]> code.delx.au - gnu-emacs/blob - src/fns.c
(Fclear_string): Put call to CHECK_STRING in correct place.
[gnu-emacs] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985, 86, 87, 93, 94, 95, 97, 98, 99, 2000, 2001, 02, 03, 2004
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23
24 #ifdef HAVE_UNISTD_H
25 #include <unistd.h>
26 #endif
27 #include <time.h>
28
29 #ifndef MAC_OSX
30 /* On Mac OS X, defining this conflicts with precompiled headers. */
31
32 /* Note on some machines this defines `vector' as a typedef,
33 so make sure we don't use that name in this file. */
34 #undef vector
35 #define vector *****
36
37 #endif /* ! MAC_OSX */
38
39 #include "lisp.h"
40 #include "commands.h"
41 #include "charset.h"
42 #include "coding.h"
43 #include "buffer.h"
44 #include "keyboard.h"
45 #include "keymap.h"
46 #include "intervals.h"
47 #include "frame.h"
48 #include "window.h"
49 #include "blockinput.h"
50 #if defined (HAVE_MENUS) && defined (HAVE_X_WINDOWS)
51 #include "xterm.h"
52 #endif
53
54 #ifndef NULL
55 #define NULL ((POINTER_TYPE *)0)
56 #endif
57
58 /* Nonzero enables use of dialog boxes for questions
59 asked by mouse commands. */
60 int use_dialog_box;
61
62 /* Nonzero enables use of a file dialog for file name
63 questions asked by mouse commands. */
64 int use_file_dialog;
65
66 extern int minibuffer_auto_raise;
67 extern Lisp_Object minibuf_window;
68 extern Lisp_Object Vlocale_coding_system;
69
70 Lisp_Object Qstring_lessp, Qprovide, Qrequire;
71 Lisp_Object Qyes_or_no_p_history;
72 Lisp_Object Qcursor_in_echo_area;
73 Lisp_Object Qwidget_type;
74 Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
75
76 extern Lisp_Object Qinput_method_function;
77
78 static int internal_equal ();
79
80 extern long get_random ();
81 extern void seed_random ();
82
83 #ifndef HAVE_UNISTD_H
84 extern long time ();
85 #endif
86 \f
87 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
88 doc: /* Return the argument unchanged. */)
89 (arg)
90 Lisp_Object arg;
91 {
92 return arg;
93 }
94
95 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
96 doc: /* Return a pseudo-random number.
97 All integers representable in Lisp are equally likely.
98 On most systems, this is 29 bits' worth.
99 With positive integer argument N, return random number in interval [0,N).
100 With argument t, set the random number seed from the current time and pid. */)
101 (n)
102 Lisp_Object n;
103 {
104 EMACS_INT val;
105 Lisp_Object lispy_val;
106 unsigned long denominator;
107
108 if (EQ (n, Qt))
109 seed_random (getpid () + time (NULL));
110 if (NATNUMP (n) && XFASTINT (n) != 0)
111 {
112 /* Try to take our random number from the higher bits of VAL,
113 not the lower, since (says Gentzel) the low bits of `random'
114 are less random than the higher ones. We do this by using the
115 quotient rather than the remainder. At the high end of the RNG
116 it's possible to get a quotient larger than n; discarding
117 these values eliminates the bias that would otherwise appear
118 when using a large n. */
119 denominator = ((unsigned long)1 << VALBITS) / XFASTINT (n);
120 do
121 val = get_random () / denominator;
122 while (val >= XFASTINT (n));
123 }
124 else
125 val = get_random ();
126 XSETINT (lispy_val, val);
127 return lispy_val;
128 }
129 \f
130 /* Random data-structure functions */
131
132 DEFUN ("length", Flength, Slength, 1, 1, 0,
133 doc: /* Return the length of vector, list or string SEQUENCE.
134 A byte-code function object is also allowed.
135 If the string contains multibyte characters, this is not necessarily
136 the number of bytes in the string; it is the number of characters.
137 To get the number of bytes, use `string-bytes'. */)
138 (sequence)
139 register Lisp_Object sequence;
140 {
141 register Lisp_Object val;
142 register int i;
143
144 retry:
145 if (STRINGP (sequence))
146 XSETFASTINT (val, SCHARS (sequence));
147 else if (VECTORP (sequence))
148 XSETFASTINT (val, XVECTOR (sequence)->size);
149 else if (SUB_CHAR_TABLE_P (sequence))
150 XSETFASTINT (val, SUB_CHAR_TABLE_ORDINARY_SLOTS);
151 else if (CHAR_TABLE_P (sequence))
152 XSETFASTINT (val, MAX_CHAR);
153 else if (BOOL_VECTOR_P (sequence))
154 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
155 else if (COMPILEDP (sequence))
156 XSETFASTINT (val, XVECTOR (sequence)->size & PSEUDOVECTOR_SIZE_MASK);
157 else if (CONSP (sequence))
158 {
159 i = 0;
160 while (CONSP (sequence))
161 {
162 sequence = XCDR (sequence);
163 ++i;
164
165 if (!CONSP (sequence))
166 break;
167
168 sequence = XCDR (sequence);
169 ++i;
170 QUIT;
171 }
172
173 if (!NILP (sequence))
174 wrong_type_argument (Qlistp, sequence);
175
176 val = make_number (i);
177 }
178 else if (NILP (sequence))
179 XSETFASTINT (val, 0);
180 else
181 {
182 sequence = wrong_type_argument (Qsequencep, sequence);
183 goto retry;
184 }
185 return val;
186 }
187
188 /* This does not check for quits. That is safe
189 since it must terminate. */
190
191 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
192 doc: /* Return the length of a list, but avoid error or infinite loop.
193 This function never gets an error. If LIST is not really a list,
194 it returns 0. If LIST is circular, it returns a finite value
195 which is at least the number of distinct elements. */)
196 (list)
197 Lisp_Object list;
198 {
199 Lisp_Object tail, halftail, length;
200 int len = 0;
201
202 /* halftail is used to detect circular lists. */
203 halftail = list;
204 for (tail = list; CONSP (tail); tail = XCDR (tail))
205 {
206 if (EQ (tail, halftail) && len != 0)
207 break;
208 len++;
209 if ((len & 1) == 0)
210 halftail = XCDR (halftail);
211 }
212
213 XSETINT (length, len);
214 return length;
215 }
216
217 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
218 doc: /* Return the number of bytes in STRING.
219 If STRING is a multibyte string, this is greater than the length of STRING. */)
220 (string)
221 Lisp_Object string;
222 {
223 CHECK_STRING (string);
224 return make_number (SBYTES (string));
225 }
226
227 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
228 doc: /* Return t if two strings have identical contents.
229 Case is significant, but text properties are ignored.
230 Symbols are also allowed; their print names are used instead. */)
231 (s1, s2)
232 register Lisp_Object s1, s2;
233 {
234 if (SYMBOLP (s1))
235 s1 = SYMBOL_NAME (s1);
236 if (SYMBOLP (s2))
237 s2 = SYMBOL_NAME (s2);
238 CHECK_STRING (s1);
239 CHECK_STRING (s2);
240
241 if (SCHARS (s1) != SCHARS (s2)
242 || SBYTES (s1) != SBYTES (s2)
243 || bcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
244 return Qnil;
245 return Qt;
246 }
247
248 DEFUN ("compare-strings", Fcompare_strings,
249 Scompare_strings, 6, 7, 0,
250 doc: /* Compare the contents of two strings, converting to multibyte if needed.
251 In string STR1, skip the first START1 characters and stop at END1.
252 In string STR2, skip the first START2 characters and stop at END2.
253 END1 and END2 default to the full lengths of the respective strings.
254
255 Case is significant in this comparison if IGNORE-CASE is nil.
256 Unibyte strings are converted to multibyte for comparison.
257
258 The value is t if the strings (or specified portions) match.
259 If string STR1 is less, the value is a negative number N;
260 - 1 - N is the number of characters that match at the beginning.
261 If string STR1 is greater, the value is a positive number N;
262 N - 1 is the number of characters that match at the beginning. */)
263 (str1, start1, end1, str2, start2, end2, ignore_case)
264 Lisp_Object str1, start1, end1, start2, str2, end2, ignore_case;
265 {
266 register int end1_char, end2_char;
267 register int i1, i1_byte, i2, i2_byte;
268
269 CHECK_STRING (str1);
270 CHECK_STRING (str2);
271 if (NILP (start1))
272 start1 = make_number (0);
273 if (NILP (start2))
274 start2 = make_number (0);
275 CHECK_NATNUM (start1);
276 CHECK_NATNUM (start2);
277 if (! NILP (end1))
278 CHECK_NATNUM (end1);
279 if (! NILP (end2))
280 CHECK_NATNUM (end2);
281
282 i1 = XINT (start1);
283 i2 = XINT (start2);
284
285 i1_byte = string_char_to_byte (str1, i1);
286 i2_byte = string_char_to_byte (str2, i2);
287
288 end1_char = SCHARS (str1);
289 if (! NILP (end1) && end1_char > XINT (end1))
290 end1_char = XINT (end1);
291
292 end2_char = SCHARS (str2);
293 if (! NILP (end2) && end2_char > XINT (end2))
294 end2_char = XINT (end2);
295
296 while (i1 < end1_char && i2 < end2_char)
297 {
298 /* When we find a mismatch, we must compare the
299 characters, not just the bytes. */
300 int c1, c2;
301
302 if (STRING_MULTIBYTE (str1))
303 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
304 else
305 {
306 c1 = SREF (str1, i1++);
307 c1 = unibyte_char_to_multibyte (c1);
308 }
309
310 if (STRING_MULTIBYTE (str2))
311 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
312 else
313 {
314 c2 = SREF (str2, i2++);
315 c2 = unibyte_char_to_multibyte (c2);
316 }
317
318 if (c1 == c2)
319 continue;
320
321 if (! NILP (ignore_case))
322 {
323 Lisp_Object tem;
324
325 tem = Fupcase (make_number (c1));
326 c1 = XINT (tem);
327 tem = Fupcase (make_number (c2));
328 c2 = XINT (tem);
329 }
330
331 if (c1 == c2)
332 continue;
333
334 /* Note that I1 has already been incremented
335 past the character that we are comparing;
336 hence we don't add or subtract 1 here. */
337 if (c1 < c2)
338 return make_number (- i1 + XINT (start1));
339 else
340 return make_number (i1 - XINT (start1));
341 }
342
343 if (i1 < end1_char)
344 return make_number (i1 - XINT (start1) + 1);
345 if (i2 < end2_char)
346 return make_number (- i1 + XINT (start1) - 1);
347
348 return Qt;
349 }
350
351 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
352 doc: /* Return t if first arg string is less than second in lexicographic order.
353 Case is significant.
354 Symbols are also allowed; their print names are used instead. */)
355 (s1, s2)
356 register Lisp_Object s1, s2;
357 {
358 register int end;
359 register int i1, i1_byte, i2, i2_byte;
360
361 if (SYMBOLP (s1))
362 s1 = SYMBOL_NAME (s1);
363 if (SYMBOLP (s2))
364 s2 = SYMBOL_NAME (s2);
365 CHECK_STRING (s1);
366 CHECK_STRING (s2);
367
368 i1 = i1_byte = i2 = i2_byte = 0;
369
370 end = SCHARS (s1);
371 if (end > SCHARS (s2))
372 end = SCHARS (s2);
373
374 while (i1 < end)
375 {
376 /* When we find a mismatch, we must compare the
377 characters, not just the bytes. */
378 int c1, c2;
379
380 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
381 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
382
383 if (c1 != c2)
384 return c1 < c2 ? Qt : Qnil;
385 }
386 return i1 < SCHARS (s2) ? Qt : Qnil;
387 }
388 \f
389 static Lisp_Object concat ();
390
391 /* ARGSUSED */
392 Lisp_Object
393 concat2 (s1, s2)
394 Lisp_Object s1, s2;
395 {
396 #ifdef NO_ARG_ARRAY
397 Lisp_Object args[2];
398 args[0] = s1;
399 args[1] = s2;
400 return concat (2, args, Lisp_String, 0);
401 #else
402 return concat (2, &s1, Lisp_String, 0);
403 #endif /* NO_ARG_ARRAY */
404 }
405
406 /* ARGSUSED */
407 Lisp_Object
408 concat3 (s1, s2, s3)
409 Lisp_Object s1, s2, s3;
410 {
411 #ifdef NO_ARG_ARRAY
412 Lisp_Object args[3];
413 args[0] = s1;
414 args[1] = s2;
415 args[2] = s3;
416 return concat (3, args, Lisp_String, 0);
417 #else
418 return concat (3, &s1, Lisp_String, 0);
419 #endif /* NO_ARG_ARRAY */
420 }
421
422 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
423 doc: /* Concatenate all the arguments and make the result a list.
424 The result is a list whose elements are the elements of all the arguments.
425 Each argument may be a list, vector or string.
426 The last argument is not copied, just used as the tail of the new list.
427 usage: (append &rest SEQUENCES) */)
428 (nargs, args)
429 int nargs;
430 Lisp_Object *args;
431 {
432 return concat (nargs, args, Lisp_Cons, 1);
433 }
434
435 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
436 doc: /* Concatenate all the arguments and make the result a string.
437 The result is a string whose elements are the elements of all the arguments.
438 Each argument may be a string or a list or vector of characters (integers).
439 usage: (concat &rest SEQUENCES) */)
440 (nargs, args)
441 int nargs;
442 Lisp_Object *args;
443 {
444 return concat (nargs, args, Lisp_String, 0);
445 }
446
447 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
448 doc: /* Concatenate all the arguments and make the result a vector.
449 The result is a vector whose elements are the elements of all the arguments.
450 Each argument may be a list, vector or string.
451 usage: (vconcat &rest SEQUENCES) */)
452 (nargs, args)
453 int nargs;
454 Lisp_Object *args;
455 {
456 return concat (nargs, args, Lisp_Vectorlike, 0);
457 }
458
459 /* Return a copy of a sub char table ARG. The elements except for a
460 nested sub char table are not copied. */
461 static Lisp_Object
462 copy_sub_char_table (arg)
463 Lisp_Object arg;
464 {
465 Lisp_Object copy = make_sub_char_table (XCHAR_TABLE (arg)->defalt);
466 int i;
467
468 /* Copy all the contents. */
469 bcopy (XCHAR_TABLE (arg)->contents, XCHAR_TABLE (copy)->contents,
470 SUB_CHAR_TABLE_ORDINARY_SLOTS * sizeof (Lisp_Object));
471 /* Recursively copy any sub char-tables in the ordinary slots. */
472 for (i = 32; i < SUB_CHAR_TABLE_ORDINARY_SLOTS; i++)
473 if (SUB_CHAR_TABLE_P (XCHAR_TABLE (arg)->contents[i]))
474 XCHAR_TABLE (copy)->contents[i]
475 = copy_sub_char_table (XCHAR_TABLE (copy)->contents[i]);
476
477 return copy;
478 }
479
480
481 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
482 doc: /* Return a copy of a list, vector, string or char-table.
483 The elements of a list or vector are not copied; they are shared
484 with the original. */)
485 (arg)
486 Lisp_Object arg;
487 {
488 if (NILP (arg)) return arg;
489
490 if (CHAR_TABLE_P (arg))
491 {
492 int i;
493 Lisp_Object copy;
494
495 copy = Fmake_char_table (XCHAR_TABLE (arg)->purpose, Qnil);
496 /* Copy all the slots, including the extra ones. */
497 bcopy (XVECTOR (arg)->contents, XVECTOR (copy)->contents,
498 ((XCHAR_TABLE (arg)->size & PSEUDOVECTOR_SIZE_MASK)
499 * sizeof (Lisp_Object)));
500
501 /* Recursively copy any sub char tables in the ordinary slots
502 for multibyte characters. */
503 for (i = CHAR_TABLE_SINGLE_BYTE_SLOTS;
504 i < CHAR_TABLE_ORDINARY_SLOTS; i++)
505 if (SUB_CHAR_TABLE_P (XCHAR_TABLE (arg)->contents[i]))
506 XCHAR_TABLE (copy)->contents[i]
507 = copy_sub_char_table (XCHAR_TABLE (copy)->contents[i]);
508
509 return copy;
510 }
511
512 if (BOOL_VECTOR_P (arg))
513 {
514 Lisp_Object val;
515 int size_in_chars
516 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
517 / BOOL_VECTOR_BITS_PER_CHAR);
518
519 val = Fmake_bool_vector (Flength (arg), Qnil);
520 bcopy (XBOOL_VECTOR (arg)->data, XBOOL_VECTOR (val)->data,
521 size_in_chars);
522 return val;
523 }
524
525 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
526 arg = wrong_type_argument (Qsequencep, arg);
527 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
528 }
529
530 /* This structure holds information of an argument of `concat' that is
531 a string and has text properties to be copied. */
532 struct textprop_rec
533 {
534 int argnum; /* refer to ARGS (arguments of `concat') */
535 int from; /* refer to ARGS[argnum] (argument string) */
536 int to; /* refer to VAL (the target string) */
537 };
538
539 static Lisp_Object
540 concat (nargs, args, target_type, last_special)
541 int nargs;
542 Lisp_Object *args;
543 enum Lisp_Type target_type;
544 int last_special;
545 {
546 Lisp_Object val;
547 register Lisp_Object tail;
548 register Lisp_Object this;
549 int toindex;
550 int toindex_byte = 0;
551 register int result_len;
552 register int result_len_byte;
553 register int argnum;
554 Lisp_Object last_tail;
555 Lisp_Object prev;
556 int some_multibyte;
557 /* When we make a multibyte string, we can't copy text properties
558 while concatinating each string because the length of resulting
559 string can't be decided until we finish the whole concatination.
560 So, we record strings that have text properties to be copied
561 here, and copy the text properties after the concatination. */
562 struct textprop_rec *textprops = NULL;
563 /* Number of elments in textprops. */
564 int num_textprops = 0;
565
566 tail = Qnil;
567
568 /* In append, the last arg isn't treated like the others */
569 if (last_special && nargs > 0)
570 {
571 nargs--;
572 last_tail = args[nargs];
573 }
574 else
575 last_tail = Qnil;
576
577 /* Canonicalize each argument. */
578 for (argnum = 0; argnum < nargs; argnum++)
579 {
580 this = args[argnum];
581 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
582 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
583 {
584 args[argnum] = wrong_type_argument (Qsequencep, this);
585 }
586 }
587
588 /* Compute total length in chars of arguments in RESULT_LEN.
589 If desired output is a string, also compute length in bytes
590 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
591 whether the result should be a multibyte string. */
592 result_len_byte = 0;
593 result_len = 0;
594 some_multibyte = 0;
595 for (argnum = 0; argnum < nargs; argnum++)
596 {
597 int len;
598 this = args[argnum];
599 len = XFASTINT (Flength (this));
600 if (target_type == Lisp_String)
601 {
602 /* We must count the number of bytes needed in the string
603 as well as the number of characters. */
604 int i;
605 Lisp_Object ch;
606 int this_len_byte;
607
608 if (VECTORP (this))
609 for (i = 0; i < len; i++)
610 {
611 ch = XVECTOR (this)->contents[i];
612 if (! INTEGERP (ch))
613 wrong_type_argument (Qintegerp, ch);
614 this_len_byte = CHAR_BYTES (XINT (ch));
615 result_len_byte += this_len_byte;
616 if (!SINGLE_BYTE_CHAR_P (XINT (ch)))
617 some_multibyte = 1;
618 }
619 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
620 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
621 else if (CONSP (this))
622 for (; CONSP (this); this = XCDR (this))
623 {
624 ch = XCAR (this);
625 if (! INTEGERP (ch))
626 wrong_type_argument (Qintegerp, ch);
627 this_len_byte = CHAR_BYTES (XINT (ch));
628 result_len_byte += this_len_byte;
629 if (!SINGLE_BYTE_CHAR_P (XINT (ch)))
630 some_multibyte = 1;
631 }
632 else if (STRINGP (this))
633 {
634 if (STRING_MULTIBYTE (this))
635 {
636 some_multibyte = 1;
637 result_len_byte += SBYTES (this);
638 }
639 else
640 result_len_byte += count_size_as_multibyte (SDATA (this),
641 SCHARS (this));
642 }
643 }
644
645 result_len += len;
646 }
647
648 if (! some_multibyte)
649 result_len_byte = result_len;
650
651 /* Create the output object. */
652 if (target_type == Lisp_Cons)
653 val = Fmake_list (make_number (result_len), Qnil);
654 else if (target_type == Lisp_Vectorlike)
655 val = Fmake_vector (make_number (result_len), Qnil);
656 else if (some_multibyte)
657 val = make_uninit_multibyte_string (result_len, result_len_byte);
658 else
659 val = make_uninit_string (result_len);
660
661 /* In `append', if all but last arg are nil, return last arg. */
662 if (target_type == Lisp_Cons && EQ (val, Qnil))
663 return last_tail;
664
665 /* Copy the contents of the args into the result. */
666 if (CONSP (val))
667 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
668 else
669 toindex = 0, toindex_byte = 0;
670
671 prev = Qnil;
672 if (STRINGP (val))
673 textprops
674 = (struct textprop_rec *) alloca (sizeof (struct textprop_rec) * nargs);
675
676 for (argnum = 0; argnum < nargs; argnum++)
677 {
678 Lisp_Object thislen;
679 int thisleni = 0;
680 register unsigned int thisindex = 0;
681 register unsigned int thisindex_byte = 0;
682
683 this = args[argnum];
684 if (!CONSP (this))
685 thislen = Flength (this), thisleni = XINT (thislen);
686
687 /* Between strings of the same kind, copy fast. */
688 if (STRINGP (this) && STRINGP (val)
689 && STRING_MULTIBYTE (this) == some_multibyte)
690 {
691 int thislen_byte = SBYTES (this);
692
693 bcopy (SDATA (this), SDATA (val) + toindex_byte,
694 SBYTES (this));
695 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
696 {
697 textprops[num_textprops].argnum = argnum;
698 textprops[num_textprops].from = 0;
699 textprops[num_textprops++].to = toindex;
700 }
701 toindex_byte += thislen_byte;
702 toindex += thisleni;
703 STRING_SET_CHARS (val, SCHARS (val));
704 }
705 /* Copy a single-byte string to a multibyte string. */
706 else if (STRINGP (this) && STRINGP (val))
707 {
708 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
709 {
710 textprops[num_textprops].argnum = argnum;
711 textprops[num_textprops].from = 0;
712 textprops[num_textprops++].to = toindex;
713 }
714 toindex_byte += copy_text (SDATA (this),
715 SDATA (val) + toindex_byte,
716 SCHARS (this), 0, 1);
717 toindex += thisleni;
718 }
719 else
720 /* Copy element by element. */
721 while (1)
722 {
723 register Lisp_Object elt;
724
725 /* Fetch next element of `this' arg into `elt', or break if
726 `this' is exhausted. */
727 if (NILP (this)) break;
728 if (CONSP (this))
729 elt = XCAR (this), this = XCDR (this);
730 else if (thisindex >= thisleni)
731 break;
732 else if (STRINGP (this))
733 {
734 int c;
735 if (STRING_MULTIBYTE (this))
736 {
737 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
738 thisindex,
739 thisindex_byte);
740 XSETFASTINT (elt, c);
741 }
742 else
743 {
744 XSETFASTINT (elt, SREF (this, thisindex++));
745 if (some_multibyte
746 && (XINT (elt) >= 0240
747 || (XINT (elt) >= 0200
748 && ! NILP (Vnonascii_translation_table)))
749 && XINT (elt) < 0400)
750 {
751 c = unibyte_char_to_multibyte (XINT (elt));
752 XSETINT (elt, c);
753 }
754 }
755 }
756 else if (BOOL_VECTOR_P (this))
757 {
758 int byte;
759 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
760 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
761 elt = Qt;
762 else
763 elt = Qnil;
764 thisindex++;
765 }
766 else
767 elt = XVECTOR (this)->contents[thisindex++];
768
769 /* Store this element into the result. */
770 if (toindex < 0)
771 {
772 XSETCAR (tail, elt);
773 prev = tail;
774 tail = XCDR (tail);
775 }
776 else if (VECTORP (val))
777 XVECTOR (val)->contents[toindex++] = elt;
778 else
779 {
780 CHECK_NUMBER (elt);
781 if (SINGLE_BYTE_CHAR_P (XINT (elt)))
782 {
783 if (some_multibyte)
784 toindex_byte
785 += CHAR_STRING (XINT (elt),
786 SDATA (val) + toindex_byte);
787 else
788 SSET (val, toindex_byte++, XINT (elt));
789 toindex++;
790 }
791 else
792 /* If we have any multibyte characters,
793 we already decided to make a multibyte string. */
794 {
795 int c = XINT (elt);
796 /* P exists as a variable
797 to avoid a bug on the Masscomp C compiler. */
798 unsigned char *p = SDATA (val) + toindex_byte;
799
800 toindex_byte += CHAR_STRING (c, p);
801 toindex++;
802 }
803 }
804 }
805 }
806 if (!NILP (prev))
807 XSETCDR (prev, last_tail);
808
809 if (num_textprops > 0)
810 {
811 Lisp_Object props;
812 int last_to_end = -1;
813
814 for (argnum = 0; argnum < num_textprops; argnum++)
815 {
816 this = args[textprops[argnum].argnum];
817 props = text_property_list (this,
818 make_number (0),
819 make_number (SCHARS (this)),
820 Qnil);
821 /* If successive arguments have properites, be sure that the
822 value of `composition' property be the copy. */
823 if (last_to_end == textprops[argnum].to)
824 make_composition_value_copy (props);
825 add_text_properties_from_list (val, props,
826 make_number (textprops[argnum].to));
827 last_to_end = textprops[argnum].to + SCHARS (this);
828 }
829 }
830 return val;
831 }
832 \f
833 static Lisp_Object string_char_byte_cache_string;
834 static int string_char_byte_cache_charpos;
835 static int string_char_byte_cache_bytepos;
836
837 void
838 clear_string_char_byte_cache ()
839 {
840 string_char_byte_cache_string = Qnil;
841 }
842
843 /* Return the character index corresponding to CHAR_INDEX in STRING. */
844
845 int
846 string_char_to_byte (string, char_index)
847 Lisp_Object string;
848 int char_index;
849 {
850 int i, i_byte;
851 int best_below, best_below_byte;
852 int best_above, best_above_byte;
853
854 best_below = best_below_byte = 0;
855 best_above = SCHARS (string);
856 best_above_byte = SBYTES (string);
857 if (best_above == best_above_byte)
858 return char_index;
859
860 if (EQ (string, string_char_byte_cache_string))
861 {
862 if (string_char_byte_cache_charpos < char_index)
863 {
864 best_below = string_char_byte_cache_charpos;
865 best_below_byte = string_char_byte_cache_bytepos;
866 }
867 else
868 {
869 best_above = string_char_byte_cache_charpos;
870 best_above_byte = string_char_byte_cache_bytepos;
871 }
872 }
873
874 if (char_index - best_below < best_above - char_index)
875 {
876 while (best_below < char_index)
877 {
878 int c;
879 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, string,
880 best_below, best_below_byte);
881 }
882 i = best_below;
883 i_byte = best_below_byte;
884 }
885 else
886 {
887 while (best_above > char_index)
888 {
889 unsigned char *pend = SDATA (string) + best_above_byte;
890 unsigned char *pbeg = pend - best_above_byte;
891 unsigned char *p = pend - 1;
892 int bytes;
893
894 while (p > pbeg && !CHAR_HEAD_P (*p)) p--;
895 PARSE_MULTIBYTE_SEQ (p, pend - p, bytes);
896 if (bytes == pend - p)
897 best_above_byte -= bytes;
898 else if (bytes > pend - p)
899 best_above_byte -= (pend - p);
900 else
901 best_above_byte--;
902 best_above--;
903 }
904 i = best_above;
905 i_byte = best_above_byte;
906 }
907
908 string_char_byte_cache_bytepos = i_byte;
909 string_char_byte_cache_charpos = i;
910 string_char_byte_cache_string = string;
911
912 return i_byte;
913 }
914 \f
915 /* Return the character index corresponding to BYTE_INDEX in STRING. */
916
917 int
918 string_byte_to_char (string, byte_index)
919 Lisp_Object string;
920 int byte_index;
921 {
922 int i, i_byte;
923 int best_below, best_below_byte;
924 int best_above, best_above_byte;
925
926 best_below = best_below_byte = 0;
927 best_above = SCHARS (string);
928 best_above_byte = SBYTES (string);
929 if (best_above == best_above_byte)
930 return byte_index;
931
932 if (EQ (string, string_char_byte_cache_string))
933 {
934 if (string_char_byte_cache_bytepos < byte_index)
935 {
936 best_below = string_char_byte_cache_charpos;
937 best_below_byte = string_char_byte_cache_bytepos;
938 }
939 else
940 {
941 best_above = string_char_byte_cache_charpos;
942 best_above_byte = string_char_byte_cache_bytepos;
943 }
944 }
945
946 if (byte_index - best_below_byte < best_above_byte - byte_index)
947 {
948 while (best_below_byte < byte_index)
949 {
950 int c;
951 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, string,
952 best_below, best_below_byte);
953 }
954 i = best_below;
955 i_byte = best_below_byte;
956 }
957 else
958 {
959 while (best_above_byte > byte_index)
960 {
961 unsigned char *pend = SDATA (string) + best_above_byte;
962 unsigned char *pbeg = pend - best_above_byte;
963 unsigned char *p = pend - 1;
964 int bytes;
965
966 while (p > pbeg && !CHAR_HEAD_P (*p)) p--;
967 PARSE_MULTIBYTE_SEQ (p, pend - p, bytes);
968 if (bytes == pend - p)
969 best_above_byte -= bytes;
970 else if (bytes > pend - p)
971 best_above_byte -= (pend - p);
972 else
973 best_above_byte--;
974 best_above--;
975 }
976 i = best_above;
977 i_byte = best_above_byte;
978 }
979
980 string_char_byte_cache_bytepos = i_byte;
981 string_char_byte_cache_charpos = i;
982 string_char_byte_cache_string = string;
983
984 return i;
985 }
986 \f
987 /* Convert STRING to a multibyte string.
988 Single-byte characters 0240 through 0377 are converted
989 by adding nonascii_insert_offset to each. */
990
991 Lisp_Object
992 string_make_multibyte (string)
993 Lisp_Object string;
994 {
995 unsigned char *buf;
996 int nbytes;
997 Lisp_Object ret;
998 USE_SAFE_ALLOCA;
999
1000 if (STRING_MULTIBYTE (string))
1001 return string;
1002
1003 nbytes = count_size_as_multibyte (SDATA (string),
1004 SCHARS (string));
1005 /* If all the chars are ASCII, they won't need any more bytes
1006 once converted. In that case, we can return STRING itself. */
1007 if (nbytes == SBYTES (string))
1008 return string;
1009
1010 SAFE_ALLOCA (buf, unsigned char *, nbytes);
1011 copy_text (SDATA (string), buf, SBYTES (string),
1012 0, 1);
1013
1014 ret = make_multibyte_string (buf, SCHARS (string), nbytes);
1015 SAFE_FREE (nbytes);
1016
1017 return ret;
1018 }
1019
1020
1021 /* Convert STRING to a multibyte string without changing each
1022 character codes. Thus, characters 0200 trough 0237 are converted
1023 to eight-bit-control characters, and characters 0240 through 0377
1024 are converted eight-bit-graphic characters. */
1025
1026 Lisp_Object
1027 string_to_multibyte (string)
1028 Lisp_Object string;
1029 {
1030 unsigned char *buf;
1031 int nbytes;
1032 Lisp_Object ret;
1033 USE_SAFE_ALLOCA;
1034
1035 if (STRING_MULTIBYTE (string))
1036 return string;
1037
1038 nbytes = parse_str_to_multibyte (SDATA (string), SBYTES (string));
1039 /* If all the chars are ASCII or eight-bit-graphic, they won't need
1040 any more bytes once converted. */
1041 if (nbytes == SBYTES (string))
1042 return make_multibyte_string (SDATA (string), nbytes, nbytes);
1043
1044 SAFE_ALLOCA (buf, unsigned char *, nbytes);
1045 bcopy (SDATA (string), buf, SBYTES (string));
1046 str_to_multibyte (buf, nbytes, SBYTES (string));
1047
1048 ret = make_multibyte_string (buf, SCHARS (string), nbytes);
1049 SAFE_FREE (nbytes);
1050
1051 return ret;
1052 }
1053
1054
1055 /* Convert STRING to a single-byte string. */
1056
1057 Lisp_Object
1058 string_make_unibyte (string)
1059 Lisp_Object string;
1060 {
1061 int nchars;
1062 unsigned char *buf;
1063 Lisp_Object ret;
1064 USE_SAFE_ALLOCA;
1065
1066 if (! STRING_MULTIBYTE (string))
1067 return string;
1068
1069 nchars = SCHARS (string);
1070
1071 SAFE_ALLOCA (buf, unsigned char *, nchars);
1072 copy_text (SDATA (string), buf, SBYTES (string),
1073 1, 0);
1074
1075 ret = make_unibyte_string (buf, nchars);
1076 SAFE_FREE (nchars);
1077
1078 return ret;
1079 }
1080
1081 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
1082 1, 1, 0,
1083 doc: /* Return the multibyte equivalent of STRING.
1084 If STRING is unibyte and contains non-ASCII characters, the function
1085 `unibyte-char-to-multibyte' is used to convert each unibyte character
1086 to a multibyte character. In this case, the returned string is a
1087 newly created string with no text properties. If STRING is multibyte
1088 or entirely ASCII, it is returned unchanged. In particular, when
1089 STRING is unibyte and entirely ASCII, the returned string is unibyte.
1090 \(When the characters are all ASCII, Emacs primitives will treat the
1091 string the same way whether it is unibyte or multibyte.) */)
1092 (string)
1093 Lisp_Object string;
1094 {
1095 CHECK_STRING (string);
1096
1097 return string_make_multibyte (string);
1098 }
1099
1100 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
1101 1, 1, 0,
1102 doc: /* Return the unibyte equivalent of STRING.
1103 Multibyte character codes are converted to unibyte according to
1104 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
1105 If the lookup in the translation table fails, this function takes just
1106 the low 8 bits of each character. */)
1107 (string)
1108 Lisp_Object string;
1109 {
1110 CHECK_STRING (string);
1111
1112 return string_make_unibyte (string);
1113 }
1114
1115 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1116 1, 1, 0,
1117 doc: /* Return a unibyte string with the same individual bytes as STRING.
1118 If STRING is unibyte, the result is STRING itself.
1119 Otherwise it is a newly created string, with no text properties.
1120 If STRING is multibyte and contains a character of charset
1121 `eight-bit-control' or `eight-bit-graphic', it is converted to the
1122 corresponding single byte. */)
1123 (string)
1124 Lisp_Object string;
1125 {
1126 CHECK_STRING (string);
1127
1128 if (STRING_MULTIBYTE (string))
1129 {
1130 int bytes = SBYTES (string);
1131 unsigned char *str = (unsigned char *) xmalloc (bytes);
1132
1133 bcopy (SDATA (string), str, bytes);
1134 bytes = str_as_unibyte (str, bytes);
1135 string = make_unibyte_string (str, bytes);
1136 xfree (str);
1137 }
1138 return string;
1139 }
1140
1141 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1142 1, 1, 0,
1143 doc: /* Return a multibyte string with the same individual bytes as STRING.
1144 If STRING is multibyte, the result is STRING itself.
1145 Otherwise it is a newly created string, with no text properties.
1146 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1147 part of a multibyte form), it is converted to the corresponding
1148 multibyte character of charset `eight-bit-control' or `eight-bit-graphic'. */)
1149 (string)
1150 Lisp_Object string;
1151 {
1152 CHECK_STRING (string);
1153
1154 if (! STRING_MULTIBYTE (string))
1155 {
1156 Lisp_Object new_string;
1157 int nchars, nbytes;
1158
1159 parse_str_as_multibyte (SDATA (string),
1160 SBYTES (string),
1161 &nchars, &nbytes);
1162 new_string = make_uninit_multibyte_string (nchars, nbytes);
1163 bcopy (SDATA (string), SDATA (new_string),
1164 SBYTES (string));
1165 if (nbytes != SBYTES (string))
1166 str_as_multibyte (SDATA (new_string), nbytes,
1167 SBYTES (string), NULL);
1168 string = new_string;
1169 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1170 }
1171 return string;
1172 }
1173
1174 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1175 1, 1, 0,
1176 doc: /* Return a multibyte string with the same individual chars as STRING.
1177 If STRING is multibyte, the result is STRING itself.
1178 Otherwise it is a newly created string, with no text properties.
1179 Characters 0200 through 0237 are converted to eight-bit-control
1180 characters of the same character code. Characters 0240 through 0377
1181 are converted to eight-bit-graphic characters of the same character
1182 codes. */)
1183 (string)
1184 Lisp_Object string;
1185 {
1186 CHECK_STRING (string);
1187
1188 return string_to_multibyte (string);
1189 }
1190
1191 \f
1192 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1193 doc: /* Return a copy of ALIST.
1194 This is an alist which represents the same mapping from objects to objects,
1195 but does not share the alist structure with ALIST.
1196 The objects mapped (cars and cdrs of elements of the alist)
1197 are shared, however.
1198 Elements of ALIST that are not conses are also shared. */)
1199 (alist)
1200 Lisp_Object alist;
1201 {
1202 register Lisp_Object tem;
1203
1204 CHECK_LIST (alist);
1205 if (NILP (alist))
1206 return alist;
1207 alist = concat (1, &alist, Lisp_Cons, 0);
1208 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1209 {
1210 register Lisp_Object car;
1211 car = XCAR (tem);
1212
1213 if (CONSP (car))
1214 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1215 }
1216 return alist;
1217 }
1218
1219 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1220 doc: /* Return a substring of STRING, starting at index FROM and ending before TO.
1221 TO may be nil or omitted; then the substring runs to the end of STRING.
1222 FROM and TO start at 0. If either is negative, it counts from the end.
1223
1224 This function allows vectors as well as strings. */)
1225 (string, from, to)
1226 Lisp_Object string;
1227 register Lisp_Object from, to;
1228 {
1229 Lisp_Object res;
1230 int size;
1231 int size_byte = 0;
1232 int from_char, to_char;
1233 int from_byte = 0, to_byte = 0;
1234
1235 if (! (STRINGP (string) || VECTORP (string)))
1236 wrong_type_argument (Qarrayp, string);
1237
1238 CHECK_NUMBER (from);
1239
1240 if (STRINGP (string))
1241 {
1242 size = SCHARS (string);
1243 size_byte = SBYTES (string);
1244 }
1245 else
1246 size = XVECTOR (string)->size;
1247
1248 if (NILP (to))
1249 {
1250 to_char = size;
1251 to_byte = size_byte;
1252 }
1253 else
1254 {
1255 CHECK_NUMBER (to);
1256
1257 to_char = XINT (to);
1258 if (to_char < 0)
1259 to_char += size;
1260
1261 if (STRINGP (string))
1262 to_byte = string_char_to_byte (string, to_char);
1263 }
1264
1265 from_char = XINT (from);
1266 if (from_char < 0)
1267 from_char += size;
1268 if (STRINGP (string))
1269 from_byte = string_char_to_byte (string, from_char);
1270
1271 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1272 args_out_of_range_3 (string, make_number (from_char),
1273 make_number (to_char));
1274
1275 if (STRINGP (string))
1276 {
1277 res = make_specified_string (SDATA (string) + from_byte,
1278 to_char - from_char, to_byte - from_byte,
1279 STRING_MULTIBYTE (string));
1280 copy_text_properties (make_number (from_char), make_number (to_char),
1281 string, make_number (0), res, Qnil);
1282 }
1283 else
1284 res = Fvector (to_char - from_char,
1285 XVECTOR (string)->contents + from_char);
1286
1287 return res;
1288 }
1289
1290
1291 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1292 doc: /* Return a substring of STRING, without text properties.
1293 It starts at index FROM and ending before TO.
1294 TO may be nil or omitted; then the substring runs to the end of STRING.
1295 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1296 If FROM or TO is negative, it counts from the end.
1297
1298 With one argument, just copy STRING without its properties. */)
1299 (string, from, to)
1300 Lisp_Object string;
1301 register Lisp_Object from, to;
1302 {
1303 int size, size_byte;
1304 int from_char, to_char;
1305 int from_byte, to_byte;
1306
1307 CHECK_STRING (string);
1308
1309 size = SCHARS (string);
1310 size_byte = SBYTES (string);
1311
1312 if (NILP (from))
1313 from_char = from_byte = 0;
1314 else
1315 {
1316 CHECK_NUMBER (from);
1317 from_char = XINT (from);
1318 if (from_char < 0)
1319 from_char += size;
1320
1321 from_byte = string_char_to_byte (string, from_char);
1322 }
1323
1324 if (NILP (to))
1325 {
1326 to_char = size;
1327 to_byte = size_byte;
1328 }
1329 else
1330 {
1331 CHECK_NUMBER (to);
1332
1333 to_char = XINT (to);
1334 if (to_char < 0)
1335 to_char += size;
1336
1337 to_byte = string_char_to_byte (string, to_char);
1338 }
1339
1340 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1341 args_out_of_range_3 (string, make_number (from_char),
1342 make_number (to_char));
1343
1344 return make_specified_string (SDATA (string) + from_byte,
1345 to_char - from_char, to_byte - from_byte,
1346 STRING_MULTIBYTE (string));
1347 }
1348
1349 /* Extract a substring of STRING, giving start and end positions
1350 both in characters and in bytes. */
1351
1352 Lisp_Object
1353 substring_both (string, from, from_byte, to, to_byte)
1354 Lisp_Object string;
1355 int from, from_byte, to, to_byte;
1356 {
1357 Lisp_Object res;
1358 int size;
1359 int size_byte;
1360
1361 if (! (STRINGP (string) || VECTORP (string)))
1362 wrong_type_argument (Qarrayp, string);
1363
1364 if (STRINGP (string))
1365 {
1366 size = SCHARS (string);
1367 size_byte = SBYTES (string);
1368 }
1369 else
1370 size = XVECTOR (string)->size;
1371
1372 if (!(0 <= from && from <= to && to <= size))
1373 args_out_of_range_3 (string, make_number (from), make_number (to));
1374
1375 if (STRINGP (string))
1376 {
1377 res = make_specified_string (SDATA (string) + from_byte,
1378 to - from, to_byte - from_byte,
1379 STRING_MULTIBYTE (string));
1380 copy_text_properties (make_number (from), make_number (to),
1381 string, make_number (0), res, Qnil);
1382 }
1383 else
1384 res = Fvector (to - from,
1385 XVECTOR (string)->contents + from);
1386
1387 return res;
1388 }
1389 \f
1390 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1391 doc: /* Take cdr N times on LIST, returns the result. */)
1392 (n, list)
1393 Lisp_Object n;
1394 register Lisp_Object list;
1395 {
1396 register int i, num;
1397 CHECK_NUMBER (n);
1398 num = XINT (n);
1399 for (i = 0; i < num && !NILP (list); i++)
1400 {
1401 QUIT;
1402 if (! CONSP (list))
1403 wrong_type_argument (Qlistp, list);
1404 list = XCDR (list);
1405 }
1406 return list;
1407 }
1408
1409 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1410 doc: /* Return the Nth element of LIST.
1411 N counts from zero. If LIST is not that long, nil is returned. */)
1412 (n, list)
1413 Lisp_Object n, list;
1414 {
1415 return Fcar (Fnthcdr (n, list));
1416 }
1417
1418 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1419 doc: /* Return element of SEQUENCE at index N. */)
1420 (sequence, n)
1421 register Lisp_Object sequence, n;
1422 {
1423 CHECK_NUMBER (n);
1424 while (1)
1425 {
1426 if (CONSP (sequence) || NILP (sequence))
1427 return Fcar (Fnthcdr (n, sequence));
1428 else if (STRINGP (sequence) || VECTORP (sequence)
1429 || BOOL_VECTOR_P (sequence) || CHAR_TABLE_P (sequence))
1430 return Faref (sequence, n);
1431 else
1432 sequence = wrong_type_argument (Qsequencep, sequence);
1433 }
1434 }
1435
1436 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1437 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1438 The value is actually the tail of LIST whose car is ELT. */)
1439 (elt, list)
1440 register Lisp_Object elt;
1441 Lisp_Object list;
1442 {
1443 register Lisp_Object tail;
1444 for (tail = list; !NILP (tail); tail = XCDR (tail))
1445 {
1446 register Lisp_Object tem;
1447 if (! CONSP (tail))
1448 wrong_type_argument (Qlistp, list);
1449 tem = XCAR (tail);
1450 if (! NILP (Fequal (elt, tem)))
1451 return tail;
1452 QUIT;
1453 }
1454 return Qnil;
1455 }
1456
1457 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1458 doc: /* Return non-nil if ELT is an element of LIST.
1459 Comparison done with EQ. The value is actually the tail of LIST
1460 whose car is ELT. */)
1461 (elt, list)
1462 Lisp_Object elt, list;
1463 {
1464 while (1)
1465 {
1466 if (!CONSP (list) || EQ (XCAR (list), elt))
1467 break;
1468
1469 list = XCDR (list);
1470 if (!CONSP (list) || EQ (XCAR (list), elt))
1471 break;
1472
1473 list = XCDR (list);
1474 if (!CONSP (list) || EQ (XCAR (list), elt))
1475 break;
1476
1477 list = XCDR (list);
1478 QUIT;
1479 }
1480
1481 if (!CONSP (list) && !NILP (list))
1482 list = wrong_type_argument (Qlistp, list);
1483
1484 return list;
1485 }
1486
1487 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1488 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1489 The value is actually the first element of LIST whose car is KEY.
1490 Elements of LIST that are not conses are ignored. */)
1491 (key, list)
1492 Lisp_Object key, list;
1493 {
1494 Lisp_Object result;
1495
1496 while (1)
1497 {
1498 if (!CONSP (list)
1499 || (CONSP (XCAR (list))
1500 && EQ (XCAR (XCAR (list)), key)))
1501 break;
1502
1503 list = XCDR (list);
1504 if (!CONSP (list)
1505 || (CONSP (XCAR (list))
1506 && EQ (XCAR (XCAR (list)), key)))
1507 break;
1508
1509 list = XCDR (list);
1510 if (!CONSP (list)
1511 || (CONSP (XCAR (list))
1512 && EQ (XCAR (XCAR (list)), key)))
1513 break;
1514
1515 list = XCDR (list);
1516 QUIT;
1517 }
1518
1519 if (CONSP (list))
1520 result = XCAR (list);
1521 else if (NILP (list))
1522 result = Qnil;
1523 else
1524 result = wrong_type_argument (Qlistp, list);
1525
1526 return result;
1527 }
1528
1529 /* Like Fassq but never report an error and do not allow quits.
1530 Use only on lists known never to be circular. */
1531
1532 Lisp_Object
1533 assq_no_quit (key, list)
1534 Lisp_Object key, list;
1535 {
1536 while (CONSP (list)
1537 && (!CONSP (XCAR (list))
1538 || !EQ (XCAR (XCAR (list)), key)))
1539 list = XCDR (list);
1540
1541 return CONSP (list) ? XCAR (list) : Qnil;
1542 }
1543
1544 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1545 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1546 The value is actually the first element of LIST whose car equals KEY. */)
1547 (key, list)
1548 Lisp_Object key, list;
1549 {
1550 Lisp_Object result, car;
1551
1552 while (1)
1553 {
1554 if (!CONSP (list)
1555 || (CONSP (XCAR (list))
1556 && (car = XCAR (XCAR (list)),
1557 EQ (car, key) || !NILP (Fequal (car, key)))))
1558 break;
1559
1560 list = XCDR (list);
1561 if (!CONSP (list)
1562 || (CONSP (XCAR (list))
1563 && (car = XCAR (XCAR (list)),
1564 EQ (car, key) || !NILP (Fequal (car, key)))))
1565 break;
1566
1567 list = XCDR (list);
1568 if (!CONSP (list)
1569 || (CONSP (XCAR (list))
1570 && (car = XCAR (XCAR (list)),
1571 EQ (car, key) || !NILP (Fequal (car, key)))))
1572 break;
1573
1574 list = XCDR (list);
1575 QUIT;
1576 }
1577
1578 if (CONSP (list))
1579 result = XCAR (list);
1580 else if (NILP (list))
1581 result = Qnil;
1582 else
1583 result = wrong_type_argument (Qlistp, list);
1584
1585 return result;
1586 }
1587
1588 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1589 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1590 The value is actually the first element of LIST whose cdr is KEY. */)
1591 (key, list)
1592 register Lisp_Object key;
1593 Lisp_Object list;
1594 {
1595 Lisp_Object result;
1596
1597 while (1)
1598 {
1599 if (!CONSP (list)
1600 || (CONSP (XCAR (list))
1601 && EQ (XCDR (XCAR (list)), key)))
1602 break;
1603
1604 list = XCDR (list);
1605 if (!CONSP (list)
1606 || (CONSP (XCAR (list))
1607 && EQ (XCDR (XCAR (list)), key)))
1608 break;
1609
1610 list = XCDR (list);
1611 if (!CONSP (list)
1612 || (CONSP (XCAR (list))
1613 && EQ (XCDR (XCAR (list)), key)))
1614 break;
1615
1616 list = XCDR (list);
1617 QUIT;
1618 }
1619
1620 if (NILP (list))
1621 result = Qnil;
1622 else if (CONSP (list))
1623 result = XCAR (list);
1624 else
1625 result = wrong_type_argument (Qlistp, list);
1626
1627 return result;
1628 }
1629
1630 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1631 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1632 The value is actually the first element of LIST whose cdr equals KEY. */)
1633 (key, list)
1634 Lisp_Object key, list;
1635 {
1636 Lisp_Object result, cdr;
1637
1638 while (1)
1639 {
1640 if (!CONSP (list)
1641 || (CONSP (XCAR (list))
1642 && (cdr = XCDR (XCAR (list)),
1643 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1644 break;
1645
1646 list = XCDR (list);
1647 if (!CONSP (list)
1648 || (CONSP (XCAR (list))
1649 && (cdr = XCDR (XCAR (list)),
1650 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1651 break;
1652
1653 list = XCDR (list);
1654 if (!CONSP (list)
1655 || (CONSP (XCAR (list))
1656 && (cdr = XCDR (XCAR (list)),
1657 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1658 break;
1659
1660 list = XCDR (list);
1661 QUIT;
1662 }
1663
1664 if (CONSP (list))
1665 result = XCAR (list);
1666 else if (NILP (list))
1667 result = Qnil;
1668 else
1669 result = wrong_type_argument (Qlistp, list);
1670
1671 return result;
1672 }
1673 \f
1674 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1675 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1676 The modified LIST is returned. Comparison is done with `eq'.
1677 If the first member of LIST is ELT, there is no way to remove it by side effect;
1678 therefore, write `(setq foo (delq element foo))'
1679 to be sure of changing the value of `foo'. */)
1680 (elt, list)
1681 register Lisp_Object elt;
1682 Lisp_Object list;
1683 {
1684 register Lisp_Object tail, prev;
1685 register Lisp_Object tem;
1686
1687 tail = list;
1688 prev = Qnil;
1689 while (!NILP (tail))
1690 {
1691 if (! CONSP (tail))
1692 wrong_type_argument (Qlistp, list);
1693 tem = XCAR (tail);
1694 if (EQ (elt, tem))
1695 {
1696 if (NILP (prev))
1697 list = XCDR (tail);
1698 else
1699 Fsetcdr (prev, XCDR (tail));
1700 }
1701 else
1702 prev = tail;
1703 tail = XCDR (tail);
1704 QUIT;
1705 }
1706 return list;
1707 }
1708
1709 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1710 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1711 SEQ must be a list, a vector, or a string.
1712 The modified SEQ is returned. Comparison is done with `equal'.
1713 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1714 is not a side effect; it is simply using a different sequence.
1715 Therefore, write `(setq foo (delete element foo))'
1716 to be sure of changing the value of `foo'. */)
1717 (elt, seq)
1718 Lisp_Object elt, seq;
1719 {
1720 if (VECTORP (seq))
1721 {
1722 EMACS_INT i, n;
1723
1724 for (i = n = 0; i < ASIZE (seq); ++i)
1725 if (NILP (Fequal (AREF (seq, i), elt)))
1726 ++n;
1727
1728 if (n != ASIZE (seq))
1729 {
1730 struct Lisp_Vector *p = allocate_vector (n);
1731
1732 for (i = n = 0; i < ASIZE (seq); ++i)
1733 if (NILP (Fequal (AREF (seq, i), elt)))
1734 p->contents[n++] = AREF (seq, i);
1735
1736 XSETVECTOR (seq, p);
1737 }
1738 }
1739 else if (STRINGP (seq))
1740 {
1741 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1742 int c;
1743
1744 for (i = nchars = nbytes = ibyte = 0;
1745 i < SCHARS (seq);
1746 ++i, ibyte += cbytes)
1747 {
1748 if (STRING_MULTIBYTE (seq))
1749 {
1750 c = STRING_CHAR (SDATA (seq) + ibyte,
1751 SBYTES (seq) - ibyte);
1752 cbytes = CHAR_BYTES (c);
1753 }
1754 else
1755 {
1756 c = SREF (seq, i);
1757 cbytes = 1;
1758 }
1759
1760 if (!INTEGERP (elt) || c != XINT (elt))
1761 {
1762 ++nchars;
1763 nbytes += cbytes;
1764 }
1765 }
1766
1767 if (nchars != SCHARS (seq))
1768 {
1769 Lisp_Object tem;
1770
1771 tem = make_uninit_multibyte_string (nchars, nbytes);
1772 if (!STRING_MULTIBYTE (seq))
1773 STRING_SET_UNIBYTE (tem);
1774
1775 for (i = nchars = nbytes = ibyte = 0;
1776 i < SCHARS (seq);
1777 ++i, ibyte += cbytes)
1778 {
1779 if (STRING_MULTIBYTE (seq))
1780 {
1781 c = STRING_CHAR (SDATA (seq) + ibyte,
1782 SBYTES (seq) - ibyte);
1783 cbytes = CHAR_BYTES (c);
1784 }
1785 else
1786 {
1787 c = SREF (seq, i);
1788 cbytes = 1;
1789 }
1790
1791 if (!INTEGERP (elt) || c != XINT (elt))
1792 {
1793 unsigned char *from = SDATA (seq) + ibyte;
1794 unsigned char *to = SDATA (tem) + nbytes;
1795 EMACS_INT n;
1796
1797 ++nchars;
1798 nbytes += cbytes;
1799
1800 for (n = cbytes; n--; )
1801 *to++ = *from++;
1802 }
1803 }
1804
1805 seq = tem;
1806 }
1807 }
1808 else
1809 {
1810 Lisp_Object tail, prev;
1811
1812 for (tail = seq, prev = Qnil; !NILP (tail); tail = XCDR (tail))
1813 {
1814 if (!CONSP (tail))
1815 wrong_type_argument (Qlistp, seq);
1816
1817 if (!NILP (Fequal (elt, XCAR (tail))))
1818 {
1819 if (NILP (prev))
1820 seq = XCDR (tail);
1821 else
1822 Fsetcdr (prev, XCDR (tail));
1823 }
1824 else
1825 prev = tail;
1826 QUIT;
1827 }
1828 }
1829
1830 return seq;
1831 }
1832
1833 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1834 doc: /* Reverse LIST by modifying cdr pointers.
1835 Return the reversed list. */)
1836 (list)
1837 Lisp_Object list;
1838 {
1839 register Lisp_Object prev, tail, next;
1840
1841 if (NILP (list)) return list;
1842 prev = Qnil;
1843 tail = list;
1844 while (!NILP (tail))
1845 {
1846 QUIT;
1847 if (! CONSP (tail))
1848 wrong_type_argument (Qlistp, list);
1849 next = XCDR (tail);
1850 Fsetcdr (tail, prev);
1851 prev = tail;
1852 tail = next;
1853 }
1854 return prev;
1855 }
1856
1857 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1858 doc: /* Reverse LIST, copying. Return the reversed list.
1859 See also the function `nreverse', which is used more often. */)
1860 (list)
1861 Lisp_Object list;
1862 {
1863 Lisp_Object new;
1864
1865 for (new = Qnil; CONSP (list); list = XCDR (list))
1866 {
1867 QUIT;
1868 new = Fcons (XCAR (list), new);
1869 }
1870 if (!NILP (list))
1871 wrong_type_argument (Qconsp, list);
1872 return new;
1873 }
1874 \f
1875 Lisp_Object merge ();
1876
1877 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1878 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1879 Returns the sorted list. LIST is modified by side effects.
1880 PREDICATE is called with two elements of LIST, and should return t
1881 if the first element is "less" than the second. */)
1882 (list, predicate)
1883 Lisp_Object list, predicate;
1884 {
1885 Lisp_Object front, back;
1886 register Lisp_Object len, tem;
1887 struct gcpro gcpro1, gcpro2;
1888 register int length;
1889
1890 front = list;
1891 len = Flength (list);
1892 length = XINT (len);
1893 if (length < 2)
1894 return list;
1895
1896 XSETINT (len, (length / 2) - 1);
1897 tem = Fnthcdr (len, list);
1898 back = Fcdr (tem);
1899 Fsetcdr (tem, Qnil);
1900
1901 GCPRO2 (front, back);
1902 front = Fsort (front, predicate);
1903 back = Fsort (back, predicate);
1904 UNGCPRO;
1905 return merge (front, back, predicate);
1906 }
1907
1908 Lisp_Object
1909 merge (org_l1, org_l2, pred)
1910 Lisp_Object org_l1, org_l2;
1911 Lisp_Object pred;
1912 {
1913 Lisp_Object value;
1914 register Lisp_Object tail;
1915 Lisp_Object tem;
1916 register Lisp_Object l1, l2;
1917 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1918
1919 l1 = org_l1;
1920 l2 = org_l2;
1921 tail = Qnil;
1922 value = Qnil;
1923
1924 /* It is sufficient to protect org_l1 and org_l2.
1925 When l1 and l2 are updated, we copy the new values
1926 back into the org_ vars. */
1927 GCPRO4 (org_l1, org_l2, pred, value);
1928
1929 while (1)
1930 {
1931 if (NILP (l1))
1932 {
1933 UNGCPRO;
1934 if (NILP (tail))
1935 return l2;
1936 Fsetcdr (tail, l2);
1937 return value;
1938 }
1939 if (NILP (l2))
1940 {
1941 UNGCPRO;
1942 if (NILP (tail))
1943 return l1;
1944 Fsetcdr (tail, l1);
1945 return value;
1946 }
1947 tem = call2 (pred, Fcar (l2), Fcar (l1));
1948 if (NILP (tem))
1949 {
1950 tem = l1;
1951 l1 = Fcdr (l1);
1952 org_l1 = l1;
1953 }
1954 else
1955 {
1956 tem = l2;
1957 l2 = Fcdr (l2);
1958 org_l2 = l2;
1959 }
1960 if (NILP (tail))
1961 value = tem;
1962 else
1963 Fsetcdr (tail, tem);
1964 tail = tem;
1965 }
1966 }
1967
1968 \f
1969 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1970 doc: /* Extract a value from a property list.
1971 PLIST is a property list, which is a list of the form
1972 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1973 corresponding to the given PROP, or nil if PROP is not
1974 one of the properties on the list. */)
1975 (plist, prop)
1976 Lisp_Object plist;
1977 Lisp_Object prop;
1978 {
1979 Lisp_Object tail;
1980
1981 for (tail = plist;
1982 CONSP (tail) && CONSP (XCDR (tail));
1983 tail = XCDR (XCDR (tail)))
1984 {
1985 if (EQ (prop, XCAR (tail)))
1986 return XCAR (XCDR (tail));
1987
1988 /* This function can be called asynchronously
1989 (setup_coding_system). Don't QUIT in that case. */
1990 if (!interrupt_input_blocked)
1991 QUIT;
1992 }
1993
1994 if (!NILP (tail))
1995 wrong_type_argument (Qlistp, prop);
1996
1997 return Qnil;
1998 }
1999
2000 DEFUN ("get", Fget, Sget, 2, 2, 0,
2001 doc: /* Return the value of SYMBOL's PROPNAME property.
2002 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
2003 (symbol, propname)
2004 Lisp_Object symbol, propname;
2005 {
2006 CHECK_SYMBOL (symbol);
2007 return Fplist_get (XSYMBOL (symbol)->plist, propname);
2008 }
2009
2010 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
2011 doc: /* Change value in PLIST of PROP to VAL.
2012 PLIST is a property list, which is a list of the form
2013 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
2014 If PROP is already a property on the list, its value is set to VAL,
2015 otherwise the new PROP VAL pair is added. The new plist is returned;
2016 use `(setq x (plist-put x prop val))' to be sure to use the new value.
2017 The PLIST is modified by side effects. */)
2018 (plist, prop, val)
2019 Lisp_Object plist;
2020 register Lisp_Object prop;
2021 Lisp_Object val;
2022 {
2023 register Lisp_Object tail, prev;
2024 Lisp_Object newcell;
2025 prev = Qnil;
2026 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2027 tail = XCDR (XCDR (tail)))
2028 {
2029 if (EQ (prop, XCAR (tail)))
2030 {
2031 Fsetcar (XCDR (tail), val);
2032 return plist;
2033 }
2034
2035 prev = tail;
2036 QUIT;
2037 }
2038 newcell = Fcons (prop, Fcons (val, Qnil));
2039 if (NILP (prev))
2040 return newcell;
2041 else
2042 Fsetcdr (XCDR (prev), newcell);
2043 return plist;
2044 }
2045
2046 DEFUN ("put", Fput, Sput, 3, 3, 0,
2047 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
2048 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
2049 (symbol, propname, value)
2050 Lisp_Object symbol, propname, value;
2051 {
2052 CHECK_SYMBOL (symbol);
2053 XSYMBOL (symbol)->plist
2054 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
2055 return value;
2056 }
2057 \f
2058 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
2059 doc: /* Extract a value from a property list, comparing with `equal'.
2060 PLIST is a property list, which is a list of the form
2061 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
2062 corresponding to the given PROP, or nil if PROP is not
2063 one of the properties on the list. */)
2064 (plist, prop)
2065 Lisp_Object plist;
2066 Lisp_Object prop;
2067 {
2068 Lisp_Object tail;
2069
2070 for (tail = plist;
2071 CONSP (tail) && CONSP (XCDR (tail));
2072 tail = XCDR (XCDR (tail)))
2073 {
2074 if (! NILP (Fequal (prop, XCAR (tail))))
2075 return XCAR (XCDR (tail));
2076
2077 QUIT;
2078 }
2079
2080 if (!NILP (tail))
2081 wrong_type_argument (Qlistp, prop);
2082
2083 return Qnil;
2084 }
2085
2086 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
2087 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
2088 PLIST is a property list, which is a list of the form
2089 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
2090 If PROP is already a property on the list, its value is set to VAL,
2091 otherwise the new PROP VAL pair is added. The new plist is returned;
2092 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
2093 The PLIST is modified by side effects. */)
2094 (plist, prop, val)
2095 Lisp_Object plist;
2096 register Lisp_Object prop;
2097 Lisp_Object val;
2098 {
2099 register Lisp_Object tail, prev;
2100 Lisp_Object newcell;
2101 prev = Qnil;
2102 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2103 tail = XCDR (XCDR (tail)))
2104 {
2105 if (! NILP (Fequal (prop, XCAR (tail))))
2106 {
2107 Fsetcar (XCDR (tail), val);
2108 return plist;
2109 }
2110
2111 prev = tail;
2112 QUIT;
2113 }
2114 newcell = Fcons (prop, Fcons (val, Qnil));
2115 if (NILP (prev))
2116 return newcell;
2117 else
2118 Fsetcdr (XCDR (prev), newcell);
2119 return plist;
2120 }
2121 \f
2122 DEFUN ("eql", Feql, Seql, 2, 2, 0,
2123 doc: /* Return t if the two args are the same Lisp object.
2124 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
2125 (obj1, obj2)
2126 Lisp_Object obj1, obj2;
2127 {
2128 if (FLOATP (obj1))
2129 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
2130 else
2131 return EQ (obj1, obj2) ? Qt : Qnil;
2132 }
2133
2134 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
2135 doc: /* Return t if two Lisp objects have similar structure and contents.
2136 They must have the same data type.
2137 Conses are compared by comparing the cars and the cdrs.
2138 Vectors and strings are compared element by element.
2139 Numbers are compared by value, but integers cannot equal floats.
2140 (Use `=' if you want integers and floats to be able to be equal.)
2141 Symbols must match exactly. */)
2142 (o1, o2)
2143 register Lisp_Object o1, o2;
2144 {
2145 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
2146 }
2147
2148 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2149 doc: /* Return t if two Lisp objects have similar structure and contents.
2150 This is like `equal' except that it compares the text properties
2151 of strings. (`equal' ignores text properties.) */)
2152 (o1, o2)
2153 register Lisp_Object o1, o2;
2154 {
2155 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2156 }
2157
2158 /* DEPTH is current depth of recursion. Signal an error if it
2159 gets too deep.
2160 PROPS, if non-nil, means compare string text properties too. */
2161
2162 static int
2163 internal_equal (o1, o2, depth, props)
2164 register Lisp_Object o1, o2;
2165 int depth, props;
2166 {
2167 if (depth > 200)
2168 error ("Stack overflow in equal");
2169
2170 tail_recurse:
2171 QUIT;
2172 if (EQ (o1, o2))
2173 return 1;
2174 if (XTYPE (o1) != XTYPE (o2))
2175 return 0;
2176
2177 switch (XTYPE (o1))
2178 {
2179 case Lisp_Float:
2180 {
2181 double d1, d2;
2182
2183 d1 = extract_float (o1);
2184 d2 = extract_float (o2);
2185 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2186 though they are not =. */
2187 return d1 == d2 || (d1 != d1 && d2 != d2);
2188 }
2189
2190 case Lisp_Cons:
2191 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2192 return 0;
2193 o1 = XCDR (o1);
2194 o2 = XCDR (o2);
2195 goto tail_recurse;
2196
2197 case Lisp_Misc:
2198 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2199 return 0;
2200 if (OVERLAYP (o1))
2201 {
2202 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2203 depth + 1, props)
2204 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2205 depth + 1))
2206 return 0;
2207 o1 = XOVERLAY (o1)->plist;
2208 o2 = XOVERLAY (o2)->plist;
2209 goto tail_recurse;
2210 }
2211 if (MARKERP (o1))
2212 {
2213 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2214 && (XMARKER (o1)->buffer == 0
2215 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2216 }
2217 break;
2218
2219 case Lisp_Vectorlike:
2220 {
2221 register int i;
2222 EMACS_INT size = XVECTOR (o1)->size;
2223 /* Pseudovectors have the type encoded in the size field, so this test
2224 actually checks that the objects have the same type as well as the
2225 same size. */
2226 if (XVECTOR (o2)->size != size)
2227 return 0;
2228 /* Boolvectors are compared much like strings. */
2229 if (BOOL_VECTOR_P (o1))
2230 {
2231 int size_in_chars
2232 = ((XBOOL_VECTOR (o1)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2233 / BOOL_VECTOR_BITS_PER_CHAR);
2234
2235 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2236 return 0;
2237 if (bcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2238 size_in_chars))
2239 return 0;
2240 return 1;
2241 }
2242 if (WINDOW_CONFIGURATIONP (o1))
2243 return compare_window_configurations (o1, o2, 0);
2244
2245 /* Aside from them, only true vectors, char-tables, and compiled
2246 functions are sensible to compare, so eliminate the others now. */
2247 if (size & PSEUDOVECTOR_FLAG)
2248 {
2249 if (!(size & (PVEC_COMPILED | PVEC_CHAR_TABLE)))
2250 return 0;
2251 size &= PSEUDOVECTOR_SIZE_MASK;
2252 }
2253 for (i = 0; i < size; i++)
2254 {
2255 Lisp_Object v1, v2;
2256 v1 = XVECTOR (o1)->contents [i];
2257 v2 = XVECTOR (o2)->contents [i];
2258 if (!internal_equal (v1, v2, depth + 1, props))
2259 return 0;
2260 }
2261 return 1;
2262 }
2263 break;
2264
2265 case Lisp_String:
2266 if (SCHARS (o1) != SCHARS (o2))
2267 return 0;
2268 if (SBYTES (o1) != SBYTES (o2))
2269 return 0;
2270 if (bcmp (SDATA (o1), SDATA (o2),
2271 SBYTES (o1)))
2272 return 0;
2273 if (props && !compare_string_intervals (o1, o2))
2274 return 0;
2275 return 1;
2276
2277 case Lisp_Int:
2278 case Lisp_Symbol:
2279 case Lisp_Type_Limit:
2280 break;
2281 }
2282
2283 return 0;
2284 }
2285 \f
2286 extern Lisp_Object Fmake_char_internal ();
2287
2288 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2289 doc: /* Store each element of ARRAY with ITEM.
2290 ARRAY is a vector, string, char-table, or bool-vector. */)
2291 (array, item)
2292 Lisp_Object array, item;
2293 {
2294 register int size, index, charval;
2295 retry:
2296 if (VECTORP (array))
2297 {
2298 register Lisp_Object *p = XVECTOR (array)->contents;
2299 size = XVECTOR (array)->size;
2300 for (index = 0; index < size; index++)
2301 p[index] = item;
2302 }
2303 else if (CHAR_TABLE_P (array))
2304 {
2305 register Lisp_Object *p = XCHAR_TABLE (array)->contents;
2306 size = CHAR_TABLE_ORDINARY_SLOTS;
2307 for (index = 0; index < size; index++)
2308 p[index] = item;
2309 XCHAR_TABLE (array)->defalt = Qnil;
2310 }
2311 else if (STRINGP (array))
2312 {
2313 register unsigned char *p = SDATA (array);
2314 CHECK_NUMBER (item);
2315 charval = XINT (item);
2316 size = SCHARS (array);
2317 if (STRING_MULTIBYTE (array))
2318 {
2319 unsigned char str[MAX_MULTIBYTE_LENGTH];
2320 int len = CHAR_STRING (charval, str);
2321 int size_byte = SBYTES (array);
2322 unsigned char *p1 = p, *endp = p + size_byte;
2323 int i;
2324
2325 if (size != size_byte)
2326 while (p1 < endp)
2327 {
2328 int this_len = MULTIBYTE_FORM_LENGTH (p1, endp - p1);
2329 if (len != this_len)
2330 error ("Attempt to change byte length of a string");
2331 p1 += this_len;
2332 }
2333 for (i = 0; i < size_byte; i++)
2334 *p++ = str[i % len];
2335 }
2336 else
2337 for (index = 0; index < size; index++)
2338 p[index] = charval;
2339 }
2340 else if (BOOL_VECTOR_P (array))
2341 {
2342 register unsigned char *p = XBOOL_VECTOR (array)->data;
2343 int size_in_chars
2344 = ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2345 / BOOL_VECTOR_BITS_PER_CHAR);
2346
2347 charval = (! NILP (item) ? -1 : 0);
2348 for (index = 0; index < size_in_chars - 1; index++)
2349 p[index] = charval;
2350 if (index < size_in_chars)
2351 {
2352 /* Mask out bits beyond the vector size. */
2353 if (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)
2354 charval &= (1 << (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2355 p[index] = charval;
2356 }
2357 }
2358 else
2359 {
2360 array = wrong_type_argument (Qarrayp, array);
2361 goto retry;
2362 }
2363 return array;
2364 }
2365
2366 DEFUN ("clear-string", Fclear_string, Sclear_string,
2367 1, 1, 0,
2368 doc: /* Clear the contents of STRING.
2369 This makes STRING unibyte and may change its length. */)
2370 (string)
2371 Lisp_Object string;
2372 {
2373 int len = SBYTES (string);
2374 CHECK_STRING (string);
2375 bzero (SDATA (string), len);
2376 STRING_SET_CHARS (string, len);
2377 STRING_SET_UNIBYTE (string);
2378 return Qnil;
2379 }
2380 \f
2381 DEFUN ("char-table-subtype", Fchar_table_subtype, Schar_table_subtype,
2382 1, 1, 0,
2383 doc: /* Return the subtype of char-table CHAR-TABLE. The value is a symbol. */)
2384 (char_table)
2385 Lisp_Object char_table;
2386 {
2387 CHECK_CHAR_TABLE (char_table);
2388
2389 return XCHAR_TABLE (char_table)->purpose;
2390 }
2391
2392 DEFUN ("char-table-parent", Fchar_table_parent, Schar_table_parent,
2393 1, 1, 0,
2394 doc: /* Return the parent char-table of CHAR-TABLE.
2395 The value is either nil or another char-table.
2396 If CHAR-TABLE holds nil for a given character,
2397 then the actual applicable value is inherited from the parent char-table
2398 \(or from its parents, if necessary). */)
2399 (char_table)
2400 Lisp_Object char_table;
2401 {
2402 CHECK_CHAR_TABLE (char_table);
2403
2404 return XCHAR_TABLE (char_table)->parent;
2405 }
2406
2407 DEFUN ("set-char-table-parent", Fset_char_table_parent, Sset_char_table_parent,
2408 2, 2, 0,
2409 doc: /* Set the parent char-table of CHAR-TABLE to PARENT.
2410 Return PARENT. PARENT must be either nil or another char-table. */)
2411 (char_table, parent)
2412 Lisp_Object char_table, parent;
2413 {
2414 Lisp_Object temp;
2415
2416 CHECK_CHAR_TABLE (char_table);
2417
2418 if (!NILP (parent))
2419 {
2420 CHECK_CHAR_TABLE (parent);
2421
2422 for (temp = parent; !NILP (temp); temp = XCHAR_TABLE (temp)->parent)
2423 if (EQ (temp, char_table))
2424 error ("Attempt to make a chartable be its own parent");
2425 }
2426
2427 XCHAR_TABLE (char_table)->parent = parent;
2428
2429 return parent;
2430 }
2431
2432 DEFUN ("char-table-extra-slot", Fchar_table_extra_slot, Schar_table_extra_slot,
2433 2, 2, 0,
2434 doc: /* Return the value of CHAR-TABLE's extra-slot number N. */)
2435 (char_table, n)
2436 Lisp_Object char_table, n;
2437 {
2438 CHECK_CHAR_TABLE (char_table);
2439 CHECK_NUMBER (n);
2440 if (XINT (n) < 0
2441 || XINT (n) >= CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (char_table)))
2442 args_out_of_range (char_table, n);
2443
2444 return XCHAR_TABLE (char_table)->extras[XINT (n)];
2445 }
2446
2447 DEFUN ("set-char-table-extra-slot", Fset_char_table_extra_slot,
2448 Sset_char_table_extra_slot,
2449 3, 3, 0,
2450 doc: /* Set CHAR-TABLE's extra-slot number N to VALUE. */)
2451 (char_table, n, value)
2452 Lisp_Object char_table, n, value;
2453 {
2454 CHECK_CHAR_TABLE (char_table);
2455 CHECK_NUMBER (n);
2456 if (XINT (n) < 0
2457 || XINT (n) >= CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (char_table)))
2458 args_out_of_range (char_table, n);
2459
2460 return XCHAR_TABLE (char_table)->extras[XINT (n)] = value;
2461 }
2462 \f
2463 DEFUN ("char-table-range", Fchar_table_range, Schar_table_range,
2464 2, 2, 0,
2465 doc: /* Return the value in CHAR-TABLE for a range of characters RANGE.
2466 RANGE should be nil (for the default value)
2467 a vector which identifies a character set or a row of a character set,
2468 a character set name, or a character code. */)
2469 (char_table, range)
2470 Lisp_Object char_table, range;
2471 {
2472 CHECK_CHAR_TABLE (char_table);
2473
2474 if (EQ (range, Qnil))
2475 return XCHAR_TABLE (char_table)->defalt;
2476 else if (INTEGERP (range))
2477 return Faref (char_table, range);
2478 else if (SYMBOLP (range))
2479 {
2480 Lisp_Object charset_info;
2481
2482 charset_info = Fget (range, Qcharset);
2483 CHECK_VECTOR (charset_info);
2484
2485 return Faref (char_table,
2486 make_number (XINT (XVECTOR (charset_info)->contents[0])
2487 + 128));
2488 }
2489 else if (VECTORP (range))
2490 {
2491 if (XVECTOR (range)->size == 1)
2492 return Faref (char_table,
2493 make_number (XINT (XVECTOR (range)->contents[0]) + 128));
2494 else
2495 {
2496 int size = XVECTOR (range)->size;
2497 Lisp_Object *val = XVECTOR (range)->contents;
2498 Lisp_Object ch = Fmake_char_internal (size <= 0 ? Qnil : val[0],
2499 size <= 1 ? Qnil : val[1],
2500 size <= 2 ? Qnil : val[2]);
2501 return Faref (char_table, ch);
2502 }
2503 }
2504 else
2505 error ("Invalid RANGE argument to `char-table-range'");
2506 return Qt;
2507 }
2508
2509 DEFUN ("set-char-table-range", Fset_char_table_range, Sset_char_table_range,
2510 3, 3, 0,
2511 doc: /* Set the value in CHAR-TABLE for a range of characters RANGE to VALUE.
2512 RANGE should be t (for all characters), nil (for the default value),
2513 a character set, a vector which identifies a character set, a row of a
2514 character set, or a character code. Return VALUE. */)
2515 (char_table, range, value)
2516 Lisp_Object char_table, range, value;
2517 {
2518 int i;
2519
2520 CHECK_CHAR_TABLE (char_table);
2521
2522 if (EQ (range, Qt))
2523 for (i = 0; i < CHAR_TABLE_ORDINARY_SLOTS; i++)
2524 XCHAR_TABLE (char_table)->contents[i] = value;
2525 else if (EQ (range, Qnil))
2526 XCHAR_TABLE (char_table)->defalt = value;
2527 else if (SYMBOLP (range))
2528 {
2529 Lisp_Object charset_info;
2530 int charset_id;
2531
2532 charset_info = Fget (range, Qcharset);
2533 if (! VECTORP (charset_info)
2534 || ! NATNUMP (AREF (charset_info, 0))
2535 || (charset_id = XINT (AREF (charset_info, 0)),
2536 ! CHARSET_DEFINED_P (charset_id)))
2537 error ("Invalid charset: %s", SDATA (SYMBOL_NAME (range)));
2538
2539 if (charset_id == CHARSET_ASCII)
2540 for (i = 0; i < 128; i++)
2541 XCHAR_TABLE (char_table)->contents[i] = value;
2542 else if (charset_id == CHARSET_8_BIT_CONTROL)
2543 for (i = 128; i < 160; i++)
2544 XCHAR_TABLE (char_table)->contents[i] = value;
2545 else if (charset_id == CHARSET_8_BIT_GRAPHIC)
2546 for (i = 160; i < 256; i++)
2547 XCHAR_TABLE (char_table)->contents[i] = value;
2548 else
2549 XCHAR_TABLE (char_table)->contents[charset_id + 128] = value;
2550 }
2551 else if (INTEGERP (range))
2552 Faset (char_table, range, value);
2553 else if (VECTORP (range))
2554 {
2555 if (XVECTOR (range)->size == 1)
2556 return Faset (char_table,
2557 make_number (XINT (XVECTOR (range)->contents[0]) + 128),
2558 value);
2559 else
2560 {
2561 int size = XVECTOR (range)->size;
2562 Lisp_Object *val = XVECTOR (range)->contents;
2563 Lisp_Object ch = Fmake_char_internal (size <= 0 ? Qnil : val[0],
2564 size <= 1 ? Qnil : val[1],
2565 size <= 2 ? Qnil : val[2]);
2566 return Faset (char_table, ch, value);
2567 }
2568 }
2569 else
2570 error ("Invalid RANGE argument to `set-char-table-range'");
2571
2572 return value;
2573 }
2574
2575 DEFUN ("set-char-table-default", Fset_char_table_default,
2576 Sset_char_table_default, 3, 3, 0,
2577 doc: /* Set the default value in CHAR-TABLE for generic character CH to VALUE.
2578 The generic character specifies the group of characters.
2579 See also the documentation of `make-char'. */)
2580 (char_table, ch, value)
2581 Lisp_Object char_table, ch, value;
2582 {
2583 int c, charset, code1, code2;
2584 Lisp_Object temp;
2585
2586 CHECK_CHAR_TABLE (char_table);
2587 CHECK_NUMBER (ch);
2588
2589 c = XINT (ch);
2590 SPLIT_CHAR (c, charset, code1, code2);
2591
2592 /* Since we may want to set the default value for a character set
2593 not yet defined, we check only if the character set is in the
2594 valid range or not, instead of it is already defined or not. */
2595 if (! CHARSET_VALID_P (charset))
2596 invalid_character (c);
2597
2598 if (charset == CHARSET_ASCII)
2599 return (XCHAR_TABLE (char_table)->defalt = value);
2600
2601 /* Even if C is not a generic char, we had better behave as if a
2602 generic char is specified. */
2603 if (!CHARSET_DEFINED_P (charset) || CHARSET_DIMENSION (charset) == 1)
2604 code1 = 0;
2605 temp = XCHAR_TABLE (char_table)->contents[charset + 128];
2606 if (!code1)
2607 {
2608 if (SUB_CHAR_TABLE_P (temp))
2609 XCHAR_TABLE (temp)->defalt = value;
2610 else
2611 XCHAR_TABLE (char_table)->contents[charset + 128] = value;
2612 return value;
2613 }
2614 if (SUB_CHAR_TABLE_P (temp))
2615 char_table = temp;
2616 else
2617 char_table = (XCHAR_TABLE (char_table)->contents[charset + 128]
2618 = make_sub_char_table (temp));
2619 temp = XCHAR_TABLE (char_table)->contents[code1];
2620 if (SUB_CHAR_TABLE_P (temp))
2621 XCHAR_TABLE (temp)->defalt = value;
2622 else
2623 XCHAR_TABLE (char_table)->contents[code1] = value;
2624 return value;
2625 }
2626
2627 /* Look up the element in TABLE at index CH,
2628 and return it as an integer.
2629 If the element is nil, return CH itself.
2630 (Actually we do that for any non-integer.) */
2631
2632 int
2633 char_table_translate (table, ch)
2634 Lisp_Object table;
2635 int ch;
2636 {
2637 Lisp_Object value;
2638 value = Faref (table, make_number (ch));
2639 if (! INTEGERP (value))
2640 return ch;
2641 return XINT (value);
2642 }
2643
2644 static void
2645 optimize_sub_char_table (table, chars)
2646 Lisp_Object *table;
2647 int chars;
2648 {
2649 Lisp_Object elt;
2650 int from, to;
2651
2652 if (chars == 94)
2653 from = 33, to = 127;
2654 else
2655 from = 32, to = 128;
2656
2657 if (!SUB_CHAR_TABLE_P (*table))
2658 return;
2659 elt = XCHAR_TABLE (*table)->contents[from++];
2660 for (; from < to; from++)
2661 if (NILP (Fequal (elt, XCHAR_TABLE (*table)->contents[from])))
2662 return;
2663 *table = elt;
2664 }
2665
2666 DEFUN ("optimize-char-table", Foptimize_char_table, Soptimize_char_table,
2667 1, 1, 0, doc: /* Optimize char table TABLE. */)
2668 (table)
2669 Lisp_Object table;
2670 {
2671 Lisp_Object elt;
2672 int dim;
2673 int i, j;
2674
2675 CHECK_CHAR_TABLE (table);
2676
2677 for (i = CHAR_TABLE_SINGLE_BYTE_SLOTS; i < CHAR_TABLE_ORDINARY_SLOTS; i++)
2678 {
2679 elt = XCHAR_TABLE (table)->contents[i];
2680 if (!SUB_CHAR_TABLE_P (elt))
2681 continue;
2682 dim = CHARSET_DIMENSION (i - 128);
2683 if (dim == 2)
2684 for (j = 32; j < SUB_CHAR_TABLE_ORDINARY_SLOTS; j++)
2685 optimize_sub_char_table (XCHAR_TABLE (elt)->contents + j, dim);
2686 optimize_sub_char_table (XCHAR_TABLE (table)->contents + i, dim);
2687 }
2688 return Qnil;
2689 }
2690
2691 \f
2692 /* Map C_FUNCTION or FUNCTION over SUBTABLE, calling it for each
2693 character or group of characters that share a value.
2694 DEPTH is the current depth in the originally specified
2695 chartable, and INDICES contains the vector indices
2696 for the levels our callers have descended.
2697
2698 ARG is passed to C_FUNCTION when that is called. */
2699
2700 void
2701 map_char_table (c_function, function, table, subtable, arg, depth, indices)
2702 void (*c_function) P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
2703 Lisp_Object function, table, subtable, arg, *indices;
2704 int depth;
2705 {
2706 int i, to;
2707
2708 if (depth == 0)
2709 {
2710 /* At first, handle ASCII and 8-bit European characters. */
2711 for (i = 0; i < CHAR_TABLE_SINGLE_BYTE_SLOTS; i++)
2712 {
2713 Lisp_Object elt= XCHAR_TABLE (subtable)->contents[i];
2714 if (NILP (elt))
2715 elt = XCHAR_TABLE (subtable)->defalt;
2716 if (NILP (elt))
2717 elt = Faref (subtable, make_number (i));
2718 if (c_function)
2719 (*c_function) (arg, make_number (i), elt);
2720 else
2721 call2 (function, make_number (i), elt);
2722 }
2723 #if 0 /* If the char table has entries for higher characters,
2724 we should report them. */
2725 if (NILP (current_buffer->enable_multibyte_characters))
2726 return;
2727 #endif
2728 to = CHAR_TABLE_ORDINARY_SLOTS;
2729 }
2730 else
2731 {
2732 int charset = XFASTINT (indices[0]) - 128;
2733
2734 i = 32;
2735 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
2736 if (CHARSET_CHARS (charset) == 94)
2737 i++, to--;
2738 }
2739
2740 for (; i < to; i++)
2741 {
2742 Lisp_Object elt;
2743 int charset;
2744
2745 elt = XCHAR_TABLE (subtable)->contents[i];
2746 XSETFASTINT (indices[depth], i);
2747 charset = XFASTINT (indices[0]) - 128;
2748 if (depth == 0
2749 && (!CHARSET_DEFINED_P (charset)
2750 || charset == CHARSET_8_BIT_CONTROL
2751 || charset == CHARSET_8_BIT_GRAPHIC))
2752 continue;
2753
2754 if (SUB_CHAR_TABLE_P (elt))
2755 {
2756 if (depth >= 3)
2757 error ("Too deep char table");
2758 map_char_table (c_function, function, table, elt, arg, depth + 1, indices);
2759 }
2760 else
2761 {
2762 int c1, c2, c;
2763
2764 c1 = depth >= 1 ? XFASTINT (indices[1]) : 0;
2765 c2 = depth >= 2 ? XFASTINT (indices[2]) : 0;
2766 c = MAKE_CHAR (charset, c1, c2);
2767
2768 if (NILP (elt))
2769 elt = XCHAR_TABLE (subtable)->defalt;
2770 if (NILP (elt))
2771 elt = Faref (table, make_number (c));
2772
2773 if (c_function)
2774 (*c_function) (arg, make_number (c), elt);
2775 else
2776 call2 (function, make_number (c), elt);
2777 }
2778 }
2779 }
2780
2781 static void void_call2 P_ ((Lisp_Object a, Lisp_Object b, Lisp_Object c));
2782 static void
2783 void_call2 (a, b, c)
2784 Lisp_Object a, b, c;
2785 {
2786 call2 (a, b, c);
2787 }
2788
2789 DEFUN ("map-char-table", Fmap_char_table, Smap_char_table,
2790 2, 2, 0,
2791 doc: /* Call FUNCTION for each (normal and generic) characters in CHAR-TABLE.
2792 FUNCTION is called with two arguments--a key and a value.
2793 The key is always a possible IDX argument to `aref'. */)
2794 (function, char_table)
2795 Lisp_Object function, char_table;
2796 {
2797 /* The depth of char table is at most 3. */
2798 Lisp_Object indices[3];
2799
2800 CHECK_CHAR_TABLE (char_table);
2801
2802 /* When Lisp_Object is represented as a union, `call2' cannot directly
2803 be passed to map_char_table because it returns a Lisp_Object rather
2804 than returning nothing.
2805 Casting leads to crashes on some architectures. -stef */
2806 map_char_table (void_call2, Qnil, char_table, char_table, function, 0, indices);
2807 return Qnil;
2808 }
2809
2810 /* Return a value for character C in char-table TABLE. Store the
2811 actual index for that value in *IDX. Ignore the default value of
2812 TABLE. */
2813
2814 Lisp_Object
2815 char_table_ref_and_index (table, c, idx)
2816 Lisp_Object table;
2817 int c, *idx;
2818 {
2819 int charset, c1, c2;
2820 Lisp_Object elt;
2821
2822 if (SINGLE_BYTE_CHAR_P (c))
2823 {
2824 *idx = c;
2825 return XCHAR_TABLE (table)->contents[c];
2826 }
2827 SPLIT_CHAR (c, charset, c1, c2);
2828 elt = XCHAR_TABLE (table)->contents[charset + 128];
2829 *idx = MAKE_CHAR (charset, 0, 0);
2830 if (!SUB_CHAR_TABLE_P (elt))
2831 return elt;
2832 if (c1 < 32 || NILP (XCHAR_TABLE (elt)->contents[c1]))
2833 return XCHAR_TABLE (elt)->defalt;
2834 elt = XCHAR_TABLE (elt)->contents[c1];
2835 *idx = MAKE_CHAR (charset, c1, 0);
2836 if (!SUB_CHAR_TABLE_P (elt))
2837 return elt;
2838 if (c2 < 32 || NILP (XCHAR_TABLE (elt)->contents[c2]))
2839 return XCHAR_TABLE (elt)->defalt;
2840 *idx = c;
2841 return XCHAR_TABLE (elt)->contents[c2];
2842 }
2843
2844 \f
2845 /* ARGSUSED */
2846 Lisp_Object
2847 nconc2 (s1, s2)
2848 Lisp_Object s1, s2;
2849 {
2850 #ifdef NO_ARG_ARRAY
2851 Lisp_Object args[2];
2852 args[0] = s1;
2853 args[1] = s2;
2854 return Fnconc (2, args);
2855 #else
2856 return Fnconc (2, &s1);
2857 #endif /* NO_ARG_ARRAY */
2858 }
2859
2860 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2861 doc: /* Concatenate any number of lists by altering them.
2862 Only the last argument is not altered, and need not be a list.
2863 usage: (nconc &rest LISTS) */)
2864 (nargs, args)
2865 int nargs;
2866 Lisp_Object *args;
2867 {
2868 register int argnum;
2869 register Lisp_Object tail, tem, val;
2870
2871 val = tail = Qnil;
2872
2873 for (argnum = 0; argnum < nargs; argnum++)
2874 {
2875 tem = args[argnum];
2876 if (NILP (tem)) continue;
2877
2878 if (NILP (val))
2879 val = tem;
2880
2881 if (argnum + 1 == nargs) break;
2882
2883 if (!CONSP (tem))
2884 tem = wrong_type_argument (Qlistp, tem);
2885
2886 while (CONSP (tem))
2887 {
2888 tail = tem;
2889 tem = XCDR (tail);
2890 QUIT;
2891 }
2892
2893 tem = args[argnum + 1];
2894 Fsetcdr (tail, tem);
2895 if (NILP (tem))
2896 args[argnum + 1] = tail;
2897 }
2898
2899 return val;
2900 }
2901 \f
2902 /* This is the guts of all mapping functions.
2903 Apply FN to each element of SEQ, one by one,
2904 storing the results into elements of VALS, a C vector of Lisp_Objects.
2905 LENI is the length of VALS, which should also be the length of SEQ. */
2906
2907 static void
2908 mapcar1 (leni, vals, fn, seq)
2909 int leni;
2910 Lisp_Object *vals;
2911 Lisp_Object fn, seq;
2912 {
2913 register Lisp_Object tail;
2914 Lisp_Object dummy;
2915 register int i;
2916 struct gcpro gcpro1, gcpro2, gcpro3;
2917
2918 if (vals)
2919 {
2920 /* Don't let vals contain any garbage when GC happens. */
2921 for (i = 0; i < leni; i++)
2922 vals[i] = Qnil;
2923
2924 GCPRO3 (dummy, fn, seq);
2925 gcpro1.var = vals;
2926 gcpro1.nvars = leni;
2927 }
2928 else
2929 GCPRO2 (fn, seq);
2930 /* We need not explicitly protect `tail' because it is used only on lists, and
2931 1) lists are not relocated and 2) the list is marked via `seq' so will not be freed */
2932
2933 if (VECTORP (seq))
2934 {
2935 for (i = 0; i < leni; i++)
2936 {
2937 dummy = XVECTOR (seq)->contents[i];
2938 dummy = call1 (fn, dummy);
2939 if (vals)
2940 vals[i] = dummy;
2941 }
2942 }
2943 else if (BOOL_VECTOR_P (seq))
2944 {
2945 for (i = 0; i < leni; i++)
2946 {
2947 int byte;
2948 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2949 if (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)))
2950 dummy = Qt;
2951 else
2952 dummy = Qnil;
2953
2954 dummy = call1 (fn, dummy);
2955 if (vals)
2956 vals[i] = dummy;
2957 }
2958 }
2959 else if (STRINGP (seq))
2960 {
2961 int i_byte;
2962
2963 for (i = 0, i_byte = 0; i < leni;)
2964 {
2965 int c;
2966 int i_before = i;
2967
2968 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2969 XSETFASTINT (dummy, c);
2970 dummy = call1 (fn, dummy);
2971 if (vals)
2972 vals[i_before] = dummy;
2973 }
2974 }
2975 else /* Must be a list, since Flength did not get an error */
2976 {
2977 tail = seq;
2978 for (i = 0; i < leni; i++)
2979 {
2980 dummy = call1 (fn, Fcar (tail));
2981 if (vals)
2982 vals[i] = dummy;
2983 tail = XCDR (tail);
2984 }
2985 }
2986
2987 UNGCPRO;
2988 }
2989
2990 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2991 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2992 In between each pair of results, stick in SEPARATOR. Thus, " " as
2993 SEPARATOR results in spaces between the values returned by FUNCTION.
2994 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2995 (function, sequence, separator)
2996 Lisp_Object function, sequence, separator;
2997 {
2998 Lisp_Object len;
2999 register int leni;
3000 int nargs;
3001 register Lisp_Object *args;
3002 register int i;
3003 struct gcpro gcpro1;
3004 Lisp_Object ret;
3005 USE_SAFE_ALLOCA;
3006
3007 len = Flength (sequence);
3008 leni = XINT (len);
3009 nargs = leni + leni - 1;
3010 if (nargs < 0) return build_string ("");
3011
3012 SAFE_ALLOCA_LISP (args, nargs);
3013
3014 GCPRO1 (separator);
3015 mapcar1 (leni, args, function, sequence);
3016 UNGCPRO;
3017
3018 for (i = leni - 1; i >= 0; i--)
3019 args[i + i] = args[i];
3020
3021 for (i = 1; i < nargs; i += 2)
3022 args[i] = separator;
3023
3024 ret = Fconcat (nargs, args);
3025 SAFE_FREE_LISP (nargs);
3026
3027 return ret;
3028 }
3029
3030 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
3031 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
3032 The result is a list just as long as SEQUENCE.
3033 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
3034 (function, sequence)
3035 Lisp_Object function, sequence;
3036 {
3037 register Lisp_Object len;
3038 register int leni;
3039 register Lisp_Object *args;
3040 Lisp_Object ret;
3041 USE_SAFE_ALLOCA;
3042
3043 len = Flength (sequence);
3044 leni = XFASTINT (len);
3045
3046 SAFE_ALLOCA_LISP (args, leni);
3047
3048 mapcar1 (leni, args, function, sequence);
3049
3050 ret = Flist (leni, args);
3051 SAFE_FREE_LISP (leni);
3052
3053 return ret;
3054 }
3055
3056 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
3057 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
3058 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
3059 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
3060 (function, sequence)
3061 Lisp_Object function, sequence;
3062 {
3063 register int leni;
3064
3065 leni = XFASTINT (Flength (sequence));
3066 mapcar1 (leni, 0, function, sequence);
3067
3068 return sequence;
3069 }
3070 \f
3071 /* Anything that calls this function must protect from GC! */
3072
3073 DEFUN ("y-or-n-p", Fy_or_n_p, Sy_or_n_p, 1, 1, 0,
3074 doc: /* Ask user a "y or n" question. Return t if answer is "y".
3075 Takes one argument, which is the string to display to ask the question.
3076 It should end in a space; `y-or-n-p' adds `(y or n) ' to it.
3077 No confirmation of the answer is requested; a single character is enough.
3078 Also accepts Space to mean yes, or Delete to mean no. \(Actually, it uses
3079 the bindings in `query-replace-map'; see the documentation of that variable
3080 for more information. In this case, the useful bindings are `act', `skip',
3081 `recenter', and `quit'.\)
3082
3083 Under a windowing system a dialog box will be used if `last-nonmenu-event'
3084 is nil and `use-dialog-box' is non-nil. */)
3085 (prompt)
3086 Lisp_Object prompt;
3087 {
3088 register Lisp_Object obj, key, def, map;
3089 register int answer;
3090 Lisp_Object xprompt;
3091 Lisp_Object args[2];
3092 struct gcpro gcpro1, gcpro2;
3093 int count = SPECPDL_INDEX ();
3094
3095 specbind (Qcursor_in_echo_area, Qt);
3096
3097 map = Fsymbol_value (intern ("query-replace-map"));
3098
3099 CHECK_STRING (prompt);
3100 xprompt = prompt;
3101 GCPRO2 (prompt, xprompt);
3102
3103 #ifdef HAVE_X_WINDOWS
3104 if (display_hourglass_p)
3105 cancel_hourglass ();
3106 #endif
3107
3108 while (1)
3109 {
3110
3111 #ifdef HAVE_MENUS
3112 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3113 && use_dialog_box
3114 && have_menus_p ())
3115 {
3116 Lisp_Object pane, menu;
3117 redisplay_preserve_echo_area (3);
3118 pane = Fcons (Fcons (build_string ("Yes"), Qt),
3119 Fcons (Fcons (build_string ("No"), Qnil),
3120 Qnil));
3121 menu = Fcons (prompt, pane);
3122 obj = Fx_popup_dialog (Qt, menu);
3123 answer = !NILP (obj);
3124 break;
3125 }
3126 #endif /* HAVE_MENUS */
3127 cursor_in_echo_area = 1;
3128 choose_minibuf_frame ();
3129
3130 {
3131 Lisp_Object pargs[3];
3132
3133 /* Colorize prompt according to `minibuffer-prompt' face. */
3134 pargs[0] = build_string ("%s(y or n) ");
3135 pargs[1] = intern ("face");
3136 pargs[2] = intern ("minibuffer-prompt");
3137 args[0] = Fpropertize (3, pargs);
3138 args[1] = xprompt;
3139 Fmessage (2, args);
3140 }
3141
3142 if (minibuffer_auto_raise)
3143 {
3144 Lisp_Object mini_frame;
3145
3146 mini_frame = WINDOW_FRAME (XWINDOW (minibuf_window));
3147
3148 Fraise_frame (mini_frame);
3149 }
3150
3151 obj = read_filtered_event (1, 0, 0, 0);
3152 cursor_in_echo_area = 0;
3153 /* If we need to quit, quit with cursor_in_echo_area = 0. */
3154 QUIT;
3155
3156 key = Fmake_vector (make_number (1), obj);
3157 def = Flookup_key (map, key, Qt);
3158
3159 if (EQ (def, intern ("skip")))
3160 {
3161 answer = 0;
3162 break;
3163 }
3164 else if (EQ (def, intern ("act")))
3165 {
3166 answer = 1;
3167 break;
3168 }
3169 else if (EQ (def, intern ("recenter")))
3170 {
3171 Frecenter (Qnil);
3172 xprompt = prompt;
3173 continue;
3174 }
3175 else if (EQ (def, intern ("quit")))
3176 Vquit_flag = Qt;
3177 /* We want to exit this command for exit-prefix,
3178 and this is the only way to do it. */
3179 else if (EQ (def, intern ("exit-prefix")))
3180 Vquit_flag = Qt;
3181
3182 QUIT;
3183
3184 /* If we don't clear this, then the next call to read_char will
3185 return quit_char again, and we'll enter an infinite loop. */
3186 Vquit_flag = Qnil;
3187
3188 Fding (Qnil);
3189 Fdiscard_input ();
3190 if (EQ (xprompt, prompt))
3191 {
3192 args[0] = build_string ("Please answer y or n. ");
3193 args[1] = prompt;
3194 xprompt = Fconcat (2, args);
3195 }
3196 }
3197 UNGCPRO;
3198
3199 if (! noninteractive)
3200 {
3201 cursor_in_echo_area = -1;
3202 message_with_string (answer ? "%s(y or n) y" : "%s(y or n) n",
3203 xprompt, 0);
3204 }
3205
3206 unbind_to (count, Qnil);
3207 return answer ? Qt : Qnil;
3208 }
3209 \f
3210 /* This is how C code calls `yes-or-no-p' and allows the user
3211 to redefined it.
3212
3213 Anything that calls this function must protect from GC! */
3214
3215 Lisp_Object
3216 do_yes_or_no_p (prompt)
3217 Lisp_Object prompt;
3218 {
3219 return call1 (intern ("yes-or-no-p"), prompt);
3220 }
3221
3222 /* Anything that calls this function must protect from GC! */
3223
3224 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
3225 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
3226 Takes one argument, which is the string to display to ask the question.
3227 It should end in a space; `yes-or-no-p' adds `(yes or no) ' to it.
3228 The user must confirm the answer with RET,
3229 and can edit it until it has been confirmed.
3230
3231 Under a windowing system a dialog box will be used if `last-nonmenu-event'
3232 is nil, and `use-dialog-box' is non-nil. */)
3233 (prompt)
3234 Lisp_Object prompt;
3235 {
3236 register Lisp_Object ans;
3237 Lisp_Object args[2];
3238 struct gcpro gcpro1;
3239
3240 CHECK_STRING (prompt);
3241
3242 #ifdef HAVE_MENUS
3243 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3244 && use_dialog_box
3245 && have_menus_p ())
3246 {
3247 Lisp_Object pane, menu, obj;
3248 redisplay_preserve_echo_area (4);
3249 pane = Fcons (Fcons (build_string ("Yes"), Qt),
3250 Fcons (Fcons (build_string ("No"), Qnil),
3251 Qnil));
3252 GCPRO1 (pane);
3253 menu = Fcons (prompt, pane);
3254 obj = Fx_popup_dialog (Qt, menu);
3255 UNGCPRO;
3256 return obj;
3257 }
3258 #endif /* HAVE_MENUS */
3259
3260 args[0] = prompt;
3261 args[1] = build_string ("(yes or no) ");
3262 prompt = Fconcat (2, args);
3263
3264 GCPRO1 (prompt);
3265
3266 while (1)
3267 {
3268 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
3269 Qyes_or_no_p_history, Qnil,
3270 Qnil));
3271 if (SCHARS (ans) == 3 && !strcmp (SDATA (ans), "yes"))
3272 {
3273 UNGCPRO;
3274 return Qt;
3275 }
3276 if (SCHARS (ans) == 2 && !strcmp (SDATA (ans), "no"))
3277 {
3278 UNGCPRO;
3279 return Qnil;
3280 }
3281
3282 Fding (Qnil);
3283 Fdiscard_input ();
3284 message ("Please answer yes or no.");
3285 Fsleep_for (make_number (2), Qnil);
3286 }
3287 }
3288 \f
3289 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
3290 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
3291
3292 Each of the three load averages is multiplied by 100, then converted
3293 to integer.
3294
3295 When USE-FLOATS is non-nil, floats will be used instead of integers.
3296 These floats are not multiplied by 100.
3297
3298 If the 5-minute or 15-minute load averages are not available, return a
3299 shortened list, containing only those averages which are available.
3300
3301 An error is thrown if the load average can't be obtained. In some
3302 cases making it work would require Emacs being installed setuid or
3303 setgid so that it can read kernel information, and that usually isn't
3304 advisable. */)
3305 (use_floats)
3306 Lisp_Object use_floats;
3307 {
3308 double load_ave[3];
3309 int loads = getloadavg (load_ave, 3);
3310 Lisp_Object ret = Qnil;
3311
3312 if (loads < 0)
3313 error ("load-average not implemented for this operating system");
3314
3315 while (loads-- > 0)
3316 {
3317 Lisp_Object load = (NILP (use_floats) ?
3318 make_number ((int) (100.0 * load_ave[loads]))
3319 : make_float (load_ave[loads]));
3320 ret = Fcons (load, ret);
3321 }
3322
3323 return ret;
3324 }
3325 \f
3326 Lisp_Object Vfeatures, Qsubfeatures;
3327 extern Lisp_Object Vafter_load_alist;
3328
3329 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
3330 doc: /* Returns t if FEATURE is present in this Emacs.
3331
3332 Use this to conditionalize execution of lisp code based on the
3333 presence or absence of emacs or environment extensions.
3334 Use `provide' to declare that a feature is available. This function
3335 looks at the value of the variable `features'. The optional argument
3336 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
3337 (feature, subfeature)
3338 Lisp_Object feature, subfeature;
3339 {
3340 register Lisp_Object tem;
3341 CHECK_SYMBOL (feature);
3342 tem = Fmemq (feature, Vfeatures);
3343 if (!NILP (tem) && !NILP (subfeature))
3344 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
3345 return (NILP (tem)) ? Qnil : Qt;
3346 }
3347
3348 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
3349 doc: /* Announce that FEATURE is a feature of the current Emacs.
3350 The optional argument SUBFEATURES should be a list of symbols listing
3351 particular subfeatures supported in this version of FEATURE. */)
3352 (feature, subfeatures)
3353 Lisp_Object feature, subfeatures;
3354 {
3355 register Lisp_Object tem;
3356 CHECK_SYMBOL (feature);
3357 CHECK_LIST (subfeatures);
3358 if (!NILP (Vautoload_queue))
3359 Vautoload_queue = Fcons (Fcons (Vfeatures, Qnil), Vautoload_queue);
3360 tem = Fmemq (feature, Vfeatures);
3361 if (NILP (tem))
3362 Vfeatures = Fcons (feature, Vfeatures);
3363 if (!NILP (subfeatures))
3364 Fput (feature, Qsubfeatures, subfeatures);
3365 LOADHIST_ATTACH (Fcons (Qprovide, feature));
3366
3367 /* Run any load-hooks for this file. */
3368 tem = Fassq (feature, Vafter_load_alist);
3369 if (CONSP (tem))
3370 Fprogn (XCDR (tem));
3371
3372 return feature;
3373 }
3374 \f
3375 /* `require' and its subroutines. */
3376
3377 /* List of features currently being require'd, innermost first. */
3378
3379 Lisp_Object require_nesting_list;
3380
3381 Lisp_Object
3382 require_unwind (old_value)
3383 Lisp_Object old_value;
3384 {
3385 return require_nesting_list = old_value;
3386 }
3387
3388 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
3389 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
3390 If FEATURE is not a member of the list `features', then the feature
3391 is not loaded; so load the file FILENAME.
3392 If FILENAME is omitted, the printname of FEATURE is used as the file name,
3393 and `load' will try to load this name appended with the suffix `.elc' or
3394 `.el', in that order. The name without appended suffix will not be used.
3395 If the optional third argument NOERROR is non-nil,
3396 then return nil if the file is not found instead of signaling an error.
3397 Normally the return value is FEATURE.
3398 The normal messages at start and end of loading FILENAME are suppressed. */)
3399 (feature, filename, noerror)
3400 Lisp_Object feature, filename, noerror;
3401 {
3402 register Lisp_Object tem;
3403 struct gcpro gcpro1, gcpro2;
3404
3405 CHECK_SYMBOL (feature);
3406
3407 tem = Fmemq (feature, Vfeatures);
3408
3409 if (NILP (tem))
3410 {
3411 int count = SPECPDL_INDEX ();
3412 int nesting = 0;
3413
3414 LOADHIST_ATTACH (Fcons (Qrequire, feature));
3415
3416 /* This is to make sure that loadup.el gives a clear picture
3417 of what files are preloaded and when. */
3418 if (! NILP (Vpurify_flag))
3419 error ("(require %s) while preparing to dump",
3420 SDATA (SYMBOL_NAME (feature)));
3421
3422 /* A certain amount of recursive `require' is legitimate,
3423 but if we require the same feature recursively 3 times,
3424 signal an error. */
3425 tem = require_nesting_list;
3426 while (! NILP (tem))
3427 {
3428 if (! NILP (Fequal (feature, XCAR (tem))))
3429 nesting++;
3430 tem = XCDR (tem);
3431 }
3432 if (nesting > 3)
3433 error ("Recursive `require' for feature `%s'",
3434 SDATA (SYMBOL_NAME (feature)));
3435
3436 /* Update the list for any nested `require's that occur. */
3437 record_unwind_protect (require_unwind, require_nesting_list);
3438 require_nesting_list = Fcons (feature, require_nesting_list);
3439
3440 /* Value saved here is to be restored into Vautoload_queue */
3441 record_unwind_protect (un_autoload, Vautoload_queue);
3442 Vautoload_queue = Qt;
3443
3444 /* Load the file. */
3445 GCPRO2 (feature, filename);
3446 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
3447 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
3448 UNGCPRO;
3449
3450 /* If load failed entirely, return nil. */
3451 if (NILP (tem))
3452 return unbind_to (count, Qnil);
3453
3454 tem = Fmemq (feature, Vfeatures);
3455 if (NILP (tem))
3456 error ("Required feature `%s' was not provided",
3457 SDATA (SYMBOL_NAME (feature)));
3458
3459 /* Once loading finishes, don't undo it. */
3460 Vautoload_queue = Qt;
3461 feature = unbind_to (count, feature);
3462 }
3463
3464 return feature;
3465 }
3466 \f
3467 /* Primitives for work of the "widget" library.
3468 In an ideal world, this section would not have been necessary.
3469 However, lisp function calls being as slow as they are, it turns
3470 out that some functions in the widget library (wid-edit.el) are the
3471 bottleneck of Widget operation. Here is their translation to C,
3472 for the sole reason of efficiency. */
3473
3474 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
3475 doc: /* Return non-nil if PLIST has the property PROP.
3476 PLIST is a property list, which is a list of the form
3477 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
3478 Unlike `plist-get', this allows you to distinguish between a missing
3479 property and a property with the value nil.
3480 The value is actually the tail of PLIST whose car is PROP. */)
3481 (plist, prop)
3482 Lisp_Object plist, prop;
3483 {
3484 while (CONSP (plist) && !EQ (XCAR (plist), prop))
3485 {
3486 QUIT;
3487 plist = XCDR (plist);
3488 plist = CDR (plist);
3489 }
3490 return plist;
3491 }
3492
3493 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
3494 doc: /* In WIDGET, set PROPERTY to VALUE.
3495 The value can later be retrieved with `widget-get'. */)
3496 (widget, property, value)
3497 Lisp_Object widget, property, value;
3498 {
3499 CHECK_CONS (widget);
3500 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
3501 return value;
3502 }
3503
3504 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
3505 doc: /* In WIDGET, get the value of PROPERTY.
3506 The value could either be specified when the widget was created, or
3507 later with `widget-put'. */)
3508 (widget, property)
3509 Lisp_Object widget, property;
3510 {
3511 Lisp_Object tmp;
3512
3513 while (1)
3514 {
3515 if (NILP (widget))
3516 return Qnil;
3517 CHECK_CONS (widget);
3518 tmp = Fplist_member (XCDR (widget), property);
3519 if (CONSP (tmp))
3520 {
3521 tmp = XCDR (tmp);
3522 return CAR (tmp);
3523 }
3524 tmp = XCAR (widget);
3525 if (NILP (tmp))
3526 return Qnil;
3527 widget = Fget (tmp, Qwidget_type);
3528 }
3529 }
3530
3531 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
3532 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
3533 ARGS are passed as extra arguments to the function.
3534 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
3535 (nargs, args)
3536 int nargs;
3537 Lisp_Object *args;
3538 {
3539 /* This function can GC. */
3540 Lisp_Object newargs[3];
3541 struct gcpro gcpro1, gcpro2;
3542 Lisp_Object result;
3543
3544 newargs[0] = Fwidget_get (args[0], args[1]);
3545 newargs[1] = args[0];
3546 newargs[2] = Flist (nargs - 2, args + 2);
3547 GCPRO2 (newargs[0], newargs[2]);
3548 result = Fapply (3, newargs);
3549 UNGCPRO;
3550 return result;
3551 }
3552
3553 #ifdef HAVE_LANGINFO_CODESET
3554 #include <langinfo.h>
3555 #endif
3556
3557 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
3558 doc: /* Access locale data ITEM for the current C locale, if available.
3559 ITEM should be one of the following:
3560
3561 `codeset', returning the character set as a string (locale item CODESET);
3562
3563 `days', returning a 7-element vector of day names (locale items DAY_n);
3564
3565 `months', returning a 12-element vector of month names (locale items MON_n);
3566
3567 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
3568 both measured in milimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
3569
3570 If the system can't provide such information through a call to
3571 `nl_langinfo', or if ITEM isn't from the list above, return nil.
3572
3573 See also Info node `(libc)Locales'.
3574
3575 The data read from the system are decoded using `locale-coding-system'. */)
3576 (item)
3577 Lisp_Object item;
3578 {
3579 char *str = NULL;
3580 #ifdef HAVE_LANGINFO_CODESET
3581 Lisp_Object val;
3582 if (EQ (item, Qcodeset))
3583 {
3584 str = nl_langinfo (CODESET);
3585 return build_string (str);
3586 }
3587 #ifdef DAY_1
3588 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
3589 {
3590 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
3591 int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
3592 int i;
3593 synchronize_system_time_locale ();
3594 for (i = 0; i < 7; i++)
3595 {
3596 str = nl_langinfo (days[i]);
3597 val = make_unibyte_string (str, strlen (str));
3598 /* Fixme: Is this coding system necessarily right, even if
3599 it is consistent with CODESET? If not, what to do? */
3600 Faset (v, make_number (i),
3601 code_convert_string_norecord (val, Vlocale_coding_system,
3602 0));
3603 }
3604 return v;
3605 }
3606 #endif /* DAY_1 */
3607 #ifdef MON_1
3608 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
3609 {
3610 struct Lisp_Vector *p = allocate_vector (12);
3611 int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
3612 MON_8, MON_9, MON_10, MON_11, MON_12};
3613 int i;
3614 synchronize_system_time_locale ();
3615 for (i = 0; i < 12; i++)
3616 {
3617 str = nl_langinfo (months[i]);
3618 val = make_unibyte_string (str, strlen (str));
3619 p->contents[i] =
3620 code_convert_string_norecord (val, Vlocale_coding_system, 0);
3621 }
3622 XSETVECTOR (val, p);
3623 return val;
3624 }
3625 #endif /* MON_1 */
3626 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
3627 but is in the locale files. This could be used by ps-print. */
3628 #ifdef PAPER_WIDTH
3629 else if (EQ (item, Qpaper))
3630 {
3631 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
3632 make_number (nl_langinfo (PAPER_HEIGHT)));
3633 }
3634 #endif /* PAPER_WIDTH */
3635 #endif /* HAVE_LANGINFO_CODESET*/
3636 return Qnil;
3637 }
3638 \f
3639 /* base64 encode/decode functions (RFC 2045).
3640 Based on code from GNU recode. */
3641
3642 #define MIME_LINE_LENGTH 76
3643
3644 #define IS_ASCII(Character) \
3645 ((Character) < 128)
3646 #define IS_BASE64(Character) \
3647 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
3648 #define IS_BASE64_IGNORABLE(Character) \
3649 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
3650 || (Character) == '\f' || (Character) == '\r')
3651
3652 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
3653 character or return retval if there are no characters left to
3654 process. */
3655 #define READ_QUADRUPLET_BYTE(retval) \
3656 do \
3657 { \
3658 if (i == length) \
3659 { \
3660 if (nchars_return) \
3661 *nchars_return = nchars; \
3662 return (retval); \
3663 } \
3664 c = from[i++]; \
3665 } \
3666 while (IS_BASE64_IGNORABLE (c))
3667
3668 /* Table of characters coding the 64 values. */
3669 static char base64_value_to_char[64] =
3670 {
3671 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
3672 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
3673 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
3674 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
3675 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
3676 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
3677 '8', '9', '+', '/' /* 60-63 */
3678 };
3679
3680 /* Table of base64 values for first 128 characters. */
3681 static short base64_char_to_value[128] =
3682 {
3683 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
3684 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
3685 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
3686 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
3687 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
3688 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
3689 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
3690 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
3691 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
3692 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
3693 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
3694 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
3695 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
3696 };
3697
3698 /* The following diagram shows the logical steps by which three octets
3699 get transformed into four base64 characters.
3700
3701 .--------. .--------. .--------.
3702 |aaaaaabb| |bbbbcccc| |ccdddddd|
3703 `--------' `--------' `--------'
3704 6 2 4 4 2 6
3705 .--------+--------+--------+--------.
3706 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
3707 `--------+--------+--------+--------'
3708
3709 .--------+--------+--------+--------.
3710 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
3711 `--------+--------+--------+--------'
3712
3713 The octets are divided into 6 bit chunks, which are then encoded into
3714 base64 characters. */
3715
3716
3717 static int base64_encode_1 P_ ((const char *, char *, int, int, int));
3718 static int base64_decode_1 P_ ((const char *, char *, int, int, int *));
3719
3720 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
3721 2, 3, "r",
3722 doc: /* Base64-encode the region between BEG and END.
3723 Return the length of the encoded text.
3724 Optional third argument NO-LINE-BREAK means do not break long lines
3725 into shorter lines. */)
3726 (beg, end, no_line_break)
3727 Lisp_Object beg, end, no_line_break;
3728 {
3729 char *encoded;
3730 int allength, length;
3731 int ibeg, iend, encoded_length;
3732 int old_pos = PT;
3733 USE_SAFE_ALLOCA;
3734
3735 validate_region (&beg, &end);
3736
3737 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3738 iend = CHAR_TO_BYTE (XFASTINT (end));
3739 move_gap_both (XFASTINT (beg), ibeg);
3740
3741 /* We need to allocate enough room for encoding the text.
3742 We need 33 1/3% more space, plus a newline every 76
3743 characters, and then we round up. */
3744 length = iend - ibeg;
3745 allength = length + length/3 + 1;
3746 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3747
3748 SAFE_ALLOCA (encoded, char *, allength);
3749 encoded_length = base64_encode_1 (BYTE_POS_ADDR (ibeg), encoded, length,
3750 NILP (no_line_break),
3751 !NILP (current_buffer->enable_multibyte_characters));
3752 if (encoded_length > allength)
3753 abort ();
3754
3755 if (encoded_length < 0)
3756 {
3757 /* The encoding wasn't possible. */
3758 SAFE_FREE (allength);
3759 error ("Multibyte character in data for base64 encoding");
3760 }
3761
3762 /* Now we have encoded the region, so we insert the new contents
3763 and delete the old. (Insert first in order to preserve markers.) */
3764 SET_PT_BOTH (XFASTINT (beg), ibeg);
3765 insert (encoded, encoded_length);
3766 SAFE_FREE (allength);
3767 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3768
3769 /* If point was outside of the region, restore it exactly; else just
3770 move to the beginning of the region. */
3771 if (old_pos >= XFASTINT (end))
3772 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3773 else if (old_pos > XFASTINT (beg))
3774 old_pos = XFASTINT (beg);
3775 SET_PT (old_pos);
3776
3777 /* We return the length of the encoded text. */
3778 return make_number (encoded_length);
3779 }
3780
3781 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3782 1, 2, 0,
3783 doc: /* Base64-encode STRING and return the result.
3784 Optional second argument NO-LINE-BREAK means do not break long lines
3785 into shorter lines. */)
3786 (string, no_line_break)
3787 Lisp_Object string, no_line_break;
3788 {
3789 int allength, length, encoded_length;
3790 char *encoded;
3791 Lisp_Object encoded_string;
3792 USE_SAFE_ALLOCA;
3793
3794 CHECK_STRING (string);
3795
3796 /* We need to allocate enough room for encoding the text.
3797 We need 33 1/3% more space, plus a newline every 76
3798 characters, and then we round up. */
3799 length = SBYTES (string);
3800 allength = length + length/3 + 1;
3801 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3802
3803 /* We need to allocate enough room for decoding the text. */
3804 SAFE_ALLOCA (encoded, char *, allength);
3805
3806 encoded_length = base64_encode_1 (SDATA (string),
3807 encoded, length, NILP (no_line_break),
3808 STRING_MULTIBYTE (string));
3809 if (encoded_length > allength)
3810 abort ();
3811
3812 if (encoded_length < 0)
3813 {
3814 /* The encoding wasn't possible. */
3815 SAFE_FREE (allength);
3816 error ("Multibyte character in data for base64 encoding");
3817 }
3818
3819 encoded_string = make_unibyte_string (encoded, encoded_length);
3820 SAFE_FREE (allength);
3821
3822 return encoded_string;
3823 }
3824
3825 static int
3826 base64_encode_1 (from, to, length, line_break, multibyte)
3827 const char *from;
3828 char *to;
3829 int length;
3830 int line_break;
3831 int multibyte;
3832 {
3833 int counter = 0, i = 0;
3834 char *e = to;
3835 int c;
3836 unsigned int value;
3837 int bytes;
3838
3839 while (i < length)
3840 {
3841 if (multibyte)
3842 {
3843 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3844 if (c >= 256)
3845 return -1;
3846 i += bytes;
3847 }
3848 else
3849 c = from[i++];
3850
3851 /* Wrap line every 76 characters. */
3852
3853 if (line_break)
3854 {
3855 if (counter < MIME_LINE_LENGTH / 4)
3856 counter++;
3857 else
3858 {
3859 *e++ = '\n';
3860 counter = 1;
3861 }
3862 }
3863
3864 /* Process first byte of a triplet. */
3865
3866 *e++ = base64_value_to_char[0x3f & c >> 2];
3867 value = (0x03 & c) << 4;
3868
3869 /* Process second byte of a triplet. */
3870
3871 if (i == length)
3872 {
3873 *e++ = base64_value_to_char[value];
3874 *e++ = '=';
3875 *e++ = '=';
3876 break;
3877 }
3878
3879 if (multibyte)
3880 {
3881 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3882 if (c >= 256)
3883 return -1;
3884 i += bytes;
3885 }
3886 else
3887 c = from[i++];
3888
3889 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3890 value = (0x0f & c) << 2;
3891
3892 /* Process third byte of a triplet. */
3893
3894 if (i == length)
3895 {
3896 *e++ = base64_value_to_char[value];
3897 *e++ = '=';
3898 break;
3899 }
3900
3901 if (multibyte)
3902 {
3903 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3904 if (c >= 256)
3905 return -1;
3906 i += bytes;
3907 }
3908 else
3909 c = from[i++];
3910
3911 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3912 *e++ = base64_value_to_char[0x3f & c];
3913 }
3914
3915 return e - to;
3916 }
3917
3918
3919 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3920 2, 2, "r",
3921 doc: /* Base64-decode the region between BEG and END.
3922 Return the length of the decoded text.
3923 If the region can't be decoded, signal an error and don't modify the buffer. */)
3924 (beg, end)
3925 Lisp_Object beg, end;
3926 {
3927 int ibeg, iend, length, allength;
3928 char *decoded;
3929 int old_pos = PT;
3930 int decoded_length;
3931 int inserted_chars;
3932 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
3933 USE_SAFE_ALLOCA;
3934
3935 validate_region (&beg, &end);
3936
3937 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3938 iend = CHAR_TO_BYTE (XFASTINT (end));
3939
3940 length = iend - ibeg;
3941
3942 /* We need to allocate enough room for decoding the text. If we are
3943 working on a multibyte buffer, each decoded code may occupy at
3944 most two bytes. */
3945 allength = multibyte ? length * 2 : length;
3946 SAFE_ALLOCA (decoded, char *, allength);
3947
3948 move_gap_both (XFASTINT (beg), ibeg);
3949 decoded_length = base64_decode_1 (BYTE_POS_ADDR (ibeg), decoded, length,
3950 multibyte, &inserted_chars);
3951 if (decoded_length > allength)
3952 abort ();
3953
3954 if (decoded_length < 0)
3955 {
3956 /* The decoding wasn't possible. */
3957 SAFE_FREE (allength);
3958 error ("Invalid base64 data");
3959 }
3960
3961 /* Now we have decoded the region, so we insert the new contents
3962 and delete the old. (Insert first in order to preserve markers.) */
3963 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3964 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3965 SAFE_FREE (allength);
3966
3967 /* Delete the original text. */
3968 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3969 iend + decoded_length, 1);
3970
3971 /* If point was outside of the region, restore it exactly; else just
3972 move to the beginning of the region. */
3973 if (old_pos >= XFASTINT (end))
3974 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3975 else if (old_pos > XFASTINT (beg))
3976 old_pos = XFASTINT (beg);
3977 SET_PT (old_pos > ZV ? ZV : old_pos);
3978
3979 return make_number (inserted_chars);
3980 }
3981
3982 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3983 1, 1, 0,
3984 doc: /* Base64-decode STRING and return the result. */)
3985 (string)
3986 Lisp_Object string;
3987 {
3988 char *decoded;
3989 int length, decoded_length;
3990 Lisp_Object decoded_string;
3991 USE_SAFE_ALLOCA;
3992
3993 CHECK_STRING (string);
3994
3995 length = SBYTES (string);
3996 /* We need to allocate enough room for decoding the text. */
3997 SAFE_ALLOCA (decoded, char *, length);
3998
3999 /* The decoded result should be unibyte. */
4000 decoded_length = base64_decode_1 (SDATA (string), decoded, length,
4001 0, NULL);
4002 if (decoded_length > length)
4003 abort ();
4004 else if (decoded_length >= 0)
4005 decoded_string = make_unibyte_string (decoded, decoded_length);
4006 else
4007 decoded_string = Qnil;
4008
4009 SAFE_FREE (length);
4010 if (!STRINGP (decoded_string))
4011 error ("Invalid base64 data");
4012
4013 return decoded_string;
4014 }
4015
4016 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
4017 MULTIBYTE is nonzero, the decoded result should be in multibyte
4018 form. If NCHARS_RETRUN is not NULL, store the number of produced
4019 characters in *NCHARS_RETURN. */
4020
4021 static int
4022 base64_decode_1 (from, to, length, multibyte, nchars_return)
4023 const char *from;
4024 char *to;
4025 int length;
4026 int multibyte;
4027 int *nchars_return;
4028 {
4029 int i = 0;
4030 char *e = to;
4031 unsigned char c;
4032 unsigned long value;
4033 int nchars = 0;
4034
4035 while (1)
4036 {
4037 /* Process first byte of a quadruplet. */
4038
4039 READ_QUADRUPLET_BYTE (e-to);
4040
4041 if (!IS_BASE64 (c))
4042 return -1;
4043 value = base64_char_to_value[c] << 18;
4044
4045 /* Process second byte of a quadruplet. */
4046
4047 READ_QUADRUPLET_BYTE (-1);
4048
4049 if (!IS_BASE64 (c))
4050 return -1;
4051 value |= base64_char_to_value[c] << 12;
4052
4053 c = (unsigned char) (value >> 16);
4054 if (multibyte)
4055 e += CHAR_STRING (c, e);
4056 else
4057 *e++ = c;
4058 nchars++;
4059
4060 /* Process third byte of a quadruplet. */
4061
4062 READ_QUADRUPLET_BYTE (-1);
4063
4064 if (c == '=')
4065 {
4066 READ_QUADRUPLET_BYTE (-1);
4067
4068 if (c != '=')
4069 return -1;
4070 continue;
4071 }
4072
4073 if (!IS_BASE64 (c))
4074 return -1;
4075 value |= base64_char_to_value[c] << 6;
4076
4077 c = (unsigned char) (0xff & value >> 8);
4078 if (multibyte)
4079 e += CHAR_STRING (c, e);
4080 else
4081 *e++ = c;
4082 nchars++;
4083
4084 /* Process fourth byte of a quadruplet. */
4085
4086 READ_QUADRUPLET_BYTE (-1);
4087
4088 if (c == '=')
4089 continue;
4090
4091 if (!IS_BASE64 (c))
4092 return -1;
4093 value |= base64_char_to_value[c];
4094
4095 c = (unsigned char) (0xff & value);
4096 if (multibyte)
4097 e += CHAR_STRING (c, e);
4098 else
4099 *e++ = c;
4100 nchars++;
4101 }
4102 }
4103
4104
4105 \f
4106 /***********************************************************************
4107 ***** *****
4108 ***** Hash Tables *****
4109 ***** *****
4110 ***********************************************************************/
4111
4112 /* Implemented by gerd@gnu.org. This hash table implementation was
4113 inspired by CMUCL hash tables. */
4114
4115 /* Ideas:
4116
4117 1. For small tables, association lists are probably faster than
4118 hash tables because they have lower overhead.
4119
4120 For uses of hash tables where the O(1) behavior of table
4121 operations is not a requirement, it might therefore be a good idea
4122 not to hash. Instead, we could just do a linear search in the
4123 key_and_value vector of the hash table. This could be done
4124 if a `:linear-search t' argument is given to make-hash-table. */
4125
4126
4127 /* The list of all weak hash tables. Don't staticpro this one. */
4128
4129 Lisp_Object Vweak_hash_tables;
4130
4131 /* Various symbols. */
4132
4133 Lisp_Object Qhash_table_p, Qeq, Qeql, Qequal, Qkey, Qvalue;
4134 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
4135 Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
4136
4137 /* Function prototypes. */
4138
4139 static struct Lisp_Hash_Table *check_hash_table P_ ((Lisp_Object));
4140 static int get_key_arg P_ ((Lisp_Object, int, Lisp_Object *, char *));
4141 static void maybe_resize_hash_table P_ ((struct Lisp_Hash_Table *));
4142 static int cmpfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
4143 Lisp_Object, unsigned));
4144 static int cmpfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
4145 Lisp_Object, unsigned));
4146 static int cmpfn_user_defined P_ ((struct Lisp_Hash_Table *, Lisp_Object,
4147 unsigned, Lisp_Object, unsigned));
4148 static unsigned hashfn_eq P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4149 static unsigned hashfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4150 static unsigned hashfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4151 static unsigned hashfn_user_defined P_ ((struct Lisp_Hash_Table *,
4152 Lisp_Object));
4153 static unsigned sxhash_string P_ ((unsigned char *, int));
4154 static unsigned sxhash_list P_ ((Lisp_Object, int));
4155 static unsigned sxhash_vector P_ ((Lisp_Object, int));
4156 static unsigned sxhash_bool_vector P_ ((Lisp_Object));
4157 static int sweep_weak_table P_ ((struct Lisp_Hash_Table *, int));
4158
4159
4160 \f
4161 /***********************************************************************
4162 Utilities
4163 ***********************************************************************/
4164
4165 /* If OBJ is a Lisp hash table, return a pointer to its struct
4166 Lisp_Hash_Table. Otherwise, signal an error. */
4167
4168 static struct Lisp_Hash_Table *
4169 check_hash_table (obj)
4170 Lisp_Object obj;
4171 {
4172 CHECK_HASH_TABLE (obj);
4173 return XHASH_TABLE (obj);
4174 }
4175
4176
4177 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
4178 number. */
4179
4180 int
4181 next_almost_prime (n)
4182 int n;
4183 {
4184 if (n % 2 == 0)
4185 n += 1;
4186 if (n % 3 == 0)
4187 n += 2;
4188 if (n % 7 == 0)
4189 n += 4;
4190 return n;
4191 }
4192
4193
4194 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
4195 which USED[I] is non-zero. If found at index I in ARGS, set
4196 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
4197 -1. This function is used to extract a keyword/argument pair from
4198 a DEFUN parameter list. */
4199
4200 static int
4201 get_key_arg (key, nargs, args, used)
4202 Lisp_Object key;
4203 int nargs;
4204 Lisp_Object *args;
4205 char *used;
4206 {
4207 int i;
4208
4209 for (i = 0; i < nargs - 1; ++i)
4210 if (!used[i] && EQ (args[i], key))
4211 break;
4212
4213 if (i >= nargs - 1)
4214 i = -1;
4215 else
4216 {
4217 used[i++] = 1;
4218 used[i] = 1;
4219 }
4220
4221 return i;
4222 }
4223
4224
4225 /* Return a Lisp vector which has the same contents as VEC but has
4226 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
4227 vector that are not copied from VEC are set to INIT. */
4228
4229 Lisp_Object
4230 larger_vector (vec, new_size, init)
4231 Lisp_Object vec;
4232 int new_size;
4233 Lisp_Object init;
4234 {
4235 struct Lisp_Vector *v;
4236 int i, old_size;
4237
4238 xassert (VECTORP (vec));
4239 old_size = XVECTOR (vec)->size;
4240 xassert (new_size >= old_size);
4241
4242 v = allocate_vector (new_size);
4243 bcopy (XVECTOR (vec)->contents, v->contents,
4244 old_size * sizeof *v->contents);
4245 for (i = old_size; i < new_size; ++i)
4246 v->contents[i] = init;
4247 XSETVECTOR (vec, v);
4248 return vec;
4249 }
4250
4251
4252 /***********************************************************************
4253 Low-level Functions
4254 ***********************************************************************/
4255
4256 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
4257 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
4258 KEY2 are the same. */
4259
4260 static int
4261 cmpfn_eql (h, key1, hash1, key2, hash2)
4262 struct Lisp_Hash_Table *h;
4263 Lisp_Object key1, key2;
4264 unsigned hash1, hash2;
4265 {
4266 return (FLOATP (key1)
4267 && FLOATP (key2)
4268 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
4269 }
4270
4271
4272 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
4273 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
4274 KEY2 are the same. */
4275
4276 static int
4277 cmpfn_equal (h, key1, hash1, key2, hash2)
4278 struct Lisp_Hash_Table *h;
4279 Lisp_Object key1, key2;
4280 unsigned hash1, hash2;
4281 {
4282 return hash1 == hash2 && !NILP (Fequal (key1, key2));
4283 }
4284
4285
4286 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
4287 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
4288 if KEY1 and KEY2 are the same. */
4289
4290 static int
4291 cmpfn_user_defined (h, key1, hash1, key2, hash2)
4292 struct Lisp_Hash_Table *h;
4293 Lisp_Object key1, key2;
4294 unsigned hash1, hash2;
4295 {
4296 if (hash1 == hash2)
4297 {
4298 Lisp_Object args[3];
4299
4300 args[0] = h->user_cmp_function;
4301 args[1] = key1;
4302 args[2] = key2;
4303 return !NILP (Ffuncall (3, args));
4304 }
4305 else
4306 return 0;
4307 }
4308
4309
4310 /* Value is a hash code for KEY for use in hash table H which uses
4311 `eq' to compare keys. The hash code returned is guaranteed to fit
4312 in a Lisp integer. */
4313
4314 static unsigned
4315 hashfn_eq (h, key)
4316 struct Lisp_Hash_Table *h;
4317 Lisp_Object key;
4318 {
4319 unsigned hash = XUINT (key) ^ XGCTYPE (key);
4320 xassert ((hash & ~INTMASK) == 0);
4321 return hash;
4322 }
4323
4324
4325 /* Value is a hash code for KEY for use in hash table H which uses
4326 `eql' to compare keys. The hash code returned is guaranteed to fit
4327 in a Lisp integer. */
4328
4329 static unsigned
4330 hashfn_eql (h, key)
4331 struct Lisp_Hash_Table *h;
4332 Lisp_Object key;
4333 {
4334 unsigned hash;
4335 if (FLOATP (key))
4336 hash = sxhash (key, 0);
4337 else
4338 hash = XUINT (key) ^ XGCTYPE (key);
4339 xassert ((hash & ~INTMASK) == 0);
4340 return hash;
4341 }
4342
4343
4344 /* Value is a hash code for KEY for use in hash table H which uses
4345 `equal' to compare keys. The hash code returned is guaranteed to fit
4346 in a Lisp integer. */
4347
4348 static unsigned
4349 hashfn_equal (h, key)
4350 struct Lisp_Hash_Table *h;
4351 Lisp_Object key;
4352 {
4353 unsigned hash = sxhash (key, 0);
4354 xassert ((hash & ~INTMASK) == 0);
4355 return hash;
4356 }
4357
4358
4359 /* Value is a hash code for KEY for use in hash table H which uses as
4360 user-defined function to compare keys. The hash code returned is
4361 guaranteed to fit in a Lisp integer. */
4362
4363 static unsigned
4364 hashfn_user_defined (h, key)
4365 struct Lisp_Hash_Table *h;
4366 Lisp_Object key;
4367 {
4368 Lisp_Object args[2], hash;
4369
4370 args[0] = h->user_hash_function;
4371 args[1] = key;
4372 hash = Ffuncall (2, args);
4373 if (!INTEGERP (hash))
4374 Fsignal (Qerror,
4375 list2 (build_string ("Invalid hash code returned from \
4376 user-supplied hash function"),
4377 hash));
4378 return XUINT (hash);
4379 }
4380
4381
4382 /* Create and initialize a new hash table.
4383
4384 TEST specifies the test the hash table will use to compare keys.
4385 It must be either one of the predefined tests `eq', `eql' or
4386 `equal' or a symbol denoting a user-defined test named TEST with
4387 test and hash functions USER_TEST and USER_HASH.
4388
4389 Give the table initial capacity SIZE, SIZE >= 0, an integer.
4390
4391 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
4392 new size when it becomes full is computed by adding REHASH_SIZE to
4393 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
4394 table's new size is computed by multiplying its old size with
4395 REHASH_SIZE.
4396
4397 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
4398 be resized when the ratio of (number of entries in the table) /
4399 (table size) is >= REHASH_THRESHOLD.
4400
4401 WEAK specifies the weakness of the table. If non-nil, it must be
4402 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
4403
4404 Lisp_Object
4405 make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4406 user_test, user_hash)
4407 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4408 Lisp_Object user_test, user_hash;
4409 {
4410 struct Lisp_Hash_Table *h;
4411 Lisp_Object table;
4412 int index_size, i, sz;
4413
4414 /* Preconditions. */
4415 xassert (SYMBOLP (test));
4416 xassert (INTEGERP (size) && XINT (size) >= 0);
4417 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
4418 || (FLOATP (rehash_size) && XFLOATINT (rehash_size) > 1.0));
4419 xassert (FLOATP (rehash_threshold)
4420 && XFLOATINT (rehash_threshold) > 0
4421 && XFLOATINT (rehash_threshold) <= 1.0);
4422
4423 if (XFASTINT (size) == 0)
4424 size = make_number (1);
4425
4426 /* Allocate a table and initialize it. */
4427 h = allocate_hash_table ();
4428
4429 /* Initialize hash table slots. */
4430 sz = XFASTINT (size);
4431
4432 h->test = test;
4433 if (EQ (test, Qeql))
4434 {
4435 h->cmpfn = cmpfn_eql;
4436 h->hashfn = hashfn_eql;
4437 }
4438 else if (EQ (test, Qeq))
4439 {
4440 h->cmpfn = NULL;
4441 h->hashfn = hashfn_eq;
4442 }
4443 else if (EQ (test, Qequal))
4444 {
4445 h->cmpfn = cmpfn_equal;
4446 h->hashfn = hashfn_equal;
4447 }
4448 else
4449 {
4450 h->user_cmp_function = user_test;
4451 h->user_hash_function = user_hash;
4452 h->cmpfn = cmpfn_user_defined;
4453 h->hashfn = hashfn_user_defined;
4454 }
4455
4456 h->weak = weak;
4457 h->rehash_threshold = rehash_threshold;
4458 h->rehash_size = rehash_size;
4459 h->count = make_number (0);
4460 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
4461 h->hash = Fmake_vector (size, Qnil);
4462 h->next = Fmake_vector (size, Qnil);
4463 /* Cast to int here avoids losing with gcc 2.95 on Tru64/Alpha... */
4464 index_size = next_almost_prime ((int) (sz / XFLOATINT (rehash_threshold)));
4465 h->index = Fmake_vector (make_number (index_size), Qnil);
4466
4467 /* Set up the free list. */
4468 for (i = 0; i < sz - 1; ++i)
4469 HASH_NEXT (h, i) = make_number (i + 1);
4470 h->next_free = make_number (0);
4471
4472 XSET_HASH_TABLE (table, h);
4473 xassert (HASH_TABLE_P (table));
4474 xassert (XHASH_TABLE (table) == h);
4475
4476 /* Maybe add this hash table to the list of all weak hash tables. */
4477 if (NILP (h->weak))
4478 h->next_weak = Qnil;
4479 else
4480 {
4481 h->next_weak = Vweak_hash_tables;
4482 Vweak_hash_tables = table;
4483 }
4484
4485 return table;
4486 }
4487
4488
4489 /* Return a copy of hash table H1. Keys and values are not copied,
4490 only the table itself is. */
4491
4492 Lisp_Object
4493 copy_hash_table (h1)
4494 struct Lisp_Hash_Table *h1;
4495 {
4496 Lisp_Object table;
4497 struct Lisp_Hash_Table *h2;
4498 struct Lisp_Vector *next;
4499
4500 h2 = allocate_hash_table ();
4501 next = h2->vec_next;
4502 bcopy (h1, h2, sizeof *h2);
4503 h2->vec_next = next;
4504 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
4505 h2->hash = Fcopy_sequence (h1->hash);
4506 h2->next = Fcopy_sequence (h1->next);
4507 h2->index = Fcopy_sequence (h1->index);
4508 XSET_HASH_TABLE (table, h2);
4509
4510 /* Maybe add this hash table to the list of all weak hash tables. */
4511 if (!NILP (h2->weak))
4512 {
4513 h2->next_weak = Vweak_hash_tables;
4514 Vweak_hash_tables = table;
4515 }
4516
4517 return table;
4518 }
4519
4520
4521 /* Resize hash table H if it's too full. If H cannot be resized
4522 because it's already too large, throw an error. */
4523
4524 static INLINE void
4525 maybe_resize_hash_table (h)
4526 struct Lisp_Hash_Table *h;
4527 {
4528 if (NILP (h->next_free))
4529 {
4530 int old_size = HASH_TABLE_SIZE (h);
4531 int i, new_size, index_size;
4532
4533 if (INTEGERP (h->rehash_size))
4534 new_size = old_size + XFASTINT (h->rehash_size);
4535 else
4536 new_size = old_size * XFLOATINT (h->rehash_size);
4537 new_size = max (old_size + 1, new_size);
4538 index_size = next_almost_prime ((int)
4539 (new_size
4540 / XFLOATINT (h->rehash_threshold)));
4541 if (max (index_size, 2 * new_size) > MOST_POSITIVE_FIXNUM)
4542 error ("Hash table too large to resize");
4543
4544 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
4545 h->next = larger_vector (h->next, new_size, Qnil);
4546 h->hash = larger_vector (h->hash, new_size, Qnil);
4547 h->index = Fmake_vector (make_number (index_size), Qnil);
4548
4549 /* Update the free list. Do it so that new entries are added at
4550 the end of the free list. This makes some operations like
4551 maphash faster. */
4552 for (i = old_size; i < new_size - 1; ++i)
4553 HASH_NEXT (h, i) = make_number (i + 1);
4554
4555 if (!NILP (h->next_free))
4556 {
4557 Lisp_Object last, next;
4558
4559 last = h->next_free;
4560 while (next = HASH_NEXT (h, XFASTINT (last)),
4561 !NILP (next))
4562 last = next;
4563
4564 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
4565 }
4566 else
4567 XSETFASTINT (h->next_free, old_size);
4568
4569 /* Rehash. */
4570 for (i = 0; i < old_size; ++i)
4571 if (!NILP (HASH_HASH (h, i)))
4572 {
4573 unsigned hash_code = XUINT (HASH_HASH (h, i));
4574 int start_of_bucket = hash_code % XVECTOR (h->index)->size;
4575 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4576 HASH_INDEX (h, start_of_bucket) = make_number (i);
4577 }
4578 }
4579 }
4580
4581
4582 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
4583 the hash code of KEY. Value is the index of the entry in H
4584 matching KEY, or -1 if not found. */
4585
4586 int
4587 hash_lookup (h, key, hash)
4588 struct Lisp_Hash_Table *h;
4589 Lisp_Object key;
4590 unsigned *hash;
4591 {
4592 unsigned hash_code;
4593 int start_of_bucket;
4594 Lisp_Object idx;
4595
4596 hash_code = h->hashfn (h, key);
4597 if (hash)
4598 *hash = hash_code;
4599
4600 start_of_bucket = hash_code % XVECTOR (h->index)->size;
4601 idx = HASH_INDEX (h, start_of_bucket);
4602
4603 /* We need not gcpro idx since it's either an integer or nil. */
4604 while (!NILP (idx))
4605 {
4606 int i = XFASTINT (idx);
4607 if (EQ (key, HASH_KEY (h, i))
4608 || (h->cmpfn
4609 && h->cmpfn (h, key, hash_code,
4610 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4611 break;
4612 idx = HASH_NEXT (h, i);
4613 }
4614
4615 return NILP (idx) ? -1 : XFASTINT (idx);
4616 }
4617
4618
4619 /* Put an entry into hash table H that associates KEY with VALUE.
4620 HASH is a previously computed hash code of KEY.
4621 Value is the index of the entry in H matching KEY. */
4622
4623 int
4624 hash_put (h, key, value, hash)
4625 struct Lisp_Hash_Table *h;
4626 Lisp_Object key, value;
4627 unsigned hash;
4628 {
4629 int start_of_bucket, i;
4630
4631 xassert ((hash & ~INTMASK) == 0);
4632
4633 /* Increment count after resizing because resizing may fail. */
4634 maybe_resize_hash_table (h);
4635 h->count = make_number (XFASTINT (h->count) + 1);
4636
4637 /* Store key/value in the key_and_value vector. */
4638 i = XFASTINT (h->next_free);
4639 h->next_free = HASH_NEXT (h, i);
4640 HASH_KEY (h, i) = key;
4641 HASH_VALUE (h, i) = value;
4642
4643 /* Remember its hash code. */
4644 HASH_HASH (h, i) = make_number (hash);
4645
4646 /* Add new entry to its collision chain. */
4647 start_of_bucket = hash % XVECTOR (h->index)->size;
4648 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4649 HASH_INDEX (h, start_of_bucket) = make_number (i);
4650 return i;
4651 }
4652
4653
4654 /* Remove the entry matching KEY from hash table H, if there is one. */
4655
4656 void
4657 hash_remove (h, key)
4658 struct Lisp_Hash_Table *h;
4659 Lisp_Object key;
4660 {
4661 unsigned hash_code;
4662 int start_of_bucket;
4663 Lisp_Object idx, prev;
4664
4665 hash_code = h->hashfn (h, key);
4666 start_of_bucket = hash_code % XVECTOR (h->index)->size;
4667 idx = HASH_INDEX (h, start_of_bucket);
4668 prev = Qnil;
4669
4670 /* We need not gcpro idx, prev since they're either integers or nil. */
4671 while (!NILP (idx))
4672 {
4673 int i = XFASTINT (idx);
4674
4675 if (EQ (key, HASH_KEY (h, i))
4676 || (h->cmpfn
4677 && h->cmpfn (h, key, hash_code,
4678 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4679 {
4680 /* Take entry out of collision chain. */
4681 if (NILP (prev))
4682 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
4683 else
4684 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
4685
4686 /* Clear slots in key_and_value and add the slots to
4687 the free list. */
4688 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
4689 HASH_NEXT (h, i) = h->next_free;
4690 h->next_free = make_number (i);
4691 h->count = make_number (XFASTINT (h->count) - 1);
4692 xassert (XINT (h->count) >= 0);
4693 break;
4694 }
4695 else
4696 {
4697 prev = idx;
4698 idx = HASH_NEXT (h, i);
4699 }
4700 }
4701 }
4702
4703
4704 /* Clear hash table H. */
4705
4706 void
4707 hash_clear (h)
4708 struct Lisp_Hash_Table *h;
4709 {
4710 if (XFASTINT (h->count) > 0)
4711 {
4712 int i, size = HASH_TABLE_SIZE (h);
4713
4714 for (i = 0; i < size; ++i)
4715 {
4716 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
4717 HASH_KEY (h, i) = Qnil;
4718 HASH_VALUE (h, i) = Qnil;
4719 HASH_HASH (h, i) = Qnil;
4720 }
4721
4722 for (i = 0; i < XVECTOR (h->index)->size; ++i)
4723 XVECTOR (h->index)->contents[i] = Qnil;
4724
4725 h->next_free = make_number (0);
4726 h->count = make_number (0);
4727 }
4728 }
4729
4730
4731 \f
4732 /************************************************************************
4733 Weak Hash Tables
4734 ************************************************************************/
4735
4736 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
4737 entries from the table that don't survive the current GC.
4738 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
4739 non-zero if anything was marked. */
4740
4741 static int
4742 sweep_weak_table (h, remove_entries_p)
4743 struct Lisp_Hash_Table *h;
4744 int remove_entries_p;
4745 {
4746 int bucket, n, marked;
4747
4748 n = XVECTOR (h->index)->size & ~ARRAY_MARK_FLAG;
4749 marked = 0;
4750
4751 for (bucket = 0; bucket < n; ++bucket)
4752 {
4753 Lisp_Object idx, next, prev;
4754
4755 /* Follow collision chain, removing entries that
4756 don't survive this garbage collection. */
4757 prev = Qnil;
4758 for (idx = HASH_INDEX (h, bucket); !GC_NILP (idx); idx = next)
4759 {
4760 int i = XFASTINT (idx);
4761 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
4762 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
4763 int remove_p;
4764
4765 if (EQ (h->weak, Qkey))
4766 remove_p = !key_known_to_survive_p;
4767 else if (EQ (h->weak, Qvalue))
4768 remove_p = !value_known_to_survive_p;
4769 else if (EQ (h->weak, Qkey_or_value))
4770 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
4771 else if (EQ (h->weak, Qkey_and_value))
4772 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
4773 else
4774 abort ();
4775
4776 next = HASH_NEXT (h, i);
4777
4778 if (remove_entries_p)
4779 {
4780 if (remove_p)
4781 {
4782 /* Take out of collision chain. */
4783 if (GC_NILP (prev))
4784 HASH_INDEX (h, bucket) = next;
4785 else
4786 HASH_NEXT (h, XFASTINT (prev)) = next;
4787
4788 /* Add to free list. */
4789 HASH_NEXT (h, i) = h->next_free;
4790 h->next_free = idx;
4791
4792 /* Clear key, value, and hash. */
4793 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
4794 HASH_HASH (h, i) = Qnil;
4795
4796 h->count = make_number (XFASTINT (h->count) - 1);
4797 }
4798 }
4799 else
4800 {
4801 if (!remove_p)
4802 {
4803 /* Make sure key and value survive. */
4804 if (!key_known_to_survive_p)
4805 {
4806 mark_object (HASH_KEY (h, i));
4807 marked = 1;
4808 }
4809
4810 if (!value_known_to_survive_p)
4811 {
4812 mark_object (HASH_VALUE (h, i));
4813 marked = 1;
4814 }
4815 }
4816 }
4817 }
4818 }
4819
4820 return marked;
4821 }
4822
4823 /* Remove elements from weak hash tables that don't survive the
4824 current garbage collection. Remove weak tables that don't survive
4825 from Vweak_hash_tables. Called from gc_sweep. */
4826
4827 void
4828 sweep_weak_hash_tables ()
4829 {
4830 Lisp_Object table, used, next;
4831 struct Lisp_Hash_Table *h;
4832 int marked;
4833
4834 /* Mark all keys and values that are in use. Keep on marking until
4835 there is no more change. This is necessary for cases like
4836 value-weak table A containing an entry X -> Y, where Y is used in a
4837 key-weak table B, Z -> Y. If B comes after A in the list of weak
4838 tables, X -> Y might be removed from A, although when looking at B
4839 one finds that it shouldn't. */
4840 do
4841 {
4842 marked = 0;
4843 for (table = Vweak_hash_tables; !GC_NILP (table); table = h->next_weak)
4844 {
4845 h = XHASH_TABLE (table);
4846 if (h->size & ARRAY_MARK_FLAG)
4847 marked |= sweep_weak_table (h, 0);
4848 }
4849 }
4850 while (marked);
4851
4852 /* Remove tables and entries that aren't used. */
4853 for (table = Vweak_hash_tables, used = Qnil; !GC_NILP (table); table = next)
4854 {
4855 h = XHASH_TABLE (table);
4856 next = h->next_weak;
4857
4858 if (h->size & ARRAY_MARK_FLAG)
4859 {
4860 /* TABLE is marked as used. Sweep its contents. */
4861 if (XFASTINT (h->count) > 0)
4862 sweep_weak_table (h, 1);
4863
4864 /* Add table to the list of used weak hash tables. */
4865 h->next_weak = used;
4866 used = table;
4867 }
4868 }
4869
4870 Vweak_hash_tables = used;
4871 }
4872
4873
4874 \f
4875 /***********************************************************************
4876 Hash Code Computation
4877 ***********************************************************************/
4878
4879 /* Maximum depth up to which to dive into Lisp structures. */
4880
4881 #define SXHASH_MAX_DEPTH 3
4882
4883 /* Maximum length up to which to take list and vector elements into
4884 account. */
4885
4886 #define SXHASH_MAX_LEN 7
4887
4888 /* Combine two integers X and Y for hashing. */
4889
4890 #define SXHASH_COMBINE(X, Y) \
4891 ((((unsigned)(X) << 4) + (((unsigned)(X) >> 24) & 0x0fffffff)) \
4892 + (unsigned)(Y))
4893
4894
4895 /* Return a hash for string PTR which has length LEN. The hash
4896 code returned is guaranteed to fit in a Lisp integer. */
4897
4898 static unsigned
4899 sxhash_string (ptr, len)
4900 unsigned char *ptr;
4901 int len;
4902 {
4903 unsigned char *p = ptr;
4904 unsigned char *end = p + len;
4905 unsigned char c;
4906 unsigned hash = 0;
4907
4908 while (p != end)
4909 {
4910 c = *p++;
4911 if (c >= 0140)
4912 c -= 40;
4913 hash = ((hash << 3) + (hash >> 28) + c);
4914 }
4915
4916 return hash & INTMASK;
4917 }
4918
4919
4920 /* Return a hash for list LIST. DEPTH is the current depth in the
4921 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4922
4923 static unsigned
4924 sxhash_list (list, depth)
4925 Lisp_Object list;
4926 int depth;
4927 {
4928 unsigned hash = 0;
4929 int i;
4930
4931 if (depth < SXHASH_MAX_DEPTH)
4932 for (i = 0;
4933 CONSP (list) && i < SXHASH_MAX_LEN;
4934 list = XCDR (list), ++i)
4935 {
4936 unsigned hash2 = sxhash (XCAR (list), depth + 1);
4937 hash = SXHASH_COMBINE (hash, hash2);
4938 }
4939
4940 return hash;
4941 }
4942
4943
4944 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4945 the Lisp structure. */
4946
4947 static unsigned
4948 sxhash_vector (vec, depth)
4949 Lisp_Object vec;
4950 int depth;
4951 {
4952 unsigned hash = XVECTOR (vec)->size;
4953 int i, n;
4954
4955 n = min (SXHASH_MAX_LEN, XVECTOR (vec)->size);
4956 for (i = 0; i < n; ++i)
4957 {
4958 unsigned hash2 = sxhash (XVECTOR (vec)->contents[i], depth + 1);
4959 hash = SXHASH_COMBINE (hash, hash2);
4960 }
4961
4962 return hash;
4963 }
4964
4965
4966 /* Return a hash for bool-vector VECTOR. */
4967
4968 static unsigned
4969 sxhash_bool_vector (vec)
4970 Lisp_Object vec;
4971 {
4972 unsigned hash = XBOOL_VECTOR (vec)->size;
4973 int i, n;
4974
4975 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->vector_size);
4976 for (i = 0; i < n; ++i)
4977 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4978
4979 return hash;
4980 }
4981
4982
4983 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4984 structure. Value is an unsigned integer clipped to INTMASK. */
4985
4986 unsigned
4987 sxhash (obj, depth)
4988 Lisp_Object obj;
4989 int depth;
4990 {
4991 unsigned hash;
4992
4993 if (depth > SXHASH_MAX_DEPTH)
4994 return 0;
4995
4996 switch (XTYPE (obj))
4997 {
4998 case Lisp_Int:
4999 hash = XUINT (obj);
5000 break;
5001
5002 case Lisp_Symbol:
5003 hash = sxhash_string (SDATA (SYMBOL_NAME (obj)),
5004 SCHARS (SYMBOL_NAME (obj)));
5005 break;
5006
5007 case Lisp_Misc:
5008 hash = XUINT (obj);
5009 break;
5010
5011 case Lisp_String:
5012 hash = sxhash_string (SDATA (obj), SCHARS (obj));
5013 break;
5014
5015 /* This can be everything from a vector to an overlay. */
5016 case Lisp_Vectorlike:
5017 if (VECTORP (obj))
5018 /* According to the CL HyperSpec, two arrays are equal only if
5019 they are `eq', except for strings and bit-vectors. In
5020 Emacs, this works differently. We have to compare element
5021 by element. */
5022 hash = sxhash_vector (obj, depth);
5023 else if (BOOL_VECTOR_P (obj))
5024 hash = sxhash_bool_vector (obj);
5025 else
5026 /* Others are `equal' if they are `eq', so let's take their
5027 address as hash. */
5028 hash = XUINT (obj);
5029 break;
5030
5031 case Lisp_Cons:
5032 hash = sxhash_list (obj, depth);
5033 break;
5034
5035 case Lisp_Float:
5036 {
5037 unsigned char *p = (unsigned char *) &XFLOAT_DATA (obj);
5038 unsigned char *e = p + sizeof XFLOAT_DATA (obj);
5039 for (hash = 0; p < e; ++p)
5040 hash = SXHASH_COMBINE (hash, *p);
5041 break;
5042 }
5043
5044 default:
5045 abort ();
5046 }
5047
5048 return hash & INTMASK;
5049 }
5050
5051
5052 \f
5053 /***********************************************************************
5054 Lisp Interface
5055 ***********************************************************************/
5056
5057
5058 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
5059 doc: /* Compute a hash code for OBJ and return it as integer. */)
5060 (obj)
5061 Lisp_Object obj;
5062 {
5063 unsigned hash = sxhash (obj, 0);;
5064 return make_number (hash);
5065 }
5066
5067
5068 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
5069 doc: /* Create and return a new hash table.
5070
5071 Arguments are specified as keyword/argument pairs. The following
5072 arguments are defined:
5073
5074 :test TEST -- TEST must be a symbol that specifies how to compare
5075 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
5076 `equal'. User-supplied test and hash functions can be specified via
5077 `define-hash-table-test'.
5078
5079 :size SIZE -- A hint as to how many elements will be put in the table.
5080 Default is 65.
5081
5082 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
5083 fills up. If REHASH-SIZE is an integer, add that many space. If it
5084 is a float, it must be > 1.0, and the new size is computed by
5085 multiplying the old size with that factor. Default is 1.5.
5086
5087 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
5088 Resize the hash table when ratio of the number of entries in the
5089 table. Default is 0.8.
5090
5091 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
5092 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
5093 returned is a weak table. Key/value pairs are removed from a weak
5094 hash table when there are no non-weak references pointing to their
5095 key, value, one of key or value, or both key and value, depending on
5096 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
5097 is nil.
5098
5099 usage: (make-hash-table &rest KEYWORD-ARGS) */)
5100 (nargs, args)
5101 int nargs;
5102 Lisp_Object *args;
5103 {
5104 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
5105 Lisp_Object user_test, user_hash;
5106 char *used;
5107 int i;
5108
5109 /* The vector `used' is used to keep track of arguments that
5110 have been consumed. */
5111 used = (char *) alloca (nargs * sizeof *used);
5112 bzero (used, nargs * sizeof *used);
5113
5114 /* See if there's a `:test TEST' among the arguments. */
5115 i = get_key_arg (QCtest, nargs, args, used);
5116 test = i < 0 ? Qeql : args[i];
5117 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
5118 {
5119 /* See if it is a user-defined test. */
5120 Lisp_Object prop;
5121
5122 prop = Fget (test, Qhash_table_test);
5123 if (!CONSP (prop) || !CONSP (XCDR (prop)))
5124 Fsignal (Qerror, list2 (build_string ("Invalid hash table test"),
5125 test));
5126 user_test = XCAR (prop);
5127 user_hash = XCAR (XCDR (prop));
5128 }
5129 else
5130 user_test = user_hash = Qnil;
5131
5132 /* See if there's a `:size SIZE' argument. */
5133 i = get_key_arg (QCsize, nargs, args, used);
5134 size = i < 0 ? Qnil : args[i];
5135 if (NILP (size))
5136 size = make_number (DEFAULT_HASH_SIZE);
5137 else if (!INTEGERP (size) || XINT (size) < 0)
5138 Fsignal (Qerror,
5139 list2 (build_string ("Invalid hash table size"),
5140 size));
5141
5142 /* Look for `:rehash-size SIZE'. */
5143 i = get_key_arg (QCrehash_size, nargs, args, used);
5144 rehash_size = i < 0 ? make_float (DEFAULT_REHASH_SIZE) : args[i];
5145 if (!NUMBERP (rehash_size)
5146 || (INTEGERP (rehash_size) && XINT (rehash_size) <= 0)
5147 || XFLOATINT (rehash_size) <= 1.0)
5148 Fsignal (Qerror,
5149 list2 (build_string ("Invalid hash table rehash size"),
5150 rehash_size));
5151
5152 /* Look for `:rehash-threshold THRESHOLD'. */
5153 i = get_key_arg (QCrehash_threshold, nargs, args, used);
5154 rehash_threshold = i < 0 ? make_float (DEFAULT_REHASH_THRESHOLD) : args[i];
5155 if (!FLOATP (rehash_threshold)
5156 || XFLOATINT (rehash_threshold) <= 0.0
5157 || XFLOATINT (rehash_threshold) > 1.0)
5158 Fsignal (Qerror,
5159 list2 (build_string ("Invalid hash table rehash threshold"),
5160 rehash_threshold));
5161
5162 /* Look for `:weakness WEAK'. */
5163 i = get_key_arg (QCweakness, nargs, args, used);
5164 weak = i < 0 ? Qnil : args[i];
5165 if (EQ (weak, Qt))
5166 weak = Qkey_and_value;
5167 if (!NILP (weak)
5168 && !EQ (weak, Qkey)
5169 && !EQ (weak, Qvalue)
5170 && !EQ (weak, Qkey_or_value)
5171 && !EQ (weak, Qkey_and_value))
5172 Fsignal (Qerror, list2 (build_string ("Invalid hash table weakness"),
5173 weak));
5174
5175 /* Now, all args should have been used up, or there's a problem. */
5176 for (i = 0; i < nargs; ++i)
5177 if (!used[i])
5178 Fsignal (Qerror,
5179 list2 (build_string ("Invalid argument list"), args[i]));
5180
5181 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
5182 user_test, user_hash);
5183 }
5184
5185
5186 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
5187 doc: /* Return a copy of hash table TABLE. */)
5188 (table)
5189 Lisp_Object table;
5190 {
5191 return copy_hash_table (check_hash_table (table));
5192 }
5193
5194
5195 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
5196 doc: /* Return the number of elements in TABLE. */)
5197 (table)
5198 Lisp_Object table;
5199 {
5200 return check_hash_table (table)->count;
5201 }
5202
5203
5204 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
5205 Shash_table_rehash_size, 1, 1, 0,
5206 doc: /* Return the current rehash size of TABLE. */)
5207 (table)
5208 Lisp_Object table;
5209 {
5210 return check_hash_table (table)->rehash_size;
5211 }
5212
5213
5214 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
5215 Shash_table_rehash_threshold, 1, 1, 0,
5216 doc: /* Return the current rehash threshold of TABLE. */)
5217 (table)
5218 Lisp_Object table;
5219 {
5220 return check_hash_table (table)->rehash_threshold;
5221 }
5222
5223
5224 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
5225 doc: /* Return the size of TABLE.
5226 The size can be used as an argument to `make-hash-table' to create
5227 a hash table than can hold as many elements of TABLE holds
5228 without need for resizing. */)
5229 (table)
5230 Lisp_Object table;
5231 {
5232 struct Lisp_Hash_Table *h = check_hash_table (table);
5233 return make_number (HASH_TABLE_SIZE (h));
5234 }
5235
5236
5237 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
5238 doc: /* Return the test TABLE uses. */)
5239 (table)
5240 Lisp_Object table;
5241 {
5242 return check_hash_table (table)->test;
5243 }
5244
5245
5246 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
5247 1, 1, 0,
5248 doc: /* Return the weakness of TABLE. */)
5249 (table)
5250 Lisp_Object table;
5251 {
5252 return check_hash_table (table)->weak;
5253 }
5254
5255
5256 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
5257 doc: /* Return t if OBJ is a Lisp hash table object. */)
5258 (obj)
5259 Lisp_Object obj;
5260 {
5261 return HASH_TABLE_P (obj) ? Qt : Qnil;
5262 }
5263
5264
5265 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
5266 doc: /* Clear hash table TABLE. */)
5267 (table)
5268 Lisp_Object table;
5269 {
5270 hash_clear (check_hash_table (table));
5271 return Qnil;
5272 }
5273
5274
5275 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
5276 doc: /* Look up KEY in TABLE and return its associated value.
5277 If KEY is not found, return DFLT which defaults to nil. */)
5278 (key, table, dflt)
5279 Lisp_Object key, table, dflt;
5280 {
5281 struct Lisp_Hash_Table *h = check_hash_table (table);
5282 int i = hash_lookup (h, key, NULL);
5283 return i >= 0 ? HASH_VALUE (h, i) : dflt;
5284 }
5285
5286
5287 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
5288 doc: /* Associate KEY with VALUE in hash table TABLE.
5289 If KEY is already present in table, replace its current value with
5290 VALUE. */)
5291 (key, value, table)
5292 Lisp_Object key, value, table;
5293 {
5294 struct Lisp_Hash_Table *h = check_hash_table (table);
5295 int i;
5296 unsigned hash;
5297
5298 i = hash_lookup (h, key, &hash);
5299 if (i >= 0)
5300 HASH_VALUE (h, i) = value;
5301 else
5302 hash_put (h, key, value, hash);
5303
5304 return value;
5305 }
5306
5307
5308 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
5309 doc: /* Remove KEY from TABLE. */)
5310 (key, table)
5311 Lisp_Object key, table;
5312 {
5313 struct Lisp_Hash_Table *h = check_hash_table (table);
5314 hash_remove (h, key);
5315 return Qnil;
5316 }
5317
5318
5319 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
5320 doc: /* Call FUNCTION for all entries in hash table TABLE.
5321 FUNCTION is called with 2 arguments KEY and VALUE. */)
5322 (function, table)
5323 Lisp_Object function, table;
5324 {
5325 struct Lisp_Hash_Table *h = check_hash_table (table);
5326 Lisp_Object args[3];
5327 int i;
5328
5329 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
5330 if (!NILP (HASH_HASH (h, i)))
5331 {
5332 args[0] = function;
5333 args[1] = HASH_KEY (h, i);
5334 args[2] = HASH_VALUE (h, i);
5335 Ffuncall (3, args);
5336 }
5337
5338 return Qnil;
5339 }
5340
5341
5342 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
5343 Sdefine_hash_table_test, 3, 3, 0,
5344 doc: /* Define a new hash table test with name NAME, a symbol.
5345
5346 In hash tables created with NAME specified as test, use TEST to
5347 compare keys, and HASH for computing hash codes of keys.
5348
5349 TEST must be a function taking two arguments and returning non-nil if
5350 both arguments are the same. HASH must be a function taking one
5351 argument and return an integer that is the hash code of the argument.
5352 Hash code computation should use the whole value range of integers,
5353 including negative integers. */)
5354 (name, test, hash)
5355 Lisp_Object name, test, hash;
5356 {
5357 return Fput (name, Qhash_table_test, list2 (test, hash));
5358 }
5359
5360
5361 \f
5362 /************************************************************************
5363 MD5
5364 ************************************************************************/
5365
5366 #include "md5.h"
5367 #include "coding.h"
5368
5369 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
5370 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
5371
5372 A message digest is a cryptographic checksum of a document, and the
5373 algorithm to calculate it is defined in RFC 1321.
5374
5375 The two optional arguments START and END are character positions
5376 specifying for which part of OBJECT the message digest should be
5377 computed. If nil or omitted, the digest is computed for the whole
5378 OBJECT.
5379
5380 The MD5 message digest is computed from the result of encoding the
5381 text in a coding system, not directly from the internal Emacs form of
5382 the text. The optional fourth argument CODING-SYSTEM specifies which
5383 coding system to encode the text with. It should be the same coding
5384 system that you used or will use when actually writing the text into a
5385 file.
5386
5387 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
5388 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
5389 system would be chosen by default for writing this text into a file.
5390
5391 If OBJECT is a string, the most preferred coding system (see the
5392 command `prefer-coding-system') is used.
5393
5394 If NOERROR is non-nil, silently assume the `raw-text' coding if the
5395 guesswork fails. Normally, an error is signaled in such case. */)
5396 (object, start, end, coding_system, noerror)
5397 Lisp_Object object, start, end, coding_system, noerror;
5398 {
5399 unsigned char digest[16];
5400 unsigned char value[33];
5401 int i;
5402 int size;
5403 int size_byte = 0;
5404 int start_char = 0, end_char = 0;
5405 int start_byte = 0, end_byte = 0;
5406 register int b, e;
5407 register struct buffer *bp;
5408 int temp;
5409
5410 if (STRINGP (object))
5411 {
5412 if (NILP (coding_system))
5413 {
5414 /* Decide the coding-system to encode the data with. */
5415
5416 if (STRING_MULTIBYTE (object))
5417 /* use default, we can't guess correct value */
5418 coding_system = SYMBOL_VALUE (XCAR (Vcoding_category_list));
5419 else
5420 coding_system = Qraw_text;
5421 }
5422
5423 if (NILP (Fcoding_system_p (coding_system)))
5424 {
5425 /* Invalid coding system. */
5426
5427 if (!NILP (noerror))
5428 coding_system = Qraw_text;
5429 else
5430 while (1)
5431 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
5432 }
5433
5434 if (STRING_MULTIBYTE (object))
5435 object = code_convert_string1 (object, coding_system, Qnil, 1);
5436
5437 size = SCHARS (object);
5438 size_byte = SBYTES (object);
5439
5440 if (!NILP (start))
5441 {
5442 CHECK_NUMBER (start);
5443
5444 start_char = XINT (start);
5445
5446 if (start_char < 0)
5447 start_char += size;
5448
5449 start_byte = string_char_to_byte (object, start_char);
5450 }
5451
5452 if (NILP (end))
5453 {
5454 end_char = size;
5455 end_byte = size_byte;
5456 }
5457 else
5458 {
5459 CHECK_NUMBER (end);
5460
5461 end_char = XINT (end);
5462
5463 if (end_char < 0)
5464 end_char += size;
5465
5466 end_byte = string_char_to_byte (object, end_char);
5467 }
5468
5469 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
5470 args_out_of_range_3 (object, make_number (start_char),
5471 make_number (end_char));
5472 }
5473 else
5474 {
5475 struct buffer *prev = current_buffer;
5476
5477 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
5478
5479 CHECK_BUFFER (object);
5480
5481 bp = XBUFFER (object);
5482 if (bp != current_buffer)
5483 set_buffer_internal (bp);
5484
5485 if (NILP (start))
5486 b = BEGV;
5487 else
5488 {
5489 CHECK_NUMBER_COERCE_MARKER (start);
5490 b = XINT (start);
5491 }
5492
5493 if (NILP (end))
5494 e = ZV;
5495 else
5496 {
5497 CHECK_NUMBER_COERCE_MARKER (end);
5498 e = XINT (end);
5499 }
5500
5501 if (b > e)
5502 temp = b, b = e, e = temp;
5503
5504 if (!(BEGV <= b && e <= ZV))
5505 args_out_of_range (start, end);
5506
5507 if (NILP (coding_system))
5508 {
5509 /* Decide the coding-system to encode the data with.
5510 See fileio.c:Fwrite-region */
5511
5512 if (!NILP (Vcoding_system_for_write))
5513 coding_system = Vcoding_system_for_write;
5514 else
5515 {
5516 int force_raw_text = 0;
5517
5518 coding_system = XBUFFER (object)->buffer_file_coding_system;
5519 if (NILP (coding_system)
5520 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
5521 {
5522 coding_system = Qnil;
5523 if (NILP (current_buffer->enable_multibyte_characters))
5524 force_raw_text = 1;
5525 }
5526
5527 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
5528 {
5529 /* Check file-coding-system-alist. */
5530 Lisp_Object args[4], val;
5531
5532 args[0] = Qwrite_region; args[1] = start; args[2] = end;
5533 args[3] = Fbuffer_file_name(object);
5534 val = Ffind_operation_coding_system (4, args);
5535 if (CONSP (val) && !NILP (XCDR (val)))
5536 coding_system = XCDR (val);
5537 }
5538
5539 if (NILP (coding_system)
5540 && !NILP (XBUFFER (object)->buffer_file_coding_system))
5541 {
5542 /* If we still have not decided a coding system, use the
5543 default value of buffer-file-coding-system. */
5544 coding_system = XBUFFER (object)->buffer_file_coding_system;
5545 }
5546
5547 if (!force_raw_text
5548 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
5549 /* Confirm that VAL can surely encode the current region. */
5550 coding_system = call4 (Vselect_safe_coding_system_function,
5551 make_number (b), make_number (e),
5552 coding_system, Qnil);
5553
5554 if (force_raw_text)
5555 coding_system = Qraw_text;
5556 }
5557
5558 if (NILP (Fcoding_system_p (coding_system)))
5559 {
5560 /* Invalid coding system. */
5561
5562 if (!NILP (noerror))
5563 coding_system = Qraw_text;
5564 else
5565 while (1)
5566 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
5567 }
5568 }
5569
5570 object = make_buffer_string (b, e, 0);
5571 if (prev != current_buffer)
5572 set_buffer_internal (prev);
5573 /* Discard the unwind protect for recovering the current
5574 buffer. */
5575 specpdl_ptr--;
5576
5577 if (STRING_MULTIBYTE (object))
5578 object = code_convert_string1 (object, coding_system, Qnil, 1);
5579 }
5580
5581 md5_buffer (SDATA (object) + start_byte,
5582 SBYTES (object) - (size_byte - end_byte),
5583 digest);
5584
5585 for (i = 0; i < 16; i++)
5586 sprintf (&value[2 * i], "%02x", digest[i]);
5587 value[32] = '\0';
5588
5589 return make_string (value, 32);
5590 }
5591
5592 \f
5593 void
5594 syms_of_fns ()
5595 {
5596 /* Hash table stuff. */
5597 Qhash_table_p = intern ("hash-table-p");
5598 staticpro (&Qhash_table_p);
5599 Qeq = intern ("eq");
5600 staticpro (&Qeq);
5601 Qeql = intern ("eql");
5602 staticpro (&Qeql);
5603 Qequal = intern ("equal");
5604 staticpro (&Qequal);
5605 QCtest = intern (":test");
5606 staticpro (&QCtest);
5607 QCsize = intern (":size");
5608 staticpro (&QCsize);
5609 QCrehash_size = intern (":rehash-size");
5610 staticpro (&QCrehash_size);
5611 QCrehash_threshold = intern (":rehash-threshold");
5612 staticpro (&QCrehash_threshold);
5613 QCweakness = intern (":weakness");
5614 staticpro (&QCweakness);
5615 Qkey = intern ("key");
5616 staticpro (&Qkey);
5617 Qvalue = intern ("value");
5618 staticpro (&Qvalue);
5619 Qhash_table_test = intern ("hash-table-test");
5620 staticpro (&Qhash_table_test);
5621 Qkey_or_value = intern ("key-or-value");
5622 staticpro (&Qkey_or_value);
5623 Qkey_and_value = intern ("key-and-value");
5624 staticpro (&Qkey_and_value);
5625
5626 defsubr (&Ssxhash);
5627 defsubr (&Smake_hash_table);
5628 defsubr (&Scopy_hash_table);
5629 defsubr (&Shash_table_count);
5630 defsubr (&Shash_table_rehash_size);
5631 defsubr (&Shash_table_rehash_threshold);
5632 defsubr (&Shash_table_size);
5633 defsubr (&Shash_table_test);
5634 defsubr (&Shash_table_weakness);
5635 defsubr (&Shash_table_p);
5636 defsubr (&Sclrhash);
5637 defsubr (&Sgethash);
5638 defsubr (&Sputhash);
5639 defsubr (&Sremhash);
5640 defsubr (&Smaphash);
5641 defsubr (&Sdefine_hash_table_test);
5642
5643 Qstring_lessp = intern ("string-lessp");
5644 staticpro (&Qstring_lessp);
5645 Qprovide = intern ("provide");
5646 staticpro (&Qprovide);
5647 Qrequire = intern ("require");
5648 staticpro (&Qrequire);
5649 Qyes_or_no_p_history = intern ("yes-or-no-p-history");
5650 staticpro (&Qyes_or_no_p_history);
5651 Qcursor_in_echo_area = intern ("cursor-in-echo-area");
5652 staticpro (&Qcursor_in_echo_area);
5653 Qwidget_type = intern ("widget-type");
5654 staticpro (&Qwidget_type);
5655
5656 staticpro (&string_char_byte_cache_string);
5657 string_char_byte_cache_string = Qnil;
5658
5659 require_nesting_list = Qnil;
5660 staticpro (&require_nesting_list);
5661
5662 Fset (Qyes_or_no_p_history, Qnil);
5663
5664 DEFVAR_LISP ("features", &Vfeatures,
5665 doc: /* A list of symbols which are the features of the executing emacs.
5666 Used by `featurep' and `require', and altered by `provide'. */);
5667 Vfeatures = Qnil;
5668 Qsubfeatures = intern ("subfeatures");
5669 staticpro (&Qsubfeatures);
5670
5671 #ifdef HAVE_LANGINFO_CODESET
5672 Qcodeset = intern ("codeset");
5673 staticpro (&Qcodeset);
5674 Qdays = intern ("days");
5675 staticpro (&Qdays);
5676 Qmonths = intern ("months");
5677 staticpro (&Qmonths);
5678 Qpaper = intern ("paper");
5679 staticpro (&Qpaper);
5680 #endif /* HAVE_LANGINFO_CODESET */
5681
5682 DEFVAR_BOOL ("use-dialog-box", &use_dialog_box,
5683 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
5684 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
5685 invoked by mouse clicks and mouse menu items. */);
5686 use_dialog_box = 1;
5687
5688 DEFVAR_BOOL ("use-file-dialog", &use_file_dialog,
5689 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
5690 This applies to commands from menus and tool bar buttons. The value of
5691 `use-dialog-box' takes precedence over this variable, so a file dialog is only
5692 used if both `use-dialog-box' and this variable are non-nil. */);
5693 use_file_dialog = 1;
5694
5695 defsubr (&Sidentity);
5696 defsubr (&Srandom);
5697 defsubr (&Slength);
5698 defsubr (&Ssafe_length);
5699 defsubr (&Sstring_bytes);
5700 defsubr (&Sstring_equal);
5701 defsubr (&Scompare_strings);
5702 defsubr (&Sstring_lessp);
5703 defsubr (&Sappend);
5704 defsubr (&Sconcat);
5705 defsubr (&Svconcat);
5706 defsubr (&Scopy_sequence);
5707 defsubr (&Sstring_make_multibyte);
5708 defsubr (&Sstring_make_unibyte);
5709 defsubr (&Sstring_as_multibyte);
5710 defsubr (&Sstring_as_unibyte);
5711 defsubr (&Sstring_to_multibyte);
5712 defsubr (&Scopy_alist);
5713 defsubr (&Ssubstring);
5714 defsubr (&Ssubstring_no_properties);
5715 defsubr (&Snthcdr);
5716 defsubr (&Snth);
5717 defsubr (&Selt);
5718 defsubr (&Smember);
5719 defsubr (&Smemq);
5720 defsubr (&Sassq);
5721 defsubr (&Sassoc);
5722 defsubr (&Srassq);
5723 defsubr (&Srassoc);
5724 defsubr (&Sdelq);
5725 defsubr (&Sdelete);
5726 defsubr (&Snreverse);
5727 defsubr (&Sreverse);
5728 defsubr (&Ssort);
5729 defsubr (&Splist_get);
5730 defsubr (&Sget);
5731 defsubr (&Splist_put);
5732 defsubr (&Sput);
5733 defsubr (&Slax_plist_get);
5734 defsubr (&Slax_plist_put);
5735 defsubr (&Seql);
5736 defsubr (&Sequal);
5737 defsubr (&Sequal_including_properties);
5738 defsubr (&Sfillarray);
5739 defsubr (&Sclear_string);
5740 defsubr (&Schar_table_subtype);
5741 defsubr (&Schar_table_parent);
5742 defsubr (&Sset_char_table_parent);
5743 defsubr (&Schar_table_extra_slot);
5744 defsubr (&Sset_char_table_extra_slot);
5745 defsubr (&Schar_table_range);
5746 defsubr (&Sset_char_table_range);
5747 defsubr (&Sset_char_table_default);
5748 defsubr (&Soptimize_char_table);
5749 defsubr (&Smap_char_table);
5750 defsubr (&Snconc);
5751 defsubr (&Smapcar);
5752 defsubr (&Smapc);
5753 defsubr (&Smapconcat);
5754 defsubr (&Sy_or_n_p);
5755 defsubr (&Syes_or_no_p);
5756 defsubr (&Sload_average);
5757 defsubr (&Sfeaturep);
5758 defsubr (&Srequire);
5759 defsubr (&Sprovide);
5760 defsubr (&Splist_member);
5761 defsubr (&Swidget_put);
5762 defsubr (&Swidget_get);
5763 defsubr (&Swidget_apply);
5764 defsubr (&Sbase64_encode_region);
5765 defsubr (&Sbase64_decode_region);
5766 defsubr (&Sbase64_encode_string);
5767 defsubr (&Sbase64_decode_string);
5768 defsubr (&Smd5);
5769 defsubr (&Slocale_info);
5770 }
5771
5772
5773 void
5774 init_fns ()
5775 {
5776 Vweak_hash_tables = Qnil;
5777 }
5778
5779 /* arch-tag: 787f8219-5b74-46bd-8469-7e1cc475fa31
5780 (do not change this comment) */