]> code.delx.au - gnu-emacs/blob - src/lisp.h
(all_perdisplays): New var.
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985,86,87,93,94,95 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* These are default choices for the types to use. */
22 #ifndef EMACS_INT
23 #define EMACS_INT int
24 #endif
25 #ifndef EMACS_UINT
26 #define EMACS_UINT unsigned int
27 #endif
28
29 /* Define the fundamental Lisp data structures. */
30
31 /* This is the set of Lisp data types. */
32
33 enum Lisp_Type
34 {
35 /* Integer. XINT (obj) is the integer value. */
36 Lisp_Int,
37
38 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
39 Lisp_Symbol,
40
41 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
42 whose first member indicates the subtype. */
43 Lisp_Misc,
44
45 /* String. XSTRING (object) points to a struct Lisp_String.
46 The length of the string, and its contents, are stored therein. */
47 Lisp_String,
48
49 /* Vector of Lisp objects, or something resembling it.
50 XVECTOR (object) points to a struct Lisp_Vector, which contains
51 the size and contents. The size field also contains the type
52 information, if it's not a real vector object. */
53 Lisp_Vectorlike,
54
55 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
56 Lisp_Cons,
57
58 #ifdef LISP_FLOAT_TYPE
59 Lisp_Float,
60 #endif /* LISP_FLOAT_TYPE */
61
62 /* This is not a type code. It is for range checking. */
63 Lisp_Type_Limit
64 };
65
66 /* This is the set of datatypes that share a common structure.
67 The first member of the structure is a type code from this set.
68 The enum values are arbitrary, but we'll use large numbers to make it
69 more likely that we'll spot the error if a random word in memory is
70 mistakenly interpreted as a Lisp_Misc. */
71 enum Lisp_Misc_Type
72 {
73 Lisp_Misc_Free = 0x5eab,
74 Lisp_Misc_Marker,
75 Lisp_Misc_Intfwd,
76 Lisp_Misc_Boolfwd,
77 Lisp_Misc_Objfwd,
78 Lisp_Misc_Buffer_Objfwd,
79 Lisp_Misc_Buffer_Local_Value,
80 Lisp_Misc_Some_Buffer_Local_Value,
81 Lisp_Misc_Overlay,
82 Lisp_Misc_Display_Objfwd,
83 /* Currently floats are not a misc type,
84 but let's define this in case we want to change that. */
85 Lisp_Misc_Float,
86 /* This is not a type code. It is for range checking. */
87 Lisp_Misc_Limit
88 };
89
90 /* These values are overridden by the m- file on some machines. */
91 #ifndef VALBITS
92 #define VALBITS 28
93 #endif
94
95 #ifndef GCTYPEBITS
96 #define GCTYPEBITS 3
97 #endif
98
99 #ifndef NO_UNION_TYPE
100
101 #ifndef WORDS_BIG_ENDIAN
102
103 /* Definition of Lisp_Object for little-endian machines. */
104
105 typedef
106 union Lisp_Object
107 {
108 /* Used for comparing two Lisp_Objects;
109 also, positive integers can be accessed fast this way. */
110 int i;
111
112 struct
113 {
114 int val: VALBITS;
115 int type: GCTYPEBITS+1;
116 } s;
117 struct
118 {
119 unsigned int val: VALBITS;
120 int type: GCTYPEBITS+1;
121 } u;
122 struct
123 {
124 unsigned int val: VALBITS;
125 enum Lisp_Type type: GCTYPEBITS;
126 /* The markbit is not really part of the value of a Lisp_Object,
127 and is always zero except during garbage collection. */
128 unsigned int markbit: 1;
129 } gu;
130 }
131 Lisp_Object;
132
133 #else /* If WORDS_BIG_ENDIAN */
134
135 typedef
136 union Lisp_Object
137 {
138 /* Used for comparing two Lisp_Objects;
139 also, positive integers can be accessed fast this way. */
140 int i;
141
142 struct
143 {
144 int type: GCTYPEBITS+1;
145 int val: VALBITS;
146 } s;
147 struct
148 {
149 int type: GCTYPEBITS+1;
150 unsigned int val: VALBITS;
151 } u;
152 struct
153 {
154 /* The markbit is not really part of the value of a Lisp_Object,
155 and is always zero except during garbage collection. */
156 unsigned int markbit: 1;
157 enum Lisp_Type type: GCTYPEBITS;
158 unsigned int val: VALBITS;
159 } gu;
160 }
161 Lisp_Object;
162
163 #endif /* WORDS_BIG_ENDIAN */
164
165 #endif /* NO_UNION_TYPE */
166
167
168 /* If union type is not wanted, define Lisp_Object as just a number
169 and define the macros below to extract fields by shifting */
170
171 #ifdef NO_UNION_TYPE
172
173 #define Lisp_Object EMACS_INT
174
175 #ifndef VALMASK
176 #define VALMASK ((((EMACS_INT) 1)<<VALBITS) - 1)
177 #endif
178 #define GCTYPEMASK ((((EMACS_INT) 1)<<GCTYPEBITS) - 1)
179
180 /* Two flags that are set during GC. On some machines, these flags
181 are defined differently by the m- file. */
182
183 /* This is set in the car of a cons and in the plist slot of a symbol
184 to indicate it is marked. Likewise in the plist slot of an interval,
185 the chain slot of a marker, the type slot of a float, and the name
186 slot of a buffer.
187
188 In strings, this bit in the size field indicates that the string
189 is a "large" one, one which was separately malloc'd
190 rather than being part of a string block. */
191
192 #ifndef MARKBIT
193 #define MARKBIT (1 << (VALBITS + GCTYPEBITS))
194 #endif /*MARKBIT */
195
196 /* In the size word of a vector, this bit means the vector has been marked.
197 In the size word of a large string, likewise. */
198
199 #ifndef ARRAY_MARK_FLAG
200 #define ARRAY_MARK_FLAG ((MARKBIT >> 1) & ~MARKBIT)
201 #endif /* no ARRAY_MARK_FLAG */
202
203 /* In the size word of a struct Lisp_Vector, this bit means it's really
204 some other vector-like object. */
205 #ifndef PSEUDOVECTOR_FLAG
206 #define PSEUDOVECTOR_FLAG ((ARRAY_MARK_FLAG >> 1) & ~ARRAY_MARK_FLAG)
207 #endif
208
209 /* In a pseudovector, the size field actually contains a word with one
210 PSEUDOVECTOR_FLAG bit set, and exactly one of the following bits to
211 indicate the actual type. */
212 enum pvec_type
213 {
214 PVEC_NORMAL_VECTOR = 0,
215 PVEC_BUFFER = 0x100,
216 PVEC_PROCESS = 0x200,
217 PVEC_FRAME = 0x400,
218 PVEC_COMPILED = 0x800,
219 PVEC_WINDOW = 0x1000,
220 PVEC_WINDOW_CONFIGURATION = 0x2000,
221 PVEC_SUBR = 0x4000,
222 PVEC_TYPE_MASK = 0x7f00,
223 PVEC_FLAG = PSEUDOVECTOR_FLAG,
224 };
225
226 /* For convenience, we also store the number of elements in these bits. */
227 #define PSEUDOVECTOR_SIZE_MASK 0xff
228
229 #if ARRAY_MARK_FLAG == MARKBIT || PSEUDOVECTOR_FLAG == ARRAY_MARK_FLAG || PSEUDOVECTOR_FLAG == MARKBIT
230 you lose
231 #endif
232
233 #endif /* NO_UNION_TYPE */
234 \f
235 /* These macros extract various sorts of values from a Lisp_Object.
236 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
237 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for that cons. */
238
239 #ifdef NO_UNION_TYPE
240
241 /* One need to override this if there must be high bits set in data space
242 (doing the result of the below & ((1 << (GCTYPE + 1)) - 1) would work
243 on all machines, but would penalise machines which don't need it)
244 */
245 #ifndef XTYPE
246 #define XTYPE(a) ((enum Lisp_Type) ((a) >> VALBITS))
247 #endif
248
249 #ifndef XSETTYPE
250 #define XSETTYPE(a, b) ((a) = XUINT (a) | ((EMACS_INT)(b) << VALBITS))
251 #endif
252
253 /* For integers known to be positive, XFASTINT provides fast retrieval
254 and XSETFASTINT provides fast storage. This takes advantage of the
255 fact that Lisp_Int is 0. */
256 #define XFASTINT(a) ((a) + 0)
257 #define XSETFASTINT(a, b) ((a) = (b))
258
259 /* Extract the value of a Lisp_Object as a signed integer. */
260
261 #ifndef XINT /* Some machines need to do this differently. */
262 #define XINT(a) (((a) << (INTBITS-VALBITS)) >> (INTBITS-VALBITS))
263 #endif
264
265 /* Extract the value as an unsigned integer. This is a basis
266 for extracting it as a pointer to a structure in storage. */
267
268 #ifndef XUINT
269 #define XUINT(a) ((a) & VALMASK)
270 #endif
271
272 #ifndef XPNTR
273 #ifdef HAVE_SHM
274 /* In this representation, data is found in two widely separated segments. */
275 extern int pure_size;
276 #define XPNTR(a) \
277 (XUINT (a) | (XUINT (a) > pure_size ? DATA_SEG_BITS : PURE_SEG_BITS))
278 #else /* not HAVE_SHM */
279 #ifdef DATA_SEG_BITS
280 /* This case is used for the rt-pc.
281 In the diffs I was given, it checked for ptr = 0
282 and did not adjust it in that case.
283 But I don't think that zero should ever be found
284 in a Lisp object whose data type says it points to something. */
285 #define XPNTR(a) (XUINT (a) | DATA_SEG_BITS)
286 #else
287 #define XPNTR(a) XUINT (a)
288 #endif
289 #endif /* not HAVE_SHM */
290 #endif /* no XPNTR */
291
292 #ifndef XSET
293 #define XSET(var, type, ptr) \
294 ((var) = ((EMACS_INT)(type) << VALBITS) + ((EMACS_INT) (ptr) & VALMASK))
295 #endif
296
297 /* During garbage collection, XGCTYPE must be used for extracting types
298 so that the mark bit is ignored. XMARKBIT accesses the markbit.
299 Markbits are used only in particular slots of particular structure types.
300 Other markbits are always zero.
301 Outside of garbage collection, all mark bits are always zero. */
302
303 #ifndef XGCTYPE
304 #define XGCTYPE(a) ((enum Lisp_Type) (((a) >> VALBITS) & GCTYPEMASK))
305 #endif
306
307 #if VALBITS + GCTYPEBITS == INTBITS - 1
308 /* Make XMARKBIT faster if mark bit is sign bit. */
309 #ifndef XMARKBIT
310 #define XMARKBIT(a) ((a) < 0)
311 #endif
312 #endif /* markbit is sign bit */
313
314 #ifndef XMARKBIT
315 #define XMARKBIT(a) ((a) & MARKBIT)
316 #endif
317
318 #ifndef XSETMARKBIT
319 #define XSETMARKBIT(a,b) ((a) = ((a) & ~MARKBIT) | ((b) ? MARKBIT : 0))
320 #endif
321
322 #ifndef XMARK
323 #define XMARK(a) ((a) |= MARKBIT)
324 #endif
325
326 #ifndef XUNMARK
327 #define XUNMARK(a) ((a) &= ~MARKBIT)
328 #endif
329
330 #endif /* NO_UNION_TYPE */
331
332 #ifndef NO_UNION_TYPE
333
334 #define XTYPE(a) ((enum Lisp_Type) (a).u.type)
335 #define XSETTYPE(a, b) ((a).u.type = (char) (b))
336
337 /* For integers known to be positive, XFASTINT provides fast retrieval
338 and XSETFASTINT provides fast storage. This takes advantage of the
339 fact that Lisp_Int is 0. */
340 #define XFASTINT(a) ((a).i + 0)
341 #define XSETFASTINT(a, b) ((a).i = (b))
342
343 #ifdef EXPLICIT_SIGN_EXTEND
344 /* Make sure we sign-extend; compilers have been known to fail to do so. */
345 #define XINT(a) (((a).i << (INTBITS-VALBITS)) >> (INTBITS-VALBITS))
346 #else
347 #define XINT(a) ((a).s.val)
348 #endif /* EXPLICIT_SIGN_EXTEND */
349
350 #define XUINT(a) ((a).u.val)
351 #define XPNTR(a) ((a).u.val)
352
353 #define XSET(var, vartype, ptr) \
354 (((var).s.type = ((char) (vartype))), ((var).s.val = ((int) (ptr))))
355
356 /* During garbage collection, XGCTYPE must be used for extracting types
357 so that the mark bit is ignored. XMARKBIT access the markbit.
358 Markbits are used only in particular slots of particular structure types.
359 Other markbits are always zero.
360 Outside of garbage collection, all mark bits are always zero. */
361
362 #define XGCTYPE(a) ((a).gu.type)
363 #define XMARKBIT(a) ((a).gu.markbit)
364 #define XSETMARKBIT(a,b) (XMARKBIT(a) = (b))
365 #define XMARK(a) (XMARKBIT(a) = 1)
366 #define XUNMARK(a) (XMARKBIT(a) = 0)
367
368 #endif /* NO_UNION_TYPE */
369
370 /* Extract a value or address from a Lisp_Object. */
371
372 #define XCONS(a) ((struct Lisp_Cons *) XPNTR(a))
373 #define XVECTOR(a) ((struct Lisp_Vector *) XPNTR(a))
374 #define XSTRING(a) ((struct Lisp_String *) XPNTR(a))
375 #define XSYMBOL(a) ((struct Lisp_Symbol *) XPNTR(a))
376 #define XFLOAT(a) ((struct Lisp_Float *) XPNTR(a))
377
378 /* Misc types. */
379 #define XMISC(a) ((union Lisp_Misc *) XPNTR(a))
380 #define XMARKER(a) (&(XMISC(a)->u_marker))
381 #define XINTFWD(a) (&(XMISC(a)->u_intfwd))
382 #define XBOOLFWD(a) (&(XMISC(a)->u_boolfwd))
383 #define XOBJFWD(a) (&(XMISC(a)->u_objfwd))
384 #define XBUFFER_OBJFWD(a) (&(XMISC(a)->u_buffer_objfwd))
385 #define XBUFFER_LOCAL_VALUE(a) (&(XMISC(a)->u_buffer_local_value))
386 #define XOVERLAY(a) (&(XMISC(a)->u_overlay))
387 #define XDISPLAY_OBJFWD(a) (&(XMISC(a)->u_display_objfwd))
388
389 /* Pseudovector types. */
390 #define XPROCESS(a) ((struct Lisp_Process *) XPNTR(a))
391 #define XWINDOW(a) ((struct window *) XPNTR(a))
392 #define XSUBR(a) ((struct Lisp_Subr *) XPNTR(a))
393 #define XBUFFER(a) ((struct buffer *) XPNTR(a))
394
395
396 /* Construct a Lisp_Object from a value or address. */
397
398 #define XSETINT(a, b) XSET (a, Lisp_Int, b)
399 #define XSETCONS(a, b) XSET (a, Lisp_Cons, b)
400 #define XSETVECTOR(a, b) XSET (a, Lisp_Vectorlike, b)
401 #define XSETSTRING(a, b) XSET (a, Lisp_String, b)
402 #define XSETSYMBOL(a, b) XSET (a, Lisp_Symbol, b)
403 #define XSETFLOAT(a, b) XSET (a, Lisp_Float, b)
404
405 /* Misc types. */
406 #define XSETMISC(a, b) XSET (a, Lisp_Misc, b)
407 #define XSETMARKER(a, b) (XSETMISC (a, b), XMISC (a)->type = Lisp_Misc_Marker)
408
409 /* Pseudovector types. */
410 #define XSETPSEUDOVECTOR(a, b, code) \
411 (XSETVECTOR (a, b), XVECTOR (a)->size |= PSEUDOVECTOR_FLAG | (code))
412 #define XSETWINDOW_CONFIGURATION(a, b) \
413 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
414 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
415 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
416 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
417 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
418 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
419 \f
420 #ifdef USE_TEXT_PROPERTIES
421 /* Basic data type for use of intervals. See the macros in intervals.h. */
422
423 struct interval
424 {
425 /* The first group of entries deal with the tree structure. */
426
427 unsigned int total_length; /* Length of myself and both children. */
428 unsigned int position; /* Cache of interval's character position. */
429 struct interval *left; /* Intervals which precede me. */
430 struct interval *right; /* Intervals which succeed me. */
431
432 /* Parent in the tree, or the Lisp_Object containing this interval tree.
433
434 The mark bit on the root interval of an interval tree says
435 whether we have started (and possibly finished) marking the
436 tree. If GC comes across an interval tree whose root's parent
437 field has its markbit set, it leaves the tree alone.
438
439 You'd think we could store this information in the parent object
440 somewhere (after all, that should be visited once and then
441 ignored too, right?), but strings are GC'd strangely. */
442 struct interval *parent;
443
444 /* The remaining components are `properties' of the interval.
445 The first four are duplicates for things which can be on the list,
446 for purposes of speed. */
447
448 unsigned char write_protect; /* Non-zero means can't modify. */
449 unsigned char visible; /* Zero means don't display. */
450 unsigned char front_sticky; /* Non-zero means text inserted just
451 before this interval goes into it. */
452 unsigned char rear_sticky; /* Likewise for just after it. */
453
454 /* Properties of this interval.
455 The mark bit on this field says whether this particular interval
456 tree node has been visited. Since intervals should never be
457 shared, GC aborts if it seems to have visited an interval twice. */
458 Lisp_Object plist;
459 };
460
461 typedef struct interval *INTERVAL;
462
463 /* Complain if object is not string or buffer type */
464 #define CHECK_STRING_OR_BUFFER(x, i) \
465 { if (!STRINGP ((x)) && !BUFFERP ((x))) \
466 x = wrong_type_argument (Qbuffer_or_string_p, (x)); }
467
468 /* Macro used to conditionally compile intervals into certain data
469 structures. See, e.g., struct Lisp_String below. */
470 #define DECLARE_INTERVALS INTERVAL intervals;
471
472 /* Macro used to conditionally compile interval initialization into
473 certain code. See, e.g., alloc.c. */
474 #define INITIALIZE_INTERVAL(ptr,val) ptr->intervals = val
475
476 #else /* No text properties */
477
478 /* If no intervals are used, make the above definitions go away. */
479
480 #define CHECK_STRING_OR_BUFFER(x, i)
481
482 #define INTERVAL
483 #define DECLARE_INTERVALS
484 #define INITIALIZE_INTERVAL(ptr,val)
485
486 #endif /* USE_TEXT_PROPERTIES */
487 \f
488 #define ECHOBUFSIZE 300
489 /* All of the per-display objects, packaged together in a struct. */
490 typedef struct PERDISPLAY PERDISPLAY;
491 struct PERDISPLAY
492 {
493 PERDISPLAY *next_perdisplay;
494 Lisp_Object Vprefix_arg;
495 Lisp_Object Vcurrent_prefix_arg;
496 Lisp_Object this_command_keys;
497 Lisp_Object internal_last_event_frame;
498
499 /* Vector to GCPRO the frames and windows mentioned in kbd_buffer.
500
501 The interrupt-level event handlers will never enqueue an event on a
502 frame which is not in Vframe_list, and once an event is dequeued,
503 internal_last_event_frame or the event itself points to the frame.
504 So that's all fine.
505
506 But while the event is sitting in the queue, it's completely
507 unprotected. Suppose the user types one command which will run for
508 a while and then delete a frame, and then types another event at
509 the frame that will be deleted, before the command gets around to
510 it. Suppose there are no references to this frame elsewhere in
511 Emacs, and a GC occurs before the second event is dequeued. Now we
512 have an event referring to a freed frame, which will crash Emacs
513 when it is dequeued.
514
515 Similar things happen when an event on a scroll bar is enqueued; the
516 window may be deleted while the event is in the queue.
517
518 So, we use this vector to protect the frame_or_window field in the
519 event queue. That way, they'll be dequeued as dead frames or
520 windows, but still valid lisp objects.
521
522 If perd->kbd_buffer[i].kind != no_event, then
523 (XVECTOR (perd->kbd_buffer_frame_or_window)->contents[i]
524 == perd->kbd_buffer[i].frame_or_window. */
525 Lisp_Object kbd_buffer_frame_or_window;
526
527 /* Circular buffer for pre-read keyboard input. */
528 struct input_event *kbd_buffer;
529
530 /* Pointer to next available character in kbd_buffer.
531 If kbd_fetch_ptr == kbd_store_ptr, the buffer is empty.
532 This may be kbd_buffer + KBD_BUFFER_SIZE, meaning that the the
533 next available char is in kbd_buffer[0]. */
534 struct input_event *kbd_fetch_ptr;
535
536 /* Pointer to next place to store character in kbd_buffer. This
537 may be kbd_buffer + KBD_BUFFER_SIZE, meaning that the next
538 character should go in kbd_buffer[0]. */
539 volatile struct input_event *kbd_store_ptr;
540
541 /* The above pair of variables forms a "queue empty" flag. When we
542 enqueue a non-hook event, we increment kbd_store_ptr. When we
543 dequeue a non-hook event, we increment kbd_fetch_ptr. We say that
544 there is input available iff the two counters are not equal.
545
546 Why not just have a flag set and cleared by the enqueuing and
547 dequeuing functions? Such a flag could be screwed up by interrupts
548 at inopportune times. */
549
550 int this_command_key_count;
551
552 /* Nonzero means echo each character as typed. */
553 int immediate_echo;
554
555 /* If we have echoed a prompt string specified by the user,
556 this is its length. Otherwise this is -1. */
557 int echo_after_prompt;
558
559 /* Where to append more text to echobuf if we want to. */
560 char *echoptr;
561
562 /* The text we're echoing in the modeline - partial key sequences,
563 usually. '\0'-terminated. This really shouldn't have a fixed size. */
564 char echobuf[ECHOBUFSIZE];
565 };
566
567 #ifdef MULTI_PERDISPLAY
568 /* The perdisplay object associated with a particular frame. */
569 extern PERDISPLAY *get_perdisplay ();
570
571 /* The perdisplay object associated with the currently executing command. */
572 extern PERDISPLAY *current_perdisplay;
573
574 /* A list of all perdisplay objects, linked through next_perdisplay. */
575 extern PERDISPLAY *all_perdisplays;
576 #else
577 extern PERDISPLAY the_only_perdisplay;
578 #define get_perdisplay(f) (&the_only_perdisplay)
579 #define current_perdisplay (&the_only_perdisplay)
580 #define all_perdisplays (&the_only_perdisplay)
581 #endif
582 \f
583 /* In a cons, the markbit of the car is the gc mark bit */
584
585 struct Lisp_Cons
586 {
587 Lisp_Object car, cdr;
588 };
589
590 /* Like a cons, but records info on where the text lives that it was read from */
591 /* This is not really in use now */
592
593 struct Lisp_Buffer_Cons
594 {
595 Lisp_Object car, cdr;
596 struct buffer *buffer;
597 int bufpos;
598 };
599
600 /* In a string or vector, the sign bit of the `size' is the gc mark bit */
601
602 struct Lisp_String
603 {
604 EMACS_INT size;
605 DECLARE_INTERVALS /* `data' field must be last. */
606 unsigned char data[1];
607 };
608
609 /* If a struct is made to look like a vector, this macro returns the length
610 of that vector. */
611 #define VECSIZE(type) ((sizeof (type) - (sizeof (struct Lisp_Vector) \
612 - sizeof (Lisp_Object))) \
613 / sizeof (Lisp_Object))
614
615 struct Lisp_Vector
616 {
617 EMACS_INT size;
618 struct Lisp_Vector *next;
619 Lisp_Object contents[1];
620 };
621
622 /* In a symbol, the markbit of the plist is used as the gc mark bit */
623
624 struct Lisp_Symbol
625 {
626 struct Lisp_String *name;
627 Lisp_Object value;
628 Lisp_Object function;
629 Lisp_Object plist;
630 struct Lisp_Symbol *next; /* -> next symbol in this obarray bucket */
631 };
632
633 /* This structure describes a built-in function.
634 It is generated by the DEFUN macro only.
635 defsubr makes it into a Lisp object.
636
637 This type is treated in most respects as a pseudovector,
638 but since we never dynamically allocate or free them,
639 we don't need a next-vector field. */
640
641 struct Lisp_Subr
642 {
643 EMACS_INT size;
644 Lisp_Object (*function) ();
645 short min_args, max_args;
646 char *symbol_name;
647 char *prompt;
648 char *doc;
649 };
650 \f
651 /* These structures are used for various misc types. */
652
653 /* A miscellaneous object, when it's on the free list. */
654 struct Lisp_Free
655 {
656 int type : 16; /* = Lisp_Misc_Free */
657 int spacer : 16;
658 union Lisp_Misc *chain;
659 };
660
661 /* In a marker, the markbit of the chain field is used as the gc mark bit */
662 struct Lisp_Marker
663 {
664 int type : 16; /* = Lisp_Misc_Marker */
665 int spacer : 15;
666 /* 1 means normal insertion at the marker's position
667 leaves the marker after the inserted text. */
668 int insertion_type : 1;
669 struct buffer *buffer;
670 Lisp_Object chain;
671 int bufpos;
672 };
673
674 /* Forwarding pointer to an int variable.
675 This is allowed only in the value cell of a symbol,
676 and it means that the symbol's value really lives in the
677 specified int variable. */
678 struct Lisp_Intfwd
679 {
680 int type : 16; /* = Lisp_Misc_Intfwd */
681 int spacer : 16;
682 int *intvar;
683 };
684
685 /* Boolean forwarding pointer to an int variable.
686 This is like Lisp_Intfwd except that the ostensible
687 "value" of the symbol is t if the int variable is nonzero,
688 nil if it is zero. */
689 struct Lisp_Boolfwd
690 {
691 int type : 16; /* = Lisp_Misc_Boolfwd */
692 int spacer : 16;
693 int *boolvar;
694 };
695
696 /* Forwarding pointer to a Lisp_Object variable.
697 This is allowed only in the value cell of a symbol,
698 and it means that the symbol's value really lives in the
699 specified variable. */
700 struct Lisp_Objfwd
701 {
702 int type : 16; /* = Lisp_Misc_Objfwd */
703 int spacer : 16;
704 Lisp_Object *objvar;
705 };
706
707 /* Like Lisp_Objfwd except that value lives in a slot in the
708 current buffer. Value is byte index of slot within buffer. */
709 struct Lisp_Buffer_Objfwd
710 {
711 int type : 16; /* = Lisp_Misc_Buffer_Objfwd */
712 int spacer : 16;
713 int offset;
714 };
715
716 /* Used in a symbol value cell when the symbol's value is per-buffer.
717 The actual contents resemble a cons cell which starts a list like this:
718 (REALVALUE BUFFER CURRENT-ALIST-ELEMENT . DEFAULT-VALUE).
719
720 The cons-like structure is for historical reasons; it might be better
721 to just put these elements into the struct, now.
722
723 BUFFER is the last buffer for which this symbol's value was
724 made up to date.
725
726 CURRENT-ALIST-ELEMENT is a pointer to an element of BUFFER's
727 local_var_alist, that being the element whose car is this
728 variable. Or it can be a pointer to the
729 (CURRENT-ALIST-ELEMENT . DEFAULT-VALUE),
730 if BUFFER does not have an element in its alist for this
731 variable (that is, if BUFFER sees the default value of this
732 variable).
733
734 If we want to examine or set the value and BUFFER is current,
735 we just examine or set REALVALUE. If BUFFER is not current, we
736 store the current REALVALUE value into CURRENT-ALIST-ELEMENT,
737 then find the appropriate alist element for the buffer now
738 current and set up CURRENT-ALIST-ELEMENT. Then we set
739 REALVALUE out of that element, and store into BUFFER.
740
741 If we are setting the variable and the current buffer does not
742 have an alist entry for this variable, an alist entry is
743 created.
744
745 Note that REALVALUE can be a forwarding pointer. Each time it
746 is examined or set, forwarding must be done. Each time we
747 switch buffers, buffer-local variables which forward into C
748 variables are swapped immediately, so the C code can assume
749 that they are always up to date.
750
751 Lisp_Misc_Buffer_Local_Value and Lisp_Misc_Some_Buffer_Local_Value
752 use the same substructure. The difference is that with the latter,
753 merely setting the variable while some buffer is current
754 does not cause that buffer to have its own local value of this variable.
755 Only make-local-variable does that. */
756 struct Lisp_Buffer_Local_Value
757 {
758 int type : 16; /* = Lisp_Misc_Buffer_Local_Value
759 or Lisp_Misc_Some_Buffer_Local_Value */
760 int spacer : 16;
761 Lisp_Object car, cdr;
762 };
763
764 /* In an overlay object, the mark bit of the plist is used as the GC mark.
765 START and END are markers in the overlay's buffer, and
766 PLIST is the overlay's property list. */
767 struct Lisp_Overlay
768 {
769 int type : 16; /* = Lisp_Misc_Overlay */
770 int spacer : 16;
771 Lisp_Object start, end, plist;
772 };
773
774 /* Like Lisp_Objfwd except that value lives in a slot in the
775 current perdisplay. */
776 struct Lisp_Display_Objfwd
777 {
778 int type : 16; /* = Lisp_Misc_Display_Objfwd */
779 int spacer : 16;
780 int offset;
781 };
782
783
784 union Lisp_Misc
785 {
786 int type : 16;
787 struct Lisp_Free u_free;
788 struct Lisp_Marker u_marker;
789 struct Lisp_Intfwd u_intfwd;
790 struct Lisp_Boolfwd u_boolfwd;
791 struct Lisp_Objfwd u_objfwd;
792 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
793 struct Lisp_Buffer_Local_Value u_buffer_local_value;
794 struct Lisp_Overlay u_overlay;
795 struct Lisp_Display_Objfwd u_display_objfwd;
796 };
797 \f
798 #ifdef LISP_FLOAT_TYPE
799 /* Optional Lisp floating point type */
800 struct Lisp_Float
801 {
802 Lisp_Object type; /* essentially used for mark-bit
803 and chaining when on free-list */
804 double data;
805 };
806 #endif /* LISP_FLOAT_TYPE */
807
808 /* A character, declared with the following typedef, is a member
809 of some character set associated with the current buffer. */
810 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
811 #define _UCHAR_T
812 typedef unsigned char UCHAR;
813 #endif
814
815 /* Meanings of slots in a Lisp_Compiled: */
816
817 #define COMPILED_ARGLIST 0
818 #define COMPILED_BYTECODE 1
819 #define COMPILED_CONSTANTS 2
820 #define COMPILED_STACK_DEPTH 3
821 #define COMPILED_DOC_STRING 4
822 #define COMPILED_INTERACTIVE 5
823
824 /* Flag bits in a character. These also get used in termhooks.h.
825 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
826 (MUlti-Lingual Emacs) might need 22 bits for the character value
827 itself, so we probably shouldn't use any bits lower than 0x0400000. */
828 #define CHAR_ALT (0x0400000)
829 #define CHAR_SUPER (0x0800000)
830 #define CHAR_HYPER (0x1000000)
831 #define CHAR_SHIFT (0x2000000)
832 #define CHAR_CTL (0x4000000)
833 #define CHAR_META (0x8000000)
834
835 #ifdef USE_X_TOOLKIT
836 #ifdef NO_UNION_TYPE
837 /* Use this for turning a (void *) into a Lisp_Object, as when the
838 Lisp_Object is passed into a toolkit callback function. */
839 #define VOID_TO_LISP(larg,varg) \
840 do { ((larg) = ((Lisp_Object) (varg))); } while (0)
841 #define CVOID_TO_LISP VOID_TO_LISP
842
843 /* Use this for turning a Lisp_Object into a (void *), as when the
844 Lisp_Object is passed into a toolkit callback function. */
845 #define LISP_TO_VOID(larg) ((void *) (larg))
846 #define LISP_TO_CVOID(varg) ((const void *) (larg))
847
848 #else /* not NO_UNION_TYPE */
849 /* Use this for turning a (void *) into a Lisp_Object, as when the
850 Lisp_Object is passed into a toolkit callback function. */
851 #define VOID_TO_LISP(larg,varg) \
852 do { ((larg).v = (void *) (varg)); } while (0)
853 #define CVOID_TO_LISP(larg,varg) \
854 do { ((larg).cv = (const void *) (varg)); } while (0)
855
856 /* Use this for turning a Lisp_Object into a (void *), as when the
857 Lisp_Object is passed into a toolkit callback function. */
858 #define LISP_TO_VOID(larg) ((larg).v)
859 #define LISP_TO_CVOID(larg) ((larg).cv)
860 #endif /* not NO_UNION_TYPE */
861 #endif /* USE_X_TOOLKIT */
862
863 \f
864 /* The glyph datatype, used to represent characters on the display. */
865
866 /* The low eight bits are the character code, and the bits above them
867 are the numeric face ID. If FID is the face ID of a glyph on a
868 frame F, then F->display.x->faces[FID] contains the description of
869 that face. This is an int instead of a short, so we can support a
870 good bunch of face ID's; given that we have no mechanism for
871 tossing unused frame face ID's yet, we'll probably run out of 255
872 pretty quickly. */
873 #define GLYPH unsigned int
874
875 #ifdef HAVE_FACES
876 /* The FAST macros assume that we already know we're in an X window. */
877
878 /* Given a character code and a face ID, return the appropriate glyph. */
879 #define FAST_MAKE_GLYPH(char, face) ((char) | ((face) << 8))
880
881 /* Return a glyph's character code. */
882 #define FAST_GLYPH_CHAR(glyph) ((glyph) & 0xff)
883
884 /* Return a glyph's face ID. */
885 #define FAST_GLYPH_FACE(glyph) (((glyph) >> 8) & ((1 << 24) - 1))
886
887 /* Slower versions that test the frame type first. */
888 #define MAKE_GLYPH(f, char, face) (FRAME_TERMCAP_P (f) ? (char) \
889 : FAST_MAKE_GLYPH (char, face))
890 #define GLYPH_CHAR(f, g) (FRAME_TERMCAP_P (f) ? (g) : FAST_GLYPH_CHAR (g))
891 #define GLYPH_FACE(f, g) (FRAME_TERMCAP_P (f) ? (0) : FAST_GLYPH_FACE (g))
892 #else /* not HAVE_FACES */
893 #define MAKE_GLYPH(f, char, face) (char)
894 #define GLYPH_CHAR(f, g) (g)
895 #define GLYPH_FACE(f, g) (g)
896 #endif /* not HAVE_FACES */
897
898 /* The ID of the mode line highlighting face. */
899 #define GLYPH_MODE_LINE_FACE 1
900 \f
901 /* Data type checking */
902
903 #define NILP(x) (XFASTINT (x) == XFASTINT (Qnil))
904 #define GC_NILP(x) GC_EQ (x, Qnil)
905
906 #ifdef LISP_FLOAT_TYPE
907 #define NUMBERP(x) (INTEGERP (x) || FLOATP (x))
908 #define GC_NUMBERP(x) (GC_INTEGERP (x) || GC_FLOATP (x))
909 #else
910 #define NUMBERP(x) (INTEGERP (x))
911 #define GC_NUMBERP(x) (GC_INTEGERP (x))
912 #endif
913 #define NATNUMP(x) (INTEGERP (x) && XINT (x) >= 0)
914 #define GC_NATNUMP(x) (GC_INTEGERP (x) && XINT (x) >= 0)
915
916 #define INTEGERP(x) (XTYPE ((x)) == Lisp_Int)
917 #define GC_INTEGERP(x) (XGCTYPE ((x)) == Lisp_Int)
918 #define SYMBOLP(x) (XTYPE ((x)) == Lisp_Symbol)
919 #define GC_SYMBOLP(x) (XGCTYPE ((x)) == Lisp_Symbol)
920 #define MISCP(x) (XTYPE ((x)) == Lisp_Misc)
921 #define GC_MISCP(x) (XGCTYPE ((x)) == Lisp_Misc)
922 #define VECTORLIKEP(x) (XTYPE ((x)) == Lisp_Vectorlike)
923 #define GC_VECTORLIKEP(x) (XGCTYPE ((x)) == Lisp_Vectorlike)
924 #define STRINGP(x) (XTYPE ((x)) == Lisp_String)
925 #define GC_STRINGP(x) (XGCTYPE ((x)) == Lisp_String)
926 #define CONSP(x) (XTYPE ((x)) == Lisp_Cons)
927 #define GC_CONSP(x) (XGCTYPE ((x)) == Lisp_Cons)
928
929 #ifdef LISP_FLOAT_TYPE
930 #define FLOATP(x) (XTYPE ((x)) == Lisp_Float)
931 #define GC_FLOATP(x) (XGCTYPE ((x)) == Lisp_Float)
932 #else
933 #define FLOATP(x) (0)
934 #define GC_FLOATP(x) (0)
935 #endif
936 #define VECTORP(x) (VECTORLIKEP (x) && !(XVECTOR (x)->size & PSEUDOVECTOR_FLAG))
937 #define GC_VECTORP(x) (GC_VECTORLIKEP (x) && !(XVECTOR (x)->size & PSEUDOVECTOR_FLAG))
938 #define OVERLAYP(x) (MISCP (x) && XMISC (x)->type == Lisp_Misc_Overlay)
939 #define GC_OVERLAYP(x) (GC_MISCP (x) && XMISC (x)->type == Lisp_Misc_Overlay)
940 #define MARKERP(x) (MISCP (x) && XMISC (x)->type == Lisp_Misc_Marker)
941 #define GC_MARKERP(x) (GC_MISCP (x) && XMISC (x)->type == Lisp_Misc_Marker)
942 #define INTFWDP(x) (MISCP (x) && XMISC (x)->type == Lisp_Misc_Intfwd)
943 #define GC_INTFWDP(x) (GC_MISCP (x) && XMISC (x)->type == Lisp_Misc_Intfwd)
944 #define BOOLFWDP(x) (MISCP (x) && XMISC (x)->type == Lisp_Misc_Boolfwd)
945 #define GC_BOOLFWDP(x) (GC_MISCP (x) && XMISC (x)->type == Lisp_Misc_Boolfwd)
946 #define OBJFWDP(x) (MISCP (x) && XMISC (x)->type == Lisp_Misc_Objfwd)
947 #define GC_OBJFWDP(x) (GC_MISCP (x) && XMISC (x)->type == Lisp_Misc_Objfwd)
948 #define BUFFER_OBJFWDP(x) (MISCP (x) && XMISC (x)->type == Lisp_Misc_Buffer_Objfwd)
949 #define GC_BUFFER_OBJFWDP(x) (GC_MISCP (x) && XMISC (x)->type == Lisp_Misc_Buffer_Objfwd)
950 #define BUFFER_LOCAL_VALUEP(x) (MISCP (x) && XMISC (x)->type == Lisp_Misc_Buffer_Local_Value)
951 #define GC_BUFFER_LOCAL_VALUEP(x) (GC_MISCP (x) && XMISC (x)->type == Lisp_Misc_Buffer_Local_Value)
952 #define SOME_BUFFER_LOCAL_VALUEP(x) (MISCP (x) && XMISC (x)->type == Lisp_Misc_Some_Buffer_Local_Value)
953 #define GC_SOME_BUFFER_LOCAL_VALUEP(x) (GC_MISCP (x) && XMISC (x)->type == Lisp_Misc_Some_Buffer_Local_Value)
954 #define DISPLAY_OBJFWDP(x) (MISCP (x) && XMISC (x)->type == Lisp_Misc_Display_Objfwd)
955 #define GC_DISPLAY_OBJFWDP(x) (GC_MISCP (x) && XMISC (x)->type == Lisp_Misc_Display_Objfwd)
956
957
958 /* True if object X is a pseudovector whose code is CODE. */
959 #define PSEUDOVECTORP(x, code) \
960 (VECTORLIKEP (x) \
961 && (((XVECTOR (x)->size & (PSEUDOVECTOR_FLAG | (code)))) \
962 == (PSEUDOVECTOR_FLAG | (code))))
963
964 /* True if object X is a pseudovector whose code is CODE.
965 This one works during GC. */
966 #define GC_PSEUDOVECTORP(x, code) \
967 (GC_VECTORLIKEP (x) \
968 && (((XVECTOR (x)->size & (PSEUDOVECTOR_FLAG | (code)))) \
969 == (PSEUDOVECTOR_FLAG | (code))))
970
971 /* Test for specific pseudovector types. */
972 #define WINDOW_CONFIGURATIONP(x) PSEUDOVECTORP (x, PVEC_WINDOW_CONFIGURATION)
973 #define GC_WINDOW_CONFIGURATIONP(x) GC_PSEUDOVECTORP (x, PVEC_WINDOW_CONFIGURATION)
974 #define PROCESSP(x) PSEUDOVECTORP (x, PVEC_PROCESS)
975 #define GC_PROCESSP(x) GC_PSEUDOVECTORP (x, PVEC_PROCESS)
976 #define WINDOWP(x) PSEUDOVECTORP (x, PVEC_WINDOW)
977 #define GC_WINDOWP(x) GC_PSEUDOVECTORP (x, PVEC_WINDOW)
978 #define SUBRP(x) PSEUDOVECTORP (x, PVEC_SUBR)
979 #define GC_SUBRP(x) GC_PSEUDOVECTORP (x, PVEC_SUBR)
980 #define COMPILEDP(x) PSEUDOVECTORP (x, PVEC_COMPILED)
981 #define GC_COMPILEDP(x) GC_PSEUDOVECTORP (x, PVEC_COMPILED)
982 #define BUFFERP(x) PSEUDOVECTORP (x, PVEC_BUFFER)
983 #define GC_BUFFERP(x) GC_PSEUDOVECTORP (x, PVEC_BUFFER)
984
985 #ifdef MULTI_FRAME
986 #define FRAMEP(x) PSEUDOVECTORP (x, PVEC_FRAME)
987 #define GC_FRAMEP(x) GC_PSEUDOVECTORP (x, PVEC_FRAME)
988 #else
989 #ifdef HAVE_MOUSE
990 /* We could use this in the !HAVE_MOUSE case also, but we prefer a compile-time
991 error message in case FRAMEP is used. */
992 #define FRAMEP(x) (EQ (x, Fselected_frame ()))
993 #define GC_FRAMEP(x) (GC_EQ (x, Fselected_frame ()))
994 #endif
995 #endif
996
997 \f
998 #define EQ(x, y) (XFASTINT (x) == XFASTINT (y))
999 #define GC_EQ(x, y) (XGCTYPE (x) == XGCTYPE (y) && XPNTR (x) == XPNTR (y))
1000
1001 #define CHECK_LIST(x, i) \
1002 do { if (!CONSP ((x)) && !NILP (x)) x = wrong_type_argument (Qlistp, (x)); } while (0)
1003
1004 #define CHECK_STRING(x, i) \
1005 do { if (!STRINGP ((x))) x = wrong_type_argument (Qstringp, (x)); } while (0)
1006
1007 #define CHECK_CONS(x, i) \
1008 do { if (!CONSP ((x))) x = wrong_type_argument (Qconsp, (x)); } while (0)
1009
1010 #define CHECK_SYMBOL(x, i) \
1011 do { if (!SYMBOLP ((x))) x = wrong_type_argument (Qsymbolp, (x)); } while (0)
1012
1013 #define CHECK_VECTOR(x, i) \
1014 do { if (!VECTORP ((x))) x = wrong_type_argument (Qvectorp, (x)); } while (0)
1015
1016 #define CHECK_BUFFER(x, i) \
1017 do { if (!BUFFERP ((x))) x = wrong_type_argument (Qbufferp, (x)); } while (0)
1018
1019 #define CHECK_WINDOW(x, i) \
1020 do { if (!WINDOWP ((x))) x = wrong_type_argument (Qwindowp, (x)); } while (0)
1021
1022 /* This macro rejects windows on the interior of the window tree as
1023 "dead", which is what we want; this is an argument-checking macro, and
1024 the user should never get access to interior windows.
1025
1026 A window of any sort, leaf or interior, is dead iff the buffer,
1027 vchild, and hchild members are all nil. */
1028
1029 #define CHECK_LIVE_WINDOW(x, i) \
1030 do { \
1031 if (!WINDOWP ((x)) \
1032 || NILP (XWINDOW ((x))->buffer)) \
1033 x = wrong_type_argument (Qwindow_live_p, (x)); \
1034 } while (0)
1035
1036 #define CHECK_PROCESS(x, i) \
1037 do { if (!PROCESSP ((x))) x = wrong_type_argument (Qprocessp, (x)); } while (0)
1038
1039 #define CHECK_NUMBER(x, i) \
1040 do { if (!INTEGERP ((x))) x = wrong_type_argument (Qintegerp, (x)); } while (0)
1041
1042 #define CHECK_NATNUM(x, i) \
1043 do { if (!NATNUMP (x)) x = wrong_type_argument (Qwholenump, (x)); } while (0)
1044
1045 #define CHECK_MARKER(x, i) \
1046 do { if (!MARKERP ((x))) x = wrong_type_argument (Qmarkerp, (x)); } while (0)
1047
1048 #define CHECK_NUMBER_COERCE_MARKER(x, i) \
1049 do { if (MARKERP ((x))) XSETFASTINT (x, marker_position (x)); \
1050 else if (!INTEGERP ((x))) x = wrong_type_argument (Qinteger_or_marker_p, (x)); } while (0)
1051
1052 #ifdef LISP_FLOAT_TYPE
1053
1054 #ifndef DBL_DIG
1055 #define DBL_DIG 20
1056 #endif
1057
1058 #define XFLOATINT(n) extract_float((n))
1059
1060 #define CHECK_FLOAT(x, i) \
1061 do { if (!FLOATP (x)) \
1062 x = wrong_type_argument (Qfloatp, (x)); } while (0)
1063
1064 #define CHECK_NUMBER_OR_FLOAT(x, i) \
1065 do { if (!FLOATP (x) && !INTEGERP (x)) \
1066 x = wrong_type_argument (Qnumberp, (x)); } while (0)
1067
1068 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x, i) \
1069 do { if (MARKERP (x)) XSETFASTINT (x, marker_position (x)); \
1070 else if (!INTEGERP (x) && !FLOATP (x)) \
1071 x = wrong_type_argument (Qnumber_or_marker_p, (x)); } while (0)
1072
1073 #else /* Not LISP_FLOAT_TYPE */
1074
1075 #define CHECK_NUMBER_OR_FLOAT CHECK_NUMBER
1076
1077 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER CHECK_NUMBER_COERCE_MARKER
1078
1079 #define XFLOATINT(n) XINT((n))
1080 #endif /* LISP_FLOAT_TYPE */
1081
1082 #define CHECK_OVERLAY(x, i) \
1083 do { if (!OVERLAYP ((x))) x = wrong_type_argument (Qoverlayp, (x));} while (0)
1084
1085 /* Cast pointers to this type to compare them. Some machines want int. */
1086 #ifndef PNTR_COMPARISON_TYPE
1087 #define PNTR_COMPARISON_TYPE unsigned int
1088 #endif
1089 \f
1090 /* Define a built-in function for calling from Lisp.
1091 `lname' should be the name to give the function in Lisp,
1092 as a null-terminated C string.
1093 `fnname' should be the name of the function in C.
1094 By convention, it starts with F.
1095 `sname' should be the name for the C constant structure
1096 that records information on this function for internal use.
1097 By convention, it should be the same as `fnname' but with S instead of F.
1098 It's too bad that C macros can't compute this from `fnname'.
1099 `minargs' should be a number, the minimum number of arguments allowed.
1100 `maxargs' should be a number, the maximum number of arguments allowed,
1101 or else MANY or UNEVALLED.
1102 MANY means pass a vector of evaluated arguments,
1103 in the form of an integer number-of-arguments
1104 followed by the address of a vector of Lisp_Objects
1105 which contains the argument values.
1106 UNEVALLED means pass the list of unevaluated arguments
1107 `prompt' says how to read arguments for an interactive call.
1108 See the doc string for `interactive'.
1109 A null string means call interactively with no arguments.
1110 `doc' is documentation for the user. */
1111
1112 #if !defined (__STDC__) || defined (USE_NONANSI_DEFUN)
1113 #define DEFUN(lname, fnname, sname, minargs, maxargs, prompt, doc) \
1114 Lisp_Object fnname (); \
1115 struct Lisp_Subr sname = \
1116 { PVEC_SUBR | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)), \
1117 fnname, minargs, maxargs, lname, prompt, 0}; \
1118 Lisp_Object fnname
1119
1120 #else
1121
1122 /* This version of DEFUN declares a function prototype with the right
1123 arguments, so we can catch errors with maxargs at compile-time. */
1124 #define DEFUN(lname, fnname, sname, minargs, maxargs, prompt, doc) \
1125 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
1126 struct Lisp_Subr sname = \
1127 { PVEC_SUBR | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)), \
1128 fnname, minargs, maxargs, lname, prompt, 0}; \
1129 Lisp_Object fnname
1130
1131 /* Note that the weird token-substitution semantics of ANSI C makes
1132 this work for MANY and UNEVALLED. */
1133 #define DEFUN_ARGS_MANY (int, Lisp_Object *)
1134 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
1135 #define DEFUN_ARGS_0 (void)
1136 #define DEFUN_ARGS_1 (Lisp_Object)
1137 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
1138 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
1139 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
1140 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
1141 Lisp_Object)
1142 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
1143 Lisp_Object, Lisp_Object)
1144 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
1145 Lisp_Object, Lisp_Object, Lisp_Object)
1146 #endif
1147
1148 /* defsubr (Sname);
1149 is how we define the symbol for function `name' at start-up time. */
1150 extern void defsubr ();
1151
1152 #define MANY -2
1153 #define UNEVALLED -1
1154
1155 extern void defvar_lisp ();
1156 extern void defvar_bool ();
1157 extern void defvar_int ();
1158 extern void defvar_display ();
1159
1160 /* Macros we use to define forwarded Lisp variables.
1161 These are used in the syms_of_FILENAME functions. */
1162
1163 #define DEFVAR_LISP(lname, vname, doc) defvar_lisp (lname, vname)
1164 #define DEFVAR_LISP_NOPRO(lname, vname, doc) defvar_lisp_nopro (lname, vname)
1165 #define DEFVAR_BOOL(lname, vname, doc) defvar_bool (lname, vname)
1166 #define DEFVAR_INT(lname, vname, doc) defvar_int (lname, vname)
1167 #define DEFVAR_PER_BUFFER(lname, vname, type, doc) \
1168 defvar_per_buffer (lname, vname, type, 0)
1169 #define DEFVAR_DISPLAY(lname, vname, doc) \
1170 defvar_display (lname, \
1171 (int)((char *)(&current_perdisplay->vname) \
1172 - (char *)current_perdisplay))
1173 \f
1174 /* Structure for recording Lisp call stack for backtrace purposes. */
1175
1176 /* The special binding stack holds the outer values of variables while
1177 they are bound by a function application or a let form, stores the
1178 code to be executed for Lisp unwind-protect forms, and stores the C
1179 functions to be called for record_unwind_protect.
1180
1181 If func is non-zero, undoing this binding applies func to old_value;
1182 This implements record_unwind_protect.
1183 If func is zero and symbol is nil, undoing this binding evaluates
1184 the list of forms in old_value; this implements Lisp's unwind-protect
1185 form.
1186 Otherwise, undoing this binding stores old_value as symbol's value; this
1187 undoes the bindings made by a let form or function call. */
1188 struct specbinding
1189 {
1190 Lisp_Object symbol, old_value;
1191 Lisp_Object (*func) ();
1192 Lisp_Object unused; /* Dividing by 16 is faster than by 12 */
1193 };
1194
1195 extern struct specbinding *specpdl;
1196 extern struct specbinding *specpdl_ptr;
1197 extern int specpdl_size;
1198
1199 /* Everything needed to describe an active condition case. */
1200 struct handler
1201 {
1202 /* The handler clauses and variable from the condition-case form. */
1203 Lisp_Object handler;
1204 Lisp_Object var;
1205 /* Fsignal stores here the condition-case clause that applies,
1206 and Fcondition_case thus knows which clause to run. */
1207 Lisp_Object chosen_clause;
1208
1209 /* Used to effect the longjump out to the handler. */
1210 struct catchtag *tag;
1211
1212 /* The next enclosing handler. */
1213 struct handler *next;
1214 };
1215
1216 extern struct handler *handlerlist;
1217
1218 extern struct catchtag *catchlist;
1219 extern struct backtrace *backtrace_list;
1220
1221 extern Lisp_Object memory_signal_data;
1222
1223 /* An address near the bottom of the stack.
1224 Tells GC how to save a copy of the stack. */
1225 extern char *stack_bottom;
1226
1227 /* Check quit-flag and quit if it is non-nil. */
1228
1229 #define QUIT \
1230 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
1231 { Vquit_flag = Qnil; Fsignal (Qquit, Qnil); }
1232
1233 /* Nonzero if ought to quit now. */
1234
1235 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
1236 \f
1237 /* 1 if CH is upper case. */
1238
1239 #define UPPERCASEP(CH) \
1240 (XSTRING (current_buffer->downcase_table)->data[CH] != (CH))
1241
1242 /* 1 if CH is lower case. */
1243
1244 #define LOWERCASEP(CH) \
1245 (!UPPERCASEP (CH) \
1246 && XSTRING (current_buffer->upcase_table)->data[CH] != (CH))
1247
1248 /* 1 if CH is neither upper nor lower case. */
1249
1250 #define NOCASEP(CH) (XSTRING (current_buffer->upcase_table)->data[CH] == (CH))
1251
1252 /* Upcase a character, or make no change if that cannot be done. */
1253
1254 #define UPCASE(CH) \
1255 (XSTRING (current_buffer->downcase_table)->data[CH] == (CH) \
1256 ? UPCASE1 (CH) : (CH))
1257
1258 /* Upcase a character known to be not upper case. */
1259
1260 #define UPCASE1(CH) (XSTRING (current_buffer->upcase_table)->data[CH])
1261
1262 /* Downcase a character, or make no change if that cannot be done. */
1263
1264 #define DOWNCASE(CH) (XSTRING (current_buffer->downcase_table)->data[CH])
1265
1266 /* Current buffer's map from characters to lower-case characters. */
1267
1268 #define DOWNCASE_TABLE XSTRING (current_buffer->downcase_table)->data
1269
1270 /* Table mapping each char to the next char with the same lowercase version.
1271 This mapping is a no-op only for characters that don't have case. */
1272 #define UPCASE_TABLE XSTRING (current_buffer->upcase_table)->data
1273
1274 extern Lisp_Object Vascii_downcase_table, Vascii_upcase_table;
1275 extern Lisp_Object Vascii_canon_table, Vascii_eqv_table;
1276 \f
1277 /* Number of bytes of structure consed since last GC. */
1278
1279 extern int consing_since_gc;
1280
1281 /* Threshold for doing another gc. */
1282
1283 extern int gc_cons_threshold;
1284
1285 /* Structure for recording stack slots that need marking. */
1286
1287 /* This is a chain of structures, each of which points at a Lisp_Object variable
1288 whose value should be marked in garbage collection.
1289 Normally every link of the chain is an automatic variable of a function,
1290 and its `val' points to some argument or local variable of the function.
1291 On exit to the function, the chain is set back to the value it had on entry.
1292 This way, no link remains in the chain when the stack frame containing the
1293 link disappears.
1294
1295 Every function that can call Feval must protect in this fashion all
1296 Lisp_Object variables whose contents will be used again. */
1297
1298 extern struct gcpro *gcprolist;
1299
1300 struct gcpro
1301 {
1302 struct gcpro *next;
1303 Lisp_Object *var; /* Address of first protected variable */
1304 int nvars; /* Number of consecutive protected variables */
1305 };
1306
1307 #define GCPRO1(varname) \
1308 {gcpro1.next = gcprolist; gcpro1.var = &varname; gcpro1.nvars = 1; \
1309 gcprolist = &gcpro1; }
1310
1311 #define GCPRO2(varname1, varname2) \
1312 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
1313 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
1314 gcprolist = &gcpro2; }
1315
1316 #define GCPRO3(varname1, varname2, varname3) \
1317 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
1318 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
1319 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
1320 gcprolist = &gcpro3; }
1321
1322 #define GCPRO4(varname1, varname2, varname3, varname4) \
1323 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
1324 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
1325 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
1326 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
1327 gcprolist = &gcpro4; }
1328
1329 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
1330 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
1331 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
1332 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
1333 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
1334 gcpro5.next = &gcpro4; gcpro5.var = &varname5; gcpro5.nvars = 1; \
1335 gcprolist = &gcpro5; }
1336
1337 /* Call staticpro (&var) to protect static variable `var'. */
1338
1339 void staticpro();
1340
1341 #define UNGCPRO (gcprolist = gcpro1.next)
1342
1343 /* Evaluate expr, UNGCPRO, and then return the value of expr. */
1344 #define RETURN_UNGCPRO(expr) \
1345 if (1) \
1346 { \
1347 Lisp_Object ret_ungc_val; \
1348 ret_ungc_val = (expr); \
1349 UNGCPRO; \
1350 return ret_ungc_val; \
1351 } \
1352 else
1353 \f
1354 /* Defined in data.c */
1355 extern Lisp_Object Qnil, Qt, Qquote, Qlambda, Qsubr, Qunbound;
1356 extern Lisp_Object Qerror_conditions, Qerror_message, Qtop_level;
1357 extern Lisp_Object Qerror, Qquit, Qwrong_type_argument, Qargs_out_of_range;
1358 extern Lisp_Object Qvoid_variable, Qvoid_function;
1359 extern Lisp_Object Qsetting_constant, Qinvalid_read_syntax;
1360 extern Lisp_Object Qinvalid_function, Qwrong_number_of_arguments, Qno_catch;
1361 extern Lisp_Object Qend_of_file, Qarith_error;
1362 extern Lisp_Object Qbeginning_of_buffer, Qend_of_buffer, Qbuffer_read_only;
1363 extern Lisp_Object Qmark_inactive;
1364
1365 extern Lisp_Object Qrange_error, Qdomain_error, Qsingularity_error;
1366 extern Lisp_Object Qoverflow_error, Qunderflow_error;
1367
1368 extern Lisp_Object Qintegerp, Qnumberp, Qnatnump, Qwholenump;
1369 extern Lisp_Object Qsymbolp, Qlistp, Qconsp;
1370 extern Lisp_Object Qstringp, Qarrayp, Qsequencep, Qbufferp;
1371 extern Lisp_Object Qchar_or_string_p, Qmarkerp, Qvectorp;
1372 extern Lisp_Object Qinteger_or_marker_p, Qnumber_or_marker_p;
1373 extern Lisp_Object Qboundp, Qfboundp;
1374 extern Lisp_Object Qbuffer_or_string_p;
1375 extern Lisp_Object Qcdr;
1376
1377 #ifdef LISP_FLOAT_TYPE
1378 extern Lisp_Object Qfloatp, Qinteger_or_floatp, Qinteger_or_float_or_marker_p;
1379 #endif /* LISP_FLOAT_TYPE */
1380
1381 extern Lisp_Object Qframep;
1382
1383 extern Lisp_Object Feq (), Fnull (), Flistp (), Fconsp (), Fatom (), Fnlistp ();
1384 extern Lisp_Object Fintegerp (), Fnatnump (), Fsymbolp ();
1385 extern Lisp_Object Fvectorp (), Fstringp (), Farrayp (), Fsequencep ();
1386 extern Lisp_Object Fbufferp (), Fmarkerp (), Fsubrp (), Fchar_or_string_p ();
1387 extern Lisp_Object Finteger_or_marker_p ();
1388 #ifdef LISP_FLOAT_TYPE
1389 extern Lisp_Object Ffloatp(), Finteger_or_floatp();
1390 extern Lisp_Object Finteger_or_float_or_marker_p(), Ftruncate();
1391 #endif /* LISP_FLOAT_TYPE */
1392
1393 extern Lisp_Object Fcar (), Fcar_safe(), Fcdr (), Fcdr_safe();
1394 extern Lisp_Object Fsetcar (), Fsetcdr ();
1395 extern Lisp_Object Fboundp (), Ffboundp (), Fmakunbound (), Ffmakunbound ();
1396 extern Lisp_Object Fsymbol_function (), Fsymbol_plist (), Fsymbol_name ();
1397 extern Lisp_Object indirect_function (), Findirect_function ();
1398 extern Lisp_Object Ffset (), Fsetplist ();
1399 extern Lisp_Object Fsymbol_value (), find_symbol_value (), Fset ();
1400 extern Lisp_Object Fdefault_value (), Fset_default (), Fdefault_boundp ();
1401
1402 extern Lisp_Object Faref (), Faset ();
1403
1404 extern Lisp_Object Fstring_to_number (), Fnumber_to_string ();
1405 extern Lisp_Object Feqlsign (), Fgtr (), Flss (), Fgeq (), Fleq ();
1406 extern Lisp_Object Fneq (), Fzerop ();
1407 extern Lisp_Object Fplus (), Fminus (), Ftimes (), Fquo (), Frem ();
1408 extern Lisp_Object Fmax (), Fmin ();
1409 extern Lisp_Object Flogand (), Flogior (), Flogxor (), Flognot ();
1410 extern Lisp_Object Flsh (), Fash ();
1411
1412 extern Lisp_Object Fadd1 (), Fsub1 ();
1413
1414 extern Lisp_Object make_number ();
1415 extern Lisp_Object long_to_cons ();
1416 extern unsigned long cons_to_long ();
1417 extern void args_out_of_range ();
1418 extern void args_out_of_range_3 ();
1419 extern Lisp_Object wrong_type_argument ();
1420 extern void store_symval_forwarding ();
1421 #ifdef LISP_FLOAT_TYPE
1422 extern Lisp_Object Ffloat_to_int(), Fint_to_float();
1423 extern double extract_float();
1424 extern Lisp_Object make_float ();
1425 extern Lisp_Object Ffloat ();
1426 #endif /* LISP_FLOAT_TYPE */
1427
1428 /* Defined in fns.c */
1429 extern Lisp_Object Qstring_lessp;
1430 extern Lisp_Object Vfeatures;
1431 extern Lisp_Object Fidentity (), Frandom ();
1432 extern Lisp_Object Flength ();
1433 extern Lisp_Object Fappend (), Fconcat (), Fvconcat (), Fcopy_sequence ();
1434 extern Lisp_Object Fsubstring ();
1435 extern Lisp_Object Fnth (), Fnthcdr (), Fmemq (), Fassq (), Fassoc ();
1436 extern Lisp_Object Fmember (), Frassq (), Fdelq (), Fsort ();
1437 extern Lisp_Object Freverse (), Fnreverse (), Fget (), Fput (), Fequal ();
1438 extern Lisp_Object Ffillarray (), Fnconc (), Fmapcar (), Fmapconcat ();
1439 extern Lisp_Object Fy_or_n_p (), do_yes_or_no_p ();
1440 extern Lisp_Object Ffeaturep (), Frequire () , Fprovide ();
1441 extern Lisp_Object concat2 (), nconc2 ();
1442 extern Lisp_Object assq_no_quit ();
1443 extern Lisp_Object Fcopy_alist ();
1444
1445 /* Defined in insdel.c */
1446 extern void move_gap ();
1447 extern void make_gap ();
1448 extern void insert ();
1449 extern void insert_and_inherit ();
1450 extern void insert_1 ();
1451 extern void insert_from_string ();
1452 extern void insert_from_buffer ();
1453 extern void insert_char ();
1454 extern void insert_string ();
1455 extern void insert_before_markers ();
1456 extern void insert_before_markers_and_inherit ();
1457 extern void insert_from_string_before_markers ();
1458 extern void del_range ();
1459 extern void del_range_1 ();
1460 extern void modify_region ();
1461 extern void prepare_to_modify_buffer ();
1462 extern void signal_before_change ();
1463 extern void signal_after_change ();
1464
1465 /* Defined in xdisp.c */
1466 extern void message ();
1467 extern void message1 ();
1468 extern void message1_nolog ();
1469 extern void message2 ();
1470 extern void message2_nolog ();
1471 extern void message_dolog ();
1472 extern void message_log_maybe_newline ();
1473
1474 /* Defined in alloc.c */
1475 extern Lisp_Object Vpurify_flag;
1476 extern Lisp_Object Fcons (), Flist(), Fmake_list (), allocate_misc ();
1477 extern Lisp_Object Fmake_vector (), Fvector (), Fmake_symbol (), Fmake_marker ();
1478 extern Lisp_Object Fmake_string (), build_string (), make_string ();
1479 extern Lisp_Object make_event_array (), make_uninit_string ();
1480 extern Lisp_Object Fpurecopy (), make_pure_string ();
1481 extern Lisp_Object pure_cons (), make_pure_vector ();
1482 extern Lisp_Object Fgarbage_collect ();
1483 extern Lisp_Object Fmake_byte_code ();
1484 extern struct Lisp_Vector *allocate_vectorlike ();
1485 extern int gc_in_progress;
1486
1487 /* Defined in print.c */
1488 extern Lisp_Object Vprin1_to_string_buffer;
1489 extern Lisp_Object Fprin1 (), Fprin1_to_string (), Fprinc ();
1490 extern Lisp_Object Fterpri (), Fprint ();
1491 extern Lisp_Object Vstandard_output, Qstandard_output;
1492 extern Lisp_Object Qexternal_debugging_output;
1493 extern void temp_output_buffer_setup (), temp_output_buffer_show ();
1494 extern int print_level, print_escape_newlines;
1495 extern Lisp_Object Qprint_escape_newlines;
1496
1497 /* Defined in lread.c */
1498 extern Lisp_Object Qvariable_documentation, Qstandard_input;
1499 extern Lisp_Object Vobarray, Vstandard_input;
1500 extern Lisp_Object Fread (), Fread_from_string ();
1501 extern Lisp_Object Fintern (), Fintern_soft (), Fload ();
1502 extern Lisp_Object Fget_file_char (), Fread_char ();
1503 extern Lisp_Object read_filtered_event ();
1504 extern Lisp_Object Feval_current_buffer (), Feval_region ();
1505 extern Lisp_Object intern (), oblookup ();
1506 #define LOADHIST_ATTACH(x) \
1507 if (initialized) Vcurrent_load_list = Fcons (x, Vcurrent_load_list)
1508 extern Lisp_Object Vcurrent_load_list;
1509 extern Lisp_Object Vload_history;
1510
1511 /* Defined in eval.c */
1512 extern Lisp_Object Qautoload, Qexit, Qinteractive, Qcommandp, Qdefun, Qmacro;
1513 extern Lisp_Object Vinhibit_quit, Qinhibit_quit, Vquit_flag;
1514 extern Lisp_Object Vmocklisp_arguments, Qmocklisp, Qmocklisp_arguments;
1515 extern Lisp_Object Vautoload_queue;
1516 extern Lisp_Object Vdebug_on_error;
1517 /* To run a normal hook, do
1518 if (!NILP (Vrun_hooks))
1519 call1 (Vrun_hooks, Qmy_funny_hook); */
1520 extern Lisp_Object Vrun_hooks;
1521 extern Lisp_Object Fand (), For (), Fif (), Fprogn (), Fprog1 (), Fprog2 ();
1522 extern Lisp_Object Fsetq (), Fquote ();
1523 extern Lisp_Object Fuser_variable_p (), Finteractive_p ();
1524 extern Lisp_Object Fdefun (), Flet (), FletX (), Fwhile ();
1525 extern Lisp_Object Fcatch (), Fthrow (), Funwind_protect ();
1526 extern Lisp_Object Fcondition_case (), Fsignal ();
1527 extern Lisp_Object Ffunction_type (), Fautoload (), Fcommandp ();
1528 extern Lisp_Object Feval (), Fapply (), Ffuncall ();
1529 extern Lisp_Object Fglobal_set (), Fglobal_value (), Fbacktrace ();
1530 extern Lisp_Object apply1 (), call0 (), call1 (), call2 (), call3 ();
1531 extern Lisp_Object call4 (), call5 (), call6 ();
1532 extern Lisp_Object Fkill_emacs (), Fkey_binding (), Fsit_for ();
1533 extern Lisp_Object Fdo_auto_save (), Fset_marker ();
1534 extern Lisp_Object apply_lambda ();
1535 extern Lisp_Object internal_catch ();
1536 extern Lisp_Object internal_condition_case ();
1537 extern Lisp_Object internal_condition_case_1 ();
1538 extern Lisp_Object unbind_to ();
1539 extern void error ();
1540 extern Lisp_Object un_autoload ();
1541
1542 /* Defined in editfns.c */
1543 extern Lisp_Object Fgoto_char ();
1544 extern Lisp_Object Fpoint_min_marker (), Fpoint_max_marker ();
1545 extern Lisp_Object Fpoint_min (), Fpoint_max ();
1546 extern Lisp_Object Fpoint (), Fpoint_marker (), Fmark_marker ();
1547 extern Lisp_Object Ffollowing_char (), Fprevious_char (), Fchar_after ();
1548 extern Lisp_Object Finsert ();
1549 extern Lisp_Object Feolp (), Feobp (), Fbolp (), Fbobp ();
1550 extern Lisp_Object Fformat (), format1 ();
1551 extern Lisp_Object make_buffer_string (), Fbuffer_substring ();
1552 extern Lisp_Object Fbuffer_string ();
1553 extern Lisp_Object Fstring_equal (), Fstring_lessp (), Fbuffer_substring_lessp ();
1554 extern Lisp_Object save_excursion_save (), save_restriction_save ();
1555 extern Lisp_Object save_excursion_restore (), save_restriction_restore ();
1556 extern Lisp_Object Fchar_to_string ();
1557
1558 /* defined in buffer.c */
1559 extern Lisp_Object Vbuffer_alist, Vinhibit_read_only;
1560 extern Lisp_Object Fget_buffer (), Fget_buffer_create (), Fset_buffer ();
1561 extern Lisp_Object Fbarf_if_buffer_read_only ();
1562 extern Lisp_Object Fcurrent_buffer (), Fswitch_to_buffer (), Fpop_to_buffer ();
1563 extern Lisp_Object Fother_buffer ();
1564 extern Lisp_Object Foverlay_get ();
1565 extern Lisp_Object Qoverlayp;
1566 extern struct buffer *all_buffers;
1567
1568 /* defined in marker.c */
1569
1570 extern Lisp_Object Fmarker_position (), Fmarker_buffer ();
1571 extern Lisp_Object Fcopy_marker ();
1572
1573 /* Defined in fileio.c */
1574
1575 extern Lisp_Object Qfile_error;
1576 extern Lisp_Object Ffind_file_name_handler ();
1577 extern Lisp_Object Ffile_name_as_directory ();
1578 extern Lisp_Object Fexpand_file_name (), Ffile_name_nondirectory ();
1579 extern Lisp_Object Fsubstitute_in_file_name ();
1580 extern Lisp_Object Ffile_symlink_p ();
1581 extern Lisp_Object Fverify_visited_file_modtime ();
1582 extern Lisp_Object Ffile_exists_p ();
1583 extern Lisp_Object Fdirectory_file_name ();
1584 extern Lisp_Object Ffile_name_directory ();
1585 extern Lisp_Object expand_and_dir_to_file ();
1586 extern Lisp_Object Ffile_accessible_directory_p ();
1587 extern Lisp_Object Funhandled_file_name_directory ();
1588
1589 /* Defined in abbrev.c */
1590
1591 extern Lisp_Object Vfundamental_mode_abbrev_table;
1592
1593 /* defined in search.c */
1594 extern Lisp_Object Fstring_match ();
1595 extern Lisp_Object Fscan_buffer ();
1596 extern void restore_match_data ();
1597
1598 /* defined in minibuf.c */
1599
1600 extern Lisp_Object last_minibuf_string;
1601 extern Lisp_Object read_minibuf (), Fcompleting_read ();
1602 extern Lisp_Object Fread_from_minibuffer ();
1603 extern Lisp_Object Fread_variable (), Fread_buffer (), Fread_key_sequence ();
1604 extern Lisp_Object Fread_minibuffer (), Feval_minibuffer ();
1605 extern Lisp_Object Fread_string (), Fread_file_name ();
1606 extern Lisp_Object Fread_no_blanks_input ();
1607
1608 /* Defined in callint.c */
1609
1610 extern Lisp_Object Qminus, Qplus;
1611 extern Lisp_Object Vcommand_history;
1612 extern Lisp_Object Qcall_interactively;
1613 extern Lisp_Object Fcall_interactively ();
1614 extern Lisp_Object Fprefix_numeric_value ();
1615
1616 /* defined in casefiddle.c */
1617
1618 extern Lisp_Object Fdowncase (), Fupcase (), Fcapitalize ();
1619
1620 /* defined in keyboard.c */
1621
1622 extern Lisp_Object Qdisabled;
1623 extern Lisp_Object Vhelp_form, Vtop_level;
1624 extern Lisp_Object Fdiscard_input (), Frecursive_edit ();
1625 extern Lisp_Object Fcommand_execute (), Finput_pending_p ();
1626 extern Lisp_Object Qvertical_scroll_bar;
1627
1628 /* defined in keymap.c */
1629
1630 extern Lisp_Object Qkeymap, Qmenu_bar;
1631 extern Lisp_Object current_global_map;
1632 extern Lisp_Object Fkey_description (), Fsingle_key_description ();
1633 extern Lisp_Object Fwhere_is_internal ();
1634 extern Lisp_Object access_keymap (), store_in_keymap ();
1635 extern Lisp_Object get_keyelt (), get_keymap();
1636
1637 /* defined in indent.c */
1638 extern Lisp_Object Fvertical_motion (), Findent_to (), Fcurrent_column ();
1639
1640 /* defined in window.c */
1641 extern Lisp_Object Qwindowp, Qwindow_live_p;
1642 extern Lisp_Object Fget_buffer_window ();
1643 extern Lisp_Object Fsave_window_excursion ();
1644 extern Lisp_Object Fset_window_configuration (), Fcurrent_window_configuration ();
1645 extern Lisp_Object Fcoordinates_in_window_p ();
1646 extern Lisp_Object Fwindow_at ();
1647 extern int window_internal_height (), window_internal_width ();
1648
1649 /* defined in frame.c */
1650 extern Lisp_Object Qvisible;
1651 extern Lisp_Object Fframep ();
1652 extern Lisp_Object Fselect_frame ();
1653 extern Lisp_Object Ffocus_frame ();
1654 extern Lisp_Object Funfocus_frame ();
1655 extern Lisp_Object Fselected_frame ();
1656 extern Lisp_Object Fwindow_frame ();
1657 extern Lisp_Object Fframe_root_window ();
1658 extern Lisp_Object Fframe_selected_window ();
1659 extern Lisp_Object Fframe_list ();
1660 extern Lisp_Object Fnext_frame ();
1661 extern Lisp_Object Fdelete_frame ();
1662 extern Lisp_Object Fread_mouse_position ();
1663 extern Lisp_Object Fset_mouse_position ();
1664 extern Lisp_Object Fmake_frame_visible ();
1665 extern Lisp_Object Fmake_frame_invisible ();
1666 extern Lisp_Object Ficonify_frame ();
1667 extern Lisp_Object Fdeiconify_frame ();
1668 extern Lisp_Object Fframe_visible_p ();
1669 extern Lisp_Object Fvisible_frame_list ();
1670 extern Lisp_Object Fframe_parameters ();
1671 extern Lisp_Object Fmodify_frame_parameters ();
1672 extern Lisp_Object Fframe_pixel_size ();
1673 extern Lisp_Object Fframe_height ();
1674 extern Lisp_Object Fframe_width ();
1675 extern Lisp_Object Fset_frame_height ();
1676 extern Lisp_Object Fset_frame_width ();
1677 extern Lisp_Object Fset_frame_size ();
1678 extern Lisp_Object Fset_frame_position ();
1679 #ifndef HAVE_X11
1680 extern Lisp_Object Frubber_band_rectangle ();
1681 #endif /* HAVE_X11 */
1682
1683 /* defined in emacs.c */
1684 extern Lisp_Object decode_env_path ();
1685 extern Lisp_Object Vinvocation_name, Vinvocation_directory;
1686 extern Lisp_Object Vinstallation_directory;
1687 void shut_down_emacs ( /* int signal, int no_x, Lisp_Object stuff */ );
1688 /* Nonzero means don't do interactive redisplay and don't change tty modes */
1689 extern int noninteractive;
1690 /* Nonzero means don't do use window-system-specific display code */
1691 extern int inhibit_window_system;
1692 /* Nonzero means that a filter or a sentinel is running. */
1693 extern int running_asynch_code;
1694
1695 /* defined in process.c */
1696 extern Lisp_Object Fget_process (), Fget_buffer_process (), Fprocessp ();
1697 extern Lisp_Object Fprocess_status (), Fkill_process ();
1698 extern Lisp_Object Fprocess_send_eof ();
1699
1700 /* defined in callproc.c */
1701 extern Lisp_Object Vexec_path, Vexec_directory, Vdata_directory;
1702 extern Lisp_Object Vdoc_directory;
1703
1704 /* defined in doc.c */
1705 extern Lisp_Object Vdoc_file_name;
1706 extern Lisp_Object Fsubstitute_command_keys ();
1707 extern Lisp_Object Fdocumentation (), Fdocumentation_property ();
1708
1709 /* defined in bytecode.c */
1710 extern Lisp_Object Qbytecode;
1711 extern Lisp_Object Fbyte_code ();
1712
1713 /* defined in macros.c */
1714 extern Lisp_Object Qexecute_kbd_macro;
1715 extern Lisp_Object Fexecute_kbd_macro ();
1716
1717 /* defined in undo.c */
1718 extern Lisp_Object Fundo_boundary ();
1719 extern Lisp_Object truncate_undo_list ();
1720
1721 /* defined in textprop.c */
1722 extern Lisp_Object Qmodification_hooks;
1723 extern Lisp_Object Qrear_nonsticky;
1724 extern Lisp_Object Qinsert_in_front_hooks, Qinsert_behind_hooks;
1725 extern Lisp_Object Fnext_property_change ();
1726 extern Lisp_Object Fnext_single_property_change ();
1727
1728 /* Nonzero means Emacs has already been initialized.
1729 Used during startup to detect startup of dumped Emacs. */
1730 extern int initialized;
1731
1732 extern int immediate_quit; /* Nonzero means ^G can quit instantly */
1733
1734 extern void debugger ();
1735
1736 extern char *getenv (), *ctime (), *getwd ();
1737 extern long *xmalloc (), *xrealloc ();
1738 extern void xfree ();
1739
1740 extern char *egetenv ();
1741
1742 /* Set up the name of the machine we're running on. */
1743 extern void init_system_name ();
1744
1745 /* Some systems (e.g., NT) use a different path separator than Unix,
1746 in addition to a device separator. Default the path separator
1747 to '/', and don't test for a device separator in IS_ANY_SEP. */
1748
1749 #ifndef DIRECTORY_SEP
1750 #define DIRECTORY_SEP '/'
1751 #endif
1752 #ifndef IS_DIRECTORY_SEP
1753 #define IS_DIRECTORY_SEP(_c_) ((_c_) == DIRECTORY_SEP)
1754 #endif
1755 #ifndef IS_DEVICE_SEP
1756 #ifndef DEVICE_SEP
1757 #define IS_DEVICE_SEP(_c_) 0
1758 #else
1759 #define IS_DEVICE_SEP(_c_) ((_c_) == DEVICE_SEP)
1760 #endif
1761 #endif
1762 #ifndef IS_ANY_SEP
1763 #define IS_ANY_SEP(_c_) (IS_DIRECTORY_SEP (_c_))
1764 #endif
1765
1766 #ifdef SWITCH_ENUM_BUG
1767 #define SWITCH_ENUM_CAST(x) ((int)(x))
1768 #else
1769 #define SWITCH_ENUM_CAST(x) (x)
1770 #endif