURE_POINTER_P (s)
1790 && s->data
1791 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1792 abort ();
1793 return nbytes;
1794 }
1795
1796 /* Check validity of Lisp strings' string_bytes member in B. */
1797
1798 void
1799 check_sblock (b)
1800 struct sblock *b;
1801 {
1802 struct sdata *from, *end, *from_end;
1803
1804 end = b->next_free;
1805
1806 for (from = &b->first_data; from < end; from = from_end)
1807 {
1808 /* Compute the next FROM here because copying below may
1809 overwrite data we need to compute it. */
1810 int nbytes;
1811
1812 /* Check that the string size recorded in the string is the
1813 same as the one recorded in the sdata structure. */
1814 if (from->string)
1815 CHECK_STRING_BYTES (from->string);
1816
1817 if (from->string)
1818 nbytes = GC_STRING_BYTES (from->string);
1819 else
1820 nbytes = SDATA_NBYTES (from);
1821
1822 nbytes = SDATA_SIZE (nbytes);
1823 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1824 }
1825 }
1826
1827
1828 /* Check validity of Lisp strings' string_bytes member. ALL_P
1829 non-zero means check all strings, otherwise check only most
1830 recently allocated strings. Used for hunting a bug. */
1831
1832 void
1833 check_string_bytes (all_p)
1834 int all_p;
1835 {
1836 if (all_p)
1837 {
1838 struct sblock *b;
1839
1840 for (b = large_sblocks; b; b = b->next)
1841 {
1842 struct Lisp_String *s = b->first_data.string;
1843 if (s)
1844 CHECK_STRING_BYTES (s);
1845 }
1846
1847 for (b = oldest_sblock; b; b = b->next)
1848 check_sblock (b);
1849 }
1850 else
1851 check_sblock (current_sblock);
1852 }
1853
1854 #endif /* GC_CHECK_STRING_BYTES */
1855
1856 #ifdef GC_CHECK_STRING_FREE_LIST
1857
1858 /* Walk through the string free list looking for bogus next pointers.
1859 This may catch buffer overrun from a previous string. */
1860
1861 static void
1862 check_string_free_list ()
1863 {
1864 struct Lisp_String *s;
1865
1866 /* Pop a Lisp_String off the free-list. */
1867 s = string_free_list;
1868 while (s != NULL)
1869 {
1870 if ((unsigned)s < 1024)
1871 abort();
1872 s = NEXT_FREE_LISP_STRING (s);
1873 }
1874 }
1875 #else
1876 #define check_string_free_list()
1877 #endif
1878
1879 /* Return a new Lisp_String. */
1880
1881 static struct Lisp_String *
1882 allocate_string ()
1883 {
1884 struct Lisp_String *s;
1885
1886 /* eassert (!handling_signal); */
1887
1888 MALLOC_BLOCK_INPUT;
1889
1890 /* If the free-list is empty, allocate a new string_block, and
1891 add all the Lisp_Strings in it to the free-list. */
1892 if (string_free_list == NULL)
1893 {
1894 struct string_block *b;
1895 int i;
1896
1897 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1898 bzero (b, sizeof *b);
1899 b->next = string_blocks;
1900 string_blocks = b;
1901 ++n_string_blocks;
1902
1903 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1904 {
1905 s = b->strings + i;
1906 NEXT_FREE_LISP_STRING (s) = string_free_list;
1907 string_free_list = s;
1908 }
1909
1910 total_free_strings += STRING_BLOCK_SIZE;
1911 }
1912
1913 check_string_free_list ();
1914
1915 /* Pop a Lisp_String off the free-list. */
1916 s = string_free_list;
1917 string_free_list = NEXT_FREE_LISP_STRING (s);
1918
1919 MALLOC_UNBLOCK_INPUT;
1920
1921 /* Probably not strictly necessary, but play it safe. */
1922 bzero (s, sizeof *s);
1923
1924 --total_free_strings;
1925 ++total_strings;
1926 ++strings_consed;
1927 consing_since_gc += sizeof *s;
1928
1929 #ifdef GC_CHECK_STRING_BYTES
1930 if (!noninteractive
1931 #ifdef MAC_OS8
1932 && current_sblock
1933 #endif
1934 )
1935 {
1936 if (++check_string_bytes_count == 200)
1937 {
1938 check_string_bytes_count = 0;
1939 check_string_bytes (1);
1940 }
1941 else
1942 check_string_bytes (0);
1943 }
1944 #endif /* GC_CHECK_STRING_BYTES */
1945
1946 return s;
1947 }
1948
1949
1950 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1951 plus a NUL byte at the end. Allocate an sdata structure for S, and
1952 set S->data to its `u.data' member. Store a NUL byte at the end of
1953 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1954 S->data if it was initially non-null. */
1955
1956 void
1957 allocate_string_data (s, nchars, nbytes)
1958 struct Lisp_String *s;
1959 int nchars, nbytes;
1960 {
1961 struct sdata *data, *old_data;
1962 struct sblock *b;
1963 int needed, old_nbytes;
1964
1965 /* Determine the number of bytes needed to store NBYTES bytes
1966 of string data. */
1967 needed = SDATA_SIZE (nbytes);
1968 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1969 old_nbytes = GC_STRING_BYTES (s);
1970
1971 MALLOC_BLOCK_INPUT;
1972
1973 if (nbytes > LARGE_STRING_BYTES)
1974 {
1975 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1976
1977 #ifdef DOUG_LEA_MALLOC
1978 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1979 because mapped region contents are not preserved in
1980 a dumped Emacs.
1981
1982 In case you think of allowing it in a dumped Emacs at the
1983 cost of not being able to re-dump, there's another reason:
1984 mmap'ed data typically have an address towards the top of the
1985 address space, which won't fit into an EMACS_INT (at least on
1986 32-bit systems with the current tagging scheme). --fx */
1987 mallopt (M_MMAP_MAX, 0);
1988 #endif
1989
1990 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1991
1992 #ifdef DOUG_LEA_MALLOC
1993 /* Back to a reasonable maximum of mmap'ed areas. */
1994 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1995 #endif
1996
1997 b->next_free = &b->first_data;
1998 b->first_data.string = NULL;
1999 b->next = large_sblocks;
2000 large_sblocks = b;
2001 }
2002 else if (current_sblock == NULL
2003 || (((char *) current_sblock + SBLOCK_SIZE
2004 - (char *) current_sblock->next_free)
2005 < (needed + GC_STRING_EXTRA)))
2006 {
2007 /* Not enough room in the current sblock. */
2008 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2009 b->next_free = &b->first_data;
2010 b->first_data.string = NULL;
2011 b->next = NULL;
2012
2013 if (current_sblock)
2014 current_sblock->next = b;
2015 else
2016 oldest_sblock = b;
2017 current_sblock = b;
2018 }
2019 else
2020 b = current_sblock;
2021
2022 data = b->next_free;
2023 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2024
2025 MALLOC_UNBLOCK_INPUT;
2026
2027 data->string = s;
2028 s->data = SDATA_DATA (data);
2029 #ifdef GC_CHECK_STRING_BYTES
2030 SDATA_NBYTES (data) = nbytes;
2031 #endif
2032 s->size = nchars;
2033 s->size_byte = nbytes;
2034 s->data[nbytes] = '\0';
2035 #ifdef GC_CHECK_STRING_OVERRUN
2036 bcopy (string_overrun_cookie, (char *) data + needed,
2037 GC_STRING_OVERRUN_COOKIE_SIZE);
2038 #endif
2039
2040 /* If S had already data assigned, mark that as free by setting its
2041 string back-pointer to null, and recording the size of the data
2042 in it. */
2043 if (old_data)
2044 {
2045 SDATA_NBYTES (old_data) = old_nbytes;
2046 old_data->string = NULL;
2047 }
2048
2049 consing_since_gc += needed;
2050 }
2051
2052
2053 /* Sweep and compact strings. */
2054
2055 static void
2056 sweep_strings ()
2057 {
2058 struct string_block *b, *next;
2059 struct string_block *live_blocks = NULL;
2060
2061 string_free_list = NULL;
2062 total_strings = total_free_strings = 0;
2063 total_string_size = 0;
2064
2065 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2066 for (b = string_blocks; b; b = next)
2067 {
2068 int i, nfree = 0;
2069 struct Lisp_String *free_list_before = string_free_list;
2070
2071 next = b->next;
2072
2073 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2074 {
2075 struct Lisp_String *s = b->strings + i;
2076
2077 if (s->data)
2078 {
2079 /* String was not on free-list before. */
2080 if (STRING_MARKED_P (s))
2081 {
2082 /* String is live; unmark it and its intervals. */
2083 UNMARK_STRING (s);
2084
2085 if (!NULL_INTERVAL_P (s->intervals))
2086 UNMARK_BALANCE_INTERVALS (s->intervals);
2087
2088 ++total_strings;
2089 total_string_size += STRING_BYTES (s);
2090 }
2091 else
2092 {
2093 /* String is dead. Put it on the free-list. */
2094 struct sdata *data = SDATA_OF_STRING (s);
2095
2096 /* Save the size of S in its sdata so that we know
2097 how large that is. Reset the sdata's string
2098 back-pointer so that we know it's free. */
2099 #ifdef GC_CHECK_STRING_BYTES
2100 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2101 abort ();
2102 #else
2103 data->u.nbytes = GC_STRING_BYTES (s);
2104 #endif
2105 data->string = NULL;
2106
2107 /* Reset the strings's `data' member so that we
2108 know it's free. */
2109 s->data = NULL;
2110
2111 /* Put the string on the free-list. */
2112 NEXT_FREE_LISP_STRING (s) = string_free_list;
2113 string_free_list = s;
2114 ++nfree;
2115 }
2116 }
2117 else
2118 {
2119 /* S was on the free-list before. Put it there again. */
2120 NEXT_FREE_LISP_STRING (s) = string_free_list;
2121 string_free_list = s;
2122 ++nfree;
2123 }
2124 }
2125
2126 /* Free blocks that contain free Lisp_Strings only, except
2127 the first two of them. */
2128 if (nfree == STRING_BLOCK_SIZE
2129 && total_free_strings > STRING_BLOCK_SIZE)
2130 {
2131 lisp_free (b);
2132 --n_string_blocks;
2133 string_free_list = free_list_before;
2134 }
2135 else
2136 {
2137 total_free_strings += nfree;
2138 b->next = live_blocks;
2139 live_blocks = b;
2140 }
2141 }
2142
2143 check_string_free_list ();
2144
2145 string_blocks = live_blocks;
2146 free_large_strings ();
2147 compact_small_strings ();
2148
2149 check_string_free_list ();
2150 }
2151
2152
2153 /* Free dead large strings. */
2154
2155 static void
2156 free_large_strings ()
2157 {
2158 struct sblock *b, *next;
2159 struct sblock *live_blocks = NULL;
2160
2161 for (b = large_sblocks; b; b = next)
2162 {
2163 next = b->next;
2164
2165 if (b->first_data.string == NULL)
2166 lisp_free (b);
2167 else
2168 {
2169 b->next = live_blocks;
2170 live_blocks = b;
2171 }
2172 }
2173
2174 large_sblocks = live_blocks;
2175 }
2176
2177
2178 /* Compact data of small strings. Free sblocks that don't contain
2179 data of live strings after compaction. */
2180
2181 static void
2182 compact_small_strings ()
2183 {
2184 struct sblock *b, *tb, *next;
2185 struct sdata *from, *to, *end, *tb_end;
2186 struct sdata *to_end, *from_end;
2187
2188 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2189 to, and TB_END is the end of TB. */
2190 tb = oldest_sblock;
2191 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2192 to = &tb->first_data;
2193
2194 /* Step through the blocks from the oldest to the youngest. We
2195 expect that old blocks will stabilize over time, so that less
2196 copying will happen this way. */
2197 for (b = oldest_sblock; b; b = b->next)
2198 {
2199 end = b->next_free;
2200 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2201
2202 for (from = &b->first_data; from < end; from = from_end)
2203 {
2204 /* Compute the next FROM here because copying below may
2205 overwrite data we need to compute it. */
2206 int nbytes;
2207
2208 #ifdef GC_CHECK_STRING_BYTES
2209 /* Check that the string size recorded in the string is the
2210 same as the one recorded in the sdata structure. */
2211 if (from->string
2212 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2213 abort ();
2214 #endif /* GC_CHECK_STRING_BYTES */
2215
2216 if (from->string)
2217 nbytes = GC_STRING_BYTES (from->string);
2218 else
2219 nbytes = SDATA_NBYTES (from);
2220
2221 if (nbytes > LARGE_STRING_BYTES)
2222 abort ();
2223
2224 nbytes = SDATA_SIZE (nbytes);
2225 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2226
2227 #ifdef GC_CHECK_STRING_OVERRUN
2228 if (bcmp (string_overrun_cookie,
2229 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2230 GC_STRING_OVERRUN_COOKIE_SIZE))
2231 abort ();
2232 #endif
2233
2234 /* FROM->string non-null means it's alive. Copy its data. */
2235 if (from->string)
2236 {
2237 /* If TB is full, proceed with the next sblock. */
2238 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2239 if (to_end > tb_end)
2240 {
2241 tb->next_free = to;
2242 tb = tb->next;
2243 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2244 to = &tb->first_data;
2245 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2246 }
2247
2248 /* Copy, and update the string's `data' pointer. */
2249 if (from != to)
2250 {
2251 xassert (tb != b || to <= from);
2252 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2253 to->string->data = SDATA_DATA (to);
2254 }
2255
2256 /* Advance past the sdata we copied to. */
2257 to = to_end;
2258 }
2259 }
2260 }
2261
2262 /* The rest of the sblocks following TB don't contain live data, so
2263 we can free them. */
2264 for (b = tb->next; b; b = next)
2265 {
2266 next = b->next;
2267 lisp_free (b);
2268 }
2269
2270 tb->next_free = to;
2271 tb->next = NULL;
2272 current_sblock = tb;
2273 }
2274
2275
2276 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2277 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2278 LENGTH must be an integer.
2279 INIT must be an integer that represents a character. */)
2280 (length, init)
2281 Lisp_Object length, init;
2282 {
2283 register Lisp_Object val;
2284 register unsigned char *p, *end;
2285 int c, nbytes;
2286
2287 CHECK_NATNUM (length);
2288 CHECK_NUMBER (init);
2289
2290 c = XINT (init);
2291 if (ASCII_CHAR_P (c))
2292 {
2293 nbytes = XINT (length);
2294 val = make_uninit_string (nbytes);
2295 p = SDATA (val);
2296 end = p + SCHARS (val);
2297 while (p != end)
2298 *p++ = c;
2299 }
2300 else
2301 {
2302 unsigned char str[MAX_MULTIBYTE_LENGTH];
2303 int len = CHAR_STRING (c, str);
2304
2305 nbytes = len * XINT (length);
2306 val = make_uninit_multibyte_string (XINT (length), nbytes);
2307 p = SDATA (val);
2308 end = p + nbytes;
2309 while (p != end)
2310 {
2311 bcopy (str, p, len);
2312 p += len;
2313 }
2314 }
2315
2316 *p = 0;
2317 return val;
2318 }
2319
2320
2321 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2322 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2323 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2324 (length, init)
2325 Lisp_Object length, init;
2326 {
2327 register Lisp_Object val;
2328 struct Lisp_Bool_Vector *p;
2329 int real_init, i;
2330 int length_in_chars, length_in_elts, bits_per_value;
2331
2332 CHECK_NATNUM (length);
2333
2334 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2335
2336 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2337 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2338 / BOOL_VECTOR_BITS_PER_CHAR);
2339
2340 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2341 slot `size' of the struct Lisp_Bool_Vector. */
2342 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2343
2344 /* Get rid of any bits that would cause confusion. */
2345 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2346 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2347 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2348
2349 p = XBOOL_VECTOR (val);
2350 p->size = XFASTINT (length);
2351
2352 real_init = (NILP (init) ? 0 : -1);
2353 for (i = 0; i < length_in_chars ; i++)
2354 p->data[i] = real_init;
2355
2356 /* Clear the extraneous bits in the last byte. */
2357 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2358 p->data[length_in_chars - 1]
2359 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2360
2361 return val;
2362 }
2363
2364
2365 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2366 of characters from the contents. This string may be unibyte or
2367 multibyte, depending on the contents. */
2368
2369 Lisp_Object
2370 make_string (contents, nbytes)
2371 const char *contents;
2372 int nbytes;
2373 {
2374 register Lisp_Object val;
2375 int nchars, multibyte_nbytes;
2376
2377 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2378 if (nbytes == nchars || nbytes != multibyte_nbytes)
2379 /* CONTENTS contains no multibyte sequences or contains an invalid
2380 multibyte sequence. We must make unibyte string. */
2381 val = make_unibyte_string (contents, nbytes);
2382 else
2383 val = make_multibyte_string (contents, nchars, nbytes);
2384 return val;
2385 }
2386
2387
2388 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2389
2390 Lisp_Object
2391 make_unibyte_string (contents, length)
2392 const char *contents;
2393 int length;
2394 {
2395 register Lisp_Object val;
2396 val = make_uninit_string (length);
2397 bcopy (contents, SDATA (val), length);
2398 STRING_SET_UNIBYTE (val);
2399 return val;
2400 }
2401
2402
2403 /* Make a multibyte string from NCHARS characters occupying NBYTES
2404 bytes at CONTENTS. */
2405
2406 Lisp_Object
2407 make_multibyte_string (contents, nchars, nbytes)
2408 const char *contents;
2409 int nchars, nbytes;
2410 {
2411 register Lisp_Object val;
2412 val = make_uninit_multibyte_string (nchars, nbytes);
2413 bcopy (contents, SDATA (val), nbytes);
2414 return val;
2415 }
2416
2417
2418 /* Make a string from NCHARS characters occupying NBYTES bytes at
2419 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2420
2421 Lisp_Object
2422 make_string_from_bytes (contents, nchars, nbytes)
2423 const char *contents;
2424 int nchars, nbytes;
2425 {
2426 register Lisp_Object val;
2427 val = make_uninit_multibyte_string (nchars, nbytes);
2428 bcopy (contents, SDATA (val), nbytes);
2429 if (SBYTES (val) == SCHARS (val))
2430 STRING_SET_UNIBYTE (val);
2431 return val;
2432 }
2433
2434
2435 /* Make a string from NCHARS characters occupying NBYTES bytes at
2436 CONTENTS. The argument MULTIBYTE controls whether to label the
2437 string as multibyte. If NCHARS is negative, it counts the number of
2438 characters by itself. */
2439
2440 Lisp_Object
2441 make_specified_string (contents, nchars, nbytes, multibyte)
2442 const char *contents;
2443 int nchars, nbytes;
2444 int multibyte;
2445 {
2446 register Lisp_Object val;
2447
2448 if (nchars < 0)
2449 {
2450 if (multibyte)
2451 nchars = multibyte_chars_in_text (contents, nbytes);
2452 else
2453 nchars = nbytes;
2454 }
2455 val = make_uninit_multibyte_string (nchars, nbytes);
2456 bcopy (contents, SDATA (val), nbytes);
2457 if (!multibyte)
2458 STRING_SET_UNIBYTE (val);
2459 return val;
2460 }
2461
2462
2463 /* Make a string from the data at STR, treating it as multibyte if the
2464 data warrants. */
2465
2466 Lisp_Object
2467 build_string (str)
2468 const char *str;
2469 {
2470 return make_string (str, strlen (str));
2471 }
2472
2473
2474 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2475 occupying LENGTH bytes. */
2476
2477 Lisp_Object
2478 make_uninit_string (length)
2479 int length;
2480 {
2481 Lisp_Object val;
2482
2483 if (!length)
2484 return empty_unibyte_string;
2485 val = make_uninit_multibyte_string (length, length);
2486 STRING_SET_UNIBYTE (val);
2487 return val;
2488 }
2489
2490
2491 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2492 which occupy NBYTES bytes. */
2493
2494 Lisp_Object
2495 make_uninit_multibyte_string (nchars, nbytes)
2496 int nchars, nbytes;
2497 {
2498 Lisp_Object string;
2499 struct Lisp_String *s;
2500
2501 if (nchars < 0)
2502 abort ();
2503 if (!nbytes)
2504 return empty_multibyte_string;
2505
2506 s = allocate_string ();
2507 allocate_string_data (s, nchars, nbytes);
2508 XSETSTRING (string, s);
2509 string_chars_consed += nbytes;
2510 return string;
2511 }
2512
2513
2514 \f
2515 /***********************************************************************
2516 Float Allocation
2517 ***********************************************************************/
2518
2519 /* We store float cells inside of float_blocks, allocating a new
2520 float_block with malloc whenever necessary. Float cells reclaimed
2521 by GC are put on a free list to be reallocated before allocating
2522 any new float cells from the latest float_block. */
2523
2524 #define FLOAT_BLOCK_SIZE \
2525 (((BLOCK_BYTES - sizeof (struct float_block *) \
2526 /* The compiler might add padding at the end. */ \
2527 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2528 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2529
2530 #define GETMARKBIT(block,n) \
2531 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2532 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2533 & 1)
2534
2535 #define SETMARKBIT(block,n) \
2536 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2537 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2538
2539 #define UNSETMARKBIT(block,n) \
2540 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2541 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2542
2543 #define FLOAT_BLOCK(fptr) \
2544 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2545
2546 #define FLOAT_INDEX(fptr) \
2547 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2548
2549 struct float_block
2550 {
2551 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2552 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2553 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2554 struct float_block *next;
2555 };
2556
2557 #define FLOAT_MARKED_P(fptr) \
2558 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2559
2560 #define FLOAT_MARK(fptr) \
2561 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2562
2563 #define FLOAT_UNMARK(fptr) \
2564 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2565
2566 /* Current float_block. */
2567
2568 struct float_block *float_block;
2569
2570 /* Index of first unused Lisp_Float in the current float_block. */
2571
2572 int float_block_index;
2573
2574 /* Total number of float blocks now in use. */
2575
2576 int n_float_blocks;
2577
2578 /* Free-list of Lisp_Floats. */
2579
2580 struct Lisp_Float *float_free_list;
2581
2582
2583 /* Initialize float allocation. */
2584
2585 void
2586 init_float ()
2587 {
2588 float_block = NULL;
2589 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2590 float_free_list = 0;
2591 n_float_blocks = 0;
2592 }
2593
2594
2595 /* Explicitly free a float cell by putting it on the free-list. */
2596
2597 void
2598 free_float (ptr)
2599 struct Lisp_Float *ptr;
2600 {
2601 ptr->u.chain = float_free_list;
2602 float_free_list = ptr;
2603 }
2604
2605
2606 /* Return a new float object with value FLOAT_VALUE. */
2607
2608 Lisp_Object
2609 make_float (float_value)
2610 double float_value;
2611 {
2612 register Lisp_Object val;
2613
2614 /* eassert (!handling_signal); */
2615
2616 MALLOC_BLOCK_INPUT;
2617
2618 if (float_free_list)
2619 {
2620 /* We use the data field for chaining the free list
2621 so that we won't use the same field that has the mark bit. */
2622 XSETFLOAT (val, float_free_list);
2623 float_free_list = float_free_list->u.chain;
2624 }
2625 else
2626 {
2627 if (float_block_index == FLOAT_BLOCK_SIZE)
2628 {
2629 register struct float_block *new;
2630
2631 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2632 MEM_TYPE_FLOAT);
2633 new->next = float_block;
2634 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2635 float_block = new;
2636 float_block_index = 0;
2637 n_float_blocks++;
2638 }
2639 XSETFLOAT (val, &float_block->floats[float_block_index]);
2640 float_block_index++;
2641 }
2642
2643 MALLOC_UNBLOCK_INPUT;
2644
2645 XFLOAT_DATA (val) = float_value;
2646 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2647 consing_since_gc += sizeof (struct Lisp_Float);
2648 floats_consed++;
2649 return val;
2650 }
2651
2652
2653 \f
2654 /***********************************************************************
2655 Cons Allocation
2656 ***********************************************************************/
2657
2658 /* We store cons cells inside of cons_blocks, allocating a new
2659 cons_block with malloc whenever necessary. Cons cells reclaimed by
2660 GC are put on a free list to be reallocated before allocating
2661 any new cons cells from the latest cons_block. */
2662
2663 #define CONS_BLOCK_SIZE \
2664 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2665 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2666
2667 #define CONS_BLOCK(fptr) \
2668 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2669
2670 #define CONS_INDEX(fptr) \
2671 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2672
2673 struct cons_block
2674 {
2675 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2676 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2677 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2678 struct cons_block *next;
2679 };
2680
2681 #define CONS_MARKED_P(fptr) \
2682 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2683
2684 #define CONS_MARK(fptr) \
2685 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2686
2687 #define CONS_UNMARK(fptr) \
2688 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2689
2690 /* Current cons_block. */
2691
2692 struct cons_block *cons_block;
2693
2694 /* Index of first unused Lisp_Cons in the current block. */
2695
2696 int cons_block_index;
2697
2698 /* Free-list of Lisp_Cons structures. */
2699
2700 struct Lisp_Cons *cons_free_list;
2701
2702 /* Total number of cons blocks now in use. */
2703
2704 int n_cons_blocks;
2705
2706
2707 /* Initialize cons allocation. */
2708
2709 void
2710 init_cons ()
2711 {
2712 cons_block = NULL;
2713 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2714 cons_free_list = 0;
2715 n_cons_blocks = 0;
2716 }
2717
2718
2719 /* Explicitly free a cons cell by putting it on the free-list. */
2720
2721 void
2722 free_cons (ptr)
2723 struct Lisp_Cons *ptr;
2724 {
2725 ptr->u.chain = cons_free_list;
2726 #if GC_MARK_STACK
2727 ptr->car = Vdead;
2728 #endif
2729 cons_free_list = ptr;
2730 }
2731
2732 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2733 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2734 (car, cdr)
2735 Lisp_Object car, cdr;
2736 {
2737 register Lisp_Object val;
2738
2739 /* eassert (!handling_signal); */
2740
2741 MALLOC_BLOCK_INPUT;
2742
2743 if (cons_free_list)
2744 {
2745 /* We use the cdr for chaining the free list
2746 so that we won't use the same field that has the mark bit. */
2747 XSETCONS (val, cons_free_list);
2748 cons_free_list = cons_free_list->u.chain;
2749 }
2750 else
2751 {
2752 if (cons_block_index == CONS_BLOCK_SIZE)
2753 {
2754 register struct cons_block *new;
2755 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2756 MEM_TYPE_CONS);
2757 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2758 new->next = cons_block;
2759 cons_block = new;
2760 cons_block_index = 0;
2761 n_cons_blocks++;
2762 }
2763 XSETCONS (val, &cons_block->conses[cons_block_index]);
2764 cons_block_index++;
2765 }
2766
2767 MALLOC_UNBLOCK_INPUT;
2768
2769 XSETCAR (val, car);
2770 XSETCDR (val, cdr);
2771 eassert (!CONS_MARKED_P (XCONS (val)));
2772 consing_since_gc += sizeof (struct Lisp_Cons);
2773 cons_cells_consed++;
2774 return val;
2775 }
2776
2777 /* Get an error now if there's any junk in the cons free list. */
2778 void
2779 check_cons_list ()
2780 {
2781 #ifdef GC_CHECK_CONS_LIST
2782 struct Lisp_Cons *tail = cons_free_list;
2783
2784 while (tail)
2785 tail = tail->u.chain;
2786 #endif
2787 }
2788
2789 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2790
2791 Lisp_Object
2792 list1 (arg1)
2793 Lisp_Object arg1;
2794 {
2795 return Fcons (arg1, Qnil);
2796 }
2797
2798 Lisp_Object
2799 list2 (arg1, arg2)
2800 Lisp_Object arg1, arg2;
2801 {
2802 return Fcons (arg1, Fcons (arg2, Qnil));
2803 }
2804
2805
2806 Lisp_Object
2807 list3 (arg1, arg2, arg3)
2808 Lisp_Object arg1, arg2, arg3;
2809 {
2810 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2811 }
2812
2813
2814 Lisp_Object
2815 list4 (arg1, arg2, arg3, arg4)
2816 Lisp_Object arg1, arg2, arg3, arg4;
2817 {
2818 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2819 }
2820
2821
2822 Lisp_Object
2823 list5 (arg1, arg2, arg3, arg4, arg5)
2824 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2825 {
2826 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2827 Fcons (arg5, Qnil)))));
2828 }
2829
2830
2831 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2832 doc: /* Return a newly created list with specified arguments as elements.
2833 Any number of arguments, even zero arguments, are allowed.
2834 usage: (list &rest OBJECTS) */)
2835 (nargs, args)
2836 int nargs;
2837 register Lisp_Object *args;
2838 {
2839 register Lisp_Object val;
2840 val = Qnil;
2841
2842 while (nargs > 0)
2843 {
2844 nargs--;
2845 val = Fcons (args[nargs], val);
2846 }
2847 return val;
2848 }
2849
2850
2851 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2852 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2853 (length, init)
2854 register Lisp_Object length, init;
2855 {
2856 register Lisp_Object val;
2857 register int size;
2858
2859 CHECK_NATNUM (length);
2860 size = XFASTINT (length);
2861
2862 val = Qnil;
2863 while (size > 0)
2864 {
2865 val = Fcons (init, val);
2866 --size;
2867
2868 if (size > 0)
2869 {
2870 val = Fcons (init, val);
2871 --size;
2872
2873 if (size > 0)
2874 {
2875 val = Fcons (init, val);
2876 --size;
2877
2878 if (size > 0)
2879 {
2880 val = Fcons (init, val);
2881 --size;
2882
2883 if (size > 0)
2884 {
2885 val = Fcons (init, val);
2886 --size;
2887 }
2888 }
2889 }
2890 }
2891
2892 QUIT;
2893 }
2894
2895 return val;
2896 }
2897
2898
2899 \f
2900 /***********************************************************************
2901 Vector Allocation
2902 ***********************************************************************/
2903
2904 /* Singly-linked list of all vectors. */
2905
2906 struct Lisp_Vector *all_vectors;
2907
2908 /* Total number of vector-like objects now in use. */
2909
2910 int n_vectors;
2911
2912
2913 /* Value is a pointer to a newly allocated Lisp_Vector structure
2914 with room for LEN Lisp_Objects. */
2915
2916 static struct Lisp_Vector *
2917 allocate_vectorlike (len)
2918 EMACS_INT len;
2919 {
2920 struct Lisp_Vector *p;
2921 size_t nbytes;
2922
2923 MALLOC_BLOCK_INPUT;
2924
2925 #ifdef DOUG_LEA_MALLOC
2926 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2927 because mapped region contents are not preserved in
2928 a dumped Emacs. */
2929 mallopt (M_MMAP_MAX, 0);
2930 #endif
2931
2932 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2933 /* eassert (!handling_signal); */
2934
2935 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2936 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2937
2938 #ifdef DOUG_LEA_MALLOC
2939 /* Back to a reasonable maximum of mmap'ed areas. */
2940 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2941 #endif
2942
2943 consing_since_gc += nbytes;
2944 vector_cells_consed += len;
2945
2946 p->next = all_vectors;
2947 all_vectors = p;
2948
2949 MALLOC_UNBLOCK_INPUT;
2950
2951 ++n_vectors;
2952 return p;
2953 }
2954
2955
2956 /* Allocate a vector with NSLOTS slots. */
2957
2958 struct Lisp_Vector *
2959 allocate_vector (nslots)
2960 EMACS_INT nslots;
2961 {
2962 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2963 v->size = nslots;
2964 return v;
2965 }
2966
2967
2968 /* Allocate other vector-like structures. */
2969
2970 static struct Lisp_Vector *
2971 allocate_pseudovector (memlen, lisplen, tag)
2972 int memlen, lisplen;
2973 EMACS_INT tag;
2974 {
2975 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2976 EMACS_INT i;
2977
2978 /* Only the first lisplen slots will be traced normally by the GC. */
2979 v->size = lisplen;
2980 for (i = 0; i < lisplen; ++i)
2981 v->contents[i] = Qnil;
2982
2983 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2984 return v;
2985 }
2986 #define ALLOCATE_PSEUDOVECTOR(typ,field,tag) \
2987 ((typ*) \
2988 allocate_pseudovector \
2989 (VECSIZE (typ), PSEUDOVECSIZE (typ, field), tag))
2990
2991 struct Lisp_Hash_Table *
2992 allocate_hash_table (void)
2993 {
2994 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2995 }
2996
2997
2998 struct window *
2999 allocate_window ()
3000 {
3001 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
3002 }
3003
3004
3005 struct terminal *
3006 allocate_terminal ()
3007 {
3008 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
3009 next_terminal, PVEC_TERMINAL);
3010 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3011 bzero (&(t->next_terminal),
3012 ((char*)(t+1)) - ((char*)&(t->next_terminal)));
3013
3014 return t;
3015 }
3016
3017 struct frame *
3018 allocate_frame ()
3019 {
3020 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3021 face_cache, PVEC_FRAME);
3022 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3023 bzero (&(f->face_cache),
3024 ((char*)(f+1)) - ((char*)&(f->face_cache)));
3025 return f;
3026 }
3027
3028
3029 struct Lisp_Process *
3030 allocate_process ()
3031 {
3032 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3033 }
3034
3035
3036 /* Only used for PVEC_WINDOW_CONFIGURATION. */
3037 struct Lisp_Vector *
3038 allocate_other_vector (len)
3039 EMACS_INT len;
3040 {
3041 struct Lisp_Vector *v = allocate_vectorlike (len);
3042 EMACS_INT i;
3043
3044 for (i = 0; i < len; ++i)
3045 v->contents[i] = Qnil;
3046 v->size = len;
3047
3048 return v;
3049 }
3050
3051
3052 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3053 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3054 See also the function `vector'. */)
3055 (length, init)
3056 register Lisp_Object length, init;
3057 {
3058 Lisp_Object vector;
3059 register EMACS_INT sizei;
3060 register int index;
3061 register struct Lisp_Vector *p;
3062
3063 CHECK_NATNUM (length);
3064 sizei = XFASTINT (length);
3065
3066 p = allocate_vector (sizei);
3067 for (index = 0; index < sizei; index++)
3068 p->contents[index] = init;
3069
3070 XSETVECTOR (vector, p);
3071 return vector;
3072 }
3073
3074
3075 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3076 doc: /* Return a newly created vector with specified arguments as elements.
3077 Any number of arguments, even zero arguments, are allowed.
3078 usage: (vector &rest OBJECTS) */)
3079 (nargs, args)
3080 register int nargs;
3081 Lisp_Object *args;
3082 {
3083 register Lisp_Object len, val;
3084 register int index;
3085 register struct Lisp_Vector *p;
3086
3087 XSETFASTINT (len, nargs);
3088 val = Fmake_vector (len, Qnil);
3089 p = XVECTOR (val);
3090 for (index = 0; index < nargs; index++)
3091 p->contents[index] = args[index];
3092 return val;
3093 }
3094
3095
3096 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3097 doc: /* Create a byte-code object with specified arguments as elements.
3098 The arguments should be the arglist, bytecode-string, constant vector,
3099 stack size, (optional) doc string, and (optional) interactive spec.
3100 The first four arguments are required; at most six have any
3101 significance.
3102 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3103 (nargs, args)
3104 register int nargs;
3105 Lisp_Object *args;
3106 {
3107 register Lisp_Object len, val;
3108 register int index;
3109 register struct Lisp_Vector *p;
3110
3111 XSETFASTINT (len, nargs);
3112 if (!NILP (Vpurify_flag))
3113 val = make_pure_vector ((EMACS_INT) nargs);
3114 else
3115 val = Fmake_vector (len, Qnil);
3116
3117 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3118 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3119 earlier because they produced a raw 8-bit string for byte-code
3120 and now such a byte-code string is loaded as multibyte while
3121 raw 8-bit characters converted to multibyte form. Thus, now we
3122 must convert them back to the original unibyte form. */
3123 args[1] = Fstring_as_unibyte (args[1]);
3124
3125 p = XVECTOR (val);
3126 for (index = 0; index < nargs; index++)
3127 {
3128 if (!NILP (Vpurify_flag))
3129 args[index] = Fpurecopy (args[index]);
3130 p->contents[index] = args[index];
3131 }
3132 XSETPVECTYPE (p, PVEC_COMPILED);
3133 XSETCOMPILED (val, p);
3134 return val;
3135 }
3136
3137
3138 \f
3139 /***********************************************************************
3140 Symbol Allocation
3141 ***********************************************************************/
3142
3143 /* Each symbol_block is just under 1020 bytes long, since malloc
3144 really allocates in units of powers of two and uses 4 bytes for its
3145 own overhead. */
3146
3147 #define SYMBOL_BLOCK_SIZE \
3148 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3149
3150 struct symbol_block
3151 {
3152 /* Place `symbols' first, to preserve alignment. */
3153 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3154 struct symbol_block *next;
3155 };
3156
3157 /* Current symbol block and index of first unused Lisp_Symbol
3158 structure in it. */
3159
3160 struct symbol_block *symbol_block;
3161 int symbol_block_index;
3162
3163 /* List of free symbols. */
3164
3165 struct Lisp_Symbol *symbol_free_list;
3166
3167 /* Total number of symbol blocks now in use. */
3168
3169 int n_symbol_blocks;
3170
3171
3172 /* Initialize symbol allocation. */
3173
3174 void
3175 init_symbol ()
3176 {
3177 symbol_block = NULL;
3178 symbol_block_index = SYMBOL_BLOCK_SIZE;
3179 symbol_free_list = 0;
3180 n_symbol_blocks = 0;
3181 }
3182
3183
3184 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3185 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3186 Its value and function definition are void, and its property list is nil. */)
3187 (name)
3188 Lisp_Object name;
3189 {
3190 register Lisp_Object val;
3191 register struct Lisp_Symbol *p;
3192
3193 CHECK_STRING (name);
3194
3195 /* eassert (!handling_signal); */
3196
3197 MALLOC_BLOCK_INPUT;
3198
3199 if (symbol_free_list)
3200 {
3201 XSETSYMBOL (val, symbol_free_list);
3202 symbol_free_list = symbol_free_list->next;
3203 }
3204 else
3205 {
3206 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3207 {
3208 struct symbol_block *new;
3209 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3210 MEM_TYPE_SYMBOL);
3211 new->next = symbol_block;
3212 symbol_block = new;
3213 symbol_block_index = 0;
3214 n_symbol_blocks++;
3215 }
3216 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3217 symbol_block_index++;
3218 }
3219
3220 MALLOC_UNBLOCK_INPUT;
3221
3222 p = XSYMBOL (val);
3223 p->xname = name;
3224 p->plist = Qnil;
3225 p->value = Qunbound;
3226 p->function = Qunbound;
3227 p->next = NULL;
3228 p->gcmarkbit = 0;
3229 p->interned = SYMBOL_UNINTERNED;
3230 p->constant = 0;
3231 p->indirect_variable = 0;
3232 consing_since_gc += sizeof (struct Lisp_Symbol);
3233 symbols_consed++;
3234 return val;
3235 }
3236
3237
3238 \f
3239 /***********************************************************************
3240 Marker (Misc) Allocation
3241 ***********************************************************************/
3242
3243 /* Allocation of markers and other objects that share that structure.
3244 Works like allocation of conses. */
3245
3246 #define MARKER_BLOCK_SIZE \
3247 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3248
3249 struct marker_block
3250 {
3251 /* Place `markers' first, to preserve alignment. */
3252 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3253 struct marker_block *next;
3254 };
3255
3256 struct marker_block *marker_block;
3257 int marker_block_index;
3258
3259 union Lisp_Misc *marker_free_list;
3260
3261 /* Total number of marker blocks now in use. */
3262
3263 int n_marker_blocks;
3264
3265 void
3266 init_marker ()
3267 {
3268 marker_block = NULL;
3269 marker_block_index = MARKER_BLOCK_SIZE;
3270 marker_free_list = 0;
3271 n_marker_blocks = 0;
3272 }
3273
3274 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3275
3276 Lisp_Object
3277 allocate_misc ()
3278 {
3279 Lisp_Object val;
3280
3281 /* eassert (!handling_signal); */
3282
3283 MALLOC_BLOCK_INPUT;
3284
3285 if (marker_free_list)
3286 {
3287 XSETMISC (val, marker_free_list);
3288 marker_free_list = marker_free_list->u_free.chain;
3289 }
3290 else
3291 {
3292 if (marker_block_index == MARKER_BLOCK_SIZE)
3293 {
3294 struct marker_block *new;
3295 new = (struct marker_block *) lisp_malloc (sizeof *new,
3296 MEM_TYPE_MISC);
3297 new->next = marker_block;
3298 marker_block = new;
3299 marker_block_index = 0;
3300 n_marker_blocks++;
3301 total_free_markers += MARKER_BLOCK_SIZE;
3302 }
3303 XSETMISC (val, &marker_block->markers[marker_block_index]);
3304 marker_block_index++;
3305 }
3306
3307 MALLOC_UNBLOCK_INPUT;
3308
3309 --total_free_markers;
3310 consing_since_gc += sizeof (union Lisp_Misc);
3311 misc_objects_consed++;
3312 XMISCANY (val)->gcmarkbit = 0;
3313 return val;
3314 }
3315
3316 /* Free a Lisp_Misc object */
3317
3318 void
3319 free_misc (misc)
3320 Lisp_Object misc;
3321 {
3322 XMISCTYPE (misc) = Lisp_Misc_Free;
3323 XMISC (misc)->u_free.chain = marker_free_list;
3324 marker_free_list = XMISC (misc);
3325
3326 total_free_markers++;
3327 }
3328
3329 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3330 INTEGER. This is used to package C values to call record_unwind_protect.
3331 The unwind function can get the C values back using XSAVE_VALUE. */
3332
3333 Lisp_Object
3334 make_save_value (pointer, integer)
3335 void *pointer;
3336 int integer;
3337 {
3338 register Lisp_Object val;
3339 register struct Lisp_Save_Value *p;
3340
3341 val = allocate_misc ();
3342 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3343 p = XSAVE_VALUE (val);
3344 p->pointer = pointer;
3345 p->integer = integer;
3346 p->dogc = 0;
3347 return val;
3348 }
3349
3350 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3351 doc: /* Return a newly allocated marker which does not point at any place. */)
3352 ()
3353 {
3354 register Lisp_Object val;
3355 register struct Lisp_Marker *p;
3356
3357 val = allocate_misc ();
3358 XMISCTYPE (val) = Lisp_Misc_Marker;
3359 p = XMARKER (val);
3360 p->buffer = 0;
3361 p->bytepos = 0;
3362 p->charpos = 0;
3363 p->next = NULL;
3364 p->insertion_type = 0;
3365 return val;
3366 }
3367
3368 /* Put MARKER back on the free list after using it temporarily. */
3369
3370 void
3371 free_marker (marker)
3372 Lisp_Object marker;
3373 {
3374 unchain_marker (XMARKER (marker));
3375 free_misc (marker);
3376 }
3377
3378 \f
3379 /* Return a newly created vector or string with specified arguments as
3380 elements. If all the arguments are characters that can fit
3381 in a string of events, make a string; otherwise, make a vector.
3382
3383 Any number of arguments, even zero arguments, are allowed. */
3384
3385 Lisp_Object
3386 make_event_array (nargs, args)
3387 register int nargs;
3388 Lisp_Object *args;
3389 {
3390 int i;
3391
3392 for (i = 0; i < nargs; i++)
3393 /* The things that fit in a string
3394 are characters that are in 0...127,
3395 after discarding the meta bit and all the bits above it. */
3396 if (!INTEGERP (args[i])
3397 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3398 return Fvector (nargs, args);
3399
3400 /* Since the loop exited, we know that all the things in it are
3401 characters, so we can make a string. */
3402 {
3403 Lisp_Object result;
3404
3405 result = Fmake_string (make_number (nargs), make_number (0));
3406 for (i = 0; i < nargs; i++)
3407 {
3408 SSET (result, i, XINT (args[i]));
3409 /* Move the meta bit to the right place for a string char. */
3410 if (XINT (args[i]) & CHAR_META)
3411 SSET (result, i, SREF (result, i) | 0x80);
3412 }
3413
3414 return result;
3415 }
3416 }
3417
3418
3419 \f
3420 /************************************************************************
3421 Memory Full Handling
3422 ************************************************************************/
3423
3424
3425 /* Called if malloc returns zero. */
3426
3427 void
3428 memory_full ()
3429 {
3430 int i;
3431
3432 Vmemory_full = Qt;
3433
3434 memory_full_cons_threshold = sizeof (struct cons_block);
3435
3436 /* The first time we get here, free the spare memory. */
3437 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3438 if (spare_memory[i])
3439 {
3440 if (i == 0)
3441 free (spare_memory[i]);
3442 else if (i >= 1 && i <= 4)
3443 lisp_align_free (spare_memory[i]);
3444 else
3445 lisp_free (spare_memory[i]);
3446 spare_memory[i] = 0;
3447 }
3448
3449 /* Record the space now used. When it decreases substantially,
3450 we can refill the memory reserve. */
3451 #ifndef SYSTEM_MALLOC
3452 bytes_used_when_full = BYTES_USED;
3453 #endif
3454
3455 /* This used to call error, but if we've run out of memory, we could
3456 get infinite recursion trying to build the string. */
3457 xsignal (Qnil, Vmemory_signal_data);
3458 }
3459
3460 /* If we released our reserve (due to running out of memory),
3461 and we have a fair amount free once again,
3462 try to set aside another reserve in case we run out once more.
3463
3464 This is called when a relocatable block is freed in ralloc.c,
3465 and also directly from this file, in case we're not using ralloc.c. */
3466
3467 void
3468 refill_memory_reserve ()
3469 {
3470 #ifndef SYSTEM_MALLOC
3471 if (spare_memory[0] == 0)
3472 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3473 if (spare_memory[1] == 0)
3474 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3475 MEM_TYPE_CONS);
3476 if (spare_memory[2] == 0)
3477 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3478 MEM_TYPE_CONS);
3479 if (spare_memory[3] == 0)
3480 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3481 MEM_TYPE_CONS);
3482 if (spare_memory[4] == 0)
3483 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3484 MEM_TYPE_CONS);
3485 if (spare_memory[5] == 0)
3486 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3487 MEM_TYPE_STRING);
3488 if (spare_memory[6] == 0)
3489 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3490 MEM_TYPE_STRING);
3491 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3492 Vmemory_full = Qnil;
3493 #endif
3494 }
3495 \f
3496 /************************************************************************
3497 C Stack Marking
3498 ************************************************************************/
3499
3500 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3501
3502 /* Conservative C stack marking requires a method to identify possibly
3503 live Lisp objects given a pointer value. We do this by keeping
3504 track of blocks of Lisp data that are allocated in a red-black tree
3505 (see also the comment of mem_node which is the type of nodes in
3506 that tree). Function lisp_malloc adds information for an allocated
3507 block to the red-black tree with calls to mem_insert, and function
3508 lisp_free removes it with mem_delete. Functions live_string_p etc
3509 call mem_find to lookup information about a given pointer in the
3510 tree, and use that to determine if the pointer points to a Lisp
3511 object or not. */
3512
3513 /* Initialize this part of alloc.c. */
3514
3515 static void
3516 mem_init ()
3517 {
3518 mem_z.left = mem_z.right = MEM_NIL;
3519 mem_z.parent = NULL;
3520 mem_z.color = MEM_BLACK;
3521 mem_z.start = mem_z.end = NULL;
3522 mem_root = MEM_NIL;
3523 }
3524
3525
3526 /* Value is a pointer to the mem_node containing START. Value is
3527 MEM_NIL if there is no node in the tree containing START. */
3528
3529 static INLINE struct mem_node *
3530 mem_find (start)
3531 void *start;
3532 {
3533 struct mem_node *p;
3534
3535 if (start < min_heap_address || start > max_heap_address)
3536 return MEM_NIL;
3537
3538 /* Make the search always successful to speed up the loop below. */
3539 mem_z.start = start;
3540 mem_z.end = (char *) start + 1;
3541
3542 p = mem_root;
3543 while (start < p->start || start >= p->end)
3544 p = start < p->start ? p->left : p->right;
3545 return p;
3546 }
3547
3548
3549 /* Insert a new node into the tree for a block of memory with start
3550 address START, end address END, and type TYPE. Value is a
3551 pointer to the node that was inserted. */
3552
3553 static struct mem_node *
3554 mem_insert (start, end, type)
3555 void *start, *end;
3556 enum mem_type type;
3557 {
3558 struct mem_node *c, *parent, *x;
3559
3560 if (min_heap_address == NULL || start < min_heap_address)
3561 min_heap_address = start;
3562 if (max_heap_address == NULL || end > max_heap_address)
3563 max_heap_address = end;
3564
3565 /* See where in the tree a node for START belongs. In this
3566 particular application, it shouldn't happen that a node is already
3567 present. For debugging purposes, let's check that. */
3568 c = mem_root;
3569 parent = NULL;
3570
3571 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3572
3573 while (c != MEM_NIL)
3574 {
3575 if (start >= c->start && start < c->end)
3576 abort ();
3577 parent = c;
3578 c = start < c->start ? c->left : c->right;
3579 }
3580
3581 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3582
3583 while (c != MEM_NIL)
3584 {
3585 parent = c;
3586 c = start < c->start ? c->left : c->right;
3587 }
3588
3589 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3590
3591 /* Create a new node. */
3592 #ifdef GC_MALLOC_CHECK
3593 x = (struct mem_node *) _malloc_internal (sizeof *x);
3594 if (x == NULL)
3595 abort ();
3596 #else
3597 x = (struct mem_node *) xmalloc (sizeof *x);
3598 #endif
3599 x->start = start;
3600 x->end = end;
3601 x->type = type;
3602 x->parent = parent;
3603 x->left = x->right = MEM_NIL;
3604 x->color = MEM_RED;
3605
3606 /* Insert it as child of PARENT or install it as root. */
3607 if (parent)
3608 {
3609 if (start < parent->start)
3610 parent->left = x;
3611 else
3612 parent->right = x;
3613 }
3614 else
3615 mem_root = x;
3616
3617 /* Re-establish red-black tree properties. */
3618 mem_insert_fixup (x);
3619
3620 return x;
3621 }
3622
3623
3624 /* Re-establish the red-black properties of the tree, and thereby
3625 balance the tree, after node X has been inserted; X is always red. */
3626
3627 static void
3628 mem_insert_fixup (x)
3629 struct mem_node *x;
3630 {
3631 while (x != mem_root && x->parent->color == MEM_RED)
3632 {
3633 /* X is red and its parent is red. This is a violation of
3634 red-black tree property #3. */
3635
3636 if (x->parent == x->parent->parent->left)
3637 {
3638 /* We're on the left side of our grandparent, and Y is our
3639 "uncle". */
3640 struct mem_node *y = x->parent->parent->right;
3641
3642 if (y->color == MEM_RED)
3643 {
3644 /* Uncle and parent are red but should be black because
3645 X is red. Change the colors accordingly and proceed
3646 with the grandparent. */
3647 x->parent->color = MEM_BLACK;
3648 y->color = MEM_BLACK;
3649 x->parent->parent->color = MEM_RED;
3650 x = x->parent->parent;
3651 }
3652 else
3653 {
3654 /* Parent and uncle have different colors; parent is
3655 red, uncle is black. */
3656 if (x == x->parent->right)
3657 {
3658 x = x->parent;
3659 mem_rotate_left (x);
3660 }
3661
3662 x->parent->color = MEM_BLACK;
3663 x->parent->parent->color = MEM_RED;
3664 mem_rotate_right (x->parent->parent);
3665 }
3666 }
3667 else
3668 {
3669 /* This is the symmetrical case of above. */
3670 struct mem_node *y = x->parent->parent->left;
3671
3672 if (y->color == MEM_RED)
3673 {
3674 x->parent->color = MEM_BLACK;
3675 y->color = MEM_BLACK;
3676 x->parent->parent->color = MEM_RED;
3677 x = x->parent->parent;
3678 }
3679 else
3680 {
3681 if (x == x->parent->left)
3682 {
3683 x = x->parent;
3684 mem_rotate_right (x);
3685 }
3686
3687 x->parent->color = MEM_BLACK;
3688 x->parent->parent->color = MEM_RED;
3689 mem_rotate_left (x->parent->parent);
3690 }
3691 }
3692 }
3693
3694 /* The root may have been changed to red due to the algorithm. Set
3695 it to black so that property #5 is satisfied. */
3696 mem_root->color = MEM_BLACK;
3697 }
3698
3699
3700 /* (x) (y)
3701 / \ / \
3702 a (y) ===> (x) c
3703 / \ / \
3704 b c a b */
3705
3706 static void
3707 mem_rotate_left (x)
3708 struct mem_node *x;
3709 {
3710 struct mem_node *y;
3711
3712 /* Turn y's left sub-tree into x's right sub-tree. */
3713 y = x->right;
3714 x->right = y->left;
3715 if (y->left != MEM_NIL)
3716 y->left->parent = x;
3717
3718 /* Y's parent was x's parent. */
3719 if (y != MEM_NIL)
3720 y->parent = x->parent;
3721
3722 /* Get the parent to point to y instead of x. */
3723 if (x->parent)
3724 {
3725 if (x == x->parent->left)
3726 x->parent->left = y;
3727 else
3728 x->parent->right = y;
3729 }
3730 else
3731 mem_root = y;
3732
3733 /* Put x on y's left. */
3734 y->left = x;
3735 if (x != MEM_NIL)
3736 x->parent = y;
3737 }
3738
3739
3740 /* (x) (Y)
3741 / \ / \
3742 (y) c ===> a (x)
3743 / \ / \
3744 a b b c */
3745
3746 static void
3747 mem_rotate_right (x)
3748 struct mem_node *x;
3749 {
3750 struct mem_node *y = x->left;
3751
3752 x->left = y->right;
3753 if (y->right != MEM_NIL)
3754 y->right->parent = x;
3755
3756 if (y != MEM_NIL)
3757 y->parent = x->parent;
3758 if (x->parent)
3759 {
3760 if (x == x->parent->right)
3761 x->parent->right = y;
3762 else
3763 x->parent->left = y;
3764 }
3765 else
3766 mem_root = y;
3767
3768 y->right = x;
3769 if (x != MEM_NIL)
3770 x->parent = y;
3771 }
3772
3773
3774 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3775
3776 static void
3777 mem_delete (z)
3778 struct mem_node *z;
3779 {
3780 struct mem_node *x, *y;
3781
3782 if (!z || z == MEM_NIL)
3783 return;
3784
3785 if (z->left == MEM_NIL || z->right == MEM_NIL)
3786 y = z;
3787 else
3788 {
3789 y = z->right;
3790 while (y->left != MEM_NIL)
3791 y = y->left;
3792 }
3793
3794 if (y->left != MEM_NIL)
3795 x = y->left;
3796 else
3797 x = y->right;
3798
3799 x->parent = y->parent;
3800 if (y->parent)
3801 {
3802 if (y == y->parent->left)
3803 y->parent->left = x;
3804 else
3805 y->parent->right = x;
3806 }
3807 else
3808 mem_root = x;
3809
3810 if (y != z)
3811 {
3812 z->start = y->start;
3813 z->end = y->end;
3814 z->type = y->type;
3815 }
3816
3817 if (y->color == MEM_BLACK)
3818 mem_delete_fixup (x);
3819
3820 #ifdef GC_MALLOC_CHECK
3821 _free_internal (y);
3822 #else
3823 xfree (y);
3824 #endif
3825 }
3826
3827
3828 /* Re-establish the red-black properties of the tree, after a
3829 deletion. */
3830
3831 static void
3832 mem_delete_fixup (x)
3833 struct mem_node *x;
3834 {
3835 while (x != mem_root && x->color == MEM_BLACK)
3836 {
3837 if (x == x->parent->left)
3838 {
3839 struct mem_node *w = x->parent->right;
3840
3841 if (w->color == MEM_RED)
3842 {
3843 w->color = MEM_BLACK;
3844 x->parent->color = MEM_RED;
3845 mem_rotate_left (x->parent);
3846 w = x->parent->right;
3847 }
3848
3849 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3850 {
3851 w->color = MEM_RED;
3852 x = x->parent;
3853 }
3854 else
3855 {
3856 if (w->right->color == MEM_BLACK)
3857 {
3858 w->left->color = MEM_BLACK;
3859 w->color = MEM_RED;
3860 mem_rotate_right (w);
3861 w = x->parent->right;
3862 }
3863 w->color = x->parent->color;
3864 x->parent->color = MEM_BLACK;
3865 w->right->color = MEM_BLACK;
3866 mem_rotate_left (x->parent);
3867 x = mem_root;
3868 }
3869 }
3870 else
3871 {
3872 struct mem_node *w = x->parent->left;
3873
3874 if (w->color == MEM_RED)
3875 {
3876 w->color = MEM_BLACK;
3877 x->parent->color = MEM_RED;
3878 mem_rotate_right (x->parent);
3879 w = x->parent->left;
3880 }
3881
3882 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3883 {
3884 w->color = MEM_RED;
3885 x = x->parent;
3886 }
3887 else
3888 {
3889 if (w->left->color == MEM_BLACK)
3890 {
3891 w->right->color = MEM_BLACK;
3892 w->color = MEM_RED;
3893 mem_rotate_left (w);
3894 w = x->parent->left;
3895 }
3896
3897 w->color = x->parent->color;
3898 x->parent->color = MEM_BLACK;
3899 w->left->color = MEM_BLACK;
3900 mem_rotate_right (x->parent);
3901 x = mem_root;
3902 }
3903 }
3904 }
3905
3906 x->color = MEM_BLACK;
3907 }
3908
3909
3910 /* Value is non-zero if P is a pointer to a live Lisp string on
3911 the heap. M is a pointer to the mem_block for P. */
3912
3913 static INLINE int
3914 live_string_p (m, p)
3915 struct mem_node *m;
3916 void *p;
3917 {
3918 if (m->type == MEM_TYPE_STRING)
3919 {
3920 struct string_block *b = (struct string_block *) m->start;
3921 int offset = (char *) p - (char *) &b->strings[0];
3922
3923 /* P must point to the start of a Lisp_String structure, and it
3924 must not be on the free-list. */
3925 return (offset >= 0
3926 && offset % sizeof b->strings[0] == 0
3927 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3928 && ((struct Lisp_String *) p)->data != NULL);
3929 }
3930 else
3931 return 0;
3932 }
3933
3934
3935 /* Value is non-zero if P is a pointer to a live Lisp cons on
3936 the heap. M is a pointer to the mem_block for P. */
3937
3938 static INLINE int
3939 live_cons_p (m, p)
3940 struct mem_node *m;
3941 void *p;
3942 {
3943 if (m->type == MEM_TYPE_CONS)
3944 {
3945 struct cons_block *b = (struct cons_block *) m->start;
3946 int offset = (char *) p - (char *) &b->conses[0];
3947
3948 /* P must point to the start of a Lisp_Cons, not be
3949 one of the unused cells in the current cons block,
3950 and not be on the free-list. */
3951 return (offset >= 0
3952 && offset % sizeof b->conses[0] == 0
3953 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3954 && (b != cons_block
3955 || offset / sizeof b->conses[0] < cons_block_index)
3956 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3957 }
3958 else
3959 return 0;
3960 }
3961
3962
3963 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3964 the heap. M is a pointer to the mem_block for P. */
3965
3966 static INLINE int
3967 live_symbol_p (m, p)
3968 struct mem_node *m;
3969 void *p;
3970 {
3971 if (m->type == MEM_TYPE_SYMBOL)
3972 {
3973 struct symbol_block *b = (struct symbol_block *) m->start;
3974 int offset = (char *) p - (char *) &b->symbols[0];
3975
3976 /* P must point to the start of a Lisp_Symbol, not be
3977 one of the unused cells in the current symbol block,
3978 and not be on the free-list. */
3979 return (offset >= 0
3980 && offset % sizeof b->symbols[0] == 0
3981 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3982 && (b != symbol_block
3983 || offset / sizeof b->symbols[0] < symbol_block_index)
3984 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3985 }
3986 else
3987 return 0;
3988 }
3989
3990
3991 /* Value is non-zero if P is a pointer to a live Lisp float on
3992 the heap. M is a pointer to the mem_block for P. */
3993
3994 static INLINE int
3995 live_float_p (m, p)
3996 struct mem_node *m;
3997 void *p;
3998 {
3999 if (m->type == MEM_TYPE_FLOAT)
4000 {
4001 struct float_block *b = (struct float_block *) m->start;
4002 int offset = (char *) p - (char *) &b->floats[0];
4003
4004 /* P must point to the start of a Lisp_Float and not be
4005 one of the unused cells in the current float block. */
4006 return (offset >= 0
4007 && offset % sizeof b->floats[0] == 0
4008 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4009 && (b != float_block
4010 || offset / sizeof b->floats[0] < float_block_index));
4011 }
4012 else
4013 return 0;
4014 }
4015
4016
4017 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4018 the heap. M is a pointer to the mem_block for P. */
4019
4020 static INLINE int
4021 live_misc_p (m, p)
4022 struct mem_node *m;
4023 void *p;
4024 {
4025 if (m->type == MEM_TYPE_MISC)
4026 {
4027 struct marker_block *b = (struct marker_block *) m->start;
4028 int offset = (char *) p - (char *) &b->markers[0];
4029
4030 /* P must point to the start of a Lisp_Misc, not be
4031 one of the unused cells in the current misc block,
4032 and not be on the free-list. */
4033 return (offset >= 0
4034 && offset % sizeof b->markers[0] == 0
4035 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4036 && (b != marker_block
4037 || offset / sizeof b->markers[0] < marker_block_index)
4038 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4039 }
4040 else
4041 return 0;
4042 }
4043
4044
4045 /* Value is non-zero if P is a pointer to a live vector-like object.
4046 M is a pointer to the mem_block for P. */
4047
4048 static INLINE int
4049 live_vector_p (m, p)
4050 struct mem_node *m;
4051 void *p;
4052 {
4053 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
4054 }
4055
4056
4057 /* Value is non-zero if P is a pointer to a live buffer. M is a
4058 pointer to the mem_block for P. */
4059
4060 static INLINE int
4061 live_buffer_p (m, p)
4062 struct mem_node *m;
4063 void *p;
4064 {
4065 /* P must point to the start of the block, and the buffer
4066 must not have been killed. */
4067 return (m->type == MEM_TYPE_BUFFER
4068 && p == m->start
4069 && !NILP (((struct buffer *) p)->name));
4070 }
4071
4072 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4073
4074 #if GC_MARK_STACK
4075
4076 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4077
4078 /* Array of objects that are kept alive because the C stack contains
4079 a pattern that looks like a reference to them . */
4080
4081 #define MAX_ZOMBIES 10
4082 static Lisp_Object zombies[MAX_ZOMBIES];
4083
4084 /* Number of zombie objects. */
4085
4086 static int nzombies;
4087
4088 /* Number of garbage collections. */
4089
4090 static int ngcs;
4091
4092 /* Average percentage of zombies per collection. */
4093
4094 static double avg_zombies;
4095
4096 /* Max. number of live and zombie objects. */
4097
4098 static int max_live, max_zombies;
4099
4100 /* Average number of live objects per GC. */
4101
4102 static double avg_live;
4103
4104 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4105 doc: /* Show information about live and zombie objects. */)
4106 ()
4107 {
4108 Lisp_Object args[8], zombie_list = Qnil;
4109 int i;
4110 for (i = 0; i < nzombies; i++)
4111 zombie_list = Fcons (zombies[i], zombie_list);
4112 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4113 args[1] = make_number (ngcs);
4114 args[2] = make_float (avg_live);
4115 args[3] = make_float (avg_zombies);
4116 args[4] = make_float (avg_zombies / avg_live / 100);
4117 args[5] = make_number (max_live);
4118 args[6] = make_number (max_zombies);
4119 args[7] = zombie_list;
4120 return Fmessage (8, args);
4121 }
4122
4123 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4124
4125
4126 /* Mark OBJ if we can prove it's a Lisp_Object. */
4127
4128 static INLINE void
4129 mark_maybe_object (obj)
4130 Lisp_Object obj;
4131 {
4132 void *po = (void *) XPNTR (obj);
4133 struct mem_node *m = mem_find (po);
4134
4135 if (m != MEM_NIL)
4136 {
4137 int mark_p = 0;
4138
4139 switch (XTYPE (obj))
4140 {
4141 case Lisp_String:
4142 mark_p = (live_string_p (m, po)
4143 && !STRING_MARKED_P ((struct Lisp_String *) po));
4144 break;
4145
4146 case Lisp_Cons:
4147 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4148 break;
4149
4150 case Lisp_Symbol:
4151 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4152 break;
4153
4154 case Lisp_Float:
4155 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4156 break;
4157
4158 case Lisp_Vectorlike:
4159 /* Note: can't check BUFFERP before we know it's a
4160 buffer because checking that dereferences the pointer
4161 PO which might point anywhere. */
4162 if (live_vector_p (m, po))
4163 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4164 else if (live_buffer_p (m, po))
4165 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4166 break;
4167
4168 case Lisp_Misc:
4169 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4170 break;
4171
4172 case Lisp_Int:
4173 case Lisp_Type_Limit:
4174 break;
4175 }
4176
4177 if (mark_p)
4178 {
4179 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4180 if (nzombies < MAX_ZOMBIES)
4181 zombies[nzombies] = obj;
4182 ++nzombies;
4183 #endif
4184 mark_object (obj);
4185 }
4186 }
4187 }
4188
4189
4190 /* If P points to Lisp data, mark that as live if it isn't already
4191 marked. */
4192
4193 static INLINE void
4194 mark_maybe_pointer (p)
4195 void *p;
4196 {
4197 struct mem_node *m;
4198
4199 /* Quickly rule out some values which can't point to Lisp data. */
4200 if ((EMACS_INT) p %
4201 #ifdef USE_LSB_TAG
4202 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4203 #else
4204 2 /* We assume that Lisp data is aligned on even addresses. */
4205 #endif
4206 )
4207 return;
4208
4209 m = mem_find (p);
4210 if (m != MEM_NIL)
4211 {
4212 Lisp_Object obj = Qnil;
4213
4214 switch (m->type)
4215 {
4216 case MEM_TYPE_NON_LISP:
4217 /* Nothing to do; not a pointer to Lisp memory. */
4218 break;
4219
4220 case MEM_TYPE_BUFFER:
4221 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4222 XSETVECTOR (obj, p);
4223 break;
4224
4225 case MEM_TYPE_CONS:
4226 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4227 XSETCONS (obj, p);
4228 break;
4229
4230 case MEM_TYPE_STRING:
4231 if (live_string_p (m, p)
4232 && !STRING_MARKED_P ((struct Lisp_String *) p))
4233 XSETSTRING (obj, p);
4234 break;
4235
4236 case MEM_TYPE_MISC:
4237 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4238 XSETMISC (obj, p);
4239 break;
4240
4241 case MEM_TYPE_SYMBOL:
4242 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4243 XSETSYMBOL (obj, p);
4244 break;
4245
4246 case MEM_TYPE_FLOAT:
4247 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4248 XSETFLOAT (obj, p);
4249 break;
4250
4251 case MEM_TYPE_VECTORLIKE:
4252 if (live_vector_p (m, p))
4253 {
4254 Lisp_Object tem;
4255 XSETVECTOR (tem, p);
4256 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4257 obj = tem;
4258 }
4259 break;
4260
4261 default:
4262 abort ();
4263 }
4264
4265 if (!NILP (obj))
4266 mark_object (obj);
4267 }
4268 }
4269
4270
4271 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4272 or END+OFFSET..START. */
4273
4274 static void
4275 mark_memory (start, end, offset)
4276 void *start, *end;
4277 int offset;
4278 {
4279 Lisp_Object *p;
4280 void **pp;
4281
4282 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4283 nzombies = 0;
4284 #endif
4285
4286 /* Make START the pointer to the start of the memory region,
4287 if it isn't already. */
4288 if (end < start)
4289 {
4290 void *tem = start;
4291 start = end;
4292 end = tem;
4293 }
4294
4295 /* Mark Lisp_Objects. */
4296 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4297 mark_maybe_object (*p);
4298
4299 /* Mark Lisp data pointed to. This is necessary because, in some
4300 situations, the C compiler optimizes Lisp objects away, so that
4301 only a pointer to them remains. Example:
4302
4303 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4304 ()
4305 {
4306 Lisp_Object obj = build_string ("test");
4307 struct Lisp_String *s = XSTRING (obj);
4308 Fgarbage_collect ();
4309 fprintf (stderr, "test `%s'\n", s->data);
4310 return Qnil;
4311 }
4312
4313 Here, `obj' isn't really used, and the compiler optimizes it
4314 away. The only reference to the life string is through the
4315 pointer `s'. */
4316
4317 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4318 mark_maybe_pointer (*pp);
4319 }
4320
4321 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4322 the GCC system configuration. In gcc 3.2, the only systems for
4323 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4324 by others?) and ns32k-pc532-min. */
4325
4326 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4327
4328 static int setjmp_tested_p, longjmps_done;
4329
4330 #define SETJMP_WILL_LIKELY_WORK "\
4331 \n\
4332 Emacs garbage collector has been changed to use conservative stack\n\
4333 marking. Emacs has determined that the method it uses to do the\n\
4334 marking will likely work on your system, but this isn't sure.\n\
4335 \n\
4336 If you are a system-programmer, or can get the help of a local wizard\n\
4337 who is, please take a look at the function mark_stack in alloc.c, and\n\
4338 verify that the methods used are appropriate for your system.\n\
4339 \n\
4340 Please mail the result to <emacs-devel@gnu.org>.\n\
4341 "
4342
4343 #define SETJMP_WILL_NOT_WORK "\
4344 \n\
4345 Emacs garbage collector has been changed to use conservative stack\n\
4346 marking. Emacs has determined that the default method it uses to do the\n\
4347 marking will not work on your system. We will need a system-dependent\n\
4348 solution for your system.\n\
4349 \n\
4350 Please take a look at the function mark_stack in alloc.c, and\n\
4351 try to find a way to make it work on your system.\n\
4352 \n\
4353 Note that you may get false negatives, depending on the compiler.\n\
4354 In particular, you need to use -O with GCC for this test.\n\
4355 \n\
4356 Please mail the result to <emacs-devel@gnu.org>.\n\
4357 "
4358
4359
4360 /* Perform a quick check if it looks like setjmp saves registers in a
4361 jmp_buf. Print a message to stderr saying so. When this test
4362 succeeds, this is _not_ a proof that setjmp is sufficient for
4363 conservative stack marking. Only the sources or a disassembly
4364 can prove that. */
4365
4366 static void
4367 test_setjmp ()
4368 {
4369 char buf[10];
4370 register int x;
4371 jmp_buf jbuf;
4372 int result = 0;
4373
4374 /* Arrange for X to be put in a register. */
4375 sprintf (buf, "1");
4376 x = strlen (buf);
4377 x = 2 * x - 1;
4378
4379 setjmp (jbuf);
4380 if (longjmps_done == 1)
4381 {
4382 /* Came here after the longjmp at the end of the function.
4383
4384 If x == 1, the longjmp has restored the register to its
4385 value before the setjmp, and we can hope that setjmp
4386 saves all such registers in the jmp_buf, although that
4387 isn't sure.
4388
4389 For other values of X, either something really strange is
4390 taking place, or the setjmp just didn't save the register. */
4391
4392 if (x == 1)
4393 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4394 else
4395 {
4396 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4397 exit (1);
4398 }
4399 }
4400
4401 ++longjmps_done;
4402 x = 2;
4403 if (longjmps_done == 1)
4404 longjmp (jbuf, 1);
4405 }
4406
4407 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4408
4409
4410 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4411
4412 /* Abort if anything GCPRO'd doesn't survive the GC. */
4413
4414 static void
4415 check_gcpros ()
4416 {
4417 struct gcpro *p;
4418 int i;
4419
4420 for (p = gcprolist; p; p = p->next)
4421 for (i = 0; i < p->nvars; ++i)
4422 if (!survives_gc_p (p->var[i]))
4423 /* FIXME: It's not necessarily a bug. It might just be that the
4424 GCPRO is unnecessary or should release the object sooner. */
4425 abort ();
4426 }
4427
4428 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4429
4430 static void
4431 dump_zombies ()
4432 {
4433 int i;
4434
4435 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4436 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4437 {
4438 fprintf (stderr, " %d = ", i);
4439 debug_print (zombies[i]);
4440 }
4441 }
4442
4443 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4444
4445
4446 /* Mark live Lisp objects on the C stack.
4447
4448 There are several system-dependent problems to consider when
4449 porting this to new architectures:
4450
4451 Processor Registers
4452
4453 We have to mark Lisp objects in CPU registers that can hold local
4454 variables or are used to pass parameters.
4455
4456 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4457 something that either saves relevant registers on the stack, or
4458 calls mark_maybe_object passing it each register's contents.
4459
4460 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4461 implementation assumes that calling setjmp saves registers we need
4462 to see in a jmp_buf which itself lies on the stack. This doesn't
4463 have to be true! It must be verified for each system, possibly
4464 by taking a look at the source code of setjmp.
4465
4466 Stack Layout
4467
4468 Architectures differ in the way their processor stack is organized.
4469 For example, the stack might look like this
4470
4471 +----------------+
4472 | Lisp_Object | size = 4
4473 +----------------+
4474 | something else | size = 2
4475 +----------------+
4476 | Lisp_Object | size = 4
4477 +----------------+
4478 | ... |
4479
4480 In such a case, not every Lisp_Object will be aligned equally. To
4481 find all Lisp_Object on the stack it won't be sufficient to walk
4482 the stack in steps of 4 bytes. Instead, two passes will be
4483 necessary, one starting at the start of the stack, and a second
4484 pass starting at the start of the stack + 2. Likewise, if the
4485 minimal alignment of Lisp_Objects on the stack is 1, four passes
4486 would be necessary, each one starting with one byte more offset
4487 from the stack start.
4488
4489 The current code assumes by default that Lisp_Objects are aligned
4490 equally on the stack. */
4491
4492 static void
4493 mark_stack ()
4494 {
4495 int i;
4496 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4497 union aligned_jmpbuf {
4498 Lisp_Object o;
4499 jmp_buf j;
4500 } j;
4501 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4502 void *end;
4503
4504 /* This trick flushes the register windows so that all the state of
4505 the process is contained in the stack. */
4506 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4507 needed on ia64 too. See mach_dep.c, where it also says inline
4508 assembler doesn't work with relevant proprietary compilers. */
4509 #ifdef sparc
4510 asm ("ta 3");
4511 #endif
4512
4513 /* Save registers that we need to see on the stack. We need to see
4514 registers used to hold register variables and registers used to
4515 pass parameters. */
4516 #ifdef GC_SAVE_REGISTERS_ON_STACK
4517 GC_SAVE_REGISTERS_ON_STACK (end);
4518 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4519
4520 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4521 setjmp will definitely work, test it
4522 and print a message with the result
4523 of the test. */
4524 if (!setjmp_tested_p)
4525 {
4526 setjmp_tested_p = 1;
4527 test_setjmp ();
4528 }
4529 #endif /* GC_SETJMP_WORKS */
4530
4531 setjmp (j.j);
4532 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4533 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4534
4535 /* This assumes that the stack is a contiguous region in memory. If
4536 that's not the case, something has to be done here to iterate
4537 over the stack segments. */
4538 #ifndef GC_LISP_OBJECT_ALIGNMENT
4539 #ifdef __GNUC__
4540 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4541 #else
4542 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4543 #endif
4544 #endif
4545 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4546 mark_memory (stack_base, end, i);
4547 /* Allow for marking a secondary stack, like the register stack on the
4548 ia64. */
4549 #ifdef GC_MARK_SECONDARY_STACK
4550 GC_MARK_SECONDARY_STACK ();
4551 #endif
4552
4553 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4554 check_gcpros ();
4555 #endif
4556 }
4557
4558 #endif /* GC_MARK_STACK != 0 */
4559
4560
4561 /* Determine whether it is safe to access memory at address P. */
4562 int
4563 valid_pointer_p (p)
4564 void *p;
4565 {
4566 #ifdef WINDOWSNT
4567 return w32_valid_pointer_p (p, 16);
4568 #else
4569 int fd;
4570
4571 /* Obviously, we cannot just access it (we would SEGV trying), so we
4572 trick the o/s to tell us whether p is a valid pointer.
4573 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4574 not validate p in that case. */
4575
4576 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4577 {
4578 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4579 emacs_close (fd);
4580 unlink ("__Valid__Lisp__Object__");
4581 return valid;
4582 }
4583
4584 return -1;
4585 #endif
4586 }
4587
4588 /* Return 1 if OBJ is a valid lisp object.
4589 Return 0 if OBJ is NOT a valid lisp object.
4590 Return -1 if we cannot validate OBJ.
4591 This function can be quite slow,
4592 so it should only be used in code for manual debugging. */
4593
4594 int
4595 valid_lisp_object_p (obj)
4596 Lisp_Object obj;
4597 {
4598 void *p;
4599 #if GC_MARK_STACK
4600 struct mem_node *m;
4601 #endif
4602
4603 if (INTEGERP (obj))
4604 return 1;
4605
4606 p = (void *) XPNTR (obj);
4607 if (PURE_POINTER_P (p))
4608 return 1;
4609
4610 #if !GC_MARK_STACK
4611 return valid_pointer_p (p);
4612 #else
4613
4614 m = mem_find (p);
4615
4616 if (m == MEM_NIL)
4617 {
4618 int valid = valid_pointer_p (p);
4619 if (valid <= 0)
4620 return valid;
4621
4622 if (SUBRP (obj))
4623 return 1;
4624
4625 return 0;
4626 }
4627
4628 switch (m->type)
4629 {
4630 case MEM_TYPE_NON_LISP:
4631 return 0;
4632
4633 case MEM_TYPE_BUFFER:
4634 return live_buffer_p (m, p);
4635
4636 case MEM_TYPE_CONS:
4637 return live_cons_p (m, p);
4638
4639 case MEM_TYPE_STRING:
4640 return live_string_p (m, p);
4641
4642 case MEM_TYPE_MISC:
4643 return live_misc_p (m, p);
4644
4645 case MEM_TYPE_SYMBOL:
4646 return live_symbol_p (m, p);
4647
4648 case MEM_TYPE_FLOAT:
4649 return live_float_p (m, p);
4650
4651 case MEM_TYPE_VECTORLIKE:
4652 return live_vector_p (m, p);
4653
4654 default:
4655 break;
4656 }
4657
4658 return 0;
4659 #endif
4660 }
4661
4662
4663
4664 \f
4665 /***********************************************************************
4666 Pure Storage Management
4667 ***********************************************************************/
4668
4669 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4670 pointer to it. TYPE is the Lisp type for which the memory is
4671 allocated. TYPE < 0 means it's not used for a Lisp object. */
4672
4673 static POINTER_TYPE *
4674 pure_alloc (size, type)
4675 size_t size;
4676 int type;
4677 {
4678 POINTER_TYPE *result;
4679 #ifdef USE_LSB_TAG
4680 size_t alignment = (1 << GCTYPEBITS);
4681 #else
4682 size_t alignment = sizeof (EMACS_INT);
4683
4684 /* Give Lisp_Floats an extra alignment. */
4685 if (type == Lisp_Float)
4686 {
4687 #if defined __GNUC__ && __GNUC__ >= 2
4688 alignment = __alignof (struct Lisp_Float);
4689 #else
4690 alignment = sizeof (struct Lisp_Float);
4691 #endif
4692 }
4693 #endif
4694
4695 again:
4696 if (type >= 0)
4697 {
4698 /* Allocate space for a Lisp object from the beginning of the free
4699 space with taking account of alignment. */
4700 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4701 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4702 }
4703 else
4704 {
4705 /* Allocate space for a non-Lisp object from the end of the free
4706 space. */
4707 pure_bytes_used_non_lisp += size;
4708 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4709 }
4710 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4711
4712 if (pure_bytes_used <= pure_size)
4713 return result;
4714
4715 /* Don't allocate a large amount here,
4716 because it might get mmap'd and then its address
4717 might not be usable. */
4718 purebeg = (char *) xmalloc (10000);
4719 pure_size = 10000;
4720 pure_bytes_used_before_overflow += pure_bytes_used - size;
4721 pure_bytes_used = 0;
4722 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4723 goto again;
4724 }
4725
4726
4727 /* Print a warning if PURESIZE is too small. */
4728
4729 void
4730 check_pure_size ()
4731 {
4732 if (pure_bytes_used_before_overflow)
4733 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4734 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4735 }
4736
4737
4738 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4739 the non-Lisp data pool of the pure storage, and return its start
4740 address. Return NULL if not found. */
4741
4742 static char *
4743 find_string_data_in_pure (data, nbytes)
4744 char *data;
4745 int nbytes;
4746 {
4747 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4748 unsigned char *p;
4749 char *non_lisp_beg;
4750
4751 if (pure_bytes_used_non_lisp < nbytes + 1)
4752 return NULL;
4753
4754 /* Set up the Boyer-Moore table. */
4755 skip = nbytes + 1;
4756 for (i = 0; i < 256; i++)
4757 bm_skip[i] = skip;
4758
4759 p = (unsigned char *) data;
4760 while (--skip > 0)
4761 bm_skip[*p++] = skip;
4762
4763 last_char_skip = bm_skip['\0'];
4764
4765 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4766 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4767
4768 /* See the comments in the function `boyer_moore' (search.c) for the
4769 use of `infinity'. */
4770 infinity = pure_bytes_used_non_lisp + 1;
4771 bm_skip['\0'] = infinity;
4772
4773 p = (unsigned char *) non_lisp_beg + nbytes;
4774 start = 0;
4775 do
4776 {
4777 /* Check the last character (== '\0'). */
4778 do
4779 {
4780 start += bm_skip[*(p + start)];
4781 }
4782 while (start <= start_max);
4783
4784 if (start < infinity)
4785 /* Couldn't find the last character. */
4786 return NULL;
4787
4788 /* No less than `infinity' means we could find the last
4789 character at `p[start - infinity]'. */
4790 start -= infinity;
4791
4792 /* Check the remaining characters. */
4793 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4794 /* Found. */
4795 return non_lisp_beg + start;
4796
4797 start += last_char_skip;
4798 }
4799 while (start <= start_max);
4800
4801 return NULL;
4802 }
4803
4804
4805 /* Return a string allocated in pure space. DATA is a buffer holding
4806 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4807 non-zero means make the result string multibyte.
4808
4809 Must get an error if pure storage is full, since if it cannot hold
4810 a large string it may be able to hold conses that point to that
4811 string; then the string is not protected from gc. */
4812
4813 Lisp_Object
4814 make_pure_string (data, nchars, nbytes, multibyte)
4815 char *data;
4816 int nchars, nbytes;
4817 int multibyte;
4818 {
4819 Lisp_Object string;
4820 struct Lisp_String *s;
4821
4822 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4823 s->data = find_string_data_in_pure (data, nbytes);
4824 if (s->data == NULL)
4825 {
4826 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4827 bcopy (data, s->data, nbytes);
4828 s->data[nbytes] = '\0';
4829 }
4830 s->size = nchars;
4831 s->size_byte = multibyte ? nbytes : -1;
4832 s->intervals = NULL_INTERVAL;
4833 XSETSTRING (string, s);
4834 return string;
4835 }
4836
4837
4838 /* Return a cons allocated from pure space. Give it pure copies
4839 of CAR as car and CDR as cdr. */
4840
4841 Lisp_Object
4842 pure_cons (car, cdr)
4843 Lisp_Object car, cdr;
4844 {
4845 register Lisp_Object new;
4846 struct Lisp_Cons *p;
4847
4848 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4849 XSETCONS (new, p);
4850 XSETCAR (new, Fpurecopy (car));
4851 XSETCDR (new, Fpurecopy (cdr));
4852 return new;
4853 }
4854
4855
4856 /* Value is a float object with value NUM allocated from pure space. */
4857
4858 Lisp_Object
4859 make_pure_float (num)
4860 double num;
4861 {
4862 register Lisp_Object new;
4863 struct Lisp_Float *p;
4864
4865 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4866 XSETFLOAT (new, p);
4867 XFLOAT_DATA (new) = num;
4868 return new;
4869 }
4870
4871
4872 /* Return a vector with room for LEN Lisp_Objects allocated from
4873 pure space. */
4874
4875 Lisp_Object
4876 make_pure_vector (len)
4877 EMACS_INT len;
4878 {
4879 Lisp_Object new;
4880 struct Lisp_Vector *p;
4881 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4882
4883 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4884 XSETVECTOR (new, p);
4885 XVECTOR (new)->size = len;
4886 return new;
4887 }
4888
4889
4890 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4891 doc: /* Make a copy of object OBJ in pure storage.
4892 Recursively copies contents of vectors and cons cells.
4893 Does not copy symbols. Copies strings without text properties. */)
4894 (obj)
4895 register Lisp_Object obj;
4896 {
4897 if (NILP (Vpurify_flag))
4898 return obj;
4899
4900 if (PURE_POINTER_P (XPNTR (obj)))
4901 return obj;
4902
4903 if (CONSP (obj))
4904 return pure_cons (XCAR (obj), XCDR (obj));
4905 else if (FLOATP (obj))
4906 return make_pure_float (XFLOAT_DATA (obj));
4907 else if (STRINGP (obj))
4908 return make_pure_string (SDATA (obj), SCHARS (obj),
4909 SBYTES (obj),
4910 STRING_MULTIBYTE (obj));
4911 else if (COMPILEDP (obj) || VECTORP (obj))
4912 {
4913 register struct Lisp_Vector *vec;
4914 register int i;
4915 EMACS_INT size;
4916
4917 size = XVECTOR (obj)->size;
4918 if (size & PSEUDOVECTOR_FLAG)
4919 size &= PSEUDOVECTOR_SIZE_MASK;
4920 vec = XVECTOR (make_pure_vector (size));
4921 for (i = 0; i < size; i++)
4922 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4923 if (COMPILEDP (obj))
4924 {
4925 XSETPVECTYPE (vec, PVEC_COMPILED);
4926 XSETCOMPILED (obj, vec);
4927 }
4928 else
4929 XSETVECTOR (obj, vec);
4930 return obj;
4931 }
4932 else if (MARKERP (obj))
4933 error ("Attempt to copy a marker to pure storage");
4934
4935 return obj;
4936 }
4937
4938
4939 \f
4940 /***********************************************************************
4941 Protection from GC
4942 ***********************************************************************/
4943
4944 /* Put an entry in staticvec, pointing at the variable with address
4945 VARADDRESS. */
4946
4947 void
4948 staticpro (varaddress)
4949 Lisp_Object *varaddress;
4950 {
4951 staticvec[staticidx++] = varaddress;
4952 if (staticidx >= NSTATICS)
4953 abort ();
4954 }
4955
4956 struct catchtag
4957 {
4958 Lisp_Object tag;
4959 Lisp_Object val;
4960 struct catchtag *next;
4961 };
4962
4963 \f
4964 /***********************************************************************
4965 Protection from GC
4966 ***********************************************************************/
4967
4968 /* Temporarily prevent garbage collection. */
4969
4970 int
4971 inhibit_garbage_collection ()
4972 {
4973 int count = SPECPDL_INDEX ();
4974 int nbits = min (VALBITS, BITS_PER_INT);
4975
4976 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4977 return count;
4978 }
4979
4980
4981 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4982 doc: /* Reclaim storage for Lisp objects no longer needed.
4983 Garbage collection happens automatically if you cons more than
4984 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4985 `garbage-collect' normally returns a list with info on amount of space in use:
4986 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4987 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4988 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4989 (USED-STRINGS . FREE-STRINGS))
4990 However, if there was overflow in pure space, `garbage-collect'
4991 returns nil, because real GC can't be done. */)
4992 ()
4993 {
4994 register struct specbinding *bind;
4995 struct catchtag *catch;
4996 struct handler *handler;
4997 char stack_top_variable;
4998 register int i;
4999 int message_p;
5000 Lisp_Object total[8];
5001 int count = SPECPDL_INDEX ();
5002 EMACS_TIME t1, t2, t3;
5003
5004 if (abort_on_gc)
5005 abort ();
5006
5007 /* Can't GC if pure storage overflowed because we can't determine
5008 if something is a pure object or not. */
5009 if (pure_bytes_used_before_overflow)
5010 return Qnil;
5011
5012 CHECK_CONS_LIST ();
5013
5014 /* Don't keep undo information around forever.
5015 Do this early on, so it is no problem if the user quits. */
5016 {
5017 register struct buffer *nextb = all_buffers;
5018
5019 while (nextb)
5020 {
5021 /* If a buffer's undo list is Qt, that means that undo is
5022 turned off in that buffer. Calling truncate_undo_list on
5023 Qt tends to return NULL, which effectively turns undo back on.
5024 So don't call truncate_undo_list if undo_list is Qt. */
5025 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
5026 truncate_undo_list (nextb);
5027
5028 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5029 if (nextb->base_buffer == 0 && !NILP (nextb->name)
5030 && ! nextb->text->inhibit_shrinking)
5031 {
5032 /* If a buffer's gap size is more than 10% of the buffer
5033 size, or larger than 2000 bytes, then shrink it
5034 accordingly. Keep a minimum size of 20 bytes. */
5035 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5036
5037 if (nextb->text->gap_size > size)
5038 {
5039 struct buffer *save_current = current_buffer;
5040 current_buffer = nextb;
5041 make_gap (-(nextb->text->gap_size - size));
5042 current_buffer = save_current;
5043 }
5044 }
5045
5046 nextb = nextb->next;
5047 }
5048 }
5049
5050 EMACS_GET_TIME (t1);
5051
5052 /* In case user calls debug_print during GC,
5053 don't let that cause a recursive GC. */
5054 consing_since_gc = 0;
5055
5056 /* Save what's currently displayed in the echo area. */
5057 message_p = push_message ();
5058 record_unwind_protect (pop_message_unwind, Qnil);
5059
5060 /* Save a copy of the contents of the stack, for debugging. */
5061 #if MAX_SAVE_STACK > 0
5062 if (NILP (Vpurify_flag))
5063 {
5064 i = &stack_top_variable - stack_bottom;
5065 if (i < 0) i = -i;
5066 if (i < MAX_SAVE_STACK)
5067 {
5068 if (stack_copy == 0)
5069 stack_copy = (char *) xmalloc (stack_copy_size = i);
5070 else if (stack_copy_size < i)
5071 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
5072 if (stack_copy)
5073 {
5074 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
5075 bcopy (stack_bottom, stack_copy, i);
5076 else
5077 bcopy (&stack_top_variable, stack_copy, i);
5078 }
5079 }
5080 }
5081 #endif /* MAX_SAVE_STACK > 0 */
5082
5083 if (garbage_collection_messages)
5084 message1_nolog ("Garbage collecting...");
5085
5086 BLOCK_INPUT;
5087
5088 shrink_regexp_cache ();
5089
5090 gc_in_progress = 1;
5091
5092 /* clear_marks (); */
5093
5094 /* Mark all the special slots that serve as the roots of accessibility. */
5095
5096 for (i = 0; i < staticidx; i++)
5097 mark_object (*staticvec[i]);
5098
5099 for (bind = specpdl; bind != specpdl_ptr; bind++)
5100 {
5101 mark_object (bind->symbol);
5102 mark_object (bind->old_value);
5103 }
5104 mark_terminals ();
5105 mark_kboards ();
5106 mark_ttys ();
5107
5108 #ifdef USE_GTK
5109 {
5110 extern void xg_mark_data ();
5111 xg_mark_data ();
5112 }
5113 #endif
5114
5115 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5116 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5117 mark_stack ();
5118 #else
5119 {
5120 register struct gcpro *tail;
5121 for (tail = gcprolist; tail; tail = tail->next)
5122 for (i = 0; i < tail->nvars; i++)
5123 mark_object (tail->var[i]);
5124 }
5125 #endif
5126
5127 mark_byte_stack ();
5128 for (catch = catchlist; catch; catch = catch->next)
5129 {
5130 mark_object (catch->tag);
5131 mark_object (catch->val);
5132 }
5133 for (handler = handlerlist; handler; handler = handler->next)
5134 {
5135 mark_object (handler->handler);
5136 mark_object (handler->var);
5137 }
5138 mark_backtrace ();
5139
5140 #ifdef HAVE_WINDOW_SYSTEM
5141 mark_fringe_data ();
5142 #endif
5143
5144 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5145 mark_stack ();
5146 #endif
5147
5148 /* Everything is now marked, except for the things that require special
5149 finalization, i.e. the undo_list.
5150 Look thru every buffer's undo list
5151 for elements that update markers that were not marked,
5152 and delete them. */
5153 {
5154 register struct buffer *nextb = all_buffers;
5155
5156 while (nextb)
5157 {
5158 /* If a buffer's undo list is Qt, that means that undo is
5159 turned off in that buffer. Calling truncate_undo_list on
5160 Qt tends to return NULL, which effectively turns undo back on.
5161 So don't call truncate_undo_list if undo_list is Qt. */
5162 if (! EQ (nextb->undo_list, Qt))
5163 {
5164 Lisp_Object tail, prev;
5165 tail = nextb->undo_list;
5166 prev = Qnil;
5167 while (CONSP (tail))
5168 {
5169 if (CONSP (XCAR (tail))
5170 && MARKERP (XCAR (XCAR (tail)))
5171 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5172 {
5173 if (NILP (prev))
5174 nextb->undo_list = tail = XCDR (tail);
5175 else
5176 {
5177 tail = XCDR (tail);
5178 XSETCDR (prev, tail);
5179 }
5180 }
5181 else
5182 {
5183 prev = tail;
5184 tail = XCDR (tail);
5185 }
5186 }
5187 }
5188 /* Now that we have stripped the elements that need not be in the
5189 undo_list any more, we can finally mark the list. */
5190 mark_object (nextb->undo_list);
5191
5192 nextb = nextb->next;
5193 }
5194 }
5195
5196 gc_sweep ();
5197
5198 /* Clear the mark bits that we set in certain root slots. */
5199
5200 unmark_byte_stack ();
5201 VECTOR_UNMARK (&buffer_defaults);
5202 VECTOR_UNMARK (&buffer_local_symbols);
5203
5204 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5205 dump_zombies ();
5206 #endif
5207
5208 UNBLOCK_INPUT;
5209
5210 CHECK_CONS_LIST ();
5211
5212 /* clear_marks (); */
5213 gc_in_progress = 0;
5214
5215 consing_since_gc = 0;
5216 if (gc_cons_threshold < 10000)
5217 gc_cons_threshold = 10000;
5218
5219 if (FLOATP (Vgc_cons_percentage))
5220 { /* Set gc_cons_combined_threshold. */
5221 EMACS_INT total = 0;
5222
5223 total += total_conses * sizeof (struct Lisp_Cons);
5224 total += total_symbols * sizeof (struct Lisp_Symbol);
5225 total += total_markers * sizeof (union Lisp_Misc);
5226 total += total_string_size;
5227 total += total_vector_size * sizeof (Lisp_Object);
5228 total += total_floats * sizeof (struct Lisp_Float);
5229 total += total_intervals * sizeof (struct interval);
5230 total += total_strings * sizeof (struct Lisp_String);
5231
5232 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5233 }
5234 else
5235 gc_relative_threshold = 0;
5236
5237 if (garbage_collection_messages)
5238 {
5239 if (message_p || minibuf_level > 0)
5240 restore_message ();
5241 else
5242 message1_nolog ("Garbage collecting...done");
5243 }
5244
5245 unbind_to (count, Qnil);
5246
5247 total[0] = Fcons (make_number (total_conses),
5248 make_number (total_free_conses));
5249 total[1] = Fcons (make_number (total_symbols),
5250 make_number (total_free_symbols));
5251 total[2] = Fcons (make_number (total_markers),
5252 make_number (total_free_markers));
5253 total[3] = make_number (total_string_size);
5254 total[4] = make_number (total_vector_size);
5255 total[5] = Fcons (make_number (total_floats),
5256 make_number (total_free_floats));
5257 total[6] = Fcons (make_number (total_intervals),
5258 make_number (total_free_intervals));
5259 total[7] = Fcons (make_number (total_strings),
5260 make_number (total_free_strings));
5261
5262 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5263 {
5264 /* Compute average percentage of zombies. */
5265 double nlive = 0;
5266
5267 for (i = 0; i < 7; ++i)
5268 if (CONSP (total[i]))
5269 nlive += XFASTINT (XCAR (total[i]));
5270
5271 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5272 max_live = max (nlive, max_live);
5273 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5274 max_zombies = max (nzombies, max_zombies);
5275 ++ngcs;
5276 }
5277 #endif
5278
5279 if (!NILP (Vpost_gc_hook))
5280 {
5281 int count = inhibit_garbage_collection ();
5282 safe_run_hooks (Qpost_gc_hook);
5283 unbind_to (count, Qnil);
5284 }
5285
5286 /* Accumulate statistics. */
5287 EMACS_GET_TIME (t2);
5288 EMACS_SUB_TIME (t3, t2, t1);
5289 if (FLOATP (Vgc_elapsed))
5290 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5291 EMACS_SECS (t3) +
5292 EMACS_USECS (t3) * 1.0e-6);
5293 gcs_done++;
5294
5295 return Flist (sizeof total / sizeof *total, total);
5296 }
5297
5298
5299 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5300 only interesting objects referenced from glyphs are strings. */
5301
5302 static void
5303 mark_glyph_matrix (matrix)
5304 struct glyph_matrix *matrix;
5305 {
5306 struct glyph_row *row = matrix->rows;
5307 struct glyph_row *end = row + matrix->nrows;
5308
5309 for (; row < end; ++row)
5310 if (row->enabled_p)
5311 {
5312 int area;
5313 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5314 {
5315 struct glyph *glyph = row->glyphs[area];
5316 struct glyph *end_glyph = glyph + row->used[area];
5317
5318 for (; glyph < end_glyph; ++glyph)
5319 if (STRINGP (glyph->object)
5320 && !STRING_MARKED_P (XSTRING (glyph->object)))
5321 mark_object (glyph->object);
5322 }
5323 }
5324 }
5325
5326
5327 /* Mark Lisp faces in the face cache C. */
5328
5329 static void
5330 mark_face_cache (c)
5331 struct face_cache *c;
5332 {
5333 if (c)
5334 {
5335 int i, j;
5336 for (i = 0; i < c->used; ++i)
5337 {
5338 struct face *face = FACE_FROM_ID (c->f, i);
5339
5340 if (face)
5341 {
5342 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5343 mark_object (face->lface[j]);
5344 }
5345 }
5346 }
5347 }
5348
5349
5350 #ifdef HAVE_WINDOW_SYSTEM
5351
5352 /* Mark Lisp objects in image IMG. */
5353
5354 static void
5355 mark_image (img)
5356 struct image *img;
5357 {
5358 mark_object (img->spec);
5359
5360 if (!NILP (img->data.lisp_val))
5361 mark_object (img->data.lisp_val);
5362 }
5363
5364
5365 /* Mark Lisp objects in image cache of frame F. It's done this way so
5366 that we don't have to include xterm.h here. */
5367
5368 static void
5369 mark_image_cache (f)
5370 struct frame *f;
5371 {
5372 forall_images_in_image_cache (f, mark_image);
5373 }
5374
5375 #endif /* HAVE_X_WINDOWS */
5376
5377
5378 \f
5379 /* Mark reference to a Lisp_Object.
5380 If the object referred to has not been seen yet, recursively mark
5381 all the references contained in it. */
5382
5383 #define LAST_MARKED_SIZE 500
5384 Lisp_Object last_marked[LAST_MARKED_SIZE];
5385 int last_marked_index;
5386
5387 /* For debugging--call abort when we cdr down this many
5388 links of a list, in mark_object. In debugging,
5389 the call to abort will hit a breakpoint.
5390 Normally this is zero and the check never goes off. */
5391 int mark_object_loop_halt;
5392
5393 /* Return non-zero if the object was not yet marked. */
5394 static int
5395 mark_vectorlike (ptr)
5396 struct Lisp_Vector *ptr;
5397 {
5398 register EMACS_INT size = ptr->size;
5399 register int i;
5400
5401 if (VECTOR_MARKED_P (ptr))
5402 return 0; /* Already marked */
5403 VECTOR_MARK (ptr); /* Else mark it */
5404 if (size & PSEUDOVECTOR_FLAG)
5405 size &= PSEUDOVECTOR_SIZE_MASK;
5406
5407 /* Note that this size is not the memory-footprint size, but only
5408 the number of Lisp_Object fields that we should trace.
5409 The distinction is used e.g. by Lisp_Process which places extra
5410 non-Lisp_Object fields at the end of the structure. */
5411 for (i = 0; i < size; i++) /* and then mark its elements */
5412 mark_object (ptr->contents[i]);
5413 return 1;
5414 }
5415
5416 void
5417 mark_object (arg)
5418 Lisp_Object arg;
5419 {
5420 register Lisp_Object obj = arg;
5421 #ifdef GC_CHECK_MARKED_OBJECTS
5422 void *po;
5423 struct mem_node *m;
5424 #endif
5425 int cdr_count = 0;
5426
5427 loop:
5428
5429 if (PURE_POINTER_P (XPNTR (obj)))
5430 return;
5431
5432 last_marked[last_marked_index++] = obj;
5433 if (last_marked_index == LAST_MARKED_SIZE)
5434 last_marked_index = 0;
5435
5436 /* Perform some sanity checks on the objects marked here. Abort if
5437 we encounter an object we know is bogus. This increases GC time
5438 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5439 #ifdef GC_CHECK_MARKED_OBJECTS
5440
5441 po = (void *) XPNTR (obj);
5442
5443 /* Check that the object pointed to by PO is known to be a Lisp
5444 structure allocated from the heap. */
5445 #define CHECK_ALLOCATED() \
5446 do { \
5447 m = mem_find (po); \
5448 if (m == MEM_NIL) \
5449 abort (); \
5450 } while (0)
5451
5452 /* Check that the object pointed to by PO is live, using predicate
5453 function LIVEP. */
5454 #define CHECK_LIVE(LIVEP) \
5455 do { \
5456 if (!LIVEP (m, po)) \
5457 abort (); \
5458 } while (0)
5459
5460 /* Check both of the above conditions. */
5461 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5462 do { \
5463 CHECK_ALLOCATED (); \
5464 CHECK_LIVE (LIVEP); \
5465 } while (0) \
5466
5467 #else /* not GC_CHECK_MARKED_OBJECTS */
5468
5469 #define CHECK_ALLOCATED() (void) 0
5470 #define CHECK_LIVE(LIVEP) (void) 0
5471 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5472
5473 #endif /* not GC_CHECK_MARKED_OBJECTS */
5474
5475 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5476 {
5477 case Lisp_String:
5478 {
5479 register struct Lisp_String *ptr = XSTRING (obj);
5480 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5481 MARK_INTERVAL_TREE (ptr->intervals);
5482 MARK_STRING (ptr);
5483 #ifdef GC_CHECK_STRING_BYTES
5484 /* Check that the string size recorded in the string is the
5485 same as the one recorded in the sdata structure. */
5486 CHECK_STRING_BYTES (ptr);
5487 #endif /* GC_CHECK_STRING_BYTES */
5488 }
5489 break;
5490
5491 case Lisp_Vectorlike:
5492 #ifdef GC_CHECK_MARKED_OBJECTS
5493 m = mem_find (po);
5494 if (m == MEM_NIL && !SUBRP (obj)
5495 && po != &buffer_defaults
5496 && po != &buffer_local_symbols)
5497 abort ();
5498 #endif /* GC_CHECK_MARKED_OBJECTS */
5499
5500 if (BUFFERP (obj))
5501 {
5502 if (!VECTOR_MARKED_P (XBUFFER (obj)))
5503 {
5504 #ifdef GC_CHECK_MARKED_OBJECTS
5505 if (po != &buffer_defaults && po != &buffer_local_symbols)
5506 {
5507 struct buffer *b;
5508 for (b = all_buffers; b && b != po; b = b->next)
5509 ;
5510 if (b == NULL)
5511 abort ();
5512 }
5513 #endif /* GC_CHECK_MARKED_OBJECTS */
5514 mark_buffer (obj);
5515 }
5516 }
5517 else if (SUBRP (obj))
5518 break;
5519 else if (COMPILEDP (obj))
5520 /* We could treat this just like a vector, but it is better to
5521 save the COMPILED_CONSTANTS element for last and avoid
5522 recursion there. */
5523 {
5524 register struct Lisp_Vector *ptr = XVECTOR (obj);
5525 register EMACS_INT size = ptr->size;
5526 register int i;
5527
5528 if (VECTOR_MARKED_P (ptr))
5529 break; /* Already marked */
5530
5531 CHECK_LIVE (live_vector_p);
5532 VECTOR_MARK (ptr); /* Else mark it */
5533 size &= PSEUDOVECTOR_SIZE_MASK;
5534 for (i = 0; i < size; i++) /* and then mark its elements */
5535 {
5536 if (i != COMPILED_CONSTANTS)
5537 mark_object (ptr->contents[i]);
5538 }
5539 obj = ptr->contents[COMPILED_CONSTANTS];
5540 goto loop;
5541 }
5542 else if (FRAMEP (obj))
5543 {
5544 register struct frame *ptr = XFRAME (obj);
5545 if (mark_vectorlike (XVECTOR (obj)))
5546 {
5547 mark_face_cache (ptr->face_cache);
5548 #ifdef HAVE_WINDOW_SYSTEM
5549 mark_image_cache (ptr);
5550 #endif /* HAVE_WINDOW_SYSTEM */
5551 }
5552 }
5553 else if (WINDOWP (obj))
5554 {
5555 register struct Lisp_Vector *ptr = XVECTOR (obj);
5556 struct window *w = XWINDOW (obj);
5557 if (mark_vectorlike (ptr))
5558 {
5559 /* Mark glyphs for leaf windows. Marking window matrices is
5560 sufficient because frame matrices use the same glyph
5561 memory. */
5562 if (NILP (w->hchild)
5563 && NILP (w->vchild)
5564 && w->current_matrix)
5565 {
5566 mark_glyph_matrix (w->current_matrix);
5567 mark_glyph_matrix (w->desired_matrix);
5568 }
5569 }
5570 }
5571 else if (HASH_TABLE_P (obj))
5572 {
5573 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5574 if (mark_vectorlike ((struct Lisp_Vector *)h))
5575 { /* If hash table is not weak, mark all keys and values.
5576 For weak tables, mark only the vector. */
5577 if (NILP (h->weak))
5578 mark_object (h->key_and_value);
5579 else
5580 VECTOR_MARK (XVECTOR (h->key_and_value));
5581 }
5582 }
5583 else
5584 mark_vectorlike (XVECTOR (obj));
5585 break;
5586
5587 case Lisp_Symbol:
5588 {
5589 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5590 struct Lisp_Symbol *ptrx;
5591
5592 if (ptr->gcmarkbit) break;
5593 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5594 ptr->gcmarkbit = 1;
5595 mark_object (ptr->value);
5596 mark_object (ptr->function);
5597 mark_object (ptr->plist);
5598
5599 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5600 MARK_STRING (XSTRING (ptr->xname));
5601 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5602
5603 /* Note that we do not mark the obarray of the symbol.
5604 It is safe not to do so because nothing accesses that
5605 slot except to check whether it is nil. */
5606 ptr = ptr->next;
5607 if (ptr)
5608 {
5609 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5610 XSETSYMBOL (obj, ptrx);
5611 goto loop;
5612 }
5613 }
5614 break;
5615
5616 case Lisp_Misc:
5617 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5618 if (XMISCANY (obj)->gcmarkbit)
5619 break;
5620 XMISCANY (obj)->gcmarkbit = 1;
5621
5622 switch (XMISCTYPE (obj))
5623 {
5624 case Lisp_Misc_Buffer_Local_Value:
5625 {
5626 register struct Lisp_Buffer_Local_Value *ptr
5627 = XBUFFER_LOCAL_VALUE (obj);
5628 /* If the cdr is nil, avoid recursion for the car. */
5629 if (EQ (ptr->cdr, Qnil))
5630 {
5631 obj = ptr->realvalue;
5632 goto loop;
5633 }
5634 mark_object (ptr->realvalue);
5635 mark_object (ptr->buffer);
5636 mark_object (ptr->frame);
5637 obj = ptr->cdr;
5638 goto loop;
5639 }
5640
5641 case Lisp_Misc_Marker:
5642 /* DO NOT mark thru the marker's chain.
5643 The buffer's markers chain does not preserve markers from gc;
5644 instead, markers are removed from the chain when freed by gc. */
5645 break;
5646
5647 case Lisp_Misc_Intfwd:
5648 case Lisp_Misc_Boolfwd:
5649 case Lisp_Misc_Objfwd:
5650 case Lisp_Misc_Buffer_Objfwd:
5651 case Lisp_Misc_Kboard_Objfwd:
5652 /* Don't bother with Lisp_Buffer_Objfwd,
5653 since all markable slots in current buffer marked anyway. */
5654 /* Don't need to do Lisp_Objfwd, since the places they point
5655 are protected with staticpro. */
5656 break;
5657
5658 case Lisp_Misc_Save_Value:
5659 #if GC_MARK_STACK
5660 {
5661 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5662 /* If DOGC is set, POINTER is the address of a memory
5663 area containing INTEGER potential Lisp_Objects. */
5664 if (ptr->dogc)
5665 {
5666 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5667 int nelt;
5668 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5669 mark_maybe_object (*p);
5670 }
5671 }
5672 #endif
5673 break;
5674
5675 case Lisp_Misc_Overlay:
5676 {
5677 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5678 mark_object (ptr->start);
5679 mark_object (ptr->end);
5680 mark_object (ptr->plist);
5681 if (ptr->next)
5682 {
5683 XSETMISC (obj, ptr->next);
5684 goto loop;
5685 }
5686 }
5687 break;
5688
5689 default:
5690 abort ();
5691 }
5692 break;
5693
5694 case Lisp_Cons:
5695 {
5696 register struct Lisp_Cons *ptr = XCONS (obj);
5697 if (CONS_MARKED_P (ptr)) break;
5698 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5699 CONS_MARK (ptr);
5700 /* If the cdr is nil, avoid recursion for the car. */
5701 if (EQ (ptr->u.cdr, Qnil))
5702 {
5703 obj = ptr->car;
5704 cdr_count = 0;
5705 goto loop;
5706 }
5707 mark_object (ptr->car);
5708 obj = ptr->u.cdr;
5709 cdr_count++;
5710 if (cdr_count == mark_object_loop_halt)
5711 abort ();
5712 goto loop;
5713 }
5714
5715 case Lisp_Float:
5716 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5717 FLOAT_MARK (XFLOAT (obj));
5718 break;
5719
5720 case Lisp_Int:
5721 break;
5722
5723 default:
5724 abort ();
5725 }
5726
5727 #undef CHECK_LIVE
5728 #undef CHECK_ALLOCATED
5729 #undef CHECK_ALLOCATED_AND_LIVE
5730 }
5731
5732 /* Mark the pointers in a buffer structure. */
5733
5734 static void
5735 mark_buffer (buf)
5736 Lisp_Object buf;
5737 {
5738 register struct buffer *buffer = XBUFFER (buf);
5739 register Lisp_Object *ptr, tmp;
5740 Lisp_Object base_buffer;
5741
5742 VECTOR_MARK (buffer);
5743
5744 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5745
5746 /* For now, we just don't mark the undo_list. It's done later in
5747 a special way just before the sweep phase, and after stripping
5748 some of its elements that are not needed any more. */
5749
5750 if (buffer->overlays_before)
5751 {
5752 XSETMISC (tmp, buffer->overlays_before);
5753 mark_object (tmp);
5754 }
5755 if (buffer->overlays_after)
5756 {
5757 XSETMISC (tmp, buffer->overlays_after);
5758 mark_object (tmp);
5759 }
5760
5761 for (ptr = &buffer->name;
5762 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5763 ptr++)
5764 mark_object (*ptr);
5765
5766 /* If this is an indirect buffer, mark its base buffer. */
5767 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5768 {
5769 XSETBUFFER (base_buffer, buffer->base_buffer);
5770 mark_buffer (base_buffer);
5771 }
5772 }
5773
5774 /* Mark the Lisp pointers in the terminal objects.
5775 Called by the Fgarbage_collector. */
5776
5777 static void
5778 mark_terminals (void)
5779 {
5780 struct terminal *t;
5781 for (t = terminal_list; t; t = t->next_terminal)
5782 {
5783 eassert (t->name != NULL);
5784 mark_vectorlike ((struct Lisp_Vector *)t);
5785 }
5786 }
5787
5788
5789
5790 /* Value is non-zero if OBJ will survive the current GC because it's
5791 either marked or does not need to be marked to survive. */
5792
5793 int
5794 survives_gc_p (obj)
5795 Lisp_Object obj;
5796 {
5797 int survives_p;
5798
5799 switch (XTYPE (obj))
5800 {
5801 case Lisp_Int:
5802 survives_p = 1;
5803 break;
5804
5805 case Lisp_Symbol:
5806 survives_p = XSYMBOL (obj)->gcmarkbit;
5807 break;
5808
5809 case Lisp_Misc:
5810 survives_p = XMISCANY (obj)->gcmarkbit;
5811 break;
5812
5813 case Lisp_String:
5814 survives_p = STRING_MARKED_P (XSTRING (obj));
5815 break;
5816
5817 case Lisp_Vectorlike:
5818 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5819 break;
5820
5821 case Lisp_Cons:
5822 survives_p = CONS_MARKED_P (XCONS (obj));
5823 break;
5824
5825 case Lisp_Float:
5826 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5827 break;
5828
5829 default:
5830 abort ();
5831 }
5832
5833 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5834 }
5835
5836
5837 \f
5838 /* Sweep: find all structures not marked, and free them. */
5839
5840 static void
5841 gc_sweep ()
5842 {
5843 /* Remove or mark entries in weak hash tables.
5844 This must be done before any object is unmarked. */
5845 sweep_weak_hash_tables ();
5846
5847 sweep_strings ();
5848 #ifdef GC_CHECK_STRING_BYTES
5849 if (!noninteractive)
5850 check_string_bytes (1);
5851 #endif
5852
5853 /* Put all unmarked conses on free list */
5854 {
5855 register struct cons_block *cblk;
5856 struct cons_block **cprev = &cons_block;
5857 register int lim = cons_block_index;
5858 register int num_free = 0, num_used = 0;
5859
5860 cons_free_list = 0;
5861
5862 for (cblk = cons_block; cblk; cblk = *cprev)
5863 {
5864 register int i = 0;
5865 int this_free = 0;
5866 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5867
5868 /* Scan the mark bits an int at a time. */
5869 for (i = 0; i <= ilim; i++)
5870 {
5871 if (cblk->gcmarkbits[i] == -1)
5872 {
5873 /* Fast path - all cons cells for this int are marked. */
5874 cblk->gcmarkbits[i] = 0;
5875 num_used += BITS_PER_INT;
5876 }
5877 else
5878 {
5879 /* Some cons cells for this int are not marked.
5880 Find which ones, and free them. */
5881 int start, pos, stop;
5882
5883 start = i * BITS_PER_INT;
5884 stop = lim - start;
5885 if (stop > BITS_PER_INT)
5886 stop = BITS_PER_INT;
5887 stop += start;
5888
5889 for (pos = start; pos < stop; pos++)
5890 {
5891 if (!CONS_MARKED_P (&cblk->conses[pos]))
5892 {
5893 this_free++;
5894 cblk->conses[pos].u.chain = cons_free_list;
5895 cons_free_list = &cblk->conses[pos];
5896 #if GC_MARK_STACK
5897 cons_free_list->car = Vdead;
5898 #endif
5899 }
5900 else
5901 {
5902 num_used++;
5903 CONS_UNMARK (&cblk->conses[pos]);
5904 }
5905 }
5906 }
5907 }
5908
5909 lim = CONS_BLOCK_SIZE;
5910 /* If this block contains only free conses and we have already
5911 seen more than two blocks worth of free conses then deallocate
5912 this block. */
5913 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5914 {
5915 *cprev = cblk->next;
5916 /* Unhook from the free list. */
5917 cons_free_list = cblk->conses[0].u.chain;
5918 lisp_align_free (cblk);
5919 n_cons_blocks--;
5920 }
5921 else
5922 {
5923 num_free += this_free;
5924 cprev = &cblk->next;
5925 }
5926 }
5927 total_conses = num_used;
5928 total_free_conses = num_free;
5929 }
5930
5931 /* Put all unmarked floats on free list */
5932 {
5933 register struct float_block *fblk;
5934 struct float_block **fprev = &float_block;
5935 register int lim = float_block_index;
5936 register int num_free = 0, num_used = 0;
5937
5938 float_free_list = 0;
5939
5940 for (fblk = float_block; fblk; fblk = *fprev)
5941 {
5942 register int i;
5943 int this_free = 0;
5944 for (i = 0; i < lim; i++)
5945 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5946 {
5947 this_free++;
5948 fblk->floats[i].u.chain = float_free_list;
5949 float_free_list = &fblk->floats[i];
5950 }
5951 else
5952 {
5953 num_used++;
5954 FLOAT_UNMARK (&fblk->floats[i]);
5955 }
5956 lim = FLOAT_BLOCK_SIZE;
5957 /* If this block contains only free floats and we have already
5958 seen more than two blocks worth of free floats then deallocate
5959 this block. */
5960 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5961 {
5962 *fprev = fblk->next;
5963 /* Unhook from the free list. */
5964 float_free_list = fblk->floats[0].u.chain;
5965 lisp_align_free (fblk);
5966 n_float_blocks--;
5967 }
5968 else
5969 {
5970 num_free += this_free;
5971 fprev = &fblk->next;
5972 }
5973 }
5974 total_floats = num_used;
5975 total_free_floats = num_free;
5976 }
5977
5978 /* Put all unmarked intervals on free list */
5979 {
5980 register struct interval_block *iblk;
5981 struct interval_block **iprev = &interval_block;
5982 register int lim = interval_block_index;
5983 register int num_free = 0, num_used = 0;
5984
5985 interval_free_list = 0;
5986
5987 for (iblk = interval_block; iblk; iblk = *iprev)
5988 {
5989 register int i;
5990 int this_free = 0;
5991
5992 for (i = 0; i < lim; i++)
5993 {
5994 if (!iblk->intervals[i].gcmarkbit)
5995 {
5996 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5997 interval_free_list = &iblk->intervals[i];
5998 this_free++;
5999 }
6000 else
6001 {
6002 num_used++;
6003 iblk->intervals[i].gcmarkbit = 0;
6004 }
6005 }
6006 lim = INTERVAL_BLOCK_SIZE;
6007 /* If this block contains only free intervals and we have already
6008 seen more than two blocks worth of free intervals then
6009 deallocate this block. */
6010 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6011 {
6012 *iprev = iblk->next;
6013 /* Unhook from the free list. */
6014 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6015 lisp_free (iblk);
6016 n_interval_blocks--;
6017 }
6018 else
6019 {
6020 num_free += this_free;
6021 iprev = &iblk->next;
6022 }
6023 }
6024 total_intervals = num_used;
6025 total_free_intervals = num_free;
6026 }
6027
6028 /* Put all unmarked symbols on free list */
6029 {
6030 register struct symbol_block *sblk;
6031 struct symbol_block **sprev = &symbol_block;
6032 register int lim = symbol_block_index;
6033 register int num_free = 0, num_used = 0;
6034
6035 symbol_free_list = NULL;
6036
6037 for (sblk = symbol_block; sblk; sblk = *sprev)
6038 {
6039 int this_free = 0;
6040 struct Lisp_Symbol *sym = sblk->symbols;
6041 struct Lisp_Symbol *end = sym + lim;
6042
6043 for (; sym < end; ++sym)
6044 {
6045 /* Check if the symbol was created during loadup. In such a case
6046 it might be pointed to by pure bytecode which we don't trace,
6047 so we conservatively assume that it is live. */
6048 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
6049
6050 if (!sym->gcmarkbit && !pure_p)
6051 {
6052 sym->next = symbol_free_list;
6053 symbol_free_list = sym;
6054 #if GC_MARK_STACK
6055 symbol_free_list->function = Vdead;
6056 #endif
6057 ++this_free;
6058 }
6059 else
6060 {
6061 ++num_used;
6062 if (!pure_p)
6063 UNMARK_STRING (XSTRING (sym->xname));
6064 sym->gcmarkbit = 0;
6065 }
6066 }
6067
6068 lim = SYMBOL_BLOCK_SIZE;
6069 /* If this block contains only free symbols and we have already
6070 seen more than two blocks worth of free symbols then deallocate
6071 this block. */
6072 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6073 {
6074 *sprev = sblk->next;
6075 /* Unhook from the free list. */
6076 symbol_free_list = sblk->symbols[0].next;
6077 lisp_free (sblk);
6078 n_symbol_blocks--;
6079 }
6080 else
6081 {
6082 num_free += this_free;
6083 sprev = &sblk->next;
6084 }
6085 }
6086 total_symbols = num_used;
6087 total_free_symbols = num_free;
6088 }
6089
6090 /* Put all unmarked misc's on free list.
6091 For a marker, first unchain it from the buffer it points into. */
6092 {
6093 register struct marker_block *mblk;
6094 struct marker_block **mprev = &marker_block;
6095 register int lim = marker_block_index;
6096 register int num_free = 0, num_used = 0;
6097
6098 marker_free_list = 0;
6099
6100 for (mblk = marker_block; mblk; mblk = *mprev)
6101 {
6102 register int i;
6103 int this_free = 0;
6104
6105 for (i = 0; i < lim; i++)
6106 {
6107 if (!mblk->markers[i].u_any.gcmarkbit)
6108 {
6109 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
6110 unchain_marker (&mblk->markers[i].u_marker);
6111 /* Set the type of the freed object to Lisp_Misc_Free.
6112 We could leave the type alone, since nobody checks it,
6113 but this might catch bugs faster. */
6114 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6115 mblk->markers[i].u_free.chain = marker_free_list;
6116 marker_free_list = &mblk->markers[i];
6117 this_free++;
6118 }
6119 else
6120 {
6121 num_used++;
6122 mblk->markers[i].u_any.gcmarkbit = 0;
6123 }
6124 }
6125 lim = MARKER_BLOCK_SIZE;
6126 /* If this block contains only free markers and we have already
6127 seen more than two blocks worth of free markers then deallocate
6128 this block. */
6129 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6130 {
6131 *mprev = mblk->next;
6132 /* Unhook from the free list. */
6133 marker_free_list = mblk->markers[0].u_free.chain;
6134 lisp_free (mblk);
6135 n_marker_blocks--;
6136 }
6137 else
6138 {
6139 num_free += this_free;
6140 mprev = &mblk->next;
6141 }
6142 }
6143
6144 total_markers = num_used;
6145 total_free_markers = num_free;
6146 }
6147
6148 /* Free all unmarked buffers */
6149 {
6150 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6151
6152 while (buffer)
6153 if (!VECTOR_MARKED_P (buffer))
6154 {
6155 if (prev)
6156 prev->next = buffer->next;
6157 else
6158 all_buffers = buffer->next;
6159 next = buffer->next;
6160 lisp_free (buffer);
6161 buffer = next;
6162 }
6163 else
6164 {
6165 VECTOR_UNMARK (buffer);
6166 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6167 prev = buffer, buffer = buffer->next;
6168 }
6169 }
6170
6171 /* Free all unmarked vectors */
6172 {
6173 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6174 total_vector_size = 0;
6175
6176 while (vector)
6177 if (!VECTOR_MARKED_P (vector))
6178 {
6179 if (prev)
6180 prev->next = vector->next;
6181 else
6182 all_vectors = vector->next;
6183 next = vector->next;
6184 lisp_free (vector);
6185 n_vectors--;
6186 vector = next;
6187
6188 }
6189 else
6190 {
6191 VECTOR_UNMARK (vector);
6192 if (vector->size & PSEUDOVECTOR_FLAG)
6193 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6194 else
6195 total_vector_size += vector->size;
6196 prev = vector, vector = vector->next;
6197 }
6198 }
6199
6200 #ifdef GC_CHECK_STRING_BYTES
6201 if (!noninteractive)
6202 check_string_bytes (1);
6203 #endif
6204 }
6205
6206
6207
6208 \f
6209 /* Debugging aids. */
6210
6211 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6212 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6213 This may be helpful in debugging Emacs's memory usage.
6214 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6215 ()
6216 {
6217 Lisp_Object end;
6218
6219 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6220
6221 return end;
6222 }
6223
6224 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6225 doc: /* Return a list of counters that measure how much consing there has been.
6226 Each of these counters increments for a certain kind of object.
6227 The counters wrap around from the largest positive integer to zero.
6228 Garbage collection does not decrease them.
6229 The elements of the value are as follows:
6230 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6231 All are in units of 1 = one object consed
6232 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6233 objects consed.
6234 MISCS include overlays, markers, and some internal types.
6235 Frames, windows, buffers, and subprocesses count as vectors
6236 (but the contents of a buffer's text do not count here). */)
6237 ()
6238 {
6239 Lisp_Object consed[8];
6240
6241 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6242 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6243 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6244 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6245 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6246 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6247 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6248 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6249
6250 return Flist (8, consed);
6251 }
6252
6253 int suppress_checking;
6254 void
6255 die (msg, file, line)
6256 const char *msg;
6257 const char *file;
6258 int line;
6259 {
6260 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6261 file, line, msg);
6262 abort ();
6263 }
6264 \f
6265 /* Initialization */
6266
6267 void
6268 init_alloc_once ()
6269 {
6270 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6271 purebeg = PUREBEG;
6272 pure_size = PURESIZE;
6273 pure_bytes_used = 0;
6274 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6275 pure_bytes_used_before_overflow = 0;
6276
6277 /* Initialize the list of free aligned blocks. */
6278 free_ablock = NULL;
6279
6280 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6281 mem_init ();
6282 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6283 #endif
6284
6285 all_vectors = 0;
6286 ignore_warnings = 1;
6287 #ifdef DOUG_LEA_MALLOC
6288 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6289 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6290 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6291 #endif
6292 init_strings ();
6293 init_cons ();
6294 init_symbol ();
6295 init_marker ();
6296 init_float ();
6297 init_intervals ();
6298
6299 #ifdef REL_ALLOC
6300 malloc_hysteresis = 32;
6301 #else
6302 malloc_hysteresis = 0;
6303 #endif
6304
6305 refill_memory_reserve ();
6306
6307 ignore_warnings = 0;
6308 gcprolist = 0;
6309 byte_stack_list = 0;
6310 staticidx = 0;
6311 consing_since_gc = 0;
6312 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6313 gc_relative_threshold = 0;
6314
6315 #ifdef VIRT_ADDR_VARIES
6316 malloc_sbrk_unused = 1<<22; /* A large number */
6317 malloc_sbrk_used = 100000; /* as reasonable as any number */
6318 #endif /* VIRT_ADDR_VARIES */
6319 }
6320
6321 void
6322 init_alloc ()
6323 {
6324 gcprolist = 0;
6325 byte_stack_list = 0;
6326 #if GC_MARK_STACK
6327 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6328 setjmp_tested_p = longjmps_done = 0;
6329 #endif
6330 #endif
6331 Vgc_elapsed = make_float (0.0);
6332 gcs_done = 0;
6333 }
6334
6335 void
6336 syms_of_alloc ()
6337 {
6338 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6339 doc: /* *Number of bytes of consing between garbage collections.
6340 Garbage collection can happen automatically once this many bytes have been
6341 allocated since the last garbage collection. All data types count.
6342
6343 Garbage collection happens automatically only when `eval' is called.
6344
6345 By binding this temporarily to a large number, you can effectively
6346 prevent garbage collection during a part of the program.
6347 See also `gc-cons-percentage'. */);
6348
6349 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6350 doc: /* *Portion of the heap used for allocation.
6351 Garbage collection can happen automatically once this portion of the heap
6352 has been allocated since the last garbage collection.
6353 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6354 Vgc_cons_percentage = make_float (0.1);
6355
6356 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6357 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6358
6359 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6360 doc: /* Number of cons cells that have been consed so far. */);
6361
6362 DEFVAR_INT ("floats-consed", &floats_consed,
6363 doc: /* Number of floats that have been consed so far. */);
6364
6365 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6366 doc: /* Number of vector cells that have been consed so far. */);
6367
6368 DEFVAR_INT ("symbols-consed", &symbols_consed,
6369 doc: /* Number of symbols that have been consed so far. */);
6370
6371 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6372 doc: /* Number of string characters that have been consed so far. */);
6373
6374 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6375 doc: /* Number of miscellaneous objects that have been consed so far. */);
6376
6377 DEFVAR_INT ("intervals-consed", &intervals_consed,
6378 doc: /* Number of intervals that have been consed so far. */);
6379
6380 DEFVAR_INT ("strings-consed", &strings_consed,
6381 doc: /* Number of strings that have been consed so far. */);
6382
6383 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6384 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6385 This means that certain objects should be allocated in shared (pure) space. */);
6386
6387 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6388 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6389 garbage_collection_messages = 0;
6390
6391 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6392 doc: /* Hook run after garbage collection has finished. */);
6393 Vpost_gc_hook = Qnil;
6394 Qpost_gc_hook = intern ("post-gc-hook");
6395 staticpro (&Qpost_gc_hook);
6396
6397 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6398 doc: /* Precomputed `signal' argument for memory-full error. */);
6399 /* We build this in advance because if we wait until we need it, we might
6400 not be able to allocate the memory to hold it. */
6401 Vmemory_signal_data
6402 = list2 (Qerror,
6403 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6404
6405 DEFVAR_LISP ("memory-full", &Vmemory_full,
6406 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6407 Vmemory_full = Qnil;
6408
6409 staticpro (&Qgc_cons_threshold);
6410 Qgc_cons_threshold = intern ("gc-cons-threshold");
6411
6412 staticpro (&Qchar_table_extra_slots);
6413 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6414
6415 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6416 doc: /* Accumulated time elapsed in garbage collections.
6417 The time is in seconds as a floating point value. */);
6418 DEFVAR_INT ("gcs-done", &gcs_done,
6419 doc: /* Accumulated number of garbage collections done. */);
6420
6421 defsubr (&Scons);
6422 defsubr (&Slist);
6423 defsubr (&Svector);
6424 defsubr (&Smake_byte_code);
6425 defsubr (&Smake_list);
6426 defsubr (&Smake_vector);
6427 defsubr (&Smake_string);
6428 defsubr (&Smake_bool_vector);
6429 defsubr (&Smake_symbol);
6430 defsubr (&Smake_marker);
6431 defsubr (&Spurecopy);
6432 defsubr (&Sgarbage_collect);
6433 defsubr (&Smemory_limit);
6434 defsubr (&Smemory_use_counts);
6435
6436 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6437 defsubr (&Sgc_status);
6438 #endif
6439 }
6440
6441 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6442 (do not change this comment) */