]> code.delx.au - gnu-emacs/blob - src/lisp.h
; Merge from origin/emacs-25
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter. -*- coding: utf-8 -*-
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2016 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
40 # define ID (some integer preprocessor expression of type TYPE)
41 DEFINE_GDB_SYMBOL_END (ID)
42
43 This hack is for the benefit of compilers that do not make macro
44 definitions or enums visible to the debugger. It's used for symbols
45 that .gdbinit needs. */
46
47 #define DECLARE_GDB_SYM(type, id) type const id EXTERNALLY_VISIBLE
48 #ifdef MAIN_PROGRAM
49 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) DECLARE_GDB_SYM (type, id)
50 # define DEFINE_GDB_SYMBOL_END(id) = id;
51 #else
52 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) extern DECLARE_GDB_SYM (type, id)
53 # define DEFINE_GDB_SYMBOL_END(val) ;
54 #endif
55
56 /* The ubiquitous max and min macros. */
57 #undef min
58 #undef max
59 #define max(a, b) ((a) > (b) ? (a) : (b))
60 #define min(a, b) ((a) < (b) ? (a) : (b))
61
62 /* Number of elements in an array. */
63 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
64
65 /* Number of bits in a Lisp_Object tag. */
66 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
67 #define GCTYPEBITS 3
68 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
69
70 /* The number of bits needed in an EMACS_INT over and above the number
71 of bits in a pointer. This is 0 on systems where:
72 1. We can specify multiple-of-8 alignment on static variables.
73 2. We know malloc returns a multiple of 8. */
74 #if (defined alignas \
75 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
76 || defined CYGWIN || defined __MINGW32__ \
77 || defined DARWIN_OS || defined __FreeBSD__ \
78 || defined __sun))
79 # define NONPOINTER_BITS 0
80 #else
81 # define NONPOINTER_BITS GCTYPEBITS
82 #endif
83
84 /* EMACS_INT - signed integer wide enough to hold an Emacs value
85 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
86 pI - printf length modifier for EMACS_INT
87 EMACS_UINT - unsigned variant of EMACS_INT */
88 #ifndef EMACS_INT_MAX
89 # if INTPTR_MAX <= 0
90 # error "INTPTR_MAX misconfigured"
91 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
92 typedef int EMACS_INT;
93 typedef unsigned int EMACS_UINT;
94 # define EMACS_INT_MAX INT_MAX
95 # define pI ""
96 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
97 typedef long int EMACS_INT;
98 typedef unsigned long EMACS_UINT;
99 # define EMACS_INT_MAX LONG_MAX
100 # define pI "l"
101 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
102 In theory this is not safe, but in practice it seems to be OK. */
103 # elif INTPTR_MAX <= LLONG_MAX
104 typedef long long int EMACS_INT;
105 typedef unsigned long long int EMACS_UINT;
106 # define EMACS_INT_MAX LLONG_MAX
107 # define pI "ll"
108 # else
109 # error "INTPTR_MAX too large"
110 # endif
111 #endif
112
113 /* Number of bits to put in each character in the internal representation
114 of bool vectors. This should not vary across implementations. */
115 enum { BOOL_VECTOR_BITS_PER_CHAR =
116 #define BOOL_VECTOR_BITS_PER_CHAR 8
117 BOOL_VECTOR_BITS_PER_CHAR
118 };
119
120 /* An unsigned integer type representing a fixed-length bit sequence,
121 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
122 for speed, but it is unsigned char on weird platforms. */
123 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
124 typedef size_t bits_word;
125 # define BITS_WORD_MAX SIZE_MAX
126 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
127 #else
128 typedef unsigned char bits_word;
129 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
130 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
131 #endif
132 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
133
134 /* Number of bits in some machine integer types. */
135 enum
136 {
137 BITS_PER_CHAR = CHAR_BIT,
138 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
139 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
140 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
141 };
142
143 /* printmax_t and uprintmax_t are types for printing large integers.
144 These are the widest integers that are supported for printing.
145 pMd etc. are conversions for printing them.
146 On C99 hosts, there's no problem, as even the widest integers work.
147 Fall back on EMACS_INT on pre-C99 hosts. */
148 #ifdef PRIdMAX
149 typedef intmax_t printmax_t;
150 typedef uintmax_t uprintmax_t;
151 # define pMd PRIdMAX
152 # define pMu PRIuMAX
153 #else
154 typedef EMACS_INT printmax_t;
155 typedef EMACS_UINT uprintmax_t;
156 # define pMd pI"d"
157 # define pMu pI"u"
158 #endif
159
160 /* Use pD to format ptrdiff_t values, which suffice for indexes into
161 buffers and strings. Emacs never allocates objects larger than
162 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
163 In C99, pD can always be "t"; configure it here for the sake of
164 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
165 #if PTRDIFF_MAX == INT_MAX
166 # define pD ""
167 #elif PTRDIFF_MAX == LONG_MAX
168 # define pD "l"
169 #elif PTRDIFF_MAX == LLONG_MAX
170 # define pD "ll"
171 #else
172 # define pD "t"
173 #endif
174
175 /* Extra internal type checking? */
176
177 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
178 'assume (COND)'. COND should be free of side effects, as it may or
179 may not be evaluated.
180
181 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
182 defined and suppress_checking is false, and does nothing otherwise.
183 Emacs dies if COND is checked and is false. The suppress_checking
184 variable is initialized to 0 in alloc.c. Set it to 1 using a
185 debugger to temporarily disable aborting on detected internal
186 inconsistencies or error conditions.
187
188 In some cases, a good compiler may be able to optimize away the
189 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
190 uses eassert to test STRINGP (x), but a particular use of XSTRING
191 is invoked only after testing that STRINGP (x) is true, making the
192 test redundant.
193
194 eassume is like eassert except that it also causes the compiler to
195 assume that COND is true afterwards, regardless of whether runtime
196 checking is enabled. This can improve performance in some cases,
197 though it can degrade performance in others. It's often suboptimal
198 for COND to call external functions or access volatile storage. */
199
200 #ifndef ENABLE_CHECKING
201 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
202 # define eassume(cond) assume (cond)
203 #else /* ENABLE_CHECKING */
204
205 extern _Noreturn void die (const char *, const char *, int);
206
207 extern bool suppress_checking EXTERNALLY_VISIBLE;
208
209 # define eassert(cond) \
210 (suppress_checking || (cond) \
211 ? (void) 0 \
212 : die (# cond, __FILE__, __LINE__))
213 # define eassume(cond) \
214 (suppress_checking \
215 ? assume (cond) \
216 : (cond) \
217 ? (void) 0 \
218 : die (# cond, __FILE__, __LINE__))
219 #endif /* ENABLE_CHECKING */
220
221 \f
222 /* Use the configure flag --enable-check-lisp-object-type to make
223 Lisp_Object use a struct type instead of the default int. The flag
224 causes CHECK_LISP_OBJECT_TYPE to be defined. */
225
226 /***** Select the tagging scheme. *****/
227 /* The following option controls the tagging scheme:
228 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
229 always 0, and we can thus use them to hold tag bits, without
230 restricting our addressing space.
231
232 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
233 restricting our possible address range.
234
235 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
236 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
237 on the few static Lisp_Objects used: lispsym, all the defsubr, and
238 the two special buffers buffer_defaults and buffer_local_symbols. */
239
240 enum Lisp_Bits
241 {
242 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
243 integer constant, for MSVC. */
244 #define GCALIGNMENT 8
245
246 /* Number of bits in a Lisp_Object value, not counting the tag. */
247 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
248
249 /* Number of bits in a Lisp fixnum tag. */
250 INTTYPEBITS = GCTYPEBITS - 1,
251
252 /* Number of bits in a Lisp fixnum value, not counting the tag. */
253 FIXNUM_BITS = VALBITS + 1
254 };
255
256 #if GCALIGNMENT != 1 << GCTYPEBITS
257 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
258 #endif
259
260 /* The maximum value that can be stored in a EMACS_INT, assuming all
261 bits other than the type bits contribute to a nonnegative signed value.
262 This can be used in #if, e.g., '#if USE_LSB_TAG' below expands to an
263 expression involving VAL_MAX. */
264 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
265
266 /* Whether the least-significant bits of an EMACS_INT contain the tag.
267 On hosts where pointers-as-ints do not exceed VAL_MAX / 2, USE_LSB_TAG is:
268 a. unnecessary, because the top bits of an EMACS_INT are unused, and
269 b. slower, because it typically requires extra masking.
270 So, USE_LSB_TAG is true only on hosts where it might be useful. */
271 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
272 #define USE_LSB_TAG (VAL_MAX / 2 < INTPTR_MAX)
273 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
274
275 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
276 # error "USE_LSB_TAG not supported on this platform; please report this." \
277 "Try 'configure --with-wide-int' to work around the problem."
278 error !;
279 #endif
280
281 #ifndef alignas
282 # error "alignas not defined"
283 #endif
284
285 #ifdef HAVE_STRUCT_ATTRIBUTE_ALIGNED
286 # define GCALIGNED __attribute__ ((aligned (GCALIGNMENT)))
287 #else
288 # define GCALIGNED /* empty */
289 #endif
290
291 /* Some operations are so commonly executed that they are implemented
292 as macros, not functions, because otherwise runtime performance would
293 suffer too much when compiling with GCC without optimization.
294 There's no need to inline everything, just the operations that
295 would otherwise cause a serious performance problem.
296
297 For each such operation OP, define a macro lisp_h_OP that contains
298 the operation's implementation. That way, OP can be implemented
299 via a macro definition like this:
300
301 #define OP(x) lisp_h_OP (x)
302
303 and/or via a function definition like this:
304
305 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
306
307 without worrying about the implementations diverging, since
308 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
309 are intended to be private to this include file, and should not be
310 used elsewhere.
311
312 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
313 functions, once most developers have access to GCC 4.8 or later and
314 can use "gcc -Og" to debug. Maybe in the year 2016. See
315 Bug#11935.
316
317 Commentary for these macros can be found near their corresponding
318 functions, below. */
319
320 #if CHECK_LISP_OBJECT_TYPE
321 # define lisp_h_XLI(o) ((o).i)
322 # define lisp_h_XIL(i) ((Lisp_Object) { i })
323 #else
324 # define lisp_h_XLI(o) (o)
325 # define lisp_h_XIL(i) (i)
326 #endif
327 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
328 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
329 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
330 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
331 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
332 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
333 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
334 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
335 #define lisp_h_INTEGERP(x) ((XTYPE (x) & (Lisp_Int0 | ~Lisp_Int1)) == Lisp_Int0)
336 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
337 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
338 #define lisp_h_NILP(x) EQ (x, Qnil)
339 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
340 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
341 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
342 #define lisp_h_SYMBOL_VAL(sym) \
343 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
344 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
345 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
346 #define lisp_h_XCAR(c) XCONS (c)->car
347 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
348 #define lisp_h_XCONS(a) \
349 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
350 #define lisp_h_XHASH(a) XUINT (a)
351 #ifndef GC_CHECK_CONS_LIST
352 # define lisp_h_check_cons_list() ((void) 0)
353 #endif
354 #if USE_LSB_TAG
355 # define lisp_h_make_number(n) \
356 XIL ((EMACS_INT) (((EMACS_UINT) (n) << INTTYPEBITS) + Lisp_Int0))
357 # define lisp_h_XFASTINT(a) XINT (a)
358 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
359 # define lisp_h_XSYMBOL(a) \
360 (eassert (SYMBOLP (a)), \
361 (struct Lisp_Symbol *) ((intptr_t) XLI (a) - Lisp_Symbol \
362 + (char *) lispsym))
363 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
364 # define lisp_h_XUNTAG(a, type) ((void *) (intptr_t) (XLI (a) - (type)))
365 #endif
366
367 /* When compiling via gcc -O0, define the key operations as macros, as
368 Emacs is too slow otherwise. To disable this optimization, compile
369 with -DINLINING=false. */
370 #if (defined __NO_INLINE__ \
371 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
372 && ! (defined INLINING && ! INLINING))
373 # define DEFINE_KEY_OPS_AS_MACROS true
374 #else
375 # define DEFINE_KEY_OPS_AS_MACROS false
376 #endif
377
378 #if DEFINE_KEY_OPS_AS_MACROS
379 # define XLI(o) lisp_h_XLI (o)
380 # define XIL(i) lisp_h_XIL (i)
381 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
382 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
383 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
384 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
385 # define CONSP(x) lisp_h_CONSP (x)
386 # define EQ(x, y) lisp_h_EQ (x, y)
387 # define FLOATP(x) lisp_h_FLOATP (x)
388 # define INTEGERP(x) lisp_h_INTEGERP (x)
389 # define MARKERP(x) lisp_h_MARKERP (x)
390 # define MISCP(x) lisp_h_MISCP (x)
391 # define NILP(x) lisp_h_NILP (x)
392 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
393 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
394 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
395 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
396 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
397 # define XCAR(c) lisp_h_XCAR (c)
398 # define XCDR(c) lisp_h_XCDR (c)
399 # define XCONS(a) lisp_h_XCONS (a)
400 # define XHASH(a) lisp_h_XHASH (a)
401 # ifndef GC_CHECK_CONS_LIST
402 # define check_cons_list() lisp_h_check_cons_list ()
403 # endif
404 # if USE_LSB_TAG
405 # define make_number(n) lisp_h_make_number (n)
406 # define XFASTINT(a) lisp_h_XFASTINT (a)
407 # define XINT(a) lisp_h_XINT (a)
408 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
409 # define XTYPE(a) lisp_h_XTYPE (a)
410 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
411 # endif
412 #endif
413
414
415 /* Define the fundamental Lisp data structures. */
416
417 /* This is the set of Lisp data types. If you want to define a new
418 data type, read the comments after Lisp_Fwd_Type definition
419 below. */
420
421 /* Lisp integers use 2 tags, to give them one extra bit, thus
422 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
423 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
424 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
425
426 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
427 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
428 vociferously about them. */
429 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
430 || (defined __SUNPRO_C && __STDC__))
431 #define ENUM_BF(TYPE) unsigned int
432 #else
433 #define ENUM_BF(TYPE) enum TYPE
434 #endif
435
436
437 enum Lisp_Type
438 {
439 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
440 Lisp_Symbol = 0,
441
442 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
443 whose first member indicates the subtype. */
444 Lisp_Misc = 1,
445
446 /* Integer. XINT (obj) is the integer value. */
447 Lisp_Int0 = 2,
448 Lisp_Int1 = USE_LSB_TAG ? 6 : 3,
449
450 /* String. XSTRING (object) points to a struct Lisp_String.
451 The length of the string, and its contents, are stored therein. */
452 Lisp_String = 4,
453
454 /* Vector of Lisp objects, or something resembling it.
455 XVECTOR (object) points to a struct Lisp_Vector, which contains
456 the size and contents. The size field also contains the type
457 information, if it's not a real vector object. */
458 Lisp_Vectorlike = 5,
459
460 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
461 Lisp_Cons = USE_LSB_TAG ? 3 : 6,
462
463 Lisp_Float = 7
464 };
465
466 /* This is the set of data types that share a common structure.
467 The first member of the structure is a type code from this set.
468 The enum values are arbitrary, but we'll use large numbers to make it
469 more likely that we'll spot the error if a random word in memory is
470 mistakenly interpreted as a Lisp_Misc. */
471 enum Lisp_Misc_Type
472 {
473 Lisp_Misc_Free = 0x5eab,
474 Lisp_Misc_Marker,
475 Lisp_Misc_Overlay,
476 Lisp_Misc_Save_Value,
477 Lisp_Misc_Finalizer,
478 #ifdef HAVE_MODULES
479 Lisp_Misc_User_Ptr,
480 #endif
481 /* Currently floats are not a misc type,
482 but let's define this in case we want to change that. */
483 Lisp_Misc_Float,
484 /* This is not a type code. It is for range checking. */
485 Lisp_Misc_Limit
486 };
487
488 /* These are the types of forwarding objects used in the value slot
489 of symbols for special built-in variables whose value is stored in
490 C variables. */
491 enum Lisp_Fwd_Type
492 {
493 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
494 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
495 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
496 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
497 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
498 };
499
500 /* If you want to define a new Lisp data type, here are some
501 instructions. See the thread at
502 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
503 for more info.
504
505 First, there are already a couple of Lisp types that can be used if
506 your new type does not need to be exposed to Lisp programs nor
507 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
508 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
509 is suitable for temporarily stashing away pointers and integers in
510 a Lisp object. The latter is useful for vector-like Lisp objects
511 that need to be used as part of other objects, but which are never
512 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
513 an example).
514
515 These two types don't look pretty when printed, so they are
516 unsuitable for Lisp objects that can be exposed to users.
517
518 To define a new data type, add one more Lisp_Misc subtype or one
519 more pseudovector subtype. Pseudovectors are more suitable for
520 objects with several slots that need to support fast random access,
521 while Lisp_Misc types are for everything else. A pseudovector object
522 provides one or more slots for Lisp objects, followed by struct
523 members that are accessible only from C. A Lisp_Misc object is a
524 wrapper for a C struct that can contain anything you like.
525
526 Explicit freeing is discouraged for Lisp objects in general. But if
527 you really need to exploit this, use Lisp_Misc (check free_misc in
528 alloc.c to see why). There is no way to free a vectorlike object.
529
530 To add a new pseudovector type, extend the pvec_type enumeration;
531 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
532
533 For a Lisp_Misc, you will also need to add your entry to union
534 Lisp_Misc (but make sure the first word has the same structure as
535 the others, starting with a 16-bit member of the Lisp_Misc_Type
536 enumeration and a 1-bit GC markbit) and make sure the overall size
537 of the union is not increased by your addition.
538
539 For a new pseudovector, it's highly desirable to limit the size
540 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
541 Otherwise you will need to change sweep_vectors (also in alloc.c).
542
543 Then you will need to add switch branches in print.c (in
544 print_object, to print your object, and possibly also in
545 print_preprocess) and to alloc.c, to mark your object (in
546 mark_object) and to free it (in gc_sweep). The latter is also the
547 right place to call any code specific to your data type that needs
548 to run when the object is recycled -- e.g., free any additional
549 resources allocated for it that are not Lisp objects. You can even
550 make a pointer to the function that frees the resources a slot in
551 your object -- this way, the same object could be used to represent
552 several disparate C structures. */
553
554 #ifdef CHECK_LISP_OBJECT_TYPE
555
556 typedef struct { EMACS_INT i; } Lisp_Object;
557
558 #define LISP_INITIALLY(i) {i}
559
560 #undef CHECK_LISP_OBJECT_TYPE
561 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
562 #else /* CHECK_LISP_OBJECT_TYPE */
563
564 /* If a struct type is not wanted, define Lisp_Object as just a number. */
565
566 typedef EMACS_INT Lisp_Object;
567 #define LISP_INITIALLY(i) (i)
568 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
569 #endif /* CHECK_LISP_OBJECT_TYPE */
570
571 #define LISP_INITIALLY_ZERO LISP_INITIALLY (0)
572 \f
573 /* Forward declarations. */
574
575 /* Defined in this file. */
576 union Lisp_Fwd;
577 INLINE bool BOOL_VECTOR_P (Lisp_Object);
578 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
579 INLINE bool BUFFERP (Lisp_Object);
580 INLINE bool CHAR_TABLE_P (Lisp_Object);
581 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
582 INLINE bool (CONSP) (Lisp_Object);
583 INLINE bool (FLOATP) (Lisp_Object);
584 INLINE bool functionp (Lisp_Object);
585 INLINE bool (INTEGERP) (Lisp_Object);
586 INLINE bool (MARKERP) (Lisp_Object);
587 INLINE bool (MISCP) (Lisp_Object);
588 INLINE bool (NILP) (Lisp_Object);
589 INLINE bool OVERLAYP (Lisp_Object);
590 INLINE bool PROCESSP (Lisp_Object);
591 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
592 INLINE bool SAVE_VALUEP (Lisp_Object);
593 INLINE bool FINALIZERP (Lisp_Object);
594
595 #ifdef HAVE_MODULES
596 INLINE bool USER_PTRP (Lisp_Object);
597 INLINE struct Lisp_User_Ptr *(XUSER_PTR) (Lisp_Object);
598 #endif
599
600 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
601 Lisp_Object);
602 INLINE bool STRINGP (Lisp_Object);
603 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
604 INLINE bool SUBRP (Lisp_Object);
605 INLINE bool (SYMBOLP) (Lisp_Object);
606 INLINE bool (VECTORLIKEP) (Lisp_Object);
607 INLINE bool WINDOWP (Lisp_Object);
608 INLINE bool TERMINALP (Lisp_Object);
609 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
610 INLINE struct Lisp_Finalizer *XFINALIZER (Lisp_Object);
611 INLINE struct Lisp_Symbol *(XSYMBOL) (Lisp_Object);
612 INLINE void *(XUNTAG) (Lisp_Object, int);
613
614 /* Defined in chartab.c. */
615 extern Lisp_Object char_table_ref (Lisp_Object, int);
616 extern void char_table_set (Lisp_Object, int, Lisp_Object);
617
618 /* Defined in data.c. */
619 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
620 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
621
622 /* Defined in emacs.c. */
623 #ifdef DOUG_LEA_MALLOC
624 extern bool might_dump;
625 #endif
626 /* True means Emacs has already been initialized.
627 Used during startup to detect startup of dumped Emacs. */
628 extern bool initialized;
629
630 /* Defined in floatfns.c. */
631 extern double extract_float (Lisp_Object);
632
633 \f
634 /* Interned state of a symbol. */
635
636 enum symbol_interned
637 {
638 SYMBOL_UNINTERNED = 0,
639 SYMBOL_INTERNED = 1,
640 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
641 };
642
643 enum symbol_redirect
644 {
645 SYMBOL_PLAINVAL = 4,
646 SYMBOL_VARALIAS = 1,
647 SYMBOL_LOCALIZED = 2,
648 SYMBOL_FORWARDED = 3
649 };
650
651 struct Lisp_Symbol
652 {
653 bool_bf gcmarkbit : 1;
654
655 /* Indicates where the value can be found:
656 0 : it's a plain var, the value is in the `value' field.
657 1 : it's a varalias, the value is really in the `alias' symbol.
658 2 : it's a localized var, the value is in the `blv' object.
659 3 : it's a forwarding variable, the value is in `forward'. */
660 ENUM_BF (symbol_redirect) redirect : 3;
661
662 /* Non-zero means symbol is constant, i.e. changing its value
663 should signal an error. If the value is 3, then the var
664 can be changed, but only by `defconst'. */
665 unsigned constant : 2;
666
667 /* Interned state of the symbol. This is an enumerator from
668 enum symbol_interned. */
669 unsigned interned : 2;
670
671 /* True means that this variable has been explicitly declared
672 special (with `defvar' etc), and shouldn't be lexically bound. */
673 bool_bf declared_special : 1;
674
675 /* True if pointed to from purespace and hence can't be GC'd. */
676 bool_bf pinned : 1;
677
678 /* The symbol's name, as a Lisp string. */
679 Lisp_Object name;
680
681 /* Value of the symbol or Qunbound if unbound. Which alternative of the
682 union is used depends on the `redirect' field above. */
683 union {
684 Lisp_Object value;
685 struct Lisp_Symbol *alias;
686 struct Lisp_Buffer_Local_Value *blv;
687 union Lisp_Fwd *fwd;
688 } val;
689
690 /* Function value of the symbol or Qnil if not fboundp. */
691 Lisp_Object function;
692
693 /* The symbol's property list. */
694 Lisp_Object plist;
695
696 /* Next symbol in obarray bucket, if the symbol is interned. */
697 struct Lisp_Symbol *next;
698 };
699
700 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
701 meaning as in the DEFUN macro, and is used to construct a prototype. */
702 /* We can use the same trick as in the DEFUN macro to generate the
703 appropriate prototype. */
704 #define EXFUN(fnname, maxargs) \
705 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
706
707 /* Note that the weird token-substitution semantics of ANSI C makes
708 this work for MANY and UNEVALLED. */
709 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
710 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
711 #define DEFUN_ARGS_0 (void)
712 #define DEFUN_ARGS_1 (Lisp_Object)
713 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
714 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
715 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
716 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
717 Lisp_Object)
718 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
719 Lisp_Object, Lisp_Object)
720 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
721 Lisp_Object, Lisp_Object, Lisp_Object)
722 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
723 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
724
725 /* Yield a signed integer that contains TAG along with PTR.
726
727 Sign-extend pointers when USE_LSB_TAG (this simplifies emacs-module.c),
728 and zero-extend otherwise (that’s a bit faster here).
729 Sign extension matters only when EMACS_INT is wider than a pointer. */
730 #define TAG_PTR(tag, ptr) \
731 (USE_LSB_TAG \
732 ? (intptr_t) (ptr) + (tag) \
733 : (EMACS_INT) (((EMACS_UINT) (tag) << VALBITS) + (uintptr_t) (ptr)))
734
735 /* Yield an integer that contains a symbol tag along with OFFSET.
736 OFFSET should be the offset in bytes from 'lispsym' to the symbol. */
737 #define TAG_SYMOFFSET(offset) TAG_PTR (Lisp_Symbol, offset)
738
739 /* XLI_BUILTIN_LISPSYM (iQwhatever) is equivalent to
740 XLI (builtin_lisp_symbol (Qwhatever)),
741 except the former expands to an integer constant expression. */
742 #define XLI_BUILTIN_LISPSYM(iname) TAG_SYMOFFSET ((iname) * sizeof *lispsym)
743
744 /* Declare extern constants for Lisp symbols. These can be helpful
745 when using a debugger like GDB, on older platforms where the debug
746 format does not represent C macros. */
747 #define DEFINE_LISP_SYMBOL(name) \
748 DEFINE_GDB_SYMBOL_BEGIN (Lisp_Object, name) \
749 DEFINE_GDB_SYMBOL_END (LISP_INITIALLY (XLI_BUILTIN_LISPSYM (i##name)))
750
751 /* By default, define macros for Qt, etc., as this leads to a bit
752 better performance in the core Emacs interpreter. A plugin can
753 define DEFINE_NON_NIL_Q_SYMBOL_MACROS to be false, to be portable to
754 other Emacs instances that assign different values to Qt, etc. */
755 #ifndef DEFINE_NON_NIL_Q_SYMBOL_MACROS
756 # define DEFINE_NON_NIL_Q_SYMBOL_MACROS true
757 #endif
758
759 #include "globals.h"
760
761 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
762 At the machine level, these operations are no-ops. */
763
764 INLINE EMACS_INT
765 (XLI) (Lisp_Object o)
766 {
767 return lisp_h_XLI (o);
768 }
769
770 INLINE Lisp_Object
771 (XIL) (EMACS_INT i)
772 {
773 return lisp_h_XIL (i);
774 }
775
776 /* In the size word of a vector, this bit means the vector has been marked. */
777
778 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
779 # define ARRAY_MARK_FLAG PTRDIFF_MIN
780 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
781
782 /* In the size word of a struct Lisp_Vector, this bit means it's really
783 some other vector-like object. */
784 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
785 # define PSEUDOVECTOR_FLAG (PTRDIFF_MAX - PTRDIFF_MAX / 2)
786 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
787
788 /* In a pseudovector, the size field actually contains a word with one
789 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
790 with PVEC_TYPE_MASK to indicate the actual type. */
791 enum pvec_type
792 {
793 PVEC_NORMAL_VECTOR,
794 PVEC_FREE,
795 PVEC_PROCESS,
796 PVEC_FRAME,
797 PVEC_WINDOW,
798 PVEC_BOOL_VECTOR,
799 PVEC_BUFFER,
800 PVEC_HASH_TABLE,
801 PVEC_TERMINAL,
802 PVEC_WINDOW_CONFIGURATION,
803 PVEC_SUBR,
804 PVEC_OTHER,
805 PVEC_XWIDGET,
806 PVEC_XWIDGET_VIEW,
807
808 /* These should be last, check internal_equal to see why. */
809 PVEC_COMPILED,
810 PVEC_CHAR_TABLE,
811 PVEC_SUB_CHAR_TABLE,
812 PVEC_FONT /* Should be last because it's used for range checking. */
813 };
814
815 enum More_Lisp_Bits
816 {
817 /* For convenience, we also store the number of elements in these bits.
818 Note that this size is not necessarily the memory-footprint size, but
819 only the number of Lisp_Object fields (that need to be traced by GC).
820 The distinction is used, e.g., by Lisp_Process, which places extra
821 non-Lisp_Object fields at the end of the structure. */
822 PSEUDOVECTOR_SIZE_BITS = 12,
823 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
824
825 /* To calculate the memory footprint of the pseudovector, it's useful
826 to store the size of non-Lisp area in word_size units here. */
827 PSEUDOVECTOR_REST_BITS = 12,
828 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
829 << PSEUDOVECTOR_SIZE_BITS),
830
831 /* Used to extract pseudovector subtype information. */
832 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
833 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
834 };
835 \f
836 /* These functions extract various sorts of values from a Lisp_Object.
837 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
838 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
839 that cons. */
840
841 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
842 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
843 # define VALMASK (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
844 DEFINE_GDB_SYMBOL_END (VALMASK)
845
846 /* Largest and smallest representable fixnum values. These are the C
847 values. They are macros for use in static initializers. */
848 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
849 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
850
851 #if USE_LSB_TAG
852
853 INLINE Lisp_Object
854 (make_number) (EMACS_INT n)
855 {
856 return lisp_h_make_number (n);
857 }
858
859 INLINE EMACS_INT
860 (XINT) (Lisp_Object a)
861 {
862 return lisp_h_XINT (a);
863 }
864
865 INLINE EMACS_INT
866 (XFASTINT) (Lisp_Object a)
867 {
868 EMACS_INT n = lisp_h_XFASTINT (a);
869 eassume (0 <= n);
870 return n;
871 }
872
873 INLINE struct Lisp_Symbol *
874 (XSYMBOL) (Lisp_Object a)
875 {
876 return lisp_h_XSYMBOL (a);
877 }
878
879 INLINE enum Lisp_Type
880 (XTYPE) (Lisp_Object a)
881 {
882 return lisp_h_XTYPE (a);
883 }
884
885 INLINE void *
886 (XUNTAG) (Lisp_Object a, int type)
887 {
888 return lisp_h_XUNTAG (a, type);
889 }
890
891 #else /* ! USE_LSB_TAG */
892
893 /* Although compiled only if ! USE_LSB_TAG, the following functions
894 also work when USE_LSB_TAG; this is to aid future maintenance when
895 the lisp_h_* macros are eventually removed. */
896
897 /* Make a Lisp integer representing the value of the low order
898 bits of N. */
899 INLINE Lisp_Object
900 make_number (EMACS_INT n)
901 {
902 EMACS_INT int0 = Lisp_Int0;
903 if (USE_LSB_TAG)
904 {
905 EMACS_UINT u = n;
906 n = u << INTTYPEBITS;
907 n += int0;
908 }
909 else
910 {
911 n &= INTMASK;
912 n += (int0 << VALBITS);
913 }
914 return XIL (n);
915 }
916
917 /* Extract A's value as a signed integer. */
918 INLINE EMACS_INT
919 XINT (Lisp_Object a)
920 {
921 EMACS_INT i = XLI (a);
922 if (! USE_LSB_TAG)
923 {
924 EMACS_UINT u = i;
925 i = u << INTTYPEBITS;
926 }
927 return i >> INTTYPEBITS;
928 }
929
930 /* Like XINT (A), but may be faster. A must be nonnegative.
931 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
932 integers have zero-bits in their tags. */
933 INLINE EMACS_INT
934 XFASTINT (Lisp_Object a)
935 {
936 EMACS_INT int0 = Lisp_Int0;
937 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a) - (int0 << VALBITS);
938 eassume (0 <= n);
939 return n;
940 }
941
942 /* Extract A's type. */
943 INLINE enum Lisp_Type
944 XTYPE (Lisp_Object a)
945 {
946 EMACS_UINT i = XLI (a);
947 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
948 }
949
950 /* Extract A's value as a symbol. */
951 INLINE struct Lisp_Symbol *
952 XSYMBOL (Lisp_Object a)
953 {
954 eassert (SYMBOLP (a));
955 intptr_t i = (intptr_t) XUNTAG (a, Lisp_Symbol);
956 void *p = (char *) lispsym + i;
957 return p;
958 }
959
960 /* Extract A's pointer value, assuming A's type is TYPE. */
961 INLINE void *
962 XUNTAG (Lisp_Object a, int type)
963 {
964 intptr_t i = USE_LSB_TAG ? XLI (a) - type : XLI (a) & VALMASK;
965 return (void *) i;
966 }
967
968 #endif /* ! USE_LSB_TAG */
969
970 /* Extract A's value as an unsigned integer. */
971 INLINE EMACS_UINT
972 XUINT (Lisp_Object a)
973 {
974 EMACS_UINT i = XLI (a);
975 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
976 }
977
978 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
979 right now, but XUINT should only be applied to objects we know are
980 integers. */
981
982 INLINE EMACS_INT
983 (XHASH) (Lisp_Object a)
984 {
985 return lisp_h_XHASH (a);
986 }
987
988 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
989 INLINE Lisp_Object
990 make_natnum (EMACS_INT n)
991 {
992 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
993 EMACS_INT int0 = Lisp_Int0;
994 return USE_LSB_TAG ? make_number (n) : XIL (n + (int0 << VALBITS));
995 }
996
997 /* Return true if X and Y are the same object. */
998
999 INLINE bool
1000 (EQ) (Lisp_Object x, Lisp_Object y)
1001 {
1002 return lisp_h_EQ (x, y);
1003 }
1004
1005 /* Value is true if I doesn't fit into a Lisp fixnum. It is
1006 written this way so that it also works if I is of unsigned
1007 type or if I is a NaN. */
1008
1009 #define FIXNUM_OVERFLOW_P(i) \
1010 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
1011
1012 INLINE ptrdiff_t
1013 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
1014 {
1015 return num < lower ? lower : num <= upper ? num : upper;
1016 }
1017 \f
1018
1019 /* Extract a value or address from a Lisp_Object. */
1020
1021 INLINE struct Lisp_Cons *
1022 (XCONS) (Lisp_Object a)
1023 {
1024 return lisp_h_XCONS (a);
1025 }
1026
1027 INLINE struct Lisp_Vector *
1028 XVECTOR (Lisp_Object a)
1029 {
1030 eassert (VECTORLIKEP (a));
1031 return XUNTAG (a, Lisp_Vectorlike);
1032 }
1033
1034 INLINE struct Lisp_String *
1035 XSTRING (Lisp_Object a)
1036 {
1037 eassert (STRINGP (a));
1038 return XUNTAG (a, Lisp_String);
1039 }
1040
1041 /* The index of the C-defined Lisp symbol SYM.
1042 This can be used in a static initializer. */
1043 #define SYMBOL_INDEX(sym) i##sym
1044
1045 INLINE struct Lisp_Float *
1046 XFLOAT (Lisp_Object a)
1047 {
1048 eassert (FLOATP (a));
1049 return XUNTAG (a, Lisp_Float);
1050 }
1051
1052 /* Pseudovector types. */
1053
1054 INLINE struct Lisp_Process *
1055 XPROCESS (Lisp_Object a)
1056 {
1057 eassert (PROCESSP (a));
1058 return XUNTAG (a, Lisp_Vectorlike);
1059 }
1060
1061 INLINE struct window *
1062 XWINDOW (Lisp_Object a)
1063 {
1064 eassert (WINDOWP (a));
1065 return XUNTAG (a, Lisp_Vectorlike);
1066 }
1067
1068 INLINE struct terminal *
1069 XTERMINAL (Lisp_Object a)
1070 {
1071 eassert (TERMINALP (a));
1072 return XUNTAG (a, Lisp_Vectorlike);
1073 }
1074
1075 INLINE struct Lisp_Subr *
1076 XSUBR (Lisp_Object a)
1077 {
1078 eassert (SUBRP (a));
1079 return XUNTAG (a, Lisp_Vectorlike);
1080 }
1081
1082 INLINE struct buffer *
1083 XBUFFER (Lisp_Object a)
1084 {
1085 eassert (BUFFERP (a));
1086 return XUNTAG (a, Lisp_Vectorlike);
1087 }
1088
1089 INLINE struct Lisp_Char_Table *
1090 XCHAR_TABLE (Lisp_Object a)
1091 {
1092 eassert (CHAR_TABLE_P (a));
1093 return XUNTAG (a, Lisp_Vectorlike);
1094 }
1095
1096 INLINE struct Lisp_Sub_Char_Table *
1097 XSUB_CHAR_TABLE (Lisp_Object a)
1098 {
1099 eassert (SUB_CHAR_TABLE_P (a));
1100 return XUNTAG (a, Lisp_Vectorlike);
1101 }
1102
1103 INLINE struct Lisp_Bool_Vector *
1104 XBOOL_VECTOR (Lisp_Object a)
1105 {
1106 eassert (BOOL_VECTOR_P (a));
1107 return XUNTAG (a, Lisp_Vectorlike);
1108 }
1109
1110 /* Construct a Lisp_Object from a value or address. */
1111
1112 INLINE Lisp_Object
1113 make_lisp_ptr (void *ptr, enum Lisp_Type type)
1114 {
1115 Lisp_Object a = XIL (TAG_PTR (type, ptr));
1116 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
1117 return a;
1118 }
1119
1120 INLINE Lisp_Object
1121 make_lisp_symbol (struct Lisp_Symbol *sym)
1122 {
1123 Lisp_Object a = XIL (TAG_SYMOFFSET ((char *) sym - (char *) lispsym));
1124 eassert (XSYMBOL (a) == sym);
1125 return a;
1126 }
1127
1128 INLINE Lisp_Object
1129 builtin_lisp_symbol (int index)
1130 {
1131 return make_lisp_symbol (lispsym + index);
1132 }
1133
1134 #define XSETINT(a, b) ((a) = make_number (b))
1135 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
1136 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
1137 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
1138 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
1139 #define XSETSYMBOL(a, b) ((a) = make_lisp_symbol (b))
1140 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
1141 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
1142
1143 /* Pseudovector types. */
1144
1145 #define XSETPVECTYPE(v, code) \
1146 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
1147 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
1148 ((v)->header.size = (PSEUDOVECTOR_FLAG \
1149 | ((code) << PSEUDOVECTOR_AREA_BITS) \
1150 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
1151 | (lispsize)))
1152
1153 /* The cast to struct vectorlike_header * avoids aliasing issues. */
1154 #define XSETPSEUDOVECTOR(a, b, code) \
1155 XSETTYPED_PSEUDOVECTOR (a, b, \
1156 (((struct vectorlike_header *) \
1157 XUNTAG (a, Lisp_Vectorlike)) \
1158 ->size), \
1159 code)
1160 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
1161 (XSETVECTOR (a, b), \
1162 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
1163 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
1164
1165 #define XSETWINDOW_CONFIGURATION(a, b) \
1166 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
1167 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
1168 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
1169 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
1170 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
1171 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
1172 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
1173 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
1174 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
1175 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
1176
1177 /* Efficiently convert a pointer to a Lisp object and back. The
1178 pointer is represented as a Lisp integer, so the garbage collector
1179 does not know about it. The pointer should not have both Lisp_Int1
1180 bits set, which makes this conversion inherently unportable. */
1181
1182 INLINE void *
1183 XINTPTR (Lisp_Object a)
1184 {
1185 return XUNTAG (a, Lisp_Int0);
1186 }
1187
1188 INLINE Lisp_Object
1189 make_pointer_integer (void *p)
1190 {
1191 Lisp_Object a = XIL (TAG_PTR (Lisp_Int0, p));
1192 eassert (INTEGERP (a) && XINTPTR (a) == p);
1193 return a;
1194 }
1195
1196 /* Type checking. */
1197
1198 INLINE void
1199 (CHECK_TYPE) (int ok, Lisp_Object predicate, Lisp_Object x)
1200 {
1201 lisp_h_CHECK_TYPE (ok, predicate, x);
1202 }
1203
1204 /* See the macros in intervals.h. */
1205
1206 typedef struct interval *INTERVAL;
1207
1208 struct GCALIGNED Lisp_Cons
1209 {
1210 /* Car of this cons cell. */
1211 Lisp_Object car;
1212
1213 union
1214 {
1215 /* Cdr of this cons cell. */
1216 Lisp_Object cdr;
1217
1218 /* Used to chain conses on a free list. */
1219 struct Lisp_Cons *chain;
1220 } u;
1221 };
1222
1223 /* Take the car or cdr of something known to be a cons cell. */
1224 /* The _addr functions shouldn't be used outside of the minimal set
1225 of code that has to know what a cons cell looks like. Other code not
1226 part of the basic lisp implementation should assume that the car and cdr
1227 fields are not accessible. (What if we want to switch to
1228 a copying collector someday? Cached cons cell field addresses may be
1229 invalidated at arbitrary points.) */
1230 INLINE Lisp_Object *
1231 xcar_addr (Lisp_Object c)
1232 {
1233 return &XCONS (c)->car;
1234 }
1235 INLINE Lisp_Object *
1236 xcdr_addr (Lisp_Object c)
1237 {
1238 return &XCONS (c)->u.cdr;
1239 }
1240
1241 /* Use these from normal code. */
1242
1243 INLINE Lisp_Object
1244 (XCAR) (Lisp_Object c)
1245 {
1246 return lisp_h_XCAR (c);
1247 }
1248
1249 INLINE Lisp_Object
1250 (XCDR) (Lisp_Object c)
1251 {
1252 return lisp_h_XCDR (c);
1253 }
1254
1255 /* Use these to set the fields of a cons cell.
1256
1257 Note that both arguments may refer to the same object, so 'n'
1258 should not be read after 'c' is first modified. */
1259 INLINE void
1260 XSETCAR (Lisp_Object c, Lisp_Object n)
1261 {
1262 *xcar_addr (c) = n;
1263 }
1264 INLINE void
1265 XSETCDR (Lisp_Object c, Lisp_Object n)
1266 {
1267 *xcdr_addr (c) = n;
1268 }
1269
1270 /* Take the car or cdr of something whose type is not known. */
1271 INLINE Lisp_Object
1272 CAR (Lisp_Object c)
1273 {
1274 return (CONSP (c) ? XCAR (c)
1275 : NILP (c) ? Qnil
1276 : wrong_type_argument (Qlistp, c));
1277 }
1278 INLINE Lisp_Object
1279 CDR (Lisp_Object c)
1280 {
1281 return (CONSP (c) ? XCDR (c)
1282 : NILP (c) ? Qnil
1283 : wrong_type_argument (Qlistp, c));
1284 }
1285
1286 /* Take the car or cdr of something whose type is not known. */
1287 INLINE Lisp_Object
1288 CAR_SAFE (Lisp_Object c)
1289 {
1290 return CONSP (c) ? XCAR (c) : Qnil;
1291 }
1292 INLINE Lisp_Object
1293 CDR_SAFE (Lisp_Object c)
1294 {
1295 return CONSP (c) ? XCDR (c) : Qnil;
1296 }
1297
1298 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1299
1300 struct GCALIGNED Lisp_String
1301 {
1302 ptrdiff_t size;
1303 ptrdiff_t size_byte;
1304 INTERVAL intervals; /* Text properties in this string. */
1305 unsigned char *data;
1306 };
1307
1308 /* True if STR is a multibyte string. */
1309 INLINE bool
1310 STRING_MULTIBYTE (Lisp_Object str)
1311 {
1312 return 0 <= XSTRING (str)->size_byte;
1313 }
1314
1315 /* An upper bound on the number of bytes in a Lisp string, not
1316 counting the terminating null. This a tight enough bound to
1317 prevent integer overflow errors that would otherwise occur during
1318 string size calculations. A string cannot contain more bytes than
1319 a fixnum can represent, nor can it be so long that C pointer
1320 arithmetic stops working on the string plus its terminating null.
1321 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1322 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1323 would expose alloc.c internal details that we'd rather keep
1324 private.
1325
1326 This is a macro for use in static initializers. The cast to
1327 ptrdiff_t ensures that the macro is signed. */
1328 #define STRING_BYTES_BOUND \
1329 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1330
1331 /* Mark STR as a unibyte string. */
1332 #define STRING_SET_UNIBYTE(STR) \
1333 do { \
1334 if (XSTRING (STR)->size == 0) \
1335 (STR) = empty_unibyte_string; \
1336 else \
1337 XSTRING (STR)->size_byte = -1; \
1338 } while (false)
1339
1340 /* Mark STR as a multibyte string. Assure that STR contains only
1341 ASCII characters in advance. */
1342 #define STRING_SET_MULTIBYTE(STR) \
1343 do { \
1344 if (XSTRING (STR)->size == 0) \
1345 (STR) = empty_multibyte_string; \
1346 else \
1347 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1348 } while (false)
1349
1350 /* Convenience functions for dealing with Lisp strings. */
1351
1352 INLINE unsigned char *
1353 SDATA (Lisp_Object string)
1354 {
1355 return XSTRING (string)->data;
1356 }
1357 INLINE char *
1358 SSDATA (Lisp_Object string)
1359 {
1360 /* Avoid "differ in sign" warnings. */
1361 return (char *) SDATA (string);
1362 }
1363 INLINE unsigned char
1364 SREF (Lisp_Object string, ptrdiff_t index)
1365 {
1366 return SDATA (string)[index];
1367 }
1368 INLINE void
1369 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1370 {
1371 SDATA (string)[index] = new;
1372 }
1373 INLINE ptrdiff_t
1374 SCHARS (Lisp_Object string)
1375 {
1376 return XSTRING (string)->size;
1377 }
1378
1379 #ifdef GC_CHECK_STRING_BYTES
1380 extern ptrdiff_t string_bytes (struct Lisp_String *);
1381 #endif
1382 INLINE ptrdiff_t
1383 STRING_BYTES (struct Lisp_String *s)
1384 {
1385 #ifdef GC_CHECK_STRING_BYTES
1386 return string_bytes (s);
1387 #else
1388 return s->size_byte < 0 ? s->size : s->size_byte;
1389 #endif
1390 }
1391
1392 INLINE ptrdiff_t
1393 SBYTES (Lisp_Object string)
1394 {
1395 return STRING_BYTES (XSTRING (string));
1396 }
1397 INLINE void
1398 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1399 {
1400 XSTRING (string)->size = newsize;
1401 }
1402
1403 /* Header of vector-like objects. This documents the layout constraints on
1404 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1405 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1406 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1407 because when two such pointers potentially alias, a compiler won't
1408 incorrectly reorder loads and stores to their size fields. See
1409 Bug#8546. */
1410 struct vectorlike_header
1411 {
1412 /* The only field contains various pieces of information:
1413 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1414 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1415 vector (0) or a pseudovector (1).
1416 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1417 of slots) of the vector.
1418 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1419 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1420 - b) number of Lisp_Objects slots at the beginning of the object
1421 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1422 traced by the GC;
1423 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1424 measured in word_size units. Rest fields may also include
1425 Lisp_Objects, but these objects usually needs some special treatment
1426 during GC.
1427 There are some exceptions. For PVEC_FREE, b) is always zero. For
1428 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1429 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1430 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1431 ptrdiff_t size;
1432 };
1433
1434 /* A regular vector is just a header plus an array of Lisp_Objects. */
1435
1436 struct Lisp_Vector
1437 {
1438 struct vectorlike_header header;
1439 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1440 };
1441
1442 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1443 enum
1444 {
1445 ALIGNOF_STRUCT_LISP_VECTOR
1446 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1447 };
1448
1449 /* A boolvector is a kind of vectorlike, with contents like a string. */
1450
1451 struct Lisp_Bool_Vector
1452 {
1453 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1454 just the subtype information. */
1455 struct vectorlike_header header;
1456 /* This is the size in bits. */
1457 EMACS_INT size;
1458 /* The actual bits, packed into bytes.
1459 Zeros fill out the last word if needed.
1460 The bits are in little-endian order in the bytes, and
1461 the bytes are in little-endian order in the words. */
1462 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1463 };
1464
1465 INLINE EMACS_INT
1466 bool_vector_size (Lisp_Object a)
1467 {
1468 EMACS_INT size = XBOOL_VECTOR (a)->size;
1469 eassume (0 <= size);
1470 return size;
1471 }
1472
1473 INLINE bits_word *
1474 bool_vector_data (Lisp_Object a)
1475 {
1476 return XBOOL_VECTOR (a)->data;
1477 }
1478
1479 INLINE unsigned char *
1480 bool_vector_uchar_data (Lisp_Object a)
1481 {
1482 return (unsigned char *) bool_vector_data (a);
1483 }
1484
1485 /* The number of data words and bytes in a bool vector with SIZE bits. */
1486
1487 INLINE EMACS_INT
1488 bool_vector_words (EMACS_INT size)
1489 {
1490 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1491 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1492 }
1493
1494 INLINE EMACS_INT
1495 bool_vector_bytes (EMACS_INT size)
1496 {
1497 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1498 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1499 }
1500
1501 /* True if A's Ith bit is set. */
1502
1503 INLINE bool
1504 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1505 {
1506 eassume (0 <= i && i < bool_vector_size (a));
1507 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1508 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1509 }
1510
1511 INLINE Lisp_Object
1512 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1513 {
1514 return bool_vector_bitref (a, i) ? Qt : Qnil;
1515 }
1516
1517 /* Set A's Ith bit to B. */
1518
1519 INLINE void
1520 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1521 {
1522 unsigned char *addr;
1523
1524 eassume (0 <= i && i < bool_vector_size (a));
1525 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1526
1527 if (b)
1528 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1529 else
1530 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1531 }
1532
1533 /* Some handy constants for calculating sizes
1534 and offsets, mostly of vectorlike objects. */
1535
1536 enum
1537 {
1538 header_size = offsetof (struct Lisp_Vector, contents),
1539 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1540 word_size = sizeof (Lisp_Object)
1541 };
1542
1543 /* Conveniences for dealing with Lisp arrays. */
1544
1545 INLINE Lisp_Object
1546 AREF (Lisp_Object array, ptrdiff_t idx)
1547 {
1548 return XVECTOR (array)->contents[idx];
1549 }
1550
1551 INLINE Lisp_Object *
1552 aref_addr (Lisp_Object array, ptrdiff_t idx)
1553 {
1554 return & XVECTOR (array)->contents[idx];
1555 }
1556
1557 INLINE ptrdiff_t
1558 ASIZE (Lisp_Object array)
1559 {
1560 ptrdiff_t size = XVECTOR (array)->header.size;
1561 eassume (0 <= size);
1562 return size;
1563 }
1564
1565 INLINE ptrdiff_t
1566 gc_asize (Lisp_Object array)
1567 {
1568 /* Like ASIZE, but also can be used in the garbage collector. */
1569 return XVECTOR (array)->header.size & ~ARRAY_MARK_FLAG;
1570 }
1571
1572 INLINE void
1573 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1574 {
1575 eassert (0 <= idx && idx < ASIZE (array));
1576 XVECTOR (array)->contents[idx] = val;
1577 }
1578
1579 INLINE void
1580 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1581 {
1582 /* Like ASET, but also can be used in the garbage collector:
1583 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1584 eassert (0 <= idx && idx < gc_asize (array));
1585 XVECTOR (array)->contents[idx] = val;
1586 }
1587
1588 /* True, since Qnil's representation is zero. Every place in the code
1589 that assumes Qnil is zero should verify (NIL_IS_ZERO), to make it easy
1590 to find such assumptions later if we change Qnil to be nonzero. */
1591 enum { NIL_IS_ZERO = XLI_BUILTIN_LISPSYM (iQnil) == 0 };
1592
1593 /* Clear the object addressed by P, with size NBYTES, so that all its
1594 bytes are zero and all its Lisp values are nil. */
1595 INLINE void
1596 memclear (void *p, ptrdiff_t nbytes)
1597 {
1598 eassert (0 <= nbytes);
1599 verify (NIL_IS_ZERO);
1600 /* Since Qnil is zero, memset suffices. */
1601 memset (p, 0, nbytes);
1602 }
1603
1604 /* If a struct is made to look like a vector, this macro returns the length
1605 of the shortest vector that would hold that struct. */
1606
1607 #define VECSIZE(type) \
1608 ((sizeof (type) - header_size + word_size - 1) / word_size)
1609
1610 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1611 at the end and we need to compute the number of Lisp_Object fields (the
1612 ones that the GC needs to trace). */
1613
1614 #define PSEUDOVECSIZE(type, nonlispfield) \
1615 ((offsetof (type, nonlispfield) - header_size) / word_size)
1616
1617 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1618 should be integer expressions. This is not the same as
1619 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1620 returns true. For efficiency, prefer plain unsigned comparison if A
1621 and B's sizes both fit (after integer promotion). */
1622 #define UNSIGNED_CMP(a, op, b) \
1623 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1624 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1625 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1626
1627 /* True iff C is an ASCII character. */
1628 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1629
1630 /* A char-table is a kind of vectorlike, with contents are like a
1631 vector but with a few other slots. For some purposes, it makes
1632 sense to handle a char-table with type struct Lisp_Vector. An
1633 element of a char table can be any Lisp objects, but if it is a sub
1634 char-table, we treat it a table that contains information of a
1635 specific range of characters. A sub char-table is like a vector but
1636 with two integer fields between the header and Lisp data, which means
1637 that it has to be marked with some precautions (see mark_char_table
1638 in alloc.c). A sub char-table appears only in an element of a char-table,
1639 and there's no way to access it directly from Emacs Lisp program. */
1640
1641 enum CHARTAB_SIZE_BITS
1642 {
1643 CHARTAB_SIZE_BITS_0 = 6,
1644 CHARTAB_SIZE_BITS_1 = 4,
1645 CHARTAB_SIZE_BITS_2 = 5,
1646 CHARTAB_SIZE_BITS_3 = 7
1647 };
1648
1649 extern const int chartab_size[4];
1650
1651 struct Lisp_Char_Table
1652 {
1653 /* HEADER.SIZE is the vector's size field, which also holds the
1654 pseudovector type information. It holds the size, too.
1655 The size counts the defalt, parent, purpose, ascii,
1656 contents, and extras slots. */
1657 struct vectorlike_header header;
1658
1659 /* This holds a default value,
1660 which is used whenever the value for a specific character is nil. */
1661 Lisp_Object defalt;
1662
1663 /* This points to another char table, which we inherit from when the
1664 value for a specific character is nil. The `defalt' slot takes
1665 precedence over this. */
1666 Lisp_Object parent;
1667
1668 /* This is a symbol which says what kind of use this char-table is
1669 meant for. */
1670 Lisp_Object purpose;
1671
1672 /* The bottom sub char-table for characters of the range 0..127. It
1673 is nil if none of ASCII character has a specific value. */
1674 Lisp_Object ascii;
1675
1676 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1677
1678 /* These hold additional data. It is a vector. */
1679 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1680 };
1681
1682 struct Lisp_Sub_Char_Table
1683 {
1684 /* HEADER.SIZE is the vector's size field, which also holds the
1685 pseudovector type information. It holds the size, too. */
1686 struct vectorlike_header header;
1687
1688 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1689 char-table of depth 1 contains 16 elements, and each element
1690 covers 4096 (128*32) characters. A sub char-table of depth 2
1691 contains 32 elements, and each element covers 128 characters. A
1692 sub char-table of depth 3 contains 128 elements, and each element
1693 is for one character. */
1694 int depth;
1695
1696 /* Minimum character covered by the sub char-table. */
1697 int min_char;
1698
1699 /* Use set_sub_char_table_contents to set this. */
1700 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1701 };
1702
1703 INLINE Lisp_Object
1704 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1705 {
1706 struct Lisp_Char_Table *tbl = NULL;
1707 Lisp_Object val;
1708 do
1709 {
1710 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1711 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1712 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1713 if (NILP (val))
1714 val = tbl->defalt;
1715 }
1716 while (NILP (val) && ! NILP (tbl->parent));
1717
1718 return val;
1719 }
1720
1721 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1722 characters. Do not check validity of CT. */
1723 INLINE Lisp_Object
1724 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1725 {
1726 return (ASCII_CHAR_P (idx)
1727 ? CHAR_TABLE_REF_ASCII (ct, idx)
1728 : char_table_ref (ct, idx));
1729 }
1730
1731 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1732 8-bit European characters. Do not check validity of CT. */
1733 INLINE void
1734 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1735 {
1736 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1737 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1738 else
1739 char_table_set (ct, idx, val);
1740 }
1741
1742 /* This structure describes a built-in function.
1743 It is generated by the DEFUN macro only.
1744 defsubr makes it into a Lisp object. */
1745
1746 struct Lisp_Subr
1747 {
1748 struct vectorlike_header header;
1749 union {
1750 Lisp_Object (*a0) (void);
1751 Lisp_Object (*a1) (Lisp_Object);
1752 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1753 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1754 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1755 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1756 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1757 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1758 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1759 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1760 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1761 } function;
1762 short min_args, max_args;
1763 const char *symbol_name;
1764 const char *intspec;
1765 const char *doc;
1766 };
1767
1768 enum char_table_specials
1769 {
1770 /* This is the number of slots that every char table must have. This
1771 counts the ordinary slots and the top, defalt, parent, and purpose
1772 slots. */
1773 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1774
1775 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1776 when the latter is treated as an ordinary Lisp_Vector. */
1777 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1778 };
1779
1780 /* Return the number of "extra" slots in the char table CT. */
1781
1782 INLINE int
1783 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1784 {
1785 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1786 - CHAR_TABLE_STANDARD_SLOTS);
1787 }
1788
1789 /* Make sure that sub char-table contents slot is where we think it is. */
1790 verify (offsetof (struct Lisp_Sub_Char_Table, contents)
1791 == offsetof (struct Lisp_Vector, contents[SUB_CHAR_TABLE_OFFSET]));
1792
1793 /***********************************************************************
1794 Symbols
1795 ***********************************************************************/
1796
1797 /* Value is name of symbol. */
1798
1799 INLINE Lisp_Object
1800 (SYMBOL_VAL) (struct Lisp_Symbol *sym)
1801 {
1802 return lisp_h_SYMBOL_VAL (sym);
1803 }
1804
1805 INLINE struct Lisp_Symbol *
1806 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1807 {
1808 eassert (sym->redirect == SYMBOL_VARALIAS);
1809 return sym->val.alias;
1810 }
1811 INLINE struct Lisp_Buffer_Local_Value *
1812 SYMBOL_BLV (struct Lisp_Symbol *sym)
1813 {
1814 eassert (sym->redirect == SYMBOL_LOCALIZED);
1815 return sym->val.blv;
1816 }
1817 INLINE union Lisp_Fwd *
1818 SYMBOL_FWD (struct Lisp_Symbol *sym)
1819 {
1820 eassert (sym->redirect == SYMBOL_FORWARDED);
1821 return sym->val.fwd;
1822 }
1823
1824 INLINE void
1825 (SET_SYMBOL_VAL) (struct Lisp_Symbol *sym, Lisp_Object v)
1826 {
1827 lisp_h_SET_SYMBOL_VAL (sym, v);
1828 }
1829
1830 INLINE void
1831 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1832 {
1833 eassert (sym->redirect == SYMBOL_VARALIAS);
1834 sym->val.alias = v;
1835 }
1836 INLINE void
1837 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1838 {
1839 eassert (sym->redirect == SYMBOL_LOCALIZED);
1840 sym->val.blv = v;
1841 }
1842 INLINE void
1843 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1844 {
1845 eassert (sym->redirect == SYMBOL_FORWARDED);
1846 sym->val.fwd = v;
1847 }
1848
1849 INLINE Lisp_Object
1850 SYMBOL_NAME (Lisp_Object sym)
1851 {
1852 return XSYMBOL (sym)->name;
1853 }
1854
1855 /* Value is true if SYM is an interned symbol. */
1856
1857 INLINE bool
1858 SYMBOL_INTERNED_P (Lisp_Object sym)
1859 {
1860 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1861 }
1862
1863 /* Value is true if SYM is interned in initial_obarray. */
1864
1865 INLINE bool
1866 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1867 {
1868 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1869 }
1870
1871 /* Value is non-zero if symbol is considered a constant, i.e. its
1872 value cannot be changed (there is an exception for keyword symbols,
1873 whose value can be set to the keyword symbol itself). */
1874
1875 INLINE int
1876 (SYMBOL_CONSTANT_P) (Lisp_Object sym)
1877 {
1878 return lisp_h_SYMBOL_CONSTANT_P (sym);
1879 }
1880
1881 /* Placeholder for make-docfile to process. The actual symbol
1882 definition is done by lread.c's defsym. */
1883 #define DEFSYM(sym, name) /* empty */
1884
1885 \f
1886 /***********************************************************************
1887 Hash Tables
1888 ***********************************************************************/
1889
1890 /* The structure of a Lisp hash table. */
1891
1892 struct hash_table_test
1893 {
1894 /* Name of the function used to compare keys. */
1895 Lisp_Object name;
1896
1897 /* User-supplied hash function, or nil. */
1898 Lisp_Object user_hash_function;
1899
1900 /* User-supplied key comparison function, or nil. */
1901 Lisp_Object user_cmp_function;
1902
1903 /* C function to compare two keys. */
1904 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1905
1906 /* C function to compute hash code. */
1907 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1908 };
1909
1910 struct Lisp_Hash_Table
1911 {
1912 /* This is for Lisp; the hash table code does not refer to it. */
1913 struct vectorlike_header header;
1914
1915 /* Nil if table is non-weak. Otherwise a symbol describing the
1916 weakness of the table. */
1917 Lisp_Object weak;
1918
1919 /* When the table is resized, and this is an integer, compute the
1920 new size by adding this to the old size. If a float, compute the
1921 new size by multiplying the old size with this factor. */
1922 Lisp_Object rehash_size;
1923
1924 /* Resize hash table when number of entries/ table size is >= this
1925 ratio, a float. */
1926 Lisp_Object rehash_threshold;
1927
1928 /* Vector of hash codes. If hash[I] is nil, this means that the
1929 I-th entry is unused. */
1930 Lisp_Object hash;
1931
1932 /* Vector used to chain entries. If entry I is free, next[I] is the
1933 entry number of the next free item. If entry I is non-free,
1934 next[I] is the index of the next entry in the collision chain. */
1935 Lisp_Object next;
1936
1937 /* Index of first free entry in free list. */
1938 Lisp_Object next_free;
1939
1940 /* Bucket vector. A non-nil entry is the index of the first item in
1941 a collision chain. This vector's size can be larger than the
1942 hash table size to reduce collisions. */
1943 Lisp_Object index;
1944
1945 /* Only the fields above are traced normally by the GC. The ones below
1946 `count' are special and are either ignored by the GC or traced in
1947 a special way (e.g. because of weakness). */
1948
1949 /* Number of key/value entries in the table. */
1950 ptrdiff_t count;
1951
1952 /* Vector of keys and values. The key of item I is found at index
1953 2 * I, the value is found at index 2 * I + 1.
1954 This is gc_marked specially if the table is weak. */
1955 Lisp_Object key_and_value;
1956
1957 /* The comparison and hash functions. */
1958 struct hash_table_test test;
1959
1960 /* Next weak hash table if this is a weak hash table. The head
1961 of the list is in weak_hash_tables. */
1962 struct Lisp_Hash_Table *next_weak;
1963 };
1964
1965
1966 INLINE bool
1967 HASH_TABLE_P (Lisp_Object a)
1968 {
1969 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1970 }
1971
1972 INLINE struct Lisp_Hash_Table *
1973 XHASH_TABLE (Lisp_Object a)
1974 {
1975 eassert (HASH_TABLE_P (a));
1976 return XUNTAG (a, Lisp_Vectorlike);
1977 }
1978
1979 #define XSET_HASH_TABLE(VAR, PTR) \
1980 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1981
1982 /* Value is the key part of entry IDX in hash table H. */
1983 INLINE Lisp_Object
1984 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1985 {
1986 return AREF (h->key_and_value, 2 * idx);
1987 }
1988
1989 /* Value is the value part of entry IDX in hash table H. */
1990 INLINE Lisp_Object
1991 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1992 {
1993 return AREF (h->key_and_value, 2 * idx + 1);
1994 }
1995
1996 /* Value is the index of the next entry following the one at IDX
1997 in hash table H. */
1998 INLINE Lisp_Object
1999 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
2000 {
2001 return AREF (h->next, idx);
2002 }
2003
2004 /* Value is the hash code computed for entry IDX in hash table H. */
2005 INLINE Lisp_Object
2006 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
2007 {
2008 return AREF (h->hash, idx);
2009 }
2010
2011 /* Value is the index of the element in hash table H that is the
2012 start of the collision list at index IDX in the index vector of H. */
2013 INLINE Lisp_Object
2014 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
2015 {
2016 return AREF (h->index, idx);
2017 }
2018
2019 /* Value is the size of hash table H. */
2020 INLINE ptrdiff_t
2021 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
2022 {
2023 return ASIZE (h->next);
2024 }
2025
2026 /* Default size for hash tables if not specified. */
2027
2028 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
2029
2030 /* Default threshold specifying when to resize a hash table. The
2031 value gives the ratio of current entries in the hash table and the
2032 size of the hash table. */
2033
2034 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
2035
2036 /* Default factor by which to increase the size of a hash table. */
2037
2038 static double const DEFAULT_REHASH_SIZE = 1.5;
2039
2040 /* Combine two integers X and Y for hashing. The result might not fit
2041 into a Lisp integer. */
2042
2043 INLINE EMACS_UINT
2044 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
2045 {
2046 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
2047 }
2048
2049 /* Hash X, returning a value that fits into a fixnum. */
2050
2051 INLINE EMACS_UINT
2052 SXHASH_REDUCE (EMACS_UINT x)
2053 {
2054 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
2055 }
2056
2057 /* These structures are used for various misc types. */
2058
2059 struct Lisp_Misc_Any /* Supertype of all Misc types. */
2060 {
2061 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
2062 bool_bf gcmarkbit : 1;
2063 unsigned spacer : 15;
2064 };
2065
2066 struct Lisp_Marker
2067 {
2068 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
2069 bool_bf gcmarkbit : 1;
2070 unsigned spacer : 13;
2071 /* This flag is temporarily used in the functions
2072 decode/encode_coding_object to record that the marker position
2073 must be adjusted after the conversion. */
2074 bool_bf need_adjustment : 1;
2075 /* True means normal insertion at the marker's position
2076 leaves the marker after the inserted text. */
2077 bool_bf insertion_type : 1;
2078 /* This is the buffer that the marker points into, or 0 if it points nowhere.
2079 Note: a chain of markers can contain markers pointing into different
2080 buffers (the chain is per buffer_text rather than per buffer, so it's
2081 shared between indirect buffers). */
2082 /* This is used for (other than NULL-checking):
2083 - Fmarker_buffer
2084 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
2085 - unchain_marker: to find the list from which to unchain.
2086 - Fkill_buffer: to only unchain the markers of current indirect buffer.
2087 */
2088 struct buffer *buffer;
2089
2090 /* The remaining fields are meaningless in a marker that
2091 does not point anywhere. */
2092
2093 /* For markers that point somewhere,
2094 this is used to chain of all the markers in a given buffer. */
2095 /* We could remove it and use an array in buffer_text instead.
2096 That would also allow us to preserve it ordered. */
2097 struct Lisp_Marker *next;
2098 /* This is the char position where the marker points. */
2099 ptrdiff_t charpos;
2100 /* This is the byte position.
2101 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
2102 used to implement the functionality of markers, but rather to (ab)use
2103 markers as a cache for char<->byte mappings). */
2104 ptrdiff_t bytepos;
2105 };
2106
2107 /* START and END are markers in the overlay's buffer, and
2108 PLIST is the overlay's property list. */
2109 struct Lisp_Overlay
2110 /* An overlay's real data content is:
2111 - plist
2112 - buffer (really there are two buffer pointers, one per marker,
2113 and both points to the same buffer)
2114 - insertion type of both ends (per-marker fields)
2115 - start & start byte (of start marker)
2116 - end & end byte (of end marker)
2117 - next (singly linked list of overlays)
2118 - next fields of start and end markers (singly linked list of markers).
2119 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
2120 */
2121 {
2122 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
2123 bool_bf gcmarkbit : 1;
2124 unsigned spacer : 15;
2125 struct Lisp_Overlay *next;
2126 Lisp_Object start;
2127 Lisp_Object end;
2128 Lisp_Object plist;
2129 };
2130
2131 /* Types of data which may be saved in a Lisp_Save_Value. */
2132
2133 enum
2134 {
2135 SAVE_UNUSED,
2136 SAVE_INTEGER,
2137 SAVE_FUNCPOINTER,
2138 SAVE_POINTER,
2139 SAVE_OBJECT
2140 };
2141
2142 /* Number of bits needed to store one of the above values. */
2143 enum { SAVE_SLOT_BITS = 3 };
2144
2145 /* Number of slots in a save value where save_type is nonzero. */
2146 enum { SAVE_VALUE_SLOTS = 4 };
2147
2148 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
2149
2150 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
2151
2152 enum Lisp_Save_Type
2153 {
2154 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2155 SAVE_TYPE_INT_INT_INT
2156 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
2157 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
2158 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
2159 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
2160 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
2161 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2162 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
2163 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
2164 SAVE_TYPE_FUNCPTR_PTR_OBJ
2165 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
2166
2167 /* This has an extra bit indicating it's raw memory. */
2168 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
2169 };
2170
2171 /* Special object used to hold a different values for later use.
2172
2173 This is mostly used to package C integers and pointers to call
2174 record_unwind_protect when two or more values need to be saved.
2175 For example:
2176
2177 ...
2178 struct my_data *md = get_my_data ();
2179 ptrdiff_t mi = get_my_integer ();
2180 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2181 ...
2182
2183 Lisp_Object my_unwind (Lisp_Object arg)
2184 {
2185 struct my_data *md = XSAVE_POINTER (arg, 0);
2186 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2187 ...
2188 }
2189
2190 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2191 saved objects and raise eassert if type of the saved object doesn't match
2192 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2193 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2194 slot 0 is a pointer. */
2195
2196 typedef void (*voidfuncptr) (void);
2197
2198 struct Lisp_Save_Value
2199 {
2200 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2201 bool_bf gcmarkbit : 1;
2202 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2203
2204 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2205 V's data entries are determined by V->save_type. E.g., if
2206 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2207 V->data[1] is an integer, and V's other data entries are unused.
2208
2209 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2210 a memory area containing V->data[1].integer potential Lisp_Objects. */
2211 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2212 union {
2213 void *pointer;
2214 voidfuncptr funcpointer;
2215 ptrdiff_t integer;
2216 Lisp_Object object;
2217 } data[SAVE_VALUE_SLOTS];
2218 };
2219
2220 /* Return the type of V's Nth saved value. */
2221 INLINE int
2222 save_type (struct Lisp_Save_Value *v, int n)
2223 {
2224 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2225 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2226 }
2227
2228 /* Get and set the Nth saved pointer. */
2229
2230 INLINE void *
2231 XSAVE_POINTER (Lisp_Object obj, int n)
2232 {
2233 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2234 return XSAVE_VALUE (obj)->data[n].pointer;
2235 }
2236 INLINE void
2237 set_save_pointer (Lisp_Object obj, int n, void *val)
2238 {
2239 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2240 XSAVE_VALUE (obj)->data[n].pointer = val;
2241 }
2242 INLINE voidfuncptr
2243 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2244 {
2245 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2246 return XSAVE_VALUE (obj)->data[n].funcpointer;
2247 }
2248
2249 /* Likewise for the saved integer. */
2250
2251 INLINE ptrdiff_t
2252 XSAVE_INTEGER (Lisp_Object obj, int n)
2253 {
2254 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2255 return XSAVE_VALUE (obj)->data[n].integer;
2256 }
2257 INLINE void
2258 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2259 {
2260 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2261 XSAVE_VALUE (obj)->data[n].integer = val;
2262 }
2263
2264 /* Extract Nth saved object. */
2265
2266 INLINE Lisp_Object
2267 XSAVE_OBJECT (Lisp_Object obj, int n)
2268 {
2269 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2270 return XSAVE_VALUE (obj)->data[n].object;
2271 }
2272
2273 #ifdef HAVE_MODULES
2274 struct Lisp_User_Ptr
2275 {
2276 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_User_Ptr */
2277 bool_bf gcmarkbit : 1;
2278 unsigned spacer : 15;
2279
2280 void (*finalizer) (void *);
2281 void *p;
2282 };
2283 #endif
2284
2285 /* A finalizer sentinel. */
2286 struct Lisp_Finalizer
2287 {
2288 struct Lisp_Misc_Any base;
2289
2290 /* Circular list of all active weak references. */
2291 struct Lisp_Finalizer *prev;
2292 struct Lisp_Finalizer *next;
2293
2294 /* Call FUNCTION when the finalizer becomes unreachable, even if
2295 FUNCTION contains a reference to the finalizer; i.e., call
2296 FUNCTION when it is reachable _only_ through finalizers. */
2297 Lisp_Object function;
2298 };
2299
2300 /* A miscellaneous object, when it's on the free list. */
2301 struct Lisp_Free
2302 {
2303 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2304 bool_bf gcmarkbit : 1;
2305 unsigned spacer : 15;
2306 union Lisp_Misc *chain;
2307 };
2308
2309 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2310 It uses one of these struct subtypes to get the type field. */
2311
2312 union Lisp_Misc
2313 {
2314 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2315 struct Lisp_Free u_free;
2316 struct Lisp_Marker u_marker;
2317 struct Lisp_Overlay u_overlay;
2318 struct Lisp_Save_Value u_save_value;
2319 struct Lisp_Finalizer u_finalizer;
2320 #ifdef HAVE_MODULES
2321 struct Lisp_User_Ptr u_user_ptr;
2322 #endif
2323 };
2324
2325 INLINE union Lisp_Misc *
2326 XMISC (Lisp_Object a)
2327 {
2328 return XUNTAG (a, Lisp_Misc);
2329 }
2330
2331 INLINE struct Lisp_Misc_Any *
2332 XMISCANY (Lisp_Object a)
2333 {
2334 eassert (MISCP (a));
2335 return & XMISC (a)->u_any;
2336 }
2337
2338 INLINE enum Lisp_Misc_Type
2339 XMISCTYPE (Lisp_Object a)
2340 {
2341 return XMISCANY (a)->type;
2342 }
2343
2344 INLINE struct Lisp_Marker *
2345 XMARKER (Lisp_Object a)
2346 {
2347 eassert (MARKERP (a));
2348 return & XMISC (a)->u_marker;
2349 }
2350
2351 INLINE struct Lisp_Overlay *
2352 XOVERLAY (Lisp_Object a)
2353 {
2354 eassert (OVERLAYP (a));
2355 return & XMISC (a)->u_overlay;
2356 }
2357
2358 INLINE struct Lisp_Save_Value *
2359 XSAVE_VALUE (Lisp_Object a)
2360 {
2361 eassert (SAVE_VALUEP (a));
2362 return & XMISC (a)->u_save_value;
2363 }
2364
2365 INLINE struct Lisp_Finalizer *
2366 XFINALIZER (Lisp_Object a)
2367 {
2368 eassert (FINALIZERP (a));
2369 return & XMISC (a)->u_finalizer;
2370 }
2371
2372 #ifdef HAVE_MODULES
2373 INLINE struct Lisp_User_Ptr *
2374 XUSER_PTR (Lisp_Object a)
2375 {
2376 eassert (USER_PTRP (a));
2377 return & XMISC (a)->u_user_ptr;
2378 }
2379 #endif
2380
2381 \f
2382 /* Forwarding pointer to an int variable.
2383 This is allowed only in the value cell of a symbol,
2384 and it means that the symbol's value really lives in the
2385 specified int variable. */
2386 struct Lisp_Intfwd
2387 {
2388 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2389 EMACS_INT *intvar;
2390 };
2391
2392 /* Boolean forwarding pointer to an int variable.
2393 This is like Lisp_Intfwd except that the ostensible
2394 "value" of the symbol is t if the bool variable is true,
2395 nil if it is false. */
2396 struct Lisp_Boolfwd
2397 {
2398 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2399 bool *boolvar;
2400 };
2401
2402 /* Forwarding pointer to a Lisp_Object variable.
2403 This is allowed only in the value cell of a symbol,
2404 and it means that the symbol's value really lives in the
2405 specified variable. */
2406 struct Lisp_Objfwd
2407 {
2408 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2409 Lisp_Object *objvar;
2410 };
2411
2412 /* Like Lisp_Objfwd except that value lives in a slot in the
2413 current buffer. Value is byte index of slot within buffer. */
2414 struct Lisp_Buffer_Objfwd
2415 {
2416 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2417 int offset;
2418 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2419 Lisp_Object predicate;
2420 };
2421
2422 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2423 the symbol has buffer-local or frame-local bindings. (Exception:
2424 some buffer-local variables are built-in, with their values stored
2425 in the buffer structure itself. They are handled differently,
2426 using struct Lisp_Buffer_Objfwd.)
2427
2428 The `realvalue' slot holds the variable's current value, or a
2429 forwarding pointer to where that value is kept. This value is the
2430 one that corresponds to the loaded binding. To read or set the
2431 variable, you must first make sure the right binding is loaded;
2432 then you can access the value in (or through) `realvalue'.
2433
2434 `buffer' and `frame' are the buffer and frame for which the loaded
2435 binding was found. If those have changed, to make sure the right
2436 binding is loaded it is necessary to find which binding goes with
2437 the current buffer and selected frame, then load it. To load it,
2438 first unload the previous binding, then copy the value of the new
2439 binding into `realvalue' (or through it). Also update
2440 LOADED-BINDING to point to the newly loaded binding.
2441
2442 `local_if_set' indicates that merely setting the variable creates a
2443 local binding for the current buffer. Otherwise the latter, setting
2444 the variable does not do that; only make-local-variable does that. */
2445
2446 struct Lisp_Buffer_Local_Value
2447 {
2448 /* True means that merely setting the variable creates a local
2449 binding for the current buffer. */
2450 bool_bf local_if_set : 1;
2451 /* True means this variable can have frame-local bindings, otherwise, it is
2452 can have buffer-local bindings. The two cannot be combined. */
2453 bool_bf frame_local : 1;
2454 /* True means that the binding now loaded was found.
2455 Presumably equivalent to (defcell!=valcell). */
2456 bool_bf found : 1;
2457 /* If non-NULL, a forwarding to the C var where it should also be set. */
2458 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2459 /* The buffer or frame for which the loaded binding was found. */
2460 Lisp_Object where;
2461 /* A cons cell that holds the default value. It has the form
2462 (SYMBOL . DEFAULT-VALUE). */
2463 Lisp_Object defcell;
2464 /* The cons cell from `where's parameter alist.
2465 It always has the form (SYMBOL . VALUE)
2466 Note that if `forward' is non-nil, VALUE may be out of date.
2467 Also if the currently loaded binding is the default binding, then
2468 this is `eq'ual to defcell. */
2469 Lisp_Object valcell;
2470 };
2471
2472 /* Like Lisp_Objfwd except that value lives in a slot in the
2473 current kboard. */
2474 struct Lisp_Kboard_Objfwd
2475 {
2476 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2477 int offset;
2478 };
2479
2480 union Lisp_Fwd
2481 {
2482 struct Lisp_Intfwd u_intfwd;
2483 struct Lisp_Boolfwd u_boolfwd;
2484 struct Lisp_Objfwd u_objfwd;
2485 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2486 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2487 };
2488
2489 INLINE enum Lisp_Fwd_Type
2490 XFWDTYPE (union Lisp_Fwd *a)
2491 {
2492 return a->u_intfwd.type;
2493 }
2494
2495 INLINE struct Lisp_Buffer_Objfwd *
2496 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2497 {
2498 eassert (BUFFER_OBJFWDP (a));
2499 return &a->u_buffer_objfwd;
2500 }
2501 \f
2502 /* Lisp floating point type. */
2503 struct Lisp_Float
2504 {
2505 union
2506 {
2507 double data;
2508 struct Lisp_Float *chain;
2509 } u;
2510 };
2511
2512 INLINE double
2513 XFLOAT_DATA (Lisp_Object f)
2514 {
2515 return XFLOAT (f)->u.data;
2516 }
2517
2518 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2519 representations, have infinities and NaNs, and do not trap on
2520 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2521 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2522 wanted here, but is not quite right because Emacs does not require
2523 all the features of C11 Annex F (and does not require C11 at all,
2524 for that matter). */
2525 enum
2526 {
2527 IEEE_FLOATING_POINT
2528 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2529 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2530 };
2531
2532 /* A character, declared with the following typedef, is a member
2533 of some character set associated with the current buffer. */
2534 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2535 #define _UCHAR_T
2536 typedef unsigned char UCHAR;
2537 #endif
2538
2539 /* Meanings of slots in a Lisp_Compiled: */
2540
2541 enum Lisp_Compiled
2542 {
2543 COMPILED_ARGLIST = 0,
2544 COMPILED_BYTECODE = 1,
2545 COMPILED_CONSTANTS = 2,
2546 COMPILED_STACK_DEPTH = 3,
2547 COMPILED_DOC_STRING = 4,
2548 COMPILED_INTERACTIVE = 5
2549 };
2550
2551 /* Flag bits in a character. These also get used in termhooks.h.
2552 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2553 (MUlti-Lingual Emacs) might need 22 bits for the character value
2554 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2555 enum char_bits
2556 {
2557 CHAR_ALT = 0x0400000,
2558 CHAR_SUPER = 0x0800000,
2559 CHAR_HYPER = 0x1000000,
2560 CHAR_SHIFT = 0x2000000,
2561 CHAR_CTL = 0x4000000,
2562 CHAR_META = 0x8000000,
2563
2564 CHAR_MODIFIER_MASK =
2565 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2566
2567 /* Actually, the current Emacs uses 22 bits for the character value
2568 itself. */
2569 CHARACTERBITS = 22
2570 };
2571 \f
2572 /* Data type checking. */
2573
2574 INLINE bool
2575 (NILP) (Lisp_Object x)
2576 {
2577 return lisp_h_NILP (x);
2578 }
2579
2580 INLINE bool
2581 NUMBERP (Lisp_Object x)
2582 {
2583 return INTEGERP (x) || FLOATP (x);
2584 }
2585 INLINE bool
2586 NATNUMP (Lisp_Object x)
2587 {
2588 return INTEGERP (x) && 0 <= XINT (x);
2589 }
2590
2591 INLINE bool
2592 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2593 {
2594 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2595 }
2596
2597 #define TYPE_RANGED_INTEGERP(type, x) \
2598 (INTEGERP (x) \
2599 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2600 && XINT (x) <= TYPE_MAXIMUM (type))
2601
2602 INLINE bool
2603 (CONSP) (Lisp_Object x)
2604 {
2605 return lisp_h_CONSP (x);
2606 }
2607 INLINE bool
2608 (FLOATP) (Lisp_Object x)
2609 {
2610 return lisp_h_FLOATP (x);
2611 }
2612 INLINE bool
2613 (MISCP) (Lisp_Object x)
2614 {
2615 return lisp_h_MISCP (x);
2616 }
2617 INLINE bool
2618 (SYMBOLP) (Lisp_Object x)
2619 {
2620 return lisp_h_SYMBOLP (x);
2621 }
2622 INLINE bool
2623 (INTEGERP) (Lisp_Object x)
2624 {
2625 return lisp_h_INTEGERP (x);
2626 }
2627 INLINE bool
2628 (VECTORLIKEP) (Lisp_Object x)
2629 {
2630 return lisp_h_VECTORLIKEP (x);
2631 }
2632 INLINE bool
2633 (MARKERP) (Lisp_Object x)
2634 {
2635 return lisp_h_MARKERP (x);
2636 }
2637
2638 INLINE bool
2639 STRINGP (Lisp_Object x)
2640 {
2641 return XTYPE (x) == Lisp_String;
2642 }
2643 INLINE bool
2644 VECTORP (Lisp_Object x)
2645 {
2646 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2647 }
2648 INLINE bool
2649 OVERLAYP (Lisp_Object x)
2650 {
2651 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2652 }
2653 INLINE bool
2654 SAVE_VALUEP (Lisp_Object x)
2655 {
2656 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2657 }
2658
2659 INLINE bool
2660 FINALIZERP (Lisp_Object x)
2661 {
2662 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Finalizer;
2663 }
2664
2665 #ifdef HAVE_MODULES
2666 INLINE bool
2667 USER_PTRP (Lisp_Object x)
2668 {
2669 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_User_Ptr;
2670 }
2671 #endif
2672
2673 INLINE bool
2674 AUTOLOADP (Lisp_Object x)
2675 {
2676 return CONSP (x) && EQ (Qautoload, XCAR (x));
2677 }
2678
2679 INLINE bool
2680 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2681 {
2682 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2683 }
2684
2685 INLINE bool
2686 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2687 {
2688 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2689 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2690 }
2691
2692 /* True if A is a pseudovector whose code is CODE. */
2693 INLINE bool
2694 PSEUDOVECTORP (Lisp_Object a, int code)
2695 {
2696 if (! VECTORLIKEP (a))
2697 return false;
2698 else
2699 {
2700 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2701 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2702 return PSEUDOVECTOR_TYPEP (h, code);
2703 }
2704 }
2705
2706
2707 /* Test for specific pseudovector types. */
2708
2709 INLINE bool
2710 WINDOW_CONFIGURATIONP (Lisp_Object a)
2711 {
2712 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2713 }
2714
2715 INLINE bool
2716 PROCESSP (Lisp_Object a)
2717 {
2718 return PSEUDOVECTORP (a, PVEC_PROCESS);
2719 }
2720
2721 INLINE bool
2722 WINDOWP (Lisp_Object a)
2723 {
2724 return PSEUDOVECTORP (a, PVEC_WINDOW);
2725 }
2726
2727 INLINE bool
2728 TERMINALP (Lisp_Object a)
2729 {
2730 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2731 }
2732
2733 INLINE bool
2734 SUBRP (Lisp_Object a)
2735 {
2736 return PSEUDOVECTORP (a, PVEC_SUBR);
2737 }
2738
2739 INLINE bool
2740 COMPILEDP (Lisp_Object a)
2741 {
2742 return PSEUDOVECTORP (a, PVEC_COMPILED);
2743 }
2744
2745 INLINE bool
2746 BUFFERP (Lisp_Object a)
2747 {
2748 return PSEUDOVECTORP (a, PVEC_BUFFER);
2749 }
2750
2751 INLINE bool
2752 CHAR_TABLE_P (Lisp_Object a)
2753 {
2754 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2755 }
2756
2757 INLINE bool
2758 SUB_CHAR_TABLE_P (Lisp_Object a)
2759 {
2760 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2761 }
2762
2763 INLINE bool
2764 BOOL_VECTOR_P (Lisp_Object a)
2765 {
2766 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2767 }
2768
2769 INLINE bool
2770 FRAMEP (Lisp_Object a)
2771 {
2772 return PSEUDOVECTORP (a, PVEC_FRAME);
2773 }
2774
2775 /* Test for image (image . spec) */
2776 INLINE bool
2777 IMAGEP (Lisp_Object x)
2778 {
2779 return CONSP (x) && EQ (XCAR (x), Qimage);
2780 }
2781
2782 /* Array types. */
2783 INLINE bool
2784 ARRAYP (Lisp_Object x)
2785 {
2786 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2787 }
2788 \f
2789 INLINE void
2790 CHECK_LIST (Lisp_Object x)
2791 {
2792 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2793 }
2794
2795 INLINE void
2796 (CHECK_LIST_CONS) (Lisp_Object x, Lisp_Object y)
2797 {
2798 lisp_h_CHECK_LIST_CONS (x, y);
2799 }
2800
2801 INLINE void
2802 (CHECK_SYMBOL) (Lisp_Object x)
2803 {
2804 lisp_h_CHECK_SYMBOL (x);
2805 }
2806
2807 INLINE void
2808 (CHECK_NUMBER) (Lisp_Object x)
2809 {
2810 lisp_h_CHECK_NUMBER (x);
2811 }
2812
2813 INLINE void
2814 CHECK_STRING (Lisp_Object x)
2815 {
2816 CHECK_TYPE (STRINGP (x), Qstringp, x);
2817 }
2818 INLINE void
2819 CHECK_STRING_CAR (Lisp_Object x)
2820 {
2821 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2822 }
2823 INLINE void
2824 CHECK_CONS (Lisp_Object x)
2825 {
2826 CHECK_TYPE (CONSP (x), Qconsp, x);
2827 }
2828 INLINE void
2829 CHECK_VECTOR (Lisp_Object x)
2830 {
2831 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2832 }
2833 INLINE void
2834 CHECK_BOOL_VECTOR (Lisp_Object x)
2835 {
2836 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2837 }
2838 /* This is a bit special because we always need size afterwards. */
2839 INLINE ptrdiff_t
2840 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2841 {
2842 if (VECTORP (x))
2843 return ASIZE (x);
2844 if (STRINGP (x))
2845 return SCHARS (x);
2846 wrong_type_argument (Qarrayp, x);
2847 }
2848 INLINE void
2849 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2850 {
2851 CHECK_TYPE (ARRAYP (x), predicate, x);
2852 }
2853 INLINE void
2854 CHECK_BUFFER (Lisp_Object x)
2855 {
2856 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2857 }
2858 INLINE void
2859 CHECK_WINDOW (Lisp_Object x)
2860 {
2861 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2862 }
2863 #ifdef subprocesses
2864 INLINE void
2865 CHECK_PROCESS (Lisp_Object x)
2866 {
2867 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2868 }
2869 #endif
2870 INLINE void
2871 CHECK_NATNUM (Lisp_Object x)
2872 {
2873 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2874 }
2875
2876 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2877 do { \
2878 CHECK_NUMBER (x); \
2879 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2880 args_out_of_range_3 \
2881 (x, \
2882 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2883 ? MOST_NEGATIVE_FIXNUM \
2884 : (lo)), \
2885 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2886 } while (false)
2887 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2888 do { \
2889 if (TYPE_SIGNED (type)) \
2890 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2891 else \
2892 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2893 } while (false)
2894
2895 #define CHECK_NUMBER_COERCE_MARKER(x) \
2896 do { \
2897 if (MARKERP ((x))) \
2898 XSETFASTINT (x, marker_position (x)); \
2899 else \
2900 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2901 } while (false)
2902
2903 INLINE double
2904 XFLOATINT (Lisp_Object n)
2905 {
2906 return extract_float (n);
2907 }
2908
2909 INLINE void
2910 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2911 {
2912 CHECK_TYPE (NUMBERP (x), Qnumberp, x);
2913 }
2914
2915 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2916 do { \
2917 if (MARKERP (x)) \
2918 XSETFASTINT (x, marker_position (x)); \
2919 else \
2920 CHECK_TYPE (NUMBERP (x), Qnumber_or_marker_p, x); \
2921 } while (false)
2922
2923 /* Since we can't assign directly to the CAR or CDR fields of a cons
2924 cell, use these when checking that those fields contain numbers. */
2925 INLINE void
2926 CHECK_NUMBER_CAR (Lisp_Object x)
2927 {
2928 Lisp_Object tmp = XCAR (x);
2929 CHECK_NUMBER (tmp);
2930 XSETCAR (x, tmp);
2931 }
2932
2933 INLINE void
2934 CHECK_NUMBER_CDR (Lisp_Object x)
2935 {
2936 Lisp_Object tmp = XCDR (x);
2937 CHECK_NUMBER (tmp);
2938 XSETCDR (x, tmp);
2939 }
2940 \f
2941 /* Define a built-in function for calling from Lisp.
2942 `lname' should be the name to give the function in Lisp,
2943 as a null-terminated C string.
2944 `fnname' should be the name of the function in C.
2945 By convention, it starts with F.
2946 `sname' should be the name for the C constant structure
2947 that records information on this function for internal use.
2948 By convention, it should be the same as `fnname' but with S instead of F.
2949 It's too bad that C macros can't compute this from `fnname'.
2950 `minargs' should be a number, the minimum number of arguments allowed.
2951 `maxargs' should be a number, the maximum number of arguments allowed,
2952 or else MANY or UNEVALLED.
2953 MANY means pass a vector of evaluated arguments,
2954 in the form of an integer number-of-arguments
2955 followed by the address of a vector of Lisp_Objects
2956 which contains the argument values.
2957 UNEVALLED means pass the list of unevaluated arguments
2958 `intspec' says how interactive arguments are to be fetched.
2959 If the string starts with a `(', `intspec' is evaluated and the resulting
2960 list is the list of arguments.
2961 If it's a string that doesn't start with `(', the value should follow
2962 the one of the doc string for `interactive'.
2963 A null string means call interactively with no arguments.
2964 `doc' is documentation for the user. */
2965
2966 /* This version of DEFUN declares a function prototype with the right
2967 arguments, so we can catch errors with maxargs at compile-time. */
2968 #ifdef _MSC_VER
2969 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2970 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2971 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2972 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2973 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2974 { (Lisp_Object (__cdecl *)(void))fnname }, \
2975 minargs, maxargs, lname, intspec, 0}; \
2976 Lisp_Object fnname
2977 #else /* not _MSC_VER */
2978 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2979 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2980 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2981 { .a ## maxargs = fnname }, \
2982 minargs, maxargs, lname, intspec, 0}; \
2983 Lisp_Object fnname
2984 #endif
2985
2986 /* True if OBJ is a Lisp function. */
2987 INLINE bool
2988 FUNCTIONP (Lisp_Object obj)
2989 {
2990 return functionp (obj);
2991 }
2992
2993 /* defsubr (Sname);
2994 is how we define the symbol for function `name' at start-up time. */
2995 extern void defsubr (struct Lisp_Subr *);
2996
2997 enum maxargs
2998 {
2999 MANY = -2,
3000 UNEVALLED = -1
3001 };
3002
3003 /* Call a function F that accepts many args, passing it ARRAY's elements. */
3004 #define CALLMANY(f, array) (f) (ARRAYELTS (array), array)
3005
3006 /* Call a function F that accepts many args, passing it the remaining args,
3007 E.g., 'return CALLN (Fformat, fmt, text);' is less error-prone than
3008 '{ Lisp_Object a[2]; a[0] = fmt; a[1] = text; return Fformat (2, a); }'.
3009 CALLN is overkill for simple usages like 'Finsert (1, &text);'. */
3010 #define CALLN(f, ...) CALLMANY (f, ((Lisp_Object []) {__VA_ARGS__}))
3011
3012 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
3013 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
3014 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
3015 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
3016 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
3017
3018 /* Macros we use to define forwarded Lisp variables.
3019 These are used in the syms_of_FILENAME functions.
3020
3021 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
3022 lisp variable is actually a field in `struct emacs_globals'. The
3023 field's name begins with "f_", which is a convention enforced by
3024 these macros. Each such global has a corresponding #define in
3025 globals.h; the plain name should be used in the code.
3026
3027 E.g., the global "cons_cells_consed" is declared as "int
3028 f_cons_cells_consed" in globals.h, but there is a define:
3029
3030 #define cons_cells_consed globals.f_cons_cells_consed
3031
3032 All C code uses the `cons_cells_consed' name. This is all done
3033 this way to support indirection for multi-threaded Emacs. */
3034
3035 #define DEFVAR_LISP(lname, vname, doc) \
3036 do { \
3037 static struct Lisp_Objfwd o_fwd; \
3038 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
3039 } while (false)
3040 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
3041 do { \
3042 static struct Lisp_Objfwd o_fwd; \
3043 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
3044 } while (false)
3045 #define DEFVAR_BOOL(lname, vname, doc) \
3046 do { \
3047 static struct Lisp_Boolfwd b_fwd; \
3048 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
3049 } while (false)
3050 #define DEFVAR_INT(lname, vname, doc) \
3051 do { \
3052 static struct Lisp_Intfwd i_fwd; \
3053 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
3054 } while (false)
3055
3056 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
3057 do { \
3058 static struct Lisp_Objfwd o_fwd; \
3059 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
3060 } while (false)
3061
3062 #define DEFVAR_KBOARD(lname, vname, doc) \
3063 do { \
3064 static struct Lisp_Kboard_Objfwd ko_fwd; \
3065 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
3066 } while (false)
3067 \f
3068 /* Save and restore the instruction and environment pointers,
3069 without affecting the signal mask. */
3070
3071 #ifdef HAVE__SETJMP
3072 typedef jmp_buf sys_jmp_buf;
3073 # define sys_setjmp(j) _setjmp (j)
3074 # define sys_longjmp(j, v) _longjmp (j, v)
3075 #elif defined HAVE_SIGSETJMP
3076 typedef sigjmp_buf sys_jmp_buf;
3077 # define sys_setjmp(j) sigsetjmp (j, 0)
3078 # define sys_longjmp(j, v) siglongjmp (j, v)
3079 #else
3080 /* A platform that uses neither _longjmp nor siglongjmp; assume
3081 longjmp does not affect the sigmask. */
3082 typedef jmp_buf sys_jmp_buf;
3083 # define sys_setjmp(j) setjmp (j)
3084 # define sys_longjmp(j, v) longjmp (j, v)
3085 #endif
3086
3087 \f
3088 /* Elisp uses several stacks:
3089 - the C stack.
3090 - the bytecode stack: used internally by the bytecode interpreter.
3091 Allocated from the C stack.
3092 - The specpdl stack: keeps track of active unwind-protect and
3093 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
3094 managed stack.
3095 - The handler stack: keeps track of active catch tags and condition-case
3096 handlers. Allocated in a manually managed stack implemented by a
3097 doubly-linked list allocated via xmalloc and never freed. */
3098
3099 /* Structure for recording Lisp call stack for backtrace purposes. */
3100
3101 /* The special binding stack holds the outer values of variables while
3102 they are bound by a function application or a let form, stores the
3103 code to be executed for unwind-protect forms.
3104
3105 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
3106 used all over the place, needs to be fast, and needs to know the size of
3107 union specbinding. But only eval.c should access it. */
3108
3109 enum specbind_tag {
3110 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
3111 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
3112 SPECPDL_UNWIND_INT, /* Likewise, on int. */
3113 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
3114 SPECPDL_BACKTRACE, /* An element of the backtrace. */
3115 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
3116 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
3117 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
3118 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
3119 };
3120
3121 union specbinding
3122 {
3123 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3124 struct {
3125 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3126 void (*func) (Lisp_Object);
3127 Lisp_Object arg;
3128 } unwind;
3129 struct {
3130 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3131 void (*func) (void *);
3132 void *arg;
3133 } unwind_ptr;
3134 struct {
3135 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3136 void (*func) (int);
3137 int arg;
3138 } unwind_int;
3139 struct {
3140 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3141 void (*func) (void);
3142 } unwind_void;
3143 struct {
3144 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3145 /* `where' is not used in the case of SPECPDL_LET. */
3146 Lisp_Object symbol, old_value, where;
3147 } let;
3148 struct {
3149 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3150 bool_bf debug_on_exit : 1;
3151 Lisp_Object function;
3152 Lisp_Object *args;
3153 ptrdiff_t nargs;
3154 } bt;
3155 };
3156
3157 extern union specbinding *specpdl;
3158 extern union specbinding *specpdl_ptr;
3159 extern ptrdiff_t specpdl_size;
3160
3161 INLINE ptrdiff_t
3162 SPECPDL_INDEX (void)
3163 {
3164 return specpdl_ptr - specpdl;
3165 }
3166
3167 /* This structure helps implement the `catch/throw' and `condition-case/signal'
3168 control structures. A struct handler contains all the information needed to
3169 restore the state of the interpreter after a non-local jump.
3170
3171 handler structures are chained together in a doubly linked list; the `next'
3172 member points to the next outer catchtag and the `nextfree' member points in
3173 the other direction to the next inner element (which is typically the next
3174 free element since we mostly use it on the deepest handler).
3175
3176 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
3177 member is TAG, and then unbinds to it. The `val' member is used to
3178 hold VAL while the stack is unwound; `val' is returned as the value
3179 of the catch form. If there is a handler of type CATCHER_ALL, it will
3180 be treated as a handler for all invocations of `throw'; in this case
3181 `val' will be set to (TAG . VAL).
3182
3183 All the other members are concerned with restoring the interpreter
3184 state.
3185
3186 Members are volatile if their values need to survive _longjmp when
3187 a 'struct handler' is a local variable. */
3188
3189 enum handlertype { CATCHER, CONDITION_CASE, CATCHER_ALL };
3190
3191 struct handler
3192 {
3193 enum handlertype type;
3194 Lisp_Object tag_or_ch;
3195 Lisp_Object val;
3196 struct handler *next;
3197 struct handler *nextfree;
3198
3199 /* The bytecode interpreter can have several handlers active at the same
3200 time, so when we longjmp to one of them, it needs to know which handler
3201 this was and what was the corresponding internal state. This is stored
3202 here, and when we longjmp we make sure that handlerlist points to the
3203 proper handler. */
3204 Lisp_Object *bytecode_top;
3205 int bytecode_dest;
3206
3207 /* Most global vars are reset to their value via the specpdl mechanism,
3208 but a few others are handled by storing their value here. */
3209 sys_jmp_buf jmp;
3210 EMACS_INT lisp_eval_depth;
3211 ptrdiff_t pdlcount;
3212 int poll_suppress_count;
3213 int interrupt_input_blocked;
3214 struct byte_stack *byte_stack;
3215 };
3216
3217 extern Lisp_Object memory_signal_data;
3218
3219 /* An address near the bottom of the stack.
3220 Tells GC how to save a copy of the stack. */
3221 extern char *stack_bottom;
3222
3223 /* Check quit-flag and quit if it is non-nil.
3224 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
3225 So the program needs to do QUIT at times when it is safe to quit.
3226 Every loop that might run for a long time or might not exit
3227 ought to do QUIT at least once, at a safe place.
3228 Unless that is impossible, of course.
3229 But it is very desirable to avoid creating loops where QUIT is impossible.
3230
3231 Exception: if you set immediate_quit to true,
3232 then the handler that responds to the C-g does the quit itself.
3233 This is a good thing to do around a loop that has no side effects
3234 and (in particular) cannot call arbitrary Lisp code.
3235
3236 If quit-flag is set to `kill-emacs' the SIGINT handler has received
3237 a request to exit Emacs when it is safe to do. */
3238
3239 extern void process_pending_signals (void);
3240 extern bool volatile pending_signals;
3241
3242 extern void process_quit_flag (void);
3243 #define QUIT \
3244 do { \
3245 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
3246 process_quit_flag (); \
3247 else if (pending_signals) \
3248 process_pending_signals (); \
3249 } while (false)
3250
3251
3252 /* True if ought to quit now. */
3253
3254 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
3255 \f
3256 extern Lisp_Object Vascii_downcase_table;
3257 extern Lisp_Object Vascii_canon_table;
3258 \f
3259 /* Call staticpro (&var) to protect static variable `var'. */
3260
3261 void staticpro (Lisp_Object *);
3262 \f
3263 /* Forward declarations for prototypes. */
3264 struct window;
3265 struct frame;
3266
3267 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3268
3269 INLINE void
3270 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3271 {
3272 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3273 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3274 }
3275
3276 /* Functions to modify hash tables. */
3277
3278 INLINE void
3279 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3280 {
3281 gc_aset (h->key_and_value, 2 * idx, val);
3282 }
3283
3284 INLINE void
3285 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3286 {
3287 gc_aset (h->key_and_value, 2 * idx + 1, val);
3288 }
3289
3290 /* Use these functions to set Lisp_Object
3291 or pointer slots of struct Lisp_Symbol. */
3292
3293 INLINE void
3294 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3295 {
3296 XSYMBOL (sym)->function = function;
3297 }
3298
3299 INLINE void
3300 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3301 {
3302 XSYMBOL (sym)->plist = plist;
3303 }
3304
3305 INLINE void
3306 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3307 {
3308 XSYMBOL (sym)->next = next;
3309 }
3310
3311 /* Buffer-local (also frame-local) variable access functions. */
3312
3313 INLINE int
3314 blv_found (struct Lisp_Buffer_Local_Value *blv)
3315 {
3316 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3317 return blv->found;
3318 }
3319
3320 /* Set overlay's property list. */
3321
3322 INLINE void
3323 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3324 {
3325 XOVERLAY (overlay)->plist = plist;
3326 }
3327
3328 /* Get text properties of S. */
3329
3330 INLINE INTERVAL
3331 string_intervals (Lisp_Object s)
3332 {
3333 return XSTRING (s)->intervals;
3334 }
3335
3336 /* Set text properties of S to I. */
3337
3338 INLINE void
3339 set_string_intervals (Lisp_Object s, INTERVAL i)
3340 {
3341 XSTRING (s)->intervals = i;
3342 }
3343
3344 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3345 of setting slots directly. */
3346
3347 INLINE void
3348 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3349 {
3350 XCHAR_TABLE (table)->defalt = val;
3351 }
3352 INLINE void
3353 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3354 {
3355 XCHAR_TABLE (table)->purpose = val;
3356 }
3357
3358 /* Set different slots in (sub)character tables. */
3359
3360 INLINE void
3361 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3362 {
3363 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3364 XCHAR_TABLE (table)->extras[idx] = val;
3365 }
3366
3367 INLINE void
3368 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3369 {
3370 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3371 XCHAR_TABLE (table)->contents[idx] = val;
3372 }
3373
3374 INLINE void
3375 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3376 {
3377 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3378 }
3379
3380 /* Defined in data.c. */
3381 extern Lisp_Object indirect_function (Lisp_Object);
3382 extern Lisp_Object find_symbol_value (Lisp_Object);
3383 enum Arith_Comparison {
3384 ARITH_EQUAL,
3385 ARITH_NOTEQUAL,
3386 ARITH_LESS,
3387 ARITH_GRTR,
3388 ARITH_LESS_OR_EQUAL,
3389 ARITH_GRTR_OR_EQUAL
3390 };
3391 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3392 enum Arith_Comparison comparison);
3393
3394 /* Convert the integer I to an Emacs representation, either the integer
3395 itself, or a cons of two or three integers, or if all else fails a float.
3396 I should not have side effects. */
3397 #define INTEGER_TO_CONS(i) \
3398 (! FIXNUM_OVERFLOW_P (i) \
3399 ? make_number (i) \
3400 : EXPR_SIGNED (i) ? intbig_to_lisp (i) : uintbig_to_lisp (i))
3401 extern Lisp_Object intbig_to_lisp (intmax_t);
3402 extern Lisp_Object uintbig_to_lisp (uintmax_t);
3403
3404 /* Convert the Emacs representation CONS back to an integer of type
3405 TYPE, storing the result the variable VAR. Signal an error if CONS
3406 is not a valid representation or is out of range for TYPE. */
3407 #define CONS_TO_INTEGER(cons, type, var) \
3408 (TYPE_SIGNED (type) \
3409 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3410 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3411 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3412 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3413
3414 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3415 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3416 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3417 Lisp_Object);
3418 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3419 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3420 extern void syms_of_data (void);
3421 extern void swap_in_global_binding (struct Lisp_Symbol *);
3422
3423 /* Defined in cmds.c */
3424 extern void syms_of_cmds (void);
3425 extern void keys_of_cmds (void);
3426
3427 /* Defined in coding.c. */
3428 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3429 ptrdiff_t, bool, bool, Lisp_Object);
3430 extern void init_coding (void);
3431 extern void init_coding_once (void);
3432 extern void syms_of_coding (void);
3433
3434 /* Defined in character.c. */
3435 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3436 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3437 extern void syms_of_character (void);
3438
3439 /* Defined in charset.c. */
3440 extern void init_charset (void);
3441 extern void init_charset_once (void);
3442 extern void syms_of_charset (void);
3443 /* Structure forward declarations. */
3444 struct charset;
3445
3446 /* Defined in syntax.c. */
3447 extern void init_syntax_once (void);
3448 extern void syms_of_syntax (void);
3449
3450 /* Defined in fns.c. */
3451 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3452 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3453 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3454 extern void sweep_weak_hash_tables (void);
3455 EMACS_UINT hash_string (char const *, ptrdiff_t);
3456 EMACS_UINT sxhash (Lisp_Object, int);
3457 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3458 Lisp_Object, Lisp_Object);
3459 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3460 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3461 EMACS_UINT);
3462 void hash_remove_from_table (struct Lisp_Hash_Table *, Lisp_Object);
3463 extern struct hash_table_test hashtest_eq, hashtest_eql, hashtest_equal;
3464 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3465 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3466 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3467 ptrdiff_t, ptrdiff_t);
3468 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3469 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3470 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3471 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3472 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3473 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3474 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3475 extern void clear_string_char_byte_cache (void);
3476 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3477 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3478 extern Lisp_Object string_to_multibyte (Lisp_Object);
3479 extern Lisp_Object string_make_unibyte (Lisp_Object);
3480 extern void syms_of_fns (void);
3481
3482 /* Defined in floatfns.c. */
3483 extern void syms_of_floatfns (void);
3484 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3485
3486 /* Defined in fringe.c. */
3487 extern void syms_of_fringe (void);
3488 extern void init_fringe (void);
3489 #ifdef HAVE_WINDOW_SYSTEM
3490 extern void mark_fringe_data (void);
3491 extern void init_fringe_once (void);
3492 #endif /* HAVE_WINDOW_SYSTEM */
3493
3494 /* Defined in image.c. */
3495 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3496 extern void reset_image_types (void);
3497 extern void syms_of_image (void);
3498
3499 /* Defined in insdel.c. */
3500 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3501 extern _Noreturn void buffer_overflow (void);
3502 extern void make_gap (ptrdiff_t);
3503 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3504 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3505 ptrdiff_t, bool, bool);
3506 extern int count_combining_before (const unsigned char *,
3507 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3508 extern int count_combining_after (const unsigned char *,
3509 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3510 extern void insert (const char *, ptrdiff_t);
3511 extern void insert_and_inherit (const char *, ptrdiff_t);
3512 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3513 bool, bool, bool);
3514 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3515 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3516 ptrdiff_t, ptrdiff_t, bool);
3517 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3518 extern void insert_char (int);
3519 extern void insert_string (const char *);
3520 extern void insert_before_markers (const char *, ptrdiff_t);
3521 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3522 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3523 ptrdiff_t, ptrdiff_t,
3524 ptrdiff_t, bool);
3525 extern void del_range (ptrdiff_t, ptrdiff_t);
3526 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3527 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3528 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3529 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3530 ptrdiff_t, ptrdiff_t, bool);
3531 extern void modify_text (ptrdiff_t, ptrdiff_t);
3532 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3533 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3534 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3535 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3536 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3537 ptrdiff_t, ptrdiff_t);
3538 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3539 ptrdiff_t, ptrdiff_t);
3540 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3541 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3542 const char *, ptrdiff_t, ptrdiff_t, bool);
3543 extern void syms_of_insdel (void);
3544
3545 /* Defined in dispnew.c. */
3546 #if (defined PROFILING \
3547 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3548 _Noreturn void __executable_start (void);
3549 #endif
3550 extern Lisp_Object Vwindow_system;
3551 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3552
3553 /* Defined in xdisp.c. */
3554 extern bool noninteractive_need_newline;
3555 extern Lisp_Object echo_area_buffer[2];
3556 extern void add_to_log (char const *, ...);
3557 extern void vadd_to_log (char const *, va_list);
3558 extern void check_message_stack (void);
3559 extern void setup_echo_area_for_printing (bool);
3560 extern bool push_message (void);
3561 extern void pop_message_unwind (void);
3562 extern Lisp_Object restore_message_unwind (Lisp_Object);
3563 extern void restore_message (void);
3564 extern Lisp_Object current_message (void);
3565 extern void clear_message (bool, bool);
3566 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3567 extern void message1 (const char *);
3568 extern void message1_nolog (const char *);
3569 extern void message3 (Lisp_Object);
3570 extern void message3_nolog (Lisp_Object);
3571 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3572 extern void message_with_string (const char *, Lisp_Object, bool);
3573 extern void message_log_maybe_newline (void);
3574 extern void update_echo_area (void);
3575 extern void truncate_echo_area (ptrdiff_t);
3576 extern void redisplay (void);
3577
3578 void set_frame_cursor_types (struct frame *, Lisp_Object);
3579 extern void syms_of_xdisp (void);
3580 extern void init_xdisp (void);
3581 extern Lisp_Object safe_eval (Lisp_Object);
3582 extern bool pos_visible_p (struct window *, ptrdiff_t, int *,
3583 int *, int *, int *, int *, int *);
3584
3585 /* Defined in xsettings.c. */
3586 extern void syms_of_xsettings (void);
3587
3588 /* Defined in vm-limit.c. */
3589 extern void memory_warnings (void *, void (*warnfun) (const char *));
3590
3591 /* Defined in character.c. */
3592 extern void parse_str_as_multibyte (const unsigned char *, ptrdiff_t,
3593 ptrdiff_t *, ptrdiff_t *);
3594
3595 /* Defined in alloc.c. */
3596 extern void *my_heap_start (void);
3597 extern void check_pure_size (void);
3598 extern void free_misc (Lisp_Object);
3599 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3600 extern void malloc_warning (const char *);
3601 extern _Noreturn void memory_full (size_t);
3602 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3603 extern bool survives_gc_p (Lisp_Object);
3604 extern void mark_object (Lisp_Object);
3605 #if defined REL_ALLOC && !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3606 extern void refill_memory_reserve (void);
3607 #endif
3608 extern void alloc_unexec_pre (void);
3609 extern void alloc_unexec_post (void);
3610 extern const char *pending_malloc_warning;
3611 extern Lisp_Object zero_vector;
3612 extern Lisp_Object *stack_base;
3613 extern EMACS_INT consing_since_gc;
3614 extern EMACS_INT gc_relative_threshold;
3615 extern EMACS_INT memory_full_cons_threshold;
3616 extern Lisp_Object list1 (Lisp_Object);
3617 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3618 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3619 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3620 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3621 Lisp_Object);
3622 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3623 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3624
3625 /* Build a frequently used 2/3/4-integer lists. */
3626
3627 INLINE Lisp_Object
3628 list2i (EMACS_INT x, EMACS_INT y)
3629 {
3630 return list2 (make_number (x), make_number (y));
3631 }
3632
3633 INLINE Lisp_Object
3634 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3635 {
3636 return list3 (make_number (x), make_number (y), make_number (w));
3637 }
3638
3639 INLINE Lisp_Object
3640 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3641 {
3642 return list4 (make_number (x), make_number (y),
3643 make_number (w), make_number (h));
3644 }
3645
3646 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3647 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3648 extern _Noreturn void string_overflow (void);
3649 extern Lisp_Object make_string (const char *, ptrdiff_t);
3650 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3651 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3652 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3653
3654 /* Make unibyte string from C string when the length isn't known. */
3655
3656 INLINE Lisp_Object
3657 build_unibyte_string (const char *str)
3658 {
3659 return make_unibyte_string (str, strlen (str));
3660 }
3661
3662 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3663 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3664 extern Lisp_Object make_uninit_string (EMACS_INT);
3665 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3666 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3667 extern Lisp_Object make_specified_string (const char *,
3668 ptrdiff_t, ptrdiff_t, bool);
3669 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3670 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3671
3672 /* Make a string allocated in pure space, use STR as string data. */
3673
3674 INLINE Lisp_Object
3675 build_pure_c_string (const char *str)
3676 {
3677 return make_pure_c_string (str, strlen (str));
3678 }
3679
3680 /* Make a string from the data at STR, treating it as multibyte if the
3681 data warrants. */
3682
3683 INLINE Lisp_Object
3684 build_string (const char *str)
3685 {
3686 return make_string (str, strlen (str));
3687 }
3688
3689 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3690 extern void make_byte_code (struct Lisp_Vector *);
3691 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3692
3693 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3694 be sure that GC cannot happen until the vector is completely
3695 initialized. E.g. the following code is likely to crash:
3696
3697 v = make_uninit_vector (3);
3698 ASET (v, 0, obj0);
3699 ASET (v, 1, Ffunction_can_gc ());
3700 ASET (v, 2, obj1); */
3701
3702 INLINE Lisp_Object
3703 make_uninit_vector (ptrdiff_t size)
3704 {
3705 Lisp_Object v;
3706 struct Lisp_Vector *p;
3707
3708 p = allocate_vector (size);
3709 XSETVECTOR (v, p);
3710 return v;
3711 }
3712
3713 /* Like above, but special for sub char-tables. */
3714
3715 INLINE Lisp_Object
3716 make_uninit_sub_char_table (int depth, int min_char)
3717 {
3718 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3719 Lisp_Object v = make_uninit_vector (slots);
3720
3721 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3722 XSUB_CHAR_TABLE (v)->depth = depth;
3723 XSUB_CHAR_TABLE (v)->min_char = min_char;
3724 return v;
3725 }
3726
3727 extern struct Lisp_Vector *allocate_pseudovector (int, int, int,
3728 enum pvec_type);
3729
3730 /* Allocate partially initialized pseudovector where all Lisp_Object
3731 slots are set to Qnil but the rest (if any) is left uninitialized. */
3732
3733 #define ALLOCATE_PSEUDOVECTOR(type, field, tag) \
3734 ((type *) allocate_pseudovector (VECSIZE (type), \
3735 PSEUDOVECSIZE (type, field), \
3736 PSEUDOVECSIZE (type, field), tag))
3737
3738 /* Allocate fully initialized pseudovector where all Lisp_Object
3739 slots are set to Qnil and the rest (if any) is zeroed. */
3740
3741 #define ALLOCATE_ZEROED_PSEUDOVECTOR(type, field, tag) \
3742 ((type *) allocate_pseudovector (VECSIZE (type), \
3743 PSEUDOVECSIZE (type, field), \
3744 VECSIZE (type), tag))
3745
3746 extern bool gc_in_progress;
3747 extern bool abort_on_gc;
3748 extern Lisp_Object make_float (double);
3749 extern void display_malloc_warning (void);
3750 extern ptrdiff_t inhibit_garbage_collection (void);
3751 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3752 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3753 Lisp_Object, Lisp_Object);
3754 extern Lisp_Object make_save_ptr (void *);
3755 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3756 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3757 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3758 Lisp_Object);
3759 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3760 extern void free_save_value (Lisp_Object);
3761 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3762 extern void free_marker (Lisp_Object);
3763 extern void free_cons (struct Lisp_Cons *);
3764 extern void init_alloc_once (void);
3765 extern void init_alloc (void);
3766 extern void syms_of_alloc (void);
3767 extern struct buffer * allocate_buffer (void);
3768 extern int valid_lisp_object_p (Lisp_Object);
3769 #ifdef GC_CHECK_CONS_LIST
3770 extern void check_cons_list (void);
3771 #else
3772 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3773 #endif
3774
3775 /* Defined in gmalloc.c. */
3776 #if !defined DOUG_LEA_MALLOC && !defined HYBRID_MALLOC && !defined SYSTEM_MALLOC
3777 extern size_t __malloc_extra_blocks;
3778 #endif
3779 #if !HAVE_DECL_ALIGNED_ALLOC
3780 extern void *aligned_alloc (size_t, size_t) ATTRIBUTE_MALLOC_SIZE ((2));
3781 #endif
3782 extern void malloc_enable_thread (void);
3783
3784 #ifdef REL_ALLOC
3785 /* Defined in ralloc.c. */
3786 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3787 extern void r_alloc_free (void **);
3788 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3789 extern void r_alloc_reset_variable (void **, void **);
3790 extern void r_alloc_inhibit_buffer_relocation (int);
3791 #endif
3792
3793 /* Defined in chartab.c. */
3794 extern Lisp_Object copy_char_table (Lisp_Object);
3795 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3796 int *, int *);
3797 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3798 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3799 Lisp_Object),
3800 Lisp_Object, Lisp_Object, Lisp_Object);
3801 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3802 Lisp_Object, Lisp_Object,
3803 Lisp_Object, struct charset *,
3804 unsigned, unsigned);
3805 extern Lisp_Object uniprop_table (Lisp_Object);
3806 extern void syms_of_chartab (void);
3807
3808 /* Defined in print.c. */
3809 extern Lisp_Object Vprin1_to_string_buffer;
3810 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3811 extern void temp_output_buffer_setup (const char *);
3812 extern int print_level;
3813 extern void write_string (const char *);
3814 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3815 Lisp_Object);
3816 extern Lisp_Object internal_with_output_to_temp_buffer
3817 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3818 #define FLOAT_TO_STRING_BUFSIZE 350
3819 extern int float_to_string (char *, double);
3820 extern void init_print_once (void);
3821 extern void syms_of_print (void);
3822
3823 /* Defined in doprnt.c. */
3824 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3825 va_list);
3826 extern ptrdiff_t esprintf (char *, char const *, ...)
3827 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3828 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3829 char const *, ...)
3830 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3831 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3832 char const *, va_list)
3833 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3834
3835 /* Defined in lread.c. */
3836 extern Lisp_Object check_obarray (Lisp_Object);
3837 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3838 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3839 extern Lisp_Object intern_driver (Lisp_Object, Lisp_Object, Lisp_Object);
3840 extern void init_symbol (Lisp_Object, Lisp_Object);
3841 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3842 INLINE void
3843 LOADHIST_ATTACH (Lisp_Object x)
3844 {
3845 if (initialized)
3846 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3847 }
3848 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3849 Lisp_Object *, Lisp_Object, bool);
3850 extern Lisp_Object string_to_number (char const *, int, bool);
3851 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3852 Lisp_Object);
3853 extern void dir_warning (const char *, Lisp_Object);
3854 extern void init_obarray (void);
3855 extern void init_lread (void);
3856 extern void syms_of_lread (void);
3857
3858 INLINE Lisp_Object
3859 intern (const char *str)
3860 {
3861 return intern_1 (str, strlen (str));
3862 }
3863
3864 INLINE Lisp_Object
3865 intern_c_string (const char *str)
3866 {
3867 return intern_c_string_1 (str, strlen (str));
3868 }
3869
3870 /* Defined in eval.c. */
3871 extern Lisp_Object Vautoload_queue;
3872 extern Lisp_Object Vrun_hooks;
3873 extern Lisp_Object Vsignaling_function;
3874 extern Lisp_Object inhibit_lisp_code;
3875 extern struct handler *handlerlist;
3876
3877 /* To run a normal hook, use the appropriate function from the list below.
3878 The calling convention:
3879
3880 if (!NILP (Vrun_hooks))
3881 call1 (Vrun_hooks, Qmy_funny_hook);
3882
3883 should no longer be used. */
3884 extern void run_hook (Lisp_Object);
3885 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3886 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3887 Lisp_Object (*funcall)
3888 (ptrdiff_t nargs, Lisp_Object *args));
3889 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3890 extern _Noreturn void xsignal0 (Lisp_Object);
3891 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3892 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3893 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3894 Lisp_Object);
3895 extern _Noreturn void signal_error (const char *, Lisp_Object);
3896 extern Lisp_Object eval_sub (Lisp_Object form);
3897 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3898 extern Lisp_Object call0 (Lisp_Object);
3899 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3900 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3901 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3902 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3903 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3904 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3905 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3906 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3907 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3908 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3909 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3910 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3911 extern Lisp_Object internal_condition_case_n
3912 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3913 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3914 extern struct handler *push_handler (Lisp_Object, enum handlertype);
3915 extern struct handler *push_handler_nosignal (Lisp_Object, enum handlertype);
3916 extern void specbind (Lisp_Object, Lisp_Object);
3917 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3918 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3919 extern void record_unwind_protect_int (void (*) (int), int);
3920 extern void record_unwind_protect_void (void (*) (void));
3921 extern void record_unwind_protect_nothing (void);
3922 extern void clear_unwind_protect (ptrdiff_t);
3923 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3924 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3925 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3926 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3927 extern _Noreturn void verror (const char *, va_list)
3928 ATTRIBUTE_FORMAT_PRINTF (1, 0);
3929 extern void un_autoload (Lisp_Object);
3930 extern Lisp_Object call_debugger (Lisp_Object arg);
3931 extern void *near_C_stack_top (void);
3932 extern void init_eval_once (void);
3933 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
3934 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
3935 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3936 extern void init_eval (void);
3937 extern void syms_of_eval (void);
3938 extern void unwind_body (Lisp_Object);
3939 extern ptrdiff_t record_in_backtrace (Lisp_Object, Lisp_Object *, ptrdiff_t);
3940 extern void mark_specpdl (void);
3941 extern void get_backtrace (Lisp_Object array);
3942 Lisp_Object backtrace_top_function (void);
3943 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
3944 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
3945
3946 #ifdef HAVE_MODULES
3947 /* Defined in alloc.c. */
3948 extern Lisp_Object make_user_ptr (void (*finalizer) (void *), void *p);
3949
3950 /* Defined in emacs-module.c. */
3951 extern void module_init (void);
3952 extern void syms_of_module (void);
3953 #endif
3954
3955 /* Defined in editfns.c. */
3956 extern void insert1 (Lisp_Object);
3957 extern Lisp_Object save_excursion_save (void);
3958 extern Lisp_Object save_restriction_save (void);
3959 extern void save_excursion_restore (Lisp_Object);
3960 extern void save_restriction_restore (Lisp_Object);
3961 extern _Noreturn void time_overflow (void);
3962 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
3963 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3964 ptrdiff_t, bool);
3965 extern void init_editfns (bool);
3966 extern void syms_of_editfns (void);
3967
3968 /* Defined in buffer.c. */
3969 extern bool mouse_face_overlay_overlaps (Lisp_Object);
3970 extern _Noreturn void nsberror (Lisp_Object);
3971 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
3972 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
3973 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
3974 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
3975 Lisp_Object, Lisp_Object, Lisp_Object);
3976 extern bool overlay_touches_p (ptrdiff_t);
3977 extern Lisp_Object other_buffer_safely (Lisp_Object);
3978 extern Lisp_Object get_truename_buffer (Lisp_Object);
3979 extern void init_buffer_once (void);
3980 extern void init_buffer (int);
3981 extern void syms_of_buffer (void);
3982 extern void keys_of_buffer (void);
3983
3984 /* Defined in marker.c. */
3985
3986 extern ptrdiff_t marker_position (Lisp_Object);
3987 extern ptrdiff_t marker_byte_position (Lisp_Object);
3988 extern void clear_charpos_cache (struct buffer *);
3989 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
3990 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
3991 extern void unchain_marker (struct Lisp_Marker *marker);
3992 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
3993 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
3994 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
3995 ptrdiff_t, ptrdiff_t);
3996 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
3997 extern void syms_of_marker (void);
3998
3999 /* Defined in fileio.c. */
4000
4001 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
4002 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
4003 Lisp_Object, Lisp_Object, Lisp_Object,
4004 Lisp_Object, int);
4005 extern void close_file_unwind (int);
4006 extern void fclose_unwind (void *);
4007 extern void restore_point_unwind (Lisp_Object);
4008 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
4009 extern _Noreturn void report_file_error (const char *, Lisp_Object);
4010 extern _Noreturn void report_file_notify_error (const char *, Lisp_Object);
4011 extern bool internal_delete_file (Lisp_Object);
4012 extern Lisp_Object emacs_readlinkat (int, const char *);
4013 extern bool file_directory_p (const char *);
4014 extern bool file_accessible_directory_p (Lisp_Object);
4015 extern void init_fileio (void);
4016 extern void syms_of_fileio (void);
4017 extern Lisp_Object make_temp_name (Lisp_Object, bool);
4018
4019 /* Defined in search.c. */
4020 extern void shrink_regexp_cache (void);
4021 extern void restore_search_regs (void);
4022 extern void record_unwind_save_match_data (void);
4023 struct re_registers;
4024 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
4025 struct re_registers *,
4026 Lisp_Object, bool, bool);
4027 extern ptrdiff_t fast_string_match_internal (Lisp_Object, Lisp_Object,
4028 Lisp_Object);
4029
4030 INLINE ptrdiff_t
4031 fast_string_match (Lisp_Object regexp, Lisp_Object string)
4032 {
4033 return fast_string_match_internal (regexp, string, Qnil);
4034 }
4035
4036 INLINE ptrdiff_t
4037 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
4038 {
4039 return fast_string_match_internal (regexp, string, Vascii_canon_table);
4040 }
4041
4042 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4043 ptrdiff_t);
4044 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4045 ptrdiff_t, ptrdiff_t, Lisp_Object);
4046 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4047 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4048 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4049 ptrdiff_t, bool);
4050 extern ptrdiff_t scan_newline_from_point (ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
4051 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4052 ptrdiff_t, ptrdiff_t *);
4053 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4054 ptrdiff_t, ptrdiff_t *);
4055 extern void syms_of_search (void);
4056 extern void clear_regexp_cache (void);
4057
4058 /* Defined in minibuf.c. */
4059
4060 extern Lisp_Object Vminibuffer_list;
4061 extern Lisp_Object last_minibuf_string;
4062 extern Lisp_Object get_minibuffer (EMACS_INT);
4063 extern void init_minibuf_once (void);
4064 extern void syms_of_minibuf (void);
4065
4066 /* Defined in callint.c. */
4067
4068 extern void syms_of_callint (void);
4069
4070 /* Defined in casefiddle.c. */
4071
4072 extern void syms_of_casefiddle (void);
4073 extern void keys_of_casefiddle (void);
4074
4075 /* Defined in casetab.c. */
4076
4077 extern void init_casetab_once (void);
4078 extern void syms_of_casetab (void);
4079
4080 /* Defined in keyboard.c. */
4081
4082 extern Lisp_Object echo_message_buffer;
4083 extern struct kboard *echo_kboard;
4084 extern void cancel_echoing (void);
4085 extern bool input_pending;
4086 #ifdef HAVE_STACK_OVERFLOW_HANDLING
4087 extern sigjmp_buf return_to_command_loop;
4088 #endif
4089 extern Lisp_Object menu_bar_items (Lisp_Object);
4090 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4091 extern void discard_mouse_events (void);
4092 #ifdef USABLE_SIGIO
4093 void handle_input_available_signal (int);
4094 #endif
4095 extern Lisp_Object pending_funcalls;
4096 extern bool detect_input_pending (void);
4097 extern bool detect_input_pending_ignore_squeezables (void);
4098 extern bool detect_input_pending_run_timers (bool);
4099 extern void safe_run_hooks (Lisp_Object);
4100 extern void cmd_error_internal (Lisp_Object, const char *);
4101 extern Lisp_Object command_loop_1 (void);
4102 extern Lisp_Object read_menu_command (void);
4103 extern Lisp_Object recursive_edit_1 (void);
4104 extern void record_auto_save (void);
4105 extern void force_auto_save_soon (void);
4106 extern void init_keyboard (void);
4107 extern void syms_of_keyboard (void);
4108 extern void keys_of_keyboard (void);
4109
4110 /* Defined in indent.c. */
4111 extern ptrdiff_t current_column (void);
4112 extern void invalidate_current_column (void);
4113 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4114 extern void syms_of_indent (void);
4115
4116 /* Defined in frame.c. */
4117 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4118 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4119 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4120 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4121 extern void frames_discard_buffer (Lisp_Object);
4122 extern void syms_of_frame (void);
4123
4124 /* Defined in emacs.c. */
4125 extern char **initial_argv;
4126 extern int initial_argc;
4127 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4128 extern bool display_arg;
4129 #endif
4130 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4131 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4132 extern _Noreturn void terminate_due_to_signal (int, int);
4133 #ifdef WINDOWSNT
4134 extern Lisp_Object Vlibrary_cache;
4135 #endif
4136 #if HAVE_SETLOCALE
4137 void fixup_locale (void);
4138 void synchronize_system_messages_locale (void);
4139 void synchronize_system_time_locale (void);
4140 #else
4141 INLINE void fixup_locale (void) {}
4142 INLINE void synchronize_system_messages_locale (void) {}
4143 INLINE void synchronize_system_time_locale (void) {}
4144 #endif
4145 extern void shut_down_emacs (int, Lisp_Object);
4146
4147 /* True means don't do interactive redisplay and don't change tty modes. */
4148 extern bool noninteractive;
4149
4150 /* True means remove site-lisp directories from load-path. */
4151 extern bool no_site_lisp;
4152
4153 /* Pipe used to send exit notification to the daemon parent at
4154 startup. On Windows, we use a kernel event instead. */
4155 #ifndef WINDOWSNT
4156 extern int daemon_pipe[2];
4157 #define IS_DAEMON (daemon_pipe[1] != 0)
4158 #define DAEMON_RUNNING (daemon_pipe[1] >= 0)
4159 #else /* WINDOWSNT */
4160 extern void *w32_daemon_event;
4161 #define IS_DAEMON (w32_daemon_event != NULL)
4162 #define DAEMON_RUNNING (w32_daemon_event != INVALID_HANDLE_VALUE)
4163 #endif
4164
4165 /* True if handling a fatal error already. */
4166 extern bool fatal_error_in_progress;
4167
4168 /* True means don't do use window-system-specific display code. */
4169 extern bool inhibit_window_system;
4170 /* True means that a filter or a sentinel is running. */
4171 extern bool running_asynch_code;
4172
4173 /* Defined in process.c. */
4174 extern void kill_buffer_processes (Lisp_Object);
4175 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4176 struct Lisp_Process *, int);
4177 /* Max value for the first argument of wait_reading_process_output. */
4178 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4179 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4180 The bug merely causes a bogus warning, but the warning is annoying. */
4181 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4182 #else
4183 # define WAIT_READING_MAX INTMAX_MAX
4184 #endif
4185 #ifdef HAVE_TIMERFD
4186 extern void add_timer_wait_descriptor (int);
4187 #endif
4188 extern void add_keyboard_wait_descriptor (int);
4189 extern void delete_keyboard_wait_descriptor (int);
4190 #ifdef HAVE_GPM
4191 extern void add_gpm_wait_descriptor (int);
4192 extern void delete_gpm_wait_descriptor (int);
4193 #endif
4194 extern void init_process_emacs (void);
4195 extern void syms_of_process (void);
4196 extern void setup_process_coding_systems (Lisp_Object);
4197
4198 /* Defined in callproc.c. */
4199 #ifndef DOS_NT
4200 _Noreturn
4201 #endif
4202 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4203 extern void init_callproc_1 (void);
4204 extern void init_callproc (void);
4205 extern void set_initial_environment (void);
4206 extern void syms_of_callproc (void);
4207
4208 /* Defined in doc.c. */
4209 enum text_quoting_style
4210 {
4211 /* Use curved single quotes ‘like this’. */
4212 CURVE_QUOTING_STYLE,
4213
4214 /* Use grave accent and apostrophe `like this'. */
4215 GRAVE_QUOTING_STYLE,
4216
4217 /* Use apostrophes 'like this'. */
4218 STRAIGHT_QUOTING_STYLE
4219 };
4220 extern enum text_quoting_style text_quoting_style (void);
4221 extern Lisp_Object read_doc_string (Lisp_Object);
4222 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4223 extern void syms_of_doc (void);
4224 extern int read_bytecode_char (bool);
4225
4226 /* Defined in bytecode.c. */
4227 extern void syms_of_bytecode (void);
4228 extern struct byte_stack *byte_stack_list;
4229 extern void relocate_byte_stack (void);
4230 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4231 Lisp_Object, ptrdiff_t, Lisp_Object *);
4232
4233 /* Defined in macros.c. */
4234 extern void init_macros (void);
4235 extern void syms_of_macros (void);
4236
4237 /* Defined in undo.c. */
4238 extern void truncate_undo_list (struct buffer *);
4239 extern void record_insert (ptrdiff_t, ptrdiff_t);
4240 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4241 extern void record_first_change (void);
4242 extern void record_change (ptrdiff_t, ptrdiff_t);
4243 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4244 Lisp_Object, Lisp_Object,
4245 Lisp_Object);
4246 extern void syms_of_undo (void);
4247
4248 /* Defined in textprop.c. */
4249 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4250
4251 /* Defined in menu.c. */
4252 extern void syms_of_menu (void);
4253
4254 /* Defined in xmenu.c. */
4255 extern void syms_of_xmenu (void);
4256
4257 /* Defined in termchar.h. */
4258 struct tty_display_info;
4259
4260 /* Defined in termhooks.h. */
4261 struct terminal;
4262
4263 /* Defined in sysdep.c. */
4264 extern char *emacs_get_current_dir_name (void);
4265 extern void stuff_char (char c);
4266 extern void init_foreground_group (void);
4267 extern void sys_subshell (void);
4268 extern void sys_suspend (void);
4269 extern void discard_tty_input (void);
4270 extern void init_sys_modes (struct tty_display_info *);
4271 extern void reset_sys_modes (struct tty_display_info *);
4272 extern void init_all_sys_modes (void);
4273 extern void reset_all_sys_modes (void);
4274 extern void child_setup_tty (int);
4275 extern void setup_pty (int);
4276 extern int set_window_size (int, int, int);
4277 extern EMACS_INT get_random (void);
4278 extern void seed_random (void *, ptrdiff_t);
4279 extern void init_random (void);
4280 extern void emacs_backtrace (int);
4281 extern _Noreturn void emacs_abort (void) NO_INLINE;
4282 extern int emacs_open (const char *, int, int);
4283 extern int emacs_pipe (int[2]);
4284 extern int emacs_close (int);
4285 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4286 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4287 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4288 extern void emacs_perror (char const *);
4289
4290 extern void unlock_all_files (void);
4291 extern void lock_file (Lisp_Object);
4292 extern void unlock_file (Lisp_Object);
4293 extern void unlock_buffer (struct buffer *);
4294 extern void syms_of_filelock (void);
4295 extern int str_collate (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4296
4297 /* Defined in sound.c. */
4298 extern void syms_of_sound (void);
4299
4300 /* Defined in category.c. */
4301 extern void init_category_once (void);
4302 extern Lisp_Object char_category_set (int);
4303 extern void syms_of_category (void);
4304
4305 /* Defined in ccl.c. */
4306 extern void syms_of_ccl (void);
4307
4308 /* Defined in dired.c. */
4309 extern void syms_of_dired (void);
4310 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4311 Lisp_Object, Lisp_Object,
4312 bool, Lisp_Object);
4313
4314 /* Defined in term.c. */
4315 extern int *char_ins_del_vector;
4316 extern void syms_of_term (void);
4317 extern _Noreturn void fatal (const char *msgid, ...)
4318 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4319
4320 /* Defined in terminal.c. */
4321 extern void syms_of_terminal (void);
4322
4323 /* Defined in font.c. */
4324 extern void syms_of_font (void);
4325 extern void init_font (void);
4326
4327 #ifdef HAVE_WINDOW_SYSTEM
4328 /* Defined in fontset.c. */
4329 extern void syms_of_fontset (void);
4330 #endif
4331
4332 /* Defined in inotify.c */
4333 #ifdef HAVE_INOTIFY
4334 extern void syms_of_inotify (void);
4335 #endif
4336
4337 /* Defined in kqueue.c */
4338 #ifdef HAVE_KQUEUE
4339 extern void globals_of_kqueue (void);
4340 extern void syms_of_kqueue (void);
4341 #endif
4342
4343 /* Defined in gfilenotify.c */
4344 #ifdef HAVE_GFILENOTIFY
4345 extern void globals_of_gfilenotify (void);
4346 extern void syms_of_gfilenotify (void);
4347 #endif
4348
4349 #ifdef HAVE_W32NOTIFY
4350 /* Defined on w32notify.c. */
4351 extern void syms_of_w32notify (void);
4352 #endif
4353
4354 /* Defined in xfaces.c. */
4355 extern Lisp_Object Vface_alternative_font_family_alist;
4356 extern Lisp_Object Vface_alternative_font_registry_alist;
4357 extern void syms_of_xfaces (void);
4358
4359 #ifdef HAVE_X_WINDOWS
4360 /* Defined in xfns.c. */
4361 extern void syms_of_xfns (void);
4362
4363 /* Defined in xsmfns.c. */
4364 extern void syms_of_xsmfns (void);
4365
4366 /* Defined in xselect.c. */
4367 extern void syms_of_xselect (void);
4368
4369 /* Defined in xterm.c. */
4370 extern void init_xterm (void);
4371 extern void syms_of_xterm (void);
4372 #endif /* HAVE_X_WINDOWS */
4373
4374 #ifdef HAVE_WINDOW_SYSTEM
4375 /* Defined in xterm.c, nsterm.m, w32term.c. */
4376 extern char *x_get_keysym_name (int);
4377 #endif /* HAVE_WINDOW_SYSTEM */
4378
4379 #ifdef HAVE_LIBXML2
4380 /* Defined in xml.c. */
4381 extern void syms_of_xml (void);
4382 extern void xml_cleanup_parser (void);
4383 #endif
4384
4385 #ifdef HAVE_ZLIB
4386 /* Defined in decompress.c. */
4387 extern void syms_of_decompress (void);
4388 #endif
4389
4390 #ifdef HAVE_DBUS
4391 /* Defined in dbusbind.c. */
4392 void init_dbusbind (void);
4393 void syms_of_dbusbind (void);
4394 #endif
4395
4396
4397 /* Defined in profiler.c. */
4398 extern bool profiler_memory_running;
4399 extern void malloc_probe (size_t);
4400 extern void syms_of_profiler (void);
4401
4402
4403 #ifdef DOS_NT
4404 /* Defined in msdos.c, w32.c. */
4405 extern char *emacs_root_dir (void);
4406 #endif /* DOS_NT */
4407
4408 /* Defined in lastfile.c. */
4409 extern char my_edata[];
4410 extern char my_endbss[];
4411 extern char *my_endbss_static;
4412
4413 /* True means ^G can quit instantly. */
4414 extern bool immediate_quit;
4415
4416 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4417 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4418 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4419 extern void xfree (void *);
4420 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4421 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4422 ATTRIBUTE_ALLOC_SIZE ((2,3));
4423 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4424
4425 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4426 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4427 extern void dupstring (char **, char const *);
4428
4429 /* Make DEST a copy of STRING's data. Return a pointer to DEST's terminating
4430 null byte. This is like stpcpy, except the source is a Lisp string. */
4431
4432 INLINE char *
4433 lispstpcpy (char *dest, Lisp_Object string)
4434 {
4435 ptrdiff_t len = SBYTES (string);
4436 memcpy (dest, SDATA (string), len + 1);
4437 return dest + len;
4438 }
4439
4440 extern void xputenv (const char *);
4441
4442 extern char *egetenv_internal (const char *, ptrdiff_t);
4443
4444 INLINE char *
4445 egetenv (const char *var)
4446 {
4447 /* When VAR is a string literal, strlen can be optimized away. */
4448 return egetenv_internal (var, strlen (var));
4449 }
4450
4451 /* Set up the name of the machine we're running on. */
4452 extern void init_system_name (void);
4453
4454 /* Return the absolute value of X. X should be a signed integer
4455 expression without side effects, and X's absolute value should not
4456 exceed the maximum for its promoted type. This is called 'eabs'
4457 because 'abs' is reserved by the C standard. */
4458 #define eabs(x) ((x) < 0 ? -(x) : (x))
4459
4460 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4461 fixnum. */
4462
4463 #define make_fixnum_or_float(val) \
4464 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4465
4466 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4467 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4468
4469 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4470
4471 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4472
4473 #define USE_SAFE_ALLOCA \
4474 ptrdiff_t sa_avail = MAX_ALLOCA; \
4475 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4476
4477 #define AVAIL_ALLOCA(size) (sa_avail -= (size), alloca (size))
4478
4479 /* SAFE_ALLOCA allocates a simple buffer. */
4480
4481 #define SAFE_ALLOCA(size) ((size) <= sa_avail \
4482 ? AVAIL_ALLOCA (size) \
4483 : (sa_must_free = true, record_xmalloc (size)))
4484
4485 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4486 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4487 positive. The code is tuned for MULTIPLIER being a constant. */
4488
4489 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4490 do { \
4491 if ((nitems) <= sa_avail / sizeof *(buf) / (multiplier)) \
4492 (buf) = AVAIL_ALLOCA (sizeof *(buf) * (multiplier) * (nitems)); \
4493 else \
4494 { \
4495 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4496 sa_must_free = true; \
4497 record_unwind_protect_ptr (xfree, buf); \
4498 } \
4499 } while (false)
4500
4501 /* SAFE_ALLOCA_STRING allocates a C copy of a Lisp string. */
4502
4503 #define SAFE_ALLOCA_STRING(ptr, string) \
4504 do { \
4505 (ptr) = SAFE_ALLOCA (SBYTES (string) + 1); \
4506 memcpy (ptr, SDATA (string), SBYTES (string) + 1); \
4507 } while (false)
4508
4509 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4510
4511 #define SAFE_FREE() \
4512 do { \
4513 if (sa_must_free) { \
4514 sa_must_free = false; \
4515 unbind_to (sa_count, Qnil); \
4516 } \
4517 } while (false)
4518
4519 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4520
4521 #define SAFE_ALLOCA_LISP(buf, nelt) \
4522 do { \
4523 ptrdiff_t alloca_nbytes; \
4524 if (INT_MULTIPLY_WRAPV (nelt, word_size, &alloca_nbytes) \
4525 || SIZE_MAX < alloca_nbytes) \
4526 memory_full (SIZE_MAX); \
4527 else if (alloca_nbytes <= sa_avail) \
4528 (buf) = AVAIL_ALLOCA (alloca_nbytes); \
4529 else \
4530 { \
4531 Lisp_Object arg_; \
4532 (buf) = xmalloc (alloca_nbytes); \
4533 arg_ = make_save_memory (buf, nelt); \
4534 sa_must_free = true; \
4535 record_unwind_protect (free_save_value, arg_); \
4536 } \
4537 } while (false)
4538
4539
4540 /* If USE_STACK_LISP_OBJECTS, define macros that and functions that allocate
4541 block-scoped conses and strings. These objects are not
4542 managed by the garbage collector, so they are dangerous: passing them
4543 out of their scope (e.g., to user code) results in undefined behavior.
4544 Conversely, they have better performance because GC is not involved.
4545
4546 This feature is experimental and requires careful debugging.
4547 Build with CPPFLAGS='-DUSE_STACK_LISP_OBJECTS=0' to disable it. */
4548
4549 #ifndef USE_STACK_LISP_OBJECTS
4550 # define USE_STACK_LISP_OBJECTS true
4551 #endif
4552
4553 #ifdef GC_CHECK_STRING_BYTES
4554 enum { defined_GC_CHECK_STRING_BYTES = true };
4555 #else
4556 enum { defined_GC_CHECK_STRING_BYTES = false };
4557 #endif
4558
4559 /* Struct inside unions that are typically no larger and aligned enough. */
4560
4561 union Aligned_Cons
4562 {
4563 struct Lisp_Cons s;
4564 double d; intmax_t i; void *p;
4565 };
4566
4567 union Aligned_String
4568 {
4569 struct Lisp_String s;
4570 double d; intmax_t i; void *p;
4571 };
4572
4573 /* True for stack-based cons and string implementations, respectively.
4574 Use stack-based strings only if stack-based cons also works.
4575 Otherwise, STACK_CONS would create heap-based cons cells that
4576 could point to stack-based strings, which is a no-no. */
4577
4578 enum
4579 {
4580 USE_STACK_CONS = (USE_STACK_LISP_OBJECTS
4581 && alignof (union Aligned_Cons) % GCALIGNMENT == 0),
4582 USE_STACK_STRING = (USE_STACK_CONS
4583 && !defined_GC_CHECK_STRING_BYTES
4584 && alignof (union Aligned_String) % GCALIGNMENT == 0)
4585 };
4586
4587 /* Auxiliary macros used for auto allocation of Lisp objects. Please
4588 use these only in macros like AUTO_CONS that declare a local
4589 variable whose lifetime will be clear to the programmer. */
4590 #define STACK_CONS(a, b) \
4591 make_lisp_ptr (&(union Aligned_Cons) { { a, { b } } }.s, Lisp_Cons)
4592 #define AUTO_CONS_EXPR(a, b) \
4593 (USE_STACK_CONS ? STACK_CONS (a, b) : Fcons (a, b))
4594
4595 /* Declare NAME as an auto Lisp cons or short list if possible, a
4596 GC-based one otherwise. This is in the sense of the C keyword
4597 'auto'; i.e., the object has the lifetime of the containing block.
4598 The resulting object should not be made visible to user Lisp code. */
4599
4600 #define AUTO_CONS(name, a, b) Lisp_Object name = AUTO_CONS_EXPR (a, b)
4601 #define AUTO_LIST1(name, a) \
4602 Lisp_Object name = (USE_STACK_CONS ? STACK_CONS (a, Qnil) : list1 (a))
4603 #define AUTO_LIST2(name, a, b) \
4604 Lisp_Object name = (USE_STACK_CONS \
4605 ? STACK_CONS (a, STACK_CONS (b, Qnil)) \
4606 : list2 (a, b))
4607 #define AUTO_LIST3(name, a, b, c) \
4608 Lisp_Object name = (USE_STACK_CONS \
4609 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, Qnil))) \
4610 : list3 (a, b, c))
4611 #define AUTO_LIST4(name, a, b, c, d) \
4612 Lisp_Object name \
4613 = (USE_STACK_CONS \
4614 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, \
4615 STACK_CONS (d, Qnil)))) \
4616 : list4 (a, b, c, d))
4617
4618 /* Check whether stack-allocated strings are ASCII-only. */
4619
4620 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
4621 extern const char *verify_ascii (const char *);
4622 #else
4623 # define verify_ascii(str) (str)
4624 #endif
4625
4626 /* Declare NAME as an auto Lisp string if possible, a GC-based one if not.
4627 Take its value from STR. STR is not necessarily copied and should
4628 contain only ASCII characters. The resulting Lisp string should
4629 not be modified or made visible to user code. */
4630
4631 #define AUTO_STRING(name, str) \
4632 Lisp_Object name = \
4633 (USE_STACK_STRING \
4634 ? (make_lisp_ptr \
4635 ((&(union Aligned_String) \
4636 {{strlen (str), -1, 0, (unsigned char *) verify_ascii (str)}}.s), \
4637 Lisp_String)) \
4638 : build_string (verify_ascii (str)))
4639
4640 /* Loop over all tails of a list, checking for cycles.
4641 FIXME: Make tortoise and n internal declarations.
4642 FIXME: Unroll the loop body so we don't need `n'. */
4643 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4644 for ((tortoise) = (hare) = (list), (n) = true; \
4645 CONSP (hare); \
4646 (hare = XCDR (hare), (n) = !(n), \
4647 ((n) \
4648 ? (EQ (hare, tortoise) \
4649 ? xsignal1 (Qcircular_list, list) \
4650 : (void) 0) \
4651 /* Move tortoise before the next iteration, in case */ \
4652 /* the next iteration does an Fsetcdr. */ \
4653 : (void) ((tortoise) = XCDR (tortoise)))))
4654
4655 /* Do a `for' loop over alist values. */
4656
4657 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4658 for ((list_var) = (head_var); \
4659 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4660 (list_var) = XCDR (list_var))
4661
4662 /* Check whether it's time for GC, and run it if so. */
4663
4664 INLINE void
4665 maybe_gc (void)
4666 {
4667 if ((consing_since_gc > gc_cons_threshold
4668 && consing_since_gc > gc_relative_threshold)
4669 || (!NILP (Vmemory_full)
4670 && consing_since_gc > memory_full_cons_threshold))
4671 Fgarbage_collect ();
4672 }
4673
4674 INLINE bool
4675 functionp (Lisp_Object object)
4676 {
4677 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4678 {
4679 object = Findirect_function (object, Qt);
4680
4681 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4682 {
4683 /* Autoloaded symbols are functions, except if they load
4684 macros or keymaps. */
4685 int i;
4686 for (i = 0; i < 4 && CONSP (object); i++)
4687 object = XCDR (object);
4688
4689 return ! (CONSP (object) && !NILP (XCAR (object)));
4690 }
4691 }
4692
4693 if (SUBRP (object))
4694 return XSUBR (object)->max_args != UNEVALLED;
4695 else if (COMPILEDP (object))
4696 return true;
4697 else if (CONSP (object))
4698 {
4699 Lisp_Object car = XCAR (object);
4700 return EQ (car, Qlambda) || EQ (car, Qclosure);
4701 }
4702 else
4703 return false;
4704 }
4705
4706 INLINE_HEADER_END
4707
4708 #endif /* EMACS_LISP_H */