]> code.delx.au - gnu-emacs/blob - src/dispnew.c
(update_frame_1): Handle case that cursor vpos is
[gnu-emacs] / src / dispnew.c
1 /* Updating of data structures for redisplay.
2 Copyright (C) 1985, 86, 87, 88, 93, 94, 95, 97, 98, 1999
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23 #include <signal.h>
24 #include <stdio.h>
25 #include <ctype.h>
26
27 #ifdef HAVE_UNISTD_H
28 #include <unistd.h>
29 #endif
30
31 #include "lisp.h"
32 #include "termchar.h"
33 #include "termopts.h"
34 #include "termhooks.h"
35 /* cm.h must come after dispextern.h on Windows. */
36 #include "dispextern.h"
37 #include "cm.h"
38 #include "buffer.h"
39 #include "charset.h"
40 #include "frame.h"
41 #include "window.h"
42 #include "commands.h"
43 #include "disptab.h"
44 #include "indent.h"
45 #include "intervals.h"
46 #include "blockinput.h"
47 #include "process.h"
48 #include "keyboard.h"
49
50 /* I don't know why DEC Alpha OSF1 fail to compile this file if we
51 include the following file. */
52 /* #include "systty.h" */
53 #include "syssignal.h"
54
55 #ifdef HAVE_X_WINDOWS
56 #include "xterm.h"
57 #endif /* HAVE_X_WINDOWS */
58
59 #ifdef HAVE_NTGUI
60 #include "w32term.h"
61 #endif /* HAVE_NTGUI */
62
63 /* Include systime.h after xterm.h to avoid double inclusion of time.h. */
64
65 #include "systime.h"
66 #include <errno.h>
67
68 /* To get the prototype for `sleep'. */
69
70 #ifdef HAVE_UNISTD_H
71 #include <unistd.h>
72 #endif
73
74 #define max(a, b) ((a) > (b) ? (a) : (b))
75 #define min(a, b) ((a) < (b) ? (a) : (b))
76
77 /* Get number of chars of output now in the buffer of a stdio stream.
78 This ought to be built in in stdio, but it isn't. Some s- files
79 override this because their stdio internals differ. */
80
81 #ifdef __GNU_LIBRARY__
82
83 /* The s- file might have overridden the definition with one that
84 works for the system's C library. But we are using the GNU C
85 library, so this is the right definition for every system. */
86
87 #ifdef GNU_LIBRARY_PENDING_OUTPUT_COUNT
88 #define PENDING_OUTPUT_COUNT GNU_LIBRARY_PENDING_OUTPUT_COUNT
89 #else
90 #undef PENDING_OUTPUT_COUNT
91 #define PENDING_OUTPUT_COUNT(FILE) ((FILE)->__bufp - (FILE)->__buffer)
92 #endif
93 #else /* not __GNU_LIBRARY__ */
94 #if !defined (PENDING_OUTPUT_COUNT) && HAVE_STDIO_EXT_H && HAVE___FPENDING
95 #include <stdio_ext.h>
96 #define PENDING_OUTPUT_COUNT(FILE) __fpending (FILE)
97 #endif
98 #ifndef PENDING_OUTPUT_COUNT
99 #define PENDING_OUTPUT_COUNT(FILE) ((FILE)->_ptr - (FILE)->_base)
100 #endif
101 #endif /* not __GNU_LIBRARY__ */
102
103 #if defined (LINUX) && defined (HAVE_LIBNCURSES)
104 #include <term.h> /* for tgetent */
105 #endif
106 \f
107 /* Structure to pass dimensions around. Used for character bounding
108 boxes, glyph matrix dimensions and alike. */
109
110 struct dim
111 {
112 int width;
113 int height;
114 };
115
116 \f
117 /* Function prototypes. */
118
119 static void redraw_overlapping_rows P_ ((struct window *, int));
120 static void redraw_overlapped_rows P_ ((struct window *, int));
121 static int count_blanks P_ ((struct glyph *, int));
122 static int count_match P_ ((struct glyph *, struct glyph *,
123 struct glyph *, struct glyph *));
124 static unsigned line_draw_cost P_ ((struct glyph_matrix *, int));
125 static void update_frame_line P_ ((struct frame *, int));
126 static struct dim allocate_matrices_for_frame_redisplay
127 P_ ((Lisp_Object, int, int, struct dim, int, int *));
128 static void allocate_matrices_for_window_redisplay P_ ((struct window *,
129 struct dim));
130 static int realloc_glyph_pool P_ ((struct glyph_pool *, struct dim));
131 static void adjust_frame_glyphs P_ ((struct frame *));
132 struct glyph_matrix *new_glyph_matrix P_ ((struct glyph_pool *));
133 static void free_glyph_matrix P_ ((struct glyph_matrix *));
134 static void adjust_glyph_matrix P_ ((struct window *, struct glyph_matrix *,
135 int, int, struct dim));
136 static void change_frame_size_1 P_ ((struct frame *, int, int, int, int, int));
137 static void swap_glyph_pointers P_ ((struct glyph_row *, struct glyph_row *));
138 static int glyph_row_slice_p P_ ((struct glyph_row *, struct glyph_row *));
139 static void fill_up_frame_row_with_spaces P_ ((struct glyph_row *, int));
140 static void build_frame_matrix_from_window_tree P_ ((struct glyph_matrix *,
141 struct window *));
142 static void build_frame_matrix_from_leaf_window P_ ((struct glyph_matrix *,
143 struct window *));
144 static struct glyph_pool *new_glyph_pool P_ ((void));
145 static void free_glyph_pool P_ ((struct glyph_pool *));
146 static void adjust_frame_glyphs_initially P_ ((void));
147 static void adjust_frame_message_buffer P_ ((struct frame *));
148 static void adjust_decode_mode_spec_buffer P_ ((struct frame *));
149 static void fill_up_glyph_row_with_spaces P_ ((struct glyph_row *));
150 static void build_frame_matrix P_ ((struct frame *));
151 void clear_current_matrices P_ ((struct frame *));
152 void scroll_glyph_matrix_range P_ ((struct glyph_matrix *, int, int,
153 int, int));
154 static void clear_window_matrices P_ ((struct window *, int));
155 static void fill_up_glyph_row_area_with_spaces P_ ((struct glyph_row *, int));
156 static int scrolling_window P_ ((struct window *, int));
157 static int update_window_line P_ ((struct window *, int));
158 static void update_marginal_area P_ ((struct window *, int, int));
159 static int update_text_area P_ ((struct window *, int));
160 static void make_current P_ ((struct glyph_matrix *, struct glyph_matrix *,
161 int));
162 static void mirror_make_current P_ ((struct window *, int));
163 void check_window_matrix_pointers P_ ((struct window *));
164 #if GLYPH_DEBUG
165 static void check_matrix_pointers P_ ((struct glyph_matrix *,
166 struct glyph_matrix *));
167 #endif
168 static void mirror_line_dance P_ ((struct window *, int, int, int *, char *));
169 static int update_window_tree P_ ((struct window *, int));
170 static int update_window P_ ((struct window *, int));
171 static int update_frame_1 P_ ((struct frame *, int, int));
172 static void set_window_cursor_after_update P_ ((struct window *));
173 static int row_equal_p P_ ((struct window *, struct glyph_row *,
174 struct glyph_row *));
175 static void adjust_frame_glyphs_for_window_redisplay P_ ((struct frame *));
176 static void adjust_frame_glyphs_for_frame_redisplay P_ ((struct frame *));
177 static void reverse_rows P_ ((struct glyph_matrix *, int, int));
178 static int margin_glyphs_to_reserve P_ ((struct window *, int, Lisp_Object));
179 static void sync_window_with_frame_matrix_rows P_ ((struct window *));
180 struct window *frame_row_to_window P_ ((struct window *, int));
181
182
183 \f
184 /* Non-zero means don't pause redisplay for pending input. (This is
185 for debugging and for a future implementation of EDT-like
186 scrolling. */
187
188 int redisplay_dont_pause;
189
190 /* Nonzero upon entry to redisplay means do not assume anything about
191 current contents of actual terminal frame; clear and redraw it. */
192
193 int frame_garbaged;
194
195 /* Nonzero means last display completed. Zero means it was preempted. */
196
197 int display_completed;
198
199 /* Lisp variable visible-bell; enables use of screen-flash instead of
200 audible bell. */
201
202 int visible_bell;
203
204 /* Invert the color of the whole frame, at a low level. */
205
206 int inverse_video;
207
208 /* Line speed of the terminal. */
209
210 int baud_rate;
211
212 /* Either nil or a symbol naming the window system under which Emacs
213 is running. */
214
215 Lisp_Object Vwindow_system;
216
217 /* Version number of X windows: 10, 11 or nil. */
218
219 Lisp_Object Vwindow_system_version;
220
221 /* Vector of glyph definitions. Indexed by glyph number, the contents
222 are a string which is how to output the glyph.
223
224 If Vglyph_table is nil, a glyph is output by using its low 8 bits
225 as a character code.
226
227 This is an obsolete feature that is no longer used. The variable
228 is retained for compatibility. */
229
230 Lisp_Object Vglyph_table;
231
232 /* Display table to use for vectors that don't specify their own. */
233
234 Lisp_Object Vstandard_display_table;
235
236 /* Nonzero means reading single-character input with prompt so put
237 cursor on mini-buffer after the prompt. positive means at end of
238 text in echo area; negative means at beginning of line. */
239
240 int cursor_in_echo_area;
241
242 Lisp_Object Qdisplay_table;
243
244 \f
245 /* The currently selected frame. In a single-frame version, this
246 variable always equals the_only_frame. */
247
248 Lisp_Object selected_frame;
249
250 /* A frame which is not just a mini-buffer, or 0 if there are no such
251 frames. This is usually the most recent such frame that was
252 selected. In a single-frame version, this variable always holds
253 the address of the_only_frame. */
254
255 struct frame *last_nonminibuf_frame;
256
257 /* Stdio stream being used for copy of all output. */
258
259 FILE *termscript;
260
261 /* Structure for info on cursor positioning. */
262
263 struct cm Wcm;
264
265 /* 1 means SIGWINCH happened when not safe. */
266
267 int delayed_size_change;
268
269 /* 1 means glyph initialization has been completed at startup. */
270
271 static int glyphs_initialized_initially_p;
272
273 /* Updated window if != 0. Set by update_window. */
274
275 struct window *updated_window;
276
277 /* Glyph row updated in update_window_line, and area that is updated. */
278
279 struct glyph_row *updated_row;
280 int updated_area;
281
282 /* A glyph for a space. */
283
284 struct glyph space_glyph;
285
286 /* Non-zero means update has been performed directly, so that there's
287 no need for redisplay_internal to do much work. Set by
288 direct_output_for_insert. */
289
290 int redisplay_performed_directly_p;
291
292 /* Counts of allocated structures. These counts serve to diagnose
293 memory leaks and double frees. */
294
295 int glyph_matrix_count;
296 int glyph_pool_count;
297
298 /* If non-null, the frame whose frame matrices are manipulated. If
299 null, window matrices are worked on. */
300
301 static struct frame *frame_matrix_frame;
302
303 /* Current interface for window-based redisplay. Set from init_xterm.
304 A null value means we are not using window-based redisplay. */
305
306 struct redisplay_interface *rif;
307
308 /* Non-zero means that fonts have been loaded since the last glyph
309 matrix adjustments. Redisplay must stop, and glyph matrices must
310 be adjusted when this flag becomes non-zero during display. The
311 reason fonts can be loaded so late is that fonts of fontsets are
312 loaded on demand. */
313
314 int fonts_changed_p;
315
316 /* Convert vpos and hpos from frame to window and vice versa.
317 This may only be used for terminal frames. */
318
319 #if GLYPH_DEBUG
320
321 static int window_to_frame_vpos P_ ((struct window *, int));
322 static int window_to_frame_hpos P_ ((struct window *, int));
323 #define WINDOW_TO_FRAME_VPOS(W, VPOS) window_to_frame_vpos ((W), (VPOS))
324 #define WINDOW_TO_FRAME_HPOS(W, HPOS) window_to_frame_hpos ((W), (HPOS))
325
326 #else /* GLYPH_DEBUG == 0 */
327
328 #define WINDOW_TO_FRAME_VPOS(W, VPOS) ((VPOS) + XFASTINT ((W)->top))
329 #define WINDOW_TO_FRAME_HPOS(W, HPOS) ((HPOS) + XFASTINT ((W)->left))
330
331 #endif /* GLYPH_DEBUG == 0 */
332
333
334 /* Like bcopy except never gets confused by overlap. Let this be the
335 first function defined in this file, or change emacs.c where the
336 address of this function is used. */
337
338 void
339 safe_bcopy (from, to, size)
340 char *from, *to;
341 int size;
342 {
343 if (size <= 0 || from == to)
344 return;
345
346 /* If the source and destination don't overlap, then bcopy can
347 handle it. If they do overlap, but the destination is lower in
348 memory than the source, we'll assume bcopy can handle that. */
349 if (to < from || from + size <= to)
350 bcopy (from, to, size);
351
352 /* Otherwise, we'll copy from the end. */
353 else
354 {
355 register char *endf = from + size;
356 register char *endt = to + size;
357
358 /* If TO - FROM is large, then we should break the copy into
359 nonoverlapping chunks of TO - FROM bytes each. However, if
360 TO - FROM is small, then the bcopy function call overhead
361 makes this not worth it. The crossover point could be about
362 anywhere. Since I don't think the obvious copy loop is too
363 bad, I'm trying to err in its favor. */
364 if (to - from < 64)
365 {
366 do
367 *--endt = *--endf;
368 while (endf != from);
369 }
370 else
371 {
372 for (;;)
373 {
374 endt -= (to - from);
375 endf -= (to - from);
376
377 if (endt < to)
378 break;
379
380 bcopy (endf, endt, to - from);
381 }
382
383 /* If SIZE wasn't a multiple of TO - FROM, there will be a
384 little left over. The amount left over is (endt + (to -
385 from)) - to, which is endt - from. */
386 bcopy (from, to, endt - from);
387 }
388 }
389 }
390
391
392 \f
393 /***********************************************************************
394 Glyph Matrices
395 ***********************************************************************/
396
397 /* Allocate and return a glyph_matrix structure. POOL is the glyph
398 pool from which memory for the matrix should be allocated, or null
399 for window-based redisplay where no glyph pools are used. The
400 member `pool' of the glyph matrix structure returned is set to
401 POOL, the structure is otherwise zeroed. */
402
403 struct glyph_matrix *
404 new_glyph_matrix (pool)
405 struct glyph_pool *pool;
406 {
407 struct glyph_matrix *result;
408
409 /* Allocate and clear. */
410 result = (struct glyph_matrix *) xmalloc (sizeof *result);
411 bzero (result, sizeof *result);
412
413 /* Increment number of allocated matrices. This count is used
414 to detect memory leaks. */
415 ++glyph_matrix_count;
416
417 /* Set pool and return. */
418 result->pool = pool;
419 return result;
420 }
421
422
423 /* Free glyph matrix MATRIX. Passing in a null MATRIX is allowed.
424
425 The global counter glyph_matrix_count is decremented when a matrix
426 is freed. If the count gets negative, more structures were freed
427 than allocated, i.e. one matrix was freed more than once or a bogus
428 pointer was passed to this function.
429
430 If MATRIX->pool is null, this means that the matrix manages its own
431 glyph memory---this is done for matrices on X frames. Freeing the
432 matrix also frees the glyph memory in this case. */
433
434 static void
435 free_glyph_matrix (matrix)
436 struct glyph_matrix *matrix;
437 {
438 if (matrix)
439 {
440 int i;
441
442 /* Detect the case that more matrices are freed than were
443 allocated. */
444 if (--glyph_matrix_count < 0)
445 abort ();
446
447 /* Free glyph memory if MATRIX owns it. */
448 if (matrix->pool == NULL)
449 for (i = 0; i < matrix->rows_allocated; ++i)
450 xfree (matrix->rows[i].glyphs[LEFT_MARGIN_AREA]);
451
452 /* Free row structures and the matrix itself. */
453 xfree (matrix->rows);
454 xfree (matrix);
455 }
456 }
457
458
459 /* Return the number of glyphs to reserve for a marginal area of
460 window W. TOTAL_GLYPHS is the number of glyphs in a complete
461 display line of window W. MARGIN gives the width of the marginal
462 area in canonical character units. MARGIN should be an integer
463 or a float. */
464
465 static int
466 margin_glyphs_to_reserve (w, total_glyphs, margin)
467 struct window *w;
468 int total_glyphs;
469 Lisp_Object margin;
470 {
471 int n;
472
473 if (NUMBERP (margin))
474 {
475 int width = XFASTINT (w->width);
476 double d = max (0, XFLOATINT (margin));
477 d = min (width / 2 - 1, d);
478 n = (int) ((double) total_glyphs / width * d);
479 }
480 else
481 n = 0;
482
483 return n;
484 }
485
486
487 /* Adjust glyph matrix MATRIX on window W or on a frame to changed
488 window sizes.
489
490 W is null if the function is called for a frame glyph matrix.
491 Otherwise it is the window MATRIX is a member of. X and Y are the
492 indices of the first column and row of MATRIX within the frame
493 matrix, if such a matrix exists. They are zero for purely
494 window-based redisplay. DIM is the needed size of the matrix.
495
496 In window-based redisplay, where no frame matrices exist, glyph
497 matrices manage their own glyph storage. Otherwise, they allocate
498 storage from a common frame glyph pool which can be found in
499 MATRIX->pool.
500
501 The reason for this memory management strategy is to avoid complete
502 frame redraws if possible. When we allocate from a common pool, a
503 change of the location or size of a sub-matrix within the pool
504 requires a complete redisplay of the frame because we cannot easily
505 make sure that the current matrices of all windows still agree with
506 what is displayed on the screen. While this is usually fast, it
507 leads to screen flickering. */
508
509 static void
510 adjust_glyph_matrix (w, matrix, x, y, dim)
511 struct window *w;
512 struct glyph_matrix *matrix;
513 int x, y;
514 struct dim dim;
515 {
516 int i;
517 int new_rows;
518 int marginal_areas_changed_p = 0;
519 int header_line_changed_p = 0;
520 int header_line_p = 0;
521 int left = -1, right = -1;
522 int window_x, window_y, window_width, window_height;
523
524 /* See if W had a top line that has disappeared now, or vice versa. */
525 if (w)
526 {
527 header_line_p = WINDOW_WANTS_HEADER_LINE_P (w);
528 header_line_changed_p = header_line_p != matrix->header_line_p;
529 }
530 matrix->header_line_p = header_line_p;
531
532 /* Do nothing if MATRIX' size, position, vscroll, and marginal areas
533 haven't changed. This optimization is important because preserving
534 the matrix means preventing redisplay. */
535 if (matrix->pool == NULL)
536 {
537 window_box (w, -1, &window_x, &window_y, &window_width, &window_height);
538 left = margin_glyphs_to_reserve (w, dim.width, w->left_margin_width);
539 right = margin_glyphs_to_reserve (w, dim.width, w->right_margin_width);
540 xassert (left >= 0 && right >= 0);
541 marginal_areas_changed_p = (left != matrix->left_margin_glyphs
542 || right != matrix->right_margin_glyphs);
543
544 if (!marginal_areas_changed_p
545 && !fonts_changed_p
546 && !header_line_changed_p
547 && matrix->window_top_y == XFASTINT (w->top)
548 && matrix->window_height == window_height
549 && matrix->window_vscroll == w->vscroll
550 && matrix->window_width == window_width)
551 return;
552 }
553
554 /* Enlarge MATRIX->rows if necessary. New rows are cleared. */
555 if (matrix->rows_allocated < dim.height)
556 {
557 int size = dim.height * sizeof (struct glyph_row);
558 new_rows = dim.height - matrix->rows_allocated;
559 matrix->rows = (struct glyph_row *) xrealloc (matrix->rows, size);
560 bzero (matrix->rows + matrix->rows_allocated,
561 new_rows * sizeof *matrix->rows);
562 matrix->rows_allocated = dim.height;
563 }
564 else
565 new_rows = 0;
566
567 /* If POOL is not null, MATRIX is a frame matrix or a window matrix
568 on a frame not using window-based redisplay. Set up pointers for
569 each row into the glyph pool. */
570 if (matrix->pool)
571 {
572 xassert (matrix->pool->glyphs);
573
574 if (w)
575 {
576 left = margin_glyphs_to_reserve (w, dim.width,
577 w->left_margin_width);
578 right = margin_glyphs_to_reserve (w, dim.width,
579 w->right_margin_width);
580 }
581 else
582 left = right = 0;
583
584 for (i = 0; i < dim.height; ++i)
585 {
586 struct glyph_row *row = &matrix->rows[i];
587
588 row->glyphs[LEFT_MARGIN_AREA]
589 = (matrix->pool->glyphs
590 + (y + i) * matrix->pool->ncolumns
591 + x);
592
593 if (w == NULL
594 || row == matrix->rows + dim.height - 1
595 || (row == matrix->rows && matrix->header_line_p))
596 {
597 row->glyphs[TEXT_AREA]
598 = row->glyphs[LEFT_MARGIN_AREA];
599 row->glyphs[RIGHT_MARGIN_AREA]
600 = row->glyphs[TEXT_AREA] + dim.width;
601 row->glyphs[LAST_AREA]
602 = row->glyphs[RIGHT_MARGIN_AREA];
603 }
604 else
605 {
606 row->glyphs[TEXT_AREA]
607 = row->glyphs[LEFT_MARGIN_AREA] + left;
608 row->glyphs[RIGHT_MARGIN_AREA]
609 = row->glyphs[TEXT_AREA] + dim.width - left - right;
610 row->glyphs[LAST_AREA]
611 = row->glyphs[LEFT_MARGIN_AREA] + dim.width;
612 }
613 }
614
615 matrix->left_margin_glyphs = left;
616 matrix->right_margin_glyphs = right;
617 }
618 else
619 {
620 /* If MATRIX->pool is null, MATRIX is responsible for managing
621 its own memory. Allocate glyph memory from the heap. */
622 if (dim.width > matrix->matrix_w
623 || new_rows
624 || header_line_changed_p
625 || marginal_areas_changed_p)
626 {
627 struct glyph_row *row = matrix->rows;
628 struct glyph_row *end = row + matrix->rows_allocated;
629
630 while (row < end)
631 {
632 row->glyphs[LEFT_MARGIN_AREA]
633 = (struct glyph *) xrealloc (row->glyphs[LEFT_MARGIN_AREA],
634 (dim.width
635 * sizeof (struct glyph)));
636
637 /* The mode line never has marginal areas. */
638 if (row == matrix->rows + dim.height - 1
639 || (row == matrix->rows && matrix->header_line_p))
640 {
641 row->glyphs[TEXT_AREA]
642 = row->glyphs[LEFT_MARGIN_AREA];
643 row->glyphs[RIGHT_MARGIN_AREA]
644 = row->glyphs[TEXT_AREA] + dim.width;
645 row->glyphs[LAST_AREA]
646 = row->glyphs[RIGHT_MARGIN_AREA];
647 }
648 else
649 {
650 row->glyphs[TEXT_AREA]
651 = row->glyphs[LEFT_MARGIN_AREA] + left;
652 row->glyphs[RIGHT_MARGIN_AREA]
653 = row->glyphs[TEXT_AREA] + dim.width - left - right;
654 row->glyphs[LAST_AREA]
655 = row->glyphs[LEFT_MARGIN_AREA] + dim.width;
656 }
657 ++row;
658 }
659 }
660
661 xassert (left >= 0 && right >= 0);
662 matrix->left_margin_glyphs = left;
663 matrix->right_margin_glyphs = right;
664 }
665
666 /* Number of rows to be used by MATRIX. */
667 matrix->nrows = dim.height;
668
669 /* Mark rows in a current matrix of a window as not having valid
670 contents. It's important to not do this for desired matrices.
671 When Emacs starts, it may already be building desired matrices
672 when this function runs. */
673 if (w && matrix == w->current_matrix)
674 {
675 /* Optimize the case that only the height has changed (C-x 2,
676 upper window). Invalidate all rows that are no longer part
677 of the window. */
678 if (!marginal_areas_changed_p
679 && matrix->window_top_y == XFASTINT (w->top)
680 && matrix->window_width == window_width)
681 {
682 i = 0;
683 while (matrix->rows[i].enabled_p
684 && (MATRIX_ROW_BOTTOM_Y (matrix->rows + i)
685 < matrix->window_height))
686 ++i;
687
688 /* Window end is invalid, if inside of the rows that
689 are invalidated. */
690 if (INTEGERP (w->window_end_vpos)
691 && XFASTINT (w->window_end_vpos) >= i)
692 w->window_end_valid = Qnil;
693
694 while (i < matrix->nrows)
695 matrix->rows[i++].enabled_p = 0;
696 }
697 else
698 {
699 for (i = 0; i < matrix->nrows; ++i)
700 matrix->rows[i].enabled_p = 0;
701 }
702 }
703
704 /* Remember last values to be able to optimize frame redraws. */
705 matrix->matrix_x = x;
706 matrix->matrix_y = y;
707 matrix->matrix_w = dim.width;
708 matrix->matrix_h = dim.height;
709
710 /* Record the top y location and height of W at the time the matrix
711 was last adjusted. This is used to optimize redisplay above. */
712 if (w)
713 {
714 matrix->window_top_y = XFASTINT (w->top);
715 matrix->window_height = window_height;
716 matrix->window_width = window_width;
717 matrix->window_vscroll = w->vscroll;
718 }
719 }
720
721
722 /* Reverse the contents of rows in MATRIX between START and END. The
723 contents of the row at END - 1 end up at START, END - 2 at START +
724 1 etc. This is part of the implementation of rotate_matrix (see
725 below). */
726
727 static void
728 reverse_rows (matrix, start, end)
729 struct glyph_matrix *matrix;
730 int start, end;
731 {
732 int i, j;
733
734 for (i = start, j = end - 1; i < j; ++i, --j)
735 {
736 /* Non-ISO HP/UX compiler doesn't like auto struct
737 initialization. */
738 struct glyph_row temp;
739 temp = matrix->rows[i];
740 matrix->rows[i] = matrix->rows[j];
741 matrix->rows[j] = temp;
742 }
743 }
744
745
746 /* Rotate the contents of rows in MATRIX in the range FIRST .. LAST -
747 1 by BY positions. BY < 0 means rotate left, i.e. towards lower
748 indices. (Note: this does not copy glyphs, only glyph pointers in
749 row structures are moved around).
750
751 The algorithm used for rotating the vector was, I believe, first
752 described by Kernighan. See the vector R as consisting of two
753 sub-vectors AB, where A has length BY for BY >= 0. The result
754 after rotating is then BA. Reverse both sub-vectors to get ArBr
755 and reverse the result to get (ArBr)r which is BA. Similar for
756 rotating right. */
757
758 void
759 rotate_matrix (matrix, first, last, by)
760 struct glyph_matrix *matrix;
761 int first, last, by;
762 {
763 if (by < 0)
764 {
765 /* Up (rotate left, i.e. towards lower indices). */
766 by = -by;
767 reverse_rows (matrix, first, first + by);
768 reverse_rows (matrix, first + by, last);
769 reverse_rows (matrix, first, last);
770 }
771 else if (by > 0)
772 {
773 /* Down (rotate right, i.e. towards higher indices). */
774 reverse_rows (matrix, last - by, last);
775 reverse_rows (matrix, first, last - by);
776 reverse_rows (matrix, first, last);
777 }
778 }
779
780
781 /* Increment buffer positions in glyph rows of MATRIX. Do it for rows
782 with indices START <= index < END. Increment positions by DELTA/
783 DELTA_BYTES. */
784
785 void
786 increment_matrix_positions (matrix, start, end, delta, delta_bytes)
787 struct glyph_matrix *matrix;
788 int start, end, delta, delta_bytes;
789 {
790 /* Check that START and END are reasonable values. */
791 xassert (start >= 0 && start <= matrix->nrows);
792 xassert (end >= 0 && end <= matrix->nrows);
793 xassert (start <= end);
794
795 for (; start < end; ++start)
796 increment_row_positions (matrix->rows + start, delta, delta_bytes);
797 }
798
799
800 /* Enable a range of rows in glyph matrix MATRIX. START and END are
801 the row indices of the first and last + 1 row to enable. If
802 ENABLED_P is non-zero, enabled_p flags in rows will be set to 1. */
803
804 void
805 enable_glyph_matrix_rows (matrix, start, end, enabled_p)
806 struct glyph_matrix *matrix;
807 int start, end;
808 int enabled_p;
809 {
810 xassert (start <= end);
811 xassert (start >= 0 && start < matrix->nrows);
812 xassert (end >= 0 && end <= matrix->nrows);
813
814 for (; start < end; ++start)
815 matrix->rows[start].enabled_p = enabled_p != 0;
816 }
817
818
819 /* Clear MATRIX.
820
821 This empties all rows in MATRIX by setting the enabled_p flag for
822 all rows of the matrix to zero. The function prepare_desired_row
823 will eventually really clear a row when it sees one with a zero
824 enabled_p flag.
825
826 Resets update hints to defaults value. The only update hint
827 currently present is the flag MATRIX->no_scrolling_p. */
828
829 void
830 clear_glyph_matrix (matrix)
831 struct glyph_matrix *matrix;
832 {
833 if (matrix)
834 {
835 enable_glyph_matrix_rows (matrix, 0, matrix->nrows, 0);
836 matrix->no_scrolling_p = 0;
837 }
838 }
839
840
841 /* Shift part of the glyph matrix MATRIX of window W up or down.
842 Increment y-positions in glyph rows between START and END by DY,
843 and recompute their visible height. */
844
845 void
846 shift_glyph_matrix (w, matrix, start, end, dy)
847 struct window *w;
848 struct glyph_matrix *matrix;
849 int start, end, dy;
850 {
851 int min_y, max_y;
852
853 xassert (start <= end);
854 xassert (start >= 0 && start < matrix->nrows);
855 xassert (end >= 0 && end <= matrix->nrows);
856
857 min_y = WINDOW_DISPLAY_HEADER_LINE_HEIGHT (w);
858 max_y = WINDOW_DISPLAY_HEIGHT_NO_MODE_LINE (w);
859
860 for (; start < end; ++start)
861 {
862 struct glyph_row *row = &matrix->rows[start];
863
864 row->y += dy;
865
866 if (row->y < min_y)
867 row->visible_height = row->height - (min_y - row->y);
868 else if (row->y + row->height > max_y)
869 row->visible_height = row->height - (row->y + row->height - max_y);
870 else
871 row->visible_height = row->height;
872 }
873 }
874
875
876 /* Mark all rows in current matrices of frame F as invalid. Marking
877 invalid is done by setting enabled_p to zero for all rows in a
878 current matrix. */
879
880 void
881 clear_current_matrices (f)
882 register struct frame *f;
883 {
884 /* Clear frame current matrix, if we have one. */
885 if (f->current_matrix)
886 clear_glyph_matrix (f->current_matrix);
887
888 /* Clear the matrix of the menu bar window, if such a window exists.
889 The menu bar window is currently used to display menus on X when
890 no toolkit support is compiled in. */
891 if (WINDOWP (f->menu_bar_window))
892 clear_glyph_matrix (XWINDOW (f->menu_bar_window)->current_matrix);
893
894 /* Clear the matrix of the tool-bar window, if any. */
895 if (WINDOWP (f->tool_bar_window))
896 clear_glyph_matrix (XWINDOW (f->tool_bar_window)->current_matrix);
897
898 /* Clear current window matrices. */
899 xassert (WINDOWP (FRAME_ROOT_WINDOW (f)));
900 clear_window_matrices (XWINDOW (FRAME_ROOT_WINDOW (f)), 0);
901 }
902
903
904 /* Clear out all display lines of F for a coming redisplay. */
905
906 void
907 clear_desired_matrices (f)
908 register struct frame *f;
909 {
910 if (f->desired_matrix)
911 clear_glyph_matrix (f->desired_matrix);
912
913 if (WINDOWP (f->menu_bar_window))
914 clear_glyph_matrix (XWINDOW (f->menu_bar_window)->desired_matrix);
915
916 if (WINDOWP (f->tool_bar_window))
917 clear_glyph_matrix (XWINDOW (f->tool_bar_window)->desired_matrix);
918
919 /* Do it for window matrices. */
920 xassert (WINDOWP (FRAME_ROOT_WINDOW (f)));
921 clear_window_matrices (XWINDOW (FRAME_ROOT_WINDOW (f)), 1);
922 }
923
924
925 /* Clear matrices in window tree rooted in W. If DESIRED_P is
926 non-zero clear desired matrices, otherwise clear current matrices. */
927
928 static void
929 clear_window_matrices (w, desired_p)
930 struct window *w;
931 int desired_p;
932 {
933 while (w)
934 {
935 if (!NILP (w->hchild))
936 {
937 xassert (WINDOWP (w->hchild));
938 clear_window_matrices (XWINDOW (w->hchild), desired_p);
939 }
940 else if (!NILP (w->vchild))
941 {
942 xassert (WINDOWP (w->vchild));
943 clear_window_matrices (XWINDOW (w->vchild), desired_p);
944 }
945 else
946 {
947 if (desired_p)
948 clear_glyph_matrix (w->desired_matrix);
949 else
950 {
951 clear_glyph_matrix (w->current_matrix);
952 w->window_end_valid = Qnil;
953 }
954 }
955
956 w = NILP (w->next) ? 0 : XWINDOW (w->next);
957 }
958 }
959
960
961 \f
962 /***********************************************************************
963 Glyph Rows
964
965 See dispextern.h for an overall explanation of glyph rows.
966 ***********************************************************************/
967
968 /* Clear glyph row ROW. Do it in a way that makes it robust against
969 changes in the glyph_row structure, i.e. addition or removal of
970 structure members. */
971
972 void
973 clear_glyph_row (row)
974 struct glyph_row *row;
975 {
976 struct glyph *p[1 + LAST_AREA];
977 static struct glyph_row null_row;
978
979 /* Save pointers. */
980 p[LEFT_MARGIN_AREA] = row->glyphs[LEFT_MARGIN_AREA];
981 p[TEXT_AREA] = row->glyphs[TEXT_AREA];
982 p[RIGHT_MARGIN_AREA] = row->glyphs[RIGHT_MARGIN_AREA];
983 p[LAST_AREA] = row->glyphs[LAST_AREA];
984
985 /* Clear. */
986 *row = null_row;
987
988 /* Restore pointers. */
989 row->glyphs[LEFT_MARGIN_AREA] = p[LEFT_MARGIN_AREA];
990 row->glyphs[TEXT_AREA] = p[TEXT_AREA];
991 row->glyphs[RIGHT_MARGIN_AREA] = p[RIGHT_MARGIN_AREA];
992 row->glyphs[LAST_AREA] = p[LAST_AREA];
993 }
994
995
996 /* Make ROW an empty, enabled row of canonical character height,
997 in window W starting at y-position Y. */
998
999 void
1000 blank_row (w, row, y)
1001 struct window *w;
1002 struct glyph_row *row;
1003 int y;
1004 {
1005 int min_y, max_y;
1006
1007 min_y = WINDOW_DISPLAY_HEADER_LINE_HEIGHT (w);
1008 max_y = WINDOW_DISPLAY_HEIGHT_NO_MODE_LINE (w);
1009
1010 clear_glyph_row (row);
1011 row->y = y;
1012 row->ascent = row->phys_ascent = 0;
1013 row->height = row->phys_height = CANON_Y_UNIT (XFRAME (w->frame));
1014
1015 if (row->y < min_y)
1016 row->visible_height = row->height - (min_y - row->y);
1017 else if (row->y + row->height > max_y)
1018 row->visible_height = row->height - (row->y + row->height - max_y);
1019 else
1020 row->visible_height = row->height;
1021
1022 row->enabled_p = 1;
1023 }
1024
1025
1026 /* Increment buffer positions in glyph row ROW. DELTA and DELTA_BYTES
1027 are the amounts by which to change positions. Note that the first
1028 glyph of the text area of a row can have a buffer position even if
1029 the used count of the text area is zero. Such rows display line
1030 ends. */
1031
1032 void
1033 increment_row_positions (row, delta, delta_bytes)
1034 struct glyph_row *row;
1035 int delta, delta_bytes;
1036 {
1037 int area, i;
1038
1039 /* Increment start and end positions. */
1040 MATRIX_ROW_START_CHARPOS (row) += delta;
1041 MATRIX_ROW_START_BYTEPOS (row) += delta_bytes;
1042 MATRIX_ROW_END_CHARPOS (row) += delta;
1043 MATRIX_ROW_END_BYTEPOS (row) += delta_bytes;
1044
1045 /* Increment positions in glyphs. */
1046 for (area = 0; area < LAST_AREA; ++area)
1047 for (i = 0; i < row->used[area]; ++i)
1048 if (BUFFERP (row->glyphs[area][i].object)
1049 && row->glyphs[area][i].charpos > 0)
1050 row->glyphs[area][i].charpos += delta;
1051
1052 /* Capture the case of rows displaying a line end. */
1053 if (row->used[TEXT_AREA] == 0
1054 && MATRIX_ROW_DISPLAYS_TEXT_P (row))
1055 row->glyphs[TEXT_AREA]->charpos += delta;
1056 }
1057
1058
1059 #if 0
1060 /* Swap glyphs between two glyph rows A and B. This exchanges glyph
1061 contents, i.e. glyph structure contents are exchanged between A and
1062 B without changing glyph pointers in A and B. */
1063
1064 static void
1065 swap_glyphs_in_rows (a, b)
1066 struct glyph_row *a, *b;
1067 {
1068 int area;
1069
1070 for (area = 0; area < LAST_AREA; ++area)
1071 {
1072 /* Number of glyphs to swap. */
1073 int max_used = max (a->used[area], b->used[area]);
1074
1075 /* Start of glyphs in area of row A. */
1076 struct glyph *glyph_a = a->glyphs[area];
1077
1078 /* End + 1 of glyphs in area of row A. */
1079 struct glyph *glyph_a_end = a->glyphs[max_used];
1080
1081 /* Start of glyphs in area of row B. */
1082 struct glyph *glyph_b = b->glyphs[area];
1083
1084 while (glyph_a < glyph_a_end)
1085 {
1086 /* Non-ISO HP/UX compiler doesn't like auto struct
1087 initialization. */
1088 struct glyph temp;
1089 temp = *glyph_a;
1090 *glyph_a = *glyph_b;
1091 *glyph_b = temp;
1092 ++glyph_a;
1093 ++glyph_b;
1094 }
1095 }
1096 }
1097
1098 #endif /* 0 */
1099
1100 /* Exchange pointers to glyph memory between glyph rows A and B. */
1101
1102 static INLINE void
1103 swap_glyph_pointers (a, b)
1104 struct glyph_row *a, *b;
1105 {
1106 int i;
1107 for (i = 0; i < LAST_AREA + 1; ++i)
1108 {
1109 struct glyph *temp = a->glyphs[i];
1110 a->glyphs[i] = b->glyphs[i];
1111 b->glyphs[i] = temp;
1112 }
1113 }
1114
1115
1116 /* Copy glyph row structure FROM to glyph row structure TO, except
1117 that glyph pointers in the structures are left unchanged. */
1118
1119 INLINE void
1120 copy_row_except_pointers (to, from)
1121 struct glyph_row *to, *from;
1122 {
1123 struct glyph *pointers[1 + LAST_AREA];
1124
1125 /* Save glyph pointers of TO. */
1126 bcopy (to->glyphs, pointers, sizeof to->glyphs);
1127
1128 /* Do a structure assignment. */
1129 *to = *from;
1130
1131 /* Restore original pointers of TO. */
1132 bcopy (pointers, to->glyphs, sizeof to->glyphs);
1133 }
1134
1135
1136 /* Copy contents of glyph row FROM to glyph row TO. Glyph pointers in
1137 TO and FROM are left unchanged. Glyph contents are copied from the
1138 glyph memory of FROM to the glyph memory of TO. Increment buffer
1139 positions in row TO by DELTA/ DELTA_BYTES. */
1140
1141 void
1142 copy_glyph_row_contents (to, from, delta, delta_bytes)
1143 struct glyph_row *to, *from;
1144 int delta, delta_bytes;
1145 {
1146 int area;
1147
1148 /* This is like a structure assignment TO = FROM, except that
1149 glyph pointers in the rows are left unchanged. */
1150 copy_row_except_pointers (to, from);
1151
1152 /* Copy glyphs from FROM to TO. */
1153 for (area = 0; area < LAST_AREA; ++area)
1154 if (from->used[area])
1155 bcopy (from->glyphs[area], to->glyphs[area],
1156 from->used[area] * sizeof (struct glyph));
1157
1158 /* Increment buffer positions in TO by DELTA. */
1159 increment_row_positions (to, delta, delta_bytes);
1160 }
1161
1162
1163 /* Assign glyph row FROM to glyph row TO. This works like a structure
1164 assignment TO = FROM, except that glyph pointers are not copied but
1165 exchanged between TO and FROM. Pointers must be exchanged to avoid
1166 a memory leak. */
1167
1168 static INLINE void
1169 assign_row (to, from)
1170 struct glyph_row *to, *from;
1171 {
1172 swap_glyph_pointers (to, from);
1173 copy_row_except_pointers (to, from);
1174 }
1175
1176
1177 /* Test whether the glyph memory of the glyph row WINDOW_ROW, which is
1178 a row in a window matrix, is a slice of the glyph memory of the
1179 glyph row FRAME_ROW which is a row in a frame glyph matrix. Value
1180 is non-zero if the glyph memory of WINDOW_ROW is part of the glyph
1181 memory of FRAME_ROW. */
1182
1183 static int
1184 glyph_row_slice_p (window_row, frame_row)
1185 struct glyph_row *window_row, *frame_row;
1186 {
1187 struct glyph *window_glyph_start = window_row->glyphs[0];
1188 struct glyph *frame_glyph_start = frame_row->glyphs[0];
1189 struct glyph *frame_glyph_end = frame_row->glyphs[LAST_AREA];
1190
1191 return (frame_glyph_start <= window_glyph_start
1192 && window_glyph_start < frame_glyph_end);
1193 }
1194
1195
1196 #if 0
1197
1198 /* Find the row in the window glyph matrix WINDOW_MATRIX being a slice
1199 of ROW in the frame matrix FRAME_MATRIX. Value is null if no row
1200 in WINDOW_MATRIX is found satisfying the condition. */
1201
1202 static struct glyph_row *
1203 find_glyph_row_slice (window_matrix, frame_matrix, row)
1204 struct glyph_matrix *window_matrix, *frame_matrix;
1205 int row;
1206 {
1207 int i;
1208
1209 xassert (row >= 0 && row < frame_matrix->nrows);
1210
1211 for (i = 0; i < window_matrix->nrows; ++i)
1212 if (glyph_row_slice_p (window_matrix->rows + i,
1213 frame_matrix->rows + row))
1214 break;
1215
1216 return i < window_matrix->nrows ? window_matrix->rows + i : 0;
1217 }
1218
1219 #endif /* 0 */
1220
1221 /* Prepare ROW for display. Desired rows are cleared lazily,
1222 i.e. they are only marked as to be cleared by setting their
1223 enabled_p flag to zero. When a row is to be displayed, a prior
1224 call to this function really clears it. */
1225
1226 void
1227 prepare_desired_row (row)
1228 struct glyph_row *row;
1229 {
1230 if (!row->enabled_p)
1231 {
1232 clear_glyph_row (row);
1233 row->enabled_p = 1;
1234 }
1235 }
1236
1237
1238 /* Return a hash code for glyph row ROW. */
1239
1240 int
1241 line_hash_code (row)
1242 struct glyph_row *row;
1243 {
1244 int hash = 0;
1245
1246 if (row->enabled_p)
1247 {
1248 if (row->inverse_p)
1249 {
1250 /* Give all highlighted lines the same hash code
1251 so as to encourage scrolling to leave them in place. */
1252 hash = -1;
1253 }
1254 else
1255 {
1256 struct glyph *glyph = row->glyphs[TEXT_AREA];
1257 struct glyph *end = glyph + row->used[TEXT_AREA];
1258
1259 while (glyph < end)
1260 {
1261 int c = glyph->u.ch;
1262 int face_id = glyph->face_id;
1263 if (must_write_spaces)
1264 c -= SPACEGLYPH;
1265 hash = (((hash << 4) + (hash >> 24)) & 0x0fffffff) + c;
1266 hash = (((hash << 4) + (hash >> 24)) & 0x0fffffff) + face_id;
1267 ++glyph;
1268 }
1269
1270 if (hash == 0)
1271 hash = 1;
1272 }
1273 }
1274
1275 return hash;
1276 }
1277
1278
1279 /* Return the cost of drawing line VPOS In MATRIX. The cost equals
1280 the number of characters in the line. If must_write_spaces is
1281 zero, leading and trailing spaces are ignored. */
1282
1283 static unsigned int
1284 line_draw_cost (matrix, vpos)
1285 struct glyph_matrix *matrix;
1286 int vpos;
1287 {
1288 struct glyph_row *row = matrix->rows + vpos;
1289 struct glyph *beg = row->glyphs[TEXT_AREA];
1290 struct glyph *end = beg + row->used[TEXT_AREA];
1291 int len;
1292 Lisp_Object *glyph_table_base = GLYPH_TABLE_BASE;
1293 int glyph_table_len = GLYPH_TABLE_LENGTH;
1294
1295 /* Ignore trailing and leading spaces if we can. */
1296 if (!must_write_spaces)
1297 {
1298 /* Skip from the end over trailing spaces. */
1299 while (end != beg && CHAR_GLYPH_SPACE_P (*end))
1300 --end;
1301
1302 /* All blank line. */
1303 if (end == beg)
1304 return 0;
1305
1306 /* Skip over leading spaces. */
1307 while (CHAR_GLYPH_SPACE_P (*beg))
1308 ++beg;
1309 }
1310
1311 /* If we don't have a glyph-table, each glyph is one character,
1312 so return the number of glyphs. */
1313 if (glyph_table_base == 0)
1314 len = end - beg;
1315 else
1316 {
1317 /* Otherwise, scan the glyphs and accumulate their total length
1318 in LEN. */
1319 len = 0;
1320 while (beg < end)
1321 {
1322 GLYPH g = GLYPH_FROM_CHAR_GLYPH (*beg);
1323
1324 if (g < 0
1325 || GLYPH_SIMPLE_P (glyph_table_base, glyph_table_len, g))
1326 len += 1;
1327 else
1328 len += GLYPH_LENGTH (glyph_table_base, g);
1329
1330 ++beg;
1331 }
1332 }
1333
1334 return len;
1335 }
1336
1337
1338 /* Test two glyph rows A and B for equality. Value is non-zero if A
1339 and B have equal contents. W is the window to which the glyphs
1340 rows A and B belong. It is needed here to test for partial row
1341 visibility. */
1342
1343 static INLINE int
1344 row_equal_p (w, a, b)
1345 struct window *w;
1346 struct glyph_row *a, *b;
1347 {
1348 if (a == b)
1349 return 1;
1350 else if (a->hash != b->hash)
1351 return 0;
1352 else
1353 {
1354 struct glyph *a_glyph, *b_glyph, *a_end;
1355 int area;
1356
1357 /* Compare glyphs. */
1358 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
1359 {
1360 if (a->used[area] != b->used[area])
1361 return 0;
1362
1363 a_glyph = a->glyphs[area];
1364 a_end = a_glyph + a->used[area];
1365 b_glyph = b->glyphs[area];
1366
1367 while (a_glyph < a_end
1368 && GLYPH_EQUAL_P (a_glyph, b_glyph))
1369 ++a_glyph, ++b_glyph;
1370
1371 if (a_glyph != a_end)
1372 return 0;
1373 }
1374
1375 if (a->truncated_on_left_p != b->truncated_on_left_p
1376 || a->inverse_p != b->inverse_p
1377 || a->fill_line_p != b->fill_line_p
1378 || a->truncated_on_right_p != b->truncated_on_right_p
1379 || a->overlay_arrow_p != b->overlay_arrow_p
1380 || a->continued_p != b->continued_p
1381 || a->indicate_empty_line_p != b->indicate_empty_line_p
1382 || a->overlapped_p != b->overlapped_p
1383 || (MATRIX_ROW_CONTINUATION_LINE_P (a)
1384 != MATRIX_ROW_CONTINUATION_LINE_P (b))
1385 /* Different partially visible characters on left margin. */
1386 || a->x != b->x
1387 /* Different height. */
1388 || a->ascent != b->ascent
1389 || a->phys_ascent != b->phys_ascent
1390 || a->phys_height != b->phys_height
1391 || a->visible_height != b->visible_height)
1392 return 0;
1393 }
1394
1395 return 1;
1396 }
1397
1398
1399 \f
1400 /***********************************************************************
1401 Glyph Pool
1402
1403 See dispextern.h for an overall explanation of glyph pools.
1404 ***********************************************************************/
1405
1406 /* Allocate a glyph_pool structure. The structure returned is
1407 initialized with zeros. The global variable glyph_pool_count is
1408 incremented for each pool allocated. */
1409
1410 static struct glyph_pool *
1411 new_glyph_pool ()
1412 {
1413 struct glyph_pool *result;
1414
1415 /* Allocate a new glyph_pool and clear it. */
1416 result = (struct glyph_pool *) xmalloc (sizeof *result);
1417 bzero (result, sizeof *result);
1418
1419 /* For memory leak and double deletion checking. */
1420 ++glyph_pool_count;
1421
1422 return result;
1423 }
1424
1425
1426 /* Free a glyph_pool structure POOL. The function may be called with
1427 a null POOL pointer. The global variable glyph_pool_count is
1428 decremented with every pool structure freed. If this count gets
1429 negative, more structures were freed than allocated, i.e. one
1430 structure must have been freed more than once or a bogus pointer
1431 was passed to free_glyph_pool. */
1432
1433 static void
1434 free_glyph_pool (pool)
1435 struct glyph_pool *pool;
1436 {
1437 if (pool)
1438 {
1439 /* More freed than allocated? */
1440 --glyph_pool_count;
1441 xassert (glyph_pool_count >= 0);
1442
1443 xfree (pool->glyphs);
1444 xfree (pool);
1445 }
1446 }
1447
1448
1449 /* Enlarge a glyph pool POOL. MATRIX_DIM gives the number of rows and
1450 columns we need. This function never shrinks a pool. The only
1451 case in which this would make sense, would be when a frame's size
1452 is changed from a large value to a smaller one. But, if someone
1453 does it once, we can expect that he will do it again.
1454
1455 Value is non-zero if the pool changed in a way which makes
1456 re-adjusting window glyph matrices necessary. */
1457
1458 static int
1459 realloc_glyph_pool (pool, matrix_dim)
1460 struct glyph_pool *pool;
1461 struct dim matrix_dim;
1462 {
1463 int needed;
1464 int changed_p;
1465
1466 changed_p = (pool->glyphs == 0
1467 || matrix_dim.height != pool->nrows
1468 || matrix_dim.width != pool->ncolumns);
1469
1470 /* Enlarge the glyph pool. */
1471 needed = matrix_dim.width * matrix_dim.height;
1472 if (needed > pool->nglyphs)
1473 {
1474 int size = needed * sizeof (struct glyph);
1475
1476 if (pool->glyphs)
1477 pool->glyphs = (struct glyph *) xrealloc (pool->glyphs, size);
1478 else
1479 {
1480 pool->glyphs = (struct glyph *) xmalloc (size);
1481 bzero (pool->glyphs, size);
1482 }
1483
1484 pool->nglyphs = needed;
1485 }
1486
1487 /* Remember the number of rows and columns because (a) we use then
1488 to do sanity checks, and (b) the number of columns determines
1489 where rows in the frame matrix start---this must be available to
1490 determine pointers to rows of window sub-matrices. */
1491 pool->nrows = matrix_dim.height;
1492 pool->ncolumns = matrix_dim.width;
1493
1494 return changed_p;
1495 }
1496
1497
1498 \f
1499 /***********************************************************************
1500 Debug Code
1501 ***********************************************************************/
1502
1503 #if GLYPH_DEBUG
1504
1505
1506 /* Flush standard output. This is sometimes useful to call from
1507 the debugger. */
1508
1509 void
1510 flush_stdout ()
1511 {
1512 fflush (stdout);
1513 }
1514
1515
1516 /* Check that no glyph pointers have been lost in MATRIX. If a
1517 pointer has been lost, e.g. by using a structure assignment between
1518 rows, at least one pointer must occur more than once in the rows of
1519 MATRIX. */
1520
1521 void
1522 check_matrix_pointer_lossage (matrix)
1523 struct glyph_matrix *matrix;
1524 {
1525 int i, j;
1526
1527 for (i = 0; i < matrix->nrows; ++i)
1528 for (j = 0; j < matrix->nrows; ++j)
1529 xassert (i == j
1530 || (matrix->rows[i].glyphs[TEXT_AREA]
1531 != matrix->rows[j].glyphs[TEXT_AREA]));
1532 }
1533
1534
1535 /* Get a pointer to glyph row ROW in MATRIX, with bounds checks. */
1536
1537 struct glyph_row *
1538 matrix_row (matrix, row)
1539 struct glyph_matrix *matrix;
1540 int row;
1541 {
1542 xassert (matrix && matrix->rows);
1543 xassert (row >= 0 && row < matrix->nrows);
1544
1545 /* That's really too slow for normal testing because this function
1546 is called almost everywhere. Although---it's still astonishingly
1547 fast, so it is valuable to have for debugging purposes. */
1548 #if 0
1549 check_matrix_pointer_lossage (matrix);
1550 #endif
1551
1552 return matrix->rows + row;
1553 }
1554
1555
1556 #if 0 /* This function makes invalid assumptions when text is
1557 partially invisible. But it might come handy for debugging
1558 nevertheless. */
1559
1560 /* Check invariants that must hold for an up to date current matrix of
1561 window W. */
1562
1563 static void
1564 check_matrix_invariants (w)
1565 struct window *w;
1566 {
1567 struct glyph_matrix *matrix = w->current_matrix;
1568 int yb = window_text_bottom_y (w);
1569 struct glyph_row *row = matrix->rows;
1570 struct glyph_row *last_text_row = NULL;
1571 struct buffer *saved = current_buffer;
1572 struct buffer *buffer = XBUFFER (w->buffer);
1573 int c;
1574
1575 /* This can sometimes happen for a fresh window. */
1576 if (matrix->nrows < 2)
1577 return;
1578
1579 set_buffer_temp (buffer);
1580
1581 /* Note: last row is always reserved for the mode line. */
1582 while (MATRIX_ROW_DISPLAYS_TEXT_P (row)
1583 && MATRIX_ROW_BOTTOM_Y (row) < yb)
1584 {
1585 struct glyph_row *next = row + 1;
1586
1587 if (MATRIX_ROW_DISPLAYS_TEXT_P (row))
1588 last_text_row = row;
1589
1590 /* Check that character and byte positions are in sync. */
1591 xassert (MATRIX_ROW_START_BYTEPOS (row)
1592 == CHAR_TO_BYTE (MATRIX_ROW_START_CHARPOS (row)));
1593
1594 /* CHAR_TO_BYTE aborts when invoked for a position > Z. We can
1595 have such a position temporarily in case of a minibuffer
1596 displaying something like `[Sole completion]' at its end. */
1597 if (MATRIX_ROW_END_CHARPOS (row) < BUF_ZV (current_buffer))
1598 xassert (MATRIX_ROW_END_BYTEPOS (row)
1599 == CHAR_TO_BYTE (MATRIX_ROW_END_CHARPOS (row)));
1600
1601 /* Check that end position of `row' is equal to start position
1602 of next row. */
1603 if (next->enabled_p && MATRIX_ROW_DISPLAYS_TEXT_P (next))
1604 {
1605 xassert (MATRIX_ROW_END_CHARPOS (row)
1606 == MATRIX_ROW_START_CHARPOS (next));
1607 xassert (MATRIX_ROW_END_BYTEPOS (row)
1608 == MATRIX_ROW_START_BYTEPOS (next));
1609 }
1610 row = next;
1611 }
1612
1613 xassert (w->current_matrix->nrows == w->desired_matrix->nrows);
1614 xassert (w->desired_matrix->rows != NULL);
1615 set_buffer_temp (saved);
1616 }
1617
1618 #endif /* 0 */
1619
1620 #endif /* GLYPH_DEBUG != 0 */
1621
1622
1623 \f
1624 /**********************************************************************
1625 Allocating/ Adjusting Glyph Matrices
1626 **********************************************************************/
1627
1628 /* Allocate glyph matrices over a window tree for a frame-based
1629 redisplay
1630
1631 X and Y are column/row within the frame glyph matrix where
1632 sub-matrices for the window tree rooted at WINDOW must be
1633 allocated. CH_DIM contains the dimensions of the smallest
1634 character that could be used during display. DIM_ONLY_P non-zero
1635 means that the caller of this function is only interested in the
1636 result matrix dimension, and matrix adjustments should not be
1637 performed.
1638
1639 The function returns the total width/height of the sub-matrices of
1640 the window tree. If called on a frame root window, the computation
1641 will take the mini-buffer window into account.
1642
1643 *WINDOW_CHANGE_FLAGS is set to a bit mask with bits
1644
1645 NEW_LEAF_MATRIX set if any window in the tree did not have a
1646 glyph matrices yet, and
1647
1648 CHANGED_LEAF_MATRIX set if the dimension or location of a matrix of
1649 any window in the tree will be changed or have been changed (see
1650 DIM_ONLY_P).
1651
1652 *WINDOW_CHANGE_FLAGS must be initialized by the caller of this
1653 function.
1654
1655 Windows are arranged into chains of windows on the same level
1656 through the next fields of window structures. Such a level can be
1657 either a sequence of horizontally adjacent windows from left to
1658 right, or a sequence of vertically adjacent windows from top to
1659 bottom. Each window in a horizontal sequence can be either a leaf
1660 window or a vertical sequence; a window in a vertical sequence can
1661 be either a leaf or a horizontal sequence. All windows in a
1662 horizontal sequence have the same height, and all windows in a
1663 vertical sequence have the same width.
1664
1665 This function uses, for historical reasons, a more general
1666 algorithm to determine glyph matrix dimensions that would be
1667 necessary.
1668
1669 The matrix height of a horizontal sequence is determined by the
1670 maximum height of any matrix in the sequence. The matrix width of
1671 a horizontal sequence is computed by adding up matrix widths of
1672 windows in the sequence.
1673
1674 |<------- result width ------->|
1675 +---------+----------+---------+ ---
1676 | | | | |
1677 | | | |
1678 +---------+ | | result height
1679 | +---------+
1680 | | |
1681 +----------+ ---
1682
1683 The matrix width of a vertical sequence is the maximum matrix width
1684 of any window in the sequence. Its height is computed by adding up
1685 matrix heights of windows in the sequence.
1686
1687 |<---- result width -->|
1688 +---------+ ---
1689 | | |
1690 | | |
1691 +---------+--+ |
1692 | | |
1693 | | result height
1694 | |
1695 +------------+---------+ |
1696 | | |
1697 | | |
1698 +------------+---------+ --- */
1699
1700 /* Bit indicating that a new matrix will be allocated or has been
1701 allocated. */
1702
1703 #define NEW_LEAF_MATRIX (1 << 0)
1704
1705 /* Bit indicating that a matrix will or has changed its location or
1706 size. */
1707
1708 #define CHANGED_LEAF_MATRIX (1 << 1)
1709
1710 static struct dim
1711 allocate_matrices_for_frame_redisplay (window, x, y, ch_dim,
1712 dim_only_p, window_change_flags)
1713 Lisp_Object window;
1714 int x, y;
1715 struct dim ch_dim;
1716 int dim_only_p;
1717 int *window_change_flags;
1718 {
1719 struct frame *f = XFRAME (WINDOW_FRAME (XWINDOW (window)));
1720 int x0 = x, y0 = y;
1721 int wmax = 0, hmax = 0;
1722 struct dim total;
1723 struct dim dim;
1724 struct window *w;
1725 int in_horz_combination_p;
1726
1727 /* What combination is WINDOW part of? Compute this once since the
1728 result is the same for all windows in the `next' chain. The
1729 special case of a root window (parent equal to nil) is treated
1730 like a vertical combination because a root window's `next'
1731 points to the mini-buffer window, if any, which is arranged
1732 vertically below other windows. */
1733 in_horz_combination_p
1734 = (!NILP (XWINDOW (window)->parent)
1735 && !NILP (XWINDOW (XWINDOW (window)->parent)->hchild));
1736
1737 /* For WINDOW and all windows on the same level. */
1738 do
1739 {
1740 w = XWINDOW (window);
1741
1742 /* Get the dimension of the window sub-matrix for W, depending
1743 on whether this a combination or a leaf window. */
1744 if (!NILP (w->hchild))
1745 dim = allocate_matrices_for_frame_redisplay (w->hchild, x, y, ch_dim,
1746 dim_only_p,
1747 window_change_flags);
1748 else if (!NILP (w->vchild))
1749 dim = allocate_matrices_for_frame_redisplay (w->vchild, x, y, ch_dim,
1750 dim_only_p,
1751 window_change_flags);
1752 else
1753 {
1754 /* If not already done, allocate sub-matrix structures. */
1755 if (w->desired_matrix == NULL)
1756 {
1757 w->desired_matrix = new_glyph_matrix (f->desired_pool);
1758 w->current_matrix = new_glyph_matrix (f->current_pool);
1759 *window_change_flags |= NEW_LEAF_MATRIX;
1760 }
1761
1762 /* Width and height MUST be chosen so that there are no
1763 holes in the frame matrix. */
1764 dim.width = XINT (w->width);
1765 dim.height = XINT (w->height);
1766
1767 /* Will matrix be re-allocated? */
1768 if (x != w->desired_matrix->matrix_x
1769 || y != w->desired_matrix->matrix_y
1770 || dim.width != w->desired_matrix->matrix_w
1771 || dim.height != w->desired_matrix->matrix_h
1772 || (margin_glyphs_to_reserve (w, dim.width,
1773 w->right_margin_width)
1774 != w->desired_matrix->left_margin_glyphs)
1775 || (margin_glyphs_to_reserve (w, dim.width,
1776 w->left_margin_width)
1777 != w->desired_matrix->right_margin_glyphs))
1778 *window_change_flags |= CHANGED_LEAF_MATRIX;
1779
1780 /* Actually change matrices, if allowed. Do not consider
1781 CHANGED_LEAF_MATRIX computed above here because the pool
1782 may have been changed which we don't now here. We trust
1783 that we only will be called with DIM_ONLY_P != 0 when
1784 necessary. */
1785 if (!dim_only_p)
1786 {
1787 adjust_glyph_matrix (w, w->desired_matrix, x, y, dim);
1788 adjust_glyph_matrix (w, w->current_matrix, x, y, dim);
1789 }
1790 }
1791
1792 /* If we are part of a horizontal combination, advance x for
1793 windows to the right of W; otherwise advance y for windows
1794 below W. */
1795 if (in_horz_combination_p)
1796 x += dim.width;
1797 else
1798 y += dim.height;
1799
1800 /* Remember maximum glyph matrix dimensions. */
1801 wmax = max (wmax, dim.width);
1802 hmax = max (hmax, dim.height);
1803
1804 /* Next window on same level. */
1805 window = w->next;
1806 }
1807 while (!NILP (window));
1808
1809 /* Set `total' to the total glyph matrix dimension of this window
1810 level. In a vertical combination, the width is the width of the
1811 widest window; the height is the y we finally reached, corrected
1812 by the y we started with. In a horizontal combination, the total
1813 height is the height of the tallest window, and the width is the
1814 x we finally reached, corrected by the x we started with. */
1815 if (in_horz_combination_p)
1816 {
1817 total.width = x - x0;
1818 total.height = hmax;
1819 }
1820 else
1821 {
1822 total.width = wmax;
1823 total.height = y - y0;
1824 }
1825
1826 return total;
1827 }
1828
1829
1830 /* Allocate window matrices for window-based redisplay. W is the
1831 window whose matrices must be allocated/reallocated. CH_DIM is the
1832 size of the smallest character that could potentially be used on W. */
1833
1834 static void
1835 allocate_matrices_for_window_redisplay (w, ch_dim)
1836 struct window *w;
1837 struct dim ch_dim;
1838 {
1839 struct frame *f = XFRAME (w->frame);
1840
1841 while (w)
1842 {
1843 if (!NILP (w->vchild))
1844 allocate_matrices_for_window_redisplay (XWINDOW (w->vchild), ch_dim);
1845 else if (!NILP (w->hchild))
1846 allocate_matrices_for_window_redisplay (XWINDOW (w->hchild), ch_dim);
1847 else
1848 {
1849 /* W is a leaf window. */
1850 int window_pixel_width = XFLOATINT (w->width) * CANON_X_UNIT (f);
1851 int window_pixel_height = window_box_height (w) + abs (w->vscroll);
1852 struct dim dim;
1853
1854 /* If matrices are not yet allocated, allocate them now. */
1855 if (w->desired_matrix == NULL)
1856 {
1857 w->desired_matrix = new_glyph_matrix (NULL);
1858 w->current_matrix = new_glyph_matrix (NULL);
1859 }
1860
1861 /* Compute number of glyphs needed in a glyph row. */
1862 dim.width = (((window_pixel_width + ch_dim.width - 1)
1863 / ch_dim.width)
1864 /* 2 partially visible columns in the text area. */
1865 + 2
1866 /* One partially visible column at the right
1867 edge of each marginal area. */
1868 + 1 + 1);
1869
1870 /* Compute number of glyph rows needed. */
1871 dim.height = (((window_pixel_height + ch_dim.height - 1)
1872 / ch_dim.height)
1873 /* One partially visible line at the top and
1874 bottom of the window. */
1875 + 2
1876 /* 2 for top and mode line. */
1877 + 2);
1878
1879 /* Change matrices. */
1880 adjust_glyph_matrix (w, w->desired_matrix, 0, 0, dim);
1881 adjust_glyph_matrix (w, w->current_matrix, 0, 0, dim);
1882 }
1883
1884 w = NILP (w->next) ? NULL : XWINDOW (w->next);
1885 }
1886 }
1887
1888
1889 /* Re-allocate/ re-compute glyph matrices on frame F. If F is null,
1890 do it for all frames; otherwise do it just for the given frame.
1891 This function must be called when a new frame is created, its size
1892 changes, or its window configuration changes. */
1893
1894 void
1895 adjust_glyphs (f)
1896 struct frame *f;
1897 {
1898 /* Block input so that expose events and other events that access
1899 glyph matrices are not processed while we are changing them. */
1900 BLOCK_INPUT;
1901
1902 if (f)
1903 adjust_frame_glyphs (f);
1904 else
1905 {
1906 Lisp_Object tail, lisp_frame;
1907
1908 FOR_EACH_FRAME (tail, lisp_frame)
1909 adjust_frame_glyphs (XFRAME (lisp_frame));
1910 }
1911
1912 UNBLOCK_INPUT;
1913 }
1914
1915
1916 /* Adjust frame glyphs when Emacs is initialized.
1917
1918 To be called from init_display.
1919
1920 We need a glyph matrix because redraw will happen soon.
1921 Unfortunately, window sizes on selected_frame are not yet set to
1922 meaningful values. I believe we can assume that there are only two
1923 windows on the frame---the mini-buffer and the root window. Frame
1924 height and width seem to be correct so far. So, set the sizes of
1925 windows to estimated values. */
1926
1927 static void
1928 adjust_frame_glyphs_initially ()
1929 {
1930 struct frame *sf = SELECTED_FRAME ();
1931 struct window *root = XWINDOW (sf->root_window);
1932 struct window *mini = XWINDOW (root->next);
1933 int frame_height = FRAME_HEIGHT (sf);
1934 int frame_width = FRAME_WIDTH (sf);
1935 int top_margin = FRAME_TOP_MARGIN (sf);
1936
1937 /* Do it for the root window. */
1938 XSETFASTINT (root->top, top_margin);
1939 XSETFASTINT (root->width, frame_width);
1940 set_window_height (sf->root_window, frame_height - 1 - top_margin, 0);
1941
1942 /* Do it for the mini-buffer window. */
1943 XSETFASTINT (mini->top, frame_height - 1);
1944 XSETFASTINT (mini->width, frame_width);
1945 set_window_height (root->next, 1, 0);
1946
1947 adjust_frame_glyphs (sf);
1948 glyphs_initialized_initially_p = 1;
1949 }
1950
1951
1952 /* Allocate/reallocate glyph matrices of a single frame F. */
1953
1954 static void
1955 adjust_frame_glyphs (f)
1956 struct frame *f;
1957 {
1958 if (FRAME_WINDOW_P (f))
1959 adjust_frame_glyphs_for_window_redisplay (f);
1960 else
1961 adjust_frame_glyphs_for_frame_redisplay (f);
1962
1963 /* Don't forget the message buffer and the buffer for
1964 decode_mode_spec. */
1965 adjust_frame_message_buffer (f);
1966 adjust_decode_mode_spec_buffer (f);
1967
1968 f->glyphs_initialized_p = 1;
1969 }
1970
1971
1972 /* Allocate/reallocate glyph matrices of a single frame F for
1973 frame-based redisplay. */
1974
1975 static void
1976 adjust_frame_glyphs_for_frame_redisplay (f)
1977 struct frame *f;
1978 {
1979 struct dim ch_dim;
1980 struct dim matrix_dim;
1981 int pool_changed_p;
1982 int window_change_flags;
1983 int top_window_y;
1984
1985 if (!FRAME_LIVE_P (f))
1986 return;
1987
1988 /* Determine the smallest character in any font for F. On
1989 console windows, all characters have dimension (1, 1). */
1990 ch_dim.width = ch_dim.height = 1;
1991
1992 top_window_y = FRAME_TOP_MARGIN (f);
1993
1994 /* Allocate glyph pool structures if not already done. */
1995 if (f->desired_pool == NULL)
1996 {
1997 f->desired_pool = new_glyph_pool ();
1998 f->current_pool = new_glyph_pool ();
1999 }
2000
2001 /* Allocate frames matrix structures if needed. */
2002 if (f->desired_matrix == NULL)
2003 {
2004 f->desired_matrix = new_glyph_matrix (f->desired_pool);
2005 f->current_matrix = new_glyph_matrix (f->current_pool);
2006 }
2007
2008 /* Compute window glyph matrices. (This takes the mini-buffer
2009 window into account). The result is the size of the frame glyph
2010 matrix needed. The variable window_change_flags is set to a bit
2011 mask indicating whether new matrices will be allocated or
2012 existing matrices change their size or location within the frame
2013 matrix. */
2014 window_change_flags = 0;
2015 matrix_dim
2016 = allocate_matrices_for_frame_redisplay (FRAME_ROOT_WINDOW (f),
2017 0, top_window_y,
2018 ch_dim, 1,
2019 &window_change_flags);
2020
2021 /* Add in menu bar lines, if any. */
2022 matrix_dim.height += top_window_y;
2023
2024 /* Enlarge pools as necessary. */
2025 pool_changed_p = realloc_glyph_pool (f->desired_pool, matrix_dim);
2026 realloc_glyph_pool (f->current_pool, matrix_dim);
2027
2028 /* Set up glyph pointers within window matrices. Do this only if
2029 absolutely necessary since it requires a frame redraw. */
2030 if (pool_changed_p || window_change_flags)
2031 {
2032 /* Do it for window matrices. */
2033 allocate_matrices_for_frame_redisplay (FRAME_ROOT_WINDOW (f),
2034 0, top_window_y, ch_dim, 0,
2035 &window_change_flags);
2036
2037 /* Size of frame matrices must equal size of frame. Note
2038 that we are called for X frames with window widths NOT equal
2039 to the frame width (from CHANGE_FRAME_SIZE_1). */
2040 xassert (matrix_dim.width == FRAME_WIDTH (f)
2041 && matrix_dim.height == FRAME_HEIGHT (f));
2042
2043 /* Resize frame matrices. */
2044 adjust_glyph_matrix (NULL, f->desired_matrix, 0, 0, matrix_dim);
2045 adjust_glyph_matrix (NULL, f->current_matrix, 0, 0, matrix_dim);
2046
2047 /* Since location and size of sub-matrices within the pool may
2048 have changed, and current matrices don't have meaningful
2049 contents anymore, mark the frame garbaged. */
2050 SET_FRAME_GARBAGED (f);
2051 }
2052 }
2053
2054
2055 /* Allocate/reallocate glyph matrices of a single frame F for
2056 window-based redisplay. */
2057
2058 static void
2059 adjust_frame_glyphs_for_window_redisplay (f)
2060 struct frame *f;
2061 {
2062 struct dim ch_dim;
2063 struct window *w;
2064
2065 xassert (FRAME_WINDOW_P (f) && FRAME_LIVE_P (f));
2066
2067 /* Get minimum sizes. */
2068 #ifdef HAVE_WINDOW_SYSTEM
2069 ch_dim.width = FRAME_SMALLEST_CHAR_WIDTH (f);
2070 ch_dim.height = FRAME_SMALLEST_FONT_HEIGHT (f);
2071 #else
2072 ch_dim.width = ch_dim.height = 1;
2073 #endif
2074
2075 /* Allocate/reallocate window matrices. */
2076 allocate_matrices_for_window_redisplay (XWINDOW (FRAME_ROOT_WINDOW (f)),
2077 ch_dim);
2078
2079 /* Allocate/ reallocate matrices of the dummy window used to display
2080 the menu bar under X when no X toolkit support is available. */
2081 #ifndef USE_X_TOOLKIT
2082 {
2083 /* Allocate a dummy window if not already done. */
2084 if (NILP (f->menu_bar_window))
2085 {
2086 f->menu_bar_window = make_window ();
2087 w = XWINDOW (f->menu_bar_window);
2088 XSETFRAME (w->frame, f);
2089 w->pseudo_window_p = 1;
2090 }
2091 else
2092 w = XWINDOW (f->menu_bar_window);
2093
2094 /* Set window dimensions to frame dimensions and allocate or
2095 adjust glyph matrices of W. */
2096 XSETFASTINT (w->top, 0);
2097 XSETFASTINT (w->left, 0);
2098 XSETFASTINT (w->height, FRAME_MENU_BAR_LINES (f));
2099 XSETFASTINT (w->width, FRAME_WINDOW_WIDTH (f));
2100 allocate_matrices_for_window_redisplay (w, ch_dim);
2101 }
2102 #endif /* not USE_X_TOOLKIT */
2103
2104 /* Allocate/ reallocate matrices of the tool bar window. If we
2105 don't have a tool bar window yet, make one. */
2106 if (NILP (f->tool_bar_window))
2107 {
2108 f->tool_bar_window = make_window ();
2109 w = XWINDOW (f->tool_bar_window);
2110 XSETFRAME (w->frame, f);
2111 w->pseudo_window_p = 1;
2112 }
2113 else
2114 w = XWINDOW (f->tool_bar_window);
2115
2116 XSETFASTINT (w->top, FRAME_MENU_BAR_LINES (f));
2117 XSETFASTINT (w->left, 0);
2118 XSETFASTINT (w->height, FRAME_TOOL_BAR_LINES (f));
2119 XSETFASTINT (w->width, FRAME_WINDOW_WIDTH (f));
2120 allocate_matrices_for_window_redisplay (w, ch_dim);
2121 }
2122
2123
2124 /* Adjust/ allocate message buffer of frame F.
2125
2126 Note that the message buffer is never freed. Since I could not
2127 find a free in 19.34, I assume that freeing it would be
2128 problematic in some way and don't do it either.
2129
2130 (Implementation note: It should be checked if we can free it
2131 eventually without causing trouble). */
2132
2133 static void
2134 adjust_frame_message_buffer (f)
2135 struct frame *f;
2136 {
2137 int size = FRAME_MESSAGE_BUF_SIZE (f) + 1;
2138
2139 if (FRAME_MESSAGE_BUF (f))
2140 {
2141 char *buffer = FRAME_MESSAGE_BUF (f);
2142 char *new_buffer = (char *) xrealloc (buffer, size);
2143 FRAME_MESSAGE_BUF (f) = new_buffer;
2144 }
2145 else
2146 FRAME_MESSAGE_BUF (f) = (char *) xmalloc (size);
2147 }
2148
2149
2150 /* Re-allocate buffer for decode_mode_spec on frame F. */
2151
2152 static void
2153 adjust_decode_mode_spec_buffer (f)
2154 struct frame *f;
2155 {
2156 f->decode_mode_spec_buffer
2157 = (char *) xrealloc (f->decode_mode_spec_buffer,
2158 FRAME_MESSAGE_BUF_SIZE (f) + 1);
2159 }
2160
2161
2162 \f
2163 /**********************************************************************
2164 Freeing Glyph Matrices
2165 **********************************************************************/
2166
2167 /* Free glyph memory for a frame F. F may be null. This function can
2168 be called for the same frame more than once. The root window of
2169 F may be nil when this function is called. This is the case when
2170 the function is called when F is destroyed. */
2171
2172 void
2173 free_glyphs (f)
2174 struct frame *f;
2175 {
2176 if (f && f->glyphs_initialized_p)
2177 {
2178 /* Block interrupt input so that we don't get surprised by an X
2179 event while we're in an inconsistent state. */
2180 BLOCK_INPUT;
2181 f->glyphs_initialized_p = 0;
2182
2183 /* Release window sub-matrices. */
2184 if (!NILP (f->root_window))
2185 free_window_matrices (XWINDOW (f->root_window));
2186
2187 /* Free the dummy window for menu bars without X toolkit and its
2188 glyph matrices. */
2189 if (!NILP (f->menu_bar_window))
2190 {
2191 struct window *w = XWINDOW (f->menu_bar_window);
2192 free_glyph_matrix (w->desired_matrix);
2193 free_glyph_matrix (w->current_matrix);
2194 w->desired_matrix = w->current_matrix = NULL;
2195 f->menu_bar_window = Qnil;
2196 }
2197
2198 /* Free the tool bar window and its glyph matrices. */
2199 if (!NILP (f->tool_bar_window))
2200 {
2201 struct window *w = XWINDOW (f->tool_bar_window);
2202 free_glyph_matrix (w->desired_matrix);
2203 free_glyph_matrix (w->current_matrix);
2204 w->desired_matrix = w->current_matrix = NULL;
2205 f->tool_bar_window = Qnil;
2206 }
2207
2208 /* Release frame glyph matrices. Reset fields to zero in
2209 case we are called a second time. */
2210 if (f->desired_matrix)
2211 {
2212 free_glyph_matrix (f->desired_matrix);
2213 free_glyph_matrix (f->current_matrix);
2214 f->desired_matrix = f->current_matrix = NULL;
2215 }
2216
2217 /* Release glyph pools. */
2218 if (f->desired_pool)
2219 {
2220 free_glyph_pool (f->desired_pool);
2221 free_glyph_pool (f->current_pool);
2222 f->desired_pool = f->current_pool = NULL;
2223 }
2224
2225 UNBLOCK_INPUT;
2226 }
2227 }
2228
2229
2230 /* Free glyph sub-matrices in the window tree rooted at W. This
2231 function may be called with a null pointer, and it may be called on
2232 the same tree more than once. */
2233
2234 void
2235 free_window_matrices (w)
2236 struct window *w;
2237 {
2238 while (w)
2239 {
2240 if (!NILP (w->hchild))
2241 free_window_matrices (XWINDOW (w->hchild));
2242 else if (!NILP (w->vchild))
2243 free_window_matrices (XWINDOW (w->vchild));
2244 else
2245 {
2246 /* This is a leaf window. Free its memory and reset fields
2247 to zero in case this function is called a second time for
2248 W. */
2249 free_glyph_matrix (w->current_matrix);
2250 free_glyph_matrix (w->desired_matrix);
2251 w->current_matrix = w->desired_matrix = NULL;
2252 }
2253
2254 /* Next window on same level. */
2255 w = NILP (w->next) ? 0 : XWINDOW (w->next);
2256 }
2257 }
2258
2259
2260 /* Check glyph memory leaks. This function is called from
2261 shut_down_emacs. Note that frames are not destroyed when Emacs
2262 exits. We therefore free all glyph memory for all active frames
2263 explicitly and check that nothing is left allocated. */
2264
2265 void
2266 check_glyph_memory ()
2267 {
2268 Lisp_Object tail, frame;
2269
2270 /* Free glyph memory for all frames. */
2271 FOR_EACH_FRAME (tail, frame)
2272 free_glyphs (XFRAME (frame));
2273
2274 /* Check that nothing is left allocated. */
2275 if (glyph_matrix_count)
2276 abort ();
2277 if (glyph_pool_count)
2278 abort ();
2279 }
2280
2281
2282 \f
2283 /**********************************************************************
2284 Building a Frame Matrix
2285 **********************************************************************/
2286
2287 /* Most of the redisplay code works on glyph matrices attached to
2288 windows. This is a good solution most of the time, but it is not
2289 suitable for terminal code. Terminal output functions cannot rely
2290 on being able to set an arbitrary terminal window. Instead they
2291 must be provided with a view of the whole frame, i.e. the whole
2292 screen. We build such a view by constructing a frame matrix from
2293 window matrices in this section.
2294
2295 Windows that must be updated have their must_be_update_p flag set.
2296 For all such windows, their desired matrix is made part of the
2297 desired frame matrix. For other windows, their current matrix is
2298 made part of the desired frame matrix.
2299
2300 +-----------------+----------------+
2301 | desired | desired |
2302 | | |
2303 +-----------------+----------------+
2304 | current |
2305 | |
2306 +----------------------------------+
2307
2308 Desired window matrices can be made part of the frame matrix in a
2309 cheap way: We exploit the fact that the desired frame matrix and
2310 desired window matrices share their glyph memory. This is not
2311 possible for current window matrices. Their glyphs are copied to
2312 the desired frame matrix. The latter is equivalent to
2313 preserve_other_columns in the old redisplay.
2314
2315 Used glyphs counters for frame matrix rows are the result of adding
2316 up glyph lengths of the window matrices. A line in the frame
2317 matrix is enabled, if a corresponding line in a window matrix is
2318 enabled.
2319
2320 After building the desired frame matrix, it will be passed to
2321 terminal code, which will manipulate both the desired and current
2322 frame matrix. Changes applied to the frame's current matrix have
2323 to be visible in current window matrices afterwards, of course.
2324
2325 This problem is solved like this:
2326
2327 1. Window and frame matrices share glyphs. Window matrices are
2328 constructed in a way that their glyph contents ARE the glyph
2329 contents needed in a frame matrix. Thus, any modification of
2330 glyphs done in terminal code will be reflected in window matrices
2331 automatically.
2332
2333 2. Exchanges of rows in a frame matrix done by terminal code are
2334 intercepted by hook functions so that corresponding row operations
2335 on window matrices can be performed. This is necessary because we
2336 use pointers to glyphs in glyph row structures. To satisfy the
2337 assumption of point 1 above that glyphs are updated implicitly in
2338 window matrices when they are manipulated via the frame matrix,
2339 window and frame matrix must of course agree where to find the
2340 glyphs for their rows. Possible manipulations that must be
2341 mirrored are assignments of rows of the desired frame matrix to the
2342 current frame matrix and scrolling the current frame matrix. */
2343
2344 /* Build frame F's desired matrix from window matrices. Only windows
2345 which have the flag must_be_updated_p set have to be updated. Menu
2346 bar lines of a frame are not covered by window matrices, so make
2347 sure not to touch them in this function. */
2348
2349 static void
2350 build_frame_matrix (f)
2351 struct frame *f;
2352 {
2353 int i;
2354
2355 /* F must have a frame matrix when this function is called. */
2356 xassert (!FRAME_WINDOW_P (f));
2357
2358 /* Clear all rows in the frame matrix covered by window matrices.
2359 Menu bar lines are not covered by windows. */
2360 for (i = FRAME_TOP_MARGIN (f); i < f->desired_matrix->nrows; ++i)
2361 clear_glyph_row (MATRIX_ROW (f->desired_matrix, i));
2362
2363 /* Build the matrix by walking the window tree. */
2364 build_frame_matrix_from_window_tree (f->desired_matrix,
2365 XWINDOW (FRAME_ROOT_WINDOW (f)));
2366 }
2367
2368
2369 /* Walk a window tree, building a frame matrix MATRIX from window
2370 matrices. W is the root of a window tree. */
2371
2372 static void
2373 build_frame_matrix_from_window_tree (matrix, w)
2374 struct glyph_matrix *matrix;
2375 struct window *w;
2376 {
2377 while (w)
2378 {
2379 if (!NILP (w->hchild))
2380 build_frame_matrix_from_window_tree (matrix, XWINDOW (w->hchild));
2381 else if (!NILP (w->vchild))
2382 build_frame_matrix_from_window_tree (matrix, XWINDOW (w->vchild));
2383 else
2384 build_frame_matrix_from_leaf_window (matrix, w);
2385
2386 w = NILP (w->next) ? 0 : XWINDOW (w->next);
2387 }
2388 }
2389
2390
2391 /* Add a window's matrix to a frame matrix. FRAME_MATRIX is the
2392 desired frame matrix built. W is a leaf window whose desired or
2393 current matrix is to be added to FRAME_MATRIX. W's flag
2394 must_be_updated_p determines which matrix it contributes to
2395 FRAME_MATRIX. If must_be_updated_p is non-zero, W's desired matrix
2396 is added to FRAME_MATRIX, otherwise W's current matrix is added.
2397 Adding a desired matrix means setting up used counters and such in
2398 frame rows, while adding a current window matrix to FRAME_MATRIX
2399 means copying glyphs. The latter case corresponds to
2400 preserve_other_columns in the old redisplay. */
2401
2402 static void
2403 build_frame_matrix_from_leaf_window (frame_matrix, w)
2404 struct glyph_matrix *frame_matrix;
2405 struct window *w;
2406 {
2407 struct glyph_matrix *window_matrix;
2408 int window_y, frame_y;
2409 /* If non-zero, a glyph to insert at the right border of W. */
2410 GLYPH right_border_glyph = 0;
2411
2412 /* Set window_matrix to the matrix we have to add to FRAME_MATRIX. */
2413 if (w->must_be_updated_p)
2414 {
2415 window_matrix = w->desired_matrix;
2416
2417 /* Decide whether we want to add a vertical border glyph. */
2418 if (!WINDOW_RIGHTMOST_P (w))
2419 {
2420 struct Lisp_Char_Table *dp = window_display_table (w);
2421 right_border_glyph = (dp && INTEGERP (DISP_BORDER_GLYPH (dp))
2422 ? XINT (DISP_BORDER_GLYPH (dp))
2423 : '|');
2424 }
2425 }
2426 else
2427 window_matrix = w->current_matrix;
2428
2429 /* For all rows in the window matrix and corresponding rows in the
2430 frame matrix. */
2431 window_y = 0;
2432 frame_y = window_matrix->matrix_y;
2433 while (window_y < window_matrix->nrows)
2434 {
2435 struct glyph_row *frame_row = frame_matrix->rows + frame_y;
2436 struct glyph_row *window_row = window_matrix->rows + window_y;
2437
2438 /* Fill up the frame row with spaces up to the left margin of the
2439 window row. */
2440 fill_up_frame_row_with_spaces (frame_row, window_matrix->matrix_x);
2441
2442 /* Fill up areas in the window matrix row with spaces. */
2443 fill_up_glyph_row_with_spaces (window_row);
2444
2445 if (window_matrix == w->current_matrix)
2446 {
2447 /* We have to copy W's current matrix. Copy window
2448 row to frame row. */
2449 bcopy (window_row->glyphs[0],
2450 frame_row->glyphs[TEXT_AREA] + window_matrix->matrix_x,
2451 window_matrix->matrix_w * sizeof (struct glyph));
2452 }
2453 else
2454 {
2455 /* Copy W's desired matrix. */
2456
2457 /* Maybe insert a vertical border between horizontally adjacent
2458 windows. */
2459 if (right_border_glyph)
2460 {
2461 struct glyph *border = window_row->glyphs[LAST_AREA] - 1;
2462 SET_CHAR_GLYPH_FROM_GLYPH (*border, right_border_glyph);
2463 }
2464
2465 #if 0 /* This shouldn't be necessary. Let's check it. */
2466 /* Due to hooks installed, it normally doesn't happen that
2467 window rows and frame rows of the same matrix are out of
2468 sync, i.e. have a different understanding of where to
2469 find glyphs for the row. The following is a safety-belt
2470 that doesn't cost much and makes absolutely sure that
2471 window and frame matrices are in sync. */
2472 if (!glyph_row_slice_p (window_row, frame_row))
2473 {
2474 /* Find the row in the window being a slice. There
2475 should exist one from program logic. */
2476 struct glyph_row *slice_row
2477 = find_glyph_row_slice (window_matrix, frame_matrix, frame_y);
2478 xassert (slice_row != 0);
2479
2480 /* Exchange glyphs between both window rows. */
2481 swap_glyphs_in_rows (window_row, slice_row);
2482
2483 /* Exchange pointers between both rows. */
2484 swap_glyph_pointers (window_row, slice_row);
2485 }
2486 #endif
2487
2488 /* Window row window_y must be a slice of frame row
2489 frame_y. */
2490 xassert (glyph_row_slice_p (window_row, frame_row));
2491
2492 /* If rows are in sync, we don't have to copy glyphs because
2493 frame and window share glyphs. */
2494
2495 #if GLYPH_DEBUG
2496 strcpy (w->current_matrix->method, w->desired_matrix->method);
2497 #endif
2498 }
2499
2500 /* Set number of used glyphs in the frame matrix. Since we fill
2501 up with spaces, and visit leaf windows from left to right it
2502 can be done simply. */
2503 frame_row->used[TEXT_AREA]
2504 = window_matrix->matrix_x + window_matrix->matrix_w;
2505
2506 /* Or in flags. */
2507 frame_row->enabled_p |= window_row->enabled_p;
2508 frame_row->inverse_p |= window_row->inverse_p;
2509
2510 /* Next row. */
2511 ++window_y;
2512 ++frame_y;
2513 }
2514 }
2515
2516
2517 /* Add spaces to a glyph row ROW in a window matrix.
2518
2519 Each row has the form:
2520
2521 +---------+-----------------------------+------------+
2522 | left | text | right |
2523 +---------+-----------------------------+------------+
2524
2525 Left and right marginal areas are optional. This function adds
2526 spaces to areas so that there are no empty holes between areas.
2527 In other words: If the right area is not empty, the text area
2528 is filled up with spaces up to the right area. If the text area
2529 is not empty, the left area is filled up.
2530
2531 To be called for frame-based redisplay, only. */
2532
2533 static void
2534 fill_up_glyph_row_with_spaces (row)
2535 struct glyph_row *row;
2536 {
2537 fill_up_glyph_row_area_with_spaces (row, LEFT_MARGIN_AREA);
2538 fill_up_glyph_row_area_with_spaces (row, TEXT_AREA);
2539 fill_up_glyph_row_area_with_spaces (row, RIGHT_MARGIN_AREA);
2540 }
2541
2542
2543 /* Fill area AREA of glyph row ROW with spaces. To be called for
2544 frame-based redisplay only. */
2545
2546 static void
2547 fill_up_glyph_row_area_with_spaces (row, area)
2548 struct glyph_row *row;
2549 int area;
2550 {
2551 if (row->glyphs[area] < row->glyphs[area + 1])
2552 {
2553 struct glyph *end = row->glyphs[area + 1];
2554 struct glyph *text = row->glyphs[area] + row->used[area];
2555
2556 while (text < end)
2557 *text++ = space_glyph;
2558 row->used[area] = text - row->glyphs[area];
2559 }
2560 }
2561
2562
2563 /* Add spaces to the end of ROW in a frame matrix until index UPTO is
2564 reached. In frame matrices only one area, TEXT_AREA, is used. */
2565
2566 static void
2567 fill_up_frame_row_with_spaces (row, upto)
2568 struct glyph_row *row;
2569 int upto;
2570 {
2571 int i = row->used[TEXT_AREA];
2572 struct glyph *glyph = row->glyphs[TEXT_AREA];
2573
2574 while (i < upto)
2575 glyph[i++] = space_glyph;
2576
2577 row->used[TEXT_AREA] = i;
2578 }
2579
2580
2581 \f
2582 /**********************************************************************
2583 Mirroring operations on frame matrices in window matrices
2584 **********************************************************************/
2585
2586 /* Set frame being updated via frame-based redisplay to F. This
2587 function must be called before updates to make explicit that we are
2588 working on frame matrices or not. */
2589
2590 static INLINE void
2591 set_frame_matrix_frame (f)
2592 struct frame *f;
2593 {
2594 frame_matrix_frame = f;
2595 }
2596
2597
2598 /* Make sure glyph row ROW in CURRENT_MATRIX is up to date.
2599 DESIRED_MATRIX is the desired matrix corresponding to
2600 CURRENT_MATRIX. The update is done by exchanging glyph pointers
2601 between rows in CURRENT_MATRIX and DESIRED_MATRIX. If
2602 frame_matrix_frame is non-null, this indicates that the exchange is
2603 done in frame matrices, and that we have to perform analogous
2604 operations in window matrices of frame_matrix_frame. */
2605
2606 static INLINE void
2607 make_current (desired_matrix, current_matrix, row)
2608 struct glyph_matrix *desired_matrix, *current_matrix;
2609 int row;
2610 {
2611 struct glyph_row *current_row = MATRIX_ROW (current_matrix, row);
2612 struct glyph_row *desired_row = MATRIX_ROW (desired_matrix, row);
2613
2614 /* Do current_row = desired_row. This exchanges glyph pointers
2615 between both rows, and does a structure assignment otherwise. */
2616 assign_row (current_row, desired_row);
2617
2618 /* Enable current_row to mark it as valid. */
2619 current_row->enabled_p = 1;
2620
2621 /* If we are called on frame matrices, perform analogous operations
2622 for window matrices. */
2623 if (frame_matrix_frame)
2624 mirror_make_current (XWINDOW (frame_matrix_frame->root_window), row);
2625 }
2626
2627
2628 /* W is the root of a window tree. FRAME_ROW is the index of a row in
2629 W's frame which has been made current (by swapping pointers between
2630 current and desired matrix). Perform analogous operations in the
2631 matrices of leaf windows in the window tree rooted at W. */
2632
2633 static void
2634 mirror_make_current (w, frame_row)
2635 struct window *w;
2636 int frame_row;
2637 {
2638 while (w)
2639 {
2640 if (!NILP (w->hchild))
2641 mirror_make_current (XWINDOW (w->hchild), frame_row);
2642 else if (!NILP (w->vchild))
2643 mirror_make_current (XWINDOW (w->vchild), frame_row);
2644 else
2645 {
2646 /* Row relative to window W. Don't use FRAME_TO_WINDOW_VPOS
2647 here because the checks performed in debug mode there
2648 will not allow the conversion. */
2649 int row = frame_row - w->desired_matrix->matrix_y;
2650
2651 /* If FRAME_ROW is within W, assign the desired row to the
2652 current row (exchanging glyph pointers). */
2653 if (row >= 0 && row < w->desired_matrix->matrix_h)
2654 {
2655 struct glyph_row *current_row
2656 = MATRIX_ROW (w->current_matrix, row);
2657 struct glyph_row *desired_row
2658 = MATRIX_ROW (w->desired_matrix, row);
2659
2660 if (desired_row->enabled_p)
2661 assign_row (current_row, desired_row);
2662 else
2663 swap_glyph_pointers (desired_row, current_row);
2664 current_row->enabled_p = 1;
2665 }
2666 }
2667
2668 w = NILP (w->next) ? 0 : XWINDOW (w->next);
2669 }
2670 }
2671
2672
2673 /* Perform row dance after scrolling. We are working on the range of
2674 lines UNCHANGED_AT_TOP + 1 to UNCHANGED_AT_TOP + NLINES (not
2675 including) in MATRIX. COPY_FROM is a vector containing, for each
2676 row I in the range 0 <= I < NLINES, the index of the original line
2677 to move to I. This index is relative to the row range, i.e. 0 <=
2678 index < NLINES. RETAINED_P is a vector containing zero for each
2679 row 0 <= I < NLINES which is empty.
2680
2681 This function is called from do_scrolling and do_direct_scrolling. */
2682
2683 void
2684 mirrored_line_dance (matrix, unchanged_at_top, nlines, copy_from,
2685 retained_p)
2686 struct glyph_matrix *matrix;
2687 int unchanged_at_top, nlines;
2688 int *copy_from;
2689 char *retained_p;
2690 {
2691 /* A copy of original rows. */
2692 struct glyph_row *old_rows;
2693
2694 /* Rows to assign to. */
2695 struct glyph_row *new_rows = MATRIX_ROW (matrix, unchanged_at_top);
2696
2697 int i;
2698
2699 /* Make a copy of the original rows. */
2700 old_rows = (struct glyph_row *) alloca (nlines * sizeof *old_rows);
2701 bcopy (new_rows, old_rows, nlines * sizeof *old_rows);
2702
2703 /* Assign new rows, maybe clear lines. */
2704 for (i = 0; i < nlines; ++i)
2705 {
2706 int enabled_before_p = new_rows[i].enabled_p;
2707
2708 xassert (i + unchanged_at_top < matrix->nrows);
2709 xassert (unchanged_at_top + copy_from[i] < matrix->nrows);
2710 new_rows[i] = old_rows[copy_from[i]];
2711 new_rows[i].enabled_p = enabled_before_p;
2712
2713 /* RETAINED_P is zero for empty lines. */
2714 if (!retained_p[copy_from[i]])
2715 new_rows[i].enabled_p = 0;
2716 }
2717
2718 /* Do the same for window matrices, if MATRIX Is a frame matrix. */
2719 if (frame_matrix_frame)
2720 mirror_line_dance (XWINDOW (frame_matrix_frame->root_window),
2721 unchanged_at_top, nlines, copy_from, retained_p);
2722 }
2723
2724
2725 /* Synchronize glyph pointers in the current matrix of window W with
2726 the current frame matrix. W must be full-width, and be on a tty
2727 frame. */
2728
2729 static void
2730 sync_window_with_frame_matrix_rows (w)
2731 struct window *w;
2732 {
2733 struct frame *f = XFRAME (w->frame);
2734 struct glyph_row *window_row, *window_row_end, *frame_row;
2735
2736 /* Preconditions: W must be a leaf window and full-width. Its frame
2737 must have a frame matrix. */
2738 xassert (NILP (w->hchild) && NILP (w->vchild));
2739 xassert (WINDOW_FULL_WIDTH_P (w));
2740 xassert (!FRAME_WINDOW_P (f));
2741
2742 /* If W is a full-width window, glyph pointers in W's current matrix
2743 have, by definition, to be the same as glyph pointers in the
2744 corresponding frame matrix. */
2745 window_row = w->current_matrix->rows;
2746 window_row_end = window_row + w->current_matrix->nrows;
2747 frame_row = f->current_matrix->rows + XFASTINT (w->top);
2748 while (window_row < window_row_end)
2749 {
2750 int area;
2751
2752 for (area = LEFT_MARGIN_AREA; area <= LAST_AREA; ++area)
2753 window_row->glyphs[area] = frame_row->glyphs[area];
2754
2755 ++window_row, ++frame_row;
2756 }
2757 }
2758
2759
2760 /* Return the window in the window tree rooted in W containing frame
2761 row ROW. Value is null if none is found. */
2762
2763 struct window *
2764 frame_row_to_window (w, row)
2765 struct window *w;
2766 int row;
2767 {
2768 struct window *found = NULL;
2769
2770 while (w && !found)
2771 {
2772 if (!NILP (w->hchild))
2773 found = frame_row_to_window (XWINDOW (w->hchild), row);
2774 else if (!NILP (w->vchild))
2775 found = frame_row_to_window (XWINDOW (w->vchild), row);
2776 else if (row >= XFASTINT (w->top)
2777 && row < XFASTINT (w->top) + XFASTINT (w->height))
2778 found = w;
2779
2780 w = NILP (w->next) ? 0 : XWINDOW (w->next);
2781 }
2782
2783 return found;
2784 }
2785
2786
2787 /* Perform a line dance in the window tree rooted at W, after
2788 scrolling a frame matrix in mirrored_line_dance.
2789
2790 We are working on the range of lines UNCHANGED_AT_TOP + 1 to
2791 UNCHANGED_AT_TOP + NLINES (not including) in W's frame matrix.
2792 COPY_FROM is a vector containing, for each row I in the range 0 <=
2793 I < NLINES, the index of the original line to move to I. This
2794 index is relative to the row range, i.e. 0 <= index < NLINES.
2795 RETAINED_P is a vector containing zero for each row 0 <= I < NLINES
2796 which is empty. */
2797
2798 static void
2799 mirror_line_dance (w, unchanged_at_top, nlines, copy_from, retained_p)
2800 struct window *w;
2801 int unchanged_at_top, nlines;
2802 int *copy_from;
2803 char *retained_p;
2804 {
2805 while (w)
2806 {
2807 if (!NILP (w->hchild))
2808 mirror_line_dance (XWINDOW (w->hchild), unchanged_at_top,
2809 nlines, copy_from, retained_p);
2810 else if (!NILP (w->vchild))
2811 mirror_line_dance (XWINDOW (w->vchild), unchanged_at_top,
2812 nlines, copy_from, retained_p);
2813 else
2814 {
2815 /* W is a leaf window, and we are working on its current
2816 matrix m. */
2817 struct glyph_matrix *m = w->current_matrix;
2818 int i, sync_p = 0;
2819 struct glyph_row *old_rows;
2820
2821 /* Make a copy of the original rows of matrix m. */
2822 old_rows = (struct glyph_row *) alloca (m->nrows * sizeof *old_rows);
2823 bcopy (m->rows, old_rows, m->nrows * sizeof *old_rows);
2824
2825 for (i = 0; i < nlines; ++i)
2826 {
2827 /* Frame relative line assigned to. */
2828 int frame_to = i + unchanged_at_top;
2829
2830 /* Frame relative line assigned. */
2831 int frame_from = copy_from[i] + unchanged_at_top;
2832
2833 /* Window relative line assigned to. */
2834 int window_to = frame_to - m->matrix_y;
2835
2836 /* Window relative line assigned. */
2837 int window_from = frame_from - m->matrix_y;
2838
2839 /* Is assigned line inside window? */
2840 int from_inside_window_p
2841 = window_from >= 0 && window_from < m->matrix_h;
2842
2843 /* Is assigned to line inside window? */
2844 int to_inside_window_p
2845 = window_to >= 0 && window_to < m->matrix_h;
2846
2847 if (from_inside_window_p && to_inside_window_p)
2848 {
2849 /* Enabled setting before assignment. */
2850 int enabled_before_p;
2851
2852 /* Do the assignment. The enabled_p flag is saved
2853 over the assignment because the old redisplay did
2854 that. */
2855 enabled_before_p = m->rows[window_to].enabled_p;
2856 m->rows[window_to] = old_rows[window_from];
2857 m->rows[window_to].enabled_p = enabled_before_p;
2858
2859 /* If frame line is empty, window line is empty, too. */
2860 if (!retained_p[copy_from[i]])
2861 m->rows[window_to].enabled_p = 0;
2862 }
2863 else if (to_inside_window_p)
2864 {
2865 /* A copy between windows. This is an infrequent
2866 case not worth optimizing. */
2867 struct frame *f = XFRAME (w->frame);
2868 struct window *root = XWINDOW (FRAME_ROOT_WINDOW (f));
2869 struct window *w2;
2870 struct glyph_matrix *m2;
2871 int m2_from;
2872
2873 w2 = frame_row_to_window (root, frame_to);
2874 m2 = w2->current_matrix;
2875 m2_from = frame_from - m2->matrix_y;
2876 copy_row_except_pointers (m->rows + window_to,
2877 m2->rows + m2_from);
2878
2879 /* If frame line is empty, window line is empty, too. */
2880 if (!retained_p[copy_from[i]])
2881 m->rows[window_to].enabled_p = 0;
2882 sync_p = 1;
2883 }
2884 else if (from_inside_window_p)
2885 sync_p = 1;
2886 }
2887
2888 /* If there was a copy between windows, make sure glyph
2889 pointers are in sync with the frame matrix. */
2890 if (sync_p)
2891 sync_window_with_frame_matrix_rows (w);
2892
2893 /* Check that no pointers are lost. */
2894 CHECK_MATRIX (m);
2895 }
2896
2897 /* Next window on same level. */
2898 w = NILP (w->next) ? 0 : XWINDOW (w->next);
2899 }
2900 }
2901
2902
2903 #if GLYPH_DEBUG
2904
2905 /* Check that window and frame matrices agree about their
2906 understanding where glyphs of the rows are to find. For each
2907 window in the window tree rooted at W, check that rows in the
2908 matrices of leaf window agree with their frame matrices about
2909 glyph pointers. */
2910
2911 void
2912 check_window_matrix_pointers (w)
2913 struct window *w;
2914 {
2915 while (w)
2916 {
2917 if (!NILP (w->hchild))
2918 check_window_matrix_pointers (XWINDOW (w->hchild));
2919 else if (!NILP (w->vchild))
2920 check_window_matrix_pointers (XWINDOW (w->vchild));
2921 else
2922 {
2923 struct frame *f = XFRAME (w->frame);
2924 check_matrix_pointers (w->desired_matrix, f->desired_matrix);
2925 check_matrix_pointers (w->current_matrix, f->current_matrix);
2926 }
2927
2928 w = NILP (w->next) ? 0 : XWINDOW (w->next);
2929 }
2930 }
2931
2932
2933 /* Check that window rows are slices of frame rows. WINDOW_MATRIX is
2934 a window and FRAME_MATRIX is the corresponding frame matrix. For
2935 each row in WINDOW_MATRIX check that it's a slice of the
2936 corresponding frame row. If it isn't, abort. */
2937
2938 static void
2939 check_matrix_pointers (window_matrix, frame_matrix)
2940 struct glyph_matrix *window_matrix, *frame_matrix;
2941 {
2942 /* Row number in WINDOW_MATRIX. */
2943 int i = 0;
2944
2945 /* Row number corresponding to I in FRAME_MATRIX. */
2946 int j = window_matrix->matrix_y;
2947
2948 /* For all rows check that the row in the window matrix is a
2949 slice of the row in the frame matrix. If it isn't we didn't
2950 mirror an operation on the frame matrix correctly. */
2951 while (i < window_matrix->nrows)
2952 {
2953 if (!glyph_row_slice_p (window_matrix->rows + i,
2954 frame_matrix->rows + j))
2955 abort ();
2956 ++i, ++j;
2957 }
2958 }
2959
2960 #endif /* GLYPH_DEBUG != 0 */
2961
2962
2963 \f
2964 /**********************************************************************
2965 VPOS and HPOS translations
2966 **********************************************************************/
2967
2968 #if GLYPH_DEBUG
2969
2970 /* Translate vertical position VPOS which is relative to window W to a
2971 vertical position relative to W's frame. */
2972
2973 static int
2974 window_to_frame_vpos (w, vpos)
2975 struct window *w;
2976 int vpos;
2977 {
2978 struct frame *f = XFRAME (w->frame);
2979
2980 xassert (!FRAME_WINDOW_P (f));
2981 xassert (vpos >= 0 && vpos <= w->desired_matrix->nrows);
2982 vpos += XFASTINT (w->top);
2983 xassert (vpos >= 0 && vpos <= FRAME_HEIGHT (f));
2984 return vpos;
2985 }
2986
2987
2988 /* Translate horizontal position HPOS which is relative to window W to
2989 a vertical position relative to W's frame. */
2990
2991 static int
2992 window_to_frame_hpos (w, hpos)
2993 struct window *w;
2994 int hpos;
2995 {
2996 struct frame *f = XFRAME (w->frame);
2997
2998 xassert (!FRAME_WINDOW_P (f));
2999 hpos += XFASTINT (w->left);
3000 return hpos;
3001 }
3002
3003 #endif /* GLYPH_DEBUG */
3004
3005
3006 \f
3007 /**********************************************************************
3008 Redrawing Frames
3009 **********************************************************************/
3010
3011 DEFUN ("redraw-frame", Fredraw_frame, Sredraw_frame, 1, 1, 0,
3012 "Clear frame FRAME and output again what is supposed to appear on it.")
3013 (frame)
3014 Lisp_Object frame;
3015 {
3016 struct frame *f;
3017
3018 CHECK_LIVE_FRAME (frame, 0);
3019 f = XFRAME (frame);
3020
3021 /* Ignore redraw requests, if frame has no glyphs yet.
3022 (Implementation note: It still has to be checked why we are
3023 called so early here). */
3024 if (!glyphs_initialized_initially_p)
3025 return Qnil;
3026
3027 update_begin (f);
3028 if (FRAME_MSDOS_P (f))
3029 set_terminal_modes ();
3030 clear_frame ();
3031 clear_current_matrices (f);
3032 update_end (f);
3033 fflush (stdout);
3034 windows_or_buffers_changed++;
3035 /* Mark all windows as inaccurate, so that every window will have
3036 its redisplay done. */
3037 mark_window_display_accurate (FRAME_ROOT_WINDOW (f), 0);
3038 set_window_update_flags (XWINDOW (FRAME_ROOT_WINDOW (f)), 1);
3039 f->garbaged = 0;
3040 return Qnil;
3041 }
3042
3043
3044 /* Redraw frame F. This is nothing more than a call to the Lisp
3045 function redraw-frame. */
3046
3047 void
3048 redraw_frame (f)
3049 struct frame *f;
3050 {
3051 Lisp_Object frame;
3052 XSETFRAME (frame, f);
3053 Fredraw_frame (frame);
3054 }
3055
3056
3057 DEFUN ("redraw-display", Fredraw_display, Sredraw_display, 0, 0, "",
3058 "Clear and redisplay all visible frames.")
3059 ()
3060 {
3061 Lisp_Object tail, frame;
3062
3063 FOR_EACH_FRAME (tail, frame)
3064 if (FRAME_VISIBLE_P (XFRAME (frame)))
3065 Fredraw_frame (frame);
3066
3067 return Qnil;
3068 }
3069
3070
3071 /* This is used when frame_garbaged is set. Call Fredraw_frame on all
3072 visible frames marked as garbaged. */
3073
3074 void
3075 redraw_garbaged_frames ()
3076 {
3077 Lisp_Object tail, frame;
3078
3079 FOR_EACH_FRAME (tail, frame)
3080 if (FRAME_VISIBLE_P (XFRAME (frame))
3081 && FRAME_GARBAGED_P (XFRAME (frame)))
3082 Fredraw_frame (frame);
3083 }
3084
3085
3086 \f
3087 /***********************************************************************
3088 Direct Operations
3089 ***********************************************************************/
3090
3091 /* Try to update display and current glyph matrix directly.
3092
3093 This function is called after a character G has been inserted into
3094 current_buffer. It tries to update the current glyph matrix and
3095 perform appropriate screen output to reflect the insertion. If it
3096 succeeds, the global flag redisplay_performed_directly_p will be
3097 set to 1, and thereby prevent the more costly general redisplay
3098 from running (see redisplay_internal).
3099
3100 This function is not called for `hairy' character insertions.
3101 In particular, it is not called when after or before change
3102 functions exist, like they are used by font-lock. See keyboard.c
3103 for details where this function is called. */
3104
3105 int
3106 direct_output_for_insert (g)
3107 int g;
3108 {
3109 register struct frame *f = SELECTED_FRAME ();
3110 struct window *w = XWINDOW (selected_window);
3111 struct it it, it2;
3112 struct glyph_row *glyph_row;
3113 struct glyph *glyphs, *glyph, *end;
3114 int n;
3115 /* Non-null means that Redisplay of W is based on window matrices. */
3116 int window_redisplay_p = FRAME_WINDOW_P (f);
3117 /* Non-null means we are in overwrite mode. */
3118 int overwrite_p = !NILP (current_buffer->overwrite_mode);
3119 int added_width;
3120 struct text_pos pos;
3121 int delta, delta_bytes;
3122
3123 /* Not done directly. */
3124 redisplay_performed_directly_p = 0;
3125
3126 /* Quickly give up for some common cases. */
3127 if (cursor_in_echo_area
3128 /* Give up if fonts have changed. */
3129 || fonts_changed_p
3130 /* Give up if face attributes have been changed. */
3131 || face_change_count
3132 /* Give up if cursor position not really known. */
3133 || !display_completed
3134 /* Give up if buffer appears in two places. */
3135 || buffer_shared > 1
3136 /* Give up if w is mini-buffer and a message is being displayed there */
3137 || (MINI_WINDOW_P (w) && !NILP (echo_area_buffer[0]))
3138 /* Give up for hscrolled mini-buffer because display of the prompt
3139 is handled specially there (see display_line). */
3140 || (MINI_WINDOW_P (w) && XFASTINT (w->hscroll))
3141 /* Give up if overwriting in the middle of a line. */
3142 || (overwrite_p
3143 && PT != ZV
3144 && FETCH_BYTE (PT) != '\n')
3145 /* Give up for tabs and line ends. */
3146 || g == '\t'
3147 || g == '\n'
3148 || g == '\r'
3149 /* Give up if unable to display the cursor in the window. */
3150 || w->cursor.vpos < 0
3151 || (glyph_row = MATRIX_ROW (w->current_matrix, w->cursor.vpos),
3152 /* Can't do it in a continued line because continuation
3153 lines would change. */
3154 (glyph_row->continued_p
3155 /* Can't use this method if the line overlaps others or is
3156 overlapped by others because these other lines would
3157 have to be redisplayed. */
3158 || glyph_row->overlapping_p
3159 || glyph_row->overlapped_p))
3160 /* Can't do it for partial width windows on terminal frames
3161 because we can't clear to eol in such a window. */
3162 || (!window_redisplay_p && !WINDOW_FULL_WIDTH_P (w)))
3163 return 0;
3164
3165 /* Set up a display iterator structure for W. Glyphs will be
3166 produced in scratch_glyph_row. Current position is W's cursor
3167 position. */
3168 clear_glyph_row (&scratch_glyph_row);
3169 SET_TEXT_POS (pos, PT, PT_BYTE);
3170 DEC_TEXT_POS (pos, !NILP (current_buffer->enable_multibyte_characters));
3171 init_iterator (&it, w, CHARPOS (pos), BYTEPOS (pos), &scratch_glyph_row,
3172 DEFAULT_FACE_ID);
3173
3174 glyph_row = MATRIX_ROW (w->current_matrix, w->cursor.vpos);
3175
3176 /* Give up if highlighting trailing whitespace and we have trailing
3177 whitespace in glyph_row. We would have to remove the trailing
3178 whitespace face in that case. */
3179 if (!NILP (Vshow_trailing_whitespace)
3180 && glyph_row->used[TEXT_AREA])
3181 {
3182 struct glyph *last;
3183
3184 last = glyph_row->glyphs[TEXT_AREA] + glyph_row->used[TEXT_AREA] - 1;
3185 if (last->type == STRETCH_GLYPH
3186 || (last->type == CHAR_GLYPH
3187 && last->u.ch == ' '))
3188 return 0;
3189 }
3190
3191 /* Give up if there are overlay strings at pos. This would fail
3192 if the overlay string has newlines in it. */
3193 if (STRINGP (it.string))
3194 return 0;
3195
3196 it.hpos = w->cursor.hpos;
3197 it.vpos = w->cursor.vpos;
3198 it.current_x = w->cursor.x + it.first_visible_x;
3199 it.current_y = w->cursor.y;
3200 it.end_charpos = PT;
3201 it.stop_charpos = min (PT, it.stop_charpos);
3202
3203 /* More than one display element may be returned for PT - 1 if
3204 (i) it's a control character which is translated into `\003' or
3205 `^C', or (ii) it has a display table entry, or (iii) it's a
3206 combination of both. */
3207 delta = delta_bytes = 0;
3208 while (get_next_display_element (&it))
3209 {
3210 PRODUCE_GLYPHS (&it);
3211
3212 /* Give up if glyph doesn't fit completely on the line. */
3213 if (it.current_x >= it.last_visible_x)
3214 return 0;
3215
3216 /* Give up if new glyph has different ascent or descent than
3217 the original row, or if it is not a character glyph. */
3218 if (glyph_row->ascent != it.ascent
3219 || glyph_row->height != it.ascent + it.descent
3220 || glyph_row->phys_ascent != it.phys_ascent
3221 || glyph_row->phys_height != it.phys_ascent + it.phys_descent
3222 || it.what != IT_CHARACTER)
3223 return 0;
3224
3225 delta += 1;
3226 delta_bytes += it.len;
3227 set_iterator_to_next (&it);
3228 }
3229
3230 /* Give up if we hit the right edge of the window. We would have
3231 to insert truncation or continuation glyphs. */
3232 added_width = it.current_x - (w->cursor.x + it.first_visible_x);
3233 if (glyph_row->pixel_width + added_width >= it.last_visible_x)
3234 return 0;
3235
3236 /* Give up if there is a \t following in the line. */
3237 it2 = it;
3238 it2.end_charpos = ZV;
3239 it2.stop_charpos = min (it2.stop_charpos, ZV);
3240 while (get_next_display_element (&it2)
3241 && !ITERATOR_AT_END_OF_LINE_P (&it2))
3242 {
3243 if (it2.c == '\t')
3244 return 0;
3245 set_iterator_to_next (&it2);
3246 }
3247
3248 /* Number of new glyphs produced. */
3249 n = it.glyph_row->used[TEXT_AREA];
3250
3251 /* Start and end of glyphs in original row. */
3252 glyphs = glyph_row->glyphs[TEXT_AREA] + w->cursor.hpos;
3253 end = glyph_row->glyphs[1 + TEXT_AREA];
3254
3255 /* Make room for new glyphs, then insert them. */
3256 xassert (end - glyphs - n >= 0);
3257 safe_bcopy ((char *) glyphs, (char *) (glyphs + n),
3258 (end - glyphs - n) * sizeof (*end));
3259 bcopy (it.glyph_row->glyphs[TEXT_AREA], glyphs, n * sizeof *glyphs);
3260 glyph_row->used[TEXT_AREA] = min (glyph_row->used[TEXT_AREA] + n,
3261 end - glyph_row->glyphs[TEXT_AREA]);
3262
3263 /* Compute new line width. */
3264 glyph = glyph_row->glyphs[TEXT_AREA];
3265 end = glyph + glyph_row->used[TEXT_AREA];
3266 glyph_row->pixel_width = glyph_row->x;
3267 while (glyph < end)
3268 {
3269 glyph_row->pixel_width += glyph->pixel_width;
3270 ++glyph;
3271 }
3272
3273 /* Increment buffer positions for glyphs following the newly
3274 inserted ones. */
3275 for (glyph = glyphs + n; glyph < end; ++glyph)
3276 if (glyph->charpos > 0 && BUFFERP (glyph->object))
3277 glyph->charpos += delta;
3278
3279 if (MATRIX_ROW_END_CHARPOS (glyph_row) > 0)
3280 {
3281 MATRIX_ROW_END_CHARPOS (glyph_row) += delta;
3282 MATRIX_ROW_END_BYTEPOS (glyph_row) += delta_bytes;
3283 }
3284
3285 /* Adjust positions in lines following the one we are in. */
3286 increment_matrix_positions (w->current_matrix,
3287 w->cursor.vpos + 1,
3288 w->current_matrix->nrows,
3289 delta, delta_bytes);
3290
3291 glyph_row->contains_overlapping_glyphs_p
3292 |= it.glyph_row->contains_overlapping_glyphs_p;
3293
3294 glyph_row->displays_text_p = 1;
3295 w->window_end_vpos = make_number (max (w->cursor.vpos,
3296 XFASTINT (w->window_end_vpos)));
3297
3298 if (!NILP (Vshow_trailing_whitespace))
3299 highlight_trailing_whitespace (it.f, glyph_row);
3300
3301 /* Write glyphs. If at end of row, we can simply call write_glyphs.
3302 In the middle, we have to insert glyphs. Note that this is now
3303 implemented for X frames. The implementation uses updated_window
3304 and updated_row. */
3305 updated_row = glyph_row;
3306 update_begin (f);
3307 if (rif)
3308 {
3309 rif->update_window_begin_hook (w);
3310
3311 if (glyphs == end - n)
3312 rif->write_glyphs (glyphs, n);
3313 else
3314 rif->insert_glyphs (glyphs, n);
3315 }
3316 else
3317 {
3318 if (glyphs == end - n)
3319 write_glyphs (glyphs, n);
3320 else
3321 insert_glyphs (glyphs, n);
3322 }
3323
3324 w->cursor.hpos += n;
3325 w->cursor.x = it.current_x - it.first_visible_x;
3326 xassert (w->cursor.hpos >= 0
3327 && w->cursor.hpos < w->desired_matrix->matrix_w);
3328
3329 /* How to set the cursor differs depending on whether we are
3330 using a frame matrix or a window matrix. Note that when
3331 a frame matrix is used, cursor_to expects frame coordinates,
3332 and the X and Y parameters are not used. */
3333 if (window_redisplay_p)
3334 rif->cursor_to (w->cursor.vpos, w->cursor.hpos,
3335 w->cursor.y, w->cursor.x);
3336 else
3337 {
3338 int x, y;
3339 x = (WINDOW_TO_FRAME_HPOS (w, w->cursor.hpos)
3340 + (INTEGERP (w->left_margin_width)
3341 ? XFASTINT (w->left_margin_width)
3342 : 0));
3343 y = WINDOW_TO_FRAME_VPOS (w, w->cursor.vpos);
3344 cursor_to (y, x);
3345 }
3346
3347 if (rif)
3348 rif->update_window_end_hook (w, 1);
3349 update_end (f);
3350 updated_row = NULL;
3351 fflush (stdout);
3352
3353 TRACE ((stderr, "direct output for insert\n"));
3354
3355 UNCHANGED_MODIFIED = MODIFF;
3356 BEG_UNCHANGED = GPT - BEG;
3357 XSETFASTINT (w->last_point, PT);
3358 w->last_cursor = w->cursor;
3359 XSETFASTINT (w->last_modified, MODIFF);
3360 XSETFASTINT (w->last_overlay_modified, OVERLAY_MODIFF);
3361
3362 redisplay_performed_directly_p = 1;
3363 return 1;
3364 }
3365
3366
3367 /* Perform a direct display update for moving PT by N positions
3368 left or right. N < 0 means a movement backwards. This function
3369 is currently only called for N == 1 or N == -1. */
3370
3371 int
3372 direct_output_forward_char (n)
3373 int n;
3374 {
3375 struct frame *f = SELECTED_FRAME ();
3376 struct window *w = XWINDOW (selected_window);
3377 struct glyph_row *row;
3378
3379 /* Give up if point moved out of or into a composition. */
3380 if (check_point_in_composition (current_buffer, XINT (w->last_point),
3381 current_buffer, PT))
3382 return 0;
3383
3384 /* Give up if face attributes have been changed. */
3385 if (face_change_count)
3386 return 0;
3387
3388 /* Give up if current matrix is not up to date or we are
3389 displaying a message. */
3390 if (!display_completed || cursor_in_echo_area)
3391 return 0;
3392
3393 /* Give up if the buffer's direction is reversed. */
3394 if (!NILP (XBUFFER (w->buffer)->direction_reversed))
3395 return 0;
3396
3397 /* Can't use direct output if highlighting a region. */
3398 if (!NILP (Vtransient_mark_mode) && !NILP (current_buffer->mark_active))
3399 return 0;
3400
3401 /* Can't use direct output if highlighting trailing whitespace. */
3402 if (!NILP (Vshow_trailing_whitespace))
3403 return 0;
3404
3405 /* Give up if we are showing a message or just cleared the message
3406 because we might need to resize the echo area window. */
3407 if (!NILP (echo_area_buffer[0]) || !NILP (echo_area_buffer[1]))
3408 return 0;
3409
3410 /* Give up if we don't know where the cursor is. */
3411 if (w->cursor.vpos < 0)
3412 return 0;
3413
3414 row = MATRIX_ROW (w->current_matrix, w->cursor.vpos);
3415
3416 if (PT <= MATRIX_ROW_START_BYTEPOS (row)
3417 || PT >= MATRIX_ROW_END_BYTEPOS (row))
3418 return 0;
3419
3420 set_cursor_from_row (w, row, w->current_matrix, 0, 0, 0, 0);
3421 w->last_cursor = w->cursor;
3422 XSETFASTINT (w->last_point, PT);
3423
3424 xassert (w->cursor.hpos >= 0
3425 && w->cursor.hpos < w->desired_matrix->matrix_w);
3426
3427 if (FRAME_WINDOW_P (f))
3428 rif->cursor_to (w->cursor.vpos, w->cursor.hpos,
3429 w->cursor.y, w->cursor.x);
3430 else
3431 {
3432 int x, y;
3433 x = (WINDOW_TO_FRAME_HPOS (w, w->cursor.hpos)
3434 + (INTEGERP (w->left_margin_width)
3435 ? XFASTINT (w->left_margin_width)
3436 : 0));
3437 y = WINDOW_TO_FRAME_VPOS (w, w->cursor.vpos);
3438 cursor_to (y, x);
3439 }
3440
3441 fflush (stdout);
3442 redisplay_performed_directly_p = 1;
3443 return 1;
3444 }
3445
3446
3447 \f
3448 /***********************************************************************
3449 Frame Update
3450 ***********************************************************************/
3451
3452 /* Update frame F based on the data in desired matrices.
3453
3454 If FORCE_P is non-zero, don't let redisplay be stopped by detecting
3455 pending input. If INHIBIT_HAIRY_ID_P is non-zero, don't try
3456 scrolling.
3457
3458 Value is non-zero if redisplay was stopped due to pending input. */
3459
3460 int
3461 update_frame (f, force_p, inhibit_hairy_id_p)
3462 struct frame *f;
3463 int force_p;
3464 int inhibit_hairy_id_p;
3465 {
3466 /* 1 means display has been paused because of pending input. */
3467 int paused_p;
3468 struct window *root_window = XWINDOW (f->root_window);
3469
3470 if (FRAME_WINDOW_P (f))
3471 {
3472 /* We are working on window matrix basis. All windows whose
3473 flag must_be_updated_p is set have to be updated. */
3474
3475 /* Record that we are not working on frame matrices. */
3476 set_frame_matrix_frame (NULL);
3477
3478 /* Update all windows in the window tree of F, maybe stopping
3479 when pending input is detected. */
3480 update_begin (f);
3481
3482 /* Update the menu bar on X frames that don't have toolkit
3483 support. */
3484 if (WINDOWP (f->menu_bar_window))
3485 update_window (XWINDOW (f->menu_bar_window), 1);
3486
3487 /* Update the tool-bar window, if present. */
3488 if (WINDOWP (f->tool_bar_window))
3489 {
3490 Lisp_Object tem;
3491 struct window *w = XWINDOW (f->tool_bar_window);
3492
3493 /* Update tool-bar window. */
3494 if (w->must_be_updated_p)
3495 {
3496 update_window (w, 1);
3497 w->must_be_updated_p = 0;
3498
3499 /* Swap tool-bar strings. We swap because we want to
3500 reuse strings. */
3501 tem = f->current_tool_bar_string;
3502 f->current_tool_bar_string = f->desired_tool_bar_string;
3503 f->desired_tool_bar_string = tem;
3504 f->n_current_tool_bar_items = f->n_desired_tool_bar_items;
3505
3506 /* Swap tool-bar items. We swap because we want to
3507 reuse vectors. */
3508 tem = f->current_tool_bar_items;
3509 f->current_tool_bar_items = f->desired_tool_bar_items;
3510 f->desired_tool_bar_items = tem;
3511 }
3512 }
3513
3514
3515 /* Update windows. */
3516 paused_p = update_window_tree (root_window, force_p);
3517 update_end (f);
3518 display_completed = !paused_p;
3519
3520 /* The flush is a performance bottleneck under X. */
3521 #if 0
3522 rif->flush_display (f);
3523 #endif
3524 }
3525 else
3526 {
3527 /* We are working on frame matrix basis. Set the frame on whose
3528 frame matrix we operate. */
3529 set_frame_matrix_frame (f);
3530
3531 /* Build F's desired matrix from window matrices. For windows
3532 whose must_be_updated_p flag is set, desired matrices are
3533 made part of the desired frame matrix. For other windows,
3534 the current matrix is copied. */
3535 build_frame_matrix (f);
3536
3537 /* Do the update on the frame desired matrix. */
3538 paused_p = update_frame_1 (f, force_p, inhibit_hairy_id_p);
3539
3540 /* Check window matrices for lost pointers. */
3541 IF_DEBUG (check_window_matrix_pointers (root_window));
3542 }
3543
3544 /* Reset flags indicating that a window should be updated. */
3545 set_window_update_flags (root_window, 0);
3546 return paused_p;
3547 }
3548
3549
3550 \f
3551 /************************************************************************
3552 Window-based updates
3553 ************************************************************************/
3554
3555 /* Perform updates in window tree rooted at W. FORCE_P non-zero means
3556 don't stop updating when input is pending. */
3557
3558 static int
3559 update_window_tree (w, force_p)
3560 struct window *w;
3561 int force_p;
3562 {
3563 int paused_p = 0;
3564
3565 while (w && !paused_p)
3566 {
3567 if (!NILP (w->hchild))
3568 paused_p |= update_window_tree (XWINDOW (w->hchild), force_p);
3569 else if (!NILP (w->vchild))
3570 paused_p |= update_window_tree (XWINDOW (w->vchild), force_p);
3571 else if (w->must_be_updated_p)
3572 paused_p |= update_window (w, force_p);
3573
3574 w = NILP (w->next) ? 0 : XWINDOW (w->next);
3575 }
3576
3577 return paused_p;
3578 }
3579
3580
3581 /* Update window W if its flag must_be_updated_p is non-zero. If
3582 FORCE_P is non-zero, don't stop updating if input is pending. */
3583
3584 void
3585 update_single_window (w, force_p)
3586 struct window *w;
3587 int force_p;
3588 {
3589 if (w->must_be_updated_p)
3590 {
3591 struct frame *f = XFRAME (WINDOW_FRAME (w));
3592
3593 /* Record that this is not a frame-based redisplay. */
3594 set_frame_matrix_frame (NULL);
3595
3596 /* Update W. */
3597 update_begin (f);
3598 update_window (w, force_p);
3599 update_end (f);
3600
3601 /* Reset flag in W. */
3602 w->must_be_updated_p = 0;
3603 }
3604 }
3605
3606
3607 /* Redraw lines from the current matrix of window W that are
3608 overlapped by other rows. YB is bottom-most y-position in W. */
3609
3610 static void
3611 redraw_overlapped_rows (w, yb)
3612 struct window *w;
3613 int yb;
3614 {
3615 int i, bottom_y;
3616 struct glyph_row *row;
3617
3618 /* If rows overlapping others have been changed, the rows being
3619 overlapped have to be redrawn. This won't draw lines that have
3620 already been drawn in update_window_line because overlapped_p in
3621 desired rows is 0, so after row assignment overlapped_p in
3622 current rows is 0. */
3623 for (i = 0; i < w->current_matrix->nrows; ++i)
3624 {
3625 row = w->current_matrix->rows + i;
3626
3627 if (!row->enabled_p)
3628 break;
3629 else if (row->mode_line_p)
3630 continue;
3631
3632 if (row->overlapped_p)
3633 {
3634 enum glyph_row_area area;
3635
3636 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
3637 {
3638 updated_row = row;
3639 updated_area = area;
3640 rif->cursor_to (i, 0, row->y, area == TEXT_AREA ? row->x : 0);
3641 if (row->used[area])
3642 rif->write_glyphs (row->glyphs[area], row->used[area]);
3643 rif->clear_end_of_line (-1);
3644 }
3645
3646 row->overlapped_p = 0;
3647 }
3648
3649 bottom_y = MATRIX_ROW_BOTTOM_Y (row);
3650 if (bottom_y >= yb)
3651 break;
3652 }
3653 }
3654
3655
3656 /* Redraw lines from the current matrix of window W that overlap
3657 others. YB is bottom-most y-position in W. */
3658
3659 static void
3660 redraw_overlapping_rows (w, yb)
3661 struct window *w;
3662 int yb;
3663 {
3664 int i, bottom_y;
3665 struct glyph_row *row;
3666
3667 for (i = 0; i < w->current_matrix->nrows; ++i)
3668 {
3669 row = w->current_matrix->rows + i;
3670
3671 if (!row->enabled_p)
3672 break;
3673 else if (row->mode_line_p)
3674 continue;
3675
3676 bottom_y = MATRIX_ROW_BOTTOM_Y (row);
3677
3678 if (row->overlapping_p && i > 0 && bottom_y < yb)
3679 {
3680 if (row->used[LEFT_MARGIN_AREA])
3681 rif->fix_overlapping_area (w, row, LEFT_MARGIN_AREA);
3682
3683 if (row->used[TEXT_AREA])
3684 rif->fix_overlapping_area (w, row, TEXT_AREA);
3685
3686 if (row->used[RIGHT_MARGIN_AREA])
3687 rif->fix_overlapping_area (w, row, RIGHT_MARGIN_AREA);
3688
3689 /* Record in neighbor rows that ROW overwrites part of their
3690 display. */
3691 if (row->phys_ascent > row->ascent && i > 0)
3692 MATRIX_ROW (w->current_matrix, i - 1)->overlapped_p = 1;
3693 if ((row->phys_height - row->phys_ascent
3694 > row->height - row->ascent)
3695 && bottom_y < yb)
3696 MATRIX_ROW (w->current_matrix, i + 1)->overlapped_p = 1;
3697 }
3698
3699 if (bottom_y >= yb)
3700 break;
3701 }
3702 }
3703
3704
3705 /* Update display of window W. FORCE_P non-zero means that we should
3706 not stop when detecting pending input. */
3707
3708 static int
3709 update_window (w, force_p)
3710 struct window *w;
3711 int force_p;
3712 {
3713 struct glyph_matrix *desired_matrix = w->desired_matrix;
3714 int paused_p;
3715 int preempt_count = baud_rate / 2400 + 1;
3716 extern int input_pending;
3717 #if GLYPH_DEBUG
3718 struct frame *f = XFRAME (WINDOW_FRAME (w));
3719 extern struct frame *updating_frame;
3720 #endif
3721
3722 /* Check that W's frame doesn't have glyph matrices. */
3723 xassert (FRAME_WINDOW_P (f));
3724 xassert (updating_frame != NULL);
3725
3726 /* Check pending input the first time so that we can quickly return. */
3727 if (redisplay_dont_pause)
3728 force_p = 1;
3729 else
3730 detect_input_pending ();
3731
3732 /* If forced to complete the update, or if no input is pending, do
3733 the update. */
3734 if (force_p || !input_pending)
3735 {
3736 struct glyph_row *row, *end;
3737 struct glyph_row *mode_line_row;
3738 struct glyph_row *header_line_row = NULL;
3739 int yb, changed_p = 0;
3740
3741 rif->update_window_begin_hook (w);
3742 yb = window_text_bottom_y (w);
3743
3744 /* If window has a top line, update it before everything else.
3745 Adjust y-positions of other rows by the top line height. */
3746 row = desired_matrix->rows;
3747 end = row + desired_matrix->nrows - 1;
3748 if (row->mode_line_p)
3749 header_line_row = row++;
3750
3751 /* Update the mode line, if necessary. */
3752 mode_line_row = MATRIX_MODE_LINE_ROW (desired_matrix);
3753 if (mode_line_row->mode_line_p && mode_line_row->enabled_p)
3754 {
3755 mode_line_row->y = yb;
3756 update_window_line (w, MATRIX_ROW_VPOS (mode_line_row,
3757 desired_matrix));
3758 changed_p = 1;
3759 }
3760
3761 /* Find first enabled row. Optimizations in redisplay_internal
3762 may lead to an update with only one row enabled. There may
3763 be also completely empty matrices. */
3764 while (row < end && !row->enabled_p)
3765 ++row;
3766
3767 /* Try reusing part of the display by inserting/deleting lines. */
3768 if (row < end && !desired_matrix->no_scrolling_p)
3769 {
3770 int rc = scrolling_window (w, header_line_row != NULL);
3771 if (rc < 0)
3772 {
3773 /* All rows were found to be equal. */
3774 paused_p = 0;
3775 goto set_cursor;
3776 }
3777 else if (rc > 0)
3778 force_p = 1;
3779 changed_p = 1;
3780 }
3781
3782 /* Update the top mode line after scrolling because a new top
3783 line would otherwise overwrite lines at the top of the window
3784 that can be scrolled. */
3785 if (header_line_row && header_line_row->enabled_p)
3786 {
3787 header_line_row->y = 0;
3788 update_window_line (w, 0);
3789 changed_p = 1;
3790 }
3791
3792 /* Update the rest of the lines. */
3793 for (; row < end && (force_p || !input_pending); ++row)
3794 if (row->enabled_p
3795 /* A row can be completely invisible in case a desired
3796 matrix was built with a vscroll and then
3797 make_cursor_line_fully_visible shifts the matrix. */
3798 && row->visible_height > 0)
3799 {
3800 int vpos = MATRIX_ROW_VPOS (row, desired_matrix);
3801 int i;
3802
3803 /* We'll Have to play a little bit with when to
3804 detect_input_pending. If it's done too often,
3805 scrolling large windows with repeated scroll-up
3806 commands will too quickly pause redisplay. */
3807 if (!force_p && vpos % preempt_count == 0)
3808 detect_input_pending ();
3809
3810 changed_p |= update_window_line (w, vpos);
3811
3812 /* Mark all rows below the last visible one in the current
3813 matrix as invalid. This is necessary because of
3814 variable line heights. Consider the case of three
3815 successive redisplays, where the first displays 5
3816 lines, the second 3 lines, and the third 5 lines again.
3817 If the second redisplay wouldn't mark rows in the
3818 current matrix invalid, the third redisplay might be
3819 tempted to optimize redisplay based on lines displayed
3820 in the first redisplay. */
3821 if (MATRIX_ROW_BOTTOM_Y (row) >= yb)
3822 for (i = vpos + 1; i < w->current_matrix->nrows - 1; ++i)
3823 MATRIX_ROW (w->current_matrix, i)->enabled_p = 0;
3824 }
3825
3826 /* Was display preempted? */
3827 paused_p = row < end;
3828
3829 set_cursor:
3830
3831 /* Fix the appearance of overlapping(overlapped rows. */
3832 if (rif->fix_overlapping_area
3833 && !w->pseudo_window_p
3834 && changed_p
3835 && !paused_p)
3836 {
3837 redraw_overlapped_rows (w, yb);
3838 redraw_overlapping_rows (w, yb);
3839 }
3840
3841 if (!paused_p && !w->pseudo_window_p)
3842 {
3843 /* Make cursor visible at cursor position of W. */
3844 set_window_cursor_after_update (w);
3845
3846 #if 0
3847 /* Check that current matrix invariants are satisfied. This
3848 is for debugging only. See the comment around
3849 check_matrix_invariants. */
3850 IF_DEBUG (check_matrix_invariants (w));
3851 #endif
3852 }
3853
3854 #if GLYPH_DEBUG
3855 /* Remember the redisplay method used to display the matrix. */
3856 strcpy (w->current_matrix->method, w->desired_matrix->method);
3857 #endif
3858
3859 /* End of update of window W. */
3860 rif->update_window_end_hook (w, 1);
3861
3862 }
3863 else
3864 paused_p = 1;
3865
3866 clear_glyph_matrix (desired_matrix);
3867
3868 return paused_p;
3869 }
3870
3871
3872 /* Update the display of area AREA in window W, row number VPOS.
3873 AREA can be either LEFT_MARGIN_AREA or RIGHT_MARGIN_AREA. */
3874
3875 static void
3876 update_marginal_area (w, area, vpos)
3877 struct window *w;
3878 int area, vpos;
3879 {
3880 struct glyph_row *desired_row = MATRIX_ROW (w->desired_matrix, vpos);
3881
3882 /* Let functions in xterm.c know what area subsequent X positions
3883 will be relative to. */
3884 updated_area = area;
3885
3886 /* Set cursor to start of glyphs, write them, and clear to the end
3887 of the area. I don't think that something more sophisticated is
3888 necessary here, since marginal areas will not be the default. */
3889 rif->cursor_to (vpos, 0, desired_row->y, 0);
3890 if (desired_row->used[area])
3891 rif->write_glyphs (desired_row->glyphs[area], desired_row->used[area]);
3892 rif->clear_end_of_line (-1);
3893 }
3894
3895
3896 /* Update the display of the text area of row VPOS in window W.
3897 Value is non-zero if display has changed. */
3898
3899 static int
3900 update_text_area (w, vpos)
3901 struct window *w;
3902 int vpos;
3903 {
3904 struct glyph_row *current_row = MATRIX_ROW (w->current_matrix, vpos);
3905 struct glyph_row *desired_row = MATRIX_ROW (w->desired_matrix, vpos);
3906 int changed_p = 0;
3907
3908 /* Let functions in xterm.c know what area subsequent X positions
3909 will be relative to. */
3910 updated_area = TEXT_AREA;
3911
3912 /* If rows are at different X or Y, or rows have different height,
3913 or the current row is marked invalid, write the entire line. */
3914 if (!current_row->enabled_p
3915 || desired_row->y != current_row->y
3916 || desired_row->ascent != current_row->ascent
3917 || desired_row->phys_ascent != current_row->phys_ascent
3918 || desired_row->phys_height != current_row->phys_height
3919 || desired_row->visible_height != current_row->visible_height
3920 || current_row->overlapped_p
3921 || current_row->x != desired_row->x)
3922 {
3923 rif->cursor_to (vpos, 0, desired_row->y, desired_row->x);
3924
3925 if (desired_row->used[TEXT_AREA])
3926 rif->write_glyphs (desired_row->glyphs[TEXT_AREA],
3927 desired_row->used[TEXT_AREA]);
3928
3929 /* Clear to end of window. */
3930 rif->clear_end_of_line (-1);
3931 changed_p = 1;
3932 }
3933 else
3934 {
3935 int stop, i, x;
3936 struct glyph *current_glyph = current_row->glyphs[TEXT_AREA];
3937 struct glyph *desired_glyph = desired_row->glyphs[TEXT_AREA];
3938
3939 /* If the desired row extends its face to the text area end,
3940 make sure we write at least one glyph, so that the face
3941 extension actually takes place. */
3942 int desired_stop_pos = (desired_row->used[TEXT_AREA]
3943 - (MATRIX_ROW_EXTENDS_FACE_P (desired_row)
3944 ? 1 : 0));
3945
3946 stop = min (current_row->used[TEXT_AREA], desired_stop_pos);
3947 i = 0;
3948 x = desired_row->x;
3949
3950 while (i < stop)
3951 {
3952 /* Skip over glyphs that both rows have in common. These
3953 don't have to be written. */
3954 while (i < stop
3955 && GLYPH_EQUAL_P (desired_glyph, current_glyph))
3956 {
3957 x += desired_glyph->pixel_width;
3958 ++desired_glyph, ++current_glyph, ++i;
3959 }
3960
3961 /* Consider the case that the current row contains "xxx ppp
3962 ggg" in italic Courier font, and the desired row is "xxx
3963 ggg". The character `p' has lbearing, `g' has not. The
3964 loop above will stop in front of the first `p' in the
3965 current row. If we would start writing glyphs there, we
3966 wouldn't erase the lbearing of the `p'. The rest of the
3967 lbearing problem is then taken care of by x_draw_glyphs. */
3968 if (current_row->contains_overlapping_glyphs_p
3969 && i > 0
3970 && i < current_row->used[TEXT_AREA]
3971 && current_row->used[TEXT_AREA] != desired_row->used[TEXT_AREA])
3972 {
3973 int left, right;
3974 rif->get_glyph_overhangs (current_glyph, XFRAME (w->frame),
3975 &left, &right);
3976 while (left > 0 && i > 0)
3977 {
3978 --i, --desired_glyph, --current_glyph;
3979 x -= desired_glyph->pixel_width;
3980 left -= desired_glyph->pixel_width;
3981 }
3982 }
3983
3984 /* Try to avoid writing the entire rest of the desired row
3985 by looking for a resync point. This mainly prevents
3986 mode line flickering in the case the mode line is in
3987 fixed-pitch font, which it usually will be. */
3988 if (i < desired_row->used[TEXT_AREA])
3989 {
3990 int start_x = x, start_hpos = i;
3991 struct glyph *start = desired_glyph;
3992 int current_x = x;
3993
3994 /* Find the next glyph that's equal again. */
3995 while (i < stop
3996 && !GLYPH_EQUAL_P (desired_glyph, current_glyph)
3997 && x == current_x)
3998 {
3999 x += desired_glyph->pixel_width;
4000 current_x += current_glyph->pixel_width;
4001 ++desired_glyph, ++current_glyph, ++i;
4002 }
4003
4004 if (i == start_hpos || x != current_x)
4005 {
4006 i = start_hpos;
4007 x = start_x;
4008 desired_glyph = start;
4009 break;
4010 }
4011
4012 rif->cursor_to (vpos, start_hpos, desired_row->y, start_x);
4013 rif->write_glyphs (start, i - start_hpos);
4014 changed_p = 1;
4015 }
4016 }
4017
4018 /* Write the rest. */
4019 if (i < desired_row->used[TEXT_AREA])
4020 {
4021 rif->cursor_to (vpos, i, desired_row->y, x);
4022 rif->write_glyphs (desired_glyph, desired_row->used[TEXT_AREA] - i);
4023 changed_p = 1;
4024 }
4025
4026 /* Maybe clear to end of line. */
4027 if (MATRIX_ROW_EXTENDS_FACE_P (desired_row))
4028 {
4029 /* If new row extends to the end of the text area, nothing
4030 has to be cleared, if and only if we did a write_glyphs
4031 above. This is made sure by setting desired_stop_pos
4032 appropriately above. */
4033 xassert (i < desired_row->used[TEXT_AREA]);
4034 }
4035 else if (MATRIX_ROW_EXTENDS_FACE_P (current_row))
4036 {
4037 /* If old row extends to the end of the text area, clear. */
4038 if (i >= desired_row->used[TEXT_AREA])
4039 rif->cursor_to (vpos, i, desired_row->y,
4040 desired_row->x + desired_row->pixel_width);
4041 rif->clear_end_of_line (-1);
4042 changed_p = 1;
4043 }
4044 else if (desired_row->pixel_width < current_row->pixel_width)
4045 {
4046 /* Otherwise clear to the end of the old row. Everything
4047 after that position should be clear already. */
4048 int x;
4049
4050 if (i >= desired_row->used[TEXT_AREA])
4051 rif->cursor_to (vpos, i, desired_row->y,
4052 desired_row->x + desired_row->pixel_width);
4053
4054 /* If cursor is displayed at the end of the line, make sure
4055 it's cleared. Nowadays we don't have a phys_cursor_glyph
4056 with which to erase the cursor (because this method
4057 doesn't work with lbearing/rbearing), so we must do it
4058 this way. */
4059 if (vpos == w->phys_cursor.vpos
4060 && w->phys_cursor.hpos >= desired_row->used[TEXT_AREA])
4061 {
4062 w->phys_cursor_on_p = 0;
4063 x = -1;
4064 }
4065 else
4066 x = current_row->x + current_row->pixel_width;
4067 rif->clear_end_of_line (x);
4068 changed_p = 1;
4069 }
4070 }
4071
4072 return changed_p;
4073 }
4074
4075
4076 /* Update row VPOS in window W. Value is non-zero if display has been
4077 changed. */
4078
4079 static int
4080 update_window_line (w, vpos)
4081 struct window *w;
4082 int vpos;
4083 {
4084 struct glyph_row *current_row = MATRIX_ROW (w->current_matrix, vpos);
4085 struct glyph_row *desired_row = MATRIX_ROW (w->desired_matrix, vpos);
4086 int changed_p = 0;
4087
4088 xassert (desired_row->enabled_p);
4089
4090 /* Set the row being updated. This is important to let xterm.c
4091 know what line height values are in effect. */
4092 updated_row = desired_row;
4093
4094 /* Update display of the left margin area, if there is one. */
4095 if (!desired_row->full_width_p
4096 && !NILP (w->left_margin_width))
4097 {
4098 update_marginal_area (w, LEFT_MARGIN_AREA, vpos);
4099 changed_p = 1;
4100 }
4101
4102 /* Update the display of the text area. */
4103 changed_p |= update_text_area (w, vpos);
4104
4105 /* Update display of the right margin area, if there is one. */
4106 if (!desired_row->full_width_p
4107 && !NILP (w->right_margin_width))
4108 {
4109 changed_p = 1;
4110 update_marginal_area (w, RIGHT_MARGIN_AREA, vpos);
4111 }
4112
4113 /* Draw truncation marks etc. */
4114 if (!current_row->enabled_p
4115 || desired_row->y != current_row->y
4116 || desired_row->visible_height != current_row->visible_height
4117 || desired_row->overlay_arrow_p != current_row->overlay_arrow_p
4118 || desired_row->truncated_on_left_p != current_row->truncated_on_left_p
4119 || desired_row->truncated_on_right_p != current_row->truncated_on_right_p
4120 || desired_row->continued_p != current_row->continued_p
4121 || desired_row->mode_line_p != current_row->mode_line_p
4122 || (desired_row->indicate_empty_line_p
4123 != current_row->indicate_empty_line_p)
4124 || (MATRIX_ROW_CONTINUATION_LINE_P (desired_row)
4125 != MATRIX_ROW_CONTINUATION_LINE_P (current_row)))
4126 rif->after_update_window_line_hook (desired_row);
4127
4128 /* Update current_row from desired_row. */
4129 make_current (w->desired_matrix, w->current_matrix, vpos);
4130 updated_row = NULL;
4131 return changed_p;
4132 }
4133
4134
4135 /* Set the cursor after an update of window W. This function may only
4136 be called from update_window. */
4137
4138 static void
4139 set_window_cursor_after_update (w)
4140 struct window *w;
4141 {
4142 struct frame *f = XFRAME (w->frame);
4143 int cx, cy, vpos, hpos;
4144
4145 /* Not intended for frame matrix updates. */
4146 xassert (FRAME_WINDOW_P (f));
4147
4148 if (cursor_in_echo_area
4149 && !NILP (echo_area_buffer[0])
4150 /* If we are showing a message instead of the mini-buffer,
4151 show the cursor for the message instead. */
4152 && XWINDOW (minibuf_window) == w
4153 && EQ (minibuf_window, echo_area_window)
4154 /* These cases apply only to the frame that contains
4155 the active mini-buffer window. */
4156 && FRAME_HAS_MINIBUF_P (f)
4157 && EQ (FRAME_MINIBUF_WINDOW (f), echo_area_window))
4158 {
4159 cx = cy = vpos = hpos = 0;
4160
4161 if (cursor_in_echo_area >= 0)
4162 {
4163 /* If the mini-buffer is several lines high, find the last
4164 line that has any text on it. Note: either all lines
4165 are enabled or none. Otherwise we wouldn't be able to
4166 determine Y. */
4167 struct glyph_row *row, *last_row;
4168 struct glyph *glyph;
4169 int yb = window_text_bottom_y (w);
4170
4171 last_row = NULL;
4172 for (row = MATRIX_ROW (w->current_matrix, 0);
4173 row->enabled_p;
4174 ++row)
4175 {
4176 if (row->used[TEXT_AREA]
4177 && row->glyphs[TEXT_AREA][0].charpos >= 0)
4178 last_row = row;
4179
4180 if (MATRIX_ROW_BOTTOM_Y (row) >= yb)
4181 break;
4182 }
4183
4184 if (last_row)
4185 {
4186 struct glyph *start = row->glyphs[TEXT_AREA];
4187 struct glyph *last = start + row->used[TEXT_AREA] - 1;
4188
4189 while (last > start && last->charpos < 0)
4190 --last;
4191
4192 for (glyph = start; glyph < last; ++glyph)
4193 {
4194 cx += glyph->pixel_width;
4195 ++hpos;
4196 }
4197
4198 cy = last_row->y;
4199 vpos = MATRIX_ROW_VPOS (last_row, w->current_matrix);
4200 }
4201 }
4202 }
4203 else
4204 {
4205 cx = w->cursor.x;
4206 cy = w->cursor.y;
4207 hpos = w->cursor.hpos;
4208 vpos = w->cursor.vpos;
4209 }
4210
4211 /* Window cursor can be out of sync for horizontally split windows. */
4212 hpos = max (0, hpos);
4213 hpos = min (w->current_matrix->matrix_w - 1, hpos);
4214 vpos = max (0, vpos);
4215 vpos = min (w->current_matrix->nrows - 1, vpos);
4216 rif->cursor_to (vpos, hpos, cy, cx);
4217 }
4218
4219
4220 /* Try to reuse part of the current display of W by scrolling lines.
4221 HEADER_LINE_P non-zero means W has a top mode line.
4222
4223 The algorithm is taken from Communications of the ACM, Apr78 "A
4224 Technique for Isolating Differences Between Files." It should take
4225 O(N) time.
4226
4227 A short outline of the steps of the algorithm
4228
4229 1. Skip lines equal at the start and end of both matrices.
4230
4231 2. Enter rows in the current and desired matrix into a symbol
4232 table, counting how often they appear in both matrices.
4233
4234 3. Rows that appear exactly once in both matrices serve as anchors,
4235 i.e. we assume that such lines are likely to have been moved.
4236
4237 4. Starting from anchor lines, extend regions to be scrolled both
4238 forward and backward.
4239
4240 Value is
4241
4242 -1 if all rows were found to be equal.
4243 0 to indicate that we did not scroll the display, or
4244 1 if we did scroll. */
4245
4246 static int
4247 scrolling_window (w, header_line_p)
4248 struct window *w;
4249 int header_line_p;
4250 {
4251 struct symbol
4252 {
4253 /* Number of occurrences of this line in old and new matrix. */
4254 short old_uses, new_uses;
4255
4256 /* Vpos of line in new matrix. */
4257 short new_line_number;
4258
4259 /* The line itself. */
4260 struct glyph_row *row;
4261
4262 /* Hash collision chain. */
4263 struct symbol *next;
4264 };
4265
4266 int SYMBOL_TABLE_SIZE = 101;
4267 struct symbol **table;
4268 struct symbol **old_line_syms, **new_line_syms;
4269 int i, j, first_old, first_new, last_old, last_new;
4270 struct symbol *sym;
4271 struct run **runs;
4272 int nruns;
4273 struct glyph_matrix *desired_matrix = w->desired_matrix;
4274 struct glyph_matrix *current_matrix = w->current_matrix;
4275 int yb = window_text_bottom_y (w);
4276
4277 /* Skip over rows equal at the start. */
4278 i = header_line_p ? 1 : 0;
4279 while (i < current_matrix->nrows - 1
4280 && MATRIX_ROW_ENABLED_P (current_matrix, i)
4281 && MATRIX_ROW_ENABLED_P (desired_matrix, i)
4282 && MATRIX_ROW_BOTTOM_Y (MATRIX_ROW (desired_matrix, i)) < yb
4283 && MATRIX_ROW_BOTTOM_Y (MATRIX_ROW (current_matrix, i)) < yb
4284 && row_equal_p (w,
4285 MATRIX_ROW (desired_matrix, i),
4286 MATRIX_ROW (current_matrix, i)))
4287 {
4288 assign_row (MATRIX_ROW (current_matrix, i),
4289 MATRIX_ROW (desired_matrix, i));
4290 MATRIX_ROW (desired_matrix, i)->enabled_p = 0;
4291 ++i;
4292 }
4293
4294 /* Give up if some rows in the desired matrix are not enabled. */
4295 if (!MATRIX_ROW (desired_matrix, i)->enabled_p)
4296 return -1;
4297
4298 first_old = first_new = i;
4299
4300 /* Set last_new to the index + 1 of the last enabled row in the
4301 desired matrix. */
4302 i = first_new + 1;
4303 while (i < desired_matrix->nrows - 1
4304 && MATRIX_ROW (desired_matrix, i)->enabled_p
4305 && MATRIX_ROW_BOTTOM_Y (MATRIX_ROW (desired_matrix, i)) < yb)
4306 ++i;
4307
4308 if (!MATRIX_ROW (desired_matrix, i)->enabled_p)
4309 return 0;
4310
4311 last_new = i;
4312
4313 /* Set last_old to the index + 1 of the last enabled row in the
4314 current matrix. We don't look at the enabled flag here because
4315 we plan to reuse part of the display even if other parts are
4316 disabled. */
4317 i = first_old + 1;
4318 while (i < current_matrix->nrows - 1
4319 && MATRIX_ROW_BOTTOM_Y (MATRIX_ROW (current_matrix, i)) < yb)
4320 ++i;
4321 last_old = i;
4322
4323 /* Skip over rows equal at the bottom. */
4324 i = last_new;
4325 j = last_old;
4326 while (i - 1 > first_new
4327 && j - 1 > first_old
4328 && MATRIX_ROW (current_matrix, i - 1)->enabled_p
4329 && (MATRIX_ROW (current_matrix, i - 1)->y
4330 == MATRIX_ROW (desired_matrix, j - 1)->y)
4331 && row_equal_p (w,
4332 MATRIX_ROW (desired_matrix, i - 1),
4333 MATRIX_ROW (current_matrix, j - 1)))
4334 --i, --j;
4335 last_new = i;
4336 last_old = j;
4337
4338 /* Nothing to do if all rows are equal. */
4339 if (last_new == first_new)
4340 return 0;
4341
4342 /* Allocate a hash table in which all rows will be inserted. */
4343 table = (struct symbol **) alloca (SYMBOL_TABLE_SIZE * sizeof *table);
4344 bzero (table, SYMBOL_TABLE_SIZE * sizeof *table);
4345
4346 /* For each row in the current matrix, record the symbol belonging
4347 to the row in OLD_LINE_SYMS. */
4348 old_line_syms = (struct symbol **) alloca (current_matrix->nrows
4349 * sizeof *old_line_syms);
4350 new_line_syms = (struct symbol **) alloca (desired_matrix->nrows
4351 * sizeof *new_line_syms);
4352
4353 #define ADDSYM(ROW) \
4354 do \
4355 { \
4356 struct glyph_row *row_ = (ROW); \
4357 int i_ = row_->hash % SYMBOL_TABLE_SIZE; \
4358 sym = table[i_]; \
4359 while (sym && !row_equal_p (w, sym->row, row_)) \
4360 sym = sym->next; \
4361 if (sym == NULL) \
4362 { \
4363 sym = (struct symbol *) alloca (sizeof *sym); \
4364 sym->row = row_; \
4365 sym->old_uses = sym->new_uses = 0; \
4366 sym->next = table[i_]; \
4367 table[i_] = sym; \
4368 } \
4369 } \
4370 while (0)
4371
4372 /* Add current rows to the symbol table. */
4373 for (i = first_old; i < last_old; ++i)
4374 {
4375 if (MATRIX_ROW (current_matrix, i)->enabled_p)
4376 {
4377 ADDSYM (MATRIX_ROW (current_matrix, i));
4378 old_line_syms[i] = sym;
4379 ++sym->old_uses;
4380 }
4381 else
4382 old_line_syms[i] = NULL;
4383 }
4384
4385 /* Add desired rows to the symbol table. */
4386 for (i = first_new; i < last_new; ++i)
4387 {
4388 xassert (MATRIX_ROW_ENABLED_P (desired_matrix, i));
4389 ADDSYM (MATRIX_ROW (desired_matrix, i));
4390 ++sym->new_uses;
4391 new_line_syms[i] = sym;
4392 sym->new_line_number = i;
4393 }
4394
4395 #undef ADDSYM
4396
4397 /* Record in runs which moves were found, ordered by pixel
4398 height of copied areas. */
4399 nruns = 0;
4400 runs = (struct run **) alloca (desired_matrix->nrows * sizeof *runs);
4401
4402 /* Identify moves based on lines that are unique and equal
4403 in both matrices. */
4404 for (i = first_old; i < last_old;)
4405 if (old_line_syms[i]
4406 && old_line_syms[i]->old_uses == 1
4407 && old_line_syms[i]->new_uses == 1)
4408 {
4409 int j, k;
4410 int new_line = old_line_syms[i]->new_line_number;
4411 struct run *run = (struct run *) alloca (sizeof *run);
4412
4413 /* Record move. */
4414 run->current_vpos = i;
4415 run->current_y = MATRIX_ROW (current_matrix, i)->y;
4416 run->desired_vpos = new_line;
4417 run->desired_y = MATRIX_ROW (desired_matrix, new_line)->y;
4418 run->nrows = 1;
4419 run->height = MATRIX_ROW (current_matrix, i)->height;
4420
4421 /* Extend backward. */
4422 j = i - 1;
4423 k = new_line - 1;
4424 while (j > first_old
4425 && k > first_new
4426 && old_line_syms[j] == new_line_syms[k])
4427 {
4428 int h = MATRIX_ROW (current_matrix, j)->height;
4429 --run->current_vpos;
4430 --run->desired_vpos;
4431 ++run->nrows;
4432 run->height += h;
4433 run->desired_y -= h;
4434 run->current_y -= h;
4435 --j, --k;
4436 }
4437
4438 /* Extend forward. */
4439 j = i + 1;
4440 k = new_line + 1;
4441 while (j < last_old
4442 && k < last_new
4443 && old_line_syms[j] == new_line_syms[k])
4444 {
4445 int h = MATRIX_ROW (current_matrix, j)->height;
4446 ++run->nrows;
4447 run->height += h;
4448 ++j, ++k;
4449 }
4450
4451 /* Insert run into list of all runs. Order runs by copied
4452 pixel lines. Note that we record runs that don't have to
4453 be copied because they are already in place. This is done
4454 because we can avoid calling update_window_line in this
4455 case. */
4456 for (j = 0; j < nruns && runs[j]->height > run->height; ++j)
4457 ;
4458 for (k = nruns; k >= j; --k)
4459 runs[k] = runs[k - 1];
4460 runs[j] = run;
4461 ++nruns;
4462
4463 i += run->nrows;
4464 }
4465 else
4466 ++i;
4467
4468 /* Do the moves. Do it in a way that we don't overwrite something
4469 we want to copy later on. This is not solvable in general
4470 because there is only one display and we don't have a way to
4471 exchange areas on this display. Example:
4472
4473 +-----------+ +-----------+
4474 | A | | B |
4475 +-----------+ --> +-----------+
4476 | B | | A |
4477 +-----------+ +-----------+
4478
4479 Instead, prefer bigger moves, and invalidate moves that would
4480 copy from where we copied to. */
4481
4482 for (i = 0; i < nruns; ++i)
4483 if (runs[i]->nrows > 0)
4484 {
4485 struct run *r = runs[i];
4486
4487 /* Copy on the display. */
4488 if (r->current_y != r->desired_y)
4489 {
4490 rif->scroll_run_hook (w, r);
4491
4492 /* Invalidate runs that copy from where we copied to. */
4493 for (j = i + 1; j < nruns; ++j)
4494 {
4495 struct run *p = runs[j];
4496
4497 if ((p->current_y >= r->desired_y
4498 && p->current_y < r->desired_y + r->height)
4499 || (p->current_y + p->height >= r->desired_y
4500 && (p->current_y + p->height
4501 < r->desired_y + r->height)))
4502 p->nrows = 0;
4503 }
4504 }
4505
4506 /* Assign matrix rows. */
4507 for (j = 0; j < r->nrows; ++j)
4508 {
4509 struct glyph_row *from, *to;
4510 int to_overlapped_p;
4511
4512 to = MATRIX_ROW (current_matrix, r->desired_vpos + j);
4513 to_overlapped_p = to->overlapped_p;
4514 from = MATRIX_ROW (desired_matrix, r->desired_vpos + j);
4515 assign_row (to, from);
4516 to->enabled_p = 1, from->enabled_p = 0;
4517 to->overlapped_p = to_overlapped_p;
4518 }
4519 }
4520
4521 /* Value is non-zero to indicate that we scrolled the display. */
4522 return 1;
4523 }
4524
4525
4526 /* Set WINDOW->must_be_updated_p TO ON_P for all windows WINDOW in the
4527 window tree rooted at W. */
4528
4529 void
4530 set_window_update_flags (w, on_p)
4531 struct window *w;
4532 int on_p;
4533 {
4534 while (w)
4535 {
4536 if (!NILP (w->hchild))
4537 set_window_update_flags (XWINDOW (w->hchild), on_p);
4538 else if (!NILP (w->vchild))
4539 set_window_update_flags (XWINDOW (w->vchild), on_p);
4540 else
4541 w->must_be_updated_p = on_p;
4542
4543 w = NILP (w->next) ? 0 : XWINDOW (w->next);
4544 }
4545 }
4546
4547
4548 \f
4549 /************************************************************************
4550 Frame-Based Updates
4551 ************************************************************************/
4552
4553 /* Update the desired frame matrix of frame F.
4554
4555 FORCE_P non-zero means that the update should not be stopped by
4556 pending input. INHIBIT_HAIRY_ID_P non-zero means that scrolling
4557 should not be tried.
4558
4559 Value is non-zero if update was stopped due to pending input. */
4560
4561 static int
4562 update_frame_1 (f, force_p, inhibit_id_p)
4563 struct frame *f;
4564 int force_p;
4565 int inhibit_id_p;
4566 {
4567 /* Frame matrices to work on. */
4568 struct glyph_matrix *current_matrix = f->current_matrix;
4569 struct glyph_matrix *desired_matrix = f->desired_matrix;
4570 int i;
4571 int pause;
4572 int preempt_count = baud_rate / 2400 + 1;
4573 extern int input_pending;
4574
4575 xassert (current_matrix && desired_matrix);
4576
4577 if (baud_rate != FRAME_COST_BAUD_RATE (f))
4578 calculate_costs (f);
4579
4580 if (preempt_count <= 0)
4581 preempt_count = 1;
4582
4583 detect_input_pending ();
4584 if (input_pending && !force_p)
4585 {
4586 pause = 1;
4587 goto do_pause;
4588 }
4589
4590 update_begin (f);
4591
4592 /* If we cannot insert/delete lines, it's no use trying it. */
4593 if (!line_ins_del_ok)
4594 inhibit_id_p = 1;
4595
4596 /* See if any of the desired lines are enabled; don't compute for
4597 i/d line if just want cursor motion. */
4598 for (i = 0; i < desired_matrix->nrows; i++)
4599 if (MATRIX_ROW_ENABLED_P (desired_matrix, i))
4600 break;
4601
4602 /* Try doing i/d line, if not yet inhibited. */
4603 if (!inhibit_id_p && i < desired_matrix->nrows)
4604 force_p |= scrolling (f);
4605
4606 /* Update the individual lines as needed. Do bottom line first. */
4607 if (MATRIX_ROW_ENABLED_P (desired_matrix, desired_matrix->nrows - 1))
4608 update_frame_line (f, desired_matrix->nrows - 1);
4609
4610 /* Now update the rest of the lines. */
4611 for (i = 0; i < desired_matrix->nrows - 1 && (force_p || !input_pending); i++)
4612 {
4613 if (MATRIX_ROW_ENABLED_P (desired_matrix, i))
4614 {
4615 if (FRAME_TERMCAP_P (f))
4616 {
4617 /* Flush out every so many lines.
4618 Also flush out if likely to have more than 1k buffered
4619 otherwise. I'm told that some telnet connections get
4620 really screwed by more than 1k output at once. */
4621 int outq = PENDING_OUTPUT_COUNT (stdout);
4622 if (outq > 900
4623 || (outq > 20 && ((i - 1) % preempt_count == 0)))
4624 {
4625 fflush (stdout);
4626 if (preempt_count == 1)
4627 {
4628 #ifdef EMACS_OUTQSIZE
4629 if (EMACS_OUTQSIZE (0, &outq) < 0)
4630 /* Probably not a tty. Ignore the error and reset
4631 * the outq count. */
4632 outq = PENDING_OUTPUT_COUNT (stdout);
4633 #endif
4634 outq *= 10;
4635 if (baud_rate <= outq && baud_rate > 0)
4636 sleep (outq / baud_rate);
4637 }
4638 }
4639 }
4640
4641 if ((i - 1) % preempt_count == 0)
4642 detect_input_pending ();
4643
4644 update_frame_line (f, i);
4645 }
4646 }
4647
4648 pause = (i < FRAME_HEIGHT (f) - 1) ? i : 0;
4649
4650 /* Now just clean up termcap drivers and set cursor, etc. */
4651 if (!pause)
4652 {
4653 if ((cursor_in_echo_area
4654 /* If we are showing a message instead of the mini-buffer,
4655 show the cursor for the message instead of for the
4656 (now hidden) mini-buffer contents. */
4657 || (EQ (minibuf_window, selected_window)
4658 && EQ (minibuf_window, echo_area_window)
4659 && !NILP (echo_area_buffer[0])))
4660 /* These cases apply only to the frame that contains
4661 the active mini-buffer window. */
4662 && FRAME_HAS_MINIBUF_P (f)
4663 && EQ (FRAME_MINIBUF_WINDOW (f), echo_area_window))
4664 {
4665 int top = XINT (XWINDOW (FRAME_MINIBUF_WINDOW (f))->top);
4666 int row, col;
4667
4668 if (cursor_in_echo_area < 0)
4669 {
4670 /* Negative value of cursor_in_echo_area means put
4671 cursor at beginning of line. */
4672 row = top;
4673 col = 0;
4674 }
4675 else
4676 {
4677 /* Positive value of cursor_in_echo_area means put
4678 cursor at the end of the prompt. If the mini-buffer
4679 is several lines high, find the last line that has
4680 any text on it. */
4681 row = FRAME_HEIGHT (f);
4682 do
4683 {
4684 --row;
4685 col = 0;
4686
4687 if (MATRIX_ROW_ENABLED_P (current_matrix, row))
4688 {
4689 /* Frame rows are filled up with spaces that
4690 must be ignored here. */
4691 struct glyph_row *r = MATRIX_ROW (current_matrix,
4692 row);
4693 struct glyph *start = r->glyphs[TEXT_AREA];
4694 struct glyph *last = start + r->used[TEXT_AREA];
4695
4696 while (last > start
4697 && (last - 1)->charpos < 0)
4698 --last;
4699
4700 col = last - start;
4701 }
4702 }
4703 while (row > top && col == 0);
4704
4705 /* Make sure COL is not out of range. */
4706 if (col >= FRAME_CURSOR_X_LIMIT (f))
4707 {
4708 /* If we have another row, advance cursor into it. */
4709 if (row < FRAME_HEIGHT (f) - 1)
4710 {
4711 col = FRAME_LEFT_SCROLL_BAR_WIDTH (f);
4712 row++;
4713 }
4714 /* Otherwise move it back in range. */
4715 else
4716 col = FRAME_CURSOR_X_LIMIT (f) - 1;
4717 }
4718 }
4719
4720 cursor_to (row, col);
4721 }
4722 else
4723 {
4724 /* We have only one cursor on terminal frames. Use it to
4725 display the cursor of the selected window. */
4726 struct window *w = XWINDOW (FRAME_SELECTED_WINDOW (f));
4727 if (w->cursor.vpos >= 0
4728 /* The cursor vpos may be temporarily out of bounds
4729 in the following situation: There is one window,
4730 with the cursor in the lower half of it. The window
4731 is split, and a message causes a redisplay before
4732 a new cursor position has been computed. */
4733 && w->cursor.vpos < XFASTINT (w->height))
4734 {
4735 int x = WINDOW_TO_FRAME_HPOS (w, w->cursor.hpos);
4736 int y = WINDOW_TO_FRAME_VPOS (w, w->cursor.vpos);
4737
4738 if (INTEGERP (w->left_margin_width))
4739 x += XFASTINT (w->left_margin_width);
4740
4741 /* x = max (min (x, FRAME_WINDOW_WIDTH (f) - 1), 0); */
4742 cursor_to (y, x);
4743 }
4744 }
4745 }
4746
4747 update_end (f);
4748
4749 if (termscript)
4750 fflush (termscript);
4751 fflush (stdout);
4752
4753 do_pause:
4754
4755 display_completed = !pause;
4756 clear_desired_matrices (f);
4757 return pause;
4758 }
4759
4760
4761 /* Do line insertions/deletions on frame F for frame-based redisplay. */
4762
4763 int
4764 scrolling (frame)
4765 struct frame *frame;
4766 {
4767 int unchanged_at_top, unchanged_at_bottom;
4768 int window_size;
4769 int changed_lines;
4770 int *old_hash = (int *) alloca (FRAME_HEIGHT (frame) * sizeof (int));
4771 int *new_hash = (int *) alloca (FRAME_HEIGHT (frame) * sizeof (int));
4772 int *draw_cost = (int *) alloca (FRAME_HEIGHT (frame) * sizeof (int));
4773 int *old_draw_cost = (int *) alloca (FRAME_HEIGHT (frame) * sizeof (int));
4774 register int i;
4775 int free_at_end_vpos = FRAME_HEIGHT (frame);
4776 struct glyph_matrix *current_matrix = frame->current_matrix;
4777 struct glyph_matrix *desired_matrix = frame->desired_matrix;
4778
4779 if (!current_matrix)
4780 abort ();
4781
4782 /* Compute hash codes of all the lines. Also calculate number of
4783 changed lines, number of unchanged lines at the beginning, and
4784 number of unchanged lines at the end. */
4785 changed_lines = 0;
4786 unchanged_at_top = 0;
4787 unchanged_at_bottom = FRAME_HEIGHT (frame);
4788 for (i = 0; i < FRAME_HEIGHT (frame); i++)
4789 {
4790 /* Give up on this scrolling if some old lines are not enabled. */
4791 if (!MATRIX_ROW_ENABLED_P (current_matrix, i))
4792 return 0;
4793 old_hash[i] = line_hash_code (MATRIX_ROW (current_matrix, i));
4794 if (! MATRIX_ROW_ENABLED_P (desired_matrix, i))
4795 {
4796 /* This line cannot be redrawn, so don't let scrolling mess it. */
4797 new_hash[i] = old_hash[i];
4798 #define INFINITY 1000000 /* Taken from scroll.c */
4799 draw_cost[i] = INFINITY;
4800 }
4801 else
4802 {
4803 new_hash[i] = line_hash_code (MATRIX_ROW (desired_matrix, i));
4804 draw_cost[i] = line_draw_cost (desired_matrix, i);
4805 }
4806
4807 if (old_hash[i] != new_hash[i])
4808 {
4809 changed_lines++;
4810 unchanged_at_bottom = FRAME_HEIGHT (frame) - i - 1;
4811 }
4812 else if (i == unchanged_at_top)
4813 unchanged_at_top++;
4814 old_draw_cost[i] = line_draw_cost (current_matrix, i);
4815 }
4816
4817 /* If changed lines are few, don't allow preemption, don't scroll. */
4818 if ((!scroll_region_ok && changed_lines < baud_rate / 2400)
4819 || unchanged_at_bottom == FRAME_HEIGHT (frame))
4820 return 1;
4821
4822 window_size = (FRAME_HEIGHT (frame) - unchanged_at_top
4823 - unchanged_at_bottom);
4824
4825 if (scroll_region_ok)
4826 free_at_end_vpos -= unchanged_at_bottom;
4827 else if (memory_below_frame)
4828 free_at_end_vpos = -1;
4829
4830 /* If large window, fast terminal and few lines in common between
4831 current frame and desired frame, don't bother with i/d calc. */
4832 if (!scroll_region_ok && window_size >= 18 && baud_rate > 2400
4833 && (window_size >=
4834 10 * scrolling_max_lines_saved (unchanged_at_top,
4835 FRAME_HEIGHT (frame) - unchanged_at_bottom,
4836 old_hash, new_hash, draw_cost)))
4837 return 0;
4838
4839 if (window_size < 2)
4840 return 0;
4841
4842 scrolling_1 (frame, window_size, unchanged_at_top, unchanged_at_bottom,
4843 draw_cost + unchanged_at_top - 1,
4844 old_draw_cost + unchanged_at_top - 1,
4845 old_hash + unchanged_at_top - 1,
4846 new_hash + unchanged_at_top - 1,
4847 free_at_end_vpos - unchanged_at_top);
4848
4849 return 0;
4850 }
4851
4852
4853 /* Count the number of blanks at the start of the vector of glyphs R
4854 which is LEN glyphs long. */
4855
4856 static int
4857 count_blanks (r, len)
4858 struct glyph *r;
4859 int len;
4860 {
4861 int i;
4862
4863 for (i = 0; i < len; ++i)
4864 if (!CHAR_GLYPH_SPACE_P (r[i]))
4865 break;
4866
4867 return i;
4868 }
4869
4870
4871 /* Count the number of glyphs in common at the start of the glyph
4872 vectors STR1 and STR2. END1 is the end of STR1 and END2 is the end
4873 of STR2. Value is the number of equal glyphs equal at the start. */
4874
4875 static int
4876 count_match (str1, end1, str2, end2)
4877 struct glyph *str1, *end1, *str2, *end2;
4878 {
4879 struct glyph *p1 = str1;
4880 struct glyph *p2 = str2;
4881
4882 while (p1 < end1
4883 && p2 < end2
4884 && GLYPH_CHAR_AND_FACE_EQUAL_P (p1, p2))
4885 ++p1, ++p2;
4886
4887 return p1 - str1;
4888 }
4889
4890
4891 /* Char insertion/deletion cost vector, from term.c */
4892
4893 extern int *char_ins_del_vector;
4894 #define char_ins_del_cost(f) (&char_ins_del_vector[FRAME_WINDOW_WIDTH((f))])
4895
4896
4897 /* Perform a frame-based update on line VPOS in frame FRAME. */
4898
4899 static void
4900 update_frame_line (frame, vpos)
4901 register struct frame *frame;
4902 int vpos;
4903 {
4904 struct glyph *obody, *nbody, *op1, *op2, *np1, *nend;
4905 int tem;
4906 int osp, nsp, begmatch, endmatch, olen, nlen;
4907 struct glyph_matrix *current_matrix = frame->current_matrix;
4908 struct glyph_matrix *desired_matrix = frame->desired_matrix;
4909 struct glyph_row *current_row = MATRIX_ROW (current_matrix, vpos);
4910 struct glyph_row *desired_row = MATRIX_ROW (desired_matrix, vpos);
4911 int must_write_whole_line_p;
4912
4913 if (desired_row->inverse_p
4914 != (current_row->enabled_p && current_row->inverse_p))
4915 {
4916 int n = current_row->enabled_p ? current_row->used[TEXT_AREA] : 0;
4917 change_line_highlight (desired_row->inverse_p, vpos, vpos, n);
4918 current_row->enabled_p = 0;
4919 }
4920 else
4921 reassert_line_highlight (desired_row->inverse_p, vpos);
4922
4923 /* Current row not enabled means it has unknown contents. We must
4924 write the whole desired line in that case. */
4925 must_write_whole_line_p = !current_row->enabled_p;
4926 if (must_write_whole_line_p)
4927 {
4928 obody = 0;
4929 olen = 0;
4930 }
4931 else
4932 {
4933 obody = MATRIX_ROW_GLYPH_START (current_matrix, vpos);
4934 olen = current_row->used[TEXT_AREA];
4935
4936 if (! current_row->inverse_p)
4937 {
4938 /* Ignore trailing spaces, if we can. */
4939 if (!must_write_spaces)
4940 while (olen > 0 && CHAR_GLYPH_SPACE_P (obody[olen-1]))
4941 olen--;
4942 }
4943 else
4944 {
4945 /* For an inverse-video line, make sure it's filled with
4946 spaces all the way to the frame edge so that the reverse
4947 video extends all the way across. */
4948 while (olen < FRAME_WIDTH (frame) - 1)
4949 obody[olen++] = space_glyph;
4950 }
4951 }
4952
4953 current_row->enabled_p = 1;
4954 current_row->used[TEXT_AREA] = desired_row->used[TEXT_AREA];
4955 current_row->inverse_p = desired_row->inverse_p;
4956
4957 /* If desired line is empty, just clear the line. */
4958 if (!desired_row->enabled_p)
4959 {
4960 nlen = 0;
4961 goto just_erase;
4962 }
4963
4964 nbody = desired_row->glyphs[TEXT_AREA];
4965 nlen = desired_row->used[TEXT_AREA];
4966 nend = nbody + nlen;
4967
4968 /* If display line has unknown contents, write the whole line. */
4969 if (must_write_whole_line_p)
4970 {
4971 /* Ignore spaces at the end, if we can. */
4972 if (!must_write_spaces)
4973 while (nlen > 0 && CHAR_GLYPH_SPACE_P (nbody[nlen - 1]))
4974 --nlen;
4975
4976 /* Write the contents of the desired line. */
4977 if (nlen)
4978 {
4979 cursor_to (vpos, 0);
4980 write_glyphs (nbody, nlen);
4981 }
4982
4983 /* Don't call clear_end_of_line if we already wrote the whole
4984 line. The cursor will not be at the right margin in that
4985 case but in the line below. */
4986 if (nlen < FRAME_WINDOW_WIDTH (frame))
4987 {
4988 cursor_to (vpos, nlen);
4989 clear_end_of_line (FRAME_WINDOW_WIDTH (frame));
4990 }
4991 else
4992 /* Make sure we are in the right row, otherwise cursor movement
4993 with cmgoto might use `ch' in the wrong row. */
4994 cursor_to (vpos, 0);
4995
4996 make_current (desired_matrix, current_matrix, vpos);
4997 return;
4998 }
4999
5000 /* Pretend trailing spaces are not there at all,
5001 unless for one reason or another we must write all spaces. */
5002 if (!desired_row->inverse_p)
5003 {
5004 if (!must_write_spaces)
5005 while (nlen > 0 && CHAR_GLYPH_SPACE_P (nbody[nlen - 1]))
5006 nlen--;
5007 }
5008 else
5009 {
5010 /* For an inverse-video line, give it extra trailing spaces all
5011 the way to the frame edge so that the reverse video extends
5012 all the way across. */
5013 while (nlen < FRAME_WIDTH (frame) - 1)
5014 nbody[nlen++] = space_glyph;
5015 }
5016
5017 /* If there's no i/d char, quickly do the best we can without it. */
5018 if (!char_ins_del_ok)
5019 {
5020 int i, j;
5021
5022 /* Find the first glyph in desired row that doesn't agree with
5023 a glyph in the current row, and write the rest from there on. */
5024 for (i = 0; i < nlen; i++)
5025 {
5026 if (i >= olen || !GLYPH_EQUAL_P (nbody + i, obody + i))
5027 {
5028 /* Find the end of the run of different glyphs. */
5029 j = i + 1;
5030 while (j < nlen
5031 && (j >= olen
5032 || !GLYPH_EQUAL_P (nbody + j, obody + j)
5033 || CHAR_GLYPH_PADDING_P (nbody[j])))
5034 ++j;
5035
5036 /* Output this run of non-matching chars. */
5037 cursor_to (vpos, i);
5038 write_glyphs (nbody + i, j - i);
5039 i = j - 1;
5040
5041 /* Now find the next non-match. */
5042 }
5043 }
5044
5045 /* Clear the rest of the line, or the non-clear part of it. */
5046 if (olen > nlen)
5047 {
5048 cursor_to (vpos, nlen);
5049 clear_end_of_line (olen);
5050 }
5051
5052 /* Make current row = desired row. */
5053 make_current (desired_matrix, current_matrix, vpos);
5054 return;
5055 }
5056
5057 /* Here when CHAR_INS_DEL_OK != 0, i.e. we can insert or delete
5058 characters in a row. */
5059
5060 if (!olen)
5061 {
5062 /* If current line is blank, skip over initial spaces, if
5063 possible, and write the rest. */
5064 if (must_write_spaces || desired_row->inverse_p)
5065 nsp = 0;
5066 else
5067 nsp = count_blanks (nbody, nlen);
5068
5069 if (nlen > nsp)
5070 {
5071 cursor_to (vpos, nsp);
5072 write_glyphs (nbody + nsp, nlen - nsp);
5073 }
5074
5075 /* Exchange contents between current_frame and new_frame. */
5076 make_current (desired_matrix, current_matrix, vpos);
5077 return;
5078 }
5079
5080 /* Compute number of leading blanks in old and new contents. */
5081 osp = count_blanks (obody, olen);
5082 nsp = desired_row->inverse_p ? 0 : count_blanks (nbody, nlen);
5083
5084 /* Compute number of matching chars starting with first non-blank. */
5085 begmatch = count_match (obody + osp, obody + olen,
5086 nbody + nsp, nbody + nlen);
5087
5088 /* Spaces in new match implicit space past the end of old. */
5089 /* A bug causing this to be a no-op was fixed in 18.29. */
5090 if (!must_write_spaces && osp + begmatch == olen)
5091 {
5092 np1 = nbody + nsp;
5093 while (np1 + begmatch < nend && CHAR_GLYPH_SPACE_P (np1[begmatch]))
5094 ++begmatch;
5095 }
5096
5097 /* Avoid doing insert/delete char
5098 just cause number of leading spaces differs
5099 when the following text does not match. */
5100 if (begmatch == 0 && osp != nsp)
5101 osp = nsp = min (osp, nsp);
5102
5103 /* Find matching characters at end of line */
5104 op1 = obody + olen;
5105 np1 = nbody + nlen;
5106 op2 = op1 + begmatch - min (olen - osp, nlen - nsp);
5107 while (op1 > op2
5108 && GLYPH_EQUAL_P (op1 - 1, np1 - 1))
5109 {
5110 op1--;
5111 np1--;
5112 }
5113 endmatch = obody + olen - op1;
5114
5115 /* tem gets the distance to insert or delete.
5116 endmatch is how many characters we save by doing so.
5117 Is it worth it? */
5118
5119 tem = (nlen - nsp) - (olen - osp);
5120 if (endmatch && tem
5121 && (!char_ins_del_ok || endmatch <= char_ins_del_cost (frame)[tem]))
5122 endmatch = 0;
5123
5124 /* nsp - osp is the distance to insert or delete.
5125 If that is nonzero, begmatch is known to be nonzero also.
5126 begmatch + endmatch is how much we save by doing the ins/del.
5127 Is it worth it? */
5128
5129 if (nsp != osp
5130 && (!char_ins_del_ok
5131 || begmatch + endmatch <= char_ins_del_cost (frame)[nsp - osp]))
5132 {
5133 begmatch = 0;
5134 endmatch = 0;
5135 osp = nsp = min (osp, nsp);
5136 }
5137
5138 /* Now go through the line, inserting, writing and
5139 deleting as appropriate. */
5140
5141 if (osp > nsp)
5142 {
5143 cursor_to (vpos, nsp);
5144 delete_glyphs (osp - nsp);
5145 }
5146 else if (nsp > osp)
5147 {
5148 /* If going to delete chars later in line
5149 and insert earlier in the line,
5150 must delete first to avoid losing data in the insert */
5151 if (endmatch && nlen < olen + nsp - osp)
5152 {
5153 cursor_to (vpos, nlen - endmatch + osp - nsp);
5154 delete_glyphs (olen + nsp - osp - nlen);
5155 olen = nlen - (nsp - osp);
5156 }
5157 cursor_to (vpos, osp);
5158 insert_glyphs (0, nsp - osp);
5159 }
5160 olen += nsp - osp;
5161
5162 tem = nsp + begmatch + endmatch;
5163 if (nlen != tem || olen != tem)
5164 {
5165 cursor_to (vpos, nsp + begmatch);
5166 if (!endmatch || nlen == olen)
5167 {
5168 /* If new text being written reaches right margin,
5169 there is no need to do clear-to-eol at the end.
5170 (and it would not be safe, since cursor is not
5171 going to be "at the margin" after the text is done) */
5172 if (nlen == FRAME_WINDOW_WIDTH (frame))
5173 olen = 0;
5174 write_glyphs (nbody + nsp + begmatch, nlen - tem);
5175 }
5176 else if (nlen > olen)
5177 {
5178 /* Here, we used to have the following simple code:
5179 ----------------------------------------
5180 write_glyphs (nbody + nsp + begmatch, olen - tem);
5181 insert_glyphs (nbody + nsp + begmatch + olen - tem, nlen - olen);
5182 ----------------------------------------
5183 but it doesn't work if nbody[nsp + begmatch + olen - tem]
5184 is a padding glyph. */
5185 int out = olen - tem; /* Columns to be overwritten originally. */
5186 int del;
5187
5188 /* Calculate columns we can actually overwrite. */
5189 while (CHAR_GLYPH_PADDING_P (nbody[nsp + begmatch + out])) out--;
5190 write_glyphs (nbody + nsp + begmatch, out);
5191 /* If we left columns to be overwritten, we must delete them. */
5192 del = olen - tem - out;
5193 if (del > 0) delete_glyphs (del);
5194 /* At last, we insert columns not yet written out. */
5195 insert_glyphs (nbody + nsp + begmatch + out, nlen - olen + del);
5196 olen = nlen;
5197 }
5198 else if (olen > nlen)
5199 {
5200 write_glyphs (nbody + nsp + begmatch, nlen - tem);
5201 delete_glyphs (olen - nlen);
5202 olen = nlen;
5203 }
5204 }
5205
5206 just_erase:
5207 /* If any unerased characters remain after the new line, erase them. */
5208 if (olen > nlen)
5209 {
5210 cursor_to (vpos, nlen);
5211 clear_end_of_line (olen);
5212 }
5213
5214 /* Exchange contents between current_frame and new_frame. */
5215 make_current (desired_matrix, current_matrix, vpos);
5216 }
5217
5218
5219 \f
5220 /***********************************************************************
5221 X/Y Position -> Buffer Position
5222 ***********************************************************************/
5223
5224 /* Return the character position of the character at window relative
5225 pixel position (*X, *Y). *X and *Y are adjusted to character
5226 boundaries. */
5227
5228 int
5229 buffer_posn_from_coords (w, x, y)
5230 struct window *w;
5231 int *x, *y;
5232 {
5233 struct it it;
5234 struct buffer *old_current_buffer = current_buffer;
5235 struct text_pos startp;
5236 int left_area_width;
5237
5238 current_buffer = XBUFFER (w->buffer);
5239 SET_TEXT_POS_FROM_MARKER (startp, w->start);
5240 CHARPOS (startp) = min (ZV, max (BEGV, CHARPOS (startp)));
5241 BYTEPOS (startp) = min (ZV_BYTE, max (BEGV_BYTE, BYTEPOS (startp)));
5242 start_display (&it, w, startp);
5243
5244 left_area_width = WINDOW_DISPLAY_LEFT_AREA_PIXEL_WIDTH (w);
5245 move_it_to (&it, -1, *x + it.first_visible_x - left_area_width, *y, -1,
5246 MOVE_TO_X | MOVE_TO_Y);
5247
5248 *x = it.current_x - it.first_visible_x + left_area_width;
5249 *y = it.current_y;
5250 current_buffer = old_current_buffer;
5251 return IT_CHARPOS (it);
5252 }
5253
5254
5255 /* Value is the string under window-relative coordinates X/Y in the
5256 mode or top line of window W, or nil if none. MODE_LINE_P non-zero
5257 means look at the mode line. *CHARPOS is set to the position in
5258 the string returned. */
5259
5260 Lisp_Object
5261 mode_line_string (w, x, y, mode_line_p, charpos)
5262 struct window *w;
5263 int x, y;
5264 int *charpos;
5265 {
5266 struct glyph_row *row;
5267 struct glyph *glyph, *end;
5268 struct frame *f = XFRAME (w->frame);
5269 int x0;
5270 Lisp_Object string = Qnil;
5271
5272 if (mode_line_p)
5273 row = MATRIX_MODE_LINE_ROW (w->current_matrix);
5274 else
5275 row = MATRIX_HEADER_LINE_ROW (w->current_matrix);
5276
5277 if (row->mode_line_p && row->enabled_p)
5278 {
5279 /* The mode lines are displayed over scroll bars and bitmap
5280 areas, and X is window-relative. Correct X by the scroll bar
5281 and bitmap area width. */
5282 if (FRAME_HAS_VERTICAL_SCROLL_BARS_ON_LEFT (f))
5283 x += FRAME_SCROLL_BAR_COLS (f) * CANON_X_UNIT (f);
5284 x += FRAME_LEFT_FLAGS_AREA_WIDTH (f);
5285
5286 /* Find the glyph under X. If we find one with a string object,
5287 it's the one we were looking for. */
5288 glyph = row->glyphs[TEXT_AREA];
5289 end = glyph + row->used[TEXT_AREA];
5290 for (x0 = 0; glyph < end; x0 += glyph->pixel_width, ++glyph)
5291 if (x >= x0 && x < x0 + glyph->pixel_width)
5292 {
5293 string = glyph->object;
5294 *charpos = glyph->charpos;
5295 break;
5296 }
5297 }
5298
5299 return string;
5300 }
5301
5302
5303 /***********************************************************************
5304 Changing Frame Sizes
5305 ***********************************************************************/
5306
5307 #ifdef SIGWINCH
5308
5309 SIGTYPE
5310 window_change_signal (signalnum) /* If we don't have an argument, */
5311 int signalnum; /* some compilers complain in signal calls. */
5312 {
5313 int width, height;
5314 extern int errno;
5315 int old_errno = errno;
5316
5317 get_frame_size (&width, &height);
5318
5319 /* The frame size change obviously applies to a termcap-controlled
5320 frame. Find such a frame in the list, and assume it's the only
5321 one (since the redisplay code always writes to stdout, not a
5322 FILE * specified in the frame structure). Record the new size,
5323 but don't reallocate the data structures now. Let that be done
5324 later outside of the signal handler. */
5325
5326 {
5327 Lisp_Object tail, frame;
5328
5329 FOR_EACH_FRAME (tail, frame)
5330 {
5331 if (FRAME_TERMCAP_P (XFRAME (frame)))
5332 {
5333 change_frame_size (XFRAME (frame), height, width, 0, 1, 0);
5334 break;
5335 }
5336 }
5337 }
5338
5339 signal (SIGWINCH, window_change_signal);
5340 errno = old_errno;
5341 }
5342 #endif /* SIGWINCH */
5343
5344
5345 /* Do any change in frame size that was requested by a signal. SAFE
5346 non-zero means this function is called from a place where it is
5347 safe to change frame sizes while a redisplay is in progress. */
5348
5349 void
5350 do_pending_window_change (safe)
5351 int safe;
5352 {
5353 /* If window_change_signal should have run before, run it now. */
5354 if (redisplaying_p && !safe)
5355 return;
5356
5357 while (delayed_size_change)
5358 {
5359 Lisp_Object tail, frame;
5360
5361 delayed_size_change = 0;
5362
5363 FOR_EACH_FRAME (tail, frame)
5364 {
5365 struct frame *f = XFRAME (frame);
5366
5367 int height = FRAME_NEW_HEIGHT (f);
5368 int width = FRAME_NEW_WIDTH (f);
5369
5370 if (height != 0 || width != 0)
5371 change_frame_size (f, height, width, 0, 0, safe);
5372 }
5373 }
5374 }
5375
5376
5377 /* Change the frame height and/or width. Values may be given as zero to
5378 indicate no change is to take place.
5379
5380 If DELAY is non-zero, then assume we're being called from a signal
5381 handler, and queue the change for later - perhaps the next
5382 redisplay. Since this tries to resize windows, we can't call it
5383 from a signal handler.
5384
5385 SAFE non-zero means this function is called from a place where it's
5386 safe to change frame sizes while a redisplay is in progress. */
5387
5388 void
5389 change_frame_size (f, newheight, newwidth, pretend, delay, safe)
5390 register struct frame *f;
5391 int newheight, newwidth, pretend, delay, safe;
5392 {
5393 Lisp_Object tail, frame;
5394
5395 if (! FRAME_WINDOW_P (f))
5396 {
5397 /* When using termcap, or on MS-DOS, all frames use
5398 the same screen, so a change in size affects all frames. */
5399 FOR_EACH_FRAME (tail, frame)
5400 if (! FRAME_WINDOW_P (XFRAME (frame)))
5401 change_frame_size_1 (XFRAME (frame), newheight, newwidth,
5402 pretend, delay, safe);
5403 }
5404 else
5405 change_frame_size_1 (f, newheight, newwidth, pretend, delay, safe);
5406 }
5407
5408 static void
5409 change_frame_size_1 (f, newheight, newwidth, pretend, delay, safe)
5410 register struct frame *f;
5411 int newheight, newwidth, pretend, delay, safe;
5412 {
5413 int new_frame_window_width;
5414 int count = specpdl_ptr - specpdl;
5415
5416 /* If we can't deal with the change now, queue it for later. */
5417 if (delay || (redisplaying_p && !safe))
5418 {
5419 FRAME_NEW_HEIGHT (f) = newheight;
5420 FRAME_NEW_WIDTH (f) = newwidth;
5421 delayed_size_change = 1;
5422 return;
5423 }
5424
5425 /* This size-change overrides any pending one for this frame. */
5426 FRAME_NEW_HEIGHT (f) = 0;
5427 FRAME_NEW_WIDTH (f) = 0;
5428
5429 /* If an argument is zero, set it to the current value. */
5430 if (newheight == 0)
5431 newheight = FRAME_HEIGHT (f);
5432 if (newwidth == 0)
5433 newwidth = FRAME_WIDTH (f);
5434
5435 /* Compute width of windows in F.
5436 This is the width of the frame without vertical scroll bars. */
5437 new_frame_window_width = FRAME_WINDOW_WIDTH_ARG (f, newwidth);
5438
5439 /* Round up to the smallest acceptable size. */
5440 check_frame_size (f, &newheight, &newwidth);
5441
5442 /* If we're not changing the frame size, quit now. */
5443 if (newheight == FRAME_HEIGHT (f)
5444 && new_frame_window_width == FRAME_WINDOW_WIDTH (f))
5445 return;
5446
5447 BLOCK_INPUT;
5448
5449 #ifdef MSDOS
5450 /* We only can set screen dimensions to certain values supported
5451 by our video hardware. Try to find the smallest size greater
5452 or equal to the requested dimensions. */
5453 dos_set_window_size (&newheight, &newwidth);
5454 #endif
5455
5456 if (newheight != FRAME_HEIGHT (f))
5457 {
5458 if (FRAME_HAS_MINIBUF_P (f) && !FRAME_MINIBUF_ONLY_P (f))
5459 {
5460 /* Frame has both root and mini-buffer. */
5461 XSETFASTINT (XWINDOW (FRAME_ROOT_WINDOW (f))->top,
5462 FRAME_TOP_MARGIN (f));
5463 set_window_height (FRAME_ROOT_WINDOW (f),
5464 (newheight
5465 - 1
5466 - FRAME_TOP_MARGIN (f)),
5467 0);
5468 XSETFASTINT (XWINDOW (FRAME_MINIBUF_WINDOW (f))->top,
5469 newheight - 1);
5470 set_window_height (FRAME_MINIBUF_WINDOW (f), 1, 0);
5471 }
5472 else
5473 /* Frame has just one top-level window. */
5474 set_window_height (FRAME_ROOT_WINDOW (f),
5475 newheight - FRAME_TOP_MARGIN (f), 0);
5476
5477 if (FRAME_TERMCAP_P (f) && !pretend)
5478 FrameRows = newheight;
5479 }
5480
5481 if (new_frame_window_width != FRAME_WINDOW_WIDTH (f))
5482 {
5483 set_window_width (FRAME_ROOT_WINDOW (f), new_frame_window_width, 0);
5484 if (FRAME_HAS_MINIBUF_P (f))
5485 set_window_width (FRAME_MINIBUF_WINDOW (f), new_frame_window_width, 0);
5486
5487 if (FRAME_TERMCAP_P (f) && !pretend)
5488 FrameCols = newwidth;
5489
5490 if (WINDOWP (f->tool_bar_window))
5491 XSETFASTINT (XWINDOW (f->tool_bar_window)->width, newwidth);
5492 }
5493
5494 FRAME_HEIGHT (f) = newheight;
5495 SET_FRAME_WIDTH (f, newwidth);
5496
5497 {
5498 struct window *w = XWINDOW (FRAME_SELECTED_WINDOW (f));
5499 int text_area_x, text_area_y, text_area_width, text_area_height;
5500
5501 window_box (w, TEXT_AREA, &text_area_x, &text_area_y, &text_area_width,
5502 &text_area_height);
5503 if (w->cursor.x >= text_area_x + text_area_width)
5504 w->cursor.hpos = w->cursor.x = 0;
5505 if (w->cursor.y >= text_area_y + text_area_height)
5506 w->cursor.vpos = w->cursor.y = 0;
5507 }
5508
5509 adjust_glyphs (f);
5510 SET_FRAME_GARBAGED (f);
5511 calculate_costs (f);
5512
5513 UNBLOCK_INPUT;
5514
5515 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
5516
5517 /* This isn't quite a no-op: it runs window-configuration-change-hook. */
5518 Fset_window_buffer (FRAME_SELECTED_WINDOW (f),
5519 XWINDOW (FRAME_SELECTED_WINDOW (f))->buffer);
5520
5521 unbind_to (count, Qnil);
5522 }
5523
5524
5525 \f
5526 /***********************************************************************
5527 Terminal Related Lisp Functions
5528 ***********************************************************************/
5529
5530 DEFUN ("open-termscript", Fopen_termscript, Sopen_termscript,
5531 1, 1, "FOpen termscript file: ",
5532 "Start writing all terminal output to FILE as well as the terminal.\n\
5533 FILE = nil means just close any termscript file currently open.")
5534 (file)
5535 Lisp_Object file;
5536 {
5537 if (termscript != 0) fclose (termscript);
5538 termscript = 0;
5539
5540 if (! NILP (file))
5541 {
5542 file = Fexpand_file_name (file, Qnil);
5543 termscript = fopen (XSTRING (file)->data, "w");
5544 if (termscript == 0)
5545 report_file_error ("Opening termscript", Fcons (file, Qnil));
5546 }
5547 return Qnil;
5548 }
5549
5550
5551 DEFUN ("send-string-to-terminal", Fsend_string_to_terminal,
5552 Ssend_string_to_terminal, 1, 1, 0,
5553 "Send STRING to the terminal without alteration.\n\
5554 Control characters in STRING will have terminal-dependent effects.")
5555 (string)
5556 Lisp_Object string;
5557 {
5558 /* ??? Perhaps we should do something special for multibyte strings here. */
5559 CHECK_STRING (string, 0);
5560 fwrite (XSTRING (string)->data, 1, STRING_BYTES (XSTRING (string)), stdout);
5561 fflush (stdout);
5562 if (termscript)
5563 {
5564 fwrite (XSTRING (string)->data, 1, STRING_BYTES (XSTRING (string)),
5565 termscript);
5566 fflush (termscript);
5567 }
5568 return Qnil;
5569 }
5570
5571
5572 DEFUN ("ding", Fding, Sding, 0, 1, 0,
5573 "Beep, or flash the screen.\n\
5574 Also, unless an argument is given,\n\
5575 terminate any keyboard macro currently executing.")
5576 (arg)
5577 Lisp_Object arg;
5578 {
5579 if (!NILP (arg))
5580 {
5581 if (noninteractive)
5582 putchar (07);
5583 else
5584 ring_bell ();
5585 fflush (stdout);
5586 }
5587 else
5588 bitch_at_user ();
5589
5590 return Qnil;
5591 }
5592
5593 void
5594 bitch_at_user ()
5595 {
5596 if (noninteractive)
5597 putchar (07);
5598 else if (!INTERACTIVE) /* Stop executing a keyboard macro. */
5599 error ("Keyboard macro terminated by a command ringing the bell");
5600 else
5601 ring_bell ();
5602 fflush (stdout);
5603 }
5604
5605
5606 \f
5607 /***********************************************************************
5608 Sleeping, Waiting
5609 ***********************************************************************/
5610
5611 DEFUN ("sleep-for", Fsleep_for, Ssleep_for, 1, 2, 0,
5612 "Pause, without updating display, for SECONDS seconds.\n\
5613 SECONDS may be a floating-point value, meaning that you can wait for a\n\
5614 fraction of a second. Optional second arg MILLISECONDS specifies an\n\
5615 additional wait period, in milliseconds; this may be useful if your\n\
5616 Emacs was built without floating point support.\n\
5617 \(Not all operating systems support waiting for a fraction of a second.)")
5618 (seconds, milliseconds)
5619 Lisp_Object seconds, milliseconds;
5620 {
5621 int sec, usec;
5622
5623 if (NILP (milliseconds))
5624 XSETINT (milliseconds, 0);
5625 else
5626 CHECK_NUMBER (milliseconds, 1);
5627 usec = XINT (milliseconds) * 1000;
5628
5629 {
5630 double duration = extract_float (seconds);
5631 sec = (int) duration;
5632 usec += (duration - sec) * 1000000;
5633 }
5634
5635 #ifndef EMACS_HAS_USECS
5636 if (sec == 0 && usec != 0)
5637 error ("millisecond `sleep-for' not supported on %s", SYSTEM_TYPE);
5638 #endif
5639
5640 /* Assure that 0 <= usec < 1000000. */
5641 if (usec < 0)
5642 {
5643 /* We can't rely on the rounding being correct if user is negative. */
5644 if (-1000000 < usec)
5645 sec--, usec += 1000000;
5646 else
5647 sec -= -usec / 1000000, usec = 1000000 - (-usec % 1000000);
5648 }
5649 else
5650 sec += usec / 1000000, usec %= 1000000;
5651
5652 if (sec < 0 || (sec == 0 && usec == 0))
5653 return Qnil;
5654
5655 {
5656 Lisp_Object zero;
5657
5658 XSETFASTINT (zero, 0);
5659 wait_reading_process_input (sec, usec, zero, 0);
5660 }
5661
5662 /* We should always have wait_reading_process_input; we have a dummy
5663 implementation for systems which don't support subprocesses. */
5664 #if 0
5665 /* No wait_reading_process_input */
5666 immediate_quit = 1;
5667 QUIT;
5668
5669 #ifdef VMS
5670 sys_sleep (sec);
5671 #else /* not VMS */
5672 /* The reason this is done this way
5673 (rather than defined (H_S) && defined (H_T))
5674 is because the VMS preprocessor doesn't grok `defined' */
5675 #ifdef HAVE_SELECT
5676 EMACS_GET_TIME (end_time);
5677 EMACS_SET_SECS_USECS (timeout, sec, usec);
5678 EMACS_ADD_TIME (end_time, end_time, timeout);
5679
5680 while (1)
5681 {
5682 EMACS_GET_TIME (timeout);
5683 EMACS_SUB_TIME (timeout, end_time, timeout);
5684 if (EMACS_TIME_NEG_P (timeout)
5685 || !select (1, 0, 0, 0, &timeout))
5686 break;
5687 }
5688 #else /* not HAVE_SELECT */
5689 sleep (sec);
5690 #endif /* HAVE_SELECT */
5691 #endif /* not VMS */
5692
5693 immediate_quit = 0;
5694 #endif /* no subprocesses */
5695
5696 return Qnil;
5697 }
5698
5699
5700 /* This is just like wait_reading_process_input, except that
5701 it does the redisplay.
5702
5703 It's also much like Fsit_for, except that it can be used for
5704 waiting for input as well. */
5705
5706 Lisp_Object
5707 sit_for (sec, usec, reading, display, initial_display)
5708 int sec, usec, reading, display, initial_display;
5709 {
5710 Lisp_Object read_kbd;
5711
5712 swallow_events (display);
5713
5714 if (detect_input_pending_run_timers (display))
5715 return Qnil;
5716
5717 if (initial_display)
5718 redisplay_preserve_echo_area ();
5719
5720 if (sec == 0 && usec == 0)
5721 return Qt;
5722
5723 #ifdef SIGIO
5724 gobble_input (0);
5725 #endif
5726
5727 XSETINT (read_kbd, reading ? -1 : 1);
5728 wait_reading_process_input (sec, usec, read_kbd, display);
5729
5730 return detect_input_pending () ? Qnil : Qt;
5731 }
5732
5733
5734 DEFUN ("sit-for", Fsit_for, Ssit_for, 1, 3, 0,
5735 "Perform redisplay, then wait for SECONDS seconds or until input is available.\n\
5736 SECONDS may be a floating-point value, meaning that you can wait for a\n\
5737 fraction of a second. Optional second arg MILLISECONDS specifies an\n\
5738 additional wait period, in milliseconds; this may be useful if your\n\
5739 Emacs was built without floating point support.\n\
5740 \(Not all operating systems support waiting for a fraction of a second.)\n\
5741 Optional third arg NODISP non-nil means don't redisplay, just wait for input.\n\
5742 Redisplay is preempted as always if input arrives, and does not happen\n\
5743 if input is available before it starts.\n\
5744 Value is t if waited the full time with no input arriving.")
5745 (seconds, milliseconds, nodisp)
5746 Lisp_Object seconds, milliseconds, nodisp;
5747 {
5748 int sec, usec;
5749
5750 if (NILP (milliseconds))
5751 XSETINT (milliseconds, 0);
5752 else
5753 CHECK_NUMBER (milliseconds, 1);
5754 usec = XINT (milliseconds) * 1000;
5755
5756 {
5757 double duration = extract_float (seconds);
5758 sec = (int) duration;
5759 usec += (duration - sec) * 1000000;
5760 }
5761
5762 #ifndef EMACS_HAS_USECS
5763 if (usec != 0 && sec == 0)
5764 error ("millisecond `sit-for' not supported on %s", SYSTEM_TYPE);
5765 #endif
5766
5767 return sit_for (sec, usec, 0, NILP (nodisp), NILP (nodisp));
5768 }
5769
5770
5771 \f
5772 /***********************************************************************
5773 Other Lisp Functions
5774 ***********************************************************************/
5775
5776 /* A vector of size >= 2 * NFRAMES + 3 * NBUFFERS + 1, containing the
5777 session's frames, frame names, buffers, buffer-read-only flags, and
5778 buffer-modified-flags, and a trailing sentinel (so we don't need to
5779 add length checks). */
5780
5781 static Lisp_Object frame_and_buffer_state;
5782
5783
5784 DEFUN ("frame-or-buffer-changed-p", Fframe_or_buffer_changed_p,
5785 Sframe_or_buffer_changed_p, 0, 0, 0,
5786 "Return non-nil if the frame and buffer state appears to have changed.\n\
5787 The state variable is an internal vector containing all frames and buffers,\n\
5788 aside from buffers whose names start with space,\n\
5789 along with the buffers' read-only and modified flags, which allows a fast\n\
5790 check to see whether the menu bars might need to be recomputed.\n\
5791 If this function returns non-nil, it updates the internal vector to reflect\n\
5792 the current state.\n")
5793 ()
5794 {
5795 Lisp_Object tail, frame, buf;
5796 Lisp_Object *vecp;
5797 int n;
5798
5799 vecp = XVECTOR (frame_and_buffer_state)->contents;
5800 FOR_EACH_FRAME (tail, frame)
5801 {
5802 if (!EQ (*vecp++, frame))
5803 goto changed;
5804 if (!EQ (*vecp++, XFRAME (frame)->name))
5805 goto changed;
5806 }
5807 /* Check that the buffer info matches.
5808 No need to test for the end of the vector
5809 because the last element of the vector is lambda
5810 and that will always cause a mismatch. */
5811 for (tail = Vbuffer_alist; CONSP (tail); tail = XCDR (tail))
5812 {
5813 buf = XCDR (XCAR (tail));
5814 /* Ignore buffers that aren't included in buffer lists. */
5815 if (XSTRING (XBUFFER (buf)->name)->data[0] == ' ')
5816 continue;
5817 if (!EQ (*vecp++, buf))
5818 goto changed;
5819 if (!EQ (*vecp++, XBUFFER (buf)->read_only))
5820 goto changed;
5821 if (!EQ (*vecp++, Fbuffer_modified_p (buf)))
5822 goto changed;
5823 }
5824 /* Detect deletion of a buffer at the end of the list. */
5825 if (EQ (*vecp, Qlambda))
5826 return Qnil;
5827 changed:
5828 /* Start with 1 so there is room for at least one lambda at the end. */
5829 n = 1;
5830 FOR_EACH_FRAME (tail, frame)
5831 n += 2;
5832 for (tail = Vbuffer_alist; CONSP (tail); tail = XCDR (tail))
5833 n += 3;
5834 /* Reallocate the vector if it's grown, or if it's shrunk a lot. */
5835 if (n > XVECTOR (frame_and_buffer_state)->size
5836 || n + 20 < XVECTOR (frame_and_buffer_state)->size / 2)
5837 /* Add 20 extra so we grow it less often. */
5838 frame_and_buffer_state = Fmake_vector (make_number (n + 20), Qlambda);
5839 vecp = XVECTOR (frame_and_buffer_state)->contents;
5840 FOR_EACH_FRAME (tail, frame)
5841 {
5842 *vecp++ = frame;
5843 *vecp++ = XFRAME (frame)->name;
5844 }
5845 for (tail = Vbuffer_alist; CONSP (tail); tail = XCDR (tail))
5846 {
5847 buf = XCDR (XCAR (tail));
5848 /* Ignore buffers that aren't included in buffer lists. */
5849 if (XSTRING (XBUFFER (buf)->name)->data[0] == ' ')
5850 continue;
5851 *vecp++ = buf;
5852 *vecp++ = XBUFFER (buf)->read_only;
5853 *vecp++ = Fbuffer_modified_p (buf);
5854 }
5855 /* Fill up the vector with lambdas (always at least one). */
5856 *vecp++ = Qlambda;
5857 while (vecp - XVECTOR (frame_and_buffer_state)->contents
5858 < XVECTOR (frame_and_buffer_state)->size)
5859 *vecp++ = Qlambda;
5860 /* Make sure we didn't overflow the vector. */
5861 if (vecp - XVECTOR (frame_and_buffer_state)->contents
5862 > XVECTOR (frame_and_buffer_state)->size)
5863 abort ();
5864 return Qt;
5865 }
5866
5867
5868 \f
5869 /***********************************************************************
5870 Initialization
5871 ***********************************************************************/
5872
5873 char *terminal_type;
5874
5875 /* Initialization done when Emacs fork is started, before doing stty.
5876 Determine terminal type and set terminal_driver. Then invoke its
5877 decoding routine to set up variables in the terminal package. */
5878
5879 void
5880 init_display ()
5881 {
5882 #ifdef HAVE_X_WINDOWS
5883 extern int display_arg;
5884 #endif
5885
5886 /* Construct the space glyph. */
5887 space_glyph.type = CHAR_GLYPH;
5888 SET_CHAR_GLYPH_FROM_GLYPH (space_glyph, ' ');
5889 space_glyph.charpos = -1;
5890
5891 meta_key = 0;
5892 inverse_video = 0;
5893 cursor_in_echo_area = 0;
5894 terminal_type = (char *) 0;
5895
5896 /* Now is the time to initialize this; it's used by init_sys_modes
5897 during startup. */
5898 Vwindow_system = Qnil;
5899
5900 /* If the user wants to use a window system, we shouldn't bother
5901 initializing the terminal. This is especially important when the
5902 terminal is so dumb that emacs gives up before and doesn't bother
5903 using the window system.
5904
5905 If the DISPLAY environment variable is set and nonempty,
5906 try to use X, and die with an error message if that doesn't work. */
5907
5908 #ifdef HAVE_X_WINDOWS
5909 if (! display_arg)
5910 {
5911 char *display;
5912 #ifdef VMS
5913 display = getenv ("DECW$DISPLAY");
5914 #else
5915 display = getenv ("DISPLAY");
5916 #endif
5917
5918 display_arg = (display != 0 && *display != 0);
5919 }
5920
5921 if (!inhibit_window_system && display_arg
5922 #ifndef CANNOT_DUMP
5923 && initialized
5924 #endif
5925 )
5926 {
5927 Vwindow_system = intern ("x");
5928 #ifdef HAVE_X11
5929 Vwindow_system_version = make_number (11);
5930 #else
5931 Vwindow_system_version = make_number (10);
5932 #endif
5933 #if defined (LINUX) && defined (HAVE_LIBNCURSES)
5934 /* In some versions of ncurses,
5935 tputs crashes if we have not called tgetent.
5936 So call tgetent. */
5937 { char b[2044]; tgetent (b, "xterm");}
5938 #endif
5939 adjust_frame_glyphs_initially ();
5940 return;
5941 }
5942 #endif /* HAVE_X_WINDOWS */
5943
5944 #ifdef HAVE_NTGUI
5945 if (!inhibit_window_system)
5946 {
5947 Vwindow_system = intern ("w32");
5948 Vwindow_system_version = make_number (1);
5949 adjust_frame_glyphs_initially ();
5950 return;
5951 }
5952 #endif /* HAVE_NTGUI */
5953
5954 /* If no window system has been specified, try to use the terminal. */
5955 if (! isatty (0))
5956 {
5957 fatal ("standard input is not a tty");
5958 exit (1);
5959 }
5960
5961 /* Look at the TERM variable */
5962 terminal_type = (char *) getenv ("TERM");
5963 if (!terminal_type)
5964 {
5965 #ifdef VMS
5966 fprintf (stderr, "Please specify your terminal type.\n\
5967 For types defined in VMS, use set term /device=TYPE.\n\
5968 For types not defined in VMS, use define emacs_term \"TYPE\".\n\
5969 \(The quotation marks are necessary since terminal types are lower case.)\n");
5970 #else
5971 fprintf (stderr, "Please set the environment variable TERM; see tset(1).\n");
5972 #endif
5973 exit (1);
5974 }
5975
5976 #ifdef VMS
5977 /* VMS DCL tends to up-case things, so down-case term type.
5978 Hardly any uppercase letters in terminal types; should be none. */
5979 {
5980 char *new = (char *) xmalloc (strlen (terminal_type) + 1);
5981 char *p;
5982
5983 strcpy (new, terminal_type);
5984
5985 for (p = new; *p; p++)
5986 if (isupper (*p))
5987 *p = tolower (*p);
5988
5989 terminal_type = new;
5990 }
5991 #endif /* VMS */
5992
5993 term_init (terminal_type);
5994
5995 {
5996 struct frame *sf = SELECTED_FRAME ();
5997 int width = FRAME_WINDOW_WIDTH (sf);
5998 int height = FRAME_HEIGHT (sf);
5999
6000 unsigned int total_glyphs = height * (width + 2) * sizeof (struct glyph);
6001
6002 /* If these sizes are so big they cause overflow, just ignore the
6003 change. It's not clear what better we could do. */
6004 if (total_glyphs / sizeof (struct glyph) / height != width + 2)
6005 fatal ("screen size %dx%d too big", width, height);
6006 }
6007
6008 adjust_frame_glyphs_initially ();
6009 calculate_costs (XFRAME (selected_frame));
6010
6011 #ifdef SIGWINCH
6012 #ifndef CANNOT_DUMP
6013 if (initialized)
6014 #endif /* CANNOT_DUMP */
6015 signal (SIGWINCH, window_change_signal);
6016 #endif /* SIGWINCH */
6017
6018 /* Set up faces of the initial terminal frame of a dumped Emacs. */
6019 if (initialized
6020 && !noninteractive
6021 #ifdef MSDOS
6022 /* The MSDOS terminal turns on its ``window system'' relatively
6023 late into the startup, so we cannot do the frame faces'
6024 initialization just yet. It will be done later by pc-win.el
6025 and internal_terminal_init. */
6026 && (strcmp (terminal_type, "internal") != 0 || inhibit_window_system)
6027 #endif
6028 && NILP (Vwindow_system))
6029 {
6030 /* For the initial frame, we don't have any way of knowing what
6031 are the foreground and background colors of the terminal. */
6032 struct frame *sf = SELECTED_FRAME();
6033
6034 FRAME_FOREGROUND_PIXEL (sf) = FACE_TTY_DEFAULT_FG_COLOR;
6035 FRAME_BACKGROUND_PIXEL (sf) = FACE_TTY_DEFAULT_BG_COLOR;
6036 call0 (intern ("tty-set-up-initial-frame-faces"));
6037 }
6038 }
6039
6040
6041 \f
6042 /***********************************************************************
6043 Blinking cursor
6044 ***********************************************************************/
6045
6046 DEFUN ("internal-show-cursor", Finternal_show_cursor,
6047 Sinternal_show_cursor, 2, 2, 0,
6048 "Set the cursor-visibility flag of WINDOW to SHOW.\n\
6049 WINDOW nil means use the selected window. SHOW non-nil means\n\
6050 show a cursor in WINDOW in the next redisplay. SHOW nil means\n\
6051 don't show a cursor.")
6052 (window, show)
6053 Lisp_Object window, show;
6054 {
6055 /* Don't change cursor state while redisplaying. This could confuse
6056 output routines. */
6057 if (!redisplaying_p)
6058 {
6059 if (NILP (window))
6060 window = selected_window;
6061 else
6062 CHECK_WINDOW (window, 2);
6063
6064 XWINDOW (window)->cursor_off_p = NILP (show);
6065 }
6066
6067 return Qnil;
6068 }
6069
6070
6071 DEFUN ("internal-show-cursor-p", Finternal_show_cursor_p,
6072 Sinternal_show_cursor_p, 0, 1, 0,
6073 "Value is non-nil if next redisplay will display a cursor in WINDOW.\n\
6074 WINDOW nil or omitted means report on the selected window.")
6075 (window)
6076 Lisp_Object window;
6077 {
6078 struct window *w;
6079
6080 if (NILP (window))
6081 window = selected_window;
6082 else
6083 CHECK_WINDOW (window, 2);
6084
6085 w = XWINDOW (window);
6086 return w->cursor_off_p ? Qnil : Qt;
6087 }
6088
6089 \f
6090 /***********************************************************************
6091 Initialization
6092 ***********************************************************************/
6093
6094 void
6095 syms_of_display ()
6096 {
6097 defsubr (&Sredraw_frame);
6098 defsubr (&Sredraw_display);
6099 defsubr (&Sframe_or_buffer_changed_p);
6100 defsubr (&Sopen_termscript);
6101 defsubr (&Sding);
6102 defsubr (&Ssit_for);
6103 defsubr (&Ssleep_for);
6104 defsubr (&Ssend_string_to_terminal);
6105 defsubr (&Sinternal_show_cursor);
6106 defsubr (&Sinternal_show_cursor_p);
6107
6108 frame_and_buffer_state = Fmake_vector (make_number (20), Qlambda);
6109 staticpro (&frame_and_buffer_state);
6110
6111 Qdisplay_table = intern ("display-table");
6112 staticpro (&Qdisplay_table);
6113
6114 DEFVAR_INT ("baud-rate", &baud_rate,
6115 "*The output baud rate of the terminal.\n\
6116 On most systems, changing this value will affect the amount of padding\n\
6117 and the other strategic decisions made during redisplay.");
6118
6119 DEFVAR_BOOL ("inverse-video", &inverse_video,
6120 "*Non-nil means invert the entire frame display.\n\
6121 This means everything is in inverse video which otherwise would not be.");
6122
6123 DEFVAR_BOOL ("visible-bell", &visible_bell,
6124 "*Non-nil means try to flash the frame to represent a bell.");
6125
6126 DEFVAR_BOOL ("no-redraw-on-reenter", &no_redraw_on_reenter,
6127 "*Non-nil means no need to redraw entire frame after suspending.\n\
6128 A non-nil value is useful if the terminal can automatically preserve\n\
6129 Emacs's frame display when you reenter Emacs.\n\
6130 It is up to you to set this variable if your terminal can do that.");
6131
6132 DEFVAR_LISP ("window-system", &Vwindow_system,
6133 "A symbol naming the window-system under which Emacs is running\n\
6134 \(such as `x'), or nil if emacs is running on an ordinary terminal.");
6135
6136 DEFVAR_LISP ("window-system-version", &Vwindow_system_version,
6137 "The version number of the window system in use.\n\
6138 For X windows, this is 10 or 11.");
6139
6140 DEFVAR_BOOL ("cursor-in-echo-area", &cursor_in_echo_area,
6141 "Non-nil means put cursor in minibuffer, at end of any message there.");
6142
6143 DEFVAR_LISP ("glyph-table", &Vglyph_table,
6144 "Table defining how to output a glyph code to the frame.\n\
6145 If not nil, this is a vector indexed by glyph code to define the glyph.\n\
6146 Each element can be:\n\
6147 integer: a glyph code which this glyph is an alias for.\n\
6148 string: output this glyph using that string (not impl. in X windows).\n\
6149 nil: this glyph mod 256 is char code to output,\n\
6150 and this glyph / 256 is face code for X windows (see `face-id').");
6151 Vglyph_table = Qnil;
6152
6153 DEFVAR_LISP ("standard-display-table", &Vstandard_display_table,
6154 "Display table to use for buffers that specify none.\n\
6155 See `buffer-display-table' for more information.");
6156 Vstandard_display_table = Qnil;
6157
6158 DEFVAR_BOOL ("redisplay-dont-pause", &redisplay_dont_pause,
6159 "*Non-nil means update isn't paused when input is detected.");
6160 redisplay_dont_pause = 0;
6161
6162 /* Initialize `window-system', unless init_display already decided it. */
6163 #ifdef CANNOT_DUMP
6164 if (noninteractive)
6165 #endif
6166 {
6167 Vwindow_system = Qnil;
6168 Vwindow_system_version = Qnil;
6169 }
6170 }