]> code.delx.au - gnu-emacs/blob - src/alloc.c
* src/alloc.c (verify_alloca): Replace a stray occurrence of pointer_valid_for_lisp_o...
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2014 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
29
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
33
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45 #ifdef HAVE_WINDOW_SYSTEM
46 #include TERM_HEADER
47 #endif /* HAVE_WINDOW_SYSTEM */
48
49 #include <verify.h>
50 #include <execinfo.h> /* For backtrace. */
51
52 #ifdef HAVE_LINUX_SYSINFO
53 #include <sys/sysinfo.h>
54 #endif
55
56 #ifdef MSDOS
57 #include "dosfns.h" /* For dos_memory_info. */
58 #endif
59
60 #if (defined ENABLE_CHECKING \
61 && defined HAVE_VALGRIND_VALGRIND_H \
62 && !defined USE_VALGRIND)
63 # define USE_VALGRIND 1
64 #endif
65
66 #if USE_VALGRIND
67 #include <valgrind/valgrind.h>
68 #include <valgrind/memcheck.h>
69 static bool valgrind_p;
70 #endif
71
72 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
73 Doable only if GC_MARK_STACK. */
74 #if ! GC_MARK_STACK
75 # undef GC_CHECK_MARKED_OBJECTS
76 #endif
77
78 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
79 memory. Can do this only if using gmalloc.c and if not checking
80 marked objects. */
81
82 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
83 || defined HYBRID_MALLOC || defined GC_CHECK_MARKED_OBJECTS)
84 #undef GC_MALLOC_CHECK
85 #endif
86
87 #include <unistd.h>
88 #include <fcntl.h>
89
90 #ifdef USE_GTK
91 # include "gtkutil.h"
92 #endif
93 #ifdef WINDOWSNT
94 #include "w32.h"
95 #include "w32heap.h" /* for sbrk */
96 #endif
97
98 #ifdef DOUG_LEA_MALLOC
99
100 #include <malloc.h>
101
102 /* Specify maximum number of areas to mmap. It would be nice to use a
103 value that explicitly means "no limit". */
104
105 #define MMAP_MAX_AREAS 100000000
106
107 #endif /* not DOUG_LEA_MALLOC */
108
109 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
110 to a struct Lisp_String. */
111
112 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
113 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
114 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
115
116 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
117 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
118 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
119
120 /* Default value of gc_cons_threshold (see below). */
121
122 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
123
124 /* Global variables. */
125 struct emacs_globals globals;
126
127 /* Number of bytes of consing done since the last gc. */
128
129 EMACS_INT consing_since_gc;
130
131 /* Similar minimum, computed from Vgc_cons_percentage. */
132
133 EMACS_INT gc_relative_threshold;
134
135 /* Minimum number of bytes of consing since GC before next GC,
136 when memory is full. */
137
138 EMACS_INT memory_full_cons_threshold;
139
140 /* True during GC. */
141
142 bool gc_in_progress;
143
144 /* True means abort if try to GC.
145 This is for code which is written on the assumption that
146 no GC will happen, so as to verify that assumption. */
147
148 bool abort_on_gc;
149
150 /* Number of live and free conses etc. */
151
152 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
153 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
154 static EMACS_INT total_free_floats, total_floats;
155
156 /* Points to memory space allocated as "spare", to be freed if we run
157 out of memory. We keep one large block, four cons-blocks, and
158 two string blocks. */
159
160 static char *spare_memory[7];
161
162 /* Amount of spare memory to keep in large reserve block, or to see
163 whether this much is available when malloc fails on a larger request. */
164
165 #define SPARE_MEMORY (1 << 14)
166
167 /* Initialize it to a nonzero value to force it into data space
168 (rather than bss space). That way unexec will remap it into text
169 space (pure), on some systems. We have not implemented the
170 remapping on more recent systems because this is less important
171 nowadays than in the days of small memories and timesharing. */
172
173 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
174 #define PUREBEG (char *) pure
175
176 /* Pointer to the pure area, and its size. */
177
178 static char *purebeg;
179 static ptrdiff_t pure_size;
180
181 /* Number of bytes of pure storage used before pure storage overflowed.
182 If this is non-zero, this implies that an overflow occurred. */
183
184 static ptrdiff_t pure_bytes_used_before_overflow;
185
186 /* True if P points into pure space. */
187
188 #define PURE_POINTER_P(P) \
189 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
190
191 /* Index in pure at which next pure Lisp object will be allocated.. */
192
193 static ptrdiff_t pure_bytes_used_lisp;
194
195 /* Number of bytes allocated for non-Lisp objects in pure storage. */
196
197 static ptrdiff_t pure_bytes_used_non_lisp;
198
199 /* If nonzero, this is a warning delivered by malloc and not yet
200 displayed. */
201
202 const char *pending_malloc_warning;
203
204 #if 0 /* Normally, pointer sanity only on request... */
205 #ifdef ENABLE_CHECKING
206 #define SUSPICIOUS_OBJECT_CHECKING 1
207 #endif
208 #endif
209
210 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
211 bug is unresolved. */
212 #define SUSPICIOUS_OBJECT_CHECKING 1
213
214 #ifdef SUSPICIOUS_OBJECT_CHECKING
215 struct suspicious_free_record
216 {
217 void *suspicious_object;
218 void *backtrace[128];
219 };
220 static void *suspicious_objects[32];
221 static int suspicious_object_index;
222 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
223 static int suspicious_free_history_index;
224 /* Find the first currently-monitored suspicious pointer in range
225 [begin,end) or NULL if no such pointer exists. */
226 static void *find_suspicious_object_in_range (void *begin, void *end);
227 static void detect_suspicious_free (void *ptr);
228 #else
229 # define find_suspicious_object_in_range(begin, end) NULL
230 # define detect_suspicious_free(ptr) (void)
231 #endif
232
233 /* Maximum amount of C stack to save when a GC happens. */
234
235 #ifndef MAX_SAVE_STACK
236 #define MAX_SAVE_STACK 16000
237 #endif
238
239 /* Buffer in which we save a copy of the C stack at each GC. */
240
241 #if MAX_SAVE_STACK > 0
242 static char *stack_copy;
243 static ptrdiff_t stack_copy_size;
244
245 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
246 avoiding any address sanitization. */
247
248 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
249 no_sanitize_memcpy (void *dest, void const *src, size_t size)
250 {
251 if (! ADDRESS_SANITIZER)
252 return memcpy (dest, src, size);
253 else
254 {
255 size_t i;
256 char *d = dest;
257 char const *s = src;
258 for (i = 0; i < size; i++)
259 d[i] = s[i];
260 return dest;
261 }
262 }
263
264 #endif /* MAX_SAVE_STACK > 0 */
265
266 static Lisp_Object Qconses;
267 static Lisp_Object Qsymbols;
268 static Lisp_Object Qmiscs;
269 static Lisp_Object Qstrings;
270 static Lisp_Object Qvectors;
271 static Lisp_Object Qfloats;
272 static Lisp_Object Qintervals;
273 static Lisp_Object Qbuffers;
274 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
275 static Lisp_Object Qgc_cons_threshold;
276 Lisp_Object Qautomatic_gc;
277 Lisp_Object Qchar_table_extra_slots;
278
279 /* Hook run after GC has finished. */
280
281 static Lisp_Object Qpost_gc_hook;
282
283 static void mark_terminals (void);
284 static void gc_sweep (void);
285 static Lisp_Object make_pure_vector (ptrdiff_t);
286 static void mark_buffer (struct buffer *);
287
288 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
289 static void refill_memory_reserve (void);
290 #endif
291 static void compact_small_strings (void);
292 static void free_large_strings (void);
293 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
294
295 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
296 what memory allocated via lisp_malloc and lisp_align_malloc is intended
297 for what purpose. This enumeration specifies the type of memory. */
298
299 enum mem_type
300 {
301 MEM_TYPE_NON_LISP,
302 MEM_TYPE_BUFFER,
303 MEM_TYPE_CONS,
304 MEM_TYPE_STRING,
305 MEM_TYPE_MISC,
306 MEM_TYPE_SYMBOL,
307 MEM_TYPE_FLOAT,
308 /* Since all non-bool pseudovectors are small enough to be
309 allocated from vector blocks, this memory type denotes
310 large regular vectors and large bool pseudovectors. */
311 MEM_TYPE_VECTORLIKE,
312 /* Special type to denote vector blocks. */
313 MEM_TYPE_VECTOR_BLOCK,
314 /* Special type to denote reserved memory. */
315 MEM_TYPE_SPARE
316 };
317
318 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
319
320 /* A unique object in pure space used to make some Lisp objects
321 on free lists recognizable in O(1). */
322
323 static Lisp_Object Vdead;
324 #define DEADP(x) EQ (x, Vdead)
325
326 #ifdef GC_MALLOC_CHECK
327
328 enum mem_type allocated_mem_type;
329
330 #endif /* GC_MALLOC_CHECK */
331
332 /* A node in the red-black tree describing allocated memory containing
333 Lisp data. Each such block is recorded with its start and end
334 address when it is allocated, and removed from the tree when it
335 is freed.
336
337 A red-black tree is a balanced binary tree with the following
338 properties:
339
340 1. Every node is either red or black.
341 2. Every leaf is black.
342 3. If a node is red, then both of its children are black.
343 4. Every simple path from a node to a descendant leaf contains
344 the same number of black nodes.
345 5. The root is always black.
346
347 When nodes are inserted into the tree, or deleted from the tree,
348 the tree is "fixed" so that these properties are always true.
349
350 A red-black tree with N internal nodes has height at most 2
351 log(N+1). Searches, insertions and deletions are done in O(log N).
352 Please see a text book about data structures for a detailed
353 description of red-black trees. Any book worth its salt should
354 describe them. */
355
356 struct mem_node
357 {
358 /* Children of this node. These pointers are never NULL. When there
359 is no child, the value is MEM_NIL, which points to a dummy node. */
360 struct mem_node *left, *right;
361
362 /* The parent of this node. In the root node, this is NULL. */
363 struct mem_node *parent;
364
365 /* Start and end of allocated region. */
366 void *start, *end;
367
368 /* Node color. */
369 enum {MEM_BLACK, MEM_RED} color;
370
371 /* Memory type. */
372 enum mem_type type;
373 };
374
375 /* Base address of stack. Set in main. */
376
377 Lisp_Object *stack_base;
378
379 /* Root of the tree describing allocated Lisp memory. */
380
381 static struct mem_node *mem_root;
382
383 /* Lowest and highest known address in the heap. */
384
385 static void *min_heap_address, *max_heap_address;
386
387 /* Sentinel node of the tree. */
388
389 static struct mem_node mem_z;
390 #define MEM_NIL &mem_z
391
392 static struct mem_node *mem_insert (void *, void *, enum mem_type);
393 static void mem_insert_fixup (struct mem_node *);
394 static void mem_rotate_left (struct mem_node *);
395 static void mem_rotate_right (struct mem_node *);
396 static void mem_delete (struct mem_node *);
397 static void mem_delete_fixup (struct mem_node *);
398 static struct mem_node *mem_find (void *);
399
400 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
401
402 #ifndef DEADP
403 # define DEADP(x) 0
404 #endif
405
406 /* Recording what needs to be marked for gc. */
407
408 struct gcpro *gcprolist;
409
410 /* Addresses of staticpro'd variables. Initialize it to a nonzero
411 value; otherwise some compilers put it into BSS. */
412
413 enum { NSTATICS = 2048 };
414 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
415
416 /* Index of next unused slot in staticvec. */
417
418 static int staticidx;
419
420 static void *pure_alloc (size_t, int);
421
422 /* Return X rounded to the next multiple of Y. Arguments should not
423 have side effects, as they are evaluated more than once. Assume X
424 + Y - 1 does not overflow. Tune for Y being a power of 2. */
425
426 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
427 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
428 : ((x) + (y) - 1) & ~ ((y) - 1))
429
430 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
431
432 static void *
433 ALIGN (void *ptr, int alignment)
434 {
435 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
436 }
437
438 static void
439 XFLOAT_INIT (Lisp_Object f, double n)
440 {
441 XFLOAT (f)->u.data = n;
442 }
443
444 static bool
445 pointers_fit_in_lispobj_p (void)
446 {
447 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
448 }
449
450 static bool
451 mmap_lisp_allowed_p (void)
452 {
453 /* If we can't store all memory addresses in our lisp objects, it's
454 risky to let the heap use mmap and give us addresses from all
455 over our address space. We also can't use mmap for lisp objects
456 if we might dump: unexec doesn't preserve the contents of mmaped
457 regions. */
458 return pointers_fit_in_lispobj_p () && !might_dump;
459 }
460
461 \f
462 /************************************************************************
463 Malloc
464 ************************************************************************/
465
466 /* Function malloc calls this if it finds we are near exhausting storage. */
467
468 void
469 malloc_warning (const char *str)
470 {
471 pending_malloc_warning = str;
472 }
473
474
475 /* Display an already-pending malloc warning. */
476
477 void
478 display_malloc_warning (void)
479 {
480 call3 (intern ("display-warning"),
481 intern ("alloc"),
482 build_string (pending_malloc_warning),
483 intern ("emergency"));
484 pending_malloc_warning = 0;
485 }
486 \f
487 /* Called if we can't allocate relocatable space for a buffer. */
488
489 void
490 buffer_memory_full (ptrdiff_t nbytes)
491 {
492 /* If buffers use the relocating allocator, no need to free
493 spare_memory, because we may have plenty of malloc space left
494 that we could get, and if we don't, the malloc that fails will
495 itself cause spare_memory to be freed. If buffers don't use the
496 relocating allocator, treat this like any other failing
497 malloc. */
498
499 #ifndef REL_ALLOC
500 memory_full (nbytes);
501 #else
502 /* This used to call error, but if we've run out of memory, we could
503 get infinite recursion trying to build the string. */
504 xsignal (Qnil, Vmemory_signal_data);
505 #endif
506 }
507
508 /* A common multiple of the positive integers A and B. Ideally this
509 would be the least common multiple, but there's no way to do that
510 as a constant expression in C, so do the best that we can easily do. */
511 #define COMMON_MULTIPLE(a, b) \
512 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
513
514 #ifndef XMALLOC_OVERRUN_CHECK
515 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
516 #else
517
518 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
519 around each block.
520
521 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
522 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
523 block size in little-endian order. The trailer consists of
524 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
525
526 The header is used to detect whether this block has been allocated
527 through these functions, as some low-level libc functions may
528 bypass the malloc hooks. */
529
530 #define XMALLOC_OVERRUN_CHECK_SIZE 16
531 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
532 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
533
534 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
535 hold a size_t value and (2) the header size is a multiple of the
536 alignment that Emacs needs for C types and for USE_LSB_TAG. */
537 #define XMALLOC_BASE_ALIGNMENT \
538 alignof (union { long double d; intmax_t i; void *p; })
539
540 #if USE_LSB_TAG
541 # define XMALLOC_HEADER_ALIGNMENT \
542 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
543 #else
544 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
545 #endif
546 #define XMALLOC_OVERRUN_SIZE_SIZE \
547 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
548 + XMALLOC_HEADER_ALIGNMENT - 1) \
549 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
550 - XMALLOC_OVERRUN_CHECK_SIZE)
551
552 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
553 { '\x9a', '\x9b', '\xae', '\xaf',
554 '\xbf', '\xbe', '\xce', '\xcf',
555 '\xea', '\xeb', '\xec', '\xed',
556 '\xdf', '\xde', '\x9c', '\x9d' };
557
558 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
559 { '\xaa', '\xab', '\xac', '\xad',
560 '\xba', '\xbb', '\xbc', '\xbd',
561 '\xca', '\xcb', '\xcc', '\xcd',
562 '\xda', '\xdb', '\xdc', '\xdd' };
563
564 /* Insert and extract the block size in the header. */
565
566 static void
567 xmalloc_put_size (unsigned char *ptr, size_t size)
568 {
569 int i;
570 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
571 {
572 *--ptr = size & ((1 << CHAR_BIT) - 1);
573 size >>= CHAR_BIT;
574 }
575 }
576
577 static size_t
578 xmalloc_get_size (unsigned char *ptr)
579 {
580 size_t size = 0;
581 int i;
582 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
583 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
584 {
585 size <<= CHAR_BIT;
586 size += *ptr++;
587 }
588 return size;
589 }
590
591
592 /* Like malloc, but wraps allocated block with header and trailer. */
593
594 static void *
595 overrun_check_malloc (size_t size)
596 {
597 register unsigned char *val;
598 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
599 emacs_abort ();
600
601 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
602 if (val)
603 {
604 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
605 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
606 xmalloc_put_size (val, size);
607 memcpy (val + size, xmalloc_overrun_check_trailer,
608 XMALLOC_OVERRUN_CHECK_SIZE);
609 }
610 return val;
611 }
612
613
614 /* Like realloc, but checks old block for overrun, and wraps new block
615 with header and trailer. */
616
617 static void *
618 overrun_check_realloc (void *block, size_t size)
619 {
620 register unsigned char *val = (unsigned char *) block;
621 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
622 emacs_abort ();
623
624 if (val
625 && memcmp (xmalloc_overrun_check_header,
626 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
627 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
628 {
629 size_t osize = xmalloc_get_size (val);
630 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
631 XMALLOC_OVERRUN_CHECK_SIZE))
632 emacs_abort ();
633 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
634 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
635 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
636 }
637
638 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
639
640 if (val)
641 {
642 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
643 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
644 xmalloc_put_size (val, size);
645 memcpy (val + size, xmalloc_overrun_check_trailer,
646 XMALLOC_OVERRUN_CHECK_SIZE);
647 }
648 return val;
649 }
650
651 /* Like free, but checks block for overrun. */
652
653 static void
654 overrun_check_free (void *block)
655 {
656 unsigned char *val = (unsigned char *) block;
657
658 if (val
659 && memcmp (xmalloc_overrun_check_header,
660 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
661 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
662 {
663 size_t osize = xmalloc_get_size (val);
664 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
665 XMALLOC_OVERRUN_CHECK_SIZE))
666 emacs_abort ();
667 #ifdef XMALLOC_CLEAR_FREE_MEMORY
668 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
669 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
670 #else
671 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
672 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
673 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
674 #endif
675 }
676
677 free (val);
678 }
679
680 #undef malloc
681 #undef realloc
682 #undef free
683 #define malloc overrun_check_malloc
684 #define realloc overrun_check_realloc
685 #define free overrun_check_free
686 #endif
687
688 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
689 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
690 If that variable is set, block input while in one of Emacs's memory
691 allocation functions. There should be no need for this debugging
692 option, since signal handlers do not allocate memory, but Emacs
693 formerly allocated memory in signal handlers and this compile-time
694 option remains as a way to help debug the issue should it rear its
695 ugly head again. */
696 #ifdef XMALLOC_BLOCK_INPUT_CHECK
697 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
698 static void
699 malloc_block_input (void)
700 {
701 if (block_input_in_memory_allocators)
702 block_input ();
703 }
704 static void
705 malloc_unblock_input (void)
706 {
707 if (block_input_in_memory_allocators)
708 unblock_input ();
709 }
710 # define MALLOC_BLOCK_INPUT malloc_block_input ()
711 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
712 #else
713 # define MALLOC_BLOCK_INPUT ((void) 0)
714 # define MALLOC_UNBLOCK_INPUT ((void) 0)
715 #endif
716
717 #define MALLOC_PROBE(size) \
718 do { \
719 if (profiler_memory_running) \
720 malloc_probe (size); \
721 } while (0)
722
723
724 /* Like malloc but check for no memory and block interrupt input.. */
725
726 void *
727 xmalloc (size_t size)
728 {
729 void *val;
730
731 MALLOC_BLOCK_INPUT;
732 val = malloc (size);
733 MALLOC_UNBLOCK_INPUT;
734
735 if (!val && size)
736 memory_full (size);
737 MALLOC_PROBE (size);
738 return val;
739 }
740
741 /* Like the above, but zeroes out the memory just allocated. */
742
743 void *
744 xzalloc (size_t size)
745 {
746 void *val;
747
748 MALLOC_BLOCK_INPUT;
749 val = malloc (size);
750 MALLOC_UNBLOCK_INPUT;
751
752 if (!val && size)
753 memory_full (size);
754 memset (val, 0, size);
755 MALLOC_PROBE (size);
756 return val;
757 }
758
759 /* Like realloc but check for no memory and block interrupt input.. */
760
761 void *
762 xrealloc (void *block, size_t size)
763 {
764 void *val;
765
766 MALLOC_BLOCK_INPUT;
767 /* We must call malloc explicitly when BLOCK is 0, since some
768 reallocs don't do this. */
769 if (! block)
770 val = malloc (size);
771 else
772 val = realloc (block, size);
773 MALLOC_UNBLOCK_INPUT;
774
775 if (!val && size)
776 memory_full (size);
777 MALLOC_PROBE (size);
778 return val;
779 }
780
781
782 /* Like free but block interrupt input. */
783
784 void
785 xfree (void *block)
786 {
787 if (!block)
788 return;
789 MALLOC_BLOCK_INPUT;
790 free (block);
791 MALLOC_UNBLOCK_INPUT;
792 /* We don't call refill_memory_reserve here
793 because in practice the call in r_alloc_free seems to suffice. */
794 }
795
796
797 /* Other parts of Emacs pass large int values to allocator functions
798 expecting ptrdiff_t. This is portable in practice, but check it to
799 be safe. */
800 verify (INT_MAX <= PTRDIFF_MAX);
801
802
803 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
804 Signal an error on memory exhaustion, and block interrupt input. */
805
806 void *
807 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
808 {
809 eassert (0 <= nitems && 0 < item_size);
810 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
811 memory_full (SIZE_MAX);
812 return xmalloc (nitems * item_size);
813 }
814
815
816 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
817 Signal an error on memory exhaustion, and block interrupt input. */
818
819 void *
820 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
821 {
822 eassert (0 <= nitems && 0 < item_size);
823 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
824 memory_full (SIZE_MAX);
825 return xrealloc (pa, nitems * item_size);
826 }
827
828
829 /* Grow PA, which points to an array of *NITEMS items, and return the
830 location of the reallocated array, updating *NITEMS to reflect its
831 new size. The new array will contain at least NITEMS_INCR_MIN more
832 items, but will not contain more than NITEMS_MAX items total.
833 ITEM_SIZE is the size of each item, in bytes.
834
835 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
836 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
837 infinity.
838
839 If PA is null, then allocate a new array instead of reallocating
840 the old one.
841
842 Block interrupt input as needed. If memory exhaustion occurs, set
843 *NITEMS to zero if PA is null, and signal an error (i.e., do not
844 return).
845
846 Thus, to grow an array A without saving its old contents, do
847 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
848 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
849 and signals an error, and later this code is reexecuted and
850 attempts to free A. */
851
852 void *
853 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
854 ptrdiff_t nitems_max, ptrdiff_t item_size)
855 {
856 /* The approximate size to use for initial small allocation
857 requests. This is the largest "small" request for the GNU C
858 library malloc. */
859 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
860
861 /* If the array is tiny, grow it to about (but no greater than)
862 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
863 ptrdiff_t n = *nitems;
864 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
865 ptrdiff_t half_again = n >> 1;
866 ptrdiff_t incr_estimate = max (tiny_max, half_again);
867
868 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
869 NITEMS_MAX, and what the C language can represent safely. */
870 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
871 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
872 ? nitems_max : C_language_max);
873 ptrdiff_t nitems_incr_max = n_max - n;
874 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
875
876 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
877 if (! pa)
878 *nitems = 0;
879 if (nitems_incr_max < incr)
880 memory_full (SIZE_MAX);
881 n += incr;
882 pa = xrealloc (pa, n * item_size);
883 *nitems = n;
884 return pa;
885 }
886
887
888 /* Like strdup, but uses xmalloc. */
889
890 char *
891 xstrdup (const char *s)
892 {
893 ptrdiff_t size;
894 eassert (s);
895 size = strlen (s) + 1;
896 return memcpy (xmalloc (size), s, size);
897 }
898
899 /* Like above, but duplicates Lisp string to C string. */
900
901 char *
902 xlispstrdup (Lisp_Object string)
903 {
904 ptrdiff_t size = SBYTES (string) + 1;
905 return memcpy (xmalloc (size), SSDATA (string), size);
906 }
907
908 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
909 pointed to. If STRING is null, assign it without copying anything.
910 Allocate before freeing, to avoid a dangling pointer if allocation
911 fails. */
912
913 void
914 dupstring (char **ptr, char const *string)
915 {
916 char *old = *ptr;
917 *ptr = string ? xstrdup (string) : 0;
918 xfree (old);
919 }
920
921
922 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
923 argument is a const pointer. */
924
925 void
926 xputenv (char const *string)
927 {
928 if (putenv ((char *) string) != 0)
929 memory_full (0);
930 }
931
932 /* Return a newly allocated memory block of SIZE bytes, remembering
933 to free it when unwinding. */
934 void *
935 record_xmalloc (size_t size)
936 {
937 void *p = xmalloc (size);
938 record_unwind_protect_ptr (xfree, p);
939 return p;
940 }
941
942
943 /* Like malloc but used for allocating Lisp data. NBYTES is the
944 number of bytes to allocate, TYPE describes the intended use of the
945 allocated memory block (for strings, for conses, ...). */
946
947 #if ! USE_LSB_TAG
948 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
949 #endif
950
951 static void *
952 lisp_malloc (size_t nbytes, enum mem_type type)
953 {
954 register void *val;
955
956 MALLOC_BLOCK_INPUT;
957
958 #ifdef GC_MALLOC_CHECK
959 allocated_mem_type = type;
960 #endif
961
962 val = malloc (nbytes);
963
964 #if ! USE_LSB_TAG
965 /* If the memory just allocated cannot be addressed thru a Lisp
966 object's pointer, and it needs to be,
967 that's equivalent to running out of memory. */
968 if (val && type != MEM_TYPE_NON_LISP)
969 {
970 Lisp_Object tem;
971 XSETCONS (tem, (char *) val + nbytes - 1);
972 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
973 {
974 lisp_malloc_loser = val;
975 free (val);
976 val = 0;
977 }
978 }
979 #endif
980
981 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
982 if (val && type != MEM_TYPE_NON_LISP)
983 mem_insert (val, (char *) val + nbytes, type);
984 #endif
985
986 MALLOC_UNBLOCK_INPUT;
987 if (!val && nbytes)
988 memory_full (nbytes);
989 MALLOC_PROBE (nbytes);
990 return val;
991 }
992
993 /* Free BLOCK. This must be called to free memory allocated with a
994 call to lisp_malloc. */
995
996 static void
997 lisp_free (void *block)
998 {
999 MALLOC_BLOCK_INPUT;
1000 free (block);
1001 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1002 mem_delete (mem_find (block));
1003 #endif
1004 MALLOC_UNBLOCK_INPUT;
1005 }
1006
1007 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1008
1009 /* The entry point is lisp_align_malloc which returns blocks of at most
1010 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1011
1012 /* Use aligned_alloc if it or a simple substitute is available.
1013 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1014 clang 3.3 anyway. */
1015
1016 #if ! ADDRESS_SANITIZER
1017 # if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC && !defined HYBRID_MALLOC
1018 # define USE_ALIGNED_ALLOC 1
1019 /* Defined in gmalloc.c. */
1020 void *aligned_alloc (size_t, size_t);
1021 # elif defined HYBRID_MALLOC
1022 # if defined ALIGNED_ALLOC || defined HAVE_POSIX_MEMALIGN
1023 # define USE_ALIGNED_ALLOC 1
1024 # define aligned_alloc hybrid_aligned_alloc
1025 /* Defined in gmalloc.c. */
1026 void *aligned_alloc (size_t, size_t);
1027 # endif
1028 # elif defined HAVE_ALIGNED_ALLOC
1029 # define USE_ALIGNED_ALLOC 1
1030 # elif defined HAVE_POSIX_MEMALIGN
1031 # define USE_ALIGNED_ALLOC 1
1032 static void *
1033 aligned_alloc (size_t alignment, size_t size)
1034 {
1035 void *p;
1036 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1037 }
1038 # endif
1039 #endif
1040
1041 /* BLOCK_ALIGN has to be a power of 2. */
1042 #define BLOCK_ALIGN (1 << 10)
1043
1044 /* Padding to leave at the end of a malloc'd block. This is to give
1045 malloc a chance to minimize the amount of memory wasted to alignment.
1046 It should be tuned to the particular malloc library used.
1047 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1048 aligned_alloc on the other hand would ideally prefer a value of 4
1049 because otherwise, there's 1020 bytes wasted between each ablocks.
1050 In Emacs, testing shows that those 1020 can most of the time be
1051 efficiently used by malloc to place other objects, so a value of 0 can
1052 still preferable unless you have a lot of aligned blocks and virtually
1053 nothing else. */
1054 #define BLOCK_PADDING 0
1055 #define BLOCK_BYTES \
1056 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1057
1058 /* Internal data structures and constants. */
1059
1060 #define ABLOCKS_SIZE 16
1061
1062 /* An aligned block of memory. */
1063 struct ablock
1064 {
1065 union
1066 {
1067 char payload[BLOCK_BYTES];
1068 struct ablock *next_free;
1069 } x;
1070 /* `abase' is the aligned base of the ablocks. */
1071 /* It is overloaded to hold the virtual `busy' field that counts
1072 the number of used ablock in the parent ablocks.
1073 The first ablock has the `busy' field, the others have the `abase'
1074 field. To tell the difference, we assume that pointers will have
1075 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1076 is used to tell whether the real base of the parent ablocks is `abase'
1077 (if not, the word before the first ablock holds a pointer to the
1078 real base). */
1079 struct ablocks *abase;
1080 /* The padding of all but the last ablock is unused. The padding of
1081 the last ablock in an ablocks is not allocated. */
1082 #if BLOCK_PADDING
1083 char padding[BLOCK_PADDING];
1084 #endif
1085 };
1086
1087 /* A bunch of consecutive aligned blocks. */
1088 struct ablocks
1089 {
1090 struct ablock blocks[ABLOCKS_SIZE];
1091 };
1092
1093 /* Size of the block requested from malloc or aligned_alloc. */
1094 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1095
1096 #define ABLOCK_ABASE(block) \
1097 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1098 ? (struct ablocks *)(block) \
1099 : (block)->abase)
1100
1101 /* Virtual `busy' field. */
1102 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1103
1104 /* Pointer to the (not necessarily aligned) malloc block. */
1105 #ifdef USE_ALIGNED_ALLOC
1106 #define ABLOCKS_BASE(abase) (abase)
1107 #else
1108 #define ABLOCKS_BASE(abase) \
1109 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1110 #endif
1111
1112 /* The list of free ablock. */
1113 static struct ablock *free_ablock;
1114
1115 /* Allocate an aligned block of nbytes.
1116 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1117 smaller or equal to BLOCK_BYTES. */
1118 static void *
1119 lisp_align_malloc (size_t nbytes, enum mem_type type)
1120 {
1121 void *base, *val;
1122 struct ablocks *abase;
1123
1124 eassert (nbytes <= BLOCK_BYTES);
1125
1126 MALLOC_BLOCK_INPUT;
1127
1128 #ifdef GC_MALLOC_CHECK
1129 allocated_mem_type = type;
1130 #endif
1131
1132 if (!free_ablock)
1133 {
1134 int i;
1135 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1136
1137 #ifdef DOUG_LEA_MALLOC
1138 if (!mmap_lisp_allowed_p ())
1139 mallopt (M_MMAP_MAX, 0);
1140 #endif
1141
1142 #ifdef USE_ALIGNED_ALLOC
1143 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1144 #else
1145 base = malloc (ABLOCKS_BYTES);
1146 abase = ALIGN (base, BLOCK_ALIGN);
1147 #endif
1148
1149 if (base == 0)
1150 {
1151 MALLOC_UNBLOCK_INPUT;
1152 memory_full (ABLOCKS_BYTES);
1153 }
1154
1155 aligned = (base == abase);
1156 if (!aligned)
1157 ((void **) abase)[-1] = base;
1158
1159 #ifdef DOUG_LEA_MALLOC
1160 if (!mmap_lisp_allowed_p ())
1161 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1162 #endif
1163
1164 #if ! USE_LSB_TAG
1165 /* If the memory just allocated cannot be addressed thru a Lisp
1166 object's pointer, and it needs to be, that's equivalent to
1167 running out of memory. */
1168 if (type != MEM_TYPE_NON_LISP)
1169 {
1170 Lisp_Object tem;
1171 char *end = (char *) base + ABLOCKS_BYTES - 1;
1172 XSETCONS (tem, end);
1173 if ((char *) XCONS (tem) != end)
1174 {
1175 lisp_malloc_loser = base;
1176 free (base);
1177 MALLOC_UNBLOCK_INPUT;
1178 memory_full (SIZE_MAX);
1179 }
1180 }
1181 #endif
1182
1183 /* Initialize the blocks and put them on the free list.
1184 If `base' was not properly aligned, we can't use the last block. */
1185 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1186 {
1187 abase->blocks[i].abase = abase;
1188 abase->blocks[i].x.next_free = free_ablock;
1189 free_ablock = &abase->blocks[i];
1190 }
1191 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1192
1193 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1194 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1195 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1196 eassert (ABLOCKS_BASE (abase) == base);
1197 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1198 }
1199
1200 abase = ABLOCK_ABASE (free_ablock);
1201 ABLOCKS_BUSY (abase)
1202 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1203 val = free_ablock;
1204 free_ablock = free_ablock->x.next_free;
1205
1206 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1207 if (type != MEM_TYPE_NON_LISP)
1208 mem_insert (val, (char *) val + nbytes, type);
1209 #endif
1210
1211 MALLOC_UNBLOCK_INPUT;
1212
1213 MALLOC_PROBE (nbytes);
1214
1215 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1216 return val;
1217 }
1218
1219 static void
1220 lisp_align_free (void *block)
1221 {
1222 struct ablock *ablock = block;
1223 struct ablocks *abase = ABLOCK_ABASE (ablock);
1224
1225 MALLOC_BLOCK_INPUT;
1226 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1227 mem_delete (mem_find (block));
1228 #endif
1229 /* Put on free list. */
1230 ablock->x.next_free = free_ablock;
1231 free_ablock = ablock;
1232 /* Update busy count. */
1233 ABLOCKS_BUSY (abase)
1234 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1235
1236 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1237 { /* All the blocks are free. */
1238 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1239 struct ablock **tem = &free_ablock;
1240 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1241
1242 while (*tem)
1243 {
1244 if (*tem >= (struct ablock *) abase && *tem < atop)
1245 {
1246 i++;
1247 *tem = (*tem)->x.next_free;
1248 }
1249 else
1250 tem = &(*tem)->x.next_free;
1251 }
1252 eassert ((aligned & 1) == aligned);
1253 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1254 #ifdef USE_POSIX_MEMALIGN
1255 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1256 #endif
1257 free (ABLOCKS_BASE (abase));
1258 }
1259 MALLOC_UNBLOCK_INPUT;
1260 }
1261
1262 \f
1263 /***********************************************************************
1264 Interval Allocation
1265 ***********************************************************************/
1266
1267 /* Number of intervals allocated in an interval_block structure.
1268 The 1020 is 1024 minus malloc overhead. */
1269
1270 #define INTERVAL_BLOCK_SIZE \
1271 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1272
1273 /* Intervals are allocated in chunks in the form of an interval_block
1274 structure. */
1275
1276 struct interval_block
1277 {
1278 /* Place `intervals' first, to preserve alignment. */
1279 struct interval intervals[INTERVAL_BLOCK_SIZE];
1280 struct interval_block *next;
1281 };
1282
1283 /* Current interval block. Its `next' pointer points to older
1284 blocks. */
1285
1286 static struct interval_block *interval_block;
1287
1288 /* Index in interval_block above of the next unused interval
1289 structure. */
1290
1291 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1292
1293 /* Number of free and live intervals. */
1294
1295 static EMACS_INT total_free_intervals, total_intervals;
1296
1297 /* List of free intervals. */
1298
1299 static INTERVAL interval_free_list;
1300
1301 /* Return a new interval. */
1302
1303 INTERVAL
1304 make_interval (void)
1305 {
1306 INTERVAL val;
1307
1308 MALLOC_BLOCK_INPUT;
1309
1310 if (interval_free_list)
1311 {
1312 val = interval_free_list;
1313 interval_free_list = INTERVAL_PARENT (interval_free_list);
1314 }
1315 else
1316 {
1317 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1318 {
1319 struct interval_block *newi
1320 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1321
1322 newi->next = interval_block;
1323 interval_block = newi;
1324 interval_block_index = 0;
1325 total_free_intervals += INTERVAL_BLOCK_SIZE;
1326 }
1327 val = &interval_block->intervals[interval_block_index++];
1328 }
1329
1330 MALLOC_UNBLOCK_INPUT;
1331
1332 consing_since_gc += sizeof (struct interval);
1333 intervals_consed++;
1334 total_free_intervals--;
1335 RESET_INTERVAL (val);
1336 val->gcmarkbit = 0;
1337 return val;
1338 }
1339
1340
1341 /* Mark Lisp objects in interval I. */
1342
1343 static void
1344 mark_interval (register INTERVAL i, Lisp_Object dummy)
1345 {
1346 /* Intervals should never be shared. So, if extra internal checking is
1347 enabled, GC aborts if it seems to have visited an interval twice. */
1348 eassert (!i->gcmarkbit);
1349 i->gcmarkbit = 1;
1350 mark_object (i->plist);
1351 }
1352
1353 /* Mark the interval tree rooted in I. */
1354
1355 #define MARK_INTERVAL_TREE(i) \
1356 do { \
1357 if (i && !i->gcmarkbit) \
1358 traverse_intervals_noorder (i, mark_interval, Qnil); \
1359 } while (0)
1360
1361 /***********************************************************************
1362 String Allocation
1363 ***********************************************************************/
1364
1365 /* Lisp_Strings are allocated in string_block structures. When a new
1366 string_block is allocated, all the Lisp_Strings it contains are
1367 added to a free-list string_free_list. When a new Lisp_String is
1368 needed, it is taken from that list. During the sweep phase of GC,
1369 string_blocks that are entirely free are freed, except two which
1370 we keep.
1371
1372 String data is allocated from sblock structures. Strings larger
1373 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1374 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1375
1376 Sblocks consist internally of sdata structures, one for each
1377 Lisp_String. The sdata structure points to the Lisp_String it
1378 belongs to. The Lisp_String points back to the `u.data' member of
1379 its sdata structure.
1380
1381 When a Lisp_String is freed during GC, it is put back on
1382 string_free_list, and its `data' member and its sdata's `string'
1383 pointer is set to null. The size of the string is recorded in the
1384 `n.nbytes' member of the sdata. So, sdata structures that are no
1385 longer used, can be easily recognized, and it's easy to compact the
1386 sblocks of small strings which we do in compact_small_strings. */
1387
1388 /* Size in bytes of an sblock structure used for small strings. This
1389 is 8192 minus malloc overhead. */
1390
1391 #define SBLOCK_SIZE 8188
1392
1393 /* Strings larger than this are considered large strings. String data
1394 for large strings is allocated from individual sblocks. */
1395
1396 #define LARGE_STRING_BYTES 1024
1397
1398 /* The SDATA typedef is a struct or union describing string memory
1399 sub-allocated from an sblock. This is where the contents of Lisp
1400 strings are stored. */
1401
1402 struct sdata
1403 {
1404 /* Back-pointer to the string this sdata belongs to. If null, this
1405 structure is free, and NBYTES (in this structure or in the union below)
1406 contains the string's byte size (the same value that STRING_BYTES
1407 would return if STRING were non-null). If non-null, STRING_BYTES
1408 (STRING) is the size of the data, and DATA contains the string's
1409 contents. */
1410 struct Lisp_String *string;
1411
1412 #ifdef GC_CHECK_STRING_BYTES
1413 ptrdiff_t nbytes;
1414 #endif
1415
1416 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1417 };
1418
1419 #ifdef GC_CHECK_STRING_BYTES
1420
1421 typedef struct sdata sdata;
1422 #define SDATA_NBYTES(S) (S)->nbytes
1423 #define SDATA_DATA(S) (S)->data
1424
1425 #else
1426
1427 typedef union
1428 {
1429 struct Lisp_String *string;
1430
1431 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1432 which has a flexible array member. However, if implemented by
1433 giving this union a member of type 'struct sdata', the union
1434 could not be the last (flexible) member of 'struct sblock',
1435 because C99 prohibits a flexible array member from having a type
1436 that is itself a flexible array. So, comment this member out here,
1437 but remember that the option's there when using this union. */
1438 #if 0
1439 struct sdata u;
1440 #endif
1441
1442 /* When STRING is null. */
1443 struct
1444 {
1445 struct Lisp_String *string;
1446 ptrdiff_t nbytes;
1447 } n;
1448 } sdata;
1449
1450 #define SDATA_NBYTES(S) (S)->n.nbytes
1451 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1452
1453 #endif /* not GC_CHECK_STRING_BYTES */
1454
1455 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1456
1457 /* Structure describing a block of memory which is sub-allocated to
1458 obtain string data memory for strings. Blocks for small strings
1459 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1460 as large as needed. */
1461
1462 struct sblock
1463 {
1464 /* Next in list. */
1465 struct sblock *next;
1466
1467 /* Pointer to the next free sdata block. This points past the end
1468 of the sblock if there isn't any space left in this block. */
1469 sdata *next_free;
1470
1471 /* String data. */
1472 sdata data[FLEXIBLE_ARRAY_MEMBER];
1473 };
1474
1475 /* Number of Lisp strings in a string_block structure. The 1020 is
1476 1024 minus malloc overhead. */
1477
1478 #define STRING_BLOCK_SIZE \
1479 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1480
1481 /* Structure describing a block from which Lisp_String structures
1482 are allocated. */
1483
1484 struct string_block
1485 {
1486 /* Place `strings' first, to preserve alignment. */
1487 struct Lisp_String strings[STRING_BLOCK_SIZE];
1488 struct string_block *next;
1489 };
1490
1491 /* Head and tail of the list of sblock structures holding Lisp string
1492 data. We always allocate from current_sblock. The NEXT pointers
1493 in the sblock structures go from oldest_sblock to current_sblock. */
1494
1495 static struct sblock *oldest_sblock, *current_sblock;
1496
1497 /* List of sblocks for large strings. */
1498
1499 static struct sblock *large_sblocks;
1500
1501 /* List of string_block structures. */
1502
1503 static struct string_block *string_blocks;
1504
1505 /* Free-list of Lisp_Strings. */
1506
1507 static struct Lisp_String *string_free_list;
1508
1509 /* Number of live and free Lisp_Strings. */
1510
1511 static EMACS_INT total_strings, total_free_strings;
1512
1513 /* Number of bytes used by live strings. */
1514
1515 static EMACS_INT total_string_bytes;
1516
1517 /* Given a pointer to a Lisp_String S which is on the free-list
1518 string_free_list, return a pointer to its successor in the
1519 free-list. */
1520
1521 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1522
1523 /* Return a pointer to the sdata structure belonging to Lisp string S.
1524 S must be live, i.e. S->data must not be null. S->data is actually
1525 a pointer to the `u.data' member of its sdata structure; the
1526 structure starts at a constant offset in front of that. */
1527
1528 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1529
1530
1531 #ifdef GC_CHECK_STRING_OVERRUN
1532
1533 /* We check for overrun in string data blocks by appending a small
1534 "cookie" after each allocated string data block, and check for the
1535 presence of this cookie during GC. */
1536
1537 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1538 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1539 { '\xde', '\xad', '\xbe', '\xef' };
1540
1541 #else
1542 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1543 #endif
1544
1545 /* Value is the size of an sdata structure large enough to hold NBYTES
1546 bytes of string data. The value returned includes a terminating
1547 NUL byte, the size of the sdata structure, and padding. */
1548
1549 #ifdef GC_CHECK_STRING_BYTES
1550
1551 #define SDATA_SIZE(NBYTES) \
1552 ((SDATA_DATA_OFFSET \
1553 + (NBYTES) + 1 \
1554 + sizeof (ptrdiff_t) - 1) \
1555 & ~(sizeof (ptrdiff_t) - 1))
1556
1557 #else /* not GC_CHECK_STRING_BYTES */
1558
1559 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1560 less than the size of that member. The 'max' is not needed when
1561 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1562 alignment code reserves enough space. */
1563
1564 #define SDATA_SIZE(NBYTES) \
1565 ((SDATA_DATA_OFFSET \
1566 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1567 ? NBYTES \
1568 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1569 + 1 \
1570 + sizeof (ptrdiff_t) - 1) \
1571 & ~(sizeof (ptrdiff_t) - 1))
1572
1573 #endif /* not GC_CHECK_STRING_BYTES */
1574
1575 /* Extra bytes to allocate for each string. */
1576
1577 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1578
1579 /* Exact bound on the number of bytes in a string, not counting the
1580 terminating null. A string cannot contain more bytes than
1581 STRING_BYTES_BOUND, nor can it be so long that the size_t
1582 arithmetic in allocate_string_data would overflow while it is
1583 calculating a value to be passed to malloc. */
1584 static ptrdiff_t const STRING_BYTES_MAX =
1585 min (STRING_BYTES_BOUND,
1586 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1587 - GC_STRING_EXTRA
1588 - offsetof (struct sblock, data)
1589 - SDATA_DATA_OFFSET)
1590 & ~(sizeof (EMACS_INT) - 1)));
1591
1592 /* Initialize string allocation. Called from init_alloc_once. */
1593
1594 static void
1595 init_strings (void)
1596 {
1597 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1598 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1599 }
1600
1601
1602 #ifdef GC_CHECK_STRING_BYTES
1603
1604 static int check_string_bytes_count;
1605
1606 /* Like STRING_BYTES, but with debugging check. Can be
1607 called during GC, so pay attention to the mark bit. */
1608
1609 ptrdiff_t
1610 string_bytes (struct Lisp_String *s)
1611 {
1612 ptrdiff_t nbytes =
1613 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1614
1615 if (!PURE_POINTER_P (s)
1616 && s->data
1617 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1618 emacs_abort ();
1619 return nbytes;
1620 }
1621
1622 /* Check validity of Lisp strings' string_bytes member in B. */
1623
1624 static void
1625 check_sblock (struct sblock *b)
1626 {
1627 sdata *from, *end, *from_end;
1628
1629 end = b->next_free;
1630
1631 for (from = b->data; from < end; from = from_end)
1632 {
1633 /* Compute the next FROM here because copying below may
1634 overwrite data we need to compute it. */
1635 ptrdiff_t nbytes;
1636
1637 /* Check that the string size recorded in the string is the
1638 same as the one recorded in the sdata structure. */
1639 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1640 : SDATA_NBYTES (from));
1641 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1642 }
1643 }
1644
1645
1646 /* Check validity of Lisp strings' string_bytes member. ALL_P
1647 means check all strings, otherwise check only most
1648 recently allocated strings. Used for hunting a bug. */
1649
1650 static void
1651 check_string_bytes (bool all_p)
1652 {
1653 if (all_p)
1654 {
1655 struct sblock *b;
1656
1657 for (b = large_sblocks; b; b = b->next)
1658 {
1659 struct Lisp_String *s = b->data[0].string;
1660 if (s)
1661 string_bytes (s);
1662 }
1663
1664 for (b = oldest_sblock; b; b = b->next)
1665 check_sblock (b);
1666 }
1667 else if (current_sblock)
1668 check_sblock (current_sblock);
1669 }
1670
1671 #else /* not GC_CHECK_STRING_BYTES */
1672
1673 #define check_string_bytes(all) ((void) 0)
1674
1675 #endif /* GC_CHECK_STRING_BYTES */
1676
1677 #ifdef GC_CHECK_STRING_FREE_LIST
1678
1679 /* Walk through the string free list looking for bogus next pointers.
1680 This may catch buffer overrun from a previous string. */
1681
1682 static void
1683 check_string_free_list (void)
1684 {
1685 struct Lisp_String *s;
1686
1687 /* Pop a Lisp_String off the free-list. */
1688 s = string_free_list;
1689 while (s != NULL)
1690 {
1691 if ((uintptr_t) s < 1024)
1692 emacs_abort ();
1693 s = NEXT_FREE_LISP_STRING (s);
1694 }
1695 }
1696 #else
1697 #define check_string_free_list()
1698 #endif
1699
1700 /* Return a new Lisp_String. */
1701
1702 static struct Lisp_String *
1703 allocate_string (void)
1704 {
1705 struct Lisp_String *s;
1706
1707 MALLOC_BLOCK_INPUT;
1708
1709 /* If the free-list is empty, allocate a new string_block, and
1710 add all the Lisp_Strings in it to the free-list. */
1711 if (string_free_list == NULL)
1712 {
1713 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1714 int i;
1715
1716 b->next = string_blocks;
1717 string_blocks = b;
1718
1719 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1720 {
1721 s = b->strings + i;
1722 /* Every string on a free list should have NULL data pointer. */
1723 s->data = NULL;
1724 NEXT_FREE_LISP_STRING (s) = string_free_list;
1725 string_free_list = s;
1726 }
1727
1728 total_free_strings += STRING_BLOCK_SIZE;
1729 }
1730
1731 check_string_free_list ();
1732
1733 /* Pop a Lisp_String off the free-list. */
1734 s = string_free_list;
1735 string_free_list = NEXT_FREE_LISP_STRING (s);
1736
1737 MALLOC_UNBLOCK_INPUT;
1738
1739 --total_free_strings;
1740 ++total_strings;
1741 ++strings_consed;
1742 consing_since_gc += sizeof *s;
1743
1744 #ifdef GC_CHECK_STRING_BYTES
1745 if (!noninteractive)
1746 {
1747 if (++check_string_bytes_count == 200)
1748 {
1749 check_string_bytes_count = 0;
1750 check_string_bytes (1);
1751 }
1752 else
1753 check_string_bytes (0);
1754 }
1755 #endif /* GC_CHECK_STRING_BYTES */
1756
1757 return s;
1758 }
1759
1760
1761 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1762 plus a NUL byte at the end. Allocate an sdata structure for S, and
1763 set S->data to its `u.data' member. Store a NUL byte at the end of
1764 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1765 S->data if it was initially non-null. */
1766
1767 void
1768 allocate_string_data (struct Lisp_String *s,
1769 EMACS_INT nchars, EMACS_INT nbytes)
1770 {
1771 sdata *data, *old_data;
1772 struct sblock *b;
1773 ptrdiff_t needed, old_nbytes;
1774
1775 if (STRING_BYTES_MAX < nbytes)
1776 string_overflow ();
1777
1778 /* Determine the number of bytes needed to store NBYTES bytes
1779 of string data. */
1780 needed = SDATA_SIZE (nbytes);
1781 if (s->data)
1782 {
1783 old_data = SDATA_OF_STRING (s);
1784 old_nbytes = STRING_BYTES (s);
1785 }
1786 else
1787 old_data = NULL;
1788
1789 MALLOC_BLOCK_INPUT;
1790
1791 if (nbytes > LARGE_STRING_BYTES)
1792 {
1793 size_t size = offsetof (struct sblock, data) + needed;
1794
1795 #ifdef DOUG_LEA_MALLOC
1796 if (!mmap_lisp_allowed_p ())
1797 mallopt (M_MMAP_MAX, 0);
1798 #endif
1799
1800 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1801
1802 #ifdef DOUG_LEA_MALLOC
1803 if (!mmap_lisp_allowed_p ())
1804 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1805 #endif
1806
1807 b->next_free = b->data;
1808 b->data[0].string = NULL;
1809 b->next = large_sblocks;
1810 large_sblocks = b;
1811 }
1812 else if (current_sblock == NULL
1813 || (((char *) current_sblock + SBLOCK_SIZE
1814 - (char *) current_sblock->next_free)
1815 < (needed + GC_STRING_EXTRA)))
1816 {
1817 /* Not enough room in the current sblock. */
1818 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1819 b->next_free = b->data;
1820 b->data[0].string = NULL;
1821 b->next = NULL;
1822
1823 if (current_sblock)
1824 current_sblock->next = b;
1825 else
1826 oldest_sblock = b;
1827 current_sblock = b;
1828 }
1829 else
1830 b = current_sblock;
1831
1832 data = b->next_free;
1833 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1834
1835 MALLOC_UNBLOCK_INPUT;
1836
1837 data->string = s;
1838 s->data = SDATA_DATA (data);
1839 #ifdef GC_CHECK_STRING_BYTES
1840 SDATA_NBYTES (data) = nbytes;
1841 #endif
1842 s->size = nchars;
1843 s->size_byte = nbytes;
1844 s->data[nbytes] = '\0';
1845 #ifdef GC_CHECK_STRING_OVERRUN
1846 memcpy ((char *) data + needed, string_overrun_cookie,
1847 GC_STRING_OVERRUN_COOKIE_SIZE);
1848 #endif
1849
1850 /* Note that Faset may call to this function when S has already data
1851 assigned. In this case, mark data as free by setting it's string
1852 back-pointer to null, and record the size of the data in it. */
1853 if (old_data)
1854 {
1855 SDATA_NBYTES (old_data) = old_nbytes;
1856 old_data->string = NULL;
1857 }
1858
1859 consing_since_gc += needed;
1860 }
1861
1862
1863 /* Sweep and compact strings. */
1864
1865 NO_INLINE /* For better stack traces */
1866 static void
1867 sweep_strings (void)
1868 {
1869 struct string_block *b, *next;
1870 struct string_block *live_blocks = NULL;
1871
1872 string_free_list = NULL;
1873 total_strings = total_free_strings = 0;
1874 total_string_bytes = 0;
1875
1876 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1877 for (b = string_blocks; b; b = next)
1878 {
1879 int i, nfree = 0;
1880 struct Lisp_String *free_list_before = string_free_list;
1881
1882 next = b->next;
1883
1884 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1885 {
1886 struct Lisp_String *s = b->strings + i;
1887
1888 if (s->data)
1889 {
1890 /* String was not on free-list before. */
1891 if (STRING_MARKED_P (s))
1892 {
1893 /* String is live; unmark it and its intervals. */
1894 UNMARK_STRING (s);
1895
1896 /* Do not use string_(set|get)_intervals here. */
1897 s->intervals = balance_intervals (s->intervals);
1898
1899 ++total_strings;
1900 total_string_bytes += STRING_BYTES (s);
1901 }
1902 else
1903 {
1904 /* String is dead. Put it on the free-list. */
1905 sdata *data = SDATA_OF_STRING (s);
1906
1907 /* Save the size of S in its sdata so that we know
1908 how large that is. Reset the sdata's string
1909 back-pointer so that we know it's free. */
1910 #ifdef GC_CHECK_STRING_BYTES
1911 if (string_bytes (s) != SDATA_NBYTES (data))
1912 emacs_abort ();
1913 #else
1914 data->n.nbytes = STRING_BYTES (s);
1915 #endif
1916 data->string = NULL;
1917
1918 /* Reset the strings's `data' member so that we
1919 know it's free. */
1920 s->data = NULL;
1921
1922 /* Put the string on the free-list. */
1923 NEXT_FREE_LISP_STRING (s) = string_free_list;
1924 string_free_list = s;
1925 ++nfree;
1926 }
1927 }
1928 else
1929 {
1930 /* S was on the free-list before. Put it there again. */
1931 NEXT_FREE_LISP_STRING (s) = string_free_list;
1932 string_free_list = s;
1933 ++nfree;
1934 }
1935 }
1936
1937 /* Free blocks that contain free Lisp_Strings only, except
1938 the first two of them. */
1939 if (nfree == STRING_BLOCK_SIZE
1940 && total_free_strings > STRING_BLOCK_SIZE)
1941 {
1942 lisp_free (b);
1943 string_free_list = free_list_before;
1944 }
1945 else
1946 {
1947 total_free_strings += nfree;
1948 b->next = live_blocks;
1949 live_blocks = b;
1950 }
1951 }
1952
1953 check_string_free_list ();
1954
1955 string_blocks = live_blocks;
1956 free_large_strings ();
1957 compact_small_strings ();
1958
1959 check_string_free_list ();
1960 }
1961
1962
1963 /* Free dead large strings. */
1964
1965 static void
1966 free_large_strings (void)
1967 {
1968 struct sblock *b, *next;
1969 struct sblock *live_blocks = NULL;
1970
1971 for (b = large_sblocks; b; b = next)
1972 {
1973 next = b->next;
1974
1975 if (b->data[0].string == NULL)
1976 lisp_free (b);
1977 else
1978 {
1979 b->next = live_blocks;
1980 live_blocks = b;
1981 }
1982 }
1983
1984 large_sblocks = live_blocks;
1985 }
1986
1987
1988 /* Compact data of small strings. Free sblocks that don't contain
1989 data of live strings after compaction. */
1990
1991 static void
1992 compact_small_strings (void)
1993 {
1994 struct sblock *b, *tb, *next;
1995 sdata *from, *to, *end, *tb_end;
1996 sdata *to_end, *from_end;
1997
1998 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1999 to, and TB_END is the end of TB. */
2000 tb = oldest_sblock;
2001 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2002 to = tb->data;
2003
2004 /* Step through the blocks from the oldest to the youngest. We
2005 expect that old blocks will stabilize over time, so that less
2006 copying will happen this way. */
2007 for (b = oldest_sblock; b; b = b->next)
2008 {
2009 end = b->next_free;
2010 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2011
2012 for (from = b->data; from < end; from = from_end)
2013 {
2014 /* Compute the next FROM here because copying below may
2015 overwrite data we need to compute it. */
2016 ptrdiff_t nbytes;
2017 struct Lisp_String *s = from->string;
2018
2019 #ifdef GC_CHECK_STRING_BYTES
2020 /* Check that the string size recorded in the string is the
2021 same as the one recorded in the sdata structure. */
2022 if (s && string_bytes (s) != SDATA_NBYTES (from))
2023 emacs_abort ();
2024 #endif /* GC_CHECK_STRING_BYTES */
2025
2026 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2027 eassert (nbytes <= LARGE_STRING_BYTES);
2028
2029 nbytes = SDATA_SIZE (nbytes);
2030 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2031
2032 #ifdef GC_CHECK_STRING_OVERRUN
2033 if (memcmp (string_overrun_cookie,
2034 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2035 GC_STRING_OVERRUN_COOKIE_SIZE))
2036 emacs_abort ();
2037 #endif
2038
2039 /* Non-NULL S means it's alive. Copy its data. */
2040 if (s)
2041 {
2042 /* If TB is full, proceed with the next sblock. */
2043 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2044 if (to_end > tb_end)
2045 {
2046 tb->next_free = to;
2047 tb = tb->next;
2048 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2049 to = tb->data;
2050 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2051 }
2052
2053 /* Copy, and update the string's `data' pointer. */
2054 if (from != to)
2055 {
2056 eassert (tb != b || to < from);
2057 memmove (to, from, nbytes + GC_STRING_EXTRA);
2058 to->string->data = SDATA_DATA (to);
2059 }
2060
2061 /* Advance past the sdata we copied to. */
2062 to = to_end;
2063 }
2064 }
2065 }
2066
2067 /* The rest of the sblocks following TB don't contain live data, so
2068 we can free them. */
2069 for (b = tb->next; b; b = next)
2070 {
2071 next = b->next;
2072 lisp_free (b);
2073 }
2074
2075 tb->next_free = to;
2076 tb->next = NULL;
2077 current_sblock = tb;
2078 }
2079
2080 void
2081 string_overflow (void)
2082 {
2083 error ("Maximum string size exceeded");
2084 }
2085
2086 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2087 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2088 LENGTH must be an integer.
2089 INIT must be an integer that represents a character. */)
2090 (Lisp_Object length, Lisp_Object init)
2091 {
2092 register Lisp_Object val;
2093 int c;
2094 EMACS_INT nbytes;
2095
2096 CHECK_NATNUM (length);
2097 CHECK_CHARACTER (init);
2098
2099 c = XFASTINT (init);
2100 if (ASCII_CHAR_P (c))
2101 {
2102 nbytes = XINT (length);
2103 val = make_uninit_string (nbytes);
2104 memset (SDATA (val), c, nbytes);
2105 SDATA (val)[nbytes] = 0;
2106 }
2107 else
2108 {
2109 unsigned char str[MAX_MULTIBYTE_LENGTH];
2110 ptrdiff_t len = CHAR_STRING (c, str);
2111 EMACS_INT string_len = XINT (length);
2112 unsigned char *p, *beg, *end;
2113
2114 if (string_len > STRING_BYTES_MAX / len)
2115 string_overflow ();
2116 nbytes = len * string_len;
2117 val = make_uninit_multibyte_string (string_len, nbytes);
2118 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2119 {
2120 /* First time we just copy `str' to the data of `val'. */
2121 if (p == beg)
2122 memcpy (p, str, len);
2123 else
2124 {
2125 /* Next time we copy largest possible chunk from
2126 initialized to uninitialized part of `val'. */
2127 len = min (p - beg, end - p);
2128 memcpy (p, beg, len);
2129 }
2130 }
2131 *p = 0;
2132 }
2133
2134 return val;
2135 }
2136
2137 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2138 Return A. */
2139
2140 Lisp_Object
2141 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2142 {
2143 EMACS_INT nbits = bool_vector_size (a);
2144 if (0 < nbits)
2145 {
2146 unsigned char *data = bool_vector_uchar_data (a);
2147 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2148 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2149 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2150 memset (data, pattern, nbytes - 1);
2151 data[nbytes - 1] = pattern & last_mask;
2152 }
2153 return a;
2154 }
2155
2156 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2157
2158 Lisp_Object
2159 make_uninit_bool_vector (EMACS_INT nbits)
2160 {
2161 Lisp_Object val;
2162 EMACS_INT words = bool_vector_words (nbits);
2163 EMACS_INT word_bytes = words * sizeof (bits_word);
2164 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2165 + word_size - 1)
2166 / word_size);
2167 struct Lisp_Bool_Vector *p
2168 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2169 XSETVECTOR (val, p);
2170 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2171 p->size = nbits;
2172
2173 /* Clear padding at the end. */
2174 if (words)
2175 p->data[words - 1] = 0;
2176
2177 return val;
2178 }
2179
2180 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2181 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2182 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2183 (Lisp_Object length, Lisp_Object init)
2184 {
2185 Lisp_Object val;
2186
2187 CHECK_NATNUM (length);
2188 val = make_uninit_bool_vector (XFASTINT (length));
2189 return bool_vector_fill (val, init);
2190 }
2191
2192 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2193 doc: /* Return a new bool-vector with specified arguments as elements.
2194 Any number of arguments, even zero arguments, are allowed.
2195 usage: (bool-vector &rest OBJECTS) */)
2196 (ptrdiff_t nargs, Lisp_Object *args)
2197 {
2198 ptrdiff_t i;
2199 Lisp_Object vector;
2200
2201 vector = make_uninit_bool_vector (nargs);
2202 for (i = 0; i < nargs; i++)
2203 bool_vector_set (vector, i, !NILP (args[i]));
2204
2205 return vector;
2206 }
2207
2208 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2209 of characters from the contents. This string may be unibyte or
2210 multibyte, depending on the contents. */
2211
2212 Lisp_Object
2213 make_string (const char *contents, ptrdiff_t nbytes)
2214 {
2215 register Lisp_Object val;
2216 ptrdiff_t nchars, multibyte_nbytes;
2217
2218 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2219 &nchars, &multibyte_nbytes);
2220 if (nbytes == nchars || nbytes != multibyte_nbytes)
2221 /* CONTENTS contains no multibyte sequences or contains an invalid
2222 multibyte sequence. We must make unibyte string. */
2223 val = make_unibyte_string (contents, nbytes);
2224 else
2225 val = make_multibyte_string (contents, nchars, nbytes);
2226 return val;
2227 }
2228
2229 #ifdef USE_LOCAL_ALLOCATORS
2230
2231 /* Initialize the string S from DATA and SIZE. S must be followed by
2232 SIZE + 1 bytes of memory that can be used. Return S tagged as a
2233 Lisp object. */
2234
2235 Lisp_Object
2236 local_string_init (struct Lisp_String *s, char const *data, ptrdiff_t size)
2237 {
2238 unsigned char *data_copy = (unsigned char *) (s + 1);
2239 parse_str_as_multibyte ((unsigned char const *) data,
2240 size, &s->size, &s->size_byte);
2241 if (size == s->size || size != s->size_byte)
2242 {
2243 s->size = size;
2244 s->size_byte = -1;
2245 }
2246 s->intervals = NULL;
2247 s->data = data_copy;
2248 memcpy (data_copy, data, size);
2249 data_copy[size] = '\0';
2250 return make_lisp_ptr (s, Lisp_String);
2251 }
2252
2253 #endif
2254
2255
2256 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2257
2258 Lisp_Object
2259 make_unibyte_string (const char *contents, ptrdiff_t length)
2260 {
2261 register Lisp_Object val;
2262 val = make_uninit_string (length);
2263 memcpy (SDATA (val), contents, length);
2264 return val;
2265 }
2266
2267
2268 /* Make a multibyte string from NCHARS characters occupying NBYTES
2269 bytes at CONTENTS. */
2270
2271 Lisp_Object
2272 make_multibyte_string (const char *contents,
2273 ptrdiff_t nchars, ptrdiff_t nbytes)
2274 {
2275 register Lisp_Object val;
2276 val = make_uninit_multibyte_string (nchars, nbytes);
2277 memcpy (SDATA (val), contents, nbytes);
2278 return val;
2279 }
2280
2281
2282 /* Make a string from NCHARS characters occupying NBYTES bytes at
2283 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2284
2285 Lisp_Object
2286 make_string_from_bytes (const char *contents,
2287 ptrdiff_t nchars, ptrdiff_t nbytes)
2288 {
2289 register Lisp_Object val;
2290 val = make_uninit_multibyte_string (nchars, nbytes);
2291 memcpy (SDATA (val), contents, nbytes);
2292 if (SBYTES (val) == SCHARS (val))
2293 STRING_SET_UNIBYTE (val);
2294 return val;
2295 }
2296
2297
2298 /* Make a string from NCHARS characters occupying NBYTES bytes at
2299 CONTENTS. The argument MULTIBYTE controls whether to label the
2300 string as multibyte. If NCHARS is negative, it counts the number of
2301 characters by itself. */
2302
2303 Lisp_Object
2304 make_specified_string (const char *contents,
2305 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2306 {
2307 Lisp_Object val;
2308
2309 if (nchars < 0)
2310 {
2311 if (multibyte)
2312 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2313 nbytes);
2314 else
2315 nchars = nbytes;
2316 }
2317 val = make_uninit_multibyte_string (nchars, nbytes);
2318 memcpy (SDATA (val), contents, nbytes);
2319 if (!multibyte)
2320 STRING_SET_UNIBYTE (val);
2321 return val;
2322 }
2323
2324
2325 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2326 occupying LENGTH bytes. */
2327
2328 Lisp_Object
2329 make_uninit_string (EMACS_INT length)
2330 {
2331 Lisp_Object val;
2332
2333 if (!length)
2334 return empty_unibyte_string;
2335 val = make_uninit_multibyte_string (length, length);
2336 STRING_SET_UNIBYTE (val);
2337 return val;
2338 }
2339
2340
2341 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2342 which occupy NBYTES bytes. */
2343
2344 Lisp_Object
2345 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2346 {
2347 Lisp_Object string;
2348 struct Lisp_String *s;
2349
2350 if (nchars < 0)
2351 emacs_abort ();
2352 if (!nbytes)
2353 return empty_multibyte_string;
2354
2355 s = allocate_string ();
2356 s->intervals = NULL;
2357 allocate_string_data (s, nchars, nbytes);
2358 XSETSTRING (string, s);
2359 string_chars_consed += nbytes;
2360 return string;
2361 }
2362
2363 /* Print arguments to BUF according to a FORMAT, then return
2364 a Lisp_String initialized with the data from BUF. */
2365
2366 Lisp_Object
2367 make_formatted_string (char *buf, const char *format, ...)
2368 {
2369 va_list ap;
2370 int length;
2371
2372 va_start (ap, format);
2373 length = vsprintf (buf, format, ap);
2374 va_end (ap);
2375 return make_string (buf, length);
2376 }
2377
2378 \f
2379 /***********************************************************************
2380 Float Allocation
2381 ***********************************************************************/
2382
2383 /* We store float cells inside of float_blocks, allocating a new
2384 float_block with malloc whenever necessary. Float cells reclaimed
2385 by GC are put on a free list to be reallocated before allocating
2386 any new float cells from the latest float_block. */
2387
2388 #define FLOAT_BLOCK_SIZE \
2389 (((BLOCK_BYTES - sizeof (struct float_block *) \
2390 /* The compiler might add padding at the end. */ \
2391 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2392 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2393
2394 #define GETMARKBIT(block,n) \
2395 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2396 >> ((n) % BITS_PER_BITS_WORD)) \
2397 & 1)
2398
2399 #define SETMARKBIT(block,n) \
2400 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2401 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2402
2403 #define UNSETMARKBIT(block,n) \
2404 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2405 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2406
2407 #define FLOAT_BLOCK(fptr) \
2408 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2409
2410 #define FLOAT_INDEX(fptr) \
2411 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2412
2413 struct float_block
2414 {
2415 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2416 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2417 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2418 struct float_block *next;
2419 };
2420
2421 #define FLOAT_MARKED_P(fptr) \
2422 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2423
2424 #define FLOAT_MARK(fptr) \
2425 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2426
2427 #define FLOAT_UNMARK(fptr) \
2428 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2429
2430 /* Current float_block. */
2431
2432 static struct float_block *float_block;
2433
2434 /* Index of first unused Lisp_Float in the current float_block. */
2435
2436 static int float_block_index = FLOAT_BLOCK_SIZE;
2437
2438 /* Free-list of Lisp_Floats. */
2439
2440 static struct Lisp_Float *float_free_list;
2441
2442 /* Return a new float object with value FLOAT_VALUE. */
2443
2444 Lisp_Object
2445 make_float (double float_value)
2446 {
2447 register Lisp_Object val;
2448
2449 MALLOC_BLOCK_INPUT;
2450
2451 if (float_free_list)
2452 {
2453 /* We use the data field for chaining the free list
2454 so that we won't use the same field that has the mark bit. */
2455 XSETFLOAT (val, float_free_list);
2456 float_free_list = float_free_list->u.chain;
2457 }
2458 else
2459 {
2460 if (float_block_index == FLOAT_BLOCK_SIZE)
2461 {
2462 struct float_block *new
2463 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2464 new->next = float_block;
2465 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2466 float_block = new;
2467 float_block_index = 0;
2468 total_free_floats += FLOAT_BLOCK_SIZE;
2469 }
2470 XSETFLOAT (val, &float_block->floats[float_block_index]);
2471 float_block_index++;
2472 }
2473
2474 MALLOC_UNBLOCK_INPUT;
2475
2476 XFLOAT_INIT (val, float_value);
2477 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2478 consing_since_gc += sizeof (struct Lisp_Float);
2479 floats_consed++;
2480 total_free_floats--;
2481 return val;
2482 }
2483
2484
2485 \f
2486 /***********************************************************************
2487 Cons Allocation
2488 ***********************************************************************/
2489
2490 /* We store cons cells inside of cons_blocks, allocating a new
2491 cons_block with malloc whenever necessary. Cons cells reclaimed by
2492 GC are put on a free list to be reallocated before allocating
2493 any new cons cells from the latest cons_block. */
2494
2495 #define CONS_BLOCK_SIZE \
2496 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2497 /* The compiler might add padding at the end. */ \
2498 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2499 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2500
2501 #define CONS_BLOCK(fptr) \
2502 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2503
2504 #define CONS_INDEX(fptr) \
2505 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2506
2507 struct cons_block
2508 {
2509 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2510 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2511 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2512 struct cons_block *next;
2513 };
2514
2515 #define CONS_MARKED_P(fptr) \
2516 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2517
2518 #define CONS_MARK(fptr) \
2519 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2520
2521 #define CONS_UNMARK(fptr) \
2522 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2523
2524 /* Current cons_block. */
2525
2526 static struct cons_block *cons_block;
2527
2528 /* Index of first unused Lisp_Cons in the current block. */
2529
2530 static int cons_block_index = CONS_BLOCK_SIZE;
2531
2532 /* Free-list of Lisp_Cons structures. */
2533
2534 static struct Lisp_Cons *cons_free_list;
2535
2536 /* Explicitly free a cons cell by putting it on the free-list. */
2537
2538 void
2539 free_cons (struct Lisp_Cons *ptr)
2540 {
2541 ptr->u.chain = cons_free_list;
2542 #if GC_MARK_STACK
2543 ptr->car = Vdead;
2544 #endif
2545 cons_free_list = ptr;
2546 consing_since_gc -= sizeof *ptr;
2547 total_free_conses++;
2548 }
2549
2550 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2551 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2552 (Lisp_Object car, Lisp_Object cdr)
2553 {
2554 register Lisp_Object val;
2555
2556 MALLOC_BLOCK_INPUT;
2557
2558 if (cons_free_list)
2559 {
2560 /* We use the cdr for chaining the free list
2561 so that we won't use the same field that has the mark bit. */
2562 XSETCONS (val, cons_free_list);
2563 cons_free_list = cons_free_list->u.chain;
2564 }
2565 else
2566 {
2567 if (cons_block_index == CONS_BLOCK_SIZE)
2568 {
2569 struct cons_block *new
2570 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2571 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2572 new->next = cons_block;
2573 cons_block = new;
2574 cons_block_index = 0;
2575 total_free_conses += CONS_BLOCK_SIZE;
2576 }
2577 XSETCONS (val, &cons_block->conses[cons_block_index]);
2578 cons_block_index++;
2579 }
2580
2581 MALLOC_UNBLOCK_INPUT;
2582
2583 XSETCAR (val, car);
2584 XSETCDR (val, cdr);
2585 eassert (!CONS_MARKED_P (XCONS (val)));
2586 consing_since_gc += sizeof (struct Lisp_Cons);
2587 total_free_conses--;
2588 cons_cells_consed++;
2589 return val;
2590 }
2591
2592 #ifdef GC_CHECK_CONS_LIST
2593 /* Get an error now if there's any junk in the cons free list. */
2594 void
2595 check_cons_list (void)
2596 {
2597 struct Lisp_Cons *tail = cons_free_list;
2598
2599 while (tail)
2600 tail = tail->u.chain;
2601 }
2602 #endif
2603
2604 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2605
2606 Lisp_Object
2607 list1 (Lisp_Object arg1)
2608 {
2609 return Fcons (arg1, Qnil);
2610 }
2611
2612 Lisp_Object
2613 list2 (Lisp_Object arg1, Lisp_Object arg2)
2614 {
2615 return Fcons (arg1, Fcons (arg2, Qnil));
2616 }
2617
2618
2619 Lisp_Object
2620 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2621 {
2622 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2623 }
2624
2625
2626 Lisp_Object
2627 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2628 {
2629 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2630 }
2631
2632
2633 Lisp_Object
2634 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2635 {
2636 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2637 Fcons (arg5, Qnil)))));
2638 }
2639
2640 /* Make a list of COUNT Lisp_Objects, where ARG is the
2641 first one. Allocate conses from pure space if TYPE
2642 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2643
2644 Lisp_Object
2645 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2646 {
2647 Lisp_Object (*cons) (Lisp_Object, Lisp_Object);
2648 switch (type)
2649 {
2650 case CONSTYPE_PURE: cons = pure_cons; break;
2651 case CONSTYPE_HEAP: cons = Fcons; break;
2652 default: emacs_abort ();
2653 }
2654
2655 eassume (0 < count);
2656 Lisp_Object val = cons (arg, Qnil);
2657 Lisp_Object tail = val;
2658
2659 va_list ap;
2660 va_start (ap, arg);
2661 for (ptrdiff_t i = 1; i < count; i++)
2662 {
2663 Lisp_Object elem = cons (va_arg (ap, Lisp_Object), Qnil);
2664 XSETCDR (tail, elem);
2665 tail = elem;
2666 }
2667 va_end (ap);
2668
2669 return val;
2670 }
2671
2672 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2673 doc: /* Return a newly created list with specified arguments as elements.
2674 Any number of arguments, even zero arguments, are allowed.
2675 usage: (list &rest OBJECTS) */)
2676 (ptrdiff_t nargs, Lisp_Object *args)
2677 {
2678 register Lisp_Object val;
2679 val = Qnil;
2680
2681 while (nargs > 0)
2682 {
2683 nargs--;
2684 val = Fcons (args[nargs], val);
2685 }
2686 return val;
2687 }
2688
2689
2690 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2691 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2692 (register Lisp_Object length, Lisp_Object init)
2693 {
2694 register Lisp_Object val;
2695 register EMACS_INT size;
2696
2697 CHECK_NATNUM (length);
2698 size = XFASTINT (length);
2699
2700 val = Qnil;
2701 while (size > 0)
2702 {
2703 val = Fcons (init, val);
2704 --size;
2705
2706 if (size > 0)
2707 {
2708 val = Fcons (init, val);
2709 --size;
2710
2711 if (size > 0)
2712 {
2713 val = Fcons (init, val);
2714 --size;
2715
2716 if (size > 0)
2717 {
2718 val = Fcons (init, val);
2719 --size;
2720
2721 if (size > 0)
2722 {
2723 val = Fcons (init, val);
2724 --size;
2725 }
2726 }
2727 }
2728 }
2729
2730 QUIT;
2731 }
2732
2733 return val;
2734 }
2735
2736
2737 \f
2738 /***********************************************************************
2739 Vector Allocation
2740 ***********************************************************************/
2741
2742 /* Sometimes a vector's contents are merely a pointer internally used
2743 in vector allocation code. On the rare platforms where a null
2744 pointer cannot be tagged, represent it with a Lisp 0.
2745 Usually you don't want to touch this. */
2746
2747 static struct Lisp_Vector *
2748 next_vector (struct Lisp_Vector *v)
2749 {
2750 return XUNTAG (v->contents[0], 0);
2751 }
2752
2753 static void
2754 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2755 {
2756 v->contents[0] = make_lisp_ptr (p, 0);
2757 }
2758
2759 /* This value is balanced well enough to avoid too much internal overhead
2760 for the most common cases; it's not required to be a power of two, but
2761 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2762
2763 #define VECTOR_BLOCK_SIZE 4096
2764
2765 enum
2766 {
2767 /* Alignment of struct Lisp_Vector objects. */
2768 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2769 USE_LSB_TAG ? GCALIGNMENT : 1),
2770
2771 /* Vector size requests are a multiple of this. */
2772 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2773 };
2774
2775 /* Verify assumptions described above. */
2776 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2777 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2778
2779 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2780 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2781 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2782 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2783
2784 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2785
2786 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2787
2788 /* Size of the minimal vector allocated from block. */
2789
2790 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2791
2792 /* Size of the largest vector allocated from block. */
2793
2794 #define VBLOCK_BYTES_MAX \
2795 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2796
2797 /* We maintain one free list for each possible block-allocated
2798 vector size, and this is the number of free lists we have. */
2799
2800 #define VECTOR_MAX_FREE_LIST_INDEX \
2801 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2802
2803 /* Common shortcut to advance vector pointer over a block data. */
2804
2805 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2806
2807 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2808
2809 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2810
2811 /* Common shortcut to setup vector on a free list. */
2812
2813 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2814 do { \
2815 (tmp) = ((nbytes - header_size) / word_size); \
2816 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2817 eassert ((nbytes) % roundup_size == 0); \
2818 (tmp) = VINDEX (nbytes); \
2819 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2820 set_next_vector (v, vector_free_lists[tmp]); \
2821 vector_free_lists[tmp] = (v); \
2822 total_free_vector_slots += (nbytes) / word_size; \
2823 } while (0)
2824
2825 /* This internal type is used to maintain the list of large vectors
2826 which are allocated at their own, e.g. outside of vector blocks.
2827
2828 struct large_vector itself cannot contain a struct Lisp_Vector, as
2829 the latter contains a flexible array member and C99 does not allow
2830 such structs to be nested. Instead, each struct large_vector
2831 object LV is followed by a struct Lisp_Vector, which is at offset
2832 large_vector_offset from LV, and whose address is therefore
2833 large_vector_vec (&LV). */
2834
2835 struct large_vector
2836 {
2837 struct large_vector *next;
2838 };
2839
2840 enum
2841 {
2842 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2843 };
2844
2845 static struct Lisp_Vector *
2846 large_vector_vec (struct large_vector *p)
2847 {
2848 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2849 }
2850
2851 /* This internal type is used to maintain an underlying storage
2852 for small vectors. */
2853
2854 struct vector_block
2855 {
2856 char data[VECTOR_BLOCK_BYTES];
2857 struct vector_block *next;
2858 };
2859
2860 /* Chain of vector blocks. */
2861
2862 static struct vector_block *vector_blocks;
2863
2864 /* Vector free lists, where NTH item points to a chain of free
2865 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2866
2867 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2868
2869 /* Singly-linked list of large vectors. */
2870
2871 static struct large_vector *large_vectors;
2872
2873 /* The only vector with 0 slots, allocated from pure space. */
2874
2875 Lisp_Object zero_vector;
2876
2877 /* Number of live vectors. */
2878
2879 static EMACS_INT total_vectors;
2880
2881 /* Total size of live and free vectors, in Lisp_Object units. */
2882
2883 static EMACS_INT total_vector_slots, total_free_vector_slots;
2884
2885 /* Get a new vector block. */
2886
2887 static struct vector_block *
2888 allocate_vector_block (void)
2889 {
2890 struct vector_block *block = xmalloc (sizeof *block);
2891
2892 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2893 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2894 MEM_TYPE_VECTOR_BLOCK);
2895 #endif
2896
2897 block->next = vector_blocks;
2898 vector_blocks = block;
2899 return block;
2900 }
2901
2902 /* Called once to initialize vector allocation. */
2903
2904 static void
2905 init_vectors (void)
2906 {
2907 zero_vector = make_pure_vector (0);
2908 }
2909
2910 /* Allocate vector from a vector block. */
2911
2912 static struct Lisp_Vector *
2913 allocate_vector_from_block (size_t nbytes)
2914 {
2915 struct Lisp_Vector *vector;
2916 struct vector_block *block;
2917 size_t index, restbytes;
2918
2919 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2920 eassert (nbytes % roundup_size == 0);
2921
2922 /* First, try to allocate from a free list
2923 containing vectors of the requested size. */
2924 index = VINDEX (nbytes);
2925 if (vector_free_lists[index])
2926 {
2927 vector = vector_free_lists[index];
2928 vector_free_lists[index] = next_vector (vector);
2929 total_free_vector_slots -= nbytes / word_size;
2930 return vector;
2931 }
2932
2933 /* Next, check free lists containing larger vectors. Since
2934 we will split the result, we should have remaining space
2935 large enough to use for one-slot vector at least. */
2936 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2937 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2938 if (vector_free_lists[index])
2939 {
2940 /* This vector is larger than requested. */
2941 vector = vector_free_lists[index];
2942 vector_free_lists[index] = next_vector (vector);
2943 total_free_vector_slots -= nbytes / word_size;
2944
2945 /* Excess bytes are used for the smaller vector,
2946 which should be set on an appropriate free list. */
2947 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2948 eassert (restbytes % roundup_size == 0);
2949 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2950 return vector;
2951 }
2952
2953 /* Finally, need a new vector block. */
2954 block = allocate_vector_block ();
2955
2956 /* New vector will be at the beginning of this block. */
2957 vector = (struct Lisp_Vector *) block->data;
2958
2959 /* If the rest of space from this block is large enough
2960 for one-slot vector at least, set up it on a free list. */
2961 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2962 if (restbytes >= VBLOCK_BYTES_MIN)
2963 {
2964 eassert (restbytes % roundup_size == 0);
2965 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2966 }
2967 return vector;
2968 }
2969
2970 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2971
2972 #define VECTOR_IN_BLOCK(vector, block) \
2973 ((char *) (vector) <= (block)->data \
2974 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2975
2976 /* Return the memory footprint of V in bytes. */
2977
2978 static ptrdiff_t
2979 vector_nbytes (struct Lisp_Vector *v)
2980 {
2981 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2982 ptrdiff_t nwords;
2983
2984 if (size & PSEUDOVECTOR_FLAG)
2985 {
2986 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2987 {
2988 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2989 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
2990 * sizeof (bits_word));
2991 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
2992 verify (header_size <= bool_header_size);
2993 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
2994 }
2995 else
2996 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
2997 + ((size & PSEUDOVECTOR_REST_MASK)
2998 >> PSEUDOVECTOR_SIZE_BITS));
2999 }
3000 else
3001 nwords = size;
3002 return vroundup (header_size + word_size * nwords);
3003 }
3004
3005 /* Release extra resources still in use by VECTOR, which may be any
3006 vector-like object. For now, this is used just to free data in
3007 font objects. */
3008
3009 static void
3010 cleanup_vector (struct Lisp_Vector *vector)
3011 {
3012 detect_suspicious_free (vector);
3013 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
3014 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
3015 == FONT_OBJECT_MAX))
3016 {
3017 struct font_driver *drv = ((struct font *) vector)->driver;
3018
3019 /* The font driver might sometimes be NULL, e.g. if Emacs was
3020 interrupted before it had time to set it up. */
3021 if (drv)
3022 {
3023 /* Attempt to catch subtle bugs like Bug#16140. */
3024 eassert (valid_font_driver (drv));
3025 drv->close ((struct font *) vector);
3026 }
3027 }
3028 }
3029
3030 /* Reclaim space used by unmarked vectors. */
3031
3032 NO_INLINE /* For better stack traces */
3033 static void
3034 sweep_vectors (void)
3035 {
3036 struct vector_block *block, **bprev = &vector_blocks;
3037 struct large_vector *lv, **lvprev = &large_vectors;
3038 struct Lisp_Vector *vector, *next;
3039
3040 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3041 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3042
3043 /* Looking through vector blocks. */
3044
3045 for (block = vector_blocks; block; block = *bprev)
3046 {
3047 bool free_this_block = 0;
3048 ptrdiff_t nbytes;
3049
3050 for (vector = (struct Lisp_Vector *) block->data;
3051 VECTOR_IN_BLOCK (vector, block); vector = next)
3052 {
3053 if (VECTOR_MARKED_P (vector))
3054 {
3055 VECTOR_UNMARK (vector);
3056 total_vectors++;
3057 nbytes = vector_nbytes (vector);
3058 total_vector_slots += nbytes / word_size;
3059 next = ADVANCE (vector, nbytes);
3060 }
3061 else
3062 {
3063 ptrdiff_t total_bytes;
3064
3065 cleanup_vector (vector);
3066 nbytes = vector_nbytes (vector);
3067 total_bytes = nbytes;
3068 next = ADVANCE (vector, nbytes);
3069
3070 /* While NEXT is not marked, try to coalesce with VECTOR,
3071 thus making VECTOR of the largest possible size. */
3072
3073 while (VECTOR_IN_BLOCK (next, block))
3074 {
3075 if (VECTOR_MARKED_P (next))
3076 break;
3077 cleanup_vector (next);
3078 nbytes = vector_nbytes (next);
3079 total_bytes += nbytes;
3080 next = ADVANCE (next, nbytes);
3081 }
3082
3083 eassert (total_bytes % roundup_size == 0);
3084
3085 if (vector == (struct Lisp_Vector *) block->data
3086 && !VECTOR_IN_BLOCK (next, block))
3087 /* This block should be freed because all of its
3088 space was coalesced into the only free vector. */
3089 free_this_block = 1;
3090 else
3091 {
3092 size_t tmp;
3093 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3094 }
3095 }
3096 }
3097
3098 if (free_this_block)
3099 {
3100 *bprev = block->next;
3101 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3102 mem_delete (mem_find (block->data));
3103 #endif
3104 xfree (block);
3105 }
3106 else
3107 bprev = &block->next;
3108 }
3109
3110 /* Sweep large vectors. */
3111
3112 for (lv = large_vectors; lv; lv = *lvprev)
3113 {
3114 vector = large_vector_vec (lv);
3115 if (VECTOR_MARKED_P (vector))
3116 {
3117 VECTOR_UNMARK (vector);
3118 total_vectors++;
3119 if (vector->header.size & PSEUDOVECTOR_FLAG)
3120 {
3121 /* All non-bool pseudovectors are small enough to be allocated
3122 from vector blocks. This code should be redesigned if some
3123 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3124 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3125 total_vector_slots += vector_nbytes (vector) / word_size;
3126 }
3127 else
3128 total_vector_slots
3129 += header_size / word_size + vector->header.size;
3130 lvprev = &lv->next;
3131 }
3132 else
3133 {
3134 *lvprev = lv->next;
3135 lisp_free (lv);
3136 }
3137 }
3138 }
3139
3140 /* Value is a pointer to a newly allocated Lisp_Vector structure
3141 with room for LEN Lisp_Objects. */
3142
3143 static struct Lisp_Vector *
3144 allocate_vectorlike (ptrdiff_t len)
3145 {
3146 struct Lisp_Vector *p;
3147
3148 MALLOC_BLOCK_INPUT;
3149
3150 if (len == 0)
3151 p = XVECTOR (zero_vector);
3152 else
3153 {
3154 size_t nbytes = header_size + len * word_size;
3155
3156 #ifdef DOUG_LEA_MALLOC
3157 if (!mmap_lisp_allowed_p ())
3158 mallopt (M_MMAP_MAX, 0);
3159 #endif
3160
3161 if (nbytes <= VBLOCK_BYTES_MAX)
3162 p = allocate_vector_from_block (vroundup (nbytes));
3163 else
3164 {
3165 struct large_vector *lv
3166 = lisp_malloc ((large_vector_offset + header_size
3167 + len * word_size),
3168 MEM_TYPE_VECTORLIKE);
3169 lv->next = large_vectors;
3170 large_vectors = lv;
3171 p = large_vector_vec (lv);
3172 }
3173
3174 #ifdef DOUG_LEA_MALLOC
3175 if (!mmap_lisp_allowed_p ())
3176 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3177 #endif
3178
3179 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3180 emacs_abort ();
3181
3182 consing_since_gc += nbytes;
3183 vector_cells_consed += len;
3184 }
3185
3186 MALLOC_UNBLOCK_INPUT;
3187
3188 return p;
3189 }
3190
3191
3192 /* Allocate a vector with LEN slots. */
3193
3194 struct Lisp_Vector *
3195 allocate_vector (EMACS_INT len)
3196 {
3197 struct Lisp_Vector *v;
3198 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3199
3200 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3201 memory_full (SIZE_MAX);
3202 v = allocate_vectorlike (len);
3203 v->header.size = len;
3204 return v;
3205 }
3206
3207
3208 /* Allocate other vector-like structures. */
3209
3210 struct Lisp_Vector *
3211 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
3212 {
3213 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3214 int i;
3215
3216 /* Catch bogus values. */
3217 eassert (tag <= PVEC_FONT);
3218 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3219 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3220
3221 /* Only the first lisplen slots will be traced normally by the GC. */
3222 for (i = 0; i < lisplen; ++i)
3223 v->contents[i] = Qnil;
3224
3225 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3226 return v;
3227 }
3228
3229 struct buffer *
3230 allocate_buffer (void)
3231 {
3232 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3233
3234 BUFFER_PVEC_INIT (b);
3235 /* Put B on the chain of all buffers including killed ones. */
3236 b->next = all_buffers;
3237 all_buffers = b;
3238 /* Note that the rest fields of B are not initialized. */
3239 return b;
3240 }
3241
3242 struct Lisp_Hash_Table *
3243 allocate_hash_table (void)
3244 {
3245 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3246 }
3247
3248 struct window *
3249 allocate_window (void)
3250 {
3251 struct window *w;
3252
3253 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3254 /* Users assumes that non-Lisp data is zeroed. */
3255 memset (&w->current_matrix, 0,
3256 sizeof (*w) - offsetof (struct window, current_matrix));
3257 return w;
3258 }
3259
3260 struct terminal *
3261 allocate_terminal (void)
3262 {
3263 struct terminal *t;
3264
3265 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3266 /* Users assumes that non-Lisp data is zeroed. */
3267 memset (&t->next_terminal, 0,
3268 sizeof (*t) - offsetof (struct terminal, next_terminal));
3269 return t;
3270 }
3271
3272 struct frame *
3273 allocate_frame (void)
3274 {
3275 struct frame *f;
3276
3277 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3278 /* Users assumes that non-Lisp data is zeroed. */
3279 memset (&f->face_cache, 0,
3280 sizeof (*f) - offsetof (struct frame, face_cache));
3281 return f;
3282 }
3283
3284 struct Lisp_Process *
3285 allocate_process (void)
3286 {
3287 struct Lisp_Process *p;
3288
3289 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3290 /* Users assumes that non-Lisp data is zeroed. */
3291 memset (&p->pid, 0,
3292 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3293 return p;
3294 }
3295
3296 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3297 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3298 See also the function `vector'. */)
3299 (register Lisp_Object length, Lisp_Object init)
3300 {
3301 Lisp_Object vector;
3302 register ptrdiff_t sizei;
3303 register ptrdiff_t i;
3304 register struct Lisp_Vector *p;
3305
3306 CHECK_NATNUM (length);
3307
3308 p = allocate_vector (XFASTINT (length));
3309 sizei = XFASTINT (length);
3310 for (i = 0; i < sizei; i++)
3311 p->contents[i] = init;
3312
3313 XSETVECTOR (vector, p);
3314 return vector;
3315 }
3316
3317 #ifdef USE_LOCAL_ALLOCATORS
3318
3319 /* Initialize V with LENGTH objects each with value INIT,
3320 and return it tagged as a Lisp Object. */
3321
3322 INLINE Lisp_Object
3323 local_vector_init (struct Lisp_Vector *v, ptrdiff_t length, Lisp_Object init)
3324 {
3325 v->header.size = length;
3326 for (ptrdiff_t i = 0; i < length; i++)
3327 v->contents[i] = init;
3328 return make_lisp_ptr (v, Lisp_Vectorlike);
3329 }
3330
3331 #endif
3332
3333
3334 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3335 doc: /* Return a newly created vector with specified arguments as elements.
3336 Any number of arguments, even zero arguments, are allowed.
3337 usage: (vector &rest OBJECTS) */)
3338 (ptrdiff_t nargs, Lisp_Object *args)
3339 {
3340 ptrdiff_t i;
3341 register Lisp_Object val = make_uninit_vector (nargs);
3342 register struct Lisp_Vector *p = XVECTOR (val);
3343
3344 for (i = 0; i < nargs; i++)
3345 p->contents[i] = args[i];
3346 return val;
3347 }
3348
3349 void
3350 make_byte_code (struct Lisp_Vector *v)
3351 {
3352 /* Don't allow the global zero_vector to become a byte code object. */
3353 eassert (0 < v->header.size);
3354
3355 if (v->header.size > 1 && STRINGP (v->contents[1])
3356 && STRING_MULTIBYTE (v->contents[1]))
3357 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3358 earlier because they produced a raw 8-bit string for byte-code
3359 and now such a byte-code string is loaded as multibyte while
3360 raw 8-bit characters converted to multibyte form. Thus, now we
3361 must convert them back to the original unibyte form. */
3362 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3363 XSETPVECTYPE (v, PVEC_COMPILED);
3364 }
3365
3366 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3367 doc: /* Create a byte-code object with specified arguments as elements.
3368 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3369 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3370 and (optional) INTERACTIVE-SPEC.
3371 The first four arguments are required; at most six have any
3372 significance.
3373 The ARGLIST can be either like the one of `lambda', in which case the arguments
3374 will be dynamically bound before executing the byte code, or it can be an
3375 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3376 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3377 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3378 argument to catch the left-over arguments. If such an integer is used, the
3379 arguments will not be dynamically bound but will be instead pushed on the
3380 stack before executing the byte-code.
3381 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3382 (ptrdiff_t nargs, Lisp_Object *args)
3383 {
3384 ptrdiff_t i;
3385 register Lisp_Object val = make_uninit_vector (nargs);
3386 register struct Lisp_Vector *p = XVECTOR (val);
3387
3388 /* We used to purecopy everything here, if purify-flag was set. This worked
3389 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3390 dangerous, since make-byte-code is used during execution to build
3391 closures, so any closure built during the preload phase would end up
3392 copied into pure space, including its free variables, which is sometimes
3393 just wasteful and other times plainly wrong (e.g. those free vars may want
3394 to be setcar'd). */
3395
3396 for (i = 0; i < nargs; i++)
3397 p->contents[i] = args[i];
3398 make_byte_code (p);
3399 XSETCOMPILED (val, p);
3400 return val;
3401 }
3402
3403
3404 \f
3405 /***********************************************************************
3406 Symbol Allocation
3407 ***********************************************************************/
3408
3409 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3410 of the required alignment if LSB tags are used. */
3411
3412 union aligned_Lisp_Symbol
3413 {
3414 struct Lisp_Symbol s;
3415 #if USE_LSB_TAG
3416 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3417 & -GCALIGNMENT];
3418 #endif
3419 };
3420
3421 /* Each symbol_block is just under 1020 bytes long, since malloc
3422 really allocates in units of powers of two and uses 4 bytes for its
3423 own overhead. */
3424
3425 #define SYMBOL_BLOCK_SIZE \
3426 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3427
3428 struct symbol_block
3429 {
3430 /* Place `symbols' first, to preserve alignment. */
3431 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3432 struct symbol_block *next;
3433 };
3434
3435 /* Current symbol block and index of first unused Lisp_Symbol
3436 structure in it. */
3437
3438 static struct symbol_block *symbol_block;
3439 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3440 /* Pointer to the first symbol_block that contains pinned symbols.
3441 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3442 10K of which are pinned (and all but 250 of them are interned in obarray),
3443 whereas a "typical session" has in the order of 30K symbols.
3444 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3445 than 30K to find the 10K symbols we need to mark. */
3446 static struct symbol_block *symbol_block_pinned;
3447
3448 /* List of free symbols. */
3449
3450 static struct Lisp_Symbol *symbol_free_list;
3451
3452 static void
3453 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3454 {
3455 XSYMBOL (sym)->name = name;
3456 }
3457
3458 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3459 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3460 Its value is void, and its function definition and property list are nil. */)
3461 (Lisp_Object name)
3462 {
3463 register Lisp_Object val;
3464 register struct Lisp_Symbol *p;
3465
3466 CHECK_STRING (name);
3467
3468 MALLOC_BLOCK_INPUT;
3469
3470 if (symbol_free_list)
3471 {
3472 XSETSYMBOL (val, symbol_free_list);
3473 symbol_free_list = symbol_free_list->next;
3474 }
3475 else
3476 {
3477 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3478 {
3479 struct symbol_block *new
3480 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3481 new->next = symbol_block;
3482 symbol_block = new;
3483 symbol_block_index = 0;
3484 total_free_symbols += SYMBOL_BLOCK_SIZE;
3485 }
3486 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3487 symbol_block_index++;
3488 }
3489
3490 MALLOC_UNBLOCK_INPUT;
3491
3492 p = XSYMBOL (val);
3493 set_symbol_name (val, name);
3494 set_symbol_plist (val, Qnil);
3495 p->redirect = SYMBOL_PLAINVAL;
3496 SET_SYMBOL_VAL (p, Qunbound);
3497 set_symbol_function (val, Qnil);
3498 set_symbol_next (val, NULL);
3499 p->gcmarkbit = false;
3500 p->interned = SYMBOL_UNINTERNED;
3501 p->constant = 0;
3502 p->declared_special = false;
3503 p->pinned = false;
3504 consing_since_gc += sizeof (struct Lisp_Symbol);
3505 symbols_consed++;
3506 total_free_symbols--;
3507 return val;
3508 }
3509
3510
3511 \f
3512 /***********************************************************************
3513 Marker (Misc) Allocation
3514 ***********************************************************************/
3515
3516 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3517 the required alignment when LSB tags are used. */
3518
3519 union aligned_Lisp_Misc
3520 {
3521 union Lisp_Misc m;
3522 #if USE_LSB_TAG
3523 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3524 & -GCALIGNMENT];
3525 #endif
3526 };
3527
3528 /* Allocation of markers and other objects that share that structure.
3529 Works like allocation of conses. */
3530
3531 #define MARKER_BLOCK_SIZE \
3532 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3533
3534 struct marker_block
3535 {
3536 /* Place `markers' first, to preserve alignment. */
3537 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3538 struct marker_block *next;
3539 };
3540
3541 static struct marker_block *marker_block;
3542 static int marker_block_index = MARKER_BLOCK_SIZE;
3543
3544 static union Lisp_Misc *marker_free_list;
3545
3546 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3547
3548 static Lisp_Object
3549 allocate_misc (enum Lisp_Misc_Type type)
3550 {
3551 Lisp_Object val;
3552
3553 MALLOC_BLOCK_INPUT;
3554
3555 if (marker_free_list)
3556 {
3557 XSETMISC (val, marker_free_list);
3558 marker_free_list = marker_free_list->u_free.chain;
3559 }
3560 else
3561 {
3562 if (marker_block_index == MARKER_BLOCK_SIZE)
3563 {
3564 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3565 new->next = marker_block;
3566 marker_block = new;
3567 marker_block_index = 0;
3568 total_free_markers += MARKER_BLOCK_SIZE;
3569 }
3570 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3571 marker_block_index++;
3572 }
3573
3574 MALLOC_UNBLOCK_INPUT;
3575
3576 --total_free_markers;
3577 consing_since_gc += sizeof (union Lisp_Misc);
3578 misc_objects_consed++;
3579 XMISCANY (val)->type = type;
3580 XMISCANY (val)->gcmarkbit = 0;
3581 return val;
3582 }
3583
3584 /* Free a Lisp_Misc object. */
3585
3586 void
3587 free_misc (Lisp_Object misc)
3588 {
3589 XMISCANY (misc)->type = Lisp_Misc_Free;
3590 XMISC (misc)->u_free.chain = marker_free_list;
3591 marker_free_list = XMISC (misc);
3592 consing_since_gc -= sizeof (union Lisp_Misc);
3593 total_free_markers++;
3594 }
3595
3596 /* Verify properties of Lisp_Save_Value's representation
3597 that are assumed here and elsewhere. */
3598
3599 verify (SAVE_UNUSED == 0);
3600 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3601 >> SAVE_SLOT_BITS)
3602 == 0);
3603
3604 /* Return Lisp_Save_Value objects for the various combinations
3605 that callers need. */
3606
3607 Lisp_Object
3608 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3609 {
3610 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3611 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3612 p->save_type = SAVE_TYPE_INT_INT_INT;
3613 p->data[0].integer = a;
3614 p->data[1].integer = b;
3615 p->data[2].integer = c;
3616 return val;
3617 }
3618
3619 Lisp_Object
3620 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3621 Lisp_Object d)
3622 {
3623 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3624 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3625 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3626 p->data[0].object = a;
3627 p->data[1].object = b;
3628 p->data[2].object = c;
3629 p->data[3].object = d;
3630 return val;
3631 }
3632
3633 Lisp_Object
3634 make_save_ptr (void *a)
3635 {
3636 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3637 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3638 p->save_type = SAVE_POINTER;
3639 p->data[0].pointer = a;
3640 return val;
3641 }
3642
3643 Lisp_Object
3644 make_save_ptr_int (void *a, ptrdiff_t b)
3645 {
3646 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3647 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3648 p->save_type = SAVE_TYPE_PTR_INT;
3649 p->data[0].pointer = a;
3650 p->data[1].integer = b;
3651 return val;
3652 }
3653
3654 Lisp_Object
3655 make_save_int_obj (ptrdiff_t a, Lisp_Object b)
3656 {
3657 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3658 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3659 p->save_type = SAVE_TYPE_INT_OBJ;
3660 p->data[0].integer = a;
3661 p->data[1].object = b;
3662 return val;
3663 }
3664
3665 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3666 Lisp_Object
3667 make_save_ptr_ptr (void *a, void *b)
3668 {
3669 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3670 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3671 p->save_type = SAVE_TYPE_PTR_PTR;
3672 p->data[0].pointer = a;
3673 p->data[1].pointer = b;
3674 return val;
3675 }
3676 #endif
3677
3678 Lisp_Object
3679 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3680 {
3681 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3682 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3683 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3684 p->data[0].funcpointer = a;
3685 p->data[1].pointer = b;
3686 p->data[2].object = c;
3687 return val;
3688 }
3689
3690 /* Return a Lisp_Save_Value object that represents an array A
3691 of N Lisp objects. */
3692
3693 Lisp_Object
3694 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3695 {
3696 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3697 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3698 p->save_type = SAVE_TYPE_MEMORY;
3699 p->data[0].pointer = a;
3700 p->data[1].integer = n;
3701 return val;
3702 }
3703
3704 /* Free a Lisp_Save_Value object. Do not use this function
3705 if SAVE contains pointer other than returned by xmalloc. */
3706
3707 void
3708 free_save_value (Lisp_Object save)
3709 {
3710 xfree (XSAVE_POINTER (save, 0));
3711 free_misc (save);
3712 }
3713
3714 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3715
3716 Lisp_Object
3717 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3718 {
3719 register Lisp_Object overlay;
3720
3721 overlay = allocate_misc (Lisp_Misc_Overlay);
3722 OVERLAY_START (overlay) = start;
3723 OVERLAY_END (overlay) = end;
3724 set_overlay_plist (overlay, plist);
3725 XOVERLAY (overlay)->next = NULL;
3726 return overlay;
3727 }
3728
3729 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3730 doc: /* Return a newly allocated marker which does not point at any place. */)
3731 (void)
3732 {
3733 register Lisp_Object val;
3734 register struct Lisp_Marker *p;
3735
3736 val = allocate_misc (Lisp_Misc_Marker);
3737 p = XMARKER (val);
3738 p->buffer = 0;
3739 p->bytepos = 0;
3740 p->charpos = 0;
3741 p->next = NULL;
3742 p->insertion_type = 0;
3743 p->need_adjustment = 0;
3744 return val;
3745 }
3746
3747 /* Return a newly allocated marker which points into BUF
3748 at character position CHARPOS and byte position BYTEPOS. */
3749
3750 Lisp_Object
3751 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3752 {
3753 Lisp_Object obj;
3754 struct Lisp_Marker *m;
3755
3756 /* No dead buffers here. */
3757 eassert (BUFFER_LIVE_P (buf));
3758
3759 /* Every character is at least one byte. */
3760 eassert (charpos <= bytepos);
3761
3762 obj = allocate_misc (Lisp_Misc_Marker);
3763 m = XMARKER (obj);
3764 m->buffer = buf;
3765 m->charpos = charpos;
3766 m->bytepos = bytepos;
3767 m->insertion_type = 0;
3768 m->need_adjustment = 0;
3769 m->next = BUF_MARKERS (buf);
3770 BUF_MARKERS (buf) = m;
3771 return obj;
3772 }
3773
3774 /* Put MARKER back on the free list after using it temporarily. */
3775
3776 void
3777 free_marker (Lisp_Object marker)
3778 {
3779 unchain_marker (XMARKER (marker));
3780 free_misc (marker);
3781 }
3782
3783 \f
3784 /* Return a newly created vector or string with specified arguments as
3785 elements. If all the arguments are characters that can fit
3786 in a string of events, make a string; otherwise, make a vector.
3787
3788 Any number of arguments, even zero arguments, are allowed. */
3789
3790 Lisp_Object
3791 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3792 {
3793 ptrdiff_t i;
3794
3795 for (i = 0; i < nargs; i++)
3796 /* The things that fit in a string
3797 are characters that are in 0...127,
3798 after discarding the meta bit and all the bits above it. */
3799 if (!INTEGERP (args[i])
3800 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3801 return Fvector (nargs, args);
3802
3803 /* Since the loop exited, we know that all the things in it are
3804 characters, so we can make a string. */
3805 {
3806 Lisp_Object result;
3807
3808 result = Fmake_string (make_number (nargs), make_number (0));
3809 for (i = 0; i < nargs; i++)
3810 {
3811 SSET (result, i, XINT (args[i]));
3812 /* Move the meta bit to the right place for a string char. */
3813 if (XINT (args[i]) & CHAR_META)
3814 SSET (result, i, SREF (result, i) | 0x80);
3815 }
3816
3817 return result;
3818 }
3819 }
3820
3821
3822 \f
3823 /************************************************************************
3824 Memory Full Handling
3825 ************************************************************************/
3826
3827
3828 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3829 there may have been size_t overflow so that malloc was never
3830 called, or perhaps malloc was invoked successfully but the
3831 resulting pointer had problems fitting into a tagged EMACS_INT. In
3832 either case this counts as memory being full even though malloc did
3833 not fail. */
3834
3835 void
3836 memory_full (size_t nbytes)
3837 {
3838 /* Do not go into hysterics merely because a large request failed. */
3839 bool enough_free_memory = 0;
3840 if (SPARE_MEMORY < nbytes)
3841 {
3842 void *p;
3843
3844 MALLOC_BLOCK_INPUT;
3845 p = malloc (SPARE_MEMORY);
3846 if (p)
3847 {
3848 free (p);
3849 enough_free_memory = 1;
3850 }
3851 MALLOC_UNBLOCK_INPUT;
3852 }
3853
3854 if (! enough_free_memory)
3855 {
3856 int i;
3857
3858 Vmemory_full = Qt;
3859
3860 memory_full_cons_threshold = sizeof (struct cons_block);
3861
3862 /* The first time we get here, free the spare memory. */
3863 for (i = 0; i < ARRAYELTS (spare_memory); i++)
3864 if (spare_memory[i])
3865 {
3866 if (i == 0)
3867 free (spare_memory[i]);
3868 else if (i >= 1 && i <= 4)
3869 lisp_align_free (spare_memory[i]);
3870 else
3871 lisp_free (spare_memory[i]);
3872 spare_memory[i] = 0;
3873 }
3874 }
3875
3876 /* This used to call error, but if we've run out of memory, we could
3877 get infinite recursion trying to build the string. */
3878 xsignal (Qnil, Vmemory_signal_data);
3879 }
3880
3881 /* If we released our reserve (due to running out of memory),
3882 and we have a fair amount free once again,
3883 try to set aside another reserve in case we run out once more.
3884
3885 This is called when a relocatable block is freed in ralloc.c,
3886 and also directly from this file, in case we're not using ralloc.c. */
3887
3888 void
3889 refill_memory_reserve (void)
3890 {
3891 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3892 if (spare_memory[0] == 0)
3893 spare_memory[0] = malloc (SPARE_MEMORY);
3894 if (spare_memory[1] == 0)
3895 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3896 MEM_TYPE_SPARE);
3897 if (spare_memory[2] == 0)
3898 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3899 MEM_TYPE_SPARE);
3900 if (spare_memory[3] == 0)
3901 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3902 MEM_TYPE_SPARE);
3903 if (spare_memory[4] == 0)
3904 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3905 MEM_TYPE_SPARE);
3906 if (spare_memory[5] == 0)
3907 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3908 MEM_TYPE_SPARE);
3909 if (spare_memory[6] == 0)
3910 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3911 MEM_TYPE_SPARE);
3912 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3913 Vmemory_full = Qnil;
3914 #endif
3915 }
3916 \f
3917 /************************************************************************
3918 C Stack Marking
3919 ************************************************************************/
3920
3921 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3922
3923 /* Conservative C stack marking requires a method to identify possibly
3924 live Lisp objects given a pointer value. We do this by keeping
3925 track of blocks of Lisp data that are allocated in a red-black tree
3926 (see also the comment of mem_node which is the type of nodes in
3927 that tree). Function lisp_malloc adds information for an allocated
3928 block to the red-black tree with calls to mem_insert, and function
3929 lisp_free removes it with mem_delete. Functions live_string_p etc
3930 call mem_find to lookup information about a given pointer in the
3931 tree, and use that to determine if the pointer points to a Lisp
3932 object or not. */
3933
3934 /* Initialize this part of alloc.c. */
3935
3936 static void
3937 mem_init (void)
3938 {
3939 mem_z.left = mem_z.right = MEM_NIL;
3940 mem_z.parent = NULL;
3941 mem_z.color = MEM_BLACK;
3942 mem_z.start = mem_z.end = NULL;
3943 mem_root = MEM_NIL;
3944 }
3945
3946
3947 /* Value is a pointer to the mem_node containing START. Value is
3948 MEM_NIL if there is no node in the tree containing START. */
3949
3950 static struct mem_node *
3951 mem_find (void *start)
3952 {
3953 struct mem_node *p;
3954
3955 if (start < min_heap_address || start > max_heap_address)
3956 return MEM_NIL;
3957
3958 /* Make the search always successful to speed up the loop below. */
3959 mem_z.start = start;
3960 mem_z.end = (char *) start + 1;
3961
3962 p = mem_root;
3963 while (start < p->start || start >= p->end)
3964 p = start < p->start ? p->left : p->right;
3965 return p;
3966 }
3967
3968
3969 /* Insert a new node into the tree for a block of memory with start
3970 address START, end address END, and type TYPE. Value is a
3971 pointer to the node that was inserted. */
3972
3973 static struct mem_node *
3974 mem_insert (void *start, void *end, enum mem_type type)
3975 {
3976 struct mem_node *c, *parent, *x;
3977
3978 if (min_heap_address == NULL || start < min_heap_address)
3979 min_heap_address = start;
3980 if (max_heap_address == NULL || end > max_heap_address)
3981 max_heap_address = end;
3982
3983 /* See where in the tree a node for START belongs. In this
3984 particular application, it shouldn't happen that a node is already
3985 present. For debugging purposes, let's check that. */
3986 c = mem_root;
3987 parent = NULL;
3988
3989 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3990
3991 while (c != MEM_NIL)
3992 {
3993 if (start >= c->start && start < c->end)
3994 emacs_abort ();
3995 parent = c;
3996 c = start < c->start ? c->left : c->right;
3997 }
3998
3999 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
4000
4001 while (c != MEM_NIL)
4002 {
4003 parent = c;
4004 c = start < c->start ? c->left : c->right;
4005 }
4006
4007 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
4008
4009 /* Create a new node. */
4010 #ifdef GC_MALLOC_CHECK
4011 x = malloc (sizeof *x);
4012 if (x == NULL)
4013 emacs_abort ();
4014 #else
4015 x = xmalloc (sizeof *x);
4016 #endif
4017 x->start = start;
4018 x->end = end;
4019 x->type = type;
4020 x->parent = parent;
4021 x->left = x->right = MEM_NIL;
4022 x->color = MEM_RED;
4023
4024 /* Insert it as child of PARENT or install it as root. */
4025 if (parent)
4026 {
4027 if (start < parent->start)
4028 parent->left = x;
4029 else
4030 parent->right = x;
4031 }
4032 else
4033 mem_root = x;
4034
4035 /* Re-establish red-black tree properties. */
4036 mem_insert_fixup (x);
4037
4038 return x;
4039 }
4040
4041
4042 /* Re-establish the red-black properties of the tree, and thereby
4043 balance the tree, after node X has been inserted; X is always red. */
4044
4045 static void
4046 mem_insert_fixup (struct mem_node *x)
4047 {
4048 while (x != mem_root && x->parent->color == MEM_RED)
4049 {
4050 /* X is red and its parent is red. This is a violation of
4051 red-black tree property #3. */
4052
4053 if (x->parent == x->parent->parent->left)
4054 {
4055 /* We're on the left side of our grandparent, and Y is our
4056 "uncle". */
4057 struct mem_node *y = x->parent->parent->right;
4058
4059 if (y->color == MEM_RED)
4060 {
4061 /* Uncle and parent are red but should be black because
4062 X is red. Change the colors accordingly and proceed
4063 with the grandparent. */
4064 x->parent->color = MEM_BLACK;
4065 y->color = MEM_BLACK;
4066 x->parent->parent->color = MEM_RED;
4067 x = x->parent->parent;
4068 }
4069 else
4070 {
4071 /* Parent and uncle have different colors; parent is
4072 red, uncle is black. */
4073 if (x == x->parent->right)
4074 {
4075 x = x->parent;
4076 mem_rotate_left (x);
4077 }
4078
4079 x->parent->color = MEM_BLACK;
4080 x->parent->parent->color = MEM_RED;
4081 mem_rotate_right (x->parent->parent);
4082 }
4083 }
4084 else
4085 {
4086 /* This is the symmetrical case of above. */
4087 struct mem_node *y = x->parent->parent->left;
4088
4089 if (y->color == MEM_RED)
4090 {
4091 x->parent->color = MEM_BLACK;
4092 y->color = MEM_BLACK;
4093 x->parent->parent->color = MEM_RED;
4094 x = x->parent->parent;
4095 }
4096 else
4097 {
4098 if (x == x->parent->left)
4099 {
4100 x = x->parent;
4101 mem_rotate_right (x);
4102 }
4103
4104 x->parent->color = MEM_BLACK;
4105 x->parent->parent->color = MEM_RED;
4106 mem_rotate_left (x->parent->parent);
4107 }
4108 }
4109 }
4110
4111 /* The root may have been changed to red due to the algorithm. Set
4112 it to black so that property #5 is satisfied. */
4113 mem_root->color = MEM_BLACK;
4114 }
4115
4116
4117 /* (x) (y)
4118 / \ / \
4119 a (y) ===> (x) c
4120 / \ / \
4121 b c a b */
4122
4123 static void
4124 mem_rotate_left (struct mem_node *x)
4125 {
4126 struct mem_node *y;
4127
4128 /* Turn y's left sub-tree into x's right sub-tree. */
4129 y = x->right;
4130 x->right = y->left;
4131 if (y->left != MEM_NIL)
4132 y->left->parent = x;
4133
4134 /* Y's parent was x's parent. */
4135 if (y != MEM_NIL)
4136 y->parent = x->parent;
4137
4138 /* Get the parent to point to y instead of x. */
4139 if (x->parent)
4140 {
4141 if (x == x->parent->left)
4142 x->parent->left = y;
4143 else
4144 x->parent->right = y;
4145 }
4146 else
4147 mem_root = y;
4148
4149 /* Put x on y's left. */
4150 y->left = x;
4151 if (x != MEM_NIL)
4152 x->parent = y;
4153 }
4154
4155
4156 /* (x) (Y)
4157 / \ / \
4158 (y) c ===> a (x)
4159 / \ / \
4160 a b b c */
4161
4162 static void
4163 mem_rotate_right (struct mem_node *x)
4164 {
4165 struct mem_node *y = x->left;
4166
4167 x->left = y->right;
4168 if (y->right != MEM_NIL)
4169 y->right->parent = x;
4170
4171 if (y != MEM_NIL)
4172 y->parent = x->parent;
4173 if (x->parent)
4174 {
4175 if (x == x->parent->right)
4176 x->parent->right = y;
4177 else
4178 x->parent->left = y;
4179 }
4180 else
4181 mem_root = y;
4182
4183 y->right = x;
4184 if (x != MEM_NIL)
4185 x->parent = y;
4186 }
4187
4188
4189 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4190
4191 static void
4192 mem_delete (struct mem_node *z)
4193 {
4194 struct mem_node *x, *y;
4195
4196 if (!z || z == MEM_NIL)
4197 return;
4198
4199 if (z->left == MEM_NIL || z->right == MEM_NIL)
4200 y = z;
4201 else
4202 {
4203 y = z->right;
4204 while (y->left != MEM_NIL)
4205 y = y->left;
4206 }
4207
4208 if (y->left != MEM_NIL)
4209 x = y->left;
4210 else
4211 x = y->right;
4212
4213 x->parent = y->parent;
4214 if (y->parent)
4215 {
4216 if (y == y->parent->left)
4217 y->parent->left = x;
4218 else
4219 y->parent->right = x;
4220 }
4221 else
4222 mem_root = x;
4223
4224 if (y != z)
4225 {
4226 z->start = y->start;
4227 z->end = y->end;
4228 z->type = y->type;
4229 }
4230
4231 if (y->color == MEM_BLACK)
4232 mem_delete_fixup (x);
4233
4234 #ifdef GC_MALLOC_CHECK
4235 free (y);
4236 #else
4237 xfree (y);
4238 #endif
4239 }
4240
4241
4242 /* Re-establish the red-black properties of the tree, after a
4243 deletion. */
4244
4245 static void
4246 mem_delete_fixup (struct mem_node *x)
4247 {
4248 while (x != mem_root && x->color == MEM_BLACK)
4249 {
4250 if (x == x->parent->left)
4251 {
4252 struct mem_node *w = x->parent->right;
4253
4254 if (w->color == MEM_RED)
4255 {
4256 w->color = MEM_BLACK;
4257 x->parent->color = MEM_RED;
4258 mem_rotate_left (x->parent);
4259 w = x->parent->right;
4260 }
4261
4262 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4263 {
4264 w->color = MEM_RED;
4265 x = x->parent;
4266 }
4267 else
4268 {
4269 if (w->right->color == MEM_BLACK)
4270 {
4271 w->left->color = MEM_BLACK;
4272 w->color = MEM_RED;
4273 mem_rotate_right (w);
4274 w = x->parent->right;
4275 }
4276 w->color = x->parent->color;
4277 x->parent->color = MEM_BLACK;
4278 w->right->color = MEM_BLACK;
4279 mem_rotate_left (x->parent);
4280 x = mem_root;
4281 }
4282 }
4283 else
4284 {
4285 struct mem_node *w = x->parent->left;
4286
4287 if (w->color == MEM_RED)
4288 {
4289 w->color = MEM_BLACK;
4290 x->parent->color = MEM_RED;
4291 mem_rotate_right (x->parent);
4292 w = x->parent->left;
4293 }
4294
4295 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4296 {
4297 w->color = MEM_RED;
4298 x = x->parent;
4299 }
4300 else
4301 {
4302 if (w->left->color == MEM_BLACK)
4303 {
4304 w->right->color = MEM_BLACK;
4305 w->color = MEM_RED;
4306 mem_rotate_left (w);
4307 w = x->parent->left;
4308 }
4309
4310 w->color = x->parent->color;
4311 x->parent->color = MEM_BLACK;
4312 w->left->color = MEM_BLACK;
4313 mem_rotate_right (x->parent);
4314 x = mem_root;
4315 }
4316 }
4317 }
4318
4319 x->color = MEM_BLACK;
4320 }
4321
4322
4323 /* Value is non-zero if P is a pointer to a live Lisp string on
4324 the heap. M is a pointer to the mem_block for P. */
4325
4326 static bool
4327 live_string_p (struct mem_node *m, void *p)
4328 {
4329 if (m->type == MEM_TYPE_STRING)
4330 {
4331 struct string_block *b = m->start;
4332 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4333
4334 /* P must point to the start of a Lisp_String structure, and it
4335 must not be on the free-list. */
4336 return (offset >= 0
4337 && offset % sizeof b->strings[0] == 0
4338 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4339 && ((struct Lisp_String *) p)->data != NULL);
4340 }
4341 else
4342 return 0;
4343 }
4344
4345
4346 /* Value is non-zero if P is a pointer to a live Lisp cons on
4347 the heap. M is a pointer to the mem_block for P. */
4348
4349 static bool
4350 live_cons_p (struct mem_node *m, void *p)
4351 {
4352 if (m->type == MEM_TYPE_CONS)
4353 {
4354 struct cons_block *b = m->start;
4355 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4356
4357 /* P must point to the start of a Lisp_Cons, not be
4358 one of the unused cells in the current cons block,
4359 and not be on the free-list. */
4360 return (offset >= 0
4361 && offset % sizeof b->conses[0] == 0
4362 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4363 && (b != cons_block
4364 || offset / sizeof b->conses[0] < cons_block_index)
4365 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4366 }
4367 else
4368 return 0;
4369 }
4370
4371
4372 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4373 the heap. M is a pointer to the mem_block for P. */
4374
4375 static bool
4376 live_symbol_p (struct mem_node *m, void *p)
4377 {
4378 if (m->type == MEM_TYPE_SYMBOL)
4379 {
4380 struct symbol_block *b = m->start;
4381 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4382
4383 /* P must point to the start of a Lisp_Symbol, not be
4384 one of the unused cells in the current symbol block,
4385 and not be on the free-list. */
4386 return (offset >= 0
4387 && offset % sizeof b->symbols[0] == 0
4388 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4389 && (b != symbol_block
4390 || offset / sizeof b->symbols[0] < symbol_block_index)
4391 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4392 }
4393 else
4394 return 0;
4395 }
4396
4397
4398 /* Value is non-zero if P is a pointer to a live Lisp float on
4399 the heap. M is a pointer to the mem_block for P. */
4400
4401 static bool
4402 live_float_p (struct mem_node *m, void *p)
4403 {
4404 if (m->type == MEM_TYPE_FLOAT)
4405 {
4406 struct float_block *b = m->start;
4407 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4408
4409 /* P must point to the start of a Lisp_Float and not be
4410 one of the unused cells in the current float block. */
4411 return (offset >= 0
4412 && offset % sizeof b->floats[0] == 0
4413 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4414 && (b != float_block
4415 || offset / sizeof b->floats[0] < float_block_index));
4416 }
4417 else
4418 return 0;
4419 }
4420
4421
4422 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4423 the heap. M is a pointer to the mem_block for P. */
4424
4425 static bool
4426 live_misc_p (struct mem_node *m, void *p)
4427 {
4428 if (m->type == MEM_TYPE_MISC)
4429 {
4430 struct marker_block *b = m->start;
4431 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4432
4433 /* P must point to the start of a Lisp_Misc, not be
4434 one of the unused cells in the current misc block,
4435 and not be on the free-list. */
4436 return (offset >= 0
4437 && offset % sizeof b->markers[0] == 0
4438 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4439 && (b != marker_block
4440 || offset / sizeof b->markers[0] < marker_block_index)
4441 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4442 }
4443 else
4444 return 0;
4445 }
4446
4447
4448 /* Value is non-zero if P is a pointer to a live vector-like object.
4449 M is a pointer to the mem_block for P. */
4450
4451 static bool
4452 live_vector_p (struct mem_node *m, void *p)
4453 {
4454 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4455 {
4456 /* This memory node corresponds to a vector block. */
4457 struct vector_block *block = m->start;
4458 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4459
4460 /* P is in the block's allocation range. Scan the block
4461 up to P and see whether P points to the start of some
4462 vector which is not on a free list. FIXME: check whether
4463 some allocation patterns (probably a lot of short vectors)
4464 may cause a substantial overhead of this loop. */
4465 while (VECTOR_IN_BLOCK (vector, block)
4466 && vector <= (struct Lisp_Vector *) p)
4467 {
4468 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4469 return 1;
4470 else
4471 vector = ADVANCE (vector, vector_nbytes (vector));
4472 }
4473 }
4474 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4475 /* This memory node corresponds to a large vector. */
4476 return 1;
4477 return 0;
4478 }
4479
4480
4481 /* Value is non-zero if P is a pointer to a live buffer. M is a
4482 pointer to the mem_block for P. */
4483
4484 static bool
4485 live_buffer_p (struct mem_node *m, void *p)
4486 {
4487 /* P must point to the start of the block, and the buffer
4488 must not have been killed. */
4489 return (m->type == MEM_TYPE_BUFFER
4490 && p == m->start
4491 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4492 }
4493
4494 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4495
4496 #if GC_MARK_STACK
4497
4498 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4499
4500 /* Currently not used, but may be called from gdb. */
4501
4502 void dump_zombies (void) EXTERNALLY_VISIBLE;
4503
4504 /* Array of objects that are kept alive because the C stack contains
4505 a pattern that looks like a reference to them. */
4506
4507 #define MAX_ZOMBIES 10
4508 static Lisp_Object zombies[MAX_ZOMBIES];
4509
4510 /* Number of zombie objects. */
4511
4512 static EMACS_INT nzombies;
4513
4514 /* Number of garbage collections. */
4515
4516 static EMACS_INT ngcs;
4517
4518 /* Average percentage of zombies per collection. */
4519
4520 static double avg_zombies;
4521
4522 /* Max. number of live and zombie objects. */
4523
4524 static EMACS_INT max_live, max_zombies;
4525
4526 /* Average number of live objects per GC. */
4527
4528 static double avg_live;
4529
4530 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4531 doc: /* Show information about live and zombie objects. */)
4532 (void)
4533 {
4534 Lisp_Object args[8], zombie_list = Qnil;
4535 EMACS_INT i;
4536 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4537 zombie_list = Fcons (zombies[i], zombie_list);
4538 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4539 args[1] = make_number (ngcs);
4540 args[2] = make_float (avg_live);
4541 args[3] = make_float (avg_zombies);
4542 args[4] = make_float (avg_zombies / avg_live / 100);
4543 args[5] = make_number (max_live);
4544 args[6] = make_number (max_zombies);
4545 args[7] = zombie_list;
4546 return Fmessage (8, args);
4547 }
4548
4549 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4550
4551
4552 /* Mark OBJ if we can prove it's a Lisp_Object. */
4553
4554 static void
4555 mark_maybe_object (Lisp_Object obj)
4556 {
4557 void *po;
4558 struct mem_node *m;
4559
4560 #if USE_VALGRIND
4561 if (valgrind_p)
4562 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4563 #endif
4564
4565 if (INTEGERP (obj))
4566 return;
4567
4568 po = (void *) XPNTR (obj);
4569 m = mem_find (po);
4570
4571 if (m != MEM_NIL)
4572 {
4573 bool mark_p = 0;
4574
4575 switch (XTYPE (obj))
4576 {
4577 case Lisp_String:
4578 mark_p = (live_string_p (m, po)
4579 && !STRING_MARKED_P ((struct Lisp_String *) po));
4580 break;
4581
4582 case Lisp_Cons:
4583 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4584 break;
4585
4586 case Lisp_Symbol:
4587 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4588 break;
4589
4590 case Lisp_Float:
4591 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4592 break;
4593
4594 case Lisp_Vectorlike:
4595 /* Note: can't check BUFFERP before we know it's a
4596 buffer because checking that dereferences the pointer
4597 PO which might point anywhere. */
4598 if (live_vector_p (m, po))
4599 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4600 else if (live_buffer_p (m, po))
4601 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4602 break;
4603
4604 case Lisp_Misc:
4605 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4606 break;
4607
4608 default:
4609 break;
4610 }
4611
4612 if (mark_p)
4613 {
4614 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4615 if (nzombies < MAX_ZOMBIES)
4616 zombies[nzombies] = obj;
4617 ++nzombies;
4618 #endif
4619 mark_object (obj);
4620 }
4621 }
4622 }
4623
4624 /* Return true if P can point to Lisp data, and false otherwise.
4625 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4626 Otherwise, assume that Lisp data is aligned on even addresses. */
4627
4628 static bool
4629 maybe_lisp_pointer (void *p)
4630 {
4631 return !((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2));
4632 }
4633
4634 /* If P points to Lisp data, mark that as live if it isn't already
4635 marked. */
4636
4637 static void
4638 mark_maybe_pointer (void *p)
4639 {
4640 struct mem_node *m;
4641
4642 #if USE_VALGRIND
4643 if (valgrind_p)
4644 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4645 #endif
4646
4647 if (!maybe_lisp_pointer (p))
4648 return;
4649
4650 m = mem_find (p);
4651 if (m != MEM_NIL)
4652 {
4653 Lisp_Object obj = Qnil;
4654
4655 switch (m->type)
4656 {
4657 case MEM_TYPE_NON_LISP:
4658 case MEM_TYPE_SPARE:
4659 /* Nothing to do; not a pointer to Lisp memory. */
4660 break;
4661
4662 case MEM_TYPE_BUFFER:
4663 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4664 XSETVECTOR (obj, p);
4665 break;
4666
4667 case MEM_TYPE_CONS:
4668 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4669 XSETCONS (obj, p);
4670 break;
4671
4672 case MEM_TYPE_STRING:
4673 if (live_string_p (m, p)
4674 && !STRING_MARKED_P ((struct Lisp_String *) p))
4675 XSETSTRING (obj, p);
4676 break;
4677
4678 case MEM_TYPE_MISC:
4679 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4680 XSETMISC (obj, p);
4681 break;
4682
4683 case MEM_TYPE_SYMBOL:
4684 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4685 XSETSYMBOL (obj, p);
4686 break;
4687
4688 case MEM_TYPE_FLOAT:
4689 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4690 XSETFLOAT (obj, p);
4691 break;
4692
4693 case MEM_TYPE_VECTORLIKE:
4694 case MEM_TYPE_VECTOR_BLOCK:
4695 if (live_vector_p (m, p))
4696 {
4697 Lisp_Object tem;
4698 XSETVECTOR (tem, p);
4699 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4700 obj = tem;
4701 }
4702 break;
4703
4704 default:
4705 emacs_abort ();
4706 }
4707
4708 if (!NILP (obj))
4709 mark_object (obj);
4710 }
4711 }
4712
4713
4714 /* Alignment of pointer values. Use alignof, as it sometimes returns
4715 a smaller alignment than GCC's __alignof__ and mark_memory might
4716 miss objects if __alignof__ were used. */
4717 #define GC_POINTER_ALIGNMENT alignof (void *)
4718
4719 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4720 not suffice, which is the typical case. A host where a Lisp_Object is
4721 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4722 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4723 suffice to widen it to to a Lisp_Object and check it that way. */
4724 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4725 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4726 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4727 nor mark_maybe_object can follow the pointers. This should not occur on
4728 any practical porting target. */
4729 # error "MSB type bits straddle pointer-word boundaries"
4730 # endif
4731 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4732 pointer words that hold pointers ORed with type bits. */
4733 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4734 #else
4735 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4736 words that hold unmodified pointers. */
4737 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4738 #endif
4739
4740 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4741 or END+OFFSET..START. */
4742
4743 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4744 mark_memory (void *start, void *end)
4745 {
4746 void **pp;
4747 int i;
4748
4749 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4750 nzombies = 0;
4751 #endif
4752
4753 /* Make START the pointer to the start of the memory region,
4754 if it isn't already. */
4755 if (end < start)
4756 {
4757 void *tem = start;
4758 start = end;
4759 end = tem;
4760 }
4761
4762 /* Mark Lisp data pointed to. This is necessary because, in some
4763 situations, the C compiler optimizes Lisp objects away, so that
4764 only a pointer to them remains. Example:
4765
4766 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4767 ()
4768 {
4769 Lisp_Object obj = build_string ("test");
4770 struct Lisp_String *s = XSTRING (obj);
4771 Fgarbage_collect ();
4772 fprintf (stderr, "test `%s'\n", s->data);
4773 return Qnil;
4774 }
4775
4776 Here, `obj' isn't really used, and the compiler optimizes it
4777 away. The only reference to the life string is through the
4778 pointer `s'. */
4779
4780 for (pp = start; (void *) pp < end; pp++)
4781 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4782 {
4783 void *p = *(void **) ((char *) pp + i);
4784 mark_maybe_pointer (p);
4785 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4786 mark_maybe_object (XIL ((intptr_t) p));
4787 }
4788 }
4789
4790 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4791
4792 static bool setjmp_tested_p;
4793 static int longjmps_done;
4794
4795 #define SETJMP_WILL_LIKELY_WORK "\
4796 \n\
4797 Emacs garbage collector has been changed to use conservative stack\n\
4798 marking. Emacs has determined that the method it uses to do the\n\
4799 marking will likely work on your system, but this isn't sure.\n\
4800 \n\
4801 If you are a system-programmer, or can get the help of a local wizard\n\
4802 who is, please take a look at the function mark_stack in alloc.c, and\n\
4803 verify that the methods used are appropriate for your system.\n\
4804 \n\
4805 Please mail the result to <emacs-devel@gnu.org>.\n\
4806 "
4807
4808 #define SETJMP_WILL_NOT_WORK "\
4809 \n\
4810 Emacs garbage collector has been changed to use conservative stack\n\
4811 marking. Emacs has determined that the default method it uses to do the\n\
4812 marking will not work on your system. We will need a system-dependent\n\
4813 solution for your system.\n\
4814 \n\
4815 Please take a look at the function mark_stack in alloc.c, and\n\
4816 try to find a way to make it work on your system.\n\
4817 \n\
4818 Note that you may get false negatives, depending on the compiler.\n\
4819 In particular, you need to use -O with GCC for this test.\n\
4820 \n\
4821 Please mail the result to <emacs-devel@gnu.org>.\n\
4822 "
4823
4824
4825 /* Perform a quick check if it looks like setjmp saves registers in a
4826 jmp_buf. Print a message to stderr saying so. When this test
4827 succeeds, this is _not_ a proof that setjmp is sufficient for
4828 conservative stack marking. Only the sources or a disassembly
4829 can prove that. */
4830
4831 static void
4832 test_setjmp (void)
4833 {
4834 char buf[10];
4835 register int x;
4836 sys_jmp_buf jbuf;
4837
4838 /* Arrange for X to be put in a register. */
4839 sprintf (buf, "1");
4840 x = strlen (buf);
4841 x = 2 * x - 1;
4842
4843 sys_setjmp (jbuf);
4844 if (longjmps_done == 1)
4845 {
4846 /* Came here after the longjmp at the end of the function.
4847
4848 If x == 1, the longjmp has restored the register to its
4849 value before the setjmp, and we can hope that setjmp
4850 saves all such registers in the jmp_buf, although that
4851 isn't sure.
4852
4853 For other values of X, either something really strange is
4854 taking place, or the setjmp just didn't save the register. */
4855
4856 if (x == 1)
4857 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4858 else
4859 {
4860 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4861 exit (1);
4862 }
4863 }
4864
4865 ++longjmps_done;
4866 x = 2;
4867 if (longjmps_done == 1)
4868 sys_longjmp (jbuf, 1);
4869 }
4870
4871 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4872
4873
4874 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4875
4876 /* Abort if anything GCPRO'd doesn't survive the GC. */
4877
4878 static void
4879 check_gcpros (void)
4880 {
4881 struct gcpro *p;
4882 ptrdiff_t i;
4883
4884 for (p = gcprolist; p; p = p->next)
4885 for (i = 0; i < p->nvars; ++i)
4886 if (!survives_gc_p (p->var[i]))
4887 /* FIXME: It's not necessarily a bug. It might just be that the
4888 GCPRO is unnecessary or should release the object sooner. */
4889 emacs_abort ();
4890 }
4891
4892 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4893
4894 void
4895 dump_zombies (void)
4896 {
4897 int i;
4898
4899 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4900 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4901 {
4902 fprintf (stderr, " %d = ", i);
4903 debug_print (zombies[i]);
4904 }
4905 }
4906
4907 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4908
4909
4910 /* Mark live Lisp objects on the C stack.
4911
4912 There are several system-dependent problems to consider when
4913 porting this to new architectures:
4914
4915 Processor Registers
4916
4917 We have to mark Lisp objects in CPU registers that can hold local
4918 variables or are used to pass parameters.
4919
4920 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4921 something that either saves relevant registers on the stack, or
4922 calls mark_maybe_object passing it each register's contents.
4923
4924 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4925 implementation assumes that calling setjmp saves registers we need
4926 to see in a jmp_buf which itself lies on the stack. This doesn't
4927 have to be true! It must be verified for each system, possibly
4928 by taking a look at the source code of setjmp.
4929
4930 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4931 can use it as a machine independent method to store all registers
4932 to the stack. In this case the macros described in the previous
4933 two paragraphs are not used.
4934
4935 Stack Layout
4936
4937 Architectures differ in the way their processor stack is organized.
4938 For example, the stack might look like this
4939
4940 +----------------+
4941 | Lisp_Object | size = 4
4942 +----------------+
4943 | something else | size = 2
4944 +----------------+
4945 | Lisp_Object | size = 4
4946 +----------------+
4947 | ... |
4948
4949 In such a case, not every Lisp_Object will be aligned equally. To
4950 find all Lisp_Object on the stack it won't be sufficient to walk
4951 the stack in steps of 4 bytes. Instead, two passes will be
4952 necessary, one starting at the start of the stack, and a second
4953 pass starting at the start of the stack + 2. Likewise, if the
4954 minimal alignment of Lisp_Objects on the stack is 1, four passes
4955 would be necessary, each one starting with one byte more offset
4956 from the stack start. */
4957
4958 static void
4959 mark_stack (void *end)
4960 {
4961
4962 /* This assumes that the stack is a contiguous region in memory. If
4963 that's not the case, something has to be done here to iterate
4964 over the stack segments. */
4965 mark_memory (stack_base, end);
4966
4967 /* Allow for marking a secondary stack, like the register stack on the
4968 ia64. */
4969 #ifdef GC_MARK_SECONDARY_STACK
4970 GC_MARK_SECONDARY_STACK ();
4971 #endif
4972
4973 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4974 check_gcpros ();
4975 #endif
4976 }
4977
4978 #else /* GC_MARK_STACK == 0 */
4979
4980 #define mark_maybe_object(obj) emacs_abort ()
4981
4982 #endif /* GC_MARK_STACK != 0 */
4983
4984
4985 /* Determine whether it is safe to access memory at address P. */
4986 static int
4987 valid_pointer_p (void *p)
4988 {
4989 #ifdef WINDOWSNT
4990 return w32_valid_pointer_p (p, 16);
4991 #else
4992 int fd[2];
4993
4994 /* Obviously, we cannot just access it (we would SEGV trying), so we
4995 trick the o/s to tell us whether p is a valid pointer.
4996 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4997 not validate p in that case. */
4998
4999 if (emacs_pipe (fd) == 0)
5000 {
5001 bool valid = emacs_write (fd[1], p, 16) == 16;
5002 emacs_close (fd[1]);
5003 emacs_close (fd[0]);
5004 return valid;
5005 }
5006
5007 return -1;
5008 #endif
5009 }
5010
5011 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
5012 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
5013 cannot validate OBJ. This function can be quite slow, so its primary
5014 use is the manual debugging. The only exception is print_object, where
5015 we use it to check whether the memory referenced by the pointer of
5016 Lisp_Save_Value object contains valid objects. */
5017
5018 int
5019 valid_lisp_object_p (Lisp_Object obj)
5020 {
5021 void *p;
5022 #if GC_MARK_STACK
5023 struct mem_node *m;
5024 #endif
5025
5026 if (INTEGERP (obj))
5027 return 1;
5028
5029 p = (void *) XPNTR (obj);
5030 if (PURE_POINTER_P (p))
5031 return 1;
5032
5033 if (p == &buffer_defaults || p == &buffer_local_symbols)
5034 return 2;
5035
5036 #if !GC_MARK_STACK
5037 return valid_pointer_p (p);
5038 #else
5039
5040 m = mem_find (p);
5041
5042 if (m == MEM_NIL)
5043 {
5044 int valid = valid_pointer_p (p);
5045 if (valid <= 0)
5046 return valid;
5047
5048 if (SUBRP (obj))
5049 return 1;
5050
5051 return 0;
5052 }
5053
5054 switch (m->type)
5055 {
5056 case MEM_TYPE_NON_LISP:
5057 case MEM_TYPE_SPARE:
5058 return 0;
5059
5060 case MEM_TYPE_BUFFER:
5061 return live_buffer_p (m, p) ? 1 : 2;
5062
5063 case MEM_TYPE_CONS:
5064 return live_cons_p (m, p);
5065
5066 case MEM_TYPE_STRING:
5067 return live_string_p (m, p);
5068
5069 case MEM_TYPE_MISC:
5070 return live_misc_p (m, p);
5071
5072 case MEM_TYPE_SYMBOL:
5073 return live_symbol_p (m, p);
5074
5075 case MEM_TYPE_FLOAT:
5076 return live_float_p (m, p);
5077
5078 case MEM_TYPE_VECTORLIKE:
5079 case MEM_TYPE_VECTOR_BLOCK:
5080 return live_vector_p (m, p);
5081
5082 default:
5083 break;
5084 }
5085
5086 return 0;
5087 #endif
5088 }
5089
5090 /* If GC_MARK_STACK, return 1 if STR is a relocatable data of Lisp_String
5091 (i.e. there is a non-pure Lisp_Object X so that SDATA (X) == STR) and 0
5092 if not. Otherwise we can't rely on valid_lisp_object_p and return -1.
5093 This function is slow and should be used for debugging purposes. */
5094
5095 int
5096 relocatable_string_data_p (const char *str)
5097 {
5098 if (PURE_POINTER_P (str))
5099 return 0;
5100 #if GC_MARK_STACK
5101 if (str)
5102 {
5103 struct sdata *sdata
5104 = (struct sdata *) (str - offsetof (struct sdata, data));
5105
5106 if (valid_pointer_p (sdata)
5107 && valid_pointer_p (sdata->string)
5108 && maybe_lisp_pointer (sdata->string))
5109 return (valid_lisp_object_p
5110 (make_lisp_ptr (sdata->string, Lisp_String))
5111 && (const char *) sdata->string->data == str);
5112 }
5113 return 0;
5114 #endif /* GC_MARK_STACK */
5115 return -1;
5116 }
5117
5118 /***********************************************************************
5119 Pure Storage Management
5120 ***********************************************************************/
5121
5122 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5123 pointer to it. TYPE is the Lisp type for which the memory is
5124 allocated. TYPE < 0 means it's not used for a Lisp object. */
5125
5126 static void *
5127 pure_alloc (size_t size, int type)
5128 {
5129 void *result;
5130 #if USE_LSB_TAG
5131 size_t alignment = GCALIGNMENT;
5132 #else
5133 size_t alignment = alignof (EMACS_INT);
5134
5135 /* Give Lisp_Floats an extra alignment. */
5136 if (type == Lisp_Float)
5137 alignment = alignof (struct Lisp_Float);
5138 #endif
5139
5140 again:
5141 if (type >= 0)
5142 {
5143 /* Allocate space for a Lisp object from the beginning of the free
5144 space with taking account of alignment. */
5145 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5146 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5147 }
5148 else
5149 {
5150 /* Allocate space for a non-Lisp object from the end of the free
5151 space. */
5152 pure_bytes_used_non_lisp += size;
5153 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5154 }
5155 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5156
5157 if (pure_bytes_used <= pure_size)
5158 return result;
5159
5160 /* Don't allocate a large amount here,
5161 because it might get mmap'd and then its address
5162 might not be usable. */
5163 purebeg = xmalloc (10000);
5164 pure_size = 10000;
5165 pure_bytes_used_before_overflow += pure_bytes_used - size;
5166 pure_bytes_used = 0;
5167 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5168 goto again;
5169 }
5170
5171
5172 /* Print a warning if PURESIZE is too small. */
5173
5174 void
5175 check_pure_size (void)
5176 {
5177 if (pure_bytes_used_before_overflow)
5178 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5179 " bytes needed)"),
5180 pure_bytes_used + pure_bytes_used_before_overflow);
5181 }
5182
5183
5184 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5185 the non-Lisp data pool of the pure storage, and return its start
5186 address. Return NULL if not found. */
5187
5188 static char *
5189 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5190 {
5191 int i;
5192 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5193 const unsigned char *p;
5194 char *non_lisp_beg;
5195
5196 if (pure_bytes_used_non_lisp <= nbytes)
5197 return NULL;
5198
5199 /* Set up the Boyer-Moore table. */
5200 skip = nbytes + 1;
5201 for (i = 0; i < 256; i++)
5202 bm_skip[i] = skip;
5203
5204 p = (const unsigned char *) data;
5205 while (--skip > 0)
5206 bm_skip[*p++] = skip;
5207
5208 last_char_skip = bm_skip['\0'];
5209
5210 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5211 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5212
5213 /* See the comments in the function `boyer_moore' (search.c) for the
5214 use of `infinity'. */
5215 infinity = pure_bytes_used_non_lisp + 1;
5216 bm_skip['\0'] = infinity;
5217
5218 p = (const unsigned char *) non_lisp_beg + nbytes;
5219 start = 0;
5220 do
5221 {
5222 /* Check the last character (== '\0'). */
5223 do
5224 {
5225 start += bm_skip[*(p + start)];
5226 }
5227 while (start <= start_max);
5228
5229 if (start < infinity)
5230 /* Couldn't find the last character. */
5231 return NULL;
5232
5233 /* No less than `infinity' means we could find the last
5234 character at `p[start - infinity]'. */
5235 start -= infinity;
5236
5237 /* Check the remaining characters. */
5238 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5239 /* Found. */
5240 return non_lisp_beg + start;
5241
5242 start += last_char_skip;
5243 }
5244 while (start <= start_max);
5245
5246 return NULL;
5247 }
5248
5249
5250 /* Return a string allocated in pure space. DATA is a buffer holding
5251 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5252 means make the result string multibyte.
5253
5254 Must get an error if pure storage is full, since if it cannot hold
5255 a large string it may be able to hold conses that point to that
5256 string; then the string is not protected from gc. */
5257
5258 Lisp_Object
5259 make_pure_string (const char *data,
5260 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5261 {
5262 Lisp_Object string;
5263 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5264 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5265 if (s->data == NULL)
5266 {
5267 s->data = pure_alloc (nbytes + 1, -1);
5268 memcpy (s->data, data, nbytes);
5269 s->data[nbytes] = '\0';
5270 }
5271 s->size = nchars;
5272 s->size_byte = multibyte ? nbytes : -1;
5273 s->intervals = NULL;
5274 XSETSTRING (string, s);
5275 return string;
5276 }
5277
5278 /* Return a string allocated in pure space. Do not
5279 allocate the string data, just point to DATA. */
5280
5281 Lisp_Object
5282 make_pure_c_string (const char *data, ptrdiff_t nchars)
5283 {
5284 Lisp_Object string;
5285 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5286 s->size = nchars;
5287 s->size_byte = -1;
5288 s->data = (unsigned char *) data;
5289 s->intervals = NULL;
5290 XSETSTRING (string, s);
5291 return string;
5292 }
5293
5294 static Lisp_Object purecopy (Lisp_Object obj);
5295
5296 /* Return a cons allocated from pure space. Give it pure copies
5297 of CAR as car and CDR as cdr. */
5298
5299 Lisp_Object
5300 pure_cons (Lisp_Object car, Lisp_Object cdr)
5301 {
5302 Lisp_Object new;
5303 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5304 XSETCONS (new, p);
5305 XSETCAR (new, purecopy (car));
5306 XSETCDR (new, purecopy (cdr));
5307 return new;
5308 }
5309
5310
5311 /* Value is a float object with value NUM allocated from pure space. */
5312
5313 static Lisp_Object
5314 make_pure_float (double num)
5315 {
5316 Lisp_Object new;
5317 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5318 XSETFLOAT (new, p);
5319 XFLOAT_INIT (new, num);
5320 return new;
5321 }
5322
5323
5324 /* Return a vector with room for LEN Lisp_Objects allocated from
5325 pure space. */
5326
5327 static Lisp_Object
5328 make_pure_vector (ptrdiff_t len)
5329 {
5330 Lisp_Object new;
5331 size_t size = header_size + len * word_size;
5332 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5333 XSETVECTOR (new, p);
5334 XVECTOR (new)->header.size = len;
5335 return new;
5336 }
5337
5338
5339 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5340 doc: /* Make a copy of object OBJ in pure storage.
5341 Recursively copies contents of vectors and cons cells.
5342 Does not copy symbols. Copies strings without text properties. */)
5343 (register Lisp_Object obj)
5344 {
5345 if (NILP (Vpurify_flag))
5346 return obj;
5347 else if (MARKERP (obj) || OVERLAYP (obj)
5348 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5349 /* Can't purify those. */
5350 return obj;
5351 else
5352 return purecopy (obj);
5353 }
5354
5355 static Lisp_Object
5356 purecopy (Lisp_Object obj)
5357 {
5358 if (PURE_POINTER_P (XPNTR (obj)) || INTEGERP (obj) || SUBRP (obj))
5359 return obj; /* Already pure. */
5360
5361 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5362 {
5363 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5364 if (!NILP (tmp))
5365 return tmp;
5366 }
5367
5368 if (CONSP (obj))
5369 obj = pure_cons (XCAR (obj), XCDR (obj));
5370 else if (FLOATP (obj))
5371 obj = make_pure_float (XFLOAT_DATA (obj));
5372 else if (STRINGP (obj))
5373 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5374 SBYTES (obj),
5375 STRING_MULTIBYTE (obj));
5376 else if (COMPILEDP (obj) || VECTORP (obj))
5377 {
5378 register struct Lisp_Vector *vec;
5379 register ptrdiff_t i;
5380 ptrdiff_t size;
5381
5382 size = ASIZE (obj);
5383 if (size & PSEUDOVECTOR_FLAG)
5384 size &= PSEUDOVECTOR_SIZE_MASK;
5385 vec = XVECTOR (make_pure_vector (size));
5386 for (i = 0; i < size; i++)
5387 vec->contents[i] = purecopy (AREF (obj, i));
5388 if (COMPILEDP (obj))
5389 {
5390 XSETPVECTYPE (vec, PVEC_COMPILED);
5391 XSETCOMPILED (obj, vec);
5392 }
5393 else
5394 XSETVECTOR (obj, vec);
5395 }
5396 else if (SYMBOLP (obj))
5397 {
5398 if (!XSYMBOL (obj)->pinned)
5399 { /* We can't purify them, but they appear in many pure objects.
5400 Mark them as `pinned' so we know to mark them at every GC cycle. */
5401 XSYMBOL (obj)->pinned = true;
5402 symbol_block_pinned = symbol_block;
5403 }
5404 return obj;
5405 }
5406 else
5407 {
5408 Lisp_Object args[2];
5409 args[0] = build_pure_c_string ("Don't know how to purify: %S");
5410 args[1] = obj;
5411 Fsignal (Qerror, (Fcons (Fformat (2, args), Qnil)));
5412 }
5413
5414 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5415 Fputhash (obj, obj, Vpurify_flag);
5416
5417 return obj;
5418 }
5419
5420
5421 \f
5422 /***********************************************************************
5423 Protection from GC
5424 ***********************************************************************/
5425
5426 /* Put an entry in staticvec, pointing at the variable with address
5427 VARADDRESS. */
5428
5429 void
5430 staticpro (Lisp_Object *varaddress)
5431 {
5432 if (staticidx >= NSTATICS)
5433 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5434 staticvec[staticidx++] = varaddress;
5435 }
5436
5437 \f
5438 /***********************************************************************
5439 Protection from GC
5440 ***********************************************************************/
5441
5442 /* Temporarily prevent garbage collection. */
5443
5444 ptrdiff_t
5445 inhibit_garbage_collection (void)
5446 {
5447 ptrdiff_t count = SPECPDL_INDEX ();
5448
5449 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5450 return count;
5451 }
5452
5453 /* Used to avoid possible overflows when
5454 converting from C to Lisp integers. */
5455
5456 static Lisp_Object
5457 bounded_number (EMACS_INT number)
5458 {
5459 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5460 }
5461
5462 /* Calculate total bytes of live objects. */
5463
5464 static size_t
5465 total_bytes_of_live_objects (void)
5466 {
5467 size_t tot = 0;
5468 tot += total_conses * sizeof (struct Lisp_Cons);
5469 tot += total_symbols * sizeof (struct Lisp_Symbol);
5470 tot += total_markers * sizeof (union Lisp_Misc);
5471 tot += total_string_bytes;
5472 tot += total_vector_slots * word_size;
5473 tot += total_floats * sizeof (struct Lisp_Float);
5474 tot += total_intervals * sizeof (struct interval);
5475 tot += total_strings * sizeof (struct Lisp_String);
5476 return tot;
5477 }
5478
5479 #ifdef HAVE_WINDOW_SYSTEM
5480
5481 /* This code has a few issues on MS-Windows, see Bug#15876 and Bug#16140. */
5482
5483 #if !defined (HAVE_NTGUI)
5484
5485 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5486 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5487
5488 static Lisp_Object
5489 compact_font_cache_entry (Lisp_Object entry)
5490 {
5491 Lisp_Object tail, *prev = &entry;
5492
5493 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5494 {
5495 bool drop = 0;
5496 Lisp_Object obj = XCAR (tail);
5497
5498 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5499 if (CONSP (obj) && FONT_SPEC_P (XCAR (obj))
5500 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj)))
5501 && VECTORP (XCDR (obj)))
5502 {
5503 ptrdiff_t i, size = ASIZE (XCDR (obj)) & ~ARRAY_MARK_FLAG;
5504
5505 /* If font-spec is not marked, most likely all font-entities
5506 are not marked too. But we must be sure that nothing is
5507 marked within OBJ before we really drop it. */
5508 for (i = 0; i < size; i++)
5509 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj), i))))
5510 break;
5511
5512 if (i == size)
5513 drop = 1;
5514 }
5515 if (drop)
5516 *prev = XCDR (tail);
5517 else
5518 prev = xcdr_addr (tail);
5519 }
5520 return entry;
5521 }
5522
5523 #endif /* not HAVE_NTGUI */
5524
5525 /* Compact font caches on all terminals and mark
5526 everything which is still here after compaction. */
5527
5528 static void
5529 compact_font_caches (void)
5530 {
5531 struct terminal *t;
5532
5533 for (t = terminal_list; t; t = t->next_terminal)
5534 {
5535 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5536 #if !defined (HAVE_NTGUI)
5537 if (CONSP (cache))
5538 {
5539 Lisp_Object entry;
5540
5541 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5542 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5543 }
5544 #endif /* not HAVE_NTGUI */
5545 mark_object (cache);
5546 }
5547 }
5548
5549 #else /* not HAVE_WINDOW_SYSTEM */
5550
5551 #define compact_font_caches() (void)(0)
5552
5553 #endif /* HAVE_WINDOW_SYSTEM */
5554
5555 /* Remove (MARKER . DATA) entries with unmarked MARKER
5556 from buffer undo LIST and return changed list. */
5557
5558 static Lisp_Object
5559 compact_undo_list (Lisp_Object list)
5560 {
5561 Lisp_Object tail, *prev = &list;
5562
5563 for (tail = list; CONSP (tail); tail = XCDR (tail))
5564 {
5565 if (CONSP (XCAR (tail))
5566 && MARKERP (XCAR (XCAR (tail)))
5567 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5568 *prev = XCDR (tail);
5569 else
5570 prev = xcdr_addr (tail);
5571 }
5572 return list;
5573 }
5574
5575 static void
5576 mark_pinned_symbols (void)
5577 {
5578 struct symbol_block *sblk;
5579 int lim = (symbol_block_pinned == symbol_block
5580 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5581
5582 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5583 {
5584 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5585 for (; sym < end; ++sym)
5586 if (sym->s.pinned)
5587 mark_object (make_lisp_ptr (&sym->s, Lisp_Symbol));
5588
5589 lim = SYMBOL_BLOCK_SIZE;
5590 }
5591 }
5592
5593 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5594 separate function so that we could limit mark_stack in searching
5595 the stack frames below this function, thus avoiding the rare cases
5596 where mark_stack finds values that look like live Lisp objects on
5597 portions of stack that couldn't possibly contain such live objects.
5598 For more details of this, see the discussion at
5599 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5600 static Lisp_Object
5601 garbage_collect_1 (void *end)
5602 {
5603 struct buffer *nextb;
5604 char stack_top_variable;
5605 ptrdiff_t i;
5606 bool message_p;
5607 ptrdiff_t count = SPECPDL_INDEX ();
5608 struct timespec start;
5609 Lisp_Object retval = Qnil;
5610 size_t tot_before = 0;
5611
5612 if (abort_on_gc)
5613 emacs_abort ();
5614
5615 /* Can't GC if pure storage overflowed because we can't determine
5616 if something is a pure object or not. */
5617 if (pure_bytes_used_before_overflow)
5618 return Qnil;
5619
5620 /* Record this function, so it appears on the profiler's backtraces. */
5621 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5622
5623 check_cons_list ();
5624
5625 /* Don't keep undo information around forever.
5626 Do this early on, so it is no problem if the user quits. */
5627 FOR_EACH_BUFFER (nextb)
5628 compact_buffer (nextb);
5629
5630 if (profiler_memory_running)
5631 tot_before = total_bytes_of_live_objects ();
5632
5633 start = current_timespec ();
5634
5635 /* In case user calls debug_print during GC,
5636 don't let that cause a recursive GC. */
5637 consing_since_gc = 0;
5638
5639 /* Save what's currently displayed in the echo area. */
5640 message_p = push_message ();
5641 record_unwind_protect_void (pop_message_unwind);
5642
5643 /* Save a copy of the contents of the stack, for debugging. */
5644 #if MAX_SAVE_STACK > 0
5645 if (NILP (Vpurify_flag))
5646 {
5647 char *stack;
5648 ptrdiff_t stack_size;
5649 if (&stack_top_variable < stack_bottom)
5650 {
5651 stack = &stack_top_variable;
5652 stack_size = stack_bottom - &stack_top_variable;
5653 }
5654 else
5655 {
5656 stack = stack_bottom;
5657 stack_size = &stack_top_variable - stack_bottom;
5658 }
5659 if (stack_size <= MAX_SAVE_STACK)
5660 {
5661 if (stack_copy_size < stack_size)
5662 {
5663 stack_copy = xrealloc (stack_copy, stack_size);
5664 stack_copy_size = stack_size;
5665 }
5666 no_sanitize_memcpy (stack_copy, stack, stack_size);
5667 }
5668 }
5669 #endif /* MAX_SAVE_STACK > 0 */
5670
5671 if (garbage_collection_messages)
5672 message1_nolog ("Garbage collecting...");
5673
5674 block_input ();
5675
5676 shrink_regexp_cache ();
5677
5678 gc_in_progress = 1;
5679
5680 /* Mark all the special slots that serve as the roots of accessibility. */
5681
5682 mark_buffer (&buffer_defaults);
5683 mark_buffer (&buffer_local_symbols);
5684
5685 for (i = 0; i < staticidx; i++)
5686 mark_object (*staticvec[i]);
5687
5688 mark_pinned_symbols ();
5689 mark_specpdl ();
5690 mark_terminals ();
5691 mark_kboards ();
5692
5693 #ifdef USE_GTK
5694 xg_mark_data ();
5695 #endif
5696
5697 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5698 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5699 mark_stack (end);
5700 #else
5701 {
5702 register struct gcpro *tail;
5703 for (tail = gcprolist; tail; tail = tail->next)
5704 for (i = 0; i < tail->nvars; i++)
5705 mark_object (tail->var[i]);
5706 }
5707 mark_byte_stack ();
5708 #endif
5709 {
5710 struct handler *handler;
5711 for (handler = handlerlist; handler; handler = handler->next)
5712 {
5713 mark_object (handler->tag_or_ch);
5714 mark_object (handler->val);
5715 }
5716 }
5717 #ifdef HAVE_WINDOW_SYSTEM
5718 mark_fringe_data ();
5719 #endif
5720
5721 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5722 mark_stack (end);
5723 #endif
5724
5725 /* Everything is now marked, except for the data in font caches
5726 and undo lists. They're compacted by removing an items which
5727 aren't reachable otherwise. */
5728
5729 compact_font_caches ();
5730
5731 FOR_EACH_BUFFER (nextb)
5732 {
5733 if (!EQ (BVAR (nextb, undo_list), Qt))
5734 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5735 /* Now that we have stripped the elements that need not be
5736 in the undo_list any more, we can finally mark the list. */
5737 mark_object (BVAR (nextb, undo_list));
5738 }
5739
5740 gc_sweep ();
5741
5742 /* Clear the mark bits that we set in certain root slots. */
5743
5744 unmark_byte_stack ();
5745 VECTOR_UNMARK (&buffer_defaults);
5746 VECTOR_UNMARK (&buffer_local_symbols);
5747
5748 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5749 dump_zombies ();
5750 #endif
5751
5752 check_cons_list ();
5753
5754 gc_in_progress = 0;
5755
5756 unblock_input ();
5757
5758 consing_since_gc = 0;
5759 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5760 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5761
5762 gc_relative_threshold = 0;
5763 if (FLOATP (Vgc_cons_percentage))
5764 { /* Set gc_cons_combined_threshold. */
5765 double tot = total_bytes_of_live_objects ();
5766
5767 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5768 if (0 < tot)
5769 {
5770 if (tot < TYPE_MAXIMUM (EMACS_INT))
5771 gc_relative_threshold = tot;
5772 else
5773 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5774 }
5775 }
5776
5777 if (garbage_collection_messages)
5778 {
5779 if (message_p || minibuf_level > 0)
5780 restore_message ();
5781 else
5782 message1_nolog ("Garbage collecting...done");
5783 }
5784
5785 unbind_to (count, Qnil);
5786 {
5787 Lisp_Object total[11];
5788 int total_size = 10;
5789
5790 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5791 bounded_number (total_conses),
5792 bounded_number (total_free_conses));
5793
5794 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5795 bounded_number (total_symbols),
5796 bounded_number (total_free_symbols));
5797
5798 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5799 bounded_number (total_markers),
5800 bounded_number (total_free_markers));
5801
5802 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5803 bounded_number (total_strings),
5804 bounded_number (total_free_strings));
5805
5806 total[4] = list3 (Qstring_bytes, make_number (1),
5807 bounded_number (total_string_bytes));
5808
5809 total[5] = list3 (Qvectors,
5810 make_number (header_size + sizeof (Lisp_Object)),
5811 bounded_number (total_vectors));
5812
5813 total[6] = list4 (Qvector_slots, make_number (word_size),
5814 bounded_number (total_vector_slots),
5815 bounded_number (total_free_vector_slots));
5816
5817 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5818 bounded_number (total_floats),
5819 bounded_number (total_free_floats));
5820
5821 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5822 bounded_number (total_intervals),
5823 bounded_number (total_free_intervals));
5824
5825 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5826 bounded_number (total_buffers));
5827
5828 #ifdef DOUG_LEA_MALLOC
5829 total_size++;
5830 total[10] = list4 (Qheap, make_number (1024),
5831 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5832 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5833 #endif
5834 retval = Flist (total_size, total);
5835 }
5836
5837 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5838 {
5839 /* Compute average percentage of zombies. */
5840 double nlive
5841 = (total_conses + total_symbols + total_markers + total_strings
5842 + total_vectors + total_floats + total_intervals + total_buffers);
5843
5844 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5845 max_live = max (nlive, max_live);
5846 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5847 max_zombies = max (nzombies, max_zombies);
5848 ++ngcs;
5849 }
5850 #endif
5851
5852 if (!NILP (Vpost_gc_hook))
5853 {
5854 ptrdiff_t gc_count = inhibit_garbage_collection ();
5855 safe_run_hooks (Qpost_gc_hook);
5856 unbind_to (gc_count, Qnil);
5857 }
5858
5859 /* Accumulate statistics. */
5860 if (FLOATP (Vgc_elapsed))
5861 {
5862 struct timespec since_start = timespec_sub (current_timespec (), start);
5863 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5864 + timespectod (since_start));
5865 }
5866
5867 gcs_done++;
5868
5869 /* Collect profiling data. */
5870 if (profiler_memory_running)
5871 {
5872 size_t swept = 0;
5873 size_t tot_after = total_bytes_of_live_objects ();
5874 if (tot_before > tot_after)
5875 swept = tot_before - tot_after;
5876 malloc_probe (swept);
5877 }
5878
5879 return retval;
5880 }
5881
5882 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5883 doc: /* Reclaim storage for Lisp objects no longer needed.
5884 Garbage collection happens automatically if you cons more than
5885 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5886 `garbage-collect' normally returns a list with info on amount of space in use,
5887 where each entry has the form (NAME SIZE USED FREE), where:
5888 - NAME is a symbol describing the kind of objects this entry represents,
5889 - SIZE is the number of bytes used by each one,
5890 - USED is the number of those objects that were found live in the heap,
5891 - FREE is the number of those objects that are not live but that Emacs
5892 keeps around for future allocations (maybe because it does not know how
5893 to return them to the OS).
5894 However, if there was overflow in pure space, `garbage-collect'
5895 returns nil, because real GC can't be done.
5896 See Info node `(elisp)Garbage Collection'. */)
5897 (void)
5898 {
5899 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5900 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS \
5901 || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
5902 void *end;
5903
5904 #ifdef HAVE___BUILTIN_UNWIND_INIT
5905 /* Force callee-saved registers and register windows onto the stack.
5906 This is the preferred method if available, obviating the need for
5907 machine dependent methods. */
5908 __builtin_unwind_init ();
5909 end = &end;
5910 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5911 #ifndef GC_SAVE_REGISTERS_ON_STACK
5912 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5913 union aligned_jmpbuf {
5914 Lisp_Object o;
5915 sys_jmp_buf j;
5916 } j;
5917 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
5918 #endif
5919 /* This trick flushes the register windows so that all the state of
5920 the process is contained in the stack. */
5921 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5922 needed on ia64 too. See mach_dep.c, where it also says inline
5923 assembler doesn't work with relevant proprietary compilers. */
5924 #ifdef __sparc__
5925 #if defined (__sparc64__) && defined (__FreeBSD__)
5926 /* FreeBSD does not have a ta 3 handler. */
5927 asm ("flushw");
5928 #else
5929 asm ("ta 3");
5930 #endif
5931 #endif
5932
5933 /* Save registers that we need to see on the stack. We need to see
5934 registers used to hold register variables and registers used to
5935 pass parameters. */
5936 #ifdef GC_SAVE_REGISTERS_ON_STACK
5937 GC_SAVE_REGISTERS_ON_STACK (end);
5938 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5939
5940 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5941 setjmp will definitely work, test it
5942 and print a message with the result
5943 of the test. */
5944 if (!setjmp_tested_p)
5945 {
5946 setjmp_tested_p = 1;
5947 test_setjmp ();
5948 }
5949 #endif /* GC_SETJMP_WORKS */
5950
5951 sys_setjmp (j.j);
5952 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
5953 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5954 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5955 return garbage_collect_1 (end);
5956 #elif (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE)
5957 /* Old GCPROs-based method without stack marking. */
5958 return garbage_collect_1 (NULL);
5959 #else
5960 emacs_abort ();
5961 #endif /* GC_MARK_STACK */
5962 }
5963
5964 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5965 only interesting objects referenced from glyphs are strings. */
5966
5967 static void
5968 mark_glyph_matrix (struct glyph_matrix *matrix)
5969 {
5970 struct glyph_row *row = matrix->rows;
5971 struct glyph_row *end = row + matrix->nrows;
5972
5973 for (; row < end; ++row)
5974 if (row->enabled_p)
5975 {
5976 int area;
5977 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5978 {
5979 struct glyph *glyph = row->glyphs[area];
5980 struct glyph *end_glyph = glyph + row->used[area];
5981
5982 for (; glyph < end_glyph; ++glyph)
5983 if (STRINGP (glyph->object)
5984 && !STRING_MARKED_P (XSTRING (glyph->object)))
5985 mark_object (glyph->object);
5986 }
5987 }
5988 }
5989
5990 /* Mark reference to a Lisp_Object.
5991 If the object referred to has not been seen yet, recursively mark
5992 all the references contained in it. */
5993
5994 #define LAST_MARKED_SIZE 500
5995 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5996 static int last_marked_index;
5997
5998 /* For debugging--call abort when we cdr down this many
5999 links of a list, in mark_object. In debugging,
6000 the call to abort will hit a breakpoint.
6001 Normally this is zero and the check never goes off. */
6002 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
6003
6004 static void
6005 mark_vectorlike (struct Lisp_Vector *ptr)
6006 {
6007 ptrdiff_t size = ptr->header.size;
6008 ptrdiff_t i;
6009
6010 eassert (!VECTOR_MARKED_P (ptr));
6011 VECTOR_MARK (ptr); /* Else mark it. */
6012 if (size & PSEUDOVECTOR_FLAG)
6013 size &= PSEUDOVECTOR_SIZE_MASK;
6014
6015 /* Note that this size is not the memory-footprint size, but only
6016 the number of Lisp_Object fields that we should trace.
6017 The distinction is used e.g. by Lisp_Process which places extra
6018 non-Lisp_Object fields at the end of the structure... */
6019 for (i = 0; i < size; i++) /* ...and then mark its elements. */
6020 mark_object (ptr->contents[i]);
6021 }
6022
6023 /* Like mark_vectorlike but optimized for char-tables (and
6024 sub-char-tables) assuming that the contents are mostly integers or
6025 symbols. */
6026
6027 static void
6028 mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
6029 {
6030 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6031 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
6032 int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);
6033
6034 eassert (!VECTOR_MARKED_P (ptr));
6035 VECTOR_MARK (ptr);
6036 for (i = idx; i < size; i++)
6037 {
6038 Lisp_Object val = ptr->contents[i];
6039
6040 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
6041 continue;
6042 if (SUB_CHAR_TABLE_P (val))
6043 {
6044 if (! VECTOR_MARKED_P (XVECTOR (val)))
6045 mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
6046 }
6047 else
6048 mark_object (val);
6049 }
6050 }
6051
6052 NO_INLINE /* To reduce stack depth in mark_object. */
6053 static Lisp_Object
6054 mark_compiled (struct Lisp_Vector *ptr)
6055 {
6056 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6057
6058 VECTOR_MARK (ptr);
6059 for (i = 0; i < size; i++)
6060 if (i != COMPILED_CONSTANTS)
6061 mark_object (ptr->contents[i]);
6062 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
6063 }
6064
6065 /* Mark the chain of overlays starting at PTR. */
6066
6067 static void
6068 mark_overlay (struct Lisp_Overlay *ptr)
6069 {
6070 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
6071 {
6072 ptr->gcmarkbit = 1;
6073 mark_object (ptr->start);
6074 mark_object (ptr->end);
6075 mark_object (ptr->plist);
6076 }
6077 }
6078
6079 /* Mark Lisp_Objects and special pointers in BUFFER. */
6080
6081 static void
6082 mark_buffer (struct buffer *buffer)
6083 {
6084 /* This is handled much like other pseudovectors... */
6085 mark_vectorlike ((struct Lisp_Vector *) buffer);
6086
6087 /* ...but there are some buffer-specific things. */
6088
6089 MARK_INTERVAL_TREE (buffer_intervals (buffer));
6090
6091 /* For now, we just don't mark the undo_list. It's done later in
6092 a special way just before the sweep phase, and after stripping
6093 some of its elements that are not needed any more. */
6094
6095 mark_overlay (buffer->overlays_before);
6096 mark_overlay (buffer->overlays_after);
6097
6098 /* If this is an indirect buffer, mark its base buffer. */
6099 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6100 mark_buffer (buffer->base_buffer);
6101 }
6102
6103 /* Mark Lisp faces in the face cache C. */
6104
6105 NO_INLINE /* To reduce stack depth in mark_object. */
6106 static void
6107 mark_face_cache (struct face_cache *c)
6108 {
6109 if (c)
6110 {
6111 int i, j;
6112 for (i = 0; i < c->used; ++i)
6113 {
6114 struct face *face = FACE_FROM_ID (c->f, i);
6115
6116 if (face)
6117 {
6118 if (face->font && !VECTOR_MARKED_P (face->font))
6119 mark_vectorlike ((struct Lisp_Vector *) face->font);
6120
6121 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
6122 mark_object (face->lface[j]);
6123 }
6124 }
6125 }
6126 }
6127
6128 NO_INLINE /* To reduce stack depth in mark_object. */
6129 static void
6130 mark_localized_symbol (struct Lisp_Symbol *ptr)
6131 {
6132 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6133 Lisp_Object where = blv->where;
6134 /* If the value is set up for a killed buffer or deleted
6135 frame, restore its global binding. If the value is
6136 forwarded to a C variable, either it's not a Lisp_Object
6137 var, or it's staticpro'd already. */
6138 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6139 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6140 swap_in_global_binding (ptr);
6141 mark_object (blv->where);
6142 mark_object (blv->valcell);
6143 mark_object (blv->defcell);
6144 }
6145
6146 NO_INLINE /* To reduce stack depth in mark_object. */
6147 static void
6148 mark_save_value (struct Lisp_Save_Value *ptr)
6149 {
6150 /* If `save_type' is zero, `data[0].pointer' is the address
6151 of a memory area containing `data[1].integer' potential
6152 Lisp_Objects. */
6153 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6154 {
6155 Lisp_Object *p = ptr->data[0].pointer;
6156 ptrdiff_t nelt;
6157 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6158 mark_maybe_object (*p);
6159 }
6160 else
6161 {
6162 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6163 int i;
6164 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6165 if (save_type (ptr, i) == SAVE_OBJECT)
6166 mark_object (ptr->data[i].object);
6167 }
6168 }
6169
6170 /* Remove killed buffers or items whose car is a killed buffer from
6171 LIST, and mark other items. Return changed LIST, which is marked. */
6172
6173 static Lisp_Object
6174 mark_discard_killed_buffers (Lisp_Object list)
6175 {
6176 Lisp_Object tail, *prev = &list;
6177
6178 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6179 tail = XCDR (tail))
6180 {
6181 Lisp_Object tem = XCAR (tail);
6182 if (CONSP (tem))
6183 tem = XCAR (tem);
6184 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6185 *prev = XCDR (tail);
6186 else
6187 {
6188 CONS_MARK (XCONS (tail));
6189 mark_object (XCAR (tail));
6190 prev = xcdr_addr (tail);
6191 }
6192 }
6193 mark_object (tail);
6194 return list;
6195 }
6196
6197 /* Determine type of generic Lisp_Object and mark it accordingly.
6198
6199 This function implements a straightforward depth-first marking
6200 algorithm and so the recursion depth may be very high (a few
6201 tens of thousands is not uncommon). To minimize stack usage,
6202 a few cold paths are moved out to NO_INLINE functions above.
6203 In general, inlining them doesn't help you to gain more speed. */
6204
6205 void
6206 mark_object (Lisp_Object arg)
6207 {
6208 register Lisp_Object obj = arg;
6209 #ifdef GC_CHECK_MARKED_OBJECTS
6210 void *po;
6211 struct mem_node *m;
6212 #endif
6213 ptrdiff_t cdr_count = 0;
6214
6215 loop:
6216
6217 if (PURE_POINTER_P (XPNTR (obj)))
6218 return;
6219
6220 last_marked[last_marked_index++] = obj;
6221 if (last_marked_index == LAST_MARKED_SIZE)
6222 last_marked_index = 0;
6223
6224 /* Perform some sanity checks on the objects marked here. Abort if
6225 we encounter an object we know is bogus. This increases GC time
6226 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
6227 #ifdef GC_CHECK_MARKED_OBJECTS
6228
6229 po = (void *) XPNTR (obj);
6230
6231 /* Check that the object pointed to by PO is known to be a Lisp
6232 structure allocated from the heap. */
6233 #define CHECK_ALLOCATED() \
6234 do { \
6235 m = mem_find (po); \
6236 if (m == MEM_NIL) \
6237 emacs_abort (); \
6238 } while (0)
6239
6240 /* Check that the object pointed to by PO is live, using predicate
6241 function LIVEP. */
6242 #define CHECK_LIVE(LIVEP) \
6243 do { \
6244 if (!LIVEP (m, po)) \
6245 emacs_abort (); \
6246 } while (0)
6247
6248 /* Check both of the above conditions. */
6249 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6250 do { \
6251 CHECK_ALLOCATED (); \
6252 CHECK_LIVE (LIVEP); \
6253 } while (0) \
6254
6255 #else /* not GC_CHECK_MARKED_OBJECTS */
6256
6257 #define CHECK_LIVE(LIVEP) (void) 0
6258 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
6259
6260 #endif /* not GC_CHECK_MARKED_OBJECTS */
6261
6262 switch (XTYPE (obj))
6263 {
6264 case Lisp_String:
6265 {
6266 register struct Lisp_String *ptr = XSTRING (obj);
6267 if (STRING_MARKED_P (ptr))
6268 break;
6269 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6270 MARK_STRING (ptr);
6271 MARK_INTERVAL_TREE (ptr->intervals);
6272 #ifdef GC_CHECK_STRING_BYTES
6273 /* Check that the string size recorded in the string is the
6274 same as the one recorded in the sdata structure. */
6275 string_bytes (ptr);
6276 #endif /* GC_CHECK_STRING_BYTES */
6277 }
6278 break;
6279
6280 case Lisp_Vectorlike:
6281 {
6282 register struct Lisp_Vector *ptr = XVECTOR (obj);
6283 register ptrdiff_t pvectype;
6284
6285 if (VECTOR_MARKED_P (ptr))
6286 break;
6287
6288 #ifdef GC_CHECK_MARKED_OBJECTS
6289 m = mem_find (po);
6290 if (m == MEM_NIL && !SUBRP (obj))
6291 emacs_abort ();
6292 #endif /* GC_CHECK_MARKED_OBJECTS */
6293
6294 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6295 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6296 >> PSEUDOVECTOR_AREA_BITS);
6297 else
6298 pvectype = PVEC_NORMAL_VECTOR;
6299
6300 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6301 CHECK_LIVE (live_vector_p);
6302
6303 switch (pvectype)
6304 {
6305 case PVEC_BUFFER:
6306 #ifdef GC_CHECK_MARKED_OBJECTS
6307 {
6308 struct buffer *b;
6309 FOR_EACH_BUFFER (b)
6310 if (b == po)
6311 break;
6312 if (b == NULL)
6313 emacs_abort ();
6314 }
6315 #endif /* GC_CHECK_MARKED_OBJECTS */
6316 mark_buffer ((struct buffer *) ptr);
6317 break;
6318
6319 case PVEC_COMPILED:
6320 /* Although we could treat this just like a vector, mark_compiled
6321 returns the COMPILED_CONSTANTS element, which is marked at the
6322 next iteration of goto-loop here. This is done to avoid a few
6323 recursive calls to mark_object. */
6324 obj = mark_compiled (ptr);
6325 if (!NILP (obj))
6326 goto loop;
6327 break;
6328
6329 case PVEC_FRAME:
6330 {
6331 struct frame *f = (struct frame *) ptr;
6332
6333 mark_vectorlike (ptr);
6334 mark_face_cache (f->face_cache);
6335 #ifdef HAVE_WINDOW_SYSTEM
6336 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6337 {
6338 struct font *font = FRAME_FONT (f);
6339
6340 if (font && !VECTOR_MARKED_P (font))
6341 mark_vectorlike ((struct Lisp_Vector *) font);
6342 }
6343 #endif
6344 }
6345 break;
6346
6347 case PVEC_WINDOW:
6348 {
6349 struct window *w = (struct window *) ptr;
6350
6351 mark_vectorlike (ptr);
6352
6353 /* Mark glyph matrices, if any. Marking window
6354 matrices is sufficient because frame matrices
6355 use the same glyph memory. */
6356 if (w->current_matrix)
6357 {
6358 mark_glyph_matrix (w->current_matrix);
6359 mark_glyph_matrix (w->desired_matrix);
6360 }
6361
6362 /* Filter out killed buffers from both buffer lists
6363 in attempt to help GC to reclaim killed buffers faster.
6364 We can do it elsewhere for live windows, but this is the
6365 best place to do it for dead windows. */
6366 wset_prev_buffers
6367 (w, mark_discard_killed_buffers (w->prev_buffers));
6368 wset_next_buffers
6369 (w, mark_discard_killed_buffers (w->next_buffers));
6370 }
6371 break;
6372
6373 case PVEC_HASH_TABLE:
6374 {
6375 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6376
6377 mark_vectorlike (ptr);
6378 mark_object (h->test.name);
6379 mark_object (h->test.user_hash_function);
6380 mark_object (h->test.user_cmp_function);
6381 /* If hash table is not weak, mark all keys and values.
6382 For weak tables, mark only the vector. */
6383 if (NILP (h->weak))
6384 mark_object (h->key_and_value);
6385 else
6386 VECTOR_MARK (XVECTOR (h->key_and_value));
6387 }
6388 break;
6389
6390 case PVEC_CHAR_TABLE:
6391 case PVEC_SUB_CHAR_TABLE:
6392 mark_char_table (ptr, (enum pvec_type) pvectype);
6393 break;
6394
6395 case PVEC_BOOL_VECTOR:
6396 /* No Lisp_Objects to mark in a bool vector. */
6397 VECTOR_MARK (ptr);
6398 break;
6399
6400 case PVEC_SUBR:
6401 break;
6402
6403 case PVEC_FREE:
6404 emacs_abort ();
6405
6406 default:
6407 mark_vectorlike (ptr);
6408 }
6409 }
6410 break;
6411
6412 case Lisp_Symbol:
6413 {
6414 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6415 nextsym:
6416 if (ptr->gcmarkbit)
6417 break;
6418 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6419 ptr->gcmarkbit = 1;
6420 /* Attempt to catch bogus objects. */
6421 eassert (valid_lisp_object_p (ptr->function) >= 1);
6422 mark_object (ptr->function);
6423 mark_object (ptr->plist);
6424 switch (ptr->redirect)
6425 {
6426 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6427 case SYMBOL_VARALIAS:
6428 {
6429 Lisp_Object tem;
6430 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6431 mark_object (tem);
6432 break;
6433 }
6434 case SYMBOL_LOCALIZED:
6435 mark_localized_symbol (ptr);
6436 break;
6437 case SYMBOL_FORWARDED:
6438 /* If the value is forwarded to a buffer or keyboard field,
6439 these are marked when we see the corresponding object.
6440 And if it's forwarded to a C variable, either it's not
6441 a Lisp_Object var, or it's staticpro'd already. */
6442 break;
6443 default: emacs_abort ();
6444 }
6445 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6446 MARK_STRING (XSTRING (ptr->name));
6447 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6448 /* Inner loop to mark next symbol in this bucket, if any. */
6449 ptr = ptr->next;
6450 if (ptr)
6451 goto nextsym;
6452 }
6453 break;
6454
6455 case Lisp_Misc:
6456 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6457
6458 if (XMISCANY (obj)->gcmarkbit)
6459 break;
6460
6461 switch (XMISCTYPE (obj))
6462 {
6463 case Lisp_Misc_Marker:
6464 /* DO NOT mark thru the marker's chain.
6465 The buffer's markers chain does not preserve markers from gc;
6466 instead, markers are removed from the chain when freed by gc. */
6467 XMISCANY (obj)->gcmarkbit = 1;
6468 break;
6469
6470 case Lisp_Misc_Save_Value:
6471 XMISCANY (obj)->gcmarkbit = 1;
6472 mark_save_value (XSAVE_VALUE (obj));
6473 break;
6474
6475 case Lisp_Misc_Overlay:
6476 mark_overlay (XOVERLAY (obj));
6477 break;
6478
6479 default:
6480 emacs_abort ();
6481 }
6482 break;
6483
6484 case Lisp_Cons:
6485 {
6486 register struct Lisp_Cons *ptr = XCONS (obj);
6487 if (CONS_MARKED_P (ptr))
6488 break;
6489 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6490 CONS_MARK (ptr);
6491 /* If the cdr is nil, avoid recursion for the car. */
6492 if (EQ (ptr->u.cdr, Qnil))
6493 {
6494 obj = ptr->car;
6495 cdr_count = 0;
6496 goto loop;
6497 }
6498 mark_object (ptr->car);
6499 obj = ptr->u.cdr;
6500 cdr_count++;
6501 if (cdr_count == mark_object_loop_halt)
6502 emacs_abort ();
6503 goto loop;
6504 }
6505
6506 case Lisp_Float:
6507 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6508 FLOAT_MARK (XFLOAT (obj));
6509 break;
6510
6511 case_Lisp_Int:
6512 break;
6513
6514 default:
6515 emacs_abort ();
6516 }
6517
6518 #undef CHECK_LIVE
6519 #undef CHECK_ALLOCATED
6520 #undef CHECK_ALLOCATED_AND_LIVE
6521 }
6522 /* Mark the Lisp pointers in the terminal objects.
6523 Called by Fgarbage_collect. */
6524
6525 static void
6526 mark_terminals (void)
6527 {
6528 struct terminal *t;
6529 for (t = terminal_list; t; t = t->next_terminal)
6530 {
6531 eassert (t->name != NULL);
6532 #ifdef HAVE_WINDOW_SYSTEM
6533 /* If a terminal object is reachable from a stacpro'ed object,
6534 it might have been marked already. Make sure the image cache
6535 gets marked. */
6536 mark_image_cache (t->image_cache);
6537 #endif /* HAVE_WINDOW_SYSTEM */
6538 if (!VECTOR_MARKED_P (t))
6539 mark_vectorlike ((struct Lisp_Vector *)t);
6540 }
6541 }
6542
6543
6544
6545 /* Value is non-zero if OBJ will survive the current GC because it's
6546 either marked or does not need to be marked to survive. */
6547
6548 bool
6549 survives_gc_p (Lisp_Object obj)
6550 {
6551 bool survives_p;
6552
6553 switch (XTYPE (obj))
6554 {
6555 case_Lisp_Int:
6556 survives_p = 1;
6557 break;
6558
6559 case Lisp_Symbol:
6560 survives_p = XSYMBOL (obj)->gcmarkbit;
6561 break;
6562
6563 case Lisp_Misc:
6564 survives_p = XMISCANY (obj)->gcmarkbit;
6565 break;
6566
6567 case Lisp_String:
6568 survives_p = STRING_MARKED_P (XSTRING (obj));
6569 break;
6570
6571 case Lisp_Vectorlike:
6572 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6573 break;
6574
6575 case Lisp_Cons:
6576 survives_p = CONS_MARKED_P (XCONS (obj));
6577 break;
6578
6579 case Lisp_Float:
6580 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6581 break;
6582
6583 default:
6584 emacs_abort ();
6585 }
6586
6587 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6588 }
6589
6590
6591 \f
6592
6593 NO_INLINE /* For better stack traces */
6594 static void
6595 sweep_conses (void)
6596 {
6597 struct cons_block *cblk;
6598 struct cons_block **cprev = &cons_block;
6599 int lim = cons_block_index;
6600 EMACS_INT num_free = 0, num_used = 0;
6601
6602 cons_free_list = 0;
6603
6604 for (cblk = cons_block; cblk; cblk = *cprev)
6605 {
6606 int i = 0;
6607 int this_free = 0;
6608 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6609
6610 /* Scan the mark bits an int at a time. */
6611 for (i = 0; i < ilim; i++)
6612 {
6613 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6614 {
6615 /* Fast path - all cons cells for this int are marked. */
6616 cblk->gcmarkbits[i] = 0;
6617 num_used += BITS_PER_BITS_WORD;
6618 }
6619 else
6620 {
6621 /* Some cons cells for this int are not marked.
6622 Find which ones, and free them. */
6623 int start, pos, stop;
6624
6625 start = i * BITS_PER_BITS_WORD;
6626 stop = lim - start;
6627 if (stop > BITS_PER_BITS_WORD)
6628 stop = BITS_PER_BITS_WORD;
6629 stop += start;
6630
6631 for (pos = start; pos < stop; pos++)
6632 {
6633 if (!CONS_MARKED_P (&cblk->conses[pos]))
6634 {
6635 this_free++;
6636 cblk->conses[pos].u.chain = cons_free_list;
6637 cons_free_list = &cblk->conses[pos];
6638 #if GC_MARK_STACK
6639 cons_free_list->car = Vdead;
6640 #endif
6641 }
6642 else
6643 {
6644 num_used++;
6645 CONS_UNMARK (&cblk->conses[pos]);
6646 }
6647 }
6648 }
6649 }
6650
6651 lim = CONS_BLOCK_SIZE;
6652 /* If this block contains only free conses and we have already
6653 seen more than two blocks worth of free conses then deallocate
6654 this block. */
6655 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6656 {
6657 *cprev = cblk->next;
6658 /* Unhook from the free list. */
6659 cons_free_list = cblk->conses[0].u.chain;
6660 lisp_align_free (cblk);
6661 }
6662 else
6663 {
6664 num_free += this_free;
6665 cprev = &cblk->next;
6666 }
6667 }
6668 total_conses = num_used;
6669 total_free_conses = num_free;
6670 }
6671
6672 NO_INLINE /* For better stack traces */
6673 static void
6674 sweep_floats (void)
6675 {
6676 register struct float_block *fblk;
6677 struct float_block **fprev = &float_block;
6678 register int lim = float_block_index;
6679 EMACS_INT num_free = 0, num_used = 0;
6680
6681 float_free_list = 0;
6682
6683 for (fblk = float_block; fblk; fblk = *fprev)
6684 {
6685 register int i;
6686 int this_free = 0;
6687 for (i = 0; i < lim; i++)
6688 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6689 {
6690 this_free++;
6691 fblk->floats[i].u.chain = float_free_list;
6692 float_free_list = &fblk->floats[i];
6693 }
6694 else
6695 {
6696 num_used++;
6697 FLOAT_UNMARK (&fblk->floats[i]);
6698 }
6699 lim = FLOAT_BLOCK_SIZE;
6700 /* If this block contains only free floats and we have already
6701 seen more than two blocks worth of free floats then deallocate
6702 this block. */
6703 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6704 {
6705 *fprev = fblk->next;
6706 /* Unhook from the free list. */
6707 float_free_list = fblk->floats[0].u.chain;
6708 lisp_align_free (fblk);
6709 }
6710 else
6711 {
6712 num_free += this_free;
6713 fprev = &fblk->next;
6714 }
6715 }
6716 total_floats = num_used;
6717 total_free_floats = num_free;
6718 }
6719
6720 NO_INLINE /* For better stack traces */
6721 static void
6722 sweep_intervals (void)
6723 {
6724 register struct interval_block *iblk;
6725 struct interval_block **iprev = &interval_block;
6726 register int lim = interval_block_index;
6727 EMACS_INT num_free = 0, num_used = 0;
6728
6729 interval_free_list = 0;
6730
6731 for (iblk = interval_block; iblk; iblk = *iprev)
6732 {
6733 register int i;
6734 int this_free = 0;
6735
6736 for (i = 0; i < lim; i++)
6737 {
6738 if (!iblk->intervals[i].gcmarkbit)
6739 {
6740 set_interval_parent (&iblk->intervals[i], interval_free_list);
6741 interval_free_list = &iblk->intervals[i];
6742 this_free++;
6743 }
6744 else
6745 {
6746 num_used++;
6747 iblk->intervals[i].gcmarkbit = 0;
6748 }
6749 }
6750 lim = INTERVAL_BLOCK_SIZE;
6751 /* If this block contains only free intervals and we have already
6752 seen more than two blocks worth of free intervals then
6753 deallocate this block. */
6754 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6755 {
6756 *iprev = iblk->next;
6757 /* Unhook from the free list. */
6758 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6759 lisp_free (iblk);
6760 }
6761 else
6762 {
6763 num_free += this_free;
6764 iprev = &iblk->next;
6765 }
6766 }
6767 total_intervals = num_used;
6768 total_free_intervals = num_free;
6769 }
6770
6771 NO_INLINE /* For better stack traces */
6772 static void
6773 sweep_symbols (void)
6774 {
6775 register struct symbol_block *sblk;
6776 struct symbol_block **sprev = &symbol_block;
6777 register int lim = symbol_block_index;
6778 EMACS_INT num_free = 0, num_used = 0;
6779
6780 symbol_free_list = NULL;
6781
6782 for (sblk = symbol_block; sblk; sblk = *sprev)
6783 {
6784 int this_free = 0;
6785 union aligned_Lisp_Symbol *sym = sblk->symbols;
6786 union aligned_Lisp_Symbol *end = sym + lim;
6787
6788 for (; sym < end; ++sym)
6789 {
6790 if (!sym->s.gcmarkbit)
6791 {
6792 if (sym->s.redirect == SYMBOL_LOCALIZED)
6793 xfree (SYMBOL_BLV (&sym->s));
6794 sym->s.next = symbol_free_list;
6795 symbol_free_list = &sym->s;
6796 #if GC_MARK_STACK
6797 symbol_free_list->function = Vdead;
6798 #endif
6799 ++this_free;
6800 }
6801 else
6802 {
6803 ++num_used;
6804 sym->s.gcmarkbit = 0;
6805 /* Attempt to catch bogus objects. */
6806 eassert (valid_lisp_object_p (sym->s.function) >= 1);
6807 }
6808 }
6809
6810 lim = SYMBOL_BLOCK_SIZE;
6811 /* If this block contains only free symbols and we have already
6812 seen more than two blocks worth of free symbols then deallocate
6813 this block. */
6814 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6815 {
6816 *sprev = sblk->next;
6817 /* Unhook from the free list. */
6818 symbol_free_list = sblk->symbols[0].s.next;
6819 lisp_free (sblk);
6820 }
6821 else
6822 {
6823 num_free += this_free;
6824 sprev = &sblk->next;
6825 }
6826 }
6827 total_symbols = num_used;
6828 total_free_symbols = num_free;
6829 }
6830
6831 NO_INLINE /* For better stack traces */
6832 static void
6833 sweep_misc (void)
6834 {
6835 register struct marker_block *mblk;
6836 struct marker_block **mprev = &marker_block;
6837 register int lim = marker_block_index;
6838 EMACS_INT num_free = 0, num_used = 0;
6839
6840 /* Put all unmarked misc's on free list. For a marker, first
6841 unchain it from the buffer it points into. */
6842
6843 marker_free_list = 0;
6844
6845 for (mblk = marker_block; mblk; mblk = *mprev)
6846 {
6847 register int i;
6848 int this_free = 0;
6849
6850 for (i = 0; i < lim; i++)
6851 {
6852 if (!mblk->markers[i].m.u_any.gcmarkbit)
6853 {
6854 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6855 unchain_marker (&mblk->markers[i].m.u_marker);
6856 /* Set the type of the freed object to Lisp_Misc_Free.
6857 We could leave the type alone, since nobody checks it,
6858 but this might catch bugs faster. */
6859 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6860 mblk->markers[i].m.u_free.chain = marker_free_list;
6861 marker_free_list = &mblk->markers[i].m;
6862 this_free++;
6863 }
6864 else
6865 {
6866 num_used++;
6867 mblk->markers[i].m.u_any.gcmarkbit = 0;
6868 }
6869 }
6870 lim = MARKER_BLOCK_SIZE;
6871 /* If this block contains only free markers and we have already
6872 seen more than two blocks worth of free markers then deallocate
6873 this block. */
6874 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6875 {
6876 *mprev = mblk->next;
6877 /* Unhook from the free list. */
6878 marker_free_list = mblk->markers[0].m.u_free.chain;
6879 lisp_free (mblk);
6880 }
6881 else
6882 {
6883 num_free += this_free;
6884 mprev = &mblk->next;
6885 }
6886 }
6887
6888 total_markers = num_used;
6889 total_free_markers = num_free;
6890 }
6891
6892 NO_INLINE /* For better stack traces */
6893 static void
6894 sweep_buffers (void)
6895 {
6896 register struct buffer *buffer, **bprev = &all_buffers;
6897
6898 total_buffers = 0;
6899 for (buffer = all_buffers; buffer; buffer = *bprev)
6900 if (!VECTOR_MARKED_P (buffer))
6901 {
6902 *bprev = buffer->next;
6903 lisp_free (buffer);
6904 }
6905 else
6906 {
6907 VECTOR_UNMARK (buffer);
6908 /* Do not use buffer_(set|get)_intervals here. */
6909 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6910 total_buffers++;
6911 bprev = &buffer->next;
6912 }
6913 }
6914
6915 /* Sweep: find all structures not marked, and free them. */
6916 static void
6917 gc_sweep (void)
6918 {
6919 /* Remove or mark entries in weak hash tables.
6920 This must be done before any object is unmarked. */
6921 sweep_weak_hash_tables ();
6922
6923 sweep_strings ();
6924 check_string_bytes (!noninteractive);
6925 sweep_conses ();
6926 sweep_floats ();
6927 sweep_intervals ();
6928 sweep_symbols ();
6929 sweep_misc ();
6930 sweep_buffers ();
6931 sweep_vectors ();
6932 check_string_bytes (!noninteractive);
6933 }
6934
6935 DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
6936 doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
6937 All values are in Kbytes. If there is no swap space,
6938 last two values are zero. If the system is not supported
6939 or memory information can't be obtained, return nil. */)
6940 (void)
6941 {
6942 #if defined HAVE_LINUX_SYSINFO
6943 struct sysinfo si;
6944 uintmax_t units;
6945
6946 if (sysinfo (&si))
6947 return Qnil;
6948 #ifdef LINUX_SYSINFO_UNIT
6949 units = si.mem_unit;
6950 #else
6951 units = 1;
6952 #endif
6953 return list4i ((uintmax_t) si.totalram * units / 1024,
6954 (uintmax_t) si.freeram * units / 1024,
6955 (uintmax_t) si.totalswap * units / 1024,
6956 (uintmax_t) si.freeswap * units / 1024);
6957 #elif defined WINDOWSNT
6958 unsigned long long totalram, freeram, totalswap, freeswap;
6959
6960 if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6961 return list4i ((uintmax_t) totalram / 1024,
6962 (uintmax_t) freeram / 1024,
6963 (uintmax_t) totalswap / 1024,
6964 (uintmax_t) freeswap / 1024);
6965 else
6966 return Qnil;
6967 #elif defined MSDOS
6968 unsigned long totalram, freeram, totalswap, freeswap;
6969
6970 if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6971 return list4i ((uintmax_t) totalram / 1024,
6972 (uintmax_t) freeram / 1024,
6973 (uintmax_t) totalswap / 1024,
6974 (uintmax_t) freeswap / 1024);
6975 else
6976 return Qnil;
6977 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6978 /* FIXME: add more systems. */
6979 return Qnil;
6980 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6981 }
6982
6983 /* Debugging aids. */
6984
6985 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6986 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6987 This may be helpful in debugging Emacs's memory usage.
6988 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6989 (void)
6990 {
6991 Lisp_Object end;
6992
6993 #ifdef HAVE_NS
6994 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
6995 XSETINT (end, 0);
6996 #else
6997 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6998 #endif
6999
7000 return end;
7001 }
7002
7003 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
7004 doc: /* Return a list of counters that measure how much consing there has been.
7005 Each of these counters increments for a certain kind of object.
7006 The counters wrap around from the largest positive integer to zero.
7007 Garbage collection does not decrease them.
7008 The elements of the value are as follows:
7009 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
7010 All are in units of 1 = one object consed
7011 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
7012 objects consed.
7013 MISCS include overlays, markers, and some internal types.
7014 Frames, windows, buffers, and subprocesses count as vectors
7015 (but the contents of a buffer's text do not count here). */)
7016 (void)
7017 {
7018 return listn (CONSTYPE_HEAP, 8,
7019 bounded_number (cons_cells_consed),
7020 bounded_number (floats_consed),
7021 bounded_number (vector_cells_consed),
7022 bounded_number (symbols_consed),
7023 bounded_number (string_chars_consed),
7024 bounded_number (misc_objects_consed),
7025 bounded_number (intervals_consed),
7026 bounded_number (strings_consed));
7027 }
7028
7029 /* Find at most FIND_MAX symbols which have OBJ as their value or
7030 function. This is used in gdbinit's `xwhichsymbols' command. */
7031
7032 Lisp_Object
7033 which_symbols (Lisp_Object obj, EMACS_INT find_max)
7034 {
7035 struct symbol_block *sblk;
7036 ptrdiff_t gc_count = inhibit_garbage_collection ();
7037 Lisp_Object found = Qnil;
7038
7039 if (! DEADP (obj))
7040 {
7041 for (sblk = symbol_block; sblk; sblk = sblk->next)
7042 {
7043 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
7044 int bn;
7045
7046 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
7047 {
7048 struct Lisp_Symbol *sym = &aligned_sym->s;
7049 Lisp_Object val;
7050 Lisp_Object tem;
7051
7052 if (sblk == symbol_block && bn >= symbol_block_index)
7053 break;
7054
7055 XSETSYMBOL (tem, sym);
7056 val = find_symbol_value (tem);
7057 if (EQ (val, obj)
7058 || EQ (sym->function, obj)
7059 || (!NILP (sym->function)
7060 && COMPILEDP (sym->function)
7061 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
7062 || (!NILP (val)
7063 && COMPILEDP (val)
7064 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
7065 {
7066 found = Fcons (tem, found);
7067 if (--find_max == 0)
7068 goto out;
7069 }
7070 }
7071 }
7072 }
7073
7074 out:
7075 unbind_to (gc_count, Qnil);
7076 return found;
7077 }
7078
7079 #ifdef SUSPICIOUS_OBJECT_CHECKING
7080
7081 static void *
7082 find_suspicious_object_in_range (void *begin, void *end)
7083 {
7084 char *begin_a = begin;
7085 char *end_a = end;
7086 int i;
7087
7088 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7089 {
7090 char *suspicious_object = suspicious_objects[i];
7091 if (begin_a <= suspicious_object && suspicious_object < end_a)
7092 return suspicious_object;
7093 }
7094
7095 return NULL;
7096 }
7097
7098 static void
7099 note_suspicious_free (void* ptr)
7100 {
7101 struct suspicious_free_record* rec;
7102
7103 rec = &suspicious_free_history[suspicious_free_history_index++];
7104 if (suspicious_free_history_index ==
7105 ARRAYELTS (suspicious_free_history))
7106 {
7107 suspicious_free_history_index = 0;
7108 }
7109
7110 memset (rec, 0, sizeof (*rec));
7111 rec->suspicious_object = ptr;
7112 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
7113 }
7114
7115 static void
7116 detect_suspicious_free (void* ptr)
7117 {
7118 int i;
7119
7120 eassert (ptr != NULL);
7121
7122 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7123 if (suspicious_objects[i] == ptr)
7124 {
7125 note_suspicious_free (ptr);
7126 suspicious_objects[i] = NULL;
7127 }
7128 }
7129
7130 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7131
7132 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7133 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7134 If Emacs is compiled with suspicous object checking, capture
7135 a stack trace when OBJ is freed in order to help track down
7136 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7137 (Lisp_Object obj)
7138 {
7139 #ifdef SUSPICIOUS_OBJECT_CHECKING
7140 /* Right now, we care only about vectors. */
7141 if (VECTORLIKEP (obj))
7142 {
7143 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7144 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7145 suspicious_object_index = 0;
7146 }
7147 #endif
7148 return obj;
7149 }
7150
7151 #ifdef ENABLE_CHECKING
7152
7153 bool suppress_checking;
7154
7155 void
7156 die (const char *msg, const char *file, int line)
7157 {
7158 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7159 file, line, msg);
7160 terminate_due_to_signal (SIGABRT, INT_MAX);
7161 }
7162
7163 #endif /* ENABLE_CHECKING */
7164
7165 #if defined (ENABLE_CHECKING) && defined (USE_STACK_LISP_OBJECTS)
7166
7167 /* Stress alloca with inconveniently sized requests and check
7168 whether all allocated areas may be used for Lisp_Object. */
7169
7170 NO_INLINE static void
7171 verify_alloca (void)
7172 {
7173 int i;
7174 enum { ALLOCA_CHECK_MAX = 256 };
7175 /* Start from size of the smallest Lisp object. */
7176 for (i = sizeof (struct Lisp_Cons); i <= ALLOCA_CHECK_MAX; i++)
7177 {
7178 void *ptr = alloca (i);
7179 make_lisp_ptr (ptr, Lisp_Cons);
7180 }
7181 }
7182
7183 #else /* not (ENABLE_CHECKING && USE_STACK_LISP_OBJECTS) */
7184
7185 #define verify_alloca() ((void) 0)
7186
7187 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7188
7189 /* Initialization. */
7190
7191 void
7192 init_alloc_once (void)
7193 {
7194 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
7195 purebeg = PUREBEG;
7196 pure_size = PURESIZE;
7197
7198 verify_alloca ();
7199
7200 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
7201 mem_init ();
7202 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7203 #endif
7204
7205 #ifdef DOUG_LEA_MALLOC
7206 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7207 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7208 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7209 #endif
7210 init_strings ();
7211 init_vectors ();
7212
7213 refill_memory_reserve ();
7214 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7215 }
7216
7217 void
7218 init_alloc (void)
7219 {
7220 gcprolist = 0;
7221 byte_stack_list = 0;
7222 #if GC_MARK_STACK
7223 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
7224 setjmp_tested_p = longjmps_done = 0;
7225 #endif
7226 #endif
7227 Vgc_elapsed = make_float (0.0);
7228 gcs_done = 0;
7229
7230 #if USE_VALGRIND
7231 valgrind_p = RUNNING_ON_VALGRIND != 0;
7232 #endif
7233 }
7234
7235 void
7236 syms_of_alloc (void)
7237 {
7238 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7239 doc: /* Number of bytes of consing between garbage collections.
7240 Garbage collection can happen automatically once this many bytes have been
7241 allocated since the last garbage collection. All data types count.
7242
7243 Garbage collection happens automatically only when `eval' is called.
7244
7245 By binding this temporarily to a large number, you can effectively
7246 prevent garbage collection during a part of the program.
7247 See also `gc-cons-percentage'. */);
7248
7249 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7250 doc: /* Portion of the heap used for allocation.
7251 Garbage collection can happen automatically once this portion of the heap
7252 has been allocated since the last garbage collection.
7253 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7254 Vgc_cons_percentage = make_float (0.1);
7255
7256 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7257 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7258
7259 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7260 doc: /* Number of cons cells that have been consed so far. */);
7261
7262 DEFVAR_INT ("floats-consed", floats_consed,
7263 doc: /* Number of floats that have been consed so far. */);
7264
7265 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7266 doc: /* Number of vector cells that have been consed so far. */);
7267
7268 DEFVAR_INT ("symbols-consed", symbols_consed,
7269 doc: /* Number of symbols that have been consed so far. */);
7270
7271 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7272 doc: /* Number of string characters that have been consed so far. */);
7273
7274 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7275 doc: /* Number of miscellaneous objects that have been consed so far.
7276 These include markers and overlays, plus certain objects not visible
7277 to users. */);
7278
7279 DEFVAR_INT ("intervals-consed", intervals_consed,
7280 doc: /* Number of intervals that have been consed so far. */);
7281
7282 DEFVAR_INT ("strings-consed", strings_consed,
7283 doc: /* Number of strings that have been consed so far. */);
7284
7285 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7286 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7287 This means that certain objects should be allocated in shared (pure) space.
7288 It can also be set to a hash-table, in which case this table is used to
7289 do hash-consing of the objects allocated to pure space. */);
7290
7291 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7292 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7293 garbage_collection_messages = 0;
7294
7295 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7296 doc: /* Hook run after garbage collection has finished. */);
7297 Vpost_gc_hook = Qnil;
7298 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7299
7300 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7301 doc: /* Precomputed `signal' argument for memory-full error. */);
7302 /* We build this in advance because if we wait until we need it, we might
7303 not be able to allocate the memory to hold it. */
7304 Vmemory_signal_data
7305 = listn (CONSTYPE_PURE, 2, Qerror,
7306 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7307
7308 DEFVAR_LISP ("memory-full", Vmemory_full,
7309 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7310 Vmemory_full = Qnil;
7311
7312 DEFSYM (Qconses, "conses");
7313 DEFSYM (Qsymbols, "symbols");
7314 DEFSYM (Qmiscs, "miscs");
7315 DEFSYM (Qstrings, "strings");
7316 DEFSYM (Qvectors, "vectors");
7317 DEFSYM (Qfloats, "floats");
7318 DEFSYM (Qintervals, "intervals");
7319 DEFSYM (Qbuffers, "buffers");
7320 DEFSYM (Qstring_bytes, "string-bytes");
7321 DEFSYM (Qvector_slots, "vector-slots");
7322 DEFSYM (Qheap, "heap");
7323 DEFSYM (Qautomatic_gc, "Automatic GC");
7324
7325 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7326 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7327
7328 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7329 doc: /* Accumulated time elapsed in garbage collections.
7330 The time is in seconds as a floating point value. */);
7331 DEFVAR_INT ("gcs-done", gcs_done,
7332 doc: /* Accumulated number of garbage collections done. */);
7333
7334 defsubr (&Scons);
7335 defsubr (&Slist);
7336 defsubr (&Svector);
7337 defsubr (&Sbool_vector);
7338 defsubr (&Smake_byte_code);
7339 defsubr (&Smake_list);
7340 defsubr (&Smake_vector);
7341 defsubr (&Smake_string);
7342 defsubr (&Smake_bool_vector);
7343 defsubr (&Smake_symbol);
7344 defsubr (&Smake_marker);
7345 defsubr (&Spurecopy);
7346 defsubr (&Sgarbage_collect);
7347 defsubr (&Smemory_limit);
7348 defsubr (&Smemory_info);
7349 defsubr (&Smemory_use_counts);
7350 defsubr (&Ssuspicious_object);
7351
7352 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7353 defsubr (&Sgc_status);
7354 #endif
7355 }
7356
7357 /* When compiled with GCC, GDB might say "No enum type named
7358 pvec_type" if we don't have at least one symbol with that type, and
7359 then xbacktrace could fail. Similarly for the other enums and
7360 their values. Some non-GCC compilers don't like these constructs. */
7361 #ifdef __GNUC__
7362 union
7363 {
7364 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7365 enum char_table_specials char_table_specials;
7366 enum char_bits char_bits;
7367 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7368 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7369 enum Lisp_Bits Lisp_Bits;
7370 enum Lisp_Compiled Lisp_Compiled;
7371 enum maxargs maxargs;
7372 enum MAX_ALLOCA MAX_ALLOCA;
7373 enum More_Lisp_Bits More_Lisp_Bits;
7374 enum pvec_type pvec_type;
7375 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7376 #endif /* __GNUC__ */