]> code.delx.au - gnu-emacs/blob - src/alloc.c
(Fmake_bool_vector): Use BOOL_VECTOR_BITS_PER_CHAR instead of
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985,86,88,93,94,95,97,98,1999,2000,01,02,03,2004
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
29
30 /* Note that this declares bzero on OSF/1. How dumb. */
31
32 #include <signal.h>
33
34 /* This file is part of the core Lisp implementation, and thus must
35 deal with the real data structures. If the Lisp implementation is
36 replaced, this file likely will not be used. */
37
38 #undef HIDE_LISP_IMPLEMENTATION
39 #include "lisp.h"
40 #include "process.h"
41 #include "intervals.h"
42 #include "puresize.h"
43 #include "buffer.h"
44 #include "window.h"
45 #include "keyboard.h"
46 #include "frame.h"
47 #include "blockinput.h"
48 #include "charset.h"
49 #include "syssignal.h"
50 #include <setjmp.h>
51
52 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
53 memory. Can do this only if using gmalloc.c. */
54
55 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
56 #undef GC_MALLOC_CHECK
57 #endif
58
59 #ifdef HAVE_UNISTD_H
60 #include <unistd.h>
61 #else
62 extern POINTER_TYPE *sbrk ();
63 #endif
64
65 #ifdef DOUG_LEA_MALLOC
66
67 #include <malloc.h>
68 /* malloc.h #defines this as size_t, at least in glibc2. */
69 #ifndef __malloc_size_t
70 #define __malloc_size_t int
71 #endif
72
73 /* Specify maximum number of areas to mmap. It would be nice to use a
74 value that explicitly means "no limit". */
75
76 #define MMAP_MAX_AREAS 100000000
77
78 #else /* not DOUG_LEA_MALLOC */
79
80 /* The following come from gmalloc.c. */
81
82 #define __malloc_size_t size_t
83 extern __malloc_size_t _bytes_used;
84 extern __malloc_size_t __malloc_extra_blocks;
85
86 #endif /* not DOUG_LEA_MALLOC */
87
88 /* Value of _bytes_used, when spare_memory was freed. */
89
90 static __malloc_size_t bytes_used_when_full;
91
92 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
93 to a struct Lisp_String. */
94
95 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
96 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
97 #define STRING_MARKED_P(S) ((S)->size & ARRAY_MARK_FLAG)
98
99 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
100 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
101 #define VECTOR_MARKED_P(V) ((V)->size & ARRAY_MARK_FLAG)
102
103 /* Value is the number of bytes/chars of S, a pointer to a struct
104 Lisp_String. This must be used instead of STRING_BYTES (S) or
105 S->size during GC, because S->size contains the mark bit for
106 strings. */
107
108 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
109 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
110
111 /* Number of bytes of consing done since the last gc. */
112
113 int consing_since_gc;
114
115 /* Count the amount of consing of various sorts of space. */
116
117 EMACS_INT cons_cells_consed;
118 EMACS_INT floats_consed;
119 EMACS_INT vector_cells_consed;
120 EMACS_INT symbols_consed;
121 EMACS_INT string_chars_consed;
122 EMACS_INT misc_objects_consed;
123 EMACS_INT intervals_consed;
124 EMACS_INT strings_consed;
125
126 /* Number of bytes of consing since GC before another GC should be done. */
127
128 EMACS_INT gc_cons_threshold;
129
130 /* Nonzero during GC. */
131
132 int gc_in_progress;
133
134 /* Nonzero means abort if try to GC.
135 This is for code which is written on the assumption that
136 no GC will happen, so as to verify that assumption. */
137
138 int abort_on_gc;
139
140 /* Nonzero means display messages at beginning and end of GC. */
141
142 int garbage_collection_messages;
143
144 #ifndef VIRT_ADDR_VARIES
145 extern
146 #endif /* VIRT_ADDR_VARIES */
147 int malloc_sbrk_used;
148
149 #ifndef VIRT_ADDR_VARIES
150 extern
151 #endif /* VIRT_ADDR_VARIES */
152 int malloc_sbrk_unused;
153
154 /* Two limits controlling how much undo information to keep. */
155
156 EMACS_INT undo_limit;
157 EMACS_INT undo_strong_limit;
158
159 /* Number of live and free conses etc. */
160
161 static int total_conses, total_markers, total_symbols, total_vector_size;
162 static int total_free_conses, total_free_markers, total_free_symbols;
163 static int total_free_floats, total_floats;
164
165 /* Points to memory space allocated as "spare", to be freed if we run
166 out of memory. */
167
168 static char *spare_memory;
169
170 /* Amount of spare memory to keep in reserve. */
171
172 #define SPARE_MEMORY (1 << 14)
173
174 /* Number of extra blocks malloc should get when it needs more core. */
175
176 static int malloc_hysteresis;
177
178 /* Non-nil means defun should do purecopy on the function definition. */
179
180 Lisp_Object Vpurify_flag;
181
182 /* Non-nil means we are handling a memory-full error. */
183
184 Lisp_Object Vmemory_full;
185
186 #ifndef HAVE_SHM
187
188 /* Force it into data space! Initialize it to a nonzero value;
189 otherwise some compilers put it into BSS. */
190
191 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
192 #define PUREBEG (char *) pure
193
194 #else /* HAVE_SHM */
195
196 #define pure PURE_SEG_BITS /* Use shared memory segment */
197 #define PUREBEG (char *)PURE_SEG_BITS
198
199 #endif /* HAVE_SHM */
200
201 /* Pointer to the pure area, and its size. */
202
203 static char *purebeg;
204 static size_t pure_size;
205
206 /* Number of bytes of pure storage used before pure storage overflowed.
207 If this is non-zero, this implies that an overflow occurred. */
208
209 static size_t pure_bytes_used_before_overflow;
210
211 /* Value is non-zero if P points into pure space. */
212
213 #define PURE_POINTER_P(P) \
214 (((PNTR_COMPARISON_TYPE) (P) \
215 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
216 && ((PNTR_COMPARISON_TYPE) (P) \
217 >= (PNTR_COMPARISON_TYPE) purebeg))
218
219 /* Index in pure at which next pure object will be allocated.. */
220
221 EMACS_INT pure_bytes_used;
222
223 /* If nonzero, this is a warning delivered by malloc and not yet
224 displayed. */
225
226 char *pending_malloc_warning;
227
228 /* Pre-computed signal argument for use when memory is exhausted. */
229
230 Lisp_Object Vmemory_signal_data;
231
232 /* Maximum amount of C stack to save when a GC happens. */
233
234 #ifndef MAX_SAVE_STACK
235 #define MAX_SAVE_STACK 16000
236 #endif
237
238 /* Buffer in which we save a copy of the C stack at each GC. */
239
240 char *stack_copy;
241 int stack_copy_size;
242
243 /* Non-zero means ignore malloc warnings. Set during initialization.
244 Currently not used. */
245
246 int ignore_warnings;
247
248 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
249
250 /* Hook run after GC has finished. */
251
252 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
253
254 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
255 EMACS_INT gcs_done; /* accumulated GCs */
256
257 static void mark_buffer P_ ((Lisp_Object));
258 extern void mark_kboards P_ ((void));
259 static void gc_sweep P_ ((void));
260 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
261 static void mark_face_cache P_ ((struct face_cache *));
262
263 #ifdef HAVE_WINDOW_SYSTEM
264 static void mark_image P_ ((struct image *));
265 static void mark_image_cache P_ ((struct frame *));
266 #endif /* HAVE_WINDOW_SYSTEM */
267
268 static struct Lisp_String *allocate_string P_ ((void));
269 static void compact_small_strings P_ ((void));
270 static void free_large_strings P_ ((void));
271 static void sweep_strings P_ ((void));
272
273 extern int message_enable_multibyte;
274
275 /* When scanning the C stack for live Lisp objects, Emacs keeps track
276 of what memory allocated via lisp_malloc is intended for what
277 purpose. This enumeration specifies the type of memory. */
278
279 enum mem_type
280 {
281 MEM_TYPE_NON_LISP,
282 MEM_TYPE_BUFFER,
283 MEM_TYPE_CONS,
284 MEM_TYPE_STRING,
285 MEM_TYPE_MISC,
286 MEM_TYPE_SYMBOL,
287 MEM_TYPE_FLOAT,
288 /* Keep the following vector-like types together, with
289 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
290 first. Or change the code of live_vector_p, for instance. */
291 MEM_TYPE_VECTOR,
292 MEM_TYPE_PROCESS,
293 MEM_TYPE_HASH_TABLE,
294 MEM_TYPE_FRAME,
295 MEM_TYPE_WINDOW
296 };
297
298 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
299
300 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
301 #include <stdio.h> /* For fprintf. */
302 #endif
303
304 /* A unique object in pure space used to make some Lisp objects
305 on free lists recognizable in O(1). */
306
307 Lisp_Object Vdead;
308
309 #ifdef GC_MALLOC_CHECK
310
311 enum mem_type allocated_mem_type;
312 int dont_register_blocks;
313
314 #endif /* GC_MALLOC_CHECK */
315
316 /* A node in the red-black tree describing allocated memory containing
317 Lisp data. Each such block is recorded with its start and end
318 address when it is allocated, and removed from the tree when it
319 is freed.
320
321 A red-black tree is a balanced binary tree with the following
322 properties:
323
324 1. Every node is either red or black.
325 2. Every leaf is black.
326 3. If a node is red, then both of its children are black.
327 4. Every simple path from a node to a descendant leaf contains
328 the same number of black nodes.
329 5. The root is always black.
330
331 When nodes are inserted into the tree, or deleted from the tree,
332 the tree is "fixed" so that these properties are always true.
333
334 A red-black tree with N internal nodes has height at most 2
335 log(N+1). Searches, insertions and deletions are done in O(log N).
336 Please see a text book about data structures for a detailed
337 description of red-black trees. Any book worth its salt should
338 describe them. */
339
340 struct mem_node
341 {
342 /* Children of this node. These pointers are never NULL. When there
343 is no child, the value is MEM_NIL, which points to a dummy node. */
344 struct mem_node *left, *right;
345
346 /* The parent of this node. In the root node, this is NULL. */
347 struct mem_node *parent;
348
349 /* Start and end of allocated region. */
350 void *start, *end;
351
352 /* Node color. */
353 enum {MEM_BLACK, MEM_RED} color;
354
355 /* Memory type. */
356 enum mem_type type;
357 };
358
359 /* Base address of stack. Set in main. */
360
361 Lisp_Object *stack_base;
362
363 /* Root of the tree describing allocated Lisp memory. */
364
365 static struct mem_node *mem_root;
366
367 /* Lowest and highest known address in the heap. */
368
369 static void *min_heap_address, *max_heap_address;
370
371 /* Sentinel node of the tree. */
372
373 static struct mem_node mem_z;
374 #define MEM_NIL &mem_z
375
376 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
377 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
378 static void lisp_free P_ ((POINTER_TYPE *));
379 static void mark_stack P_ ((void));
380 static int live_vector_p P_ ((struct mem_node *, void *));
381 static int live_buffer_p P_ ((struct mem_node *, void *));
382 static int live_string_p P_ ((struct mem_node *, void *));
383 static int live_cons_p P_ ((struct mem_node *, void *));
384 static int live_symbol_p P_ ((struct mem_node *, void *));
385 static int live_float_p P_ ((struct mem_node *, void *));
386 static int live_misc_p P_ ((struct mem_node *, void *));
387 static void mark_maybe_object P_ ((Lisp_Object));
388 static void mark_memory P_ ((void *, void *));
389 static void mem_init P_ ((void));
390 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
391 static void mem_insert_fixup P_ ((struct mem_node *));
392 static void mem_rotate_left P_ ((struct mem_node *));
393 static void mem_rotate_right P_ ((struct mem_node *));
394 static void mem_delete P_ ((struct mem_node *));
395 static void mem_delete_fixup P_ ((struct mem_node *));
396 static INLINE struct mem_node *mem_find P_ ((void *));
397
398 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
399 static void check_gcpros P_ ((void));
400 #endif
401
402 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
403
404 /* Recording what needs to be marked for gc. */
405
406 struct gcpro *gcprolist;
407
408 /* Addresses of staticpro'd variables. Initialize it to a nonzero
409 value; otherwise some compilers put it into BSS. */
410
411 #define NSTATICS 1280
412 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
413
414 /* Index of next unused slot in staticvec. */
415
416 int staticidx = 0;
417
418 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
419
420
421 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
422 ALIGNMENT must be a power of 2. */
423
424 #define ALIGN(ptr, ALIGNMENT) \
425 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
426 & ~((ALIGNMENT) - 1)))
427
428
429 \f
430 /************************************************************************
431 Malloc
432 ************************************************************************/
433
434 /* Function malloc calls this if it finds we are near exhausting storage. */
435
436 void
437 malloc_warning (str)
438 char *str;
439 {
440 pending_malloc_warning = str;
441 }
442
443
444 /* Display an already-pending malloc warning. */
445
446 void
447 display_malloc_warning ()
448 {
449 call3 (intern ("display-warning"),
450 intern ("alloc"),
451 build_string (pending_malloc_warning),
452 intern ("emergency"));
453 pending_malloc_warning = 0;
454 }
455
456
457 #ifdef DOUG_LEA_MALLOC
458 # define BYTES_USED (mallinfo ().arena)
459 #else
460 # define BYTES_USED _bytes_used
461 #endif
462
463
464 /* Called if malloc returns zero. */
465
466 void
467 memory_full ()
468 {
469 Vmemory_full = Qt;
470
471 #ifndef SYSTEM_MALLOC
472 bytes_used_when_full = BYTES_USED;
473 #endif
474
475 /* The first time we get here, free the spare memory. */
476 if (spare_memory)
477 {
478 free (spare_memory);
479 spare_memory = 0;
480 }
481
482 /* This used to call error, but if we've run out of memory, we could
483 get infinite recursion trying to build the string. */
484 while (1)
485 Fsignal (Qnil, Vmemory_signal_data);
486 }
487
488
489 /* Called if we can't allocate relocatable space for a buffer. */
490
491 void
492 buffer_memory_full ()
493 {
494 /* If buffers use the relocating allocator, no need to free
495 spare_memory, because we may have plenty of malloc space left
496 that we could get, and if we don't, the malloc that fails will
497 itself cause spare_memory to be freed. If buffers don't use the
498 relocating allocator, treat this like any other failing
499 malloc. */
500
501 #ifndef REL_ALLOC
502 memory_full ();
503 #endif
504
505 Vmemory_full = Qt;
506
507 /* This used to call error, but if we've run out of memory, we could
508 get infinite recursion trying to build the string. */
509 while (1)
510 Fsignal (Qnil, Vmemory_signal_data);
511 }
512
513
514 /* Like malloc but check for no memory and block interrupt input.. */
515
516 POINTER_TYPE *
517 xmalloc (size)
518 size_t size;
519 {
520 register POINTER_TYPE *val;
521
522 BLOCK_INPUT;
523 val = (POINTER_TYPE *) malloc (size);
524 UNBLOCK_INPUT;
525
526 if (!val && size)
527 memory_full ();
528 return val;
529 }
530
531
532 /* Like realloc but check for no memory and block interrupt input.. */
533
534 POINTER_TYPE *
535 xrealloc (block, size)
536 POINTER_TYPE *block;
537 size_t size;
538 {
539 register POINTER_TYPE *val;
540
541 BLOCK_INPUT;
542 /* We must call malloc explicitly when BLOCK is 0, since some
543 reallocs don't do this. */
544 if (! block)
545 val = (POINTER_TYPE *) malloc (size);
546 else
547 val = (POINTER_TYPE *) realloc (block, size);
548 UNBLOCK_INPUT;
549
550 if (!val && size) memory_full ();
551 return val;
552 }
553
554
555 /* Like free but block interrupt input. */
556
557 void
558 xfree (block)
559 POINTER_TYPE *block;
560 {
561 BLOCK_INPUT;
562 free (block);
563 UNBLOCK_INPUT;
564 }
565
566
567 /* Like strdup, but uses xmalloc. */
568
569 char *
570 xstrdup (s)
571 const char *s;
572 {
573 size_t len = strlen (s) + 1;
574 char *p = (char *) xmalloc (len);
575 bcopy (s, p, len);
576 return p;
577 }
578
579
580 /* Like malloc but used for allocating Lisp data. NBYTES is the
581 number of bytes to allocate, TYPE describes the intended use of the
582 allcated memory block (for strings, for conses, ...). */
583
584 static void *lisp_malloc_loser;
585
586 static POINTER_TYPE *
587 lisp_malloc (nbytes, type)
588 size_t nbytes;
589 enum mem_type type;
590 {
591 register void *val;
592
593 BLOCK_INPUT;
594
595 #ifdef GC_MALLOC_CHECK
596 allocated_mem_type = type;
597 #endif
598
599 val = (void *) malloc (nbytes);
600
601 #ifndef USE_LSB_TAG
602 /* If the memory just allocated cannot be addressed thru a Lisp
603 object's pointer, and it needs to be,
604 that's equivalent to running out of memory. */
605 if (val && type != MEM_TYPE_NON_LISP)
606 {
607 Lisp_Object tem;
608 XSETCONS (tem, (char *) val + nbytes - 1);
609 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
610 {
611 lisp_malloc_loser = val;
612 free (val);
613 val = 0;
614 }
615 }
616 #endif
617
618 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
619 if (val && type != MEM_TYPE_NON_LISP)
620 mem_insert (val, (char *) val + nbytes, type);
621 #endif
622
623 UNBLOCK_INPUT;
624 if (!val && nbytes)
625 memory_full ();
626 return val;
627 }
628
629 /* Free BLOCK. This must be called to free memory allocated with a
630 call to lisp_malloc. */
631
632 static void
633 lisp_free (block)
634 POINTER_TYPE *block;
635 {
636 BLOCK_INPUT;
637 free (block);
638 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
639 mem_delete (mem_find (block));
640 #endif
641 UNBLOCK_INPUT;
642 }
643
644 /* Allocation of aligned blocks of memory to store Lisp data. */
645 /* The entry point is lisp_align_malloc which returns blocks of at most */
646 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
647
648
649 /* BLOCK_ALIGN has to be a power of 2. */
650 #define BLOCK_ALIGN (1 << 10)
651
652 /* Padding to leave at the end of a malloc'd block. This is to give
653 malloc a chance to minimize the amount of memory wasted to alignment.
654 It should be tuned to the particular malloc library used.
655 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
656 posix_memalign on the other hand would ideally prefer a value of 4
657 because otherwise, there's 1020 bytes wasted between each ablocks.
658 But testing shows that those 1020 will most of the time be efficiently
659 used by malloc to place other objects, so a value of 0 is still preferable
660 unless you have a lot of cons&floats and virtually nothing else. */
661 #define BLOCK_PADDING 0
662 #define BLOCK_BYTES \
663 (BLOCK_ALIGN - sizeof (struct aligned_block *) - BLOCK_PADDING)
664
665 /* Internal data structures and constants. */
666
667 #define ABLOCKS_SIZE 16
668
669 /* An aligned block of memory. */
670 struct ablock
671 {
672 union
673 {
674 char payload[BLOCK_BYTES];
675 struct ablock *next_free;
676 } x;
677 /* `abase' is the aligned base of the ablocks. */
678 /* It is overloaded to hold the virtual `busy' field that counts
679 the number of used ablock in the parent ablocks.
680 The first ablock has the `busy' field, the others have the `abase'
681 field. To tell the difference, we assume that pointers will have
682 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
683 is used to tell whether the real base of the parent ablocks is `abase'
684 (if not, the word before the first ablock holds a pointer to the
685 real base). */
686 struct ablocks *abase;
687 /* The padding of all but the last ablock is unused. The padding of
688 the last ablock in an ablocks is not allocated. */
689 #if BLOCK_PADDING
690 char padding[BLOCK_PADDING];
691 #endif
692 };
693
694 /* A bunch of consecutive aligned blocks. */
695 struct ablocks
696 {
697 struct ablock blocks[ABLOCKS_SIZE];
698 };
699
700 /* Size of the block requested from malloc or memalign. */
701 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
702
703 #define ABLOCK_ABASE(block) \
704 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
705 ? (struct ablocks *)(block) \
706 : (block)->abase)
707
708 /* Virtual `busy' field. */
709 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
710
711 /* Pointer to the (not necessarily aligned) malloc block. */
712 #ifdef HAVE_POSIX_MEMALIGN
713 #define ABLOCKS_BASE(abase) (abase)
714 #else
715 #define ABLOCKS_BASE(abase) \
716 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
717 #endif
718
719 /* The list of free ablock. */
720 static struct ablock *free_ablock;
721
722 /* Allocate an aligned block of nbytes.
723 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
724 smaller or equal to BLOCK_BYTES. */
725 static POINTER_TYPE *
726 lisp_align_malloc (nbytes, type)
727 size_t nbytes;
728 enum mem_type type;
729 {
730 void *base, *val;
731 struct ablocks *abase;
732
733 eassert (nbytes <= BLOCK_BYTES);
734
735 BLOCK_INPUT;
736
737 #ifdef GC_MALLOC_CHECK
738 allocated_mem_type = type;
739 #endif
740
741 if (!free_ablock)
742 {
743 int i;
744 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
745
746 #ifdef DOUG_LEA_MALLOC
747 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
748 because mapped region contents are not preserved in
749 a dumped Emacs. */
750 mallopt (M_MMAP_MAX, 0);
751 #endif
752
753 #ifdef HAVE_POSIX_MEMALIGN
754 {
755 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
756 abase = err ? (base = NULL) : base;
757 }
758 #else
759 base = malloc (ABLOCKS_BYTES);
760 abase = ALIGN (base, BLOCK_ALIGN);
761 if (base == 0)
762 {
763 UNBLOCK_INPUT;
764 memory_full ();
765 }
766 #endif
767
768 aligned = (base == abase);
769 if (!aligned)
770 ((void**)abase)[-1] = base;
771
772 #ifdef DOUG_LEA_MALLOC
773 /* Back to a reasonable maximum of mmap'ed areas. */
774 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
775 #endif
776
777 #ifndef USE_LSB_TAG
778 /* If the memory just allocated cannot be addressed thru a Lisp
779 object's pointer, and it needs to be, that's equivalent to
780 running out of memory. */
781 if (type != MEM_TYPE_NON_LISP)
782 {
783 Lisp_Object tem;
784 char *end = (char *) base + ABLOCKS_BYTES - 1;
785 XSETCONS (tem, end);
786 if ((char *) XCONS (tem) != end)
787 {
788 lisp_malloc_loser = base;
789 free (base);
790 UNBLOCK_INPUT;
791 memory_full ();
792 }
793 }
794 #endif
795
796 /* Initialize the blocks and put them on the free list.
797 Is `base' was not properly aligned, we can't use the last block. */
798 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
799 {
800 abase->blocks[i].abase = abase;
801 abase->blocks[i].x.next_free = free_ablock;
802 free_ablock = &abase->blocks[i];
803 }
804 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
805
806 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
807 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
808 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
809 eassert (ABLOCKS_BASE (abase) == base);
810 eassert (aligned == (long) ABLOCKS_BUSY (abase));
811 }
812
813 abase = ABLOCK_ABASE (free_ablock);
814 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
815 val = free_ablock;
816 free_ablock = free_ablock->x.next_free;
817
818 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
819 if (val && type != MEM_TYPE_NON_LISP)
820 mem_insert (val, (char *) val + nbytes, type);
821 #endif
822
823 UNBLOCK_INPUT;
824 if (!val && nbytes)
825 memory_full ();
826
827 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
828 return val;
829 }
830
831 static void
832 lisp_align_free (block)
833 POINTER_TYPE *block;
834 {
835 struct ablock *ablock = block;
836 struct ablocks *abase = ABLOCK_ABASE (ablock);
837
838 BLOCK_INPUT;
839 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
840 mem_delete (mem_find (block));
841 #endif
842 /* Put on free list. */
843 ablock->x.next_free = free_ablock;
844 free_ablock = ablock;
845 /* Update busy count. */
846 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
847
848 if (2 > (long) ABLOCKS_BUSY (abase))
849 { /* All the blocks are free. */
850 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
851 struct ablock **tem = &free_ablock;
852 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
853
854 while (*tem)
855 {
856 if (*tem >= (struct ablock *) abase && *tem < atop)
857 {
858 i++;
859 *tem = (*tem)->x.next_free;
860 }
861 else
862 tem = &(*tem)->x.next_free;
863 }
864 eassert ((aligned & 1) == aligned);
865 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
866 free (ABLOCKS_BASE (abase));
867 }
868 UNBLOCK_INPUT;
869 }
870
871 /* Return a new buffer structure allocated from the heap with
872 a call to lisp_malloc. */
873
874 struct buffer *
875 allocate_buffer ()
876 {
877 struct buffer *b
878 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
879 MEM_TYPE_BUFFER);
880 return b;
881 }
882
883 \f
884 /* Arranging to disable input signals while we're in malloc.
885
886 This only works with GNU malloc. To help out systems which can't
887 use GNU malloc, all the calls to malloc, realloc, and free
888 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
889 pairs; unfortunately, we have no idea what C library functions
890 might call malloc, so we can't really protect them unless you're
891 using GNU malloc. Fortunately, most of the major operating systems
892 can use GNU malloc. */
893
894 #ifndef SYSTEM_MALLOC
895 #ifndef DOUG_LEA_MALLOC
896 extern void * (*__malloc_hook) P_ ((size_t));
897 extern void * (*__realloc_hook) P_ ((void *, size_t));
898 extern void (*__free_hook) P_ ((void *));
899 /* Else declared in malloc.h, perhaps with an extra arg. */
900 #endif /* DOUG_LEA_MALLOC */
901 static void * (*old_malloc_hook) ();
902 static void * (*old_realloc_hook) ();
903 static void (*old_free_hook) ();
904
905 /* This function is used as the hook for free to call. */
906
907 static void
908 emacs_blocked_free (ptr)
909 void *ptr;
910 {
911 BLOCK_INPUT;
912
913 #ifdef GC_MALLOC_CHECK
914 if (ptr)
915 {
916 struct mem_node *m;
917
918 m = mem_find (ptr);
919 if (m == MEM_NIL || m->start != ptr)
920 {
921 fprintf (stderr,
922 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
923 abort ();
924 }
925 else
926 {
927 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
928 mem_delete (m);
929 }
930 }
931 #endif /* GC_MALLOC_CHECK */
932
933 __free_hook = old_free_hook;
934 free (ptr);
935
936 /* If we released our reserve (due to running out of memory),
937 and we have a fair amount free once again,
938 try to set aside another reserve in case we run out once more. */
939 if (spare_memory == 0
940 /* Verify there is enough space that even with the malloc
941 hysteresis this call won't run out again.
942 The code here is correct as long as SPARE_MEMORY
943 is substantially larger than the block size malloc uses. */
944 && (bytes_used_when_full
945 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
946 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
947
948 __free_hook = emacs_blocked_free;
949 UNBLOCK_INPUT;
950 }
951
952
953 /* If we released our reserve (due to running out of memory),
954 and we have a fair amount free once again,
955 try to set aside another reserve in case we run out once more.
956
957 This is called when a relocatable block is freed in ralloc.c. */
958
959 void
960 refill_memory_reserve ()
961 {
962 if (spare_memory == 0)
963 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
964 }
965
966
967 /* This function is the malloc hook that Emacs uses. */
968
969 static void *
970 emacs_blocked_malloc (size)
971 size_t size;
972 {
973 void *value;
974
975 BLOCK_INPUT;
976 __malloc_hook = old_malloc_hook;
977 #ifdef DOUG_LEA_MALLOC
978 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
979 #else
980 __malloc_extra_blocks = malloc_hysteresis;
981 #endif
982
983 value = (void *) malloc (size);
984
985 #ifdef GC_MALLOC_CHECK
986 {
987 struct mem_node *m = mem_find (value);
988 if (m != MEM_NIL)
989 {
990 fprintf (stderr, "Malloc returned %p which is already in use\n",
991 value);
992 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
993 m->start, m->end, (char *) m->end - (char *) m->start,
994 m->type);
995 abort ();
996 }
997
998 if (!dont_register_blocks)
999 {
1000 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1001 allocated_mem_type = MEM_TYPE_NON_LISP;
1002 }
1003 }
1004 #endif /* GC_MALLOC_CHECK */
1005
1006 __malloc_hook = emacs_blocked_malloc;
1007 UNBLOCK_INPUT;
1008
1009 /* fprintf (stderr, "%p malloc\n", value); */
1010 return value;
1011 }
1012
1013
1014 /* This function is the realloc hook that Emacs uses. */
1015
1016 static void *
1017 emacs_blocked_realloc (ptr, size)
1018 void *ptr;
1019 size_t size;
1020 {
1021 void *value;
1022
1023 BLOCK_INPUT;
1024 __realloc_hook = old_realloc_hook;
1025
1026 #ifdef GC_MALLOC_CHECK
1027 if (ptr)
1028 {
1029 struct mem_node *m = mem_find (ptr);
1030 if (m == MEM_NIL || m->start != ptr)
1031 {
1032 fprintf (stderr,
1033 "Realloc of %p which wasn't allocated with malloc\n",
1034 ptr);
1035 abort ();
1036 }
1037
1038 mem_delete (m);
1039 }
1040
1041 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1042
1043 /* Prevent malloc from registering blocks. */
1044 dont_register_blocks = 1;
1045 #endif /* GC_MALLOC_CHECK */
1046
1047 value = (void *) realloc (ptr, size);
1048
1049 #ifdef GC_MALLOC_CHECK
1050 dont_register_blocks = 0;
1051
1052 {
1053 struct mem_node *m = mem_find (value);
1054 if (m != MEM_NIL)
1055 {
1056 fprintf (stderr, "Realloc returns memory that is already in use\n");
1057 abort ();
1058 }
1059
1060 /* Can't handle zero size regions in the red-black tree. */
1061 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1062 }
1063
1064 /* fprintf (stderr, "%p <- realloc\n", value); */
1065 #endif /* GC_MALLOC_CHECK */
1066
1067 __realloc_hook = emacs_blocked_realloc;
1068 UNBLOCK_INPUT;
1069
1070 return value;
1071 }
1072
1073
1074 /* Called from main to set up malloc to use our hooks. */
1075
1076 void
1077 uninterrupt_malloc ()
1078 {
1079 if (__free_hook != emacs_blocked_free)
1080 old_free_hook = __free_hook;
1081 __free_hook = emacs_blocked_free;
1082
1083 if (__malloc_hook != emacs_blocked_malloc)
1084 old_malloc_hook = __malloc_hook;
1085 __malloc_hook = emacs_blocked_malloc;
1086
1087 if (__realloc_hook != emacs_blocked_realloc)
1088 old_realloc_hook = __realloc_hook;
1089 __realloc_hook = emacs_blocked_realloc;
1090 }
1091
1092 #endif /* not SYSTEM_MALLOC */
1093
1094
1095 \f
1096 /***********************************************************************
1097 Interval Allocation
1098 ***********************************************************************/
1099
1100 /* Number of intervals allocated in an interval_block structure.
1101 The 1020 is 1024 minus malloc overhead. */
1102
1103 #define INTERVAL_BLOCK_SIZE \
1104 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1105
1106 /* Intervals are allocated in chunks in form of an interval_block
1107 structure. */
1108
1109 struct interval_block
1110 {
1111 /* Place `intervals' first, to preserve alignment. */
1112 struct interval intervals[INTERVAL_BLOCK_SIZE];
1113 struct interval_block *next;
1114 };
1115
1116 /* Current interval block. Its `next' pointer points to older
1117 blocks. */
1118
1119 struct interval_block *interval_block;
1120
1121 /* Index in interval_block above of the next unused interval
1122 structure. */
1123
1124 static int interval_block_index;
1125
1126 /* Number of free and live intervals. */
1127
1128 static int total_free_intervals, total_intervals;
1129
1130 /* List of free intervals. */
1131
1132 INTERVAL interval_free_list;
1133
1134 /* Total number of interval blocks now in use. */
1135
1136 int n_interval_blocks;
1137
1138
1139 /* Initialize interval allocation. */
1140
1141 static void
1142 init_intervals ()
1143 {
1144 interval_block = NULL;
1145 interval_block_index = INTERVAL_BLOCK_SIZE;
1146 interval_free_list = 0;
1147 n_interval_blocks = 0;
1148 }
1149
1150
1151 /* Return a new interval. */
1152
1153 INTERVAL
1154 make_interval ()
1155 {
1156 INTERVAL val;
1157
1158 if (interval_free_list)
1159 {
1160 val = interval_free_list;
1161 interval_free_list = INTERVAL_PARENT (interval_free_list);
1162 }
1163 else
1164 {
1165 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1166 {
1167 register struct interval_block *newi;
1168
1169 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1170 MEM_TYPE_NON_LISP);
1171
1172 newi->next = interval_block;
1173 interval_block = newi;
1174 interval_block_index = 0;
1175 n_interval_blocks++;
1176 }
1177 val = &interval_block->intervals[interval_block_index++];
1178 }
1179 consing_since_gc += sizeof (struct interval);
1180 intervals_consed++;
1181 RESET_INTERVAL (val);
1182 val->gcmarkbit = 0;
1183 return val;
1184 }
1185
1186
1187 /* Mark Lisp objects in interval I. */
1188
1189 static void
1190 mark_interval (i, dummy)
1191 register INTERVAL i;
1192 Lisp_Object dummy;
1193 {
1194 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1195 i->gcmarkbit = 1;
1196 mark_object (i->plist);
1197 }
1198
1199
1200 /* Mark the interval tree rooted in TREE. Don't call this directly;
1201 use the macro MARK_INTERVAL_TREE instead. */
1202
1203 static void
1204 mark_interval_tree (tree)
1205 register INTERVAL tree;
1206 {
1207 /* No need to test if this tree has been marked already; this
1208 function is always called through the MARK_INTERVAL_TREE macro,
1209 which takes care of that. */
1210
1211 traverse_intervals_noorder (tree, mark_interval, Qnil);
1212 }
1213
1214
1215 /* Mark the interval tree rooted in I. */
1216
1217 #define MARK_INTERVAL_TREE(i) \
1218 do { \
1219 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1220 mark_interval_tree (i); \
1221 } while (0)
1222
1223
1224 #define UNMARK_BALANCE_INTERVALS(i) \
1225 do { \
1226 if (! NULL_INTERVAL_P (i)) \
1227 (i) = balance_intervals (i); \
1228 } while (0)
1229
1230 \f
1231 /* Number support. If NO_UNION_TYPE isn't in effect, we
1232 can't create number objects in macros. */
1233 #ifndef make_number
1234 Lisp_Object
1235 make_number (n)
1236 int n;
1237 {
1238 Lisp_Object obj;
1239 obj.s.val = n;
1240 obj.s.type = Lisp_Int;
1241 return obj;
1242 }
1243 #endif
1244 \f
1245 /***********************************************************************
1246 String Allocation
1247 ***********************************************************************/
1248
1249 /* Lisp_Strings are allocated in string_block structures. When a new
1250 string_block is allocated, all the Lisp_Strings it contains are
1251 added to a free-list string_free_list. When a new Lisp_String is
1252 needed, it is taken from that list. During the sweep phase of GC,
1253 string_blocks that are entirely free are freed, except two which
1254 we keep.
1255
1256 String data is allocated from sblock structures. Strings larger
1257 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1258 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1259
1260 Sblocks consist internally of sdata structures, one for each
1261 Lisp_String. The sdata structure points to the Lisp_String it
1262 belongs to. The Lisp_String points back to the `u.data' member of
1263 its sdata structure.
1264
1265 When a Lisp_String is freed during GC, it is put back on
1266 string_free_list, and its `data' member and its sdata's `string'
1267 pointer is set to null. The size of the string is recorded in the
1268 `u.nbytes' member of the sdata. So, sdata structures that are no
1269 longer used, can be easily recognized, and it's easy to compact the
1270 sblocks of small strings which we do in compact_small_strings. */
1271
1272 /* Size in bytes of an sblock structure used for small strings. This
1273 is 8192 minus malloc overhead. */
1274
1275 #define SBLOCK_SIZE 8188
1276
1277 /* Strings larger than this are considered large strings. String data
1278 for large strings is allocated from individual sblocks. */
1279
1280 #define LARGE_STRING_BYTES 1024
1281
1282 /* Structure describing string memory sub-allocated from an sblock.
1283 This is where the contents of Lisp strings are stored. */
1284
1285 struct sdata
1286 {
1287 /* Back-pointer to the string this sdata belongs to. If null, this
1288 structure is free, and the NBYTES member of the union below
1289 contains the string's byte size (the same value that STRING_BYTES
1290 would return if STRING were non-null). If non-null, STRING_BYTES
1291 (STRING) is the size of the data, and DATA contains the string's
1292 contents. */
1293 struct Lisp_String *string;
1294
1295 #ifdef GC_CHECK_STRING_BYTES
1296
1297 EMACS_INT nbytes;
1298 unsigned char data[1];
1299
1300 #define SDATA_NBYTES(S) (S)->nbytes
1301 #define SDATA_DATA(S) (S)->data
1302
1303 #else /* not GC_CHECK_STRING_BYTES */
1304
1305 union
1306 {
1307 /* When STRING in non-null. */
1308 unsigned char data[1];
1309
1310 /* When STRING is null. */
1311 EMACS_INT nbytes;
1312 } u;
1313
1314
1315 #define SDATA_NBYTES(S) (S)->u.nbytes
1316 #define SDATA_DATA(S) (S)->u.data
1317
1318 #endif /* not GC_CHECK_STRING_BYTES */
1319 };
1320
1321
1322 /* Structure describing a block of memory which is sub-allocated to
1323 obtain string data memory for strings. Blocks for small strings
1324 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1325 as large as needed. */
1326
1327 struct sblock
1328 {
1329 /* Next in list. */
1330 struct sblock *next;
1331
1332 /* Pointer to the next free sdata block. This points past the end
1333 of the sblock if there isn't any space left in this block. */
1334 struct sdata *next_free;
1335
1336 /* Start of data. */
1337 struct sdata first_data;
1338 };
1339
1340 /* Number of Lisp strings in a string_block structure. The 1020 is
1341 1024 minus malloc overhead. */
1342
1343 #define STRING_BLOCK_SIZE \
1344 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1345
1346 /* Structure describing a block from which Lisp_String structures
1347 are allocated. */
1348
1349 struct string_block
1350 {
1351 /* Place `strings' first, to preserve alignment. */
1352 struct Lisp_String strings[STRING_BLOCK_SIZE];
1353 struct string_block *next;
1354 };
1355
1356 /* Head and tail of the list of sblock structures holding Lisp string
1357 data. We always allocate from current_sblock. The NEXT pointers
1358 in the sblock structures go from oldest_sblock to current_sblock. */
1359
1360 static struct sblock *oldest_sblock, *current_sblock;
1361
1362 /* List of sblocks for large strings. */
1363
1364 static struct sblock *large_sblocks;
1365
1366 /* List of string_block structures, and how many there are. */
1367
1368 static struct string_block *string_blocks;
1369 static int n_string_blocks;
1370
1371 /* Free-list of Lisp_Strings. */
1372
1373 static struct Lisp_String *string_free_list;
1374
1375 /* Number of live and free Lisp_Strings. */
1376
1377 static int total_strings, total_free_strings;
1378
1379 /* Number of bytes used by live strings. */
1380
1381 static int total_string_size;
1382
1383 /* Given a pointer to a Lisp_String S which is on the free-list
1384 string_free_list, return a pointer to its successor in the
1385 free-list. */
1386
1387 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1388
1389 /* Return a pointer to the sdata structure belonging to Lisp string S.
1390 S must be live, i.e. S->data must not be null. S->data is actually
1391 a pointer to the `u.data' member of its sdata structure; the
1392 structure starts at a constant offset in front of that. */
1393
1394 #ifdef GC_CHECK_STRING_BYTES
1395
1396 #define SDATA_OF_STRING(S) \
1397 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1398 - sizeof (EMACS_INT)))
1399
1400 #else /* not GC_CHECK_STRING_BYTES */
1401
1402 #define SDATA_OF_STRING(S) \
1403 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1404
1405 #endif /* not GC_CHECK_STRING_BYTES */
1406
1407 /* Value is the size of an sdata structure large enough to hold NBYTES
1408 bytes of string data. The value returned includes a terminating
1409 NUL byte, the size of the sdata structure, and padding. */
1410
1411 #ifdef GC_CHECK_STRING_BYTES
1412
1413 #define SDATA_SIZE(NBYTES) \
1414 ((sizeof (struct Lisp_String *) \
1415 + (NBYTES) + 1 \
1416 + sizeof (EMACS_INT) \
1417 + sizeof (EMACS_INT) - 1) \
1418 & ~(sizeof (EMACS_INT) - 1))
1419
1420 #else /* not GC_CHECK_STRING_BYTES */
1421
1422 #define SDATA_SIZE(NBYTES) \
1423 ((sizeof (struct Lisp_String *) \
1424 + (NBYTES) + 1 \
1425 + sizeof (EMACS_INT) - 1) \
1426 & ~(sizeof (EMACS_INT) - 1))
1427
1428 #endif /* not GC_CHECK_STRING_BYTES */
1429
1430 /* Initialize string allocation. Called from init_alloc_once. */
1431
1432 void
1433 init_strings ()
1434 {
1435 total_strings = total_free_strings = total_string_size = 0;
1436 oldest_sblock = current_sblock = large_sblocks = NULL;
1437 string_blocks = NULL;
1438 n_string_blocks = 0;
1439 string_free_list = NULL;
1440 }
1441
1442
1443 #ifdef GC_CHECK_STRING_BYTES
1444
1445 static int check_string_bytes_count;
1446
1447 void check_string_bytes P_ ((int));
1448 void check_sblock P_ ((struct sblock *));
1449
1450 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1451
1452
1453 /* Like GC_STRING_BYTES, but with debugging check. */
1454
1455 int
1456 string_bytes (s)
1457 struct Lisp_String *s;
1458 {
1459 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1460 if (!PURE_POINTER_P (s)
1461 && s->data
1462 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1463 abort ();
1464 return nbytes;
1465 }
1466
1467 /* Check validity of Lisp strings' string_bytes member in B. */
1468
1469 void
1470 check_sblock (b)
1471 struct sblock *b;
1472 {
1473 struct sdata *from, *end, *from_end;
1474
1475 end = b->next_free;
1476
1477 for (from = &b->first_data; from < end; from = from_end)
1478 {
1479 /* Compute the next FROM here because copying below may
1480 overwrite data we need to compute it. */
1481 int nbytes;
1482
1483 /* Check that the string size recorded in the string is the
1484 same as the one recorded in the sdata structure. */
1485 if (from->string)
1486 CHECK_STRING_BYTES (from->string);
1487
1488 if (from->string)
1489 nbytes = GC_STRING_BYTES (from->string);
1490 else
1491 nbytes = SDATA_NBYTES (from);
1492
1493 nbytes = SDATA_SIZE (nbytes);
1494 from_end = (struct sdata *) ((char *) from + nbytes);
1495 }
1496 }
1497
1498
1499 /* Check validity of Lisp strings' string_bytes member. ALL_P
1500 non-zero means check all strings, otherwise check only most
1501 recently allocated strings. Used for hunting a bug. */
1502
1503 void
1504 check_string_bytes (all_p)
1505 int all_p;
1506 {
1507 if (all_p)
1508 {
1509 struct sblock *b;
1510
1511 for (b = large_sblocks; b; b = b->next)
1512 {
1513 struct Lisp_String *s = b->first_data.string;
1514 if (s)
1515 CHECK_STRING_BYTES (s);
1516 }
1517
1518 for (b = oldest_sblock; b; b = b->next)
1519 check_sblock (b);
1520 }
1521 else
1522 check_sblock (current_sblock);
1523 }
1524
1525 #endif /* GC_CHECK_STRING_BYTES */
1526
1527
1528 /* Return a new Lisp_String. */
1529
1530 static struct Lisp_String *
1531 allocate_string ()
1532 {
1533 struct Lisp_String *s;
1534
1535 /* If the free-list is empty, allocate a new string_block, and
1536 add all the Lisp_Strings in it to the free-list. */
1537 if (string_free_list == NULL)
1538 {
1539 struct string_block *b;
1540 int i;
1541
1542 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1543 bzero (b, sizeof *b);
1544 b->next = string_blocks;
1545 string_blocks = b;
1546 ++n_string_blocks;
1547
1548 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1549 {
1550 s = b->strings + i;
1551 NEXT_FREE_LISP_STRING (s) = string_free_list;
1552 string_free_list = s;
1553 }
1554
1555 total_free_strings += STRING_BLOCK_SIZE;
1556 }
1557
1558 /* Pop a Lisp_String off the free-list. */
1559 s = string_free_list;
1560 string_free_list = NEXT_FREE_LISP_STRING (s);
1561
1562 /* Probably not strictly necessary, but play it safe. */
1563 bzero (s, sizeof *s);
1564
1565 --total_free_strings;
1566 ++total_strings;
1567 ++strings_consed;
1568 consing_since_gc += sizeof *s;
1569
1570 #ifdef GC_CHECK_STRING_BYTES
1571 if (!noninteractive
1572 #ifdef MAC_OS8
1573 && current_sblock
1574 #endif
1575 )
1576 {
1577 if (++check_string_bytes_count == 200)
1578 {
1579 check_string_bytes_count = 0;
1580 check_string_bytes (1);
1581 }
1582 else
1583 check_string_bytes (0);
1584 }
1585 #endif /* GC_CHECK_STRING_BYTES */
1586
1587 return s;
1588 }
1589
1590
1591 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1592 plus a NUL byte at the end. Allocate an sdata structure for S, and
1593 set S->data to its `u.data' member. Store a NUL byte at the end of
1594 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1595 S->data if it was initially non-null. */
1596
1597 void
1598 allocate_string_data (s, nchars, nbytes)
1599 struct Lisp_String *s;
1600 int nchars, nbytes;
1601 {
1602 struct sdata *data, *old_data;
1603 struct sblock *b;
1604 int needed, old_nbytes;
1605
1606 /* Determine the number of bytes needed to store NBYTES bytes
1607 of string data. */
1608 needed = SDATA_SIZE (nbytes);
1609
1610 if (nbytes > LARGE_STRING_BYTES)
1611 {
1612 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1613
1614 #ifdef DOUG_LEA_MALLOC
1615 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1616 because mapped region contents are not preserved in
1617 a dumped Emacs.
1618
1619 In case you think of allowing it in a dumped Emacs at the
1620 cost of not being able to re-dump, there's another reason:
1621 mmap'ed data typically have an address towards the top of the
1622 address space, which won't fit into an EMACS_INT (at least on
1623 32-bit systems with the current tagging scheme). --fx */
1624 mallopt (M_MMAP_MAX, 0);
1625 #endif
1626
1627 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
1628
1629 #ifdef DOUG_LEA_MALLOC
1630 /* Back to a reasonable maximum of mmap'ed areas. */
1631 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1632 #endif
1633
1634 b->next_free = &b->first_data;
1635 b->first_data.string = NULL;
1636 b->next = large_sblocks;
1637 large_sblocks = b;
1638 }
1639 else if (current_sblock == NULL
1640 || (((char *) current_sblock + SBLOCK_SIZE
1641 - (char *) current_sblock->next_free)
1642 < needed))
1643 {
1644 /* Not enough room in the current sblock. */
1645 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1646 b->next_free = &b->first_data;
1647 b->first_data.string = NULL;
1648 b->next = NULL;
1649
1650 if (current_sblock)
1651 current_sblock->next = b;
1652 else
1653 oldest_sblock = b;
1654 current_sblock = b;
1655 }
1656 else
1657 b = current_sblock;
1658
1659 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1660 old_nbytes = GC_STRING_BYTES (s);
1661
1662 data = b->next_free;
1663 data->string = s;
1664 s->data = SDATA_DATA (data);
1665 #ifdef GC_CHECK_STRING_BYTES
1666 SDATA_NBYTES (data) = nbytes;
1667 #endif
1668 s->size = nchars;
1669 s->size_byte = nbytes;
1670 s->data[nbytes] = '\0';
1671 b->next_free = (struct sdata *) ((char *) data + needed);
1672
1673 /* If S had already data assigned, mark that as free by setting its
1674 string back-pointer to null, and recording the size of the data
1675 in it. */
1676 if (old_data)
1677 {
1678 SDATA_NBYTES (old_data) = old_nbytes;
1679 old_data->string = NULL;
1680 }
1681
1682 consing_since_gc += needed;
1683 }
1684
1685
1686 /* Sweep and compact strings. */
1687
1688 static void
1689 sweep_strings ()
1690 {
1691 struct string_block *b, *next;
1692 struct string_block *live_blocks = NULL;
1693
1694 string_free_list = NULL;
1695 total_strings = total_free_strings = 0;
1696 total_string_size = 0;
1697
1698 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1699 for (b = string_blocks; b; b = next)
1700 {
1701 int i, nfree = 0;
1702 struct Lisp_String *free_list_before = string_free_list;
1703
1704 next = b->next;
1705
1706 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1707 {
1708 struct Lisp_String *s = b->strings + i;
1709
1710 if (s->data)
1711 {
1712 /* String was not on free-list before. */
1713 if (STRING_MARKED_P (s))
1714 {
1715 /* String is live; unmark it and its intervals. */
1716 UNMARK_STRING (s);
1717
1718 if (!NULL_INTERVAL_P (s->intervals))
1719 UNMARK_BALANCE_INTERVALS (s->intervals);
1720
1721 ++total_strings;
1722 total_string_size += STRING_BYTES (s);
1723 }
1724 else
1725 {
1726 /* String is dead. Put it on the free-list. */
1727 struct sdata *data = SDATA_OF_STRING (s);
1728
1729 /* Save the size of S in its sdata so that we know
1730 how large that is. Reset the sdata's string
1731 back-pointer so that we know it's free. */
1732 #ifdef GC_CHECK_STRING_BYTES
1733 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1734 abort ();
1735 #else
1736 data->u.nbytes = GC_STRING_BYTES (s);
1737 #endif
1738 data->string = NULL;
1739
1740 /* Reset the strings's `data' member so that we
1741 know it's free. */
1742 s->data = NULL;
1743
1744 /* Put the string on the free-list. */
1745 NEXT_FREE_LISP_STRING (s) = string_free_list;
1746 string_free_list = s;
1747 ++nfree;
1748 }
1749 }
1750 else
1751 {
1752 /* S was on the free-list before. Put it there again. */
1753 NEXT_FREE_LISP_STRING (s) = string_free_list;
1754 string_free_list = s;
1755 ++nfree;
1756 }
1757 }
1758
1759 /* Free blocks that contain free Lisp_Strings only, except
1760 the first two of them. */
1761 if (nfree == STRING_BLOCK_SIZE
1762 && total_free_strings > STRING_BLOCK_SIZE)
1763 {
1764 lisp_free (b);
1765 --n_string_blocks;
1766 string_free_list = free_list_before;
1767 }
1768 else
1769 {
1770 total_free_strings += nfree;
1771 b->next = live_blocks;
1772 live_blocks = b;
1773 }
1774 }
1775
1776 string_blocks = live_blocks;
1777 free_large_strings ();
1778 compact_small_strings ();
1779 }
1780
1781
1782 /* Free dead large strings. */
1783
1784 static void
1785 free_large_strings ()
1786 {
1787 struct sblock *b, *next;
1788 struct sblock *live_blocks = NULL;
1789
1790 for (b = large_sblocks; b; b = next)
1791 {
1792 next = b->next;
1793
1794 if (b->first_data.string == NULL)
1795 lisp_free (b);
1796 else
1797 {
1798 b->next = live_blocks;
1799 live_blocks = b;
1800 }
1801 }
1802
1803 large_sblocks = live_blocks;
1804 }
1805
1806
1807 /* Compact data of small strings. Free sblocks that don't contain
1808 data of live strings after compaction. */
1809
1810 static void
1811 compact_small_strings ()
1812 {
1813 struct sblock *b, *tb, *next;
1814 struct sdata *from, *to, *end, *tb_end;
1815 struct sdata *to_end, *from_end;
1816
1817 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1818 to, and TB_END is the end of TB. */
1819 tb = oldest_sblock;
1820 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1821 to = &tb->first_data;
1822
1823 /* Step through the blocks from the oldest to the youngest. We
1824 expect that old blocks will stabilize over time, so that less
1825 copying will happen this way. */
1826 for (b = oldest_sblock; b; b = b->next)
1827 {
1828 end = b->next_free;
1829 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1830
1831 for (from = &b->first_data; from < end; from = from_end)
1832 {
1833 /* Compute the next FROM here because copying below may
1834 overwrite data we need to compute it. */
1835 int nbytes;
1836
1837 #ifdef GC_CHECK_STRING_BYTES
1838 /* Check that the string size recorded in the string is the
1839 same as the one recorded in the sdata structure. */
1840 if (from->string
1841 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
1842 abort ();
1843 #endif /* GC_CHECK_STRING_BYTES */
1844
1845 if (from->string)
1846 nbytes = GC_STRING_BYTES (from->string);
1847 else
1848 nbytes = SDATA_NBYTES (from);
1849
1850 nbytes = SDATA_SIZE (nbytes);
1851 from_end = (struct sdata *) ((char *) from + nbytes);
1852
1853 /* FROM->string non-null means it's alive. Copy its data. */
1854 if (from->string)
1855 {
1856 /* If TB is full, proceed with the next sblock. */
1857 to_end = (struct sdata *) ((char *) to + nbytes);
1858 if (to_end > tb_end)
1859 {
1860 tb->next_free = to;
1861 tb = tb->next;
1862 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1863 to = &tb->first_data;
1864 to_end = (struct sdata *) ((char *) to + nbytes);
1865 }
1866
1867 /* Copy, and update the string's `data' pointer. */
1868 if (from != to)
1869 {
1870 xassert (tb != b || to <= from);
1871 safe_bcopy ((char *) from, (char *) to, nbytes);
1872 to->string->data = SDATA_DATA (to);
1873 }
1874
1875 /* Advance past the sdata we copied to. */
1876 to = to_end;
1877 }
1878 }
1879 }
1880
1881 /* The rest of the sblocks following TB don't contain live data, so
1882 we can free them. */
1883 for (b = tb->next; b; b = next)
1884 {
1885 next = b->next;
1886 lisp_free (b);
1887 }
1888
1889 tb->next_free = to;
1890 tb->next = NULL;
1891 current_sblock = tb;
1892 }
1893
1894
1895 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1896 doc: /* Return a newly created string of length LENGTH, with each element being INIT.
1897 Both LENGTH and INIT must be numbers. */)
1898 (length, init)
1899 Lisp_Object length, init;
1900 {
1901 register Lisp_Object val;
1902 register unsigned char *p, *end;
1903 int c, nbytes;
1904
1905 CHECK_NATNUM (length);
1906 CHECK_NUMBER (init);
1907
1908 c = XINT (init);
1909 if (SINGLE_BYTE_CHAR_P (c))
1910 {
1911 nbytes = XINT (length);
1912 val = make_uninit_string (nbytes);
1913 p = SDATA (val);
1914 end = p + SCHARS (val);
1915 while (p != end)
1916 *p++ = c;
1917 }
1918 else
1919 {
1920 unsigned char str[MAX_MULTIBYTE_LENGTH];
1921 int len = CHAR_STRING (c, str);
1922
1923 nbytes = len * XINT (length);
1924 val = make_uninit_multibyte_string (XINT (length), nbytes);
1925 p = SDATA (val);
1926 end = p + nbytes;
1927 while (p != end)
1928 {
1929 bcopy (str, p, len);
1930 p += len;
1931 }
1932 }
1933
1934 *p = 0;
1935 return val;
1936 }
1937
1938
1939 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
1940 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
1941 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1942 (length, init)
1943 Lisp_Object length, init;
1944 {
1945 register Lisp_Object val;
1946 struct Lisp_Bool_Vector *p;
1947 int real_init, i;
1948 int length_in_chars, length_in_elts, bits_per_value;
1949
1950 CHECK_NATNUM (length);
1951
1952 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
1953
1954 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1955 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
1956 / BOOL_VECTOR_BITS_PER_CHAR);
1957
1958 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1959 slot `size' of the struct Lisp_Bool_Vector. */
1960 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1961 p = XBOOL_VECTOR (val);
1962
1963 /* Get rid of any bits that would cause confusion. */
1964 p->vector_size = 0;
1965 XSETBOOL_VECTOR (val, p);
1966 p->size = XFASTINT (length);
1967
1968 real_init = (NILP (init) ? 0 : -1);
1969 for (i = 0; i < length_in_chars ; i++)
1970 p->data[i] = real_init;
1971
1972 /* Clear the extraneous bits in the last byte. */
1973 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
1974 XBOOL_VECTOR (val)->data[length_in_chars - 1]
1975 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
1976
1977 return val;
1978 }
1979
1980
1981 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
1982 of characters from the contents. This string may be unibyte or
1983 multibyte, depending on the contents. */
1984
1985 Lisp_Object
1986 make_string (contents, nbytes)
1987 const char *contents;
1988 int nbytes;
1989 {
1990 register Lisp_Object val;
1991 int nchars, multibyte_nbytes;
1992
1993 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
1994 if (nbytes == nchars || nbytes != multibyte_nbytes)
1995 /* CONTENTS contains no multibyte sequences or contains an invalid
1996 multibyte sequence. We must make unibyte string. */
1997 val = make_unibyte_string (contents, nbytes);
1998 else
1999 val = make_multibyte_string (contents, nchars, nbytes);
2000 return val;
2001 }
2002
2003
2004 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2005
2006 Lisp_Object
2007 make_unibyte_string (contents, length)
2008 const char *contents;
2009 int length;
2010 {
2011 register Lisp_Object val;
2012 val = make_uninit_string (length);
2013 bcopy (contents, SDATA (val), length);
2014 STRING_SET_UNIBYTE (val);
2015 return val;
2016 }
2017
2018
2019 /* Make a multibyte string from NCHARS characters occupying NBYTES
2020 bytes at CONTENTS. */
2021
2022 Lisp_Object
2023 make_multibyte_string (contents, nchars, nbytes)
2024 const char *contents;
2025 int nchars, nbytes;
2026 {
2027 register Lisp_Object val;
2028 val = make_uninit_multibyte_string (nchars, nbytes);
2029 bcopy (contents, SDATA (val), nbytes);
2030 return val;
2031 }
2032
2033
2034 /* Make a string from NCHARS characters occupying NBYTES bytes at
2035 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2036
2037 Lisp_Object
2038 make_string_from_bytes (contents, nchars, nbytes)
2039 const char *contents;
2040 int nchars, nbytes;
2041 {
2042 register Lisp_Object val;
2043 val = make_uninit_multibyte_string (nchars, nbytes);
2044 bcopy (contents, SDATA (val), nbytes);
2045 if (SBYTES (val) == SCHARS (val))
2046 STRING_SET_UNIBYTE (val);
2047 return val;
2048 }
2049
2050
2051 /* Make a string from NCHARS characters occupying NBYTES bytes at
2052 CONTENTS. The argument MULTIBYTE controls whether to label the
2053 string as multibyte. If NCHARS is negative, it counts the number of
2054 characters by itself. */
2055
2056 Lisp_Object
2057 make_specified_string (contents, nchars, nbytes, multibyte)
2058 const char *contents;
2059 int nchars, nbytes;
2060 int multibyte;
2061 {
2062 register Lisp_Object val;
2063
2064 if (nchars < 0)
2065 {
2066 if (multibyte)
2067 nchars = multibyte_chars_in_text (contents, nbytes);
2068 else
2069 nchars = nbytes;
2070 }
2071 val = make_uninit_multibyte_string (nchars, nbytes);
2072 bcopy (contents, SDATA (val), nbytes);
2073 if (!multibyte)
2074 STRING_SET_UNIBYTE (val);
2075 return val;
2076 }
2077
2078
2079 /* Make a string from the data at STR, treating it as multibyte if the
2080 data warrants. */
2081
2082 Lisp_Object
2083 build_string (str)
2084 const char *str;
2085 {
2086 return make_string (str, strlen (str));
2087 }
2088
2089
2090 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2091 occupying LENGTH bytes. */
2092
2093 Lisp_Object
2094 make_uninit_string (length)
2095 int length;
2096 {
2097 Lisp_Object val;
2098 val = make_uninit_multibyte_string (length, length);
2099 STRING_SET_UNIBYTE (val);
2100 return val;
2101 }
2102
2103
2104 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2105 which occupy NBYTES bytes. */
2106
2107 Lisp_Object
2108 make_uninit_multibyte_string (nchars, nbytes)
2109 int nchars, nbytes;
2110 {
2111 Lisp_Object string;
2112 struct Lisp_String *s;
2113
2114 if (nchars < 0)
2115 abort ();
2116
2117 s = allocate_string ();
2118 allocate_string_data (s, nchars, nbytes);
2119 XSETSTRING (string, s);
2120 string_chars_consed += nbytes;
2121 return string;
2122 }
2123
2124
2125 \f
2126 /***********************************************************************
2127 Float Allocation
2128 ***********************************************************************/
2129
2130 /* We store float cells inside of float_blocks, allocating a new
2131 float_block with malloc whenever necessary. Float cells reclaimed
2132 by GC are put on a free list to be reallocated before allocating
2133 any new float cells from the latest float_block. */
2134
2135 #define FLOAT_BLOCK_SIZE \
2136 (((BLOCK_BYTES - sizeof (struct float_block *) \
2137 /* The compiler might add padding at the end. */ \
2138 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2139 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2140
2141 #define GETMARKBIT(block,n) \
2142 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2143 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2144 & 1)
2145
2146 #define SETMARKBIT(block,n) \
2147 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2148 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2149
2150 #define UNSETMARKBIT(block,n) \
2151 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2152 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2153
2154 #define FLOAT_BLOCK(fptr) \
2155 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2156
2157 #define FLOAT_INDEX(fptr) \
2158 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2159
2160 struct float_block
2161 {
2162 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2163 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2164 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2165 struct float_block *next;
2166 };
2167
2168 #define FLOAT_MARKED_P(fptr) \
2169 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2170
2171 #define FLOAT_MARK(fptr) \
2172 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2173
2174 #define FLOAT_UNMARK(fptr) \
2175 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2176
2177 /* Current float_block. */
2178
2179 struct float_block *float_block;
2180
2181 /* Index of first unused Lisp_Float in the current float_block. */
2182
2183 int float_block_index;
2184
2185 /* Total number of float blocks now in use. */
2186
2187 int n_float_blocks;
2188
2189 /* Free-list of Lisp_Floats. */
2190
2191 struct Lisp_Float *float_free_list;
2192
2193
2194 /* Initialize float allocation. */
2195
2196 void
2197 init_float ()
2198 {
2199 float_block = NULL;
2200 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2201 float_free_list = 0;
2202 n_float_blocks = 0;
2203 }
2204
2205
2206 /* Explicitly free a float cell by putting it on the free-list. */
2207
2208 void
2209 free_float (ptr)
2210 struct Lisp_Float *ptr;
2211 {
2212 *(struct Lisp_Float **)&ptr->data = float_free_list;
2213 float_free_list = ptr;
2214 }
2215
2216
2217 /* Return a new float object with value FLOAT_VALUE. */
2218
2219 Lisp_Object
2220 make_float (float_value)
2221 double float_value;
2222 {
2223 register Lisp_Object val;
2224
2225 if (float_free_list)
2226 {
2227 /* We use the data field for chaining the free list
2228 so that we won't use the same field that has the mark bit. */
2229 XSETFLOAT (val, float_free_list);
2230 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2231 }
2232 else
2233 {
2234 if (float_block_index == FLOAT_BLOCK_SIZE)
2235 {
2236 register struct float_block *new;
2237
2238 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2239 MEM_TYPE_FLOAT);
2240 new->next = float_block;
2241 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2242 float_block = new;
2243 float_block_index = 0;
2244 n_float_blocks++;
2245 }
2246 XSETFLOAT (val, &float_block->floats[float_block_index]);
2247 float_block_index++;
2248 }
2249
2250 XFLOAT_DATA (val) = float_value;
2251 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2252 consing_since_gc += sizeof (struct Lisp_Float);
2253 floats_consed++;
2254 return val;
2255 }
2256
2257
2258 \f
2259 /***********************************************************************
2260 Cons Allocation
2261 ***********************************************************************/
2262
2263 /* We store cons cells inside of cons_blocks, allocating a new
2264 cons_block with malloc whenever necessary. Cons cells reclaimed by
2265 GC are put on a free list to be reallocated before allocating
2266 any new cons cells from the latest cons_block. */
2267
2268 #define CONS_BLOCK_SIZE \
2269 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2270 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2271
2272 #define CONS_BLOCK(fptr) \
2273 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2274
2275 #define CONS_INDEX(fptr) \
2276 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2277
2278 struct cons_block
2279 {
2280 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2281 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2282 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2283 struct cons_block *next;
2284 };
2285
2286 #define CONS_MARKED_P(fptr) \
2287 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2288
2289 #define CONS_MARK(fptr) \
2290 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2291
2292 #define CONS_UNMARK(fptr) \
2293 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2294
2295 /* Current cons_block. */
2296
2297 struct cons_block *cons_block;
2298
2299 /* Index of first unused Lisp_Cons in the current block. */
2300
2301 int cons_block_index;
2302
2303 /* Free-list of Lisp_Cons structures. */
2304
2305 struct Lisp_Cons *cons_free_list;
2306
2307 /* Total number of cons blocks now in use. */
2308
2309 int n_cons_blocks;
2310
2311
2312 /* Initialize cons allocation. */
2313
2314 void
2315 init_cons ()
2316 {
2317 cons_block = NULL;
2318 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2319 cons_free_list = 0;
2320 n_cons_blocks = 0;
2321 }
2322
2323
2324 /* Explicitly free a cons cell by putting it on the free-list. */
2325
2326 void
2327 free_cons (ptr)
2328 struct Lisp_Cons *ptr;
2329 {
2330 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2331 #if GC_MARK_STACK
2332 ptr->car = Vdead;
2333 #endif
2334 cons_free_list = ptr;
2335 }
2336
2337
2338 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2339 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2340 (car, cdr)
2341 Lisp_Object car, cdr;
2342 {
2343 register Lisp_Object val;
2344
2345 if (cons_free_list)
2346 {
2347 /* We use the cdr for chaining the free list
2348 so that we won't use the same field that has the mark bit. */
2349 XSETCONS (val, cons_free_list);
2350 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2351 }
2352 else
2353 {
2354 if (cons_block_index == CONS_BLOCK_SIZE)
2355 {
2356 register struct cons_block *new;
2357 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2358 MEM_TYPE_CONS);
2359 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2360 new->next = cons_block;
2361 cons_block = new;
2362 cons_block_index = 0;
2363 n_cons_blocks++;
2364 }
2365 XSETCONS (val, &cons_block->conses[cons_block_index]);
2366 cons_block_index++;
2367 }
2368
2369 XSETCAR (val, car);
2370 XSETCDR (val, cdr);
2371 eassert (!CONS_MARKED_P (XCONS (val)));
2372 consing_since_gc += sizeof (struct Lisp_Cons);
2373 cons_cells_consed++;
2374 return val;
2375 }
2376
2377
2378 /* Make a list of 2, 3, 4 or 5 specified objects. */
2379
2380 Lisp_Object
2381 list2 (arg1, arg2)
2382 Lisp_Object arg1, arg2;
2383 {
2384 return Fcons (arg1, Fcons (arg2, Qnil));
2385 }
2386
2387
2388 Lisp_Object
2389 list3 (arg1, arg2, arg3)
2390 Lisp_Object arg1, arg2, arg3;
2391 {
2392 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2393 }
2394
2395
2396 Lisp_Object
2397 list4 (arg1, arg2, arg3, arg4)
2398 Lisp_Object arg1, arg2, arg3, arg4;
2399 {
2400 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2401 }
2402
2403
2404 Lisp_Object
2405 list5 (arg1, arg2, arg3, arg4, arg5)
2406 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2407 {
2408 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2409 Fcons (arg5, Qnil)))));
2410 }
2411
2412
2413 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2414 doc: /* Return a newly created list with specified arguments as elements.
2415 Any number of arguments, even zero arguments, are allowed.
2416 usage: (list &rest OBJECTS) */)
2417 (nargs, args)
2418 int nargs;
2419 register Lisp_Object *args;
2420 {
2421 register Lisp_Object val;
2422 val = Qnil;
2423
2424 while (nargs > 0)
2425 {
2426 nargs--;
2427 val = Fcons (args[nargs], val);
2428 }
2429 return val;
2430 }
2431
2432
2433 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2434 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2435 (length, init)
2436 register Lisp_Object length, init;
2437 {
2438 register Lisp_Object val;
2439 register int size;
2440
2441 CHECK_NATNUM (length);
2442 size = XFASTINT (length);
2443
2444 val = Qnil;
2445 while (size > 0)
2446 {
2447 val = Fcons (init, val);
2448 --size;
2449
2450 if (size > 0)
2451 {
2452 val = Fcons (init, val);
2453 --size;
2454
2455 if (size > 0)
2456 {
2457 val = Fcons (init, val);
2458 --size;
2459
2460 if (size > 0)
2461 {
2462 val = Fcons (init, val);
2463 --size;
2464
2465 if (size > 0)
2466 {
2467 val = Fcons (init, val);
2468 --size;
2469 }
2470 }
2471 }
2472 }
2473
2474 QUIT;
2475 }
2476
2477 return val;
2478 }
2479
2480
2481 \f
2482 /***********************************************************************
2483 Vector Allocation
2484 ***********************************************************************/
2485
2486 /* Singly-linked list of all vectors. */
2487
2488 struct Lisp_Vector *all_vectors;
2489
2490 /* Total number of vector-like objects now in use. */
2491
2492 int n_vectors;
2493
2494
2495 /* Value is a pointer to a newly allocated Lisp_Vector structure
2496 with room for LEN Lisp_Objects. */
2497
2498 static struct Lisp_Vector *
2499 allocate_vectorlike (len, type)
2500 EMACS_INT len;
2501 enum mem_type type;
2502 {
2503 struct Lisp_Vector *p;
2504 size_t nbytes;
2505
2506 #ifdef DOUG_LEA_MALLOC
2507 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2508 because mapped region contents are not preserved in
2509 a dumped Emacs. */
2510 BLOCK_INPUT;
2511 mallopt (M_MMAP_MAX, 0);
2512 UNBLOCK_INPUT;
2513 #endif
2514
2515 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2516 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2517
2518 #ifdef DOUG_LEA_MALLOC
2519 /* Back to a reasonable maximum of mmap'ed areas. */
2520 BLOCK_INPUT;
2521 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2522 UNBLOCK_INPUT;
2523 #endif
2524
2525 consing_since_gc += nbytes;
2526 vector_cells_consed += len;
2527
2528 p->next = all_vectors;
2529 all_vectors = p;
2530 ++n_vectors;
2531 return p;
2532 }
2533
2534
2535 /* Allocate a vector with NSLOTS slots. */
2536
2537 struct Lisp_Vector *
2538 allocate_vector (nslots)
2539 EMACS_INT nslots;
2540 {
2541 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2542 v->size = nslots;
2543 return v;
2544 }
2545
2546
2547 /* Allocate other vector-like structures. */
2548
2549 struct Lisp_Hash_Table *
2550 allocate_hash_table ()
2551 {
2552 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2553 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2554 EMACS_INT i;
2555
2556 v->size = len;
2557 for (i = 0; i < len; ++i)
2558 v->contents[i] = Qnil;
2559
2560 return (struct Lisp_Hash_Table *) v;
2561 }
2562
2563
2564 struct window *
2565 allocate_window ()
2566 {
2567 EMACS_INT len = VECSIZE (struct window);
2568 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2569 EMACS_INT i;
2570
2571 for (i = 0; i < len; ++i)
2572 v->contents[i] = Qnil;
2573 v->size = len;
2574
2575 return (struct window *) v;
2576 }
2577
2578
2579 struct frame *
2580 allocate_frame ()
2581 {
2582 EMACS_INT len = VECSIZE (struct frame);
2583 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2584 EMACS_INT i;
2585
2586 for (i = 0; i < len; ++i)
2587 v->contents[i] = make_number (0);
2588 v->size = len;
2589 return (struct frame *) v;
2590 }
2591
2592
2593 struct Lisp_Process *
2594 allocate_process ()
2595 {
2596 EMACS_INT len = VECSIZE (struct Lisp_Process);
2597 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2598 EMACS_INT i;
2599
2600 for (i = 0; i < len; ++i)
2601 v->contents[i] = Qnil;
2602 v->size = len;
2603
2604 return (struct Lisp_Process *) v;
2605 }
2606
2607
2608 struct Lisp_Vector *
2609 allocate_other_vector (len)
2610 EMACS_INT len;
2611 {
2612 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2613 EMACS_INT i;
2614
2615 for (i = 0; i < len; ++i)
2616 v->contents[i] = Qnil;
2617 v->size = len;
2618
2619 return v;
2620 }
2621
2622
2623 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2624 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2625 See also the function `vector'. */)
2626 (length, init)
2627 register Lisp_Object length, init;
2628 {
2629 Lisp_Object vector;
2630 register EMACS_INT sizei;
2631 register int index;
2632 register struct Lisp_Vector *p;
2633
2634 CHECK_NATNUM (length);
2635 sizei = XFASTINT (length);
2636
2637 p = allocate_vector (sizei);
2638 for (index = 0; index < sizei; index++)
2639 p->contents[index] = init;
2640
2641 XSETVECTOR (vector, p);
2642 return vector;
2643 }
2644
2645
2646 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
2647 doc: /* Return a newly created char-table, with purpose PURPOSE.
2648 Each element is initialized to INIT, which defaults to nil.
2649 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
2650 The property's value should be an integer between 0 and 10. */)
2651 (purpose, init)
2652 register Lisp_Object purpose, init;
2653 {
2654 Lisp_Object vector;
2655 Lisp_Object n;
2656 CHECK_SYMBOL (purpose);
2657 n = Fget (purpose, Qchar_table_extra_slots);
2658 CHECK_NUMBER (n);
2659 if (XINT (n) < 0 || XINT (n) > 10)
2660 args_out_of_range (n, Qnil);
2661 /* Add 2 to the size for the defalt and parent slots. */
2662 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
2663 init);
2664 XCHAR_TABLE (vector)->top = Qt;
2665 XCHAR_TABLE (vector)->parent = Qnil;
2666 XCHAR_TABLE (vector)->purpose = purpose;
2667 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2668 return vector;
2669 }
2670
2671
2672 /* Return a newly created sub char table with default value DEFALT.
2673 Since a sub char table does not appear as a top level Emacs Lisp
2674 object, we don't need a Lisp interface to make it. */
2675
2676 Lisp_Object
2677 make_sub_char_table (defalt)
2678 Lisp_Object defalt;
2679 {
2680 Lisp_Object vector
2681 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
2682 XCHAR_TABLE (vector)->top = Qnil;
2683 XCHAR_TABLE (vector)->defalt = defalt;
2684 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2685 return vector;
2686 }
2687
2688
2689 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2690 doc: /* Return a newly created vector with specified arguments as elements.
2691 Any number of arguments, even zero arguments, are allowed.
2692 usage: (vector &rest OBJECTS) */)
2693 (nargs, args)
2694 register int nargs;
2695 Lisp_Object *args;
2696 {
2697 register Lisp_Object len, val;
2698 register int index;
2699 register struct Lisp_Vector *p;
2700
2701 XSETFASTINT (len, nargs);
2702 val = Fmake_vector (len, Qnil);
2703 p = XVECTOR (val);
2704 for (index = 0; index < nargs; index++)
2705 p->contents[index] = args[index];
2706 return val;
2707 }
2708
2709
2710 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2711 doc: /* Create a byte-code object with specified arguments as elements.
2712 The arguments should be the arglist, bytecode-string, constant vector,
2713 stack size, (optional) doc string, and (optional) interactive spec.
2714 The first four arguments are required; at most six have any
2715 significance.
2716 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2717 (nargs, args)
2718 register int nargs;
2719 Lisp_Object *args;
2720 {
2721 register Lisp_Object len, val;
2722 register int index;
2723 register struct Lisp_Vector *p;
2724
2725 XSETFASTINT (len, nargs);
2726 if (!NILP (Vpurify_flag))
2727 val = make_pure_vector ((EMACS_INT) nargs);
2728 else
2729 val = Fmake_vector (len, Qnil);
2730
2731 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2732 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2733 earlier because they produced a raw 8-bit string for byte-code
2734 and now such a byte-code string is loaded as multibyte while
2735 raw 8-bit characters converted to multibyte form. Thus, now we
2736 must convert them back to the original unibyte form. */
2737 args[1] = Fstring_as_unibyte (args[1]);
2738
2739 p = XVECTOR (val);
2740 for (index = 0; index < nargs; index++)
2741 {
2742 if (!NILP (Vpurify_flag))
2743 args[index] = Fpurecopy (args[index]);
2744 p->contents[index] = args[index];
2745 }
2746 XSETCOMPILED (val, p);
2747 return val;
2748 }
2749
2750
2751 \f
2752 /***********************************************************************
2753 Symbol Allocation
2754 ***********************************************************************/
2755
2756 /* Each symbol_block is just under 1020 bytes long, since malloc
2757 really allocates in units of powers of two and uses 4 bytes for its
2758 own overhead. */
2759
2760 #define SYMBOL_BLOCK_SIZE \
2761 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2762
2763 struct symbol_block
2764 {
2765 /* Place `symbols' first, to preserve alignment. */
2766 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2767 struct symbol_block *next;
2768 };
2769
2770 /* Current symbol block and index of first unused Lisp_Symbol
2771 structure in it. */
2772
2773 struct symbol_block *symbol_block;
2774 int symbol_block_index;
2775
2776 /* List of free symbols. */
2777
2778 struct Lisp_Symbol *symbol_free_list;
2779
2780 /* Total number of symbol blocks now in use. */
2781
2782 int n_symbol_blocks;
2783
2784
2785 /* Initialize symbol allocation. */
2786
2787 void
2788 init_symbol ()
2789 {
2790 symbol_block = NULL;
2791 symbol_block_index = SYMBOL_BLOCK_SIZE;
2792 symbol_free_list = 0;
2793 n_symbol_blocks = 0;
2794 }
2795
2796
2797 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
2798 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
2799 Its value and function definition are void, and its property list is nil. */)
2800 (name)
2801 Lisp_Object name;
2802 {
2803 register Lisp_Object val;
2804 register struct Lisp_Symbol *p;
2805
2806 CHECK_STRING (name);
2807
2808 if (symbol_free_list)
2809 {
2810 XSETSYMBOL (val, symbol_free_list);
2811 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
2812 }
2813 else
2814 {
2815 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2816 {
2817 struct symbol_block *new;
2818 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2819 MEM_TYPE_SYMBOL);
2820 new->next = symbol_block;
2821 symbol_block = new;
2822 symbol_block_index = 0;
2823 n_symbol_blocks++;
2824 }
2825 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
2826 symbol_block_index++;
2827 }
2828
2829 p = XSYMBOL (val);
2830 p->xname = name;
2831 p->plist = Qnil;
2832 p->value = Qunbound;
2833 p->function = Qunbound;
2834 p->next = NULL;
2835 p->gcmarkbit = 0;
2836 p->interned = SYMBOL_UNINTERNED;
2837 p->constant = 0;
2838 p->indirect_variable = 0;
2839 consing_since_gc += sizeof (struct Lisp_Symbol);
2840 symbols_consed++;
2841 return val;
2842 }
2843
2844
2845 \f
2846 /***********************************************************************
2847 Marker (Misc) Allocation
2848 ***********************************************************************/
2849
2850 /* Allocation of markers and other objects that share that structure.
2851 Works like allocation of conses. */
2852
2853 #define MARKER_BLOCK_SIZE \
2854 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2855
2856 struct marker_block
2857 {
2858 /* Place `markers' first, to preserve alignment. */
2859 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
2860 struct marker_block *next;
2861 };
2862
2863 struct marker_block *marker_block;
2864 int marker_block_index;
2865
2866 union Lisp_Misc *marker_free_list;
2867
2868 /* Total number of marker blocks now in use. */
2869
2870 int n_marker_blocks;
2871
2872 void
2873 init_marker ()
2874 {
2875 marker_block = NULL;
2876 marker_block_index = MARKER_BLOCK_SIZE;
2877 marker_free_list = 0;
2878 n_marker_blocks = 0;
2879 }
2880
2881 /* Return a newly allocated Lisp_Misc object, with no substructure. */
2882
2883 Lisp_Object
2884 allocate_misc ()
2885 {
2886 Lisp_Object val;
2887
2888 if (marker_free_list)
2889 {
2890 XSETMISC (val, marker_free_list);
2891 marker_free_list = marker_free_list->u_free.chain;
2892 }
2893 else
2894 {
2895 if (marker_block_index == MARKER_BLOCK_SIZE)
2896 {
2897 struct marker_block *new;
2898 new = (struct marker_block *) lisp_malloc (sizeof *new,
2899 MEM_TYPE_MISC);
2900 new->next = marker_block;
2901 marker_block = new;
2902 marker_block_index = 0;
2903 n_marker_blocks++;
2904 }
2905 XSETMISC (val, &marker_block->markers[marker_block_index]);
2906 marker_block_index++;
2907 }
2908
2909 consing_since_gc += sizeof (union Lisp_Misc);
2910 misc_objects_consed++;
2911 XMARKER (val)->gcmarkbit = 0;
2912 return val;
2913 }
2914
2915 /* Return a Lisp_Misc_Save_Value object containing POINTER and
2916 INTEGER. This is used to package C values to call record_unwind_protect.
2917 The unwind function can get the C values back using XSAVE_VALUE. */
2918
2919 Lisp_Object
2920 make_save_value (pointer, integer)
2921 void *pointer;
2922 int integer;
2923 {
2924 register Lisp_Object val;
2925 register struct Lisp_Save_Value *p;
2926
2927 val = allocate_misc ();
2928 XMISCTYPE (val) = Lisp_Misc_Save_Value;
2929 p = XSAVE_VALUE (val);
2930 p->pointer = pointer;
2931 p->integer = integer;
2932 return val;
2933 }
2934
2935 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
2936 doc: /* Return a newly allocated marker which does not point at any place. */)
2937 ()
2938 {
2939 register Lisp_Object val;
2940 register struct Lisp_Marker *p;
2941
2942 val = allocate_misc ();
2943 XMISCTYPE (val) = Lisp_Misc_Marker;
2944 p = XMARKER (val);
2945 p->buffer = 0;
2946 p->bytepos = 0;
2947 p->charpos = 0;
2948 p->next = NULL;
2949 p->insertion_type = 0;
2950 return val;
2951 }
2952
2953 /* Put MARKER back on the free list after using it temporarily. */
2954
2955 void
2956 free_marker (marker)
2957 Lisp_Object marker;
2958 {
2959 unchain_marker (XMARKER (marker));
2960
2961 XMISC (marker)->u_marker.type = Lisp_Misc_Free;
2962 XMISC (marker)->u_free.chain = marker_free_list;
2963 marker_free_list = XMISC (marker);
2964
2965 total_free_markers++;
2966 }
2967
2968 \f
2969 /* Return a newly created vector or string with specified arguments as
2970 elements. If all the arguments are characters that can fit
2971 in a string of events, make a string; otherwise, make a vector.
2972
2973 Any number of arguments, even zero arguments, are allowed. */
2974
2975 Lisp_Object
2976 make_event_array (nargs, args)
2977 register int nargs;
2978 Lisp_Object *args;
2979 {
2980 int i;
2981
2982 for (i = 0; i < nargs; i++)
2983 /* The things that fit in a string
2984 are characters that are in 0...127,
2985 after discarding the meta bit and all the bits above it. */
2986 if (!INTEGERP (args[i])
2987 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
2988 return Fvector (nargs, args);
2989
2990 /* Since the loop exited, we know that all the things in it are
2991 characters, so we can make a string. */
2992 {
2993 Lisp_Object result;
2994
2995 result = Fmake_string (make_number (nargs), make_number (0));
2996 for (i = 0; i < nargs; i++)
2997 {
2998 SSET (result, i, XINT (args[i]));
2999 /* Move the meta bit to the right place for a string char. */
3000 if (XINT (args[i]) & CHAR_META)
3001 SSET (result, i, SREF (result, i) | 0x80);
3002 }
3003
3004 return result;
3005 }
3006 }
3007
3008
3009 \f
3010 /************************************************************************
3011 C Stack Marking
3012 ************************************************************************/
3013
3014 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3015
3016 /* Conservative C stack marking requires a method to identify possibly
3017 live Lisp objects given a pointer value. We do this by keeping
3018 track of blocks of Lisp data that are allocated in a red-black tree
3019 (see also the comment of mem_node which is the type of nodes in
3020 that tree). Function lisp_malloc adds information for an allocated
3021 block to the red-black tree with calls to mem_insert, and function
3022 lisp_free removes it with mem_delete. Functions live_string_p etc
3023 call mem_find to lookup information about a given pointer in the
3024 tree, and use that to determine if the pointer points to a Lisp
3025 object or not. */
3026
3027 /* Initialize this part of alloc.c. */
3028
3029 static void
3030 mem_init ()
3031 {
3032 mem_z.left = mem_z.right = MEM_NIL;
3033 mem_z.parent = NULL;
3034 mem_z.color = MEM_BLACK;
3035 mem_z.start = mem_z.end = NULL;
3036 mem_root = MEM_NIL;
3037 }
3038
3039
3040 /* Value is a pointer to the mem_node containing START. Value is
3041 MEM_NIL if there is no node in the tree containing START. */
3042
3043 static INLINE struct mem_node *
3044 mem_find (start)
3045 void *start;
3046 {
3047 struct mem_node *p;
3048
3049 if (start < min_heap_address || start > max_heap_address)
3050 return MEM_NIL;
3051
3052 /* Make the search always successful to speed up the loop below. */
3053 mem_z.start = start;
3054 mem_z.end = (char *) start + 1;
3055
3056 p = mem_root;
3057 while (start < p->start || start >= p->end)
3058 p = start < p->start ? p->left : p->right;
3059 return p;
3060 }
3061
3062
3063 /* Insert a new node into the tree for a block of memory with start
3064 address START, end address END, and type TYPE. Value is a
3065 pointer to the node that was inserted. */
3066
3067 static struct mem_node *
3068 mem_insert (start, end, type)
3069 void *start, *end;
3070 enum mem_type type;
3071 {
3072 struct mem_node *c, *parent, *x;
3073
3074 if (start < min_heap_address)
3075 min_heap_address = start;
3076 if (end > max_heap_address)
3077 max_heap_address = end;
3078
3079 /* See where in the tree a node for START belongs. In this
3080 particular application, it shouldn't happen that a node is already
3081 present. For debugging purposes, let's check that. */
3082 c = mem_root;
3083 parent = NULL;
3084
3085 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3086
3087 while (c != MEM_NIL)
3088 {
3089 if (start >= c->start && start < c->end)
3090 abort ();
3091 parent = c;
3092 c = start < c->start ? c->left : c->right;
3093 }
3094
3095 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3096
3097 while (c != MEM_NIL)
3098 {
3099 parent = c;
3100 c = start < c->start ? c->left : c->right;
3101 }
3102
3103 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3104
3105 /* Create a new node. */
3106 #ifdef GC_MALLOC_CHECK
3107 x = (struct mem_node *) _malloc_internal (sizeof *x);
3108 if (x == NULL)
3109 abort ();
3110 #else
3111 x = (struct mem_node *) xmalloc (sizeof *x);
3112 #endif
3113 x->start = start;
3114 x->end = end;
3115 x->type = type;
3116 x->parent = parent;
3117 x->left = x->right = MEM_NIL;
3118 x->color = MEM_RED;
3119
3120 /* Insert it as child of PARENT or install it as root. */
3121 if (parent)
3122 {
3123 if (start < parent->start)
3124 parent->left = x;
3125 else
3126 parent->right = x;
3127 }
3128 else
3129 mem_root = x;
3130
3131 /* Re-establish red-black tree properties. */
3132 mem_insert_fixup (x);
3133
3134 return x;
3135 }
3136
3137
3138 /* Re-establish the red-black properties of the tree, and thereby
3139 balance the tree, after node X has been inserted; X is always red. */
3140
3141 static void
3142 mem_insert_fixup (x)
3143 struct mem_node *x;
3144 {
3145 while (x != mem_root && x->parent->color == MEM_RED)
3146 {
3147 /* X is red and its parent is red. This is a violation of
3148 red-black tree property #3. */
3149
3150 if (x->parent == x->parent->parent->left)
3151 {
3152 /* We're on the left side of our grandparent, and Y is our
3153 "uncle". */
3154 struct mem_node *y = x->parent->parent->right;
3155
3156 if (y->color == MEM_RED)
3157 {
3158 /* Uncle and parent are red but should be black because
3159 X is red. Change the colors accordingly and proceed
3160 with the grandparent. */
3161 x->parent->color = MEM_BLACK;
3162 y->color = MEM_BLACK;
3163 x->parent->parent->color = MEM_RED;
3164 x = x->parent->parent;
3165 }
3166 else
3167 {
3168 /* Parent and uncle have different colors; parent is
3169 red, uncle is black. */
3170 if (x == x->parent->right)
3171 {
3172 x = x->parent;
3173 mem_rotate_left (x);
3174 }
3175
3176 x->parent->color = MEM_BLACK;
3177 x->parent->parent->color = MEM_RED;
3178 mem_rotate_right (x->parent->parent);
3179 }
3180 }
3181 else
3182 {
3183 /* This is the symmetrical case of above. */
3184 struct mem_node *y = x->parent->parent->left;
3185
3186 if (y->color == MEM_RED)
3187 {
3188 x->parent->color = MEM_BLACK;
3189 y->color = MEM_BLACK;
3190 x->parent->parent->color = MEM_RED;
3191 x = x->parent->parent;
3192 }
3193 else
3194 {
3195 if (x == x->parent->left)
3196 {
3197 x = x->parent;
3198 mem_rotate_right (x);
3199 }
3200
3201 x->parent->color = MEM_BLACK;
3202 x->parent->parent->color = MEM_RED;
3203 mem_rotate_left (x->parent->parent);
3204 }
3205 }
3206 }
3207
3208 /* The root may have been changed to red due to the algorithm. Set
3209 it to black so that property #5 is satisfied. */
3210 mem_root->color = MEM_BLACK;
3211 }
3212
3213
3214 /* (x) (y)
3215 / \ / \
3216 a (y) ===> (x) c
3217 / \ / \
3218 b c a b */
3219
3220 static void
3221 mem_rotate_left (x)
3222 struct mem_node *x;
3223 {
3224 struct mem_node *y;
3225
3226 /* Turn y's left sub-tree into x's right sub-tree. */
3227 y = x->right;
3228 x->right = y->left;
3229 if (y->left != MEM_NIL)
3230 y->left->parent = x;
3231
3232 /* Y's parent was x's parent. */
3233 if (y != MEM_NIL)
3234 y->parent = x->parent;
3235
3236 /* Get the parent to point to y instead of x. */
3237 if (x->parent)
3238 {
3239 if (x == x->parent->left)
3240 x->parent->left = y;
3241 else
3242 x->parent->right = y;
3243 }
3244 else
3245 mem_root = y;
3246
3247 /* Put x on y's left. */
3248 y->left = x;
3249 if (x != MEM_NIL)
3250 x->parent = y;
3251 }
3252
3253
3254 /* (x) (Y)
3255 / \ / \
3256 (y) c ===> a (x)
3257 / \ / \
3258 a b b c */
3259
3260 static void
3261 mem_rotate_right (x)
3262 struct mem_node *x;
3263 {
3264 struct mem_node *y = x->left;
3265
3266 x->left = y->right;
3267 if (y->right != MEM_NIL)
3268 y->right->parent = x;
3269
3270 if (y != MEM_NIL)
3271 y->parent = x->parent;
3272 if (x->parent)
3273 {
3274 if (x == x->parent->right)
3275 x->parent->right = y;
3276 else
3277 x->parent->left = y;
3278 }
3279 else
3280 mem_root = y;
3281
3282 y->right = x;
3283 if (x != MEM_NIL)
3284 x->parent = y;
3285 }
3286
3287
3288 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3289
3290 static void
3291 mem_delete (z)
3292 struct mem_node *z;
3293 {
3294 struct mem_node *x, *y;
3295
3296 if (!z || z == MEM_NIL)
3297 return;
3298
3299 if (z->left == MEM_NIL || z->right == MEM_NIL)
3300 y = z;
3301 else
3302 {
3303 y = z->right;
3304 while (y->left != MEM_NIL)
3305 y = y->left;
3306 }
3307
3308 if (y->left != MEM_NIL)
3309 x = y->left;
3310 else
3311 x = y->right;
3312
3313 x->parent = y->parent;
3314 if (y->parent)
3315 {
3316 if (y == y->parent->left)
3317 y->parent->left = x;
3318 else
3319 y->parent->right = x;
3320 }
3321 else
3322 mem_root = x;
3323
3324 if (y != z)
3325 {
3326 z->start = y->start;
3327 z->end = y->end;
3328 z->type = y->type;
3329 }
3330
3331 if (y->color == MEM_BLACK)
3332 mem_delete_fixup (x);
3333
3334 #ifdef GC_MALLOC_CHECK
3335 _free_internal (y);
3336 #else
3337 xfree (y);
3338 #endif
3339 }
3340
3341
3342 /* Re-establish the red-black properties of the tree, after a
3343 deletion. */
3344
3345 static void
3346 mem_delete_fixup (x)
3347 struct mem_node *x;
3348 {
3349 while (x != mem_root && x->color == MEM_BLACK)
3350 {
3351 if (x == x->parent->left)
3352 {
3353 struct mem_node *w = x->parent->right;
3354
3355 if (w->color == MEM_RED)
3356 {
3357 w->color = MEM_BLACK;
3358 x->parent->color = MEM_RED;
3359 mem_rotate_left (x->parent);
3360 w = x->parent->right;
3361 }
3362
3363 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3364 {
3365 w->color = MEM_RED;
3366 x = x->parent;
3367 }
3368 else
3369 {
3370 if (w->right->color == MEM_BLACK)
3371 {
3372 w->left->color = MEM_BLACK;
3373 w->color = MEM_RED;
3374 mem_rotate_right (w);
3375 w = x->parent->right;
3376 }
3377 w->color = x->parent->color;
3378 x->parent->color = MEM_BLACK;
3379 w->right->color = MEM_BLACK;
3380 mem_rotate_left (x->parent);
3381 x = mem_root;
3382 }
3383 }
3384 else
3385 {
3386 struct mem_node *w = x->parent->left;
3387
3388 if (w->color == MEM_RED)
3389 {
3390 w->color = MEM_BLACK;
3391 x->parent->color = MEM_RED;
3392 mem_rotate_right (x->parent);
3393 w = x->parent->left;
3394 }
3395
3396 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3397 {
3398 w->color = MEM_RED;
3399 x = x->parent;
3400 }
3401 else
3402 {
3403 if (w->left->color == MEM_BLACK)
3404 {
3405 w->right->color = MEM_BLACK;
3406 w->color = MEM_RED;
3407 mem_rotate_left (w);
3408 w = x->parent->left;
3409 }
3410
3411 w->color = x->parent->color;
3412 x->parent->color = MEM_BLACK;
3413 w->left->color = MEM_BLACK;
3414 mem_rotate_right (x->parent);
3415 x = mem_root;
3416 }
3417 }
3418 }
3419
3420 x->color = MEM_BLACK;
3421 }
3422
3423
3424 /* Value is non-zero if P is a pointer to a live Lisp string on
3425 the heap. M is a pointer to the mem_block for P. */
3426
3427 static INLINE int
3428 live_string_p (m, p)
3429 struct mem_node *m;
3430 void *p;
3431 {
3432 if (m->type == MEM_TYPE_STRING)
3433 {
3434 struct string_block *b = (struct string_block *) m->start;
3435 int offset = (char *) p - (char *) &b->strings[0];
3436
3437 /* P must point to the start of a Lisp_String structure, and it
3438 must not be on the free-list. */
3439 return (offset >= 0
3440 && offset % sizeof b->strings[0] == 0
3441 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3442 && ((struct Lisp_String *) p)->data != NULL);
3443 }
3444 else
3445 return 0;
3446 }
3447
3448
3449 /* Value is non-zero if P is a pointer to a live Lisp cons on
3450 the heap. M is a pointer to the mem_block for P. */
3451
3452 static INLINE int
3453 live_cons_p (m, p)
3454 struct mem_node *m;
3455 void *p;
3456 {
3457 if (m->type == MEM_TYPE_CONS)
3458 {
3459 struct cons_block *b = (struct cons_block *) m->start;
3460 int offset = (char *) p - (char *) &b->conses[0];
3461
3462 /* P must point to the start of a Lisp_Cons, not be
3463 one of the unused cells in the current cons block,
3464 and not be on the free-list. */
3465 return (offset >= 0
3466 && offset % sizeof b->conses[0] == 0
3467 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3468 && (b != cons_block
3469 || offset / sizeof b->conses[0] < cons_block_index)
3470 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3471 }
3472 else
3473 return 0;
3474 }
3475
3476
3477 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3478 the heap. M is a pointer to the mem_block for P. */
3479
3480 static INLINE int
3481 live_symbol_p (m, p)
3482 struct mem_node *m;
3483 void *p;
3484 {
3485 if (m->type == MEM_TYPE_SYMBOL)
3486 {
3487 struct symbol_block *b = (struct symbol_block *) m->start;
3488 int offset = (char *) p - (char *) &b->symbols[0];
3489
3490 /* P must point to the start of a Lisp_Symbol, not be
3491 one of the unused cells in the current symbol block,
3492 and not be on the free-list. */
3493 return (offset >= 0
3494 && offset % sizeof b->symbols[0] == 0
3495 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3496 && (b != symbol_block
3497 || offset / sizeof b->symbols[0] < symbol_block_index)
3498 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3499 }
3500 else
3501 return 0;
3502 }
3503
3504
3505 /* Value is non-zero if P is a pointer to a live Lisp float on
3506 the heap. M is a pointer to the mem_block for P. */
3507
3508 static INLINE int
3509 live_float_p (m, p)
3510 struct mem_node *m;
3511 void *p;
3512 {
3513 if (m->type == MEM_TYPE_FLOAT)
3514 {
3515 struct float_block *b = (struct float_block *) m->start;
3516 int offset = (char *) p - (char *) &b->floats[0];
3517
3518 /* P must point to the start of a Lisp_Float and not be
3519 one of the unused cells in the current float block. */
3520 return (offset >= 0
3521 && offset % sizeof b->floats[0] == 0
3522 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3523 && (b != float_block
3524 || offset / sizeof b->floats[0] < float_block_index));
3525 }
3526 else
3527 return 0;
3528 }
3529
3530
3531 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3532 the heap. M is a pointer to the mem_block for P. */
3533
3534 static INLINE int
3535 live_misc_p (m, p)
3536 struct mem_node *m;
3537 void *p;
3538 {
3539 if (m->type == MEM_TYPE_MISC)
3540 {
3541 struct marker_block *b = (struct marker_block *) m->start;
3542 int offset = (char *) p - (char *) &b->markers[0];
3543
3544 /* P must point to the start of a Lisp_Misc, not be
3545 one of the unused cells in the current misc block,
3546 and not be on the free-list. */
3547 return (offset >= 0
3548 && offset % sizeof b->markers[0] == 0
3549 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3550 && (b != marker_block
3551 || offset / sizeof b->markers[0] < marker_block_index)
3552 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3553 }
3554 else
3555 return 0;
3556 }
3557
3558
3559 /* Value is non-zero if P is a pointer to a live vector-like object.
3560 M is a pointer to the mem_block for P. */
3561
3562 static INLINE int
3563 live_vector_p (m, p)
3564 struct mem_node *m;
3565 void *p;
3566 {
3567 return (p == m->start
3568 && m->type >= MEM_TYPE_VECTOR
3569 && m->type <= MEM_TYPE_WINDOW);
3570 }
3571
3572
3573 /* Value is non-zero if P is a pointer to a live buffer. M is a
3574 pointer to the mem_block for P. */
3575
3576 static INLINE int
3577 live_buffer_p (m, p)
3578 struct mem_node *m;
3579 void *p;
3580 {
3581 /* P must point to the start of the block, and the buffer
3582 must not have been killed. */
3583 return (m->type == MEM_TYPE_BUFFER
3584 && p == m->start
3585 && !NILP (((struct buffer *) p)->name));
3586 }
3587
3588 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3589
3590 #if GC_MARK_STACK
3591
3592 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3593
3594 /* Array of objects that are kept alive because the C stack contains
3595 a pattern that looks like a reference to them . */
3596
3597 #define MAX_ZOMBIES 10
3598 static Lisp_Object zombies[MAX_ZOMBIES];
3599
3600 /* Number of zombie objects. */
3601
3602 static int nzombies;
3603
3604 /* Number of garbage collections. */
3605
3606 static int ngcs;
3607
3608 /* Average percentage of zombies per collection. */
3609
3610 static double avg_zombies;
3611
3612 /* Max. number of live and zombie objects. */
3613
3614 static int max_live, max_zombies;
3615
3616 /* Average number of live objects per GC. */
3617
3618 static double avg_live;
3619
3620 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3621 doc: /* Show information about live and zombie objects. */)
3622 ()
3623 {
3624 Lisp_Object args[8], zombie_list = Qnil;
3625 int i;
3626 for (i = 0; i < nzombies; i++)
3627 zombie_list = Fcons (zombies[i], zombie_list);
3628 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3629 args[1] = make_number (ngcs);
3630 args[2] = make_float (avg_live);
3631 args[3] = make_float (avg_zombies);
3632 args[4] = make_float (avg_zombies / avg_live / 100);
3633 args[5] = make_number (max_live);
3634 args[6] = make_number (max_zombies);
3635 args[7] = zombie_list;
3636 return Fmessage (8, args);
3637 }
3638
3639 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3640
3641
3642 /* Mark OBJ if we can prove it's a Lisp_Object. */
3643
3644 static INLINE void
3645 mark_maybe_object (obj)
3646 Lisp_Object obj;
3647 {
3648 void *po = (void *) XPNTR (obj);
3649 struct mem_node *m = mem_find (po);
3650
3651 if (m != MEM_NIL)
3652 {
3653 int mark_p = 0;
3654
3655 switch (XGCTYPE (obj))
3656 {
3657 case Lisp_String:
3658 mark_p = (live_string_p (m, po)
3659 && !STRING_MARKED_P ((struct Lisp_String *) po));
3660 break;
3661
3662 case Lisp_Cons:
3663 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3664 break;
3665
3666 case Lisp_Symbol:
3667 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3668 break;
3669
3670 case Lisp_Float:
3671 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3672 break;
3673
3674 case Lisp_Vectorlike:
3675 /* Note: can't check GC_BUFFERP before we know it's a
3676 buffer because checking that dereferences the pointer
3677 PO which might point anywhere. */
3678 if (live_vector_p (m, po))
3679 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3680 else if (live_buffer_p (m, po))
3681 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3682 break;
3683
3684 case Lisp_Misc:
3685 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
3686 break;
3687
3688 case Lisp_Int:
3689 case Lisp_Type_Limit:
3690 break;
3691 }
3692
3693 if (mark_p)
3694 {
3695 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3696 if (nzombies < MAX_ZOMBIES)
3697 zombies[nzombies] = obj;
3698 ++nzombies;
3699 #endif
3700 mark_object (obj);
3701 }
3702 }
3703 }
3704
3705
3706 /* If P points to Lisp data, mark that as live if it isn't already
3707 marked. */
3708
3709 static INLINE void
3710 mark_maybe_pointer (p)
3711 void *p;
3712 {
3713 struct mem_node *m;
3714
3715 /* Quickly rule out some values which can't point to Lisp data. We
3716 assume that Lisp data is aligned on even addresses. */
3717 if ((EMACS_INT) p & 1)
3718 return;
3719
3720 m = mem_find (p);
3721 if (m != MEM_NIL)
3722 {
3723 Lisp_Object obj = Qnil;
3724
3725 switch (m->type)
3726 {
3727 case MEM_TYPE_NON_LISP:
3728 /* Nothing to do; not a pointer to Lisp memory. */
3729 break;
3730
3731 case MEM_TYPE_BUFFER:
3732 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
3733 XSETVECTOR (obj, p);
3734 break;
3735
3736 case MEM_TYPE_CONS:
3737 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
3738 XSETCONS (obj, p);
3739 break;
3740
3741 case MEM_TYPE_STRING:
3742 if (live_string_p (m, p)
3743 && !STRING_MARKED_P ((struct Lisp_String *) p))
3744 XSETSTRING (obj, p);
3745 break;
3746
3747 case MEM_TYPE_MISC:
3748 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
3749 XSETMISC (obj, p);
3750 break;
3751
3752 case MEM_TYPE_SYMBOL:
3753 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
3754 XSETSYMBOL (obj, p);
3755 break;
3756
3757 case MEM_TYPE_FLOAT:
3758 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
3759 XSETFLOAT (obj, p);
3760 break;
3761
3762 case MEM_TYPE_VECTOR:
3763 case MEM_TYPE_PROCESS:
3764 case MEM_TYPE_HASH_TABLE:
3765 case MEM_TYPE_FRAME:
3766 case MEM_TYPE_WINDOW:
3767 if (live_vector_p (m, p))
3768 {
3769 Lisp_Object tem;
3770 XSETVECTOR (tem, p);
3771 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
3772 obj = tem;
3773 }
3774 break;
3775
3776 default:
3777 abort ();
3778 }
3779
3780 if (!GC_NILP (obj))
3781 mark_object (obj);
3782 }
3783 }
3784
3785
3786 /* Mark Lisp objects referenced from the address range START..END. */
3787
3788 static void
3789 mark_memory (start, end)
3790 void *start, *end;
3791 {
3792 Lisp_Object *p;
3793 void **pp;
3794
3795 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3796 nzombies = 0;
3797 #endif
3798
3799 /* Make START the pointer to the start of the memory region,
3800 if it isn't already. */
3801 if (end < start)
3802 {
3803 void *tem = start;
3804 start = end;
3805 end = tem;
3806 }
3807
3808 /* Mark Lisp_Objects. */
3809 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
3810 mark_maybe_object (*p);
3811
3812 /* Mark Lisp data pointed to. This is necessary because, in some
3813 situations, the C compiler optimizes Lisp objects away, so that
3814 only a pointer to them remains. Example:
3815
3816 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
3817 ()
3818 {
3819 Lisp_Object obj = build_string ("test");
3820 struct Lisp_String *s = XSTRING (obj);
3821 Fgarbage_collect ();
3822 fprintf (stderr, "test `%s'\n", s->data);
3823 return Qnil;
3824 }
3825
3826 Here, `obj' isn't really used, and the compiler optimizes it
3827 away. The only reference to the life string is through the
3828 pointer `s'. */
3829
3830 for (pp = (void **) start; (void *) pp < end; ++pp)
3831 mark_maybe_pointer (*pp);
3832 }
3833
3834 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
3835 the GCC system configuration. In gcc 3.2, the only systems for
3836 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
3837 by others?) and ns32k-pc532-min. */
3838
3839 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3840
3841 static int setjmp_tested_p, longjmps_done;
3842
3843 #define SETJMP_WILL_LIKELY_WORK "\
3844 \n\
3845 Emacs garbage collector has been changed to use conservative stack\n\
3846 marking. Emacs has determined that the method it uses to do the\n\
3847 marking will likely work on your system, but this isn't sure.\n\
3848 \n\
3849 If you are a system-programmer, or can get the help of a local wizard\n\
3850 who is, please take a look at the function mark_stack in alloc.c, and\n\
3851 verify that the methods used are appropriate for your system.\n\
3852 \n\
3853 Please mail the result to <emacs-devel@gnu.org>.\n\
3854 "
3855
3856 #define SETJMP_WILL_NOT_WORK "\
3857 \n\
3858 Emacs garbage collector has been changed to use conservative stack\n\
3859 marking. Emacs has determined that the default method it uses to do the\n\
3860 marking will not work on your system. We will need a system-dependent\n\
3861 solution for your system.\n\
3862 \n\
3863 Please take a look at the function mark_stack in alloc.c, and\n\
3864 try to find a way to make it work on your system.\n\
3865 \n\
3866 Note that you may get false negatives, depending on the compiler.\n\
3867 In particular, you need to use -O with GCC for this test.\n\
3868 \n\
3869 Please mail the result to <emacs-devel@gnu.org>.\n\
3870 "
3871
3872
3873 /* Perform a quick check if it looks like setjmp saves registers in a
3874 jmp_buf. Print a message to stderr saying so. When this test
3875 succeeds, this is _not_ a proof that setjmp is sufficient for
3876 conservative stack marking. Only the sources or a disassembly
3877 can prove that. */
3878
3879 static void
3880 test_setjmp ()
3881 {
3882 char buf[10];
3883 register int x;
3884 jmp_buf jbuf;
3885 int result = 0;
3886
3887 /* Arrange for X to be put in a register. */
3888 sprintf (buf, "1");
3889 x = strlen (buf);
3890 x = 2 * x - 1;
3891
3892 setjmp (jbuf);
3893 if (longjmps_done == 1)
3894 {
3895 /* Came here after the longjmp at the end of the function.
3896
3897 If x == 1, the longjmp has restored the register to its
3898 value before the setjmp, and we can hope that setjmp
3899 saves all such registers in the jmp_buf, although that
3900 isn't sure.
3901
3902 For other values of X, either something really strange is
3903 taking place, or the setjmp just didn't save the register. */
3904
3905 if (x == 1)
3906 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3907 else
3908 {
3909 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3910 exit (1);
3911 }
3912 }
3913
3914 ++longjmps_done;
3915 x = 2;
3916 if (longjmps_done == 1)
3917 longjmp (jbuf, 1);
3918 }
3919
3920 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3921
3922
3923 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3924
3925 /* Abort if anything GCPRO'd doesn't survive the GC. */
3926
3927 static void
3928 check_gcpros ()
3929 {
3930 struct gcpro *p;
3931 int i;
3932
3933 for (p = gcprolist; p; p = p->next)
3934 for (i = 0; i < p->nvars; ++i)
3935 if (!survives_gc_p (p->var[i]))
3936 /* FIXME: It's not necessarily a bug. It might just be that the
3937 GCPRO is unnecessary or should release the object sooner. */
3938 abort ();
3939 }
3940
3941 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3942
3943 static void
3944 dump_zombies ()
3945 {
3946 int i;
3947
3948 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3949 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3950 {
3951 fprintf (stderr, " %d = ", i);
3952 debug_print (zombies[i]);
3953 }
3954 }
3955
3956 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3957
3958
3959 /* Mark live Lisp objects on the C stack.
3960
3961 There are several system-dependent problems to consider when
3962 porting this to new architectures:
3963
3964 Processor Registers
3965
3966 We have to mark Lisp objects in CPU registers that can hold local
3967 variables or are used to pass parameters.
3968
3969 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
3970 something that either saves relevant registers on the stack, or
3971 calls mark_maybe_object passing it each register's contents.
3972
3973 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
3974 implementation assumes that calling setjmp saves registers we need
3975 to see in a jmp_buf which itself lies on the stack. This doesn't
3976 have to be true! It must be verified for each system, possibly
3977 by taking a look at the source code of setjmp.
3978
3979 Stack Layout
3980
3981 Architectures differ in the way their processor stack is organized.
3982 For example, the stack might look like this
3983
3984 +----------------+
3985 | Lisp_Object | size = 4
3986 +----------------+
3987 | something else | size = 2
3988 +----------------+
3989 | Lisp_Object | size = 4
3990 +----------------+
3991 | ... |
3992
3993 In such a case, not every Lisp_Object will be aligned equally. To
3994 find all Lisp_Object on the stack it won't be sufficient to walk
3995 the stack in steps of 4 bytes. Instead, two passes will be
3996 necessary, one starting at the start of the stack, and a second
3997 pass starting at the start of the stack + 2. Likewise, if the
3998 minimal alignment of Lisp_Objects on the stack is 1, four passes
3999 would be necessary, each one starting with one byte more offset
4000 from the stack start.
4001
4002 The current code assumes by default that Lisp_Objects are aligned
4003 equally on the stack. */
4004
4005 static void
4006 mark_stack ()
4007 {
4008 int i;
4009 jmp_buf j;
4010 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4011 void *end;
4012
4013 /* This trick flushes the register windows so that all the state of
4014 the process is contained in the stack. */
4015 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4016 needed on ia64 too. See mach_dep.c, where it also says inline
4017 assembler doesn't work with relevant proprietary compilers. */
4018 #ifdef sparc
4019 asm ("ta 3");
4020 #endif
4021
4022 /* Save registers that we need to see on the stack. We need to see
4023 registers used to hold register variables and registers used to
4024 pass parameters. */
4025 #ifdef GC_SAVE_REGISTERS_ON_STACK
4026 GC_SAVE_REGISTERS_ON_STACK (end);
4027 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4028
4029 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4030 setjmp will definitely work, test it
4031 and print a message with the result
4032 of the test. */
4033 if (!setjmp_tested_p)
4034 {
4035 setjmp_tested_p = 1;
4036 test_setjmp ();
4037 }
4038 #endif /* GC_SETJMP_WORKS */
4039
4040 setjmp (j);
4041 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4042 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4043
4044 /* This assumes that the stack is a contiguous region in memory. If
4045 that's not the case, something has to be done here to iterate
4046 over the stack segments. */
4047 #ifndef GC_LISP_OBJECT_ALIGNMENT
4048 #ifdef __GNUC__
4049 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4050 #else
4051 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4052 #endif
4053 #endif
4054 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4055 mark_memory ((char *) stack_base + i, end);
4056
4057 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4058 check_gcpros ();
4059 #endif
4060 }
4061
4062
4063 #endif /* GC_MARK_STACK != 0 */
4064
4065
4066 \f
4067 /***********************************************************************
4068 Pure Storage Management
4069 ***********************************************************************/
4070
4071 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4072 pointer to it. TYPE is the Lisp type for which the memory is
4073 allocated. TYPE < 0 means it's not used for a Lisp object.
4074
4075 If store_pure_type_info is set and TYPE is >= 0, the type of
4076 the allocated object is recorded in pure_types. */
4077
4078 static POINTER_TYPE *
4079 pure_alloc (size, type)
4080 size_t size;
4081 int type;
4082 {
4083 POINTER_TYPE *result;
4084 #ifdef USE_LSB_TAG
4085 size_t alignment = (1 << GCTYPEBITS);
4086 #else
4087 size_t alignment = sizeof (EMACS_INT);
4088
4089 /* Give Lisp_Floats an extra alignment. */
4090 if (type == Lisp_Float)
4091 {
4092 #if defined __GNUC__ && __GNUC__ >= 2
4093 alignment = __alignof (struct Lisp_Float);
4094 #else
4095 alignment = sizeof (struct Lisp_Float);
4096 #endif
4097 }
4098 #endif
4099
4100 again:
4101 result = ALIGN (purebeg + pure_bytes_used, alignment);
4102 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4103
4104 if (pure_bytes_used <= pure_size)
4105 return result;
4106
4107 /* Don't allocate a large amount here,
4108 because it might get mmap'd and then its address
4109 might not be usable. */
4110 purebeg = (char *) xmalloc (10000);
4111 pure_size = 10000;
4112 pure_bytes_used_before_overflow += pure_bytes_used - size;
4113 pure_bytes_used = 0;
4114 goto again;
4115 }
4116
4117
4118 /* Print a warning if PURESIZE is too small. */
4119
4120 void
4121 check_pure_size ()
4122 {
4123 if (pure_bytes_used_before_overflow)
4124 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4125 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4126 }
4127
4128
4129 /* Return a string allocated in pure space. DATA is a buffer holding
4130 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4131 non-zero means make the result string multibyte.
4132
4133 Must get an error if pure storage is full, since if it cannot hold
4134 a large string it may be able to hold conses that point to that
4135 string; then the string is not protected from gc. */
4136
4137 Lisp_Object
4138 make_pure_string (data, nchars, nbytes, multibyte)
4139 char *data;
4140 int nchars, nbytes;
4141 int multibyte;
4142 {
4143 Lisp_Object string;
4144 struct Lisp_String *s;
4145
4146 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4147 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4148 s->size = nchars;
4149 s->size_byte = multibyte ? nbytes : -1;
4150 bcopy (data, s->data, nbytes);
4151 s->data[nbytes] = '\0';
4152 s->intervals = NULL_INTERVAL;
4153 XSETSTRING (string, s);
4154 return string;
4155 }
4156
4157
4158 /* Return a cons allocated from pure space. Give it pure copies
4159 of CAR as car and CDR as cdr. */
4160
4161 Lisp_Object
4162 pure_cons (car, cdr)
4163 Lisp_Object car, cdr;
4164 {
4165 register Lisp_Object new;
4166 struct Lisp_Cons *p;
4167
4168 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4169 XSETCONS (new, p);
4170 XSETCAR (new, Fpurecopy (car));
4171 XSETCDR (new, Fpurecopy (cdr));
4172 return new;
4173 }
4174
4175
4176 /* Value is a float object with value NUM allocated from pure space. */
4177
4178 Lisp_Object
4179 make_pure_float (num)
4180 double num;
4181 {
4182 register Lisp_Object new;
4183 struct Lisp_Float *p;
4184
4185 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4186 XSETFLOAT (new, p);
4187 XFLOAT_DATA (new) = num;
4188 return new;
4189 }
4190
4191
4192 /* Return a vector with room for LEN Lisp_Objects allocated from
4193 pure space. */
4194
4195 Lisp_Object
4196 make_pure_vector (len)
4197 EMACS_INT len;
4198 {
4199 Lisp_Object new;
4200 struct Lisp_Vector *p;
4201 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4202
4203 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4204 XSETVECTOR (new, p);
4205 XVECTOR (new)->size = len;
4206 return new;
4207 }
4208
4209
4210 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4211 doc: /* Make a copy of OBJECT in pure storage.
4212 Recursively copies contents of vectors and cons cells.
4213 Does not copy symbols. Copies strings without text properties. */)
4214 (obj)
4215 register Lisp_Object obj;
4216 {
4217 if (NILP (Vpurify_flag))
4218 return obj;
4219
4220 if (PURE_POINTER_P (XPNTR (obj)))
4221 return obj;
4222
4223 if (CONSP (obj))
4224 return pure_cons (XCAR (obj), XCDR (obj));
4225 else if (FLOATP (obj))
4226 return make_pure_float (XFLOAT_DATA (obj));
4227 else if (STRINGP (obj))
4228 return make_pure_string (SDATA (obj), SCHARS (obj),
4229 SBYTES (obj),
4230 STRING_MULTIBYTE (obj));
4231 else if (COMPILEDP (obj) || VECTORP (obj))
4232 {
4233 register struct Lisp_Vector *vec;
4234 register int i;
4235 EMACS_INT size;
4236
4237 size = XVECTOR (obj)->size;
4238 if (size & PSEUDOVECTOR_FLAG)
4239 size &= PSEUDOVECTOR_SIZE_MASK;
4240 vec = XVECTOR (make_pure_vector (size));
4241 for (i = 0; i < size; i++)
4242 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4243 if (COMPILEDP (obj))
4244 XSETCOMPILED (obj, vec);
4245 else
4246 XSETVECTOR (obj, vec);
4247 return obj;
4248 }
4249 else if (MARKERP (obj))
4250 error ("Attempt to copy a marker to pure storage");
4251
4252 return obj;
4253 }
4254
4255
4256 \f
4257 /***********************************************************************
4258 Protection from GC
4259 ***********************************************************************/
4260
4261 /* Put an entry in staticvec, pointing at the variable with address
4262 VARADDRESS. */
4263
4264 void
4265 staticpro (varaddress)
4266 Lisp_Object *varaddress;
4267 {
4268 staticvec[staticidx++] = varaddress;
4269 if (staticidx >= NSTATICS)
4270 abort ();
4271 }
4272
4273 struct catchtag
4274 {
4275 Lisp_Object tag;
4276 Lisp_Object val;
4277 struct catchtag *next;
4278 };
4279
4280 struct backtrace
4281 {
4282 struct backtrace *next;
4283 Lisp_Object *function;
4284 Lisp_Object *args; /* Points to vector of args. */
4285 int nargs; /* Length of vector. */
4286 /* If nargs is UNEVALLED, args points to slot holding list of
4287 unevalled args. */
4288 char evalargs;
4289 };
4290
4291
4292 \f
4293 /***********************************************************************
4294 Protection from GC
4295 ***********************************************************************/
4296
4297 /* Temporarily prevent garbage collection. */
4298
4299 int
4300 inhibit_garbage_collection ()
4301 {
4302 int count = SPECPDL_INDEX ();
4303 int nbits = min (VALBITS, BITS_PER_INT);
4304
4305 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4306 return count;
4307 }
4308
4309
4310 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4311 doc: /* Reclaim storage for Lisp objects no longer needed.
4312 Garbage collection happens automatically if you cons more than
4313 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4314 `garbage-collect' normally returns a list with info on amount of space in use:
4315 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4316 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4317 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4318 (USED-STRINGS . FREE-STRINGS))
4319 However, if there was overflow in pure space, `garbage-collect'
4320 returns nil, because real GC can't be done. */)
4321 ()
4322 {
4323 register struct specbinding *bind;
4324 struct catchtag *catch;
4325 struct handler *handler;
4326 register struct backtrace *backlist;
4327 char stack_top_variable;
4328 register int i;
4329 int message_p;
4330 Lisp_Object total[8];
4331 int count = SPECPDL_INDEX ();
4332 EMACS_TIME t1, t2, t3;
4333
4334 if (abort_on_gc)
4335 abort ();
4336
4337 EMACS_GET_TIME (t1);
4338
4339 /* Can't GC if pure storage overflowed because we can't determine
4340 if something is a pure object or not. */
4341 if (pure_bytes_used_before_overflow)
4342 return Qnil;
4343
4344 /* In case user calls debug_print during GC,
4345 don't let that cause a recursive GC. */
4346 consing_since_gc = 0;
4347
4348 /* Save what's currently displayed in the echo area. */
4349 message_p = push_message ();
4350 record_unwind_protect (pop_message_unwind, Qnil);
4351
4352 /* Save a copy of the contents of the stack, for debugging. */
4353 #if MAX_SAVE_STACK > 0
4354 if (NILP (Vpurify_flag))
4355 {
4356 i = &stack_top_variable - stack_bottom;
4357 if (i < 0) i = -i;
4358 if (i < MAX_SAVE_STACK)
4359 {
4360 if (stack_copy == 0)
4361 stack_copy = (char *) xmalloc (stack_copy_size = i);
4362 else if (stack_copy_size < i)
4363 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4364 if (stack_copy)
4365 {
4366 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4367 bcopy (stack_bottom, stack_copy, i);
4368 else
4369 bcopy (&stack_top_variable, stack_copy, i);
4370 }
4371 }
4372 }
4373 #endif /* MAX_SAVE_STACK > 0 */
4374
4375 if (garbage_collection_messages)
4376 message1_nolog ("Garbage collecting...");
4377
4378 BLOCK_INPUT;
4379
4380 shrink_regexp_cache ();
4381
4382 /* Don't keep undo information around forever. */
4383 {
4384 register struct buffer *nextb = all_buffers;
4385
4386 while (nextb)
4387 {
4388 /* If a buffer's undo list is Qt, that means that undo is
4389 turned off in that buffer. Calling truncate_undo_list on
4390 Qt tends to return NULL, which effectively turns undo back on.
4391 So don't call truncate_undo_list if undo_list is Qt. */
4392 if (! EQ (nextb->undo_list, Qt))
4393 nextb->undo_list
4394 = truncate_undo_list (nextb->undo_list, undo_limit,
4395 undo_strong_limit);
4396
4397 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4398 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4399 {
4400 /* If a buffer's gap size is more than 10% of the buffer
4401 size, or larger than 2000 bytes, then shrink it
4402 accordingly. Keep a minimum size of 20 bytes. */
4403 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4404
4405 if (nextb->text->gap_size > size)
4406 {
4407 struct buffer *save_current = current_buffer;
4408 current_buffer = nextb;
4409 make_gap (-(nextb->text->gap_size - size));
4410 current_buffer = save_current;
4411 }
4412 }
4413
4414 nextb = nextb->next;
4415 }
4416 }
4417
4418 gc_in_progress = 1;
4419
4420 /* clear_marks (); */
4421
4422 /* Mark all the special slots that serve as the roots of accessibility. */
4423
4424 for (i = 0; i < staticidx; i++)
4425 mark_object (*staticvec[i]);
4426
4427 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4428 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4429 mark_stack ();
4430 #else
4431 {
4432 register struct gcpro *tail;
4433 for (tail = gcprolist; tail; tail = tail->next)
4434 for (i = 0; i < tail->nvars; i++)
4435 mark_object (tail->var[i]);
4436 }
4437 #endif
4438
4439 mark_byte_stack ();
4440 for (bind = specpdl; bind != specpdl_ptr; bind++)
4441 {
4442 mark_object (bind->symbol);
4443 mark_object (bind->old_value);
4444 }
4445 for (catch = catchlist; catch; catch = catch->next)
4446 {
4447 mark_object (catch->tag);
4448 mark_object (catch->val);
4449 }
4450 for (handler = handlerlist; handler; handler = handler->next)
4451 {
4452 mark_object (handler->handler);
4453 mark_object (handler->var);
4454 }
4455 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4456 {
4457 mark_object (*backlist->function);
4458
4459 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4460 i = 0;
4461 else
4462 i = backlist->nargs - 1;
4463 for (; i >= 0; i--)
4464 mark_object (backlist->args[i]);
4465 }
4466 mark_kboards ();
4467
4468 /* Look thru every buffer's undo list
4469 for elements that update markers that were not marked,
4470 and delete them. */
4471 {
4472 register struct buffer *nextb = all_buffers;
4473
4474 while (nextb)
4475 {
4476 /* If a buffer's undo list is Qt, that means that undo is
4477 turned off in that buffer. Calling truncate_undo_list on
4478 Qt tends to return NULL, which effectively turns undo back on.
4479 So don't call truncate_undo_list if undo_list is Qt. */
4480 if (! EQ (nextb->undo_list, Qt))
4481 {
4482 Lisp_Object tail, prev;
4483 tail = nextb->undo_list;
4484 prev = Qnil;
4485 while (CONSP (tail))
4486 {
4487 if (GC_CONSP (XCAR (tail))
4488 && GC_MARKERP (XCAR (XCAR (tail)))
4489 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4490 {
4491 if (NILP (prev))
4492 nextb->undo_list = tail = XCDR (tail);
4493 else
4494 {
4495 tail = XCDR (tail);
4496 XSETCDR (prev, tail);
4497 }
4498 }
4499 else
4500 {
4501 prev = tail;
4502 tail = XCDR (tail);
4503 }
4504 }
4505 }
4506
4507 nextb = nextb->next;
4508 }
4509 }
4510
4511 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4512 mark_stack ();
4513 #endif
4514
4515 #ifdef USE_GTK
4516 {
4517 extern void xg_mark_data ();
4518 xg_mark_data ();
4519 }
4520 #endif
4521
4522 gc_sweep ();
4523
4524 /* Clear the mark bits that we set in certain root slots. */
4525
4526 unmark_byte_stack ();
4527 VECTOR_UNMARK (&buffer_defaults);
4528 VECTOR_UNMARK (&buffer_local_symbols);
4529
4530 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4531 dump_zombies ();
4532 #endif
4533
4534 UNBLOCK_INPUT;
4535
4536 /* clear_marks (); */
4537 gc_in_progress = 0;
4538
4539 consing_since_gc = 0;
4540 if (gc_cons_threshold < 10000)
4541 gc_cons_threshold = 10000;
4542
4543 if (garbage_collection_messages)
4544 {
4545 if (message_p || minibuf_level > 0)
4546 restore_message ();
4547 else
4548 message1_nolog ("Garbage collecting...done");
4549 }
4550
4551 unbind_to (count, Qnil);
4552
4553 total[0] = Fcons (make_number (total_conses),
4554 make_number (total_free_conses));
4555 total[1] = Fcons (make_number (total_symbols),
4556 make_number (total_free_symbols));
4557 total[2] = Fcons (make_number (total_markers),
4558 make_number (total_free_markers));
4559 total[3] = make_number (total_string_size);
4560 total[4] = make_number (total_vector_size);
4561 total[5] = Fcons (make_number (total_floats),
4562 make_number (total_free_floats));
4563 total[6] = Fcons (make_number (total_intervals),
4564 make_number (total_free_intervals));
4565 total[7] = Fcons (make_number (total_strings),
4566 make_number (total_free_strings));
4567
4568 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4569 {
4570 /* Compute average percentage of zombies. */
4571 double nlive = 0;
4572
4573 for (i = 0; i < 7; ++i)
4574 if (CONSP (total[i]))
4575 nlive += XFASTINT (XCAR (total[i]));
4576
4577 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4578 max_live = max (nlive, max_live);
4579 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4580 max_zombies = max (nzombies, max_zombies);
4581 ++ngcs;
4582 }
4583 #endif
4584
4585 if (!NILP (Vpost_gc_hook))
4586 {
4587 int count = inhibit_garbage_collection ();
4588 safe_run_hooks (Qpost_gc_hook);
4589 unbind_to (count, Qnil);
4590 }
4591
4592 /* Accumulate statistics. */
4593 EMACS_GET_TIME (t2);
4594 EMACS_SUB_TIME (t3, t2, t1);
4595 if (FLOATP (Vgc_elapsed))
4596 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4597 EMACS_SECS (t3) +
4598 EMACS_USECS (t3) * 1.0e-6);
4599 gcs_done++;
4600
4601 return Flist (sizeof total / sizeof *total, total);
4602 }
4603
4604
4605 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4606 only interesting objects referenced from glyphs are strings. */
4607
4608 static void
4609 mark_glyph_matrix (matrix)
4610 struct glyph_matrix *matrix;
4611 {
4612 struct glyph_row *row = matrix->rows;
4613 struct glyph_row *end = row + matrix->nrows;
4614
4615 for (; row < end; ++row)
4616 if (row->enabled_p)
4617 {
4618 int area;
4619 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4620 {
4621 struct glyph *glyph = row->glyphs[area];
4622 struct glyph *end_glyph = glyph + row->used[area];
4623
4624 for (; glyph < end_glyph; ++glyph)
4625 if (GC_STRINGP (glyph->object)
4626 && !STRING_MARKED_P (XSTRING (glyph->object)))
4627 mark_object (glyph->object);
4628 }
4629 }
4630 }
4631
4632
4633 /* Mark Lisp faces in the face cache C. */
4634
4635 static void
4636 mark_face_cache (c)
4637 struct face_cache *c;
4638 {
4639 if (c)
4640 {
4641 int i, j;
4642 for (i = 0; i < c->used; ++i)
4643 {
4644 struct face *face = FACE_FROM_ID (c->f, i);
4645
4646 if (face)
4647 {
4648 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
4649 mark_object (face->lface[j]);
4650 }
4651 }
4652 }
4653 }
4654
4655
4656 #ifdef HAVE_WINDOW_SYSTEM
4657
4658 /* Mark Lisp objects in image IMG. */
4659
4660 static void
4661 mark_image (img)
4662 struct image *img;
4663 {
4664 mark_object (img->spec);
4665
4666 if (!NILP (img->data.lisp_val))
4667 mark_object (img->data.lisp_val);
4668 }
4669
4670
4671 /* Mark Lisp objects in image cache of frame F. It's done this way so
4672 that we don't have to include xterm.h here. */
4673
4674 static void
4675 mark_image_cache (f)
4676 struct frame *f;
4677 {
4678 forall_images_in_image_cache (f, mark_image);
4679 }
4680
4681 #endif /* HAVE_X_WINDOWS */
4682
4683
4684 \f
4685 /* Mark reference to a Lisp_Object.
4686 If the object referred to has not been seen yet, recursively mark
4687 all the references contained in it. */
4688
4689 #define LAST_MARKED_SIZE 500
4690 Lisp_Object last_marked[LAST_MARKED_SIZE];
4691 int last_marked_index;
4692
4693 /* For debugging--call abort when we cdr down this many
4694 links of a list, in mark_object. In debugging,
4695 the call to abort will hit a breakpoint.
4696 Normally this is zero and the check never goes off. */
4697 int mark_object_loop_halt;
4698
4699 void
4700 mark_object (arg)
4701 Lisp_Object arg;
4702 {
4703 register Lisp_Object obj = arg;
4704 #ifdef GC_CHECK_MARKED_OBJECTS
4705 void *po;
4706 struct mem_node *m;
4707 #endif
4708 int cdr_count = 0;
4709
4710 loop:
4711
4712 if (PURE_POINTER_P (XPNTR (obj)))
4713 return;
4714
4715 last_marked[last_marked_index++] = obj;
4716 if (last_marked_index == LAST_MARKED_SIZE)
4717 last_marked_index = 0;
4718
4719 /* Perform some sanity checks on the objects marked here. Abort if
4720 we encounter an object we know is bogus. This increases GC time
4721 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4722 #ifdef GC_CHECK_MARKED_OBJECTS
4723
4724 po = (void *) XPNTR (obj);
4725
4726 /* Check that the object pointed to by PO is known to be a Lisp
4727 structure allocated from the heap. */
4728 #define CHECK_ALLOCATED() \
4729 do { \
4730 m = mem_find (po); \
4731 if (m == MEM_NIL) \
4732 abort (); \
4733 } while (0)
4734
4735 /* Check that the object pointed to by PO is live, using predicate
4736 function LIVEP. */
4737 #define CHECK_LIVE(LIVEP) \
4738 do { \
4739 if (!LIVEP (m, po)) \
4740 abort (); \
4741 } while (0)
4742
4743 /* Check both of the above conditions. */
4744 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4745 do { \
4746 CHECK_ALLOCATED (); \
4747 CHECK_LIVE (LIVEP); \
4748 } while (0) \
4749
4750 #else /* not GC_CHECK_MARKED_OBJECTS */
4751
4752 #define CHECK_ALLOCATED() (void) 0
4753 #define CHECK_LIVE(LIVEP) (void) 0
4754 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
4755
4756 #endif /* not GC_CHECK_MARKED_OBJECTS */
4757
4758 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
4759 {
4760 case Lisp_String:
4761 {
4762 register struct Lisp_String *ptr = XSTRING (obj);
4763 CHECK_ALLOCATED_AND_LIVE (live_string_p);
4764 MARK_INTERVAL_TREE (ptr->intervals);
4765 MARK_STRING (ptr);
4766 #ifdef GC_CHECK_STRING_BYTES
4767 /* Check that the string size recorded in the string is the
4768 same as the one recorded in the sdata structure. */
4769 CHECK_STRING_BYTES (ptr);
4770 #endif /* GC_CHECK_STRING_BYTES */
4771 }
4772 break;
4773
4774 case Lisp_Vectorlike:
4775 #ifdef GC_CHECK_MARKED_OBJECTS
4776 m = mem_find (po);
4777 if (m == MEM_NIL && !GC_SUBRP (obj)
4778 && po != &buffer_defaults
4779 && po != &buffer_local_symbols)
4780 abort ();
4781 #endif /* GC_CHECK_MARKED_OBJECTS */
4782
4783 if (GC_BUFFERP (obj))
4784 {
4785 if (!VECTOR_MARKED_P (XBUFFER (obj)))
4786 {
4787 #ifdef GC_CHECK_MARKED_OBJECTS
4788 if (po != &buffer_defaults && po != &buffer_local_symbols)
4789 {
4790 struct buffer *b;
4791 for (b = all_buffers; b && b != po; b = b->next)
4792 ;
4793 if (b == NULL)
4794 abort ();
4795 }
4796 #endif /* GC_CHECK_MARKED_OBJECTS */
4797 mark_buffer (obj);
4798 }
4799 }
4800 else if (GC_SUBRP (obj))
4801 break;
4802 else if (GC_COMPILEDP (obj))
4803 /* We could treat this just like a vector, but it is better to
4804 save the COMPILED_CONSTANTS element for last and avoid
4805 recursion there. */
4806 {
4807 register struct Lisp_Vector *ptr = XVECTOR (obj);
4808 register EMACS_INT size = ptr->size;
4809 register int i;
4810
4811 if (VECTOR_MARKED_P (ptr))
4812 break; /* Already marked */
4813
4814 CHECK_LIVE (live_vector_p);
4815 VECTOR_MARK (ptr); /* Else mark it */
4816 size &= PSEUDOVECTOR_SIZE_MASK;
4817 for (i = 0; i < size; i++) /* and then mark its elements */
4818 {
4819 if (i != COMPILED_CONSTANTS)
4820 mark_object (ptr->contents[i]);
4821 }
4822 obj = ptr->contents[COMPILED_CONSTANTS];
4823 goto loop;
4824 }
4825 else if (GC_FRAMEP (obj))
4826 {
4827 register struct frame *ptr = XFRAME (obj);
4828
4829 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4830 VECTOR_MARK (ptr); /* Else mark it */
4831
4832 CHECK_LIVE (live_vector_p);
4833 mark_object (ptr->name);
4834 mark_object (ptr->icon_name);
4835 mark_object (ptr->title);
4836 mark_object (ptr->focus_frame);
4837 mark_object (ptr->selected_window);
4838 mark_object (ptr->minibuffer_window);
4839 mark_object (ptr->param_alist);
4840 mark_object (ptr->scroll_bars);
4841 mark_object (ptr->condemned_scroll_bars);
4842 mark_object (ptr->menu_bar_items);
4843 mark_object (ptr->face_alist);
4844 mark_object (ptr->menu_bar_vector);
4845 mark_object (ptr->buffer_predicate);
4846 mark_object (ptr->buffer_list);
4847 mark_object (ptr->menu_bar_window);
4848 mark_object (ptr->tool_bar_window);
4849 mark_face_cache (ptr->face_cache);
4850 #ifdef HAVE_WINDOW_SYSTEM
4851 mark_image_cache (ptr);
4852 mark_object (ptr->tool_bar_items);
4853 mark_object (ptr->desired_tool_bar_string);
4854 mark_object (ptr->current_tool_bar_string);
4855 #endif /* HAVE_WINDOW_SYSTEM */
4856 }
4857 else if (GC_BOOL_VECTOR_P (obj))
4858 {
4859 register struct Lisp_Vector *ptr = XVECTOR (obj);
4860
4861 if (VECTOR_MARKED_P (ptr))
4862 break; /* Already marked */
4863 CHECK_LIVE (live_vector_p);
4864 VECTOR_MARK (ptr); /* Else mark it */
4865 }
4866 else if (GC_WINDOWP (obj))
4867 {
4868 register struct Lisp_Vector *ptr = XVECTOR (obj);
4869 struct window *w = XWINDOW (obj);
4870 register int i;
4871
4872 /* Stop if already marked. */
4873 if (VECTOR_MARKED_P (ptr))
4874 break;
4875
4876 /* Mark it. */
4877 CHECK_LIVE (live_vector_p);
4878 VECTOR_MARK (ptr);
4879
4880 /* There is no Lisp data above The member CURRENT_MATRIX in
4881 struct WINDOW. Stop marking when that slot is reached. */
4882 for (i = 0;
4883 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
4884 i++)
4885 mark_object (ptr->contents[i]);
4886
4887 /* Mark glyphs for leaf windows. Marking window matrices is
4888 sufficient because frame matrices use the same glyph
4889 memory. */
4890 if (NILP (w->hchild)
4891 && NILP (w->vchild)
4892 && w->current_matrix)
4893 {
4894 mark_glyph_matrix (w->current_matrix);
4895 mark_glyph_matrix (w->desired_matrix);
4896 }
4897 }
4898 else if (GC_HASH_TABLE_P (obj))
4899 {
4900 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
4901
4902 /* Stop if already marked. */
4903 if (VECTOR_MARKED_P (h))
4904 break;
4905
4906 /* Mark it. */
4907 CHECK_LIVE (live_vector_p);
4908 VECTOR_MARK (h);
4909
4910 /* Mark contents. */
4911 /* Do not mark next_free or next_weak.
4912 Being in the next_weak chain
4913 should not keep the hash table alive.
4914 No need to mark `count' since it is an integer. */
4915 mark_object (h->test);
4916 mark_object (h->weak);
4917 mark_object (h->rehash_size);
4918 mark_object (h->rehash_threshold);
4919 mark_object (h->hash);
4920 mark_object (h->next);
4921 mark_object (h->index);
4922 mark_object (h->user_hash_function);
4923 mark_object (h->user_cmp_function);
4924
4925 /* If hash table is not weak, mark all keys and values.
4926 For weak tables, mark only the vector. */
4927 if (GC_NILP (h->weak))
4928 mark_object (h->key_and_value);
4929 else
4930 VECTOR_MARK (XVECTOR (h->key_and_value));
4931 }
4932 else
4933 {
4934 register struct Lisp_Vector *ptr = XVECTOR (obj);
4935 register EMACS_INT size = ptr->size;
4936 register int i;
4937
4938 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4939 CHECK_LIVE (live_vector_p);
4940 VECTOR_MARK (ptr); /* Else mark it */
4941 if (size & PSEUDOVECTOR_FLAG)
4942 size &= PSEUDOVECTOR_SIZE_MASK;
4943
4944 for (i = 0; i < size; i++) /* and then mark its elements */
4945 mark_object (ptr->contents[i]);
4946 }
4947 break;
4948
4949 case Lisp_Symbol:
4950 {
4951 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
4952 struct Lisp_Symbol *ptrx;
4953
4954 if (ptr->gcmarkbit) break;
4955 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
4956 ptr->gcmarkbit = 1;
4957 mark_object (ptr->value);
4958 mark_object (ptr->function);
4959 mark_object (ptr->plist);
4960
4961 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
4962 MARK_STRING (XSTRING (ptr->xname));
4963 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
4964
4965 /* Note that we do not mark the obarray of the symbol.
4966 It is safe not to do so because nothing accesses that
4967 slot except to check whether it is nil. */
4968 ptr = ptr->next;
4969 if (ptr)
4970 {
4971 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
4972 XSETSYMBOL (obj, ptrx);
4973 goto loop;
4974 }
4975 }
4976 break;
4977
4978 case Lisp_Misc:
4979 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
4980 if (XMARKER (obj)->gcmarkbit)
4981 break;
4982 XMARKER (obj)->gcmarkbit = 1;
4983 switch (XMISCTYPE (obj))
4984 {
4985 case Lisp_Misc_Buffer_Local_Value:
4986 case Lisp_Misc_Some_Buffer_Local_Value:
4987 {
4988 register struct Lisp_Buffer_Local_Value *ptr
4989 = XBUFFER_LOCAL_VALUE (obj);
4990 /* If the cdr is nil, avoid recursion for the car. */
4991 if (EQ (ptr->cdr, Qnil))
4992 {
4993 obj = ptr->realvalue;
4994 goto loop;
4995 }
4996 mark_object (ptr->realvalue);
4997 mark_object (ptr->buffer);
4998 mark_object (ptr->frame);
4999 obj = ptr->cdr;
5000 goto loop;
5001 }
5002
5003 case Lisp_Misc_Marker:
5004 /* DO NOT mark thru the marker's chain.
5005 The buffer's markers chain does not preserve markers from gc;
5006 instead, markers are removed from the chain when freed by gc. */
5007 case Lisp_Misc_Intfwd:
5008 case Lisp_Misc_Boolfwd:
5009 case Lisp_Misc_Objfwd:
5010 case Lisp_Misc_Buffer_Objfwd:
5011 case Lisp_Misc_Kboard_Objfwd:
5012 /* Don't bother with Lisp_Buffer_Objfwd,
5013 since all markable slots in current buffer marked anyway. */
5014 /* Don't need to do Lisp_Objfwd, since the places they point
5015 are protected with staticpro. */
5016 case Lisp_Misc_Save_Value:
5017 break;
5018
5019 case Lisp_Misc_Overlay:
5020 {
5021 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5022 mark_object (ptr->start);
5023 mark_object (ptr->end);
5024 mark_object (ptr->plist);
5025 if (ptr->next)
5026 {
5027 XSETMISC (obj, ptr->next);
5028 goto loop;
5029 }
5030 }
5031 break;
5032
5033 default:
5034 abort ();
5035 }
5036 break;
5037
5038 case Lisp_Cons:
5039 {
5040 register struct Lisp_Cons *ptr = XCONS (obj);
5041 if (CONS_MARKED_P (ptr)) break;
5042 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5043 CONS_MARK (ptr);
5044 /* If the cdr is nil, avoid recursion for the car. */
5045 if (EQ (ptr->cdr, Qnil))
5046 {
5047 obj = ptr->car;
5048 cdr_count = 0;
5049 goto loop;
5050 }
5051 mark_object (ptr->car);
5052 obj = ptr->cdr;
5053 cdr_count++;
5054 if (cdr_count == mark_object_loop_halt)
5055 abort ();
5056 goto loop;
5057 }
5058
5059 case Lisp_Float:
5060 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5061 FLOAT_MARK (XFLOAT (obj));
5062 break;
5063
5064 case Lisp_Int:
5065 break;
5066
5067 default:
5068 abort ();
5069 }
5070
5071 #undef CHECK_LIVE
5072 #undef CHECK_ALLOCATED
5073 #undef CHECK_ALLOCATED_AND_LIVE
5074 }
5075
5076 /* Mark the pointers in a buffer structure. */
5077
5078 static void
5079 mark_buffer (buf)
5080 Lisp_Object buf;
5081 {
5082 register struct buffer *buffer = XBUFFER (buf);
5083 register Lisp_Object *ptr, tmp;
5084 Lisp_Object base_buffer;
5085
5086 VECTOR_MARK (buffer);
5087
5088 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5089
5090 if (CONSP (buffer->undo_list))
5091 {
5092 Lisp_Object tail;
5093 tail = buffer->undo_list;
5094
5095 /* We mark the undo list specially because
5096 its pointers to markers should be weak. */
5097
5098 while (CONSP (tail))
5099 {
5100 register struct Lisp_Cons *ptr = XCONS (tail);
5101
5102 if (CONS_MARKED_P (ptr))
5103 break;
5104 CONS_MARK (ptr);
5105 if (GC_CONSP (ptr->car)
5106 && !CONS_MARKED_P (XCONS (ptr->car))
5107 && GC_MARKERP (XCAR (ptr->car)))
5108 {
5109 CONS_MARK (XCONS (ptr->car));
5110 mark_object (XCDR (ptr->car));
5111 }
5112 else
5113 mark_object (ptr->car);
5114
5115 if (CONSP (ptr->cdr))
5116 tail = ptr->cdr;
5117 else
5118 break;
5119 }
5120
5121 mark_object (XCDR (tail));
5122 }
5123 else
5124 mark_object (buffer->undo_list);
5125
5126 if (buffer->overlays_before)
5127 {
5128 XSETMISC (tmp, buffer->overlays_before);
5129 mark_object (tmp);
5130 }
5131 if (buffer->overlays_after)
5132 {
5133 XSETMISC (tmp, buffer->overlays_after);
5134 mark_object (tmp);
5135 }
5136
5137 for (ptr = &buffer->name;
5138 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5139 ptr++)
5140 mark_object (*ptr);
5141
5142 /* If this is an indirect buffer, mark its base buffer. */
5143 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5144 {
5145 XSETBUFFER (base_buffer, buffer->base_buffer);
5146 mark_buffer (base_buffer);
5147 }
5148 }
5149
5150
5151 /* Value is non-zero if OBJ will survive the current GC because it's
5152 either marked or does not need to be marked to survive. */
5153
5154 int
5155 survives_gc_p (obj)
5156 Lisp_Object obj;
5157 {
5158 int survives_p;
5159
5160 switch (XGCTYPE (obj))
5161 {
5162 case Lisp_Int:
5163 survives_p = 1;
5164 break;
5165
5166 case Lisp_Symbol:
5167 survives_p = XSYMBOL (obj)->gcmarkbit;
5168 break;
5169
5170 case Lisp_Misc:
5171 survives_p = XMARKER (obj)->gcmarkbit;
5172 break;
5173
5174 case Lisp_String:
5175 survives_p = STRING_MARKED_P (XSTRING (obj));
5176 break;
5177
5178 case Lisp_Vectorlike:
5179 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5180 break;
5181
5182 case Lisp_Cons:
5183 survives_p = CONS_MARKED_P (XCONS (obj));
5184 break;
5185
5186 case Lisp_Float:
5187 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5188 break;
5189
5190 default:
5191 abort ();
5192 }
5193
5194 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5195 }
5196
5197
5198 \f
5199 /* Sweep: find all structures not marked, and free them. */
5200
5201 static void
5202 gc_sweep ()
5203 {
5204 /* Remove or mark entries in weak hash tables.
5205 This must be done before any object is unmarked. */
5206 sweep_weak_hash_tables ();
5207
5208 sweep_strings ();
5209 #ifdef GC_CHECK_STRING_BYTES
5210 if (!noninteractive)
5211 check_string_bytes (1);
5212 #endif
5213
5214 /* Put all unmarked conses on free list */
5215 {
5216 register struct cons_block *cblk;
5217 struct cons_block **cprev = &cons_block;
5218 register int lim = cons_block_index;
5219 register int num_free = 0, num_used = 0;
5220
5221 cons_free_list = 0;
5222
5223 for (cblk = cons_block; cblk; cblk = *cprev)
5224 {
5225 register int i;
5226 int this_free = 0;
5227 for (i = 0; i < lim; i++)
5228 if (!CONS_MARKED_P (&cblk->conses[i]))
5229 {
5230 this_free++;
5231 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5232 cons_free_list = &cblk->conses[i];
5233 #if GC_MARK_STACK
5234 cons_free_list->car = Vdead;
5235 #endif
5236 }
5237 else
5238 {
5239 num_used++;
5240 CONS_UNMARK (&cblk->conses[i]);
5241 }
5242 lim = CONS_BLOCK_SIZE;
5243 /* If this block contains only free conses and we have already
5244 seen more than two blocks worth of free conses then deallocate
5245 this block. */
5246 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5247 {
5248 *cprev = cblk->next;
5249 /* Unhook from the free list. */
5250 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5251 lisp_align_free (cblk);
5252 n_cons_blocks--;
5253 }
5254 else
5255 {
5256 num_free += this_free;
5257 cprev = &cblk->next;
5258 }
5259 }
5260 total_conses = num_used;
5261 total_free_conses = num_free;
5262 }
5263
5264 /* Put all unmarked floats on free list */
5265 {
5266 register struct float_block *fblk;
5267 struct float_block **fprev = &float_block;
5268 register int lim = float_block_index;
5269 register int num_free = 0, num_used = 0;
5270
5271 float_free_list = 0;
5272
5273 for (fblk = float_block; fblk; fblk = *fprev)
5274 {
5275 register int i;
5276 int this_free = 0;
5277 for (i = 0; i < lim; i++)
5278 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5279 {
5280 this_free++;
5281 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5282 float_free_list = &fblk->floats[i];
5283 }
5284 else
5285 {
5286 num_used++;
5287 FLOAT_UNMARK (&fblk->floats[i]);
5288 }
5289 lim = FLOAT_BLOCK_SIZE;
5290 /* If this block contains only free floats and we have already
5291 seen more than two blocks worth of free floats then deallocate
5292 this block. */
5293 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5294 {
5295 *fprev = fblk->next;
5296 /* Unhook from the free list. */
5297 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5298 lisp_align_free (fblk);
5299 n_float_blocks--;
5300 }
5301 else
5302 {
5303 num_free += this_free;
5304 fprev = &fblk->next;
5305 }
5306 }
5307 total_floats = num_used;
5308 total_free_floats = num_free;
5309 }
5310
5311 /* Put all unmarked intervals on free list */
5312 {
5313 register struct interval_block *iblk;
5314 struct interval_block **iprev = &interval_block;
5315 register int lim = interval_block_index;
5316 register int num_free = 0, num_used = 0;
5317
5318 interval_free_list = 0;
5319
5320 for (iblk = interval_block; iblk; iblk = *iprev)
5321 {
5322 register int i;
5323 int this_free = 0;
5324
5325 for (i = 0; i < lim; i++)
5326 {
5327 if (!iblk->intervals[i].gcmarkbit)
5328 {
5329 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5330 interval_free_list = &iblk->intervals[i];
5331 this_free++;
5332 }
5333 else
5334 {
5335 num_used++;
5336 iblk->intervals[i].gcmarkbit = 0;
5337 }
5338 }
5339 lim = INTERVAL_BLOCK_SIZE;
5340 /* If this block contains only free intervals and we have already
5341 seen more than two blocks worth of free intervals then
5342 deallocate this block. */
5343 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5344 {
5345 *iprev = iblk->next;
5346 /* Unhook from the free list. */
5347 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5348 lisp_free (iblk);
5349 n_interval_blocks--;
5350 }
5351 else
5352 {
5353 num_free += this_free;
5354 iprev = &iblk->next;
5355 }
5356 }
5357 total_intervals = num_used;
5358 total_free_intervals = num_free;
5359 }
5360
5361 /* Put all unmarked symbols on free list */
5362 {
5363 register struct symbol_block *sblk;
5364 struct symbol_block **sprev = &symbol_block;
5365 register int lim = symbol_block_index;
5366 register int num_free = 0, num_used = 0;
5367
5368 symbol_free_list = NULL;
5369
5370 for (sblk = symbol_block; sblk; sblk = *sprev)
5371 {
5372 int this_free = 0;
5373 struct Lisp_Symbol *sym = sblk->symbols;
5374 struct Lisp_Symbol *end = sym + lim;
5375
5376 for (; sym < end; ++sym)
5377 {
5378 /* Check if the symbol was created during loadup. In such a case
5379 it might be pointed to by pure bytecode which we don't trace,
5380 so we conservatively assume that it is live. */
5381 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5382
5383 if (!sym->gcmarkbit && !pure_p)
5384 {
5385 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5386 symbol_free_list = sym;
5387 #if GC_MARK_STACK
5388 symbol_free_list->function = Vdead;
5389 #endif
5390 ++this_free;
5391 }
5392 else
5393 {
5394 ++num_used;
5395 if (!pure_p)
5396 UNMARK_STRING (XSTRING (sym->xname));
5397 sym->gcmarkbit = 0;
5398 }
5399 }
5400
5401 lim = SYMBOL_BLOCK_SIZE;
5402 /* If this block contains only free symbols and we have already
5403 seen more than two blocks worth of free symbols then deallocate
5404 this block. */
5405 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5406 {
5407 *sprev = sblk->next;
5408 /* Unhook from the free list. */
5409 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5410 lisp_free (sblk);
5411 n_symbol_blocks--;
5412 }
5413 else
5414 {
5415 num_free += this_free;
5416 sprev = &sblk->next;
5417 }
5418 }
5419 total_symbols = num_used;
5420 total_free_symbols = num_free;
5421 }
5422
5423 /* Put all unmarked misc's on free list.
5424 For a marker, first unchain it from the buffer it points into. */
5425 {
5426 register struct marker_block *mblk;
5427 struct marker_block **mprev = &marker_block;
5428 register int lim = marker_block_index;
5429 register int num_free = 0, num_used = 0;
5430
5431 marker_free_list = 0;
5432
5433 for (mblk = marker_block; mblk; mblk = *mprev)
5434 {
5435 register int i;
5436 int this_free = 0;
5437
5438 for (i = 0; i < lim; i++)
5439 {
5440 if (!mblk->markers[i].u_marker.gcmarkbit)
5441 {
5442 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5443 unchain_marker (&mblk->markers[i].u_marker);
5444 /* Set the type of the freed object to Lisp_Misc_Free.
5445 We could leave the type alone, since nobody checks it,
5446 but this might catch bugs faster. */
5447 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5448 mblk->markers[i].u_free.chain = marker_free_list;
5449 marker_free_list = &mblk->markers[i];
5450 this_free++;
5451 }
5452 else
5453 {
5454 num_used++;
5455 mblk->markers[i].u_marker.gcmarkbit = 0;
5456 }
5457 }
5458 lim = MARKER_BLOCK_SIZE;
5459 /* If this block contains only free markers and we have already
5460 seen more than two blocks worth of free markers then deallocate
5461 this block. */
5462 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5463 {
5464 *mprev = mblk->next;
5465 /* Unhook from the free list. */
5466 marker_free_list = mblk->markers[0].u_free.chain;
5467 lisp_free (mblk);
5468 n_marker_blocks--;
5469 }
5470 else
5471 {
5472 num_free += this_free;
5473 mprev = &mblk->next;
5474 }
5475 }
5476
5477 total_markers = num_used;
5478 total_free_markers = num_free;
5479 }
5480
5481 /* Free all unmarked buffers */
5482 {
5483 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5484
5485 while (buffer)
5486 if (!VECTOR_MARKED_P (buffer))
5487 {
5488 if (prev)
5489 prev->next = buffer->next;
5490 else
5491 all_buffers = buffer->next;
5492 next = buffer->next;
5493 lisp_free (buffer);
5494 buffer = next;
5495 }
5496 else
5497 {
5498 VECTOR_UNMARK (buffer);
5499 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5500 prev = buffer, buffer = buffer->next;
5501 }
5502 }
5503
5504 /* Free all unmarked vectors */
5505 {
5506 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5507 total_vector_size = 0;
5508
5509 while (vector)
5510 if (!VECTOR_MARKED_P (vector))
5511 {
5512 if (prev)
5513 prev->next = vector->next;
5514 else
5515 all_vectors = vector->next;
5516 next = vector->next;
5517 lisp_free (vector);
5518 n_vectors--;
5519 vector = next;
5520
5521 }
5522 else
5523 {
5524 VECTOR_UNMARK (vector);
5525 if (vector->size & PSEUDOVECTOR_FLAG)
5526 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5527 else
5528 total_vector_size += vector->size;
5529 prev = vector, vector = vector->next;
5530 }
5531 }
5532
5533 #ifdef GC_CHECK_STRING_BYTES
5534 if (!noninteractive)
5535 check_string_bytes (1);
5536 #endif
5537 }
5538
5539
5540
5541 \f
5542 /* Debugging aids. */
5543
5544 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5545 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5546 This may be helpful in debugging Emacs's memory usage.
5547 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5548 ()
5549 {
5550 Lisp_Object end;
5551
5552 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5553
5554 return end;
5555 }
5556
5557 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5558 doc: /* Return a list of counters that measure how much consing there has been.
5559 Each of these counters increments for a certain kind of object.
5560 The counters wrap around from the largest positive integer to zero.
5561 Garbage collection does not decrease them.
5562 The elements of the value are as follows:
5563 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5564 All are in units of 1 = one object consed
5565 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5566 objects consed.
5567 MISCS include overlays, markers, and some internal types.
5568 Frames, windows, buffers, and subprocesses count as vectors
5569 (but the contents of a buffer's text do not count here). */)
5570 ()
5571 {
5572 Lisp_Object consed[8];
5573
5574 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5575 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5576 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5577 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5578 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5579 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5580 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5581 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5582
5583 return Flist (8, consed);
5584 }
5585
5586 int suppress_checking;
5587 void
5588 die (msg, file, line)
5589 const char *msg;
5590 const char *file;
5591 int line;
5592 {
5593 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5594 file, line, msg);
5595 abort ();
5596 }
5597 \f
5598 /* Initialization */
5599
5600 void
5601 init_alloc_once ()
5602 {
5603 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5604 purebeg = PUREBEG;
5605 pure_size = PURESIZE;
5606 pure_bytes_used = 0;
5607 pure_bytes_used_before_overflow = 0;
5608
5609 /* Initialize the list of free aligned blocks. */
5610 free_ablock = NULL;
5611
5612 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5613 mem_init ();
5614 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5615 #endif
5616
5617 all_vectors = 0;
5618 ignore_warnings = 1;
5619 #ifdef DOUG_LEA_MALLOC
5620 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5621 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5622 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5623 #endif
5624 init_strings ();
5625 init_cons ();
5626 init_symbol ();
5627 init_marker ();
5628 init_float ();
5629 init_intervals ();
5630
5631 #ifdef REL_ALLOC
5632 malloc_hysteresis = 32;
5633 #else
5634 malloc_hysteresis = 0;
5635 #endif
5636
5637 spare_memory = (char *) malloc (SPARE_MEMORY);
5638
5639 ignore_warnings = 0;
5640 gcprolist = 0;
5641 byte_stack_list = 0;
5642 staticidx = 0;
5643 consing_since_gc = 0;
5644 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5645 #ifdef VIRT_ADDR_VARIES
5646 malloc_sbrk_unused = 1<<22; /* A large number */
5647 malloc_sbrk_used = 100000; /* as reasonable as any number */
5648 #endif /* VIRT_ADDR_VARIES */
5649 }
5650
5651 void
5652 init_alloc ()
5653 {
5654 gcprolist = 0;
5655 byte_stack_list = 0;
5656 #if GC_MARK_STACK
5657 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5658 setjmp_tested_p = longjmps_done = 0;
5659 #endif
5660 #endif
5661 Vgc_elapsed = make_float (0.0);
5662 gcs_done = 0;
5663 }
5664
5665 void
5666 syms_of_alloc ()
5667 {
5668 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
5669 doc: /* *Number of bytes of consing between garbage collections.
5670 Garbage collection can happen automatically once this many bytes have been
5671 allocated since the last garbage collection. All data types count.
5672
5673 Garbage collection happens automatically only when `eval' is called.
5674
5675 By binding this temporarily to a large number, you can effectively
5676 prevent garbage collection during a part of the program. */);
5677
5678 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
5679 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
5680
5681 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
5682 doc: /* Number of cons cells that have been consed so far. */);
5683
5684 DEFVAR_INT ("floats-consed", &floats_consed,
5685 doc: /* Number of floats that have been consed so far. */);
5686
5687 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
5688 doc: /* Number of vector cells that have been consed so far. */);
5689
5690 DEFVAR_INT ("symbols-consed", &symbols_consed,
5691 doc: /* Number of symbols that have been consed so far. */);
5692
5693 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
5694 doc: /* Number of string characters that have been consed so far. */);
5695
5696 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
5697 doc: /* Number of miscellaneous objects that have been consed so far. */);
5698
5699 DEFVAR_INT ("intervals-consed", &intervals_consed,
5700 doc: /* Number of intervals that have been consed so far. */);
5701
5702 DEFVAR_INT ("strings-consed", &strings_consed,
5703 doc: /* Number of strings that have been consed so far. */);
5704
5705 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
5706 doc: /* Non-nil means loading Lisp code in order to dump an executable.
5707 This means that certain objects should be allocated in shared (pure) space. */);
5708
5709 DEFVAR_INT ("undo-limit", &undo_limit,
5710 doc: /* Keep no more undo information once it exceeds this size.
5711 This limit is applied when garbage collection happens.
5712 The size is counted as the number of bytes occupied,
5713 which includes both saved text and other data. */);
5714 undo_limit = 20000;
5715
5716 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
5717 doc: /* Don't keep more than this much size of undo information.
5718 A command which pushes past this size is itself forgotten.
5719 This limit is applied when garbage collection happens.
5720 The size is counted as the number of bytes occupied,
5721 which includes both saved text and other data. */);
5722 undo_strong_limit = 30000;
5723
5724 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
5725 doc: /* Non-nil means display messages at start and end of garbage collection. */);
5726 garbage_collection_messages = 0;
5727
5728 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
5729 doc: /* Hook run after garbage collection has finished. */);
5730 Vpost_gc_hook = Qnil;
5731 Qpost_gc_hook = intern ("post-gc-hook");
5732 staticpro (&Qpost_gc_hook);
5733
5734 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
5735 doc: /* Precomputed `signal' argument for memory-full error. */);
5736 /* We build this in advance because if we wait until we need it, we might
5737 not be able to allocate the memory to hold it. */
5738 Vmemory_signal_data
5739 = list2 (Qerror,
5740 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
5741
5742 DEFVAR_LISP ("memory-full", &Vmemory_full,
5743 doc: /* Non-nil means we are handling a memory-full error. */);
5744 Vmemory_full = Qnil;
5745
5746 staticpro (&Qgc_cons_threshold);
5747 Qgc_cons_threshold = intern ("gc-cons-threshold");
5748
5749 staticpro (&Qchar_table_extra_slots);
5750 Qchar_table_extra_slots = intern ("char-table-extra-slots");
5751
5752 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
5753 doc: /* Accumulated time elapsed in garbage collections.
5754 The time is in seconds as a floating point value. */);
5755 DEFVAR_INT ("gcs-done", &gcs_done,
5756 doc: /* Accumulated number of garbage collections done. */);
5757
5758 defsubr (&Scons);
5759 defsubr (&Slist);
5760 defsubr (&Svector);
5761 defsubr (&Smake_byte_code);
5762 defsubr (&Smake_list);
5763 defsubr (&Smake_vector);
5764 defsubr (&Smake_char_table);
5765 defsubr (&Smake_string);
5766 defsubr (&Smake_bool_vector);
5767 defsubr (&Smake_symbol);
5768 defsubr (&Smake_marker);
5769 defsubr (&Spurecopy);
5770 defsubr (&Sgarbage_collect);
5771 defsubr (&Smemory_limit);
5772 defsubr (&Smemory_use_counts);
5773
5774 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5775 defsubr (&Sgc_status);
5776 #endif
5777 }
5778
5779 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
5780 (do not change this comment) */