]> code.delx.au - gnu-emacs/blob - src/alloc.c
(BUFFER_SIZE_FACTOR): Remove.
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985,86,88,93,94,95,97,98,1999,2000,01,02,03,2004
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
29
30 /* Note that this declares bzero on OSF/1. How dumb. */
31
32 #include <signal.h>
33
34 /* This file is part of the core Lisp implementation, and thus must
35 deal with the real data structures. If the Lisp implementation is
36 replaced, this file likely will not be used. */
37
38 #undef HIDE_LISP_IMPLEMENTATION
39 #include "lisp.h"
40 #include "process.h"
41 #include "intervals.h"
42 #include "puresize.h"
43 #include "buffer.h"
44 #include "window.h"
45 #include "keyboard.h"
46 #include "frame.h"
47 #include "blockinput.h"
48 #include "charset.h"
49 #include "syssignal.h"
50 #include <setjmp.h>
51
52 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
53 memory. Can do this only if using gmalloc.c. */
54
55 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
56 #undef GC_MALLOC_CHECK
57 #endif
58
59 #ifdef HAVE_UNISTD_H
60 #include <unistd.h>
61 #else
62 extern POINTER_TYPE *sbrk ();
63 #endif
64
65 #ifdef DOUG_LEA_MALLOC
66
67 #include <malloc.h>
68 /* malloc.h #defines this as size_t, at least in glibc2. */
69 #ifndef __malloc_size_t
70 #define __malloc_size_t int
71 #endif
72
73 /* Specify maximum number of areas to mmap. It would be nice to use a
74 value that explicitly means "no limit". */
75
76 #define MMAP_MAX_AREAS 100000000
77
78 #else /* not DOUG_LEA_MALLOC */
79
80 /* The following come from gmalloc.c. */
81
82 #define __malloc_size_t size_t
83 extern __malloc_size_t _bytes_used;
84 extern __malloc_size_t __malloc_extra_blocks;
85
86 #endif /* not DOUG_LEA_MALLOC */
87
88 /* Value of _bytes_used, when spare_memory was freed. */
89
90 static __malloc_size_t bytes_used_when_full;
91
92 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
93 to a struct Lisp_String. */
94
95 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
96 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
97 #define STRING_MARKED_P(S) ((S)->size & ARRAY_MARK_FLAG)
98
99 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
100 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
101 #define VECTOR_MARKED_P(V) ((V)->size & ARRAY_MARK_FLAG)
102
103 /* Value is the number of bytes/chars of S, a pointer to a struct
104 Lisp_String. This must be used instead of STRING_BYTES (S) or
105 S->size during GC, because S->size contains the mark bit for
106 strings. */
107
108 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
109 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
110
111 /* Number of bytes of consing done since the last gc. */
112
113 int consing_since_gc;
114
115 /* Count the amount of consing of various sorts of space. */
116
117 EMACS_INT cons_cells_consed;
118 EMACS_INT floats_consed;
119 EMACS_INT vector_cells_consed;
120 EMACS_INT symbols_consed;
121 EMACS_INT string_chars_consed;
122 EMACS_INT misc_objects_consed;
123 EMACS_INT intervals_consed;
124 EMACS_INT strings_consed;
125
126 /* Number of bytes of consing since GC before another GC should be done. */
127
128 EMACS_INT gc_cons_threshold;
129
130 /* Nonzero during GC. */
131
132 int gc_in_progress;
133
134 /* Nonzero means abort if try to GC.
135 This is for code which is written on the assumption that
136 no GC will happen, so as to verify that assumption. */
137
138 int abort_on_gc;
139
140 /* Nonzero means display messages at beginning and end of GC. */
141
142 int garbage_collection_messages;
143
144 #ifndef VIRT_ADDR_VARIES
145 extern
146 #endif /* VIRT_ADDR_VARIES */
147 int malloc_sbrk_used;
148
149 #ifndef VIRT_ADDR_VARIES
150 extern
151 #endif /* VIRT_ADDR_VARIES */
152 int malloc_sbrk_unused;
153
154 /* Two limits controlling how much undo information to keep. */
155
156 EMACS_INT undo_limit;
157 EMACS_INT undo_strong_limit;
158
159 /* Number of live and free conses etc. */
160
161 static int total_conses, total_markers, total_symbols, total_vector_size;
162 static int total_free_conses, total_free_markers, total_free_symbols;
163 static int total_free_floats, total_floats;
164
165 /* Points to memory space allocated as "spare", to be freed if we run
166 out of memory. */
167
168 static char *spare_memory;
169
170 /* Amount of spare memory to keep in reserve. */
171
172 #define SPARE_MEMORY (1 << 14)
173
174 /* Number of extra blocks malloc should get when it needs more core. */
175
176 static int malloc_hysteresis;
177
178 /* Non-nil means defun should do purecopy on the function definition. */
179
180 Lisp_Object Vpurify_flag;
181
182 /* Non-nil means we are handling a memory-full error. */
183
184 Lisp_Object Vmemory_full;
185
186 #ifndef HAVE_SHM
187
188 /* Force it into data space! Initialize it to a nonzero value;
189 otherwise some compilers put it into BSS. */
190
191 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
192 #define PUREBEG (char *) pure
193
194 #else /* HAVE_SHM */
195
196 #define pure PURE_SEG_BITS /* Use shared memory segment */
197 #define PUREBEG (char *)PURE_SEG_BITS
198
199 #endif /* HAVE_SHM */
200
201 /* Pointer to the pure area, and its size. */
202
203 static char *purebeg;
204 static size_t pure_size;
205
206 /* Number of bytes of pure storage used before pure storage overflowed.
207 If this is non-zero, this implies that an overflow occurred. */
208
209 static size_t pure_bytes_used_before_overflow;
210
211 /* Value is non-zero if P points into pure space. */
212
213 #define PURE_POINTER_P(P) \
214 (((PNTR_COMPARISON_TYPE) (P) \
215 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
216 && ((PNTR_COMPARISON_TYPE) (P) \
217 >= (PNTR_COMPARISON_TYPE) purebeg))
218
219 /* Index in pure at which next pure object will be allocated.. */
220
221 EMACS_INT pure_bytes_used;
222
223 /* If nonzero, this is a warning delivered by malloc and not yet
224 displayed. */
225
226 char *pending_malloc_warning;
227
228 /* Pre-computed signal argument for use when memory is exhausted. */
229
230 Lisp_Object Vmemory_signal_data;
231
232 /* Maximum amount of C stack to save when a GC happens. */
233
234 #ifndef MAX_SAVE_STACK
235 #define MAX_SAVE_STACK 16000
236 #endif
237
238 /* Buffer in which we save a copy of the C stack at each GC. */
239
240 char *stack_copy;
241 int stack_copy_size;
242
243 /* Non-zero means ignore malloc warnings. Set during initialization.
244 Currently not used. */
245
246 int ignore_warnings;
247
248 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
249
250 /* Hook run after GC has finished. */
251
252 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
253
254 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
255 EMACS_INT gcs_done; /* accumulated GCs */
256
257 static void mark_buffer P_ ((Lisp_Object));
258 extern void mark_kboards P_ ((void));
259 static void gc_sweep P_ ((void));
260 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
261 static void mark_face_cache P_ ((struct face_cache *));
262
263 #ifdef HAVE_WINDOW_SYSTEM
264 static void mark_image P_ ((struct image *));
265 static void mark_image_cache P_ ((struct frame *));
266 #endif /* HAVE_WINDOW_SYSTEM */
267
268 static struct Lisp_String *allocate_string P_ ((void));
269 static void compact_small_strings P_ ((void));
270 static void free_large_strings P_ ((void));
271 static void sweep_strings P_ ((void));
272
273 extern int message_enable_multibyte;
274
275 /* When scanning the C stack for live Lisp objects, Emacs keeps track
276 of what memory allocated via lisp_malloc is intended for what
277 purpose. This enumeration specifies the type of memory. */
278
279 enum mem_type
280 {
281 MEM_TYPE_NON_LISP,
282 MEM_TYPE_BUFFER,
283 MEM_TYPE_CONS,
284 MEM_TYPE_STRING,
285 MEM_TYPE_MISC,
286 MEM_TYPE_SYMBOL,
287 MEM_TYPE_FLOAT,
288 /* Keep the following vector-like types together, with
289 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
290 first. Or change the code of live_vector_p, for instance. */
291 MEM_TYPE_VECTOR,
292 MEM_TYPE_PROCESS,
293 MEM_TYPE_HASH_TABLE,
294 MEM_TYPE_FRAME,
295 MEM_TYPE_WINDOW
296 };
297
298 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
299
300 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
301 #include <stdio.h> /* For fprintf. */
302 #endif
303
304 /* A unique object in pure space used to make some Lisp objects
305 on free lists recognizable in O(1). */
306
307 Lisp_Object Vdead;
308
309 #ifdef GC_MALLOC_CHECK
310
311 enum mem_type allocated_mem_type;
312 int dont_register_blocks;
313
314 #endif /* GC_MALLOC_CHECK */
315
316 /* A node in the red-black tree describing allocated memory containing
317 Lisp data. Each such block is recorded with its start and end
318 address when it is allocated, and removed from the tree when it
319 is freed.
320
321 A red-black tree is a balanced binary tree with the following
322 properties:
323
324 1. Every node is either red or black.
325 2. Every leaf is black.
326 3. If a node is red, then both of its children are black.
327 4. Every simple path from a node to a descendant leaf contains
328 the same number of black nodes.
329 5. The root is always black.
330
331 When nodes are inserted into the tree, or deleted from the tree,
332 the tree is "fixed" so that these properties are always true.
333
334 A red-black tree with N internal nodes has height at most 2
335 log(N+1). Searches, insertions and deletions are done in O(log N).
336 Please see a text book about data structures for a detailed
337 description of red-black trees. Any book worth its salt should
338 describe them. */
339
340 struct mem_node
341 {
342 /* Children of this node. These pointers are never NULL. When there
343 is no child, the value is MEM_NIL, which points to a dummy node. */
344 struct mem_node *left, *right;
345
346 /* The parent of this node. In the root node, this is NULL. */
347 struct mem_node *parent;
348
349 /* Start and end of allocated region. */
350 void *start, *end;
351
352 /* Node color. */
353 enum {MEM_BLACK, MEM_RED} color;
354
355 /* Memory type. */
356 enum mem_type type;
357 };
358
359 /* Base address of stack. Set in main. */
360
361 Lisp_Object *stack_base;
362
363 /* Root of the tree describing allocated Lisp memory. */
364
365 static struct mem_node *mem_root;
366
367 /* Lowest and highest known address in the heap. */
368
369 static void *min_heap_address, *max_heap_address;
370
371 /* Sentinel node of the tree. */
372
373 static struct mem_node mem_z;
374 #define MEM_NIL &mem_z
375
376 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
377 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
378 static void lisp_free P_ ((POINTER_TYPE *));
379 static void mark_stack P_ ((void));
380 static int live_vector_p P_ ((struct mem_node *, void *));
381 static int live_buffer_p P_ ((struct mem_node *, void *));
382 static int live_string_p P_ ((struct mem_node *, void *));
383 static int live_cons_p P_ ((struct mem_node *, void *));
384 static int live_symbol_p P_ ((struct mem_node *, void *));
385 static int live_float_p P_ ((struct mem_node *, void *));
386 static int live_misc_p P_ ((struct mem_node *, void *));
387 static void mark_maybe_object P_ ((Lisp_Object));
388 static void mark_memory P_ ((void *, void *));
389 static void mem_init P_ ((void));
390 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
391 static void mem_insert_fixup P_ ((struct mem_node *));
392 static void mem_rotate_left P_ ((struct mem_node *));
393 static void mem_rotate_right P_ ((struct mem_node *));
394 static void mem_delete P_ ((struct mem_node *));
395 static void mem_delete_fixup P_ ((struct mem_node *));
396 static INLINE struct mem_node *mem_find P_ ((void *));
397
398 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
399 static void check_gcpros P_ ((void));
400 #endif
401
402 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
403
404 /* Recording what needs to be marked for gc. */
405
406 struct gcpro *gcprolist;
407
408 /* Addresses of staticpro'd variables. Initialize it to a nonzero
409 value; otherwise some compilers put it into BSS. */
410
411 #define NSTATICS 1280
412 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
413
414 /* Index of next unused slot in staticvec. */
415
416 int staticidx = 0;
417
418 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
419
420
421 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
422 ALIGNMENT must be a power of 2. */
423
424 #define ALIGN(ptr, ALIGNMENT) \
425 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
426 & ~((ALIGNMENT) - 1)))
427
428
429 \f
430 /************************************************************************
431 Malloc
432 ************************************************************************/
433
434 /* Function malloc calls this if it finds we are near exhausting storage. */
435
436 void
437 malloc_warning (str)
438 char *str;
439 {
440 pending_malloc_warning = str;
441 }
442
443
444 /* Display an already-pending malloc warning. */
445
446 void
447 display_malloc_warning ()
448 {
449 call3 (intern ("display-warning"),
450 intern ("alloc"),
451 build_string (pending_malloc_warning),
452 intern ("emergency"));
453 pending_malloc_warning = 0;
454 }
455
456
457 #ifdef DOUG_LEA_MALLOC
458 # define BYTES_USED (mallinfo ().arena)
459 #else
460 # define BYTES_USED _bytes_used
461 #endif
462
463
464 /* Called if malloc returns zero. */
465
466 void
467 memory_full ()
468 {
469 Vmemory_full = Qt;
470
471 #ifndef SYSTEM_MALLOC
472 bytes_used_when_full = BYTES_USED;
473 #endif
474
475 /* The first time we get here, free the spare memory. */
476 if (spare_memory)
477 {
478 free (spare_memory);
479 spare_memory = 0;
480 }
481
482 /* This used to call error, but if we've run out of memory, we could
483 get infinite recursion trying to build the string. */
484 while (1)
485 Fsignal (Qnil, Vmemory_signal_data);
486 }
487
488
489 /* Called if we can't allocate relocatable space for a buffer. */
490
491 void
492 buffer_memory_full ()
493 {
494 /* If buffers use the relocating allocator, no need to free
495 spare_memory, because we may have plenty of malloc space left
496 that we could get, and if we don't, the malloc that fails will
497 itself cause spare_memory to be freed. If buffers don't use the
498 relocating allocator, treat this like any other failing
499 malloc. */
500
501 #ifndef REL_ALLOC
502 memory_full ();
503 #endif
504
505 Vmemory_full = Qt;
506
507 /* This used to call error, but if we've run out of memory, we could
508 get infinite recursion trying to build the string. */
509 while (1)
510 Fsignal (Qnil, Vmemory_signal_data);
511 }
512
513
514 /* Like malloc but check for no memory and block interrupt input.. */
515
516 POINTER_TYPE *
517 xmalloc (size)
518 size_t size;
519 {
520 register POINTER_TYPE *val;
521
522 BLOCK_INPUT;
523 val = (POINTER_TYPE *) malloc (size);
524 UNBLOCK_INPUT;
525
526 if (!val && size)
527 memory_full ();
528 return val;
529 }
530
531
532 /* Like realloc but check for no memory and block interrupt input.. */
533
534 POINTER_TYPE *
535 xrealloc (block, size)
536 POINTER_TYPE *block;
537 size_t size;
538 {
539 register POINTER_TYPE *val;
540
541 BLOCK_INPUT;
542 /* We must call malloc explicitly when BLOCK is 0, since some
543 reallocs don't do this. */
544 if (! block)
545 val = (POINTER_TYPE *) malloc (size);
546 else
547 val = (POINTER_TYPE *) realloc (block, size);
548 UNBLOCK_INPUT;
549
550 if (!val && size) memory_full ();
551 return val;
552 }
553
554
555 /* Like free but block interrupt input. */
556
557 void
558 xfree (block)
559 POINTER_TYPE *block;
560 {
561 BLOCK_INPUT;
562 free (block);
563 UNBLOCK_INPUT;
564 }
565
566
567 /* Like strdup, but uses xmalloc. */
568
569 char *
570 xstrdup (s)
571 const char *s;
572 {
573 size_t len = strlen (s) + 1;
574 char *p = (char *) xmalloc (len);
575 bcopy (s, p, len);
576 return p;
577 }
578
579
580 /* Like malloc but used for allocating Lisp data. NBYTES is the
581 number of bytes to allocate, TYPE describes the intended use of the
582 allcated memory block (for strings, for conses, ...). */
583
584 static void *lisp_malloc_loser;
585
586 static POINTER_TYPE *
587 lisp_malloc (nbytes, type)
588 size_t nbytes;
589 enum mem_type type;
590 {
591 register void *val;
592
593 BLOCK_INPUT;
594
595 #ifdef GC_MALLOC_CHECK
596 allocated_mem_type = type;
597 #endif
598
599 val = (void *) malloc (nbytes);
600
601 #ifndef USE_LSB_TAG
602 /* If the memory just allocated cannot be addressed thru a Lisp
603 object's pointer, and it needs to be,
604 that's equivalent to running out of memory. */
605 if (val && type != MEM_TYPE_NON_LISP)
606 {
607 Lisp_Object tem;
608 XSETCONS (tem, (char *) val + nbytes - 1);
609 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
610 {
611 lisp_malloc_loser = val;
612 free (val);
613 val = 0;
614 }
615 }
616 #endif
617
618 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
619 if (val && type != MEM_TYPE_NON_LISP)
620 mem_insert (val, (char *) val + nbytes, type);
621 #endif
622
623 UNBLOCK_INPUT;
624 if (!val && nbytes)
625 memory_full ();
626 return val;
627 }
628
629 /* Free BLOCK. This must be called to free memory allocated with a
630 call to lisp_malloc. */
631
632 static void
633 lisp_free (block)
634 POINTER_TYPE *block;
635 {
636 BLOCK_INPUT;
637 free (block);
638 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
639 mem_delete (mem_find (block));
640 #endif
641 UNBLOCK_INPUT;
642 }
643
644 /* Allocation of aligned blocks of memory to store Lisp data. */
645 /* The entry point is lisp_align_malloc which returns blocks of at most */
646 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
647
648
649 /* BLOCK_ALIGN has to be a power of 2. */
650 #define BLOCK_ALIGN (1 << 10)
651
652 /* Padding to leave at the end of a malloc'd block. This is to give
653 malloc a chance to minimize the amount of memory wasted to alignment.
654 It should be tuned to the particular malloc library used.
655 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
656 posix_memalign on the other hand would ideally prefer a value of 4
657 because otherwise, there's 1020 bytes wasted between each ablocks.
658 But testing shows that those 1020 will most of the time be efficiently
659 used by malloc to place other objects, so a value of 0 is still preferable
660 unless you have a lot of cons&floats and virtually nothing else. */
661 #define BLOCK_PADDING 0
662 #define BLOCK_BYTES \
663 (BLOCK_ALIGN - sizeof (struct aligned_block *) - BLOCK_PADDING)
664
665 /* Internal data structures and constants. */
666
667 #define ABLOCKS_SIZE 16
668
669 /* An aligned block of memory. */
670 struct ablock
671 {
672 union
673 {
674 char payload[BLOCK_BYTES];
675 struct ablock *next_free;
676 } x;
677 /* `abase' is the aligned base of the ablocks. */
678 /* It is overloaded to hold the virtual `busy' field that counts
679 the number of used ablock in the parent ablocks.
680 The first ablock has the `busy' field, the others have the `abase'
681 field. To tell the difference, we assume that pointers will have
682 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
683 is used to tell whether the real base of the parent ablocks is `abase'
684 (if not, the word before the first ablock holds a pointer to the
685 real base). */
686 struct ablocks *abase;
687 /* The padding of all but the last ablock is unused. The padding of
688 the last ablock in an ablocks is not allocated. */
689 #if BLOCK_PADDING
690 char padding[BLOCK_PADDING];
691 #endif
692 };
693
694 /* A bunch of consecutive aligned blocks. */
695 struct ablocks
696 {
697 struct ablock blocks[ABLOCKS_SIZE];
698 };
699
700 /* Size of the block requested from malloc or memalign. */
701 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
702
703 #define ABLOCK_ABASE(block) \
704 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
705 ? (struct ablocks *)(block) \
706 : (block)->abase)
707
708 /* Virtual `busy' field. */
709 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
710
711 /* Pointer to the (not necessarily aligned) malloc block. */
712 #ifdef HAVE_POSIX_MEMALIGN
713 #define ABLOCKS_BASE(abase) (abase)
714 #else
715 #define ABLOCKS_BASE(abase) \
716 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
717 #endif
718
719 /* The list of free ablock. */
720 static struct ablock *free_ablock;
721
722 /* Allocate an aligned block of nbytes.
723 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
724 smaller or equal to BLOCK_BYTES. */
725 static POINTER_TYPE *
726 lisp_align_malloc (nbytes, type)
727 size_t nbytes;
728 enum mem_type type;
729 {
730 void *base, *val;
731 struct ablocks *abase;
732
733 eassert (nbytes <= BLOCK_BYTES);
734
735 BLOCK_INPUT;
736
737 #ifdef GC_MALLOC_CHECK
738 allocated_mem_type = type;
739 #endif
740
741 if (!free_ablock)
742 {
743 int i;
744 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
745
746 #ifdef DOUG_LEA_MALLOC
747 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
748 because mapped region contents are not preserved in
749 a dumped Emacs. */
750 mallopt (M_MMAP_MAX, 0);
751 #endif
752
753 #ifdef HAVE_POSIX_MEMALIGN
754 {
755 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
756 abase = err ? (base = NULL) : base;
757 }
758 #else
759 base = malloc (ABLOCKS_BYTES);
760 abase = ALIGN (base, BLOCK_ALIGN);
761 if (base == 0)
762 {
763 UNBLOCK_INPUT;
764 memory_full ();
765 }
766 #endif
767
768 aligned = (base == abase);
769 if (!aligned)
770 ((void**)abase)[-1] = base;
771
772 #ifdef DOUG_LEA_MALLOC
773 /* Back to a reasonable maximum of mmap'ed areas. */
774 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
775 #endif
776
777 #ifndef USE_LSB_TAG
778 /* If the memory just allocated cannot be addressed thru a Lisp
779 object's pointer, and it needs to be, that's equivalent to
780 running out of memory. */
781 if (type != MEM_TYPE_NON_LISP)
782 {
783 Lisp_Object tem;
784 char *end = (char *) base + ABLOCKS_BYTES - 1;
785 XSETCONS (tem, end);
786 if ((char *) XCONS (tem) != end)
787 {
788 lisp_malloc_loser = base;
789 free (base);
790 UNBLOCK_INPUT;
791 memory_full ();
792 }
793 }
794 #endif
795
796 /* Initialize the blocks and put them on the free list.
797 Is `base' was not properly aligned, we can't use the last block. */
798 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
799 {
800 abase->blocks[i].abase = abase;
801 abase->blocks[i].x.next_free = free_ablock;
802 free_ablock = &abase->blocks[i];
803 }
804 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
805
806 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
807 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
808 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
809 eassert (ABLOCKS_BASE (abase) == base);
810 eassert (aligned == (long) ABLOCKS_BUSY (abase));
811 }
812
813 abase = ABLOCK_ABASE (free_ablock);
814 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
815 val = free_ablock;
816 free_ablock = free_ablock->x.next_free;
817
818 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
819 if (val && type != MEM_TYPE_NON_LISP)
820 mem_insert (val, (char *) val + nbytes, type);
821 #endif
822
823 UNBLOCK_INPUT;
824 if (!val && nbytes)
825 memory_full ();
826
827 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
828 return val;
829 }
830
831 static void
832 lisp_align_free (block)
833 POINTER_TYPE *block;
834 {
835 struct ablock *ablock = block;
836 struct ablocks *abase = ABLOCK_ABASE (ablock);
837
838 BLOCK_INPUT;
839 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
840 mem_delete (mem_find (block));
841 #endif
842 /* Put on free list. */
843 ablock->x.next_free = free_ablock;
844 free_ablock = ablock;
845 /* Update busy count. */
846 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
847
848 if (2 > (long) ABLOCKS_BUSY (abase))
849 { /* All the blocks are free. */
850 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
851 struct ablock **tem = &free_ablock;
852 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
853
854 while (*tem)
855 {
856 if (*tem >= (struct ablock *) abase && *tem < atop)
857 {
858 i++;
859 *tem = (*tem)->x.next_free;
860 }
861 else
862 tem = &(*tem)->x.next_free;
863 }
864 eassert ((aligned & 1) == aligned);
865 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
866 free (ABLOCKS_BASE (abase));
867 }
868 UNBLOCK_INPUT;
869 }
870
871 /* Return a new buffer structure allocated from the heap with
872 a call to lisp_malloc. */
873
874 struct buffer *
875 allocate_buffer ()
876 {
877 struct buffer *b
878 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
879 MEM_TYPE_BUFFER);
880 return b;
881 }
882
883 \f
884 /* Arranging to disable input signals while we're in malloc.
885
886 This only works with GNU malloc. To help out systems which can't
887 use GNU malloc, all the calls to malloc, realloc, and free
888 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
889 pairs; unfortunately, we have no idea what C library functions
890 might call malloc, so we can't really protect them unless you're
891 using GNU malloc. Fortunately, most of the major operating systems
892 can use GNU malloc. */
893
894 #ifndef SYSTEM_MALLOC
895 #ifndef DOUG_LEA_MALLOC
896 extern void * (*__malloc_hook) P_ ((size_t));
897 extern void * (*__realloc_hook) P_ ((void *, size_t));
898 extern void (*__free_hook) P_ ((void *));
899 /* Else declared in malloc.h, perhaps with an extra arg. */
900 #endif /* DOUG_LEA_MALLOC */
901 static void * (*old_malloc_hook) ();
902 static void * (*old_realloc_hook) ();
903 static void (*old_free_hook) ();
904
905 /* This function is used as the hook for free to call. */
906
907 static void
908 emacs_blocked_free (ptr)
909 void *ptr;
910 {
911 BLOCK_INPUT;
912
913 #ifdef GC_MALLOC_CHECK
914 if (ptr)
915 {
916 struct mem_node *m;
917
918 m = mem_find (ptr);
919 if (m == MEM_NIL || m->start != ptr)
920 {
921 fprintf (stderr,
922 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
923 abort ();
924 }
925 else
926 {
927 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
928 mem_delete (m);
929 }
930 }
931 #endif /* GC_MALLOC_CHECK */
932
933 __free_hook = old_free_hook;
934 free (ptr);
935
936 /* If we released our reserve (due to running out of memory),
937 and we have a fair amount free once again,
938 try to set aside another reserve in case we run out once more. */
939 if (spare_memory == 0
940 /* Verify there is enough space that even with the malloc
941 hysteresis this call won't run out again.
942 The code here is correct as long as SPARE_MEMORY
943 is substantially larger than the block size malloc uses. */
944 && (bytes_used_when_full
945 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
946 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
947
948 __free_hook = emacs_blocked_free;
949 UNBLOCK_INPUT;
950 }
951
952
953 /* If we released our reserve (due to running out of memory),
954 and we have a fair amount free once again,
955 try to set aside another reserve in case we run out once more.
956
957 This is called when a relocatable block is freed in ralloc.c. */
958
959 void
960 refill_memory_reserve ()
961 {
962 if (spare_memory == 0)
963 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
964 }
965
966
967 /* This function is the malloc hook that Emacs uses. */
968
969 static void *
970 emacs_blocked_malloc (size)
971 size_t size;
972 {
973 void *value;
974
975 BLOCK_INPUT;
976 __malloc_hook = old_malloc_hook;
977 #ifdef DOUG_LEA_MALLOC
978 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
979 #else
980 __malloc_extra_blocks = malloc_hysteresis;
981 #endif
982
983 value = (void *) malloc (size);
984
985 #ifdef GC_MALLOC_CHECK
986 {
987 struct mem_node *m = mem_find (value);
988 if (m != MEM_NIL)
989 {
990 fprintf (stderr, "Malloc returned %p which is already in use\n",
991 value);
992 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
993 m->start, m->end, (char *) m->end - (char *) m->start,
994 m->type);
995 abort ();
996 }
997
998 if (!dont_register_blocks)
999 {
1000 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1001 allocated_mem_type = MEM_TYPE_NON_LISP;
1002 }
1003 }
1004 #endif /* GC_MALLOC_CHECK */
1005
1006 __malloc_hook = emacs_blocked_malloc;
1007 UNBLOCK_INPUT;
1008
1009 /* fprintf (stderr, "%p malloc\n", value); */
1010 return value;
1011 }
1012
1013
1014 /* This function is the realloc hook that Emacs uses. */
1015
1016 static void *
1017 emacs_blocked_realloc (ptr, size)
1018 void *ptr;
1019 size_t size;
1020 {
1021 void *value;
1022
1023 BLOCK_INPUT;
1024 __realloc_hook = old_realloc_hook;
1025
1026 #ifdef GC_MALLOC_CHECK
1027 if (ptr)
1028 {
1029 struct mem_node *m = mem_find (ptr);
1030 if (m == MEM_NIL || m->start != ptr)
1031 {
1032 fprintf (stderr,
1033 "Realloc of %p which wasn't allocated with malloc\n",
1034 ptr);
1035 abort ();
1036 }
1037
1038 mem_delete (m);
1039 }
1040
1041 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1042
1043 /* Prevent malloc from registering blocks. */
1044 dont_register_blocks = 1;
1045 #endif /* GC_MALLOC_CHECK */
1046
1047 value = (void *) realloc (ptr, size);
1048
1049 #ifdef GC_MALLOC_CHECK
1050 dont_register_blocks = 0;
1051
1052 {
1053 struct mem_node *m = mem_find (value);
1054 if (m != MEM_NIL)
1055 {
1056 fprintf (stderr, "Realloc returns memory that is already in use\n");
1057 abort ();
1058 }
1059
1060 /* Can't handle zero size regions in the red-black tree. */
1061 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1062 }
1063
1064 /* fprintf (stderr, "%p <- realloc\n", value); */
1065 #endif /* GC_MALLOC_CHECK */
1066
1067 __realloc_hook = emacs_blocked_realloc;
1068 UNBLOCK_INPUT;
1069
1070 return value;
1071 }
1072
1073
1074 /* Called from main to set up malloc to use our hooks. */
1075
1076 void
1077 uninterrupt_malloc ()
1078 {
1079 if (__free_hook != emacs_blocked_free)
1080 old_free_hook = __free_hook;
1081 __free_hook = emacs_blocked_free;
1082
1083 if (__malloc_hook != emacs_blocked_malloc)
1084 old_malloc_hook = __malloc_hook;
1085 __malloc_hook = emacs_blocked_malloc;
1086
1087 if (__realloc_hook != emacs_blocked_realloc)
1088 old_realloc_hook = __realloc_hook;
1089 __realloc_hook = emacs_blocked_realloc;
1090 }
1091
1092 #endif /* not SYSTEM_MALLOC */
1093
1094
1095 \f
1096 /***********************************************************************
1097 Interval Allocation
1098 ***********************************************************************/
1099
1100 /* Number of intervals allocated in an interval_block structure.
1101 The 1020 is 1024 minus malloc overhead. */
1102
1103 #define INTERVAL_BLOCK_SIZE \
1104 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1105
1106 /* Intervals are allocated in chunks in form of an interval_block
1107 structure. */
1108
1109 struct interval_block
1110 {
1111 /* Place `intervals' first, to preserve alignment. */
1112 struct interval intervals[INTERVAL_BLOCK_SIZE];
1113 struct interval_block *next;
1114 };
1115
1116 /* Current interval block. Its `next' pointer points to older
1117 blocks. */
1118
1119 struct interval_block *interval_block;
1120
1121 /* Index in interval_block above of the next unused interval
1122 structure. */
1123
1124 static int interval_block_index;
1125
1126 /* Number of free and live intervals. */
1127
1128 static int total_free_intervals, total_intervals;
1129
1130 /* List of free intervals. */
1131
1132 INTERVAL interval_free_list;
1133
1134 /* Total number of interval blocks now in use. */
1135
1136 int n_interval_blocks;
1137
1138
1139 /* Initialize interval allocation. */
1140
1141 static void
1142 init_intervals ()
1143 {
1144 interval_block = NULL;
1145 interval_block_index = INTERVAL_BLOCK_SIZE;
1146 interval_free_list = 0;
1147 n_interval_blocks = 0;
1148 }
1149
1150
1151 /* Return a new interval. */
1152
1153 INTERVAL
1154 make_interval ()
1155 {
1156 INTERVAL val;
1157
1158 if (interval_free_list)
1159 {
1160 val = interval_free_list;
1161 interval_free_list = INTERVAL_PARENT (interval_free_list);
1162 }
1163 else
1164 {
1165 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1166 {
1167 register struct interval_block *newi;
1168
1169 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1170 MEM_TYPE_NON_LISP);
1171
1172 newi->next = interval_block;
1173 interval_block = newi;
1174 interval_block_index = 0;
1175 n_interval_blocks++;
1176 }
1177 val = &interval_block->intervals[interval_block_index++];
1178 }
1179 consing_since_gc += sizeof (struct interval);
1180 intervals_consed++;
1181 RESET_INTERVAL (val);
1182 val->gcmarkbit = 0;
1183 return val;
1184 }
1185
1186
1187 /* Mark Lisp objects in interval I. */
1188
1189 static void
1190 mark_interval (i, dummy)
1191 register INTERVAL i;
1192 Lisp_Object dummy;
1193 {
1194 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1195 i->gcmarkbit = 1;
1196 mark_object (i->plist);
1197 }
1198
1199
1200 /* Mark the interval tree rooted in TREE. Don't call this directly;
1201 use the macro MARK_INTERVAL_TREE instead. */
1202
1203 static void
1204 mark_interval_tree (tree)
1205 register INTERVAL tree;
1206 {
1207 /* No need to test if this tree has been marked already; this
1208 function is always called through the MARK_INTERVAL_TREE macro,
1209 which takes care of that. */
1210
1211 traverse_intervals_noorder (tree, mark_interval, Qnil);
1212 }
1213
1214
1215 /* Mark the interval tree rooted in I. */
1216
1217 #define MARK_INTERVAL_TREE(i) \
1218 do { \
1219 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1220 mark_interval_tree (i); \
1221 } while (0)
1222
1223
1224 #define UNMARK_BALANCE_INTERVALS(i) \
1225 do { \
1226 if (! NULL_INTERVAL_P (i)) \
1227 (i) = balance_intervals (i); \
1228 } while (0)
1229
1230 \f
1231 /* Number support. If NO_UNION_TYPE isn't in effect, we
1232 can't create number objects in macros. */
1233 #ifndef make_number
1234 Lisp_Object
1235 make_number (n)
1236 int n;
1237 {
1238 Lisp_Object obj;
1239 obj.s.val = n;
1240 obj.s.type = Lisp_Int;
1241 return obj;
1242 }
1243 #endif
1244 \f
1245 /***********************************************************************
1246 String Allocation
1247 ***********************************************************************/
1248
1249 /* Lisp_Strings are allocated in string_block structures. When a new
1250 string_block is allocated, all the Lisp_Strings it contains are
1251 added to a free-list string_free_list. When a new Lisp_String is
1252 needed, it is taken from that list. During the sweep phase of GC,
1253 string_blocks that are entirely free are freed, except two which
1254 we keep.
1255
1256 String data is allocated from sblock structures. Strings larger
1257 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1258 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1259
1260 Sblocks consist internally of sdata structures, one for each
1261 Lisp_String. The sdata structure points to the Lisp_String it
1262 belongs to. The Lisp_String points back to the `u.data' member of
1263 its sdata structure.
1264
1265 When a Lisp_String is freed during GC, it is put back on
1266 string_free_list, and its `data' member and its sdata's `string'
1267 pointer is set to null. The size of the string is recorded in the
1268 `u.nbytes' member of the sdata. So, sdata structures that are no
1269 longer used, can be easily recognized, and it's easy to compact the
1270 sblocks of small strings which we do in compact_small_strings. */
1271
1272 /* Size in bytes of an sblock structure used for small strings. This
1273 is 8192 minus malloc overhead. */
1274
1275 #define SBLOCK_SIZE 8188
1276
1277 /* Strings larger than this are considered large strings. String data
1278 for large strings is allocated from individual sblocks. */
1279
1280 #define LARGE_STRING_BYTES 1024
1281
1282 /* Structure describing string memory sub-allocated from an sblock.
1283 This is where the contents of Lisp strings are stored. */
1284
1285 struct sdata
1286 {
1287 /* Back-pointer to the string this sdata belongs to. If null, this
1288 structure is free, and the NBYTES member of the union below
1289 contains the string's byte size (the same value that STRING_BYTES
1290 would return if STRING were non-null). If non-null, STRING_BYTES
1291 (STRING) is the size of the data, and DATA contains the string's
1292 contents. */
1293 struct Lisp_String *string;
1294
1295 #ifdef GC_CHECK_STRING_BYTES
1296
1297 EMACS_INT nbytes;
1298 unsigned char data[1];
1299
1300 #define SDATA_NBYTES(S) (S)->nbytes
1301 #define SDATA_DATA(S) (S)->data
1302
1303 #else /* not GC_CHECK_STRING_BYTES */
1304
1305 union
1306 {
1307 /* When STRING in non-null. */
1308 unsigned char data[1];
1309
1310 /* When STRING is null. */
1311 EMACS_INT nbytes;
1312 } u;
1313
1314
1315 #define SDATA_NBYTES(S) (S)->u.nbytes
1316 #define SDATA_DATA(S) (S)->u.data
1317
1318 #endif /* not GC_CHECK_STRING_BYTES */
1319 };
1320
1321
1322 /* Structure describing a block of memory which is sub-allocated to
1323 obtain string data memory for strings. Blocks for small strings
1324 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1325 as large as needed. */
1326
1327 struct sblock
1328 {
1329 /* Next in list. */
1330 struct sblock *next;
1331
1332 /* Pointer to the next free sdata block. This points past the end
1333 of the sblock if there isn't any space left in this block. */
1334 struct sdata *next_free;
1335
1336 /* Start of data. */
1337 struct sdata first_data;
1338 };
1339
1340 /* Number of Lisp strings in a string_block structure. The 1020 is
1341 1024 minus malloc overhead. */
1342
1343 #define STRING_BLOCK_SIZE \
1344 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1345
1346 /* Structure describing a block from which Lisp_String structures
1347 are allocated. */
1348
1349 struct string_block
1350 {
1351 /* Place `strings' first, to preserve alignment. */
1352 struct Lisp_String strings[STRING_BLOCK_SIZE];
1353 struct string_block *next;
1354 };
1355
1356 /* Head and tail of the list of sblock structures holding Lisp string
1357 data. We always allocate from current_sblock. The NEXT pointers
1358 in the sblock structures go from oldest_sblock to current_sblock. */
1359
1360 static struct sblock *oldest_sblock, *current_sblock;
1361
1362 /* List of sblocks for large strings. */
1363
1364 static struct sblock *large_sblocks;
1365
1366 /* List of string_block structures, and how many there are. */
1367
1368 static struct string_block *string_blocks;
1369 static int n_string_blocks;
1370
1371 /* Free-list of Lisp_Strings. */
1372
1373 static struct Lisp_String *string_free_list;
1374
1375 /* Number of live and free Lisp_Strings. */
1376
1377 static int total_strings, total_free_strings;
1378
1379 /* Number of bytes used by live strings. */
1380
1381 static int total_string_size;
1382
1383 /* Given a pointer to a Lisp_String S which is on the free-list
1384 string_free_list, return a pointer to its successor in the
1385 free-list. */
1386
1387 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1388
1389 /* Return a pointer to the sdata structure belonging to Lisp string S.
1390 S must be live, i.e. S->data must not be null. S->data is actually
1391 a pointer to the `u.data' member of its sdata structure; the
1392 structure starts at a constant offset in front of that. */
1393
1394 #ifdef GC_CHECK_STRING_BYTES
1395
1396 #define SDATA_OF_STRING(S) \
1397 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1398 - sizeof (EMACS_INT)))
1399
1400 #else /* not GC_CHECK_STRING_BYTES */
1401
1402 #define SDATA_OF_STRING(S) \
1403 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1404
1405 #endif /* not GC_CHECK_STRING_BYTES */
1406
1407 /* Value is the size of an sdata structure large enough to hold NBYTES
1408 bytes of string data. The value returned includes a terminating
1409 NUL byte, the size of the sdata structure, and padding. */
1410
1411 #ifdef GC_CHECK_STRING_BYTES
1412
1413 #define SDATA_SIZE(NBYTES) \
1414 ((sizeof (struct Lisp_String *) \
1415 + (NBYTES) + 1 \
1416 + sizeof (EMACS_INT) \
1417 + sizeof (EMACS_INT) - 1) \
1418 & ~(sizeof (EMACS_INT) - 1))
1419
1420 #else /* not GC_CHECK_STRING_BYTES */
1421
1422 #define SDATA_SIZE(NBYTES) \
1423 ((sizeof (struct Lisp_String *) \
1424 + (NBYTES) + 1 \
1425 + sizeof (EMACS_INT) - 1) \
1426 & ~(sizeof (EMACS_INT) - 1))
1427
1428 #endif /* not GC_CHECK_STRING_BYTES */
1429
1430 /* Initialize string allocation. Called from init_alloc_once. */
1431
1432 void
1433 init_strings ()
1434 {
1435 total_strings = total_free_strings = total_string_size = 0;
1436 oldest_sblock = current_sblock = large_sblocks = NULL;
1437 string_blocks = NULL;
1438 n_string_blocks = 0;
1439 string_free_list = NULL;
1440 }
1441
1442
1443 #ifdef GC_CHECK_STRING_BYTES
1444
1445 static int check_string_bytes_count;
1446
1447 void check_string_bytes P_ ((int));
1448 void check_sblock P_ ((struct sblock *));
1449
1450 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1451
1452
1453 /* Like GC_STRING_BYTES, but with debugging check. */
1454
1455 int
1456 string_bytes (s)
1457 struct Lisp_String *s;
1458 {
1459 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1460 if (!PURE_POINTER_P (s)
1461 && s->data
1462 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1463 abort ();
1464 return nbytes;
1465 }
1466
1467 /* Check validity of Lisp strings' string_bytes member in B. */
1468
1469 void
1470 check_sblock (b)
1471 struct sblock *b;
1472 {
1473 struct sdata *from, *end, *from_end;
1474
1475 end = b->next_free;
1476
1477 for (from = &b->first_data; from < end; from = from_end)
1478 {
1479 /* Compute the next FROM here because copying below may
1480 overwrite data we need to compute it. */
1481 int nbytes;
1482
1483 /* Check that the string size recorded in the string is the
1484 same as the one recorded in the sdata structure. */
1485 if (from->string)
1486 CHECK_STRING_BYTES (from->string);
1487
1488 if (from->string)
1489 nbytes = GC_STRING_BYTES (from->string);
1490 else
1491 nbytes = SDATA_NBYTES (from);
1492
1493 nbytes = SDATA_SIZE (nbytes);
1494 from_end = (struct sdata *) ((char *) from + nbytes);
1495 }
1496 }
1497
1498
1499 /* Check validity of Lisp strings' string_bytes member. ALL_P
1500 non-zero means check all strings, otherwise check only most
1501 recently allocated strings. Used for hunting a bug. */
1502
1503 void
1504 check_string_bytes (all_p)
1505 int all_p;
1506 {
1507 if (all_p)
1508 {
1509 struct sblock *b;
1510
1511 for (b = large_sblocks; b; b = b->next)
1512 {
1513 struct Lisp_String *s = b->first_data.string;
1514 if (s)
1515 CHECK_STRING_BYTES (s);
1516 }
1517
1518 for (b = oldest_sblock; b; b = b->next)
1519 check_sblock (b);
1520 }
1521 else
1522 check_sblock (current_sblock);
1523 }
1524
1525 #endif /* GC_CHECK_STRING_BYTES */
1526
1527
1528 /* Return a new Lisp_String. */
1529
1530 static struct Lisp_String *
1531 allocate_string ()
1532 {
1533 struct Lisp_String *s;
1534
1535 /* If the free-list is empty, allocate a new string_block, and
1536 add all the Lisp_Strings in it to the free-list. */
1537 if (string_free_list == NULL)
1538 {
1539 struct string_block *b;
1540 int i;
1541
1542 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1543 bzero (b, sizeof *b);
1544 b->next = string_blocks;
1545 string_blocks = b;
1546 ++n_string_blocks;
1547
1548 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1549 {
1550 s = b->strings + i;
1551 NEXT_FREE_LISP_STRING (s) = string_free_list;
1552 string_free_list = s;
1553 }
1554
1555 total_free_strings += STRING_BLOCK_SIZE;
1556 }
1557
1558 /* Pop a Lisp_String off the free-list. */
1559 s = string_free_list;
1560 string_free_list = NEXT_FREE_LISP_STRING (s);
1561
1562 /* Probably not strictly necessary, but play it safe. */
1563 bzero (s, sizeof *s);
1564
1565 --total_free_strings;
1566 ++total_strings;
1567 ++strings_consed;
1568 consing_since_gc += sizeof *s;
1569
1570 #ifdef GC_CHECK_STRING_BYTES
1571 if (!noninteractive
1572 #ifdef MAC_OS8
1573 && current_sblock
1574 #endif
1575 )
1576 {
1577 if (++check_string_bytes_count == 200)
1578 {
1579 check_string_bytes_count = 0;
1580 check_string_bytes (1);
1581 }
1582 else
1583 check_string_bytes (0);
1584 }
1585 #endif /* GC_CHECK_STRING_BYTES */
1586
1587 return s;
1588 }
1589
1590
1591 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1592 plus a NUL byte at the end. Allocate an sdata structure for S, and
1593 set S->data to its `u.data' member. Store a NUL byte at the end of
1594 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1595 S->data if it was initially non-null. */
1596
1597 void
1598 allocate_string_data (s, nchars, nbytes)
1599 struct Lisp_String *s;
1600 int nchars, nbytes;
1601 {
1602 struct sdata *data, *old_data;
1603 struct sblock *b;
1604 int needed, old_nbytes;
1605
1606 /* Determine the number of bytes needed to store NBYTES bytes
1607 of string data. */
1608 needed = SDATA_SIZE (nbytes);
1609
1610 if (nbytes > LARGE_STRING_BYTES)
1611 {
1612 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1613
1614 #ifdef DOUG_LEA_MALLOC
1615 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1616 because mapped region contents are not preserved in
1617 a dumped Emacs.
1618
1619 In case you think of allowing it in a dumped Emacs at the
1620 cost of not being able to re-dump, there's another reason:
1621 mmap'ed data typically have an address towards the top of the
1622 address space, which won't fit into an EMACS_INT (at least on
1623 32-bit systems with the current tagging scheme). --fx */
1624 mallopt (M_MMAP_MAX, 0);
1625 #endif
1626
1627 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
1628
1629 #ifdef DOUG_LEA_MALLOC
1630 /* Back to a reasonable maximum of mmap'ed areas. */
1631 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1632 #endif
1633
1634 b->next_free = &b->first_data;
1635 b->first_data.string = NULL;
1636 b->next = large_sblocks;
1637 large_sblocks = b;
1638 }
1639 else if (current_sblock == NULL
1640 || (((char *) current_sblock + SBLOCK_SIZE
1641 - (char *) current_sblock->next_free)
1642 < needed))
1643 {
1644 /* Not enough room in the current sblock. */
1645 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1646 b->next_free = &b->first_data;
1647 b->first_data.string = NULL;
1648 b->next = NULL;
1649
1650 if (current_sblock)
1651 current_sblock->next = b;
1652 else
1653 oldest_sblock = b;
1654 current_sblock = b;
1655 }
1656 else
1657 b = current_sblock;
1658
1659 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1660 old_nbytes = GC_STRING_BYTES (s);
1661
1662 data = b->next_free;
1663 data->string = s;
1664 s->data = SDATA_DATA (data);
1665 #ifdef GC_CHECK_STRING_BYTES
1666 SDATA_NBYTES (data) = nbytes;
1667 #endif
1668 s->size = nchars;
1669 s->size_byte = nbytes;
1670 s->data[nbytes] = '\0';
1671 b->next_free = (struct sdata *) ((char *) data + needed);
1672
1673 /* If S had already data assigned, mark that as free by setting its
1674 string back-pointer to null, and recording the size of the data
1675 in it. */
1676 if (old_data)
1677 {
1678 SDATA_NBYTES (old_data) = old_nbytes;
1679 old_data->string = NULL;
1680 }
1681
1682 consing_since_gc += needed;
1683 }
1684
1685
1686 /* Sweep and compact strings. */
1687
1688 static void
1689 sweep_strings ()
1690 {
1691 struct string_block *b, *next;
1692 struct string_block *live_blocks = NULL;
1693
1694 string_free_list = NULL;
1695 total_strings = total_free_strings = 0;
1696 total_string_size = 0;
1697
1698 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1699 for (b = string_blocks; b; b = next)
1700 {
1701 int i, nfree = 0;
1702 struct Lisp_String *free_list_before = string_free_list;
1703
1704 next = b->next;
1705
1706 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1707 {
1708 struct Lisp_String *s = b->strings + i;
1709
1710 if (s->data)
1711 {
1712 /* String was not on free-list before. */
1713 if (STRING_MARKED_P (s))
1714 {
1715 /* String is live; unmark it and its intervals. */
1716 UNMARK_STRING (s);
1717
1718 if (!NULL_INTERVAL_P (s->intervals))
1719 UNMARK_BALANCE_INTERVALS (s->intervals);
1720
1721 ++total_strings;
1722 total_string_size += STRING_BYTES (s);
1723 }
1724 else
1725 {
1726 /* String is dead. Put it on the free-list. */
1727 struct sdata *data = SDATA_OF_STRING (s);
1728
1729 /* Save the size of S in its sdata so that we know
1730 how large that is. Reset the sdata's string
1731 back-pointer so that we know it's free. */
1732 #ifdef GC_CHECK_STRING_BYTES
1733 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1734 abort ();
1735 #else
1736 data->u.nbytes = GC_STRING_BYTES (s);
1737 #endif
1738 data->string = NULL;
1739
1740 /* Reset the strings's `data' member so that we
1741 know it's free. */
1742 s->data = NULL;
1743
1744 /* Put the string on the free-list. */
1745 NEXT_FREE_LISP_STRING (s) = string_free_list;
1746 string_free_list = s;
1747 ++nfree;
1748 }
1749 }
1750 else
1751 {
1752 /* S was on the free-list before. Put it there again. */
1753 NEXT_FREE_LISP_STRING (s) = string_free_list;
1754 string_free_list = s;
1755 ++nfree;
1756 }
1757 }
1758
1759 /* Free blocks that contain free Lisp_Strings only, except
1760 the first two of them. */
1761 if (nfree == STRING_BLOCK_SIZE
1762 && total_free_strings > STRING_BLOCK_SIZE)
1763 {
1764 lisp_free (b);
1765 --n_string_blocks;
1766 string_free_list = free_list_before;
1767 }
1768 else
1769 {
1770 total_free_strings += nfree;
1771 b->next = live_blocks;
1772 live_blocks = b;
1773 }
1774 }
1775
1776 string_blocks = live_blocks;
1777 free_large_strings ();
1778 compact_small_strings ();
1779 }
1780
1781
1782 /* Free dead large strings. */
1783
1784 static void
1785 free_large_strings ()
1786 {
1787 struct sblock *b, *next;
1788 struct sblock *live_blocks = NULL;
1789
1790 for (b = large_sblocks; b; b = next)
1791 {
1792 next = b->next;
1793
1794 if (b->first_data.string == NULL)
1795 lisp_free (b);
1796 else
1797 {
1798 b->next = live_blocks;
1799 live_blocks = b;
1800 }
1801 }
1802
1803 large_sblocks = live_blocks;
1804 }
1805
1806
1807 /* Compact data of small strings. Free sblocks that don't contain
1808 data of live strings after compaction. */
1809
1810 static void
1811 compact_small_strings ()
1812 {
1813 struct sblock *b, *tb, *next;
1814 struct sdata *from, *to, *end, *tb_end;
1815 struct sdata *to_end, *from_end;
1816
1817 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1818 to, and TB_END is the end of TB. */
1819 tb = oldest_sblock;
1820 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1821 to = &tb->first_data;
1822
1823 /* Step through the blocks from the oldest to the youngest. We
1824 expect that old blocks will stabilize over time, so that less
1825 copying will happen this way. */
1826 for (b = oldest_sblock; b; b = b->next)
1827 {
1828 end = b->next_free;
1829 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1830
1831 for (from = &b->first_data; from < end; from = from_end)
1832 {
1833 /* Compute the next FROM here because copying below may
1834 overwrite data we need to compute it. */
1835 int nbytes;
1836
1837 #ifdef GC_CHECK_STRING_BYTES
1838 /* Check that the string size recorded in the string is the
1839 same as the one recorded in the sdata structure. */
1840 if (from->string
1841 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
1842 abort ();
1843 #endif /* GC_CHECK_STRING_BYTES */
1844
1845 if (from->string)
1846 nbytes = GC_STRING_BYTES (from->string);
1847 else
1848 nbytes = SDATA_NBYTES (from);
1849
1850 nbytes = SDATA_SIZE (nbytes);
1851 from_end = (struct sdata *) ((char *) from + nbytes);
1852
1853 /* FROM->string non-null means it's alive. Copy its data. */
1854 if (from->string)
1855 {
1856 /* If TB is full, proceed with the next sblock. */
1857 to_end = (struct sdata *) ((char *) to + nbytes);
1858 if (to_end > tb_end)
1859 {
1860 tb->next_free = to;
1861 tb = tb->next;
1862 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1863 to = &tb->first_data;
1864 to_end = (struct sdata *) ((char *) to + nbytes);
1865 }
1866
1867 /* Copy, and update the string's `data' pointer. */
1868 if (from != to)
1869 {
1870 xassert (tb != b || to <= from);
1871 safe_bcopy ((char *) from, (char *) to, nbytes);
1872 to->string->data = SDATA_DATA (to);
1873 }
1874
1875 /* Advance past the sdata we copied to. */
1876 to = to_end;
1877 }
1878 }
1879 }
1880
1881 /* The rest of the sblocks following TB don't contain live data, so
1882 we can free them. */
1883 for (b = tb->next; b; b = next)
1884 {
1885 next = b->next;
1886 lisp_free (b);
1887 }
1888
1889 tb->next_free = to;
1890 tb->next = NULL;
1891 current_sblock = tb;
1892 }
1893
1894
1895 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1896 doc: /* Return a newly created string of length LENGTH, with each element being INIT.
1897 Both LENGTH and INIT must be numbers. */)
1898 (length, init)
1899 Lisp_Object length, init;
1900 {
1901 register Lisp_Object val;
1902 register unsigned char *p, *end;
1903 int c, nbytes;
1904
1905 CHECK_NATNUM (length);
1906 CHECK_NUMBER (init);
1907
1908 c = XINT (init);
1909 if (SINGLE_BYTE_CHAR_P (c))
1910 {
1911 nbytes = XINT (length);
1912 val = make_uninit_string (nbytes);
1913 p = SDATA (val);
1914 end = p + SCHARS (val);
1915 while (p != end)
1916 *p++ = c;
1917 }
1918 else
1919 {
1920 unsigned char str[MAX_MULTIBYTE_LENGTH];
1921 int len = CHAR_STRING (c, str);
1922
1923 nbytes = len * XINT (length);
1924 val = make_uninit_multibyte_string (XINT (length), nbytes);
1925 p = SDATA (val);
1926 end = p + nbytes;
1927 while (p != end)
1928 {
1929 bcopy (str, p, len);
1930 p += len;
1931 }
1932 }
1933
1934 *p = 0;
1935 return val;
1936 }
1937
1938
1939 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
1940 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
1941 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1942 (length, init)
1943 Lisp_Object length, init;
1944 {
1945 register Lisp_Object val;
1946 struct Lisp_Bool_Vector *p;
1947 int real_init, i;
1948 int length_in_chars, length_in_elts, bits_per_value;
1949
1950 CHECK_NATNUM (length);
1951
1952 bits_per_value = sizeof (EMACS_INT) * BITS_PER_CHAR;
1953
1954 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1955 length_in_chars = ((XFASTINT (length) + BITS_PER_CHAR - 1) / BITS_PER_CHAR);
1956
1957 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1958 slot `size' of the struct Lisp_Bool_Vector. */
1959 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1960 p = XBOOL_VECTOR (val);
1961
1962 /* Get rid of any bits that would cause confusion. */
1963 p->vector_size = 0;
1964 XSETBOOL_VECTOR (val, p);
1965 p->size = XFASTINT (length);
1966
1967 real_init = (NILP (init) ? 0 : -1);
1968 for (i = 0; i < length_in_chars ; i++)
1969 p->data[i] = real_init;
1970
1971 /* Clear the extraneous bits in the last byte. */
1972 if (XINT (length) != length_in_chars * BITS_PER_CHAR)
1973 XBOOL_VECTOR (val)->data[length_in_chars - 1]
1974 &= (1 << (XINT (length) % BITS_PER_CHAR)) - 1;
1975
1976 return val;
1977 }
1978
1979
1980 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
1981 of characters from the contents. This string may be unibyte or
1982 multibyte, depending on the contents. */
1983
1984 Lisp_Object
1985 make_string (contents, nbytes)
1986 const char *contents;
1987 int nbytes;
1988 {
1989 register Lisp_Object val;
1990 int nchars, multibyte_nbytes;
1991
1992 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
1993 if (nbytes == nchars || nbytes != multibyte_nbytes)
1994 /* CONTENTS contains no multibyte sequences or contains an invalid
1995 multibyte sequence. We must make unibyte string. */
1996 val = make_unibyte_string (contents, nbytes);
1997 else
1998 val = make_multibyte_string (contents, nchars, nbytes);
1999 return val;
2000 }
2001
2002
2003 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2004
2005 Lisp_Object
2006 make_unibyte_string (contents, length)
2007 const char *contents;
2008 int length;
2009 {
2010 register Lisp_Object val;
2011 val = make_uninit_string (length);
2012 bcopy (contents, SDATA (val), length);
2013 STRING_SET_UNIBYTE (val);
2014 return val;
2015 }
2016
2017
2018 /* Make a multibyte string from NCHARS characters occupying NBYTES
2019 bytes at CONTENTS. */
2020
2021 Lisp_Object
2022 make_multibyte_string (contents, nchars, nbytes)
2023 const char *contents;
2024 int nchars, nbytes;
2025 {
2026 register Lisp_Object val;
2027 val = make_uninit_multibyte_string (nchars, nbytes);
2028 bcopy (contents, SDATA (val), nbytes);
2029 return val;
2030 }
2031
2032
2033 /* Make a string from NCHARS characters occupying NBYTES bytes at
2034 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2035
2036 Lisp_Object
2037 make_string_from_bytes (contents, nchars, nbytes)
2038 const char *contents;
2039 int nchars, nbytes;
2040 {
2041 register Lisp_Object val;
2042 val = make_uninit_multibyte_string (nchars, nbytes);
2043 bcopy (contents, SDATA (val), nbytes);
2044 if (SBYTES (val) == SCHARS (val))
2045 STRING_SET_UNIBYTE (val);
2046 return val;
2047 }
2048
2049
2050 /* Make a string from NCHARS characters occupying NBYTES bytes at
2051 CONTENTS. The argument MULTIBYTE controls whether to label the
2052 string as multibyte. If NCHARS is negative, it counts the number of
2053 characters by itself. */
2054
2055 Lisp_Object
2056 make_specified_string (contents, nchars, nbytes, multibyte)
2057 const char *contents;
2058 int nchars, nbytes;
2059 int multibyte;
2060 {
2061 register Lisp_Object val;
2062
2063 if (nchars < 0)
2064 {
2065 if (multibyte)
2066 nchars = multibyte_chars_in_text (contents, nbytes);
2067 else
2068 nchars = nbytes;
2069 }
2070 val = make_uninit_multibyte_string (nchars, nbytes);
2071 bcopy (contents, SDATA (val), nbytes);
2072 if (!multibyte)
2073 STRING_SET_UNIBYTE (val);
2074 return val;
2075 }
2076
2077
2078 /* Make a string from the data at STR, treating it as multibyte if the
2079 data warrants. */
2080
2081 Lisp_Object
2082 build_string (str)
2083 const char *str;
2084 {
2085 return make_string (str, strlen (str));
2086 }
2087
2088
2089 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2090 occupying LENGTH bytes. */
2091
2092 Lisp_Object
2093 make_uninit_string (length)
2094 int length;
2095 {
2096 Lisp_Object val;
2097 val = make_uninit_multibyte_string (length, length);
2098 STRING_SET_UNIBYTE (val);
2099 return val;
2100 }
2101
2102
2103 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2104 which occupy NBYTES bytes. */
2105
2106 Lisp_Object
2107 make_uninit_multibyte_string (nchars, nbytes)
2108 int nchars, nbytes;
2109 {
2110 Lisp_Object string;
2111 struct Lisp_String *s;
2112
2113 if (nchars < 0)
2114 abort ();
2115
2116 s = allocate_string ();
2117 allocate_string_data (s, nchars, nbytes);
2118 XSETSTRING (string, s);
2119 string_chars_consed += nbytes;
2120 return string;
2121 }
2122
2123
2124 \f
2125 /***********************************************************************
2126 Float Allocation
2127 ***********************************************************************/
2128
2129 /* We store float cells inside of float_blocks, allocating a new
2130 float_block with malloc whenever necessary. Float cells reclaimed
2131 by GC are put on a free list to be reallocated before allocating
2132 any new float cells from the latest float_block. */
2133
2134 #define FLOAT_BLOCK_SIZE \
2135 (((BLOCK_BYTES - sizeof (struct float_block *) \
2136 /* The compiler might add padding at the end. */ \
2137 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2138 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2139
2140 #define GETMARKBIT(block,n) \
2141 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2142 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2143 & 1)
2144
2145 #define SETMARKBIT(block,n) \
2146 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2147 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2148
2149 #define UNSETMARKBIT(block,n) \
2150 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2151 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2152
2153 #define FLOAT_BLOCK(fptr) \
2154 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2155
2156 #define FLOAT_INDEX(fptr) \
2157 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2158
2159 struct float_block
2160 {
2161 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2162 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2163 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2164 struct float_block *next;
2165 };
2166
2167 #define FLOAT_MARKED_P(fptr) \
2168 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2169
2170 #define FLOAT_MARK(fptr) \
2171 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2172
2173 #define FLOAT_UNMARK(fptr) \
2174 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2175
2176 /* Current float_block. */
2177
2178 struct float_block *float_block;
2179
2180 /* Index of first unused Lisp_Float in the current float_block. */
2181
2182 int float_block_index;
2183
2184 /* Total number of float blocks now in use. */
2185
2186 int n_float_blocks;
2187
2188 /* Free-list of Lisp_Floats. */
2189
2190 struct Lisp_Float *float_free_list;
2191
2192
2193 /* Initialize float allocation. */
2194
2195 void
2196 init_float ()
2197 {
2198 float_block = NULL;
2199 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2200 float_free_list = 0;
2201 n_float_blocks = 0;
2202 }
2203
2204
2205 /* Explicitly free a float cell by putting it on the free-list. */
2206
2207 void
2208 free_float (ptr)
2209 struct Lisp_Float *ptr;
2210 {
2211 *(struct Lisp_Float **)&ptr->data = float_free_list;
2212 float_free_list = ptr;
2213 }
2214
2215
2216 /* Return a new float object with value FLOAT_VALUE. */
2217
2218 Lisp_Object
2219 make_float (float_value)
2220 double float_value;
2221 {
2222 register Lisp_Object val;
2223
2224 if (float_free_list)
2225 {
2226 /* We use the data field for chaining the free list
2227 so that we won't use the same field that has the mark bit. */
2228 XSETFLOAT (val, float_free_list);
2229 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2230 }
2231 else
2232 {
2233 if (float_block_index == FLOAT_BLOCK_SIZE)
2234 {
2235 register struct float_block *new;
2236
2237 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2238 MEM_TYPE_FLOAT);
2239 new->next = float_block;
2240 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2241 float_block = new;
2242 float_block_index = 0;
2243 n_float_blocks++;
2244 }
2245 XSETFLOAT (val, &float_block->floats[float_block_index]);
2246 float_block_index++;
2247 }
2248
2249 XFLOAT_DATA (val) = float_value;
2250 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2251 consing_since_gc += sizeof (struct Lisp_Float);
2252 floats_consed++;
2253 return val;
2254 }
2255
2256
2257 \f
2258 /***********************************************************************
2259 Cons Allocation
2260 ***********************************************************************/
2261
2262 /* We store cons cells inside of cons_blocks, allocating a new
2263 cons_block with malloc whenever necessary. Cons cells reclaimed by
2264 GC are put on a free list to be reallocated before allocating
2265 any new cons cells from the latest cons_block. */
2266
2267 #define CONS_BLOCK_SIZE \
2268 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2269 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2270
2271 #define CONS_BLOCK(fptr) \
2272 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2273
2274 #define CONS_INDEX(fptr) \
2275 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2276
2277 struct cons_block
2278 {
2279 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2280 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2281 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2282 struct cons_block *next;
2283 };
2284
2285 #define CONS_MARKED_P(fptr) \
2286 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2287
2288 #define CONS_MARK(fptr) \
2289 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2290
2291 #define CONS_UNMARK(fptr) \
2292 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2293
2294 /* Current cons_block. */
2295
2296 struct cons_block *cons_block;
2297
2298 /* Index of first unused Lisp_Cons in the current block. */
2299
2300 int cons_block_index;
2301
2302 /* Free-list of Lisp_Cons structures. */
2303
2304 struct Lisp_Cons *cons_free_list;
2305
2306 /* Total number of cons blocks now in use. */
2307
2308 int n_cons_blocks;
2309
2310
2311 /* Initialize cons allocation. */
2312
2313 void
2314 init_cons ()
2315 {
2316 cons_block = NULL;
2317 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2318 cons_free_list = 0;
2319 n_cons_blocks = 0;
2320 }
2321
2322
2323 /* Explicitly free a cons cell by putting it on the free-list. */
2324
2325 void
2326 free_cons (ptr)
2327 struct Lisp_Cons *ptr;
2328 {
2329 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2330 #if GC_MARK_STACK
2331 ptr->car = Vdead;
2332 #endif
2333 cons_free_list = ptr;
2334 }
2335
2336
2337 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2338 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2339 (car, cdr)
2340 Lisp_Object car, cdr;
2341 {
2342 register Lisp_Object val;
2343
2344 if (cons_free_list)
2345 {
2346 /* We use the cdr for chaining the free list
2347 so that we won't use the same field that has the mark bit. */
2348 XSETCONS (val, cons_free_list);
2349 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2350 }
2351 else
2352 {
2353 if (cons_block_index == CONS_BLOCK_SIZE)
2354 {
2355 register struct cons_block *new;
2356 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2357 MEM_TYPE_CONS);
2358 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2359 new->next = cons_block;
2360 cons_block = new;
2361 cons_block_index = 0;
2362 n_cons_blocks++;
2363 }
2364 XSETCONS (val, &cons_block->conses[cons_block_index]);
2365 cons_block_index++;
2366 }
2367
2368 XSETCAR (val, car);
2369 XSETCDR (val, cdr);
2370 eassert (!CONS_MARKED_P (XCONS (val)));
2371 consing_since_gc += sizeof (struct Lisp_Cons);
2372 cons_cells_consed++;
2373 return val;
2374 }
2375
2376
2377 /* Make a list of 2, 3, 4 or 5 specified objects. */
2378
2379 Lisp_Object
2380 list2 (arg1, arg2)
2381 Lisp_Object arg1, arg2;
2382 {
2383 return Fcons (arg1, Fcons (arg2, Qnil));
2384 }
2385
2386
2387 Lisp_Object
2388 list3 (arg1, arg2, arg3)
2389 Lisp_Object arg1, arg2, arg3;
2390 {
2391 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2392 }
2393
2394
2395 Lisp_Object
2396 list4 (arg1, arg2, arg3, arg4)
2397 Lisp_Object arg1, arg2, arg3, arg4;
2398 {
2399 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2400 }
2401
2402
2403 Lisp_Object
2404 list5 (arg1, arg2, arg3, arg4, arg5)
2405 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2406 {
2407 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2408 Fcons (arg5, Qnil)))));
2409 }
2410
2411
2412 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2413 doc: /* Return a newly created list with specified arguments as elements.
2414 Any number of arguments, even zero arguments, are allowed.
2415 usage: (list &rest OBJECTS) */)
2416 (nargs, args)
2417 int nargs;
2418 register Lisp_Object *args;
2419 {
2420 register Lisp_Object val;
2421 val = Qnil;
2422
2423 while (nargs > 0)
2424 {
2425 nargs--;
2426 val = Fcons (args[nargs], val);
2427 }
2428 return val;
2429 }
2430
2431
2432 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2433 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2434 (length, init)
2435 register Lisp_Object length, init;
2436 {
2437 register Lisp_Object val;
2438 register int size;
2439
2440 CHECK_NATNUM (length);
2441 size = XFASTINT (length);
2442
2443 val = Qnil;
2444 while (size > 0)
2445 {
2446 val = Fcons (init, val);
2447 --size;
2448
2449 if (size > 0)
2450 {
2451 val = Fcons (init, val);
2452 --size;
2453
2454 if (size > 0)
2455 {
2456 val = Fcons (init, val);
2457 --size;
2458
2459 if (size > 0)
2460 {
2461 val = Fcons (init, val);
2462 --size;
2463
2464 if (size > 0)
2465 {
2466 val = Fcons (init, val);
2467 --size;
2468 }
2469 }
2470 }
2471 }
2472
2473 QUIT;
2474 }
2475
2476 return val;
2477 }
2478
2479
2480 \f
2481 /***********************************************************************
2482 Vector Allocation
2483 ***********************************************************************/
2484
2485 /* Singly-linked list of all vectors. */
2486
2487 struct Lisp_Vector *all_vectors;
2488
2489 /* Total number of vector-like objects now in use. */
2490
2491 int n_vectors;
2492
2493
2494 /* Value is a pointer to a newly allocated Lisp_Vector structure
2495 with room for LEN Lisp_Objects. */
2496
2497 static struct Lisp_Vector *
2498 allocate_vectorlike (len, type)
2499 EMACS_INT len;
2500 enum mem_type type;
2501 {
2502 struct Lisp_Vector *p;
2503 size_t nbytes;
2504
2505 #ifdef DOUG_LEA_MALLOC
2506 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2507 because mapped region contents are not preserved in
2508 a dumped Emacs. */
2509 BLOCK_INPUT;
2510 mallopt (M_MMAP_MAX, 0);
2511 UNBLOCK_INPUT;
2512 #endif
2513
2514 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2515 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2516
2517 #ifdef DOUG_LEA_MALLOC
2518 /* Back to a reasonable maximum of mmap'ed areas. */
2519 BLOCK_INPUT;
2520 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2521 UNBLOCK_INPUT;
2522 #endif
2523
2524 consing_since_gc += nbytes;
2525 vector_cells_consed += len;
2526
2527 p->next = all_vectors;
2528 all_vectors = p;
2529 ++n_vectors;
2530 return p;
2531 }
2532
2533
2534 /* Allocate a vector with NSLOTS slots. */
2535
2536 struct Lisp_Vector *
2537 allocate_vector (nslots)
2538 EMACS_INT nslots;
2539 {
2540 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2541 v->size = nslots;
2542 return v;
2543 }
2544
2545
2546 /* Allocate other vector-like structures. */
2547
2548 struct Lisp_Hash_Table *
2549 allocate_hash_table ()
2550 {
2551 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2552 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2553 EMACS_INT i;
2554
2555 v->size = len;
2556 for (i = 0; i < len; ++i)
2557 v->contents[i] = Qnil;
2558
2559 return (struct Lisp_Hash_Table *) v;
2560 }
2561
2562
2563 struct window *
2564 allocate_window ()
2565 {
2566 EMACS_INT len = VECSIZE (struct window);
2567 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2568 EMACS_INT i;
2569
2570 for (i = 0; i < len; ++i)
2571 v->contents[i] = Qnil;
2572 v->size = len;
2573
2574 return (struct window *) v;
2575 }
2576
2577
2578 struct frame *
2579 allocate_frame ()
2580 {
2581 EMACS_INT len = VECSIZE (struct frame);
2582 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2583 EMACS_INT i;
2584
2585 for (i = 0; i < len; ++i)
2586 v->contents[i] = make_number (0);
2587 v->size = len;
2588 return (struct frame *) v;
2589 }
2590
2591
2592 struct Lisp_Process *
2593 allocate_process ()
2594 {
2595 EMACS_INT len = VECSIZE (struct Lisp_Process);
2596 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2597 EMACS_INT i;
2598
2599 for (i = 0; i < len; ++i)
2600 v->contents[i] = Qnil;
2601 v->size = len;
2602
2603 return (struct Lisp_Process *) v;
2604 }
2605
2606
2607 struct Lisp_Vector *
2608 allocate_other_vector (len)
2609 EMACS_INT len;
2610 {
2611 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2612 EMACS_INT i;
2613
2614 for (i = 0; i < len; ++i)
2615 v->contents[i] = Qnil;
2616 v->size = len;
2617
2618 return v;
2619 }
2620
2621
2622 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2623 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2624 See also the function `vector'. */)
2625 (length, init)
2626 register Lisp_Object length, init;
2627 {
2628 Lisp_Object vector;
2629 register EMACS_INT sizei;
2630 register int index;
2631 register struct Lisp_Vector *p;
2632
2633 CHECK_NATNUM (length);
2634 sizei = XFASTINT (length);
2635
2636 p = allocate_vector (sizei);
2637 for (index = 0; index < sizei; index++)
2638 p->contents[index] = init;
2639
2640 XSETVECTOR (vector, p);
2641 return vector;
2642 }
2643
2644
2645 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
2646 doc: /* Return a newly created char-table, with purpose PURPOSE.
2647 Each element is initialized to INIT, which defaults to nil.
2648 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
2649 The property's value should be an integer between 0 and 10. */)
2650 (purpose, init)
2651 register Lisp_Object purpose, init;
2652 {
2653 Lisp_Object vector;
2654 Lisp_Object n;
2655 CHECK_SYMBOL (purpose);
2656 n = Fget (purpose, Qchar_table_extra_slots);
2657 CHECK_NUMBER (n);
2658 if (XINT (n) < 0 || XINT (n) > 10)
2659 args_out_of_range (n, Qnil);
2660 /* Add 2 to the size for the defalt and parent slots. */
2661 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
2662 init);
2663 XCHAR_TABLE (vector)->top = Qt;
2664 XCHAR_TABLE (vector)->parent = Qnil;
2665 XCHAR_TABLE (vector)->purpose = purpose;
2666 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2667 return vector;
2668 }
2669
2670
2671 /* Return a newly created sub char table with default value DEFALT.
2672 Since a sub char table does not appear as a top level Emacs Lisp
2673 object, we don't need a Lisp interface to make it. */
2674
2675 Lisp_Object
2676 make_sub_char_table (defalt)
2677 Lisp_Object defalt;
2678 {
2679 Lisp_Object vector
2680 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
2681 XCHAR_TABLE (vector)->top = Qnil;
2682 XCHAR_TABLE (vector)->defalt = defalt;
2683 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2684 return vector;
2685 }
2686
2687
2688 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2689 doc: /* Return a newly created vector with specified arguments as elements.
2690 Any number of arguments, even zero arguments, are allowed.
2691 usage: (vector &rest OBJECTS) */)
2692 (nargs, args)
2693 register int nargs;
2694 Lisp_Object *args;
2695 {
2696 register Lisp_Object len, val;
2697 register int index;
2698 register struct Lisp_Vector *p;
2699
2700 XSETFASTINT (len, nargs);
2701 val = Fmake_vector (len, Qnil);
2702 p = XVECTOR (val);
2703 for (index = 0; index < nargs; index++)
2704 p->contents[index] = args[index];
2705 return val;
2706 }
2707
2708
2709 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2710 doc: /* Create a byte-code object with specified arguments as elements.
2711 The arguments should be the arglist, bytecode-string, constant vector,
2712 stack size, (optional) doc string, and (optional) interactive spec.
2713 The first four arguments are required; at most six have any
2714 significance.
2715 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2716 (nargs, args)
2717 register int nargs;
2718 Lisp_Object *args;
2719 {
2720 register Lisp_Object len, val;
2721 register int index;
2722 register struct Lisp_Vector *p;
2723
2724 XSETFASTINT (len, nargs);
2725 if (!NILP (Vpurify_flag))
2726 val = make_pure_vector ((EMACS_INT) nargs);
2727 else
2728 val = Fmake_vector (len, Qnil);
2729
2730 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2731 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2732 earlier because they produced a raw 8-bit string for byte-code
2733 and now such a byte-code string is loaded as multibyte while
2734 raw 8-bit characters converted to multibyte form. Thus, now we
2735 must convert them back to the original unibyte form. */
2736 args[1] = Fstring_as_unibyte (args[1]);
2737
2738 p = XVECTOR (val);
2739 for (index = 0; index < nargs; index++)
2740 {
2741 if (!NILP (Vpurify_flag))
2742 args[index] = Fpurecopy (args[index]);
2743 p->contents[index] = args[index];
2744 }
2745 XSETCOMPILED (val, p);
2746 return val;
2747 }
2748
2749
2750 \f
2751 /***********************************************************************
2752 Symbol Allocation
2753 ***********************************************************************/
2754
2755 /* Each symbol_block is just under 1020 bytes long, since malloc
2756 really allocates in units of powers of two and uses 4 bytes for its
2757 own overhead. */
2758
2759 #define SYMBOL_BLOCK_SIZE \
2760 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2761
2762 struct symbol_block
2763 {
2764 /* Place `symbols' first, to preserve alignment. */
2765 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2766 struct symbol_block *next;
2767 };
2768
2769 /* Current symbol block and index of first unused Lisp_Symbol
2770 structure in it. */
2771
2772 struct symbol_block *symbol_block;
2773 int symbol_block_index;
2774
2775 /* List of free symbols. */
2776
2777 struct Lisp_Symbol *symbol_free_list;
2778
2779 /* Total number of symbol blocks now in use. */
2780
2781 int n_symbol_blocks;
2782
2783
2784 /* Initialize symbol allocation. */
2785
2786 void
2787 init_symbol ()
2788 {
2789 symbol_block = NULL;
2790 symbol_block_index = SYMBOL_BLOCK_SIZE;
2791 symbol_free_list = 0;
2792 n_symbol_blocks = 0;
2793 }
2794
2795
2796 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
2797 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
2798 Its value and function definition are void, and its property list is nil. */)
2799 (name)
2800 Lisp_Object name;
2801 {
2802 register Lisp_Object val;
2803 register struct Lisp_Symbol *p;
2804
2805 CHECK_STRING (name);
2806
2807 if (symbol_free_list)
2808 {
2809 XSETSYMBOL (val, symbol_free_list);
2810 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
2811 }
2812 else
2813 {
2814 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2815 {
2816 struct symbol_block *new;
2817 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2818 MEM_TYPE_SYMBOL);
2819 new->next = symbol_block;
2820 symbol_block = new;
2821 symbol_block_index = 0;
2822 n_symbol_blocks++;
2823 }
2824 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
2825 symbol_block_index++;
2826 }
2827
2828 p = XSYMBOL (val);
2829 p->xname = name;
2830 p->plist = Qnil;
2831 p->value = Qunbound;
2832 p->function = Qunbound;
2833 p->next = NULL;
2834 p->gcmarkbit = 0;
2835 p->interned = SYMBOL_UNINTERNED;
2836 p->constant = 0;
2837 p->indirect_variable = 0;
2838 consing_since_gc += sizeof (struct Lisp_Symbol);
2839 symbols_consed++;
2840 return val;
2841 }
2842
2843
2844 \f
2845 /***********************************************************************
2846 Marker (Misc) Allocation
2847 ***********************************************************************/
2848
2849 /* Allocation of markers and other objects that share that structure.
2850 Works like allocation of conses. */
2851
2852 #define MARKER_BLOCK_SIZE \
2853 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2854
2855 struct marker_block
2856 {
2857 /* Place `markers' first, to preserve alignment. */
2858 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
2859 struct marker_block *next;
2860 };
2861
2862 struct marker_block *marker_block;
2863 int marker_block_index;
2864
2865 union Lisp_Misc *marker_free_list;
2866
2867 /* Total number of marker blocks now in use. */
2868
2869 int n_marker_blocks;
2870
2871 void
2872 init_marker ()
2873 {
2874 marker_block = NULL;
2875 marker_block_index = MARKER_BLOCK_SIZE;
2876 marker_free_list = 0;
2877 n_marker_blocks = 0;
2878 }
2879
2880 /* Return a newly allocated Lisp_Misc object, with no substructure. */
2881
2882 Lisp_Object
2883 allocate_misc ()
2884 {
2885 Lisp_Object val;
2886
2887 if (marker_free_list)
2888 {
2889 XSETMISC (val, marker_free_list);
2890 marker_free_list = marker_free_list->u_free.chain;
2891 }
2892 else
2893 {
2894 if (marker_block_index == MARKER_BLOCK_SIZE)
2895 {
2896 struct marker_block *new;
2897 new = (struct marker_block *) lisp_malloc (sizeof *new,
2898 MEM_TYPE_MISC);
2899 new->next = marker_block;
2900 marker_block = new;
2901 marker_block_index = 0;
2902 n_marker_blocks++;
2903 }
2904 XSETMISC (val, &marker_block->markers[marker_block_index]);
2905 marker_block_index++;
2906 }
2907
2908 consing_since_gc += sizeof (union Lisp_Misc);
2909 misc_objects_consed++;
2910 XMARKER (val)->gcmarkbit = 0;
2911 return val;
2912 }
2913
2914 /* Return a Lisp_Misc_Save_Value object containing POINTER and
2915 INTEGER. This is used to package C values to call record_unwind_protect.
2916 The unwind function can get the C values back using XSAVE_VALUE. */
2917
2918 Lisp_Object
2919 make_save_value (pointer, integer)
2920 void *pointer;
2921 int integer;
2922 {
2923 register Lisp_Object val;
2924 register struct Lisp_Save_Value *p;
2925
2926 val = allocate_misc ();
2927 XMISCTYPE (val) = Lisp_Misc_Save_Value;
2928 p = XSAVE_VALUE (val);
2929 p->pointer = pointer;
2930 p->integer = integer;
2931 return val;
2932 }
2933
2934 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
2935 doc: /* Return a newly allocated marker which does not point at any place. */)
2936 ()
2937 {
2938 register Lisp_Object val;
2939 register struct Lisp_Marker *p;
2940
2941 val = allocate_misc ();
2942 XMISCTYPE (val) = Lisp_Misc_Marker;
2943 p = XMARKER (val);
2944 p->buffer = 0;
2945 p->bytepos = 0;
2946 p->charpos = 0;
2947 p->next = NULL;
2948 p->insertion_type = 0;
2949 return val;
2950 }
2951
2952 /* Put MARKER back on the free list after using it temporarily. */
2953
2954 void
2955 free_marker (marker)
2956 Lisp_Object marker;
2957 {
2958 unchain_marker (XMARKER (marker));
2959
2960 XMISC (marker)->u_marker.type = Lisp_Misc_Free;
2961 XMISC (marker)->u_free.chain = marker_free_list;
2962 marker_free_list = XMISC (marker);
2963
2964 total_free_markers++;
2965 }
2966
2967 \f
2968 /* Return a newly created vector or string with specified arguments as
2969 elements. If all the arguments are characters that can fit
2970 in a string of events, make a string; otherwise, make a vector.
2971
2972 Any number of arguments, even zero arguments, are allowed. */
2973
2974 Lisp_Object
2975 make_event_array (nargs, args)
2976 register int nargs;
2977 Lisp_Object *args;
2978 {
2979 int i;
2980
2981 for (i = 0; i < nargs; i++)
2982 /* The things that fit in a string
2983 are characters that are in 0...127,
2984 after discarding the meta bit and all the bits above it. */
2985 if (!INTEGERP (args[i])
2986 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
2987 return Fvector (nargs, args);
2988
2989 /* Since the loop exited, we know that all the things in it are
2990 characters, so we can make a string. */
2991 {
2992 Lisp_Object result;
2993
2994 result = Fmake_string (make_number (nargs), make_number (0));
2995 for (i = 0; i < nargs; i++)
2996 {
2997 SSET (result, i, XINT (args[i]));
2998 /* Move the meta bit to the right place for a string char. */
2999 if (XINT (args[i]) & CHAR_META)
3000 SSET (result, i, SREF (result, i) | 0x80);
3001 }
3002
3003 return result;
3004 }
3005 }
3006
3007
3008 \f
3009 /************************************************************************
3010 C Stack Marking
3011 ************************************************************************/
3012
3013 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3014
3015 /* Conservative C stack marking requires a method to identify possibly
3016 live Lisp objects given a pointer value. We do this by keeping
3017 track of blocks of Lisp data that are allocated in a red-black tree
3018 (see also the comment of mem_node which is the type of nodes in
3019 that tree). Function lisp_malloc adds information for an allocated
3020 block to the red-black tree with calls to mem_insert, and function
3021 lisp_free removes it with mem_delete. Functions live_string_p etc
3022 call mem_find to lookup information about a given pointer in the
3023 tree, and use that to determine if the pointer points to a Lisp
3024 object or not. */
3025
3026 /* Initialize this part of alloc.c. */
3027
3028 static void
3029 mem_init ()
3030 {
3031 mem_z.left = mem_z.right = MEM_NIL;
3032 mem_z.parent = NULL;
3033 mem_z.color = MEM_BLACK;
3034 mem_z.start = mem_z.end = NULL;
3035 mem_root = MEM_NIL;
3036 }
3037
3038
3039 /* Value is a pointer to the mem_node containing START. Value is
3040 MEM_NIL if there is no node in the tree containing START. */
3041
3042 static INLINE struct mem_node *
3043 mem_find (start)
3044 void *start;
3045 {
3046 struct mem_node *p;
3047
3048 if (start < min_heap_address || start > max_heap_address)
3049 return MEM_NIL;
3050
3051 /* Make the search always successful to speed up the loop below. */
3052 mem_z.start = start;
3053 mem_z.end = (char *) start + 1;
3054
3055 p = mem_root;
3056 while (start < p->start || start >= p->end)
3057 p = start < p->start ? p->left : p->right;
3058 return p;
3059 }
3060
3061
3062 /* Insert a new node into the tree for a block of memory with start
3063 address START, end address END, and type TYPE. Value is a
3064 pointer to the node that was inserted. */
3065
3066 static struct mem_node *
3067 mem_insert (start, end, type)
3068 void *start, *end;
3069 enum mem_type type;
3070 {
3071 struct mem_node *c, *parent, *x;
3072
3073 if (start < min_heap_address)
3074 min_heap_address = start;
3075 if (end > max_heap_address)
3076 max_heap_address = end;
3077
3078 /* See where in the tree a node for START belongs. In this
3079 particular application, it shouldn't happen that a node is already
3080 present. For debugging purposes, let's check that. */
3081 c = mem_root;
3082 parent = NULL;
3083
3084 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3085
3086 while (c != MEM_NIL)
3087 {
3088 if (start >= c->start && start < c->end)
3089 abort ();
3090 parent = c;
3091 c = start < c->start ? c->left : c->right;
3092 }
3093
3094 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3095
3096 while (c != MEM_NIL)
3097 {
3098 parent = c;
3099 c = start < c->start ? c->left : c->right;
3100 }
3101
3102 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3103
3104 /* Create a new node. */
3105 #ifdef GC_MALLOC_CHECK
3106 x = (struct mem_node *) _malloc_internal (sizeof *x);
3107 if (x == NULL)
3108 abort ();
3109 #else
3110 x = (struct mem_node *) xmalloc (sizeof *x);
3111 #endif
3112 x->start = start;
3113 x->end = end;
3114 x->type = type;
3115 x->parent = parent;
3116 x->left = x->right = MEM_NIL;
3117 x->color = MEM_RED;
3118
3119 /* Insert it as child of PARENT or install it as root. */
3120 if (parent)
3121 {
3122 if (start < parent->start)
3123 parent->left = x;
3124 else
3125 parent->right = x;
3126 }
3127 else
3128 mem_root = x;
3129
3130 /* Re-establish red-black tree properties. */
3131 mem_insert_fixup (x);
3132
3133 return x;
3134 }
3135
3136
3137 /* Re-establish the red-black properties of the tree, and thereby
3138 balance the tree, after node X has been inserted; X is always red. */
3139
3140 static void
3141 mem_insert_fixup (x)
3142 struct mem_node *x;
3143 {
3144 while (x != mem_root && x->parent->color == MEM_RED)
3145 {
3146 /* X is red and its parent is red. This is a violation of
3147 red-black tree property #3. */
3148
3149 if (x->parent == x->parent->parent->left)
3150 {
3151 /* We're on the left side of our grandparent, and Y is our
3152 "uncle". */
3153 struct mem_node *y = x->parent->parent->right;
3154
3155 if (y->color == MEM_RED)
3156 {
3157 /* Uncle and parent are red but should be black because
3158 X is red. Change the colors accordingly and proceed
3159 with the grandparent. */
3160 x->parent->color = MEM_BLACK;
3161 y->color = MEM_BLACK;
3162 x->parent->parent->color = MEM_RED;
3163 x = x->parent->parent;
3164 }
3165 else
3166 {
3167 /* Parent and uncle have different colors; parent is
3168 red, uncle is black. */
3169 if (x == x->parent->right)
3170 {
3171 x = x->parent;
3172 mem_rotate_left (x);
3173 }
3174
3175 x->parent->color = MEM_BLACK;
3176 x->parent->parent->color = MEM_RED;
3177 mem_rotate_right (x->parent->parent);
3178 }
3179 }
3180 else
3181 {
3182 /* This is the symmetrical case of above. */
3183 struct mem_node *y = x->parent->parent->left;
3184
3185 if (y->color == MEM_RED)
3186 {
3187 x->parent->color = MEM_BLACK;
3188 y->color = MEM_BLACK;
3189 x->parent->parent->color = MEM_RED;
3190 x = x->parent->parent;
3191 }
3192 else
3193 {
3194 if (x == x->parent->left)
3195 {
3196 x = x->parent;
3197 mem_rotate_right (x);
3198 }
3199
3200 x->parent->color = MEM_BLACK;
3201 x->parent->parent->color = MEM_RED;
3202 mem_rotate_left (x->parent->parent);
3203 }
3204 }
3205 }
3206
3207 /* The root may have been changed to red due to the algorithm. Set
3208 it to black so that property #5 is satisfied. */
3209 mem_root->color = MEM_BLACK;
3210 }
3211
3212
3213 /* (x) (y)
3214 / \ / \
3215 a (y) ===> (x) c
3216 / \ / \
3217 b c a b */
3218
3219 static void
3220 mem_rotate_left (x)
3221 struct mem_node *x;
3222 {
3223 struct mem_node *y;
3224
3225 /* Turn y's left sub-tree into x's right sub-tree. */
3226 y = x->right;
3227 x->right = y->left;
3228 if (y->left != MEM_NIL)
3229 y->left->parent = x;
3230
3231 /* Y's parent was x's parent. */
3232 if (y != MEM_NIL)
3233 y->parent = x->parent;
3234
3235 /* Get the parent to point to y instead of x. */
3236 if (x->parent)
3237 {
3238 if (x == x->parent->left)
3239 x->parent->left = y;
3240 else
3241 x->parent->right = y;
3242 }
3243 else
3244 mem_root = y;
3245
3246 /* Put x on y's left. */
3247 y->left = x;
3248 if (x != MEM_NIL)
3249 x->parent = y;
3250 }
3251
3252
3253 /* (x) (Y)
3254 / \ / \
3255 (y) c ===> a (x)
3256 / \ / \
3257 a b b c */
3258
3259 static void
3260 mem_rotate_right (x)
3261 struct mem_node *x;
3262 {
3263 struct mem_node *y = x->left;
3264
3265 x->left = y->right;
3266 if (y->right != MEM_NIL)
3267 y->right->parent = x;
3268
3269 if (y != MEM_NIL)
3270 y->parent = x->parent;
3271 if (x->parent)
3272 {
3273 if (x == x->parent->right)
3274 x->parent->right = y;
3275 else
3276 x->parent->left = y;
3277 }
3278 else
3279 mem_root = y;
3280
3281 y->right = x;
3282 if (x != MEM_NIL)
3283 x->parent = y;
3284 }
3285
3286
3287 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3288
3289 static void
3290 mem_delete (z)
3291 struct mem_node *z;
3292 {
3293 struct mem_node *x, *y;
3294
3295 if (!z || z == MEM_NIL)
3296 return;
3297
3298 if (z->left == MEM_NIL || z->right == MEM_NIL)
3299 y = z;
3300 else
3301 {
3302 y = z->right;
3303 while (y->left != MEM_NIL)
3304 y = y->left;
3305 }
3306
3307 if (y->left != MEM_NIL)
3308 x = y->left;
3309 else
3310 x = y->right;
3311
3312 x->parent = y->parent;
3313 if (y->parent)
3314 {
3315 if (y == y->parent->left)
3316 y->parent->left = x;
3317 else
3318 y->parent->right = x;
3319 }
3320 else
3321 mem_root = x;
3322
3323 if (y != z)
3324 {
3325 z->start = y->start;
3326 z->end = y->end;
3327 z->type = y->type;
3328 }
3329
3330 if (y->color == MEM_BLACK)
3331 mem_delete_fixup (x);
3332
3333 #ifdef GC_MALLOC_CHECK
3334 _free_internal (y);
3335 #else
3336 xfree (y);
3337 #endif
3338 }
3339
3340
3341 /* Re-establish the red-black properties of the tree, after a
3342 deletion. */
3343
3344 static void
3345 mem_delete_fixup (x)
3346 struct mem_node *x;
3347 {
3348 while (x != mem_root && x->color == MEM_BLACK)
3349 {
3350 if (x == x->parent->left)
3351 {
3352 struct mem_node *w = x->parent->right;
3353
3354 if (w->color == MEM_RED)
3355 {
3356 w->color = MEM_BLACK;
3357 x->parent->color = MEM_RED;
3358 mem_rotate_left (x->parent);
3359 w = x->parent->right;
3360 }
3361
3362 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3363 {
3364 w->color = MEM_RED;
3365 x = x->parent;
3366 }
3367 else
3368 {
3369 if (w->right->color == MEM_BLACK)
3370 {
3371 w->left->color = MEM_BLACK;
3372 w->color = MEM_RED;
3373 mem_rotate_right (w);
3374 w = x->parent->right;
3375 }
3376 w->color = x->parent->color;
3377 x->parent->color = MEM_BLACK;
3378 w->right->color = MEM_BLACK;
3379 mem_rotate_left (x->parent);
3380 x = mem_root;
3381 }
3382 }
3383 else
3384 {
3385 struct mem_node *w = x->parent->left;
3386
3387 if (w->color == MEM_RED)
3388 {
3389 w->color = MEM_BLACK;
3390 x->parent->color = MEM_RED;
3391 mem_rotate_right (x->parent);
3392 w = x->parent->left;
3393 }
3394
3395 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3396 {
3397 w->color = MEM_RED;
3398 x = x->parent;
3399 }
3400 else
3401 {
3402 if (w->left->color == MEM_BLACK)
3403 {
3404 w->right->color = MEM_BLACK;
3405 w->color = MEM_RED;
3406 mem_rotate_left (w);
3407 w = x->parent->left;
3408 }
3409
3410 w->color = x->parent->color;
3411 x->parent->color = MEM_BLACK;
3412 w->left->color = MEM_BLACK;
3413 mem_rotate_right (x->parent);
3414 x = mem_root;
3415 }
3416 }
3417 }
3418
3419 x->color = MEM_BLACK;
3420 }
3421
3422
3423 /* Value is non-zero if P is a pointer to a live Lisp string on
3424 the heap. M is a pointer to the mem_block for P. */
3425
3426 static INLINE int
3427 live_string_p (m, p)
3428 struct mem_node *m;
3429 void *p;
3430 {
3431 if (m->type == MEM_TYPE_STRING)
3432 {
3433 struct string_block *b = (struct string_block *) m->start;
3434 int offset = (char *) p - (char *) &b->strings[0];
3435
3436 /* P must point to the start of a Lisp_String structure, and it
3437 must not be on the free-list. */
3438 return (offset >= 0
3439 && offset % sizeof b->strings[0] == 0
3440 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3441 && ((struct Lisp_String *) p)->data != NULL);
3442 }
3443 else
3444 return 0;
3445 }
3446
3447
3448 /* Value is non-zero if P is a pointer to a live Lisp cons on
3449 the heap. M is a pointer to the mem_block for P. */
3450
3451 static INLINE int
3452 live_cons_p (m, p)
3453 struct mem_node *m;
3454 void *p;
3455 {
3456 if (m->type == MEM_TYPE_CONS)
3457 {
3458 struct cons_block *b = (struct cons_block *) m->start;
3459 int offset = (char *) p - (char *) &b->conses[0];
3460
3461 /* P must point to the start of a Lisp_Cons, not be
3462 one of the unused cells in the current cons block,
3463 and not be on the free-list. */
3464 return (offset >= 0
3465 && offset % sizeof b->conses[0] == 0
3466 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3467 && (b != cons_block
3468 || offset / sizeof b->conses[0] < cons_block_index)
3469 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3470 }
3471 else
3472 return 0;
3473 }
3474
3475
3476 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3477 the heap. M is a pointer to the mem_block for P. */
3478
3479 static INLINE int
3480 live_symbol_p (m, p)
3481 struct mem_node *m;
3482 void *p;
3483 {
3484 if (m->type == MEM_TYPE_SYMBOL)
3485 {
3486 struct symbol_block *b = (struct symbol_block *) m->start;
3487 int offset = (char *) p - (char *) &b->symbols[0];
3488
3489 /* P must point to the start of a Lisp_Symbol, not be
3490 one of the unused cells in the current symbol block,
3491 and not be on the free-list. */
3492 return (offset >= 0
3493 && offset % sizeof b->symbols[0] == 0
3494 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3495 && (b != symbol_block
3496 || offset / sizeof b->symbols[0] < symbol_block_index)
3497 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3498 }
3499 else
3500 return 0;
3501 }
3502
3503
3504 /* Value is non-zero if P is a pointer to a live Lisp float on
3505 the heap. M is a pointer to the mem_block for P. */
3506
3507 static INLINE int
3508 live_float_p (m, p)
3509 struct mem_node *m;
3510 void *p;
3511 {
3512 if (m->type == MEM_TYPE_FLOAT)
3513 {
3514 struct float_block *b = (struct float_block *) m->start;
3515 int offset = (char *) p - (char *) &b->floats[0];
3516
3517 /* P must point to the start of a Lisp_Float and not be
3518 one of the unused cells in the current float block. */
3519 return (offset >= 0
3520 && offset % sizeof b->floats[0] == 0
3521 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3522 && (b != float_block
3523 || offset / sizeof b->floats[0] < float_block_index));
3524 }
3525 else
3526 return 0;
3527 }
3528
3529
3530 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3531 the heap. M is a pointer to the mem_block for P. */
3532
3533 static INLINE int
3534 live_misc_p (m, p)
3535 struct mem_node *m;
3536 void *p;
3537 {
3538 if (m->type == MEM_TYPE_MISC)
3539 {
3540 struct marker_block *b = (struct marker_block *) m->start;
3541 int offset = (char *) p - (char *) &b->markers[0];
3542
3543 /* P must point to the start of a Lisp_Misc, not be
3544 one of the unused cells in the current misc block,
3545 and not be on the free-list. */
3546 return (offset >= 0
3547 && offset % sizeof b->markers[0] == 0
3548 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3549 && (b != marker_block
3550 || offset / sizeof b->markers[0] < marker_block_index)
3551 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3552 }
3553 else
3554 return 0;
3555 }
3556
3557
3558 /* Value is non-zero if P is a pointer to a live vector-like object.
3559 M is a pointer to the mem_block for P. */
3560
3561 static INLINE int
3562 live_vector_p (m, p)
3563 struct mem_node *m;
3564 void *p;
3565 {
3566 return (p == m->start
3567 && m->type >= MEM_TYPE_VECTOR
3568 && m->type <= MEM_TYPE_WINDOW);
3569 }
3570
3571
3572 /* Value is non-zero if P is a pointer to a live buffer. M is a
3573 pointer to the mem_block for P. */
3574
3575 static INLINE int
3576 live_buffer_p (m, p)
3577 struct mem_node *m;
3578 void *p;
3579 {
3580 /* P must point to the start of the block, and the buffer
3581 must not have been killed. */
3582 return (m->type == MEM_TYPE_BUFFER
3583 && p == m->start
3584 && !NILP (((struct buffer *) p)->name));
3585 }
3586
3587 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3588
3589 #if GC_MARK_STACK
3590
3591 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3592
3593 /* Array of objects that are kept alive because the C stack contains
3594 a pattern that looks like a reference to them . */
3595
3596 #define MAX_ZOMBIES 10
3597 static Lisp_Object zombies[MAX_ZOMBIES];
3598
3599 /* Number of zombie objects. */
3600
3601 static int nzombies;
3602
3603 /* Number of garbage collections. */
3604
3605 static int ngcs;
3606
3607 /* Average percentage of zombies per collection. */
3608
3609 static double avg_zombies;
3610
3611 /* Max. number of live and zombie objects. */
3612
3613 static int max_live, max_zombies;
3614
3615 /* Average number of live objects per GC. */
3616
3617 static double avg_live;
3618
3619 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3620 doc: /* Show information about live and zombie objects. */)
3621 ()
3622 {
3623 Lisp_Object args[8], zombie_list = Qnil;
3624 int i;
3625 for (i = 0; i < nzombies; i++)
3626 zombie_list = Fcons (zombies[i], zombie_list);
3627 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3628 args[1] = make_number (ngcs);
3629 args[2] = make_float (avg_live);
3630 args[3] = make_float (avg_zombies);
3631 args[4] = make_float (avg_zombies / avg_live / 100);
3632 args[5] = make_number (max_live);
3633 args[6] = make_number (max_zombies);
3634 args[7] = zombie_list;
3635 return Fmessage (8, args);
3636 }
3637
3638 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3639
3640
3641 /* Mark OBJ if we can prove it's a Lisp_Object. */
3642
3643 static INLINE void
3644 mark_maybe_object (obj)
3645 Lisp_Object obj;
3646 {
3647 void *po = (void *) XPNTR (obj);
3648 struct mem_node *m = mem_find (po);
3649
3650 if (m != MEM_NIL)
3651 {
3652 int mark_p = 0;
3653
3654 switch (XGCTYPE (obj))
3655 {
3656 case Lisp_String:
3657 mark_p = (live_string_p (m, po)
3658 && !STRING_MARKED_P ((struct Lisp_String *) po));
3659 break;
3660
3661 case Lisp_Cons:
3662 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3663 break;
3664
3665 case Lisp_Symbol:
3666 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3667 break;
3668
3669 case Lisp_Float:
3670 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3671 break;
3672
3673 case Lisp_Vectorlike:
3674 /* Note: can't check GC_BUFFERP before we know it's a
3675 buffer because checking that dereferences the pointer
3676 PO which might point anywhere. */
3677 if (live_vector_p (m, po))
3678 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3679 else if (live_buffer_p (m, po))
3680 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3681 break;
3682
3683 case Lisp_Misc:
3684 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
3685 break;
3686
3687 case Lisp_Int:
3688 case Lisp_Type_Limit:
3689 break;
3690 }
3691
3692 if (mark_p)
3693 {
3694 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3695 if (nzombies < MAX_ZOMBIES)
3696 zombies[nzombies] = obj;
3697 ++nzombies;
3698 #endif
3699 mark_object (obj);
3700 }
3701 }
3702 }
3703
3704
3705 /* If P points to Lisp data, mark that as live if it isn't already
3706 marked. */
3707
3708 static INLINE void
3709 mark_maybe_pointer (p)
3710 void *p;
3711 {
3712 struct mem_node *m;
3713
3714 /* Quickly rule out some values which can't point to Lisp data. We
3715 assume that Lisp data is aligned on even addresses. */
3716 if ((EMACS_INT) p & 1)
3717 return;
3718
3719 m = mem_find (p);
3720 if (m != MEM_NIL)
3721 {
3722 Lisp_Object obj = Qnil;
3723
3724 switch (m->type)
3725 {
3726 case MEM_TYPE_NON_LISP:
3727 /* Nothing to do; not a pointer to Lisp memory. */
3728 break;
3729
3730 case MEM_TYPE_BUFFER:
3731 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
3732 XSETVECTOR (obj, p);
3733 break;
3734
3735 case MEM_TYPE_CONS:
3736 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
3737 XSETCONS (obj, p);
3738 break;
3739
3740 case MEM_TYPE_STRING:
3741 if (live_string_p (m, p)
3742 && !STRING_MARKED_P ((struct Lisp_String *) p))
3743 XSETSTRING (obj, p);
3744 break;
3745
3746 case MEM_TYPE_MISC:
3747 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
3748 XSETMISC (obj, p);
3749 break;
3750
3751 case MEM_TYPE_SYMBOL:
3752 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
3753 XSETSYMBOL (obj, p);
3754 break;
3755
3756 case MEM_TYPE_FLOAT:
3757 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
3758 XSETFLOAT (obj, p);
3759 break;
3760
3761 case MEM_TYPE_VECTOR:
3762 case MEM_TYPE_PROCESS:
3763 case MEM_TYPE_HASH_TABLE:
3764 case MEM_TYPE_FRAME:
3765 case MEM_TYPE_WINDOW:
3766 if (live_vector_p (m, p))
3767 {
3768 Lisp_Object tem;
3769 XSETVECTOR (tem, p);
3770 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
3771 obj = tem;
3772 }
3773 break;
3774
3775 default:
3776 abort ();
3777 }
3778
3779 if (!GC_NILP (obj))
3780 mark_object (obj);
3781 }
3782 }
3783
3784
3785 /* Mark Lisp objects referenced from the address range START..END. */
3786
3787 static void
3788 mark_memory (start, end)
3789 void *start, *end;
3790 {
3791 Lisp_Object *p;
3792 void **pp;
3793
3794 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3795 nzombies = 0;
3796 #endif
3797
3798 /* Make START the pointer to the start of the memory region,
3799 if it isn't already. */
3800 if (end < start)
3801 {
3802 void *tem = start;
3803 start = end;
3804 end = tem;
3805 }
3806
3807 /* Mark Lisp_Objects. */
3808 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
3809 mark_maybe_object (*p);
3810
3811 /* Mark Lisp data pointed to. This is necessary because, in some
3812 situations, the C compiler optimizes Lisp objects away, so that
3813 only a pointer to them remains. Example:
3814
3815 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
3816 ()
3817 {
3818 Lisp_Object obj = build_string ("test");
3819 struct Lisp_String *s = XSTRING (obj);
3820 Fgarbage_collect ();
3821 fprintf (stderr, "test `%s'\n", s->data);
3822 return Qnil;
3823 }
3824
3825 Here, `obj' isn't really used, and the compiler optimizes it
3826 away. The only reference to the life string is through the
3827 pointer `s'. */
3828
3829 for (pp = (void **) start; (void *) pp < end; ++pp)
3830 mark_maybe_pointer (*pp);
3831 }
3832
3833 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
3834 the GCC system configuration. In gcc 3.2, the only systems for
3835 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
3836 by others?) and ns32k-pc532-min. */
3837
3838 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3839
3840 static int setjmp_tested_p, longjmps_done;
3841
3842 #define SETJMP_WILL_LIKELY_WORK "\
3843 \n\
3844 Emacs garbage collector has been changed to use conservative stack\n\
3845 marking. Emacs has determined that the method it uses to do the\n\
3846 marking will likely work on your system, but this isn't sure.\n\
3847 \n\
3848 If you are a system-programmer, or can get the help of a local wizard\n\
3849 who is, please take a look at the function mark_stack in alloc.c, and\n\
3850 verify that the methods used are appropriate for your system.\n\
3851 \n\
3852 Please mail the result to <emacs-devel@gnu.org>.\n\
3853 "
3854
3855 #define SETJMP_WILL_NOT_WORK "\
3856 \n\
3857 Emacs garbage collector has been changed to use conservative stack\n\
3858 marking. Emacs has determined that the default method it uses to do the\n\
3859 marking will not work on your system. We will need a system-dependent\n\
3860 solution for your system.\n\
3861 \n\
3862 Please take a look at the function mark_stack in alloc.c, and\n\
3863 try to find a way to make it work on your system.\n\
3864 \n\
3865 Note that you may get false negatives, depending on the compiler.\n\
3866 In particular, you need to use -O with GCC for this test.\n\
3867 \n\
3868 Please mail the result to <emacs-devel@gnu.org>.\n\
3869 "
3870
3871
3872 /* Perform a quick check if it looks like setjmp saves registers in a
3873 jmp_buf. Print a message to stderr saying so. When this test
3874 succeeds, this is _not_ a proof that setjmp is sufficient for
3875 conservative stack marking. Only the sources or a disassembly
3876 can prove that. */
3877
3878 static void
3879 test_setjmp ()
3880 {
3881 char buf[10];
3882 register int x;
3883 jmp_buf jbuf;
3884 int result = 0;
3885
3886 /* Arrange for X to be put in a register. */
3887 sprintf (buf, "1");
3888 x = strlen (buf);
3889 x = 2 * x - 1;
3890
3891 setjmp (jbuf);
3892 if (longjmps_done == 1)
3893 {
3894 /* Came here after the longjmp at the end of the function.
3895
3896 If x == 1, the longjmp has restored the register to its
3897 value before the setjmp, and we can hope that setjmp
3898 saves all such registers in the jmp_buf, although that
3899 isn't sure.
3900
3901 For other values of X, either something really strange is
3902 taking place, or the setjmp just didn't save the register. */
3903
3904 if (x == 1)
3905 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3906 else
3907 {
3908 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3909 exit (1);
3910 }
3911 }
3912
3913 ++longjmps_done;
3914 x = 2;
3915 if (longjmps_done == 1)
3916 longjmp (jbuf, 1);
3917 }
3918
3919 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3920
3921
3922 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3923
3924 /* Abort if anything GCPRO'd doesn't survive the GC. */
3925
3926 static void
3927 check_gcpros ()
3928 {
3929 struct gcpro *p;
3930 int i;
3931
3932 for (p = gcprolist; p; p = p->next)
3933 for (i = 0; i < p->nvars; ++i)
3934 if (!survives_gc_p (p->var[i]))
3935 /* FIXME: It's not necessarily a bug. It might just be that the
3936 GCPRO is unnecessary or should release the object sooner. */
3937 abort ();
3938 }
3939
3940 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3941
3942 static void
3943 dump_zombies ()
3944 {
3945 int i;
3946
3947 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3948 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3949 {
3950 fprintf (stderr, " %d = ", i);
3951 debug_print (zombies[i]);
3952 }
3953 }
3954
3955 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3956
3957
3958 /* Mark live Lisp objects on the C stack.
3959
3960 There are several system-dependent problems to consider when
3961 porting this to new architectures:
3962
3963 Processor Registers
3964
3965 We have to mark Lisp objects in CPU registers that can hold local
3966 variables or are used to pass parameters.
3967
3968 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
3969 something that either saves relevant registers on the stack, or
3970 calls mark_maybe_object passing it each register's contents.
3971
3972 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
3973 implementation assumes that calling setjmp saves registers we need
3974 to see in a jmp_buf which itself lies on the stack. This doesn't
3975 have to be true! It must be verified for each system, possibly
3976 by taking a look at the source code of setjmp.
3977
3978 Stack Layout
3979
3980 Architectures differ in the way their processor stack is organized.
3981 For example, the stack might look like this
3982
3983 +----------------+
3984 | Lisp_Object | size = 4
3985 +----------------+
3986 | something else | size = 2
3987 +----------------+
3988 | Lisp_Object | size = 4
3989 +----------------+
3990 | ... |
3991
3992 In such a case, not every Lisp_Object will be aligned equally. To
3993 find all Lisp_Object on the stack it won't be sufficient to walk
3994 the stack in steps of 4 bytes. Instead, two passes will be
3995 necessary, one starting at the start of the stack, and a second
3996 pass starting at the start of the stack + 2. Likewise, if the
3997 minimal alignment of Lisp_Objects on the stack is 1, four passes
3998 would be necessary, each one starting with one byte more offset
3999 from the stack start.
4000
4001 The current code assumes by default that Lisp_Objects are aligned
4002 equally on the stack. */
4003
4004 static void
4005 mark_stack ()
4006 {
4007 int i;
4008 jmp_buf j;
4009 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4010 void *end;
4011
4012 /* This trick flushes the register windows so that all the state of
4013 the process is contained in the stack. */
4014 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4015 needed on ia64 too. See mach_dep.c, where it also says inline
4016 assembler doesn't work with relevant proprietary compilers. */
4017 #ifdef sparc
4018 asm ("ta 3");
4019 #endif
4020
4021 /* Save registers that we need to see on the stack. We need to see
4022 registers used to hold register variables and registers used to
4023 pass parameters. */
4024 #ifdef GC_SAVE_REGISTERS_ON_STACK
4025 GC_SAVE_REGISTERS_ON_STACK (end);
4026 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4027
4028 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4029 setjmp will definitely work, test it
4030 and print a message with the result
4031 of the test. */
4032 if (!setjmp_tested_p)
4033 {
4034 setjmp_tested_p = 1;
4035 test_setjmp ();
4036 }
4037 #endif /* GC_SETJMP_WORKS */
4038
4039 setjmp (j);
4040 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4041 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4042
4043 /* This assumes that the stack is a contiguous region in memory. If
4044 that's not the case, something has to be done here to iterate
4045 over the stack segments. */
4046 #ifndef GC_LISP_OBJECT_ALIGNMENT
4047 #ifdef __GNUC__
4048 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4049 #else
4050 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4051 #endif
4052 #endif
4053 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4054 mark_memory ((char *) stack_base + i, end);
4055
4056 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4057 check_gcpros ();
4058 #endif
4059 }
4060
4061
4062 #endif /* GC_MARK_STACK != 0 */
4063
4064
4065 \f
4066 /***********************************************************************
4067 Pure Storage Management
4068 ***********************************************************************/
4069
4070 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4071 pointer to it. TYPE is the Lisp type for which the memory is
4072 allocated. TYPE < 0 means it's not used for a Lisp object.
4073
4074 If store_pure_type_info is set and TYPE is >= 0, the type of
4075 the allocated object is recorded in pure_types. */
4076
4077 static POINTER_TYPE *
4078 pure_alloc (size, type)
4079 size_t size;
4080 int type;
4081 {
4082 POINTER_TYPE *result;
4083 #ifdef USE_LSB_TAG
4084 size_t alignment = (1 << GCTYPEBITS);
4085 #else
4086 size_t alignment = sizeof (EMACS_INT);
4087
4088 /* Give Lisp_Floats an extra alignment. */
4089 if (type == Lisp_Float)
4090 {
4091 #if defined __GNUC__ && __GNUC__ >= 2
4092 alignment = __alignof (struct Lisp_Float);
4093 #else
4094 alignment = sizeof (struct Lisp_Float);
4095 #endif
4096 }
4097 #endif
4098
4099 again:
4100 result = ALIGN (purebeg + pure_bytes_used, alignment);
4101 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4102
4103 if (pure_bytes_used <= pure_size)
4104 return result;
4105
4106 /* Don't allocate a large amount here,
4107 because it might get mmap'd and then its address
4108 might not be usable. */
4109 purebeg = (char *) xmalloc (10000);
4110 pure_size = 10000;
4111 pure_bytes_used_before_overflow += pure_bytes_used - size;
4112 pure_bytes_used = 0;
4113 goto again;
4114 }
4115
4116
4117 /* Print a warning if PURESIZE is too small. */
4118
4119 void
4120 check_pure_size ()
4121 {
4122 if (pure_bytes_used_before_overflow)
4123 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4124 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4125 }
4126
4127
4128 /* Return a string allocated in pure space. DATA is a buffer holding
4129 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4130 non-zero means make the result string multibyte.
4131
4132 Must get an error if pure storage is full, since if it cannot hold
4133 a large string it may be able to hold conses that point to that
4134 string; then the string is not protected from gc. */
4135
4136 Lisp_Object
4137 make_pure_string (data, nchars, nbytes, multibyte)
4138 char *data;
4139 int nchars, nbytes;
4140 int multibyte;
4141 {
4142 Lisp_Object string;
4143 struct Lisp_String *s;
4144
4145 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4146 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4147 s->size = nchars;
4148 s->size_byte = multibyte ? nbytes : -1;
4149 bcopy (data, s->data, nbytes);
4150 s->data[nbytes] = '\0';
4151 s->intervals = NULL_INTERVAL;
4152 XSETSTRING (string, s);
4153 return string;
4154 }
4155
4156
4157 /* Return a cons allocated from pure space. Give it pure copies
4158 of CAR as car and CDR as cdr. */
4159
4160 Lisp_Object
4161 pure_cons (car, cdr)
4162 Lisp_Object car, cdr;
4163 {
4164 register Lisp_Object new;
4165 struct Lisp_Cons *p;
4166
4167 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4168 XSETCONS (new, p);
4169 XSETCAR (new, Fpurecopy (car));
4170 XSETCDR (new, Fpurecopy (cdr));
4171 return new;
4172 }
4173
4174
4175 /* Value is a float object with value NUM allocated from pure space. */
4176
4177 Lisp_Object
4178 make_pure_float (num)
4179 double num;
4180 {
4181 register Lisp_Object new;
4182 struct Lisp_Float *p;
4183
4184 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4185 XSETFLOAT (new, p);
4186 XFLOAT_DATA (new) = num;
4187 return new;
4188 }
4189
4190
4191 /* Return a vector with room for LEN Lisp_Objects allocated from
4192 pure space. */
4193
4194 Lisp_Object
4195 make_pure_vector (len)
4196 EMACS_INT len;
4197 {
4198 Lisp_Object new;
4199 struct Lisp_Vector *p;
4200 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4201
4202 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4203 XSETVECTOR (new, p);
4204 XVECTOR (new)->size = len;
4205 return new;
4206 }
4207
4208
4209 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4210 doc: /* Make a copy of OBJECT in pure storage.
4211 Recursively copies contents of vectors and cons cells.
4212 Does not copy symbols. Copies strings without text properties. */)
4213 (obj)
4214 register Lisp_Object obj;
4215 {
4216 if (NILP (Vpurify_flag))
4217 return obj;
4218
4219 if (PURE_POINTER_P (XPNTR (obj)))
4220 return obj;
4221
4222 if (CONSP (obj))
4223 return pure_cons (XCAR (obj), XCDR (obj));
4224 else if (FLOATP (obj))
4225 return make_pure_float (XFLOAT_DATA (obj));
4226 else if (STRINGP (obj))
4227 return make_pure_string (SDATA (obj), SCHARS (obj),
4228 SBYTES (obj),
4229 STRING_MULTIBYTE (obj));
4230 else if (COMPILEDP (obj) || VECTORP (obj))
4231 {
4232 register struct Lisp_Vector *vec;
4233 register int i;
4234 EMACS_INT size;
4235
4236 size = XVECTOR (obj)->size;
4237 if (size & PSEUDOVECTOR_FLAG)
4238 size &= PSEUDOVECTOR_SIZE_MASK;
4239 vec = XVECTOR (make_pure_vector (size));
4240 for (i = 0; i < size; i++)
4241 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4242 if (COMPILEDP (obj))
4243 XSETCOMPILED (obj, vec);
4244 else
4245 XSETVECTOR (obj, vec);
4246 return obj;
4247 }
4248 else if (MARKERP (obj))
4249 error ("Attempt to copy a marker to pure storage");
4250
4251 return obj;
4252 }
4253
4254
4255 \f
4256 /***********************************************************************
4257 Protection from GC
4258 ***********************************************************************/
4259
4260 /* Put an entry in staticvec, pointing at the variable with address
4261 VARADDRESS. */
4262
4263 void
4264 staticpro (varaddress)
4265 Lisp_Object *varaddress;
4266 {
4267 staticvec[staticidx++] = varaddress;
4268 if (staticidx >= NSTATICS)
4269 abort ();
4270 }
4271
4272 struct catchtag
4273 {
4274 Lisp_Object tag;
4275 Lisp_Object val;
4276 struct catchtag *next;
4277 };
4278
4279 struct backtrace
4280 {
4281 struct backtrace *next;
4282 Lisp_Object *function;
4283 Lisp_Object *args; /* Points to vector of args. */
4284 int nargs; /* Length of vector. */
4285 /* If nargs is UNEVALLED, args points to slot holding list of
4286 unevalled args. */
4287 char evalargs;
4288 };
4289
4290
4291 \f
4292 /***********************************************************************
4293 Protection from GC
4294 ***********************************************************************/
4295
4296 /* Temporarily prevent garbage collection. */
4297
4298 int
4299 inhibit_garbage_collection ()
4300 {
4301 int count = SPECPDL_INDEX ();
4302 int nbits = min (VALBITS, BITS_PER_INT);
4303
4304 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4305 return count;
4306 }
4307
4308
4309 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4310 doc: /* Reclaim storage for Lisp objects no longer needed.
4311 Garbage collection happens automatically if you cons more than
4312 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4313 `garbage-collect' normally returns a list with info on amount of space in use:
4314 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4315 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4316 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4317 (USED-STRINGS . FREE-STRINGS))
4318 However, if there was overflow in pure space, `garbage-collect'
4319 returns nil, because real GC can't be done. */)
4320 ()
4321 {
4322 register struct specbinding *bind;
4323 struct catchtag *catch;
4324 struct handler *handler;
4325 register struct backtrace *backlist;
4326 char stack_top_variable;
4327 register int i;
4328 int message_p;
4329 Lisp_Object total[8];
4330 int count = SPECPDL_INDEX ();
4331 EMACS_TIME t1, t2, t3;
4332
4333 if (abort_on_gc)
4334 abort ();
4335
4336 EMACS_GET_TIME (t1);
4337
4338 /* Can't GC if pure storage overflowed because we can't determine
4339 if something is a pure object or not. */
4340 if (pure_bytes_used_before_overflow)
4341 return Qnil;
4342
4343 /* In case user calls debug_print during GC,
4344 don't let that cause a recursive GC. */
4345 consing_since_gc = 0;
4346
4347 /* Save what's currently displayed in the echo area. */
4348 message_p = push_message ();
4349 record_unwind_protect (pop_message_unwind, Qnil);
4350
4351 /* Save a copy of the contents of the stack, for debugging. */
4352 #if MAX_SAVE_STACK > 0
4353 if (NILP (Vpurify_flag))
4354 {
4355 i = &stack_top_variable - stack_bottom;
4356 if (i < 0) i = -i;
4357 if (i < MAX_SAVE_STACK)
4358 {
4359 if (stack_copy == 0)
4360 stack_copy = (char *) xmalloc (stack_copy_size = i);
4361 else if (stack_copy_size < i)
4362 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4363 if (stack_copy)
4364 {
4365 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4366 bcopy (stack_bottom, stack_copy, i);
4367 else
4368 bcopy (&stack_top_variable, stack_copy, i);
4369 }
4370 }
4371 }
4372 #endif /* MAX_SAVE_STACK > 0 */
4373
4374 if (garbage_collection_messages)
4375 message1_nolog ("Garbage collecting...");
4376
4377 BLOCK_INPUT;
4378
4379 shrink_regexp_cache ();
4380
4381 /* Don't keep undo information around forever. */
4382 {
4383 register struct buffer *nextb = all_buffers;
4384
4385 while (nextb)
4386 {
4387 /* If a buffer's undo list is Qt, that means that undo is
4388 turned off in that buffer. Calling truncate_undo_list on
4389 Qt tends to return NULL, which effectively turns undo back on.
4390 So don't call truncate_undo_list if undo_list is Qt. */
4391 if (! EQ (nextb->undo_list, Qt))
4392 nextb->undo_list
4393 = truncate_undo_list (nextb->undo_list, undo_limit,
4394 undo_strong_limit);
4395
4396 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4397 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4398 {
4399 /* If a buffer's gap size is more than 10% of the buffer
4400 size, or larger than 2000 bytes, then shrink it
4401 accordingly. Keep a minimum size of 20 bytes. */
4402 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4403
4404 if (nextb->text->gap_size > size)
4405 {
4406 struct buffer *save_current = current_buffer;
4407 current_buffer = nextb;
4408 make_gap (-(nextb->text->gap_size - size));
4409 current_buffer = save_current;
4410 }
4411 }
4412
4413 nextb = nextb->next;
4414 }
4415 }
4416
4417 gc_in_progress = 1;
4418
4419 /* clear_marks (); */
4420
4421 /* Mark all the special slots that serve as the roots of accessibility. */
4422
4423 for (i = 0; i < staticidx; i++)
4424 mark_object (*staticvec[i]);
4425
4426 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4427 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4428 mark_stack ();
4429 #else
4430 {
4431 register struct gcpro *tail;
4432 for (tail = gcprolist; tail; tail = tail->next)
4433 for (i = 0; i < tail->nvars; i++)
4434 mark_object (tail->var[i]);
4435 }
4436 #endif
4437
4438 mark_byte_stack ();
4439 for (bind = specpdl; bind != specpdl_ptr; bind++)
4440 {
4441 mark_object (bind->symbol);
4442 mark_object (bind->old_value);
4443 }
4444 for (catch = catchlist; catch; catch = catch->next)
4445 {
4446 mark_object (catch->tag);
4447 mark_object (catch->val);
4448 }
4449 for (handler = handlerlist; handler; handler = handler->next)
4450 {
4451 mark_object (handler->handler);
4452 mark_object (handler->var);
4453 }
4454 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4455 {
4456 mark_object (*backlist->function);
4457
4458 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4459 i = 0;
4460 else
4461 i = backlist->nargs - 1;
4462 for (; i >= 0; i--)
4463 mark_object (backlist->args[i]);
4464 }
4465 mark_kboards ();
4466
4467 /* Look thru every buffer's undo list
4468 for elements that update markers that were not marked,
4469 and delete them. */
4470 {
4471 register struct buffer *nextb = all_buffers;
4472
4473 while (nextb)
4474 {
4475 /* If a buffer's undo list is Qt, that means that undo is
4476 turned off in that buffer. Calling truncate_undo_list on
4477 Qt tends to return NULL, which effectively turns undo back on.
4478 So don't call truncate_undo_list if undo_list is Qt. */
4479 if (! EQ (nextb->undo_list, Qt))
4480 {
4481 Lisp_Object tail, prev;
4482 tail = nextb->undo_list;
4483 prev = Qnil;
4484 while (CONSP (tail))
4485 {
4486 if (GC_CONSP (XCAR (tail))
4487 && GC_MARKERP (XCAR (XCAR (tail)))
4488 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4489 {
4490 if (NILP (prev))
4491 nextb->undo_list = tail = XCDR (tail);
4492 else
4493 {
4494 tail = XCDR (tail);
4495 XSETCDR (prev, tail);
4496 }
4497 }
4498 else
4499 {
4500 prev = tail;
4501 tail = XCDR (tail);
4502 }
4503 }
4504 }
4505
4506 nextb = nextb->next;
4507 }
4508 }
4509
4510 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4511 mark_stack ();
4512 #endif
4513
4514 #ifdef USE_GTK
4515 {
4516 extern void xg_mark_data ();
4517 xg_mark_data ();
4518 }
4519 #endif
4520
4521 gc_sweep ();
4522
4523 /* Clear the mark bits that we set in certain root slots. */
4524
4525 unmark_byte_stack ();
4526 VECTOR_UNMARK (&buffer_defaults);
4527 VECTOR_UNMARK (&buffer_local_symbols);
4528
4529 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4530 dump_zombies ();
4531 #endif
4532
4533 UNBLOCK_INPUT;
4534
4535 /* clear_marks (); */
4536 gc_in_progress = 0;
4537
4538 consing_since_gc = 0;
4539 if (gc_cons_threshold < 10000)
4540 gc_cons_threshold = 10000;
4541
4542 if (garbage_collection_messages)
4543 {
4544 if (message_p || minibuf_level > 0)
4545 restore_message ();
4546 else
4547 message1_nolog ("Garbage collecting...done");
4548 }
4549
4550 unbind_to (count, Qnil);
4551
4552 total[0] = Fcons (make_number (total_conses),
4553 make_number (total_free_conses));
4554 total[1] = Fcons (make_number (total_symbols),
4555 make_number (total_free_symbols));
4556 total[2] = Fcons (make_number (total_markers),
4557 make_number (total_free_markers));
4558 total[3] = make_number (total_string_size);
4559 total[4] = make_number (total_vector_size);
4560 total[5] = Fcons (make_number (total_floats),
4561 make_number (total_free_floats));
4562 total[6] = Fcons (make_number (total_intervals),
4563 make_number (total_free_intervals));
4564 total[7] = Fcons (make_number (total_strings),
4565 make_number (total_free_strings));
4566
4567 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4568 {
4569 /* Compute average percentage of zombies. */
4570 double nlive = 0;
4571
4572 for (i = 0; i < 7; ++i)
4573 if (CONSP (total[i]))
4574 nlive += XFASTINT (XCAR (total[i]));
4575
4576 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4577 max_live = max (nlive, max_live);
4578 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4579 max_zombies = max (nzombies, max_zombies);
4580 ++ngcs;
4581 }
4582 #endif
4583
4584 if (!NILP (Vpost_gc_hook))
4585 {
4586 int count = inhibit_garbage_collection ();
4587 safe_run_hooks (Qpost_gc_hook);
4588 unbind_to (count, Qnil);
4589 }
4590
4591 /* Accumulate statistics. */
4592 EMACS_GET_TIME (t2);
4593 EMACS_SUB_TIME (t3, t2, t1);
4594 if (FLOATP (Vgc_elapsed))
4595 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4596 EMACS_SECS (t3) +
4597 EMACS_USECS (t3) * 1.0e-6);
4598 gcs_done++;
4599
4600 return Flist (sizeof total / sizeof *total, total);
4601 }
4602
4603
4604 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4605 only interesting objects referenced from glyphs are strings. */
4606
4607 static void
4608 mark_glyph_matrix (matrix)
4609 struct glyph_matrix *matrix;
4610 {
4611 struct glyph_row *row = matrix->rows;
4612 struct glyph_row *end = row + matrix->nrows;
4613
4614 for (; row < end; ++row)
4615 if (row->enabled_p)
4616 {
4617 int area;
4618 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4619 {
4620 struct glyph *glyph = row->glyphs[area];
4621 struct glyph *end_glyph = glyph + row->used[area];
4622
4623 for (; glyph < end_glyph; ++glyph)
4624 if (GC_STRINGP (glyph->object)
4625 && !STRING_MARKED_P (XSTRING (glyph->object)))
4626 mark_object (glyph->object);
4627 }
4628 }
4629 }
4630
4631
4632 /* Mark Lisp faces in the face cache C. */
4633
4634 static void
4635 mark_face_cache (c)
4636 struct face_cache *c;
4637 {
4638 if (c)
4639 {
4640 int i, j;
4641 for (i = 0; i < c->used; ++i)
4642 {
4643 struct face *face = FACE_FROM_ID (c->f, i);
4644
4645 if (face)
4646 {
4647 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
4648 mark_object (face->lface[j]);
4649 }
4650 }
4651 }
4652 }
4653
4654
4655 #ifdef HAVE_WINDOW_SYSTEM
4656
4657 /* Mark Lisp objects in image IMG. */
4658
4659 static void
4660 mark_image (img)
4661 struct image *img;
4662 {
4663 mark_object (img->spec);
4664
4665 if (!NILP (img->data.lisp_val))
4666 mark_object (img->data.lisp_val);
4667 }
4668
4669
4670 /* Mark Lisp objects in image cache of frame F. It's done this way so
4671 that we don't have to include xterm.h here. */
4672
4673 static void
4674 mark_image_cache (f)
4675 struct frame *f;
4676 {
4677 forall_images_in_image_cache (f, mark_image);
4678 }
4679
4680 #endif /* HAVE_X_WINDOWS */
4681
4682
4683 \f
4684 /* Mark reference to a Lisp_Object.
4685 If the object referred to has not been seen yet, recursively mark
4686 all the references contained in it. */
4687
4688 #define LAST_MARKED_SIZE 500
4689 Lisp_Object last_marked[LAST_MARKED_SIZE];
4690 int last_marked_index;
4691
4692 /* For debugging--call abort when we cdr down this many
4693 links of a list, in mark_object. In debugging,
4694 the call to abort will hit a breakpoint.
4695 Normally this is zero and the check never goes off. */
4696 int mark_object_loop_halt;
4697
4698 void
4699 mark_object (arg)
4700 Lisp_Object arg;
4701 {
4702 register Lisp_Object obj = arg;
4703 #ifdef GC_CHECK_MARKED_OBJECTS
4704 void *po;
4705 struct mem_node *m;
4706 #endif
4707 int cdr_count = 0;
4708
4709 loop:
4710
4711 if (PURE_POINTER_P (XPNTR (obj)))
4712 return;
4713
4714 last_marked[last_marked_index++] = obj;
4715 if (last_marked_index == LAST_MARKED_SIZE)
4716 last_marked_index = 0;
4717
4718 /* Perform some sanity checks on the objects marked here. Abort if
4719 we encounter an object we know is bogus. This increases GC time
4720 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4721 #ifdef GC_CHECK_MARKED_OBJECTS
4722
4723 po = (void *) XPNTR (obj);
4724
4725 /* Check that the object pointed to by PO is known to be a Lisp
4726 structure allocated from the heap. */
4727 #define CHECK_ALLOCATED() \
4728 do { \
4729 m = mem_find (po); \
4730 if (m == MEM_NIL) \
4731 abort (); \
4732 } while (0)
4733
4734 /* Check that the object pointed to by PO is live, using predicate
4735 function LIVEP. */
4736 #define CHECK_LIVE(LIVEP) \
4737 do { \
4738 if (!LIVEP (m, po)) \
4739 abort (); \
4740 } while (0)
4741
4742 /* Check both of the above conditions. */
4743 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4744 do { \
4745 CHECK_ALLOCATED (); \
4746 CHECK_LIVE (LIVEP); \
4747 } while (0) \
4748
4749 #else /* not GC_CHECK_MARKED_OBJECTS */
4750
4751 #define CHECK_ALLOCATED() (void) 0
4752 #define CHECK_LIVE(LIVEP) (void) 0
4753 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
4754
4755 #endif /* not GC_CHECK_MARKED_OBJECTS */
4756
4757 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
4758 {
4759 case Lisp_String:
4760 {
4761 register struct Lisp_String *ptr = XSTRING (obj);
4762 CHECK_ALLOCATED_AND_LIVE (live_string_p);
4763 MARK_INTERVAL_TREE (ptr->intervals);
4764 MARK_STRING (ptr);
4765 #ifdef GC_CHECK_STRING_BYTES
4766 /* Check that the string size recorded in the string is the
4767 same as the one recorded in the sdata structure. */
4768 CHECK_STRING_BYTES (ptr);
4769 #endif /* GC_CHECK_STRING_BYTES */
4770 }
4771 break;
4772
4773 case Lisp_Vectorlike:
4774 #ifdef GC_CHECK_MARKED_OBJECTS
4775 m = mem_find (po);
4776 if (m == MEM_NIL && !GC_SUBRP (obj)
4777 && po != &buffer_defaults
4778 && po != &buffer_local_symbols)
4779 abort ();
4780 #endif /* GC_CHECK_MARKED_OBJECTS */
4781
4782 if (GC_BUFFERP (obj))
4783 {
4784 if (!VECTOR_MARKED_P (XBUFFER (obj)))
4785 {
4786 #ifdef GC_CHECK_MARKED_OBJECTS
4787 if (po != &buffer_defaults && po != &buffer_local_symbols)
4788 {
4789 struct buffer *b;
4790 for (b = all_buffers; b && b != po; b = b->next)
4791 ;
4792 if (b == NULL)
4793 abort ();
4794 }
4795 #endif /* GC_CHECK_MARKED_OBJECTS */
4796 mark_buffer (obj);
4797 }
4798 }
4799 else if (GC_SUBRP (obj))
4800 break;
4801 else if (GC_COMPILEDP (obj))
4802 /* We could treat this just like a vector, but it is better to
4803 save the COMPILED_CONSTANTS element for last and avoid
4804 recursion there. */
4805 {
4806 register struct Lisp_Vector *ptr = XVECTOR (obj);
4807 register EMACS_INT size = ptr->size;
4808 register int i;
4809
4810 if (VECTOR_MARKED_P (ptr))
4811 break; /* Already marked */
4812
4813 CHECK_LIVE (live_vector_p);
4814 VECTOR_MARK (ptr); /* Else mark it */
4815 size &= PSEUDOVECTOR_SIZE_MASK;
4816 for (i = 0; i < size; i++) /* and then mark its elements */
4817 {
4818 if (i != COMPILED_CONSTANTS)
4819 mark_object (ptr->contents[i]);
4820 }
4821 obj = ptr->contents[COMPILED_CONSTANTS];
4822 goto loop;
4823 }
4824 else if (GC_FRAMEP (obj))
4825 {
4826 register struct frame *ptr = XFRAME (obj);
4827
4828 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4829 VECTOR_MARK (ptr); /* Else mark it */
4830
4831 CHECK_LIVE (live_vector_p);
4832 mark_object (ptr->name);
4833 mark_object (ptr->icon_name);
4834 mark_object (ptr->title);
4835 mark_object (ptr->focus_frame);
4836 mark_object (ptr->selected_window);
4837 mark_object (ptr->minibuffer_window);
4838 mark_object (ptr->param_alist);
4839 mark_object (ptr->scroll_bars);
4840 mark_object (ptr->condemned_scroll_bars);
4841 mark_object (ptr->menu_bar_items);
4842 mark_object (ptr->face_alist);
4843 mark_object (ptr->menu_bar_vector);
4844 mark_object (ptr->buffer_predicate);
4845 mark_object (ptr->buffer_list);
4846 mark_object (ptr->menu_bar_window);
4847 mark_object (ptr->tool_bar_window);
4848 mark_face_cache (ptr->face_cache);
4849 #ifdef HAVE_WINDOW_SYSTEM
4850 mark_image_cache (ptr);
4851 mark_object (ptr->tool_bar_items);
4852 mark_object (ptr->desired_tool_bar_string);
4853 mark_object (ptr->current_tool_bar_string);
4854 #endif /* HAVE_WINDOW_SYSTEM */
4855 }
4856 else if (GC_BOOL_VECTOR_P (obj))
4857 {
4858 register struct Lisp_Vector *ptr = XVECTOR (obj);
4859
4860 if (VECTOR_MARKED_P (ptr))
4861 break; /* Already marked */
4862 CHECK_LIVE (live_vector_p);
4863 VECTOR_MARK (ptr); /* Else mark it */
4864 }
4865 else if (GC_WINDOWP (obj))
4866 {
4867 register struct Lisp_Vector *ptr = XVECTOR (obj);
4868 struct window *w = XWINDOW (obj);
4869 register int i;
4870
4871 /* Stop if already marked. */
4872 if (VECTOR_MARKED_P (ptr))
4873 break;
4874
4875 /* Mark it. */
4876 CHECK_LIVE (live_vector_p);
4877 VECTOR_MARK (ptr);
4878
4879 /* There is no Lisp data above The member CURRENT_MATRIX in
4880 struct WINDOW. Stop marking when that slot is reached. */
4881 for (i = 0;
4882 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
4883 i++)
4884 mark_object (ptr->contents[i]);
4885
4886 /* Mark glyphs for leaf windows. Marking window matrices is
4887 sufficient because frame matrices use the same glyph
4888 memory. */
4889 if (NILP (w->hchild)
4890 && NILP (w->vchild)
4891 && w->current_matrix)
4892 {
4893 mark_glyph_matrix (w->current_matrix);
4894 mark_glyph_matrix (w->desired_matrix);
4895 }
4896 }
4897 else if (GC_HASH_TABLE_P (obj))
4898 {
4899 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
4900
4901 /* Stop if already marked. */
4902 if (VECTOR_MARKED_P (h))
4903 break;
4904
4905 /* Mark it. */
4906 CHECK_LIVE (live_vector_p);
4907 VECTOR_MARK (h);
4908
4909 /* Mark contents. */
4910 /* Do not mark next_free or next_weak.
4911 Being in the next_weak chain
4912 should not keep the hash table alive.
4913 No need to mark `count' since it is an integer. */
4914 mark_object (h->test);
4915 mark_object (h->weak);
4916 mark_object (h->rehash_size);
4917 mark_object (h->rehash_threshold);
4918 mark_object (h->hash);
4919 mark_object (h->next);
4920 mark_object (h->index);
4921 mark_object (h->user_hash_function);
4922 mark_object (h->user_cmp_function);
4923
4924 /* If hash table is not weak, mark all keys and values.
4925 For weak tables, mark only the vector. */
4926 if (GC_NILP (h->weak))
4927 mark_object (h->key_and_value);
4928 else
4929 VECTOR_MARK (XVECTOR (h->key_and_value));
4930 }
4931 else
4932 {
4933 register struct Lisp_Vector *ptr = XVECTOR (obj);
4934 register EMACS_INT size = ptr->size;
4935 register int i;
4936
4937 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4938 CHECK_LIVE (live_vector_p);
4939 VECTOR_MARK (ptr); /* Else mark it */
4940 if (size & PSEUDOVECTOR_FLAG)
4941 size &= PSEUDOVECTOR_SIZE_MASK;
4942
4943 for (i = 0; i < size; i++) /* and then mark its elements */
4944 mark_object (ptr->contents[i]);
4945 }
4946 break;
4947
4948 case Lisp_Symbol:
4949 {
4950 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
4951 struct Lisp_Symbol *ptrx;
4952
4953 if (ptr->gcmarkbit) break;
4954 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
4955 ptr->gcmarkbit = 1;
4956 mark_object (ptr->value);
4957 mark_object (ptr->function);
4958 mark_object (ptr->plist);
4959
4960 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
4961 MARK_STRING (XSTRING (ptr->xname));
4962 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
4963
4964 /* Note that we do not mark the obarray of the symbol.
4965 It is safe not to do so because nothing accesses that
4966 slot except to check whether it is nil. */
4967 ptr = ptr->next;
4968 if (ptr)
4969 {
4970 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
4971 XSETSYMBOL (obj, ptrx);
4972 goto loop;
4973 }
4974 }
4975 break;
4976
4977 case Lisp_Misc:
4978 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
4979 if (XMARKER (obj)->gcmarkbit)
4980 break;
4981 XMARKER (obj)->gcmarkbit = 1;
4982 switch (XMISCTYPE (obj))
4983 {
4984 case Lisp_Misc_Buffer_Local_Value:
4985 case Lisp_Misc_Some_Buffer_Local_Value:
4986 {
4987 register struct Lisp_Buffer_Local_Value *ptr
4988 = XBUFFER_LOCAL_VALUE (obj);
4989 /* If the cdr is nil, avoid recursion for the car. */
4990 if (EQ (ptr->cdr, Qnil))
4991 {
4992 obj = ptr->realvalue;
4993 goto loop;
4994 }
4995 mark_object (ptr->realvalue);
4996 mark_object (ptr->buffer);
4997 mark_object (ptr->frame);
4998 obj = ptr->cdr;
4999 goto loop;
5000 }
5001
5002 case Lisp_Misc_Marker:
5003 /* DO NOT mark thru the marker's chain.
5004 The buffer's markers chain does not preserve markers from gc;
5005 instead, markers are removed from the chain when freed by gc. */
5006 case Lisp_Misc_Intfwd:
5007 case Lisp_Misc_Boolfwd:
5008 case Lisp_Misc_Objfwd:
5009 case Lisp_Misc_Buffer_Objfwd:
5010 case Lisp_Misc_Kboard_Objfwd:
5011 /* Don't bother with Lisp_Buffer_Objfwd,
5012 since all markable slots in current buffer marked anyway. */
5013 /* Don't need to do Lisp_Objfwd, since the places they point
5014 are protected with staticpro. */
5015 case Lisp_Misc_Save_Value:
5016 break;
5017
5018 case Lisp_Misc_Overlay:
5019 {
5020 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5021 mark_object (ptr->start);
5022 mark_object (ptr->end);
5023 mark_object (ptr->plist);
5024 if (ptr->next)
5025 {
5026 XSETMISC (obj, ptr->next);
5027 goto loop;
5028 }
5029 }
5030 break;
5031
5032 default:
5033 abort ();
5034 }
5035 break;
5036
5037 case Lisp_Cons:
5038 {
5039 register struct Lisp_Cons *ptr = XCONS (obj);
5040 if (CONS_MARKED_P (ptr)) break;
5041 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5042 CONS_MARK (ptr);
5043 /* If the cdr is nil, avoid recursion for the car. */
5044 if (EQ (ptr->cdr, Qnil))
5045 {
5046 obj = ptr->car;
5047 cdr_count = 0;
5048 goto loop;
5049 }
5050 mark_object (ptr->car);
5051 obj = ptr->cdr;
5052 cdr_count++;
5053 if (cdr_count == mark_object_loop_halt)
5054 abort ();
5055 goto loop;
5056 }
5057
5058 case Lisp_Float:
5059 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5060 FLOAT_MARK (XFLOAT (obj));
5061 break;
5062
5063 case Lisp_Int:
5064 break;
5065
5066 default:
5067 abort ();
5068 }
5069
5070 #undef CHECK_LIVE
5071 #undef CHECK_ALLOCATED
5072 #undef CHECK_ALLOCATED_AND_LIVE
5073 }
5074
5075 /* Mark the pointers in a buffer structure. */
5076
5077 static void
5078 mark_buffer (buf)
5079 Lisp_Object buf;
5080 {
5081 register struct buffer *buffer = XBUFFER (buf);
5082 register Lisp_Object *ptr, tmp;
5083 Lisp_Object base_buffer;
5084
5085 VECTOR_MARK (buffer);
5086
5087 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5088
5089 if (CONSP (buffer->undo_list))
5090 {
5091 Lisp_Object tail;
5092 tail = buffer->undo_list;
5093
5094 /* We mark the undo list specially because
5095 its pointers to markers should be weak. */
5096
5097 while (CONSP (tail))
5098 {
5099 register struct Lisp_Cons *ptr = XCONS (tail);
5100
5101 if (CONS_MARKED_P (ptr))
5102 break;
5103 CONS_MARK (ptr);
5104 if (GC_CONSP (ptr->car)
5105 && !CONS_MARKED_P (XCONS (ptr->car))
5106 && GC_MARKERP (XCAR (ptr->car)))
5107 {
5108 CONS_MARK (XCONS (ptr->car));
5109 mark_object (XCDR (ptr->car));
5110 }
5111 else
5112 mark_object (ptr->car);
5113
5114 if (CONSP (ptr->cdr))
5115 tail = ptr->cdr;
5116 else
5117 break;
5118 }
5119
5120 mark_object (XCDR (tail));
5121 }
5122 else
5123 mark_object (buffer->undo_list);
5124
5125 if (buffer->overlays_before)
5126 {
5127 XSETMISC (tmp, buffer->overlays_before);
5128 mark_object (tmp);
5129 }
5130 if (buffer->overlays_after)
5131 {
5132 XSETMISC (tmp, buffer->overlays_after);
5133 mark_object (tmp);
5134 }
5135
5136 for (ptr = &buffer->name;
5137 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5138 ptr++)
5139 mark_object (*ptr);
5140
5141 /* If this is an indirect buffer, mark its base buffer. */
5142 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5143 {
5144 XSETBUFFER (base_buffer, buffer->base_buffer);
5145 mark_buffer (base_buffer);
5146 }
5147 }
5148
5149
5150 /* Value is non-zero if OBJ will survive the current GC because it's
5151 either marked or does not need to be marked to survive. */
5152
5153 int
5154 survives_gc_p (obj)
5155 Lisp_Object obj;
5156 {
5157 int survives_p;
5158
5159 switch (XGCTYPE (obj))
5160 {
5161 case Lisp_Int:
5162 survives_p = 1;
5163 break;
5164
5165 case Lisp_Symbol:
5166 survives_p = XSYMBOL (obj)->gcmarkbit;
5167 break;
5168
5169 case Lisp_Misc:
5170 survives_p = XMARKER (obj)->gcmarkbit;
5171 break;
5172
5173 case Lisp_String:
5174 survives_p = STRING_MARKED_P (XSTRING (obj));
5175 break;
5176
5177 case Lisp_Vectorlike:
5178 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5179 break;
5180
5181 case Lisp_Cons:
5182 survives_p = CONS_MARKED_P (XCONS (obj));
5183 break;
5184
5185 case Lisp_Float:
5186 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5187 break;
5188
5189 default:
5190 abort ();
5191 }
5192
5193 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5194 }
5195
5196
5197 \f
5198 /* Sweep: find all structures not marked, and free them. */
5199
5200 static void
5201 gc_sweep ()
5202 {
5203 /* Remove or mark entries in weak hash tables.
5204 This must be done before any object is unmarked. */
5205 sweep_weak_hash_tables ();
5206
5207 sweep_strings ();
5208 #ifdef GC_CHECK_STRING_BYTES
5209 if (!noninteractive)
5210 check_string_bytes (1);
5211 #endif
5212
5213 /* Put all unmarked conses on free list */
5214 {
5215 register struct cons_block *cblk;
5216 struct cons_block **cprev = &cons_block;
5217 register int lim = cons_block_index;
5218 register int num_free = 0, num_used = 0;
5219
5220 cons_free_list = 0;
5221
5222 for (cblk = cons_block; cblk; cblk = *cprev)
5223 {
5224 register int i;
5225 int this_free = 0;
5226 for (i = 0; i < lim; i++)
5227 if (!CONS_MARKED_P (&cblk->conses[i]))
5228 {
5229 this_free++;
5230 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5231 cons_free_list = &cblk->conses[i];
5232 #if GC_MARK_STACK
5233 cons_free_list->car = Vdead;
5234 #endif
5235 }
5236 else
5237 {
5238 num_used++;
5239 CONS_UNMARK (&cblk->conses[i]);
5240 }
5241 lim = CONS_BLOCK_SIZE;
5242 /* If this block contains only free conses and we have already
5243 seen more than two blocks worth of free conses then deallocate
5244 this block. */
5245 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5246 {
5247 *cprev = cblk->next;
5248 /* Unhook from the free list. */
5249 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5250 lisp_align_free (cblk);
5251 n_cons_blocks--;
5252 }
5253 else
5254 {
5255 num_free += this_free;
5256 cprev = &cblk->next;
5257 }
5258 }
5259 total_conses = num_used;
5260 total_free_conses = num_free;
5261 }
5262
5263 /* Put all unmarked floats on free list */
5264 {
5265 register struct float_block *fblk;
5266 struct float_block **fprev = &float_block;
5267 register int lim = float_block_index;
5268 register int num_free = 0, num_used = 0;
5269
5270 float_free_list = 0;
5271
5272 for (fblk = float_block; fblk; fblk = *fprev)
5273 {
5274 register int i;
5275 int this_free = 0;
5276 for (i = 0; i < lim; i++)
5277 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5278 {
5279 this_free++;
5280 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5281 float_free_list = &fblk->floats[i];
5282 }
5283 else
5284 {
5285 num_used++;
5286 FLOAT_UNMARK (&fblk->floats[i]);
5287 }
5288 lim = FLOAT_BLOCK_SIZE;
5289 /* If this block contains only free floats and we have already
5290 seen more than two blocks worth of free floats then deallocate
5291 this block. */
5292 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5293 {
5294 *fprev = fblk->next;
5295 /* Unhook from the free list. */
5296 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5297 lisp_align_free (fblk);
5298 n_float_blocks--;
5299 }
5300 else
5301 {
5302 num_free += this_free;
5303 fprev = &fblk->next;
5304 }
5305 }
5306 total_floats = num_used;
5307 total_free_floats = num_free;
5308 }
5309
5310 /* Put all unmarked intervals on free list */
5311 {
5312 register struct interval_block *iblk;
5313 struct interval_block **iprev = &interval_block;
5314 register int lim = interval_block_index;
5315 register int num_free = 0, num_used = 0;
5316
5317 interval_free_list = 0;
5318
5319 for (iblk = interval_block; iblk; iblk = *iprev)
5320 {
5321 register int i;
5322 int this_free = 0;
5323
5324 for (i = 0; i < lim; i++)
5325 {
5326 if (!iblk->intervals[i].gcmarkbit)
5327 {
5328 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5329 interval_free_list = &iblk->intervals[i];
5330 this_free++;
5331 }
5332 else
5333 {
5334 num_used++;
5335 iblk->intervals[i].gcmarkbit = 0;
5336 }
5337 }
5338 lim = INTERVAL_BLOCK_SIZE;
5339 /* If this block contains only free intervals and we have already
5340 seen more than two blocks worth of free intervals then
5341 deallocate this block. */
5342 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5343 {
5344 *iprev = iblk->next;
5345 /* Unhook from the free list. */
5346 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5347 lisp_free (iblk);
5348 n_interval_blocks--;
5349 }
5350 else
5351 {
5352 num_free += this_free;
5353 iprev = &iblk->next;
5354 }
5355 }
5356 total_intervals = num_used;
5357 total_free_intervals = num_free;
5358 }
5359
5360 /* Put all unmarked symbols on free list */
5361 {
5362 register struct symbol_block *sblk;
5363 struct symbol_block **sprev = &symbol_block;
5364 register int lim = symbol_block_index;
5365 register int num_free = 0, num_used = 0;
5366
5367 symbol_free_list = NULL;
5368
5369 for (sblk = symbol_block; sblk; sblk = *sprev)
5370 {
5371 int this_free = 0;
5372 struct Lisp_Symbol *sym = sblk->symbols;
5373 struct Lisp_Symbol *end = sym + lim;
5374
5375 for (; sym < end; ++sym)
5376 {
5377 /* Check if the symbol was created during loadup. In such a case
5378 it might be pointed to by pure bytecode which we don't trace,
5379 so we conservatively assume that it is live. */
5380 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5381
5382 if (!sym->gcmarkbit && !pure_p)
5383 {
5384 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5385 symbol_free_list = sym;
5386 #if GC_MARK_STACK
5387 symbol_free_list->function = Vdead;
5388 #endif
5389 ++this_free;
5390 }
5391 else
5392 {
5393 ++num_used;
5394 if (!pure_p)
5395 UNMARK_STRING (XSTRING (sym->xname));
5396 sym->gcmarkbit = 0;
5397 }
5398 }
5399
5400 lim = SYMBOL_BLOCK_SIZE;
5401 /* If this block contains only free symbols and we have already
5402 seen more than two blocks worth of free symbols then deallocate
5403 this block. */
5404 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5405 {
5406 *sprev = sblk->next;
5407 /* Unhook from the free list. */
5408 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5409 lisp_free (sblk);
5410 n_symbol_blocks--;
5411 }
5412 else
5413 {
5414 num_free += this_free;
5415 sprev = &sblk->next;
5416 }
5417 }
5418 total_symbols = num_used;
5419 total_free_symbols = num_free;
5420 }
5421
5422 /* Put all unmarked misc's on free list.
5423 For a marker, first unchain it from the buffer it points into. */
5424 {
5425 register struct marker_block *mblk;
5426 struct marker_block **mprev = &marker_block;
5427 register int lim = marker_block_index;
5428 register int num_free = 0, num_used = 0;
5429
5430 marker_free_list = 0;
5431
5432 for (mblk = marker_block; mblk; mblk = *mprev)
5433 {
5434 register int i;
5435 int this_free = 0;
5436
5437 for (i = 0; i < lim; i++)
5438 {
5439 if (!mblk->markers[i].u_marker.gcmarkbit)
5440 {
5441 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5442 unchain_marker (&mblk->markers[i].u_marker);
5443 /* Set the type of the freed object to Lisp_Misc_Free.
5444 We could leave the type alone, since nobody checks it,
5445 but this might catch bugs faster. */
5446 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5447 mblk->markers[i].u_free.chain = marker_free_list;
5448 marker_free_list = &mblk->markers[i];
5449 this_free++;
5450 }
5451 else
5452 {
5453 num_used++;
5454 mblk->markers[i].u_marker.gcmarkbit = 0;
5455 }
5456 }
5457 lim = MARKER_BLOCK_SIZE;
5458 /* If this block contains only free markers and we have already
5459 seen more than two blocks worth of free markers then deallocate
5460 this block. */
5461 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5462 {
5463 *mprev = mblk->next;
5464 /* Unhook from the free list. */
5465 marker_free_list = mblk->markers[0].u_free.chain;
5466 lisp_free (mblk);
5467 n_marker_blocks--;
5468 }
5469 else
5470 {
5471 num_free += this_free;
5472 mprev = &mblk->next;
5473 }
5474 }
5475
5476 total_markers = num_used;
5477 total_free_markers = num_free;
5478 }
5479
5480 /* Free all unmarked buffers */
5481 {
5482 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5483
5484 while (buffer)
5485 if (!VECTOR_MARKED_P (buffer))
5486 {
5487 if (prev)
5488 prev->next = buffer->next;
5489 else
5490 all_buffers = buffer->next;
5491 next = buffer->next;
5492 lisp_free (buffer);
5493 buffer = next;
5494 }
5495 else
5496 {
5497 VECTOR_UNMARK (buffer);
5498 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5499 prev = buffer, buffer = buffer->next;
5500 }
5501 }
5502
5503 /* Free all unmarked vectors */
5504 {
5505 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5506 total_vector_size = 0;
5507
5508 while (vector)
5509 if (!VECTOR_MARKED_P (vector))
5510 {
5511 if (prev)
5512 prev->next = vector->next;
5513 else
5514 all_vectors = vector->next;
5515 next = vector->next;
5516 lisp_free (vector);
5517 n_vectors--;
5518 vector = next;
5519
5520 }
5521 else
5522 {
5523 VECTOR_UNMARK (vector);
5524 if (vector->size & PSEUDOVECTOR_FLAG)
5525 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5526 else
5527 total_vector_size += vector->size;
5528 prev = vector, vector = vector->next;
5529 }
5530 }
5531
5532 #ifdef GC_CHECK_STRING_BYTES
5533 if (!noninteractive)
5534 check_string_bytes (1);
5535 #endif
5536 }
5537
5538
5539
5540 \f
5541 /* Debugging aids. */
5542
5543 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5544 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5545 This may be helpful in debugging Emacs's memory usage.
5546 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5547 ()
5548 {
5549 Lisp_Object end;
5550
5551 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5552
5553 return end;
5554 }
5555
5556 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5557 doc: /* Return a list of counters that measure how much consing there has been.
5558 Each of these counters increments for a certain kind of object.
5559 The counters wrap around from the largest positive integer to zero.
5560 Garbage collection does not decrease them.
5561 The elements of the value are as follows:
5562 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5563 All are in units of 1 = one object consed
5564 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5565 objects consed.
5566 MISCS include overlays, markers, and some internal types.
5567 Frames, windows, buffers, and subprocesses count as vectors
5568 (but the contents of a buffer's text do not count here). */)
5569 ()
5570 {
5571 Lisp_Object consed[8];
5572
5573 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5574 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5575 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5576 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5577 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5578 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5579 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5580 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5581
5582 return Flist (8, consed);
5583 }
5584
5585 int suppress_checking;
5586 void
5587 die (msg, file, line)
5588 const char *msg;
5589 const char *file;
5590 int line;
5591 {
5592 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5593 file, line, msg);
5594 abort ();
5595 }
5596 \f
5597 /* Initialization */
5598
5599 void
5600 init_alloc_once ()
5601 {
5602 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5603 purebeg = PUREBEG;
5604 pure_size = PURESIZE;
5605 pure_bytes_used = 0;
5606 pure_bytes_used_before_overflow = 0;
5607
5608 /* Initialize the list of free aligned blocks. */
5609 free_ablock = NULL;
5610
5611 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5612 mem_init ();
5613 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5614 #endif
5615
5616 all_vectors = 0;
5617 ignore_warnings = 1;
5618 #ifdef DOUG_LEA_MALLOC
5619 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5620 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5621 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5622 #endif
5623 init_strings ();
5624 init_cons ();
5625 init_symbol ();
5626 init_marker ();
5627 init_float ();
5628 init_intervals ();
5629
5630 #ifdef REL_ALLOC
5631 malloc_hysteresis = 32;
5632 #else
5633 malloc_hysteresis = 0;
5634 #endif
5635
5636 spare_memory = (char *) malloc (SPARE_MEMORY);
5637
5638 ignore_warnings = 0;
5639 gcprolist = 0;
5640 byte_stack_list = 0;
5641 staticidx = 0;
5642 consing_since_gc = 0;
5643 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5644 #ifdef VIRT_ADDR_VARIES
5645 malloc_sbrk_unused = 1<<22; /* A large number */
5646 malloc_sbrk_used = 100000; /* as reasonable as any number */
5647 #endif /* VIRT_ADDR_VARIES */
5648 }
5649
5650 void
5651 init_alloc ()
5652 {
5653 gcprolist = 0;
5654 byte_stack_list = 0;
5655 #if GC_MARK_STACK
5656 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5657 setjmp_tested_p = longjmps_done = 0;
5658 #endif
5659 #endif
5660 Vgc_elapsed = make_float (0.0);
5661 gcs_done = 0;
5662 }
5663
5664 void
5665 syms_of_alloc ()
5666 {
5667 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
5668 doc: /* *Number of bytes of consing between garbage collections.
5669 Garbage collection can happen automatically once this many bytes have been
5670 allocated since the last garbage collection. All data types count.
5671
5672 Garbage collection happens automatically only when `eval' is called.
5673
5674 By binding this temporarily to a large number, you can effectively
5675 prevent garbage collection during a part of the program. */);
5676
5677 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
5678 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
5679
5680 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
5681 doc: /* Number of cons cells that have been consed so far. */);
5682
5683 DEFVAR_INT ("floats-consed", &floats_consed,
5684 doc: /* Number of floats that have been consed so far. */);
5685
5686 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
5687 doc: /* Number of vector cells that have been consed so far. */);
5688
5689 DEFVAR_INT ("symbols-consed", &symbols_consed,
5690 doc: /* Number of symbols that have been consed so far. */);
5691
5692 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
5693 doc: /* Number of string characters that have been consed so far. */);
5694
5695 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
5696 doc: /* Number of miscellaneous objects that have been consed so far. */);
5697
5698 DEFVAR_INT ("intervals-consed", &intervals_consed,
5699 doc: /* Number of intervals that have been consed so far. */);
5700
5701 DEFVAR_INT ("strings-consed", &strings_consed,
5702 doc: /* Number of strings that have been consed so far. */);
5703
5704 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
5705 doc: /* Non-nil means loading Lisp code in order to dump an executable.
5706 This means that certain objects should be allocated in shared (pure) space. */);
5707
5708 DEFVAR_INT ("undo-limit", &undo_limit,
5709 doc: /* Keep no more undo information once it exceeds this size.
5710 This limit is applied when garbage collection happens.
5711 The size is counted as the number of bytes occupied,
5712 which includes both saved text and other data. */);
5713 undo_limit = 20000;
5714
5715 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
5716 doc: /* Don't keep more than this much size of undo information.
5717 A command which pushes past this size is itself forgotten.
5718 This limit is applied when garbage collection happens.
5719 The size is counted as the number of bytes occupied,
5720 which includes both saved text and other data. */);
5721 undo_strong_limit = 30000;
5722
5723 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
5724 doc: /* Non-nil means display messages at start and end of garbage collection. */);
5725 garbage_collection_messages = 0;
5726
5727 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
5728 doc: /* Hook run after garbage collection has finished. */);
5729 Vpost_gc_hook = Qnil;
5730 Qpost_gc_hook = intern ("post-gc-hook");
5731 staticpro (&Qpost_gc_hook);
5732
5733 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
5734 doc: /* Precomputed `signal' argument for memory-full error. */);
5735 /* We build this in advance because if we wait until we need it, we might
5736 not be able to allocate the memory to hold it. */
5737 Vmemory_signal_data
5738 = list2 (Qerror,
5739 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
5740
5741 DEFVAR_LISP ("memory-full", &Vmemory_full,
5742 doc: /* Non-nil means we are handling a memory-full error. */);
5743 Vmemory_full = Qnil;
5744
5745 staticpro (&Qgc_cons_threshold);
5746 Qgc_cons_threshold = intern ("gc-cons-threshold");
5747
5748 staticpro (&Qchar_table_extra_slots);
5749 Qchar_table_extra_slots = intern ("char-table-extra-slots");
5750
5751 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
5752 doc: /* Accumulated time elapsed in garbage collections.
5753 The time is in seconds as a floating point value. */);
5754 DEFVAR_INT ("gcs-done", &gcs_done,
5755 doc: /* Accumulated number of garbage collections done. */);
5756
5757 defsubr (&Scons);
5758 defsubr (&Slist);
5759 defsubr (&Svector);
5760 defsubr (&Smake_byte_code);
5761 defsubr (&Smake_list);
5762 defsubr (&Smake_vector);
5763 defsubr (&Smake_char_table);
5764 defsubr (&Smake_string);
5765 defsubr (&Smake_bool_vector);
5766 defsubr (&Smake_symbol);
5767 defsubr (&Smake_marker);
5768 defsubr (&Spurecopy);
5769 defsubr (&Sgarbage_collect);
5770 defsubr (&Smemory_limit);
5771 defsubr (&Smemory_use_counts);
5772
5773 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5774 defsubr (&Sgc_status);
5775 #endif
5776 }
5777
5778 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
5779 (do not change this comment) */