]> code.delx.au - gnu-emacs/blob - src/lisp.h
Simplify push_handler and profile its malloc
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter. -*- coding: utf-8 -*-
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2015 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
40 # define ID (some integer preprocessor expression of type TYPE)
41 DEFINE_GDB_SYMBOL_END (ID)
42
43 This hack is for the benefit of compilers that do not make macro
44 definitions or enums visible to the debugger. It's used for symbols
45 that .gdbinit needs. */
46
47 #define DECLARE_GDB_SYM(type, id) type const id EXTERNALLY_VISIBLE
48 #ifdef MAIN_PROGRAM
49 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) DECLARE_GDB_SYM (type, id)
50 # define DEFINE_GDB_SYMBOL_END(id) = id;
51 #else
52 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) extern DECLARE_GDB_SYM (type, id)
53 # define DEFINE_GDB_SYMBOL_END(val) ;
54 #endif
55
56 /* The ubiquitous max and min macros. */
57 #undef min
58 #undef max
59 #define max(a, b) ((a) > (b) ? (a) : (b))
60 #define min(a, b) ((a) < (b) ? (a) : (b))
61
62 /* Number of elements in an array. */
63 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
64
65 /* Number of bits in a Lisp_Object tag. */
66 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
67 #define GCTYPEBITS 3
68 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
69
70 /* The number of bits needed in an EMACS_INT over and above the number
71 of bits in a pointer. This is 0 on systems where:
72 1. We can specify multiple-of-8 alignment on static variables.
73 2. We know malloc returns a multiple of 8. */
74 #if (defined alignas \
75 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
76 || defined DARWIN_OS || defined __sun || defined __MINGW32__ \
77 || defined CYGWIN))
78 # define NONPOINTER_BITS 0
79 #else
80 # define NONPOINTER_BITS GCTYPEBITS
81 #endif
82
83 /* EMACS_INT - signed integer wide enough to hold an Emacs value
84 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
85 pI - printf length modifier for EMACS_INT
86 EMACS_UINT - unsigned variant of EMACS_INT */
87 #ifndef EMACS_INT_MAX
88 # if INTPTR_MAX <= 0
89 # error "INTPTR_MAX misconfigured"
90 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
91 typedef int EMACS_INT;
92 typedef unsigned int EMACS_UINT;
93 # define EMACS_INT_MAX INT_MAX
94 # define pI ""
95 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
96 typedef long int EMACS_INT;
97 typedef unsigned long EMACS_UINT;
98 # define EMACS_INT_MAX LONG_MAX
99 # define pI "l"
100 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
101 In theory this is not safe, but in practice it seems to be OK. */
102 # elif INTPTR_MAX <= LLONG_MAX
103 typedef long long int EMACS_INT;
104 typedef unsigned long long int EMACS_UINT;
105 # define EMACS_INT_MAX LLONG_MAX
106 # define pI "ll"
107 # else
108 # error "INTPTR_MAX too large"
109 # endif
110 #endif
111
112 /* Number of bits to put in each character in the internal representation
113 of bool vectors. This should not vary across implementations. */
114 enum { BOOL_VECTOR_BITS_PER_CHAR =
115 #define BOOL_VECTOR_BITS_PER_CHAR 8
116 BOOL_VECTOR_BITS_PER_CHAR
117 };
118
119 /* An unsigned integer type representing a fixed-length bit sequence,
120 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
121 for speed, but it is unsigned char on weird platforms. */
122 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
123 typedef size_t bits_word;
124 # define BITS_WORD_MAX SIZE_MAX
125 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
126 #else
127 typedef unsigned char bits_word;
128 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
129 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
130 #endif
131 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
132
133 /* Number of bits in some machine integer types. */
134 enum
135 {
136 BITS_PER_CHAR = CHAR_BIT,
137 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
138 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
139 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
140 };
141
142 /* printmax_t and uprintmax_t are types for printing large integers.
143 These are the widest integers that are supported for printing.
144 pMd etc. are conversions for printing them.
145 On C99 hosts, there's no problem, as even the widest integers work.
146 Fall back on EMACS_INT on pre-C99 hosts. */
147 #ifdef PRIdMAX
148 typedef intmax_t printmax_t;
149 typedef uintmax_t uprintmax_t;
150 # define pMd PRIdMAX
151 # define pMu PRIuMAX
152 #else
153 typedef EMACS_INT printmax_t;
154 typedef EMACS_UINT uprintmax_t;
155 # define pMd pI"d"
156 # define pMu pI"u"
157 #endif
158
159 /* Use pD to format ptrdiff_t values, which suffice for indexes into
160 buffers and strings. Emacs never allocates objects larger than
161 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
162 In C99, pD can always be "t"; configure it here for the sake of
163 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
164 #if PTRDIFF_MAX == INT_MAX
165 # define pD ""
166 #elif PTRDIFF_MAX == LONG_MAX
167 # define pD "l"
168 #elif PTRDIFF_MAX == LLONG_MAX
169 # define pD "ll"
170 #else
171 # define pD "t"
172 #endif
173
174 /* Extra internal type checking? */
175
176 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
177 'assume (COND)'. COND should be free of side effects, as it may or
178 may not be evaluated.
179
180 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
181 defined and suppress_checking is false, and does nothing otherwise.
182 Emacs dies if COND is checked and is false. The suppress_checking
183 variable is initialized to 0 in alloc.c. Set it to 1 using a
184 debugger to temporarily disable aborting on detected internal
185 inconsistencies or error conditions.
186
187 In some cases, a good compiler may be able to optimize away the
188 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
189 uses eassert to test STRINGP (x), but a particular use of XSTRING
190 is invoked only after testing that STRINGP (x) is true, making the
191 test redundant.
192
193 eassume is like eassert except that it also causes the compiler to
194 assume that COND is true afterwards, regardless of whether runtime
195 checking is enabled. This can improve performance in some cases,
196 though it can degrade performance in others. It's often suboptimal
197 for COND to call external functions or access volatile storage. */
198
199 #ifndef ENABLE_CHECKING
200 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
201 # define eassume(cond) assume (cond)
202 #else /* ENABLE_CHECKING */
203
204 extern _Noreturn void die (const char *, const char *, int);
205
206 extern bool suppress_checking EXTERNALLY_VISIBLE;
207
208 # define eassert(cond) \
209 (suppress_checking || (cond) \
210 ? (void) 0 \
211 : die (# cond, __FILE__, __LINE__))
212 # define eassume(cond) \
213 (suppress_checking \
214 ? assume (cond) \
215 : (cond) \
216 ? (void) 0 \
217 : die (# cond, __FILE__, __LINE__))
218 #endif /* ENABLE_CHECKING */
219
220 \f
221 /* Use the configure flag --enable-check-lisp-object-type to make
222 Lisp_Object use a struct type instead of the default int. The flag
223 causes CHECK_LISP_OBJECT_TYPE to be defined. */
224
225 /***** Select the tagging scheme. *****/
226 /* The following option controls the tagging scheme:
227 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
228 always 0, and we can thus use them to hold tag bits, without
229 restricting our addressing space.
230
231 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
232 restricting our possible address range.
233
234 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
235 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
236 on the few static Lisp_Objects used: lispsym, all the defsubr, and
237 the two special buffers buffer_defaults and buffer_local_symbols. */
238
239 enum Lisp_Bits
240 {
241 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
242 integer constant, for MSVC. */
243 #define GCALIGNMENT 8
244
245 /* Number of bits in a Lisp_Object value, not counting the tag. */
246 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
247
248 /* Number of bits in a Lisp fixnum tag. */
249 INTTYPEBITS = GCTYPEBITS - 1,
250
251 /* Number of bits in a Lisp fixnum value, not counting the tag. */
252 FIXNUM_BITS = VALBITS + 1
253 };
254
255 #if GCALIGNMENT != 1 << GCTYPEBITS
256 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
257 #endif
258
259 /* The maximum value that can be stored in a EMACS_INT, assuming all
260 bits other than the type bits contribute to a nonnegative signed value.
261 This can be used in #if, e.g., '#if USE_LSB_TAG' below expands to an
262 expression involving VAL_MAX. */
263 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
264
265 /* Whether the least-significant bits of an EMACS_INT contain the tag.
266 On hosts where pointers-as-ints do not exceed VAL_MAX / 2, USE_LSB_TAG is:
267 a. unnecessary, because the top bits of an EMACS_INT are unused, and
268 b. slower, because it typically requires extra masking.
269 So, USE_LSB_TAG is true only on hosts where it might be useful. */
270 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
271 #define USE_LSB_TAG (VAL_MAX / 2 < INTPTR_MAX)
272 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
273
274 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
275 # error "USE_LSB_TAG not supported on this platform; please report this." \
276 "Try 'configure --with-wide-int' to work around the problem."
277 error !;
278 #endif
279
280 #ifndef alignas
281 # error "alignas not defined"
282 #endif
283
284 #ifdef HAVE_STRUCT_ATTRIBUTE_ALIGNED
285 # define GCALIGNED __attribute__ ((aligned (GCALIGNMENT)))
286 #else
287 # define GCALIGNED /* empty */
288 #endif
289
290 /* Some operations are so commonly executed that they are implemented
291 as macros, not functions, because otherwise runtime performance would
292 suffer too much when compiling with GCC without optimization.
293 There's no need to inline everything, just the operations that
294 would otherwise cause a serious performance problem.
295
296 For each such operation OP, define a macro lisp_h_OP that contains
297 the operation's implementation. That way, OP can be implemented
298 via a macro definition like this:
299
300 #define OP(x) lisp_h_OP (x)
301
302 and/or via a function definition like this:
303
304 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
305
306 without worrying about the implementations diverging, since
307 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
308 are intended to be private to this include file, and should not be
309 used elsewhere.
310
311 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
312 functions, once most developers have access to GCC 4.8 or later and
313 can use "gcc -Og" to debug. Maybe in the year 2016. See
314 Bug#11935.
315
316 Commentary for these macros can be found near their corresponding
317 functions, below. */
318
319 #if CHECK_LISP_OBJECT_TYPE
320 # define lisp_h_XLI(o) ((o).i)
321 # define lisp_h_XIL(i) ((Lisp_Object) { i })
322 #else
323 # define lisp_h_XLI(o) (o)
324 # define lisp_h_XIL(i) (i)
325 #endif
326 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
327 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
328 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
329 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
330 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
331 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
332 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
333 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
334 #define lisp_h_INTEGERP(x) ((XTYPE (x) & (Lisp_Int0 | ~Lisp_Int1)) == Lisp_Int0)
335 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
336 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
337 #define lisp_h_NILP(x) EQ (x, Qnil)
338 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
339 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
340 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
341 #define lisp_h_SYMBOL_VAL(sym) \
342 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
343 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
344 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
345 #define lisp_h_XCAR(c) XCONS (c)->car
346 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
347 #define lisp_h_XCONS(a) \
348 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
349 #define lisp_h_XHASH(a) XUINT (a)
350 #ifndef GC_CHECK_CONS_LIST
351 # define lisp_h_check_cons_list() ((void) 0)
352 #endif
353 #if USE_LSB_TAG
354 # define lisp_h_make_number(n) \
355 XIL ((EMACS_INT) (((EMACS_UINT) (n) << INTTYPEBITS) + Lisp_Int0))
356 # define lisp_h_XFASTINT(a) XINT (a)
357 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
358 # define lisp_h_XSYMBOL(a) \
359 (eassert (SYMBOLP (a)), \
360 (struct Lisp_Symbol *) ((uintptr_t) XLI (a) - Lisp_Symbol \
361 + (char *) lispsym))
362 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
363 # define lisp_h_XUNTAG(a, type) ((void *) (intptr_t) (XLI (a) - (type)))
364 #endif
365
366 /* When compiling via gcc -O0, define the key operations as macros, as
367 Emacs is too slow otherwise. To disable this optimization, compile
368 with -DINLINING=false. */
369 #if (defined __NO_INLINE__ \
370 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
371 && ! (defined INLINING && ! INLINING))
372 # define XLI(o) lisp_h_XLI (o)
373 # define XIL(i) lisp_h_XIL (i)
374 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
375 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
376 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
377 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
378 # define CONSP(x) lisp_h_CONSP (x)
379 # define EQ(x, y) lisp_h_EQ (x, y)
380 # define FLOATP(x) lisp_h_FLOATP (x)
381 # define INTEGERP(x) lisp_h_INTEGERP (x)
382 # define MARKERP(x) lisp_h_MARKERP (x)
383 # define MISCP(x) lisp_h_MISCP (x)
384 # define NILP(x) lisp_h_NILP (x)
385 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
386 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
387 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
388 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
389 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
390 # define XCAR(c) lisp_h_XCAR (c)
391 # define XCDR(c) lisp_h_XCDR (c)
392 # define XCONS(a) lisp_h_XCONS (a)
393 # define XHASH(a) lisp_h_XHASH (a)
394 # ifndef GC_CHECK_CONS_LIST
395 # define check_cons_list() lisp_h_check_cons_list ()
396 # endif
397 # if USE_LSB_TAG
398 # define make_number(n) lisp_h_make_number (n)
399 # define XFASTINT(a) lisp_h_XFASTINT (a)
400 # define XINT(a) lisp_h_XINT (a)
401 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
402 # define XTYPE(a) lisp_h_XTYPE (a)
403 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
404 # endif
405 #endif
406
407
408 /* Define the fundamental Lisp data structures. */
409
410 /* This is the set of Lisp data types. If you want to define a new
411 data type, read the comments after Lisp_Fwd_Type definition
412 below. */
413
414 /* Lisp integers use 2 tags, to give them one extra bit, thus
415 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
416 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
417 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
418
419 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
420 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
421 vociferously about them. */
422 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
423 || (defined __SUNPRO_C && __STDC__))
424 #define ENUM_BF(TYPE) unsigned int
425 #else
426 #define ENUM_BF(TYPE) enum TYPE
427 #endif
428
429
430 enum Lisp_Type
431 {
432 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
433 Lisp_Symbol = 0,
434
435 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
436 whose first member indicates the subtype. */
437 Lisp_Misc = 1,
438
439 /* Integer. XINT (obj) is the integer value. */
440 Lisp_Int0 = 2,
441 Lisp_Int1 = USE_LSB_TAG ? 6 : 3,
442
443 /* String. XSTRING (object) points to a struct Lisp_String.
444 The length of the string, and its contents, are stored therein. */
445 Lisp_String = 4,
446
447 /* Vector of Lisp objects, or something resembling it.
448 XVECTOR (object) points to a struct Lisp_Vector, which contains
449 the size and contents. The size field also contains the type
450 information, if it's not a real vector object. */
451 Lisp_Vectorlike = 5,
452
453 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
454 Lisp_Cons = USE_LSB_TAG ? 3 : 6,
455
456 Lisp_Float = 7
457 };
458
459 /* This is the set of data types that share a common structure.
460 The first member of the structure is a type code from this set.
461 The enum values are arbitrary, but we'll use large numbers to make it
462 more likely that we'll spot the error if a random word in memory is
463 mistakenly interpreted as a Lisp_Misc. */
464 enum Lisp_Misc_Type
465 {
466 Lisp_Misc_Free = 0x5eab,
467 Lisp_Misc_Marker,
468 Lisp_Misc_Overlay,
469 Lisp_Misc_Save_Value,
470 Lisp_Misc_Finalizer,
471 #ifdef HAVE_MODULES
472 Lisp_Misc_User_Ptr,
473 #endif
474 /* Currently floats are not a misc type,
475 but let's define this in case we want to change that. */
476 Lisp_Misc_Float,
477 /* This is not a type code. It is for range checking. */
478 Lisp_Misc_Limit
479 };
480
481 /* These are the types of forwarding objects used in the value slot
482 of symbols for special built-in variables whose value is stored in
483 C variables. */
484 enum Lisp_Fwd_Type
485 {
486 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
487 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
488 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
489 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
490 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
491 };
492
493 /* If you want to define a new Lisp data type, here are some
494 instructions. See the thread at
495 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
496 for more info.
497
498 First, there are already a couple of Lisp types that can be used if
499 your new type does not need to be exposed to Lisp programs nor
500 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
501 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
502 is suitable for temporarily stashing away pointers and integers in
503 a Lisp object. The latter is useful for vector-like Lisp objects
504 that need to be used as part of other objects, but which are never
505 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
506 an example).
507
508 These two types don't look pretty when printed, so they are
509 unsuitable for Lisp objects that can be exposed to users.
510
511 To define a new data type, add one more Lisp_Misc subtype or one
512 more pseudovector subtype. Pseudovectors are more suitable for
513 objects with several slots that need to support fast random access,
514 while Lisp_Misc types are for everything else. A pseudovector object
515 provides one or more slots for Lisp objects, followed by struct
516 members that are accessible only from C. A Lisp_Misc object is a
517 wrapper for a C struct that can contain anything you like.
518
519 Explicit freeing is discouraged for Lisp objects in general. But if
520 you really need to exploit this, use Lisp_Misc (check free_misc in
521 alloc.c to see why). There is no way to free a vectorlike object.
522
523 To add a new pseudovector type, extend the pvec_type enumeration;
524 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
525
526 For a Lisp_Misc, you will also need to add your entry to union
527 Lisp_Misc (but make sure the first word has the same structure as
528 the others, starting with a 16-bit member of the Lisp_Misc_Type
529 enumeration and a 1-bit GC markbit) and make sure the overall size
530 of the union is not increased by your addition.
531
532 For a new pseudovector, it's highly desirable to limit the size
533 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
534 Otherwise you will need to change sweep_vectors (also in alloc.c).
535
536 Then you will need to add switch branches in print.c (in
537 print_object, to print your object, and possibly also in
538 print_preprocess) and to alloc.c, to mark your object (in
539 mark_object) and to free it (in gc_sweep). The latter is also the
540 right place to call any code specific to your data type that needs
541 to run when the object is recycled -- e.g., free any additional
542 resources allocated for it that are not Lisp objects. You can even
543 make a pointer to the function that frees the resources a slot in
544 your object -- this way, the same object could be used to represent
545 several disparate C structures. */
546
547 #ifdef CHECK_LISP_OBJECT_TYPE
548
549 typedef struct { EMACS_INT i; } Lisp_Object;
550
551 #define LISP_INITIALLY(i) {i}
552
553 #undef CHECK_LISP_OBJECT_TYPE
554 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
555 #else /* CHECK_LISP_OBJECT_TYPE */
556
557 /* If a struct type is not wanted, define Lisp_Object as just a number. */
558
559 typedef EMACS_INT Lisp_Object;
560 #define LISP_INITIALLY(i) (i)
561 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
562 #endif /* CHECK_LISP_OBJECT_TYPE */
563
564 #define LISP_INITIALLY_ZERO LISP_INITIALLY (0)
565 \f
566 /* Forward declarations. */
567
568 /* Defined in this file. */
569 union Lisp_Fwd;
570 INLINE bool BOOL_VECTOR_P (Lisp_Object);
571 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
572 INLINE bool BUFFERP (Lisp_Object);
573 INLINE bool CHAR_TABLE_P (Lisp_Object);
574 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
575 INLINE bool (CONSP) (Lisp_Object);
576 INLINE bool (FLOATP) (Lisp_Object);
577 INLINE bool functionp (Lisp_Object);
578 INLINE bool (INTEGERP) (Lisp_Object);
579 INLINE bool (MARKERP) (Lisp_Object);
580 INLINE bool (MISCP) (Lisp_Object);
581 INLINE bool (NILP) (Lisp_Object);
582 INLINE bool OVERLAYP (Lisp_Object);
583 INLINE bool PROCESSP (Lisp_Object);
584 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
585 INLINE bool SAVE_VALUEP (Lisp_Object);
586 INLINE bool FINALIZERP (Lisp_Object);
587
588 #ifdef HAVE_MODULES
589 INLINE bool USER_PTRP (Lisp_Object);
590 INLINE struct Lisp_User_Ptr *(XUSER_PTR) (Lisp_Object);
591 #endif
592
593 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
594 Lisp_Object);
595 INLINE bool STRINGP (Lisp_Object);
596 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
597 INLINE bool SUBRP (Lisp_Object);
598 INLINE bool (SYMBOLP) (Lisp_Object);
599 INLINE bool (VECTORLIKEP) (Lisp_Object);
600 INLINE bool WINDOWP (Lisp_Object);
601 INLINE bool TERMINALP (Lisp_Object);
602 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
603 INLINE struct Lisp_Finalizer *XFINALIZER (Lisp_Object);
604 INLINE struct Lisp_Symbol *(XSYMBOL) (Lisp_Object);
605 INLINE void *(XUNTAG) (Lisp_Object, int);
606
607 /* Defined in chartab.c. */
608 extern Lisp_Object char_table_ref (Lisp_Object, int);
609 extern void char_table_set (Lisp_Object, int, Lisp_Object);
610
611 /* Defined in data.c. */
612 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
613 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
614
615 /* Defined in emacs.c. */
616 extern bool might_dump;
617 /* True means Emacs has already been initialized.
618 Used during startup to detect startup of dumped Emacs. */
619 extern bool initialized;
620
621 /* Defined in floatfns.c. */
622 extern double extract_float (Lisp_Object);
623
624 \f
625 /* Interned state of a symbol. */
626
627 enum symbol_interned
628 {
629 SYMBOL_UNINTERNED = 0,
630 SYMBOL_INTERNED = 1,
631 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
632 };
633
634 enum symbol_redirect
635 {
636 SYMBOL_PLAINVAL = 4,
637 SYMBOL_VARALIAS = 1,
638 SYMBOL_LOCALIZED = 2,
639 SYMBOL_FORWARDED = 3
640 };
641
642 struct Lisp_Symbol
643 {
644 bool_bf gcmarkbit : 1;
645
646 /* Indicates where the value can be found:
647 0 : it's a plain var, the value is in the `value' field.
648 1 : it's a varalias, the value is really in the `alias' symbol.
649 2 : it's a localized var, the value is in the `blv' object.
650 3 : it's a forwarding variable, the value is in `forward'. */
651 ENUM_BF (symbol_redirect) redirect : 3;
652
653 /* Non-zero means symbol is constant, i.e. changing its value
654 should signal an error. If the value is 3, then the var
655 can be changed, but only by `defconst'. */
656 unsigned constant : 2;
657
658 /* Interned state of the symbol. This is an enumerator from
659 enum symbol_interned. */
660 unsigned interned : 2;
661
662 /* True means that this variable has been explicitly declared
663 special (with `defvar' etc), and shouldn't be lexically bound. */
664 bool_bf declared_special : 1;
665
666 /* True if pointed to from purespace and hence can't be GC'd. */
667 bool_bf pinned : 1;
668
669 /* The symbol's name, as a Lisp string. */
670 Lisp_Object name;
671
672 /* Value of the symbol or Qunbound if unbound. Which alternative of the
673 union is used depends on the `redirect' field above. */
674 union {
675 Lisp_Object value;
676 struct Lisp_Symbol *alias;
677 struct Lisp_Buffer_Local_Value *blv;
678 union Lisp_Fwd *fwd;
679 } val;
680
681 /* Function value of the symbol or Qnil if not fboundp. */
682 Lisp_Object function;
683
684 /* The symbol's property list. */
685 Lisp_Object plist;
686
687 /* Next symbol in obarray bucket, if the symbol is interned. */
688 struct Lisp_Symbol *next;
689 };
690
691 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
692 meaning as in the DEFUN macro, and is used to construct a prototype. */
693 /* We can use the same trick as in the DEFUN macro to generate the
694 appropriate prototype. */
695 #define EXFUN(fnname, maxargs) \
696 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
697
698 /* Note that the weird token-substitution semantics of ANSI C makes
699 this work for MANY and UNEVALLED. */
700 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
701 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
702 #define DEFUN_ARGS_0 (void)
703 #define DEFUN_ARGS_1 (Lisp_Object)
704 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
705 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
706 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
707 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
708 Lisp_Object)
709 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
710 Lisp_Object, Lisp_Object)
711 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
712 Lisp_Object, Lisp_Object, Lisp_Object)
713 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
714 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
715
716 /* Yield an integer that contains TAG along with PTR. */
717 #define TAG_PTR(tag, ptr) \
718 ((USE_LSB_TAG ? (tag) : (EMACS_UINT) (tag) << VALBITS) + (uintptr_t) (ptr))
719
720 /* Yield an integer that contains a symbol tag along with OFFSET.
721 OFFSET should be the offset in bytes from 'lispsym' to the symbol. */
722 #define TAG_SYMOFFSET(offset) TAG_PTR (Lisp_Symbol, offset)
723
724 /* XLI_BUILTIN_LISPSYM (iQwhatever) is equivalent to
725 XLI (builtin_lisp_symbol (Qwhatever)),
726 except the former expands to an integer constant expression. */
727 #define XLI_BUILTIN_LISPSYM(iname) TAG_SYMOFFSET ((iname) * sizeof *lispsym)
728
729 /* Declare extern constants for Lisp symbols. These can be helpful
730 when using a debugger like GDB, on older platforms where the debug
731 format does not represent C macros. */
732 #define DEFINE_LISP_SYMBOL(name) \
733 DEFINE_GDB_SYMBOL_BEGIN (Lisp_Object, name) \
734 DEFINE_GDB_SYMBOL_END (LISP_INITIALLY (XLI_BUILTIN_LISPSYM (i##name)))
735
736 /* By default, define macros for Qt, etc., as this leads to a bit
737 better performance in the core Emacs interpreter. A plugin can
738 define DEFINE_NON_NIL_Q_SYMBOL_MACROS to be false, to be portable to
739 other Emacs instances that assign different values to Qt, etc. */
740 #ifndef DEFINE_NON_NIL_Q_SYMBOL_MACROS
741 # define DEFINE_NON_NIL_Q_SYMBOL_MACROS true
742 #endif
743
744 #include "globals.h"
745
746 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
747 At the machine level, these operations are no-ops. */
748
749 INLINE EMACS_INT
750 (XLI) (Lisp_Object o)
751 {
752 return lisp_h_XLI (o);
753 }
754
755 INLINE Lisp_Object
756 (XIL) (EMACS_INT i)
757 {
758 return lisp_h_XIL (i);
759 }
760
761 /* In the size word of a vector, this bit means the vector has been marked. */
762
763 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
764 # define ARRAY_MARK_FLAG PTRDIFF_MIN
765 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
766
767 /* In the size word of a struct Lisp_Vector, this bit means it's really
768 some other vector-like object. */
769 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
770 # define PSEUDOVECTOR_FLAG (PTRDIFF_MAX - PTRDIFF_MAX / 2)
771 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
772
773 /* In a pseudovector, the size field actually contains a word with one
774 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
775 with PVEC_TYPE_MASK to indicate the actual type. */
776 enum pvec_type
777 {
778 PVEC_NORMAL_VECTOR,
779 PVEC_FREE,
780 PVEC_PROCESS,
781 PVEC_FRAME,
782 PVEC_WINDOW,
783 PVEC_BOOL_VECTOR,
784 PVEC_BUFFER,
785 PVEC_HASH_TABLE,
786 PVEC_TERMINAL,
787 PVEC_WINDOW_CONFIGURATION,
788 PVEC_SUBR,
789 PVEC_OTHER,
790 /* These should be last, check internal_equal to see why. */
791 PVEC_COMPILED,
792 PVEC_CHAR_TABLE,
793 PVEC_SUB_CHAR_TABLE,
794 PVEC_FONT /* Should be last because it's used for range checking. */
795 };
796
797 enum More_Lisp_Bits
798 {
799 /* For convenience, we also store the number of elements in these bits.
800 Note that this size is not necessarily the memory-footprint size, but
801 only the number of Lisp_Object fields (that need to be traced by GC).
802 The distinction is used, e.g., by Lisp_Process, which places extra
803 non-Lisp_Object fields at the end of the structure. */
804 PSEUDOVECTOR_SIZE_BITS = 12,
805 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
806
807 /* To calculate the memory footprint of the pseudovector, it's useful
808 to store the size of non-Lisp area in word_size units here. */
809 PSEUDOVECTOR_REST_BITS = 12,
810 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
811 << PSEUDOVECTOR_SIZE_BITS),
812
813 /* Used to extract pseudovector subtype information. */
814 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
815 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
816 };
817 \f
818 /* These functions extract various sorts of values from a Lisp_Object.
819 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
820 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
821 that cons. */
822
823 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
824 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
825 # define VALMASK (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
826 DEFINE_GDB_SYMBOL_END (VALMASK)
827
828 /* Largest and smallest representable fixnum values. These are the C
829 values. They are macros for use in static initializers. */
830 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
831 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
832
833 #if USE_LSB_TAG
834
835 INLINE Lisp_Object
836 (make_number) (EMACS_INT n)
837 {
838 return lisp_h_make_number (n);
839 }
840
841 INLINE EMACS_INT
842 (XINT) (Lisp_Object a)
843 {
844 return lisp_h_XINT (a);
845 }
846
847 INLINE EMACS_INT
848 (XFASTINT) (Lisp_Object a)
849 {
850 return lisp_h_XFASTINT (a);
851 }
852
853 INLINE struct Lisp_Symbol *
854 (XSYMBOL) (Lisp_Object a)
855 {
856 return lisp_h_XSYMBOL (a);
857 }
858
859 INLINE enum Lisp_Type
860 (XTYPE) (Lisp_Object a)
861 {
862 return lisp_h_XTYPE (a);
863 }
864
865 INLINE void *
866 (XUNTAG) (Lisp_Object a, int type)
867 {
868 return lisp_h_XUNTAG (a, type);
869 }
870
871 #else /* ! USE_LSB_TAG */
872
873 /* Although compiled only if ! USE_LSB_TAG, the following functions
874 also work when USE_LSB_TAG; this is to aid future maintenance when
875 the lisp_h_* macros are eventually removed. */
876
877 /* Make a Lisp integer representing the value of the low order
878 bits of N. */
879 INLINE Lisp_Object
880 make_number (EMACS_INT n)
881 {
882 EMACS_INT int0 = Lisp_Int0;
883 if (USE_LSB_TAG)
884 {
885 EMACS_UINT u = n;
886 n = u << INTTYPEBITS;
887 n += int0;
888 }
889 else
890 {
891 n &= INTMASK;
892 n += (int0 << VALBITS);
893 }
894 return XIL (n);
895 }
896
897 /* Extract A's value as a signed integer. */
898 INLINE EMACS_INT
899 XINT (Lisp_Object a)
900 {
901 EMACS_INT i = XLI (a);
902 if (! USE_LSB_TAG)
903 {
904 EMACS_UINT u = i;
905 i = u << INTTYPEBITS;
906 }
907 return i >> INTTYPEBITS;
908 }
909
910 /* Like XINT (A), but may be faster. A must be nonnegative.
911 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
912 integers have zero-bits in their tags. */
913 INLINE EMACS_INT
914 XFASTINT (Lisp_Object a)
915 {
916 EMACS_INT int0 = Lisp_Int0;
917 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a) - (int0 << VALBITS);
918 eassert (0 <= n);
919 return n;
920 }
921
922 /* Extract A's value as a symbol. */
923 INLINE struct Lisp_Symbol *
924 XSYMBOL (Lisp_Object a)
925 {
926 uintptr_t i = (uintptr_t) XUNTAG (a, Lisp_Symbol);
927 void *p = (char *) lispsym + i;
928 return p;
929 }
930
931 /* Extract A's type. */
932 INLINE enum Lisp_Type
933 XTYPE (Lisp_Object a)
934 {
935 EMACS_UINT i = XLI (a);
936 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
937 }
938
939 /* Extract A's pointer value, assuming A's type is TYPE. */
940 INLINE void *
941 XUNTAG (Lisp_Object a, int type)
942 {
943 intptr_t i = USE_LSB_TAG ? XLI (a) - type : XLI (a) & VALMASK;
944 return (void *) i;
945 }
946
947 #endif /* ! USE_LSB_TAG */
948
949 /* Extract A's value as an unsigned integer. */
950 INLINE EMACS_UINT
951 XUINT (Lisp_Object a)
952 {
953 EMACS_UINT i = XLI (a);
954 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
955 }
956
957 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
958 right now, but XUINT should only be applied to objects we know are
959 integers. */
960
961 INLINE EMACS_INT
962 (XHASH) (Lisp_Object a)
963 {
964 return lisp_h_XHASH (a);
965 }
966
967 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
968 INLINE Lisp_Object
969 make_natnum (EMACS_INT n)
970 {
971 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
972 EMACS_INT int0 = Lisp_Int0;
973 return USE_LSB_TAG ? make_number (n) : XIL (n + (int0 << VALBITS));
974 }
975
976 /* Return true if X and Y are the same object. */
977
978 INLINE bool
979 (EQ) (Lisp_Object x, Lisp_Object y)
980 {
981 return lisp_h_EQ (x, y);
982 }
983
984 /* Value is true if I doesn't fit into a Lisp fixnum. It is
985 written this way so that it also works if I is of unsigned
986 type or if I is a NaN. */
987
988 #define FIXNUM_OVERFLOW_P(i) \
989 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
990
991 INLINE ptrdiff_t
992 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
993 {
994 return num < lower ? lower : num <= upper ? num : upper;
995 }
996 \f
997
998 /* Extract a value or address from a Lisp_Object. */
999
1000 INLINE struct Lisp_Cons *
1001 (XCONS) (Lisp_Object a)
1002 {
1003 return lisp_h_XCONS (a);
1004 }
1005
1006 INLINE struct Lisp_Vector *
1007 XVECTOR (Lisp_Object a)
1008 {
1009 eassert (VECTORLIKEP (a));
1010 return XUNTAG (a, Lisp_Vectorlike);
1011 }
1012
1013 INLINE struct Lisp_String *
1014 XSTRING (Lisp_Object a)
1015 {
1016 eassert (STRINGP (a));
1017 return XUNTAG (a, Lisp_String);
1018 }
1019
1020 /* The index of the C-defined Lisp symbol SYM.
1021 This can be used in a static initializer. */
1022 #define SYMBOL_INDEX(sym) i##sym
1023
1024 INLINE struct Lisp_Float *
1025 XFLOAT (Lisp_Object a)
1026 {
1027 eassert (FLOATP (a));
1028 return XUNTAG (a, Lisp_Float);
1029 }
1030
1031 /* Pseudovector types. */
1032
1033 INLINE struct Lisp_Process *
1034 XPROCESS (Lisp_Object a)
1035 {
1036 eassert (PROCESSP (a));
1037 return XUNTAG (a, Lisp_Vectorlike);
1038 }
1039
1040 INLINE struct window *
1041 XWINDOW (Lisp_Object a)
1042 {
1043 eassert (WINDOWP (a));
1044 return XUNTAG (a, Lisp_Vectorlike);
1045 }
1046
1047 INLINE struct terminal *
1048 XTERMINAL (Lisp_Object a)
1049 {
1050 eassert (TERMINALP (a));
1051 return XUNTAG (a, Lisp_Vectorlike);
1052 }
1053
1054 INLINE struct Lisp_Subr *
1055 XSUBR (Lisp_Object a)
1056 {
1057 eassert (SUBRP (a));
1058 return XUNTAG (a, Lisp_Vectorlike);
1059 }
1060
1061 INLINE struct buffer *
1062 XBUFFER (Lisp_Object a)
1063 {
1064 eassert (BUFFERP (a));
1065 return XUNTAG (a, Lisp_Vectorlike);
1066 }
1067
1068 INLINE struct Lisp_Char_Table *
1069 XCHAR_TABLE (Lisp_Object a)
1070 {
1071 eassert (CHAR_TABLE_P (a));
1072 return XUNTAG (a, Lisp_Vectorlike);
1073 }
1074
1075 INLINE struct Lisp_Sub_Char_Table *
1076 XSUB_CHAR_TABLE (Lisp_Object a)
1077 {
1078 eassert (SUB_CHAR_TABLE_P (a));
1079 return XUNTAG (a, Lisp_Vectorlike);
1080 }
1081
1082 INLINE struct Lisp_Bool_Vector *
1083 XBOOL_VECTOR (Lisp_Object a)
1084 {
1085 eassert (BOOL_VECTOR_P (a));
1086 return XUNTAG (a, Lisp_Vectorlike);
1087 }
1088
1089 /* Construct a Lisp_Object from a value or address. */
1090
1091 INLINE Lisp_Object
1092 make_lisp_ptr (void *ptr, enum Lisp_Type type)
1093 {
1094 Lisp_Object a = XIL (TAG_PTR (type, ptr));
1095 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
1096 return a;
1097 }
1098
1099 INLINE Lisp_Object
1100 make_lisp_symbol (struct Lisp_Symbol *sym)
1101 {
1102 Lisp_Object a = XIL (TAG_SYMOFFSET ((char *) sym - (char *) lispsym));
1103 eassert (XSYMBOL (a) == sym);
1104 return a;
1105 }
1106
1107 INLINE Lisp_Object
1108 builtin_lisp_symbol (int index)
1109 {
1110 return make_lisp_symbol (lispsym + index);
1111 }
1112
1113 #define XSETINT(a, b) ((a) = make_number (b))
1114 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
1115 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
1116 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
1117 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
1118 #define XSETSYMBOL(a, b) ((a) = make_lisp_symbol (b))
1119 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
1120 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
1121
1122 /* Pseudovector types. */
1123
1124 #define XSETPVECTYPE(v, code) \
1125 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
1126 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
1127 ((v)->header.size = (PSEUDOVECTOR_FLAG \
1128 | ((code) << PSEUDOVECTOR_AREA_BITS) \
1129 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
1130 | (lispsize)))
1131
1132 /* The cast to struct vectorlike_header * avoids aliasing issues. */
1133 #define XSETPSEUDOVECTOR(a, b, code) \
1134 XSETTYPED_PSEUDOVECTOR (a, b, \
1135 (((struct vectorlike_header *) \
1136 XUNTAG (a, Lisp_Vectorlike)) \
1137 ->size), \
1138 code)
1139 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
1140 (XSETVECTOR (a, b), \
1141 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
1142 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
1143
1144 #define XSETWINDOW_CONFIGURATION(a, b) \
1145 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
1146 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
1147 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
1148 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
1149 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
1150 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
1151 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
1152 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
1153 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
1154 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
1155
1156 /* Efficiently convert a pointer to a Lisp object and back. The
1157 pointer is represented as a Lisp integer, so the garbage collector
1158 does not know about it. The pointer should not have both Lisp_Int1
1159 bits set, which makes this conversion inherently unportable. */
1160
1161 INLINE void *
1162 XINTPTR (Lisp_Object a)
1163 {
1164 return XUNTAG (a, Lisp_Int0);
1165 }
1166
1167 INLINE Lisp_Object
1168 make_pointer_integer (void *p)
1169 {
1170 Lisp_Object a = XIL (TAG_PTR (Lisp_Int0, p));
1171 eassert (INTEGERP (a) && XINTPTR (a) == p);
1172 return a;
1173 }
1174
1175 /* Type checking. */
1176
1177 INLINE void
1178 (CHECK_TYPE) (int ok, Lisp_Object predicate, Lisp_Object x)
1179 {
1180 lisp_h_CHECK_TYPE (ok, predicate, x);
1181 }
1182
1183 /* See the macros in intervals.h. */
1184
1185 typedef struct interval *INTERVAL;
1186
1187 struct GCALIGNED Lisp_Cons
1188 {
1189 /* Car of this cons cell. */
1190 Lisp_Object car;
1191
1192 union
1193 {
1194 /* Cdr of this cons cell. */
1195 Lisp_Object cdr;
1196
1197 /* Used to chain conses on a free list. */
1198 struct Lisp_Cons *chain;
1199 } u;
1200 };
1201
1202 /* Take the car or cdr of something known to be a cons cell. */
1203 /* The _addr functions shouldn't be used outside of the minimal set
1204 of code that has to know what a cons cell looks like. Other code not
1205 part of the basic lisp implementation should assume that the car and cdr
1206 fields are not accessible. (What if we want to switch to
1207 a copying collector someday? Cached cons cell field addresses may be
1208 invalidated at arbitrary points.) */
1209 INLINE Lisp_Object *
1210 xcar_addr (Lisp_Object c)
1211 {
1212 return &XCONS (c)->car;
1213 }
1214 INLINE Lisp_Object *
1215 xcdr_addr (Lisp_Object c)
1216 {
1217 return &XCONS (c)->u.cdr;
1218 }
1219
1220 /* Use these from normal code. */
1221
1222 INLINE Lisp_Object
1223 (XCAR) (Lisp_Object c)
1224 {
1225 return lisp_h_XCAR (c);
1226 }
1227
1228 INLINE Lisp_Object
1229 (XCDR) (Lisp_Object c)
1230 {
1231 return lisp_h_XCDR (c);
1232 }
1233
1234 /* Use these to set the fields of a cons cell.
1235
1236 Note that both arguments may refer to the same object, so 'n'
1237 should not be read after 'c' is first modified. */
1238 INLINE void
1239 XSETCAR (Lisp_Object c, Lisp_Object n)
1240 {
1241 *xcar_addr (c) = n;
1242 }
1243 INLINE void
1244 XSETCDR (Lisp_Object c, Lisp_Object n)
1245 {
1246 *xcdr_addr (c) = n;
1247 }
1248
1249 /* Take the car or cdr of something whose type is not known. */
1250 INLINE Lisp_Object
1251 CAR (Lisp_Object c)
1252 {
1253 return (CONSP (c) ? XCAR (c)
1254 : NILP (c) ? Qnil
1255 : wrong_type_argument (Qlistp, c));
1256 }
1257 INLINE Lisp_Object
1258 CDR (Lisp_Object c)
1259 {
1260 return (CONSP (c) ? XCDR (c)
1261 : NILP (c) ? Qnil
1262 : wrong_type_argument (Qlistp, c));
1263 }
1264
1265 /* Take the car or cdr of something whose type is not known. */
1266 INLINE Lisp_Object
1267 CAR_SAFE (Lisp_Object c)
1268 {
1269 return CONSP (c) ? XCAR (c) : Qnil;
1270 }
1271 INLINE Lisp_Object
1272 CDR_SAFE (Lisp_Object c)
1273 {
1274 return CONSP (c) ? XCDR (c) : Qnil;
1275 }
1276
1277 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1278
1279 struct GCALIGNED Lisp_String
1280 {
1281 ptrdiff_t size;
1282 ptrdiff_t size_byte;
1283 INTERVAL intervals; /* Text properties in this string. */
1284 unsigned char *data;
1285 };
1286
1287 /* True if STR is a multibyte string. */
1288 INLINE bool
1289 STRING_MULTIBYTE (Lisp_Object str)
1290 {
1291 return 0 <= XSTRING (str)->size_byte;
1292 }
1293
1294 /* An upper bound on the number of bytes in a Lisp string, not
1295 counting the terminating null. This a tight enough bound to
1296 prevent integer overflow errors that would otherwise occur during
1297 string size calculations. A string cannot contain more bytes than
1298 a fixnum can represent, nor can it be so long that C pointer
1299 arithmetic stops working on the string plus its terminating null.
1300 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1301 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1302 would expose alloc.c internal details that we'd rather keep
1303 private.
1304
1305 This is a macro for use in static initializers. The cast to
1306 ptrdiff_t ensures that the macro is signed. */
1307 #define STRING_BYTES_BOUND \
1308 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1309
1310 /* Mark STR as a unibyte string. */
1311 #define STRING_SET_UNIBYTE(STR) \
1312 do { \
1313 if (EQ (STR, empty_multibyte_string)) \
1314 (STR) = empty_unibyte_string; \
1315 else \
1316 XSTRING (STR)->size_byte = -1; \
1317 } while (false)
1318
1319 /* Mark STR as a multibyte string. Assure that STR contains only
1320 ASCII characters in advance. */
1321 #define STRING_SET_MULTIBYTE(STR) \
1322 do { \
1323 if (EQ (STR, empty_unibyte_string)) \
1324 (STR) = empty_multibyte_string; \
1325 else \
1326 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1327 } while (false)
1328
1329 /* Convenience functions for dealing with Lisp strings. */
1330
1331 INLINE unsigned char *
1332 SDATA (Lisp_Object string)
1333 {
1334 return XSTRING (string)->data;
1335 }
1336 INLINE char *
1337 SSDATA (Lisp_Object string)
1338 {
1339 /* Avoid "differ in sign" warnings. */
1340 return (char *) SDATA (string);
1341 }
1342 INLINE unsigned char
1343 SREF (Lisp_Object string, ptrdiff_t index)
1344 {
1345 return SDATA (string)[index];
1346 }
1347 INLINE void
1348 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1349 {
1350 SDATA (string)[index] = new;
1351 }
1352 INLINE ptrdiff_t
1353 SCHARS (Lisp_Object string)
1354 {
1355 return XSTRING (string)->size;
1356 }
1357
1358 #ifdef GC_CHECK_STRING_BYTES
1359 extern ptrdiff_t string_bytes (struct Lisp_String *);
1360 #endif
1361 INLINE ptrdiff_t
1362 STRING_BYTES (struct Lisp_String *s)
1363 {
1364 #ifdef GC_CHECK_STRING_BYTES
1365 return string_bytes (s);
1366 #else
1367 return s->size_byte < 0 ? s->size : s->size_byte;
1368 #endif
1369 }
1370
1371 INLINE ptrdiff_t
1372 SBYTES (Lisp_Object string)
1373 {
1374 return STRING_BYTES (XSTRING (string));
1375 }
1376 INLINE void
1377 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1378 {
1379 XSTRING (string)->size = newsize;
1380 }
1381
1382 /* Header of vector-like objects. This documents the layout constraints on
1383 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1384 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1385 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1386 because when two such pointers potentially alias, a compiler won't
1387 incorrectly reorder loads and stores to their size fields. See
1388 Bug#8546. */
1389 struct vectorlike_header
1390 {
1391 /* The only field contains various pieces of information:
1392 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1393 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1394 vector (0) or a pseudovector (1).
1395 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1396 of slots) of the vector.
1397 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1398 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1399 - b) number of Lisp_Objects slots at the beginning of the object
1400 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1401 traced by the GC;
1402 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1403 measured in word_size units. Rest fields may also include
1404 Lisp_Objects, but these objects usually needs some special treatment
1405 during GC.
1406 There are some exceptions. For PVEC_FREE, b) is always zero. For
1407 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1408 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1409 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1410 ptrdiff_t size;
1411 };
1412
1413 /* A regular vector is just a header plus an array of Lisp_Objects. */
1414
1415 struct Lisp_Vector
1416 {
1417 struct vectorlike_header header;
1418 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1419 };
1420
1421 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1422 enum
1423 {
1424 ALIGNOF_STRUCT_LISP_VECTOR
1425 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1426 };
1427
1428 /* A boolvector is a kind of vectorlike, with contents like a string. */
1429
1430 struct Lisp_Bool_Vector
1431 {
1432 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1433 just the subtype information. */
1434 struct vectorlike_header header;
1435 /* This is the size in bits. */
1436 EMACS_INT size;
1437 /* The actual bits, packed into bytes.
1438 Zeros fill out the last word if needed.
1439 The bits are in little-endian order in the bytes, and
1440 the bytes are in little-endian order in the words. */
1441 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1442 };
1443
1444 INLINE EMACS_INT
1445 bool_vector_size (Lisp_Object a)
1446 {
1447 EMACS_INT size = XBOOL_VECTOR (a)->size;
1448 eassume (0 <= size);
1449 return size;
1450 }
1451
1452 INLINE bits_word *
1453 bool_vector_data (Lisp_Object a)
1454 {
1455 return XBOOL_VECTOR (a)->data;
1456 }
1457
1458 INLINE unsigned char *
1459 bool_vector_uchar_data (Lisp_Object a)
1460 {
1461 return (unsigned char *) bool_vector_data (a);
1462 }
1463
1464 /* The number of data words and bytes in a bool vector with SIZE bits. */
1465
1466 INLINE EMACS_INT
1467 bool_vector_words (EMACS_INT size)
1468 {
1469 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1470 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1471 }
1472
1473 INLINE EMACS_INT
1474 bool_vector_bytes (EMACS_INT size)
1475 {
1476 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1477 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1478 }
1479
1480 /* True if A's Ith bit is set. */
1481
1482 INLINE bool
1483 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1484 {
1485 eassume (0 <= i && i < bool_vector_size (a));
1486 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1487 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1488 }
1489
1490 INLINE Lisp_Object
1491 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1492 {
1493 return bool_vector_bitref (a, i) ? Qt : Qnil;
1494 }
1495
1496 /* Set A's Ith bit to B. */
1497
1498 INLINE void
1499 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1500 {
1501 unsigned char *addr;
1502
1503 eassume (0 <= i && i < bool_vector_size (a));
1504 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1505
1506 if (b)
1507 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1508 else
1509 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1510 }
1511
1512 /* Some handy constants for calculating sizes
1513 and offsets, mostly of vectorlike objects. */
1514
1515 enum
1516 {
1517 header_size = offsetof (struct Lisp_Vector, contents),
1518 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1519 word_size = sizeof (Lisp_Object)
1520 };
1521
1522 /* Conveniences for dealing with Lisp arrays. */
1523
1524 INLINE Lisp_Object
1525 AREF (Lisp_Object array, ptrdiff_t idx)
1526 {
1527 return XVECTOR (array)->contents[idx];
1528 }
1529
1530 INLINE Lisp_Object *
1531 aref_addr (Lisp_Object array, ptrdiff_t idx)
1532 {
1533 return & XVECTOR (array)->contents[idx];
1534 }
1535
1536 INLINE ptrdiff_t
1537 ASIZE (Lisp_Object array)
1538 {
1539 return XVECTOR (array)->header.size;
1540 }
1541
1542 INLINE void
1543 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1544 {
1545 eassert (0 <= idx && idx < ASIZE (array));
1546 XVECTOR (array)->contents[idx] = val;
1547 }
1548
1549 INLINE void
1550 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1551 {
1552 /* Like ASET, but also can be used in the garbage collector:
1553 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1554 eassert (0 <= idx && idx < (ASIZE (array) & ~ARRAY_MARK_FLAG));
1555 XVECTOR (array)->contents[idx] = val;
1556 }
1557
1558 /* True, since Qnil's representation is zero. Every place in the code
1559 that assumes Qnil is zero should verify (NIL_IS_ZERO), to make it easy
1560 to find such assumptions later if we change Qnil to be nonzero. */
1561 enum { NIL_IS_ZERO = XLI_BUILTIN_LISPSYM (iQnil) == 0 };
1562
1563 /* Clear the object addressed by P, with size NBYTES, so that all its
1564 bytes are zero and all its Lisp values are nil. */
1565 INLINE void
1566 memclear (void *p, ptrdiff_t nbytes)
1567 {
1568 eassert (0 <= nbytes);
1569 verify (NIL_IS_ZERO);
1570 /* Since Qnil is zero, memset suffices. */
1571 memset (p, 0, nbytes);
1572 }
1573
1574 /* If a struct is made to look like a vector, this macro returns the length
1575 of the shortest vector that would hold that struct. */
1576
1577 #define VECSIZE(type) \
1578 ((sizeof (type) - header_size + word_size - 1) / word_size)
1579
1580 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1581 at the end and we need to compute the number of Lisp_Object fields (the
1582 ones that the GC needs to trace). */
1583
1584 #define PSEUDOVECSIZE(type, nonlispfield) \
1585 ((offsetof (type, nonlispfield) - header_size) / word_size)
1586
1587 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1588 should be integer expressions. This is not the same as
1589 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1590 returns true. For efficiency, prefer plain unsigned comparison if A
1591 and B's sizes both fit (after integer promotion). */
1592 #define UNSIGNED_CMP(a, op, b) \
1593 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1594 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1595 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1596
1597 /* True iff C is an ASCII character. */
1598 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1599
1600 /* A char-table is a kind of vectorlike, with contents are like a
1601 vector but with a few other slots. For some purposes, it makes
1602 sense to handle a char-table with type struct Lisp_Vector. An
1603 element of a char table can be any Lisp objects, but if it is a sub
1604 char-table, we treat it a table that contains information of a
1605 specific range of characters. A sub char-table is like a vector but
1606 with two integer fields between the header and Lisp data, which means
1607 that it has to be marked with some precautions (see mark_char_table
1608 in alloc.c). A sub char-table appears only in an element of a char-table,
1609 and there's no way to access it directly from Emacs Lisp program. */
1610
1611 enum CHARTAB_SIZE_BITS
1612 {
1613 CHARTAB_SIZE_BITS_0 = 6,
1614 CHARTAB_SIZE_BITS_1 = 4,
1615 CHARTAB_SIZE_BITS_2 = 5,
1616 CHARTAB_SIZE_BITS_3 = 7
1617 };
1618
1619 extern const int chartab_size[4];
1620
1621 struct Lisp_Char_Table
1622 {
1623 /* HEADER.SIZE is the vector's size field, which also holds the
1624 pseudovector type information. It holds the size, too.
1625 The size counts the defalt, parent, purpose, ascii,
1626 contents, and extras slots. */
1627 struct vectorlike_header header;
1628
1629 /* This holds a default value,
1630 which is used whenever the value for a specific character is nil. */
1631 Lisp_Object defalt;
1632
1633 /* This points to another char table, which we inherit from when the
1634 value for a specific character is nil. The `defalt' slot takes
1635 precedence over this. */
1636 Lisp_Object parent;
1637
1638 /* This is a symbol which says what kind of use this char-table is
1639 meant for. */
1640 Lisp_Object purpose;
1641
1642 /* The bottom sub char-table for characters of the range 0..127. It
1643 is nil if none of ASCII character has a specific value. */
1644 Lisp_Object ascii;
1645
1646 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1647
1648 /* These hold additional data. It is a vector. */
1649 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1650 };
1651
1652 struct Lisp_Sub_Char_Table
1653 {
1654 /* HEADER.SIZE is the vector's size field, which also holds the
1655 pseudovector type information. It holds the size, too. */
1656 struct vectorlike_header header;
1657
1658 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1659 char-table of depth 1 contains 16 elements, and each element
1660 covers 4096 (128*32) characters. A sub char-table of depth 2
1661 contains 32 elements, and each element covers 128 characters. A
1662 sub char-table of depth 3 contains 128 elements, and each element
1663 is for one character. */
1664 int depth;
1665
1666 /* Minimum character covered by the sub char-table. */
1667 int min_char;
1668
1669 /* Use set_sub_char_table_contents to set this. */
1670 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1671 };
1672
1673 INLINE Lisp_Object
1674 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1675 {
1676 struct Lisp_Char_Table *tbl = NULL;
1677 Lisp_Object val;
1678 do
1679 {
1680 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1681 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1682 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1683 if (NILP (val))
1684 val = tbl->defalt;
1685 }
1686 while (NILP (val) && ! NILP (tbl->parent));
1687
1688 return val;
1689 }
1690
1691 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1692 characters. Do not check validity of CT. */
1693 INLINE Lisp_Object
1694 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1695 {
1696 return (ASCII_CHAR_P (idx)
1697 ? CHAR_TABLE_REF_ASCII (ct, idx)
1698 : char_table_ref (ct, idx));
1699 }
1700
1701 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1702 8-bit European characters. Do not check validity of CT. */
1703 INLINE void
1704 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1705 {
1706 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1707 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1708 else
1709 char_table_set (ct, idx, val);
1710 }
1711
1712 /* This structure describes a built-in function.
1713 It is generated by the DEFUN macro only.
1714 defsubr makes it into a Lisp object. */
1715
1716 struct Lisp_Subr
1717 {
1718 struct vectorlike_header header;
1719 union {
1720 Lisp_Object (*a0) (void);
1721 Lisp_Object (*a1) (Lisp_Object);
1722 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1723 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1724 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1725 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1726 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1727 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1728 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1729 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1730 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1731 } function;
1732 short min_args, max_args;
1733 const char *symbol_name;
1734 const char *intspec;
1735 const char *doc;
1736 };
1737
1738 enum char_table_specials
1739 {
1740 /* This is the number of slots that every char table must have. This
1741 counts the ordinary slots and the top, defalt, parent, and purpose
1742 slots. */
1743 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1744
1745 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1746 when the latter is treated as an ordinary Lisp_Vector. */
1747 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1748 };
1749
1750 /* Return the number of "extra" slots in the char table CT. */
1751
1752 INLINE int
1753 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1754 {
1755 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1756 - CHAR_TABLE_STANDARD_SLOTS);
1757 }
1758
1759 /* Make sure that sub char-table contents slot is where we think it is. */
1760 verify (offsetof (struct Lisp_Sub_Char_Table, contents)
1761 == offsetof (struct Lisp_Vector, contents[SUB_CHAR_TABLE_OFFSET]));
1762
1763 /***********************************************************************
1764 Symbols
1765 ***********************************************************************/
1766
1767 /* Value is name of symbol. */
1768
1769 INLINE Lisp_Object
1770 (SYMBOL_VAL) (struct Lisp_Symbol *sym)
1771 {
1772 return lisp_h_SYMBOL_VAL (sym);
1773 }
1774
1775 INLINE struct Lisp_Symbol *
1776 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1777 {
1778 eassert (sym->redirect == SYMBOL_VARALIAS);
1779 return sym->val.alias;
1780 }
1781 INLINE struct Lisp_Buffer_Local_Value *
1782 SYMBOL_BLV (struct Lisp_Symbol *sym)
1783 {
1784 eassert (sym->redirect == SYMBOL_LOCALIZED);
1785 return sym->val.blv;
1786 }
1787 INLINE union Lisp_Fwd *
1788 SYMBOL_FWD (struct Lisp_Symbol *sym)
1789 {
1790 eassert (sym->redirect == SYMBOL_FORWARDED);
1791 return sym->val.fwd;
1792 }
1793
1794 INLINE void
1795 (SET_SYMBOL_VAL) (struct Lisp_Symbol *sym, Lisp_Object v)
1796 {
1797 lisp_h_SET_SYMBOL_VAL (sym, v);
1798 }
1799
1800 INLINE void
1801 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1802 {
1803 eassert (sym->redirect == SYMBOL_VARALIAS);
1804 sym->val.alias = v;
1805 }
1806 INLINE void
1807 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1808 {
1809 eassert (sym->redirect == SYMBOL_LOCALIZED);
1810 sym->val.blv = v;
1811 }
1812 INLINE void
1813 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1814 {
1815 eassert (sym->redirect == SYMBOL_FORWARDED);
1816 sym->val.fwd = v;
1817 }
1818
1819 INLINE Lisp_Object
1820 SYMBOL_NAME (Lisp_Object sym)
1821 {
1822 return XSYMBOL (sym)->name;
1823 }
1824
1825 /* Value is true if SYM is an interned symbol. */
1826
1827 INLINE bool
1828 SYMBOL_INTERNED_P (Lisp_Object sym)
1829 {
1830 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1831 }
1832
1833 /* Value is true if SYM is interned in initial_obarray. */
1834
1835 INLINE bool
1836 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1837 {
1838 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1839 }
1840
1841 /* Value is non-zero if symbol is considered a constant, i.e. its
1842 value cannot be changed (there is an exception for keyword symbols,
1843 whose value can be set to the keyword symbol itself). */
1844
1845 INLINE int
1846 (SYMBOL_CONSTANT_P) (Lisp_Object sym)
1847 {
1848 return lisp_h_SYMBOL_CONSTANT_P (sym);
1849 }
1850
1851 /* Placeholder for make-docfile to process. The actual symbol
1852 definition is done by lread.c's defsym. */
1853 #define DEFSYM(sym, name) /* empty */
1854
1855 \f
1856 /***********************************************************************
1857 Hash Tables
1858 ***********************************************************************/
1859
1860 /* The structure of a Lisp hash table. */
1861
1862 struct hash_table_test
1863 {
1864 /* Name of the function used to compare keys. */
1865 Lisp_Object name;
1866
1867 /* User-supplied hash function, or nil. */
1868 Lisp_Object user_hash_function;
1869
1870 /* User-supplied key comparison function, or nil. */
1871 Lisp_Object user_cmp_function;
1872
1873 /* C function to compare two keys. */
1874 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1875
1876 /* C function to compute hash code. */
1877 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1878 };
1879
1880 struct Lisp_Hash_Table
1881 {
1882 /* This is for Lisp; the hash table code does not refer to it. */
1883 struct vectorlike_header header;
1884
1885 /* Nil if table is non-weak. Otherwise a symbol describing the
1886 weakness of the table. */
1887 Lisp_Object weak;
1888
1889 /* When the table is resized, and this is an integer, compute the
1890 new size by adding this to the old size. If a float, compute the
1891 new size by multiplying the old size with this factor. */
1892 Lisp_Object rehash_size;
1893
1894 /* Resize hash table when number of entries/ table size is >= this
1895 ratio, a float. */
1896 Lisp_Object rehash_threshold;
1897
1898 /* Vector of hash codes. If hash[I] is nil, this means that the
1899 I-th entry is unused. */
1900 Lisp_Object hash;
1901
1902 /* Vector used to chain entries. If entry I is free, next[I] is the
1903 entry number of the next free item. If entry I is non-free,
1904 next[I] is the index of the next entry in the collision chain. */
1905 Lisp_Object next;
1906
1907 /* Index of first free entry in free list. */
1908 Lisp_Object next_free;
1909
1910 /* Bucket vector. A non-nil entry is the index of the first item in
1911 a collision chain. This vector's size can be larger than the
1912 hash table size to reduce collisions. */
1913 Lisp_Object index;
1914
1915 /* Only the fields above are traced normally by the GC. The ones below
1916 `count' are special and are either ignored by the GC or traced in
1917 a special way (e.g. because of weakness). */
1918
1919 /* Number of key/value entries in the table. */
1920 ptrdiff_t count;
1921
1922 /* Vector of keys and values. The key of item I is found at index
1923 2 * I, the value is found at index 2 * I + 1.
1924 This is gc_marked specially if the table is weak. */
1925 Lisp_Object key_and_value;
1926
1927 /* The comparison and hash functions. */
1928 struct hash_table_test test;
1929
1930 /* Next weak hash table if this is a weak hash table. The head
1931 of the list is in weak_hash_tables. */
1932 struct Lisp_Hash_Table *next_weak;
1933 };
1934
1935
1936 INLINE struct Lisp_Hash_Table *
1937 XHASH_TABLE (Lisp_Object a)
1938 {
1939 return XUNTAG (a, Lisp_Vectorlike);
1940 }
1941
1942 #define XSET_HASH_TABLE(VAR, PTR) \
1943 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1944
1945 INLINE bool
1946 HASH_TABLE_P (Lisp_Object a)
1947 {
1948 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1949 }
1950
1951 /* Value is the key part of entry IDX in hash table H. */
1952 INLINE Lisp_Object
1953 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1954 {
1955 return AREF (h->key_and_value, 2 * idx);
1956 }
1957
1958 /* Value is the value part of entry IDX in hash table H. */
1959 INLINE Lisp_Object
1960 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1961 {
1962 return AREF (h->key_and_value, 2 * idx + 1);
1963 }
1964
1965 /* Value is the index of the next entry following the one at IDX
1966 in hash table H. */
1967 INLINE Lisp_Object
1968 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1969 {
1970 return AREF (h->next, idx);
1971 }
1972
1973 /* Value is the hash code computed for entry IDX in hash table H. */
1974 INLINE Lisp_Object
1975 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1976 {
1977 return AREF (h->hash, idx);
1978 }
1979
1980 /* Value is the index of the element in hash table H that is the
1981 start of the collision list at index IDX in the index vector of H. */
1982 INLINE Lisp_Object
1983 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1984 {
1985 return AREF (h->index, idx);
1986 }
1987
1988 /* Value is the size of hash table H. */
1989 INLINE ptrdiff_t
1990 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
1991 {
1992 return ASIZE (h->next);
1993 }
1994
1995 /* Default size for hash tables if not specified. */
1996
1997 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
1998
1999 /* Default threshold specifying when to resize a hash table. The
2000 value gives the ratio of current entries in the hash table and the
2001 size of the hash table. */
2002
2003 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
2004
2005 /* Default factor by which to increase the size of a hash table. */
2006
2007 static double const DEFAULT_REHASH_SIZE = 1.5;
2008
2009 /* Combine two integers X and Y for hashing. The result might not fit
2010 into a Lisp integer. */
2011
2012 INLINE EMACS_UINT
2013 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
2014 {
2015 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
2016 }
2017
2018 /* Hash X, returning a value that fits into a fixnum. */
2019
2020 INLINE EMACS_UINT
2021 SXHASH_REDUCE (EMACS_UINT x)
2022 {
2023 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
2024 }
2025
2026 /* These structures are used for various misc types. */
2027
2028 struct Lisp_Misc_Any /* Supertype of all Misc types. */
2029 {
2030 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
2031 bool_bf gcmarkbit : 1;
2032 unsigned spacer : 15;
2033 };
2034
2035 struct Lisp_Marker
2036 {
2037 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
2038 bool_bf gcmarkbit : 1;
2039 unsigned spacer : 13;
2040 /* This flag is temporarily used in the functions
2041 decode/encode_coding_object to record that the marker position
2042 must be adjusted after the conversion. */
2043 bool_bf need_adjustment : 1;
2044 /* True means normal insertion at the marker's position
2045 leaves the marker after the inserted text. */
2046 bool_bf insertion_type : 1;
2047 /* This is the buffer that the marker points into, or 0 if it points nowhere.
2048 Note: a chain of markers can contain markers pointing into different
2049 buffers (the chain is per buffer_text rather than per buffer, so it's
2050 shared between indirect buffers). */
2051 /* This is used for (other than NULL-checking):
2052 - Fmarker_buffer
2053 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
2054 - unchain_marker: to find the list from which to unchain.
2055 - Fkill_buffer: to only unchain the markers of current indirect buffer.
2056 */
2057 struct buffer *buffer;
2058
2059 /* The remaining fields are meaningless in a marker that
2060 does not point anywhere. */
2061
2062 /* For markers that point somewhere,
2063 this is used to chain of all the markers in a given buffer. */
2064 /* We could remove it and use an array in buffer_text instead.
2065 That would also allow to preserve it ordered. */
2066 struct Lisp_Marker *next;
2067 /* This is the char position where the marker points. */
2068 ptrdiff_t charpos;
2069 /* This is the byte position.
2070 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
2071 used to implement the functionality of markers, but rather to (ab)use
2072 markers as a cache for char<->byte mappings). */
2073 ptrdiff_t bytepos;
2074 };
2075
2076 /* START and END are markers in the overlay's buffer, and
2077 PLIST is the overlay's property list. */
2078 struct Lisp_Overlay
2079 /* An overlay's real data content is:
2080 - plist
2081 - buffer (really there are two buffer pointers, one per marker,
2082 and both points to the same buffer)
2083 - insertion type of both ends (per-marker fields)
2084 - start & start byte (of start marker)
2085 - end & end byte (of end marker)
2086 - next (singly linked list of overlays)
2087 - next fields of start and end markers (singly linked list of markers).
2088 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
2089 */
2090 {
2091 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
2092 bool_bf gcmarkbit : 1;
2093 unsigned spacer : 15;
2094 struct Lisp_Overlay *next;
2095 Lisp_Object start;
2096 Lisp_Object end;
2097 Lisp_Object plist;
2098 };
2099
2100 /* Types of data which may be saved in a Lisp_Save_Value. */
2101
2102 enum
2103 {
2104 SAVE_UNUSED,
2105 SAVE_INTEGER,
2106 SAVE_FUNCPOINTER,
2107 SAVE_POINTER,
2108 SAVE_OBJECT
2109 };
2110
2111 /* Number of bits needed to store one of the above values. */
2112 enum { SAVE_SLOT_BITS = 3 };
2113
2114 /* Number of slots in a save value where save_type is nonzero. */
2115 enum { SAVE_VALUE_SLOTS = 4 };
2116
2117 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
2118
2119 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
2120
2121 enum Lisp_Save_Type
2122 {
2123 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2124 SAVE_TYPE_INT_INT_INT
2125 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
2126 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
2127 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
2128 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
2129 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
2130 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2131 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
2132 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
2133 SAVE_TYPE_FUNCPTR_PTR_OBJ
2134 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
2135
2136 /* This has an extra bit indicating it's raw memory. */
2137 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
2138 };
2139
2140 /* Special object used to hold a different values for later use.
2141
2142 This is mostly used to package C integers and pointers to call
2143 record_unwind_protect when two or more values need to be saved.
2144 For example:
2145
2146 ...
2147 struct my_data *md = get_my_data ();
2148 ptrdiff_t mi = get_my_integer ();
2149 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2150 ...
2151
2152 Lisp_Object my_unwind (Lisp_Object arg)
2153 {
2154 struct my_data *md = XSAVE_POINTER (arg, 0);
2155 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2156 ...
2157 }
2158
2159 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2160 saved objects and raise eassert if type of the saved object doesn't match
2161 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2162 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2163 slot 0 is a pointer. */
2164
2165 typedef void (*voidfuncptr) (void);
2166
2167 struct Lisp_Save_Value
2168 {
2169 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2170 bool_bf gcmarkbit : 1;
2171 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2172
2173 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2174 V's data entries are determined by V->save_type. E.g., if
2175 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2176 V->data[1] is an integer, and V's other data entries are unused.
2177
2178 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2179 a memory area containing V->data[1].integer potential Lisp_Objects. */
2180 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2181 union {
2182 void *pointer;
2183 voidfuncptr funcpointer;
2184 ptrdiff_t integer;
2185 Lisp_Object object;
2186 } data[SAVE_VALUE_SLOTS];
2187 };
2188
2189 /* Return the type of V's Nth saved value. */
2190 INLINE int
2191 save_type (struct Lisp_Save_Value *v, int n)
2192 {
2193 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2194 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2195 }
2196
2197 /* Get and set the Nth saved pointer. */
2198
2199 INLINE void *
2200 XSAVE_POINTER (Lisp_Object obj, int n)
2201 {
2202 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2203 return XSAVE_VALUE (obj)->data[n].pointer;
2204 }
2205 INLINE void
2206 set_save_pointer (Lisp_Object obj, int n, void *val)
2207 {
2208 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2209 XSAVE_VALUE (obj)->data[n].pointer = val;
2210 }
2211 INLINE voidfuncptr
2212 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2213 {
2214 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2215 return XSAVE_VALUE (obj)->data[n].funcpointer;
2216 }
2217
2218 /* Likewise for the saved integer. */
2219
2220 INLINE ptrdiff_t
2221 XSAVE_INTEGER (Lisp_Object obj, int n)
2222 {
2223 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2224 return XSAVE_VALUE (obj)->data[n].integer;
2225 }
2226 INLINE void
2227 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2228 {
2229 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2230 XSAVE_VALUE (obj)->data[n].integer = val;
2231 }
2232
2233 /* Extract Nth saved object. */
2234
2235 INLINE Lisp_Object
2236 XSAVE_OBJECT (Lisp_Object obj, int n)
2237 {
2238 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2239 return XSAVE_VALUE (obj)->data[n].object;
2240 }
2241
2242 #ifdef HAVE_MODULES
2243 struct Lisp_User_Ptr
2244 {
2245 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_User_Ptr */
2246 bool_bf gcmarkbit : 1;
2247 unsigned spacer : 15;
2248
2249 void (*finalizer) (void *);
2250 void *p;
2251 };
2252 #endif
2253
2254 /* A finalizer sentinel. */
2255 struct Lisp_Finalizer
2256 {
2257 struct Lisp_Misc_Any base;
2258
2259 /* Circular list of all active weak references. */
2260 struct Lisp_Finalizer *prev;
2261 struct Lisp_Finalizer *next;
2262
2263 /* Call FUNCTION when the finalizer becomes unreachable, even if
2264 FUNCTION contains a reference to the finalizer; i.e., call
2265 FUNCTION when it is reachable _only_ through finalizers. */
2266 Lisp_Object function;
2267 };
2268
2269 /* A miscellaneous object, when it's on the free list. */
2270 struct Lisp_Free
2271 {
2272 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2273 bool_bf gcmarkbit : 1;
2274 unsigned spacer : 15;
2275 union Lisp_Misc *chain;
2276 };
2277
2278 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2279 It uses one of these struct subtypes to get the type field. */
2280
2281 union Lisp_Misc
2282 {
2283 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2284 struct Lisp_Free u_free;
2285 struct Lisp_Marker u_marker;
2286 struct Lisp_Overlay u_overlay;
2287 struct Lisp_Save_Value u_save_value;
2288 struct Lisp_Finalizer u_finalizer;
2289 #ifdef HAVE_MODULES
2290 struct Lisp_User_Ptr u_user_ptr;
2291 #endif
2292 };
2293
2294 INLINE union Lisp_Misc *
2295 XMISC (Lisp_Object a)
2296 {
2297 return XUNTAG (a, Lisp_Misc);
2298 }
2299
2300 INLINE struct Lisp_Misc_Any *
2301 XMISCANY (Lisp_Object a)
2302 {
2303 eassert (MISCP (a));
2304 return & XMISC (a)->u_any;
2305 }
2306
2307 INLINE enum Lisp_Misc_Type
2308 XMISCTYPE (Lisp_Object a)
2309 {
2310 return XMISCANY (a)->type;
2311 }
2312
2313 INLINE struct Lisp_Marker *
2314 XMARKER (Lisp_Object a)
2315 {
2316 eassert (MARKERP (a));
2317 return & XMISC (a)->u_marker;
2318 }
2319
2320 INLINE struct Lisp_Overlay *
2321 XOVERLAY (Lisp_Object a)
2322 {
2323 eassert (OVERLAYP (a));
2324 return & XMISC (a)->u_overlay;
2325 }
2326
2327 INLINE struct Lisp_Save_Value *
2328 XSAVE_VALUE (Lisp_Object a)
2329 {
2330 eassert (SAVE_VALUEP (a));
2331 return & XMISC (a)->u_save_value;
2332 }
2333
2334 INLINE struct Lisp_Finalizer *
2335 XFINALIZER (Lisp_Object a)
2336 {
2337 eassert (FINALIZERP (a));
2338 return & XMISC (a)->u_finalizer;
2339 }
2340
2341 #ifdef HAVE_MODULES
2342 INLINE struct Lisp_User_Ptr *
2343 XUSER_PTR (Lisp_Object a)
2344 {
2345 eassert (USER_PTRP (a));
2346 return & XMISC (a)->u_user_ptr;
2347 }
2348 #endif
2349
2350 \f
2351 /* Forwarding pointer to an int variable.
2352 This is allowed only in the value cell of a symbol,
2353 and it means that the symbol's value really lives in the
2354 specified int variable. */
2355 struct Lisp_Intfwd
2356 {
2357 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2358 EMACS_INT *intvar;
2359 };
2360
2361 /* Boolean forwarding pointer to an int variable.
2362 This is like Lisp_Intfwd except that the ostensible
2363 "value" of the symbol is t if the bool variable is true,
2364 nil if it is false. */
2365 struct Lisp_Boolfwd
2366 {
2367 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2368 bool *boolvar;
2369 };
2370
2371 /* Forwarding pointer to a Lisp_Object variable.
2372 This is allowed only in the value cell of a symbol,
2373 and it means that the symbol's value really lives in the
2374 specified variable. */
2375 struct Lisp_Objfwd
2376 {
2377 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2378 Lisp_Object *objvar;
2379 };
2380
2381 /* Like Lisp_Objfwd except that value lives in a slot in the
2382 current buffer. Value is byte index of slot within buffer. */
2383 struct Lisp_Buffer_Objfwd
2384 {
2385 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2386 int offset;
2387 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2388 Lisp_Object predicate;
2389 };
2390
2391 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2392 the symbol has buffer-local or frame-local bindings. (Exception:
2393 some buffer-local variables are built-in, with their values stored
2394 in the buffer structure itself. They are handled differently,
2395 using struct Lisp_Buffer_Objfwd.)
2396
2397 The `realvalue' slot holds the variable's current value, or a
2398 forwarding pointer to where that value is kept. This value is the
2399 one that corresponds to the loaded binding. To read or set the
2400 variable, you must first make sure the right binding is loaded;
2401 then you can access the value in (or through) `realvalue'.
2402
2403 `buffer' and `frame' are the buffer and frame for which the loaded
2404 binding was found. If those have changed, to make sure the right
2405 binding is loaded it is necessary to find which binding goes with
2406 the current buffer and selected frame, then load it. To load it,
2407 first unload the previous binding, then copy the value of the new
2408 binding into `realvalue' (or through it). Also update
2409 LOADED-BINDING to point to the newly loaded binding.
2410
2411 `local_if_set' indicates that merely setting the variable creates a
2412 local binding for the current buffer. Otherwise the latter, setting
2413 the variable does not do that; only make-local-variable does that. */
2414
2415 struct Lisp_Buffer_Local_Value
2416 {
2417 /* True means that merely setting the variable creates a local
2418 binding for the current buffer. */
2419 bool_bf local_if_set : 1;
2420 /* True means this variable can have frame-local bindings, otherwise, it is
2421 can have buffer-local bindings. The two cannot be combined. */
2422 bool_bf frame_local : 1;
2423 /* True means that the binding now loaded was found.
2424 Presumably equivalent to (defcell!=valcell). */
2425 bool_bf found : 1;
2426 /* If non-NULL, a forwarding to the C var where it should also be set. */
2427 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2428 /* The buffer or frame for which the loaded binding was found. */
2429 Lisp_Object where;
2430 /* A cons cell that holds the default value. It has the form
2431 (SYMBOL . DEFAULT-VALUE). */
2432 Lisp_Object defcell;
2433 /* The cons cell from `where's parameter alist.
2434 It always has the form (SYMBOL . VALUE)
2435 Note that if `forward' is non-nil, VALUE may be out of date.
2436 Also if the currently loaded binding is the default binding, then
2437 this is `eq'ual to defcell. */
2438 Lisp_Object valcell;
2439 };
2440
2441 /* Like Lisp_Objfwd except that value lives in a slot in the
2442 current kboard. */
2443 struct Lisp_Kboard_Objfwd
2444 {
2445 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2446 int offset;
2447 };
2448
2449 union Lisp_Fwd
2450 {
2451 struct Lisp_Intfwd u_intfwd;
2452 struct Lisp_Boolfwd u_boolfwd;
2453 struct Lisp_Objfwd u_objfwd;
2454 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2455 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2456 };
2457
2458 INLINE enum Lisp_Fwd_Type
2459 XFWDTYPE (union Lisp_Fwd *a)
2460 {
2461 return a->u_intfwd.type;
2462 }
2463
2464 INLINE struct Lisp_Buffer_Objfwd *
2465 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2466 {
2467 eassert (BUFFER_OBJFWDP (a));
2468 return &a->u_buffer_objfwd;
2469 }
2470 \f
2471 /* Lisp floating point type. */
2472 struct Lisp_Float
2473 {
2474 union
2475 {
2476 double data;
2477 struct Lisp_Float *chain;
2478 } u;
2479 };
2480
2481 INLINE double
2482 XFLOAT_DATA (Lisp_Object f)
2483 {
2484 return XFLOAT (f)->u.data;
2485 }
2486
2487 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2488 representations, have infinities and NaNs, and do not trap on
2489 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2490 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2491 wanted here, but is not quite right because Emacs does not require
2492 all the features of C11 Annex F (and does not require C11 at all,
2493 for that matter). */
2494 enum
2495 {
2496 IEEE_FLOATING_POINT
2497 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2498 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2499 };
2500
2501 /* A character, declared with the following typedef, is a member
2502 of some character set associated with the current buffer. */
2503 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2504 #define _UCHAR_T
2505 typedef unsigned char UCHAR;
2506 #endif
2507
2508 /* Meanings of slots in a Lisp_Compiled: */
2509
2510 enum Lisp_Compiled
2511 {
2512 COMPILED_ARGLIST = 0,
2513 COMPILED_BYTECODE = 1,
2514 COMPILED_CONSTANTS = 2,
2515 COMPILED_STACK_DEPTH = 3,
2516 COMPILED_DOC_STRING = 4,
2517 COMPILED_INTERACTIVE = 5
2518 };
2519
2520 /* Flag bits in a character. These also get used in termhooks.h.
2521 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2522 (MUlti-Lingual Emacs) might need 22 bits for the character value
2523 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2524 enum char_bits
2525 {
2526 CHAR_ALT = 0x0400000,
2527 CHAR_SUPER = 0x0800000,
2528 CHAR_HYPER = 0x1000000,
2529 CHAR_SHIFT = 0x2000000,
2530 CHAR_CTL = 0x4000000,
2531 CHAR_META = 0x8000000,
2532
2533 CHAR_MODIFIER_MASK =
2534 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2535
2536 /* Actually, the current Emacs uses 22 bits for the character value
2537 itself. */
2538 CHARACTERBITS = 22
2539 };
2540 \f
2541 /* Data type checking. */
2542
2543 INLINE bool
2544 (NILP) (Lisp_Object x)
2545 {
2546 return lisp_h_NILP (x);
2547 }
2548
2549 INLINE bool
2550 NUMBERP (Lisp_Object x)
2551 {
2552 return INTEGERP (x) || FLOATP (x);
2553 }
2554 INLINE bool
2555 NATNUMP (Lisp_Object x)
2556 {
2557 return INTEGERP (x) && 0 <= XINT (x);
2558 }
2559
2560 INLINE bool
2561 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2562 {
2563 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2564 }
2565
2566 #define TYPE_RANGED_INTEGERP(type, x) \
2567 (INTEGERP (x) \
2568 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2569 && XINT (x) <= TYPE_MAXIMUM (type))
2570
2571 INLINE bool
2572 (CONSP) (Lisp_Object x)
2573 {
2574 return lisp_h_CONSP (x);
2575 }
2576 INLINE bool
2577 (FLOATP) (Lisp_Object x)
2578 {
2579 return lisp_h_FLOATP (x);
2580 }
2581 INLINE bool
2582 (MISCP) (Lisp_Object x)
2583 {
2584 return lisp_h_MISCP (x);
2585 }
2586 INLINE bool
2587 (SYMBOLP) (Lisp_Object x)
2588 {
2589 return lisp_h_SYMBOLP (x);
2590 }
2591 INLINE bool
2592 (INTEGERP) (Lisp_Object x)
2593 {
2594 return lisp_h_INTEGERP (x);
2595 }
2596 INLINE bool
2597 (VECTORLIKEP) (Lisp_Object x)
2598 {
2599 return lisp_h_VECTORLIKEP (x);
2600 }
2601 INLINE bool
2602 (MARKERP) (Lisp_Object x)
2603 {
2604 return lisp_h_MARKERP (x);
2605 }
2606
2607 INLINE bool
2608 STRINGP (Lisp_Object x)
2609 {
2610 return XTYPE (x) == Lisp_String;
2611 }
2612 INLINE bool
2613 VECTORP (Lisp_Object x)
2614 {
2615 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2616 }
2617 INLINE bool
2618 OVERLAYP (Lisp_Object x)
2619 {
2620 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2621 }
2622 INLINE bool
2623 SAVE_VALUEP (Lisp_Object x)
2624 {
2625 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2626 }
2627
2628 INLINE bool
2629 FINALIZERP (Lisp_Object x)
2630 {
2631 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Finalizer;
2632 }
2633
2634 #ifdef HAVE_MODULES
2635 INLINE bool
2636 USER_PTRP (Lisp_Object x)
2637 {
2638 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_User_Ptr;
2639 }
2640 #endif
2641
2642 INLINE bool
2643 AUTOLOADP (Lisp_Object x)
2644 {
2645 return CONSP (x) && EQ (Qautoload, XCAR (x));
2646 }
2647
2648 INLINE bool
2649 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2650 {
2651 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2652 }
2653
2654 INLINE bool
2655 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2656 {
2657 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2658 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2659 }
2660
2661 /* True if A is a pseudovector whose code is CODE. */
2662 INLINE bool
2663 PSEUDOVECTORP (Lisp_Object a, int code)
2664 {
2665 if (! VECTORLIKEP (a))
2666 return false;
2667 else
2668 {
2669 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2670 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2671 return PSEUDOVECTOR_TYPEP (h, code);
2672 }
2673 }
2674
2675
2676 /* Test for specific pseudovector types. */
2677
2678 INLINE bool
2679 WINDOW_CONFIGURATIONP (Lisp_Object a)
2680 {
2681 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2682 }
2683
2684 INLINE bool
2685 PROCESSP (Lisp_Object a)
2686 {
2687 return PSEUDOVECTORP (a, PVEC_PROCESS);
2688 }
2689
2690 INLINE bool
2691 WINDOWP (Lisp_Object a)
2692 {
2693 return PSEUDOVECTORP (a, PVEC_WINDOW);
2694 }
2695
2696 INLINE bool
2697 TERMINALP (Lisp_Object a)
2698 {
2699 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2700 }
2701
2702 INLINE bool
2703 SUBRP (Lisp_Object a)
2704 {
2705 return PSEUDOVECTORP (a, PVEC_SUBR);
2706 }
2707
2708 INLINE bool
2709 COMPILEDP (Lisp_Object a)
2710 {
2711 return PSEUDOVECTORP (a, PVEC_COMPILED);
2712 }
2713
2714 INLINE bool
2715 BUFFERP (Lisp_Object a)
2716 {
2717 return PSEUDOVECTORP (a, PVEC_BUFFER);
2718 }
2719
2720 INLINE bool
2721 CHAR_TABLE_P (Lisp_Object a)
2722 {
2723 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2724 }
2725
2726 INLINE bool
2727 SUB_CHAR_TABLE_P (Lisp_Object a)
2728 {
2729 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2730 }
2731
2732 INLINE bool
2733 BOOL_VECTOR_P (Lisp_Object a)
2734 {
2735 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2736 }
2737
2738 INLINE bool
2739 FRAMEP (Lisp_Object a)
2740 {
2741 return PSEUDOVECTORP (a, PVEC_FRAME);
2742 }
2743
2744 /* Test for image (image . spec) */
2745 INLINE bool
2746 IMAGEP (Lisp_Object x)
2747 {
2748 return CONSP (x) && EQ (XCAR (x), Qimage);
2749 }
2750
2751 /* Array types. */
2752 INLINE bool
2753 ARRAYP (Lisp_Object x)
2754 {
2755 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2756 }
2757 \f
2758 INLINE void
2759 CHECK_LIST (Lisp_Object x)
2760 {
2761 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2762 }
2763
2764 INLINE void
2765 (CHECK_LIST_CONS) (Lisp_Object x, Lisp_Object y)
2766 {
2767 lisp_h_CHECK_LIST_CONS (x, y);
2768 }
2769
2770 INLINE void
2771 (CHECK_SYMBOL) (Lisp_Object x)
2772 {
2773 lisp_h_CHECK_SYMBOL (x);
2774 }
2775
2776 INLINE void
2777 (CHECK_NUMBER) (Lisp_Object x)
2778 {
2779 lisp_h_CHECK_NUMBER (x);
2780 }
2781
2782 INLINE void
2783 CHECK_STRING (Lisp_Object x)
2784 {
2785 CHECK_TYPE (STRINGP (x), Qstringp, x);
2786 }
2787 INLINE void
2788 CHECK_STRING_CAR (Lisp_Object x)
2789 {
2790 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2791 }
2792 INLINE void
2793 CHECK_CONS (Lisp_Object x)
2794 {
2795 CHECK_TYPE (CONSP (x), Qconsp, x);
2796 }
2797 INLINE void
2798 CHECK_VECTOR (Lisp_Object x)
2799 {
2800 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2801 }
2802 INLINE void
2803 CHECK_BOOL_VECTOR (Lisp_Object x)
2804 {
2805 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2806 }
2807 /* This is a bit special because we always need size afterwards. */
2808 INLINE ptrdiff_t
2809 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2810 {
2811 if (VECTORP (x))
2812 return ASIZE (x);
2813 if (STRINGP (x))
2814 return SCHARS (x);
2815 wrong_type_argument (Qarrayp, x);
2816 }
2817 INLINE void
2818 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2819 {
2820 CHECK_TYPE (ARRAYP (x), predicate, x);
2821 }
2822 INLINE void
2823 CHECK_BUFFER (Lisp_Object x)
2824 {
2825 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2826 }
2827 INLINE void
2828 CHECK_WINDOW (Lisp_Object x)
2829 {
2830 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2831 }
2832 #ifdef subprocesses
2833 INLINE void
2834 CHECK_PROCESS (Lisp_Object x)
2835 {
2836 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2837 }
2838 #endif
2839 INLINE void
2840 CHECK_NATNUM (Lisp_Object x)
2841 {
2842 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2843 }
2844
2845 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2846 do { \
2847 CHECK_NUMBER (x); \
2848 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2849 args_out_of_range_3 \
2850 (x, \
2851 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2852 ? MOST_NEGATIVE_FIXNUM \
2853 : (lo)), \
2854 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2855 } while (false)
2856 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2857 do { \
2858 if (TYPE_SIGNED (type)) \
2859 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2860 else \
2861 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2862 } while (false)
2863
2864 #define CHECK_NUMBER_COERCE_MARKER(x) \
2865 do { \
2866 if (MARKERP ((x))) \
2867 XSETFASTINT (x, marker_position (x)); \
2868 else \
2869 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2870 } while (false)
2871
2872 INLINE double
2873 XFLOATINT (Lisp_Object n)
2874 {
2875 return extract_float (n);
2876 }
2877
2878 INLINE void
2879 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2880 {
2881 CHECK_TYPE (NUMBERP (x), Qnumberp, x);
2882 }
2883
2884 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2885 do { \
2886 if (MARKERP (x)) \
2887 XSETFASTINT (x, marker_position (x)); \
2888 else \
2889 CHECK_TYPE (NUMBERP (x), Qnumber_or_marker_p, x); \
2890 } while (false)
2891
2892 /* Since we can't assign directly to the CAR or CDR fields of a cons
2893 cell, use these when checking that those fields contain numbers. */
2894 INLINE void
2895 CHECK_NUMBER_CAR (Lisp_Object x)
2896 {
2897 Lisp_Object tmp = XCAR (x);
2898 CHECK_NUMBER (tmp);
2899 XSETCAR (x, tmp);
2900 }
2901
2902 INLINE void
2903 CHECK_NUMBER_CDR (Lisp_Object x)
2904 {
2905 Lisp_Object tmp = XCDR (x);
2906 CHECK_NUMBER (tmp);
2907 XSETCDR (x, tmp);
2908 }
2909 \f
2910 /* Define a built-in function for calling from Lisp.
2911 `lname' should be the name to give the function in Lisp,
2912 as a null-terminated C string.
2913 `fnname' should be the name of the function in C.
2914 By convention, it starts with F.
2915 `sname' should be the name for the C constant structure
2916 that records information on this function for internal use.
2917 By convention, it should be the same as `fnname' but with S instead of F.
2918 It's too bad that C macros can't compute this from `fnname'.
2919 `minargs' should be a number, the minimum number of arguments allowed.
2920 `maxargs' should be a number, the maximum number of arguments allowed,
2921 or else MANY or UNEVALLED.
2922 MANY means pass a vector of evaluated arguments,
2923 in the form of an integer number-of-arguments
2924 followed by the address of a vector of Lisp_Objects
2925 which contains the argument values.
2926 UNEVALLED means pass the list of unevaluated arguments
2927 `intspec' says how interactive arguments are to be fetched.
2928 If the string starts with a `(', `intspec' is evaluated and the resulting
2929 list is the list of arguments.
2930 If it's a string that doesn't start with `(', the value should follow
2931 the one of the doc string for `interactive'.
2932 A null string means call interactively with no arguments.
2933 `doc' is documentation for the user. */
2934
2935 /* This version of DEFUN declares a function prototype with the right
2936 arguments, so we can catch errors with maxargs at compile-time. */
2937 #ifdef _MSC_VER
2938 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2939 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2940 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2941 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2942 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2943 { (Lisp_Object (__cdecl *)(void))fnname }, \
2944 minargs, maxargs, lname, intspec, 0}; \
2945 Lisp_Object fnname
2946 #else /* not _MSC_VER */
2947 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2948 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2949 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2950 { .a ## maxargs = fnname }, \
2951 minargs, maxargs, lname, intspec, 0}; \
2952 Lisp_Object fnname
2953 #endif
2954
2955 /* True if OBJ is a Lisp function. */
2956 INLINE bool
2957 FUNCTIONP (Lisp_Object obj)
2958 {
2959 return functionp (obj);
2960 }
2961
2962 /* defsubr (Sname);
2963 is how we define the symbol for function `name' at start-up time. */
2964 extern void defsubr (struct Lisp_Subr *);
2965
2966 enum maxargs
2967 {
2968 MANY = -2,
2969 UNEVALLED = -1
2970 };
2971
2972 /* Call a function F that accepts many args, passing it ARRAY's elements. */
2973 #define CALLMANY(f, array) (f) (ARRAYELTS (array), array)
2974
2975 /* Call a function F that accepts many args, passing it the remaining args,
2976 E.g., 'return CALLN (Fformat, fmt, text);' is less error-prone than
2977 '{ Lisp_Object a[2]; a[0] = fmt; a[1] = text; return Fformat (2, a); }'.
2978 CALLN is overkill for simple usages like 'Finsert (1, &text);'. */
2979 #define CALLN(f, ...) CALLMANY (f, ((Lisp_Object []) {__VA_ARGS__}))
2980
2981 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2982 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2983 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
2984 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
2985 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
2986
2987 /* Macros we use to define forwarded Lisp variables.
2988 These are used in the syms_of_FILENAME functions.
2989
2990 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
2991 lisp variable is actually a field in `struct emacs_globals'. The
2992 field's name begins with "f_", which is a convention enforced by
2993 these macros. Each such global has a corresponding #define in
2994 globals.h; the plain name should be used in the code.
2995
2996 E.g., the global "cons_cells_consed" is declared as "int
2997 f_cons_cells_consed" in globals.h, but there is a define:
2998
2999 #define cons_cells_consed globals.f_cons_cells_consed
3000
3001 All C code uses the `cons_cells_consed' name. This is all done
3002 this way to support indirection for multi-threaded Emacs. */
3003
3004 #define DEFVAR_LISP(lname, vname, doc) \
3005 do { \
3006 static struct Lisp_Objfwd o_fwd; \
3007 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
3008 } while (false)
3009 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
3010 do { \
3011 static struct Lisp_Objfwd o_fwd; \
3012 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
3013 } while (false)
3014 #define DEFVAR_BOOL(lname, vname, doc) \
3015 do { \
3016 static struct Lisp_Boolfwd b_fwd; \
3017 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
3018 } while (false)
3019 #define DEFVAR_INT(lname, vname, doc) \
3020 do { \
3021 static struct Lisp_Intfwd i_fwd; \
3022 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
3023 } while (false)
3024
3025 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
3026 do { \
3027 static struct Lisp_Objfwd o_fwd; \
3028 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
3029 } while (false)
3030
3031 #define DEFVAR_KBOARD(lname, vname, doc) \
3032 do { \
3033 static struct Lisp_Kboard_Objfwd ko_fwd; \
3034 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
3035 } while (false)
3036 \f
3037 /* Save and restore the instruction and environment pointers,
3038 without affecting the signal mask. */
3039
3040 #ifdef HAVE__SETJMP
3041 typedef jmp_buf sys_jmp_buf;
3042 # define sys_setjmp(j) _setjmp (j)
3043 # define sys_longjmp(j, v) _longjmp (j, v)
3044 #elif defined HAVE_SIGSETJMP
3045 typedef sigjmp_buf sys_jmp_buf;
3046 # define sys_setjmp(j) sigsetjmp (j, 0)
3047 # define sys_longjmp(j, v) siglongjmp (j, v)
3048 #else
3049 /* A platform that uses neither _longjmp nor siglongjmp; assume
3050 longjmp does not affect the sigmask. */
3051 typedef jmp_buf sys_jmp_buf;
3052 # define sys_setjmp(j) setjmp (j)
3053 # define sys_longjmp(j, v) longjmp (j, v)
3054 #endif
3055
3056 \f
3057 /* Elisp uses several stacks:
3058 - the C stack.
3059 - the bytecode stack: used internally by the bytecode interpreter.
3060 Allocated from the C stack.
3061 - The specpdl stack: keeps track of active unwind-protect and
3062 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
3063 managed stack.
3064 - The handler stack: keeps track of active catch tags and condition-case
3065 handlers. Allocated in a manually managed stack implemented by a
3066 doubly-linked list allocated via xmalloc and never freed. */
3067
3068 /* Structure for recording Lisp call stack for backtrace purposes. */
3069
3070 /* The special binding stack holds the outer values of variables while
3071 they are bound by a function application or a let form, stores the
3072 code to be executed for unwind-protect forms.
3073
3074 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
3075 used all over the place, needs to be fast, and needs to know the size of
3076 union specbinding. But only eval.c should access it. */
3077
3078 enum specbind_tag {
3079 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
3080 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
3081 SPECPDL_UNWIND_INT, /* Likewise, on int. */
3082 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
3083 SPECPDL_BACKTRACE, /* An element of the backtrace. */
3084 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
3085 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
3086 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
3087 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
3088 };
3089
3090 union specbinding
3091 {
3092 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3093 struct {
3094 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3095 void (*func) (Lisp_Object);
3096 Lisp_Object arg;
3097 } unwind;
3098 struct {
3099 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3100 void (*func) (void *);
3101 void *arg;
3102 } unwind_ptr;
3103 struct {
3104 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3105 void (*func) (int);
3106 int arg;
3107 } unwind_int;
3108 struct {
3109 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3110 void (*func) (void);
3111 } unwind_void;
3112 struct {
3113 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3114 /* `where' is not used in the case of SPECPDL_LET. */
3115 Lisp_Object symbol, old_value, where;
3116 } let;
3117 struct {
3118 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3119 bool_bf debug_on_exit : 1;
3120 Lisp_Object function;
3121 Lisp_Object *args;
3122 ptrdiff_t nargs;
3123 } bt;
3124 };
3125
3126 extern union specbinding *specpdl;
3127 extern union specbinding *specpdl_ptr;
3128 extern ptrdiff_t specpdl_size;
3129
3130 INLINE ptrdiff_t
3131 SPECPDL_INDEX (void)
3132 {
3133 return specpdl_ptr - specpdl;
3134 }
3135
3136 /* This structure helps implement the `catch/throw' and `condition-case/signal'
3137 control structures. A struct handler contains all the information needed to
3138 restore the state of the interpreter after a non-local jump.
3139
3140 handler structures are chained together in a doubly linked list; the `next'
3141 member points to the next outer catchtag and the `nextfree' member points in
3142 the other direction to the next inner element (which is typically the next
3143 free element since we mostly use it on the deepest handler).
3144
3145 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
3146 member is TAG, and then unbinds to it. The `val' member is used to
3147 hold VAL while the stack is unwound; `val' is returned as the value
3148 of the catch form. If there is a handler of type CATCHER_ALL, it will
3149 be treated as a handler for all invocations of `throw'; in this case
3150 `val' will be set to (TAG . VAL).
3151
3152 All the other members are concerned with restoring the interpreter
3153 state.
3154
3155 Members are volatile if their values need to survive _longjmp when
3156 a 'struct handler' is a local variable. */
3157
3158 enum handlertype { CATCHER, CONDITION_CASE, CATCHER_ALL };
3159
3160 struct handler
3161 {
3162 enum handlertype type;
3163 Lisp_Object tag_or_ch;
3164 Lisp_Object val;
3165 struct handler *next;
3166 struct handler *nextfree;
3167
3168 /* The bytecode interpreter can have several handlers active at the same
3169 time, so when we longjmp to one of them, it needs to know which handler
3170 this was and what was the corresponding internal state. This is stored
3171 here, and when we longjmp we make sure that handlerlist points to the
3172 proper handler. */
3173 Lisp_Object *bytecode_top;
3174 int bytecode_dest;
3175
3176 /* Most global vars are reset to their value via the specpdl mechanism,
3177 but a few others are handled by storing their value here. */
3178 sys_jmp_buf jmp;
3179 EMACS_INT lisp_eval_depth;
3180 ptrdiff_t pdlcount;
3181 int poll_suppress_count;
3182 int interrupt_input_blocked;
3183 struct byte_stack *byte_stack;
3184 };
3185
3186 extern Lisp_Object memory_signal_data;
3187
3188 /* An address near the bottom of the stack.
3189 Tells GC how to save a copy of the stack. */
3190 extern char *stack_bottom;
3191
3192 /* Check quit-flag and quit if it is non-nil.
3193 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
3194 So the program needs to do QUIT at times when it is safe to quit.
3195 Every loop that might run for a long time or might not exit
3196 ought to do QUIT at least once, at a safe place.
3197 Unless that is impossible, of course.
3198 But it is very desirable to avoid creating loops where QUIT is impossible.
3199
3200 Exception: if you set immediate_quit to true,
3201 then the handler that responds to the C-g does the quit itself.
3202 This is a good thing to do around a loop that has no side effects
3203 and (in particular) cannot call arbitrary Lisp code.
3204
3205 If quit-flag is set to `kill-emacs' the SIGINT handler has received
3206 a request to exit Emacs when it is safe to do. */
3207
3208 extern void process_pending_signals (void);
3209 extern bool volatile pending_signals;
3210
3211 extern void process_quit_flag (void);
3212 #define QUIT \
3213 do { \
3214 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
3215 process_quit_flag (); \
3216 else if (pending_signals) \
3217 process_pending_signals (); \
3218 } while (false)
3219
3220
3221 /* True if ought to quit now. */
3222
3223 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
3224 \f
3225 extern Lisp_Object Vascii_downcase_table;
3226 extern Lisp_Object Vascii_canon_table;
3227 \f
3228 /* Call staticpro (&var) to protect static variable `var'. */
3229
3230 void staticpro (Lisp_Object *);
3231 \f
3232 /* Forward declarations for prototypes. */
3233 struct window;
3234 struct frame;
3235
3236 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3237
3238 INLINE void
3239 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3240 {
3241 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3242 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3243 }
3244
3245 /* Functions to modify hash tables. */
3246
3247 INLINE void
3248 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3249 {
3250 gc_aset (h->key_and_value, 2 * idx, val);
3251 }
3252
3253 INLINE void
3254 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3255 {
3256 gc_aset (h->key_and_value, 2 * idx + 1, val);
3257 }
3258
3259 /* Use these functions to set Lisp_Object
3260 or pointer slots of struct Lisp_Symbol. */
3261
3262 INLINE void
3263 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3264 {
3265 XSYMBOL (sym)->function = function;
3266 }
3267
3268 INLINE void
3269 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3270 {
3271 XSYMBOL (sym)->plist = plist;
3272 }
3273
3274 INLINE void
3275 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3276 {
3277 XSYMBOL (sym)->next = next;
3278 }
3279
3280 /* Buffer-local (also frame-local) variable access functions. */
3281
3282 INLINE int
3283 blv_found (struct Lisp_Buffer_Local_Value *blv)
3284 {
3285 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3286 return blv->found;
3287 }
3288
3289 /* Set overlay's property list. */
3290
3291 INLINE void
3292 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3293 {
3294 XOVERLAY (overlay)->plist = plist;
3295 }
3296
3297 /* Get text properties of S. */
3298
3299 INLINE INTERVAL
3300 string_intervals (Lisp_Object s)
3301 {
3302 return XSTRING (s)->intervals;
3303 }
3304
3305 /* Set text properties of S to I. */
3306
3307 INLINE void
3308 set_string_intervals (Lisp_Object s, INTERVAL i)
3309 {
3310 XSTRING (s)->intervals = i;
3311 }
3312
3313 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3314 of setting slots directly. */
3315
3316 INLINE void
3317 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3318 {
3319 XCHAR_TABLE (table)->defalt = val;
3320 }
3321 INLINE void
3322 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3323 {
3324 XCHAR_TABLE (table)->purpose = val;
3325 }
3326
3327 /* Set different slots in (sub)character tables. */
3328
3329 INLINE void
3330 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3331 {
3332 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3333 XCHAR_TABLE (table)->extras[idx] = val;
3334 }
3335
3336 INLINE void
3337 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3338 {
3339 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3340 XCHAR_TABLE (table)->contents[idx] = val;
3341 }
3342
3343 INLINE void
3344 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3345 {
3346 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3347 }
3348
3349 /* Defined in data.c. */
3350 extern Lisp_Object indirect_function (Lisp_Object);
3351 extern Lisp_Object find_symbol_value (Lisp_Object);
3352 enum Arith_Comparison {
3353 ARITH_EQUAL,
3354 ARITH_NOTEQUAL,
3355 ARITH_LESS,
3356 ARITH_GRTR,
3357 ARITH_LESS_OR_EQUAL,
3358 ARITH_GRTR_OR_EQUAL
3359 };
3360 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3361 enum Arith_Comparison comparison);
3362
3363 /* Convert the integer I to an Emacs representation, either the integer
3364 itself, or a cons of two or three integers, or if all else fails a float.
3365 I should not have side effects. */
3366 #define INTEGER_TO_CONS(i) \
3367 (! FIXNUM_OVERFLOW_P (i) \
3368 ? make_number (i) \
3369 : EXPR_SIGNED (i) ? intbig_to_lisp (i) : uintbig_to_lisp (i))
3370 extern Lisp_Object intbig_to_lisp (intmax_t);
3371 extern Lisp_Object uintbig_to_lisp (uintmax_t);
3372
3373 /* Convert the Emacs representation CONS back to an integer of type
3374 TYPE, storing the result the variable VAR. Signal an error if CONS
3375 is not a valid representation or is out of range for TYPE. */
3376 #define CONS_TO_INTEGER(cons, type, var) \
3377 (TYPE_SIGNED (type) \
3378 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3379 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3380 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3381 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3382
3383 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3384 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3385 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3386 Lisp_Object);
3387 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3388 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3389 extern void syms_of_data (void);
3390 extern void swap_in_global_binding (struct Lisp_Symbol *);
3391
3392 /* Defined in cmds.c */
3393 extern void syms_of_cmds (void);
3394 extern void keys_of_cmds (void);
3395
3396 /* Defined in coding.c. */
3397 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3398 ptrdiff_t, bool, bool, Lisp_Object);
3399 extern void init_coding (void);
3400 extern void init_coding_once (void);
3401 extern void syms_of_coding (void);
3402
3403 /* Defined in character.c. */
3404 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3405 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3406 extern void syms_of_character (void);
3407
3408 /* Defined in charset.c. */
3409 extern void init_charset (void);
3410 extern void init_charset_once (void);
3411 extern void syms_of_charset (void);
3412 /* Structure forward declarations. */
3413 struct charset;
3414
3415 /* Defined in syntax.c. */
3416 extern void init_syntax_once (void);
3417 extern void syms_of_syntax (void);
3418
3419 /* Defined in fns.c. */
3420 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3421 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3422 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3423 extern void sweep_weak_hash_tables (void);
3424 EMACS_UINT hash_string (char const *, ptrdiff_t);
3425 EMACS_UINT sxhash (Lisp_Object, int);
3426 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3427 Lisp_Object, Lisp_Object);
3428 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3429 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3430 EMACS_UINT);
3431 void hash_remove_from_table (struct Lisp_Hash_Table *, Lisp_Object);
3432 extern struct hash_table_test hashtest_eq, hashtest_eql, hashtest_equal;
3433 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3434 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3435 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3436 ptrdiff_t, ptrdiff_t);
3437 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3438 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3439 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3440 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3441 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3442 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3443 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3444 extern void clear_string_char_byte_cache (void);
3445 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3446 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3447 extern Lisp_Object string_to_multibyte (Lisp_Object);
3448 extern Lisp_Object string_make_unibyte (Lisp_Object);
3449 extern void syms_of_fns (void);
3450
3451 /* Defined in floatfns.c. */
3452 extern void syms_of_floatfns (void);
3453 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3454
3455 /* Defined in fringe.c. */
3456 extern void syms_of_fringe (void);
3457 extern void init_fringe (void);
3458 #ifdef HAVE_WINDOW_SYSTEM
3459 extern void mark_fringe_data (void);
3460 extern void init_fringe_once (void);
3461 #endif /* HAVE_WINDOW_SYSTEM */
3462
3463 /* Defined in image.c. */
3464 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3465 extern void reset_image_types (void);
3466 extern void syms_of_image (void);
3467
3468 /* Defined in insdel.c. */
3469 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3470 extern _Noreturn void buffer_overflow (void);
3471 extern void make_gap (ptrdiff_t);
3472 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3473 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3474 ptrdiff_t, bool, bool);
3475 extern int count_combining_before (const unsigned char *,
3476 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3477 extern int count_combining_after (const unsigned char *,
3478 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3479 extern void insert (const char *, ptrdiff_t);
3480 extern void insert_and_inherit (const char *, ptrdiff_t);
3481 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3482 bool, bool, bool);
3483 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3484 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3485 ptrdiff_t, ptrdiff_t, bool);
3486 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3487 extern void insert_char (int);
3488 extern void insert_string (const char *);
3489 extern void insert_before_markers (const char *, ptrdiff_t);
3490 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3491 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3492 ptrdiff_t, ptrdiff_t,
3493 ptrdiff_t, bool);
3494 extern void del_range (ptrdiff_t, ptrdiff_t);
3495 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3496 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3497 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3498 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3499 ptrdiff_t, ptrdiff_t, bool);
3500 extern void modify_text (ptrdiff_t, ptrdiff_t);
3501 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3502 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3503 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3504 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3505 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3506 ptrdiff_t, ptrdiff_t);
3507 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3508 ptrdiff_t, ptrdiff_t);
3509 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3510 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3511 const char *, ptrdiff_t, ptrdiff_t, bool);
3512 extern void syms_of_insdel (void);
3513
3514 /* Defined in dispnew.c. */
3515 #if (defined PROFILING \
3516 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3517 _Noreturn void __executable_start (void);
3518 #endif
3519 extern Lisp_Object Vwindow_system;
3520 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3521
3522 /* Defined in xdisp.c. */
3523 extern bool noninteractive_need_newline;
3524 extern Lisp_Object echo_area_buffer[2];
3525 extern void add_to_log (char const *, ...);
3526 extern void vadd_to_log (char const *, va_list);
3527 extern void check_message_stack (void);
3528 extern void setup_echo_area_for_printing (bool);
3529 extern bool push_message (void);
3530 extern void pop_message_unwind (void);
3531 extern Lisp_Object restore_message_unwind (Lisp_Object);
3532 extern void restore_message (void);
3533 extern Lisp_Object current_message (void);
3534 extern void clear_message (bool, bool);
3535 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3536 extern void message1 (const char *);
3537 extern void message1_nolog (const char *);
3538 extern void message3 (Lisp_Object);
3539 extern void message3_nolog (Lisp_Object);
3540 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3541 extern void message_with_string (const char *, Lisp_Object, bool);
3542 extern void message_log_maybe_newline (void);
3543 extern void update_echo_area (void);
3544 extern void truncate_echo_area (ptrdiff_t);
3545 extern void redisplay (void);
3546
3547 void set_frame_cursor_types (struct frame *, Lisp_Object);
3548 extern void syms_of_xdisp (void);
3549 extern void init_xdisp (void);
3550 extern Lisp_Object safe_eval (Lisp_Object);
3551 extern bool pos_visible_p (struct window *, ptrdiff_t, int *,
3552 int *, int *, int *, int *, int *);
3553
3554 /* Defined in xsettings.c. */
3555 extern void syms_of_xsettings (void);
3556
3557 /* Defined in vm-limit.c. */
3558 extern void memory_warnings (void *, void (*warnfun) (const char *));
3559
3560 /* Defined in character.c. */
3561 extern void parse_str_as_multibyte (const unsigned char *, ptrdiff_t,
3562 ptrdiff_t *, ptrdiff_t *);
3563
3564 /* Defined in alloc.c. */
3565 extern void check_pure_size (void);
3566 extern void free_misc (Lisp_Object);
3567 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3568 extern void malloc_warning (const char *);
3569 extern _Noreturn void memory_full (size_t);
3570 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3571 extern bool survives_gc_p (Lisp_Object);
3572 extern void mark_object (Lisp_Object);
3573 #if defined REL_ALLOC && !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3574 extern void refill_memory_reserve (void);
3575 #endif
3576 extern const char *pending_malloc_warning;
3577 extern Lisp_Object zero_vector;
3578 extern Lisp_Object *stack_base;
3579 extern EMACS_INT consing_since_gc;
3580 extern EMACS_INT gc_relative_threshold;
3581 extern EMACS_INT memory_full_cons_threshold;
3582 extern Lisp_Object list1 (Lisp_Object);
3583 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3584 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3585 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3586 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3587 Lisp_Object);
3588 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3589 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3590
3591 /* Build a frequently used 2/3/4-integer lists. */
3592
3593 INLINE Lisp_Object
3594 list2i (EMACS_INT x, EMACS_INT y)
3595 {
3596 return list2 (make_number (x), make_number (y));
3597 }
3598
3599 INLINE Lisp_Object
3600 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3601 {
3602 return list3 (make_number (x), make_number (y), make_number (w));
3603 }
3604
3605 INLINE Lisp_Object
3606 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3607 {
3608 return list4 (make_number (x), make_number (y),
3609 make_number (w), make_number (h));
3610 }
3611
3612 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3613 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3614 extern _Noreturn void string_overflow (void);
3615 extern Lisp_Object make_string (const char *, ptrdiff_t);
3616 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3617 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3618 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3619
3620 /* Make unibyte string from C string when the length isn't known. */
3621
3622 INLINE Lisp_Object
3623 build_unibyte_string (const char *str)
3624 {
3625 return make_unibyte_string (str, strlen (str));
3626 }
3627
3628 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3629 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3630 extern Lisp_Object make_uninit_string (EMACS_INT);
3631 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3632 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3633 extern Lisp_Object make_specified_string (const char *,
3634 ptrdiff_t, ptrdiff_t, bool);
3635 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3636 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3637
3638 /* Make a string allocated in pure space, use STR as string data. */
3639
3640 INLINE Lisp_Object
3641 build_pure_c_string (const char *str)
3642 {
3643 return make_pure_c_string (str, strlen (str));
3644 }
3645
3646 /* Make a string from the data at STR, treating it as multibyte if the
3647 data warrants. */
3648
3649 INLINE Lisp_Object
3650 build_string (const char *str)
3651 {
3652 return make_string (str, strlen (str));
3653 }
3654
3655 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3656 extern void make_byte_code (struct Lisp_Vector *);
3657 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3658
3659 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3660 be sure that GC cannot happen until the vector is completely
3661 initialized. E.g. the following code is likely to crash:
3662
3663 v = make_uninit_vector (3);
3664 ASET (v, 0, obj0);
3665 ASET (v, 1, Ffunction_can_gc ());
3666 ASET (v, 2, obj1); */
3667
3668 INLINE Lisp_Object
3669 make_uninit_vector (ptrdiff_t size)
3670 {
3671 Lisp_Object v;
3672 struct Lisp_Vector *p;
3673
3674 p = allocate_vector (size);
3675 XSETVECTOR (v, p);
3676 return v;
3677 }
3678
3679 /* Like above, but special for sub char-tables. */
3680
3681 INLINE Lisp_Object
3682 make_uninit_sub_char_table (int depth, int min_char)
3683 {
3684 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3685 Lisp_Object v = make_uninit_vector (slots);
3686
3687 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3688 XSUB_CHAR_TABLE (v)->depth = depth;
3689 XSUB_CHAR_TABLE (v)->min_char = min_char;
3690 return v;
3691 }
3692
3693 extern struct Lisp_Vector *allocate_pseudovector (int, int, int,
3694 enum pvec_type);
3695
3696 /* Allocate partially initialized pseudovector where all Lisp_Object
3697 slots are set to Qnil but the rest (if any) is left uninitialized. */
3698
3699 #define ALLOCATE_PSEUDOVECTOR(type, field, tag) \
3700 ((type *) allocate_pseudovector (VECSIZE (type), \
3701 PSEUDOVECSIZE (type, field), \
3702 PSEUDOVECSIZE (type, field), tag))
3703
3704 /* Allocate fully initialized pseudovector where all Lisp_Object
3705 slots are set to Qnil and the rest (if any) is zeroed. */
3706
3707 #define ALLOCATE_ZEROED_PSEUDOVECTOR(type, field, tag) \
3708 ((type *) allocate_pseudovector (VECSIZE (type), \
3709 PSEUDOVECSIZE (type, field), \
3710 VECSIZE (type), tag))
3711
3712 extern bool gc_in_progress;
3713 extern bool abort_on_gc;
3714 extern Lisp_Object make_float (double);
3715 extern void display_malloc_warning (void);
3716 extern ptrdiff_t inhibit_garbage_collection (void);
3717 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3718 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3719 Lisp_Object, Lisp_Object);
3720 extern Lisp_Object make_save_ptr (void *);
3721 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3722 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3723 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3724 Lisp_Object);
3725 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3726 extern void free_save_value (Lisp_Object);
3727 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3728 extern void free_marker (Lisp_Object);
3729 extern void free_cons (struct Lisp_Cons *);
3730 extern void init_alloc_once (void);
3731 extern void init_alloc (void);
3732 extern void syms_of_alloc (void);
3733 extern struct buffer * allocate_buffer (void);
3734 extern int valid_lisp_object_p (Lisp_Object);
3735 #ifdef GC_CHECK_CONS_LIST
3736 extern void check_cons_list (void);
3737 #else
3738 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3739 #endif
3740
3741 #ifdef REL_ALLOC
3742 /* Defined in ralloc.c. */
3743 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3744 extern void r_alloc_free (void **);
3745 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3746 extern void r_alloc_reset_variable (void **, void **);
3747 extern void r_alloc_inhibit_buffer_relocation (int);
3748 #endif
3749
3750 /* Defined in chartab.c. */
3751 extern Lisp_Object copy_char_table (Lisp_Object);
3752 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3753 int *, int *);
3754 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3755 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3756 Lisp_Object),
3757 Lisp_Object, Lisp_Object, Lisp_Object);
3758 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3759 Lisp_Object, Lisp_Object,
3760 Lisp_Object, struct charset *,
3761 unsigned, unsigned);
3762 extern Lisp_Object uniprop_table (Lisp_Object);
3763 extern void syms_of_chartab (void);
3764
3765 /* Defined in print.c. */
3766 extern Lisp_Object Vprin1_to_string_buffer;
3767 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3768 extern void temp_output_buffer_setup (const char *);
3769 extern int print_level;
3770 extern void write_string (const char *);
3771 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3772 Lisp_Object);
3773 extern Lisp_Object internal_with_output_to_temp_buffer
3774 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3775 #define FLOAT_TO_STRING_BUFSIZE 350
3776 extern int float_to_string (char *, double);
3777 extern void init_print_once (void);
3778 extern void syms_of_print (void);
3779
3780 /* Defined in doprnt.c. */
3781 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3782 va_list);
3783 extern ptrdiff_t esprintf (char *, char const *, ...)
3784 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3785 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3786 char const *, ...)
3787 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3788 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3789 char const *, va_list)
3790 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3791
3792 /* Defined in lread.c. */
3793 extern Lisp_Object check_obarray (Lisp_Object);
3794 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3795 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3796 extern Lisp_Object intern_driver (Lisp_Object, Lisp_Object, Lisp_Object);
3797 extern void init_symbol (Lisp_Object, Lisp_Object);
3798 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3799 INLINE void
3800 LOADHIST_ATTACH (Lisp_Object x)
3801 {
3802 if (initialized)
3803 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3804 }
3805 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3806 Lisp_Object *, Lisp_Object, bool);
3807 extern Lisp_Object string_to_number (char const *, int, bool);
3808 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3809 Lisp_Object);
3810 extern void dir_warning (const char *, Lisp_Object);
3811 extern void init_obarray (void);
3812 extern void init_lread (void);
3813 extern void syms_of_lread (void);
3814
3815 INLINE Lisp_Object
3816 intern (const char *str)
3817 {
3818 return intern_1 (str, strlen (str));
3819 }
3820
3821 INLINE Lisp_Object
3822 intern_c_string (const char *str)
3823 {
3824 return intern_c_string_1 (str, strlen (str));
3825 }
3826
3827 /* Defined in eval.c. */
3828 extern Lisp_Object Vautoload_queue;
3829 extern Lisp_Object Vrun_hooks;
3830 extern Lisp_Object Vsignaling_function;
3831 extern Lisp_Object inhibit_lisp_code;
3832 extern struct handler *handlerlist;
3833
3834 /* To run a normal hook, use the appropriate function from the list below.
3835 The calling convention:
3836
3837 if (!NILP (Vrun_hooks))
3838 call1 (Vrun_hooks, Qmy_funny_hook);
3839
3840 should no longer be used. */
3841 extern void run_hook (Lisp_Object);
3842 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3843 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3844 Lisp_Object (*funcall)
3845 (ptrdiff_t nargs, Lisp_Object *args));
3846 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3847 extern _Noreturn void xsignal0 (Lisp_Object);
3848 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3849 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3850 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3851 Lisp_Object);
3852 extern _Noreturn void signal_error (const char *, Lisp_Object);
3853 extern Lisp_Object eval_sub (Lisp_Object form);
3854 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3855 extern Lisp_Object call0 (Lisp_Object);
3856 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3857 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3858 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3859 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3860 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3861 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3862 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3863 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3864 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3865 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3866 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3867 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3868 extern Lisp_Object internal_condition_case_n
3869 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3870 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3871 extern struct handler *push_handler (Lisp_Object, enum handlertype);
3872 extern struct handler *push_handler_nosignal (Lisp_Object, enum handlertype);
3873 extern void specbind (Lisp_Object, Lisp_Object);
3874 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3875 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3876 extern void record_unwind_protect_int (void (*) (int), int);
3877 extern void record_unwind_protect_void (void (*) (void));
3878 extern void record_unwind_protect_nothing (void);
3879 extern void clear_unwind_protect (ptrdiff_t);
3880 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3881 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3882 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3883 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3884 extern _Noreturn void verror (const char *, va_list)
3885 ATTRIBUTE_FORMAT_PRINTF (1, 0);
3886 extern void un_autoload (Lisp_Object);
3887 extern Lisp_Object call_debugger (Lisp_Object arg);
3888 extern void *near_C_stack_top (void);
3889 extern void init_eval_once (void);
3890 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
3891 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
3892 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3893 extern void init_eval (void);
3894 extern void syms_of_eval (void);
3895 extern void unwind_body (Lisp_Object);
3896 extern ptrdiff_t record_in_backtrace (Lisp_Object, Lisp_Object *, ptrdiff_t);
3897 extern void mark_specpdl (void);
3898 extern void get_backtrace (Lisp_Object array);
3899 Lisp_Object backtrace_top_function (void);
3900 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
3901 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
3902
3903 #ifdef HAVE_MODULES
3904 /* Defined in alloc.c. */
3905 extern Lisp_Object make_user_ptr (void (*finalizer) (void*), void *p);
3906
3907 /* Defined in emacs-module.c. */
3908 extern void module_init (void);
3909 extern void mark_modules (void);
3910 extern void syms_of_module (void);
3911 #endif
3912
3913 /* Defined in editfns.c. */
3914 extern void insert1 (Lisp_Object);
3915 extern Lisp_Object save_excursion_save (void);
3916 extern Lisp_Object save_restriction_save (void);
3917 extern void save_excursion_restore (Lisp_Object);
3918 extern void save_restriction_restore (Lisp_Object);
3919 extern _Noreturn void time_overflow (void);
3920 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
3921 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3922 ptrdiff_t, bool);
3923 extern void init_editfns (bool);
3924 extern void syms_of_editfns (void);
3925
3926 /* Defined in buffer.c. */
3927 extern bool mouse_face_overlay_overlaps (Lisp_Object);
3928 extern _Noreturn void nsberror (Lisp_Object);
3929 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
3930 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
3931 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
3932 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
3933 Lisp_Object, Lisp_Object, Lisp_Object);
3934 extern bool overlay_touches_p (ptrdiff_t);
3935 extern Lisp_Object other_buffer_safely (Lisp_Object);
3936 extern Lisp_Object get_truename_buffer (Lisp_Object);
3937 extern void init_buffer_once (void);
3938 extern void init_buffer (int);
3939 extern void syms_of_buffer (void);
3940 extern void keys_of_buffer (void);
3941
3942 /* Defined in marker.c. */
3943
3944 extern ptrdiff_t marker_position (Lisp_Object);
3945 extern ptrdiff_t marker_byte_position (Lisp_Object);
3946 extern void clear_charpos_cache (struct buffer *);
3947 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
3948 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
3949 extern void unchain_marker (struct Lisp_Marker *marker);
3950 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
3951 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
3952 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
3953 ptrdiff_t, ptrdiff_t);
3954 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
3955 extern void syms_of_marker (void);
3956
3957 /* Defined in fileio.c. */
3958
3959 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
3960 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
3961 Lisp_Object, Lisp_Object, Lisp_Object,
3962 Lisp_Object, int);
3963 extern void close_file_unwind (int);
3964 extern void fclose_unwind (void *);
3965 extern void restore_point_unwind (Lisp_Object);
3966 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
3967 extern _Noreturn void report_file_error (const char *, Lisp_Object);
3968 extern _Noreturn void report_file_notify_error (const char *, Lisp_Object);
3969 extern bool internal_delete_file (Lisp_Object);
3970 extern Lisp_Object emacs_readlinkat (int, const char *);
3971 extern bool file_directory_p (const char *);
3972 extern bool file_accessible_directory_p (Lisp_Object);
3973 extern void init_fileio (void);
3974 extern void syms_of_fileio (void);
3975 extern Lisp_Object make_temp_name (Lisp_Object, bool);
3976
3977 /* Defined in search.c. */
3978 extern void shrink_regexp_cache (void);
3979 extern void restore_search_regs (void);
3980 extern void record_unwind_save_match_data (void);
3981 struct re_registers;
3982 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
3983 struct re_registers *,
3984 Lisp_Object, bool, bool);
3985 extern ptrdiff_t fast_string_match_internal (Lisp_Object, Lisp_Object,
3986 Lisp_Object);
3987
3988 INLINE ptrdiff_t
3989 fast_string_match (Lisp_Object regexp, Lisp_Object string)
3990 {
3991 return fast_string_match_internal (regexp, string, Qnil);
3992 }
3993
3994 INLINE ptrdiff_t
3995 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
3996 {
3997 return fast_string_match_internal (regexp, string, Vascii_canon_table);
3998 }
3999
4000 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4001 ptrdiff_t);
4002 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4003 ptrdiff_t, ptrdiff_t, Lisp_Object);
4004 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4005 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4006 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4007 ptrdiff_t, bool);
4008 extern ptrdiff_t scan_newline_from_point (ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
4009 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4010 ptrdiff_t, ptrdiff_t *);
4011 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4012 ptrdiff_t, ptrdiff_t *);
4013 extern void syms_of_search (void);
4014 extern void clear_regexp_cache (void);
4015
4016 /* Defined in minibuf.c. */
4017
4018 extern Lisp_Object Vminibuffer_list;
4019 extern Lisp_Object last_minibuf_string;
4020 extern Lisp_Object get_minibuffer (EMACS_INT);
4021 extern void init_minibuf_once (void);
4022 extern void syms_of_minibuf (void);
4023
4024 /* Defined in callint.c. */
4025
4026 extern void syms_of_callint (void);
4027
4028 /* Defined in casefiddle.c. */
4029
4030 extern void syms_of_casefiddle (void);
4031 extern void keys_of_casefiddle (void);
4032
4033 /* Defined in casetab.c. */
4034
4035 extern void init_casetab_once (void);
4036 extern void syms_of_casetab (void);
4037
4038 /* Defined in keyboard.c. */
4039
4040 extern Lisp_Object echo_message_buffer;
4041 extern struct kboard *echo_kboard;
4042 extern void cancel_echoing (void);
4043 extern bool input_pending;
4044 #ifdef HAVE_STACK_OVERFLOW_HANDLING
4045 extern sigjmp_buf return_to_command_loop;
4046 #endif
4047 extern Lisp_Object menu_bar_items (Lisp_Object);
4048 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4049 extern void discard_mouse_events (void);
4050 #ifdef USABLE_SIGIO
4051 void handle_input_available_signal (int);
4052 #endif
4053 extern Lisp_Object pending_funcalls;
4054 extern bool detect_input_pending (void);
4055 extern bool detect_input_pending_ignore_squeezables (void);
4056 extern bool detect_input_pending_run_timers (bool);
4057 extern void safe_run_hooks (Lisp_Object);
4058 extern void cmd_error_internal (Lisp_Object, const char *);
4059 extern Lisp_Object command_loop_1 (void);
4060 extern Lisp_Object read_menu_command (void);
4061 extern Lisp_Object recursive_edit_1 (void);
4062 extern void record_auto_save (void);
4063 extern void force_auto_save_soon (void);
4064 extern void init_keyboard (void);
4065 extern void syms_of_keyboard (void);
4066 extern void keys_of_keyboard (void);
4067
4068 /* Defined in indent.c. */
4069 extern ptrdiff_t current_column (void);
4070 extern void invalidate_current_column (void);
4071 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4072 extern void syms_of_indent (void);
4073
4074 /* Defined in frame.c. */
4075 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4076 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4077 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4078 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4079 extern void frames_discard_buffer (Lisp_Object);
4080 extern void syms_of_frame (void);
4081
4082 /* Defined in emacs.c. */
4083 extern char **initial_argv;
4084 extern int initial_argc;
4085 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4086 extern bool display_arg;
4087 #endif
4088 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4089 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4090 extern _Noreturn void terminate_due_to_signal (int, int);
4091 #ifdef WINDOWSNT
4092 extern Lisp_Object Vlibrary_cache;
4093 #endif
4094 #if HAVE_SETLOCALE
4095 void fixup_locale (void);
4096 void synchronize_system_messages_locale (void);
4097 void synchronize_system_time_locale (void);
4098 #else
4099 INLINE void fixup_locale (void) {}
4100 INLINE void synchronize_system_messages_locale (void) {}
4101 INLINE void synchronize_system_time_locale (void) {}
4102 #endif
4103 extern void shut_down_emacs (int, Lisp_Object);
4104
4105 /* True means don't do interactive redisplay and don't change tty modes. */
4106 extern bool noninteractive;
4107
4108 /* True means remove site-lisp directories from load-path. */
4109 extern bool no_site_lisp;
4110
4111 /* Pipe used to send exit notification to the daemon parent at
4112 startup. On Windows, we use a kernel event instead. */
4113 #ifndef WINDOWSNT
4114 extern int daemon_pipe[2];
4115 #define IS_DAEMON (daemon_pipe[1] != 0)
4116 #define DAEMON_RUNNING (daemon_pipe[1] >= 0)
4117 #else /* WINDOWSNT */
4118 extern void *w32_daemon_event;
4119 #define IS_DAEMON (w32_daemon_event != NULL)
4120 #define DAEMON_RUNNING (w32_daemon_event != INVALID_HANDLE_VALUE)
4121 #endif
4122
4123 /* True if handling a fatal error already. */
4124 extern bool fatal_error_in_progress;
4125
4126 /* True means don't do use window-system-specific display code. */
4127 extern bool inhibit_window_system;
4128 /* True means that a filter or a sentinel is running. */
4129 extern bool running_asynch_code;
4130
4131 /* Defined in process.c. */
4132 extern void kill_buffer_processes (Lisp_Object);
4133 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4134 struct Lisp_Process *, int);
4135 /* Max value for the first argument of wait_reading_process_output. */
4136 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4137 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4138 The bug merely causes a bogus warning, but the warning is annoying. */
4139 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4140 #else
4141 # define WAIT_READING_MAX INTMAX_MAX
4142 #endif
4143 #ifdef HAVE_TIMERFD
4144 extern void add_timer_wait_descriptor (int);
4145 #endif
4146 extern void add_keyboard_wait_descriptor (int);
4147 extern void delete_keyboard_wait_descriptor (int);
4148 #ifdef HAVE_GPM
4149 extern void add_gpm_wait_descriptor (int);
4150 extern void delete_gpm_wait_descriptor (int);
4151 #endif
4152 extern void init_process_emacs (void);
4153 extern void syms_of_process (void);
4154 extern void setup_process_coding_systems (Lisp_Object);
4155
4156 /* Defined in callproc.c. */
4157 #ifndef DOS_NT
4158 _Noreturn
4159 #endif
4160 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4161 extern void init_callproc_1 (void);
4162 extern void init_callproc (void);
4163 extern void set_initial_environment (void);
4164 extern void syms_of_callproc (void);
4165
4166 /* Defined in doc.c. */
4167 enum text_quoting_style
4168 {
4169 /* Use curved single quotes ‘like this’. */
4170 CURVE_QUOTING_STYLE,
4171
4172 /* Use grave accent and apostrophe `like this'. */
4173 GRAVE_QUOTING_STYLE,
4174
4175 /* Use apostrophes 'like this'. */
4176 STRAIGHT_QUOTING_STYLE
4177 };
4178 extern enum text_quoting_style text_quoting_style (void);
4179 extern Lisp_Object read_doc_string (Lisp_Object);
4180 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4181 extern void syms_of_doc (void);
4182 extern int read_bytecode_char (bool);
4183
4184 /* Defined in bytecode.c. */
4185 extern void syms_of_bytecode (void);
4186 extern struct byte_stack *byte_stack_list;
4187 extern void relocate_byte_stack (void);
4188 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4189 Lisp_Object, ptrdiff_t, Lisp_Object *);
4190
4191 /* Defined in macros.c. */
4192 extern void init_macros (void);
4193 extern void syms_of_macros (void);
4194
4195 /* Defined in undo.c. */
4196 extern void truncate_undo_list (struct buffer *);
4197 extern void record_insert (ptrdiff_t, ptrdiff_t);
4198 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4199 extern void record_first_change (void);
4200 extern void record_change (ptrdiff_t, ptrdiff_t);
4201 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4202 Lisp_Object, Lisp_Object,
4203 Lisp_Object);
4204 extern void syms_of_undo (void);
4205
4206 /* Defined in textprop.c. */
4207 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4208
4209 /* Defined in menu.c. */
4210 extern void syms_of_menu (void);
4211
4212 /* Defined in xmenu.c. */
4213 extern void syms_of_xmenu (void);
4214
4215 /* Defined in termchar.h. */
4216 struct tty_display_info;
4217
4218 /* Defined in termhooks.h. */
4219 struct terminal;
4220
4221 /* Defined in sysdep.c. */
4222 #ifndef HAVE_GET_CURRENT_DIR_NAME
4223 extern char *get_current_dir_name (void);
4224 #endif
4225 extern void stuff_char (char c);
4226 extern void init_foreground_group (void);
4227 extern void sys_subshell (void);
4228 extern void sys_suspend (void);
4229 extern void discard_tty_input (void);
4230 extern void init_sys_modes (struct tty_display_info *);
4231 extern void reset_sys_modes (struct tty_display_info *);
4232 extern void init_all_sys_modes (void);
4233 extern void reset_all_sys_modes (void);
4234 extern void child_setup_tty (int);
4235 extern void setup_pty (int);
4236 extern int set_window_size (int, int, int);
4237 extern EMACS_INT get_random (void);
4238 extern void seed_random (void *, ptrdiff_t);
4239 extern void init_random (void);
4240 extern void emacs_backtrace (int);
4241 extern _Noreturn void emacs_abort (void) NO_INLINE;
4242 extern int emacs_open (const char *, int, int);
4243 extern int emacs_pipe (int[2]);
4244 extern int emacs_close (int);
4245 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4246 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4247 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4248 extern void emacs_perror (char const *);
4249
4250 extern void unlock_all_files (void);
4251 extern void lock_file (Lisp_Object);
4252 extern void unlock_file (Lisp_Object);
4253 extern void unlock_buffer (struct buffer *);
4254 extern void syms_of_filelock (void);
4255 extern int str_collate (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4256
4257 /* Defined in sound.c. */
4258 extern void syms_of_sound (void);
4259
4260 /* Defined in category.c. */
4261 extern void init_category_once (void);
4262 extern Lisp_Object char_category_set (int);
4263 extern void syms_of_category (void);
4264
4265 /* Defined in ccl.c. */
4266 extern void syms_of_ccl (void);
4267
4268 /* Defined in dired.c. */
4269 extern void syms_of_dired (void);
4270 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4271 Lisp_Object, Lisp_Object,
4272 bool, Lisp_Object);
4273
4274 /* Defined in term.c. */
4275 extern int *char_ins_del_vector;
4276 extern void syms_of_term (void);
4277 extern _Noreturn void fatal (const char *msgid, ...)
4278 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4279
4280 /* Defined in terminal.c. */
4281 extern void syms_of_terminal (void);
4282
4283 /* Defined in font.c. */
4284 extern void syms_of_font (void);
4285 extern void init_font (void);
4286
4287 #ifdef HAVE_WINDOW_SYSTEM
4288 /* Defined in fontset.c. */
4289 extern void syms_of_fontset (void);
4290 #endif
4291
4292 /* Defined in gfilenotify.c */
4293 #ifdef HAVE_GFILENOTIFY
4294 extern void globals_of_gfilenotify (void);
4295 extern void syms_of_gfilenotify (void);
4296 #endif
4297
4298 /* Defined in inotify.c */
4299 #ifdef HAVE_INOTIFY
4300 extern void syms_of_inotify (void);
4301 #endif
4302
4303 #ifdef HAVE_W32NOTIFY
4304 /* Defined on w32notify.c. */
4305 extern void syms_of_w32notify (void);
4306 #endif
4307
4308 /* Defined in xfaces.c. */
4309 extern Lisp_Object Vface_alternative_font_family_alist;
4310 extern Lisp_Object Vface_alternative_font_registry_alist;
4311 extern void syms_of_xfaces (void);
4312
4313 #ifdef HAVE_X_WINDOWS
4314 /* Defined in xfns.c. */
4315 extern void syms_of_xfns (void);
4316
4317 /* Defined in xsmfns.c. */
4318 extern void syms_of_xsmfns (void);
4319
4320 /* Defined in xselect.c. */
4321 extern void syms_of_xselect (void);
4322
4323 /* Defined in xterm.c. */
4324 extern void init_xterm (void);
4325 extern void syms_of_xterm (void);
4326 #endif /* HAVE_X_WINDOWS */
4327
4328 #ifdef HAVE_WINDOW_SYSTEM
4329 /* Defined in xterm.c, nsterm.m, w32term.c. */
4330 extern char *x_get_keysym_name (int);
4331 #endif /* HAVE_WINDOW_SYSTEM */
4332
4333 #ifdef HAVE_LIBXML2
4334 /* Defined in xml.c. */
4335 extern void syms_of_xml (void);
4336 extern void xml_cleanup_parser (void);
4337 #endif
4338
4339 #ifdef HAVE_ZLIB
4340 /* Defined in decompress.c. */
4341 extern void syms_of_decompress (void);
4342 #endif
4343
4344 #ifdef HAVE_DBUS
4345 /* Defined in dbusbind.c. */
4346 void init_dbusbind (void);
4347 void syms_of_dbusbind (void);
4348 #endif
4349
4350
4351 /* Defined in profiler.c. */
4352 extern bool profiler_memory_running;
4353 extern void malloc_probe (size_t);
4354 extern void syms_of_profiler (void);
4355
4356
4357 #ifdef DOS_NT
4358 /* Defined in msdos.c, w32.c. */
4359 extern char *emacs_root_dir (void);
4360 #endif /* DOS_NT */
4361
4362 /* Defined in lastfile.c. */
4363 extern char my_edata[];
4364 extern char my_endbss[];
4365 extern char *my_endbss_static;
4366
4367 /* True means ^G can quit instantly. */
4368 extern bool immediate_quit;
4369
4370 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4371 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4372 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4373 extern void xfree (void *);
4374 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4375 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4376 ATTRIBUTE_ALLOC_SIZE ((2,3));
4377 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4378
4379 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4380 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4381 extern void dupstring (char **, char const *);
4382
4383 /* Make DEST a copy of STRING's data. Return a pointer to DEST's terminating
4384 null byte. This is like stpcpy, except the source is a Lisp string. */
4385
4386 INLINE char *
4387 lispstpcpy (char *dest, Lisp_Object string)
4388 {
4389 ptrdiff_t len = SBYTES (string);
4390 memcpy (dest, SDATA (string), len + 1);
4391 return dest + len;
4392 }
4393
4394 extern void xputenv (const char *);
4395
4396 extern char *egetenv_internal (const char *, ptrdiff_t);
4397
4398 INLINE char *
4399 egetenv (const char *var)
4400 {
4401 /* When VAR is a string literal, strlen can be optimized away. */
4402 return egetenv_internal (var, strlen (var));
4403 }
4404
4405 /* Set up the name of the machine we're running on. */
4406 extern void init_system_name (void);
4407
4408 /* Return the absolute value of X. X should be a signed integer
4409 expression without side effects, and X's absolute value should not
4410 exceed the maximum for its promoted type. This is called 'eabs'
4411 because 'abs' is reserved by the C standard. */
4412 #define eabs(x) ((x) < 0 ? -(x) : (x))
4413
4414 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4415 fixnum. */
4416
4417 #define make_fixnum_or_float(val) \
4418 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4419
4420 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4421 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4422
4423 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4424
4425 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4426
4427 #define USE_SAFE_ALLOCA \
4428 ptrdiff_t sa_avail = MAX_ALLOCA; \
4429 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4430
4431 #define AVAIL_ALLOCA(size) (sa_avail -= (size), alloca (size))
4432
4433 /* SAFE_ALLOCA allocates a simple buffer. */
4434
4435 #define SAFE_ALLOCA(size) ((size) <= sa_avail \
4436 ? AVAIL_ALLOCA (size) \
4437 : (sa_must_free = true, record_xmalloc (size)))
4438
4439 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4440 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4441 positive. The code is tuned for MULTIPLIER being a constant. */
4442
4443 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4444 do { \
4445 if ((nitems) <= sa_avail / sizeof *(buf) / (multiplier)) \
4446 (buf) = AVAIL_ALLOCA (sizeof *(buf) * (multiplier) * (nitems)); \
4447 else \
4448 { \
4449 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4450 sa_must_free = true; \
4451 record_unwind_protect_ptr (xfree, buf); \
4452 } \
4453 } while (false)
4454
4455 /* SAFE_ALLOCA_STRING allocates a C copy of a Lisp string. */
4456
4457 #define SAFE_ALLOCA_STRING(ptr, string) \
4458 do { \
4459 (ptr) = SAFE_ALLOCA (SBYTES (string) + 1); \
4460 memcpy (ptr, SDATA (string), SBYTES (string) + 1); \
4461 } while (false)
4462
4463 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4464
4465 #define SAFE_FREE() \
4466 do { \
4467 if (sa_must_free) { \
4468 sa_must_free = false; \
4469 unbind_to (sa_count, Qnil); \
4470 } \
4471 } while (false)
4472
4473 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4474
4475 #define SAFE_ALLOCA_LISP(buf, nelt) \
4476 do { \
4477 ptrdiff_t alloca_nbytes; \
4478 if (INT_MULTIPLY_WRAPV (nelt, word_size, &alloca_nbytes) \
4479 || SIZE_MAX < alloca_nbytes) \
4480 memory_full (SIZE_MAX); \
4481 else if (alloca_nbytes <= sa_avail) \
4482 (buf) = AVAIL_ALLOCA (alloca_nbytes); \
4483 else \
4484 { \
4485 Lisp_Object arg_; \
4486 (buf) = xmalloc (alloca_nbytes); \
4487 arg_ = make_save_memory (buf, nelt); \
4488 sa_must_free = true; \
4489 record_unwind_protect (free_save_value, arg_); \
4490 } \
4491 } while (false)
4492
4493
4494 /* If USE_STACK_LISP_OBJECTS, define macros that and functions that allocate
4495 block-scoped conses and strings. These objects are not
4496 managed by the garbage collector, so they are dangerous: passing them
4497 out of their scope (e.g., to user code) results in undefined behavior.
4498 Conversely, they have better performance because GC is not involved.
4499
4500 This feature is experimental and requires careful debugging.
4501 Build with CPPFLAGS='-DUSE_STACK_LISP_OBJECTS=0' to disable it. */
4502
4503 #ifndef USE_STACK_LISP_OBJECTS
4504 # define USE_STACK_LISP_OBJECTS true
4505 #endif
4506
4507 #ifdef GC_CHECK_STRING_BYTES
4508 enum { defined_GC_CHECK_STRING_BYTES = true };
4509 #else
4510 enum { defined_GC_CHECK_STRING_BYTES = false };
4511 #endif
4512
4513 /* Struct inside unions that are typically no larger and aligned enough. */
4514
4515 union Aligned_Cons
4516 {
4517 struct Lisp_Cons s;
4518 double d; intmax_t i; void *p;
4519 };
4520
4521 union Aligned_String
4522 {
4523 struct Lisp_String s;
4524 double d; intmax_t i; void *p;
4525 };
4526
4527 /* True for stack-based cons and string implementations, respectively.
4528 Use stack-based strings only if stack-based cons also works.
4529 Otherwise, STACK_CONS would create heap-based cons cells that
4530 could point to stack-based strings, which is a no-no. */
4531
4532 enum
4533 {
4534 USE_STACK_CONS = (USE_STACK_LISP_OBJECTS
4535 && alignof (union Aligned_Cons) % GCALIGNMENT == 0),
4536 USE_STACK_STRING = (USE_STACK_CONS
4537 && !defined_GC_CHECK_STRING_BYTES
4538 && alignof (union Aligned_String) % GCALIGNMENT == 0)
4539 };
4540
4541 /* Auxiliary macros used for auto allocation of Lisp objects. Please
4542 use these only in macros like AUTO_CONS that declare a local
4543 variable whose lifetime will be clear to the programmer. */
4544 #define STACK_CONS(a, b) \
4545 make_lisp_ptr (&(union Aligned_Cons) { { a, { b } } }.s, Lisp_Cons)
4546 #define AUTO_CONS_EXPR(a, b) \
4547 (USE_STACK_CONS ? STACK_CONS (a, b) : Fcons (a, b))
4548
4549 /* Declare NAME as an auto Lisp cons or short list if possible, a
4550 GC-based one otherwise. This is in the sense of the C keyword
4551 'auto'; i.e., the object has the lifetime of the containing block.
4552 The resulting object should not be made visible to user Lisp code. */
4553
4554 #define AUTO_CONS(name, a, b) Lisp_Object name = AUTO_CONS_EXPR (a, b)
4555 #define AUTO_LIST1(name, a) \
4556 Lisp_Object name = (USE_STACK_CONS ? STACK_CONS (a, Qnil) : list1 (a))
4557 #define AUTO_LIST2(name, a, b) \
4558 Lisp_Object name = (USE_STACK_CONS \
4559 ? STACK_CONS (a, STACK_CONS (b, Qnil)) \
4560 : list2 (a, b))
4561 #define AUTO_LIST3(name, a, b, c) \
4562 Lisp_Object name = (USE_STACK_CONS \
4563 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, Qnil))) \
4564 : list3 (a, b, c))
4565 #define AUTO_LIST4(name, a, b, c, d) \
4566 Lisp_Object name \
4567 = (USE_STACK_CONS \
4568 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, \
4569 STACK_CONS (d, Qnil)))) \
4570 : list4 (a, b, c, d))
4571
4572 /* Check whether stack-allocated strings are ASCII-only. */
4573
4574 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
4575 extern const char *verify_ascii (const char *);
4576 #else
4577 # define verify_ascii(str) (str)
4578 #endif
4579
4580 /* Declare NAME as an auto Lisp string if possible, a GC-based one if not.
4581 Take its value from STR. STR is not necessarily copied and should
4582 contain only ASCII characters. The resulting Lisp string should
4583 not be modified or made visible to user code. */
4584
4585 #define AUTO_STRING(name, str) \
4586 Lisp_Object name = \
4587 (USE_STACK_STRING \
4588 ? (make_lisp_ptr \
4589 ((&(union Aligned_String) \
4590 {{strlen (str), -1, 0, (unsigned char *) verify_ascii (str)}}.s), \
4591 Lisp_String)) \
4592 : build_string (verify_ascii (str)))
4593
4594 /* Loop over all tails of a list, checking for cycles.
4595 FIXME: Make tortoise and n internal declarations.
4596 FIXME: Unroll the loop body so we don't need `n'. */
4597 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4598 for ((tortoise) = (hare) = (list), (n) = true; \
4599 CONSP (hare); \
4600 (hare = XCDR (hare), (n) = !(n), \
4601 ((n) \
4602 ? (EQ (hare, tortoise) \
4603 ? xsignal1 (Qcircular_list, list) \
4604 : (void) 0) \
4605 /* Move tortoise before the next iteration, in case */ \
4606 /* the next iteration does an Fsetcdr. */ \
4607 : (void) ((tortoise) = XCDR (tortoise)))))
4608
4609 /* Do a `for' loop over alist values. */
4610
4611 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4612 for ((list_var) = (head_var); \
4613 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4614 (list_var) = XCDR (list_var))
4615
4616 /* Check whether it's time for GC, and run it if so. */
4617
4618 INLINE void
4619 maybe_gc (void)
4620 {
4621 if ((consing_since_gc > gc_cons_threshold
4622 && consing_since_gc > gc_relative_threshold)
4623 || (!NILP (Vmemory_full)
4624 && consing_since_gc > memory_full_cons_threshold))
4625 Fgarbage_collect ();
4626 }
4627
4628 INLINE bool
4629 functionp (Lisp_Object object)
4630 {
4631 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4632 {
4633 object = Findirect_function (object, Qt);
4634
4635 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4636 {
4637 /* Autoloaded symbols are functions, except if they load
4638 macros or keymaps. */
4639 int i;
4640 for (i = 0; i < 4 && CONSP (object); i++)
4641 object = XCDR (object);
4642
4643 return ! (CONSP (object) && !NILP (XCAR (object)));
4644 }
4645 }
4646
4647 if (SUBRP (object))
4648 return XSUBR (object)->max_args != UNEVALLED;
4649 else if (COMPILEDP (object))
4650 return true;
4651 else if (CONSP (object))
4652 {
4653 Lisp_Object car = XCAR (object);
4654 return EQ (car, Qlambda) || EQ (car, Qclosure);
4655 }
4656 else
4657 return false;
4658 }
4659
4660 INLINE_HEADER_END
4661
4662 #endif /* EMACS_LISP_H */