]> code.delx.au - gnu-emacs/blob - src/lisp.h
merge master
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2015 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
40 # define ID (some integer preprocessor expression of type TYPE)
41 DEFINE_GDB_SYMBOL_END (ID)
42
43 This hack is for the benefit of compilers that do not make macro
44 definitions or enums visible to the debugger. It's used for symbols
45 that .gdbinit needs. */
46
47 #define DECLARE_GDB_SYM(type, id) type const id EXTERNALLY_VISIBLE
48 #ifdef MAIN_PROGRAM
49 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) DECLARE_GDB_SYM (type, id)
50 # define DEFINE_GDB_SYMBOL_END(id) = id;
51 #else
52 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) extern DECLARE_GDB_SYM (type, id)
53 # define DEFINE_GDB_SYMBOL_END(val) ;
54 #endif
55
56 /* The ubiquitous max and min macros. */
57 #undef min
58 #undef max
59 #define max(a, b) ((a) > (b) ? (a) : (b))
60 #define min(a, b) ((a) < (b) ? (a) : (b))
61
62 /* Number of elements in an array. */
63 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
64
65 /* Number of bits in a Lisp_Object tag. */
66 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
67 #define GCTYPEBITS 3
68 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
69
70 /* The number of bits needed in an EMACS_INT over and above the number
71 of bits in a pointer. This is 0 on systems where:
72 1. We can specify multiple-of-8 alignment on static variables.
73 2. We know malloc returns a multiple of 8. */
74 #if (defined alignas \
75 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
76 || defined DARWIN_OS || defined __sun || defined __MINGW32__ \
77 || defined CYGWIN))
78 # define NONPOINTER_BITS 0
79 #else
80 # define NONPOINTER_BITS GCTYPEBITS
81 #endif
82
83 /* EMACS_INT - signed integer wide enough to hold an Emacs value
84 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
85 pI - printf length modifier for EMACS_INT
86 EMACS_UINT - unsigned variant of EMACS_INT */
87 #ifndef EMACS_INT_MAX
88 # if INTPTR_MAX <= 0
89 # error "INTPTR_MAX misconfigured"
90 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
91 typedef int EMACS_INT;
92 typedef unsigned int EMACS_UINT;
93 # define EMACS_INT_MAX INT_MAX
94 # define pI ""
95 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
96 typedef long int EMACS_INT;
97 typedef unsigned long EMACS_UINT;
98 # define EMACS_INT_MAX LONG_MAX
99 # define pI "l"
100 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
101 In theory this is not safe, but in practice it seems to be OK. */
102 # elif INTPTR_MAX <= LLONG_MAX
103 typedef long long int EMACS_INT;
104 typedef unsigned long long int EMACS_UINT;
105 # define EMACS_INT_MAX LLONG_MAX
106 # define pI "ll"
107 # else
108 # error "INTPTR_MAX too large"
109 # endif
110 #endif
111
112 /* Number of bits to put in each character in the internal representation
113 of bool vectors. This should not vary across implementations. */
114 enum { BOOL_VECTOR_BITS_PER_CHAR =
115 #define BOOL_VECTOR_BITS_PER_CHAR 8
116 BOOL_VECTOR_BITS_PER_CHAR
117 };
118
119 /* An unsigned integer type representing a fixed-length bit sequence,
120 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
121 for speed, but it is unsigned char on weird platforms. */
122 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
123 typedef size_t bits_word;
124 # define BITS_WORD_MAX SIZE_MAX
125 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
126 #else
127 typedef unsigned char bits_word;
128 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
129 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
130 #endif
131 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
132
133 /* Number of bits in some machine integer types. */
134 enum
135 {
136 BITS_PER_CHAR = CHAR_BIT,
137 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
138 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
139 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
140 };
141
142 /* printmax_t and uprintmax_t are types for printing large integers.
143 These are the widest integers that are supported for printing.
144 pMd etc. are conversions for printing them.
145 On C99 hosts, there's no problem, as even the widest integers work.
146 Fall back on EMACS_INT on pre-C99 hosts. */
147 #ifdef PRIdMAX
148 typedef intmax_t printmax_t;
149 typedef uintmax_t uprintmax_t;
150 # define pMd PRIdMAX
151 # define pMu PRIuMAX
152 #else
153 typedef EMACS_INT printmax_t;
154 typedef EMACS_UINT uprintmax_t;
155 # define pMd pI"d"
156 # define pMu pI"u"
157 #endif
158
159 /* Use pD to format ptrdiff_t values, which suffice for indexes into
160 buffers and strings. Emacs never allocates objects larger than
161 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
162 In C99, pD can always be "t"; configure it here for the sake of
163 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
164 #if PTRDIFF_MAX == INT_MAX
165 # define pD ""
166 #elif PTRDIFF_MAX == LONG_MAX
167 # define pD "l"
168 #elif PTRDIFF_MAX == LLONG_MAX
169 # define pD "ll"
170 #else
171 # define pD "t"
172 #endif
173
174 /* Extra internal type checking? */
175
176 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
177 'assume (COND)'. COND should be free of side effects, as it may or
178 may not be evaluated.
179
180 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
181 defined and suppress_checking is false, and does nothing otherwise.
182 Emacs dies if COND is checked and is false. The suppress_checking
183 variable is initialized to 0 in alloc.c. Set it to 1 using a
184 debugger to temporarily disable aborting on detected internal
185 inconsistencies or error conditions.
186
187 In some cases, a good compiler may be able to optimize away the
188 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
189 uses eassert to test STRINGP (x), but a particular use of XSTRING
190 is invoked only after testing that STRINGP (x) is true, making the
191 test redundant.
192
193 eassume is like eassert except that it also causes the compiler to
194 assume that COND is true afterwards, regardless of whether runtime
195 checking is enabled. This can improve performance in some cases,
196 though it can degrade performance in others. It's often suboptimal
197 for COND to call external functions or access volatile storage. */
198
199 #ifndef ENABLE_CHECKING
200 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
201 # define eassume(cond) assume (cond)
202 #else /* ENABLE_CHECKING */
203
204 extern _Noreturn void die (const char *, const char *, int);
205
206 extern bool suppress_checking EXTERNALLY_VISIBLE;
207
208 # define eassert(cond) \
209 (suppress_checking || (cond) \
210 ? (void) 0 \
211 : die (# cond, __FILE__, __LINE__))
212 # define eassume(cond) \
213 (suppress_checking \
214 ? assume (cond) \
215 : (cond) \
216 ? (void) 0 \
217 : die (# cond, __FILE__, __LINE__))
218 #endif /* ENABLE_CHECKING */
219
220 \f
221 /* Use the configure flag --enable-check-lisp-object-type to make
222 Lisp_Object use a struct type instead of the default int. The flag
223 causes CHECK_LISP_OBJECT_TYPE to be defined. */
224
225 /***** Select the tagging scheme. *****/
226 /* The following option controls the tagging scheme:
227 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
228 always 0, and we can thus use them to hold tag bits, without
229 restricting our addressing space.
230
231 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
232 restricting our possible address range.
233
234 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
235 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
236 on the few static Lisp_Objects used: all the defsubr as well
237 as the two special buffers buffer_defaults and buffer_local_symbols. */
238
239 enum Lisp_Bits
240 {
241 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
242 integer constant, for MSVC. */
243 #define GCALIGNMENT 8
244
245 /* Number of bits in a Lisp_Object value, not counting the tag. */
246 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
247
248 /* Number of bits in a Lisp fixnum tag. */
249 INTTYPEBITS = GCTYPEBITS - 1,
250
251 /* Number of bits in a Lisp fixnum value, not counting the tag. */
252 FIXNUM_BITS = VALBITS + 1
253 };
254
255 #if GCALIGNMENT != 1 << GCTYPEBITS
256 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
257 #endif
258
259 /* The maximum value that can be stored in a EMACS_INT, assuming all
260 bits other than the type bits contribute to a nonnegative signed value.
261 This can be used in #if, e.g., '#if USB_TAG' below expands to an
262 expression involving VAL_MAX. */
263 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
264
265 /* Whether the least-significant bits of an EMACS_INT contain the tag.
266 On hosts where pointers-as-ints do not exceed VAL_MAX / 2, USE_LSB_TAG is:
267 a. unnecessary, because the top bits of an EMACS_INT are unused, and
268 b. slower, because it typically requires extra masking.
269 So, USE_LSB_TAG is true only on hosts where it might be useful. */
270 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
271 #define USE_LSB_TAG (VAL_MAX / 2 < INTPTR_MAX)
272 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
273
274 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
275 # error "USE_LSB_TAG not supported on this platform; please report this." \
276 "Try 'configure --with-wide-int' to work around the problem."
277 error !;
278 #endif
279
280 #ifndef alignas
281 # define alignas(alignment) /* empty */
282 # if USE_LSB_TAG
283 # error "USE_LSB_TAG requires alignas"
284 # endif
285 #endif
286
287 #ifdef HAVE_STRUCT_ATTRIBUTE_ALIGNED
288 # define GCALIGNED __attribute__ ((aligned (GCALIGNMENT)))
289 #else
290 # define GCALIGNED /* empty */
291 #endif
292
293 /* Some operations are so commonly executed that they are implemented
294 as macros, not functions, because otherwise runtime performance would
295 suffer too much when compiling with GCC without optimization.
296 There's no need to inline everything, just the operations that
297 would otherwise cause a serious performance problem.
298
299 For each such operation OP, define a macro lisp_h_OP that contains
300 the operation's implementation. That way, OP can be implemented
301 via a macro definition like this:
302
303 #define OP(x) lisp_h_OP (x)
304
305 and/or via a function definition like this:
306
307 LISP_MACRO_DEFUN (OP, Lisp_Object, (Lisp_Object x), (x))
308
309 which macro-expands to this:
310
311 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
312
313 without worrying about the implementations diverging, since
314 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
315 are intended to be private to this include file, and should not be
316 used elsewhere.
317
318 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
319 functions, once most developers have access to GCC 4.8 or later and
320 can use "gcc -Og" to debug. Maybe in the year 2016. See
321 Bug#11935.
322
323 Commentary for these macros can be found near their corresponding
324 functions, below. */
325
326 #if CHECK_LISP_OBJECT_TYPE
327 # define lisp_h_XLI(o) ((o).i)
328 # define lisp_h_XIL(i) ((Lisp_Object) { i })
329 #else
330 # define lisp_h_XLI(o) (o)
331 # define lisp_h_XIL(i) (i)
332 #endif
333 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
334 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
335 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
336 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
337 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
338 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
339 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
340 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
341 #define lisp_h_INTEGERP(x) ((XTYPE (x) & (Lisp_Int0 | ~Lisp_Int1)) == Lisp_Int0)
342 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
343 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
344 #define lisp_h_NILP(x) EQ (x, Qnil)
345 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
346 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
347 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
348 #define lisp_h_SYMBOL_VAL(sym) \
349 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
350 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
351 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
352 #define lisp_h_XCAR(c) XCONS (c)->car
353 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
354 #define lisp_h_XCONS(a) \
355 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
356 #define lisp_h_XHASH(a) XUINT (a)
357 #define lisp_h_XPNTR(a) ((void *) (intptr_t) (XLI (a) & VALMASK))
358 #define lisp_h_XSYMBOL(a) \
359 (eassert (SYMBOLP (a)), (struct Lisp_Symbol *) XUNTAG (a, Lisp_Symbol))
360 #ifndef GC_CHECK_CONS_LIST
361 # define lisp_h_check_cons_list() ((void) 0)
362 #endif
363 #if USE_LSB_TAG
364 # define lisp_h_make_number(n) \
365 XIL ((EMACS_INT) (((EMACS_UINT) (n) << INTTYPEBITS) + Lisp_Int0))
366 # define lisp_h_XFASTINT(a) XINT (a)
367 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
368 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
369 # define lisp_h_XUNTAG(a, type) ((void *) (XLI (a) - (type)))
370 #endif
371
372 /* When compiling via gcc -O0, define the key operations as macros, as
373 Emacs is too slow otherwise. To disable this optimization, compile
374 with -DINLINING=false. */
375 #if (defined __NO_INLINE__ \
376 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
377 && ! (defined INLINING && ! INLINING))
378 # define XLI(o) lisp_h_XLI (o)
379 # define XIL(i) lisp_h_XIL (i)
380 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
381 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
382 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
383 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
384 # define CONSP(x) lisp_h_CONSP (x)
385 # define EQ(x, y) lisp_h_EQ (x, y)
386 # define FLOATP(x) lisp_h_FLOATP (x)
387 # define INTEGERP(x) lisp_h_INTEGERP (x)
388 # define MARKERP(x) lisp_h_MARKERP (x)
389 # define MISCP(x) lisp_h_MISCP (x)
390 # define NILP(x) lisp_h_NILP (x)
391 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
392 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
393 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
394 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
395 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
396 # define XCAR(c) lisp_h_XCAR (c)
397 # define XCDR(c) lisp_h_XCDR (c)
398 # define XCONS(a) lisp_h_XCONS (a)
399 # define XHASH(a) lisp_h_XHASH (a)
400 # define XPNTR(a) lisp_h_XPNTR (a)
401 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
402 # ifndef GC_CHECK_CONS_LIST
403 # define check_cons_list() lisp_h_check_cons_list ()
404 # endif
405 # if USE_LSB_TAG
406 # define make_number(n) lisp_h_make_number (n)
407 # define XFASTINT(a) lisp_h_XFASTINT (a)
408 # define XINT(a) lisp_h_XINT (a)
409 # define XTYPE(a) lisp_h_XTYPE (a)
410 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
411 # endif
412 #endif
413
414 /* Define NAME as a lisp.h inline function that returns TYPE and has
415 arguments declared as ARGDECLS and passed as ARGS. ARGDECLS and
416 ARGS should be parenthesized. Implement the function by calling
417 lisp_h_NAME ARGS. */
418 #define LISP_MACRO_DEFUN(name, type, argdecls, args) \
419 INLINE type (name) argdecls { return lisp_h_##name args; }
420
421 /* like LISP_MACRO_DEFUN, except NAME returns void. */
422 #define LISP_MACRO_DEFUN_VOID(name, argdecls, args) \
423 INLINE void (name) argdecls { lisp_h_##name args; }
424
425
426 /* Define the fundamental Lisp data structures. */
427
428 /* This is the set of Lisp data types. If you want to define a new
429 data type, read the comments after Lisp_Fwd_Type definition
430 below. */
431
432 /* Lisp integers use 2 tags, to give them one extra bit, thus
433 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
434 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
435 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
436
437 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
438 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
439 vociferously about them. */
440 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
441 || (defined __SUNPRO_C && __STDC__))
442 #define ENUM_BF(TYPE) unsigned int
443 #else
444 #define ENUM_BF(TYPE) enum TYPE
445 #endif
446
447
448 enum Lisp_Type
449 {
450 /* Integer. XINT (obj) is the integer value. */
451 Lisp_Int0 = 0,
452 Lisp_Int1 = USE_LSB_TAG ? 1 << INTTYPEBITS : 1,
453
454 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
455 Lisp_Symbol = 2,
456
457 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
458 whose first member indicates the subtype. */
459 Lisp_Misc = 3,
460
461 /* String. XSTRING (object) points to a struct Lisp_String.
462 The length of the string, and its contents, are stored therein. */
463 Lisp_String = USE_LSB_TAG ? 1 : 1 << INTTYPEBITS,
464
465 /* Vector of Lisp objects, or something resembling it.
466 XVECTOR (object) points to a struct Lisp_Vector, which contains
467 the size and contents. The size field also contains the type
468 information, if it's not a real vector object. */
469 Lisp_Vectorlike = 5,
470
471 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
472 Lisp_Cons = 6,
473
474 Lisp_Float = 7
475 };
476
477 /* This is the set of data types that share a common structure.
478 The first member of the structure is a type code from this set.
479 The enum values are arbitrary, but we'll use large numbers to make it
480 more likely that we'll spot the error if a random word in memory is
481 mistakenly interpreted as a Lisp_Misc. */
482 enum Lisp_Misc_Type
483 {
484 Lisp_Misc_Free = 0x5eab,
485 Lisp_Misc_Marker,
486 Lisp_Misc_Overlay,
487 Lisp_Misc_Save_Value,
488 /* Currently floats are not a misc type,
489 but let's define this in case we want to change that. */
490 Lisp_Misc_Float,
491 /* This is not a type code. It is for range checking. */
492 Lisp_Misc_Limit
493 };
494
495 /* These are the types of forwarding objects used in the value slot
496 of symbols for special built-in variables whose value is stored in
497 C variables. */
498 enum Lisp_Fwd_Type
499 {
500 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
501 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
502 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
503 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
504 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
505 };
506
507 /* If you want to define a new Lisp data type, here are some
508 instructions. See the thread at
509 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
510 for more info.
511
512 First, there are already a couple of Lisp types that can be used if
513 your new type does not need to be exposed to Lisp programs nor
514 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
515 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
516 is suitable for temporarily stashing away pointers and integers in
517 a Lisp object. The latter is useful for vector-like Lisp objects
518 that need to be used as part of other objects, but which are never
519 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
520 an example).
521
522 These two types don't look pretty when printed, so they are
523 unsuitable for Lisp objects that can be exposed to users.
524
525 To define a new data type, add one more Lisp_Misc subtype or one
526 more pseudovector subtype. Pseudovectors are more suitable for
527 objects with several slots that need to support fast random access,
528 while Lisp_Misc types are for everything else. A pseudovector object
529 provides one or more slots for Lisp objects, followed by struct
530 members that are accessible only from C. A Lisp_Misc object is a
531 wrapper for a C struct that can contain anything you like.
532
533 Explicit freeing is discouraged for Lisp objects in general. But if
534 you really need to exploit this, use Lisp_Misc (check free_misc in
535 alloc.c to see why). There is no way to free a vectorlike object.
536
537 To add a new pseudovector type, extend the pvec_type enumeration;
538 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
539
540 For a Lisp_Misc, you will also need to add your entry to union
541 Lisp_Misc (but make sure the first word has the same structure as
542 the others, starting with a 16-bit member of the Lisp_Misc_Type
543 enumeration and a 1-bit GC markbit) and make sure the overall size
544 of the union is not increased by your addition.
545
546 For a new pseudovector, it's highly desirable to limit the size
547 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
548 Otherwise you will need to change sweep_vectors (also in alloc.c).
549
550 Then you will need to add switch branches in print.c (in
551 print_object, to print your object, and possibly also in
552 print_preprocess) and to alloc.c, to mark your object (in
553 mark_object) and to free it (in gc_sweep). The latter is also the
554 right place to call any code specific to your data type that needs
555 to run when the object is recycled -- e.g., free any additional
556 resources allocated for it that are not Lisp objects. You can even
557 make a pointer to the function that frees the resources a slot in
558 your object -- this way, the same object could be used to represent
559 several disparate C structures. */
560
561 #ifdef CHECK_LISP_OBJECT_TYPE
562
563 typedef struct { EMACS_INT i; } Lisp_Object;
564
565 #define LISP_INITIALLY_ZERO {0}
566
567 #undef CHECK_LISP_OBJECT_TYPE
568 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
569 #else /* CHECK_LISP_OBJECT_TYPE */
570
571 /* If a struct type is not wanted, define Lisp_Object as just a number. */
572
573 typedef EMACS_INT Lisp_Object;
574 #define LISP_INITIALLY_ZERO 0
575 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
576 #endif /* CHECK_LISP_OBJECT_TYPE */
577 \f
578 /* Forward declarations. */
579
580 /* Defined in this file. */
581 union Lisp_Fwd;
582 INLINE bool BOOL_VECTOR_P (Lisp_Object);
583 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
584 INLINE bool BUFFERP (Lisp_Object);
585 INLINE bool CHAR_TABLE_P (Lisp_Object);
586 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
587 INLINE bool (CONSP) (Lisp_Object);
588 INLINE bool (FLOATP) (Lisp_Object);
589 INLINE bool functionp (Lisp_Object);
590 INLINE bool (INTEGERP) (Lisp_Object);
591 INLINE bool (MARKERP) (Lisp_Object);
592 INLINE bool (MISCP) (Lisp_Object);
593 INLINE bool (NILP) (Lisp_Object);
594 INLINE bool OVERLAYP (Lisp_Object);
595 INLINE bool PROCESSP (Lisp_Object);
596 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
597 INLINE bool SAVE_VALUEP (Lisp_Object);
598 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
599 Lisp_Object);
600 INLINE bool STRINGP (Lisp_Object);
601 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
602 INLINE bool SUBRP (Lisp_Object);
603 INLINE bool (SYMBOLP) (Lisp_Object);
604 INLINE bool (VECTORLIKEP) (Lisp_Object);
605 INLINE bool WINDOWP (Lisp_Object);
606 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
607
608 /* Defined in chartab.c. */
609 extern Lisp_Object char_table_ref (Lisp_Object, int);
610 extern void char_table_set (Lisp_Object, int, Lisp_Object);
611
612 /* Defined in data.c. */
613 extern Lisp_Object Qarrayp, Qbufferp, Qbuffer_or_string_p, Qchar_table_p;
614 extern Lisp_Object Qconsp, Qfloatp, Qintegerp, Qlambda, Qlistp, Qmarkerp, Qnil;
615 extern Lisp_Object Qnumberp, Qstringp, Qsymbolp, Qt, Qvectorp;
616 extern Lisp_Object Qbool_vector_p;
617 extern Lisp_Object Qvector_or_char_table_p, Qwholenump;
618 extern Lisp_Object Qwindow;
619 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
620 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
621
622 /* Defined in emacs.c. */
623 extern bool might_dump;
624 /* True means Emacs has already been initialized.
625 Used during startup to detect startup of dumped Emacs. */
626 extern bool initialized;
627
628 /* Defined in eval.c. */
629 extern Lisp_Object Qautoload;
630
631 /* Defined in floatfns.c. */
632 extern double extract_float (Lisp_Object);
633
634 /* Defined in process.c. */
635 extern Lisp_Object Qprocessp;
636
637 /* Defined in window.c. */
638 extern Lisp_Object Qwindowp;
639
640 /* Defined in xdisp.c. */
641 extern Lisp_Object Qimage;
642 extern Lisp_Object Qfontification_functions;
643 \f
644 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
645 At the machine level, these operations are no-ops. */
646 LISP_MACRO_DEFUN (XLI, EMACS_INT, (Lisp_Object o), (o))
647 LISP_MACRO_DEFUN (XIL, Lisp_Object, (EMACS_INT i), (i))
648
649 /* In the size word of a vector, this bit means the vector has been marked. */
650
651 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
652 # define ARRAY_MARK_FLAG PTRDIFF_MIN
653 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
654
655 /* In the size word of a struct Lisp_Vector, this bit means it's really
656 some other vector-like object. */
657 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
658 # define PSEUDOVECTOR_FLAG (PTRDIFF_MAX - PTRDIFF_MAX / 2)
659 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
660
661 /* In a pseudovector, the size field actually contains a word with one
662 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
663 with PVEC_TYPE_MASK to indicate the actual type. */
664 enum pvec_type
665 {
666 PVEC_NORMAL_VECTOR,
667 PVEC_FREE,
668 PVEC_PROCESS,
669 PVEC_FRAME,
670 PVEC_WINDOW,
671 PVEC_BOOL_VECTOR,
672 PVEC_BUFFER,
673 PVEC_HASH_TABLE,
674 PVEC_TERMINAL,
675 PVEC_WINDOW_CONFIGURATION,
676 PVEC_SUBR,
677 PVEC_OTHER,
678 #ifdef HAVE_XWIDGETS
679 PVEC_XWIDGET,
680 PVEC_XWIDGET_VIEW,
681 #endif
682
683 /* These should be last, check internal_equal to see why. */
684 PVEC_COMPILED,
685 PVEC_CHAR_TABLE,
686 PVEC_SUB_CHAR_TABLE,
687 PVEC_FONT /* Should be last because it's used for range checking. */
688 };
689
690 enum More_Lisp_Bits
691 {
692 /* For convenience, we also store the number of elements in these bits.
693 Note that this size is not necessarily the memory-footprint size, but
694 only the number of Lisp_Object fields (that need to be traced by GC).
695 The distinction is used, e.g., by Lisp_Process, which places extra
696 non-Lisp_Object fields at the end of the structure. */
697 PSEUDOVECTOR_SIZE_BITS = 12,
698 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
699
700 /* To calculate the memory footprint of the pseudovector, it's useful
701 to store the size of non-Lisp area in word_size units here. */
702 PSEUDOVECTOR_REST_BITS = 12,
703 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
704 << PSEUDOVECTOR_SIZE_BITS),
705
706 /* Used to extract pseudovector subtype information. */
707 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
708 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
709 };
710 \f
711 /* These functions extract various sorts of values from a Lisp_Object.
712 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
713 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
714 that cons. */
715
716 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
717 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
718 # define VALMASK (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
719 DEFINE_GDB_SYMBOL_END (VALMASK)
720
721 /* Largest and smallest representable fixnum values. These are the C
722 values. They are macros for use in static initializers. */
723 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
724 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
725
726 /* Extract the pointer hidden within A. */
727 LISP_MACRO_DEFUN (XPNTR, void *, (Lisp_Object a), (a))
728
729 #if USE_LSB_TAG
730
731 LISP_MACRO_DEFUN (make_number, Lisp_Object, (EMACS_INT n), (n))
732 LISP_MACRO_DEFUN (XINT, EMACS_INT, (Lisp_Object a), (a))
733 LISP_MACRO_DEFUN (XFASTINT, EMACS_INT, (Lisp_Object a), (a))
734 LISP_MACRO_DEFUN (XTYPE, enum Lisp_Type, (Lisp_Object a), (a))
735 LISP_MACRO_DEFUN (XUNTAG, void *, (Lisp_Object a, int type), (a, type))
736
737 #else /* ! USE_LSB_TAG */
738
739 /* Although compiled only if ! USE_LSB_TAG, the following functions
740 also work when USE_LSB_TAG; this is to aid future maintenance when
741 the lisp_h_* macros are eventually removed. */
742
743 /* Make a Lisp integer representing the value of the low order
744 bits of N. */
745 INLINE Lisp_Object
746 make_number (EMACS_INT n)
747 {
748 EMACS_INT int0 = Lisp_Int0;
749 if (USE_LSB_TAG)
750 {
751 EMACS_UINT u = n;
752 n = u << INTTYPEBITS;
753 n += int0;
754 }
755 else
756 {
757 n &= INTMASK;
758 n += (int0 << VALBITS);
759 }
760 return XIL (n);
761 }
762
763 /* Extract A's value as a signed integer. */
764 INLINE EMACS_INT
765 XINT (Lisp_Object a)
766 {
767 EMACS_INT i = XLI (a);
768 if (! USE_LSB_TAG)
769 {
770 EMACS_UINT u = i;
771 i = u << INTTYPEBITS;
772 }
773 return i >> INTTYPEBITS;
774 }
775
776 /* Like XINT (A), but may be faster. A must be nonnegative.
777 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
778 integers have zero-bits in their tags. */
779 INLINE EMACS_INT
780 XFASTINT (Lisp_Object a)
781 {
782 EMACS_INT int0 = Lisp_Int0;
783 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a) - (int0 << VALBITS);
784 eassert (0 <= n);
785 return n;
786 }
787
788 /* Extract A's type. */
789 INLINE enum Lisp_Type
790 XTYPE (Lisp_Object a)
791 {
792 EMACS_UINT i = XLI (a);
793 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
794 }
795
796 /* Extract A's pointer value, assuming A's type is TYPE. */
797 INLINE void *
798 XUNTAG (Lisp_Object a, int type)
799 {
800 if (USE_LSB_TAG)
801 {
802 intptr_t i = XLI (a) - type;
803 return (void *) i;
804 }
805 return XPNTR (a);
806 }
807
808 #endif /* ! USE_LSB_TAG */
809
810 /* Extract A's value as an unsigned integer. */
811 INLINE EMACS_UINT
812 XUINT (Lisp_Object a)
813 {
814 EMACS_UINT i = XLI (a);
815 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
816 }
817
818 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
819 right now, but XUINT should only be applied to objects we know are
820 integers. */
821 LISP_MACRO_DEFUN (XHASH, EMACS_INT, (Lisp_Object a), (a))
822
823 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
824 INLINE Lisp_Object
825 make_natnum (EMACS_INT n)
826 {
827 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
828 EMACS_INT int0 = Lisp_Int0;
829 return USE_LSB_TAG ? make_number (n) : XIL (n + (int0 << VALBITS));
830 }
831
832 /* Return true if X and Y are the same object. */
833 LISP_MACRO_DEFUN (EQ, bool, (Lisp_Object x, Lisp_Object y), (x, y))
834
835 /* Value is true if I doesn't fit into a Lisp fixnum. It is
836 written this way so that it also works if I is of unsigned
837 type or if I is a NaN. */
838
839 #define FIXNUM_OVERFLOW_P(i) \
840 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
841
842 INLINE ptrdiff_t
843 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
844 {
845 return num < lower ? lower : num <= upper ? num : upper;
846 }
847 \f
848
849 /* Extract a value or address from a Lisp_Object. */
850
851 LISP_MACRO_DEFUN (XCONS, struct Lisp_Cons *, (Lisp_Object a), (a))
852
853 INLINE struct Lisp_Vector *
854 XVECTOR (Lisp_Object a)
855 {
856 eassert (VECTORLIKEP (a));
857 return XUNTAG (a, Lisp_Vectorlike);
858 }
859
860 INLINE struct Lisp_String *
861 XSTRING (Lisp_Object a)
862 {
863 eassert (STRINGP (a));
864 return XUNTAG (a, Lisp_String);
865 }
866
867 LISP_MACRO_DEFUN (XSYMBOL, struct Lisp_Symbol *, (Lisp_Object a), (a))
868
869 INLINE struct Lisp_Float *
870 XFLOAT (Lisp_Object a)
871 {
872 eassert (FLOATP (a));
873 return XUNTAG (a, Lisp_Float);
874 }
875
876 /* Pseudovector types. */
877
878 INLINE struct Lisp_Process *
879 XPROCESS (Lisp_Object a)
880 {
881 eassert (PROCESSP (a));
882 return XUNTAG (a, Lisp_Vectorlike);
883 }
884
885 INLINE struct window *
886 XWINDOW (Lisp_Object a)
887 {
888 eassert (WINDOWP (a));
889 return XUNTAG (a, Lisp_Vectorlike);
890 }
891
892 INLINE struct terminal *
893 XTERMINAL (Lisp_Object a)
894 {
895 return XUNTAG (a, Lisp_Vectorlike);
896 }
897
898 INLINE struct Lisp_Subr *
899 XSUBR (Lisp_Object a)
900 {
901 eassert (SUBRP (a));
902 return XUNTAG (a, Lisp_Vectorlike);
903 }
904
905 INLINE struct buffer *
906 XBUFFER (Lisp_Object a)
907 {
908 eassert (BUFFERP (a));
909 return XUNTAG (a, Lisp_Vectorlike);
910 }
911
912 INLINE struct Lisp_Char_Table *
913 XCHAR_TABLE (Lisp_Object a)
914 {
915 eassert (CHAR_TABLE_P (a));
916 return XUNTAG (a, Lisp_Vectorlike);
917 }
918
919 INLINE struct Lisp_Sub_Char_Table *
920 XSUB_CHAR_TABLE (Lisp_Object a)
921 {
922 eassert (SUB_CHAR_TABLE_P (a));
923 return XUNTAG (a, Lisp_Vectorlike);
924 }
925
926 INLINE struct Lisp_Bool_Vector *
927 XBOOL_VECTOR (Lisp_Object a)
928 {
929 eassert (BOOL_VECTOR_P (a));
930 return XUNTAG (a, Lisp_Vectorlike);
931 }
932
933 /* Construct a Lisp_Object from a value or address. */
934
935 INLINE Lisp_Object
936 make_lisp_ptr (void *ptr, enum Lisp_Type type)
937 {
938 EMACS_UINT utype = type;
939 EMACS_UINT typebits = USE_LSB_TAG ? type : utype << VALBITS;
940 Lisp_Object a = XIL (typebits | (uintptr_t) ptr);
941 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
942 return a;
943 }
944
945 INLINE Lisp_Object
946 make_lisp_proc (struct Lisp_Process *p)
947 {
948 return make_lisp_ptr (p, Lisp_Vectorlike);
949 }
950
951 #define XSETINT(a, b) ((a) = make_number (b))
952 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
953 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
954 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
955 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
956 #define XSETSYMBOL(a, b) ((a) = make_lisp_ptr (b, Lisp_Symbol))
957 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
958 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
959
960 /* Pseudovector types. */
961
962 #define XSETPVECTYPE(v, code) \
963 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
964 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
965 ((v)->header.size = (PSEUDOVECTOR_FLAG \
966 | ((code) << PSEUDOVECTOR_AREA_BITS) \
967 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
968 | (lispsize)))
969
970 /* The cast to struct vectorlike_header * avoids aliasing issues. */
971 #define XSETPSEUDOVECTOR(a, b, code) \
972 XSETTYPED_PSEUDOVECTOR (a, b, \
973 (((struct vectorlike_header *) \
974 XUNTAG (a, Lisp_Vectorlike)) \
975 ->size), \
976 code)
977 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
978 (XSETVECTOR (a, b), \
979 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
980 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
981
982 #define XSETWINDOW_CONFIGURATION(a, b) \
983 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
984 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
985 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
986 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
987 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
988 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
989 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
990 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
991 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
992 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
993
994 /* Type checking. */
995
996 LISP_MACRO_DEFUN_VOID (CHECK_TYPE,
997 (int ok, Lisp_Object predicate, Lisp_Object x),
998 (ok, predicate, x))
999
1000 /* Deprecated and will be removed soon. */
1001
1002 #define INTERNAL_FIELD(field) field ## _
1003
1004 /* See the macros in intervals.h. */
1005
1006 typedef struct interval *INTERVAL;
1007
1008 struct GCALIGNED Lisp_Cons
1009 {
1010 /* Car of this cons cell. */
1011 Lisp_Object car;
1012
1013 union
1014 {
1015 /* Cdr of this cons cell. */
1016 Lisp_Object cdr;
1017
1018 /* Used to chain conses on a free list. */
1019 struct Lisp_Cons *chain;
1020 } u;
1021 };
1022
1023 /* Take the car or cdr of something known to be a cons cell. */
1024 /* The _addr functions shouldn't be used outside of the minimal set
1025 of code that has to know what a cons cell looks like. Other code not
1026 part of the basic lisp implementation should assume that the car and cdr
1027 fields are not accessible. (What if we want to switch to
1028 a copying collector someday? Cached cons cell field addresses may be
1029 invalidated at arbitrary points.) */
1030 INLINE Lisp_Object *
1031 xcar_addr (Lisp_Object c)
1032 {
1033 return &XCONS (c)->car;
1034 }
1035 INLINE Lisp_Object *
1036 xcdr_addr (Lisp_Object c)
1037 {
1038 return &XCONS (c)->u.cdr;
1039 }
1040
1041 /* Use these from normal code. */
1042 LISP_MACRO_DEFUN (XCAR, Lisp_Object, (Lisp_Object c), (c))
1043 LISP_MACRO_DEFUN (XCDR, Lisp_Object, (Lisp_Object c), (c))
1044
1045 /* Use these to set the fields of a cons cell.
1046
1047 Note that both arguments may refer to the same object, so 'n'
1048 should not be read after 'c' is first modified. */
1049 INLINE void
1050 XSETCAR (Lisp_Object c, Lisp_Object n)
1051 {
1052 *xcar_addr (c) = n;
1053 }
1054 INLINE void
1055 XSETCDR (Lisp_Object c, Lisp_Object n)
1056 {
1057 *xcdr_addr (c) = n;
1058 }
1059
1060 /* Take the car or cdr of something whose type is not known. */
1061 INLINE Lisp_Object
1062 CAR (Lisp_Object c)
1063 {
1064 return (CONSP (c) ? XCAR (c)
1065 : NILP (c) ? Qnil
1066 : wrong_type_argument (Qlistp, c));
1067 }
1068 INLINE Lisp_Object
1069 CDR (Lisp_Object c)
1070 {
1071 return (CONSP (c) ? XCDR (c)
1072 : NILP (c) ? Qnil
1073 : wrong_type_argument (Qlistp, c));
1074 }
1075
1076 /* Take the car or cdr of something whose type is not known. */
1077 INLINE Lisp_Object
1078 CAR_SAFE (Lisp_Object c)
1079 {
1080 return CONSP (c) ? XCAR (c) : Qnil;
1081 }
1082 INLINE Lisp_Object
1083 CDR_SAFE (Lisp_Object c)
1084 {
1085 return CONSP (c) ? XCDR (c) : Qnil;
1086 }
1087
1088 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1089
1090 struct GCALIGNED Lisp_String
1091 {
1092 ptrdiff_t size;
1093 ptrdiff_t size_byte;
1094 INTERVAL intervals; /* Text properties in this string. */
1095 unsigned char *data;
1096 };
1097
1098 /* True if STR is a multibyte string. */
1099 INLINE bool
1100 STRING_MULTIBYTE (Lisp_Object str)
1101 {
1102 return 0 <= XSTRING (str)->size_byte;
1103 }
1104
1105 /* An upper bound on the number of bytes in a Lisp string, not
1106 counting the terminating null. This a tight enough bound to
1107 prevent integer overflow errors that would otherwise occur during
1108 string size calculations. A string cannot contain more bytes than
1109 a fixnum can represent, nor can it be so long that C pointer
1110 arithmetic stops working on the string plus its terminating null.
1111 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1112 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1113 would expose alloc.c internal details that we'd rather keep
1114 private.
1115
1116 This is a macro for use in static initializers. The cast to
1117 ptrdiff_t ensures that the macro is signed. */
1118 #define STRING_BYTES_BOUND \
1119 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1120
1121 /* Mark STR as a unibyte string. */
1122 #define STRING_SET_UNIBYTE(STR) \
1123 do { \
1124 if (EQ (STR, empty_multibyte_string)) \
1125 (STR) = empty_unibyte_string; \
1126 else \
1127 XSTRING (STR)->size_byte = -1; \
1128 } while (false)
1129
1130 /* Mark STR as a multibyte string. Assure that STR contains only
1131 ASCII characters in advance. */
1132 #define STRING_SET_MULTIBYTE(STR) \
1133 do { \
1134 if (EQ (STR, empty_unibyte_string)) \
1135 (STR) = empty_multibyte_string; \
1136 else \
1137 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1138 } while (false)
1139
1140 /* Convenience functions for dealing with Lisp strings. */
1141
1142 INLINE unsigned char *
1143 SDATA (Lisp_Object string)
1144 {
1145 return XSTRING (string)->data;
1146 }
1147 INLINE char *
1148 SSDATA (Lisp_Object string)
1149 {
1150 /* Avoid "differ in sign" warnings. */
1151 return (char *) SDATA (string);
1152 }
1153 INLINE unsigned char
1154 SREF (Lisp_Object string, ptrdiff_t index)
1155 {
1156 return SDATA (string)[index];
1157 }
1158 INLINE void
1159 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1160 {
1161 SDATA (string)[index] = new;
1162 }
1163 INLINE ptrdiff_t
1164 SCHARS (Lisp_Object string)
1165 {
1166 return XSTRING (string)->size;
1167 }
1168
1169 #ifdef GC_CHECK_STRING_BYTES
1170 extern ptrdiff_t string_bytes (struct Lisp_String *);
1171 #endif
1172 INLINE ptrdiff_t
1173 STRING_BYTES (struct Lisp_String *s)
1174 {
1175 #ifdef GC_CHECK_STRING_BYTES
1176 return string_bytes (s);
1177 #else
1178 return s->size_byte < 0 ? s->size : s->size_byte;
1179 #endif
1180 }
1181
1182 INLINE ptrdiff_t
1183 SBYTES (Lisp_Object string)
1184 {
1185 return STRING_BYTES (XSTRING (string));
1186 }
1187 INLINE void
1188 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1189 {
1190 XSTRING (string)->size = newsize;
1191 }
1192
1193 /* Header of vector-like objects. This documents the layout constraints on
1194 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1195 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1196 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1197 because when two such pointers potentially alias, a compiler won't
1198 incorrectly reorder loads and stores to their size fields. See
1199 Bug#8546. */
1200 struct vectorlike_header
1201 {
1202 /* The only field contains various pieces of information:
1203 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1204 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1205 vector (0) or a pseudovector (1).
1206 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1207 of slots) of the vector.
1208 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1209 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1210 - b) number of Lisp_Objects slots at the beginning of the object
1211 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1212 traced by the GC;
1213 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1214 measured in word_size units. Rest fields may also include
1215 Lisp_Objects, but these objects usually needs some special treatment
1216 during GC.
1217 There are some exceptions. For PVEC_FREE, b) is always zero. For
1218 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1219 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1220 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1221 ptrdiff_t size;
1222 };
1223
1224 /* A regular vector is just a header plus an array of Lisp_Objects. */
1225
1226 struct Lisp_Vector
1227 {
1228 struct vectorlike_header header;
1229 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1230 };
1231
1232 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1233 enum
1234 {
1235 ALIGNOF_STRUCT_LISP_VECTOR
1236 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1237 };
1238
1239 /* A boolvector is a kind of vectorlike, with contents like a string. */
1240
1241 struct Lisp_Bool_Vector
1242 {
1243 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1244 just the subtype information. */
1245 struct vectorlike_header header;
1246 /* This is the size in bits. */
1247 EMACS_INT size;
1248 /* The actual bits, packed into bytes.
1249 Zeros fill out the last word if needed.
1250 The bits are in little-endian order in the bytes, and
1251 the bytes are in little-endian order in the words. */
1252 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1253 };
1254
1255 INLINE EMACS_INT
1256 bool_vector_size (Lisp_Object a)
1257 {
1258 EMACS_INT size = XBOOL_VECTOR (a)->size;
1259 eassume (0 <= size);
1260 return size;
1261 }
1262
1263 INLINE bits_word *
1264 bool_vector_data (Lisp_Object a)
1265 {
1266 return XBOOL_VECTOR (a)->data;
1267 }
1268
1269 INLINE unsigned char *
1270 bool_vector_uchar_data (Lisp_Object a)
1271 {
1272 return (unsigned char *) bool_vector_data (a);
1273 }
1274
1275 /* The number of data words and bytes in a bool vector with SIZE bits. */
1276
1277 INLINE EMACS_INT
1278 bool_vector_words (EMACS_INT size)
1279 {
1280 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1281 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1282 }
1283
1284 INLINE EMACS_INT
1285 bool_vector_bytes (EMACS_INT size)
1286 {
1287 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1288 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1289 }
1290
1291 /* True if A's Ith bit is set. */
1292
1293 INLINE bool
1294 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1295 {
1296 eassume (0 <= i && i < bool_vector_size (a));
1297 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1298 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1299 }
1300
1301 INLINE Lisp_Object
1302 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1303 {
1304 return bool_vector_bitref (a, i) ? Qt : Qnil;
1305 }
1306
1307 /* Set A's Ith bit to B. */
1308
1309 INLINE void
1310 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1311 {
1312 unsigned char *addr;
1313
1314 eassume (0 <= i && i < bool_vector_size (a));
1315 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1316
1317 if (b)
1318 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1319 else
1320 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1321 }
1322
1323 /* Some handy constants for calculating sizes
1324 and offsets, mostly of vectorlike objects. */
1325
1326 enum
1327 {
1328 header_size = offsetof (struct Lisp_Vector, contents),
1329 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1330 word_size = sizeof (Lisp_Object)
1331 };
1332
1333 /* Conveniences for dealing with Lisp arrays. */
1334
1335 INLINE Lisp_Object
1336 AREF (Lisp_Object array, ptrdiff_t idx)
1337 {
1338 return XVECTOR (array)->contents[idx];
1339 }
1340
1341 INLINE Lisp_Object *
1342 aref_addr (Lisp_Object array, ptrdiff_t idx)
1343 {
1344 return & XVECTOR (array)->contents[idx];
1345 }
1346
1347 INLINE ptrdiff_t
1348 ASIZE (Lisp_Object array)
1349 {
1350 return XVECTOR (array)->header.size;
1351 }
1352
1353 INLINE void
1354 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1355 {
1356 eassert (0 <= idx && idx < ASIZE (array));
1357 XVECTOR (array)->contents[idx] = val;
1358 }
1359
1360 INLINE void
1361 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1362 {
1363 /* Like ASET, but also can be used in the garbage collector:
1364 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1365 eassert (0 <= idx && idx < (ASIZE (array) & ~ARRAY_MARK_FLAG));
1366 XVECTOR (array)->contents[idx] = val;
1367 }
1368
1369 /* If a struct is made to look like a vector, this macro returns the length
1370 of the shortest vector that would hold that struct. */
1371
1372 #define VECSIZE(type) \
1373 ((sizeof (type) - header_size + word_size - 1) / word_size)
1374
1375 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1376 at the end and we need to compute the number of Lisp_Object fields (the
1377 ones that the GC needs to trace). */
1378
1379 #define PSEUDOVECSIZE(type, nonlispfield) \
1380 ((offsetof (type, nonlispfield) - header_size) / word_size)
1381
1382 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1383 should be integer expressions. This is not the same as
1384 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1385 returns true. For efficiency, prefer plain unsigned comparison if A
1386 and B's sizes both fit (after integer promotion). */
1387 #define UNSIGNED_CMP(a, op, b) \
1388 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1389 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1390 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1391
1392 /* True iff C is an ASCII character. */
1393 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1394
1395 /* A char-table is a kind of vectorlike, with contents are like a
1396 vector but with a few other slots. For some purposes, it makes
1397 sense to handle a char-table with type struct Lisp_Vector. An
1398 element of a char table can be any Lisp objects, but if it is a sub
1399 char-table, we treat it a table that contains information of a
1400 specific range of characters. A sub char-table is like a vector but
1401 with two integer fields between the header and Lisp data, which means
1402 that it has to be marked with some precautions (see mark_char_table
1403 in alloc.c). A sub char-table appears only in an element of a char-table,
1404 and there's no way to access it directly from Emacs Lisp program. */
1405
1406 enum CHARTAB_SIZE_BITS
1407 {
1408 CHARTAB_SIZE_BITS_0 = 6,
1409 CHARTAB_SIZE_BITS_1 = 4,
1410 CHARTAB_SIZE_BITS_2 = 5,
1411 CHARTAB_SIZE_BITS_3 = 7
1412 };
1413
1414 extern const int chartab_size[4];
1415
1416 struct Lisp_Char_Table
1417 {
1418 /* HEADER.SIZE is the vector's size field, which also holds the
1419 pseudovector type information. It holds the size, too.
1420 The size counts the defalt, parent, purpose, ascii,
1421 contents, and extras slots. */
1422 struct vectorlike_header header;
1423
1424 /* This holds a default value,
1425 which is used whenever the value for a specific character is nil. */
1426 Lisp_Object defalt;
1427
1428 /* This points to another char table, which we inherit from when the
1429 value for a specific character is nil. The `defalt' slot takes
1430 precedence over this. */
1431 Lisp_Object parent;
1432
1433 /* This is a symbol which says what kind of use this char-table is
1434 meant for. */
1435 Lisp_Object purpose;
1436
1437 /* The bottom sub char-table for characters of the range 0..127. It
1438 is nil if none of ASCII character has a specific value. */
1439 Lisp_Object ascii;
1440
1441 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1442
1443 /* These hold additional data. It is a vector. */
1444 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1445 };
1446
1447 struct Lisp_Sub_Char_Table
1448 {
1449 /* HEADER.SIZE is the vector's size field, which also holds the
1450 pseudovector type information. It holds the size, too. */
1451 struct vectorlike_header header;
1452
1453 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1454 char-table of depth 1 contains 16 elements, and each element
1455 covers 4096 (128*32) characters. A sub char-table of depth 2
1456 contains 32 elements, and each element covers 128 characters. A
1457 sub char-table of depth 3 contains 128 elements, and each element
1458 is for one character. */
1459 int depth;
1460
1461 /* Minimum character covered by the sub char-table. */
1462 int min_char;
1463
1464 /* Use set_sub_char_table_contents to set this. */
1465 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1466 };
1467
1468 INLINE Lisp_Object
1469 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1470 {
1471 struct Lisp_Char_Table *tbl = NULL;
1472 Lisp_Object val;
1473 do
1474 {
1475 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1476 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1477 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1478 if (NILP (val))
1479 val = tbl->defalt;
1480 }
1481 while (NILP (val) && ! NILP (tbl->parent));
1482
1483 return val;
1484 }
1485
1486 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1487 characters. Do not check validity of CT. */
1488 INLINE Lisp_Object
1489 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1490 {
1491 return (ASCII_CHAR_P (idx)
1492 ? CHAR_TABLE_REF_ASCII (ct, idx)
1493 : char_table_ref (ct, idx));
1494 }
1495
1496 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1497 8-bit European characters. Do not check validity of CT. */
1498 INLINE void
1499 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1500 {
1501 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1502 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1503 else
1504 char_table_set (ct, idx, val);
1505 }
1506
1507 /* This structure describes a built-in function.
1508 It is generated by the DEFUN macro only.
1509 defsubr makes it into a Lisp object. */
1510
1511 struct Lisp_Subr
1512 {
1513 struct vectorlike_header header;
1514 union {
1515 Lisp_Object (*a0) (void);
1516 Lisp_Object (*a1) (Lisp_Object);
1517 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1518 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1519 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1520 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1521 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1522 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1523 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1524 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1525 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1526 } function;
1527 short min_args, max_args;
1528 const char *symbol_name;
1529 const char *intspec;
1530 const char *doc;
1531 };
1532
1533 enum char_table_specials
1534 {
1535 /* This is the number of slots that every char table must have. This
1536 counts the ordinary slots and the top, defalt, parent, and purpose
1537 slots. */
1538 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1539
1540 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1541 when the latter is treated as an ordinary Lisp_Vector. */
1542 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1543 };
1544
1545 /* Return the number of "extra" slots in the char table CT. */
1546
1547 INLINE int
1548 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1549 {
1550 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1551 - CHAR_TABLE_STANDARD_SLOTS);
1552 }
1553
1554 /* Make sure that sub char-table contents slot
1555 is aligned on a multiple of Lisp_Objects. */
1556 verify ((offsetof (struct Lisp_Sub_Char_Table, contents)
1557 - offsetof (struct Lisp_Sub_Char_Table, depth)) % word_size == 0);
1558
1559 /***********************************************************************
1560 Symbols
1561 ***********************************************************************/
1562
1563 /* Interned state of a symbol. */
1564
1565 enum symbol_interned
1566 {
1567 SYMBOL_UNINTERNED = 0,
1568 SYMBOL_INTERNED = 1,
1569 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
1570 };
1571
1572 enum symbol_redirect
1573 {
1574 SYMBOL_PLAINVAL = 4,
1575 SYMBOL_VARALIAS = 1,
1576 SYMBOL_LOCALIZED = 2,
1577 SYMBOL_FORWARDED = 3
1578 };
1579
1580 struct Lisp_Symbol
1581 {
1582 bool_bf gcmarkbit : 1;
1583
1584 /* Indicates where the value can be found:
1585 0 : it's a plain var, the value is in the `value' field.
1586 1 : it's a varalias, the value is really in the `alias' symbol.
1587 2 : it's a localized var, the value is in the `blv' object.
1588 3 : it's a forwarding variable, the value is in `forward'. */
1589 ENUM_BF (symbol_redirect) redirect : 3;
1590
1591 /* Non-zero means symbol is constant, i.e. changing its value
1592 should signal an error. If the value is 3, then the var
1593 can be changed, but only by `defconst'. */
1594 unsigned constant : 2;
1595
1596 /* Interned state of the symbol. This is an enumerator from
1597 enum symbol_interned. */
1598 unsigned interned : 2;
1599
1600 /* True means that this variable has been explicitly declared
1601 special (with `defvar' etc), and shouldn't be lexically bound. */
1602 bool_bf declared_special : 1;
1603
1604 /* True if pointed to from purespace and hence can't be GC'd. */
1605 bool_bf pinned : 1;
1606
1607 /* The symbol's name, as a Lisp string. */
1608 Lisp_Object name;
1609
1610 /* Value of the symbol or Qunbound if unbound. Which alternative of the
1611 union is used depends on the `redirect' field above. */
1612 union {
1613 Lisp_Object value;
1614 struct Lisp_Symbol *alias;
1615 struct Lisp_Buffer_Local_Value *blv;
1616 union Lisp_Fwd *fwd;
1617 } val;
1618
1619 /* Function value of the symbol or Qnil if not fboundp. */
1620 Lisp_Object function;
1621
1622 /* The symbol's property list. */
1623 Lisp_Object plist;
1624
1625 /* Next symbol in obarray bucket, if the symbol is interned. */
1626 struct Lisp_Symbol *next;
1627 };
1628
1629 /* Value is name of symbol. */
1630
1631 LISP_MACRO_DEFUN (SYMBOL_VAL, Lisp_Object, (struct Lisp_Symbol *sym), (sym))
1632
1633 INLINE struct Lisp_Symbol *
1634 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1635 {
1636 eassert (sym->redirect == SYMBOL_VARALIAS);
1637 return sym->val.alias;
1638 }
1639 INLINE struct Lisp_Buffer_Local_Value *
1640 SYMBOL_BLV (struct Lisp_Symbol *sym)
1641 {
1642 eassert (sym->redirect == SYMBOL_LOCALIZED);
1643 return sym->val.blv;
1644 }
1645 INLINE union Lisp_Fwd *
1646 SYMBOL_FWD (struct Lisp_Symbol *sym)
1647 {
1648 eassert (sym->redirect == SYMBOL_FORWARDED);
1649 return sym->val.fwd;
1650 }
1651
1652 LISP_MACRO_DEFUN_VOID (SET_SYMBOL_VAL,
1653 (struct Lisp_Symbol *sym, Lisp_Object v), (sym, v))
1654
1655 INLINE void
1656 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1657 {
1658 eassert (sym->redirect == SYMBOL_VARALIAS);
1659 sym->val.alias = v;
1660 }
1661 INLINE void
1662 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1663 {
1664 eassert (sym->redirect == SYMBOL_LOCALIZED);
1665 sym->val.blv = v;
1666 }
1667 INLINE void
1668 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1669 {
1670 eassert (sym->redirect == SYMBOL_FORWARDED);
1671 sym->val.fwd = v;
1672 }
1673
1674 INLINE Lisp_Object
1675 SYMBOL_NAME (Lisp_Object sym)
1676 {
1677 return XSYMBOL (sym)->name;
1678 }
1679
1680 /* Value is true if SYM is an interned symbol. */
1681
1682 INLINE bool
1683 SYMBOL_INTERNED_P (Lisp_Object sym)
1684 {
1685 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1686 }
1687
1688 /* Value is true if SYM is interned in initial_obarray. */
1689
1690 INLINE bool
1691 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1692 {
1693 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1694 }
1695
1696 /* Value is non-zero if symbol is considered a constant, i.e. its
1697 value cannot be changed (there is an exception for keyword symbols,
1698 whose value can be set to the keyword symbol itself). */
1699
1700 LISP_MACRO_DEFUN (SYMBOL_CONSTANT_P, int, (Lisp_Object sym), (sym))
1701
1702 #define DEFSYM(sym, name) \
1703 do { (sym) = intern_c_string ((name)); staticpro (&(sym)); } while (false)
1704
1705 \f
1706 /***********************************************************************
1707 Hash Tables
1708 ***********************************************************************/
1709
1710 /* The structure of a Lisp hash table. */
1711
1712 struct hash_table_test
1713 {
1714 /* Name of the function used to compare keys. */
1715 Lisp_Object name;
1716
1717 /* User-supplied hash function, or nil. */
1718 Lisp_Object user_hash_function;
1719
1720 /* User-supplied key comparison function, or nil. */
1721 Lisp_Object user_cmp_function;
1722
1723 /* C function to compare two keys. */
1724 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1725
1726 /* C function to compute hash code. */
1727 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1728 };
1729
1730 struct Lisp_Hash_Table
1731 {
1732 /* This is for Lisp; the hash table code does not refer to it. */
1733 struct vectorlike_header header;
1734
1735 /* Nil if table is non-weak. Otherwise a symbol describing the
1736 weakness of the table. */
1737 Lisp_Object weak;
1738
1739 /* When the table is resized, and this is an integer, compute the
1740 new size by adding this to the old size. If a float, compute the
1741 new size by multiplying the old size with this factor. */
1742 Lisp_Object rehash_size;
1743
1744 /* Resize hash table when number of entries/ table size is >= this
1745 ratio, a float. */
1746 Lisp_Object rehash_threshold;
1747
1748 /* Vector of hash codes. If hash[I] is nil, this means that the
1749 I-th entry is unused. */
1750 Lisp_Object hash;
1751
1752 /* Vector used to chain entries. If entry I is free, next[I] is the
1753 entry number of the next free item. If entry I is non-free,
1754 next[I] is the index of the next entry in the collision chain. */
1755 Lisp_Object next;
1756
1757 /* Index of first free entry in free list. */
1758 Lisp_Object next_free;
1759
1760 /* Bucket vector. A non-nil entry is the index of the first item in
1761 a collision chain. This vector's size can be larger than the
1762 hash table size to reduce collisions. */
1763 Lisp_Object index;
1764
1765 /* Only the fields above are traced normally by the GC. The ones below
1766 `count' are special and are either ignored by the GC or traced in
1767 a special way (e.g. because of weakness). */
1768
1769 /* Number of key/value entries in the table. */
1770 ptrdiff_t count;
1771
1772 /* Vector of keys and values. The key of item I is found at index
1773 2 * I, the value is found at index 2 * I + 1.
1774 This is gc_marked specially if the table is weak. */
1775 Lisp_Object key_and_value;
1776
1777 /* The comparison and hash functions. */
1778 struct hash_table_test test;
1779
1780 /* Next weak hash table if this is a weak hash table. The head
1781 of the list is in weak_hash_tables. */
1782 struct Lisp_Hash_Table *next_weak;
1783 };
1784
1785
1786 INLINE struct Lisp_Hash_Table *
1787 XHASH_TABLE (Lisp_Object a)
1788 {
1789 return XUNTAG (a, Lisp_Vectorlike);
1790 }
1791
1792 #define XSET_HASH_TABLE(VAR, PTR) \
1793 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1794
1795 INLINE bool
1796 HASH_TABLE_P (Lisp_Object a)
1797 {
1798 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1799 }
1800
1801 /* Value is the key part of entry IDX in hash table H. */
1802 INLINE Lisp_Object
1803 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1804 {
1805 return AREF (h->key_and_value, 2 * idx);
1806 }
1807
1808 /* Value is the value part of entry IDX in hash table H. */
1809 INLINE Lisp_Object
1810 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1811 {
1812 return AREF (h->key_and_value, 2 * idx + 1);
1813 }
1814
1815 /* Value is the index of the next entry following the one at IDX
1816 in hash table H. */
1817 INLINE Lisp_Object
1818 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1819 {
1820 return AREF (h->next, idx);
1821 }
1822
1823 /* Value is the hash code computed for entry IDX in hash table H. */
1824 INLINE Lisp_Object
1825 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1826 {
1827 return AREF (h->hash, idx);
1828 }
1829
1830 /* Value is the index of the element in hash table H that is the
1831 start of the collision list at index IDX in the index vector of H. */
1832 INLINE Lisp_Object
1833 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1834 {
1835 return AREF (h->index, idx);
1836 }
1837
1838 /* Value is the size of hash table H. */
1839 INLINE ptrdiff_t
1840 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
1841 {
1842 return ASIZE (h->next);
1843 }
1844
1845 /* Default size for hash tables if not specified. */
1846
1847 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
1848
1849 /* Default threshold specifying when to resize a hash table. The
1850 value gives the ratio of current entries in the hash table and the
1851 size of the hash table. */
1852
1853 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
1854
1855 /* Default factor by which to increase the size of a hash table. */
1856
1857 static double const DEFAULT_REHASH_SIZE = 1.5;
1858
1859 /* Combine two integers X and Y for hashing. The result might not fit
1860 into a Lisp integer. */
1861
1862 INLINE EMACS_UINT
1863 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
1864 {
1865 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
1866 }
1867
1868 /* Hash X, returning a value that fits into a fixnum. */
1869
1870 INLINE EMACS_UINT
1871 SXHASH_REDUCE (EMACS_UINT x)
1872 {
1873 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
1874 }
1875
1876 /* These structures are used for various misc types. */
1877
1878 struct Lisp_Misc_Any /* Supertype of all Misc types. */
1879 {
1880 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
1881 bool_bf gcmarkbit : 1;
1882 unsigned spacer : 15;
1883 };
1884
1885 struct Lisp_Marker
1886 {
1887 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
1888 bool_bf gcmarkbit : 1;
1889 unsigned spacer : 13;
1890 /* This flag is temporarily used in the functions
1891 decode/encode_coding_object to record that the marker position
1892 must be adjusted after the conversion. */
1893 bool_bf need_adjustment : 1;
1894 /* True means normal insertion at the marker's position
1895 leaves the marker after the inserted text. */
1896 bool_bf insertion_type : 1;
1897 /* This is the buffer that the marker points into, or 0 if it points nowhere.
1898 Note: a chain of markers can contain markers pointing into different
1899 buffers (the chain is per buffer_text rather than per buffer, so it's
1900 shared between indirect buffers). */
1901 /* This is used for (other than NULL-checking):
1902 - Fmarker_buffer
1903 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
1904 - unchain_marker: to find the list from which to unchain.
1905 - Fkill_buffer: to only unchain the markers of current indirect buffer.
1906 */
1907 struct buffer *buffer;
1908
1909 /* The remaining fields are meaningless in a marker that
1910 does not point anywhere. */
1911
1912 /* For markers that point somewhere,
1913 this is used to chain of all the markers in a given buffer. */
1914 /* We could remove it and use an array in buffer_text instead.
1915 That would also allow to preserve it ordered. */
1916 struct Lisp_Marker *next;
1917 /* This is the char position where the marker points. */
1918 ptrdiff_t charpos;
1919 /* This is the byte position.
1920 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
1921 used to implement the functionality of markers, but rather to (ab)use
1922 markers as a cache for char<->byte mappings). */
1923 ptrdiff_t bytepos;
1924 };
1925
1926 /* START and END are markers in the overlay's buffer, and
1927 PLIST is the overlay's property list. */
1928 struct Lisp_Overlay
1929 /* An overlay's real data content is:
1930 - plist
1931 - buffer (really there are two buffer pointers, one per marker,
1932 and both points to the same buffer)
1933 - insertion type of both ends (per-marker fields)
1934 - start & start byte (of start marker)
1935 - end & end byte (of end marker)
1936 - next (singly linked list of overlays)
1937 - next fields of start and end markers (singly linked list of markers).
1938 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
1939 */
1940 {
1941 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
1942 bool_bf gcmarkbit : 1;
1943 unsigned spacer : 15;
1944 struct Lisp_Overlay *next;
1945 Lisp_Object start;
1946 Lisp_Object end;
1947 Lisp_Object plist;
1948 };
1949
1950 /* Types of data which may be saved in a Lisp_Save_Value. */
1951
1952 enum
1953 {
1954 SAVE_UNUSED,
1955 SAVE_INTEGER,
1956 SAVE_FUNCPOINTER,
1957 SAVE_POINTER,
1958 SAVE_OBJECT
1959 };
1960
1961 /* Number of bits needed to store one of the above values. */
1962 enum { SAVE_SLOT_BITS = 3 };
1963
1964 /* Number of slots in a save value where save_type is nonzero. */
1965 enum { SAVE_VALUE_SLOTS = 4 };
1966
1967 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
1968
1969 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
1970
1971 enum Lisp_Save_Type
1972 {
1973 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
1974 SAVE_TYPE_INT_INT_INT
1975 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
1976 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
1977 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
1978 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
1979 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
1980 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
1981 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
1982 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
1983 SAVE_TYPE_FUNCPTR_PTR_OBJ
1984 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
1985
1986 /* This has an extra bit indicating it's raw memory. */
1987 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
1988 };
1989
1990 /* Special object used to hold a different values for later use.
1991
1992 This is mostly used to package C integers and pointers to call
1993 record_unwind_protect when two or more values need to be saved.
1994 For example:
1995
1996 ...
1997 struct my_data *md = get_my_data ();
1998 ptrdiff_t mi = get_my_integer ();
1999 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2000 ...
2001
2002 Lisp_Object my_unwind (Lisp_Object arg)
2003 {
2004 struct my_data *md = XSAVE_POINTER (arg, 0);
2005 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2006 ...
2007 }
2008
2009 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2010 saved objects and raise eassert if type of the saved object doesn't match
2011 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2012 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2013 slot 0 is a pointer. */
2014
2015 typedef void (*voidfuncptr) (void);
2016
2017 struct Lisp_Save_Value
2018 {
2019 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2020 bool_bf gcmarkbit : 1;
2021 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2022
2023 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2024 V's data entries are determined by V->save_type. E.g., if
2025 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2026 V->data[1] is an integer, and V's other data entries are unused.
2027
2028 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2029 a memory area containing V->data[1].integer potential Lisp_Objects. */
2030 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2031 union {
2032 void *pointer;
2033 voidfuncptr funcpointer;
2034 ptrdiff_t integer;
2035 Lisp_Object object;
2036 } data[SAVE_VALUE_SLOTS];
2037 };
2038
2039 /* Return the type of V's Nth saved value. */
2040 INLINE int
2041 save_type (struct Lisp_Save_Value *v, int n)
2042 {
2043 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2044 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2045 }
2046
2047 /* Get and set the Nth saved pointer. */
2048
2049 INLINE void *
2050 XSAVE_POINTER (Lisp_Object obj, int n)
2051 {
2052 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2053 return XSAVE_VALUE (obj)->data[n].pointer;
2054 }
2055 INLINE void
2056 set_save_pointer (Lisp_Object obj, int n, void *val)
2057 {
2058 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2059 XSAVE_VALUE (obj)->data[n].pointer = val;
2060 }
2061 INLINE voidfuncptr
2062 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2063 {
2064 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2065 return XSAVE_VALUE (obj)->data[n].funcpointer;
2066 }
2067
2068 /* Likewise for the saved integer. */
2069
2070 INLINE ptrdiff_t
2071 XSAVE_INTEGER (Lisp_Object obj, int n)
2072 {
2073 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2074 return XSAVE_VALUE (obj)->data[n].integer;
2075 }
2076 INLINE void
2077 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2078 {
2079 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2080 XSAVE_VALUE (obj)->data[n].integer = val;
2081 }
2082
2083 /* Extract Nth saved object. */
2084
2085 INLINE Lisp_Object
2086 XSAVE_OBJECT (Lisp_Object obj, int n)
2087 {
2088 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2089 return XSAVE_VALUE (obj)->data[n].object;
2090 }
2091
2092 /* A miscellaneous object, when it's on the free list. */
2093 struct Lisp_Free
2094 {
2095 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2096 bool_bf gcmarkbit : 1;
2097 unsigned spacer : 15;
2098 union Lisp_Misc *chain;
2099 };
2100
2101 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2102 It uses one of these struct subtypes to get the type field. */
2103
2104 union Lisp_Misc
2105 {
2106 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2107 struct Lisp_Free u_free;
2108 struct Lisp_Marker u_marker;
2109 struct Lisp_Overlay u_overlay;
2110 struct Lisp_Save_Value u_save_value;
2111 };
2112
2113 INLINE union Lisp_Misc *
2114 XMISC (Lisp_Object a)
2115 {
2116 return XUNTAG (a, Lisp_Misc);
2117 }
2118
2119 INLINE struct Lisp_Misc_Any *
2120 XMISCANY (Lisp_Object a)
2121 {
2122 eassert (MISCP (a));
2123 return & XMISC (a)->u_any;
2124 }
2125
2126 INLINE enum Lisp_Misc_Type
2127 XMISCTYPE (Lisp_Object a)
2128 {
2129 return XMISCANY (a)->type;
2130 }
2131
2132 INLINE struct Lisp_Marker *
2133 XMARKER (Lisp_Object a)
2134 {
2135 eassert (MARKERP (a));
2136 return & XMISC (a)->u_marker;
2137 }
2138
2139 INLINE struct Lisp_Overlay *
2140 XOVERLAY (Lisp_Object a)
2141 {
2142 eassert (OVERLAYP (a));
2143 return & XMISC (a)->u_overlay;
2144 }
2145
2146 INLINE struct Lisp_Save_Value *
2147 XSAVE_VALUE (Lisp_Object a)
2148 {
2149 eassert (SAVE_VALUEP (a));
2150 return & XMISC (a)->u_save_value;
2151 }
2152 \f
2153 /* Forwarding pointer to an int variable.
2154 This is allowed only in the value cell of a symbol,
2155 and it means that the symbol's value really lives in the
2156 specified int variable. */
2157 struct Lisp_Intfwd
2158 {
2159 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2160 EMACS_INT *intvar;
2161 };
2162
2163 /* Boolean forwarding pointer to an int variable.
2164 This is like Lisp_Intfwd except that the ostensible
2165 "value" of the symbol is t if the bool variable is true,
2166 nil if it is false. */
2167 struct Lisp_Boolfwd
2168 {
2169 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2170 bool *boolvar;
2171 };
2172
2173 /* Forwarding pointer to a Lisp_Object variable.
2174 This is allowed only in the value cell of a symbol,
2175 and it means that the symbol's value really lives in the
2176 specified variable. */
2177 struct Lisp_Objfwd
2178 {
2179 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2180 Lisp_Object *objvar;
2181 };
2182
2183 /* Like Lisp_Objfwd except that value lives in a slot in the
2184 current buffer. Value is byte index of slot within buffer. */
2185 struct Lisp_Buffer_Objfwd
2186 {
2187 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2188 int offset;
2189 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2190 Lisp_Object predicate;
2191 };
2192
2193 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2194 the symbol has buffer-local or frame-local bindings. (Exception:
2195 some buffer-local variables are built-in, with their values stored
2196 in the buffer structure itself. They are handled differently,
2197 using struct Lisp_Buffer_Objfwd.)
2198
2199 The `realvalue' slot holds the variable's current value, or a
2200 forwarding pointer to where that value is kept. This value is the
2201 one that corresponds to the loaded binding. To read or set the
2202 variable, you must first make sure the right binding is loaded;
2203 then you can access the value in (or through) `realvalue'.
2204
2205 `buffer' and `frame' are the buffer and frame for which the loaded
2206 binding was found. If those have changed, to make sure the right
2207 binding is loaded it is necessary to find which binding goes with
2208 the current buffer and selected frame, then load it. To load it,
2209 first unload the previous binding, then copy the value of the new
2210 binding into `realvalue' (or through it). Also update
2211 LOADED-BINDING to point to the newly loaded binding.
2212
2213 `local_if_set' indicates that merely setting the variable creates a
2214 local binding for the current buffer. Otherwise the latter, setting
2215 the variable does not do that; only make-local-variable does that. */
2216
2217 struct Lisp_Buffer_Local_Value
2218 {
2219 /* True means that merely setting the variable creates a local
2220 binding for the current buffer. */
2221 bool_bf local_if_set : 1;
2222 /* True means this variable can have frame-local bindings, otherwise, it is
2223 can have buffer-local bindings. The two cannot be combined. */
2224 bool_bf frame_local : 1;
2225 /* True means that the binding now loaded was found.
2226 Presumably equivalent to (defcell!=valcell). */
2227 bool_bf found : 1;
2228 /* If non-NULL, a forwarding to the C var where it should also be set. */
2229 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2230 /* The buffer or frame for which the loaded binding was found. */
2231 Lisp_Object where;
2232 /* A cons cell that holds the default value. It has the form
2233 (SYMBOL . DEFAULT-VALUE). */
2234 Lisp_Object defcell;
2235 /* The cons cell from `where's parameter alist.
2236 It always has the form (SYMBOL . VALUE)
2237 Note that if `forward' is non-nil, VALUE may be out of date.
2238 Also if the currently loaded binding is the default binding, then
2239 this is `eq'ual to defcell. */
2240 Lisp_Object valcell;
2241 };
2242
2243 /* Like Lisp_Objfwd except that value lives in a slot in the
2244 current kboard. */
2245 struct Lisp_Kboard_Objfwd
2246 {
2247 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2248 int offset;
2249 };
2250
2251 union Lisp_Fwd
2252 {
2253 struct Lisp_Intfwd u_intfwd;
2254 struct Lisp_Boolfwd u_boolfwd;
2255 struct Lisp_Objfwd u_objfwd;
2256 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2257 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2258 };
2259
2260 INLINE enum Lisp_Fwd_Type
2261 XFWDTYPE (union Lisp_Fwd *a)
2262 {
2263 return a->u_intfwd.type;
2264 }
2265
2266 INLINE struct Lisp_Buffer_Objfwd *
2267 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2268 {
2269 eassert (BUFFER_OBJFWDP (a));
2270 return &a->u_buffer_objfwd;
2271 }
2272 \f
2273 /* Lisp floating point type. */
2274 struct Lisp_Float
2275 {
2276 union
2277 {
2278 double data;
2279 struct Lisp_Float *chain;
2280 } u;
2281 };
2282
2283 INLINE double
2284 XFLOAT_DATA (Lisp_Object f)
2285 {
2286 return XFLOAT (f)->u.data;
2287 }
2288
2289 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2290 representations, have infinities and NaNs, and do not trap on
2291 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2292 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2293 wanted here, but is not quite right because Emacs does not require
2294 all the features of C11 Annex F (and does not require C11 at all,
2295 for that matter). */
2296 enum
2297 {
2298 IEEE_FLOATING_POINT
2299 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2300 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2301 };
2302
2303 /* A character, declared with the following typedef, is a member
2304 of some character set associated with the current buffer. */
2305 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2306 #define _UCHAR_T
2307 typedef unsigned char UCHAR;
2308 #endif
2309
2310 /* Meanings of slots in a Lisp_Compiled: */
2311
2312 enum Lisp_Compiled
2313 {
2314 COMPILED_ARGLIST = 0,
2315 COMPILED_BYTECODE = 1,
2316 COMPILED_CONSTANTS = 2,
2317 COMPILED_STACK_DEPTH = 3,
2318 COMPILED_DOC_STRING = 4,
2319 COMPILED_INTERACTIVE = 5
2320 };
2321
2322 /* Flag bits in a character. These also get used in termhooks.h.
2323 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2324 (MUlti-Lingual Emacs) might need 22 bits for the character value
2325 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2326 enum char_bits
2327 {
2328 CHAR_ALT = 0x0400000,
2329 CHAR_SUPER = 0x0800000,
2330 CHAR_HYPER = 0x1000000,
2331 CHAR_SHIFT = 0x2000000,
2332 CHAR_CTL = 0x4000000,
2333 CHAR_META = 0x8000000,
2334
2335 CHAR_MODIFIER_MASK =
2336 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2337
2338 /* Actually, the current Emacs uses 22 bits for the character value
2339 itself. */
2340 CHARACTERBITS = 22
2341 };
2342 \f
2343 /* Data type checking. */
2344
2345 LISP_MACRO_DEFUN (NILP, bool, (Lisp_Object x), (x))
2346
2347 INLINE bool
2348 NUMBERP (Lisp_Object x)
2349 {
2350 return INTEGERP (x) || FLOATP (x);
2351 }
2352 INLINE bool
2353 NATNUMP (Lisp_Object x)
2354 {
2355 return INTEGERP (x) && 0 <= XINT (x);
2356 }
2357
2358 INLINE bool
2359 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2360 {
2361 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2362 }
2363
2364 #define TYPE_RANGED_INTEGERP(type, x) \
2365 (INTEGERP (x) \
2366 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2367 && XINT (x) <= TYPE_MAXIMUM (type))
2368
2369 LISP_MACRO_DEFUN (CONSP, bool, (Lisp_Object x), (x))
2370 LISP_MACRO_DEFUN (FLOATP, bool, (Lisp_Object x), (x))
2371 LISP_MACRO_DEFUN (MISCP, bool, (Lisp_Object x), (x))
2372 LISP_MACRO_DEFUN (SYMBOLP, bool, (Lisp_Object x), (x))
2373 LISP_MACRO_DEFUN (INTEGERP, bool, (Lisp_Object x), (x))
2374 LISP_MACRO_DEFUN (VECTORLIKEP, bool, (Lisp_Object x), (x))
2375 LISP_MACRO_DEFUN (MARKERP, bool, (Lisp_Object x), (x))
2376
2377 INLINE bool
2378 STRINGP (Lisp_Object x)
2379 {
2380 return XTYPE (x) == Lisp_String;
2381 }
2382 INLINE bool
2383 VECTORP (Lisp_Object x)
2384 {
2385 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2386 }
2387 INLINE bool
2388 OVERLAYP (Lisp_Object x)
2389 {
2390 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2391 }
2392 INLINE bool
2393 SAVE_VALUEP (Lisp_Object x)
2394 {
2395 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2396 }
2397
2398 INLINE bool
2399 AUTOLOADP (Lisp_Object x)
2400 {
2401 return CONSP (x) && EQ (Qautoload, XCAR (x));
2402 }
2403
2404 INLINE bool
2405 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2406 {
2407 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2408 }
2409
2410 INLINE bool
2411 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2412 {
2413 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2414 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2415 }
2416
2417 /* True if A is a pseudovector whose code is CODE. */
2418 INLINE bool
2419 PSEUDOVECTORP (Lisp_Object a, int code)
2420 {
2421 if (! VECTORLIKEP (a))
2422 return false;
2423 else
2424 {
2425 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2426 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2427 return PSEUDOVECTOR_TYPEP (h, code);
2428 }
2429 }
2430
2431
2432 /* Test for specific pseudovector types. */
2433
2434 INLINE bool
2435 WINDOW_CONFIGURATIONP (Lisp_Object a)
2436 {
2437 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2438 }
2439
2440 INLINE bool
2441 PROCESSP (Lisp_Object a)
2442 {
2443 return PSEUDOVECTORP (a, PVEC_PROCESS);
2444 }
2445
2446 INLINE bool
2447 WINDOWP (Lisp_Object a)
2448 {
2449 return PSEUDOVECTORP (a, PVEC_WINDOW);
2450 }
2451
2452 INLINE bool
2453 TERMINALP (Lisp_Object a)
2454 {
2455 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2456 }
2457
2458 INLINE bool
2459 SUBRP (Lisp_Object a)
2460 {
2461 return PSEUDOVECTORP (a, PVEC_SUBR);
2462 }
2463
2464 INLINE bool
2465 COMPILEDP (Lisp_Object a)
2466 {
2467 return PSEUDOVECTORP (a, PVEC_COMPILED);
2468 }
2469
2470 INLINE bool
2471 BUFFERP (Lisp_Object a)
2472 {
2473 return PSEUDOVECTORP (a, PVEC_BUFFER);
2474 }
2475
2476 INLINE bool
2477 CHAR_TABLE_P (Lisp_Object a)
2478 {
2479 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2480 }
2481
2482 INLINE bool
2483 SUB_CHAR_TABLE_P (Lisp_Object a)
2484 {
2485 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2486 }
2487
2488 INLINE bool
2489 BOOL_VECTOR_P (Lisp_Object a)
2490 {
2491 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2492 }
2493
2494 INLINE bool
2495 FRAMEP (Lisp_Object a)
2496 {
2497 return PSEUDOVECTORP (a, PVEC_FRAME);
2498 }
2499
2500 /* Test for image (image . spec) */
2501 INLINE bool
2502 IMAGEP (Lisp_Object x)
2503 {
2504 return CONSP (x) && EQ (XCAR (x), Qimage);
2505 }
2506
2507 /* Array types. */
2508 INLINE bool
2509 ARRAYP (Lisp_Object x)
2510 {
2511 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2512 }
2513 \f
2514 INLINE void
2515 CHECK_LIST (Lisp_Object x)
2516 {
2517 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2518 }
2519
2520 LISP_MACRO_DEFUN_VOID (CHECK_LIST_CONS, (Lisp_Object x, Lisp_Object y), (x, y))
2521 LISP_MACRO_DEFUN_VOID (CHECK_SYMBOL, (Lisp_Object x), (x))
2522 LISP_MACRO_DEFUN_VOID (CHECK_NUMBER, (Lisp_Object x), (x))
2523
2524 INLINE void
2525 CHECK_STRING (Lisp_Object x)
2526 {
2527 CHECK_TYPE (STRINGP (x), Qstringp, x);
2528 }
2529 INLINE void
2530 CHECK_STRING_CAR (Lisp_Object x)
2531 {
2532 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2533 }
2534 INLINE void
2535 CHECK_CONS (Lisp_Object x)
2536 {
2537 CHECK_TYPE (CONSP (x), Qconsp, x);
2538 }
2539 INLINE void
2540 CHECK_VECTOR (Lisp_Object x)
2541 {
2542 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2543 }
2544 INLINE void
2545 CHECK_BOOL_VECTOR (Lisp_Object x)
2546 {
2547 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2548 }
2549 /* This is a bit special because we always need size afterwards. */
2550 INLINE ptrdiff_t
2551 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2552 {
2553 if (VECTORP (x))
2554 return ASIZE (x);
2555 if (STRINGP (x))
2556 return SCHARS (x);
2557 wrong_type_argument (Qarrayp, x);
2558 }
2559 INLINE void
2560 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2561 {
2562 CHECK_TYPE (ARRAYP (x), predicate, x);
2563 }
2564 INLINE void
2565 CHECK_BUFFER (Lisp_Object x)
2566 {
2567 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2568 }
2569 INLINE void
2570 CHECK_WINDOW (Lisp_Object x)
2571 {
2572 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2573 }
2574 #ifdef subprocesses
2575 INLINE void
2576 CHECK_PROCESS (Lisp_Object x)
2577 {
2578 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2579 }
2580 #endif
2581 INLINE void
2582 CHECK_NATNUM (Lisp_Object x)
2583 {
2584 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2585 }
2586
2587 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2588 do { \
2589 CHECK_NUMBER (x); \
2590 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2591 args_out_of_range_3 \
2592 (x, \
2593 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2594 ? MOST_NEGATIVE_FIXNUM \
2595 : (lo)), \
2596 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2597 } while (false)
2598 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2599 do { \
2600 if (TYPE_SIGNED (type)) \
2601 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2602 else \
2603 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2604 } while (false)
2605
2606 #define CHECK_NUMBER_COERCE_MARKER(x) \
2607 do { \
2608 if (MARKERP ((x))) \
2609 XSETFASTINT (x, marker_position (x)); \
2610 else \
2611 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2612 } while (false)
2613
2614 INLINE double
2615 XFLOATINT (Lisp_Object n)
2616 {
2617 return extract_float (n);
2618 }
2619
2620 INLINE void
2621 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2622 {
2623 CHECK_TYPE (FLOATP (x) || INTEGERP (x), Qnumberp, x);
2624 }
2625
2626 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2627 do { \
2628 if (MARKERP (x)) \
2629 XSETFASTINT (x, marker_position (x)); \
2630 else \
2631 CHECK_TYPE (INTEGERP (x) || FLOATP (x), Qnumber_or_marker_p, x); \
2632 } while (false)
2633
2634 /* Since we can't assign directly to the CAR or CDR fields of a cons
2635 cell, use these when checking that those fields contain numbers. */
2636 INLINE void
2637 CHECK_NUMBER_CAR (Lisp_Object x)
2638 {
2639 Lisp_Object tmp = XCAR (x);
2640 CHECK_NUMBER (tmp);
2641 XSETCAR (x, tmp);
2642 }
2643
2644 INLINE void
2645 CHECK_NUMBER_CDR (Lisp_Object x)
2646 {
2647 Lisp_Object tmp = XCDR (x);
2648 CHECK_NUMBER (tmp);
2649 XSETCDR (x, tmp);
2650 }
2651 \f
2652 /* Define a built-in function for calling from Lisp.
2653 `lname' should be the name to give the function in Lisp,
2654 as a null-terminated C string.
2655 `fnname' should be the name of the function in C.
2656 By convention, it starts with F.
2657 `sname' should be the name for the C constant structure
2658 that records information on this function for internal use.
2659 By convention, it should be the same as `fnname' but with S instead of F.
2660 It's too bad that C macros can't compute this from `fnname'.
2661 `minargs' should be a number, the minimum number of arguments allowed.
2662 `maxargs' should be a number, the maximum number of arguments allowed,
2663 or else MANY or UNEVALLED.
2664 MANY means pass a vector of evaluated arguments,
2665 in the form of an integer number-of-arguments
2666 followed by the address of a vector of Lisp_Objects
2667 which contains the argument values.
2668 UNEVALLED means pass the list of unevaluated arguments
2669 `intspec' says how interactive arguments are to be fetched.
2670 If the string starts with a `(', `intspec' is evaluated and the resulting
2671 list is the list of arguments.
2672 If it's a string that doesn't start with `(', the value should follow
2673 the one of the doc string for `interactive'.
2674 A null string means call interactively with no arguments.
2675 `doc' is documentation for the user. */
2676
2677 /* This version of DEFUN declares a function prototype with the right
2678 arguments, so we can catch errors with maxargs at compile-time. */
2679 #ifdef _MSC_VER
2680 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2681 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2682 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2683 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2684 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2685 { (Lisp_Object (__cdecl *)(void))fnname }, \
2686 minargs, maxargs, lname, intspec, 0}; \
2687 Lisp_Object fnname
2688 #else /* not _MSC_VER */
2689 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2690 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2691 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2692 { .a ## maxargs = fnname }, \
2693 minargs, maxargs, lname, intspec, 0}; \
2694 Lisp_Object fnname
2695 #endif
2696
2697 /* Note that the weird token-substitution semantics of ANSI C makes
2698 this work for MANY and UNEVALLED. */
2699 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
2700 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
2701 #define DEFUN_ARGS_0 (void)
2702 #define DEFUN_ARGS_1 (Lisp_Object)
2703 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
2704 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
2705 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
2706 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2707 Lisp_Object)
2708 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2709 Lisp_Object, Lisp_Object)
2710 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2711 Lisp_Object, Lisp_Object, Lisp_Object)
2712 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2713 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
2714
2715 /* True if OBJ is a Lisp function. */
2716 INLINE bool
2717 FUNCTIONP (Lisp_Object obj)
2718 {
2719 return functionp (obj);
2720 }
2721
2722 /* defsubr (Sname);
2723 is how we define the symbol for function `name' at start-up time. */
2724 extern void defsubr (struct Lisp_Subr *);
2725
2726 enum maxargs
2727 {
2728 MANY = -2,
2729 UNEVALLED = -1
2730 };
2731
2732 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2733 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2734 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
2735 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
2736 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
2737
2738 /* Macros we use to define forwarded Lisp variables.
2739 These are used in the syms_of_FILENAME functions.
2740
2741 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
2742 lisp variable is actually a field in `struct emacs_globals'. The
2743 field's name begins with "f_", which is a convention enforced by
2744 these macros. Each such global has a corresponding #define in
2745 globals.h; the plain name should be used in the code.
2746
2747 E.g., the global "cons_cells_consed" is declared as "int
2748 f_cons_cells_consed" in globals.h, but there is a define:
2749
2750 #define cons_cells_consed globals.f_cons_cells_consed
2751
2752 All C code uses the `cons_cells_consed' name. This is all done
2753 this way to support indirection for multi-threaded Emacs. */
2754
2755 #define DEFVAR_LISP(lname, vname, doc) \
2756 do { \
2757 static struct Lisp_Objfwd o_fwd; \
2758 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
2759 } while (false)
2760 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
2761 do { \
2762 static struct Lisp_Objfwd o_fwd; \
2763 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
2764 } while (false)
2765 #define DEFVAR_BOOL(lname, vname, doc) \
2766 do { \
2767 static struct Lisp_Boolfwd b_fwd; \
2768 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
2769 } while (false)
2770 #define DEFVAR_INT(lname, vname, doc) \
2771 do { \
2772 static struct Lisp_Intfwd i_fwd; \
2773 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
2774 } while (false)
2775
2776 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
2777 do { \
2778 static struct Lisp_Objfwd o_fwd; \
2779 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
2780 } while (false)
2781
2782 #define DEFVAR_KBOARD(lname, vname, doc) \
2783 do { \
2784 static struct Lisp_Kboard_Objfwd ko_fwd; \
2785 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
2786 } while (false)
2787 \f
2788 /* Save and restore the instruction and environment pointers,
2789 without affecting the signal mask. */
2790
2791 #ifdef HAVE__SETJMP
2792 typedef jmp_buf sys_jmp_buf;
2793 # define sys_setjmp(j) _setjmp (j)
2794 # define sys_longjmp(j, v) _longjmp (j, v)
2795 #elif defined HAVE_SIGSETJMP
2796 typedef sigjmp_buf sys_jmp_buf;
2797 # define sys_setjmp(j) sigsetjmp (j, 0)
2798 # define sys_longjmp(j, v) siglongjmp (j, v)
2799 #else
2800 /* A platform that uses neither _longjmp nor siglongjmp; assume
2801 longjmp does not affect the sigmask. */
2802 typedef jmp_buf sys_jmp_buf;
2803 # define sys_setjmp(j) setjmp (j)
2804 # define sys_longjmp(j, v) longjmp (j, v)
2805 #endif
2806
2807 \f
2808 /* Elisp uses several stacks:
2809 - the C stack.
2810 - the bytecode stack: used internally by the bytecode interpreter.
2811 Allocated from the C stack.
2812 - The specpdl stack: keeps track of active unwind-protect and
2813 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
2814 managed stack.
2815 - The handler stack: keeps track of active catch tags and condition-case
2816 handlers. Allocated in a manually managed stack implemented by a
2817 doubly-linked list allocated via xmalloc and never freed. */
2818
2819 /* Structure for recording Lisp call stack for backtrace purposes. */
2820
2821 /* The special binding stack holds the outer values of variables while
2822 they are bound by a function application or a let form, stores the
2823 code to be executed for unwind-protect forms.
2824
2825 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
2826 used all over the place, needs to be fast, and needs to know the size of
2827 union specbinding. But only eval.c should access it. */
2828
2829 enum specbind_tag {
2830 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
2831 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
2832 SPECPDL_UNWIND_INT, /* Likewise, on int. */
2833 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
2834 SPECPDL_BACKTRACE, /* An element of the backtrace. */
2835 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
2836 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
2837 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
2838 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
2839 };
2840
2841 union specbinding
2842 {
2843 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2844 struct {
2845 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2846 void (*func) (Lisp_Object);
2847 Lisp_Object arg;
2848 } unwind;
2849 struct {
2850 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2851 void (*func) (void *);
2852 void *arg;
2853 } unwind_ptr;
2854 struct {
2855 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2856 void (*func) (int);
2857 int arg;
2858 } unwind_int;
2859 struct {
2860 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2861 void (*func) (void);
2862 } unwind_void;
2863 struct {
2864 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2865 /* `where' is not used in the case of SPECPDL_LET. */
2866 Lisp_Object symbol, old_value, where;
2867 } let;
2868 struct {
2869 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2870 bool_bf debug_on_exit : 1;
2871 Lisp_Object function;
2872 Lisp_Object *args;
2873 ptrdiff_t nargs;
2874 } bt;
2875 };
2876
2877 extern union specbinding *specpdl;
2878 extern union specbinding *specpdl_ptr;
2879 extern ptrdiff_t specpdl_size;
2880
2881 INLINE ptrdiff_t
2882 SPECPDL_INDEX (void)
2883 {
2884 return specpdl_ptr - specpdl;
2885 }
2886
2887 /* This structure helps implement the `catch/throw' and `condition-case/signal'
2888 control structures. A struct handler contains all the information needed to
2889 restore the state of the interpreter after a non-local jump.
2890
2891 handler structures are chained together in a doubly linked list; the `next'
2892 member points to the next outer catchtag and the `nextfree' member points in
2893 the other direction to the next inner element (which is typically the next
2894 free element since we mostly use it on the deepest handler).
2895
2896 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
2897 member is TAG, and then unbinds to it. The `val' member is used to
2898 hold VAL while the stack is unwound; `val' is returned as the value
2899 of the catch form.
2900
2901 All the other members are concerned with restoring the interpreter
2902 state.
2903
2904 Members are volatile if their values need to survive _longjmp when
2905 a 'struct handler' is a local variable. */
2906
2907 enum handlertype { CATCHER, CONDITION_CASE };
2908
2909 struct handler
2910 {
2911 enum handlertype type;
2912 Lisp_Object tag_or_ch;
2913 Lisp_Object val;
2914 struct handler *next;
2915 struct handler *nextfree;
2916
2917 /* The bytecode interpreter can have several handlers active at the same
2918 time, so when we longjmp to one of them, it needs to know which handler
2919 this was and what was the corresponding internal state. This is stored
2920 here, and when we longjmp we make sure that handlerlist points to the
2921 proper handler. */
2922 Lisp_Object *bytecode_top;
2923 int bytecode_dest;
2924
2925 /* Most global vars are reset to their value via the specpdl mechanism,
2926 but a few others are handled by storing their value here. */
2927 #if true /* GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS, but defined later. */
2928 struct gcpro *gcpro;
2929 #endif
2930 sys_jmp_buf jmp;
2931 EMACS_INT lisp_eval_depth;
2932 ptrdiff_t pdlcount;
2933 int poll_suppress_count;
2934 int interrupt_input_blocked;
2935 struct byte_stack *byte_stack;
2936 };
2937
2938 /* Fill in the components of c, and put it on the list. */
2939 #define PUSH_HANDLER(c, tag_ch_val, handlertype) \
2940 if (handlerlist->nextfree) \
2941 (c) = handlerlist->nextfree; \
2942 else \
2943 { \
2944 (c) = xmalloc (sizeof (struct handler)); \
2945 (c)->nextfree = NULL; \
2946 handlerlist->nextfree = (c); \
2947 } \
2948 (c)->type = (handlertype); \
2949 (c)->tag_or_ch = (tag_ch_val); \
2950 (c)->val = Qnil; \
2951 (c)->next = handlerlist; \
2952 (c)->lisp_eval_depth = lisp_eval_depth; \
2953 (c)->pdlcount = SPECPDL_INDEX (); \
2954 (c)->poll_suppress_count = poll_suppress_count; \
2955 (c)->interrupt_input_blocked = interrupt_input_blocked;\
2956 (c)->gcpro = gcprolist; \
2957 (c)->byte_stack = byte_stack_list; \
2958 handlerlist = (c);
2959
2960
2961 extern Lisp_Object memory_signal_data;
2962
2963 /* An address near the bottom of the stack.
2964 Tells GC how to save a copy of the stack. */
2965 extern char *stack_bottom;
2966
2967 /* Check quit-flag and quit if it is non-nil.
2968 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
2969 So the program needs to do QUIT at times when it is safe to quit.
2970 Every loop that might run for a long time or might not exit
2971 ought to do QUIT at least once, at a safe place.
2972 Unless that is impossible, of course.
2973 But it is very desirable to avoid creating loops where QUIT is impossible.
2974
2975 Exception: if you set immediate_quit to true,
2976 then the handler that responds to the C-g does the quit itself.
2977 This is a good thing to do around a loop that has no side effects
2978 and (in particular) cannot call arbitrary Lisp code.
2979
2980 If quit-flag is set to `kill-emacs' the SIGINT handler has received
2981 a request to exit Emacs when it is safe to do. */
2982
2983 extern void process_pending_signals (void);
2984 extern bool volatile pending_signals;
2985
2986 extern void process_quit_flag (void);
2987 #define QUIT \
2988 do { \
2989 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
2990 process_quit_flag (); \
2991 else if (pending_signals) \
2992 process_pending_signals (); \
2993 } while (false)
2994
2995
2996 /* True if ought to quit now. */
2997
2998 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
2999 \f
3000 extern Lisp_Object Vascii_downcase_table;
3001 extern Lisp_Object Vascii_canon_table;
3002 \f
3003 /* Structure for recording stack slots that need marking. */
3004
3005 /* This is a chain of structures, each of which points at a Lisp_Object
3006 variable whose value should be marked in garbage collection.
3007 Normally every link of the chain is an automatic variable of a function,
3008 and its `val' points to some argument or local variable of the function.
3009 On exit to the function, the chain is set back to the value it had on entry.
3010 This way, no link remains in the chain when the stack frame containing the
3011 link disappears.
3012
3013 Every function that can call Feval must protect in this fashion all
3014 Lisp_Object variables whose contents will be used again. */
3015
3016 extern struct gcpro *gcprolist;
3017
3018 struct gcpro
3019 {
3020 struct gcpro *next;
3021
3022 /* Address of first protected variable. */
3023 volatile Lisp_Object *var;
3024
3025 /* Number of consecutive protected variables. */
3026 ptrdiff_t nvars;
3027
3028 #ifdef DEBUG_GCPRO
3029 /* File name where this record is used. */
3030 const char *name;
3031
3032 /* Line number in this file. */
3033 int lineno;
3034
3035 /* Index in the local chain of records. */
3036 int idx;
3037
3038 /* Nesting level. */
3039 int level;
3040 #endif
3041 };
3042
3043 /* Values of GC_MARK_STACK during compilation:
3044
3045 0 Use GCPRO as before
3046 1 Do the real thing, make GCPROs and UNGCPRO no-ops.
3047 2 Mark the stack, and check that everything GCPRO'd is
3048 marked.
3049 3 Mark using GCPRO's, mark stack last, and count how many
3050 dead objects are kept alive.
3051
3052 Formerly, method 0 was used. Currently, method 1 is used unless
3053 otherwise specified by hand when building, e.g.,
3054 "make CPPFLAGS='-DGC_MARK_STACK=GC_USE_GCPROS_AS_BEFORE'".
3055 Methods 2 and 3 are present mainly to debug the transition from 0 to 1. */
3056
3057 #define GC_USE_GCPROS_AS_BEFORE 0
3058 #define GC_MAKE_GCPROS_NOOPS 1
3059 #define GC_MARK_STACK_CHECK_GCPROS 2
3060 #define GC_USE_GCPROS_CHECK_ZOMBIES 3
3061
3062 #ifndef GC_MARK_STACK
3063 #define GC_MARK_STACK GC_MAKE_GCPROS_NOOPS
3064 #endif
3065
3066 /* Whether we do the stack marking manually. */
3067 #define BYTE_MARK_STACK !(GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
3068 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
3069
3070
3071 #if GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS
3072
3073 /* Do something silly with gcproN vars just so gcc shuts up. */
3074 /* You get warnings from MIPSPro... */
3075
3076 #define GCPRO1(varname) ((void) gcpro1)
3077 #define GCPRO2(varname1, varname2) ((void) gcpro2, (void) gcpro1)
3078 #define GCPRO3(varname1, varname2, varname3) \
3079 ((void) gcpro3, (void) gcpro2, (void) gcpro1)
3080 #define GCPRO4(varname1, varname2, varname3, varname4) \
3081 ((void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3082 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3083 ((void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3084 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3085 ((void) gcpro6, (void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, \
3086 (void) gcpro1)
3087 #define GCPRO7(a, b, c, d, e, f, g) (GCPRO6 (a, b, c, d, e, f), (void) gcpro7)
3088 #define UNGCPRO ((void) 0)
3089
3090 #else /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3091
3092 #ifndef DEBUG_GCPRO
3093
3094 #define GCPRO1(a) \
3095 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3096 gcprolist = &gcpro1; }
3097
3098 #define GCPRO2(a, b) \
3099 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3100 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3101 gcprolist = &gcpro2; }
3102
3103 #define GCPRO3(a, b, c) \
3104 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3105 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3106 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3107 gcprolist = &gcpro3; }
3108
3109 #define GCPRO4(a, b, c, d) \
3110 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3111 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3112 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3113 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3114 gcprolist = &gcpro4; }
3115
3116 #define GCPRO5(a, b, c, d, e) \
3117 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3118 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3119 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3120 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3121 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3122 gcprolist = &gcpro5; }
3123
3124 #define GCPRO6(a, b, c, d, e, f) \
3125 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3126 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3127 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3128 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3129 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3130 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3131 gcprolist = &gcpro6; }
3132
3133 #define GCPRO7(a, b, c, d, e, f, g) \
3134 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3135 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3136 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3137 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3138 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3139 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3140 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3141 gcprolist = &gcpro7; }
3142
3143 #define UNGCPRO (gcprolist = gcpro1.next)
3144
3145 #else /* !DEBUG_GCPRO */
3146
3147 extern int gcpro_level;
3148
3149 #define GCPRO1(a) \
3150 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3151 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3152 gcpro1.level = gcpro_level++; \
3153 gcprolist = &gcpro1; }
3154
3155 #define GCPRO2(a, b) \
3156 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3157 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3158 gcpro1.level = gcpro_level; \
3159 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3160 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3161 gcpro2.level = gcpro_level++; \
3162 gcprolist = &gcpro2; }
3163
3164 #define GCPRO3(a, b, c) \
3165 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3166 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3167 gcpro1.level = gcpro_level; \
3168 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3169 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3170 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3171 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3172 gcpro3.level = gcpro_level++; \
3173 gcprolist = &gcpro3; }
3174
3175 #define GCPRO4(a, b, c, d) \
3176 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3177 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3178 gcpro1.level = gcpro_level; \
3179 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3180 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3181 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3182 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3183 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3184 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3185 gcpro4.level = gcpro_level++; \
3186 gcprolist = &gcpro4; }
3187
3188 #define GCPRO5(a, b, c, d, e) \
3189 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3190 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3191 gcpro1.level = gcpro_level; \
3192 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3193 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3194 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3195 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3196 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3197 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3198 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3199 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3200 gcpro5.level = gcpro_level++; \
3201 gcprolist = &gcpro5; }
3202
3203 #define GCPRO6(a, b, c, d, e, f) \
3204 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3205 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3206 gcpro1.level = gcpro_level; \
3207 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3208 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3209 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3210 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3211 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3212 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3213 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3214 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3215 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3216 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3217 gcpro6.level = gcpro_level++; \
3218 gcprolist = &gcpro6; }
3219
3220 #define GCPRO7(a, b, c, d, e, f, g) \
3221 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3222 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3223 gcpro1.level = gcpro_level; \
3224 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3225 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3226 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3227 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3228 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3229 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3230 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3231 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3232 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3233 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3234 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3235 gcpro7.name = __FILE__; gcpro7.lineno = __LINE__; gcpro7.idx = 7; \
3236 gcpro7.level = gcpro_level++; \
3237 gcprolist = &gcpro7; }
3238
3239 #define UNGCPRO \
3240 (--gcpro_level != gcpro1.level \
3241 ? emacs_abort () \
3242 : (void) (gcprolist = gcpro1.next))
3243
3244 #endif /* DEBUG_GCPRO */
3245 #endif /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3246
3247
3248 /* Evaluate expr, UNGCPRO, and then return the value of expr. */
3249 #define RETURN_UNGCPRO(expr) \
3250 do \
3251 { \
3252 Lisp_Object ret_ungc_val; \
3253 ret_ungc_val = (expr); \
3254 UNGCPRO; \
3255 return ret_ungc_val; \
3256 } \
3257 while (false)
3258
3259 /* Call staticpro (&var) to protect static variable `var'. */
3260
3261 void staticpro (Lisp_Object *);
3262 \f
3263 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
3264 meaning as in the DEFUN macro, and is used to construct a prototype. */
3265 /* We can use the same trick as in the DEFUN macro to generate the
3266 appropriate prototype. */
3267 #define EXFUN(fnname, maxargs) \
3268 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
3269
3270 #include "globals.h"
3271
3272 /* Forward declarations for prototypes. */
3273 struct window;
3274 struct frame;
3275
3276 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3277
3278 INLINE void
3279 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3280 {
3281 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3282 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3283 }
3284
3285 /* Functions to modify hash tables. */
3286
3287 INLINE void
3288 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3289 {
3290 gc_aset (h->key_and_value, 2 * idx, val);
3291 }
3292
3293 INLINE void
3294 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3295 {
3296 gc_aset (h->key_and_value, 2 * idx + 1, val);
3297 }
3298
3299 /* Use these functions to set Lisp_Object
3300 or pointer slots of struct Lisp_Symbol. */
3301
3302 INLINE void
3303 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3304 {
3305 XSYMBOL (sym)->function = function;
3306 }
3307
3308 INLINE void
3309 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3310 {
3311 XSYMBOL (sym)->plist = plist;
3312 }
3313
3314 INLINE void
3315 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3316 {
3317 XSYMBOL (sym)->next = next;
3318 }
3319
3320 /* Buffer-local (also frame-local) variable access functions. */
3321
3322 INLINE int
3323 blv_found (struct Lisp_Buffer_Local_Value *blv)
3324 {
3325 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3326 return blv->found;
3327 }
3328
3329 /* Set overlay's property list. */
3330
3331 INLINE void
3332 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3333 {
3334 XOVERLAY (overlay)->plist = plist;
3335 }
3336
3337 /* Get text properties of S. */
3338
3339 INLINE INTERVAL
3340 string_intervals (Lisp_Object s)
3341 {
3342 return XSTRING (s)->intervals;
3343 }
3344
3345 /* Set text properties of S to I. */
3346
3347 INLINE void
3348 set_string_intervals (Lisp_Object s, INTERVAL i)
3349 {
3350 XSTRING (s)->intervals = i;
3351 }
3352
3353 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3354 of setting slots directly. */
3355
3356 INLINE void
3357 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3358 {
3359 XCHAR_TABLE (table)->defalt = val;
3360 }
3361 INLINE void
3362 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3363 {
3364 XCHAR_TABLE (table)->purpose = val;
3365 }
3366
3367 /* Set different slots in (sub)character tables. */
3368
3369 INLINE void
3370 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3371 {
3372 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3373 XCHAR_TABLE (table)->extras[idx] = val;
3374 }
3375
3376 INLINE void
3377 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3378 {
3379 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3380 XCHAR_TABLE (table)->contents[idx] = val;
3381 }
3382
3383 INLINE void
3384 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3385 {
3386 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3387 }
3388
3389 /* Defined in data.c. */
3390 extern Lisp_Object Qquote, Qunbound;
3391 extern Lisp_Object Qerror_conditions, Qerror_message, Qtop_level;
3392 extern Lisp_Object Qerror, Qquit, Qargs_out_of_range;
3393 extern Lisp_Object Qvoid_variable, Qvoid_function;
3394 extern Lisp_Object Qinvalid_read_syntax;
3395 extern Lisp_Object Qinvalid_function, Qwrong_number_of_arguments, Qno_catch;
3396 extern Lisp_Object Quser_error, Qend_of_file, Qarith_error, Qmark_inactive;
3397 extern Lisp_Object Qbeginning_of_buffer, Qend_of_buffer, Qbuffer_read_only;
3398 extern Lisp_Object Qtext_read_only;
3399 extern Lisp_Object Qinteractive_form;
3400 extern Lisp_Object Qcircular_list;
3401 extern Lisp_Object Qsequencep;
3402 extern Lisp_Object Qchar_or_string_p, Qinteger_or_marker_p;
3403 extern Lisp_Object Qfboundp;
3404
3405 extern Lisp_Object Qcdr;
3406
3407 extern Lisp_Object Qrange_error, Qoverflow_error;
3408
3409 extern Lisp_Object Qnumber_or_marker_p;
3410
3411 extern Lisp_Object Qbuffer, Qinteger, Qsymbol;
3412
3413 /* Defined in data.c. */
3414 extern Lisp_Object indirect_function (Lisp_Object);
3415 extern Lisp_Object find_symbol_value (Lisp_Object);
3416 enum Arith_Comparison {
3417 ARITH_EQUAL,
3418 ARITH_NOTEQUAL,
3419 ARITH_LESS,
3420 ARITH_GRTR,
3421 ARITH_LESS_OR_EQUAL,
3422 ARITH_GRTR_OR_EQUAL
3423 };
3424 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3425 enum Arith_Comparison comparison);
3426
3427 /* Convert the integer I to an Emacs representation, either the integer
3428 itself, or a cons of two or three integers, or if all else fails a float.
3429 I should not have side effects. */
3430 #define INTEGER_TO_CONS(i) \
3431 (! FIXNUM_OVERFLOW_P (i) \
3432 ? make_number (i) \
3433 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16) \
3434 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16)) \
3435 && FIXNUM_OVERFLOW_P ((i) >> 16)) \
3436 ? Fcons (make_number ((i) >> 16), make_number ((i) & 0xffff)) \
3437 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16 >> 24) \
3438 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16 >> 24)) \
3439 && FIXNUM_OVERFLOW_P ((i) >> 16 >> 24)) \
3440 ? Fcons (make_number ((i) >> 16 >> 24), \
3441 Fcons (make_number ((i) >> 16 & 0xffffff), \
3442 make_number ((i) & 0xffff))) \
3443 : make_float (i))
3444
3445 /* Convert the Emacs representation CONS back to an integer of type
3446 TYPE, storing the result the variable VAR. Signal an error if CONS
3447 is not a valid representation or is out of range for TYPE. */
3448 #define CONS_TO_INTEGER(cons, type, var) \
3449 (TYPE_SIGNED (type) \
3450 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3451 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3452 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3453 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3454
3455 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3456 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3457 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3458 Lisp_Object);
3459 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3460 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3461 extern void syms_of_data (void);
3462 extern void swap_in_global_binding (struct Lisp_Symbol *);
3463
3464 /* Defined in cmds.c */
3465 extern void syms_of_cmds (void);
3466 extern void keys_of_cmds (void);
3467
3468 /* Defined in coding.c. */
3469 extern Lisp_Object Qcharset;
3470 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3471 ptrdiff_t, bool, bool, Lisp_Object);
3472 extern void init_coding (void);
3473 extern void init_coding_once (void);
3474 extern void syms_of_coding (void);
3475
3476 /* Defined in character.c. */
3477 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3478 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3479 extern void syms_of_character (void);
3480
3481 /* Defined in charset.c. */
3482 extern void init_charset (void);
3483 extern void init_charset_once (void);
3484 extern void syms_of_charset (void);
3485 /* Structure forward declarations. */
3486 struct charset;
3487
3488 /* Defined in syntax.c. */
3489 extern void init_syntax_once (void);
3490 extern void syms_of_syntax (void);
3491
3492 /* Defined in fns.c. */
3493 extern Lisp_Object QCrehash_size, QCrehash_threshold;
3494 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3495 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3496 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3497 extern void sweep_weak_hash_tables (void);
3498 extern Lisp_Object Qcursor_in_echo_area;
3499 extern Lisp_Object Qstring_lessp;
3500 extern Lisp_Object QCsize, QCtest, QCweakness, Qequal, Qeq;
3501 EMACS_UINT hash_string (char const *, ptrdiff_t);
3502 EMACS_UINT sxhash (Lisp_Object, int);
3503 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3504 Lisp_Object, Lisp_Object);
3505 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3506 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3507 EMACS_UINT);
3508 extern struct hash_table_test hashtest_eql, hashtest_equal;
3509 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3510 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3511 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3512 ptrdiff_t, ptrdiff_t);
3513 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3514 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3515 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3516 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3517 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3518 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3519 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3520 extern void clear_string_char_byte_cache (void);
3521 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3522 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3523 extern Lisp_Object string_to_multibyte (Lisp_Object);
3524 extern Lisp_Object string_make_unibyte (Lisp_Object);
3525 extern void syms_of_fns (void);
3526
3527 /* Defined in floatfns.c. */
3528 extern void syms_of_floatfns (void);
3529 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3530
3531 /* Defined in fringe.c. */
3532 extern void syms_of_fringe (void);
3533 extern void init_fringe (void);
3534 #ifdef HAVE_WINDOW_SYSTEM
3535 extern void mark_fringe_data (void);
3536 extern void init_fringe_once (void);
3537 #endif /* HAVE_WINDOW_SYSTEM */
3538
3539 /* Defined in image.c. */
3540 extern Lisp_Object QCascent, QCmargin, QCrelief;
3541 extern Lisp_Object QCconversion;
3542 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3543 extern void reset_image_types (void);
3544 extern void syms_of_image (void);
3545
3546 /* Defined in insdel.c. */
3547 extern Lisp_Object Qinhibit_modification_hooks;
3548 extern Lisp_Object Qregion_extract_function;
3549 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3550 extern _Noreturn void buffer_overflow (void);
3551 extern void make_gap (ptrdiff_t);
3552 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3553 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3554 ptrdiff_t, bool, bool);
3555 extern int count_combining_before (const unsigned char *,
3556 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3557 extern int count_combining_after (const unsigned char *,
3558 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3559 extern void insert (const char *, ptrdiff_t);
3560 extern void insert_and_inherit (const char *, ptrdiff_t);
3561 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3562 bool, bool, bool);
3563 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3564 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3565 ptrdiff_t, ptrdiff_t, bool);
3566 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3567 extern void insert_char (int);
3568 extern void insert_string (const char *);
3569 extern void insert_before_markers (const char *, ptrdiff_t);
3570 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3571 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3572 ptrdiff_t, ptrdiff_t,
3573 ptrdiff_t, bool);
3574 extern void del_range (ptrdiff_t, ptrdiff_t);
3575 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3576 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3577 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3578 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3579 ptrdiff_t, ptrdiff_t, bool);
3580 extern void modify_text (ptrdiff_t, ptrdiff_t);
3581 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3582 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3583 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3584 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3585 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3586 ptrdiff_t, ptrdiff_t);
3587 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3588 ptrdiff_t, ptrdiff_t);
3589 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3590 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3591 const char *, ptrdiff_t, ptrdiff_t, bool);
3592 extern void syms_of_insdel (void);
3593
3594 /* Defined in dispnew.c. */
3595 #if (defined PROFILING \
3596 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3597 _Noreturn void __executable_start (void);
3598 #endif
3599 extern Lisp_Object Vwindow_system;
3600 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3601
3602 /* Defined in xdisp.c. */
3603 extern Lisp_Object Qinhibit_point_motion_hooks;
3604 extern Lisp_Object Qinhibit_redisplay;
3605 extern Lisp_Object Qmenu_bar_update_hook;
3606 extern Lisp_Object Qwindow_scroll_functions;
3607 extern Lisp_Object Qoverriding_local_map, Qoverriding_terminal_local_map;
3608 extern Lisp_Object Qtext, Qboth, Qboth_horiz, Qtext_image_horiz;
3609 extern Lisp_Object Qspace, Qcenter, QCalign_to;
3610 extern Lisp_Object Qbar, Qhbar, Qhollow;
3611 extern Lisp_Object Qleft_margin, Qright_margin;
3612 extern Lisp_Object QCdata, QCfile;
3613 extern Lisp_Object QCmap;
3614 extern Lisp_Object Qrisky_local_variable;
3615 extern bool noninteractive_need_newline;
3616 extern Lisp_Object echo_area_buffer[2];
3617 extern void add_to_log (const char *, Lisp_Object, Lisp_Object);
3618 extern void check_message_stack (void);
3619 extern void setup_echo_area_for_printing (int);
3620 extern bool push_message (void);
3621 extern void pop_message_unwind (void);
3622 extern Lisp_Object restore_message_unwind (Lisp_Object);
3623 extern void restore_message (void);
3624 extern Lisp_Object current_message (void);
3625 extern void clear_message (bool, bool);
3626 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3627 extern void message1 (const char *);
3628 extern void message1_nolog (const char *);
3629 extern void message3 (Lisp_Object);
3630 extern void message3_nolog (Lisp_Object);
3631 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3632 extern void message_with_string (const char *, Lisp_Object, int);
3633 extern void message_log_maybe_newline (void);
3634 extern void update_echo_area (void);
3635 extern void truncate_echo_area (ptrdiff_t);
3636 extern void redisplay (void);
3637
3638 void set_frame_cursor_types (struct frame *, Lisp_Object);
3639 extern void syms_of_xdisp (void);
3640 extern void init_xdisp (void);
3641 extern Lisp_Object safe_eval (Lisp_Object);
3642 extern int pos_visible_p (struct window *, ptrdiff_t, int *,
3643 int *, int *, int *, int *, int *);
3644
3645 /* Defined in xsettings.c. */
3646 extern void syms_of_xsettings (void);
3647
3648 /* Defined in vm-limit.c. */
3649 extern void memory_warnings (void *, void (*warnfun) (const char *));
3650
3651 /* Defined in character.c. */
3652 extern void parse_str_as_multibyte (const unsigned char *, ptrdiff_t,
3653 ptrdiff_t *, ptrdiff_t *);
3654
3655 /* Defined in alloc.c. */
3656 extern void check_pure_size (void);
3657 extern void free_misc (Lisp_Object);
3658 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3659 extern void malloc_warning (const char *);
3660 extern _Noreturn void memory_full (size_t);
3661 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3662 extern bool survives_gc_p (Lisp_Object);
3663 extern void mark_object (Lisp_Object);
3664 #if defined REL_ALLOC && !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3665 extern void refill_memory_reserve (void);
3666 #endif
3667 extern const char *pending_malloc_warning;
3668 extern Lisp_Object zero_vector;
3669 extern Lisp_Object *stack_base;
3670 extern EMACS_INT consing_since_gc;
3671 extern EMACS_INT gc_relative_threshold;
3672 extern EMACS_INT memory_full_cons_threshold;
3673 extern Lisp_Object list1 (Lisp_Object);
3674 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3675 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3676 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3677 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3678 Lisp_Object);
3679 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3680 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3681
3682 /* Build a frequently used 2/3/4-integer lists. */
3683
3684 INLINE Lisp_Object
3685 list2i (EMACS_INT x, EMACS_INT y)
3686 {
3687 return list2 (make_number (x), make_number (y));
3688 }
3689
3690 INLINE Lisp_Object
3691 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3692 {
3693 return list3 (make_number (x), make_number (y), make_number (w));
3694 }
3695
3696 INLINE Lisp_Object
3697 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3698 {
3699 return list4 (make_number (x), make_number (y),
3700 make_number (w), make_number (h));
3701 }
3702
3703 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3704 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3705 extern _Noreturn void string_overflow (void);
3706 extern Lisp_Object make_string (const char *, ptrdiff_t);
3707 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3708 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3709 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3710
3711 /* Make unibyte string from C string when the length isn't known. */
3712
3713 INLINE Lisp_Object
3714 build_unibyte_string (const char *str)
3715 {
3716 return make_unibyte_string (str, strlen (str));
3717 }
3718
3719 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3720 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3721 extern Lisp_Object make_uninit_string (EMACS_INT);
3722 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3723 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3724 extern Lisp_Object make_specified_string (const char *,
3725 ptrdiff_t, ptrdiff_t, bool);
3726 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3727 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3728
3729 /* Make a string allocated in pure space, use STR as string data. */
3730
3731 INLINE Lisp_Object
3732 build_pure_c_string (const char *str)
3733 {
3734 return make_pure_c_string (str, strlen (str));
3735 }
3736
3737 /* Make a string from the data at STR, treating it as multibyte if the
3738 data warrants. */
3739
3740 INLINE Lisp_Object
3741 build_string (const char *str)
3742 {
3743 return make_string (str, strlen (str));
3744 }
3745
3746 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3747 extern void make_byte_code (struct Lisp_Vector *);
3748 extern Lisp_Object Qautomatic_gc;
3749 extern Lisp_Object Qchar_table_extra_slots;
3750 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3751
3752 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3753 be sure that GC cannot happen until the vector is completely
3754 initialized. E.g. the following code is likely to crash:
3755
3756 v = make_uninit_vector (3);
3757 ASET (v, 0, obj0);
3758 ASET (v, 1, Ffunction_can_gc ());
3759 ASET (v, 2, obj1); */
3760
3761 INLINE Lisp_Object
3762 make_uninit_vector (ptrdiff_t size)
3763 {
3764 Lisp_Object v;
3765 struct Lisp_Vector *p;
3766
3767 p = allocate_vector (size);
3768 XSETVECTOR (v, p);
3769 return v;
3770 }
3771
3772 /* Like above, but special for sub char-tables. */
3773
3774 INLINE Lisp_Object
3775 make_uninit_sub_char_table (int depth, int min_char)
3776 {
3777 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3778 Lisp_Object v = make_uninit_vector (slots);
3779
3780 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3781 XSUB_CHAR_TABLE (v)->depth = depth;
3782 XSUB_CHAR_TABLE (v)->min_char = min_char;
3783 return v;
3784 }
3785
3786 extern struct Lisp_Vector *allocate_pseudovector (int, int, enum pvec_type);
3787 #define ALLOCATE_PSEUDOVECTOR(typ,field,tag) \
3788 ((typ*) \
3789 allocate_pseudovector \
3790 (VECSIZE (typ), PSEUDOVECSIZE (typ, field), tag))
3791 extern struct Lisp_Hash_Table *allocate_hash_table (void);
3792 extern struct window *allocate_window (void);
3793 extern struct frame *allocate_frame (void);
3794 extern struct Lisp_Process *allocate_process (void);
3795 extern struct terminal *allocate_terminal (void);
3796 extern bool gc_in_progress;
3797 extern bool abort_on_gc;
3798 extern Lisp_Object make_float (double);
3799 extern void display_malloc_warning (void);
3800 extern ptrdiff_t inhibit_garbage_collection (void);
3801 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3802 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3803 Lisp_Object, Lisp_Object);
3804 extern Lisp_Object make_save_ptr (void *);
3805 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3806 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3807 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3808 Lisp_Object);
3809 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3810 extern void free_save_value (Lisp_Object);
3811 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3812 extern void free_marker (Lisp_Object);
3813 extern void free_cons (struct Lisp_Cons *);
3814 extern void init_alloc_once (void);
3815 extern void init_alloc (void);
3816 extern void syms_of_alloc (void);
3817 extern struct buffer * allocate_buffer (void);
3818 extern int valid_lisp_object_p (Lisp_Object);
3819 extern int relocatable_string_data_p (const char *);
3820 #ifdef GC_CHECK_CONS_LIST
3821 extern void check_cons_list (void);
3822 #else
3823 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3824 #endif
3825
3826 #ifdef REL_ALLOC
3827 /* Defined in ralloc.c. */
3828 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3829 extern void r_alloc_free (void **);
3830 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3831 extern void r_alloc_reset_variable (void **, void **);
3832 extern void r_alloc_inhibit_buffer_relocation (int);
3833 #endif
3834
3835 /* Defined in chartab.c. */
3836 extern Lisp_Object copy_char_table (Lisp_Object);
3837 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3838 int *, int *);
3839 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3840 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3841 Lisp_Object),
3842 Lisp_Object, Lisp_Object, Lisp_Object);
3843 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3844 Lisp_Object, Lisp_Object,
3845 Lisp_Object, struct charset *,
3846 unsigned, unsigned);
3847 extern Lisp_Object uniprop_table (Lisp_Object);
3848 extern void syms_of_chartab (void);
3849
3850 /* Defined in print.c. */
3851 extern Lisp_Object Vprin1_to_string_buffer;
3852 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3853 extern Lisp_Object Qstandard_output;
3854 extern Lisp_Object Qexternal_debugging_output;
3855 extern void temp_output_buffer_setup (const char *);
3856 extern int print_level;
3857 extern Lisp_Object Qprint_escape_newlines;
3858 extern void write_string (const char *, int);
3859 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3860 Lisp_Object);
3861 extern Lisp_Object internal_with_output_to_temp_buffer
3862 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3863 #define FLOAT_TO_STRING_BUFSIZE 350
3864 extern int float_to_string (char *, double);
3865 extern void init_print_once (void);
3866 extern void syms_of_print (void);
3867
3868 /* Defined in doprnt.c. */
3869 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3870 va_list);
3871 extern ptrdiff_t esprintf (char *, char const *, ...)
3872 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3873 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3874 char const *, ...)
3875 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3876 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3877 char const *, va_list)
3878 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3879
3880 /* Defined in lread.c. */
3881 extern Lisp_Object Qsize, Qvariable_documentation, Qstandard_input;
3882 extern Lisp_Object Qbackquote, Qcomma, Qcomma_at, Qcomma_dot, Qfunction;
3883 extern Lisp_Object Qlexical_binding;
3884 extern Lisp_Object check_obarray (Lisp_Object);
3885 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3886 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3887 extern Lisp_Object intern_driver (Lisp_Object, Lisp_Object, ptrdiff_t);
3888 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3889 INLINE void
3890 LOADHIST_ATTACH (Lisp_Object x)
3891 {
3892 if (initialized)
3893 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3894 }
3895 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3896 Lisp_Object *, Lisp_Object, bool);
3897 extern Lisp_Object string_to_number (char const *, int, bool);
3898 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3899 Lisp_Object);
3900 extern void dir_warning (const char *, Lisp_Object);
3901 extern void init_obarray (void);
3902 extern void init_lread (void);
3903 extern void syms_of_lread (void);
3904
3905 INLINE Lisp_Object
3906 intern (const char *str)
3907 {
3908 return intern_1 (str, strlen (str));
3909 }
3910
3911 INLINE Lisp_Object
3912 intern_c_string (const char *str)
3913 {
3914 return intern_c_string_1 (str, strlen (str));
3915 }
3916
3917 /* Defined in eval.c. */
3918 extern EMACS_INT lisp_eval_depth;
3919 extern Lisp_Object Qexit, Qinteractive, Qcommandp, Qmacro;
3920 extern Lisp_Object Qinhibit_quit, Qinternal_interpreter_environment, Qclosure;
3921 extern Lisp_Object Qand_rest;
3922 extern Lisp_Object Vautoload_queue;
3923 extern Lisp_Object Vsignaling_function;
3924 extern Lisp_Object inhibit_lisp_code;
3925 extern struct handler *handlerlist;
3926
3927 /* To run a normal hook, use the appropriate function from the list below.
3928 The calling convention:
3929
3930 if (!NILP (Vrun_hooks))
3931 call1 (Vrun_hooks, Qmy_funny_hook);
3932
3933 should no longer be used. */
3934 extern Lisp_Object Vrun_hooks;
3935 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3936 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3937 Lisp_Object (*funcall)
3938 (ptrdiff_t nargs, Lisp_Object *args));
3939 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3940 extern _Noreturn void xsignal0 (Lisp_Object);
3941 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3942 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3943 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3944 Lisp_Object);
3945 extern _Noreturn void signal_error (const char *, Lisp_Object);
3946 extern Lisp_Object eval_sub (Lisp_Object form);
3947 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3948 extern Lisp_Object call0 (Lisp_Object);
3949 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3950 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3951 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3952 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3953 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3954 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3955 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3956 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3957 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3958 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3959 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3960 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3961 extern Lisp_Object internal_condition_case_n
3962 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3963 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3964 extern void specbind (Lisp_Object, Lisp_Object);
3965 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3966 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3967 extern void record_unwind_protect_int (void (*) (int), int);
3968 extern void record_unwind_protect_void (void (*) (void));
3969 extern void record_unwind_protect_nothing (void);
3970 extern void clear_unwind_protect (ptrdiff_t);
3971 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3972 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3973 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3974 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3975 extern _Noreturn void verror (const char *, va_list)
3976 ATTRIBUTE_FORMAT_PRINTF (1, 0);
3977 extern void un_autoload (Lisp_Object);
3978 extern Lisp_Object call_debugger (Lisp_Object arg);
3979 extern void init_eval_once (void);
3980 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
3981 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
3982 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3983 extern void init_eval (void);
3984 extern void syms_of_eval (void);
3985 extern void unwind_body (Lisp_Object);
3986 extern ptrdiff_t record_in_backtrace (Lisp_Object, Lisp_Object *, ptrdiff_t);
3987 extern void mark_specpdl (void);
3988 extern void get_backtrace (Lisp_Object array);
3989 Lisp_Object backtrace_top_function (void);
3990 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
3991 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
3992
3993
3994 /* Defined in editfns.c. */
3995 extern Lisp_Object Qfield;
3996 extern void insert1 (Lisp_Object);
3997 extern Lisp_Object format2 (const char *, Lisp_Object, Lisp_Object);
3998 extern Lisp_Object save_excursion_save (void);
3999 extern Lisp_Object save_restriction_save (void);
4000 extern void save_excursion_restore (Lisp_Object);
4001 extern void save_restriction_restore (Lisp_Object);
4002 extern _Noreturn void time_overflow (void);
4003 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
4004 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
4005 ptrdiff_t, bool);
4006 extern void init_editfns (void);
4007 extern void syms_of_editfns (void);
4008
4009 /* Defined in buffer.c. */
4010 extern bool mouse_face_overlay_overlaps (Lisp_Object);
4011 extern _Noreturn void nsberror (Lisp_Object);
4012 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
4013 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
4014 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
4015 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
4016 Lisp_Object, Lisp_Object, Lisp_Object);
4017 extern bool overlay_touches_p (ptrdiff_t);
4018 extern Lisp_Object other_buffer_safely (Lisp_Object);
4019 extern Lisp_Object get_truename_buffer (Lisp_Object);
4020 extern void init_buffer_once (void);
4021 extern void init_buffer (int);
4022 extern void syms_of_buffer (void);
4023 extern void keys_of_buffer (void);
4024
4025 /* Defined in marker.c. */
4026
4027 extern ptrdiff_t marker_position (Lisp_Object);
4028 extern ptrdiff_t marker_byte_position (Lisp_Object);
4029 extern void clear_charpos_cache (struct buffer *);
4030 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
4031 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
4032 extern void unchain_marker (struct Lisp_Marker *marker);
4033 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
4034 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
4035 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
4036 ptrdiff_t, ptrdiff_t);
4037 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
4038 extern void syms_of_marker (void);
4039
4040 /* Defined in fileio.c. */
4041
4042 extern Lisp_Object Qfile_error;
4043 extern Lisp_Object Qfile_notify_error;
4044 extern Lisp_Object Qfile_exists_p;
4045 extern Lisp_Object Qfile_directory_p;
4046 extern Lisp_Object Qinsert_file_contents;
4047 extern Lisp_Object Qfile_name_history;
4048 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
4049 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
4050 Lisp_Object, Lisp_Object, Lisp_Object,
4051 Lisp_Object, int);
4052 extern void close_file_unwind (int);
4053 extern void fclose_unwind (void *);
4054 extern void restore_point_unwind (Lisp_Object);
4055 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
4056 extern _Noreturn void report_file_error (const char *, Lisp_Object);
4057 extern bool internal_delete_file (Lisp_Object);
4058 extern Lisp_Object emacs_readlinkat (int, const char *);
4059 extern bool file_directory_p (const char *);
4060 extern bool file_accessible_directory_p (Lisp_Object);
4061 extern void init_fileio (void);
4062 extern void syms_of_fileio (void);
4063 extern Lisp_Object make_temp_name (Lisp_Object, bool);
4064 extern Lisp_Object Qdelete_file;
4065
4066 /* Defined in search.c. */
4067 extern void shrink_regexp_cache (void);
4068 extern void restore_search_regs (void);
4069 extern void record_unwind_save_match_data (void);
4070 struct re_registers;
4071 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
4072 struct re_registers *,
4073 Lisp_Object, bool, bool);
4074 extern ptrdiff_t fast_string_match (Lisp_Object, Lisp_Object);
4075 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4076 ptrdiff_t);
4077 extern ptrdiff_t fast_string_match_ignore_case (Lisp_Object, Lisp_Object);
4078 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4079 ptrdiff_t, ptrdiff_t, Lisp_Object);
4080 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4081 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4082 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4083 ptrdiff_t, bool);
4084 extern ptrdiff_t scan_newline_from_point (ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
4085 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4086 ptrdiff_t, ptrdiff_t *);
4087 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4088 ptrdiff_t, ptrdiff_t *);
4089 extern void syms_of_search (void);
4090 extern void clear_regexp_cache (void);
4091
4092 /* Defined in minibuf.c. */
4093
4094 extern Lisp_Object Qcompletion_ignore_case;
4095 extern Lisp_Object Vminibuffer_list;
4096 extern Lisp_Object last_minibuf_string;
4097 extern Lisp_Object get_minibuffer (EMACS_INT);
4098 extern void init_minibuf_once (void);
4099 extern void syms_of_minibuf (void);
4100
4101 /* Defined in callint.c. */
4102
4103 extern Lisp_Object Qminus, Qplus;
4104 extern Lisp_Object Qprogn;
4105 extern Lisp_Object Qwhen;
4106 extern Lisp_Object Qmouse_leave_buffer_hook;
4107 extern void syms_of_callint (void);
4108
4109 /* Defined in casefiddle.c. */
4110
4111 extern Lisp_Object Qidentity;
4112 extern void syms_of_casefiddle (void);
4113 extern void keys_of_casefiddle (void);
4114
4115 /* Defined in casetab.c. */
4116
4117 extern void init_casetab_once (void);
4118 extern void syms_of_casetab (void);
4119
4120 /* Defined in keyboard.c. */
4121
4122 extern Lisp_Object echo_message_buffer;
4123 extern struct kboard *echo_kboard;
4124 extern void cancel_echoing (void);
4125 extern Lisp_Object Qdisabled, QCfilter;
4126 extern Lisp_Object Qup, Qdown;
4127 extern Lisp_Object last_undo_boundary;
4128 extern bool input_pending;
4129 #ifdef HAVE_STACK_OVERFLOW_HANDLING
4130 extern sigjmp_buf return_to_command_loop;
4131 #endif
4132 extern Lisp_Object menu_bar_items (Lisp_Object);
4133 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4134 extern void discard_mouse_events (void);
4135 #ifdef USABLE_SIGIO
4136 void handle_input_available_signal (int);
4137 #endif
4138 extern Lisp_Object pending_funcalls;
4139 extern bool detect_input_pending (void);
4140 extern bool detect_input_pending_ignore_squeezables (void);
4141 extern bool detect_input_pending_run_timers (bool);
4142 extern void safe_run_hooks (Lisp_Object);
4143 extern void cmd_error_internal (Lisp_Object, const char *);
4144 extern Lisp_Object command_loop_1 (void);
4145 extern Lisp_Object read_menu_command (void);
4146 extern Lisp_Object recursive_edit_1 (void);
4147 extern void record_auto_save (void);
4148 extern void force_auto_save_soon (void);
4149 extern void init_keyboard (void);
4150 extern void syms_of_keyboard (void);
4151 extern void keys_of_keyboard (void);
4152
4153 /* Defined in indent.c. */
4154 extern ptrdiff_t current_column (void);
4155 extern void invalidate_current_column (void);
4156 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4157 extern void syms_of_indent (void);
4158
4159 /* Defined in frame.c. */
4160 extern Lisp_Object Qonly, Qnone;
4161 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4162 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4163 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4164 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4165 extern void frames_discard_buffer (Lisp_Object);
4166 extern void syms_of_frame (void);
4167
4168 /* Defined in emacs.c. */
4169 extern char **initial_argv;
4170 extern int initial_argc;
4171 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4172 extern bool display_arg;
4173 #endif
4174 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4175 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4176 extern Lisp_Object Qfile_name_handler_alist;
4177 extern _Noreturn void terminate_due_to_signal (int, int);
4178 extern Lisp_Object Qkill_emacs;
4179 #ifdef WINDOWSNT
4180 extern Lisp_Object Vlibrary_cache;
4181 #endif
4182 #if HAVE_SETLOCALE
4183 void fixup_locale (void);
4184 void synchronize_system_messages_locale (void);
4185 void synchronize_system_time_locale (void);
4186 #else
4187 INLINE void fixup_locale (void) {}
4188 INLINE void synchronize_system_messages_locale (void) {}
4189 INLINE void synchronize_system_time_locale (void) {}
4190 #endif
4191 extern void shut_down_emacs (int, Lisp_Object);
4192
4193 /* True means don't do interactive redisplay and don't change tty modes. */
4194 extern bool noninteractive;
4195
4196 /* True means remove site-lisp directories from load-path. */
4197 extern bool no_site_lisp;
4198
4199 /* Pipe used to send exit notification to the daemon parent at
4200 startup. */
4201 extern int daemon_pipe[2];
4202 #define IS_DAEMON (daemon_pipe[1] != 0)
4203
4204 /* True if handling a fatal error already. */
4205 extern bool fatal_error_in_progress;
4206
4207 /* True means don't do use window-system-specific display code. */
4208 extern bool inhibit_window_system;
4209 /* True means that a filter or a sentinel is running. */
4210 extern bool running_asynch_code;
4211
4212 /* Defined in process.c. */
4213 extern Lisp_Object QCtype, Qlocal;
4214 extern void kill_buffer_processes (Lisp_Object);
4215 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4216 struct Lisp_Process *, int);
4217 /* Max value for the first argument of wait_reading_process_output. */
4218 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4219 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4220 The bug merely causes a bogus warning, but the warning is annoying. */
4221 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4222 #else
4223 # define WAIT_READING_MAX INTMAX_MAX
4224 #endif
4225 #ifdef HAVE_TIMERFD
4226 extern void add_timer_wait_descriptor (int);
4227 #endif
4228 extern void add_keyboard_wait_descriptor (int);
4229 extern void delete_keyboard_wait_descriptor (int);
4230 #ifdef HAVE_GPM
4231 extern void add_gpm_wait_descriptor (int);
4232 extern void delete_gpm_wait_descriptor (int);
4233 #endif
4234 extern void init_process_emacs (void);
4235 extern void syms_of_process (void);
4236 extern void setup_process_coding_systems (Lisp_Object);
4237
4238 /* Defined in callproc.c. */
4239 #ifndef DOS_NT
4240 _Noreturn
4241 #endif
4242 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4243 extern void init_callproc_1 (void);
4244 extern void init_callproc (void);
4245 extern void set_initial_environment (void);
4246 extern void syms_of_callproc (void);
4247
4248 /* Defined in doc.c. */
4249 extern Lisp_Object Qfunction_documentation;
4250 extern Lisp_Object read_doc_string (Lisp_Object);
4251 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4252 extern void syms_of_doc (void);
4253 extern int read_bytecode_char (bool);
4254
4255 /* Defined in bytecode.c. */
4256 extern void syms_of_bytecode (void);
4257 extern struct byte_stack *byte_stack_list;
4258 #if BYTE_MARK_STACK
4259 extern void mark_byte_stack (void);
4260 #endif
4261 extern void unmark_byte_stack (void);
4262 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4263 Lisp_Object, ptrdiff_t, Lisp_Object *);
4264
4265 /* Defined in macros.c. */
4266 extern void init_macros (void);
4267 extern void syms_of_macros (void);
4268
4269 /* Defined in undo.c. */
4270 extern Lisp_Object Qapply;
4271 extern Lisp_Object Qinhibit_read_only;
4272 extern void truncate_undo_list (struct buffer *);
4273 extern void record_insert (ptrdiff_t, ptrdiff_t);
4274 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4275 extern void record_first_change (void);
4276 extern void record_change (ptrdiff_t, ptrdiff_t);
4277 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4278 Lisp_Object, Lisp_Object,
4279 Lisp_Object);
4280 extern void syms_of_undo (void);
4281 /* Defined in textprop.c. */
4282 extern Lisp_Object Qmouse_face;
4283 extern Lisp_Object Qinsert_in_front_hooks, Qinsert_behind_hooks;
4284 extern Lisp_Object Qminibuffer_prompt;
4285
4286 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4287
4288 /* Defined in menu.c. */
4289 extern void syms_of_menu (void);
4290
4291 /* Defined in xmenu.c. */
4292 extern void syms_of_xmenu (void);
4293
4294 /* Defined in termchar.h. */
4295 struct tty_display_info;
4296
4297 /* Defined in termhooks.h. */
4298 struct terminal;
4299
4300 /* Defined in sysdep.c. */
4301 #ifndef HAVE_GET_CURRENT_DIR_NAME
4302 extern char *get_current_dir_name (void);
4303 #endif
4304 extern void stuff_char (char c);
4305 extern void init_foreground_group (void);
4306 extern void sys_subshell (void);
4307 extern void sys_suspend (void);
4308 extern void discard_tty_input (void);
4309 extern void init_sys_modes (struct tty_display_info *);
4310 extern void reset_sys_modes (struct tty_display_info *);
4311 extern void init_all_sys_modes (void);
4312 extern void reset_all_sys_modes (void);
4313 extern void child_setup_tty (int);
4314 extern void setup_pty (int);
4315 extern int set_window_size (int, int, int);
4316 extern EMACS_INT get_random (void);
4317 extern void seed_random (void *, ptrdiff_t);
4318 extern void init_random (void);
4319 extern void emacs_backtrace (int);
4320 extern _Noreturn void emacs_abort (void) NO_INLINE;
4321 extern int emacs_open (const char *, int, int);
4322 extern int emacs_pipe (int[2]);
4323 extern int emacs_close (int);
4324 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4325 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4326 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4327 extern void emacs_perror (char const *);
4328
4329 extern void unlock_all_files (void);
4330 extern void lock_file (Lisp_Object);
4331 extern void unlock_file (Lisp_Object);
4332 extern void unlock_buffer (struct buffer *);
4333 extern void syms_of_filelock (void);
4334 extern int str_collate (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4335
4336 /* Defined in sound.c. */
4337 extern void syms_of_sound (void);
4338
4339 /* Defined in category.c. */
4340 extern void init_category_once (void);
4341 extern Lisp_Object char_category_set (int);
4342 extern void syms_of_category (void);
4343
4344 /* Defined in ccl.c. */
4345 extern void syms_of_ccl (void);
4346
4347 /* Defined in dired.c. */
4348 extern void syms_of_dired (void);
4349 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4350 Lisp_Object, Lisp_Object,
4351 bool, Lisp_Object);
4352
4353 /* Defined in term.c. */
4354 extern int *char_ins_del_vector;
4355 extern void syms_of_term (void);
4356 extern _Noreturn void fatal (const char *msgid, ...)
4357 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4358
4359 /* Defined in terminal.c. */
4360 extern void syms_of_terminal (void);
4361
4362 /* Defined in font.c. */
4363 extern void syms_of_font (void);
4364 extern void init_font (void);
4365
4366 #ifdef HAVE_WINDOW_SYSTEM
4367 /* Defined in fontset.c. */
4368 extern void syms_of_fontset (void);
4369
4370 /* Defined in xfns.c, w32fns.c, or macfns.c. */
4371 extern Lisp_Object Qfont_param;
4372 #endif
4373
4374 /* Defined in gfilenotify.c */
4375 #ifdef HAVE_GFILENOTIFY
4376 extern void globals_of_gfilenotify (void);
4377 extern void syms_of_gfilenotify (void);
4378 #endif
4379
4380 /* Defined in inotify.c */
4381 #ifdef HAVE_INOTIFY
4382 extern void syms_of_inotify (void);
4383 #endif
4384
4385 #ifdef HAVE_W32NOTIFY
4386 /* Defined on w32notify.c. */
4387 extern void syms_of_w32notify (void);
4388 #endif
4389
4390 /* Defined in xfaces.c. */
4391 extern Lisp_Object Qdefault, Qfringe;
4392 extern Lisp_Object Qscroll_bar, Qcursor;
4393 extern Lisp_Object Qmode_line_inactive;
4394 extern Lisp_Object Qface;
4395 extern Lisp_Object Qnormal;
4396 extern Lisp_Object QCfamily, QCweight, QCslant;
4397 extern Lisp_Object QCheight, QCname, QCwidth, QCforeground, QCbackground;
4398 extern Lisp_Object Qextra_light, Qlight, Qsemi_light, Qsemi_bold;
4399 extern Lisp_Object Qbold, Qextra_bold, Qultra_bold;
4400 extern Lisp_Object Qoblique, Qitalic;
4401 extern Lisp_Object Vface_alternative_font_family_alist;
4402 extern Lisp_Object Vface_alternative_font_registry_alist;
4403 extern void syms_of_xfaces (void);
4404
4405 #ifdef HAVE_X_WINDOWS
4406 /* Defined in xfns.c. */
4407 extern void syms_of_xfns (void);
4408
4409 /* Defined in xsmfns.c. */
4410 extern void syms_of_xsmfns (void);
4411
4412 /* Defined in xselect.c. */
4413 extern void syms_of_xselect (void);
4414
4415 /* Defined in xterm.c. */
4416 extern void init_xterm (void);
4417 extern void syms_of_xterm (void);
4418 #endif /* HAVE_X_WINDOWS */
4419
4420 #ifdef HAVE_WINDOW_SYSTEM
4421 /* Defined in xterm.c, nsterm.m, w32term.c. */
4422 extern char *x_get_keysym_name (int);
4423 #endif /* HAVE_WINDOW_SYSTEM */
4424
4425 #ifdef HAVE_LIBXML2
4426 /* Defined in xml.c. */
4427 extern void syms_of_xml (void);
4428 extern void xml_cleanup_parser (void);
4429 #endif
4430
4431 #ifdef HAVE_ZLIB
4432 /* Defined in decompress.c. */
4433 extern void syms_of_decompress (void);
4434 #endif
4435
4436 #ifdef HAVE_DBUS
4437 /* Defined in dbusbind.c. */
4438 void init_dbusbind (void);
4439 void syms_of_dbusbind (void);
4440 #endif
4441
4442
4443 /* Defined in profiler.c. */
4444 extern bool profiler_memory_running;
4445 extern void malloc_probe (size_t);
4446 extern void syms_of_profiler (void);
4447
4448
4449 #ifdef DOS_NT
4450 /* Defined in msdos.c, w32.c. */
4451 extern char *emacs_root_dir (void);
4452 #endif /* DOS_NT */
4453
4454 /* Defined in lastfile.c. */
4455 extern char my_edata[];
4456 extern char my_endbss[];
4457 extern char *my_endbss_static;
4458
4459 /* True means ^G can quit instantly. */
4460 extern bool immediate_quit;
4461
4462 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4463 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4464 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4465 extern void xfree (void *);
4466 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4467 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4468 ATTRIBUTE_ALLOC_SIZE ((2,3));
4469 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4470
4471 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4472 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4473 extern void dupstring (char **, char const *);
4474
4475 /* Make DEST a copy of STRING's data. Return a pointer to DEST's terminating
4476 null byte. This is like stpcpy, except the source is a Lisp string. */
4477
4478 INLINE char *
4479 lispstpcpy (char *dest, Lisp_Object string)
4480 {
4481 ptrdiff_t len = SBYTES (string);
4482 memcpy (dest, SDATA (string), len + 1);
4483 return dest + len;
4484 }
4485
4486 extern void xputenv (const char *);
4487
4488 extern char *egetenv_internal (const char *, ptrdiff_t);
4489
4490 INLINE char *
4491 egetenv (const char *var)
4492 {
4493 /* When VAR is a string literal, strlen can be optimized away. */
4494 return egetenv_internal (var, strlen (var));
4495 }
4496
4497 /* Set up the name of the machine we're running on. */
4498 extern void init_system_name (void);
4499
4500 /* Return the absolute value of X. X should be a signed integer
4501 expression without side effects, and X's absolute value should not
4502 exceed the maximum for its promoted type. This is called 'eabs'
4503 because 'abs' is reserved by the C standard. */
4504 #define eabs(x) ((x) < 0 ? -(x) : (x))
4505
4506 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4507 fixnum. */
4508
4509 #define make_fixnum_or_float(val) \
4510 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4511
4512 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4513 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4514
4515 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4516
4517 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4518
4519 #define USE_SAFE_ALLOCA \
4520 ptrdiff_t sa_avail = MAX_ALLOCA; \
4521 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4522
4523 #define AVAIL_ALLOCA(size) (sa_avail -= (size), alloca (size))
4524
4525 /* SAFE_ALLOCA allocates a simple buffer. */
4526
4527 #define SAFE_ALLOCA(size) ((size) <= sa_avail \
4528 ? AVAIL_ALLOCA (size) \
4529 : (sa_must_free = true, record_xmalloc (size)))
4530
4531 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4532 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4533 positive. The code is tuned for MULTIPLIER being a constant. */
4534
4535 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4536 do { \
4537 if ((nitems) <= sa_avail / sizeof *(buf) / (multiplier)) \
4538 (buf) = AVAIL_ALLOCA (sizeof *(buf) * (multiplier) * (nitems)); \
4539 else \
4540 { \
4541 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4542 sa_must_free = true; \
4543 record_unwind_protect_ptr (xfree, buf); \
4544 } \
4545 } while (false)
4546
4547 /* SAFE_ALLOCA_STRING allocates a C copy of a Lisp string. */
4548
4549 #define SAFE_ALLOCA_STRING(ptr, string) \
4550 do { \
4551 (ptr) = SAFE_ALLOCA (SBYTES (string) + 1); \
4552 memcpy (ptr, SDATA (string), SBYTES (string) + 1); \
4553 } while (false)
4554
4555 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4556
4557 #define SAFE_FREE() \
4558 do { \
4559 if (sa_must_free) { \
4560 sa_must_free = false; \
4561 unbind_to (sa_count, Qnil); \
4562 } \
4563 } while (false)
4564
4565
4566 /* Return floor (NBYTES / WORD_SIZE). */
4567
4568 INLINE ptrdiff_t
4569 lisp_word_count (ptrdiff_t nbytes)
4570 {
4571 if (-1 >> 1 == -1)
4572 switch (word_size)
4573 {
4574 case 2: return nbytes >> 1;
4575 case 4: return nbytes >> 2;
4576 case 8: return nbytes >> 3;
4577 case 16: return nbytes >> 4;
4578 }
4579 return nbytes / word_size - (nbytes % word_size < 0);
4580 }
4581
4582 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4583
4584 #define SAFE_ALLOCA_LISP(buf, nelt) \
4585 do { \
4586 if ((nelt) <= lisp_word_count (sa_avail)) \
4587 (buf) = AVAIL_ALLOCA ((nelt) * word_size); \
4588 else if ((nelt) <= min (PTRDIFF_MAX, SIZE_MAX) / word_size) \
4589 { \
4590 Lisp_Object arg_; \
4591 (buf) = xmalloc ((nelt) * word_size); \
4592 arg_ = make_save_memory (buf, nelt); \
4593 sa_must_free = true; \
4594 record_unwind_protect (free_save_value, arg_); \
4595 } \
4596 else \
4597 memory_full (SIZE_MAX); \
4598 } while (false)
4599
4600
4601 /* If USE_STACK_LISP_OBJECTS, define macros that and functions that allocate
4602 block-scoped conses and strings. These objects are not
4603 managed by the garbage collector, so they are dangerous: passing them
4604 out of their scope (e.g., to user code) results in undefined behavior.
4605 Conversely, they have better performance because GC is not involved.
4606
4607 This feature is experimental and requires careful debugging.
4608 Build with CPPFLAGS='-DUSE_STACK_LISP_OBJECTS=0' to disable it. */
4609
4610 #ifndef USE_STACK_LISP_OBJECTS
4611 # define USE_STACK_LISP_OBJECTS true
4612 #endif
4613
4614 /* USE_STACK_LISP_OBJECTS requires GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS. */
4615
4616 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
4617 # undef USE_STACK_LISP_OBJECTS
4618 # define USE_STACK_LISP_OBJECTS false
4619 #endif
4620
4621 #ifdef GC_CHECK_STRING_BYTES
4622 enum { defined_GC_CHECK_STRING_BYTES = true };
4623 #else
4624 enum { defined_GC_CHECK_STRING_BYTES = false };
4625 #endif
4626
4627 /* Struct inside unions that are typically no larger and aligned enough. */
4628
4629 union Aligned_Cons
4630 {
4631 struct Lisp_Cons s;
4632 double d; intmax_t i; void *p;
4633 };
4634
4635 union Aligned_String
4636 {
4637 struct Lisp_String s;
4638 double d; intmax_t i; void *p;
4639 };
4640
4641 /* True for stack-based cons and string implementations, respectively.
4642 Use stack-based strings only if stack-based cons also works.
4643 Otherwise, STACK_CONS would create heap-based cons cells that
4644 could point to stack-based strings, which is a no-no. */
4645
4646 enum
4647 {
4648 USE_STACK_CONS = (USE_STACK_LISP_OBJECTS
4649 && alignof (union Aligned_Cons) % GCALIGNMENT == 0),
4650 USE_STACK_STRING = (USE_STACK_CONS
4651 && !defined_GC_CHECK_STRING_BYTES
4652 && alignof (union Aligned_String) % GCALIGNMENT == 0)
4653 };
4654
4655 /* Auxiliary macros used for auto allocation of Lisp objects. Please
4656 use these only in macros like AUTO_CONS that declare a local
4657 variable whose lifetime will be clear to the programmer. */
4658 #define STACK_CONS(a, b) \
4659 make_lisp_ptr (&(union Aligned_Cons) { { a, { b } } }.s, Lisp_Cons)
4660 #define AUTO_CONS_EXPR(a, b) \
4661 (USE_STACK_CONS ? STACK_CONS (a, b) : Fcons (a, b))
4662
4663 /* Declare NAME as an auto Lisp cons or short list if possible, a
4664 GC-based one otherwise. This is in the sense of the C keyword
4665 'auto'; i.e., the object has the lifetime of the containing block.
4666 The resulting object should not be made visible to user Lisp code. */
4667
4668 #define AUTO_CONS(name, a, b) Lisp_Object name = AUTO_CONS_EXPR (a, b)
4669 #define AUTO_LIST1(name, a) \
4670 Lisp_Object name = (USE_STACK_CONS ? STACK_CONS (a, Qnil) : list1 (a))
4671 #define AUTO_LIST2(name, a, b) \
4672 Lisp_Object name = (USE_STACK_CONS \
4673 ? STACK_CONS (a, STACK_CONS (b, Qnil)) \
4674 : list2 (a, b))
4675 #define AUTO_LIST3(name, a, b, c) \
4676 Lisp_Object name = (USE_STACK_CONS \
4677 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, Qnil))) \
4678 : list3 (a, b, c))
4679 #define AUTO_LIST4(name, a, b, c, d) \
4680 Lisp_Object name \
4681 = (USE_STACK_CONS \
4682 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, \
4683 STACK_CONS (d, Qnil)))) \
4684 : list4 (a, b, c, d))
4685
4686 /* Check whether stack-allocated strings are ASCII-only. */
4687
4688 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
4689 extern const char *verify_ascii (const char *);
4690 #else
4691 # define verify_ascii(str) (str)
4692 #endif
4693
4694 /* Declare NAME as an auto Lisp string if possible, a GC-based one if not.
4695 Take its value from STR. STR is not necessarily copied and should
4696 contain only ASCII characters. The resulting Lisp string should
4697 not be modified or made visible to user code. */
4698
4699 #define AUTO_STRING(name, str) \
4700 Lisp_Object name = \
4701 (USE_STACK_STRING \
4702 ? (make_lisp_ptr \
4703 ((&(union Aligned_String) \
4704 {{strlen (str), -1, 0, (unsigned char *) verify_ascii (str)}}.s), \
4705 Lisp_String)) \
4706 : build_string (verify_ascii (str)))
4707
4708 /* Loop over all tails of a list, checking for cycles.
4709 FIXME: Make tortoise and n internal declarations.
4710 FIXME: Unroll the loop body so we don't need `n'. */
4711 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4712 for ((tortoise) = (hare) = (list), (n) = true; \
4713 CONSP (hare); \
4714 (hare = XCDR (hare), (n) = !(n), \
4715 ((n) \
4716 ? (EQ (hare, tortoise) \
4717 ? xsignal1 (Qcircular_list, list) \
4718 : (void) 0) \
4719 /* Move tortoise before the next iteration, in case */ \
4720 /* the next iteration does an Fsetcdr. */ \
4721 : (void) ((tortoise) = XCDR (tortoise)))))
4722
4723 /* Do a `for' loop over alist values. */
4724
4725 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4726 for ((list_var) = (head_var); \
4727 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4728 (list_var) = XCDR (list_var))
4729
4730 /* Check whether it's time for GC, and run it if so. */
4731
4732 INLINE void
4733 maybe_gc (void)
4734 {
4735 if ((consing_since_gc > gc_cons_threshold
4736 && consing_since_gc > gc_relative_threshold)
4737 || (!NILP (Vmemory_full)
4738 && consing_since_gc > memory_full_cons_threshold))
4739 Fgarbage_collect ();
4740 }
4741
4742 INLINE bool
4743 functionp (Lisp_Object object)
4744 {
4745 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4746 {
4747 object = Findirect_function (object, Qt);
4748
4749 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4750 {
4751 /* Autoloaded symbols are functions, except if they load
4752 macros or keymaps. */
4753 int i;
4754 for (i = 0; i < 4 && CONSP (object); i++)
4755 object = XCDR (object);
4756
4757 return ! (CONSP (object) && !NILP (XCAR (object)));
4758 }
4759 }
4760
4761 if (SUBRP (object))
4762 return XSUBR (object)->max_args != UNEVALLED;
4763 else if (COMPILEDP (object))
4764 return true;
4765 else if (CONSP (object))
4766 {
4767 Lisp_Object car = XCAR (object);
4768 return EQ (car, Qlambda) || EQ (car, Qclosure);
4769 }
4770 else
4771 return false;
4772 }
4773
4774 INLINE_HEADER_END
4775
4776 #endif /* EMACS_LISP_H */