]> code.delx.au - gnu-emacs/blob - src/alloc.c
Tell valgrind about conservative GC regions and suppress spurious
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2013 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
29
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
33
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45
46 #include <verify.h>
47
48 #if (defined ENABLE_CHECKING && \
49 defined HAVE_VALGRIND_VALGRIND_H && \
50 !defined USE_VALGRIND)
51 # define USE_VALGRIND 1
52 #endif
53
54 #if USE_VALGRIND
55 #include <valgrind/valgrind.h>
56 #include <valgrind/memcheck.h>
57 static int valgrind_p;
58 #endif
59
60 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
61 Doable only if GC_MARK_STACK. */
62 #if ! GC_MARK_STACK
63 # undef GC_CHECK_MARKED_OBJECTS
64 #endif
65
66 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
67 memory. Can do this only if using gmalloc.c and if not checking
68 marked objects. */
69
70 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
71 || defined GC_CHECK_MARKED_OBJECTS)
72 #undef GC_MALLOC_CHECK
73 #endif
74
75 #include <unistd.h>
76 #include <fcntl.h>
77
78 #ifdef USE_GTK
79 # include "gtkutil.h"
80 #endif
81 #ifdef WINDOWSNT
82 #include "w32.h"
83 #include "w32heap.h" /* for sbrk */
84 #endif
85
86 #ifdef DOUG_LEA_MALLOC
87
88 #include <malloc.h>
89
90 /* Specify maximum number of areas to mmap. It would be nice to use a
91 value that explicitly means "no limit". */
92
93 #define MMAP_MAX_AREAS 100000000
94
95 #endif /* not DOUG_LEA_MALLOC */
96
97 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
98 to a struct Lisp_String. */
99
100 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
101 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
102 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
103
104 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
105 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
106 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
107
108 /* Default value of gc_cons_threshold (see below). */
109
110 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
111
112 /* Global variables. */
113 struct emacs_globals globals;
114
115 /* Number of bytes of consing done since the last gc. */
116
117 EMACS_INT consing_since_gc;
118
119 /* Similar minimum, computed from Vgc_cons_percentage. */
120
121 EMACS_INT gc_relative_threshold;
122
123 /* Minimum number of bytes of consing since GC before next GC,
124 when memory is full. */
125
126 EMACS_INT memory_full_cons_threshold;
127
128 /* True during GC. */
129
130 bool gc_in_progress;
131
132 /* True means abort if try to GC.
133 This is for code which is written on the assumption that
134 no GC will happen, so as to verify that assumption. */
135
136 bool abort_on_gc;
137
138 /* Number of live and free conses etc. */
139
140 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
141 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
142 static EMACS_INT total_free_floats, total_floats;
143
144 /* Points to memory space allocated as "spare", to be freed if we run
145 out of memory. We keep one large block, four cons-blocks, and
146 two string blocks. */
147
148 static char *spare_memory[7];
149
150 /* Amount of spare memory to keep in large reserve block, or to see
151 whether this much is available when malloc fails on a larger request. */
152
153 #define SPARE_MEMORY (1 << 14)
154
155 /* Initialize it to a nonzero value to force it into data space
156 (rather than bss space). That way unexec will remap it into text
157 space (pure), on some systems. We have not implemented the
158 remapping on more recent systems because this is less important
159 nowadays than in the days of small memories and timesharing. */
160
161 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
162 #define PUREBEG (char *) pure
163
164 /* Pointer to the pure area, and its size. */
165
166 static char *purebeg;
167 static ptrdiff_t pure_size;
168
169 /* Number of bytes of pure storage used before pure storage overflowed.
170 If this is non-zero, this implies that an overflow occurred. */
171
172 static ptrdiff_t pure_bytes_used_before_overflow;
173
174 /* True if P points into pure space. */
175
176 #define PURE_POINTER_P(P) \
177 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
178
179 /* Index in pure at which next pure Lisp object will be allocated.. */
180
181 static ptrdiff_t pure_bytes_used_lisp;
182
183 /* Number of bytes allocated for non-Lisp objects in pure storage. */
184
185 static ptrdiff_t pure_bytes_used_non_lisp;
186
187 /* If nonzero, this is a warning delivered by malloc and not yet
188 displayed. */
189
190 const char *pending_malloc_warning;
191
192 /* Maximum amount of C stack to save when a GC happens. */
193
194 #ifndef MAX_SAVE_STACK
195 #define MAX_SAVE_STACK 16000
196 #endif
197
198 /* Buffer in which we save a copy of the C stack at each GC. */
199
200 #if MAX_SAVE_STACK > 0
201 static char *stack_copy;
202 static ptrdiff_t stack_copy_size;
203 #endif
204
205 static Lisp_Object Qconses;
206 static Lisp_Object Qsymbols;
207 static Lisp_Object Qmiscs;
208 static Lisp_Object Qstrings;
209 static Lisp_Object Qvectors;
210 static Lisp_Object Qfloats;
211 static Lisp_Object Qintervals;
212 static Lisp_Object Qbuffers;
213 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
214 static Lisp_Object Qgc_cons_threshold;
215 Lisp_Object Qautomatic_gc;
216 Lisp_Object Qchar_table_extra_slots;
217
218 /* Hook run after GC has finished. */
219
220 static Lisp_Object Qpost_gc_hook;
221
222 static void mark_terminals (void);
223 static void gc_sweep (void);
224 static Lisp_Object make_pure_vector (ptrdiff_t);
225 static void mark_buffer (struct buffer *);
226
227 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
228 static void refill_memory_reserve (void);
229 #endif
230 static void compact_small_strings (void);
231 static void free_large_strings (void);
232 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
233
234 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
235 what memory allocated via lisp_malloc and lisp_align_malloc is intended
236 for what purpose. This enumeration specifies the type of memory. */
237
238 enum mem_type
239 {
240 MEM_TYPE_NON_LISP,
241 MEM_TYPE_BUFFER,
242 MEM_TYPE_CONS,
243 MEM_TYPE_STRING,
244 MEM_TYPE_MISC,
245 MEM_TYPE_SYMBOL,
246 MEM_TYPE_FLOAT,
247 /* Since all non-bool pseudovectors are small enough to be
248 allocated from vector blocks, this memory type denotes
249 large regular vectors and large bool pseudovectors. */
250 MEM_TYPE_VECTORLIKE,
251 /* Special type to denote vector blocks. */
252 MEM_TYPE_VECTOR_BLOCK,
253 /* Special type to denote reserved memory. */
254 MEM_TYPE_SPARE
255 };
256
257 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
258
259 /* A unique object in pure space used to make some Lisp objects
260 on free lists recognizable in O(1). */
261
262 static Lisp_Object Vdead;
263 #define DEADP(x) EQ (x, Vdead)
264
265 #ifdef GC_MALLOC_CHECK
266
267 enum mem_type allocated_mem_type;
268
269 #endif /* GC_MALLOC_CHECK */
270
271 /* A node in the red-black tree describing allocated memory containing
272 Lisp data. Each such block is recorded with its start and end
273 address when it is allocated, and removed from the tree when it
274 is freed.
275
276 A red-black tree is a balanced binary tree with the following
277 properties:
278
279 1. Every node is either red or black.
280 2. Every leaf is black.
281 3. If a node is red, then both of its children are black.
282 4. Every simple path from a node to a descendant leaf contains
283 the same number of black nodes.
284 5. The root is always black.
285
286 When nodes are inserted into the tree, or deleted from the tree,
287 the tree is "fixed" so that these properties are always true.
288
289 A red-black tree with N internal nodes has height at most 2
290 log(N+1). Searches, insertions and deletions are done in O(log N).
291 Please see a text book about data structures for a detailed
292 description of red-black trees. Any book worth its salt should
293 describe them. */
294
295 struct mem_node
296 {
297 /* Children of this node. These pointers are never NULL. When there
298 is no child, the value is MEM_NIL, which points to a dummy node. */
299 struct mem_node *left, *right;
300
301 /* The parent of this node. In the root node, this is NULL. */
302 struct mem_node *parent;
303
304 /* Start and end of allocated region. */
305 void *start, *end;
306
307 /* Node color. */
308 enum {MEM_BLACK, MEM_RED} color;
309
310 /* Memory type. */
311 enum mem_type type;
312 };
313
314 /* Base address of stack. Set in main. */
315
316 Lisp_Object *stack_base;
317
318 /* Root of the tree describing allocated Lisp memory. */
319
320 static struct mem_node *mem_root;
321
322 /* Lowest and highest known address in the heap. */
323
324 static void *min_heap_address, *max_heap_address;
325
326 /* Sentinel node of the tree. */
327
328 static struct mem_node mem_z;
329 #define MEM_NIL &mem_z
330
331 static struct mem_node *mem_insert (void *, void *, enum mem_type);
332 static void mem_insert_fixup (struct mem_node *);
333 static void mem_rotate_left (struct mem_node *);
334 static void mem_rotate_right (struct mem_node *);
335 static void mem_delete (struct mem_node *);
336 static void mem_delete_fixup (struct mem_node *);
337 static struct mem_node *mem_find (void *);
338
339 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
340
341 #ifndef DEADP
342 # define DEADP(x) 0
343 #endif
344
345 /* Recording what needs to be marked for gc. */
346
347 struct gcpro *gcprolist;
348
349 /* Addresses of staticpro'd variables. Initialize it to a nonzero
350 value; otherwise some compilers put it into BSS. */
351
352 enum { NSTATICS = 2048 };
353 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
354
355 /* Index of next unused slot in staticvec. */
356
357 static int staticidx;
358
359 static void *pure_alloc (size_t, int);
360
361
362 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
363 ALIGNMENT must be a power of 2. */
364
365 #define ALIGN(ptr, ALIGNMENT) \
366 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
367 & ~ ((ALIGNMENT) - 1)))
368
369 static void
370 XFLOAT_INIT (Lisp_Object f, double n)
371 {
372 XFLOAT (f)->u.data = n;
373 }
374
375 \f
376 /************************************************************************
377 Malloc
378 ************************************************************************/
379
380 /* Function malloc calls this if it finds we are near exhausting storage. */
381
382 void
383 malloc_warning (const char *str)
384 {
385 pending_malloc_warning = str;
386 }
387
388
389 /* Display an already-pending malloc warning. */
390
391 void
392 display_malloc_warning (void)
393 {
394 call3 (intern ("display-warning"),
395 intern ("alloc"),
396 build_string (pending_malloc_warning),
397 intern ("emergency"));
398 pending_malloc_warning = 0;
399 }
400 \f
401 /* Called if we can't allocate relocatable space for a buffer. */
402
403 void
404 buffer_memory_full (ptrdiff_t nbytes)
405 {
406 /* If buffers use the relocating allocator, no need to free
407 spare_memory, because we may have plenty of malloc space left
408 that we could get, and if we don't, the malloc that fails will
409 itself cause spare_memory to be freed. If buffers don't use the
410 relocating allocator, treat this like any other failing
411 malloc. */
412
413 #ifndef REL_ALLOC
414 memory_full (nbytes);
415 #else
416 /* This used to call error, but if we've run out of memory, we could
417 get infinite recursion trying to build the string. */
418 xsignal (Qnil, Vmemory_signal_data);
419 #endif
420 }
421
422 /* A common multiple of the positive integers A and B. Ideally this
423 would be the least common multiple, but there's no way to do that
424 as a constant expression in C, so do the best that we can easily do. */
425 #define COMMON_MULTIPLE(a, b) \
426 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
427
428 #ifndef XMALLOC_OVERRUN_CHECK
429 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
430 #else
431
432 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
433 around each block.
434
435 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
436 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
437 block size in little-endian order. The trailer consists of
438 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
439
440 The header is used to detect whether this block has been allocated
441 through these functions, as some low-level libc functions may
442 bypass the malloc hooks. */
443
444 #define XMALLOC_OVERRUN_CHECK_SIZE 16
445 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
446 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
447
448 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
449 hold a size_t value and (2) the header size is a multiple of the
450 alignment that Emacs needs for C types and for USE_LSB_TAG. */
451 #define XMALLOC_BASE_ALIGNMENT \
452 alignof (union { long double d; intmax_t i; void *p; })
453
454 #if USE_LSB_TAG
455 # define XMALLOC_HEADER_ALIGNMENT \
456 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
457 #else
458 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
459 #endif
460 #define XMALLOC_OVERRUN_SIZE_SIZE \
461 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
462 + XMALLOC_HEADER_ALIGNMENT - 1) \
463 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
464 - XMALLOC_OVERRUN_CHECK_SIZE)
465
466 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
467 { '\x9a', '\x9b', '\xae', '\xaf',
468 '\xbf', '\xbe', '\xce', '\xcf',
469 '\xea', '\xeb', '\xec', '\xed',
470 '\xdf', '\xde', '\x9c', '\x9d' };
471
472 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
473 { '\xaa', '\xab', '\xac', '\xad',
474 '\xba', '\xbb', '\xbc', '\xbd',
475 '\xca', '\xcb', '\xcc', '\xcd',
476 '\xda', '\xdb', '\xdc', '\xdd' };
477
478 /* Insert and extract the block size in the header. */
479
480 static void
481 xmalloc_put_size (unsigned char *ptr, size_t size)
482 {
483 int i;
484 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
485 {
486 *--ptr = size & ((1 << CHAR_BIT) - 1);
487 size >>= CHAR_BIT;
488 }
489 }
490
491 static size_t
492 xmalloc_get_size (unsigned char *ptr)
493 {
494 size_t size = 0;
495 int i;
496 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
497 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
498 {
499 size <<= CHAR_BIT;
500 size += *ptr++;
501 }
502 return size;
503 }
504
505
506 /* Like malloc, but wraps allocated block with header and trailer. */
507
508 static void *
509 overrun_check_malloc (size_t size)
510 {
511 register unsigned char *val;
512 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
513 emacs_abort ();
514
515 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
516 if (val)
517 {
518 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
519 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
520 xmalloc_put_size (val, size);
521 memcpy (val + size, xmalloc_overrun_check_trailer,
522 XMALLOC_OVERRUN_CHECK_SIZE);
523 }
524 return val;
525 }
526
527
528 /* Like realloc, but checks old block for overrun, and wraps new block
529 with header and trailer. */
530
531 static void *
532 overrun_check_realloc (void *block, size_t size)
533 {
534 register unsigned char *val = (unsigned char *) block;
535 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
536 emacs_abort ();
537
538 if (val
539 && memcmp (xmalloc_overrun_check_header,
540 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
541 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
542 {
543 size_t osize = xmalloc_get_size (val);
544 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
545 XMALLOC_OVERRUN_CHECK_SIZE))
546 emacs_abort ();
547 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
548 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
549 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
550 }
551
552 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
553
554 if (val)
555 {
556 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
557 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
558 xmalloc_put_size (val, size);
559 memcpy (val + size, xmalloc_overrun_check_trailer,
560 XMALLOC_OVERRUN_CHECK_SIZE);
561 }
562 return val;
563 }
564
565 /* Like free, but checks block for overrun. */
566
567 static void
568 overrun_check_free (void *block)
569 {
570 unsigned char *val = (unsigned char *) block;
571
572 if (val
573 && memcmp (xmalloc_overrun_check_header,
574 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
575 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
576 {
577 size_t osize = xmalloc_get_size (val);
578 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
579 XMALLOC_OVERRUN_CHECK_SIZE))
580 emacs_abort ();
581 #ifdef XMALLOC_CLEAR_FREE_MEMORY
582 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
583 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
584 #else
585 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
586 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
587 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
588 #endif
589 }
590
591 free (val);
592 }
593
594 #undef malloc
595 #undef realloc
596 #undef free
597 #define malloc overrun_check_malloc
598 #define realloc overrun_check_realloc
599 #define free overrun_check_free
600 #endif
601
602 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
603 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
604 If that variable is set, block input while in one of Emacs's memory
605 allocation functions. There should be no need for this debugging
606 option, since signal handlers do not allocate memory, but Emacs
607 formerly allocated memory in signal handlers and this compile-time
608 option remains as a way to help debug the issue should it rear its
609 ugly head again. */
610 #ifdef XMALLOC_BLOCK_INPUT_CHECK
611 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
612 static void
613 malloc_block_input (void)
614 {
615 if (block_input_in_memory_allocators)
616 block_input ();
617 }
618 static void
619 malloc_unblock_input (void)
620 {
621 if (block_input_in_memory_allocators)
622 unblock_input ();
623 }
624 # define MALLOC_BLOCK_INPUT malloc_block_input ()
625 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
626 #else
627 # define MALLOC_BLOCK_INPUT ((void) 0)
628 # define MALLOC_UNBLOCK_INPUT ((void) 0)
629 #endif
630
631 #define MALLOC_PROBE(size) \
632 do { \
633 if (profiler_memory_running) \
634 malloc_probe (size); \
635 } while (0)
636
637
638 /* Like malloc but check for no memory and block interrupt input.. */
639
640 void *
641 xmalloc (size_t size)
642 {
643 void *val;
644
645 MALLOC_BLOCK_INPUT;
646 val = malloc (size);
647 MALLOC_UNBLOCK_INPUT;
648
649 if (!val && size)
650 memory_full (size);
651 MALLOC_PROBE (size);
652 return val;
653 }
654
655 /* Like the above, but zeroes out the memory just allocated. */
656
657 void *
658 xzalloc (size_t size)
659 {
660 void *val;
661
662 MALLOC_BLOCK_INPUT;
663 val = malloc (size);
664 MALLOC_UNBLOCK_INPUT;
665
666 if (!val && size)
667 memory_full (size);
668 memset (val, 0, size);
669 MALLOC_PROBE (size);
670 return val;
671 }
672
673 /* Like realloc but check for no memory and block interrupt input.. */
674
675 void *
676 xrealloc (void *block, size_t size)
677 {
678 void *val;
679
680 MALLOC_BLOCK_INPUT;
681 /* We must call malloc explicitly when BLOCK is 0, since some
682 reallocs don't do this. */
683 if (! block)
684 val = malloc (size);
685 else
686 val = realloc (block, size);
687 MALLOC_UNBLOCK_INPUT;
688
689 if (!val && size)
690 memory_full (size);
691 MALLOC_PROBE (size);
692 return val;
693 }
694
695
696 /* Like free but block interrupt input. */
697
698 void
699 xfree (void *block)
700 {
701 if (!block)
702 return;
703 MALLOC_BLOCK_INPUT;
704 free (block);
705 MALLOC_UNBLOCK_INPUT;
706 /* We don't call refill_memory_reserve here
707 because in practice the call in r_alloc_free seems to suffice. */
708 }
709
710
711 /* Other parts of Emacs pass large int values to allocator functions
712 expecting ptrdiff_t. This is portable in practice, but check it to
713 be safe. */
714 verify (INT_MAX <= PTRDIFF_MAX);
715
716
717 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
718 Signal an error on memory exhaustion, and block interrupt input. */
719
720 void *
721 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
722 {
723 eassert (0 <= nitems && 0 < item_size);
724 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
725 memory_full (SIZE_MAX);
726 return xmalloc (nitems * item_size);
727 }
728
729
730 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
731 Signal an error on memory exhaustion, and block interrupt input. */
732
733 void *
734 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
735 {
736 eassert (0 <= nitems && 0 < item_size);
737 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
738 memory_full (SIZE_MAX);
739 return xrealloc (pa, nitems * item_size);
740 }
741
742
743 /* Grow PA, which points to an array of *NITEMS items, and return the
744 location of the reallocated array, updating *NITEMS to reflect its
745 new size. The new array will contain at least NITEMS_INCR_MIN more
746 items, but will not contain more than NITEMS_MAX items total.
747 ITEM_SIZE is the size of each item, in bytes.
748
749 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
750 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
751 infinity.
752
753 If PA is null, then allocate a new array instead of reallocating
754 the old one.
755
756 Block interrupt input as needed. If memory exhaustion occurs, set
757 *NITEMS to zero if PA is null, and signal an error (i.e., do not
758 return).
759
760 Thus, to grow an array A without saving its old contents, do
761 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
762 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
763 and signals an error, and later this code is reexecuted and
764 attempts to free A. */
765
766 void *
767 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
768 ptrdiff_t nitems_max, ptrdiff_t item_size)
769 {
770 /* The approximate size to use for initial small allocation
771 requests. This is the largest "small" request for the GNU C
772 library malloc. */
773 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
774
775 /* If the array is tiny, grow it to about (but no greater than)
776 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
777 ptrdiff_t n = *nitems;
778 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
779 ptrdiff_t half_again = n >> 1;
780 ptrdiff_t incr_estimate = max (tiny_max, half_again);
781
782 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
783 NITEMS_MAX, and what the C language can represent safely. */
784 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
785 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
786 ? nitems_max : C_language_max);
787 ptrdiff_t nitems_incr_max = n_max - n;
788 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
789
790 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
791 if (! pa)
792 *nitems = 0;
793 if (nitems_incr_max < incr)
794 memory_full (SIZE_MAX);
795 n += incr;
796 pa = xrealloc (pa, n * item_size);
797 *nitems = n;
798 return pa;
799 }
800
801
802 /* Like strdup, but uses xmalloc. */
803
804 char *
805 xstrdup (const char *s)
806 {
807 ptrdiff_t size;
808 eassert (s);
809 size = strlen (s) + 1;
810 return memcpy (xmalloc (size), s, size);
811 }
812
813 /* Like above, but duplicates Lisp string to C string. */
814
815 char *
816 xlispstrdup (Lisp_Object string)
817 {
818 ptrdiff_t size = SBYTES (string) + 1;
819 return memcpy (xmalloc (size), SSDATA (string), size);
820 }
821
822 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
823 argument is a const pointer. */
824
825 void
826 xputenv (char const *string)
827 {
828 if (putenv ((char *) string) != 0)
829 memory_full (0);
830 }
831
832 /* Return a newly allocated memory block of SIZE bytes, remembering
833 to free it when unwinding. */
834 void *
835 record_xmalloc (size_t size)
836 {
837 void *p = xmalloc (size);
838 record_unwind_protect_ptr (xfree, p);
839 return p;
840 }
841
842
843 /* Like malloc but used for allocating Lisp data. NBYTES is the
844 number of bytes to allocate, TYPE describes the intended use of the
845 allocated memory block (for strings, for conses, ...). */
846
847 #if ! USE_LSB_TAG
848 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
849 #endif
850
851 static void *
852 lisp_malloc (size_t nbytes, enum mem_type type)
853 {
854 register void *val;
855
856 MALLOC_BLOCK_INPUT;
857
858 #ifdef GC_MALLOC_CHECK
859 allocated_mem_type = type;
860 #endif
861
862 val = malloc (nbytes);
863
864 #if ! USE_LSB_TAG
865 /* If the memory just allocated cannot be addressed thru a Lisp
866 object's pointer, and it needs to be,
867 that's equivalent to running out of memory. */
868 if (val && type != MEM_TYPE_NON_LISP)
869 {
870 Lisp_Object tem;
871 XSETCONS (tem, (char *) val + nbytes - 1);
872 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
873 {
874 lisp_malloc_loser = val;
875 free (val);
876 val = 0;
877 }
878 }
879 #endif
880
881 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
882 if (val && type != MEM_TYPE_NON_LISP)
883 mem_insert (val, (char *) val + nbytes, type);
884 #endif
885
886 MALLOC_UNBLOCK_INPUT;
887 if (!val && nbytes)
888 memory_full (nbytes);
889 MALLOC_PROBE (nbytes);
890 return val;
891 }
892
893 /* Free BLOCK. This must be called to free memory allocated with a
894 call to lisp_malloc. */
895
896 static void
897 lisp_free (void *block)
898 {
899 MALLOC_BLOCK_INPUT;
900 free (block);
901 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
902 mem_delete (mem_find (block));
903 #endif
904 MALLOC_UNBLOCK_INPUT;
905 }
906
907 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
908
909 /* The entry point is lisp_align_malloc which returns blocks of at most
910 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
911
912 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
913 #define USE_POSIX_MEMALIGN 1
914 #endif
915
916 /* BLOCK_ALIGN has to be a power of 2. */
917 #define BLOCK_ALIGN (1 << 10)
918
919 /* Padding to leave at the end of a malloc'd block. This is to give
920 malloc a chance to minimize the amount of memory wasted to alignment.
921 It should be tuned to the particular malloc library used.
922 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
923 posix_memalign on the other hand would ideally prefer a value of 4
924 because otherwise, there's 1020 bytes wasted between each ablocks.
925 In Emacs, testing shows that those 1020 can most of the time be
926 efficiently used by malloc to place other objects, so a value of 0 can
927 still preferable unless you have a lot of aligned blocks and virtually
928 nothing else. */
929 #define BLOCK_PADDING 0
930 #define BLOCK_BYTES \
931 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
932
933 /* Internal data structures and constants. */
934
935 #define ABLOCKS_SIZE 16
936
937 /* An aligned block of memory. */
938 struct ablock
939 {
940 union
941 {
942 char payload[BLOCK_BYTES];
943 struct ablock *next_free;
944 } x;
945 /* `abase' is the aligned base of the ablocks. */
946 /* It is overloaded to hold the virtual `busy' field that counts
947 the number of used ablock in the parent ablocks.
948 The first ablock has the `busy' field, the others have the `abase'
949 field. To tell the difference, we assume that pointers will have
950 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
951 is used to tell whether the real base of the parent ablocks is `abase'
952 (if not, the word before the first ablock holds a pointer to the
953 real base). */
954 struct ablocks *abase;
955 /* The padding of all but the last ablock is unused. The padding of
956 the last ablock in an ablocks is not allocated. */
957 #if BLOCK_PADDING
958 char padding[BLOCK_PADDING];
959 #endif
960 };
961
962 /* A bunch of consecutive aligned blocks. */
963 struct ablocks
964 {
965 struct ablock blocks[ABLOCKS_SIZE];
966 };
967
968 /* Size of the block requested from malloc or posix_memalign. */
969 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
970
971 #define ABLOCK_ABASE(block) \
972 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
973 ? (struct ablocks *)(block) \
974 : (block)->abase)
975
976 /* Virtual `busy' field. */
977 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
978
979 /* Pointer to the (not necessarily aligned) malloc block. */
980 #ifdef USE_POSIX_MEMALIGN
981 #define ABLOCKS_BASE(abase) (abase)
982 #else
983 #define ABLOCKS_BASE(abase) \
984 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
985 #endif
986
987 /* The list of free ablock. */
988 static struct ablock *free_ablock;
989
990 /* Allocate an aligned block of nbytes.
991 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
992 smaller or equal to BLOCK_BYTES. */
993 static void *
994 lisp_align_malloc (size_t nbytes, enum mem_type type)
995 {
996 void *base, *val;
997 struct ablocks *abase;
998
999 eassert (nbytes <= BLOCK_BYTES);
1000
1001 MALLOC_BLOCK_INPUT;
1002
1003 #ifdef GC_MALLOC_CHECK
1004 allocated_mem_type = type;
1005 #endif
1006
1007 if (!free_ablock)
1008 {
1009 int i;
1010 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1011
1012 #ifdef DOUG_LEA_MALLOC
1013 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1014 because mapped region contents are not preserved in
1015 a dumped Emacs. */
1016 mallopt (M_MMAP_MAX, 0);
1017 #endif
1018
1019 #ifdef USE_POSIX_MEMALIGN
1020 {
1021 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1022 if (err)
1023 base = NULL;
1024 abase = base;
1025 }
1026 #else
1027 base = malloc (ABLOCKS_BYTES);
1028 abase = ALIGN (base, BLOCK_ALIGN);
1029 #endif
1030
1031 if (base == 0)
1032 {
1033 MALLOC_UNBLOCK_INPUT;
1034 memory_full (ABLOCKS_BYTES);
1035 }
1036
1037 aligned = (base == abase);
1038 if (!aligned)
1039 ((void**)abase)[-1] = base;
1040
1041 #ifdef DOUG_LEA_MALLOC
1042 /* Back to a reasonable maximum of mmap'ed areas. */
1043 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1044 #endif
1045
1046 #if ! USE_LSB_TAG
1047 /* If the memory just allocated cannot be addressed thru a Lisp
1048 object's pointer, and it needs to be, that's equivalent to
1049 running out of memory. */
1050 if (type != MEM_TYPE_NON_LISP)
1051 {
1052 Lisp_Object tem;
1053 char *end = (char *) base + ABLOCKS_BYTES - 1;
1054 XSETCONS (tem, end);
1055 if ((char *) XCONS (tem) != end)
1056 {
1057 lisp_malloc_loser = base;
1058 free (base);
1059 MALLOC_UNBLOCK_INPUT;
1060 memory_full (SIZE_MAX);
1061 }
1062 }
1063 #endif
1064
1065 /* Initialize the blocks and put them on the free list.
1066 If `base' was not properly aligned, we can't use the last block. */
1067 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1068 {
1069 abase->blocks[i].abase = abase;
1070 abase->blocks[i].x.next_free = free_ablock;
1071 free_ablock = &abase->blocks[i];
1072 }
1073 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1074
1075 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1076 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1077 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1078 eassert (ABLOCKS_BASE (abase) == base);
1079 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1080 }
1081
1082 abase = ABLOCK_ABASE (free_ablock);
1083 ABLOCKS_BUSY (abase) =
1084 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1085 val = free_ablock;
1086 free_ablock = free_ablock->x.next_free;
1087
1088 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1089 if (type != MEM_TYPE_NON_LISP)
1090 mem_insert (val, (char *) val + nbytes, type);
1091 #endif
1092
1093 MALLOC_UNBLOCK_INPUT;
1094
1095 MALLOC_PROBE (nbytes);
1096
1097 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1098 return val;
1099 }
1100
1101 static void
1102 lisp_align_free (void *block)
1103 {
1104 struct ablock *ablock = block;
1105 struct ablocks *abase = ABLOCK_ABASE (ablock);
1106
1107 MALLOC_BLOCK_INPUT;
1108 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1109 mem_delete (mem_find (block));
1110 #endif
1111 /* Put on free list. */
1112 ablock->x.next_free = free_ablock;
1113 free_ablock = ablock;
1114 /* Update busy count. */
1115 ABLOCKS_BUSY (abase)
1116 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1117
1118 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1119 { /* All the blocks are free. */
1120 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1121 struct ablock **tem = &free_ablock;
1122 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1123
1124 while (*tem)
1125 {
1126 if (*tem >= (struct ablock *) abase && *tem < atop)
1127 {
1128 i++;
1129 *tem = (*tem)->x.next_free;
1130 }
1131 else
1132 tem = &(*tem)->x.next_free;
1133 }
1134 eassert ((aligned & 1) == aligned);
1135 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1136 #ifdef USE_POSIX_MEMALIGN
1137 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1138 #endif
1139 free (ABLOCKS_BASE (abase));
1140 }
1141 MALLOC_UNBLOCK_INPUT;
1142 }
1143
1144 \f
1145 /***********************************************************************
1146 Interval Allocation
1147 ***********************************************************************/
1148
1149 /* Number of intervals allocated in an interval_block structure.
1150 The 1020 is 1024 minus malloc overhead. */
1151
1152 #define INTERVAL_BLOCK_SIZE \
1153 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1154
1155 /* Intervals are allocated in chunks in the form of an interval_block
1156 structure. */
1157
1158 struct interval_block
1159 {
1160 /* Place `intervals' first, to preserve alignment. */
1161 struct interval intervals[INTERVAL_BLOCK_SIZE];
1162 struct interval_block *next;
1163 };
1164
1165 /* Current interval block. Its `next' pointer points to older
1166 blocks. */
1167
1168 static struct interval_block *interval_block;
1169
1170 /* Index in interval_block above of the next unused interval
1171 structure. */
1172
1173 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1174
1175 /* Number of free and live intervals. */
1176
1177 static EMACS_INT total_free_intervals, total_intervals;
1178
1179 /* List of free intervals. */
1180
1181 static INTERVAL interval_free_list;
1182
1183 /* Return a new interval. */
1184
1185 INTERVAL
1186 make_interval (void)
1187 {
1188 INTERVAL val;
1189
1190 MALLOC_BLOCK_INPUT;
1191
1192 if (interval_free_list)
1193 {
1194 val = interval_free_list;
1195 interval_free_list = INTERVAL_PARENT (interval_free_list);
1196 }
1197 else
1198 {
1199 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1200 {
1201 struct interval_block *newi
1202 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1203
1204 newi->next = interval_block;
1205 interval_block = newi;
1206 interval_block_index = 0;
1207 total_free_intervals += INTERVAL_BLOCK_SIZE;
1208 }
1209 val = &interval_block->intervals[interval_block_index++];
1210 }
1211
1212 MALLOC_UNBLOCK_INPUT;
1213
1214 consing_since_gc += sizeof (struct interval);
1215 intervals_consed++;
1216 total_free_intervals--;
1217 RESET_INTERVAL (val);
1218 val->gcmarkbit = 0;
1219 return val;
1220 }
1221
1222
1223 /* Mark Lisp objects in interval I. */
1224
1225 static void
1226 mark_interval (register INTERVAL i, Lisp_Object dummy)
1227 {
1228 /* Intervals should never be shared. So, if extra internal checking is
1229 enabled, GC aborts if it seems to have visited an interval twice. */
1230 eassert (!i->gcmarkbit);
1231 i->gcmarkbit = 1;
1232 mark_object (i->plist);
1233 }
1234
1235 /* Mark the interval tree rooted in I. */
1236
1237 #define MARK_INTERVAL_TREE(i) \
1238 do { \
1239 if (i && !i->gcmarkbit) \
1240 traverse_intervals_noorder (i, mark_interval, Qnil); \
1241 } while (0)
1242
1243 /***********************************************************************
1244 String Allocation
1245 ***********************************************************************/
1246
1247 /* Lisp_Strings are allocated in string_block structures. When a new
1248 string_block is allocated, all the Lisp_Strings it contains are
1249 added to a free-list string_free_list. When a new Lisp_String is
1250 needed, it is taken from that list. During the sweep phase of GC,
1251 string_blocks that are entirely free are freed, except two which
1252 we keep.
1253
1254 String data is allocated from sblock structures. Strings larger
1255 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1256 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1257
1258 Sblocks consist internally of sdata structures, one for each
1259 Lisp_String. The sdata structure points to the Lisp_String it
1260 belongs to. The Lisp_String points back to the `u.data' member of
1261 its sdata structure.
1262
1263 When a Lisp_String is freed during GC, it is put back on
1264 string_free_list, and its `data' member and its sdata's `string'
1265 pointer is set to null. The size of the string is recorded in the
1266 `n.nbytes' member of the sdata. So, sdata structures that are no
1267 longer used, can be easily recognized, and it's easy to compact the
1268 sblocks of small strings which we do in compact_small_strings. */
1269
1270 /* Size in bytes of an sblock structure used for small strings. This
1271 is 8192 minus malloc overhead. */
1272
1273 #define SBLOCK_SIZE 8188
1274
1275 /* Strings larger than this are considered large strings. String data
1276 for large strings is allocated from individual sblocks. */
1277
1278 #define LARGE_STRING_BYTES 1024
1279
1280 /* Struct or union describing string memory sub-allocated from an sblock.
1281 This is where the contents of Lisp strings are stored. */
1282
1283 #ifdef GC_CHECK_STRING_BYTES
1284
1285 typedef struct
1286 {
1287 /* Back-pointer to the string this sdata belongs to. If null, this
1288 structure is free, and the NBYTES member of the union below
1289 contains the string's byte size (the same value that STRING_BYTES
1290 would return if STRING were non-null). If non-null, STRING_BYTES
1291 (STRING) is the size of the data, and DATA contains the string's
1292 contents. */
1293 struct Lisp_String *string;
1294
1295 ptrdiff_t nbytes;
1296 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1297 } sdata;
1298
1299 #define SDATA_NBYTES(S) (S)->nbytes
1300 #define SDATA_DATA(S) (S)->data
1301 #define SDATA_SELECTOR(member) member
1302
1303 #else
1304
1305 typedef union
1306 {
1307 struct Lisp_String *string;
1308
1309 /* When STRING is non-null. */
1310 struct
1311 {
1312 struct Lisp_String *string;
1313 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1314 } u;
1315
1316 /* When STRING is null. */
1317 struct
1318 {
1319 struct Lisp_String *string;
1320 ptrdiff_t nbytes;
1321 } n;
1322 } sdata;
1323
1324 #define SDATA_NBYTES(S) (S)->n.nbytes
1325 #define SDATA_DATA(S) (S)->u.data
1326 #define SDATA_SELECTOR(member) u.member
1327
1328 #endif /* not GC_CHECK_STRING_BYTES */
1329
1330 #define SDATA_DATA_OFFSET offsetof (sdata, SDATA_SELECTOR (data))
1331
1332
1333 /* Structure describing a block of memory which is sub-allocated to
1334 obtain string data memory for strings. Blocks for small strings
1335 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1336 as large as needed. */
1337
1338 struct sblock
1339 {
1340 /* Next in list. */
1341 struct sblock *next;
1342
1343 /* Pointer to the next free sdata block. This points past the end
1344 of the sblock if there isn't any space left in this block. */
1345 sdata *next_free;
1346
1347 /* Start of data. */
1348 sdata first_data;
1349 };
1350
1351 /* Number of Lisp strings in a string_block structure. The 1020 is
1352 1024 minus malloc overhead. */
1353
1354 #define STRING_BLOCK_SIZE \
1355 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1356
1357 /* Structure describing a block from which Lisp_String structures
1358 are allocated. */
1359
1360 struct string_block
1361 {
1362 /* Place `strings' first, to preserve alignment. */
1363 struct Lisp_String strings[STRING_BLOCK_SIZE];
1364 struct string_block *next;
1365 };
1366
1367 /* Head and tail of the list of sblock structures holding Lisp string
1368 data. We always allocate from current_sblock. The NEXT pointers
1369 in the sblock structures go from oldest_sblock to current_sblock. */
1370
1371 static struct sblock *oldest_sblock, *current_sblock;
1372
1373 /* List of sblocks for large strings. */
1374
1375 static struct sblock *large_sblocks;
1376
1377 /* List of string_block structures. */
1378
1379 static struct string_block *string_blocks;
1380
1381 /* Free-list of Lisp_Strings. */
1382
1383 static struct Lisp_String *string_free_list;
1384
1385 /* Number of live and free Lisp_Strings. */
1386
1387 static EMACS_INT total_strings, total_free_strings;
1388
1389 /* Number of bytes used by live strings. */
1390
1391 static EMACS_INT total_string_bytes;
1392
1393 /* Given a pointer to a Lisp_String S which is on the free-list
1394 string_free_list, return a pointer to its successor in the
1395 free-list. */
1396
1397 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1398
1399 /* Return a pointer to the sdata structure belonging to Lisp string S.
1400 S must be live, i.e. S->data must not be null. S->data is actually
1401 a pointer to the `u.data' member of its sdata structure; the
1402 structure starts at a constant offset in front of that. */
1403
1404 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1405
1406
1407 #ifdef GC_CHECK_STRING_OVERRUN
1408
1409 /* We check for overrun in string data blocks by appending a small
1410 "cookie" after each allocated string data block, and check for the
1411 presence of this cookie during GC. */
1412
1413 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1414 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1415 { '\xde', '\xad', '\xbe', '\xef' };
1416
1417 #else
1418 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1419 #endif
1420
1421 /* Value is the size of an sdata structure large enough to hold NBYTES
1422 bytes of string data. The value returned includes a terminating
1423 NUL byte, the size of the sdata structure, and padding. */
1424
1425 #ifdef GC_CHECK_STRING_BYTES
1426
1427 #define SDATA_SIZE(NBYTES) \
1428 ((SDATA_DATA_OFFSET \
1429 + (NBYTES) + 1 \
1430 + sizeof (ptrdiff_t) - 1) \
1431 & ~(sizeof (ptrdiff_t) - 1))
1432
1433 #else /* not GC_CHECK_STRING_BYTES */
1434
1435 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1436 less than the size of that member. The 'max' is not needed when
1437 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1438 alignment code reserves enough space. */
1439
1440 #define SDATA_SIZE(NBYTES) \
1441 ((SDATA_DATA_OFFSET \
1442 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1443 ? NBYTES \
1444 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1445 + 1 \
1446 + sizeof (ptrdiff_t) - 1) \
1447 & ~(sizeof (ptrdiff_t) - 1))
1448
1449 #endif /* not GC_CHECK_STRING_BYTES */
1450
1451 /* Extra bytes to allocate for each string. */
1452
1453 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1454
1455 /* Exact bound on the number of bytes in a string, not counting the
1456 terminating null. A string cannot contain more bytes than
1457 STRING_BYTES_BOUND, nor can it be so long that the size_t
1458 arithmetic in allocate_string_data would overflow while it is
1459 calculating a value to be passed to malloc. */
1460 static ptrdiff_t const STRING_BYTES_MAX =
1461 min (STRING_BYTES_BOUND,
1462 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1463 - GC_STRING_EXTRA
1464 - offsetof (struct sblock, first_data)
1465 - SDATA_DATA_OFFSET)
1466 & ~(sizeof (EMACS_INT) - 1)));
1467
1468 /* Initialize string allocation. Called from init_alloc_once. */
1469
1470 static void
1471 init_strings (void)
1472 {
1473 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1474 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1475 }
1476
1477
1478 #ifdef GC_CHECK_STRING_BYTES
1479
1480 static int check_string_bytes_count;
1481
1482 /* Like STRING_BYTES, but with debugging check. Can be
1483 called during GC, so pay attention to the mark bit. */
1484
1485 ptrdiff_t
1486 string_bytes (struct Lisp_String *s)
1487 {
1488 ptrdiff_t nbytes =
1489 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1490
1491 if (!PURE_POINTER_P (s)
1492 && s->data
1493 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1494 emacs_abort ();
1495 return nbytes;
1496 }
1497
1498 /* Check validity of Lisp strings' string_bytes member in B. */
1499
1500 static void
1501 check_sblock (struct sblock *b)
1502 {
1503 sdata *from, *end, *from_end;
1504
1505 end = b->next_free;
1506
1507 for (from = &b->first_data; from < end; from = from_end)
1508 {
1509 /* Compute the next FROM here because copying below may
1510 overwrite data we need to compute it. */
1511 ptrdiff_t nbytes;
1512
1513 /* Check that the string size recorded in the string is the
1514 same as the one recorded in the sdata structure. */
1515 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1516 : SDATA_NBYTES (from));
1517 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1518 }
1519 }
1520
1521
1522 /* Check validity of Lisp strings' string_bytes member. ALL_P
1523 means check all strings, otherwise check only most
1524 recently allocated strings. Used for hunting a bug. */
1525
1526 static void
1527 check_string_bytes (bool all_p)
1528 {
1529 if (all_p)
1530 {
1531 struct sblock *b;
1532
1533 for (b = large_sblocks; b; b = b->next)
1534 {
1535 struct Lisp_String *s = b->first_data.string;
1536 if (s)
1537 string_bytes (s);
1538 }
1539
1540 for (b = oldest_sblock; b; b = b->next)
1541 check_sblock (b);
1542 }
1543 else if (current_sblock)
1544 check_sblock (current_sblock);
1545 }
1546
1547 #else /* not GC_CHECK_STRING_BYTES */
1548
1549 #define check_string_bytes(all) ((void) 0)
1550
1551 #endif /* GC_CHECK_STRING_BYTES */
1552
1553 #ifdef GC_CHECK_STRING_FREE_LIST
1554
1555 /* Walk through the string free list looking for bogus next pointers.
1556 This may catch buffer overrun from a previous string. */
1557
1558 static void
1559 check_string_free_list (void)
1560 {
1561 struct Lisp_String *s;
1562
1563 /* Pop a Lisp_String off the free-list. */
1564 s = string_free_list;
1565 while (s != NULL)
1566 {
1567 if ((uintptr_t) s < 1024)
1568 emacs_abort ();
1569 s = NEXT_FREE_LISP_STRING (s);
1570 }
1571 }
1572 #else
1573 #define check_string_free_list()
1574 #endif
1575
1576 /* Return a new Lisp_String. */
1577
1578 static struct Lisp_String *
1579 allocate_string (void)
1580 {
1581 struct Lisp_String *s;
1582
1583 MALLOC_BLOCK_INPUT;
1584
1585 /* If the free-list is empty, allocate a new string_block, and
1586 add all the Lisp_Strings in it to the free-list. */
1587 if (string_free_list == NULL)
1588 {
1589 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1590 int i;
1591
1592 b->next = string_blocks;
1593 string_blocks = b;
1594
1595 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1596 {
1597 s = b->strings + i;
1598 /* Every string on a free list should have NULL data pointer. */
1599 s->data = NULL;
1600 NEXT_FREE_LISP_STRING (s) = string_free_list;
1601 string_free_list = s;
1602 }
1603
1604 total_free_strings += STRING_BLOCK_SIZE;
1605 }
1606
1607 check_string_free_list ();
1608
1609 /* Pop a Lisp_String off the free-list. */
1610 s = string_free_list;
1611 string_free_list = NEXT_FREE_LISP_STRING (s);
1612
1613 MALLOC_UNBLOCK_INPUT;
1614
1615 --total_free_strings;
1616 ++total_strings;
1617 ++strings_consed;
1618 consing_since_gc += sizeof *s;
1619
1620 #ifdef GC_CHECK_STRING_BYTES
1621 if (!noninteractive)
1622 {
1623 if (++check_string_bytes_count == 200)
1624 {
1625 check_string_bytes_count = 0;
1626 check_string_bytes (1);
1627 }
1628 else
1629 check_string_bytes (0);
1630 }
1631 #endif /* GC_CHECK_STRING_BYTES */
1632
1633 return s;
1634 }
1635
1636
1637 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1638 plus a NUL byte at the end. Allocate an sdata structure for S, and
1639 set S->data to its `u.data' member. Store a NUL byte at the end of
1640 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1641 S->data if it was initially non-null. */
1642
1643 void
1644 allocate_string_data (struct Lisp_String *s,
1645 EMACS_INT nchars, EMACS_INT nbytes)
1646 {
1647 sdata *data, *old_data;
1648 struct sblock *b;
1649 ptrdiff_t needed, old_nbytes;
1650
1651 if (STRING_BYTES_MAX < nbytes)
1652 string_overflow ();
1653
1654 /* Determine the number of bytes needed to store NBYTES bytes
1655 of string data. */
1656 needed = SDATA_SIZE (nbytes);
1657 if (s->data)
1658 {
1659 old_data = SDATA_OF_STRING (s);
1660 old_nbytes = STRING_BYTES (s);
1661 }
1662 else
1663 old_data = NULL;
1664
1665 MALLOC_BLOCK_INPUT;
1666
1667 if (nbytes > LARGE_STRING_BYTES)
1668 {
1669 size_t size = offsetof (struct sblock, first_data) + needed;
1670
1671 #ifdef DOUG_LEA_MALLOC
1672 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1673 because mapped region contents are not preserved in
1674 a dumped Emacs.
1675
1676 In case you think of allowing it in a dumped Emacs at the
1677 cost of not being able to re-dump, there's another reason:
1678 mmap'ed data typically have an address towards the top of the
1679 address space, which won't fit into an EMACS_INT (at least on
1680 32-bit systems with the current tagging scheme). --fx */
1681 mallopt (M_MMAP_MAX, 0);
1682 #endif
1683
1684 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1685
1686 #ifdef DOUG_LEA_MALLOC
1687 /* Back to a reasonable maximum of mmap'ed areas. */
1688 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1689 #endif
1690
1691 b->next_free = &b->first_data;
1692 b->first_data.string = NULL;
1693 b->next = large_sblocks;
1694 large_sblocks = b;
1695 }
1696 else if (current_sblock == NULL
1697 || (((char *) current_sblock + SBLOCK_SIZE
1698 - (char *) current_sblock->next_free)
1699 < (needed + GC_STRING_EXTRA)))
1700 {
1701 /* Not enough room in the current sblock. */
1702 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1703 b->next_free = &b->first_data;
1704 b->first_data.string = NULL;
1705 b->next = NULL;
1706
1707 if (current_sblock)
1708 current_sblock->next = b;
1709 else
1710 oldest_sblock = b;
1711 current_sblock = b;
1712 }
1713 else
1714 b = current_sblock;
1715
1716 data = b->next_free;
1717 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1718
1719 MALLOC_UNBLOCK_INPUT;
1720
1721 data->string = s;
1722 s->data = SDATA_DATA (data);
1723 #ifdef GC_CHECK_STRING_BYTES
1724 SDATA_NBYTES (data) = nbytes;
1725 #endif
1726 s->size = nchars;
1727 s->size_byte = nbytes;
1728 s->data[nbytes] = '\0';
1729 #ifdef GC_CHECK_STRING_OVERRUN
1730 memcpy ((char *) data + needed, string_overrun_cookie,
1731 GC_STRING_OVERRUN_COOKIE_SIZE);
1732 #endif
1733
1734 /* Note that Faset may call to this function when S has already data
1735 assigned. In this case, mark data as free by setting it's string
1736 back-pointer to null, and record the size of the data in it. */
1737 if (old_data)
1738 {
1739 SDATA_NBYTES (old_data) = old_nbytes;
1740 old_data->string = NULL;
1741 }
1742
1743 consing_since_gc += needed;
1744 }
1745
1746
1747 /* Sweep and compact strings. */
1748
1749 static void
1750 sweep_strings (void)
1751 {
1752 struct string_block *b, *next;
1753 struct string_block *live_blocks = NULL;
1754
1755 string_free_list = NULL;
1756 total_strings = total_free_strings = 0;
1757 total_string_bytes = 0;
1758
1759 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1760 for (b = string_blocks; b; b = next)
1761 {
1762 int i, nfree = 0;
1763 struct Lisp_String *free_list_before = string_free_list;
1764
1765 next = b->next;
1766
1767 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1768 {
1769 struct Lisp_String *s = b->strings + i;
1770
1771 if (s->data)
1772 {
1773 /* String was not on free-list before. */
1774 if (STRING_MARKED_P (s))
1775 {
1776 /* String is live; unmark it and its intervals. */
1777 UNMARK_STRING (s);
1778
1779 /* Do not use string_(set|get)_intervals here. */
1780 s->intervals = balance_intervals (s->intervals);
1781
1782 ++total_strings;
1783 total_string_bytes += STRING_BYTES (s);
1784 }
1785 else
1786 {
1787 /* String is dead. Put it on the free-list. */
1788 sdata *data = SDATA_OF_STRING (s);
1789
1790 /* Save the size of S in its sdata so that we know
1791 how large that is. Reset the sdata's string
1792 back-pointer so that we know it's free. */
1793 #ifdef GC_CHECK_STRING_BYTES
1794 if (string_bytes (s) != SDATA_NBYTES (data))
1795 emacs_abort ();
1796 #else
1797 data->n.nbytes = STRING_BYTES (s);
1798 #endif
1799 data->string = NULL;
1800
1801 /* Reset the strings's `data' member so that we
1802 know it's free. */
1803 s->data = NULL;
1804
1805 /* Put the string on the free-list. */
1806 NEXT_FREE_LISP_STRING (s) = string_free_list;
1807 string_free_list = s;
1808 ++nfree;
1809 }
1810 }
1811 else
1812 {
1813 /* S was on the free-list before. Put it there again. */
1814 NEXT_FREE_LISP_STRING (s) = string_free_list;
1815 string_free_list = s;
1816 ++nfree;
1817 }
1818 }
1819
1820 /* Free blocks that contain free Lisp_Strings only, except
1821 the first two of them. */
1822 if (nfree == STRING_BLOCK_SIZE
1823 && total_free_strings > STRING_BLOCK_SIZE)
1824 {
1825 lisp_free (b);
1826 string_free_list = free_list_before;
1827 }
1828 else
1829 {
1830 total_free_strings += nfree;
1831 b->next = live_blocks;
1832 live_blocks = b;
1833 }
1834 }
1835
1836 check_string_free_list ();
1837
1838 string_blocks = live_blocks;
1839 free_large_strings ();
1840 compact_small_strings ();
1841
1842 check_string_free_list ();
1843 }
1844
1845
1846 /* Free dead large strings. */
1847
1848 static void
1849 free_large_strings (void)
1850 {
1851 struct sblock *b, *next;
1852 struct sblock *live_blocks = NULL;
1853
1854 for (b = large_sblocks; b; b = next)
1855 {
1856 next = b->next;
1857
1858 if (b->first_data.string == NULL)
1859 lisp_free (b);
1860 else
1861 {
1862 b->next = live_blocks;
1863 live_blocks = b;
1864 }
1865 }
1866
1867 large_sblocks = live_blocks;
1868 }
1869
1870
1871 /* Compact data of small strings. Free sblocks that don't contain
1872 data of live strings after compaction. */
1873
1874 static void
1875 compact_small_strings (void)
1876 {
1877 struct sblock *b, *tb, *next;
1878 sdata *from, *to, *end, *tb_end;
1879 sdata *to_end, *from_end;
1880
1881 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1882 to, and TB_END is the end of TB. */
1883 tb = oldest_sblock;
1884 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1885 to = &tb->first_data;
1886
1887 /* Step through the blocks from the oldest to the youngest. We
1888 expect that old blocks will stabilize over time, so that less
1889 copying will happen this way. */
1890 for (b = oldest_sblock; b; b = b->next)
1891 {
1892 end = b->next_free;
1893 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1894
1895 for (from = &b->first_data; from < end; from = from_end)
1896 {
1897 /* Compute the next FROM here because copying below may
1898 overwrite data we need to compute it. */
1899 ptrdiff_t nbytes;
1900 struct Lisp_String *s = from->string;
1901
1902 #ifdef GC_CHECK_STRING_BYTES
1903 /* Check that the string size recorded in the string is the
1904 same as the one recorded in the sdata structure. */
1905 if (s && string_bytes (s) != SDATA_NBYTES (from))
1906 emacs_abort ();
1907 #endif /* GC_CHECK_STRING_BYTES */
1908
1909 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1910 eassert (nbytes <= LARGE_STRING_BYTES);
1911
1912 nbytes = SDATA_SIZE (nbytes);
1913 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1914
1915 #ifdef GC_CHECK_STRING_OVERRUN
1916 if (memcmp (string_overrun_cookie,
1917 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1918 GC_STRING_OVERRUN_COOKIE_SIZE))
1919 emacs_abort ();
1920 #endif
1921
1922 /* Non-NULL S means it's alive. Copy its data. */
1923 if (s)
1924 {
1925 /* If TB is full, proceed with the next sblock. */
1926 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1927 if (to_end > tb_end)
1928 {
1929 tb->next_free = to;
1930 tb = tb->next;
1931 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1932 to = &tb->first_data;
1933 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1934 }
1935
1936 /* Copy, and update the string's `data' pointer. */
1937 if (from != to)
1938 {
1939 eassert (tb != b || to < from);
1940 memmove (to, from, nbytes + GC_STRING_EXTRA);
1941 to->string->data = SDATA_DATA (to);
1942 }
1943
1944 /* Advance past the sdata we copied to. */
1945 to = to_end;
1946 }
1947 }
1948 }
1949
1950 /* The rest of the sblocks following TB don't contain live data, so
1951 we can free them. */
1952 for (b = tb->next; b; b = next)
1953 {
1954 next = b->next;
1955 lisp_free (b);
1956 }
1957
1958 tb->next_free = to;
1959 tb->next = NULL;
1960 current_sblock = tb;
1961 }
1962
1963 void
1964 string_overflow (void)
1965 {
1966 error ("Maximum string size exceeded");
1967 }
1968
1969 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1970 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1971 LENGTH must be an integer.
1972 INIT must be an integer that represents a character. */)
1973 (Lisp_Object length, Lisp_Object init)
1974 {
1975 register Lisp_Object val;
1976 register unsigned char *p, *end;
1977 int c;
1978 EMACS_INT nbytes;
1979
1980 CHECK_NATNUM (length);
1981 CHECK_CHARACTER (init);
1982
1983 c = XFASTINT (init);
1984 if (ASCII_CHAR_P (c))
1985 {
1986 nbytes = XINT (length);
1987 val = make_uninit_string (nbytes);
1988 p = SDATA (val);
1989 end = p + SCHARS (val);
1990 while (p != end)
1991 *p++ = c;
1992 }
1993 else
1994 {
1995 unsigned char str[MAX_MULTIBYTE_LENGTH];
1996 int len = CHAR_STRING (c, str);
1997 EMACS_INT string_len = XINT (length);
1998
1999 if (string_len > STRING_BYTES_MAX / len)
2000 string_overflow ();
2001 nbytes = len * string_len;
2002 val = make_uninit_multibyte_string (string_len, nbytes);
2003 p = SDATA (val);
2004 end = p + nbytes;
2005 while (p != end)
2006 {
2007 memcpy (p, str, len);
2008 p += len;
2009 }
2010 }
2011
2012 *p = 0;
2013 return val;
2014 }
2015
2016 verify (sizeof (size_t) * CHAR_BIT == BITS_PER_SIZE_T);
2017 verify ((BITS_PER_SIZE_T & (BITS_PER_SIZE_T - 1)) == 0);
2018
2019 static
2020 ptrdiff_t
2021 bool_vector_payload_bytes (ptrdiff_t nr_bits,
2022 ptrdiff_t* exact_needed_bytes_out)
2023 {
2024 ptrdiff_t exact_needed_bytes;
2025 ptrdiff_t needed_bytes;
2026
2027 eassert_and_assume (nr_bits >= 0);
2028
2029 exact_needed_bytes = ROUNDUP ((size_t) nr_bits, CHAR_BIT) / CHAR_BIT;
2030 needed_bytes = ROUNDUP ((size_t) nr_bits, BITS_PER_SIZE_T) / CHAR_BIT;
2031
2032 if (needed_bytes == 0)
2033 {
2034 /* Always allocate at least one machine word of payload so that
2035 bool-vector operations in data.c don't need a special case
2036 for empty vectors. */
2037 needed_bytes = sizeof (size_t);
2038 }
2039
2040 if (exact_needed_bytes_out != NULL)
2041 *exact_needed_bytes_out = exact_needed_bytes;
2042
2043 return needed_bytes;
2044 }
2045
2046 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2047 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2048 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2049 (Lisp_Object length, Lisp_Object init)
2050 {
2051 register Lisp_Object val;
2052 struct Lisp_Bool_Vector *p;
2053 ptrdiff_t exact_payload_bytes;
2054 ptrdiff_t total_payload_bytes;
2055 ptrdiff_t needed_elements;
2056
2057 CHECK_NATNUM (length);
2058 if (PTRDIFF_MAX < XFASTINT (length))
2059 memory_full (SIZE_MAX);
2060
2061 total_payload_bytes = bool_vector_payload_bytes
2062 (XFASTINT (length), &exact_payload_bytes);
2063
2064 eassert_and_assume (exact_payload_bytes <= total_payload_bytes);
2065 eassert_and_assume (0 <= exact_payload_bytes);
2066
2067 needed_elements = ROUNDUP ((size_t) ((bool_header_size - header_size)
2068 + total_payload_bytes),
2069 word_size) / word_size;
2070
2071 p = (struct Lisp_Bool_Vector* ) allocate_vector (needed_elements);
2072 XSETVECTOR (val, p);
2073 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2074
2075 p->size = XFASTINT (length);
2076 if (exact_payload_bytes)
2077 {
2078 memset (p->data, ! NILP (init) ? -1 : 0, exact_payload_bytes);
2079
2080 /* Clear any extraneous bits in the last byte. */
2081 p->data[exact_payload_bytes - 1]
2082 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2083 }
2084
2085 /* Clear padding at the end. */
2086 memset (p->data + exact_payload_bytes,
2087 0,
2088 total_payload_bytes - exact_payload_bytes);
2089
2090 return val;
2091 }
2092
2093
2094 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2095 of characters from the contents. This string may be unibyte or
2096 multibyte, depending on the contents. */
2097
2098 Lisp_Object
2099 make_string (const char *contents, ptrdiff_t nbytes)
2100 {
2101 register Lisp_Object val;
2102 ptrdiff_t nchars, multibyte_nbytes;
2103
2104 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2105 &nchars, &multibyte_nbytes);
2106 if (nbytes == nchars || nbytes != multibyte_nbytes)
2107 /* CONTENTS contains no multibyte sequences or contains an invalid
2108 multibyte sequence. We must make unibyte string. */
2109 val = make_unibyte_string (contents, nbytes);
2110 else
2111 val = make_multibyte_string (contents, nchars, nbytes);
2112 return val;
2113 }
2114
2115
2116 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2117
2118 Lisp_Object
2119 make_unibyte_string (const char *contents, ptrdiff_t length)
2120 {
2121 register Lisp_Object val;
2122 val = make_uninit_string (length);
2123 memcpy (SDATA (val), contents, length);
2124 return val;
2125 }
2126
2127
2128 /* Make a multibyte string from NCHARS characters occupying NBYTES
2129 bytes at CONTENTS. */
2130
2131 Lisp_Object
2132 make_multibyte_string (const char *contents,
2133 ptrdiff_t nchars, ptrdiff_t nbytes)
2134 {
2135 register Lisp_Object val;
2136 val = make_uninit_multibyte_string (nchars, nbytes);
2137 memcpy (SDATA (val), contents, nbytes);
2138 return val;
2139 }
2140
2141
2142 /* Make a string from NCHARS characters occupying NBYTES bytes at
2143 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2144
2145 Lisp_Object
2146 make_string_from_bytes (const char *contents,
2147 ptrdiff_t nchars, ptrdiff_t nbytes)
2148 {
2149 register Lisp_Object val;
2150 val = make_uninit_multibyte_string (nchars, nbytes);
2151 memcpy (SDATA (val), contents, nbytes);
2152 if (SBYTES (val) == SCHARS (val))
2153 STRING_SET_UNIBYTE (val);
2154 return val;
2155 }
2156
2157
2158 /* Make a string from NCHARS characters occupying NBYTES bytes at
2159 CONTENTS. The argument MULTIBYTE controls whether to label the
2160 string as multibyte. If NCHARS is negative, it counts the number of
2161 characters by itself. */
2162
2163 Lisp_Object
2164 make_specified_string (const char *contents,
2165 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2166 {
2167 Lisp_Object val;
2168
2169 if (nchars < 0)
2170 {
2171 if (multibyte)
2172 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2173 nbytes);
2174 else
2175 nchars = nbytes;
2176 }
2177 val = make_uninit_multibyte_string (nchars, nbytes);
2178 memcpy (SDATA (val), contents, nbytes);
2179 if (!multibyte)
2180 STRING_SET_UNIBYTE (val);
2181 return val;
2182 }
2183
2184
2185 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2186 occupying LENGTH bytes. */
2187
2188 Lisp_Object
2189 make_uninit_string (EMACS_INT length)
2190 {
2191 Lisp_Object val;
2192
2193 if (!length)
2194 return empty_unibyte_string;
2195 val = make_uninit_multibyte_string (length, length);
2196 STRING_SET_UNIBYTE (val);
2197 return val;
2198 }
2199
2200
2201 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2202 which occupy NBYTES bytes. */
2203
2204 Lisp_Object
2205 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2206 {
2207 Lisp_Object string;
2208 struct Lisp_String *s;
2209
2210 if (nchars < 0)
2211 emacs_abort ();
2212 if (!nbytes)
2213 return empty_multibyte_string;
2214
2215 s = allocate_string ();
2216 s->intervals = NULL;
2217 allocate_string_data (s, nchars, nbytes);
2218 XSETSTRING (string, s);
2219 string_chars_consed += nbytes;
2220 return string;
2221 }
2222
2223 /* Print arguments to BUF according to a FORMAT, then return
2224 a Lisp_String initialized with the data from BUF. */
2225
2226 Lisp_Object
2227 make_formatted_string (char *buf, const char *format, ...)
2228 {
2229 va_list ap;
2230 int length;
2231
2232 va_start (ap, format);
2233 length = vsprintf (buf, format, ap);
2234 va_end (ap);
2235 return make_string (buf, length);
2236 }
2237
2238 \f
2239 /***********************************************************************
2240 Float Allocation
2241 ***********************************************************************/
2242
2243 /* We store float cells inside of float_blocks, allocating a new
2244 float_block with malloc whenever necessary. Float cells reclaimed
2245 by GC are put on a free list to be reallocated before allocating
2246 any new float cells from the latest float_block. */
2247
2248 #define FLOAT_BLOCK_SIZE \
2249 (((BLOCK_BYTES - sizeof (struct float_block *) \
2250 /* The compiler might add padding at the end. */ \
2251 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2252 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2253
2254 #define GETMARKBIT(block,n) \
2255 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2256 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2257 & 1)
2258
2259 #define SETMARKBIT(block,n) \
2260 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2261 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2262
2263 #define UNSETMARKBIT(block,n) \
2264 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2265 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2266
2267 #define FLOAT_BLOCK(fptr) \
2268 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2269
2270 #define FLOAT_INDEX(fptr) \
2271 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2272
2273 struct float_block
2274 {
2275 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2276 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2277 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2278 struct float_block *next;
2279 };
2280
2281 #define FLOAT_MARKED_P(fptr) \
2282 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2283
2284 #define FLOAT_MARK(fptr) \
2285 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2286
2287 #define FLOAT_UNMARK(fptr) \
2288 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2289
2290 /* Current float_block. */
2291
2292 static struct float_block *float_block;
2293
2294 /* Index of first unused Lisp_Float in the current float_block. */
2295
2296 static int float_block_index = FLOAT_BLOCK_SIZE;
2297
2298 /* Free-list of Lisp_Floats. */
2299
2300 static struct Lisp_Float *float_free_list;
2301
2302 /* Return a new float object with value FLOAT_VALUE. */
2303
2304 Lisp_Object
2305 make_float (double float_value)
2306 {
2307 register Lisp_Object val;
2308
2309 MALLOC_BLOCK_INPUT;
2310
2311 if (float_free_list)
2312 {
2313 /* We use the data field for chaining the free list
2314 so that we won't use the same field that has the mark bit. */
2315 XSETFLOAT (val, float_free_list);
2316 float_free_list = float_free_list->u.chain;
2317 }
2318 else
2319 {
2320 if (float_block_index == FLOAT_BLOCK_SIZE)
2321 {
2322 struct float_block *new
2323 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2324 new->next = float_block;
2325 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2326 float_block = new;
2327 float_block_index = 0;
2328 total_free_floats += FLOAT_BLOCK_SIZE;
2329 }
2330 XSETFLOAT (val, &float_block->floats[float_block_index]);
2331 float_block_index++;
2332 }
2333
2334 MALLOC_UNBLOCK_INPUT;
2335
2336 XFLOAT_INIT (val, float_value);
2337 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2338 consing_since_gc += sizeof (struct Lisp_Float);
2339 floats_consed++;
2340 total_free_floats--;
2341 return val;
2342 }
2343
2344
2345 \f
2346 /***********************************************************************
2347 Cons Allocation
2348 ***********************************************************************/
2349
2350 /* We store cons cells inside of cons_blocks, allocating a new
2351 cons_block with malloc whenever necessary. Cons cells reclaimed by
2352 GC are put on a free list to be reallocated before allocating
2353 any new cons cells from the latest cons_block. */
2354
2355 #define CONS_BLOCK_SIZE \
2356 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2357 /* The compiler might add padding at the end. */ \
2358 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2359 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2360
2361 #define CONS_BLOCK(fptr) \
2362 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2363
2364 #define CONS_INDEX(fptr) \
2365 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2366
2367 struct cons_block
2368 {
2369 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2370 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2371 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2372 struct cons_block *next;
2373 };
2374
2375 #define CONS_MARKED_P(fptr) \
2376 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2377
2378 #define CONS_MARK(fptr) \
2379 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2380
2381 #define CONS_UNMARK(fptr) \
2382 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2383
2384 /* Current cons_block. */
2385
2386 static struct cons_block *cons_block;
2387
2388 /* Index of first unused Lisp_Cons in the current block. */
2389
2390 static int cons_block_index = CONS_BLOCK_SIZE;
2391
2392 /* Free-list of Lisp_Cons structures. */
2393
2394 static struct Lisp_Cons *cons_free_list;
2395
2396 /* Explicitly free a cons cell by putting it on the free-list. */
2397
2398 void
2399 free_cons (struct Lisp_Cons *ptr)
2400 {
2401 ptr->u.chain = cons_free_list;
2402 #if GC_MARK_STACK
2403 ptr->car = Vdead;
2404 #endif
2405 cons_free_list = ptr;
2406 consing_since_gc -= sizeof *ptr;
2407 total_free_conses++;
2408 }
2409
2410 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2411 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2412 (Lisp_Object car, Lisp_Object cdr)
2413 {
2414 register Lisp_Object val;
2415
2416 MALLOC_BLOCK_INPUT;
2417
2418 if (cons_free_list)
2419 {
2420 /* We use the cdr for chaining the free list
2421 so that we won't use the same field that has the mark bit. */
2422 XSETCONS (val, cons_free_list);
2423 cons_free_list = cons_free_list->u.chain;
2424 }
2425 else
2426 {
2427 if (cons_block_index == CONS_BLOCK_SIZE)
2428 {
2429 struct cons_block *new
2430 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2431 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2432 new->next = cons_block;
2433 cons_block = new;
2434 cons_block_index = 0;
2435 total_free_conses += CONS_BLOCK_SIZE;
2436 }
2437 XSETCONS (val, &cons_block->conses[cons_block_index]);
2438 cons_block_index++;
2439 }
2440
2441 MALLOC_UNBLOCK_INPUT;
2442
2443 XSETCAR (val, car);
2444 XSETCDR (val, cdr);
2445 eassert (!CONS_MARKED_P (XCONS (val)));
2446 consing_since_gc += sizeof (struct Lisp_Cons);
2447 total_free_conses--;
2448 cons_cells_consed++;
2449 return val;
2450 }
2451
2452 #ifdef GC_CHECK_CONS_LIST
2453 /* Get an error now if there's any junk in the cons free list. */
2454 void
2455 check_cons_list (void)
2456 {
2457 struct Lisp_Cons *tail = cons_free_list;
2458
2459 while (tail)
2460 tail = tail->u.chain;
2461 }
2462 #endif
2463
2464 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2465
2466 Lisp_Object
2467 list1 (Lisp_Object arg1)
2468 {
2469 return Fcons (arg1, Qnil);
2470 }
2471
2472 Lisp_Object
2473 list2 (Lisp_Object arg1, Lisp_Object arg2)
2474 {
2475 return Fcons (arg1, Fcons (arg2, Qnil));
2476 }
2477
2478
2479 Lisp_Object
2480 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2481 {
2482 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2483 }
2484
2485
2486 Lisp_Object
2487 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2488 {
2489 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2490 }
2491
2492
2493 Lisp_Object
2494 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2495 {
2496 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2497 Fcons (arg5, Qnil)))));
2498 }
2499
2500 /* Make a list of COUNT Lisp_Objects, where ARG is the
2501 first one. Allocate conses from pure space if TYPE
2502 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2503
2504 Lisp_Object
2505 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2506 {
2507 va_list ap;
2508 ptrdiff_t i;
2509 Lisp_Object val, *objp;
2510
2511 /* Change to SAFE_ALLOCA if you hit this eassert. */
2512 eassert (count <= MAX_ALLOCA / word_size);
2513
2514 objp = alloca (count * word_size);
2515 objp[0] = arg;
2516 va_start (ap, arg);
2517 for (i = 1; i < count; i++)
2518 objp[i] = va_arg (ap, Lisp_Object);
2519 va_end (ap);
2520
2521 for (val = Qnil, i = count - 1; i >= 0; i--)
2522 {
2523 if (type == CONSTYPE_PURE)
2524 val = pure_cons (objp[i], val);
2525 else if (type == CONSTYPE_HEAP)
2526 val = Fcons (objp[i], val);
2527 else
2528 emacs_abort ();
2529 }
2530 return val;
2531 }
2532
2533 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2534 doc: /* Return a newly created list with specified arguments as elements.
2535 Any number of arguments, even zero arguments, are allowed.
2536 usage: (list &rest OBJECTS) */)
2537 (ptrdiff_t nargs, Lisp_Object *args)
2538 {
2539 register Lisp_Object val;
2540 val = Qnil;
2541
2542 while (nargs > 0)
2543 {
2544 nargs--;
2545 val = Fcons (args[nargs], val);
2546 }
2547 return val;
2548 }
2549
2550
2551 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2552 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2553 (register Lisp_Object length, Lisp_Object init)
2554 {
2555 register Lisp_Object val;
2556 register EMACS_INT size;
2557
2558 CHECK_NATNUM (length);
2559 size = XFASTINT (length);
2560
2561 val = Qnil;
2562 while (size > 0)
2563 {
2564 val = Fcons (init, val);
2565 --size;
2566
2567 if (size > 0)
2568 {
2569 val = Fcons (init, val);
2570 --size;
2571
2572 if (size > 0)
2573 {
2574 val = Fcons (init, val);
2575 --size;
2576
2577 if (size > 0)
2578 {
2579 val = Fcons (init, val);
2580 --size;
2581
2582 if (size > 0)
2583 {
2584 val = Fcons (init, val);
2585 --size;
2586 }
2587 }
2588 }
2589 }
2590
2591 QUIT;
2592 }
2593
2594 return val;
2595 }
2596
2597
2598 \f
2599 /***********************************************************************
2600 Vector Allocation
2601 ***********************************************************************/
2602
2603 /* This value is balanced well enough to avoid too much internal overhead
2604 for the most common cases; it's not required to be a power of two, but
2605 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2606
2607 #define VECTOR_BLOCK_SIZE 4096
2608
2609 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2610 enum
2611 {
2612 roundup_size = COMMON_MULTIPLE (word_size, USE_LSB_TAG ? GCALIGNMENT : 1)
2613 };
2614
2615 /* Verify assumptions described above. */
2616 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2617 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2618
2619 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2620 #define vroundup_ct(x) ROUNDUP((size_t)(x), roundup_size)
2621 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2622 #define vroundup(x) (assume((x) >= 0), vroundup_ct(x))
2623
2624 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2625
2626 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2627
2628 /* Size of the minimal vector allocated from block. */
2629
2630 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2631
2632 /* Size of the largest vector allocated from block. */
2633
2634 #define VBLOCK_BYTES_MAX \
2635 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2636
2637 /* We maintain one free list for each possible block-allocated
2638 vector size, and this is the number of free lists we have. */
2639
2640 #define VECTOR_MAX_FREE_LIST_INDEX \
2641 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2642
2643 /* Common shortcut to advance vector pointer over a block data. */
2644
2645 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2646
2647 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2648
2649 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2650
2651 /* Get and set the next field in block-allocated vectorlike objects on
2652 the free list. Doing it this way respects C's aliasing rules.
2653 We could instead make 'contents' a union, but that would mean
2654 changes everywhere that the code uses 'contents'. */
2655 static struct Lisp_Vector *
2656 next_in_free_list (struct Lisp_Vector *v)
2657 {
2658 intptr_t i = XLI (v->contents[0]);
2659 return (struct Lisp_Vector *) i;
2660 }
2661 static void
2662 set_next_in_free_list (struct Lisp_Vector *v, struct Lisp_Vector *next)
2663 {
2664 v->contents[0] = XIL ((intptr_t) next);
2665 }
2666
2667 /* Common shortcut to setup vector on a free list. */
2668
2669 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2670 do { \
2671 (tmp) = ((nbytes - header_size) / word_size); \
2672 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2673 eassert ((nbytes) % roundup_size == 0); \
2674 (tmp) = VINDEX (nbytes); \
2675 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2676 set_next_in_free_list (v, vector_free_lists[tmp]); \
2677 vector_free_lists[tmp] = (v); \
2678 total_free_vector_slots += (nbytes) / word_size; \
2679 } while (0)
2680
2681 /* This internal type is used to maintain the list of large vectors
2682 which are allocated at their own, e.g. outside of vector blocks. */
2683
2684 struct large_vector
2685 {
2686 union {
2687 struct large_vector *vector;
2688 #if USE_LSB_TAG
2689 /* We need to maintain ROUNDUP_SIZE alignment for the vector member. */
2690 unsigned char c[vroundup_ct (sizeof (struct large_vector *))];
2691 #endif
2692 } next;
2693 struct Lisp_Vector v;
2694 };
2695
2696 /* This internal type is used to maintain an underlying storage
2697 for small vectors. */
2698
2699 struct vector_block
2700 {
2701 char data[VECTOR_BLOCK_BYTES];
2702 struct vector_block *next;
2703 };
2704
2705 /* Chain of vector blocks. */
2706
2707 static struct vector_block *vector_blocks;
2708
2709 /* Vector free lists, where NTH item points to a chain of free
2710 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2711
2712 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2713
2714 /* Singly-linked list of large vectors. */
2715
2716 static struct large_vector *large_vectors;
2717
2718 /* The only vector with 0 slots, allocated from pure space. */
2719
2720 Lisp_Object zero_vector;
2721
2722 /* Number of live vectors. */
2723
2724 static EMACS_INT total_vectors;
2725
2726 /* Total size of live and free vectors, in Lisp_Object units. */
2727
2728 static EMACS_INT total_vector_slots, total_free_vector_slots;
2729
2730 /* Get a new vector block. */
2731
2732 static struct vector_block *
2733 allocate_vector_block (void)
2734 {
2735 struct vector_block *block = xmalloc (sizeof *block);
2736
2737 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2738 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2739 MEM_TYPE_VECTOR_BLOCK);
2740 #endif
2741
2742 block->next = vector_blocks;
2743 vector_blocks = block;
2744 return block;
2745 }
2746
2747 /* Called once to initialize vector allocation. */
2748
2749 static void
2750 init_vectors (void)
2751 {
2752 zero_vector = make_pure_vector (0);
2753 }
2754
2755 /* Allocate vector from a vector block. */
2756
2757 static struct Lisp_Vector *
2758 allocate_vector_from_block (size_t nbytes)
2759 {
2760 struct Lisp_Vector *vector;
2761 struct vector_block *block;
2762 size_t index, restbytes;
2763
2764 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2765 eassert (nbytes % roundup_size == 0);
2766
2767 /* First, try to allocate from a free list
2768 containing vectors of the requested size. */
2769 index = VINDEX (nbytes);
2770 if (vector_free_lists[index])
2771 {
2772 vector = vector_free_lists[index];
2773 vector_free_lists[index] = next_in_free_list (vector);
2774 total_free_vector_slots -= nbytes / word_size;
2775 return vector;
2776 }
2777
2778 /* Next, check free lists containing larger vectors. Since
2779 we will split the result, we should have remaining space
2780 large enough to use for one-slot vector at least. */
2781 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2782 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2783 if (vector_free_lists[index])
2784 {
2785 /* This vector is larger than requested. */
2786 vector = vector_free_lists[index];
2787 vector_free_lists[index] = next_in_free_list (vector);
2788 total_free_vector_slots -= nbytes / word_size;
2789
2790 /* Excess bytes are used for the smaller vector,
2791 which should be set on an appropriate free list. */
2792 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2793 eassert (restbytes % roundup_size == 0);
2794 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2795 return vector;
2796 }
2797
2798 /* Finally, need a new vector block. */
2799 block = allocate_vector_block ();
2800
2801 /* New vector will be at the beginning of this block. */
2802 vector = (struct Lisp_Vector *) block->data;
2803
2804 /* If the rest of space from this block is large enough
2805 for one-slot vector at least, set up it on a free list. */
2806 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2807 if (restbytes >= VBLOCK_BYTES_MIN)
2808 {
2809 eassert (restbytes % roundup_size == 0);
2810 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2811 }
2812 return vector;
2813 }
2814
2815 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2816
2817 #define VECTOR_IN_BLOCK(vector, block) \
2818 ((char *) (vector) <= (block)->data \
2819 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2820
2821 /* Return the memory footprint of V in bytes. */
2822
2823 static ptrdiff_t
2824 vector_nbytes (struct Lisp_Vector *v)
2825 {
2826 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2827
2828 if (size & PSEUDOVECTOR_FLAG)
2829 {
2830 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2831 {
2832 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2833 ptrdiff_t payload_bytes =
2834 bool_vector_payload_bytes (bv->size, NULL);
2835
2836 eassert_and_assume (payload_bytes >= 0);
2837 size = bool_header_size + ROUNDUP (payload_bytes, word_size);
2838 }
2839 else
2840 size = (header_size
2841 + ((size & PSEUDOVECTOR_SIZE_MASK)
2842 + ((size & PSEUDOVECTOR_REST_MASK)
2843 >> PSEUDOVECTOR_SIZE_BITS)) * word_size);
2844 }
2845 else
2846 size = header_size + size * word_size;
2847 return vroundup (size);
2848 }
2849
2850 /* Reclaim space used by unmarked vectors. */
2851
2852 static void
2853 sweep_vectors (void)
2854 {
2855 struct vector_block *block, **bprev = &vector_blocks;
2856 struct large_vector *lv, **lvprev = &large_vectors;
2857 struct Lisp_Vector *vector, *next;
2858
2859 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2860 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2861
2862 /* Looking through vector blocks. */
2863
2864 for (block = vector_blocks; block; block = *bprev)
2865 {
2866 bool free_this_block = 0;
2867 ptrdiff_t nbytes;
2868
2869 for (vector = (struct Lisp_Vector *) block->data;
2870 VECTOR_IN_BLOCK (vector, block); vector = next)
2871 {
2872 if (VECTOR_MARKED_P (vector))
2873 {
2874 VECTOR_UNMARK (vector);
2875 total_vectors++;
2876 nbytes = vector_nbytes (vector);
2877 total_vector_slots += nbytes / word_size;
2878 next = ADVANCE (vector, nbytes);
2879 }
2880 else
2881 {
2882 ptrdiff_t total_bytes;
2883
2884 nbytes = vector_nbytes (vector);
2885 total_bytes = nbytes;
2886 next = ADVANCE (vector, nbytes);
2887
2888 /* While NEXT is not marked, try to coalesce with VECTOR,
2889 thus making VECTOR of the largest possible size. */
2890
2891 while (VECTOR_IN_BLOCK (next, block))
2892 {
2893 if (VECTOR_MARKED_P (next))
2894 break;
2895 nbytes = vector_nbytes (next);
2896 total_bytes += nbytes;
2897 next = ADVANCE (next, nbytes);
2898 }
2899
2900 eassert (total_bytes % roundup_size == 0);
2901
2902 if (vector == (struct Lisp_Vector *) block->data
2903 && !VECTOR_IN_BLOCK (next, block))
2904 /* This block should be freed because all of it's
2905 space was coalesced into the only free vector. */
2906 free_this_block = 1;
2907 else
2908 {
2909 int tmp;
2910 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2911 }
2912 }
2913 }
2914
2915 if (free_this_block)
2916 {
2917 *bprev = block->next;
2918 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2919 mem_delete (mem_find (block->data));
2920 #endif
2921 xfree (block);
2922 }
2923 else
2924 bprev = &block->next;
2925 }
2926
2927 /* Sweep large vectors. */
2928
2929 for (lv = large_vectors; lv; lv = *lvprev)
2930 {
2931 vector = &lv->v;
2932 if (VECTOR_MARKED_P (vector))
2933 {
2934 VECTOR_UNMARK (vector);
2935 total_vectors++;
2936 if (vector->header.size & PSEUDOVECTOR_FLAG)
2937 {
2938 /* All non-bool pseudovectors are small enough to be allocated
2939 from vector blocks. This code should be redesigned if some
2940 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2941 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
2942 total_vector_slots += vector_nbytes (vector) / word_size;
2943 }
2944 else
2945 total_vector_slots
2946 += header_size / word_size + vector->header.size;
2947 lvprev = &lv->next.vector;
2948 }
2949 else
2950 {
2951 *lvprev = lv->next.vector;
2952 lisp_free (lv);
2953 }
2954 }
2955 }
2956
2957 /* Value is a pointer to a newly allocated Lisp_Vector structure
2958 with room for LEN Lisp_Objects. */
2959
2960 static struct Lisp_Vector *
2961 allocate_vectorlike (ptrdiff_t len)
2962 {
2963 struct Lisp_Vector *p;
2964
2965 MALLOC_BLOCK_INPUT;
2966
2967 if (len == 0)
2968 p = XVECTOR (zero_vector);
2969 else
2970 {
2971 size_t nbytes = header_size + len * word_size;
2972
2973 #ifdef DOUG_LEA_MALLOC
2974 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2975 because mapped region contents are not preserved in
2976 a dumped Emacs. */
2977 mallopt (M_MMAP_MAX, 0);
2978 #endif
2979
2980 if (nbytes <= VBLOCK_BYTES_MAX)
2981 p = allocate_vector_from_block (vroundup (nbytes));
2982 else
2983 {
2984 struct large_vector *lv
2985 = lisp_malloc ((offsetof (struct large_vector, v.contents)
2986 + len * word_size),
2987 MEM_TYPE_VECTORLIKE);
2988 lv->next.vector = large_vectors;
2989 large_vectors = lv;
2990 p = &lv->v;
2991 }
2992
2993 #ifdef DOUG_LEA_MALLOC
2994 /* Back to a reasonable maximum of mmap'ed areas. */
2995 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2996 #endif
2997
2998 consing_since_gc += nbytes;
2999 vector_cells_consed += len;
3000 }
3001
3002 MALLOC_UNBLOCK_INPUT;
3003
3004 return p;
3005 }
3006
3007
3008 /* Allocate a vector with LEN slots. */
3009
3010 struct Lisp_Vector *
3011 allocate_vector (EMACS_INT len)
3012 {
3013 struct Lisp_Vector *v;
3014 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3015
3016 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3017 memory_full (SIZE_MAX);
3018 v = allocate_vectorlike (len);
3019 v->header.size = len;
3020 return v;
3021 }
3022
3023
3024 /* Allocate other vector-like structures. */
3025
3026 struct Lisp_Vector *
3027 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
3028 {
3029 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3030 int i;
3031
3032 /* Catch bogus values. */
3033 eassert (tag <= PVEC_FONT);
3034 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3035 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3036
3037 /* Only the first lisplen slots will be traced normally by the GC. */
3038 for (i = 0; i < lisplen; ++i)
3039 v->contents[i] = Qnil;
3040
3041 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3042 return v;
3043 }
3044
3045 struct buffer *
3046 allocate_buffer (void)
3047 {
3048 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3049
3050 BUFFER_PVEC_INIT (b);
3051 /* Put B on the chain of all buffers including killed ones. */
3052 b->next = all_buffers;
3053 all_buffers = b;
3054 /* Note that the rest fields of B are not initialized. */
3055 return b;
3056 }
3057
3058 struct Lisp_Hash_Table *
3059 allocate_hash_table (void)
3060 {
3061 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3062 }
3063
3064 struct window *
3065 allocate_window (void)
3066 {
3067 struct window *w;
3068
3069 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3070 /* Users assumes that non-Lisp data is zeroed. */
3071 memset (&w->current_matrix, 0,
3072 sizeof (*w) - offsetof (struct window, current_matrix));
3073 return w;
3074 }
3075
3076 struct terminal *
3077 allocate_terminal (void)
3078 {
3079 struct terminal *t;
3080
3081 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3082 /* Users assumes that non-Lisp data is zeroed. */
3083 memset (&t->next_terminal, 0,
3084 sizeof (*t) - offsetof (struct terminal, next_terminal));
3085 return t;
3086 }
3087
3088 struct frame *
3089 allocate_frame (void)
3090 {
3091 struct frame *f;
3092
3093 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3094 /* Users assumes that non-Lisp data is zeroed. */
3095 memset (&f->face_cache, 0,
3096 sizeof (*f) - offsetof (struct frame, face_cache));
3097 return f;
3098 }
3099
3100 struct Lisp_Process *
3101 allocate_process (void)
3102 {
3103 struct Lisp_Process *p;
3104
3105 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3106 /* Users assumes that non-Lisp data is zeroed. */
3107 memset (&p->pid, 0,
3108 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3109 return p;
3110 }
3111
3112 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3113 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3114 See also the function `vector'. */)
3115 (register Lisp_Object length, Lisp_Object init)
3116 {
3117 Lisp_Object vector;
3118 register ptrdiff_t sizei;
3119 register ptrdiff_t i;
3120 register struct Lisp_Vector *p;
3121
3122 CHECK_NATNUM (length);
3123
3124 p = allocate_vector (XFASTINT (length));
3125 sizei = XFASTINT (length);
3126 for (i = 0; i < sizei; i++)
3127 p->contents[i] = init;
3128
3129 XSETVECTOR (vector, p);
3130 return vector;
3131 }
3132
3133
3134 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3135 doc: /* Return a newly created vector with specified arguments as elements.
3136 Any number of arguments, even zero arguments, are allowed.
3137 usage: (vector &rest OBJECTS) */)
3138 (ptrdiff_t nargs, Lisp_Object *args)
3139 {
3140 ptrdiff_t i;
3141 register Lisp_Object val = make_uninit_vector (nargs);
3142 register struct Lisp_Vector *p = XVECTOR (val);
3143
3144 for (i = 0; i < nargs; i++)
3145 p->contents[i] = args[i];
3146 return val;
3147 }
3148
3149 void
3150 make_byte_code (struct Lisp_Vector *v)
3151 {
3152 if (v->header.size > 1 && STRINGP (v->contents[1])
3153 && STRING_MULTIBYTE (v->contents[1]))
3154 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3155 earlier because they produced a raw 8-bit string for byte-code
3156 and now such a byte-code string is loaded as multibyte while
3157 raw 8-bit characters converted to multibyte form. Thus, now we
3158 must convert them back to the original unibyte form. */
3159 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3160 XSETPVECTYPE (v, PVEC_COMPILED);
3161 }
3162
3163 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3164 doc: /* Create a byte-code object with specified arguments as elements.
3165 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3166 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3167 and (optional) INTERACTIVE-SPEC.
3168 The first four arguments are required; at most six have any
3169 significance.
3170 The ARGLIST can be either like the one of `lambda', in which case the arguments
3171 will be dynamically bound before executing the byte code, or it can be an
3172 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3173 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3174 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3175 argument to catch the left-over arguments. If such an integer is used, the
3176 arguments will not be dynamically bound but will be instead pushed on the
3177 stack before executing the byte-code.
3178 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3179 (ptrdiff_t nargs, Lisp_Object *args)
3180 {
3181 ptrdiff_t i;
3182 register Lisp_Object val = make_uninit_vector (nargs);
3183 register struct Lisp_Vector *p = XVECTOR (val);
3184
3185 /* We used to purecopy everything here, if purify-flag was set. This worked
3186 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3187 dangerous, since make-byte-code is used during execution to build
3188 closures, so any closure built during the preload phase would end up
3189 copied into pure space, including its free variables, which is sometimes
3190 just wasteful and other times plainly wrong (e.g. those free vars may want
3191 to be setcar'd). */
3192
3193 for (i = 0; i < nargs; i++)
3194 p->contents[i] = args[i];
3195 make_byte_code (p);
3196 XSETCOMPILED (val, p);
3197 return val;
3198 }
3199
3200
3201 \f
3202 /***********************************************************************
3203 Symbol Allocation
3204 ***********************************************************************/
3205
3206 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3207 of the required alignment if LSB tags are used. */
3208
3209 union aligned_Lisp_Symbol
3210 {
3211 struct Lisp_Symbol s;
3212 #if USE_LSB_TAG
3213 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3214 & -GCALIGNMENT];
3215 #endif
3216 };
3217
3218 /* Each symbol_block is just under 1020 bytes long, since malloc
3219 really allocates in units of powers of two and uses 4 bytes for its
3220 own overhead. */
3221
3222 #define SYMBOL_BLOCK_SIZE \
3223 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3224
3225 struct symbol_block
3226 {
3227 /* Place `symbols' first, to preserve alignment. */
3228 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3229 struct symbol_block *next;
3230 };
3231
3232 /* Current symbol block and index of first unused Lisp_Symbol
3233 structure in it. */
3234
3235 static struct symbol_block *symbol_block;
3236 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3237
3238 /* List of free symbols. */
3239
3240 static struct Lisp_Symbol *symbol_free_list;
3241
3242 static void
3243 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3244 {
3245 XSYMBOL (sym)->name = name;
3246 }
3247
3248 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3249 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3250 Its value is void, and its function definition and property list are nil. */)
3251 (Lisp_Object name)
3252 {
3253 register Lisp_Object val;
3254 register struct Lisp_Symbol *p;
3255
3256 CHECK_STRING (name);
3257
3258 MALLOC_BLOCK_INPUT;
3259
3260 if (symbol_free_list)
3261 {
3262 XSETSYMBOL (val, symbol_free_list);
3263 symbol_free_list = symbol_free_list->next;
3264 }
3265 else
3266 {
3267 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3268 {
3269 struct symbol_block *new
3270 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3271 new->next = symbol_block;
3272 symbol_block = new;
3273 symbol_block_index = 0;
3274 total_free_symbols += SYMBOL_BLOCK_SIZE;
3275 }
3276 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3277 symbol_block_index++;
3278 }
3279
3280 MALLOC_UNBLOCK_INPUT;
3281
3282 p = XSYMBOL (val);
3283 set_symbol_name (val, name);
3284 set_symbol_plist (val, Qnil);
3285 p->redirect = SYMBOL_PLAINVAL;
3286 SET_SYMBOL_VAL (p, Qunbound);
3287 set_symbol_function (val, Qnil);
3288 set_symbol_next (val, NULL);
3289 p->gcmarkbit = 0;
3290 p->interned = SYMBOL_UNINTERNED;
3291 p->constant = 0;
3292 p->declared_special = 0;
3293 consing_since_gc += sizeof (struct Lisp_Symbol);
3294 symbols_consed++;
3295 total_free_symbols--;
3296 return val;
3297 }
3298
3299
3300 \f
3301 /***********************************************************************
3302 Marker (Misc) Allocation
3303 ***********************************************************************/
3304
3305 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3306 the required alignment when LSB tags are used. */
3307
3308 union aligned_Lisp_Misc
3309 {
3310 union Lisp_Misc m;
3311 #if USE_LSB_TAG
3312 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3313 & -GCALIGNMENT];
3314 #endif
3315 };
3316
3317 /* Allocation of markers and other objects that share that structure.
3318 Works like allocation of conses. */
3319
3320 #define MARKER_BLOCK_SIZE \
3321 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3322
3323 struct marker_block
3324 {
3325 /* Place `markers' first, to preserve alignment. */
3326 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3327 struct marker_block *next;
3328 };
3329
3330 static struct marker_block *marker_block;
3331 static int marker_block_index = MARKER_BLOCK_SIZE;
3332
3333 static union Lisp_Misc *marker_free_list;
3334
3335 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3336
3337 static Lisp_Object
3338 allocate_misc (enum Lisp_Misc_Type type)
3339 {
3340 Lisp_Object val;
3341
3342 MALLOC_BLOCK_INPUT;
3343
3344 if (marker_free_list)
3345 {
3346 XSETMISC (val, marker_free_list);
3347 marker_free_list = marker_free_list->u_free.chain;
3348 }
3349 else
3350 {
3351 if (marker_block_index == MARKER_BLOCK_SIZE)
3352 {
3353 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3354 new->next = marker_block;
3355 marker_block = new;
3356 marker_block_index = 0;
3357 total_free_markers += MARKER_BLOCK_SIZE;
3358 }
3359 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3360 marker_block_index++;
3361 }
3362
3363 MALLOC_UNBLOCK_INPUT;
3364
3365 --total_free_markers;
3366 consing_since_gc += sizeof (union Lisp_Misc);
3367 misc_objects_consed++;
3368 XMISCANY (val)->type = type;
3369 XMISCANY (val)->gcmarkbit = 0;
3370 return val;
3371 }
3372
3373 /* Free a Lisp_Misc object. */
3374
3375 void
3376 free_misc (Lisp_Object misc)
3377 {
3378 XMISCANY (misc)->type = Lisp_Misc_Free;
3379 XMISC (misc)->u_free.chain = marker_free_list;
3380 marker_free_list = XMISC (misc);
3381 consing_since_gc -= sizeof (union Lisp_Misc);
3382 total_free_markers++;
3383 }
3384
3385 /* Verify properties of Lisp_Save_Value's representation
3386 that are assumed here and elsewhere. */
3387
3388 verify (SAVE_UNUSED == 0);
3389 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3390 >> SAVE_SLOT_BITS)
3391 == 0);
3392
3393 /* Return Lisp_Save_Value objects for the various combinations
3394 that callers need. */
3395
3396 Lisp_Object
3397 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3398 {
3399 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3400 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3401 p->save_type = SAVE_TYPE_INT_INT_INT;
3402 p->data[0].integer = a;
3403 p->data[1].integer = b;
3404 p->data[2].integer = c;
3405 return val;
3406 }
3407
3408 Lisp_Object
3409 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3410 Lisp_Object d)
3411 {
3412 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3413 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3414 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3415 p->data[0].object = a;
3416 p->data[1].object = b;
3417 p->data[2].object = c;
3418 p->data[3].object = d;
3419 return val;
3420 }
3421
3422 #if defined HAVE_NS || defined HAVE_NTGUI
3423 Lisp_Object
3424 make_save_ptr (void *a)
3425 {
3426 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3427 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3428 p->save_type = SAVE_POINTER;
3429 p->data[0].pointer = a;
3430 return val;
3431 }
3432 #endif
3433
3434 Lisp_Object
3435 make_save_ptr_int (void *a, ptrdiff_t b)
3436 {
3437 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3438 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3439 p->save_type = SAVE_TYPE_PTR_INT;
3440 p->data[0].pointer = a;
3441 p->data[1].integer = b;
3442 return val;
3443 }
3444
3445 #if defined HAVE_MENUS && ! (defined USE_X_TOOLKIT || defined USE_GTK)
3446 Lisp_Object
3447 make_save_ptr_ptr (void *a, void *b)
3448 {
3449 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3450 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3451 p->save_type = SAVE_TYPE_PTR_PTR;
3452 p->data[0].pointer = a;
3453 p->data[1].pointer = b;
3454 return val;
3455 }
3456 #endif
3457
3458 Lisp_Object
3459 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3460 {
3461 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3462 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3463 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3464 p->data[0].funcpointer = a;
3465 p->data[1].pointer = b;
3466 p->data[2].object = c;
3467 return val;
3468 }
3469
3470 /* Return a Lisp_Save_Value object that represents an array A
3471 of N Lisp objects. */
3472
3473 Lisp_Object
3474 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3475 {
3476 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3477 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3478 p->save_type = SAVE_TYPE_MEMORY;
3479 p->data[0].pointer = a;
3480 p->data[1].integer = n;
3481 return val;
3482 }
3483
3484 /* Free a Lisp_Save_Value object. Do not use this function
3485 if SAVE contains pointer other than returned by xmalloc. */
3486
3487 void
3488 free_save_value (Lisp_Object save)
3489 {
3490 xfree (XSAVE_POINTER (save, 0));
3491 free_misc (save);
3492 }
3493
3494 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3495
3496 Lisp_Object
3497 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3498 {
3499 register Lisp_Object overlay;
3500
3501 overlay = allocate_misc (Lisp_Misc_Overlay);
3502 OVERLAY_START (overlay) = start;
3503 OVERLAY_END (overlay) = end;
3504 set_overlay_plist (overlay, plist);
3505 XOVERLAY (overlay)->next = NULL;
3506 return overlay;
3507 }
3508
3509 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3510 doc: /* Return a newly allocated marker which does not point at any place. */)
3511 (void)
3512 {
3513 register Lisp_Object val;
3514 register struct Lisp_Marker *p;
3515
3516 val = allocate_misc (Lisp_Misc_Marker);
3517 p = XMARKER (val);
3518 p->buffer = 0;
3519 p->bytepos = 0;
3520 p->charpos = 0;
3521 p->next = NULL;
3522 p->insertion_type = 0;
3523 p->need_adjustment = 0;
3524 return val;
3525 }
3526
3527 /* Return a newly allocated marker which points into BUF
3528 at character position CHARPOS and byte position BYTEPOS. */
3529
3530 Lisp_Object
3531 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3532 {
3533 Lisp_Object obj;
3534 struct Lisp_Marker *m;
3535
3536 /* No dead buffers here. */
3537 eassert (BUFFER_LIVE_P (buf));
3538
3539 /* Every character is at least one byte. */
3540 eassert (charpos <= bytepos);
3541
3542 obj = allocate_misc (Lisp_Misc_Marker);
3543 m = XMARKER (obj);
3544 m->buffer = buf;
3545 m->charpos = charpos;
3546 m->bytepos = bytepos;
3547 m->insertion_type = 0;
3548 m->need_adjustment = 0;
3549 m->next = BUF_MARKERS (buf);
3550 BUF_MARKERS (buf) = m;
3551 return obj;
3552 }
3553
3554 /* Put MARKER back on the free list after using it temporarily. */
3555
3556 void
3557 free_marker (Lisp_Object marker)
3558 {
3559 unchain_marker (XMARKER (marker));
3560 free_misc (marker);
3561 }
3562
3563 \f
3564 /* Return a newly created vector or string with specified arguments as
3565 elements. If all the arguments are characters that can fit
3566 in a string of events, make a string; otherwise, make a vector.
3567
3568 Any number of arguments, even zero arguments, are allowed. */
3569
3570 Lisp_Object
3571 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3572 {
3573 ptrdiff_t i;
3574
3575 for (i = 0; i < nargs; i++)
3576 /* The things that fit in a string
3577 are characters that are in 0...127,
3578 after discarding the meta bit and all the bits above it. */
3579 if (!INTEGERP (args[i])
3580 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3581 return Fvector (nargs, args);
3582
3583 /* Since the loop exited, we know that all the things in it are
3584 characters, so we can make a string. */
3585 {
3586 Lisp_Object result;
3587
3588 result = Fmake_string (make_number (nargs), make_number (0));
3589 for (i = 0; i < nargs; i++)
3590 {
3591 SSET (result, i, XINT (args[i]));
3592 /* Move the meta bit to the right place for a string char. */
3593 if (XINT (args[i]) & CHAR_META)
3594 SSET (result, i, SREF (result, i) | 0x80);
3595 }
3596
3597 return result;
3598 }
3599 }
3600
3601
3602 \f
3603 /************************************************************************
3604 Memory Full Handling
3605 ************************************************************************/
3606
3607
3608 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3609 there may have been size_t overflow so that malloc was never
3610 called, or perhaps malloc was invoked successfully but the
3611 resulting pointer had problems fitting into a tagged EMACS_INT. In
3612 either case this counts as memory being full even though malloc did
3613 not fail. */
3614
3615 void
3616 memory_full (size_t nbytes)
3617 {
3618 /* Do not go into hysterics merely because a large request failed. */
3619 bool enough_free_memory = 0;
3620 if (SPARE_MEMORY < nbytes)
3621 {
3622 void *p;
3623
3624 MALLOC_BLOCK_INPUT;
3625 p = malloc (SPARE_MEMORY);
3626 if (p)
3627 {
3628 free (p);
3629 enough_free_memory = 1;
3630 }
3631 MALLOC_UNBLOCK_INPUT;
3632 }
3633
3634 if (! enough_free_memory)
3635 {
3636 int i;
3637
3638 Vmemory_full = Qt;
3639
3640 memory_full_cons_threshold = sizeof (struct cons_block);
3641
3642 /* The first time we get here, free the spare memory. */
3643 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3644 if (spare_memory[i])
3645 {
3646 if (i == 0)
3647 free (spare_memory[i]);
3648 else if (i >= 1 && i <= 4)
3649 lisp_align_free (spare_memory[i]);
3650 else
3651 lisp_free (spare_memory[i]);
3652 spare_memory[i] = 0;
3653 }
3654 }
3655
3656 /* This used to call error, but if we've run out of memory, we could
3657 get infinite recursion trying to build the string. */
3658 xsignal (Qnil, Vmemory_signal_data);
3659 }
3660
3661 /* If we released our reserve (due to running out of memory),
3662 and we have a fair amount free once again,
3663 try to set aside another reserve in case we run out once more.
3664
3665 This is called when a relocatable block is freed in ralloc.c,
3666 and also directly from this file, in case we're not using ralloc.c. */
3667
3668 void
3669 refill_memory_reserve (void)
3670 {
3671 #ifndef SYSTEM_MALLOC
3672 if (spare_memory[0] == 0)
3673 spare_memory[0] = malloc (SPARE_MEMORY);
3674 if (spare_memory[1] == 0)
3675 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3676 MEM_TYPE_SPARE);
3677 if (spare_memory[2] == 0)
3678 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3679 MEM_TYPE_SPARE);
3680 if (spare_memory[3] == 0)
3681 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3682 MEM_TYPE_SPARE);
3683 if (spare_memory[4] == 0)
3684 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3685 MEM_TYPE_SPARE);
3686 if (spare_memory[5] == 0)
3687 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3688 MEM_TYPE_SPARE);
3689 if (spare_memory[6] == 0)
3690 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3691 MEM_TYPE_SPARE);
3692 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3693 Vmemory_full = Qnil;
3694 #endif
3695 }
3696 \f
3697 /************************************************************************
3698 C Stack Marking
3699 ************************************************************************/
3700
3701 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3702
3703 /* Conservative C stack marking requires a method to identify possibly
3704 live Lisp objects given a pointer value. We do this by keeping
3705 track of blocks of Lisp data that are allocated in a red-black tree
3706 (see also the comment of mem_node which is the type of nodes in
3707 that tree). Function lisp_malloc adds information for an allocated
3708 block to the red-black tree with calls to mem_insert, and function
3709 lisp_free removes it with mem_delete. Functions live_string_p etc
3710 call mem_find to lookup information about a given pointer in the
3711 tree, and use that to determine if the pointer points to a Lisp
3712 object or not. */
3713
3714 /* Initialize this part of alloc.c. */
3715
3716 static void
3717 mem_init (void)
3718 {
3719 mem_z.left = mem_z.right = MEM_NIL;
3720 mem_z.parent = NULL;
3721 mem_z.color = MEM_BLACK;
3722 mem_z.start = mem_z.end = NULL;
3723 mem_root = MEM_NIL;
3724 }
3725
3726
3727 /* Value is a pointer to the mem_node containing START. Value is
3728 MEM_NIL if there is no node in the tree containing START. */
3729
3730 static struct mem_node *
3731 mem_find (void *start)
3732 {
3733 struct mem_node *p;
3734
3735 if (start < min_heap_address || start > max_heap_address)
3736 return MEM_NIL;
3737
3738 /* Make the search always successful to speed up the loop below. */
3739 mem_z.start = start;
3740 mem_z.end = (char *) start + 1;
3741
3742 p = mem_root;
3743 while (start < p->start || start >= p->end)
3744 p = start < p->start ? p->left : p->right;
3745 return p;
3746 }
3747
3748
3749 /* Insert a new node into the tree for a block of memory with start
3750 address START, end address END, and type TYPE. Value is a
3751 pointer to the node that was inserted. */
3752
3753 static struct mem_node *
3754 mem_insert (void *start, void *end, enum mem_type type)
3755 {
3756 struct mem_node *c, *parent, *x;
3757
3758 if (min_heap_address == NULL || start < min_heap_address)
3759 min_heap_address = start;
3760 if (max_heap_address == NULL || end > max_heap_address)
3761 max_heap_address = end;
3762
3763 /* See where in the tree a node for START belongs. In this
3764 particular application, it shouldn't happen that a node is already
3765 present. For debugging purposes, let's check that. */
3766 c = mem_root;
3767 parent = NULL;
3768
3769 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3770
3771 while (c != MEM_NIL)
3772 {
3773 if (start >= c->start && start < c->end)
3774 emacs_abort ();
3775 parent = c;
3776 c = start < c->start ? c->left : c->right;
3777 }
3778
3779 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3780
3781 while (c != MEM_NIL)
3782 {
3783 parent = c;
3784 c = start < c->start ? c->left : c->right;
3785 }
3786
3787 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3788
3789 /* Create a new node. */
3790 #ifdef GC_MALLOC_CHECK
3791 x = malloc (sizeof *x);
3792 if (x == NULL)
3793 emacs_abort ();
3794 #else
3795 x = xmalloc (sizeof *x);
3796 #endif
3797 x->start = start;
3798 x->end = end;
3799 x->type = type;
3800 x->parent = parent;
3801 x->left = x->right = MEM_NIL;
3802 x->color = MEM_RED;
3803
3804 /* Insert it as child of PARENT or install it as root. */
3805 if (parent)
3806 {
3807 if (start < parent->start)
3808 parent->left = x;
3809 else
3810 parent->right = x;
3811 }
3812 else
3813 mem_root = x;
3814
3815 /* Re-establish red-black tree properties. */
3816 mem_insert_fixup (x);
3817
3818 return x;
3819 }
3820
3821
3822 /* Re-establish the red-black properties of the tree, and thereby
3823 balance the tree, after node X has been inserted; X is always red. */
3824
3825 static void
3826 mem_insert_fixup (struct mem_node *x)
3827 {
3828 while (x != mem_root && x->parent->color == MEM_RED)
3829 {
3830 /* X is red and its parent is red. This is a violation of
3831 red-black tree property #3. */
3832
3833 if (x->parent == x->parent->parent->left)
3834 {
3835 /* We're on the left side of our grandparent, and Y is our
3836 "uncle". */
3837 struct mem_node *y = x->parent->parent->right;
3838
3839 if (y->color == MEM_RED)
3840 {
3841 /* Uncle and parent are red but should be black because
3842 X is red. Change the colors accordingly and proceed
3843 with the grandparent. */
3844 x->parent->color = MEM_BLACK;
3845 y->color = MEM_BLACK;
3846 x->parent->parent->color = MEM_RED;
3847 x = x->parent->parent;
3848 }
3849 else
3850 {
3851 /* Parent and uncle have different colors; parent is
3852 red, uncle is black. */
3853 if (x == x->parent->right)
3854 {
3855 x = x->parent;
3856 mem_rotate_left (x);
3857 }
3858
3859 x->parent->color = MEM_BLACK;
3860 x->parent->parent->color = MEM_RED;
3861 mem_rotate_right (x->parent->parent);
3862 }
3863 }
3864 else
3865 {
3866 /* This is the symmetrical case of above. */
3867 struct mem_node *y = x->parent->parent->left;
3868
3869 if (y->color == MEM_RED)
3870 {
3871 x->parent->color = MEM_BLACK;
3872 y->color = MEM_BLACK;
3873 x->parent->parent->color = MEM_RED;
3874 x = x->parent->parent;
3875 }
3876 else
3877 {
3878 if (x == x->parent->left)
3879 {
3880 x = x->parent;
3881 mem_rotate_right (x);
3882 }
3883
3884 x->parent->color = MEM_BLACK;
3885 x->parent->parent->color = MEM_RED;
3886 mem_rotate_left (x->parent->parent);
3887 }
3888 }
3889 }
3890
3891 /* The root may have been changed to red due to the algorithm. Set
3892 it to black so that property #5 is satisfied. */
3893 mem_root->color = MEM_BLACK;
3894 }
3895
3896
3897 /* (x) (y)
3898 / \ / \
3899 a (y) ===> (x) c
3900 / \ / \
3901 b c a b */
3902
3903 static void
3904 mem_rotate_left (struct mem_node *x)
3905 {
3906 struct mem_node *y;
3907
3908 /* Turn y's left sub-tree into x's right sub-tree. */
3909 y = x->right;
3910 x->right = y->left;
3911 if (y->left != MEM_NIL)
3912 y->left->parent = x;
3913
3914 /* Y's parent was x's parent. */
3915 if (y != MEM_NIL)
3916 y->parent = x->parent;
3917
3918 /* Get the parent to point to y instead of x. */
3919 if (x->parent)
3920 {
3921 if (x == x->parent->left)
3922 x->parent->left = y;
3923 else
3924 x->parent->right = y;
3925 }
3926 else
3927 mem_root = y;
3928
3929 /* Put x on y's left. */
3930 y->left = x;
3931 if (x != MEM_NIL)
3932 x->parent = y;
3933 }
3934
3935
3936 /* (x) (Y)
3937 / \ / \
3938 (y) c ===> a (x)
3939 / \ / \
3940 a b b c */
3941
3942 static void
3943 mem_rotate_right (struct mem_node *x)
3944 {
3945 struct mem_node *y = x->left;
3946
3947 x->left = y->right;
3948 if (y->right != MEM_NIL)
3949 y->right->parent = x;
3950
3951 if (y != MEM_NIL)
3952 y->parent = x->parent;
3953 if (x->parent)
3954 {
3955 if (x == x->parent->right)
3956 x->parent->right = y;
3957 else
3958 x->parent->left = y;
3959 }
3960 else
3961 mem_root = y;
3962
3963 y->right = x;
3964 if (x != MEM_NIL)
3965 x->parent = y;
3966 }
3967
3968
3969 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3970
3971 static void
3972 mem_delete (struct mem_node *z)
3973 {
3974 struct mem_node *x, *y;
3975
3976 if (!z || z == MEM_NIL)
3977 return;
3978
3979 if (z->left == MEM_NIL || z->right == MEM_NIL)
3980 y = z;
3981 else
3982 {
3983 y = z->right;
3984 while (y->left != MEM_NIL)
3985 y = y->left;
3986 }
3987
3988 if (y->left != MEM_NIL)
3989 x = y->left;
3990 else
3991 x = y->right;
3992
3993 x->parent = y->parent;
3994 if (y->parent)
3995 {
3996 if (y == y->parent->left)
3997 y->parent->left = x;
3998 else
3999 y->parent->right = x;
4000 }
4001 else
4002 mem_root = x;
4003
4004 if (y != z)
4005 {
4006 z->start = y->start;
4007 z->end = y->end;
4008 z->type = y->type;
4009 }
4010
4011 if (y->color == MEM_BLACK)
4012 mem_delete_fixup (x);
4013
4014 #ifdef GC_MALLOC_CHECK
4015 free (y);
4016 #else
4017 xfree (y);
4018 #endif
4019 }
4020
4021
4022 /* Re-establish the red-black properties of the tree, after a
4023 deletion. */
4024
4025 static void
4026 mem_delete_fixup (struct mem_node *x)
4027 {
4028 while (x != mem_root && x->color == MEM_BLACK)
4029 {
4030 if (x == x->parent->left)
4031 {
4032 struct mem_node *w = x->parent->right;
4033
4034 if (w->color == MEM_RED)
4035 {
4036 w->color = MEM_BLACK;
4037 x->parent->color = MEM_RED;
4038 mem_rotate_left (x->parent);
4039 w = x->parent->right;
4040 }
4041
4042 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4043 {
4044 w->color = MEM_RED;
4045 x = x->parent;
4046 }
4047 else
4048 {
4049 if (w->right->color == MEM_BLACK)
4050 {
4051 w->left->color = MEM_BLACK;
4052 w->color = MEM_RED;
4053 mem_rotate_right (w);
4054 w = x->parent->right;
4055 }
4056 w->color = x->parent->color;
4057 x->parent->color = MEM_BLACK;
4058 w->right->color = MEM_BLACK;
4059 mem_rotate_left (x->parent);
4060 x = mem_root;
4061 }
4062 }
4063 else
4064 {
4065 struct mem_node *w = x->parent->left;
4066
4067 if (w->color == MEM_RED)
4068 {
4069 w->color = MEM_BLACK;
4070 x->parent->color = MEM_RED;
4071 mem_rotate_right (x->parent);
4072 w = x->parent->left;
4073 }
4074
4075 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4076 {
4077 w->color = MEM_RED;
4078 x = x->parent;
4079 }
4080 else
4081 {
4082 if (w->left->color == MEM_BLACK)
4083 {
4084 w->right->color = MEM_BLACK;
4085 w->color = MEM_RED;
4086 mem_rotate_left (w);
4087 w = x->parent->left;
4088 }
4089
4090 w->color = x->parent->color;
4091 x->parent->color = MEM_BLACK;
4092 w->left->color = MEM_BLACK;
4093 mem_rotate_right (x->parent);
4094 x = mem_root;
4095 }
4096 }
4097 }
4098
4099 x->color = MEM_BLACK;
4100 }
4101
4102
4103 /* Value is non-zero if P is a pointer to a live Lisp string on
4104 the heap. M is a pointer to the mem_block for P. */
4105
4106 static bool
4107 live_string_p (struct mem_node *m, void *p)
4108 {
4109 if (m->type == MEM_TYPE_STRING)
4110 {
4111 struct string_block *b = m->start;
4112 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4113
4114 /* P must point to the start of a Lisp_String structure, and it
4115 must not be on the free-list. */
4116 return (offset >= 0
4117 && offset % sizeof b->strings[0] == 0
4118 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4119 && ((struct Lisp_String *) p)->data != NULL);
4120 }
4121 else
4122 return 0;
4123 }
4124
4125
4126 /* Value is non-zero if P is a pointer to a live Lisp cons on
4127 the heap. M is a pointer to the mem_block for P. */
4128
4129 static bool
4130 live_cons_p (struct mem_node *m, void *p)
4131 {
4132 if (m->type == MEM_TYPE_CONS)
4133 {
4134 struct cons_block *b = m->start;
4135 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4136
4137 /* P must point to the start of a Lisp_Cons, not be
4138 one of the unused cells in the current cons block,
4139 and not be on the free-list. */
4140 return (offset >= 0
4141 && offset % sizeof b->conses[0] == 0
4142 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4143 && (b != cons_block
4144 || offset / sizeof b->conses[0] < cons_block_index)
4145 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4146 }
4147 else
4148 return 0;
4149 }
4150
4151
4152 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4153 the heap. M is a pointer to the mem_block for P. */
4154
4155 static bool
4156 live_symbol_p (struct mem_node *m, void *p)
4157 {
4158 if (m->type == MEM_TYPE_SYMBOL)
4159 {
4160 struct symbol_block *b = m->start;
4161 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4162
4163 /* P must point to the start of a Lisp_Symbol, not be
4164 one of the unused cells in the current symbol block,
4165 and not be on the free-list. */
4166 return (offset >= 0
4167 && offset % sizeof b->symbols[0] == 0
4168 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4169 && (b != symbol_block
4170 || offset / sizeof b->symbols[0] < symbol_block_index)
4171 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4172 }
4173 else
4174 return 0;
4175 }
4176
4177
4178 /* Value is non-zero if P is a pointer to a live Lisp float on
4179 the heap. M is a pointer to the mem_block for P. */
4180
4181 static bool
4182 live_float_p (struct mem_node *m, void *p)
4183 {
4184 if (m->type == MEM_TYPE_FLOAT)
4185 {
4186 struct float_block *b = m->start;
4187 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4188
4189 /* P must point to the start of a Lisp_Float and not be
4190 one of the unused cells in the current float block. */
4191 return (offset >= 0
4192 && offset % sizeof b->floats[0] == 0
4193 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4194 && (b != float_block
4195 || offset / sizeof b->floats[0] < float_block_index));
4196 }
4197 else
4198 return 0;
4199 }
4200
4201
4202 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4203 the heap. M is a pointer to the mem_block for P. */
4204
4205 static bool
4206 live_misc_p (struct mem_node *m, void *p)
4207 {
4208 if (m->type == MEM_TYPE_MISC)
4209 {
4210 struct marker_block *b = m->start;
4211 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4212
4213 /* P must point to the start of a Lisp_Misc, not be
4214 one of the unused cells in the current misc block,
4215 and not be on the free-list. */
4216 return (offset >= 0
4217 && offset % sizeof b->markers[0] == 0
4218 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4219 && (b != marker_block
4220 || offset / sizeof b->markers[0] < marker_block_index)
4221 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4222 }
4223 else
4224 return 0;
4225 }
4226
4227
4228 /* Value is non-zero if P is a pointer to a live vector-like object.
4229 M is a pointer to the mem_block for P. */
4230
4231 static bool
4232 live_vector_p (struct mem_node *m, void *p)
4233 {
4234 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4235 {
4236 /* This memory node corresponds to a vector block. */
4237 struct vector_block *block = m->start;
4238 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4239
4240 /* P is in the block's allocation range. Scan the block
4241 up to P and see whether P points to the start of some
4242 vector which is not on a free list. FIXME: check whether
4243 some allocation patterns (probably a lot of short vectors)
4244 may cause a substantial overhead of this loop. */
4245 while (VECTOR_IN_BLOCK (vector, block)
4246 && vector <= (struct Lisp_Vector *) p)
4247 {
4248 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4249 return 1;
4250 else
4251 vector = ADVANCE (vector, vector_nbytes (vector));
4252 }
4253 }
4254 else if (m->type == MEM_TYPE_VECTORLIKE
4255 && (char *) p == ((char *) m->start
4256 + offsetof (struct large_vector, v)))
4257 /* This memory node corresponds to a large vector. */
4258 return 1;
4259 return 0;
4260 }
4261
4262
4263 /* Value is non-zero if P is a pointer to a live buffer. M is a
4264 pointer to the mem_block for P. */
4265
4266 static bool
4267 live_buffer_p (struct mem_node *m, void *p)
4268 {
4269 /* P must point to the start of the block, and the buffer
4270 must not have been killed. */
4271 return (m->type == MEM_TYPE_BUFFER
4272 && p == m->start
4273 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4274 }
4275
4276 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4277
4278 #if GC_MARK_STACK
4279
4280 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4281
4282 /* Currently not used, but may be called from gdb. */
4283
4284 void dump_zombies (void) EXTERNALLY_VISIBLE;
4285
4286 /* Array of objects that are kept alive because the C stack contains
4287 a pattern that looks like a reference to them . */
4288
4289 #define MAX_ZOMBIES 10
4290 static Lisp_Object zombies[MAX_ZOMBIES];
4291
4292 /* Number of zombie objects. */
4293
4294 static EMACS_INT nzombies;
4295
4296 /* Number of garbage collections. */
4297
4298 static EMACS_INT ngcs;
4299
4300 /* Average percentage of zombies per collection. */
4301
4302 static double avg_zombies;
4303
4304 /* Max. number of live and zombie objects. */
4305
4306 static EMACS_INT max_live, max_zombies;
4307
4308 /* Average number of live objects per GC. */
4309
4310 static double avg_live;
4311
4312 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4313 doc: /* Show information about live and zombie objects. */)
4314 (void)
4315 {
4316 Lisp_Object args[8], zombie_list = Qnil;
4317 EMACS_INT i;
4318 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4319 zombie_list = Fcons (zombies[i], zombie_list);
4320 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4321 args[1] = make_number (ngcs);
4322 args[2] = make_float (avg_live);
4323 args[3] = make_float (avg_zombies);
4324 args[4] = make_float (avg_zombies / avg_live / 100);
4325 args[5] = make_number (max_live);
4326 args[6] = make_number (max_zombies);
4327 args[7] = zombie_list;
4328 return Fmessage (8, args);
4329 }
4330
4331 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4332
4333
4334 /* Mark OBJ if we can prove it's a Lisp_Object. */
4335
4336 static void
4337 mark_maybe_object (Lisp_Object obj)
4338 {
4339 void *po;
4340 struct mem_node *m;
4341
4342 #if USE_VALGRIND
4343 if (valgrind_p)
4344 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4345 #endif
4346
4347 if (INTEGERP (obj))
4348 return;
4349
4350 po = (void *) XPNTR (obj);
4351 m = mem_find (po);
4352
4353 if (m != MEM_NIL)
4354 {
4355 bool mark_p = 0;
4356
4357 switch (XTYPE (obj))
4358 {
4359 case Lisp_String:
4360 mark_p = (live_string_p (m, po)
4361 && !STRING_MARKED_P ((struct Lisp_String *) po));
4362 break;
4363
4364 case Lisp_Cons:
4365 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4366 break;
4367
4368 case Lisp_Symbol:
4369 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4370 break;
4371
4372 case Lisp_Float:
4373 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4374 break;
4375
4376 case Lisp_Vectorlike:
4377 /* Note: can't check BUFFERP before we know it's a
4378 buffer because checking that dereferences the pointer
4379 PO which might point anywhere. */
4380 if (live_vector_p (m, po))
4381 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4382 else if (live_buffer_p (m, po))
4383 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4384 break;
4385
4386 case Lisp_Misc:
4387 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4388 break;
4389
4390 default:
4391 break;
4392 }
4393
4394 if (mark_p)
4395 {
4396 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4397 if (nzombies < MAX_ZOMBIES)
4398 zombies[nzombies] = obj;
4399 ++nzombies;
4400 #endif
4401 mark_object (obj);
4402 }
4403 }
4404 }
4405
4406
4407 /* If P points to Lisp data, mark that as live if it isn't already
4408 marked. */
4409
4410 static void
4411 mark_maybe_pointer (void *p)
4412 {
4413 struct mem_node *m;
4414
4415 #if USE_VALGRIND
4416 if (valgrind_p)
4417 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4418 #endif
4419
4420 /* Quickly rule out some values which can't point to Lisp data.
4421 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4422 Otherwise, assume that Lisp data is aligned on even addresses. */
4423 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4424 return;
4425
4426 m = mem_find (p);
4427 if (m != MEM_NIL)
4428 {
4429 Lisp_Object obj = Qnil;
4430
4431 switch (m->type)
4432 {
4433 case MEM_TYPE_NON_LISP:
4434 case MEM_TYPE_SPARE:
4435 /* Nothing to do; not a pointer to Lisp memory. */
4436 break;
4437
4438 case MEM_TYPE_BUFFER:
4439 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4440 XSETVECTOR (obj, p);
4441 break;
4442
4443 case MEM_TYPE_CONS:
4444 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4445 XSETCONS (obj, p);
4446 break;
4447
4448 case MEM_TYPE_STRING:
4449 if (live_string_p (m, p)
4450 && !STRING_MARKED_P ((struct Lisp_String *) p))
4451 XSETSTRING (obj, p);
4452 break;
4453
4454 case MEM_TYPE_MISC:
4455 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4456 XSETMISC (obj, p);
4457 break;
4458
4459 case MEM_TYPE_SYMBOL:
4460 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4461 XSETSYMBOL (obj, p);
4462 break;
4463
4464 case MEM_TYPE_FLOAT:
4465 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4466 XSETFLOAT (obj, p);
4467 break;
4468
4469 case MEM_TYPE_VECTORLIKE:
4470 case MEM_TYPE_VECTOR_BLOCK:
4471 if (live_vector_p (m, p))
4472 {
4473 Lisp_Object tem;
4474 XSETVECTOR (tem, p);
4475 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4476 obj = tem;
4477 }
4478 break;
4479
4480 default:
4481 emacs_abort ();
4482 }
4483
4484 if (!NILP (obj))
4485 mark_object (obj);
4486 }
4487 }
4488
4489
4490 /* Alignment of pointer values. Use alignof, as it sometimes returns
4491 a smaller alignment than GCC's __alignof__ and mark_memory might
4492 miss objects if __alignof__ were used. */
4493 #define GC_POINTER_ALIGNMENT alignof (void *)
4494
4495 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4496 not suffice, which is the typical case. A host where a Lisp_Object is
4497 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4498 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4499 suffice to widen it to to a Lisp_Object and check it that way. */
4500 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4501 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4502 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4503 nor mark_maybe_object can follow the pointers. This should not occur on
4504 any practical porting target. */
4505 # error "MSB type bits straddle pointer-word boundaries"
4506 # endif
4507 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4508 pointer words that hold pointers ORed with type bits. */
4509 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4510 #else
4511 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4512 words that hold unmodified pointers. */
4513 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4514 #endif
4515
4516 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4517 or END+OFFSET..START. */
4518
4519 static void
4520 mark_memory (void *start, void *end)
4521 #if defined (__clang__) && defined (__has_feature)
4522 #if __has_feature(address_sanitizer)
4523 /* Do not allow -faddress-sanitizer to check this function, since it
4524 crosses the function stack boundary, and thus would yield many
4525 false positives. */
4526 __attribute__((no_address_safety_analysis))
4527 #endif
4528 #endif
4529 {
4530 void **pp;
4531 int i;
4532
4533 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4534 nzombies = 0;
4535 #endif
4536
4537 /* Make START the pointer to the start of the memory region,
4538 if it isn't already. */
4539 if (end < start)
4540 {
4541 void *tem = start;
4542 start = end;
4543 end = tem;
4544 }
4545
4546 /* Mark Lisp data pointed to. This is necessary because, in some
4547 situations, the C compiler optimizes Lisp objects away, so that
4548 only a pointer to them remains. Example:
4549
4550 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4551 ()
4552 {
4553 Lisp_Object obj = build_string ("test");
4554 struct Lisp_String *s = XSTRING (obj);
4555 Fgarbage_collect ();
4556 fprintf (stderr, "test `%s'\n", s->data);
4557 return Qnil;
4558 }
4559
4560 Here, `obj' isn't really used, and the compiler optimizes it
4561 away. The only reference to the life string is through the
4562 pointer `s'. */
4563
4564 for (pp = start; (void *) pp < end; pp++)
4565 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4566 {
4567 void *p = *(void **) ((char *) pp + i);
4568 mark_maybe_pointer (p);
4569 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4570 mark_maybe_object (XIL ((intptr_t) p));
4571 }
4572 }
4573
4574 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4575
4576 static bool setjmp_tested_p;
4577 static int longjmps_done;
4578
4579 #define SETJMP_WILL_LIKELY_WORK "\
4580 \n\
4581 Emacs garbage collector has been changed to use conservative stack\n\
4582 marking. Emacs has determined that the method it uses to do the\n\
4583 marking will likely work on your system, but this isn't sure.\n\
4584 \n\
4585 If you are a system-programmer, or can get the help of a local wizard\n\
4586 who is, please take a look at the function mark_stack in alloc.c, and\n\
4587 verify that the methods used are appropriate for your system.\n\
4588 \n\
4589 Please mail the result to <emacs-devel@gnu.org>.\n\
4590 "
4591
4592 #define SETJMP_WILL_NOT_WORK "\
4593 \n\
4594 Emacs garbage collector has been changed to use conservative stack\n\
4595 marking. Emacs has determined that the default method it uses to do the\n\
4596 marking will not work on your system. We will need a system-dependent\n\
4597 solution for your system.\n\
4598 \n\
4599 Please take a look at the function mark_stack in alloc.c, and\n\
4600 try to find a way to make it work on your system.\n\
4601 \n\
4602 Note that you may get false negatives, depending on the compiler.\n\
4603 In particular, you need to use -O with GCC for this test.\n\
4604 \n\
4605 Please mail the result to <emacs-devel@gnu.org>.\n\
4606 "
4607
4608
4609 /* Perform a quick check if it looks like setjmp saves registers in a
4610 jmp_buf. Print a message to stderr saying so. When this test
4611 succeeds, this is _not_ a proof that setjmp is sufficient for
4612 conservative stack marking. Only the sources or a disassembly
4613 can prove that. */
4614
4615 static void
4616 test_setjmp (void)
4617 {
4618 char buf[10];
4619 register int x;
4620 sys_jmp_buf jbuf;
4621
4622 /* Arrange for X to be put in a register. */
4623 sprintf (buf, "1");
4624 x = strlen (buf);
4625 x = 2 * x - 1;
4626
4627 sys_setjmp (jbuf);
4628 if (longjmps_done == 1)
4629 {
4630 /* Came here after the longjmp at the end of the function.
4631
4632 If x == 1, the longjmp has restored the register to its
4633 value before the setjmp, and we can hope that setjmp
4634 saves all such registers in the jmp_buf, although that
4635 isn't sure.
4636
4637 For other values of X, either something really strange is
4638 taking place, or the setjmp just didn't save the register. */
4639
4640 if (x == 1)
4641 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4642 else
4643 {
4644 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4645 exit (1);
4646 }
4647 }
4648
4649 ++longjmps_done;
4650 x = 2;
4651 if (longjmps_done == 1)
4652 sys_longjmp (jbuf, 1);
4653 }
4654
4655 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4656
4657
4658 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4659
4660 /* Abort if anything GCPRO'd doesn't survive the GC. */
4661
4662 static void
4663 check_gcpros (void)
4664 {
4665 struct gcpro *p;
4666 ptrdiff_t i;
4667
4668 for (p = gcprolist; p; p = p->next)
4669 for (i = 0; i < p->nvars; ++i)
4670 if (!survives_gc_p (p->var[i]))
4671 /* FIXME: It's not necessarily a bug. It might just be that the
4672 GCPRO is unnecessary or should release the object sooner. */
4673 emacs_abort ();
4674 }
4675
4676 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4677
4678 void
4679 dump_zombies (void)
4680 {
4681 int i;
4682
4683 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4684 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4685 {
4686 fprintf (stderr, " %d = ", i);
4687 debug_print (zombies[i]);
4688 }
4689 }
4690
4691 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4692
4693
4694 /* Mark live Lisp objects on the C stack.
4695
4696 There are several system-dependent problems to consider when
4697 porting this to new architectures:
4698
4699 Processor Registers
4700
4701 We have to mark Lisp objects in CPU registers that can hold local
4702 variables or are used to pass parameters.
4703
4704 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4705 something that either saves relevant registers on the stack, or
4706 calls mark_maybe_object passing it each register's contents.
4707
4708 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4709 implementation assumes that calling setjmp saves registers we need
4710 to see in a jmp_buf which itself lies on the stack. This doesn't
4711 have to be true! It must be verified for each system, possibly
4712 by taking a look at the source code of setjmp.
4713
4714 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4715 can use it as a machine independent method to store all registers
4716 to the stack. In this case the macros described in the previous
4717 two paragraphs are not used.
4718
4719 Stack Layout
4720
4721 Architectures differ in the way their processor stack is organized.
4722 For example, the stack might look like this
4723
4724 +----------------+
4725 | Lisp_Object | size = 4
4726 +----------------+
4727 | something else | size = 2
4728 +----------------+
4729 | Lisp_Object | size = 4
4730 +----------------+
4731 | ... |
4732
4733 In such a case, not every Lisp_Object will be aligned equally. To
4734 find all Lisp_Object on the stack it won't be sufficient to walk
4735 the stack in steps of 4 bytes. Instead, two passes will be
4736 necessary, one starting at the start of the stack, and a second
4737 pass starting at the start of the stack + 2. Likewise, if the
4738 minimal alignment of Lisp_Objects on the stack is 1, four passes
4739 would be necessary, each one starting with one byte more offset
4740 from the stack start. */
4741
4742 static void
4743 mark_stack (void)
4744 {
4745 void *end;
4746
4747 #ifdef HAVE___BUILTIN_UNWIND_INIT
4748 /* Force callee-saved registers and register windows onto the stack.
4749 This is the preferred method if available, obviating the need for
4750 machine dependent methods. */
4751 __builtin_unwind_init ();
4752 end = &end;
4753 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4754 #ifndef GC_SAVE_REGISTERS_ON_STACK
4755 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4756 union aligned_jmpbuf {
4757 Lisp_Object o;
4758 sys_jmp_buf j;
4759 } j;
4760 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4761 #endif
4762 /* This trick flushes the register windows so that all the state of
4763 the process is contained in the stack. */
4764 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4765 needed on ia64 too. See mach_dep.c, where it also says inline
4766 assembler doesn't work with relevant proprietary compilers. */
4767 #ifdef __sparc__
4768 #if defined (__sparc64__) && defined (__FreeBSD__)
4769 /* FreeBSD does not have a ta 3 handler. */
4770 asm ("flushw");
4771 #else
4772 asm ("ta 3");
4773 #endif
4774 #endif
4775
4776 /* Save registers that we need to see on the stack. We need to see
4777 registers used to hold register variables and registers used to
4778 pass parameters. */
4779 #ifdef GC_SAVE_REGISTERS_ON_STACK
4780 GC_SAVE_REGISTERS_ON_STACK (end);
4781 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4782
4783 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4784 setjmp will definitely work, test it
4785 and print a message with the result
4786 of the test. */
4787 if (!setjmp_tested_p)
4788 {
4789 setjmp_tested_p = 1;
4790 test_setjmp ();
4791 }
4792 #endif /* GC_SETJMP_WORKS */
4793
4794 sys_setjmp (j.j);
4795 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4796 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4797 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4798
4799 /* This assumes that the stack is a contiguous region in memory. If
4800 that's not the case, something has to be done here to iterate
4801 over the stack segments. */
4802 mark_memory (stack_base, end);
4803
4804 /* Allow for marking a secondary stack, like the register stack on the
4805 ia64. */
4806 #ifdef GC_MARK_SECONDARY_STACK
4807 GC_MARK_SECONDARY_STACK ();
4808 #endif
4809
4810 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4811 check_gcpros ();
4812 #endif
4813 }
4814
4815 #else /* GC_MARK_STACK == 0 */
4816
4817 #define mark_maybe_object(obj) emacs_abort ()
4818
4819 #endif /* GC_MARK_STACK != 0 */
4820
4821
4822 /* Determine whether it is safe to access memory at address P. */
4823 static int
4824 valid_pointer_p (void *p)
4825 {
4826 #ifdef WINDOWSNT
4827 return w32_valid_pointer_p (p, 16);
4828 #else
4829 int fd[2];
4830
4831 /* Obviously, we cannot just access it (we would SEGV trying), so we
4832 trick the o/s to tell us whether p is a valid pointer.
4833 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4834 not validate p in that case. */
4835
4836 if (emacs_pipe (fd) == 0)
4837 {
4838 bool valid = emacs_write (fd[1], (char *) p, 16) == 16;
4839 emacs_close (fd[1]);
4840 emacs_close (fd[0]);
4841 return valid;
4842 }
4843
4844 return -1;
4845 #endif
4846 }
4847
4848 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4849 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4850 cannot validate OBJ. This function can be quite slow, so its primary
4851 use is the manual debugging. The only exception is print_object, where
4852 we use it to check whether the memory referenced by the pointer of
4853 Lisp_Save_Value object contains valid objects. */
4854
4855 int
4856 valid_lisp_object_p (Lisp_Object obj)
4857 {
4858 void *p;
4859 #if GC_MARK_STACK
4860 struct mem_node *m;
4861 #endif
4862
4863 if (INTEGERP (obj))
4864 return 1;
4865
4866 p = (void *) XPNTR (obj);
4867 if (PURE_POINTER_P (p))
4868 return 1;
4869
4870 if (p == &buffer_defaults || p == &buffer_local_symbols)
4871 return 2;
4872
4873 #if !GC_MARK_STACK
4874 return valid_pointer_p (p);
4875 #else
4876
4877 m = mem_find (p);
4878
4879 if (m == MEM_NIL)
4880 {
4881 int valid = valid_pointer_p (p);
4882 if (valid <= 0)
4883 return valid;
4884
4885 if (SUBRP (obj))
4886 return 1;
4887
4888 return 0;
4889 }
4890
4891 switch (m->type)
4892 {
4893 case MEM_TYPE_NON_LISP:
4894 case MEM_TYPE_SPARE:
4895 return 0;
4896
4897 case MEM_TYPE_BUFFER:
4898 return live_buffer_p (m, p) ? 1 : 2;
4899
4900 case MEM_TYPE_CONS:
4901 return live_cons_p (m, p);
4902
4903 case MEM_TYPE_STRING:
4904 return live_string_p (m, p);
4905
4906 case MEM_TYPE_MISC:
4907 return live_misc_p (m, p);
4908
4909 case MEM_TYPE_SYMBOL:
4910 return live_symbol_p (m, p);
4911
4912 case MEM_TYPE_FLOAT:
4913 return live_float_p (m, p);
4914
4915 case MEM_TYPE_VECTORLIKE:
4916 case MEM_TYPE_VECTOR_BLOCK:
4917 return live_vector_p (m, p);
4918
4919 default:
4920 break;
4921 }
4922
4923 return 0;
4924 #endif
4925 }
4926
4927
4928
4929 \f
4930 /***********************************************************************
4931 Pure Storage Management
4932 ***********************************************************************/
4933
4934 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4935 pointer to it. TYPE is the Lisp type for which the memory is
4936 allocated. TYPE < 0 means it's not used for a Lisp object. */
4937
4938 static void *
4939 pure_alloc (size_t size, int type)
4940 {
4941 void *result;
4942 #if USE_LSB_TAG
4943 size_t alignment = GCALIGNMENT;
4944 #else
4945 size_t alignment = alignof (EMACS_INT);
4946
4947 /* Give Lisp_Floats an extra alignment. */
4948 if (type == Lisp_Float)
4949 alignment = alignof (struct Lisp_Float);
4950 #endif
4951
4952 again:
4953 if (type >= 0)
4954 {
4955 /* Allocate space for a Lisp object from the beginning of the free
4956 space with taking account of alignment. */
4957 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4958 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4959 }
4960 else
4961 {
4962 /* Allocate space for a non-Lisp object from the end of the free
4963 space. */
4964 pure_bytes_used_non_lisp += size;
4965 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4966 }
4967 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4968
4969 if (pure_bytes_used <= pure_size)
4970 return result;
4971
4972 /* Don't allocate a large amount here,
4973 because it might get mmap'd and then its address
4974 might not be usable. */
4975 purebeg = xmalloc (10000);
4976 pure_size = 10000;
4977 pure_bytes_used_before_overflow += pure_bytes_used - size;
4978 pure_bytes_used = 0;
4979 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4980 goto again;
4981 }
4982
4983
4984 /* Print a warning if PURESIZE is too small. */
4985
4986 void
4987 check_pure_size (void)
4988 {
4989 if (pure_bytes_used_before_overflow)
4990 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4991 " bytes needed)"),
4992 pure_bytes_used + pure_bytes_used_before_overflow);
4993 }
4994
4995
4996 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4997 the non-Lisp data pool of the pure storage, and return its start
4998 address. Return NULL if not found. */
4999
5000 static char *
5001 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5002 {
5003 int i;
5004 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5005 const unsigned char *p;
5006 char *non_lisp_beg;
5007
5008 if (pure_bytes_used_non_lisp <= nbytes)
5009 return NULL;
5010
5011 /* Set up the Boyer-Moore table. */
5012 skip = nbytes + 1;
5013 for (i = 0; i < 256; i++)
5014 bm_skip[i] = skip;
5015
5016 p = (const unsigned char *) data;
5017 while (--skip > 0)
5018 bm_skip[*p++] = skip;
5019
5020 last_char_skip = bm_skip['\0'];
5021
5022 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5023 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5024
5025 /* See the comments in the function `boyer_moore' (search.c) for the
5026 use of `infinity'. */
5027 infinity = pure_bytes_used_non_lisp + 1;
5028 bm_skip['\0'] = infinity;
5029
5030 p = (const unsigned char *) non_lisp_beg + nbytes;
5031 start = 0;
5032 do
5033 {
5034 /* Check the last character (== '\0'). */
5035 do
5036 {
5037 start += bm_skip[*(p + start)];
5038 }
5039 while (start <= start_max);
5040
5041 if (start < infinity)
5042 /* Couldn't find the last character. */
5043 return NULL;
5044
5045 /* No less than `infinity' means we could find the last
5046 character at `p[start - infinity]'. */
5047 start -= infinity;
5048
5049 /* Check the remaining characters. */
5050 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5051 /* Found. */
5052 return non_lisp_beg + start;
5053
5054 start += last_char_skip;
5055 }
5056 while (start <= start_max);
5057
5058 return NULL;
5059 }
5060
5061
5062 /* Return a string allocated in pure space. DATA is a buffer holding
5063 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5064 means make the result string multibyte.
5065
5066 Must get an error if pure storage is full, since if it cannot hold
5067 a large string it may be able to hold conses that point to that
5068 string; then the string is not protected from gc. */
5069
5070 Lisp_Object
5071 make_pure_string (const char *data,
5072 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5073 {
5074 Lisp_Object string;
5075 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5076 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5077 if (s->data == NULL)
5078 {
5079 s->data = pure_alloc (nbytes + 1, -1);
5080 memcpy (s->data, data, nbytes);
5081 s->data[nbytes] = '\0';
5082 }
5083 s->size = nchars;
5084 s->size_byte = multibyte ? nbytes : -1;
5085 s->intervals = NULL;
5086 XSETSTRING (string, s);
5087 return string;
5088 }
5089
5090 /* Return a string allocated in pure space. Do not
5091 allocate the string data, just point to DATA. */
5092
5093 Lisp_Object
5094 make_pure_c_string (const char *data, ptrdiff_t nchars)
5095 {
5096 Lisp_Object string;
5097 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5098 s->size = nchars;
5099 s->size_byte = -1;
5100 s->data = (unsigned char *) data;
5101 s->intervals = NULL;
5102 XSETSTRING (string, s);
5103 return string;
5104 }
5105
5106 /* Return a cons allocated from pure space. Give it pure copies
5107 of CAR as car and CDR as cdr. */
5108
5109 Lisp_Object
5110 pure_cons (Lisp_Object car, Lisp_Object cdr)
5111 {
5112 Lisp_Object new;
5113 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5114 XSETCONS (new, p);
5115 XSETCAR (new, Fpurecopy (car));
5116 XSETCDR (new, Fpurecopy (cdr));
5117 return new;
5118 }
5119
5120
5121 /* Value is a float object with value NUM allocated from pure space. */
5122
5123 static Lisp_Object
5124 make_pure_float (double num)
5125 {
5126 Lisp_Object new;
5127 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5128 XSETFLOAT (new, p);
5129 XFLOAT_INIT (new, num);
5130 return new;
5131 }
5132
5133
5134 /* Return a vector with room for LEN Lisp_Objects allocated from
5135 pure space. */
5136
5137 static Lisp_Object
5138 make_pure_vector (ptrdiff_t len)
5139 {
5140 Lisp_Object new;
5141 size_t size = header_size + len * word_size;
5142 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5143 XSETVECTOR (new, p);
5144 XVECTOR (new)->header.size = len;
5145 return new;
5146 }
5147
5148
5149 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5150 doc: /* Make a copy of object OBJ in pure storage.
5151 Recursively copies contents of vectors and cons cells.
5152 Does not copy symbols. Copies strings without text properties. */)
5153 (register Lisp_Object obj)
5154 {
5155 if (NILP (Vpurify_flag))
5156 return obj;
5157
5158 if (PURE_POINTER_P (XPNTR (obj)))
5159 return obj;
5160
5161 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5162 {
5163 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5164 if (!NILP (tmp))
5165 return tmp;
5166 }
5167
5168 if (CONSP (obj))
5169 obj = pure_cons (XCAR (obj), XCDR (obj));
5170 else if (FLOATP (obj))
5171 obj = make_pure_float (XFLOAT_DATA (obj));
5172 else if (STRINGP (obj))
5173 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5174 SBYTES (obj),
5175 STRING_MULTIBYTE (obj));
5176 else if (COMPILEDP (obj) || VECTORP (obj))
5177 {
5178 register struct Lisp_Vector *vec;
5179 register ptrdiff_t i;
5180 ptrdiff_t size;
5181
5182 size = ASIZE (obj);
5183 if (size & PSEUDOVECTOR_FLAG)
5184 size &= PSEUDOVECTOR_SIZE_MASK;
5185 vec = XVECTOR (make_pure_vector (size));
5186 for (i = 0; i < size; i++)
5187 vec->contents[i] = Fpurecopy (AREF (obj, i));
5188 if (COMPILEDP (obj))
5189 {
5190 XSETPVECTYPE (vec, PVEC_COMPILED);
5191 XSETCOMPILED (obj, vec);
5192 }
5193 else
5194 XSETVECTOR (obj, vec);
5195 }
5196 else if (MARKERP (obj))
5197 error ("Attempt to copy a marker to pure storage");
5198 else
5199 /* Not purified, don't hash-cons. */
5200 return obj;
5201
5202 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5203 Fputhash (obj, obj, Vpurify_flag);
5204
5205 return obj;
5206 }
5207
5208
5209 \f
5210 /***********************************************************************
5211 Protection from GC
5212 ***********************************************************************/
5213
5214 /* Put an entry in staticvec, pointing at the variable with address
5215 VARADDRESS. */
5216
5217 void
5218 staticpro (Lisp_Object *varaddress)
5219 {
5220 if (staticidx >= NSTATICS)
5221 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5222 staticvec[staticidx++] = varaddress;
5223 }
5224
5225 \f
5226 /***********************************************************************
5227 Protection from GC
5228 ***********************************************************************/
5229
5230 /* Temporarily prevent garbage collection. */
5231
5232 ptrdiff_t
5233 inhibit_garbage_collection (void)
5234 {
5235 ptrdiff_t count = SPECPDL_INDEX ();
5236
5237 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5238 return count;
5239 }
5240
5241 /* Used to avoid possible overflows when
5242 converting from C to Lisp integers. */
5243
5244 static Lisp_Object
5245 bounded_number (EMACS_INT number)
5246 {
5247 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5248 }
5249
5250 /* Calculate total bytes of live objects. */
5251
5252 static size_t
5253 total_bytes_of_live_objects (void)
5254 {
5255 size_t tot = 0;
5256 tot += total_conses * sizeof (struct Lisp_Cons);
5257 tot += total_symbols * sizeof (struct Lisp_Symbol);
5258 tot += total_markers * sizeof (union Lisp_Misc);
5259 tot += total_string_bytes;
5260 tot += total_vector_slots * word_size;
5261 tot += total_floats * sizeof (struct Lisp_Float);
5262 tot += total_intervals * sizeof (struct interval);
5263 tot += total_strings * sizeof (struct Lisp_String);
5264 return tot;
5265 }
5266
5267 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5268 doc: /* Reclaim storage for Lisp objects no longer needed.
5269 Garbage collection happens automatically if you cons more than
5270 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5271 `garbage-collect' normally returns a list with info on amount of space in use,
5272 where each entry has the form (NAME SIZE USED FREE), where:
5273 - NAME is a symbol describing the kind of objects this entry represents,
5274 - SIZE is the number of bytes used by each one,
5275 - USED is the number of those objects that were found live in the heap,
5276 - FREE is the number of those objects that are not live but that Emacs
5277 keeps around for future allocations (maybe because it does not know how
5278 to return them to the OS).
5279 However, if there was overflow in pure space, `garbage-collect'
5280 returns nil, because real GC can't be done.
5281 See Info node `(elisp)Garbage Collection'. */)
5282 (void)
5283 {
5284 struct buffer *nextb;
5285 char stack_top_variable;
5286 ptrdiff_t i;
5287 bool message_p;
5288 ptrdiff_t count = SPECPDL_INDEX ();
5289 struct timespec start;
5290 Lisp_Object retval = Qnil;
5291 size_t tot_before = 0;
5292
5293 if (abort_on_gc)
5294 emacs_abort ();
5295
5296 /* Can't GC if pure storage overflowed because we can't determine
5297 if something is a pure object or not. */
5298 if (pure_bytes_used_before_overflow)
5299 return Qnil;
5300
5301 /* Record this function, so it appears on the profiler's backtraces. */
5302 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5303
5304 check_cons_list ();
5305
5306 /* Don't keep undo information around forever.
5307 Do this early on, so it is no problem if the user quits. */
5308 FOR_EACH_BUFFER (nextb)
5309 compact_buffer (nextb);
5310
5311 if (profiler_memory_running)
5312 tot_before = total_bytes_of_live_objects ();
5313
5314 start = current_timespec ();
5315
5316 /* In case user calls debug_print during GC,
5317 don't let that cause a recursive GC. */
5318 consing_since_gc = 0;
5319
5320 /* Save what's currently displayed in the echo area. */
5321 message_p = push_message ();
5322 record_unwind_protect_void (pop_message_unwind);
5323
5324 /* Save a copy of the contents of the stack, for debugging. */
5325 #if MAX_SAVE_STACK > 0
5326 if (NILP (Vpurify_flag))
5327 {
5328 char *stack;
5329 ptrdiff_t stack_size;
5330 if (&stack_top_variable < stack_bottom)
5331 {
5332 stack = &stack_top_variable;
5333 stack_size = stack_bottom - &stack_top_variable;
5334 }
5335 else
5336 {
5337 stack = stack_bottom;
5338 stack_size = &stack_top_variable - stack_bottom;
5339 }
5340 if (stack_size <= MAX_SAVE_STACK)
5341 {
5342 if (stack_copy_size < stack_size)
5343 {
5344 stack_copy = xrealloc (stack_copy, stack_size);
5345 stack_copy_size = stack_size;
5346 }
5347 memcpy (stack_copy, stack, stack_size);
5348 }
5349 }
5350 #endif /* MAX_SAVE_STACK > 0 */
5351
5352 if (garbage_collection_messages)
5353 message1_nolog ("Garbage collecting...");
5354
5355 block_input ();
5356
5357 shrink_regexp_cache ();
5358
5359 gc_in_progress = 1;
5360
5361 /* Mark all the special slots that serve as the roots of accessibility. */
5362
5363 mark_buffer (&buffer_defaults);
5364 mark_buffer (&buffer_local_symbols);
5365
5366 for (i = 0; i < staticidx; i++)
5367 mark_object (*staticvec[i]);
5368
5369 mark_specpdl ();
5370 mark_terminals ();
5371 mark_kboards ();
5372
5373 #ifdef USE_GTK
5374 xg_mark_data ();
5375 #endif
5376
5377 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5378 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5379 mark_stack ();
5380 #else
5381 {
5382 register struct gcpro *tail;
5383 for (tail = gcprolist; tail; tail = tail->next)
5384 for (i = 0; i < tail->nvars; i++)
5385 mark_object (tail->var[i]);
5386 }
5387 mark_byte_stack ();
5388 {
5389 struct catchtag *catch;
5390 struct handler *handler;
5391
5392 for (catch = catchlist; catch; catch = catch->next)
5393 {
5394 mark_object (catch->tag);
5395 mark_object (catch->val);
5396 }
5397 for (handler = handlerlist; handler; handler = handler->next)
5398 {
5399 mark_object (handler->handler);
5400 mark_object (handler->var);
5401 }
5402 }
5403 #endif
5404
5405 #ifdef HAVE_WINDOW_SYSTEM
5406 mark_fringe_data ();
5407 #endif
5408
5409 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5410 mark_stack ();
5411 #endif
5412
5413 /* Everything is now marked, except for the things that require special
5414 finalization, i.e. the undo_list.
5415 Look thru every buffer's undo list
5416 for elements that update markers that were not marked,
5417 and delete them. */
5418 FOR_EACH_BUFFER (nextb)
5419 {
5420 /* If a buffer's undo list is Qt, that means that undo is
5421 turned off in that buffer. Calling truncate_undo_list on
5422 Qt tends to return NULL, which effectively turns undo back on.
5423 So don't call truncate_undo_list if undo_list is Qt. */
5424 if (! EQ (nextb->INTERNAL_FIELD (undo_list), Qt))
5425 {
5426 Lisp_Object tail, prev;
5427 tail = nextb->INTERNAL_FIELD (undo_list);
5428 prev = Qnil;
5429 while (CONSP (tail))
5430 {
5431 if (CONSP (XCAR (tail))
5432 && MARKERP (XCAR (XCAR (tail)))
5433 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5434 {
5435 if (NILP (prev))
5436 nextb->INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5437 else
5438 {
5439 tail = XCDR (tail);
5440 XSETCDR (prev, tail);
5441 }
5442 }
5443 else
5444 {
5445 prev = tail;
5446 tail = XCDR (tail);
5447 }
5448 }
5449 }
5450 /* Now that we have stripped the elements that need not be in the
5451 undo_list any more, we can finally mark the list. */
5452 mark_object (nextb->INTERNAL_FIELD (undo_list));
5453 }
5454
5455 gc_sweep ();
5456
5457 /* Clear the mark bits that we set in certain root slots. */
5458
5459 unmark_byte_stack ();
5460 VECTOR_UNMARK (&buffer_defaults);
5461 VECTOR_UNMARK (&buffer_local_symbols);
5462
5463 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5464 dump_zombies ();
5465 #endif
5466
5467 check_cons_list ();
5468
5469 gc_in_progress = 0;
5470
5471 unblock_input ();
5472
5473 consing_since_gc = 0;
5474 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5475 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5476
5477 gc_relative_threshold = 0;
5478 if (FLOATP (Vgc_cons_percentage))
5479 { /* Set gc_cons_combined_threshold. */
5480 double tot = total_bytes_of_live_objects ();
5481
5482 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5483 if (0 < tot)
5484 {
5485 if (tot < TYPE_MAXIMUM (EMACS_INT))
5486 gc_relative_threshold = tot;
5487 else
5488 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5489 }
5490 }
5491
5492 if (garbage_collection_messages)
5493 {
5494 if (message_p || minibuf_level > 0)
5495 restore_message ();
5496 else
5497 message1_nolog ("Garbage collecting...done");
5498 }
5499
5500 unbind_to (count, Qnil);
5501 {
5502 Lisp_Object total[11];
5503 int total_size = 10;
5504
5505 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5506 bounded_number (total_conses),
5507 bounded_number (total_free_conses));
5508
5509 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5510 bounded_number (total_symbols),
5511 bounded_number (total_free_symbols));
5512
5513 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5514 bounded_number (total_markers),
5515 bounded_number (total_free_markers));
5516
5517 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5518 bounded_number (total_strings),
5519 bounded_number (total_free_strings));
5520
5521 total[4] = list3 (Qstring_bytes, make_number (1),
5522 bounded_number (total_string_bytes));
5523
5524 total[5] = list3 (Qvectors,
5525 make_number (header_size + sizeof (Lisp_Object)),
5526 bounded_number (total_vectors));
5527
5528 total[6] = list4 (Qvector_slots, make_number (word_size),
5529 bounded_number (total_vector_slots),
5530 bounded_number (total_free_vector_slots));
5531
5532 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5533 bounded_number (total_floats),
5534 bounded_number (total_free_floats));
5535
5536 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5537 bounded_number (total_intervals),
5538 bounded_number (total_free_intervals));
5539
5540 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5541 bounded_number (total_buffers));
5542
5543 #ifdef DOUG_LEA_MALLOC
5544 total_size++;
5545 total[10] = list4 (Qheap, make_number (1024),
5546 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5547 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5548 #endif
5549 retval = Flist (total_size, total);
5550 }
5551
5552 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5553 {
5554 /* Compute average percentage of zombies. */
5555 double nlive
5556 = (total_conses + total_symbols + total_markers + total_strings
5557 + total_vectors + total_floats + total_intervals + total_buffers);
5558
5559 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5560 max_live = max (nlive, max_live);
5561 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5562 max_zombies = max (nzombies, max_zombies);
5563 ++ngcs;
5564 }
5565 #endif
5566
5567 if (!NILP (Vpost_gc_hook))
5568 {
5569 ptrdiff_t gc_count = inhibit_garbage_collection ();
5570 safe_run_hooks (Qpost_gc_hook);
5571 unbind_to (gc_count, Qnil);
5572 }
5573
5574 /* Accumulate statistics. */
5575 if (FLOATP (Vgc_elapsed))
5576 {
5577 struct timespec since_start = timespec_sub (current_timespec (), start);
5578 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5579 + timespectod (since_start));
5580 }
5581
5582 gcs_done++;
5583
5584 /* Collect profiling data. */
5585 if (profiler_memory_running)
5586 {
5587 size_t swept = 0;
5588 size_t tot_after = total_bytes_of_live_objects ();
5589 if (tot_before > tot_after)
5590 swept = tot_before - tot_after;
5591 malloc_probe (swept);
5592 }
5593
5594 return retval;
5595 }
5596
5597
5598 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5599 only interesting objects referenced from glyphs are strings. */
5600
5601 static void
5602 mark_glyph_matrix (struct glyph_matrix *matrix)
5603 {
5604 struct glyph_row *row = matrix->rows;
5605 struct glyph_row *end = row + matrix->nrows;
5606
5607 for (; row < end; ++row)
5608 if (row->enabled_p)
5609 {
5610 int area;
5611 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5612 {
5613 struct glyph *glyph = row->glyphs[area];
5614 struct glyph *end_glyph = glyph + row->used[area];
5615
5616 for (; glyph < end_glyph; ++glyph)
5617 if (STRINGP (glyph->object)
5618 && !STRING_MARKED_P (XSTRING (glyph->object)))
5619 mark_object (glyph->object);
5620 }
5621 }
5622 }
5623
5624
5625 /* Mark Lisp faces in the face cache C. */
5626
5627 static void
5628 mark_face_cache (struct face_cache *c)
5629 {
5630 if (c)
5631 {
5632 int i, j;
5633 for (i = 0; i < c->used; ++i)
5634 {
5635 struct face *face = FACE_FROM_ID (c->f, i);
5636
5637 if (face)
5638 {
5639 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5640 mark_object (face->lface[j]);
5641 }
5642 }
5643 }
5644 }
5645
5646
5647 \f
5648 /* Mark reference to a Lisp_Object.
5649 If the object referred to has not been seen yet, recursively mark
5650 all the references contained in it. */
5651
5652 #define LAST_MARKED_SIZE 500
5653 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5654 static int last_marked_index;
5655
5656 /* For debugging--call abort when we cdr down this many
5657 links of a list, in mark_object. In debugging,
5658 the call to abort will hit a breakpoint.
5659 Normally this is zero and the check never goes off. */
5660 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5661
5662 static void
5663 mark_vectorlike (struct Lisp_Vector *ptr)
5664 {
5665 ptrdiff_t size = ptr->header.size;
5666 ptrdiff_t i;
5667
5668 eassert (!VECTOR_MARKED_P (ptr));
5669 VECTOR_MARK (ptr); /* Else mark it. */
5670 if (size & PSEUDOVECTOR_FLAG)
5671 size &= PSEUDOVECTOR_SIZE_MASK;
5672
5673 /* Note that this size is not the memory-footprint size, but only
5674 the number of Lisp_Object fields that we should trace.
5675 The distinction is used e.g. by Lisp_Process which places extra
5676 non-Lisp_Object fields at the end of the structure... */
5677 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5678 mark_object (ptr->contents[i]);
5679 }
5680
5681 /* Like mark_vectorlike but optimized for char-tables (and
5682 sub-char-tables) assuming that the contents are mostly integers or
5683 symbols. */
5684
5685 static void
5686 mark_char_table (struct Lisp_Vector *ptr)
5687 {
5688 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5689 int i;
5690
5691 eassert (!VECTOR_MARKED_P (ptr));
5692 VECTOR_MARK (ptr);
5693 for (i = 0; i < size; i++)
5694 {
5695 Lisp_Object val = ptr->contents[i];
5696
5697 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5698 continue;
5699 if (SUB_CHAR_TABLE_P (val))
5700 {
5701 if (! VECTOR_MARKED_P (XVECTOR (val)))
5702 mark_char_table (XVECTOR (val));
5703 }
5704 else
5705 mark_object (val);
5706 }
5707 }
5708
5709 /* Mark the chain of overlays starting at PTR. */
5710
5711 static void
5712 mark_overlay (struct Lisp_Overlay *ptr)
5713 {
5714 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5715 {
5716 ptr->gcmarkbit = 1;
5717 mark_object (ptr->start);
5718 mark_object (ptr->end);
5719 mark_object (ptr->plist);
5720 }
5721 }
5722
5723 /* Mark Lisp_Objects and special pointers in BUFFER. */
5724
5725 static void
5726 mark_buffer (struct buffer *buffer)
5727 {
5728 /* This is handled much like other pseudovectors... */
5729 mark_vectorlike ((struct Lisp_Vector *) buffer);
5730
5731 /* ...but there are some buffer-specific things. */
5732
5733 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5734
5735 /* For now, we just don't mark the undo_list. It's done later in
5736 a special way just before the sweep phase, and after stripping
5737 some of its elements that are not needed any more. */
5738
5739 mark_overlay (buffer->overlays_before);
5740 mark_overlay (buffer->overlays_after);
5741
5742 /* If this is an indirect buffer, mark its base buffer. */
5743 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5744 mark_buffer (buffer->base_buffer);
5745 }
5746
5747 /* Remove killed buffers or items whose car is a killed buffer from
5748 LIST, and mark other items. Return changed LIST, which is marked. */
5749
5750 static Lisp_Object
5751 mark_discard_killed_buffers (Lisp_Object list)
5752 {
5753 Lisp_Object tail, *prev = &list;
5754
5755 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5756 tail = XCDR (tail))
5757 {
5758 Lisp_Object tem = XCAR (tail);
5759 if (CONSP (tem))
5760 tem = XCAR (tem);
5761 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5762 *prev = XCDR (tail);
5763 else
5764 {
5765 CONS_MARK (XCONS (tail));
5766 mark_object (XCAR (tail));
5767 prev = xcdr_addr (tail);
5768 }
5769 }
5770 mark_object (tail);
5771 return list;
5772 }
5773
5774 /* Determine type of generic Lisp_Object and mark it accordingly. */
5775
5776 void
5777 mark_object (Lisp_Object arg)
5778 {
5779 register Lisp_Object obj = arg;
5780 #ifdef GC_CHECK_MARKED_OBJECTS
5781 void *po;
5782 struct mem_node *m;
5783 #endif
5784 ptrdiff_t cdr_count = 0;
5785
5786 loop:
5787
5788 if (PURE_POINTER_P (XPNTR (obj)))
5789 return;
5790
5791 last_marked[last_marked_index++] = obj;
5792 if (last_marked_index == LAST_MARKED_SIZE)
5793 last_marked_index = 0;
5794
5795 /* Perform some sanity checks on the objects marked here. Abort if
5796 we encounter an object we know is bogus. This increases GC time
5797 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5798 #ifdef GC_CHECK_MARKED_OBJECTS
5799
5800 po = (void *) XPNTR (obj);
5801
5802 /* Check that the object pointed to by PO is known to be a Lisp
5803 structure allocated from the heap. */
5804 #define CHECK_ALLOCATED() \
5805 do { \
5806 m = mem_find (po); \
5807 if (m == MEM_NIL) \
5808 emacs_abort (); \
5809 } while (0)
5810
5811 /* Check that the object pointed to by PO is live, using predicate
5812 function LIVEP. */
5813 #define CHECK_LIVE(LIVEP) \
5814 do { \
5815 if (!LIVEP (m, po)) \
5816 emacs_abort (); \
5817 } while (0)
5818
5819 /* Check both of the above conditions. */
5820 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5821 do { \
5822 CHECK_ALLOCATED (); \
5823 CHECK_LIVE (LIVEP); \
5824 } while (0) \
5825
5826 #else /* not GC_CHECK_MARKED_OBJECTS */
5827
5828 #define CHECK_LIVE(LIVEP) (void) 0
5829 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5830
5831 #endif /* not GC_CHECK_MARKED_OBJECTS */
5832
5833 switch (XTYPE (obj))
5834 {
5835 case Lisp_String:
5836 {
5837 register struct Lisp_String *ptr = XSTRING (obj);
5838 if (STRING_MARKED_P (ptr))
5839 break;
5840 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5841 MARK_STRING (ptr);
5842 MARK_INTERVAL_TREE (ptr->intervals);
5843 #ifdef GC_CHECK_STRING_BYTES
5844 /* Check that the string size recorded in the string is the
5845 same as the one recorded in the sdata structure. */
5846 string_bytes (ptr);
5847 #endif /* GC_CHECK_STRING_BYTES */
5848 }
5849 break;
5850
5851 case Lisp_Vectorlike:
5852 {
5853 register struct Lisp_Vector *ptr = XVECTOR (obj);
5854 register ptrdiff_t pvectype;
5855
5856 if (VECTOR_MARKED_P (ptr))
5857 break;
5858
5859 #ifdef GC_CHECK_MARKED_OBJECTS
5860 m = mem_find (po);
5861 if (m == MEM_NIL && !SUBRP (obj))
5862 emacs_abort ();
5863 #endif /* GC_CHECK_MARKED_OBJECTS */
5864
5865 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5866 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5867 >> PSEUDOVECTOR_AREA_BITS);
5868 else
5869 pvectype = PVEC_NORMAL_VECTOR;
5870
5871 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5872 CHECK_LIVE (live_vector_p);
5873
5874 switch (pvectype)
5875 {
5876 case PVEC_BUFFER:
5877 #ifdef GC_CHECK_MARKED_OBJECTS
5878 {
5879 struct buffer *b;
5880 FOR_EACH_BUFFER (b)
5881 if (b == po)
5882 break;
5883 if (b == NULL)
5884 emacs_abort ();
5885 }
5886 #endif /* GC_CHECK_MARKED_OBJECTS */
5887 mark_buffer ((struct buffer *) ptr);
5888 break;
5889
5890 case PVEC_COMPILED:
5891 { /* We could treat this just like a vector, but it is better
5892 to save the COMPILED_CONSTANTS element for last and avoid
5893 recursion there. */
5894 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5895 int i;
5896
5897 VECTOR_MARK (ptr);
5898 for (i = 0; i < size; i++)
5899 if (i != COMPILED_CONSTANTS)
5900 mark_object (ptr->contents[i]);
5901 if (size > COMPILED_CONSTANTS)
5902 {
5903 obj = ptr->contents[COMPILED_CONSTANTS];
5904 goto loop;
5905 }
5906 }
5907 break;
5908
5909 case PVEC_FRAME:
5910 mark_vectorlike (ptr);
5911 mark_face_cache (((struct frame *) ptr)->face_cache);
5912 break;
5913
5914 case PVEC_WINDOW:
5915 {
5916 struct window *w = (struct window *) ptr;
5917
5918 mark_vectorlike (ptr);
5919
5920 /* Mark glyph matrices, if any. Marking window
5921 matrices is sufficient because frame matrices
5922 use the same glyph memory. */
5923 if (w->current_matrix)
5924 {
5925 mark_glyph_matrix (w->current_matrix);
5926 mark_glyph_matrix (w->desired_matrix);
5927 }
5928
5929 /* Filter out killed buffers from both buffer lists
5930 in attempt to help GC to reclaim killed buffers faster.
5931 We can do it elsewhere for live windows, but this is the
5932 best place to do it for dead windows. */
5933 wset_prev_buffers
5934 (w, mark_discard_killed_buffers (w->prev_buffers));
5935 wset_next_buffers
5936 (w, mark_discard_killed_buffers (w->next_buffers));
5937 }
5938 break;
5939
5940 case PVEC_HASH_TABLE:
5941 {
5942 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
5943
5944 mark_vectorlike (ptr);
5945 mark_object (h->test.name);
5946 mark_object (h->test.user_hash_function);
5947 mark_object (h->test.user_cmp_function);
5948 /* If hash table is not weak, mark all keys and values.
5949 For weak tables, mark only the vector. */
5950 if (NILP (h->weak))
5951 mark_object (h->key_and_value);
5952 else
5953 VECTOR_MARK (XVECTOR (h->key_and_value));
5954 }
5955 break;
5956
5957 case PVEC_CHAR_TABLE:
5958 mark_char_table (ptr);
5959 break;
5960
5961 case PVEC_BOOL_VECTOR:
5962 /* No Lisp_Objects to mark in a bool vector. */
5963 VECTOR_MARK (ptr);
5964 break;
5965
5966 case PVEC_SUBR:
5967 break;
5968
5969 case PVEC_FREE:
5970 emacs_abort ();
5971
5972 default:
5973 mark_vectorlike (ptr);
5974 }
5975 }
5976 break;
5977
5978 case Lisp_Symbol:
5979 {
5980 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5981 struct Lisp_Symbol *ptrx;
5982
5983 if (ptr->gcmarkbit)
5984 break;
5985 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5986 ptr->gcmarkbit = 1;
5987 mark_object (ptr->function);
5988 mark_object (ptr->plist);
5989 switch (ptr->redirect)
5990 {
5991 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5992 case SYMBOL_VARALIAS:
5993 {
5994 Lisp_Object tem;
5995 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5996 mark_object (tem);
5997 break;
5998 }
5999 case SYMBOL_LOCALIZED:
6000 {
6001 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6002 Lisp_Object where = blv->where;
6003 /* If the value is set up for a killed buffer or deleted
6004 frame, restore it's global binding. If the value is
6005 forwarded to a C variable, either it's not a Lisp_Object
6006 var, or it's staticpro'd already. */
6007 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6008 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6009 swap_in_global_binding (ptr);
6010 mark_object (blv->where);
6011 mark_object (blv->valcell);
6012 mark_object (blv->defcell);
6013 break;
6014 }
6015 case SYMBOL_FORWARDED:
6016 /* If the value is forwarded to a buffer or keyboard field,
6017 these are marked when we see the corresponding object.
6018 And if it's forwarded to a C variable, either it's not
6019 a Lisp_Object var, or it's staticpro'd already. */
6020 break;
6021 default: emacs_abort ();
6022 }
6023 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6024 MARK_STRING (XSTRING (ptr->name));
6025 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6026
6027 ptr = ptr->next;
6028 if (ptr)
6029 {
6030 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6031 XSETSYMBOL (obj, ptrx);
6032 goto loop;
6033 }
6034 }
6035 break;
6036
6037 case Lisp_Misc:
6038 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6039
6040 if (XMISCANY (obj)->gcmarkbit)
6041 break;
6042
6043 switch (XMISCTYPE (obj))
6044 {
6045 case Lisp_Misc_Marker:
6046 /* DO NOT mark thru the marker's chain.
6047 The buffer's markers chain does not preserve markers from gc;
6048 instead, markers are removed from the chain when freed by gc. */
6049 XMISCANY (obj)->gcmarkbit = 1;
6050 break;
6051
6052 case Lisp_Misc_Save_Value:
6053 XMISCANY (obj)->gcmarkbit = 1;
6054 {
6055 struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6056 /* If `save_type' is zero, `data[0].pointer' is the address
6057 of a memory area containing `data[1].integer' potential
6058 Lisp_Objects. */
6059 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6060 {
6061 Lisp_Object *p = ptr->data[0].pointer;
6062 ptrdiff_t nelt;
6063 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6064 mark_maybe_object (*p);
6065 }
6066 else
6067 {
6068 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6069 int i;
6070 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6071 if (save_type (ptr, i) == SAVE_OBJECT)
6072 mark_object (ptr->data[i].object);
6073 }
6074 }
6075 break;
6076
6077 case Lisp_Misc_Overlay:
6078 mark_overlay (XOVERLAY (obj));
6079 break;
6080
6081 default:
6082 emacs_abort ();
6083 }
6084 break;
6085
6086 case Lisp_Cons:
6087 {
6088 register struct Lisp_Cons *ptr = XCONS (obj);
6089 if (CONS_MARKED_P (ptr))
6090 break;
6091 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6092 CONS_MARK (ptr);
6093 /* If the cdr is nil, avoid recursion for the car. */
6094 if (EQ (ptr->u.cdr, Qnil))
6095 {
6096 obj = ptr->car;
6097 cdr_count = 0;
6098 goto loop;
6099 }
6100 mark_object (ptr->car);
6101 obj = ptr->u.cdr;
6102 cdr_count++;
6103 if (cdr_count == mark_object_loop_halt)
6104 emacs_abort ();
6105 goto loop;
6106 }
6107
6108 case Lisp_Float:
6109 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6110 FLOAT_MARK (XFLOAT (obj));
6111 break;
6112
6113 case_Lisp_Int:
6114 break;
6115
6116 default:
6117 emacs_abort ();
6118 }
6119
6120 #undef CHECK_LIVE
6121 #undef CHECK_ALLOCATED
6122 #undef CHECK_ALLOCATED_AND_LIVE
6123 }
6124 /* Mark the Lisp pointers in the terminal objects.
6125 Called by Fgarbage_collect. */
6126
6127 static void
6128 mark_terminals (void)
6129 {
6130 struct terminal *t;
6131 for (t = terminal_list; t; t = t->next_terminal)
6132 {
6133 eassert (t->name != NULL);
6134 #ifdef HAVE_WINDOW_SYSTEM
6135 /* If a terminal object is reachable from a stacpro'ed object,
6136 it might have been marked already. Make sure the image cache
6137 gets marked. */
6138 mark_image_cache (t->image_cache);
6139 #endif /* HAVE_WINDOW_SYSTEM */
6140 if (!VECTOR_MARKED_P (t))
6141 mark_vectorlike ((struct Lisp_Vector *)t);
6142 }
6143 }
6144
6145
6146
6147 /* Value is non-zero if OBJ will survive the current GC because it's
6148 either marked or does not need to be marked to survive. */
6149
6150 bool
6151 survives_gc_p (Lisp_Object obj)
6152 {
6153 bool survives_p;
6154
6155 switch (XTYPE (obj))
6156 {
6157 case_Lisp_Int:
6158 survives_p = 1;
6159 break;
6160
6161 case Lisp_Symbol:
6162 survives_p = XSYMBOL (obj)->gcmarkbit;
6163 break;
6164
6165 case Lisp_Misc:
6166 survives_p = XMISCANY (obj)->gcmarkbit;
6167 break;
6168
6169 case Lisp_String:
6170 survives_p = STRING_MARKED_P (XSTRING (obj));
6171 break;
6172
6173 case Lisp_Vectorlike:
6174 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6175 break;
6176
6177 case Lisp_Cons:
6178 survives_p = CONS_MARKED_P (XCONS (obj));
6179 break;
6180
6181 case Lisp_Float:
6182 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6183 break;
6184
6185 default:
6186 emacs_abort ();
6187 }
6188
6189 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6190 }
6191
6192
6193 \f
6194 /* Sweep: find all structures not marked, and free them. */
6195
6196 static void
6197 gc_sweep (void)
6198 {
6199 /* Remove or mark entries in weak hash tables.
6200 This must be done before any object is unmarked. */
6201 sweep_weak_hash_tables ();
6202
6203 sweep_strings ();
6204 check_string_bytes (!noninteractive);
6205
6206 /* Put all unmarked conses on free list */
6207 {
6208 register struct cons_block *cblk;
6209 struct cons_block **cprev = &cons_block;
6210 register int lim = cons_block_index;
6211 EMACS_INT num_free = 0, num_used = 0;
6212
6213 cons_free_list = 0;
6214
6215 for (cblk = cons_block; cblk; cblk = *cprev)
6216 {
6217 register int i = 0;
6218 int this_free = 0;
6219 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6220
6221 /* Scan the mark bits an int at a time. */
6222 for (i = 0; i < ilim; i++)
6223 {
6224 if (cblk->gcmarkbits[i] == -1)
6225 {
6226 /* Fast path - all cons cells for this int are marked. */
6227 cblk->gcmarkbits[i] = 0;
6228 num_used += BITS_PER_INT;
6229 }
6230 else
6231 {
6232 /* Some cons cells for this int are not marked.
6233 Find which ones, and free them. */
6234 int start, pos, stop;
6235
6236 start = i * BITS_PER_INT;
6237 stop = lim - start;
6238 if (stop > BITS_PER_INT)
6239 stop = BITS_PER_INT;
6240 stop += start;
6241
6242 for (pos = start; pos < stop; pos++)
6243 {
6244 if (!CONS_MARKED_P (&cblk->conses[pos]))
6245 {
6246 this_free++;
6247 cblk->conses[pos].u.chain = cons_free_list;
6248 cons_free_list = &cblk->conses[pos];
6249 #if GC_MARK_STACK
6250 cons_free_list->car = Vdead;
6251 #endif
6252 }
6253 else
6254 {
6255 num_used++;
6256 CONS_UNMARK (&cblk->conses[pos]);
6257 }
6258 }
6259 }
6260 }
6261
6262 lim = CONS_BLOCK_SIZE;
6263 /* If this block contains only free conses and we have already
6264 seen more than two blocks worth of free conses then deallocate
6265 this block. */
6266 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6267 {
6268 *cprev = cblk->next;
6269 /* Unhook from the free list. */
6270 cons_free_list = cblk->conses[0].u.chain;
6271 lisp_align_free (cblk);
6272 }
6273 else
6274 {
6275 num_free += this_free;
6276 cprev = &cblk->next;
6277 }
6278 }
6279 total_conses = num_used;
6280 total_free_conses = num_free;
6281 }
6282
6283 /* Put all unmarked floats on free list */
6284 {
6285 register struct float_block *fblk;
6286 struct float_block **fprev = &float_block;
6287 register int lim = float_block_index;
6288 EMACS_INT num_free = 0, num_used = 0;
6289
6290 float_free_list = 0;
6291
6292 for (fblk = float_block; fblk; fblk = *fprev)
6293 {
6294 register int i;
6295 int this_free = 0;
6296 for (i = 0; i < lim; i++)
6297 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6298 {
6299 this_free++;
6300 fblk->floats[i].u.chain = float_free_list;
6301 float_free_list = &fblk->floats[i];
6302 }
6303 else
6304 {
6305 num_used++;
6306 FLOAT_UNMARK (&fblk->floats[i]);
6307 }
6308 lim = FLOAT_BLOCK_SIZE;
6309 /* If this block contains only free floats and we have already
6310 seen more than two blocks worth of free floats then deallocate
6311 this block. */
6312 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6313 {
6314 *fprev = fblk->next;
6315 /* Unhook from the free list. */
6316 float_free_list = fblk->floats[0].u.chain;
6317 lisp_align_free (fblk);
6318 }
6319 else
6320 {
6321 num_free += this_free;
6322 fprev = &fblk->next;
6323 }
6324 }
6325 total_floats = num_used;
6326 total_free_floats = num_free;
6327 }
6328
6329 /* Put all unmarked intervals on free list */
6330 {
6331 register struct interval_block *iblk;
6332 struct interval_block **iprev = &interval_block;
6333 register int lim = interval_block_index;
6334 EMACS_INT num_free = 0, num_used = 0;
6335
6336 interval_free_list = 0;
6337
6338 for (iblk = interval_block; iblk; iblk = *iprev)
6339 {
6340 register int i;
6341 int this_free = 0;
6342
6343 for (i = 0; i < lim; i++)
6344 {
6345 if (!iblk->intervals[i].gcmarkbit)
6346 {
6347 set_interval_parent (&iblk->intervals[i], interval_free_list);
6348 interval_free_list = &iblk->intervals[i];
6349 this_free++;
6350 }
6351 else
6352 {
6353 num_used++;
6354 iblk->intervals[i].gcmarkbit = 0;
6355 }
6356 }
6357 lim = INTERVAL_BLOCK_SIZE;
6358 /* If this block contains only free intervals and we have already
6359 seen more than two blocks worth of free intervals then
6360 deallocate this block. */
6361 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6362 {
6363 *iprev = iblk->next;
6364 /* Unhook from the free list. */
6365 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6366 lisp_free (iblk);
6367 }
6368 else
6369 {
6370 num_free += this_free;
6371 iprev = &iblk->next;
6372 }
6373 }
6374 total_intervals = num_used;
6375 total_free_intervals = num_free;
6376 }
6377
6378 /* Put all unmarked symbols on free list */
6379 {
6380 register struct symbol_block *sblk;
6381 struct symbol_block **sprev = &symbol_block;
6382 register int lim = symbol_block_index;
6383 EMACS_INT num_free = 0, num_used = 0;
6384
6385 symbol_free_list = NULL;
6386
6387 for (sblk = symbol_block; sblk; sblk = *sprev)
6388 {
6389 int this_free = 0;
6390 union aligned_Lisp_Symbol *sym = sblk->symbols;
6391 union aligned_Lisp_Symbol *end = sym + lim;
6392
6393 for (; sym < end; ++sym)
6394 {
6395 /* Check if the symbol was created during loadup. In such a case
6396 it might be pointed to by pure bytecode which we don't trace,
6397 so we conservatively assume that it is live. */
6398 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6399
6400 if (!sym->s.gcmarkbit && !pure_p)
6401 {
6402 if (sym->s.redirect == SYMBOL_LOCALIZED)
6403 xfree (SYMBOL_BLV (&sym->s));
6404 sym->s.next = symbol_free_list;
6405 symbol_free_list = &sym->s;
6406 #if GC_MARK_STACK
6407 symbol_free_list->function = Vdead;
6408 #endif
6409 ++this_free;
6410 }
6411 else
6412 {
6413 ++num_used;
6414 if (!pure_p)
6415 UNMARK_STRING (XSTRING (sym->s.name));
6416 sym->s.gcmarkbit = 0;
6417 }
6418 }
6419
6420 lim = SYMBOL_BLOCK_SIZE;
6421 /* If this block contains only free symbols and we have already
6422 seen more than two blocks worth of free symbols then deallocate
6423 this block. */
6424 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6425 {
6426 *sprev = sblk->next;
6427 /* Unhook from the free list. */
6428 symbol_free_list = sblk->symbols[0].s.next;
6429 lisp_free (sblk);
6430 }
6431 else
6432 {
6433 num_free += this_free;
6434 sprev = &sblk->next;
6435 }
6436 }
6437 total_symbols = num_used;
6438 total_free_symbols = num_free;
6439 }
6440
6441 /* Put all unmarked misc's on free list.
6442 For a marker, first unchain it from the buffer it points into. */
6443 {
6444 register struct marker_block *mblk;
6445 struct marker_block **mprev = &marker_block;
6446 register int lim = marker_block_index;
6447 EMACS_INT num_free = 0, num_used = 0;
6448
6449 marker_free_list = 0;
6450
6451 for (mblk = marker_block; mblk; mblk = *mprev)
6452 {
6453 register int i;
6454 int this_free = 0;
6455
6456 for (i = 0; i < lim; i++)
6457 {
6458 if (!mblk->markers[i].m.u_any.gcmarkbit)
6459 {
6460 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6461 unchain_marker (&mblk->markers[i].m.u_marker);
6462 /* Set the type of the freed object to Lisp_Misc_Free.
6463 We could leave the type alone, since nobody checks it,
6464 but this might catch bugs faster. */
6465 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6466 mblk->markers[i].m.u_free.chain = marker_free_list;
6467 marker_free_list = &mblk->markers[i].m;
6468 this_free++;
6469 }
6470 else
6471 {
6472 num_used++;
6473 mblk->markers[i].m.u_any.gcmarkbit = 0;
6474 }
6475 }
6476 lim = MARKER_BLOCK_SIZE;
6477 /* If this block contains only free markers and we have already
6478 seen more than two blocks worth of free markers then deallocate
6479 this block. */
6480 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6481 {
6482 *mprev = mblk->next;
6483 /* Unhook from the free list. */
6484 marker_free_list = mblk->markers[0].m.u_free.chain;
6485 lisp_free (mblk);
6486 }
6487 else
6488 {
6489 num_free += this_free;
6490 mprev = &mblk->next;
6491 }
6492 }
6493
6494 total_markers = num_used;
6495 total_free_markers = num_free;
6496 }
6497
6498 /* Free all unmarked buffers */
6499 {
6500 register struct buffer *buffer, **bprev = &all_buffers;
6501
6502 total_buffers = 0;
6503 for (buffer = all_buffers; buffer; buffer = *bprev)
6504 if (!VECTOR_MARKED_P (buffer))
6505 {
6506 *bprev = buffer->next;
6507 lisp_free (buffer);
6508 }
6509 else
6510 {
6511 VECTOR_UNMARK (buffer);
6512 /* Do not use buffer_(set|get)_intervals here. */
6513 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6514 total_buffers++;
6515 bprev = &buffer->next;
6516 }
6517 }
6518
6519 sweep_vectors ();
6520 check_string_bytes (!noninteractive);
6521 }
6522
6523
6524
6525 \f
6526 /* Debugging aids. */
6527
6528 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6529 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6530 This may be helpful in debugging Emacs's memory usage.
6531 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6532 (void)
6533 {
6534 Lisp_Object end;
6535
6536 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6537
6538 return end;
6539 }
6540
6541 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6542 doc: /* Return a list of counters that measure how much consing there has been.
6543 Each of these counters increments for a certain kind of object.
6544 The counters wrap around from the largest positive integer to zero.
6545 Garbage collection does not decrease them.
6546 The elements of the value are as follows:
6547 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6548 All are in units of 1 = one object consed
6549 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6550 objects consed.
6551 MISCS include overlays, markers, and some internal types.
6552 Frames, windows, buffers, and subprocesses count as vectors
6553 (but the contents of a buffer's text do not count here). */)
6554 (void)
6555 {
6556 return listn (CONSTYPE_HEAP, 8,
6557 bounded_number (cons_cells_consed),
6558 bounded_number (floats_consed),
6559 bounded_number (vector_cells_consed),
6560 bounded_number (symbols_consed),
6561 bounded_number (string_chars_consed),
6562 bounded_number (misc_objects_consed),
6563 bounded_number (intervals_consed),
6564 bounded_number (strings_consed));
6565 }
6566
6567 /* Find at most FIND_MAX symbols which have OBJ as their value or
6568 function. This is used in gdbinit's `xwhichsymbols' command. */
6569
6570 Lisp_Object
6571 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6572 {
6573 struct symbol_block *sblk;
6574 ptrdiff_t gc_count = inhibit_garbage_collection ();
6575 Lisp_Object found = Qnil;
6576
6577 if (! DEADP (obj))
6578 {
6579 for (sblk = symbol_block; sblk; sblk = sblk->next)
6580 {
6581 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6582 int bn;
6583
6584 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6585 {
6586 struct Lisp_Symbol *sym = &aligned_sym->s;
6587 Lisp_Object val;
6588 Lisp_Object tem;
6589
6590 if (sblk == symbol_block && bn >= symbol_block_index)
6591 break;
6592
6593 XSETSYMBOL (tem, sym);
6594 val = find_symbol_value (tem);
6595 if (EQ (val, obj)
6596 || EQ (sym->function, obj)
6597 || (!NILP (sym->function)
6598 && COMPILEDP (sym->function)
6599 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6600 || (!NILP (val)
6601 && COMPILEDP (val)
6602 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6603 {
6604 found = Fcons (tem, found);
6605 if (--find_max == 0)
6606 goto out;
6607 }
6608 }
6609 }
6610 }
6611
6612 out:
6613 unbind_to (gc_count, Qnil);
6614 return found;
6615 }
6616
6617 #ifdef ENABLE_CHECKING
6618
6619 bool suppress_checking;
6620
6621 void
6622 die (const char *msg, const char *file, int line)
6623 {
6624 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
6625 file, line, msg);
6626 terminate_due_to_signal (SIGABRT, INT_MAX);
6627 }
6628 #endif
6629 \f
6630 /* Initialization. */
6631
6632 void
6633 init_alloc_once (void)
6634 {
6635 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6636 purebeg = PUREBEG;
6637 pure_size = PURESIZE;
6638
6639 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6640 mem_init ();
6641 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6642 #endif
6643
6644 #ifdef DOUG_LEA_MALLOC
6645 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6646 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6647 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
6648 #endif
6649 init_strings ();
6650 init_vectors ();
6651
6652 refill_memory_reserve ();
6653 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6654 }
6655
6656 void
6657 init_alloc (void)
6658 {
6659 gcprolist = 0;
6660 byte_stack_list = 0;
6661 #if GC_MARK_STACK
6662 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6663 setjmp_tested_p = longjmps_done = 0;
6664 #endif
6665 #endif
6666 Vgc_elapsed = make_float (0.0);
6667 gcs_done = 0;
6668
6669 #if USE_VALGRIND
6670 valgrind_p = RUNNING_ON_VALGRIND;
6671 #endif
6672 }
6673
6674 void
6675 syms_of_alloc (void)
6676 {
6677 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6678 doc: /* Number of bytes of consing between garbage collections.
6679 Garbage collection can happen automatically once this many bytes have been
6680 allocated since the last garbage collection. All data types count.
6681
6682 Garbage collection happens automatically only when `eval' is called.
6683
6684 By binding this temporarily to a large number, you can effectively
6685 prevent garbage collection during a part of the program.
6686 See also `gc-cons-percentage'. */);
6687
6688 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6689 doc: /* Portion of the heap used for allocation.
6690 Garbage collection can happen automatically once this portion of the heap
6691 has been allocated since the last garbage collection.
6692 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6693 Vgc_cons_percentage = make_float (0.1);
6694
6695 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6696 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6697
6698 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6699 doc: /* Number of cons cells that have been consed so far. */);
6700
6701 DEFVAR_INT ("floats-consed", floats_consed,
6702 doc: /* Number of floats that have been consed so far. */);
6703
6704 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6705 doc: /* Number of vector cells that have been consed so far. */);
6706
6707 DEFVAR_INT ("symbols-consed", symbols_consed,
6708 doc: /* Number of symbols that have been consed so far. */);
6709
6710 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6711 doc: /* Number of string characters that have been consed so far. */);
6712
6713 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6714 doc: /* Number of miscellaneous objects that have been consed so far.
6715 These include markers and overlays, plus certain objects not visible
6716 to users. */);
6717
6718 DEFVAR_INT ("intervals-consed", intervals_consed,
6719 doc: /* Number of intervals that have been consed so far. */);
6720
6721 DEFVAR_INT ("strings-consed", strings_consed,
6722 doc: /* Number of strings that have been consed so far. */);
6723
6724 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6725 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6726 This means that certain objects should be allocated in shared (pure) space.
6727 It can also be set to a hash-table, in which case this table is used to
6728 do hash-consing of the objects allocated to pure space. */);
6729
6730 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6731 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6732 garbage_collection_messages = 0;
6733
6734 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6735 doc: /* Hook run after garbage collection has finished. */);
6736 Vpost_gc_hook = Qnil;
6737 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6738
6739 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6740 doc: /* Precomputed `signal' argument for memory-full error. */);
6741 /* We build this in advance because if we wait until we need it, we might
6742 not be able to allocate the memory to hold it. */
6743 Vmemory_signal_data
6744 = listn (CONSTYPE_PURE, 2, Qerror,
6745 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6746
6747 DEFVAR_LISP ("memory-full", Vmemory_full,
6748 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6749 Vmemory_full = Qnil;
6750
6751 DEFSYM (Qconses, "conses");
6752 DEFSYM (Qsymbols, "symbols");
6753 DEFSYM (Qmiscs, "miscs");
6754 DEFSYM (Qstrings, "strings");
6755 DEFSYM (Qvectors, "vectors");
6756 DEFSYM (Qfloats, "floats");
6757 DEFSYM (Qintervals, "intervals");
6758 DEFSYM (Qbuffers, "buffers");
6759 DEFSYM (Qstring_bytes, "string-bytes");
6760 DEFSYM (Qvector_slots, "vector-slots");
6761 DEFSYM (Qheap, "heap");
6762 DEFSYM (Qautomatic_gc, "Automatic GC");
6763
6764 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6765 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6766
6767 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6768 doc: /* Accumulated time elapsed in garbage collections.
6769 The time is in seconds as a floating point value. */);
6770 DEFVAR_INT ("gcs-done", gcs_done,
6771 doc: /* Accumulated number of garbage collections done. */);
6772
6773 defsubr (&Scons);
6774 defsubr (&Slist);
6775 defsubr (&Svector);
6776 defsubr (&Smake_byte_code);
6777 defsubr (&Smake_list);
6778 defsubr (&Smake_vector);
6779 defsubr (&Smake_string);
6780 defsubr (&Smake_bool_vector);
6781 defsubr (&Smake_symbol);
6782 defsubr (&Smake_marker);
6783 defsubr (&Spurecopy);
6784 defsubr (&Sgarbage_collect);
6785 defsubr (&Smemory_limit);
6786 defsubr (&Smemory_use_counts);
6787
6788 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6789 defsubr (&Sgc_status);
6790 #endif
6791 }
6792
6793 /* When compiled with GCC, GDB might say "No enum type named
6794 pvec_type" if we don't have at least one symbol with that type, and
6795 then xbacktrace could fail. Similarly for the other enums and
6796 their values. Some non-GCC compilers don't like these constructs. */
6797 #ifdef __GNUC__
6798 union
6799 {
6800 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6801 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6802 enum char_bits char_bits;
6803 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6804 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6805 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6806 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6807 enum Lisp_Bits Lisp_Bits;
6808 enum Lisp_Compiled Lisp_Compiled;
6809 enum maxargs maxargs;
6810 enum MAX_ALLOCA MAX_ALLOCA;
6811 enum More_Lisp_Bits More_Lisp_Bits;
6812 enum pvec_type pvec_type;
6813 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6814 #endif /* __GNUC__ */