]> code.delx.au - gnu-emacs/blob - src/lisp.h
Shrink EIEIO object header. Move generics to eieio-generic.el.
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2015 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
40 # define ID (some integer preprocessor expression of type TYPE)
41 DEFINE_GDB_SYMBOL_END (ID)
42
43 This hack is for the benefit of compilers that do not make macro
44 definitions or enums visible to the debugger. It's used for symbols
45 that .gdbinit needs. */
46
47 #define DECLARE_GDB_SYM(type, id) type const id EXTERNALLY_VISIBLE
48 #ifdef MAIN_PROGRAM
49 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) DECLARE_GDB_SYM (type, id)
50 # define DEFINE_GDB_SYMBOL_END(id) = id;
51 #else
52 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) extern DECLARE_GDB_SYM (type, id)
53 # define DEFINE_GDB_SYMBOL_END(val) ;
54 #endif
55
56 /* The ubiquitous max and min macros. */
57 #undef min
58 #undef max
59 #define max(a, b) ((a) > (b) ? (a) : (b))
60 #define min(a, b) ((a) < (b) ? (a) : (b))
61
62 /* Number of elements in an array. */
63 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
64
65 /* Number of bits in a Lisp_Object tag. */
66 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
67 #define GCTYPEBITS 3
68 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
69
70 /* The number of bits needed in an EMACS_INT over and above the number
71 of bits in a pointer. This is 0 on systems where:
72 1. We can specify multiple-of-8 alignment on static variables.
73 2. We know malloc returns a multiple of 8. */
74 #if (defined alignas \
75 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
76 || defined DARWIN_OS || defined __sun || defined __MINGW32__ \
77 || defined CYGWIN))
78 # define NONPOINTER_BITS 0
79 #else
80 # define NONPOINTER_BITS GCTYPEBITS
81 #endif
82
83 /* EMACS_INT - signed integer wide enough to hold an Emacs value
84 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
85 pI - printf length modifier for EMACS_INT
86 EMACS_UINT - unsigned variant of EMACS_INT */
87 #ifndef EMACS_INT_MAX
88 # if INTPTR_MAX <= 0
89 # error "INTPTR_MAX misconfigured"
90 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
91 typedef int EMACS_INT;
92 typedef unsigned int EMACS_UINT;
93 # define EMACS_INT_MAX INT_MAX
94 # define pI ""
95 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
96 typedef long int EMACS_INT;
97 typedef unsigned long EMACS_UINT;
98 # define EMACS_INT_MAX LONG_MAX
99 # define pI "l"
100 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
101 In theory this is not safe, but in practice it seems to be OK. */
102 # elif INTPTR_MAX <= LLONG_MAX
103 typedef long long int EMACS_INT;
104 typedef unsigned long long int EMACS_UINT;
105 # define EMACS_INT_MAX LLONG_MAX
106 # define pI "ll"
107 # else
108 # error "INTPTR_MAX too large"
109 # endif
110 #endif
111
112 /* Number of bits to put in each character in the internal representation
113 of bool vectors. This should not vary across implementations. */
114 enum { BOOL_VECTOR_BITS_PER_CHAR =
115 #define BOOL_VECTOR_BITS_PER_CHAR 8
116 BOOL_VECTOR_BITS_PER_CHAR
117 };
118
119 /* An unsigned integer type representing a fixed-length bit sequence,
120 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
121 for speed, but it is unsigned char on weird platforms. */
122 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
123 typedef size_t bits_word;
124 # define BITS_WORD_MAX SIZE_MAX
125 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
126 #else
127 typedef unsigned char bits_word;
128 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
129 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
130 #endif
131 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
132
133 /* Number of bits in some machine integer types. */
134 enum
135 {
136 BITS_PER_CHAR = CHAR_BIT,
137 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
138 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
139 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
140 };
141
142 /* printmax_t and uprintmax_t are types for printing large integers.
143 These are the widest integers that are supported for printing.
144 pMd etc. are conversions for printing them.
145 On C99 hosts, there's no problem, as even the widest integers work.
146 Fall back on EMACS_INT on pre-C99 hosts. */
147 #ifdef PRIdMAX
148 typedef intmax_t printmax_t;
149 typedef uintmax_t uprintmax_t;
150 # define pMd PRIdMAX
151 # define pMu PRIuMAX
152 #else
153 typedef EMACS_INT printmax_t;
154 typedef EMACS_UINT uprintmax_t;
155 # define pMd pI"d"
156 # define pMu pI"u"
157 #endif
158
159 /* Use pD to format ptrdiff_t values, which suffice for indexes into
160 buffers and strings. Emacs never allocates objects larger than
161 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
162 In C99, pD can always be "t"; configure it here for the sake of
163 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
164 #if PTRDIFF_MAX == INT_MAX
165 # define pD ""
166 #elif PTRDIFF_MAX == LONG_MAX
167 # define pD "l"
168 #elif PTRDIFF_MAX == LLONG_MAX
169 # define pD "ll"
170 #else
171 # define pD "t"
172 #endif
173
174 /* Extra internal type checking? */
175
176 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
177 'assume (COND)'. COND should be free of side effects, as it may or
178 may not be evaluated.
179
180 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
181 defined and suppress_checking is false, and does nothing otherwise.
182 Emacs dies if COND is checked and is false. The suppress_checking
183 variable is initialized to 0 in alloc.c. Set it to 1 using a
184 debugger to temporarily disable aborting on detected internal
185 inconsistencies or error conditions.
186
187 In some cases, a good compiler may be able to optimize away the
188 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
189 uses eassert to test STRINGP (x), but a particular use of XSTRING
190 is invoked only after testing that STRINGP (x) is true, making the
191 test redundant.
192
193 eassume is like eassert except that it also causes the compiler to
194 assume that COND is true afterwards, regardless of whether runtime
195 checking is enabled. This can improve performance in some cases,
196 though it can degrade performance in others. It's often suboptimal
197 for COND to call external functions or access volatile storage. */
198
199 #ifndef ENABLE_CHECKING
200 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
201 # define eassume(cond) assume (cond)
202 #else /* ENABLE_CHECKING */
203
204 extern _Noreturn void die (const char *, const char *, int);
205
206 extern bool suppress_checking EXTERNALLY_VISIBLE;
207
208 # define eassert(cond) \
209 (suppress_checking || (cond) \
210 ? (void) 0 \
211 : die (# cond, __FILE__, __LINE__))
212 # define eassume(cond) \
213 (suppress_checking \
214 ? assume (cond) \
215 : (cond) \
216 ? (void) 0 \
217 : die (# cond, __FILE__, __LINE__))
218 #endif /* ENABLE_CHECKING */
219
220 \f
221 /* Use the configure flag --enable-check-lisp-object-type to make
222 Lisp_Object use a struct type instead of the default int. The flag
223 causes CHECK_LISP_OBJECT_TYPE to be defined. */
224
225 /***** Select the tagging scheme. *****/
226 /* The following option controls the tagging scheme:
227 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
228 always 0, and we can thus use them to hold tag bits, without
229 restricting our addressing space.
230
231 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
232 restricting our possible address range.
233
234 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
235 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
236 on the few static Lisp_Objects used: all the defsubr as well
237 as the two special buffers buffer_defaults and buffer_local_symbols. */
238
239 enum Lisp_Bits
240 {
241 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
242 integer constant, for MSVC. */
243 #define GCALIGNMENT 8
244
245 /* Number of bits in a Lisp_Object value, not counting the tag. */
246 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
247
248 /* Number of bits in a Lisp fixnum tag. */
249 INTTYPEBITS = GCTYPEBITS - 1,
250
251 /* Number of bits in a Lisp fixnum value, not counting the tag. */
252 FIXNUM_BITS = VALBITS + 1
253 };
254
255 #if GCALIGNMENT != 1 << GCTYPEBITS
256 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
257 #endif
258
259 /* The maximum value that can be stored in a EMACS_INT, assuming all
260 bits other than the type bits contribute to a nonnegative signed value.
261 This can be used in #if, e.g., '#if USB_TAG' below expands to an
262 expression involving VAL_MAX. */
263 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
264
265 /* Whether the least-significant bits of an EMACS_INT contain the tag.
266 On hosts where pointers-as-ints do not exceed VAL_MAX / 2, USE_LSB_TAG is:
267 a. unnecessary, because the top bits of an EMACS_INT are unused, and
268 b. slower, because it typically requires extra masking.
269 So, USE_LSB_TAG is true only on hosts where it might be useful. */
270 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
271 #define USE_LSB_TAG (VAL_MAX / 2 < INTPTR_MAX)
272 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
273
274 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
275 # error "USE_LSB_TAG not supported on this platform; please report this." \
276 "Try 'configure --with-wide-int' to work around the problem."
277 error !;
278 #endif
279
280 #ifndef alignas
281 # define alignas(alignment) /* empty */
282 # if USE_LSB_TAG
283 # error "USE_LSB_TAG requires alignas"
284 # endif
285 #endif
286
287 #ifdef HAVE_STRUCT_ATTRIBUTE_ALIGNED
288 # define GCALIGNED __attribute__ ((aligned (GCALIGNMENT)))
289 #else
290 # define GCALIGNED /* empty */
291 #endif
292
293 /* Some operations are so commonly executed that they are implemented
294 as macros, not functions, because otherwise runtime performance would
295 suffer too much when compiling with GCC without optimization.
296 There's no need to inline everything, just the operations that
297 would otherwise cause a serious performance problem.
298
299 For each such operation OP, define a macro lisp_h_OP that contains
300 the operation's implementation. That way, OP can be implemented
301 via a macro definition like this:
302
303 #define OP(x) lisp_h_OP (x)
304
305 and/or via a function definition like this:
306
307 LISP_MACRO_DEFUN (OP, Lisp_Object, (Lisp_Object x), (x))
308
309 which macro-expands to this:
310
311 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
312
313 without worrying about the implementations diverging, since
314 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
315 are intended to be private to this include file, and should not be
316 used elsewhere.
317
318 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
319 functions, once most developers have access to GCC 4.8 or later and
320 can use "gcc -Og" to debug. Maybe in the year 2016. See
321 Bug#11935.
322
323 Commentary for these macros can be found near their corresponding
324 functions, below. */
325
326 #if CHECK_LISP_OBJECT_TYPE
327 # define lisp_h_XLI(o) ((o).i)
328 # define lisp_h_XIL(i) ((Lisp_Object) { i })
329 #else
330 # define lisp_h_XLI(o) (o)
331 # define lisp_h_XIL(i) (i)
332 #endif
333 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
334 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
335 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
336 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
337 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
338 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
339 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
340 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
341 #define lisp_h_INTEGERP(x) ((XTYPE (x) & (Lisp_Int0 | ~Lisp_Int1)) == Lisp_Int0)
342 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
343 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
344 #define lisp_h_NILP(x) EQ (x, Qnil)
345 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
346 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
347 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
348 #define lisp_h_SYMBOL_VAL(sym) \
349 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
350 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
351 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
352 #define lisp_h_XCAR(c) XCONS (c)->car
353 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
354 #define lisp_h_XCONS(a) \
355 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
356 #define lisp_h_XHASH(a) XUINT (a)
357 #define lisp_h_XPNTR(a) \
358 (SYMBOLP (a) ? XSYMBOL (a) : (void *) ((intptr_t) (XLI (a) & VALMASK)))
359 #define lisp_h_XSYMBOL(a) \
360 (eassert (SYMBOLP (a)), \
361 (struct Lisp_Symbol *) XUNTAGBASE (a, Lisp_Symbol, lispsym))
362 #ifndef GC_CHECK_CONS_LIST
363 # define lisp_h_check_cons_list() ((void) 0)
364 #endif
365 #if USE_LSB_TAG
366 # define lisp_h_make_number(n) \
367 XIL ((EMACS_INT) (((EMACS_UINT) (n) << INTTYPEBITS) + Lisp_Int0))
368 # define lisp_h_XFASTINT(a) XINT (a)
369 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
370 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
371 # define lisp_h_XUNTAG(a, type) ((void *) (intptr_t) (XLI (a) - (type)))
372 # define lisp_h_XUNTAGBASE(a, type, base) \
373 ((void *) ((char *) (base) - (type) + (intptr_t) XLI (a)))
374 #endif
375
376 /* When compiling via gcc -O0, define the key operations as macros, as
377 Emacs is too slow otherwise. To disable this optimization, compile
378 with -DINLINING=false. */
379 #if (defined __NO_INLINE__ \
380 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
381 && ! (defined INLINING && ! INLINING))
382 # define XLI(o) lisp_h_XLI (o)
383 # define XIL(i) lisp_h_XIL (i)
384 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
385 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
386 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
387 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
388 # define CONSP(x) lisp_h_CONSP (x)
389 # define EQ(x, y) lisp_h_EQ (x, y)
390 # define FLOATP(x) lisp_h_FLOATP (x)
391 # define INTEGERP(x) lisp_h_INTEGERP (x)
392 # define MARKERP(x) lisp_h_MARKERP (x)
393 # define MISCP(x) lisp_h_MISCP (x)
394 # define NILP(x) lisp_h_NILP (x)
395 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
396 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
397 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
398 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
399 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
400 # define XCAR(c) lisp_h_XCAR (c)
401 # define XCDR(c) lisp_h_XCDR (c)
402 # define XCONS(a) lisp_h_XCONS (a)
403 # define XHASH(a) lisp_h_XHASH (a)
404 # define XPNTR(a) lisp_h_XPNTR (a)
405 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
406 # ifndef GC_CHECK_CONS_LIST
407 # define check_cons_list() lisp_h_check_cons_list ()
408 # endif
409 # if USE_LSB_TAG
410 # define make_number(n) lisp_h_make_number (n)
411 # define XFASTINT(a) lisp_h_XFASTINT (a)
412 # define XINT(a) lisp_h_XINT (a)
413 # define XTYPE(a) lisp_h_XTYPE (a)
414 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
415 # define XUNTAGBASE(a, type, base) lisp_h_XUNTAGBASE (a, type, base)
416 # endif
417 #endif
418
419 /* Define NAME as a lisp.h inline function that returns TYPE and has
420 arguments declared as ARGDECLS and passed as ARGS. ARGDECLS and
421 ARGS should be parenthesized. Implement the function by calling
422 lisp_h_NAME ARGS. */
423 #define LISP_MACRO_DEFUN(name, type, argdecls, args) \
424 INLINE type (name) argdecls { return lisp_h_##name args; }
425
426 /* like LISP_MACRO_DEFUN, except NAME returns void. */
427 #define LISP_MACRO_DEFUN_VOID(name, argdecls, args) \
428 INLINE void (name) argdecls { lisp_h_##name args; }
429
430
431 /* Define the fundamental Lisp data structures. */
432
433 /* This is the set of Lisp data types. If you want to define a new
434 data type, read the comments after Lisp_Fwd_Type definition
435 below. */
436
437 /* Lisp integers use 2 tags, to give them one extra bit, thus
438 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
439 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
440 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
441
442 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
443 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
444 vociferously about them. */
445 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
446 || (defined __SUNPRO_C && __STDC__))
447 #define ENUM_BF(TYPE) unsigned int
448 #else
449 #define ENUM_BF(TYPE) enum TYPE
450 #endif
451
452
453 enum Lisp_Type
454 {
455 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
456 Lisp_Symbol = 0,
457
458 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
459 whose first member indicates the subtype. */
460 Lisp_Misc = 1,
461
462 /* Integer. XINT (obj) is the integer value. */
463 Lisp_Int0 = 2,
464 Lisp_Int1 = USE_LSB_TAG ? 6 : 3,
465
466 /* String. XSTRING (object) points to a struct Lisp_String.
467 The length of the string, and its contents, are stored therein. */
468 Lisp_String = 4,
469
470 /* Vector of Lisp objects, or something resembling it.
471 XVECTOR (object) points to a struct Lisp_Vector, which contains
472 the size and contents. The size field also contains the type
473 information, if it's not a real vector object. */
474 Lisp_Vectorlike = 5,
475
476 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
477 Lisp_Cons = USE_LSB_TAG ? 3 : 6,
478
479 Lisp_Float = 7
480 };
481
482 /* This is the set of data types that share a common structure.
483 The first member of the structure is a type code from this set.
484 The enum values are arbitrary, but we'll use large numbers to make it
485 more likely that we'll spot the error if a random word in memory is
486 mistakenly interpreted as a Lisp_Misc. */
487 enum Lisp_Misc_Type
488 {
489 Lisp_Misc_Free = 0x5eab,
490 Lisp_Misc_Marker,
491 Lisp_Misc_Overlay,
492 Lisp_Misc_Save_Value,
493 /* Currently floats are not a misc type,
494 but let's define this in case we want to change that. */
495 Lisp_Misc_Float,
496 /* This is not a type code. It is for range checking. */
497 Lisp_Misc_Limit
498 };
499
500 /* These are the types of forwarding objects used in the value slot
501 of symbols for special built-in variables whose value is stored in
502 C variables. */
503 enum Lisp_Fwd_Type
504 {
505 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
506 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
507 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
508 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
509 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
510 };
511
512 /* If you want to define a new Lisp data type, here are some
513 instructions. See the thread at
514 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
515 for more info.
516
517 First, there are already a couple of Lisp types that can be used if
518 your new type does not need to be exposed to Lisp programs nor
519 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
520 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
521 is suitable for temporarily stashing away pointers and integers in
522 a Lisp object. The latter is useful for vector-like Lisp objects
523 that need to be used as part of other objects, but which are never
524 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
525 an example).
526
527 These two types don't look pretty when printed, so they are
528 unsuitable for Lisp objects that can be exposed to users.
529
530 To define a new data type, add one more Lisp_Misc subtype or one
531 more pseudovector subtype. Pseudovectors are more suitable for
532 objects with several slots that need to support fast random access,
533 while Lisp_Misc types are for everything else. A pseudovector object
534 provides one or more slots for Lisp objects, followed by struct
535 members that are accessible only from C. A Lisp_Misc object is a
536 wrapper for a C struct that can contain anything you like.
537
538 Explicit freeing is discouraged for Lisp objects in general. But if
539 you really need to exploit this, use Lisp_Misc (check free_misc in
540 alloc.c to see why). There is no way to free a vectorlike object.
541
542 To add a new pseudovector type, extend the pvec_type enumeration;
543 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
544
545 For a Lisp_Misc, you will also need to add your entry to union
546 Lisp_Misc (but make sure the first word has the same structure as
547 the others, starting with a 16-bit member of the Lisp_Misc_Type
548 enumeration and a 1-bit GC markbit) and make sure the overall size
549 of the union is not increased by your addition.
550
551 For a new pseudovector, it's highly desirable to limit the size
552 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
553 Otherwise you will need to change sweep_vectors (also in alloc.c).
554
555 Then you will need to add switch branches in print.c (in
556 print_object, to print your object, and possibly also in
557 print_preprocess) and to alloc.c, to mark your object (in
558 mark_object) and to free it (in gc_sweep). The latter is also the
559 right place to call any code specific to your data type that needs
560 to run when the object is recycled -- e.g., free any additional
561 resources allocated for it that are not Lisp objects. You can even
562 make a pointer to the function that frees the resources a slot in
563 your object -- this way, the same object could be used to represent
564 several disparate C structures. */
565
566 #ifdef CHECK_LISP_OBJECT_TYPE
567
568 typedef struct { EMACS_INT i; } Lisp_Object;
569
570 #define LISP_INITIALLY(i) {i}
571
572 #undef CHECK_LISP_OBJECT_TYPE
573 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
574 #else /* CHECK_LISP_OBJECT_TYPE */
575
576 /* If a struct type is not wanted, define Lisp_Object as just a number. */
577
578 typedef EMACS_INT Lisp_Object;
579 #define LISP_INITIALLY(i) (i)
580 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
581 #endif /* CHECK_LISP_OBJECT_TYPE */
582
583 #define LISP_INITIALLY_ZERO LISP_INITIALLY (0)
584 \f
585 /* Forward declarations. */
586
587 /* Defined in this file. */
588 union Lisp_Fwd;
589 INLINE bool BOOL_VECTOR_P (Lisp_Object);
590 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
591 INLINE bool BUFFERP (Lisp_Object);
592 INLINE bool CHAR_TABLE_P (Lisp_Object);
593 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
594 INLINE bool (CONSP) (Lisp_Object);
595 INLINE bool (FLOATP) (Lisp_Object);
596 INLINE bool functionp (Lisp_Object);
597 INLINE bool (INTEGERP) (Lisp_Object);
598 INLINE bool (MARKERP) (Lisp_Object);
599 INLINE bool (MISCP) (Lisp_Object);
600 INLINE bool (NILP) (Lisp_Object);
601 INLINE bool OVERLAYP (Lisp_Object);
602 INLINE bool PROCESSP (Lisp_Object);
603 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
604 INLINE bool SAVE_VALUEP (Lisp_Object);
605 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
606 Lisp_Object);
607 INLINE bool STRINGP (Lisp_Object);
608 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
609 INLINE bool SUBRP (Lisp_Object);
610 INLINE bool (SYMBOLP) (Lisp_Object);
611 INLINE bool (VECTORLIKEP) (Lisp_Object);
612 INLINE bool WINDOWP (Lisp_Object);
613 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
614 INLINE struct Lisp_Symbol *(XSYMBOL) (Lisp_Object);
615 INLINE void *(XUNTAGBASE) (Lisp_Object, int, void *);
616
617 /* Defined in chartab.c. */
618 extern Lisp_Object char_table_ref (Lisp_Object, int);
619 extern void char_table_set (Lisp_Object, int, Lisp_Object);
620
621 /* Defined in data.c. */
622 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
623 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
624
625 /* Defined in emacs.c. */
626 extern bool might_dump;
627 /* True means Emacs has already been initialized.
628 Used during startup to detect startup of dumped Emacs. */
629 extern bool initialized;
630
631 /* Defined in floatfns.c. */
632 extern double extract_float (Lisp_Object);
633
634 \f
635 /* Interned state of a symbol. */
636
637 enum symbol_interned
638 {
639 SYMBOL_UNINTERNED = 0,
640 SYMBOL_INTERNED = 1,
641 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
642 };
643
644 enum symbol_redirect
645 {
646 SYMBOL_PLAINVAL = 4,
647 SYMBOL_VARALIAS = 1,
648 SYMBOL_LOCALIZED = 2,
649 SYMBOL_FORWARDED = 3
650 };
651
652 struct Lisp_Symbol
653 {
654 bool_bf gcmarkbit : 1;
655
656 /* Indicates where the value can be found:
657 0 : it's a plain var, the value is in the `value' field.
658 1 : it's a varalias, the value is really in the `alias' symbol.
659 2 : it's a localized var, the value is in the `blv' object.
660 3 : it's a forwarding variable, the value is in `forward'. */
661 ENUM_BF (symbol_redirect) redirect : 3;
662
663 /* Non-zero means symbol is constant, i.e. changing its value
664 should signal an error. If the value is 3, then the var
665 can be changed, but only by `defconst'. */
666 unsigned constant : 2;
667
668 /* Interned state of the symbol. This is an enumerator from
669 enum symbol_interned. */
670 unsigned interned : 2;
671
672 /* True means that this variable has been explicitly declared
673 special (with `defvar' etc), and shouldn't be lexically bound. */
674 bool_bf declared_special : 1;
675
676 /* True if pointed to from purespace and hence can't be GC'd. */
677 bool_bf pinned : 1;
678
679 /* The symbol's name, as a Lisp string. */
680 Lisp_Object name;
681
682 /* Value of the symbol or Qunbound if unbound. Which alternative of the
683 union is used depends on the `redirect' field above. */
684 union {
685 Lisp_Object value;
686 struct Lisp_Symbol *alias;
687 struct Lisp_Buffer_Local_Value *blv;
688 union Lisp_Fwd *fwd;
689 } val;
690
691 /* Function value of the symbol or Qnil if not fboundp. */
692 Lisp_Object function;
693
694 /* The symbol's property list. */
695 Lisp_Object plist;
696
697 /* Next symbol in obarray bucket, if the symbol is interned. */
698 struct Lisp_Symbol *next;
699 };
700
701 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
702 meaning as in the DEFUN macro, and is used to construct a prototype. */
703 /* We can use the same trick as in the DEFUN macro to generate the
704 appropriate prototype. */
705 #define EXFUN(fnname, maxargs) \
706 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
707
708 /* Note that the weird token-substitution semantics of ANSI C makes
709 this work for MANY and UNEVALLED. */
710 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
711 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
712 #define DEFUN_ARGS_0 (void)
713 #define DEFUN_ARGS_1 (Lisp_Object)
714 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
715 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
716 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
717 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
718 Lisp_Object)
719 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
720 Lisp_Object, Lisp_Object)
721 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
722 Lisp_Object, Lisp_Object, Lisp_Object)
723 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
724 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
725
726 /* Yield an integer that contains TAG along with PTR. */
727 #define TAG_PTR(tag, ptr) \
728 ((USE_LSB_TAG ? (tag) : (EMACS_UINT) (tag) << VALBITS) + (uintptr_t) (ptr))
729
730 /* Yield an integer that tags PTR as a symbol. */
731 #define TAG_SYMPTR(ptr) \
732 TAG_PTR (Lisp_Symbol, \
733 USE_LSB_TAG ? (char *) (ptr) - (char *) lispsym : (intptr_t) (ptr))
734
735 /* Declare extern constants for Lisp symbols. These can be helpful
736 when using a debugger like GDB, on older platforms where the debug
737 format does not represent C macros. However, they don't work with
738 GCC if INTPTR_MAX != EMACS_INT_MAX. */
739 #if EMACS_INT_MAX == INTPTR_MAX
740 # define DEFINE_LISP_SYMBOL_BEGIN(name) \
741 DEFINE_GDB_SYMBOL_BEGIN (Lisp_Object, name)
742 # define DEFINE_LISP_SYMBOL_END(name) \
743 DEFINE_GDB_SYMBOL_END (LISP_INITIALLY (TAG_SYMPTR (name)))
744 #else
745 # define DEFINE_LISP_SYMBOL_BEGIN(name) /* empty */
746 # define DEFINE_LISP_SYMBOL_END(name) /* empty */
747 #endif
748
749 #include "globals.h"
750
751 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
752 At the machine level, these operations are no-ops. */
753 LISP_MACRO_DEFUN (XLI, EMACS_INT, (Lisp_Object o), (o))
754 LISP_MACRO_DEFUN (XIL, Lisp_Object, (EMACS_INT i), (i))
755
756 /* In the size word of a vector, this bit means the vector has been marked. */
757
758 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
759 # define ARRAY_MARK_FLAG PTRDIFF_MIN
760 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
761
762 /* In the size word of a struct Lisp_Vector, this bit means it's really
763 some other vector-like object. */
764 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
765 # define PSEUDOVECTOR_FLAG (PTRDIFF_MAX - PTRDIFF_MAX / 2)
766 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
767
768 /* In a pseudovector, the size field actually contains a word with one
769 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
770 with PVEC_TYPE_MASK to indicate the actual type. */
771 enum pvec_type
772 {
773 PVEC_NORMAL_VECTOR,
774 PVEC_FREE,
775 PVEC_PROCESS,
776 PVEC_FRAME,
777 PVEC_WINDOW,
778 PVEC_BOOL_VECTOR,
779 PVEC_BUFFER,
780 PVEC_HASH_TABLE,
781 PVEC_TERMINAL,
782 PVEC_WINDOW_CONFIGURATION,
783 PVEC_SUBR,
784 PVEC_OTHER,
785 /* These should be last, check internal_equal to see why. */
786 PVEC_COMPILED,
787 PVEC_CHAR_TABLE,
788 PVEC_SUB_CHAR_TABLE,
789 PVEC_FONT /* Should be last because it's used for range checking. */
790 };
791
792 enum More_Lisp_Bits
793 {
794 /* For convenience, we also store the number of elements in these bits.
795 Note that this size is not necessarily the memory-footprint size, but
796 only the number of Lisp_Object fields (that need to be traced by GC).
797 The distinction is used, e.g., by Lisp_Process, which places extra
798 non-Lisp_Object fields at the end of the structure. */
799 PSEUDOVECTOR_SIZE_BITS = 12,
800 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
801
802 /* To calculate the memory footprint of the pseudovector, it's useful
803 to store the size of non-Lisp area in word_size units here. */
804 PSEUDOVECTOR_REST_BITS = 12,
805 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
806 << PSEUDOVECTOR_SIZE_BITS),
807
808 /* Used to extract pseudovector subtype information. */
809 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
810 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
811 };
812 \f
813 /* These functions extract various sorts of values from a Lisp_Object.
814 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
815 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
816 that cons. */
817
818 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
819 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
820 # define VALMASK (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
821 DEFINE_GDB_SYMBOL_END (VALMASK)
822
823 /* Largest and smallest representable fixnum values. These are the C
824 values. They are macros for use in static initializers. */
825 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
826 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
827
828 /* Extract the pointer hidden within A. */
829 LISP_MACRO_DEFUN (XPNTR, void *, (Lisp_Object a), (a))
830
831 #if USE_LSB_TAG
832
833 LISP_MACRO_DEFUN (make_number, Lisp_Object, (EMACS_INT n), (n))
834 LISP_MACRO_DEFUN (XINT, EMACS_INT, (Lisp_Object a), (a))
835 LISP_MACRO_DEFUN (XFASTINT, EMACS_INT, (Lisp_Object a), (a))
836 LISP_MACRO_DEFUN (XTYPE, enum Lisp_Type, (Lisp_Object a), (a))
837 LISP_MACRO_DEFUN (XUNTAG, void *, (Lisp_Object a, int type), (a, type))
838 LISP_MACRO_DEFUN (XUNTAGBASE, void *, (Lisp_Object a, int type, void *base),
839 (a, type, base))
840
841 #else /* ! USE_LSB_TAG */
842
843 /* Although compiled only if ! USE_LSB_TAG, the following functions
844 also work when USE_LSB_TAG; this is to aid future maintenance when
845 the lisp_h_* macros are eventually removed. */
846
847 /* Make a Lisp integer representing the value of the low order
848 bits of N. */
849 INLINE Lisp_Object
850 make_number (EMACS_INT n)
851 {
852 EMACS_INT int0 = Lisp_Int0;
853 if (USE_LSB_TAG)
854 {
855 EMACS_UINT u = n;
856 n = u << INTTYPEBITS;
857 n += int0;
858 }
859 else
860 {
861 n &= INTMASK;
862 n += (int0 << VALBITS);
863 }
864 return XIL (n);
865 }
866
867 /* Extract A's value as a signed integer. */
868 INLINE EMACS_INT
869 XINT (Lisp_Object a)
870 {
871 EMACS_INT i = XLI (a);
872 if (! USE_LSB_TAG)
873 {
874 EMACS_UINT u = i;
875 i = u << INTTYPEBITS;
876 }
877 return i >> INTTYPEBITS;
878 }
879
880 /* Like XINT (A), but may be faster. A must be nonnegative.
881 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
882 integers have zero-bits in their tags. */
883 INLINE EMACS_INT
884 XFASTINT (Lisp_Object a)
885 {
886 EMACS_INT int0 = Lisp_Int0;
887 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a) - (int0 << VALBITS);
888 eassert (0 <= n);
889 return n;
890 }
891
892 /* Extract A's type. */
893 INLINE enum Lisp_Type
894 XTYPE (Lisp_Object a)
895 {
896 EMACS_UINT i = XLI (a);
897 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
898 }
899
900 /* Extract A's pointer value, assuming A's type is TYPE.
901 If USE_LSB_TAG, add BASE to A's pointer value while extracting. */
902 INLINE void *
903 XUNTAGBASE (Lisp_Object a, int type, void *base)
904 {
905 char *b = USE_LSB_TAG ? base : 0;
906 intptr_t i = USE_LSB_TAG ? XLI (a) - type : XLI (a) & VALMASK;
907 return b + i;
908 }
909
910 /* Extract A's pointer value, assuming A's type is TYPE. */
911 INLINE void *
912 XUNTAG (Lisp_Object a, int type)
913 {
914 intptr_t i = USE_LSB_TAG ? XLI (a) - type : XLI (a) & VALMASK;
915 return (void *) i;
916 }
917
918 #endif /* ! USE_LSB_TAG */
919
920 /* Extract A's value as an unsigned integer. */
921 INLINE EMACS_UINT
922 XUINT (Lisp_Object a)
923 {
924 EMACS_UINT i = XLI (a);
925 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
926 }
927
928 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
929 right now, but XUINT should only be applied to objects we know are
930 integers. */
931 LISP_MACRO_DEFUN (XHASH, EMACS_INT, (Lisp_Object a), (a))
932
933 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
934 INLINE Lisp_Object
935 make_natnum (EMACS_INT n)
936 {
937 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
938 EMACS_INT int0 = Lisp_Int0;
939 return USE_LSB_TAG ? make_number (n) : XIL (n + (int0 << VALBITS));
940 }
941
942 /* Return true if X and Y are the same object. */
943 LISP_MACRO_DEFUN (EQ, bool, (Lisp_Object x, Lisp_Object y), (x, y))
944
945 /* Value is true if I doesn't fit into a Lisp fixnum. It is
946 written this way so that it also works if I is of unsigned
947 type or if I is a NaN. */
948
949 #define FIXNUM_OVERFLOW_P(i) \
950 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
951
952 INLINE ptrdiff_t
953 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
954 {
955 return num < lower ? lower : num <= upper ? num : upper;
956 }
957 \f
958
959 /* Extract a value or address from a Lisp_Object. */
960
961 LISP_MACRO_DEFUN (XCONS, struct Lisp_Cons *, (Lisp_Object a), (a))
962
963 INLINE struct Lisp_Vector *
964 XVECTOR (Lisp_Object a)
965 {
966 eassert (VECTORLIKEP (a));
967 return XUNTAG (a, Lisp_Vectorlike);
968 }
969
970 INLINE struct Lisp_String *
971 XSTRING (Lisp_Object a)
972 {
973 eassert (STRINGP (a));
974 return XUNTAG (a, Lisp_String);
975 }
976
977 LISP_MACRO_DEFUN (XSYMBOL, struct Lisp_Symbol *, (Lisp_Object a), (a))
978
979 /* XSYMBOL_INIT (Qfoo) is like XSYMBOL (Qfoo), except it is valid in
980 static initializers, and SYM must be a C-defined symbol. */
981 #define XSYMBOL_INIT(sym) a##sym
982
983 INLINE struct Lisp_Float *
984 XFLOAT (Lisp_Object a)
985 {
986 eassert (FLOATP (a));
987 return XUNTAG (a, Lisp_Float);
988 }
989
990 /* Pseudovector types. */
991
992 INLINE struct Lisp_Process *
993 XPROCESS (Lisp_Object a)
994 {
995 eassert (PROCESSP (a));
996 return XUNTAG (a, Lisp_Vectorlike);
997 }
998
999 INLINE struct window *
1000 XWINDOW (Lisp_Object a)
1001 {
1002 eassert (WINDOWP (a));
1003 return XUNTAG (a, Lisp_Vectorlike);
1004 }
1005
1006 INLINE struct terminal *
1007 XTERMINAL (Lisp_Object a)
1008 {
1009 return XUNTAG (a, Lisp_Vectorlike);
1010 }
1011
1012 INLINE struct Lisp_Subr *
1013 XSUBR (Lisp_Object a)
1014 {
1015 eassert (SUBRP (a));
1016 return XUNTAG (a, Lisp_Vectorlike);
1017 }
1018
1019 INLINE struct buffer *
1020 XBUFFER (Lisp_Object a)
1021 {
1022 eassert (BUFFERP (a));
1023 return XUNTAG (a, Lisp_Vectorlike);
1024 }
1025
1026 INLINE struct Lisp_Char_Table *
1027 XCHAR_TABLE (Lisp_Object a)
1028 {
1029 eassert (CHAR_TABLE_P (a));
1030 return XUNTAG (a, Lisp_Vectorlike);
1031 }
1032
1033 INLINE struct Lisp_Sub_Char_Table *
1034 XSUB_CHAR_TABLE (Lisp_Object a)
1035 {
1036 eassert (SUB_CHAR_TABLE_P (a));
1037 return XUNTAG (a, Lisp_Vectorlike);
1038 }
1039
1040 INLINE struct Lisp_Bool_Vector *
1041 XBOOL_VECTOR (Lisp_Object a)
1042 {
1043 eassert (BOOL_VECTOR_P (a));
1044 return XUNTAG (a, Lisp_Vectorlike);
1045 }
1046
1047 /* Construct a Lisp_Object from a value or address. */
1048
1049 INLINE Lisp_Object
1050 make_lisp_ptr (void *ptr, enum Lisp_Type type)
1051 {
1052 Lisp_Object a = XIL (TAG_PTR (type, ptr));
1053 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
1054 return a;
1055 }
1056
1057 INLINE Lisp_Object
1058 make_lisp_symbol (struct Lisp_Symbol *sym)
1059 {
1060 Lisp_Object a = XIL (TAG_SYMPTR (sym));
1061 eassert (XTYPE (a) == Lisp_Symbol
1062 && XUNTAGBASE (a, Lisp_Symbol, lispsym) == sym);
1063 return a;
1064 }
1065
1066 INLINE Lisp_Object
1067 make_lisp_proc (struct Lisp_Process *p)
1068 {
1069 return make_lisp_ptr (p, Lisp_Vectorlike);
1070 }
1071
1072 #define XSETINT(a, b) ((a) = make_number (b))
1073 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
1074 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
1075 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
1076 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
1077 #define XSETSYMBOL(a, b) ((a) = make_lisp_symbol (b))
1078 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
1079 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
1080
1081 /* Pseudovector types. */
1082
1083 #define XSETPVECTYPE(v, code) \
1084 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
1085 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
1086 ((v)->header.size = (PSEUDOVECTOR_FLAG \
1087 | ((code) << PSEUDOVECTOR_AREA_BITS) \
1088 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
1089 | (lispsize)))
1090
1091 /* The cast to struct vectorlike_header * avoids aliasing issues. */
1092 #define XSETPSEUDOVECTOR(a, b, code) \
1093 XSETTYPED_PSEUDOVECTOR (a, b, \
1094 (((struct vectorlike_header *) \
1095 XUNTAG (a, Lisp_Vectorlike)) \
1096 ->size), \
1097 code)
1098 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
1099 (XSETVECTOR (a, b), \
1100 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
1101 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
1102
1103 #define XSETWINDOW_CONFIGURATION(a, b) \
1104 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
1105 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
1106 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
1107 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
1108 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
1109 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
1110 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
1111 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
1112 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
1113 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
1114
1115 /* Type checking. */
1116
1117 LISP_MACRO_DEFUN_VOID (CHECK_TYPE,
1118 (int ok, Lisp_Object predicate, Lisp_Object x),
1119 (ok, predicate, x))
1120
1121 /* Deprecated and will be removed soon. */
1122
1123 #define INTERNAL_FIELD(field) field ## _
1124
1125 /* See the macros in intervals.h. */
1126
1127 typedef struct interval *INTERVAL;
1128
1129 struct GCALIGNED Lisp_Cons
1130 {
1131 /* Car of this cons cell. */
1132 Lisp_Object car;
1133
1134 union
1135 {
1136 /* Cdr of this cons cell. */
1137 Lisp_Object cdr;
1138
1139 /* Used to chain conses on a free list. */
1140 struct Lisp_Cons *chain;
1141 } u;
1142 };
1143
1144 /* Take the car or cdr of something known to be a cons cell. */
1145 /* The _addr functions shouldn't be used outside of the minimal set
1146 of code that has to know what a cons cell looks like. Other code not
1147 part of the basic lisp implementation should assume that the car and cdr
1148 fields are not accessible. (What if we want to switch to
1149 a copying collector someday? Cached cons cell field addresses may be
1150 invalidated at arbitrary points.) */
1151 INLINE Lisp_Object *
1152 xcar_addr (Lisp_Object c)
1153 {
1154 return &XCONS (c)->car;
1155 }
1156 INLINE Lisp_Object *
1157 xcdr_addr (Lisp_Object c)
1158 {
1159 return &XCONS (c)->u.cdr;
1160 }
1161
1162 /* Use these from normal code. */
1163 LISP_MACRO_DEFUN (XCAR, Lisp_Object, (Lisp_Object c), (c))
1164 LISP_MACRO_DEFUN (XCDR, Lisp_Object, (Lisp_Object c), (c))
1165
1166 /* Use these to set the fields of a cons cell.
1167
1168 Note that both arguments may refer to the same object, so 'n'
1169 should not be read after 'c' is first modified. */
1170 INLINE void
1171 XSETCAR (Lisp_Object c, Lisp_Object n)
1172 {
1173 *xcar_addr (c) = n;
1174 }
1175 INLINE void
1176 XSETCDR (Lisp_Object c, Lisp_Object n)
1177 {
1178 *xcdr_addr (c) = n;
1179 }
1180
1181 /* Take the car or cdr of something whose type is not known. */
1182 INLINE Lisp_Object
1183 CAR (Lisp_Object c)
1184 {
1185 return (CONSP (c) ? XCAR (c)
1186 : NILP (c) ? Qnil
1187 : wrong_type_argument (Qlistp, c));
1188 }
1189 INLINE Lisp_Object
1190 CDR (Lisp_Object c)
1191 {
1192 return (CONSP (c) ? XCDR (c)
1193 : NILP (c) ? Qnil
1194 : wrong_type_argument (Qlistp, c));
1195 }
1196
1197 /* Take the car or cdr of something whose type is not known. */
1198 INLINE Lisp_Object
1199 CAR_SAFE (Lisp_Object c)
1200 {
1201 return CONSP (c) ? XCAR (c) : Qnil;
1202 }
1203 INLINE Lisp_Object
1204 CDR_SAFE (Lisp_Object c)
1205 {
1206 return CONSP (c) ? XCDR (c) : Qnil;
1207 }
1208
1209 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1210
1211 struct GCALIGNED Lisp_String
1212 {
1213 ptrdiff_t size;
1214 ptrdiff_t size_byte;
1215 INTERVAL intervals; /* Text properties in this string. */
1216 unsigned char *data;
1217 };
1218
1219 /* True if STR is a multibyte string. */
1220 INLINE bool
1221 STRING_MULTIBYTE (Lisp_Object str)
1222 {
1223 return 0 <= XSTRING (str)->size_byte;
1224 }
1225
1226 /* An upper bound on the number of bytes in a Lisp string, not
1227 counting the terminating null. This a tight enough bound to
1228 prevent integer overflow errors that would otherwise occur during
1229 string size calculations. A string cannot contain more bytes than
1230 a fixnum can represent, nor can it be so long that C pointer
1231 arithmetic stops working on the string plus its terminating null.
1232 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1233 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1234 would expose alloc.c internal details that we'd rather keep
1235 private.
1236
1237 This is a macro for use in static initializers. The cast to
1238 ptrdiff_t ensures that the macro is signed. */
1239 #define STRING_BYTES_BOUND \
1240 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1241
1242 /* Mark STR as a unibyte string. */
1243 #define STRING_SET_UNIBYTE(STR) \
1244 do { \
1245 if (EQ (STR, empty_multibyte_string)) \
1246 (STR) = empty_unibyte_string; \
1247 else \
1248 XSTRING (STR)->size_byte = -1; \
1249 } while (false)
1250
1251 /* Mark STR as a multibyte string. Assure that STR contains only
1252 ASCII characters in advance. */
1253 #define STRING_SET_MULTIBYTE(STR) \
1254 do { \
1255 if (EQ (STR, empty_unibyte_string)) \
1256 (STR) = empty_multibyte_string; \
1257 else \
1258 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1259 } while (false)
1260
1261 /* Convenience functions for dealing with Lisp strings. */
1262
1263 INLINE unsigned char *
1264 SDATA (Lisp_Object string)
1265 {
1266 return XSTRING (string)->data;
1267 }
1268 INLINE char *
1269 SSDATA (Lisp_Object string)
1270 {
1271 /* Avoid "differ in sign" warnings. */
1272 return (char *) SDATA (string);
1273 }
1274 INLINE unsigned char
1275 SREF (Lisp_Object string, ptrdiff_t index)
1276 {
1277 return SDATA (string)[index];
1278 }
1279 INLINE void
1280 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1281 {
1282 SDATA (string)[index] = new;
1283 }
1284 INLINE ptrdiff_t
1285 SCHARS (Lisp_Object string)
1286 {
1287 return XSTRING (string)->size;
1288 }
1289
1290 #ifdef GC_CHECK_STRING_BYTES
1291 extern ptrdiff_t string_bytes (struct Lisp_String *);
1292 #endif
1293 INLINE ptrdiff_t
1294 STRING_BYTES (struct Lisp_String *s)
1295 {
1296 #ifdef GC_CHECK_STRING_BYTES
1297 return string_bytes (s);
1298 #else
1299 return s->size_byte < 0 ? s->size : s->size_byte;
1300 #endif
1301 }
1302
1303 INLINE ptrdiff_t
1304 SBYTES (Lisp_Object string)
1305 {
1306 return STRING_BYTES (XSTRING (string));
1307 }
1308 INLINE void
1309 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1310 {
1311 XSTRING (string)->size = newsize;
1312 }
1313
1314 /* Header of vector-like objects. This documents the layout constraints on
1315 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1316 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1317 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1318 because when two such pointers potentially alias, a compiler won't
1319 incorrectly reorder loads and stores to their size fields. See
1320 Bug#8546. */
1321 struct vectorlike_header
1322 {
1323 /* The only field contains various pieces of information:
1324 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1325 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1326 vector (0) or a pseudovector (1).
1327 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1328 of slots) of the vector.
1329 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1330 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1331 - b) number of Lisp_Objects slots at the beginning of the object
1332 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1333 traced by the GC;
1334 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1335 measured in word_size units. Rest fields may also include
1336 Lisp_Objects, but these objects usually needs some special treatment
1337 during GC.
1338 There are some exceptions. For PVEC_FREE, b) is always zero. For
1339 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1340 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1341 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1342 ptrdiff_t size;
1343 };
1344
1345 /* A regular vector is just a header plus an array of Lisp_Objects. */
1346
1347 struct Lisp_Vector
1348 {
1349 struct vectorlike_header header;
1350 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1351 };
1352
1353 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1354 enum
1355 {
1356 ALIGNOF_STRUCT_LISP_VECTOR
1357 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1358 };
1359
1360 /* A boolvector is a kind of vectorlike, with contents like a string. */
1361
1362 struct Lisp_Bool_Vector
1363 {
1364 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1365 just the subtype information. */
1366 struct vectorlike_header header;
1367 /* This is the size in bits. */
1368 EMACS_INT size;
1369 /* The actual bits, packed into bytes.
1370 Zeros fill out the last word if needed.
1371 The bits are in little-endian order in the bytes, and
1372 the bytes are in little-endian order in the words. */
1373 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1374 };
1375
1376 INLINE EMACS_INT
1377 bool_vector_size (Lisp_Object a)
1378 {
1379 EMACS_INT size = XBOOL_VECTOR (a)->size;
1380 eassume (0 <= size);
1381 return size;
1382 }
1383
1384 INLINE bits_word *
1385 bool_vector_data (Lisp_Object a)
1386 {
1387 return XBOOL_VECTOR (a)->data;
1388 }
1389
1390 INLINE unsigned char *
1391 bool_vector_uchar_data (Lisp_Object a)
1392 {
1393 return (unsigned char *) bool_vector_data (a);
1394 }
1395
1396 /* The number of data words and bytes in a bool vector with SIZE bits. */
1397
1398 INLINE EMACS_INT
1399 bool_vector_words (EMACS_INT size)
1400 {
1401 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1402 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1403 }
1404
1405 INLINE EMACS_INT
1406 bool_vector_bytes (EMACS_INT size)
1407 {
1408 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1409 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1410 }
1411
1412 /* True if A's Ith bit is set. */
1413
1414 INLINE bool
1415 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1416 {
1417 eassume (0 <= i && i < bool_vector_size (a));
1418 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1419 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1420 }
1421
1422 INLINE Lisp_Object
1423 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1424 {
1425 return bool_vector_bitref (a, i) ? Qt : Qnil;
1426 }
1427
1428 /* Set A's Ith bit to B. */
1429
1430 INLINE void
1431 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1432 {
1433 unsigned char *addr;
1434
1435 eassume (0 <= i && i < bool_vector_size (a));
1436 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1437
1438 if (b)
1439 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1440 else
1441 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1442 }
1443
1444 /* Some handy constants for calculating sizes
1445 and offsets, mostly of vectorlike objects. */
1446
1447 enum
1448 {
1449 header_size = offsetof (struct Lisp_Vector, contents),
1450 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1451 word_size = sizeof (Lisp_Object)
1452 };
1453
1454 /* Conveniences for dealing with Lisp arrays. */
1455
1456 INLINE Lisp_Object
1457 AREF (Lisp_Object array, ptrdiff_t idx)
1458 {
1459 return XVECTOR (array)->contents[idx];
1460 }
1461
1462 INLINE Lisp_Object *
1463 aref_addr (Lisp_Object array, ptrdiff_t idx)
1464 {
1465 return & XVECTOR (array)->contents[idx];
1466 }
1467
1468 INLINE ptrdiff_t
1469 ASIZE (Lisp_Object array)
1470 {
1471 return XVECTOR (array)->header.size;
1472 }
1473
1474 INLINE void
1475 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1476 {
1477 eassert (0 <= idx && idx < ASIZE (array));
1478 XVECTOR (array)->contents[idx] = val;
1479 }
1480
1481 INLINE void
1482 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1483 {
1484 /* Like ASET, but also can be used in the garbage collector:
1485 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1486 eassert (0 <= idx && idx < (ASIZE (array) & ~ARRAY_MARK_FLAG));
1487 XVECTOR (array)->contents[idx] = val;
1488 }
1489
1490 /* If a struct is made to look like a vector, this macro returns the length
1491 of the shortest vector that would hold that struct. */
1492
1493 #define VECSIZE(type) \
1494 ((sizeof (type) - header_size + word_size - 1) / word_size)
1495
1496 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1497 at the end and we need to compute the number of Lisp_Object fields (the
1498 ones that the GC needs to trace). */
1499
1500 #define PSEUDOVECSIZE(type, nonlispfield) \
1501 ((offsetof (type, nonlispfield) - header_size) / word_size)
1502
1503 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1504 should be integer expressions. This is not the same as
1505 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1506 returns true. For efficiency, prefer plain unsigned comparison if A
1507 and B's sizes both fit (after integer promotion). */
1508 #define UNSIGNED_CMP(a, op, b) \
1509 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1510 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1511 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1512
1513 /* True iff C is an ASCII character. */
1514 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1515
1516 /* A char-table is a kind of vectorlike, with contents are like a
1517 vector but with a few other slots. For some purposes, it makes
1518 sense to handle a char-table with type struct Lisp_Vector. An
1519 element of a char table can be any Lisp objects, but if it is a sub
1520 char-table, we treat it a table that contains information of a
1521 specific range of characters. A sub char-table is like a vector but
1522 with two integer fields between the header and Lisp data, which means
1523 that it has to be marked with some precautions (see mark_char_table
1524 in alloc.c). A sub char-table appears only in an element of a char-table,
1525 and there's no way to access it directly from Emacs Lisp program. */
1526
1527 enum CHARTAB_SIZE_BITS
1528 {
1529 CHARTAB_SIZE_BITS_0 = 6,
1530 CHARTAB_SIZE_BITS_1 = 4,
1531 CHARTAB_SIZE_BITS_2 = 5,
1532 CHARTAB_SIZE_BITS_3 = 7
1533 };
1534
1535 extern const int chartab_size[4];
1536
1537 struct Lisp_Char_Table
1538 {
1539 /* HEADER.SIZE is the vector's size field, which also holds the
1540 pseudovector type information. It holds the size, too.
1541 The size counts the defalt, parent, purpose, ascii,
1542 contents, and extras slots. */
1543 struct vectorlike_header header;
1544
1545 /* This holds a default value,
1546 which is used whenever the value for a specific character is nil. */
1547 Lisp_Object defalt;
1548
1549 /* This points to another char table, which we inherit from when the
1550 value for a specific character is nil. The `defalt' slot takes
1551 precedence over this. */
1552 Lisp_Object parent;
1553
1554 /* This is a symbol which says what kind of use this char-table is
1555 meant for. */
1556 Lisp_Object purpose;
1557
1558 /* The bottom sub char-table for characters of the range 0..127. It
1559 is nil if none of ASCII character has a specific value. */
1560 Lisp_Object ascii;
1561
1562 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1563
1564 /* These hold additional data. It is a vector. */
1565 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1566 };
1567
1568 struct Lisp_Sub_Char_Table
1569 {
1570 /* HEADER.SIZE is the vector's size field, which also holds the
1571 pseudovector type information. It holds the size, too. */
1572 struct vectorlike_header header;
1573
1574 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1575 char-table of depth 1 contains 16 elements, and each element
1576 covers 4096 (128*32) characters. A sub char-table of depth 2
1577 contains 32 elements, and each element covers 128 characters. A
1578 sub char-table of depth 3 contains 128 elements, and each element
1579 is for one character. */
1580 int depth;
1581
1582 /* Minimum character covered by the sub char-table. */
1583 int min_char;
1584
1585 /* Use set_sub_char_table_contents to set this. */
1586 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1587 };
1588
1589 INLINE Lisp_Object
1590 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1591 {
1592 struct Lisp_Char_Table *tbl = NULL;
1593 Lisp_Object val;
1594 do
1595 {
1596 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1597 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1598 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1599 if (NILP (val))
1600 val = tbl->defalt;
1601 }
1602 while (NILP (val) && ! NILP (tbl->parent));
1603
1604 return val;
1605 }
1606
1607 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1608 characters. Do not check validity of CT. */
1609 INLINE Lisp_Object
1610 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1611 {
1612 return (ASCII_CHAR_P (idx)
1613 ? CHAR_TABLE_REF_ASCII (ct, idx)
1614 : char_table_ref (ct, idx));
1615 }
1616
1617 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1618 8-bit European characters. Do not check validity of CT. */
1619 INLINE void
1620 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1621 {
1622 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1623 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1624 else
1625 char_table_set (ct, idx, val);
1626 }
1627
1628 /* This structure describes a built-in function.
1629 It is generated by the DEFUN macro only.
1630 defsubr makes it into a Lisp object. */
1631
1632 struct Lisp_Subr
1633 {
1634 struct vectorlike_header header;
1635 union {
1636 Lisp_Object (*a0) (void);
1637 Lisp_Object (*a1) (Lisp_Object);
1638 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1639 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1640 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1641 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1642 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1643 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1644 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1645 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1646 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1647 } function;
1648 short min_args, max_args;
1649 const char *symbol_name;
1650 const char *intspec;
1651 const char *doc;
1652 };
1653
1654 enum char_table_specials
1655 {
1656 /* This is the number of slots that every char table must have. This
1657 counts the ordinary slots and the top, defalt, parent, and purpose
1658 slots. */
1659 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1660
1661 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1662 when the latter is treated as an ordinary Lisp_Vector. */
1663 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1664 };
1665
1666 /* Return the number of "extra" slots in the char table CT. */
1667
1668 INLINE int
1669 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1670 {
1671 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1672 - CHAR_TABLE_STANDARD_SLOTS);
1673 }
1674
1675 /* Make sure that sub char-table contents slot
1676 is aligned on a multiple of Lisp_Objects. */
1677 verify ((offsetof (struct Lisp_Sub_Char_Table, contents)
1678 - offsetof (struct Lisp_Sub_Char_Table, depth)) % word_size == 0);
1679
1680 /***********************************************************************
1681 Symbols
1682 ***********************************************************************/
1683
1684 /* Value is name of symbol. */
1685
1686 LISP_MACRO_DEFUN (SYMBOL_VAL, Lisp_Object, (struct Lisp_Symbol *sym), (sym))
1687
1688 INLINE struct Lisp_Symbol *
1689 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1690 {
1691 eassert (sym->redirect == SYMBOL_VARALIAS);
1692 return sym->val.alias;
1693 }
1694 INLINE struct Lisp_Buffer_Local_Value *
1695 SYMBOL_BLV (struct Lisp_Symbol *sym)
1696 {
1697 eassert (sym->redirect == SYMBOL_LOCALIZED);
1698 return sym->val.blv;
1699 }
1700 INLINE union Lisp_Fwd *
1701 SYMBOL_FWD (struct Lisp_Symbol *sym)
1702 {
1703 eassert (sym->redirect == SYMBOL_FORWARDED);
1704 return sym->val.fwd;
1705 }
1706
1707 LISP_MACRO_DEFUN_VOID (SET_SYMBOL_VAL,
1708 (struct Lisp_Symbol *sym, Lisp_Object v), (sym, v))
1709
1710 INLINE void
1711 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1712 {
1713 eassert (sym->redirect == SYMBOL_VARALIAS);
1714 sym->val.alias = v;
1715 }
1716 INLINE void
1717 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1718 {
1719 eassert (sym->redirect == SYMBOL_LOCALIZED);
1720 sym->val.blv = v;
1721 }
1722 INLINE void
1723 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1724 {
1725 eassert (sym->redirect == SYMBOL_FORWARDED);
1726 sym->val.fwd = v;
1727 }
1728
1729 INLINE Lisp_Object
1730 SYMBOL_NAME (Lisp_Object sym)
1731 {
1732 return XSYMBOL (sym)->name;
1733 }
1734
1735 /* Value is true if SYM is an interned symbol. */
1736
1737 INLINE bool
1738 SYMBOL_INTERNED_P (Lisp_Object sym)
1739 {
1740 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1741 }
1742
1743 /* Value is true if SYM is interned in initial_obarray. */
1744
1745 INLINE bool
1746 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1747 {
1748 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1749 }
1750
1751 /* Value is non-zero if symbol is considered a constant, i.e. its
1752 value cannot be changed (there is an exception for keyword symbols,
1753 whose value can be set to the keyword symbol itself). */
1754
1755 LISP_MACRO_DEFUN (SYMBOL_CONSTANT_P, int, (Lisp_Object sym), (sym))
1756
1757 /* Placeholder for make-docfile to process. The actual symbol
1758 definition is done by lread.c's defsym. */
1759 #define DEFSYM(sym, name) /* empty */
1760
1761 \f
1762 /***********************************************************************
1763 Hash Tables
1764 ***********************************************************************/
1765
1766 /* The structure of a Lisp hash table. */
1767
1768 struct hash_table_test
1769 {
1770 /* Name of the function used to compare keys. */
1771 Lisp_Object name;
1772
1773 /* User-supplied hash function, or nil. */
1774 Lisp_Object user_hash_function;
1775
1776 /* User-supplied key comparison function, or nil. */
1777 Lisp_Object user_cmp_function;
1778
1779 /* C function to compare two keys. */
1780 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1781
1782 /* C function to compute hash code. */
1783 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1784 };
1785
1786 struct Lisp_Hash_Table
1787 {
1788 /* This is for Lisp; the hash table code does not refer to it. */
1789 struct vectorlike_header header;
1790
1791 /* Nil if table is non-weak. Otherwise a symbol describing the
1792 weakness of the table. */
1793 Lisp_Object weak;
1794
1795 /* When the table is resized, and this is an integer, compute the
1796 new size by adding this to the old size. If a float, compute the
1797 new size by multiplying the old size with this factor. */
1798 Lisp_Object rehash_size;
1799
1800 /* Resize hash table when number of entries/ table size is >= this
1801 ratio, a float. */
1802 Lisp_Object rehash_threshold;
1803
1804 /* Vector of hash codes. If hash[I] is nil, this means that the
1805 I-th entry is unused. */
1806 Lisp_Object hash;
1807
1808 /* Vector used to chain entries. If entry I is free, next[I] is the
1809 entry number of the next free item. If entry I is non-free,
1810 next[I] is the index of the next entry in the collision chain. */
1811 Lisp_Object next;
1812
1813 /* Index of first free entry in free list. */
1814 Lisp_Object next_free;
1815
1816 /* Bucket vector. A non-nil entry is the index of the first item in
1817 a collision chain. This vector's size can be larger than the
1818 hash table size to reduce collisions. */
1819 Lisp_Object index;
1820
1821 /* Only the fields above are traced normally by the GC. The ones below
1822 `count' are special and are either ignored by the GC or traced in
1823 a special way (e.g. because of weakness). */
1824
1825 /* Number of key/value entries in the table. */
1826 ptrdiff_t count;
1827
1828 /* Vector of keys and values. The key of item I is found at index
1829 2 * I, the value is found at index 2 * I + 1.
1830 This is gc_marked specially if the table is weak. */
1831 Lisp_Object key_and_value;
1832
1833 /* The comparison and hash functions. */
1834 struct hash_table_test test;
1835
1836 /* Next weak hash table if this is a weak hash table. The head
1837 of the list is in weak_hash_tables. */
1838 struct Lisp_Hash_Table *next_weak;
1839 };
1840
1841
1842 INLINE struct Lisp_Hash_Table *
1843 XHASH_TABLE (Lisp_Object a)
1844 {
1845 return XUNTAG (a, Lisp_Vectorlike);
1846 }
1847
1848 #define XSET_HASH_TABLE(VAR, PTR) \
1849 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1850
1851 INLINE bool
1852 HASH_TABLE_P (Lisp_Object a)
1853 {
1854 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1855 }
1856
1857 /* Value is the key part of entry IDX in hash table H. */
1858 INLINE Lisp_Object
1859 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1860 {
1861 return AREF (h->key_and_value, 2 * idx);
1862 }
1863
1864 /* Value is the value part of entry IDX in hash table H. */
1865 INLINE Lisp_Object
1866 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1867 {
1868 return AREF (h->key_and_value, 2 * idx + 1);
1869 }
1870
1871 /* Value is the index of the next entry following the one at IDX
1872 in hash table H. */
1873 INLINE Lisp_Object
1874 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1875 {
1876 return AREF (h->next, idx);
1877 }
1878
1879 /* Value is the hash code computed for entry IDX in hash table H. */
1880 INLINE Lisp_Object
1881 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1882 {
1883 return AREF (h->hash, idx);
1884 }
1885
1886 /* Value is the index of the element in hash table H that is the
1887 start of the collision list at index IDX in the index vector of H. */
1888 INLINE Lisp_Object
1889 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1890 {
1891 return AREF (h->index, idx);
1892 }
1893
1894 /* Value is the size of hash table H. */
1895 INLINE ptrdiff_t
1896 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
1897 {
1898 return ASIZE (h->next);
1899 }
1900
1901 /* Default size for hash tables if not specified. */
1902
1903 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
1904
1905 /* Default threshold specifying when to resize a hash table. The
1906 value gives the ratio of current entries in the hash table and the
1907 size of the hash table. */
1908
1909 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
1910
1911 /* Default factor by which to increase the size of a hash table. */
1912
1913 static double const DEFAULT_REHASH_SIZE = 1.5;
1914
1915 /* Combine two integers X and Y for hashing. The result might not fit
1916 into a Lisp integer. */
1917
1918 INLINE EMACS_UINT
1919 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
1920 {
1921 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
1922 }
1923
1924 /* Hash X, returning a value that fits into a fixnum. */
1925
1926 INLINE EMACS_UINT
1927 SXHASH_REDUCE (EMACS_UINT x)
1928 {
1929 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
1930 }
1931
1932 /* These structures are used for various misc types. */
1933
1934 struct Lisp_Misc_Any /* Supertype of all Misc types. */
1935 {
1936 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
1937 bool_bf gcmarkbit : 1;
1938 unsigned spacer : 15;
1939 };
1940
1941 struct Lisp_Marker
1942 {
1943 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
1944 bool_bf gcmarkbit : 1;
1945 unsigned spacer : 13;
1946 /* This flag is temporarily used in the functions
1947 decode/encode_coding_object to record that the marker position
1948 must be adjusted after the conversion. */
1949 bool_bf need_adjustment : 1;
1950 /* True means normal insertion at the marker's position
1951 leaves the marker after the inserted text. */
1952 bool_bf insertion_type : 1;
1953 /* This is the buffer that the marker points into, or 0 if it points nowhere.
1954 Note: a chain of markers can contain markers pointing into different
1955 buffers (the chain is per buffer_text rather than per buffer, so it's
1956 shared between indirect buffers). */
1957 /* This is used for (other than NULL-checking):
1958 - Fmarker_buffer
1959 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
1960 - unchain_marker: to find the list from which to unchain.
1961 - Fkill_buffer: to only unchain the markers of current indirect buffer.
1962 */
1963 struct buffer *buffer;
1964
1965 /* The remaining fields are meaningless in a marker that
1966 does not point anywhere. */
1967
1968 /* For markers that point somewhere,
1969 this is used to chain of all the markers in a given buffer. */
1970 /* We could remove it and use an array in buffer_text instead.
1971 That would also allow to preserve it ordered. */
1972 struct Lisp_Marker *next;
1973 /* This is the char position where the marker points. */
1974 ptrdiff_t charpos;
1975 /* This is the byte position.
1976 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
1977 used to implement the functionality of markers, but rather to (ab)use
1978 markers as a cache for char<->byte mappings). */
1979 ptrdiff_t bytepos;
1980 };
1981
1982 /* START and END are markers in the overlay's buffer, and
1983 PLIST is the overlay's property list. */
1984 struct Lisp_Overlay
1985 /* An overlay's real data content is:
1986 - plist
1987 - buffer (really there are two buffer pointers, one per marker,
1988 and both points to the same buffer)
1989 - insertion type of both ends (per-marker fields)
1990 - start & start byte (of start marker)
1991 - end & end byte (of end marker)
1992 - next (singly linked list of overlays)
1993 - next fields of start and end markers (singly linked list of markers).
1994 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
1995 */
1996 {
1997 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
1998 bool_bf gcmarkbit : 1;
1999 unsigned spacer : 15;
2000 struct Lisp_Overlay *next;
2001 Lisp_Object start;
2002 Lisp_Object end;
2003 Lisp_Object plist;
2004 };
2005
2006 /* Types of data which may be saved in a Lisp_Save_Value. */
2007
2008 enum
2009 {
2010 SAVE_UNUSED,
2011 SAVE_INTEGER,
2012 SAVE_FUNCPOINTER,
2013 SAVE_POINTER,
2014 SAVE_OBJECT
2015 };
2016
2017 /* Number of bits needed to store one of the above values. */
2018 enum { SAVE_SLOT_BITS = 3 };
2019
2020 /* Number of slots in a save value where save_type is nonzero. */
2021 enum { SAVE_VALUE_SLOTS = 4 };
2022
2023 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
2024
2025 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
2026
2027 enum Lisp_Save_Type
2028 {
2029 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2030 SAVE_TYPE_INT_INT_INT
2031 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
2032 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
2033 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
2034 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
2035 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
2036 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2037 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
2038 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
2039 SAVE_TYPE_FUNCPTR_PTR_OBJ
2040 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
2041
2042 /* This has an extra bit indicating it's raw memory. */
2043 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
2044 };
2045
2046 /* Special object used to hold a different values for later use.
2047
2048 This is mostly used to package C integers and pointers to call
2049 record_unwind_protect when two or more values need to be saved.
2050 For example:
2051
2052 ...
2053 struct my_data *md = get_my_data ();
2054 ptrdiff_t mi = get_my_integer ();
2055 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2056 ...
2057
2058 Lisp_Object my_unwind (Lisp_Object arg)
2059 {
2060 struct my_data *md = XSAVE_POINTER (arg, 0);
2061 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2062 ...
2063 }
2064
2065 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2066 saved objects and raise eassert if type of the saved object doesn't match
2067 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2068 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2069 slot 0 is a pointer. */
2070
2071 typedef void (*voidfuncptr) (void);
2072
2073 struct Lisp_Save_Value
2074 {
2075 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2076 bool_bf gcmarkbit : 1;
2077 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2078
2079 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2080 V's data entries are determined by V->save_type. E.g., if
2081 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2082 V->data[1] is an integer, and V's other data entries are unused.
2083
2084 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2085 a memory area containing V->data[1].integer potential Lisp_Objects. */
2086 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2087 union {
2088 void *pointer;
2089 voidfuncptr funcpointer;
2090 ptrdiff_t integer;
2091 Lisp_Object object;
2092 } data[SAVE_VALUE_SLOTS];
2093 };
2094
2095 /* Return the type of V's Nth saved value. */
2096 INLINE int
2097 save_type (struct Lisp_Save_Value *v, int n)
2098 {
2099 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2100 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2101 }
2102
2103 /* Get and set the Nth saved pointer. */
2104
2105 INLINE void *
2106 XSAVE_POINTER (Lisp_Object obj, int n)
2107 {
2108 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2109 return XSAVE_VALUE (obj)->data[n].pointer;
2110 }
2111 INLINE void
2112 set_save_pointer (Lisp_Object obj, int n, void *val)
2113 {
2114 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2115 XSAVE_VALUE (obj)->data[n].pointer = val;
2116 }
2117 INLINE voidfuncptr
2118 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2119 {
2120 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2121 return XSAVE_VALUE (obj)->data[n].funcpointer;
2122 }
2123
2124 /* Likewise for the saved integer. */
2125
2126 INLINE ptrdiff_t
2127 XSAVE_INTEGER (Lisp_Object obj, int n)
2128 {
2129 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2130 return XSAVE_VALUE (obj)->data[n].integer;
2131 }
2132 INLINE void
2133 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2134 {
2135 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2136 XSAVE_VALUE (obj)->data[n].integer = val;
2137 }
2138
2139 /* Extract Nth saved object. */
2140
2141 INLINE Lisp_Object
2142 XSAVE_OBJECT (Lisp_Object obj, int n)
2143 {
2144 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2145 return XSAVE_VALUE (obj)->data[n].object;
2146 }
2147
2148 /* A miscellaneous object, when it's on the free list. */
2149 struct Lisp_Free
2150 {
2151 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2152 bool_bf gcmarkbit : 1;
2153 unsigned spacer : 15;
2154 union Lisp_Misc *chain;
2155 };
2156
2157 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2158 It uses one of these struct subtypes to get the type field. */
2159
2160 union Lisp_Misc
2161 {
2162 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2163 struct Lisp_Free u_free;
2164 struct Lisp_Marker u_marker;
2165 struct Lisp_Overlay u_overlay;
2166 struct Lisp_Save_Value u_save_value;
2167 };
2168
2169 INLINE union Lisp_Misc *
2170 XMISC (Lisp_Object a)
2171 {
2172 return XUNTAG (a, Lisp_Misc);
2173 }
2174
2175 INLINE struct Lisp_Misc_Any *
2176 XMISCANY (Lisp_Object a)
2177 {
2178 eassert (MISCP (a));
2179 return & XMISC (a)->u_any;
2180 }
2181
2182 INLINE enum Lisp_Misc_Type
2183 XMISCTYPE (Lisp_Object a)
2184 {
2185 return XMISCANY (a)->type;
2186 }
2187
2188 INLINE struct Lisp_Marker *
2189 XMARKER (Lisp_Object a)
2190 {
2191 eassert (MARKERP (a));
2192 return & XMISC (a)->u_marker;
2193 }
2194
2195 INLINE struct Lisp_Overlay *
2196 XOVERLAY (Lisp_Object a)
2197 {
2198 eassert (OVERLAYP (a));
2199 return & XMISC (a)->u_overlay;
2200 }
2201
2202 INLINE struct Lisp_Save_Value *
2203 XSAVE_VALUE (Lisp_Object a)
2204 {
2205 eassert (SAVE_VALUEP (a));
2206 return & XMISC (a)->u_save_value;
2207 }
2208 \f
2209 /* Forwarding pointer to an int variable.
2210 This is allowed only in the value cell of a symbol,
2211 and it means that the symbol's value really lives in the
2212 specified int variable. */
2213 struct Lisp_Intfwd
2214 {
2215 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2216 EMACS_INT *intvar;
2217 };
2218
2219 /* Boolean forwarding pointer to an int variable.
2220 This is like Lisp_Intfwd except that the ostensible
2221 "value" of the symbol is t if the bool variable is true,
2222 nil if it is false. */
2223 struct Lisp_Boolfwd
2224 {
2225 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2226 bool *boolvar;
2227 };
2228
2229 /* Forwarding pointer to a Lisp_Object variable.
2230 This is allowed only in the value cell of a symbol,
2231 and it means that the symbol's value really lives in the
2232 specified variable. */
2233 struct Lisp_Objfwd
2234 {
2235 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2236 Lisp_Object *objvar;
2237 };
2238
2239 /* Like Lisp_Objfwd except that value lives in a slot in the
2240 current buffer. Value is byte index of slot within buffer. */
2241 struct Lisp_Buffer_Objfwd
2242 {
2243 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2244 int offset;
2245 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2246 Lisp_Object predicate;
2247 };
2248
2249 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2250 the symbol has buffer-local or frame-local bindings. (Exception:
2251 some buffer-local variables are built-in, with their values stored
2252 in the buffer structure itself. They are handled differently,
2253 using struct Lisp_Buffer_Objfwd.)
2254
2255 The `realvalue' slot holds the variable's current value, or a
2256 forwarding pointer to where that value is kept. This value is the
2257 one that corresponds to the loaded binding. To read or set the
2258 variable, you must first make sure the right binding is loaded;
2259 then you can access the value in (or through) `realvalue'.
2260
2261 `buffer' and `frame' are the buffer and frame for which the loaded
2262 binding was found. If those have changed, to make sure the right
2263 binding is loaded it is necessary to find which binding goes with
2264 the current buffer and selected frame, then load it. To load it,
2265 first unload the previous binding, then copy the value of the new
2266 binding into `realvalue' (or through it). Also update
2267 LOADED-BINDING to point to the newly loaded binding.
2268
2269 `local_if_set' indicates that merely setting the variable creates a
2270 local binding for the current buffer. Otherwise the latter, setting
2271 the variable does not do that; only make-local-variable does that. */
2272
2273 struct Lisp_Buffer_Local_Value
2274 {
2275 /* True means that merely setting the variable creates a local
2276 binding for the current buffer. */
2277 bool_bf local_if_set : 1;
2278 /* True means this variable can have frame-local bindings, otherwise, it is
2279 can have buffer-local bindings. The two cannot be combined. */
2280 bool_bf frame_local : 1;
2281 /* True means that the binding now loaded was found.
2282 Presumably equivalent to (defcell!=valcell). */
2283 bool_bf found : 1;
2284 /* If non-NULL, a forwarding to the C var where it should also be set. */
2285 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2286 /* The buffer or frame for which the loaded binding was found. */
2287 Lisp_Object where;
2288 /* A cons cell that holds the default value. It has the form
2289 (SYMBOL . DEFAULT-VALUE). */
2290 Lisp_Object defcell;
2291 /* The cons cell from `where's parameter alist.
2292 It always has the form (SYMBOL . VALUE)
2293 Note that if `forward' is non-nil, VALUE may be out of date.
2294 Also if the currently loaded binding is the default binding, then
2295 this is `eq'ual to defcell. */
2296 Lisp_Object valcell;
2297 };
2298
2299 /* Like Lisp_Objfwd except that value lives in a slot in the
2300 current kboard. */
2301 struct Lisp_Kboard_Objfwd
2302 {
2303 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2304 int offset;
2305 };
2306
2307 union Lisp_Fwd
2308 {
2309 struct Lisp_Intfwd u_intfwd;
2310 struct Lisp_Boolfwd u_boolfwd;
2311 struct Lisp_Objfwd u_objfwd;
2312 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2313 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2314 };
2315
2316 INLINE enum Lisp_Fwd_Type
2317 XFWDTYPE (union Lisp_Fwd *a)
2318 {
2319 return a->u_intfwd.type;
2320 }
2321
2322 INLINE struct Lisp_Buffer_Objfwd *
2323 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2324 {
2325 eassert (BUFFER_OBJFWDP (a));
2326 return &a->u_buffer_objfwd;
2327 }
2328 \f
2329 /* Lisp floating point type. */
2330 struct Lisp_Float
2331 {
2332 union
2333 {
2334 double data;
2335 struct Lisp_Float *chain;
2336 } u;
2337 };
2338
2339 INLINE double
2340 XFLOAT_DATA (Lisp_Object f)
2341 {
2342 return XFLOAT (f)->u.data;
2343 }
2344
2345 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2346 representations, have infinities and NaNs, and do not trap on
2347 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2348 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2349 wanted here, but is not quite right because Emacs does not require
2350 all the features of C11 Annex F (and does not require C11 at all,
2351 for that matter). */
2352 enum
2353 {
2354 IEEE_FLOATING_POINT
2355 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2356 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2357 };
2358
2359 /* A character, declared with the following typedef, is a member
2360 of some character set associated with the current buffer. */
2361 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2362 #define _UCHAR_T
2363 typedef unsigned char UCHAR;
2364 #endif
2365
2366 /* Meanings of slots in a Lisp_Compiled: */
2367
2368 enum Lisp_Compiled
2369 {
2370 COMPILED_ARGLIST = 0,
2371 COMPILED_BYTECODE = 1,
2372 COMPILED_CONSTANTS = 2,
2373 COMPILED_STACK_DEPTH = 3,
2374 COMPILED_DOC_STRING = 4,
2375 COMPILED_INTERACTIVE = 5
2376 };
2377
2378 /* Flag bits in a character. These also get used in termhooks.h.
2379 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2380 (MUlti-Lingual Emacs) might need 22 bits for the character value
2381 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2382 enum char_bits
2383 {
2384 CHAR_ALT = 0x0400000,
2385 CHAR_SUPER = 0x0800000,
2386 CHAR_HYPER = 0x1000000,
2387 CHAR_SHIFT = 0x2000000,
2388 CHAR_CTL = 0x4000000,
2389 CHAR_META = 0x8000000,
2390
2391 CHAR_MODIFIER_MASK =
2392 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2393
2394 /* Actually, the current Emacs uses 22 bits for the character value
2395 itself. */
2396 CHARACTERBITS = 22
2397 };
2398 \f
2399 /* Data type checking. */
2400
2401 LISP_MACRO_DEFUN (NILP, bool, (Lisp_Object x), (x))
2402
2403 INLINE bool
2404 NUMBERP (Lisp_Object x)
2405 {
2406 return INTEGERP (x) || FLOATP (x);
2407 }
2408 INLINE bool
2409 NATNUMP (Lisp_Object x)
2410 {
2411 return INTEGERP (x) && 0 <= XINT (x);
2412 }
2413
2414 INLINE bool
2415 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2416 {
2417 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2418 }
2419
2420 #define TYPE_RANGED_INTEGERP(type, x) \
2421 (INTEGERP (x) \
2422 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2423 && XINT (x) <= TYPE_MAXIMUM (type))
2424
2425 LISP_MACRO_DEFUN (CONSP, bool, (Lisp_Object x), (x))
2426 LISP_MACRO_DEFUN (FLOATP, bool, (Lisp_Object x), (x))
2427 LISP_MACRO_DEFUN (MISCP, bool, (Lisp_Object x), (x))
2428 LISP_MACRO_DEFUN (SYMBOLP, bool, (Lisp_Object x), (x))
2429 LISP_MACRO_DEFUN (INTEGERP, bool, (Lisp_Object x), (x))
2430 LISP_MACRO_DEFUN (VECTORLIKEP, bool, (Lisp_Object x), (x))
2431 LISP_MACRO_DEFUN (MARKERP, bool, (Lisp_Object x), (x))
2432
2433 INLINE bool
2434 STRINGP (Lisp_Object x)
2435 {
2436 return XTYPE (x) == Lisp_String;
2437 }
2438 INLINE bool
2439 VECTORP (Lisp_Object x)
2440 {
2441 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2442 }
2443 INLINE bool
2444 OVERLAYP (Lisp_Object x)
2445 {
2446 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2447 }
2448 INLINE bool
2449 SAVE_VALUEP (Lisp_Object x)
2450 {
2451 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2452 }
2453
2454 INLINE bool
2455 AUTOLOADP (Lisp_Object x)
2456 {
2457 return CONSP (x) && EQ (Qautoload, XCAR (x));
2458 }
2459
2460 INLINE bool
2461 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2462 {
2463 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2464 }
2465
2466 INLINE bool
2467 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2468 {
2469 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2470 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2471 }
2472
2473 /* True if A is a pseudovector whose code is CODE. */
2474 INLINE bool
2475 PSEUDOVECTORP (Lisp_Object a, int code)
2476 {
2477 if (! VECTORLIKEP (a))
2478 return false;
2479 else
2480 {
2481 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2482 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2483 return PSEUDOVECTOR_TYPEP (h, code);
2484 }
2485 }
2486
2487
2488 /* Test for specific pseudovector types. */
2489
2490 INLINE bool
2491 WINDOW_CONFIGURATIONP (Lisp_Object a)
2492 {
2493 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2494 }
2495
2496 INLINE bool
2497 PROCESSP (Lisp_Object a)
2498 {
2499 return PSEUDOVECTORP (a, PVEC_PROCESS);
2500 }
2501
2502 INLINE bool
2503 WINDOWP (Lisp_Object a)
2504 {
2505 return PSEUDOVECTORP (a, PVEC_WINDOW);
2506 }
2507
2508 INLINE bool
2509 TERMINALP (Lisp_Object a)
2510 {
2511 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2512 }
2513
2514 INLINE bool
2515 SUBRP (Lisp_Object a)
2516 {
2517 return PSEUDOVECTORP (a, PVEC_SUBR);
2518 }
2519
2520 INLINE bool
2521 COMPILEDP (Lisp_Object a)
2522 {
2523 return PSEUDOVECTORP (a, PVEC_COMPILED);
2524 }
2525
2526 INLINE bool
2527 BUFFERP (Lisp_Object a)
2528 {
2529 return PSEUDOVECTORP (a, PVEC_BUFFER);
2530 }
2531
2532 INLINE bool
2533 CHAR_TABLE_P (Lisp_Object a)
2534 {
2535 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2536 }
2537
2538 INLINE bool
2539 SUB_CHAR_TABLE_P (Lisp_Object a)
2540 {
2541 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2542 }
2543
2544 INLINE bool
2545 BOOL_VECTOR_P (Lisp_Object a)
2546 {
2547 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2548 }
2549
2550 INLINE bool
2551 FRAMEP (Lisp_Object a)
2552 {
2553 return PSEUDOVECTORP (a, PVEC_FRAME);
2554 }
2555
2556 /* Test for image (image . spec) */
2557 INLINE bool
2558 IMAGEP (Lisp_Object x)
2559 {
2560 return CONSP (x) && EQ (XCAR (x), Qimage);
2561 }
2562
2563 /* Array types. */
2564 INLINE bool
2565 ARRAYP (Lisp_Object x)
2566 {
2567 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2568 }
2569 \f
2570 INLINE void
2571 CHECK_LIST (Lisp_Object x)
2572 {
2573 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2574 }
2575
2576 LISP_MACRO_DEFUN_VOID (CHECK_LIST_CONS, (Lisp_Object x, Lisp_Object y), (x, y))
2577 LISP_MACRO_DEFUN_VOID (CHECK_SYMBOL, (Lisp_Object x), (x))
2578 LISP_MACRO_DEFUN_VOID (CHECK_NUMBER, (Lisp_Object x), (x))
2579
2580 INLINE void
2581 CHECK_STRING (Lisp_Object x)
2582 {
2583 CHECK_TYPE (STRINGP (x), Qstringp, x);
2584 }
2585 INLINE void
2586 CHECK_STRING_CAR (Lisp_Object x)
2587 {
2588 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2589 }
2590 INLINE void
2591 CHECK_CONS (Lisp_Object x)
2592 {
2593 CHECK_TYPE (CONSP (x), Qconsp, x);
2594 }
2595 INLINE void
2596 CHECK_VECTOR (Lisp_Object x)
2597 {
2598 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2599 }
2600 INLINE void
2601 CHECK_BOOL_VECTOR (Lisp_Object x)
2602 {
2603 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2604 }
2605 /* This is a bit special because we always need size afterwards. */
2606 INLINE ptrdiff_t
2607 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2608 {
2609 if (VECTORP (x))
2610 return ASIZE (x);
2611 if (STRINGP (x))
2612 return SCHARS (x);
2613 wrong_type_argument (Qarrayp, x);
2614 }
2615 INLINE void
2616 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2617 {
2618 CHECK_TYPE (ARRAYP (x), predicate, x);
2619 }
2620 INLINE void
2621 CHECK_BUFFER (Lisp_Object x)
2622 {
2623 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2624 }
2625 INLINE void
2626 CHECK_WINDOW (Lisp_Object x)
2627 {
2628 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2629 }
2630 #ifdef subprocesses
2631 INLINE void
2632 CHECK_PROCESS (Lisp_Object x)
2633 {
2634 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2635 }
2636 #endif
2637 INLINE void
2638 CHECK_NATNUM (Lisp_Object x)
2639 {
2640 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2641 }
2642
2643 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2644 do { \
2645 CHECK_NUMBER (x); \
2646 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2647 args_out_of_range_3 \
2648 (x, \
2649 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2650 ? MOST_NEGATIVE_FIXNUM \
2651 : (lo)), \
2652 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2653 } while (false)
2654 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2655 do { \
2656 if (TYPE_SIGNED (type)) \
2657 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2658 else \
2659 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2660 } while (false)
2661
2662 #define CHECK_NUMBER_COERCE_MARKER(x) \
2663 do { \
2664 if (MARKERP ((x))) \
2665 XSETFASTINT (x, marker_position (x)); \
2666 else \
2667 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2668 } while (false)
2669
2670 INLINE double
2671 XFLOATINT (Lisp_Object n)
2672 {
2673 return extract_float (n);
2674 }
2675
2676 INLINE void
2677 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2678 {
2679 CHECK_TYPE (FLOATP (x) || INTEGERP (x), Qnumberp, x);
2680 }
2681
2682 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2683 do { \
2684 if (MARKERP (x)) \
2685 XSETFASTINT (x, marker_position (x)); \
2686 else \
2687 CHECK_TYPE (INTEGERP (x) || FLOATP (x), Qnumber_or_marker_p, x); \
2688 } while (false)
2689
2690 /* Since we can't assign directly to the CAR or CDR fields of a cons
2691 cell, use these when checking that those fields contain numbers. */
2692 INLINE void
2693 CHECK_NUMBER_CAR (Lisp_Object x)
2694 {
2695 Lisp_Object tmp = XCAR (x);
2696 CHECK_NUMBER (tmp);
2697 XSETCAR (x, tmp);
2698 }
2699
2700 INLINE void
2701 CHECK_NUMBER_CDR (Lisp_Object x)
2702 {
2703 Lisp_Object tmp = XCDR (x);
2704 CHECK_NUMBER (tmp);
2705 XSETCDR (x, tmp);
2706 }
2707 \f
2708 /* Define a built-in function for calling from Lisp.
2709 `lname' should be the name to give the function in Lisp,
2710 as a null-terminated C string.
2711 `fnname' should be the name of the function in C.
2712 By convention, it starts with F.
2713 `sname' should be the name for the C constant structure
2714 that records information on this function for internal use.
2715 By convention, it should be the same as `fnname' but with S instead of F.
2716 It's too bad that C macros can't compute this from `fnname'.
2717 `minargs' should be a number, the minimum number of arguments allowed.
2718 `maxargs' should be a number, the maximum number of arguments allowed,
2719 or else MANY or UNEVALLED.
2720 MANY means pass a vector of evaluated arguments,
2721 in the form of an integer number-of-arguments
2722 followed by the address of a vector of Lisp_Objects
2723 which contains the argument values.
2724 UNEVALLED means pass the list of unevaluated arguments
2725 `intspec' says how interactive arguments are to be fetched.
2726 If the string starts with a `(', `intspec' is evaluated and the resulting
2727 list is the list of arguments.
2728 If it's a string that doesn't start with `(', the value should follow
2729 the one of the doc string for `interactive'.
2730 A null string means call interactively with no arguments.
2731 `doc' is documentation for the user. */
2732
2733 /* This version of DEFUN declares a function prototype with the right
2734 arguments, so we can catch errors with maxargs at compile-time. */
2735 #ifdef _MSC_VER
2736 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2737 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2738 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2739 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2740 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2741 { (Lisp_Object (__cdecl *)(void))fnname }, \
2742 minargs, maxargs, lname, intspec, 0}; \
2743 Lisp_Object fnname
2744 #else /* not _MSC_VER */
2745 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2746 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2747 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2748 { .a ## maxargs = fnname }, \
2749 minargs, maxargs, lname, intspec, 0}; \
2750 Lisp_Object fnname
2751 #endif
2752
2753 /* True if OBJ is a Lisp function. */
2754 INLINE bool
2755 FUNCTIONP (Lisp_Object obj)
2756 {
2757 return functionp (obj);
2758 }
2759
2760 /* defsubr (Sname);
2761 is how we define the symbol for function `name' at start-up time. */
2762 extern void defsubr (struct Lisp_Subr *);
2763
2764 enum maxargs
2765 {
2766 MANY = -2,
2767 UNEVALLED = -1
2768 };
2769
2770 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2771 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2772 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
2773 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
2774 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
2775
2776 /* Macros we use to define forwarded Lisp variables.
2777 These are used in the syms_of_FILENAME functions.
2778
2779 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
2780 lisp variable is actually a field in `struct emacs_globals'. The
2781 field's name begins with "f_", which is a convention enforced by
2782 these macros. Each such global has a corresponding #define in
2783 globals.h; the plain name should be used in the code.
2784
2785 E.g., the global "cons_cells_consed" is declared as "int
2786 f_cons_cells_consed" in globals.h, but there is a define:
2787
2788 #define cons_cells_consed globals.f_cons_cells_consed
2789
2790 All C code uses the `cons_cells_consed' name. This is all done
2791 this way to support indirection for multi-threaded Emacs. */
2792
2793 #define DEFVAR_LISP(lname, vname, doc) \
2794 do { \
2795 static struct Lisp_Objfwd o_fwd; \
2796 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
2797 } while (false)
2798 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
2799 do { \
2800 static struct Lisp_Objfwd o_fwd; \
2801 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
2802 } while (false)
2803 #define DEFVAR_BOOL(lname, vname, doc) \
2804 do { \
2805 static struct Lisp_Boolfwd b_fwd; \
2806 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
2807 } while (false)
2808 #define DEFVAR_INT(lname, vname, doc) \
2809 do { \
2810 static struct Lisp_Intfwd i_fwd; \
2811 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
2812 } while (false)
2813
2814 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
2815 do { \
2816 static struct Lisp_Objfwd o_fwd; \
2817 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
2818 } while (false)
2819
2820 #define DEFVAR_KBOARD(lname, vname, doc) \
2821 do { \
2822 static struct Lisp_Kboard_Objfwd ko_fwd; \
2823 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
2824 } while (false)
2825 \f
2826 /* Save and restore the instruction and environment pointers,
2827 without affecting the signal mask. */
2828
2829 #ifdef HAVE__SETJMP
2830 typedef jmp_buf sys_jmp_buf;
2831 # define sys_setjmp(j) _setjmp (j)
2832 # define sys_longjmp(j, v) _longjmp (j, v)
2833 #elif defined HAVE_SIGSETJMP
2834 typedef sigjmp_buf sys_jmp_buf;
2835 # define sys_setjmp(j) sigsetjmp (j, 0)
2836 # define sys_longjmp(j, v) siglongjmp (j, v)
2837 #else
2838 /* A platform that uses neither _longjmp nor siglongjmp; assume
2839 longjmp does not affect the sigmask. */
2840 typedef jmp_buf sys_jmp_buf;
2841 # define sys_setjmp(j) setjmp (j)
2842 # define sys_longjmp(j, v) longjmp (j, v)
2843 #endif
2844
2845 \f
2846 /* Elisp uses several stacks:
2847 - the C stack.
2848 - the bytecode stack: used internally by the bytecode interpreter.
2849 Allocated from the C stack.
2850 - The specpdl stack: keeps track of active unwind-protect and
2851 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
2852 managed stack.
2853 - The handler stack: keeps track of active catch tags and condition-case
2854 handlers. Allocated in a manually managed stack implemented by a
2855 doubly-linked list allocated via xmalloc and never freed. */
2856
2857 /* Structure for recording Lisp call stack for backtrace purposes. */
2858
2859 /* The special binding stack holds the outer values of variables while
2860 they are bound by a function application or a let form, stores the
2861 code to be executed for unwind-protect forms.
2862
2863 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
2864 used all over the place, needs to be fast, and needs to know the size of
2865 union specbinding. But only eval.c should access it. */
2866
2867 enum specbind_tag {
2868 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
2869 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
2870 SPECPDL_UNWIND_INT, /* Likewise, on int. */
2871 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
2872 SPECPDL_BACKTRACE, /* An element of the backtrace. */
2873 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
2874 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
2875 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
2876 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
2877 };
2878
2879 union specbinding
2880 {
2881 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2882 struct {
2883 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2884 void (*func) (Lisp_Object);
2885 Lisp_Object arg;
2886 } unwind;
2887 struct {
2888 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2889 void (*func) (void *);
2890 void *arg;
2891 } unwind_ptr;
2892 struct {
2893 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2894 void (*func) (int);
2895 int arg;
2896 } unwind_int;
2897 struct {
2898 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2899 void (*func) (void);
2900 } unwind_void;
2901 struct {
2902 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2903 /* `where' is not used in the case of SPECPDL_LET. */
2904 Lisp_Object symbol, old_value, where;
2905 } let;
2906 struct {
2907 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2908 bool_bf debug_on_exit : 1;
2909 Lisp_Object function;
2910 Lisp_Object *args;
2911 ptrdiff_t nargs;
2912 } bt;
2913 };
2914
2915 extern union specbinding *specpdl;
2916 extern union specbinding *specpdl_ptr;
2917 extern ptrdiff_t specpdl_size;
2918
2919 INLINE ptrdiff_t
2920 SPECPDL_INDEX (void)
2921 {
2922 return specpdl_ptr - specpdl;
2923 }
2924
2925 /* This structure helps implement the `catch/throw' and `condition-case/signal'
2926 control structures. A struct handler contains all the information needed to
2927 restore the state of the interpreter after a non-local jump.
2928
2929 handler structures are chained together in a doubly linked list; the `next'
2930 member points to the next outer catchtag and the `nextfree' member points in
2931 the other direction to the next inner element (which is typically the next
2932 free element since we mostly use it on the deepest handler).
2933
2934 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
2935 member is TAG, and then unbinds to it. The `val' member is used to
2936 hold VAL while the stack is unwound; `val' is returned as the value
2937 of the catch form.
2938
2939 All the other members are concerned with restoring the interpreter
2940 state.
2941
2942 Members are volatile if their values need to survive _longjmp when
2943 a 'struct handler' is a local variable. */
2944
2945 enum handlertype { CATCHER, CONDITION_CASE };
2946
2947 struct handler
2948 {
2949 enum handlertype type;
2950 Lisp_Object tag_or_ch;
2951 Lisp_Object val;
2952 struct handler *next;
2953 struct handler *nextfree;
2954
2955 /* The bytecode interpreter can have several handlers active at the same
2956 time, so when we longjmp to one of them, it needs to know which handler
2957 this was and what was the corresponding internal state. This is stored
2958 here, and when we longjmp we make sure that handlerlist points to the
2959 proper handler. */
2960 Lisp_Object *bytecode_top;
2961 int bytecode_dest;
2962
2963 /* Most global vars are reset to their value via the specpdl mechanism,
2964 but a few others are handled by storing their value here. */
2965 #if true /* GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS, but defined later. */
2966 struct gcpro *gcpro;
2967 #endif
2968 sys_jmp_buf jmp;
2969 EMACS_INT lisp_eval_depth;
2970 ptrdiff_t pdlcount;
2971 int poll_suppress_count;
2972 int interrupt_input_blocked;
2973 struct byte_stack *byte_stack;
2974 };
2975
2976 /* Fill in the components of c, and put it on the list. */
2977 #define PUSH_HANDLER(c, tag_ch_val, handlertype) \
2978 if (handlerlist->nextfree) \
2979 (c) = handlerlist->nextfree; \
2980 else \
2981 { \
2982 (c) = xmalloc (sizeof (struct handler)); \
2983 (c)->nextfree = NULL; \
2984 handlerlist->nextfree = (c); \
2985 } \
2986 (c)->type = (handlertype); \
2987 (c)->tag_or_ch = (tag_ch_val); \
2988 (c)->val = Qnil; \
2989 (c)->next = handlerlist; \
2990 (c)->lisp_eval_depth = lisp_eval_depth; \
2991 (c)->pdlcount = SPECPDL_INDEX (); \
2992 (c)->poll_suppress_count = poll_suppress_count; \
2993 (c)->interrupt_input_blocked = interrupt_input_blocked;\
2994 (c)->gcpro = gcprolist; \
2995 (c)->byte_stack = byte_stack_list; \
2996 handlerlist = (c);
2997
2998
2999 extern Lisp_Object memory_signal_data;
3000
3001 /* An address near the bottom of the stack.
3002 Tells GC how to save a copy of the stack. */
3003 extern char *stack_bottom;
3004
3005 /* Check quit-flag and quit if it is non-nil.
3006 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
3007 So the program needs to do QUIT at times when it is safe to quit.
3008 Every loop that might run for a long time or might not exit
3009 ought to do QUIT at least once, at a safe place.
3010 Unless that is impossible, of course.
3011 But it is very desirable to avoid creating loops where QUIT is impossible.
3012
3013 Exception: if you set immediate_quit to true,
3014 then the handler that responds to the C-g does the quit itself.
3015 This is a good thing to do around a loop that has no side effects
3016 and (in particular) cannot call arbitrary Lisp code.
3017
3018 If quit-flag is set to `kill-emacs' the SIGINT handler has received
3019 a request to exit Emacs when it is safe to do. */
3020
3021 extern void process_pending_signals (void);
3022 extern bool volatile pending_signals;
3023
3024 extern void process_quit_flag (void);
3025 #define QUIT \
3026 do { \
3027 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
3028 process_quit_flag (); \
3029 else if (pending_signals) \
3030 process_pending_signals (); \
3031 } while (false)
3032
3033
3034 /* True if ought to quit now. */
3035
3036 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
3037 \f
3038 extern Lisp_Object Vascii_downcase_table;
3039 extern Lisp_Object Vascii_canon_table;
3040 \f
3041 /* Structure for recording stack slots that need marking. */
3042
3043 /* This is a chain of structures, each of which points at a Lisp_Object
3044 variable whose value should be marked in garbage collection.
3045 Normally every link of the chain is an automatic variable of a function,
3046 and its `val' points to some argument or local variable of the function.
3047 On exit to the function, the chain is set back to the value it had on entry.
3048 This way, no link remains in the chain when the stack frame containing the
3049 link disappears.
3050
3051 Every function that can call Feval must protect in this fashion all
3052 Lisp_Object variables whose contents will be used again. */
3053
3054 extern struct gcpro *gcprolist;
3055
3056 struct gcpro
3057 {
3058 struct gcpro *next;
3059
3060 /* Address of first protected variable. */
3061 volatile Lisp_Object *var;
3062
3063 /* Number of consecutive protected variables. */
3064 ptrdiff_t nvars;
3065
3066 #ifdef DEBUG_GCPRO
3067 /* File name where this record is used. */
3068 const char *name;
3069
3070 /* Line number in this file. */
3071 int lineno;
3072
3073 /* Index in the local chain of records. */
3074 int idx;
3075
3076 /* Nesting level. */
3077 int level;
3078 #endif
3079 };
3080
3081 /* Values of GC_MARK_STACK during compilation:
3082
3083 0 Use GCPRO as before
3084 1 Do the real thing, make GCPROs and UNGCPRO no-ops.
3085 2 Mark the stack, and check that everything GCPRO'd is
3086 marked.
3087 3 Mark using GCPRO's, mark stack last, and count how many
3088 dead objects are kept alive.
3089
3090 Formerly, method 0 was used. Currently, method 1 is used unless
3091 otherwise specified by hand when building, e.g.,
3092 "make CPPFLAGS='-DGC_MARK_STACK=GC_USE_GCPROS_AS_BEFORE'".
3093 Methods 2 and 3 are present mainly to debug the transition from 0 to 1. */
3094
3095 #define GC_USE_GCPROS_AS_BEFORE 0
3096 #define GC_MAKE_GCPROS_NOOPS 1
3097 #define GC_MARK_STACK_CHECK_GCPROS 2
3098 #define GC_USE_GCPROS_CHECK_ZOMBIES 3
3099
3100 #ifndef GC_MARK_STACK
3101 #define GC_MARK_STACK GC_MAKE_GCPROS_NOOPS
3102 #endif
3103
3104 /* Whether we do the stack marking manually. */
3105 #define BYTE_MARK_STACK !(GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
3106 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
3107
3108
3109 #if GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS
3110
3111 /* Do something silly with gcproN vars just so gcc shuts up. */
3112 /* You get warnings from MIPSPro... */
3113
3114 #define GCPRO1(varname) ((void) gcpro1)
3115 #define GCPRO2(varname1, varname2) ((void) gcpro2, (void) gcpro1)
3116 #define GCPRO3(varname1, varname2, varname3) \
3117 ((void) gcpro3, (void) gcpro2, (void) gcpro1)
3118 #define GCPRO4(varname1, varname2, varname3, varname4) \
3119 ((void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3120 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3121 ((void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3122 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3123 ((void) gcpro6, (void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, \
3124 (void) gcpro1)
3125 #define GCPRO7(a, b, c, d, e, f, g) (GCPRO6 (a, b, c, d, e, f), (void) gcpro7)
3126 #define UNGCPRO ((void) 0)
3127
3128 #else /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3129
3130 #ifndef DEBUG_GCPRO
3131
3132 #define GCPRO1(a) \
3133 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3134 gcprolist = &gcpro1; }
3135
3136 #define GCPRO2(a, b) \
3137 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3138 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3139 gcprolist = &gcpro2; }
3140
3141 #define GCPRO3(a, b, c) \
3142 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3143 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3144 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3145 gcprolist = &gcpro3; }
3146
3147 #define GCPRO4(a, b, c, d) \
3148 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3149 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3150 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3151 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3152 gcprolist = &gcpro4; }
3153
3154 #define GCPRO5(a, b, c, d, e) \
3155 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3156 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3157 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3158 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3159 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3160 gcprolist = &gcpro5; }
3161
3162 #define GCPRO6(a, b, c, d, e, f) \
3163 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3164 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3165 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3166 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3167 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3168 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3169 gcprolist = &gcpro6; }
3170
3171 #define GCPRO7(a, b, c, d, e, f, g) \
3172 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3173 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3174 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3175 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3176 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3177 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3178 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3179 gcprolist = &gcpro7; }
3180
3181 #define UNGCPRO (gcprolist = gcpro1.next)
3182
3183 #else /* !DEBUG_GCPRO */
3184
3185 extern int gcpro_level;
3186
3187 #define GCPRO1(a) \
3188 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3189 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3190 gcpro1.level = gcpro_level++; \
3191 gcprolist = &gcpro1; }
3192
3193 #define GCPRO2(a, b) \
3194 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3195 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3196 gcpro1.level = gcpro_level; \
3197 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3198 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3199 gcpro2.level = gcpro_level++; \
3200 gcprolist = &gcpro2; }
3201
3202 #define GCPRO3(a, b, c) \
3203 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3204 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3205 gcpro1.level = gcpro_level; \
3206 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3207 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3208 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3209 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3210 gcpro3.level = gcpro_level++; \
3211 gcprolist = &gcpro3; }
3212
3213 #define GCPRO4(a, b, c, d) \
3214 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3215 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3216 gcpro1.level = gcpro_level; \
3217 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3218 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3219 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3220 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3221 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3222 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3223 gcpro4.level = gcpro_level++; \
3224 gcprolist = &gcpro4; }
3225
3226 #define GCPRO5(a, b, c, d, e) \
3227 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3228 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3229 gcpro1.level = gcpro_level; \
3230 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3231 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3232 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3233 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3234 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3235 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3236 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3237 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3238 gcpro5.level = gcpro_level++; \
3239 gcprolist = &gcpro5; }
3240
3241 #define GCPRO6(a, b, c, d, e, f) \
3242 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3243 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3244 gcpro1.level = gcpro_level; \
3245 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3246 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3247 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3248 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3249 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3250 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3251 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3252 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3253 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3254 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3255 gcpro6.level = gcpro_level++; \
3256 gcprolist = &gcpro6; }
3257
3258 #define GCPRO7(a, b, c, d, e, f, g) \
3259 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3260 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3261 gcpro1.level = gcpro_level; \
3262 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3263 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3264 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3265 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3266 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3267 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3268 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3269 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3270 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3271 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3272 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3273 gcpro7.name = __FILE__; gcpro7.lineno = __LINE__; gcpro7.idx = 7; \
3274 gcpro7.level = gcpro_level++; \
3275 gcprolist = &gcpro7; }
3276
3277 #define UNGCPRO \
3278 (--gcpro_level != gcpro1.level \
3279 ? emacs_abort () \
3280 : (void) (gcprolist = gcpro1.next))
3281
3282 #endif /* DEBUG_GCPRO */
3283 #endif /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3284
3285
3286 /* Evaluate expr, UNGCPRO, and then return the value of expr. */
3287 #define RETURN_UNGCPRO(expr) \
3288 do \
3289 { \
3290 Lisp_Object ret_ungc_val; \
3291 ret_ungc_val = (expr); \
3292 UNGCPRO; \
3293 return ret_ungc_val; \
3294 } \
3295 while (false)
3296
3297 /* Call staticpro (&var) to protect static variable `var'. */
3298
3299 void staticpro (Lisp_Object *);
3300 \f
3301 /* Forward declarations for prototypes. */
3302 struct window;
3303 struct frame;
3304
3305 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3306
3307 INLINE void
3308 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3309 {
3310 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3311 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3312 }
3313
3314 /* Functions to modify hash tables. */
3315
3316 INLINE void
3317 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3318 {
3319 gc_aset (h->key_and_value, 2 * idx, val);
3320 }
3321
3322 INLINE void
3323 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3324 {
3325 gc_aset (h->key_and_value, 2 * idx + 1, val);
3326 }
3327
3328 /* Use these functions to set Lisp_Object
3329 or pointer slots of struct Lisp_Symbol. */
3330
3331 INLINE void
3332 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3333 {
3334 XSYMBOL (sym)->function = function;
3335 }
3336
3337 INLINE void
3338 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3339 {
3340 XSYMBOL (sym)->plist = plist;
3341 }
3342
3343 INLINE void
3344 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3345 {
3346 XSYMBOL (sym)->next = next;
3347 }
3348
3349 /* Buffer-local (also frame-local) variable access functions. */
3350
3351 INLINE int
3352 blv_found (struct Lisp_Buffer_Local_Value *blv)
3353 {
3354 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3355 return blv->found;
3356 }
3357
3358 /* Set overlay's property list. */
3359
3360 INLINE void
3361 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3362 {
3363 XOVERLAY (overlay)->plist = plist;
3364 }
3365
3366 /* Get text properties of S. */
3367
3368 INLINE INTERVAL
3369 string_intervals (Lisp_Object s)
3370 {
3371 return XSTRING (s)->intervals;
3372 }
3373
3374 /* Set text properties of S to I. */
3375
3376 INLINE void
3377 set_string_intervals (Lisp_Object s, INTERVAL i)
3378 {
3379 XSTRING (s)->intervals = i;
3380 }
3381
3382 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3383 of setting slots directly. */
3384
3385 INLINE void
3386 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3387 {
3388 XCHAR_TABLE (table)->defalt = val;
3389 }
3390 INLINE void
3391 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3392 {
3393 XCHAR_TABLE (table)->purpose = val;
3394 }
3395
3396 /* Set different slots in (sub)character tables. */
3397
3398 INLINE void
3399 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3400 {
3401 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3402 XCHAR_TABLE (table)->extras[idx] = val;
3403 }
3404
3405 INLINE void
3406 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3407 {
3408 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3409 XCHAR_TABLE (table)->contents[idx] = val;
3410 }
3411
3412 INLINE void
3413 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3414 {
3415 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3416 }
3417
3418 /* Defined in data.c. */
3419 extern Lisp_Object indirect_function (Lisp_Object);
3420 extern Lisp_Object find_symbol_value (Lisp_Object);
3421 enum Arith_Comparison {
3422 ARITH_EQUAL,
3423 ARITH_NOTEQUAL,
3424 ARITH_LESS,
3425 ARITH_GRTR,
3426 ARITH_LESS_OR_EQUAL,
3427 ARITH_GRTR_OR_EQUAL
3428 };
3429 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3430 enum Arith_Comparison comparison);
3431
3432 /* Convert the integer I to an Emacs representation, either the integer
3433 itself, or a cons of two or three integers, or if all else fails a float.
3434 I should not have side effects. */
3435 #define INTEGER_TO_CONS(i) \
3436 (! FIXNUM_OVERFLOW_P (i) \
3437 ? make_number (i) \
3438 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16) \
3439 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16)) \
3440 && FIXNUM_OVERFLOW_P ((i) >> 16)) \
3441 ? Fcons (make_number ((i) >> 16), make_number ((i) & 0xffff)) \
3442 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16 >> 24) \
3443 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16 >> 24)) \
3444 && FIXNUM_OVERFLOW_P ((i) >> 16 >> 24)) \
3445 ? Fcons (make_number ((i) >> 16 >> 24), \
3446 Fcons (make_number ((i) >> 16 & 0xffffff), \
3447 make_number ((i) & 0xffff))) \
3448 : make_float (i))
3449
3450 /* Convert the Emacs representation CONS back to an integer of type
3451 TYPE, storing the result the variable VAR. Signal an error if CONS
3452 is not a valid representation or is out of range for TYPE. */
3453 #define CONS_TO_INTEGER(cons, type, var) \
3454 (TYPE_SIGNED (type) \
3455 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3456 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3457 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3458 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3459
3460 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3461 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3462 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3463 Lisp_Object);
3464 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3465 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3466 extern void syms_of_data (void);
3467 extern void swap_in_global_binding (struct Lisp_Symbol *);
3468
3469 /* Defined in cmds.c */
3470 extern void syms_of_cmds (void);
3471 extern void keys_of_cmds (void);
3472
3473 /* Defined in coding.c. */
3474 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3475 ptrdiff_t, bool, bool, Lisp_Object);
3476 extern void init_coding (void);
3477 extern void init_coding_once (void);
3478 extern void syms_of_coding (void);
3479
3480 /* Defined in character.c. */
3481 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3482 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3483 extern void syms_of_character (void);
3484
3485 /* Defined in charset.c. */
3486 extern void init_charset (void);
3487 extern void init_charset_once (void);
3488 extern void syms_of_charset (void);
3489 /* Structure forward declarations. */
3490 struct charset;
3491
3492 /* Defined in syntax.c. */
3493 extern void init_syntax_once (void);
3494 extern void syms_of_syntax (void);
3495
3496 /* Defined in fns.c. */
3497 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3498 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3499 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3500 extern void sweep_weak_hash_tables (void);
3501 EMACS_UINT hash_string (char const *, ptrdiff_t);
3502 EMACS_UINT sxhash (Lisp_Object, int);
3503 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3504 Lisp_Object, Lisp_Object);
3505 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3506 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3507 EMACS_UINT);
3508 extern struct hash_table_test hashtest_eql, hashtest_equal;
3509 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3510 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3511 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3512 ptrdiff_t, ptrdiff_t);
3513 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3514 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3515 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3516 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3517 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3518 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3519 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3520 extern void clear_string_char_byte_cache (void);
3521 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3522 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3523 extern Lisp_Object string_to_multibyte (Lisp_Object);
3524 extern Lisp_Object string_make_unibyte (Lisp_Object);
3525 extern void syms_of_fns (void);
3526
3527 /* Defined in floatfns.c. */
3528 extern void syms_of_floatfns (void);
3529 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3530
3531 /* Defined in fringe.c. */
3532 extern void syms_of_fringe (void);
3533 extern void init_fringe (void);
3534 #ifdef HAVE_WINDOW_SYSTEM
3535 extern void mark_fringe_data (void);
3536 extern void init_fringe_once (void);
3537 #endif /* HAVE_WINDOW_SYSTEM */
3538
3539 /* Defined in image.c. */
3540 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3541 extern void reset_image_types (void);
3542 extern void syms_of_image (void);
3543
3544 /* Defined in insdel.c. */
3545 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3546 extern _Noreturn void buffer_overflow (void);
3547 extern void make_gap (ptrdiff_t);
3548 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3549 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3550 ptrdiff_t, bool, bool);
3551 extern int count_combining_before (const unsigned char *,
3552 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3553 extern int count_combining_after (const unsigned char *,
3554 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3555 extern void insert (const char *, ptrdiff_t);
3556 extern void insert_and_inherit (const char *, ptrdiff_t);
3557 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3558 bool, bool, bool);
3559 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3560 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3561 ptrdiff_t, ptrdiff_t, bool);
3562 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3563 extern void insert_char (int);
3564 extern void insert_string (const char *);
3565 extern void insert_before_markers (const char *, ptrdiff_t);
3566 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3567 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3568 ptrdiff_t, ptrdiff_t,
3569 ptrdiff_t, bool);
3570 extern void del_range (ptrdiff_t, ptrdiff_t);
3571 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3572 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3573 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3574 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3575 ptrdiff_t, ptrdiff_t, bool);
3576 extern void modify_text (ptrdiff_t, ptrdiff_t);
3577 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3578 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3579 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3580 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3581 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3582 ptrdiff_t, ptrdiff_t);
3583 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3584 ptrdiff_t, ptrdiff_t);
3585 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3586 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3587 const char *, ptrdiff_t, ptrdiff_t, bool);
3588 extern void syms_of_insdel (void);
3589
3590 /* Defined in dispnew.c. */
3591 #if (defined PROFILING \
3592 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3593 _Noreturn void __executable_start (void);
3594 #endif
3595 extern Lisp_Object Vwindow_system;
3596 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3597
3598 /* Defined in xdisp.c. */
3599 extern bool noninteractive_need_newline;
3600 extern Lisp_Object echo_area_buffer[2];
3601 extern void add_to_log (const char *, Lisp_Object, Lisp_Object);
3602 extern void check_message_stack (void);
3603 extern void setup_echo_area_for_printing (int);
3604 extern bool push_message (void);
3605 extern void pop_message_unwind (void);
3606 extern Lisp_Object restore_message_unwind (Lisp_Object);
3607 extern void restore_message (void);
3608 extern Lisp_Object current_message (void);
3609 extern void clear_message (bool, bool);
3610 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3611 extern void message1 (const char *);
3612 extern void message1_nolog (const char *);
3613 extern void message3 (Lisp_Object);
3614 extern void message3_nolog (Lisp_Object);
3615 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3616 extern void message_with_string (const char *, Lisp_Object, int);
3617 extern void message_log_maybe_newline (void);
3618 extern void update_echo_area (void);
3619 extern void truncate_echo_area (ptrdiff_t);
3620 extern void redisplay (void);
3621
3622 void set_frame_cursor_types (struct frame *, Lisp_Object);
3623 extern void syms_of_xdisp (void);
3624 extern void init_xdisp (void);
3625 extern Lisp_Object safe_eval (Lisp_Object);
3626 extern int pos_visible_p (struct window *, ptrdiff_t, int *,
3627 int *, int *, int *, int *, int *);
3628
3629 /* Defined in xsettings.c. */
3630 extern void syms_of_xsettings (void);
3631
3632 /* Defined in vm-limit.c. */
3633 extern void memory_warnings (void *, void (*warnfun) (const char *));
3634
3635 /* Defined in character.c. */
3636 extern void parse_str_as_multibyte (const unsigned char *, ptrdiff_t,
3637 ptrdiff_t *, ptrdiff_t *);
3638
3639 /* Defined in alloc.c. */
3640 extern void check_pure_size (void);
3641 extern void free_misc (Lisp_Object);
3642 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3643 extern void malloc_warning (const char *);
3644 extern _Noreturn void memory_full (size_t);
3645 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3646 extern bool survives_gc_p (Lisp_Object);
3647 extern void mark_object (Lisp_Object);
3648 #if defined REL_ALLOC && !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3649 extern void refill_memory_reserve (void);
3650 #endif
3651 extern const char *pending_malloc_warning;
3652 extern Lisp_Object zero_vector;
3653 extern Lisp_Object *stack_base;
3654 extern EMACS_INT consing_since_gc;
3655 extern EMACS_INT gc_relative_threshold;
3656 extern EMACS_INT memory_full_cons_threshold;
3657 extern Lisp_Object list1 (Lisp_Object);
3658 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3659 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3660 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3661 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3662 Lisp_Object);
3663 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3664 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3665
3666 /* Build a frequently used 2/3/4-integer lists. */
3667
3668 INLINE Lisp_Object
3669 list2i (EMACS_INT x, EMACS_INT y)
3670 {
3671 return list2 (make_number (x), make_number (y));
3672 }
3673
3674 INLINE Lisp_Object
3675 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3676 {
3677 return list3 (make_number (x), make_number (y), make_number (w));
3678 }
3679
3680 INLINE Lisp_Object
3681 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3682 {
3683 return list4 (make_number (x), make_number (y),
3684 make_number (w), make_number (h));
3685 }
3686
3687 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3688 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3689 extern _Noreturn void string_overflow (void);
3690 extern Lisp_Object make_string (const char *, ptrdiff_t);
3691 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3692 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3693 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3694
3695 /* Make unibyte string from C string when the length isn't known. */
3696
3697 INLINE Lisp_Object
3698 build_unibyte_string (const char *str)
3699 {
3700 return make_unibyte_string (str, strlen (str));
3701 }
3702
3703 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3704 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3705 extern Lisp_Object make_uninit_string (EMACS_INT);
3706 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3707 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3708 extern Lisp_Object make_specified_string (const char *,
3709 ptrdiff_t, ptrdiff_t, bool);
3710 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3711 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3712
3713 /* Make a string allocated in pure space, use STR as string data. */
3714
3715 INLINE Lisp_Object
3716 build_pure_c_string (const char *str)
3717 {
3718 return make_pure_c_string (str, strlen (str));
3719 }
3720
3721 /* Make a string from the data at STR, treating it as multibyte if the
3722 data warrants. */
3723
3724 INLINE Lisp_Object
3725 build_string (const char *str)
3726 {
3727 return make_string (str, strlen (str));
3728 }
3729
3730 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3731 extern void make_byte_code (struct Lisp_Vector *);
3732 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3733
3734 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3735 be sure that GC cannot happen until the vector is completely
3736 initialized. E.g. the following code is likely to crash:
3737
3738 v = make_uninit_vector (3);
3739 ASET (v, 0, obj0);
3740 ASET (v, 1, Ffunction_can_gc ());
3741 ASET (v, 2, obj1); */
3742
3743 INLINE Lisp_Object
3744 make_uninit_vector (ptrdiff_t size)
3745 {
3746 Lisp_Object v;
3747 struct Lisp_Vector *p;
3748
3749 p = allocate_vector (size);
3750 XSETVECTOR (v, p);
3751 return v;
3752 }
3753
3754 /* Like above, but special for sub char-tables. */
3755
3756 INLINE Lisp_Object
3757 make_uninit_sub_char_table (int depth, int min_char)
3758 {
3759 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3760 Lisp_Object v = make_uninit_vector (slots);
3761
3762 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3763 XSUB_CHAR_TABLE (v)->depth = depth;
3764 XSUB_CHAR_TABLE (v)->min_char = min_char;
3765 return v;
3766 }
3767
3768 extern struct Lisp_Vector *allocate_pseudovector (int, int, enum pvec_type);
3769 #define ALLOCATE_PSEUDOVECTOR(typ,field,tag) \
3770 ((typ*) \
3771 allocate_pseudovector \
3772 (VECSIZE (typ), PSEUDOVECSIZE (typ, field), tag))
3773 extern struct Lisp_Hash_Table *allocate_hash_table (void);
3774 extern struct window *allocate_window (void);
3775 extern struct frame *allocate_frame (void);
3776 extern struct Lisp_Process *allocate_process (void);
3777 extern struct terminal *allocate_terminal (void);
3778 extern bool gc_in_progress;
3779 extern bool abort_on_gc;
3780 extern Lisp_Object make_float (double);
3781 extern void display_malloc_warning (void);
3782 extern ptrdiff_t inhibit_garbage_collection (void);
3783 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3784 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3785 Lisp_Object, Lisp_Object);
3786 extern Lisp_Object make_save_ptr (void *);
3787 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3788 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3789 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3790 Lisp_Object);
3791 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3792 extern void free_save_value (Lisp_Object);
3793 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3794 extern void free_marker (Lisp_Object);
3795 extern void free_cons (struct Lisp_Cons *);
3796 extern void init_alloc_once (void);
3797 extern void init_alloc (void);
3798 extern void syms_of_alloc (void);
3799 extern struct buffer * allocate_buffer (void);
3800 extern int valid_lisp_object_p (Lisp_Object);
3801 extern int relocatable_string_data_p (const char *);
3802 #ifdef GC_CHECK_CONS_LIST
3803 extern void check_cons_list (void);
3804 #else
3805 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3806 #endif
3807
3808 #ifdef REL_ALLOC
3809 /* Defined in ralloc.c. */
3810 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3811 extern void r_alloc_free (void **);
3812 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3813 extern void r_alloc_reset_variable (void **, void **);
3814 extern void r_alloc_inhibit_buffer_relocation (int);
3815 #endif
3816
3817 /* Defined in chartab.c. */
3818 extern Lisp_Object copy_char_table (Lisp_Object);
3819 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3820 int *, int *);
3821 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3822 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3823 Lisp_Object),
3824 Lisp_Object, Lisp_Object, Lisp_Object);
3825 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3826 Lisp_Object, Lisp_Object,
3827 Lisp_Object, struct charset *,
3828 unsigned, unsigned);
3829 extern Lisp_Object uniprop_table (Lisp_Object);
3830 extern void syms_of_chartab (void);
3831
3832 /* Defined in print.c. */
3833 extern Lisp_Object Vprin1_to_string_buffer;
3834 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3835 extern void temp_output_buffer_setup (const char *);
3836 extern int print_level;
3837 extern void write_string (const char *, int);
3838 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3839 Lisp_Object);
3840 extern Lisp_Object internal_with_output_to_temp_buffer
3841 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3842 #define FLOAT_TO_STRING_BUFSIZE 350
3843 extern int float_to_string (char *, double);
3844 extern void init_print_once (void);
3845 extern void syms_of_print (void);
3846
3847 /* Defined in doprnt.c. */
3848 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3849 va_list);
3850 extern ptrdiff_t esprintf (char *, char const *, ...)
3851 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3852 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3853 char const *, ...)
3854 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3855 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3856 char const *, va_list)
3857 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3858
3859 /* Defined in lread.c. */
3860 extern Lisp_Object check_obarray (Lisp_Object);
3861 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3862 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3863 extern Lisp_Object intern_driver (Lisp_Object, Lisp_Object, Lisp_Object);
3864 extern void init_symbol (Lisp_Object, Lisp_Object);
3865 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3866 INLINE void
3867 LOADHIST_ATTACH (Lisp_Object x)
3868 {
3869 if (initialized)
3870 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3871 }
3872 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3873 Lisp_Object *, Lisp_Object, bool);
3874 extern Lisp_Object string_to_number (char const *, int, bool);
3875 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3876 Lisp_Object);
3877 extern void dir_warning (const char *, Lisp_Object);
3878 extern void init_obarray (void);
3879 extern void init_lread (void);
3880 extern void syms_of_lread (void);
3881
3882 INLINE Lisp_Object
3883 intern (const char *str)
3884 {
3885 return intern_1 (str, strlen (str));
3886 }
3887
3888 INLINE Lisp_Object
3889 intern_c_string (const char *str)
3890 {
3891 return intern_c_string_1 (str, strlen (str));
3892 }
3893
3894 /* Defined in eval.c. */
3895 extern EMACS_INT lisp_eval_depth;
3896 extern Lisp_Object Vautoload_queue;
3897 extern Lisp_Object Vrun_hooks;
3898 extern Lisp_Object Vsignaling_function;
3899 extern Lisp_Object inhibit_lisp_code;
3900 extern struct handler *handlerlist;
3901
3902 /* To run a normal hook, use the appropriate function from the list below.
3903 The calling convention:
3904
3905 if (!NILP (Vrun_hooks))
3906 call1 (Vrun_hooks, Qmy_funny_hook);
3907
3908 should no longer be used. */
3909 extern void run_hook (Lisp_Object);
3910 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3911 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3912 Lisp_Object (*funcall)
3913 (ptrdiff_t nargs, Lisp_Object *args));
3914 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3915 extern _Noreturn void xsignal0 (Lisp_Object);
3916 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3917 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3918 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3919 Lisp_Object);
3920 extern _Noreturn void signal_error (const char *, Lisp_Object);
3921 extern Lisp_Object eval_sub (Lisp_Object form);
3922 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3923 extern Lisp_Object call0 (Lisp_Object);
3924 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3925 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3926 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3927 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3928 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3929 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3930 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3931 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3932 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3933 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3934 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3935 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3936 extern Lisp_Object internal_condition_case_n
3937 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3938 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3939 extern void specbind (Lisp_Object, Lisp_Object);
3940 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3941 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3942 extern void record_unwind_protect_int (void (*) (int), int);
3943 extern void record_unwind_protect_void (void (*) (void));
3944 extern void record_unwind_protect_nothing (void);
3945 extern void clear_unwind_protect (ptrdiff_t);
3946 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3947 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3948 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3949 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3950 extern _Noreturn void verror (const char *, va_list)
3951 ATTRIBUTE_FORMAT_PRINTF (1, 0);
3952 extern void un_autoload (Lisp_Object);
3953 extern Lisp_Object call_debugger (Lisp_Object arg);
3954 extern void init_eval_once (void);
3955 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
3956 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
3957 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3958 extern void init_eval (void);
3959 extern void syms_of_eval (void);
3960 extern void unwind_body (Lisp_Object);
3961 extern ptrdiff_t record_in_backtrace (Lisp_Object, Lisp_Object *, ptrdiff_t);
3962 extern void mark_specpdl (void);
3963 extern void get_backtrace (Lisp_Object array);
3964 Lisp_Object backtrace_top_function (void);
3965 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
3966 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
3967
3968
3969 /* Defined in editfns.c. */
3970 extern void insert1 (Lisp_Object);
3971 extern Lisp_Object format2 (const char *, Lisp_Object, Lisp_Object);
3972 extern Lisp_Object save_excursion_save (void);
3973 extern Lisp_Object save_restriction_save (void);
3974 extern void save_excursion_restore (Lisp_Object);
3975 extern void save_restriction_restore (Lisp_Object);
3976 extern _Noreturn void time_overflow (void);
3977 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
3978 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3979 ptrdiff_t, bool);
3980 extern void init_editfns (void);
3981 extern void syms_of_editfns (void);
3982
3983 /* Defined in buffer.c. */
3984 extern bool mouse_face_overlay_overlaps (Lisp_Object);
3985 extern _Noreturn void nsberror (Lisp_Object);
3986 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
3987 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
3988 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
3989 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
3990 Lisp_Object, Lisp_Object, Lisp_Object);
3991 extern bool overlay_touches_p (ptrdiff_t);
3992 extern Lisp_Object other_buffer_safely (Lisp_Object);
3993 extern Lisp_Object get_truename_buffer (Lisp_Object);
3994 extern void init_buffer_once (void);
3995 extern void init_buffer (int);
3996 extern void syms_of_buffer (void);
3997 extern void keys_of_buffer (void);
3998
3999 /* Defined in marker.c. */
4000
4001 extern ptrdiff_t marker_position (Lisp_Object);
4002 extern ptrdiff_t marker_byte_position (Lisp_Object);
4003 extern void clear_charpos_cache (struct buffer *);
4004 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
4005 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
4006 extern void unchain_marker (struct Lisp_Marker *marker);
4007 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
4008 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
4009 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
4010 ptrdiff_t, ptrdiff_t);
4011 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
4012 extern void syms_of_marker (void);
4013
4014 /* Defined in fileio.c. */
4015
4016 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
4017 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
4018 Lisp_Object, Lisp_Object, Lisp_Object,
4019 Lisp_Object, int);
4020 extern void close_file_unwind (int);
4021 extern void fclose_unwind (void *);
4022 extern void restore_point_unwind (Lisp_Object);
4023 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
4024 extern _Noreturn void report_file_error (const char *, Lisp_Object);
4025 extern bool internal_delete_file (Lisp_Object);
4026 extern Lisp_Object emacs_readlinkat (int, const char *);
4027 extern bool file_directory_p (const char *);
4028 extern bool file_accessible_directory_p (Lisp_Object);
4029 extern void init_fileio (void);
4030 extern void syms_of_fileio (void);
4031 extern Lisp_Object make_temp_name (Lisp_Object, bool);
4032
4033 /* Defined in search.c. */
4034 extern void shrink_regexp_cache (void);
4035 extern void restore_search_regs (void);
4036 extern void record_unwind_save_match_data (void);
4037 struct re_registers;
4038 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
4039 struct re_registers *,
4040 Lisp_Object, bool, bool);
4041 extern ptrdiff_t fast_string_match (Lisp_Object, Lisp_Object);
4042 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4043 ptrdiff_t);
4044 extern ptrdiff_t fast_string_match_ignore_case (Lisp_Object, Lisp_Object);
4045 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4046 ptrdiff_t, ptrdiff_t, Lisp_Object);
4047 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4048 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4049 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4050 ptrdiff_t, bool);
4051 extern ptrdiff_t scan_newline_from_point (ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
4052 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4053 ptrdiff_t, ptrdiff_t *);
4054 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4055 ptrdiff_t, ptrdiff_t *);
4056 extern void syms_of_search (void);
4057 extern void clear_regexp_cache (void);
4058
4059 /* Defined in minibuf.c. */
4060
4061 extern Lisp_Object Vminibuffer_list;
4062 extern Lisp_Object last_minibuf_string;
4063 extern Lisp_Object get_minibuffer (EMACS_INT);
4064 extern void init_minibuf_once (void);
4065 extern void syms_of_minibuf (void);
4066
4067 /* Defined in callint.c. */
4068
4069 extern void syms_of_callint (void);
4070
4071 /* Defined in casefiddle.c. */
4072
4073 extern void syms_of_casefiddle (void);
4074 extern void keys_of_casefiddle (void);
4075
4076 /* Defined in casetab.c. */
4077
4078 extern void init_casetab_once (void);
4079 extern void syms_of_casetab (void);
4080
4081 /* Defined in keyboard.c. */
4082
4083 extern Lisp_Object echo_message_buffer;
4084 extern struct kboard *echo_kboard;
4085 extern void cancel_echoing (void);
4086 extern Lisp_Object last_undo_boundary;
4087 extern bool input_pending;
4088 #ifdef HAVE_STACK_OVERFLOW_HANDLING
4089 extern sigjmp_buf return_to_command_loop;
4090 #endif
4091 extern Lisp_Object menu_bar_items (Lisp_Object);
4092 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4093 extern void discard_mouse_events (void);
4094 #ifdef USABLE_SIGIO
4095 void handle_input_available_signal (int);
4096 #endif
4097 extern Lisp_Object pending_funcalls;
4098 extern bool detect_input_pending (void);
4099 extern bool detect_input_pending_ignore_squeezables (void);
4100 extern bool detect_input_pending_run_timers (bool);
4101 extern void safe_run_hooks (Lisp_Object);
4102 extern void cmd_error_internal (Lisp_Object, const char *);
4103 extern Lisp_Object command_loop_1 (void);
4104 extern Lisp_Object read_menu_command (void);
4105 extern Lisp_Object recursive_edit_1 (void);
4106 extern void record_auto_save (void);
4107 extern void force_auto_save_soon (void);
4108 extern void init_keyboard (void);
4109 extern void syms_of_keyboard (void);
4110 extern void keys_of_keyboard (void);
4111
4112 /* Defined in indent.c. */
4113 extern ptrdiff_t current_column (void);
4114 extern void invalidate_current_column (void);
4115 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4116 extern void syms_of_indent (void);
4117
4118 /* Defined in frame.c. */
4119 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4120 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4121 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4122 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4123 extern void frames_discard_buffer (Lisp_Object);
4124 extern void syms_of_frame (void);
4125
4126 /* Defined in emacs.c. */
4127 extern char **initial_argv;
4128 extern int initial_argc;
4129 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4130 extern bool display_arg;
4131 #endif
4132 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4133 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4134 extern _Noreturn void terminate_due_to_signal (int, int);
4135 #ifdef WINDOWSNT
4136 extern Lisp_Object Vlibrary_cache;
4137 #endif
4138 #if HAVE_SETLOCALE
4139 void fixup_locale (void);
4140 void synchronize_system_messages_locale (void);
4141 void synchronize_system_time_locale (void);
4142 #else
4143 INLINE void fixup_locale (void) {}
4144 INLINE void synchronize_system_messages_locale (void) {}
4145 INLINE void synchronize_system_time_locale (void) {}
4146 #endif
4147 extern void shut_down_emacs (int, Lisp_Object);
4148
4149 /* True means don't do interactive redisplay and don't change tty modes. */
4150 extern bool noninteractive;
4151
4152 /* True means remove site-lisp directories from load-path. */
4153 extern bool no_site_lisp;
4154
4155 /* Pipe used to send exit notification to the daemon parent at
4156 startup. */
4157 extern int daemon_pipe[2];
4158 #define IS_DAEMON (daemon_pipe[1] != 0)
4159
4160 /* True if handling a fatal error already. */
4161 extern bool fatal_error_in_progress;
4162
4163 /* True means don't do use window-system-specific display code. */
4164 extern bool inhibit_window_system;
4165 /* True means that a filter or a sentinel is running. */
4166 extern bool running_asynch_code;
4167
4168 /* Defined in process.c. */
4169 extern void kill_buffer_processes (Lisp_Object);
4170 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4171 struct Lisp_Process *, int);
4172 /* Max value for the first argument of wait_reading_process_output. */
4173 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4174 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4175 The bug merely causes a bogus warning, but the warning is annoying. */
4176 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4177 #else
4178 # define WAIT_READING_MAX INTMAX_MAX
4179 #endif
4180 #ifdef HAVE_TIMERFD
4181 extern void add_timer_wait_descriptor (int);
4182 #endif
4183 extern void add_keyboard_wait_descriptor (int);
4184 extern void delete_keyboard_wait_descriptor (int);
4185 #ifdef HAVE_GPM
4186 extern void add_gpm_wait_descriptor (int);
4187 extern void delete_gpm_wait_descriptor (int);
4188 #endif
4189 extern void init_process_emacs (void);
4190 extern void syms_of_process (void);
4191 extern void setup_process_coding_systems (Lisp_Object);
4192
4193 /* Defined in callproc.c. */
4194 #ifndef DOS_NT
4195 _Noreturn
4196 #endif
4197 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4198 extern void init_callproc_1 (void);
4199 extern void init_callproc (void);
4200 extern void set_initial_environment (void);
4201 extern void syms_of_callproc (void);
4202
4203 /* Defined in doc.c. */
4204 extern Lisp_Object read_doc_string (Lisp_Object);
4205 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4206 extern void syms_of_doc (void);
4207 extern int read_bytecode_char (bool);
4208
4209 /* Defined in bytecode.c. */
4210 extern void syms_of_bytecode (void);
4211 extern struct byte_stack *byte_stack_list;
4212 #if BYTE_MARK_STACK
4213 extern void mark_byte_stack (void);
4214 #endif
4215 extern void unmark_byte_stack (void);
4216 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4217 Lisp_Object, ptrdiff_t, Lisp_Object *);
4218
4219 /* Defined in macros.c. */
4220 extern void init_macros (void);
4221 extern void syms_of_macros (void);
4222
4223 /* Defined in undo.c. */
4224 extern void truncate_undo_list (struct buffer *);
4225 extern void record_insert (ptrdiff_t, ptrdiff_t);
4226 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4227 extern void record_first_change (void);
4228 extern void record_change (ptrdiff_t, ptrdiff_t);
4229 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4230 Lisp_Object, Lisp_Object,
4231 Lisp_Object);
4232 extern void syms_of_undo (void);
4233
4234 /* Defined in textprop.c. */
4235 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4236
4237 /* Defined in menu.c. */
4238 extern void syms_of_menu (void);
4239
4240 /* Defined in xmenu.c. */
4241 extern void syms_of_xmenu (void);
4242
4243 /* Defined in termchar.h. */
4244 struct tty_display_info;
4245
4246 /* Defined in termhooks.h. */
4247 struct terminal;
4248
4249 /* Defined in sysdep.c. */
4250 #ifndef HAVE_GET_CURRENT_DIR_NAME
4251 extern char *get_current_dir_name (void);
4252 #endif
4253 extern void stuff_char (char c);
4254 extern void init_foreground_group (void);
4255 extern void sys_subshell (void);
4256 extern void sys_suspend (void);
4257 extern void discard_tty_input (void);
4258 extern void init_sys_modes (struct tty_display_info *);
4259 extern void reset_sys_modes (struct tty_display_info *);
4260 extern void init_all_sys_modes (void);
4261 extern void reset_all_sys_modes (void);
4262 extern void child_setup_tty (int);
4263 extern void setup_pty (int);
4264 extern int set_window_size (int, int, int);
4265 extern EMACS_INT get_random (void);
4266 extern void seed_random (void *, ptrdiff_t);
4267 extern void init_random (void);
4268 extern void emacs_backtrace (int);
4269 extern _Noreturn void emacs_abort (void) NO_INLINE;
4270 extern int emacs_open (const char *, int, int);
4271 extern int emacs_pipe (int[2]);
4272 extern int emacs_close (int);
4273 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4274 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4275 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4276 extern void emacs_perror (char const *);
4277
4278 extern void unlock_all_files (void);
4279 extern void lock_file (Lisp_Object);
4280 extern void unlock_file (Lisp_Object);
4281 extern void unlock_buffer (struct buffer *);
4282 extern void syms_of_filelock (void);
4283 extern int str_collate (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4284
4285 /* Defined in sound.c. */
4286 extern void syms_of_sound (void);
4287
4288 /* Defined in category.c. */
4289 extern void init_category_once (void);
4290 extern Lisp_Object char_category_set (int);
4291 extern void syms_of_category (void);
4292
4293 /* Defined in ccl.c. */
4294 extern void syms_of_ccl (void);
4295
4296 /* Defined in dired.c. */
4297 extern void syms_of_dired (void);
4298 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4299 Lisp_Object, Lisp_Object,
4300 bool, Lisp_Object);
4301
4302 /* Defined in term.c. */
4303 extern int *char_ins_del_vector;
4304 extern void syms_of_term (void);
4305 extern _Noreturn void fatal (const char *msgid, ...)
4306 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4307
4308 /* Defined in terminal.c. */
4309 extern void syms_of_terminal (void);
4310
4311 /* Defined in font.c. */
4312 extern void syms_of_font (void);
4313 extern void init_font (void);
4314
4315 #ifdef HAVE_WINDOW_SYSTEM
4316 /* Defined in fontset.c. */
4317 extern void syms_of_fontset (void);
4318 #endif
4319
4320 /* Defined in gfilenotify.c */
4321 #ifdef HAVE_GFILENOTIFY
4322 extern void globals_of_gfilenotify (void);
4323 extern void syms_of_gfilenotify (void);
4324 #endif
4325
4326 /* Defined in inotify.c */
4327 #ifdef HAVE_INOTIFY
4328 extern void syms_of_inotify (void);
4329 #endif
4330
4331 #ifdef HAVE_W32NOTIFY
4332 /* Defined on w32notify.c. */
4333 extern void syms_of_w32notify (void);
4334 #endif
4335
4336 /* Defined in xfaces.c. */
4337 extern Lisp_Object Vface_alternative_font_family_alist;
4338 extern Lisp_Object Vface_alternative_font_registry_alist;
4339 extern void syms_of_xfaces (void);
4340
4341 #ifdef HAVE_X_WINDOWS
4342 /* Defined in xfns.c. */
4343 extern void syms_of_xfns (void);
4344
4345 /* Defined in xsmfns.c. */
4346 extern void syms_of_xsmfns (void);
4347
4348 /* Defined in xselect.c. */
4349 extern void syms_of_xselect (void);
4350
4351 /* Defined in xterm.c. */
4352 extern void init_xterm (void);
4353 extern void syms_of_xterm (void);
4354 #endif /* HAVE_X_WINDOWS */
4355
4356 #ifdef HAVE_WINDOW_SYSTEM
4357 /* Defined in xterm.c, nsterm.m, w32term.c. */
4358 extern char *x_get_keysym_name (int);
4359 #endif /* HAVE_WINDOW_SYSTEM */
4360
4361 #ifdef HAVE_LIBXML2
4362 /* Defined in xml.c. */
4363 extern void syms_of_xml (void);
4364 extern void xml_cleanup_parser (void);
4365 #endif
4366
4367 #ifdef HAVE_ZLIB
4368 /* Defined in decompress.c. */
4369 extern void syms_of_decompress (void);
4370 #endif
4371
4372 #ifdef HAVE_DBUS
4373 /* Defined in dbusbind.c. */
4374 void init_dbusbind (void);
4375 void syms_of_dbusbind (void);
4376 #endif
4377
4378
4379 /* Defined in profiler.c. */
4380 extern bool profiler_memory_running;
4381 extern void malloc_probe (size_t);
4382 extern void syms_of_profiler (void);
4383
4384
4385 #ifdef DOS_NT
4386 /* Defined in msdos.c, w32.c. */
4387 extern char *emacs_root_dir (void);
4388 #endif /* DOS_NT */
4389
4390 /* Defined in lastfile.c. */
4391 extern char my_edata[];
4392 extern char my_endbss[];
4393 extern char *my_endbss_static;
4394
4395 /* True means ^G can quit instantly. */
4396 extern bool immediate_quit;
4397
4398 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4399 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4400 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4401 extern void xfree (void *);
4402 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4403 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4404 ATTRIBUTE_ALLOC_SIZE ((2,3));
4405 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4406
4407 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4408 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4409 extern void dupstring (char **, char const *);
4410
4411 /* Make DEST a copy of STRING's data. Return a pointer to DEST's terminating
4412 null byte. This is like stpcpy, except the source is a Lisp string. */
4413
4414 INLINE char *
4415 lispstpcpy (char *dest, Lisp_Object string)
4416 {
4417 ptrdiff_t len = SBYTES (string);
4418 memcpy (dest, SDATA (string), len + 1);
4419 return dest + len;
4420 }
4421
4422 extern void xputenv (const char *);
4423
4424 extern char *egetenv_internal (const char *, ptrdiff_t);
4425
4426 INLINE char *
4427 egetenv (const char *var)
4428 {
4429 /* When VAR is a string literal, strlen can be optimized away. */
4430 return egetenv_internal (var, strlen (var));
4431 }
4432
4433 /* Set up the name of the machine we're running on. */
4434 extern void init_system_name (void);
4435
4436 /* Return the absolute value of X. X should be a signed integer
4437 expression without side effects, and X's absolute value should not
4438 exceed the maximum for its promoted type. This is called 'eabs'
4439 because 'abs' is reserved by the C standard. */
4440 #define eabs(x) ((x) < 0 ? -(x) : (x))
4441
4442 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4443 fixnum. */
4444
4445 #define make_fixnum_or_float(val) \
4446 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4447
4448 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4449 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4450
4451 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4452
4453 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4454
4455 #define USE_SAFE_ALLOCA \
4456 ptrdiff_t sa_avail = MAX_ALLOCA; \
4457 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4458
4459 #define AVAIL_ALLOCA(size) (sa_avail -= (size), alloca (size))
4460
4461 /* SAFE_ALLOCA allocates a simple buffer. */
4462
4463 #define SAFE_ALLOCA(size) ((size) <= sa_avail \
4464 ? AVAIL_ALLOCA (size) \
4465 : (sa_must_free = true, record_xmalloc (size)))
4466
4467 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4468 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4469 positive. The code is tuned for MULTIPLIER being a constant. */
4470
4471 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4472 do { \
4473 if ((nitems) <= sa_avail / sizeof *(buf) / (multiplier)) \
4474 (buf) = AVAIL_ALLOCA (sizeof *(buf) * (multiplier) * (nitems)); \
4475 else \
4476 { \
4477 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4478 sa_must_free = true; \
4479 record_unwind_protect_ptr (xfree, buf); \
4480 } \
4481 } while (false)
4482
4483 /* SAFE_ALLOCA_STRING allocates a C copy of a Lisp string. */
4484
4485 #define SAFE_ALLOCA_STRING(ptr, string) \
4486 do { \
4487 (ptr) = SAFE_ALLOCA (SBYTES (string) + 1); \
4488 memcpy (ptr, SDATA (string), SBYTES (string) + 1); \
4489 } while (false)
4490
4491 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4492
4493 #define SAFE_FREE() \
4494 do { \
4495 if (sa_must_free) { \
4496 sa_must_free = false; \
4497 unbind_to (sa_count, Qnil); \
4498 } \
4499 } while (false)
4500
4501
4502 /* Return floor (NBYTES / WORD_SIZE). */
4503
4504 INLINE ptrdiff_t
4505 lisp_word_count (ptrdiff_t nbytes)
4506 {
4507 if (-1 >> 1 == -1)
4508 switch (word_size)
4509 {
4510 case 2: return nbytes >> 1;
4511 case 4: return nbytes >> 2;
4512 case 8: return nbytes >> 3;
4513 case 16: return nbytes >> 4;
4514 }
4515 return nbytes / word_size - (nbytes % word_size < 0);
4516 }
4517
4518 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4519
4520 #define SAFE_ALLOCA_LISP(buf, nelt) \
4521 do { \
4522 if ((nelt) <= lisp_word_count (sa_avail)) \
4523 (buf) = AVAIL_ALLOCA ((nelt) * word_size); \
4524 else if ((nelt) <= min (PTRDIFF_MAX, SIZE_MAX) / word_size) \
4525 { \
4526 Lisp_Object arg_; \
4527 (buf) = xmalloc ((nelt) * word_size); \
4528 arg_ = make_save_memory (buf, nelt); \
4529 sa_must_free = true; \
4530 record_unwind_protect (free_save_value, arg_); \
4531 } \
4532 else \
4533 memory_full (SIZE_MAX); \
4534 } while (false)
4535
4536
4537 /* If USE_STACK_LISP_OBJECTS, define macros that and functions that allocate
4538 block-scoped conses and strings. These objects are not
4539 managed by the garbage collector, so they are dangerous: passing them
4540 out of their scope (e.g., to user code) results in undefined behavior.
4541 Conversely, they have better performance because GC is not involved.
4542
4543 This feature is experimental and requires careful debugging.
4544 Build with CPPFLAGS='-DUSE_STACK_LISP_OBJECTS=0' to disable it. */
4545
4546 #ifndef USE_STACK_LISP_OBJECTS
4547 # define USE_STACK_LISP_OBJECTS true
4548 #endif
4549
4550 /* USE_STACK_LISP_OBJECTS requires GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS. */
4551
4552 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
4553 # undef USE_STACK_LISP_OBJECTS
4554 # define USE_STACK_LISP_OBJECTS false
4555 #endif
4556
4557 #ifdef GC_CHECK_STRING_BYTES
4558 enum { defined_GC_CHECK_STRING_BYTES = true };
4559 #else
4560 enum { defined_GC_CHECK_STRING_BYTES = false };
4561 #endif
4562
4563 /* Struct inside unions that are typically no larger and aligned enough. */
4564
4565 union Aligned_Cons
4566 {
4567 struct Lisp_Cons s;
4568 double d; intmax_t i; void *p;
4569 };
4570
4571 union Aligned_String
4572 {
4573 struct Lisp_String s;
4574 double d; intmax_t i; void *p;
4575 };
4576
4577 /* True for stack-based cons and string implementations, respectively.
4578 Use stack-based strings only if stack-based cons also works.
4579 Otherwise, STACK_CONS would create heap-based cons cells that
4580 could point to stack-based strings, which is a no-no. */
4581
4582 enum
4583 {
4584 USE_STACK_CONS = (USE_STACK_LISP_OBJECTS
4585 && alignof (union Aligned_Cons) % GCALIGNMENT == 0),
4586 USE_STACK_STRING = (USE_STACK_CONS
4587 && !defined_GC_CHECK_STRING_BYTES
4588 && alignof (union Aligned_String) % GCALIGNMENT == 0)
4589 };
4590
4591 /* Auxiliary macros used for auto allocation of Lisp objects. Please
4592 use these only in macros like AUTO_CONS that declare a local
4593 variable whose lifetime will be clear to the programmer. */
4594 #define STACK_CONS(a, b) \
4595 make_lisp_ptr (&(union Aligned_Cons) { { a, { b } } }.s, Lisp_Cons)
4596 #define AUTO_CONS_EXPR(a, b) \
4597 (USE_STACK_CONS ? STACK_CONS (a, b) : Fcons (a, b))
4598
4599 /* Declare NAME as an auto Lisp cons or short list if possible, a
4600 GC-based one otherwise. This is in the sense of the C keyword
4601 'auto'; i.e., the object has the lifetime of the containing block.
4602 The resulting object should not be made visible to user Lisp code. */
4603
4604 #define AUTO_CONS(name, a, b) Lisp_Object name = AUTO_CONS_EXPR (a, b)
4605 #define AUTO_LIST1(name, a) \
4606 Lisp_Object name = (USE_STACK_CONS ? STACK_CONS (a, Qnil) : list1 (a))
4607 #define AUTO_LIST2(name, a, b) \
4608 Lisp_Object name = (USE_STACK_CONS \
4609 ? STACK_CONS (a, STACK_CONS (b, Qnil)) \
4610 : list2 (a, b))
4611 #define AUTO_LIST3(name, a, b, c) \
4612 Lisp_Object name = (USE_STACK_CONS \
4613 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, Qnil))) \
4614 : list3 (a, b, c))
4615 #define AUTO_LIST4(name, a, b, c, d) \
4616 Lisp_Object name \
4617 = (USE_STACK_CONS \
4618 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, \
4619 STACK_CONS (d, Qnil)))) \
4620 : list4 (a, b, c, d))
4621
4622 /* Check whether stack-allocated strings are ASCII-only. */
4623
4624 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
4625 extern const char *verify_ascii (const char *);
4626 #else
4627 # define verify_ascii(str) (str)
4628 #endif
4629
4630 /* Declare NAME as an auto Lisp string if possible, a GC-based one if not.
4631 Take its value from STR. STR is not necessarily copied and should
4632 contain only ASCII characters. The resulting Lisp string should
4633 not be modified or made visible to user code. */
4634
4635 #define AUTO_STRING(name, str) \
4636 Lisp_Object name = \
4637 (USE_STACK_STRING \
4638 ? (make_lisp_ptr \
4639 ((&(union Aligned_String) \
4640 {{strlen (str), -1, 0, (unsigned char *) verify_ascii (str)}}.s), \
4641 Lisp_String)) \
4642 : build_string (verify_ascii (str)))
4643
4644 /* Loop over all tails of a list, checking for cycles.
4645 FIXME: Make tortoise and n internal declarations.
4646 FIXME: Unroll the loop body so we don't need `n'. */
4647 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4648 for ((tortoise) = (hare) = (list), (n) = true; \
4649 CONSP (hare); \
4650 (hare = XCDR (hare), (n) = !(n), \
4651 ((n) \
4652 ? (EQ (hare, tortoise) \
4653 ? xsignal1 (Qcircular_list, list) \
4654 : (void) 0) \
4655 /* Move tortoise before the next iteration, in case */ \
4656 /* the next iteration does an Fsetcdr. */ \
4657 : (void) ((tortoise) = XCDR (tortoise)))))
4658
4659 /* Do a `for' loop over alist values. */
4660
4661 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4662 for ((list_var) = (head_var); \
4663 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4664 (list_var) = XCDR (list_var))
4665
4666 /* Check whether it's time for GC, and run it if so. */
4667
4668 INLINE void
4669 maybe_gc (void)
4670 {
4671 if ((consing_since_gc > gc_cons_threshold
4672 && consing_since_gc > gc_relative_threshold)
4673 || (!NILP (Vmemory_full)
4674 && consing_since_gc > memory_full_cons_threshold))
4675 Fgarbage_collect ();
4676 }
4677
4678 INLINE bool
4679 functionp (Lisp_Object object)
4680 {
4681 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4682 {
4683 object = Findirect_function (object, Qt);
4684
4685 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4686 {
4687 /* Autoloaded symbols are functions, except if they load
4688 macros or keymaps. */
4689 int i;
4690 for (i = 0; i < 4 && CONSP (object); i++)
4691 object = XCDR (object);
4692
4693 return ! (CONSP (object) && !NILP (XCAR (object)));
4694 }
4695 }
4696
4697 if (SUBRP (object))
4698 return XSUBR (object)->max_args != UNEVALLED;
4699 else if (COMPILEDP (object))
4700 return true;
4701 else if (CONSP (object))
4702 {
4703 Lisp_Object car = XCAR (object);
4704 return EQ (car, Qlambda) || EQ (car, Qclosure);
4705 }
4706 else
4707 return false;
4708 }
4709
4710 INLINE_HEADER_END
4711
4712 #endif /* EMACS_LISP_H */