]> code.delx.au - gnu-emacs/blob - src/alloc.c
Update copyright notices for 2013.
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2013 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #define LISP_INLINE EXTERN_INLINE
24
25 #include <stdio.h>
26 #include <limits.h> /* For CHAR_BIT. */
27
28 #ifdef ENABLE_CHECKING
29 #include <signal.h> /* For SIGABRT. */
30 #endif
31
32 #ifdef HAVE_PTHREAD
33 #include <pthread.h>
34 #endif
35
36 #include "lisp.h"
37 #include "process.h"
38 #include "intervals.h"
39 #include "puresize.h"
40 #include "character.h"
41 #include "buffer.h"
42 #include "window.h"
43 #include "keyboard.h"
44 #include "frame.h"
45 #include "blockinput.h"
46 #include "termhooks.h" /* For struct terminal. */
47
48 #include <verify.h>
49
50 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
51 Doable only if GC_MARK_STACK. */
52 #if ! GC_MARK_STACK
53 # undef GC_CHECK_MARKED_OBJECTS
54 #endif
55
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c and if not checking
58 marked objects. */
59
60 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
61 || defined GC_CHECK_MARKED_OBJECTS)
62 #undef GC_MALLOC_CHECK
63 #endif
64
65 #include <unistd.h>
66 #ifndef HAVE_UNISTD_H
67 extern void *sbrk ();
68 #endif
69
70 #include <fcntl.h>
71
72 #ifdef USE_GTK
73 # include "gtkutil.h"
74 #endif
75 #ifdef WINDOWSNT
76 #include "w32.h"
77 #include "w32heap.h" /* for sbrk */
78 #endif
79
80 #ifdef DOUG_LEA_MALLOC
81
82 #include <malloc.h>
83
84 /* Specify maximum number of areas to mmap. It would be nice to use a
85 value that explicitly means "no limit". */
86
87 #define MMAP_MAX_AREAS 100000000
88
89 #endif /* not DOUG_LEA_MALLOC */
90
91 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
92 to a struct Lisp_String. */
93
94 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
95 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
96 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
97
98 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
99 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
100 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
101
102 /* Default value of gc_cons_threshold (see below). */
103
104 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
105
106 /* Global variables. */
107 struct emacs_globals globals;
108
109 /* Number of bytes of consing done since the last gc. */
110
111 EMACS_INT consing_since_gc;
112
113 /* Similar minimum, computed from Vgc_cons_percentage. */
114
115 EMACS_INT gc_relative_threshold;
116
117 /* Minimum number of bytes of consing since GC before next GC,
118 when memory is full. */
119
120 EMACS_INT memory_full_cons_threshold;
121
122 /* True during GC. */
123
124 bool gc_in_progress;
125
126 /* True means abort if try to GC.
127 This is for code which is written on the assumption that
128 no GC will happen, so as to verify that assumption. */
129
130 bool abort_on_gc;
131
132 /* Number of live and free conses etc. */
133
134 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
135 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
136 static EMACS_INT total_free_floats, total_floats;
137
138 /* Points to memory space allocated as "spare", to be freed if we run
139 out of memory. We keep one large block, four cons-blocks, and
140 two string blocks. */
141
142 static char *spare_memory[7];
143
144 /* Amount of spare memory to keep in large reserve block, or to see
145 whether this much is available when malloc fails on a larger request. */
146
147 #define SPARE_MEMORY (1 << 14)
148
149 /* Initialize it to a nonzero value to force it into data space
150 (rather than bss space). That way unexec will remap it into text
151 space (pure), on some systems. We have not implemented the
152 remapping on more recent systems because this is less important
153 nowadays than in the days of small memories and timesharing. */
154
155 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
156 #define PUREBEG (char *) pure
157
158 /* Pointer to the pure area, and its size. */
159
160 static char *purebeg;
161 static ptrdiff_t pure_size;
162
163 /* Number of bytes of pure storage used before pure storage overflowed.
164 If this is non-zero, this implies that an overflow occurred. */
165
166 static ptrdiff_t pure_bytes_used_before_overflow;
167
168 /* True if P points into pure space. */
169
170 #define PURE_POINTER_P(P) \
171 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
172
173 /* Index in pure at which next pure Lisp object will be allocated.. */
174
175 static ptrdiff_t pure_bytes_used_lisp;
176
177 /* Number of bytes allocated for non-Lisp objects in pure storage. */
178
179 static ptrdiff_t pure_bytes_used_non_lisp;
180
181 /* If nonzero, this is a warning delivered by malloc and not yet
182 displayed. */
183
184 const char *pending_malloc_warning;
185
186 /* Maximum amount of C stack to save when a GC happens. */
187
188 #ifndef MAX_SAVE_STACK
189 #define MAX_SAVE_STACK 16000
190 #endif
191
192 /* Buffer in which we save a copy of the C stack at each GC. */
193
194 #if MAX_SAVE_STACK > 0
195 static char *stack_copy;
196 static ptrdiff_t stack_copy_size;
197 #endif
198
199 static Lisp_Object Qconses;
200 static Lisp_Object Qsymbols;
201 static Lisp_Object Qmiscs;
202 static Lisp_Object Qstrings;
203 static Lisp_Object Qvectors;
204 static Lisp_Object Qfloats;
205 static Lisp_Object Qintervals;
206 static Lisp_Object Qbuffers;
207 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
208 static Lisp_Object Qgc_cons_threshold;
209 Lisp_Object Qautomatic_gc;
210 Lisp_Object Qchar_table_extra_slots;
211
212 /* Hook run after GC has finished. */
213
214 static Lisp_Object Qpost_gc_hook;
215
216 static void mark_terminals (void);
217 static void gc_sweep (void);
218 static Lisp_Object make_pure_vector (ptrdiff_t);
219 static void mark_glyph_matrix (struct glyph_matrix *);
220 static void mark_face_cache (struct face_cache *);
221 static void mark_buffer (struct buffer *);
222
223 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
224 static void refill_memory_reserve (void);
225 #endif
226 static struct Lisp_String *allocate_string (void);
227 static void compact_small_strings (void);
228 static void free_large_strings (void);
229 static void sweep_strings (void);
230 static void free_misc (Lisp_Object);
231 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
232
233 /* When scanning the C stack for live Lisp objects, Emacs keeps track
234 of what memory allocated via lisp_malloc is intended for what
235 purpose. This enumeration specifies the type of memory. */
236
237 enum mem_type
238 {
239 MEM_TYPE_NON_LISP,
240 MEM_TYPE_BUFFER,
241 MEM_TYPE_CONS,
242 MEM_TYPE_STRING,
243 MEM_TYPE_MISC,
244 MEM_TYPE_SYMBOL,
245 MEM_TYPE_FLOAT,
246 /* We used to keep separate mem_types for subtypes of vectors such as
247 process, hash_table, frame, terminal, and window, but we never made
248 use of the distinction, so it only caused source-code complexity
249 and runtime slowdown. Minor but pointless. */
250 MEM_TYPE_VECTORLIKE,
251 /* Special type to denote vector blocks. */
252 MEM_TYPE_VECTOR_BLOCK,
253 /* Special type to denote reserved memory. */
254 MEM_TYPE_SPARE
255 };
256
257 static void *lisp_malloc (size_t, enum mem_type);
258
259
260 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
261
262 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
263 #include <stdio.h> /* For fprintf. */
264 #endif
265
266 /* A unique object in pure space used to make some Lisp objects
267 on free lists recognizable in O(1). */
268
269 static Lisp_Object Vdead;
270 #define DEADP(x) EQ (x, Vdead)
271
272 #ifdef GC_MALLOC_CHECK
273
274 enum mem_type allocated_mem_type;
275
276 #endif /* GC_MALLOC_CHECK */
277
278 /* A node in the red-black tree describing allocated memory containing
279 Lisp data. Each such block is recorded with its start and end
280 address when it is allocated, and removed from the tree when it
281 is freed.
282
283 A red-black tree is a balanced binary tree with the following
284 properties:
285
286 1. Every node is either red or black.
287 2. Every leaf is black.
288 3. If a node is red, then both of its children are black.
289 4. Every simple path from a node to a descendant leaf contains
290 the same number of black nodes.
291 5. The root is always black.
292
293 When nodes are inserted into the tree, or deleted from the tree,
294 the tree is "fixed" so that these properties are always true.
295
296 A red-black tree with N internal nodes has height at most 2
297 log(N+1). Searches, insertions and deletions are done in O(log N).
298 Please see a text book about data structures for a detailed
299 description of red-black trees. Any book worth its salt should
300 describe them. */
301
302 struct mem_node
303 {
304 /* Children of this node. These pointers are never NULL. When there
305 is no child, the value is MEM_NIL, which points to a dummy node. */
306 struct mem_node *left, *right;
307
308 /* The parent of this node. In the root node, this is NULL. */
309 struct mem_node *parent;
310
311 /* Start and end of allocated region. */
312 void *start, *end;
313
314 /* Node color. */
315 enum {MEM_BLACK, MEM_RED} color;
316
317 /* Memory type. */
318 enum mem_type type;
319 };
320
321 /* Base address of stack. Set in main. */
322
323 Lisp_Object *stack_base;
324
325 /* Root of the tree describing allocated Lisp memory. */
326
327 static struct mem_node *mem_root;
328
329 /* Lowest and highest known address in the heap. */
330
331 static void *min_heap_address, *max_heap_address;
332
333 /* Sentinel node of the tree. */
334
335 static struct mem_node mem_z;
336 #define MEM_NIL &mem_z
337
338 static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
339 static void lisp_free (void *);
340 static void mark_stack (void);
341 static bool live_vector_p (struct mem_node *, void *);
342 static bool live_buffer_p (struct mem_node *, void *);
343 static bool live_string_p (struct mem_node *, void *);
344 static bool live_cons_p (struct mem_node *, void *);
345 static bool live_symbol_p (struct mem_node *, void *);
346 static bool live_float_p (struct mem_node *, void *);
347 static bool live_misc_p (struct mem_node *, void *);
348 static void mark_maybe_object (Lisp_Object);
349 static void mark_memory (void *, void *);
350 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
351 static void mem_init (void);
352 static struct mem_node *mem_insert (void *, void *, enum mem_type);
353 static void mem_insert_fixup (struct mem_node *);
354 static void mem_rotate_left (struct mem_node *);
355 static void mem_rotate_right (struct mem_node *);
356 static void mem_delete (struct mem_node *);
357 static void mem_delete_fixup (struct mem_node *);
358 static struct mem_node *mem_find (void *);
359 #endif
360
361
362 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
363 static void check_gcpros (void);
364 #endif
365
366 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
367
368 #ifndef DEADP
369 # define DEADP(x) 0
370 #endif
371
372 /* Recording what needs to be marked for gc. */
373
374 struct gcpro *gcprolist;
375
376 /* Addresses of staticpro'd variables. Initialize it to a nonzero
377 value; otherwise some compilers put it into BSS. */
378
379 #define NSTATICS 0x800
380 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
381
382 /* Index of next unused slot in staticvec. */
383
384 static int staticidx;
385
386 static void *pure_alloc (size_t, int);
387
388
389 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
390 ALIGNMENT must be a power of 2. */
391
392 #define ALIGN(ptr, ALIGNMENT) \
393 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
394 & ~ ((ALIGNMENT) - 1)))
395
396
397 \f
398 /************************************************************************
399 Malloc
400 ************************************************************************/
401
402 /* Function malloc calls this if it finds we are near exhausting storage. */
403
404 void
405 malloc_warning (const char *str)
406 {
407 pending_malloc_warning = str;
408 }
409
410
411 /* Display an already-pending malloc warning. */
412
413 void
414 display_malloc_warning (void)
415 {
416 call3 (intern ("display-warning"),
417 intern ("alloc"),
418 build_string (pending_malloc_warning),
419 intern ("emergency"));
420 pending_malloc_warning = 0;
421 }
422 \f
423 /* Called if we can't allocate relocatable space for a buffer. */
424
425 void
426 buffer_memory_full (ptrdiff_t nbytes)
427 {
428 /* If buffers use the relocating allocator, no need to free
429 spare_memory, because we may have plenty of malloc space left
430 that we could get, and if we don't, the malloc that fails will
431 itself cause spare_memory to be freed. If buffers don't use the
432 relocating allocator, treat this like any other failing
433 malloc. */
434
435 #ifndef REL_ALLOC
436 memory_full (nbytes);
437 #endif
438
439 /* This used to call error, but if we've run out of memory, we could
440 get infinite recursion trying to build the string. */
441 xsignal (Qnil, Vmemory_signal_data);
442 }
443
444 /* A common multiple of the positive integers A and B. Ideally this
445 would be the least common multiple, but there's no way to do that
446 as a constant expression in C, so do the best that we can easily do. */
447 #define COMMON_MULTIPLE(a, b) \
448 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
449
450 #ifndef XMALLOC_OVERRUN_CHECK
451 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
452 #else
453
454 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
455 around each block.
456
457 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
458 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
459 block size in little-endian order. The trailer consists of
460 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
461
462 The header is used to detect whether this block has been allocated
463 through these functions, as some low-level libc functions may
464 bypass the malloc hooks. */
465
466 #define XMALLOC_OVERRUN_CHECK_SIZE 16
467 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
468 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
469
470 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
471 hold a size_t value and (2) the header size is a multiple of the
472 alignment that Emacs needs for C types and for USE_LSB_TAG. */
473 #define XMALLOC_BASE_ALIGNMENT \
474 alignof (union { long double d; intmax_t i; void *p; })
475
476 #if USE_LSB_TAG
477 # define XMALLOC_HEADER_ALIGNMENT \
478 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
479 #else
480 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
481 #endif
482 #define XMALLOC_OVERRUN_SIZE_SIZE \
483 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
484 + XMALLOC_HEADER_ALIGNMENT - 1) \
485 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
486 - XMALLOC_OVERRUN_CHECK_SIZE)
487
488 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
489 { '\x9a', '\x9b', '\xae', '\xaf',
490 '\xbf', '\xbe', '\xce', '\xcf',
491 '\xea', '\xeb', '\xec', '\xed',
492 '\xdf', '\xde', '\x9c', '\x9d' };
493
494 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
495 { '\xaa', '\xab', '\xac', '\xad',
496 '\xba', '\xbb', '\xbc', '\xbd',
497 '\xca', '\xcb', '\xcc', '\xcd',
498 '\xda', '\xdb', '\xdc', '\xdd' };
499
500 /* Insert and extract the block size in the header. */
501
502 static void
503 xmalloc_put_size (unsigned char *ptr, size_t size)
504 {
505 int i;
506 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
507 {
508 *--ptr = size & ((1 << CHAR_BIT) - 1);
509 size >>= CHAR_BIT;
510 }
511 }
512
513 static size_t
514 xmalloc_get_size (unsigned char *ptr)
515 {
516 size_t size = 0;
517 int i;
518 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
519 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
520 {
521 size <<= CHAR_BIT;
522 size += *ptr++;
523 }
524 return size;
525 }
526
527
528 /* Like malloc, but wraps allocated block with header and trailer. */
529
530 static void *
531 overrun_check_malloc (size_t size)
532 {
533 register unsigned char *val;
534 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
535 emacs_abort ();
536
537 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
538 if (val)
539 {
540 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
541 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
542 xmalloc_put_size (val, size);
543 memcpy (val + size, xmalloc_overrun_check_trailer,
544 XMALLOC_OVERRUN_CHECK_SIZE);
545 }
546 return val;
547 }
548
549
550 /* Like realloc, but checks old block for overrun, and wraps new block
551 with header and trailer. */
552
553 static void *
554 overrun_check_realloc (void *block, size_t size)
555 {
556 register unsigned char *val = (unsigned char *) block;
557 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
558 emacs_abort ();
559
560 if (val
561 && memcmp (xmalloc_overrun_check_header,
562 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
563 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
564 {
565 size_t osize = xmalloc_get_size (val);
566 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
567 XMALLOC_OVERRUN_CHECK_SIZE))
568 emacs_abort ();
569 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
570 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
571 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
572 }
573
574 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
575
576 if (val)
577 {
578 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
579 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
580 xmalloc_put_size (val, size);
581 memcpy (val + size, xmalloc_overrun_check_trailer,
582 XMALLOC_OVERRUN_CHECK_SIZE);
583 }
584 return val;
585 }
586
587 /* Like free, but checks block for overrun. */
588
589 static void
590 overrun_check_free (void *block)
591 {
592 unsigned char *val = (unsigned char *) block;
593
594 if (val
595 && memcmp (xmalloc_overrun_check_header,
596 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
597 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
598 {
599 size_t osize = xmalloc_get_size (val);
600 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
601 XMALLOC_OVERRUN_CHECK_SIZE))
602 emacs_abort ();
603 #ifdef XMALLOC_CLEAR_FREE_MEMORY
604 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
605 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
606 #else
607 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
608 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
609 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
610 #endif
611 }
612
613 free (val);
614 }
615
616 #undef malloc
617 #undef realloc
618 #undef free
619 #define malloc overrun_check_malloc
620 #define realloc overrun_check_realloc
621 #define free overrun_check_free
622 #endif
623
624 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
625 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
626 If that variable is set, block input while in one of Emacs's memory
627 allocation functions. There should be no need for this debugging
628 option, since signal handlers do not allocate memory, but Emacs
629 formerly allocated memory in signal handlers and this compile-time
630 option remains as a way to help debug the issue should it rear its
631 ugly head again. */
632 #ifdef XMALLOC_BLOCK_INPUT_CHECK
633 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
634 static void
635 malloc_block_input (void)
636 {
637 if (block_input_in_memory_allocators)
638 block_input ();
639 }
640 static void
641 malloc_unblock_input (void)
642 {
643 if (block_input_in_memory_allocators)
644 unblock_input ();
645 }
646 # define MALLOC_BLOCK_INPUT malloc_block_input ()
647 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
648 #else
649 # define MALLOC_BLOCK_INPUT ((void) 0)
650 # define MALLOC_UNBLOCK_INPUT ((void) 0)
651 #endif
652
653 #define MALLOC_PROBE(size) \
654 do { \
655 if (profiler_memory_running) \
656 malloc_probe (size); \
657 } while (0)
658
659
660 /* Like malloc but check for no memory and block interrupt input.. */
661
662 void *
663 xmalloc (size_t size)
664 {
665 void *val;
666
667 MALLOC_BLOCK_INPUT;
668 val = malloc (size);
669 MALLOC_UNBLOCK_INPUT;
670
671 if (!val && size)
672 memory_full (size);
673 MALLOC_PROBE (size);
674 return val;
675 }
676
677 /* Like the above, but zeroes out the memory just allocated. */
678
679 void *
680 xzalloc (size_t size)
681 {
682 void *val;
683
684 MALLOC_BLOCK_INPUT;
685 val = malloc (size);
686 MALLOC_UNBLOCK_INPUT;
687
688 if (!val && size)
689 memory_full (size);
690 memset (val, 0, size);
691 MALLOC_PROBE (size);
692 return val;
693 }
694
695 /* Like realloc but check for no memory and block interrupt input.. */
696
697 void *
698 xrealloc (void *block, size_t size)
699 {
700 void *val;
701
702 MALLOC_BLOCK_INPUT;
703 /* We must call malloc explicitly when BLOCK is 0, since some
704 reallocs don't do this. */
705 if (! block)
706 val = malloc (size);
707 else
708 val = realloc (block, size);
709 MALLOC_UNBLOCK_INPUT;
710
711 if (!val && size)
712 memory_full (size);
713 MALLOC_PROBE (size);
714 return val;
715 }
716
717
718 /* Like free but block interrupt input. */
719
720 void
721 xfree (void *block)
722 {
723 if (!block)
724 return;
725 MALLOC_BLOCK_INPUT;
726 free (block);
727 MALLOC_UNBLOCK_INPUT;
728 /* We don't call refill_memory_reserve here
729 because in practice the call in r_alloc_free seems to suffice. */
730 }
731
732
733 /* Other parts of Emacs pass large int values to allocator functions
734 expecting ptrdiff_t. This is portable in practice, but check it to
735 be safe. */
736 verify (INT_MAX <= PTRDIFF_MAX);
737
738
739 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
740 Signal an error on memory exhaustion, and block interrupt input. */
741
742 void *
743 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
744 {
745 eassert (0 <= nitems && 0 < item_size);
746 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
747 memory_full (SIZE_MAX);
748 return xmalloc (nitems * item_size);
749 }
750
751
752 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
753 Signal an error on memory exhaustion, and block interrupt input. */
754
755 void *
756 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
757 {
758 eassert (0 <= nitems && 0 < item_size);
759 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
760 memory_full (SIZE_MAX);
761 return xrealloc (pa, nitems * item_size);
762 }
763
764
765 /* Grow PA, which points to an array of *NITEMS items, and return the
766 location of the reallocated array, updating *NITEMS to reflect its
767 new size. The new array will contain at least NITEMS_INCR_MIN more
768 items, but will not contain more than NITEMS_MAX items total.
769 ITEM_SIZE is the size of each item, in bytes.
770
771 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
772 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
773 infinity.
774
775 If PA is null, then allocate a new array instead of reallocating
776 the old one. Thus, to grow an array A without saving its old
777 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
778 &NITEMS, ...).
779
780 Block interrupt input as needed. If memory exhaustion occurs, set
781 *NITEMS to zero if PA is null, and signal an error (i.e., do not
782 return). */
783
784 void *
785 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
786 ptrdiff_t nitems_max, ptrdiff_t item_size)
787 {
788 /* The approximate size to use for initial small allocation
789 requests. This is the largest "small" request for the GNU C
790 library malloc. */
791 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
792
793 /* If the array is tiny, grow it to about (but no greater than)
794 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
795 ptrdiff_t n = *nitems;
796 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
797 ptrdiff_t half_again = n >> 1;
798 ptrdiff_t incr_estimate = max (tiny_max, half_again);
799
800 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
801 NITEMS_MAX, and what the C language can represent safely. */
802 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
803 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
804 ? nitems_max : C_language_max);
805 ptrdiff_t nitems_incr_max = n_max - n;
806 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
807
808 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
809 if (! pa)
810 *nitems = 0;
811 if (nitems_incr_max < incr)
812 memory_full (SIZE_MAX);
813 n += incr;
814 pa = xrealloc (pa, n * item_size);
815 *nitems = n;
816 return pa;
817 }
818
819
820 /* Like strdup, but uses xmalloc. */
821
822 char *
823 xstrdup (const char *s)
824 {
825 size_t len = strlen (s) + 1;
826 char *p = xmalloc (len);
827 memcpy (p, s, len);
828 return p;
829 }
830
831
832 /* Unwind for SAFE_ALLOCA */
833
834 Lisp_Object
835 safe_alloca_unwind (Lisp_Object arg)
836 {
837 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
838
839 p->dogc = 0;
840 xfree (p->pointer);
841 p->pointer = 0;
842 free_misc (arg);
843 return Qnil;
844 }
845
846 /* Return a newly allocated memory block of SIZE bytes, remembering
847 to free it when unwinding. */
848 void *
849 record_xmalloc (size_t size)
850 {
851 void *p = xmalloc (size);
852 record_unwind_protect (safe_alloca_unwind, make_save_value (p, 0));
853 return p;
854 }
855
856
857 /* Like malloc but used for allocating Lisp data. NBYTES is the
858 number of bytes to allocate, TYPE describes the intended use of the
859 allocated memory block (for strings, for conses, ...). */
860
861 #if ! USE_LSB_TAG
862 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
863 #endif
864
865 static void *
866 lisp_malloc (size_t nbytes, enum mem_type type)
867 {
868 register void *val;
869
870 MALLOC_BLOCK_INPUT;
871
872 #ifdef GC_MALLOC_CHECK
873 allocated_mem_type = type;
874 #endif
875
876 val = malloc (nbytes);
877
878 #if ! USE_LSB_TAG
879 /* If the memory just allocated cannot be addressed thru a Lisp
880 object's pointer, and it needs to be,
881 that's equivalent to running out of memory. */
882 if (val && type != MEM_TYPE_NON_LISP)
883 {
884 Lisp_Object tem;
885 XSETCONS (tem, (char *) val + nbytes - 1);
886 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
887 {
888 lisp_malloc_loser = val;
889 free (val);
890 val = 0;
891 }
892 }
893 #endif
894
895 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
896 if (val && type != MEM_TYPE_NON_LISP)
897 mem_insert (val, (char *) val + nbytes, type);
898 #endif
899
900 MALLOC_UNBLOCK_INPUT;
901 if (!val && nbytes)
902 memory_full (nbytes);
903 MALLOC_PROBE (nbytes);
904 return val;
905 }
906
907 /* Free BLOCK. This must be called to free memory allocated with a
908 call to lisp_malloc. */
909
910 static void
911 lisp_free (void *block)
912 {
913 MALLOC_BLOCK_INPUT;
914 free (block);
915 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
916 mem_delete (mem_find (block));
917 #endif
918 MALLOC_UNBLOCK_INPUT;
919 }
920
921 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
922
923 /* The entry point is lisp_align_malloc which returns blocks of at most
924 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
925
926 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
927 #define USE_POSIX_MEMALIGN 1
928 #endif
929
930 /* BLOCK_ALIGN has to be a power of 2. */
931 #define BLOCK_ALIGN (1 << 10)
932
933 /* Padding to leave at the end of a malloc'd block. This is to give
934 malloc a chance to minimize the amount of memory wasted to alignment.
935 It should be tuned to the particular malloc library used.
936 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
937 posix_memalign on the other hand would ideally prefer a value of 4
938 because otherwise, there's 1020 bytes wasted between each ablocks.
939 In Emacs, testing shows that those 1020 can most of the time be
940 efficiently used by malloc to place other objects, so a value of 0 can
941 still preferable unless you have a lot of aligned blocks and virtually
942 nothing else. */
943 #define BLOCK_PADDING 0
944 #define BLOCK_BYTES \
945 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
946
947 /* Internal data structures and constants. */
948
949 #define ABLOCKS_SIZE 16
950
951 /* An aligned block of memory. */
952 struct ablock
953 {
954 union
955 {
956 char payload[BLOCK_BYTES];
957 struct ablock *next_free;
958 } x;
959 /* `abase' is the aligned base of the ablocks. */
960 /* It is overloaded to hold the virtual `busy' field that counts
961 the number of used ablock in the parent ablocks.
962 The first ablock has the `busy' field, the others have the `abase'
963 field. To tell the difference, we assume that pointers will have
964 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
965 is used to tell whether the real base of the parent ablocks is `abase'
966 (if not, the word before the first ablock holds a pointer to the
967 real base). */
968 struct ablocks *abase;
969 /* The padding of all but the last ablock is unused. The padding of
970 the last ablock in an ablocks is not allocated. */
971 #if BLOCK_PADDING
972 char padding[BLOCK_PADDING];
973 #endif
974 };
975
976 /* A bunch of consecutive aligned blocks. */
977 struct ablocks
978 {
979 struct ablock blocks[ABLOCKS_SIZE];
980 };
981
982 /* Size of the block requested from malloc or posix_memalign. */
983 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
984
985 #define ABLOCK_ABASE(block) \
986 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
987 ? (struct ablocks *)(block) \
988 : (block)->abase)
989
990 /* Virtual `busy' field. */
991 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
992
993 /* Pointer to the (not necessarily aligned) malloc block. */
994 #ifdef USE_POSIX_MEMALIGN
995 #define ABLOCKS_BASE(abase) (abase)
996 #else
997 #define ABLOCKS_BASE(abase) \
998 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
999 #endif
1000
1001 /* The list of free ablock. */
1002 static struct ablock *free_ablock;
1003
1004 /* Allocate an aligned block of nbytes.
1005 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1006 smaller or equal to BLOCK_BYTES. */
1007 static void *
1008 lisp_align_malloc (size_t nbytes, enum mem_type type)
1009 {
1010 void *base, *val;
1011 struct ablocks *abase;
1012
1013 eassert (nbytes <= BLOCK_BYTES);
1014
1015 MALLOC_BLOCK_INPUT;
1016
1017 #ifdef GC_MALLOC_CHECK
1018 allocated_mem_type = type;
1019 #endif
1020
1021 if (!free_ablock)
1022 {
1023 int i;
1024 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1025
1026 #ifdef DOUG_LEA_MALLOC
1027 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1028 because mapped region contents are not preserved in
1029 a dumped Emacs. */
1030 mallopt (M_MMAP_MAX, 0);
1031 #endif
1032
1033 #ifdef USE_POSIX_MEMALIGN
1034 {
1035 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1036 if (err)
1037 base = NULL;
1038 abase = base;
1039 }
1040 #else
1041 base = malloc (ABLOCKS_BYTES);
1042 abase = ALIGN (base, BLOCK_ALIGN);
1043 #endif
1044
1045 if (base == 0)
1046 {
1047 MALLOC_UNBLOCK_INPUT;
1048 memory_full (ABLOCKS_BYTES);
1049 }
1050
1051 aligned = (base == abase);
1052 if (!aligned)
1053 ((void**)abase)[-1] = base;
1054
1055 #ifdef DOUG_LEA_MALLOC
1056 /* Back to a reasonable maximum of mmap'ed areas. */
1057 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1058 #endif
1059
1060 #if ! USE_LSB_TAG
1061 /* If the memory just allocated cannot be addressed thru a Lisp
1062 object's pointer, and it needs to be, that's equivalent to
1063 running out of memory. */
1064 if (type != MEM_TYPE_NON_LISP)
1065 {
1066 Lisp_Object tem;
1067 char *end = (char *) base + ABLOCKS_BYTES - 1;
1068 XSETCONS (tem, end);
1069 if ((char *) XCONS (tem) != end)
1070 {
1071 lisp_malloc_loser = base;
1072 free (base);
1073 MALLOC_UNBLOCK_INPUT;
1074 memory_full (SIZE_MAX);
1075 }
1076 }
1077 #endif
1078
1079 /* Initialize the blocks and put them on the free list.
1080 If `base' was not properly aligned, we can't use the last block. */
1081 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1082 {
1083 abase->blocks[i].abase = abase;
1084 abase->blocks[i].x.next_free = free_ablock;
1085 free_ablock = &abase->blocks[i];
1086 }
1087 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1088
1089 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1090 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1091 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1092 eassert (ABLOCKS_BASE (abase) == base);
1093 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1094 }
1095
1096 abase = ABLOCK_ABASE (free_ablock);
1097 ABLOCKS_BUSY (abase) =
1098 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1099 val = free_ablock;
1100 free_ablock = free_ablock->x.next_free;
1101
1102 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1103 if (type != MEM_TYPE_NON_LISP)
1104 mem_insert (val, (char *) val + nbytes, type);
1105 #endif
1106
1107 MALLOC_UNBLOCK_INPUT;
1108
1109 MALLOC_PROBE (nbytes);
1110
1111 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1112 return val;
1113 }
1114
1115 static void
1116 lisp_align_free (void *block)
1117 {
1118 struct ablock *ablock = block;
1119 struct ablocks *abase = ABLOCK_ABASE (ablock);
1120
1121 MALLOC_BLOCK_INPUT;
1122 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1123 mem_delete (mem_find (block));
1124 #endif
1125 /* Put on free list. */
1126 ablock->x.next_free = free_ablock;
1127 free_ablock = ablock;
1128 /* Update busy count. */
1129 ABLOCKS_BUSY (abase)
1130 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1131
1132 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1133 { /* All the blocks are free. */
1134 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1135 struct ablock **tem = &free_ablock;
1136 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1137
1138 while (*tem)
1139 {
1140 if (*tem >= (struct ablock *) abase && *tem < atop)
1141 {
1142 i++;
1143 *tem = (*tem)->x.next_free;
1144 }
1145 else
1146 tem = &(*tem)->x.next_free;
1147 }
1148 eassert ((aligned & 1) == aligned);
1149 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1150 #ifdef USE_POSIX_MEMALIGN
1151 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1152 #endif
1153 free (ABLOCKS_BASE (abase));
1154 }
1155 MALLOC_UNBLOCK_INPUT;
1156 }
1157
1158 \f
1159 /***********************************************************************
1160 Interval Allocation
1161 ***********************************************************************/
1162
1163 /* Number of intervals allocated in an interval_block structure.
1164 The 1020 is 1024 minus malloc overhead. */
1165
1166 #define INTERVAL_BLOCK_SIZE \
1167 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1168
1169 /* Intervals are allocated in chunks in form of an interval_block
1170 structure. */
1171
1172 struct interval_block
1173 {
1174 /* Place `intervals' first, to preserve alignment. */
1175 struct interval intervals[INTERVAL_BLOCK_SIZE];
1176 struct interval_block *next;
1177 };
1178
1179 /* Current interval block. Its `next' pointer points to older
1180 blocks. */
1181
1182 static struct interval_block *interval_block;
1183
1184 /* Index in interval_block above of the next unused interval
1185 structure. */
1186
1187 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1188
1189 /* Number of free and live intervals. */
1190
1191 static EMACS_INT total_free_intervals, total_intervals;
1192
1193 /* List of free intervals. */
1194
1195 static INTERVAL interval_free_list;
1196
1197 /* Return a new interval. */
1198
1199 INTERVAL
1200 make_interval (void)
1201 {
1202 INTERVAL val;
1203
1204 MALLOC_BLOCK_INPUT;
1205
1206 if (interval_free_list)
1207 {
1208 val = interval_free_list;
1209 interval_free_list = INTERVAL_PARENT (interval_free_list);
1210 }
1211 else
1212 {
1213 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1214 {
1215 struct interval_block *newi
1216 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1217
1218 newi->next = interval_block;
1219 interval_block = newi;
1220 interval_block_index = 0;
1221 total_free_intervals += INTERVAL_BLOCK_SIZE;
1222 }
1223 val = &interval_block->intervals[interval_block_index++];
1224 }
1225
1226 MALLOC_UNBLOCK_INPUT;
1227
1228 consing_since_gc += sizeof (struct interval);
1229 intervals_consed++;
1230 total_free_intervals--;
1231 RESET_INTERVAL (val);
1232 val->gcmarkbit = 0;
1233 return val;
1234 }
1235
1236
1237 /* Mark Lisp objects in interval I. */
1238
1239 static void
1240 mark_interval (register INTERVAL i, Lisp_Object dummy)
1241 {
1242 /* Intervals should never be shared. So, if extra internal checking is
1243 enabled, GC aborts if it seems to have visited an interval twice. */
1244 eassert (!i->gcmarkbit);
1245 i->gcmarkbit = 1;
1246 mark_object (i->plist);
1247 }
1248
1249 /* Mark the interval tree rooted in I. */
1250
1251 #define MARK_INTERVAL_TREE(i) \
1252 do { \
1253 if (i && !i->gcmarkbit) \
1254 traverse_intervals_noorder (i, mark_interval, Qnil); \
1255 } while (0)
1256
1257 /***********************************************************************
1258 String Allocation
1259 ***********************************************************************/
1260
1261 /* Lisp_Strings are allocated in string_block structures. When a new
1262 string_block is allocated, all the Lisp_Strings it contains are
1263 added to a free-list string_free_list. When a new Lisp_String is
1264 needed, it is taken from that list. During the sweep phase of GC,
1265 string_blocks that are entirely free are freed, except two which
1266 we keep.
1267
1268 String data is allocated from sblock structures. Strings larger
1269 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1270 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1271
1272 Sblocks consist internally of sdata structures, one for each
1273 Lisp_String. The sdata structure points to the Lisp_String it
1274 belongs to. The Lisp_String points back to the `u.data' member of
1275 its sdata structure.
1276
1277 When a Lisp_String is freed during GC, it is put back on
1278 string_free_list, and its `data' member and its sdata's `string'
1279 pointer is set to null. The size of the string is recorded in the
1280 `u.nbytes' member of the sdata. So, sdata structures that are no
1281 longer used, can be easily recognized, and it's easy to compact the
1282 sblocks of small strings which we do in compact_small_strings. */
1283
1284 /* Size in bytes of an sblock structure used for small strings. This
1285 is 8192 minus malloc overhead. */
1286
1287 #define SBLOCK_SIZE 8188
1288
1289 /* Strings larger than this are considered large strings. String data
1290 for large strings is allocated from individual sblocks. */
1291
1292 #define LARGE_STRING_BYTES 1024
1293
1294 /* Structure describing string memory sub-allocated from an sblock.
1295 This is where the contents of Lisp strings are stored. */
1296
1297 struct sdata
1298 {
1299 /* Back-pointer to the string this sdata belongs to. If null, this
1300 structure is free, and the NBYTES member of the union below
1301 contains the string's byte size (the same value that STRING_BYTES
1302 would return if STRING were non-null). If non-null, STRING_BYTES
1303 (STRING) is the size of the data, and DATA contains the string's
1304 contents. */
1305 struct Lisp_String *string;
1306
1307 #ifdef GC_CHECK_STRING_BYTES
1308
1309 ptrdiff_t nbytes;
1310 unsigned char data[1];
1311
1312 #define SDATA_NBYTES(S) (S)->nbytes
1313 #define SDATA_DATA(S) (S)->data
1314 #define SDATA_SELECTOR(member) member
1315
1316 #else /* not GC_CHECK_STRING_BYTES */
1317
1318 union
1319 {
1320 /* When STRING is non-null. */
1321 unsigned char data[1];
1322
1323 /* When STRING is null. */
1324 ptrdiff_t nbytes;
1325 } u;
1326
1327 #define SDATA_NBYTES(S) (S)->u.nbytes
1328 #define SDATA_DATA(S) (S)->u.data
1329 #define SDATA_SELECTOR(member) u.member
1330
1331 #endif /* not GC_CHECK_STRING_BYTES */
1332
1333 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1334 };
1335
1336
1337 /* Structure describing a block of memory which is sub-allocated to
1338 obtain string data memory for strings. Blocks for small strings
1339 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1340 as large as needed. */
1341
1342 struct sblock
1343 {
1344 /* Next in list. */
1345 struct sblock *next;
1346
1347 /* Pointer to the next free sdata block. This points past the end
1348 of the sblock if there isn't any space left in this block. */
1349 struct sdata *next_free;
1350
1351 /* Start of data. */
1352 struct sdata first_data;
1353 };
1354
1355 /* Number of Lisp strings in a string_block structure. The 1020 is
1356 1024 minus malloc overhead. */
1357
1358 #define STRING_BLOCK_SIZE \
1359 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1360
1361 /* Structure describing a block from which Lisp_String structures
1362 are allocated. */
1363
1364 struct string_block
1365 {
1366 /* Place `strings' first, to preserve alignment. */
1367 struct Lisp_String strings[STRING_BLOCK_SIZE];
1368 struct string_block *next;
1369 };
1370
1371 /* Head and tail of the list of sblock structures holding Lisp string
1372 data. We always allocate from current_sblock. The NEXT pointers
1373 in the sblock structures go from oldest_sblock to current_sblock. */
1374
1375 static struct sblock *oldest_sblock, *current_sblock;
1376
1377 /* List of sblocks for large strings. */
1378
1379 static struct sblock *large_sblocks;
1380
1381 /* List of string_block structures. */
1382
1383 static struct string_block *string_blocks;
1384
1385 /* Free-list of Lisp_Strings. */
1386
1387 static struct Lisp_String *string_free_list;
1388
1389 /* Number of live and free Lisp_Strings. */
1390
1391 static EMACS_INT total_strings, total_free_strings;
1392
1393 /* Number of bytes used by live strings. */
1394
1395 static EMACS_INT total_string_bytes;
1396
1397 /* Given a pointer to a Lisp_String S which is on the free-list
1398 string_free_list, return a pointer to its successor in the
1399 free-list. */
1400
1401 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1402
1403 /* Return a pointer to the sdata structure belonging to Lisp string S.
1404 S must be live, i.e. S->data must not be null. S->data is actually
1405 a pointer to the `u.data' member of its sdata structure; the
1406 structure starts at a constant offset in front of that. */
1407
1408 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1409
1410
1411 #ifdef GC_CHECK_STRING_OVERRUN
1412
1413 /* We check for overrun in string data blocks by appending a small
1414 "cookie" after each allocated string data block, and check for the
1415 presence of this cookie during GC. */
1416
1417 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1418 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1419 { '\xde', '\xad', '\xbe', '\xef' };
1420
1421 #else
1422 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1423 #endif
1424
1425 /* Value is the size of an sdata structure large enough to hold NBYTES
1426 bytes of string data. The value returned includes a terminating
1427 NUL byte, the size of the sdata structure, and padding. */
1428
1429 #ifdef GC_CHECK_STRING_BYTES
1430
1431 #define SDATA_SIZE(NBYTES) \
1432 ((SDATA_DATA_OFFSET \
1433 + (NBYTES) + 1 \
1434 + sizeof (ptrdiff_t) - 1) \
1435 & ~(sizeof (ptrdiff_t) - 1))
1436
1437 #else /* not GC_CHECK_STRING_BYTES */
1438
1439 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1440 less than the size of that member. The 'max' is not needed when
1441 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1442 alignment code reserves enough space. */
1443
1444 #define SDATA_SIZE(NBYTES) \
1445 ((SDATA_DATA_OFFSET \
1446 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1447 ? NBYTES \
1448 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1449 + 1 \
1450 + sizeof (ptrdiff_t) - 1) \
1451 & ~(sizeof (ptrdiff_t) - 1))
1452
1453 #endif /* not GC_CHECK_STRING_BYTES */
1454
1455 /* Extra bytes to allocate for each string. */
1456
1457 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1458
1459 /* Exact bound on the number of bytes in a string, not counting the
1460 terminating null. A string cannot contain more bytes than
1461 STRING_BYTES_BOUND, nor can it be so long that the size_t
1462 arithmetic in allocate_string_data would overflow while it is
1463 calculating a value to be passed to malloc. */
1464 static ptrdiff_t const STRING_BYTES_MAX =
1465 min (STRING_BYTES_BOUND,
1466 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1467 - GC_STRING_EXTRA
1468 - offsetof (struct sblock, first_data)
1469 - SDATA_DATA_OFFSET)
1470 & ~(sizeof (EMACS_INT) - 1)));
1471
1472 /* Initialize string allocation. Called from init_alloc_once. */
1473
1474 static void
1475 init_strings (void)
1476 {
1477 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1478 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1479 }
1480
1481
1482 #ifdef GC_CHECK_STRING_BYTES
1483
1484 static int check_string_bytes_count;
1485
1486 /* Like STRING_BYTES, but with debugging check. Can be
1487 called during GC, so pay attention to the mark bit. */
1488
1489 ptrdiff_t
1490 string_bytes (struct Lisp_String *s)
1491 {
1492 ptrdiff_t nbytes =
1493 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1494
1495 if (!PURE_POINTER_P (s)
1496 && s->data
1497 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1498 emacs_abort ();
1499 return nbytes;
1500 }
1501
1502 /* Check validity of Lisp strings' string_bytes member in B. */
1503
1504 static void
1505 check_sblock (struct sblock *b)
1506 {
1507 struct sdata *from, *end, *from_end;
1508
1509 end = b->next_free;
1510
1511 for (from = &b->first_data; from < end; from = from_end)
1512 {
1513 /* Compute the next FROM here because copying below may
1514 overwrite data we need to compute it. */
1515 ptrdiff_t nbytes;
1516
1517 /* Check that the string size recorded in the string is the
1518 same as the one recorded in the sdata structure. */
1519 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1520 : SDATA_NBYTES (from));
1521 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1522 }
1523 }
1524
1525
1526 /* Check validity of Lisp strings' string_bytes member. ALL_P
1527 means check all strings, otherwise check only most
1528 recently allocated strings. Used for hunting a bug. */
1529
1530 static void
1531 check_string_bytes (bool all_p)
1532 {
1533 if (all_p)
1534 {
1535 struct sblock *b;
1536
1537 for (b = large_sblocks; b; b = b->next)
1538 {
1539 struct Lisp_String *s = b->first_data.string;
1540 if (s)
1541 string_bytes (s);
1542 }
1543
1544 for (b = oldest_sblock; b; b = b->next)
1545 check_sblock (b);
1546 }
1547 else if (current_sblock)
1548 check_sblock (current_sblock);
1549 }
1550
1551 #else /* not GC_CHECK_STRING_BYTES */
1552
1553 #define check_string_bytes(all) ((void) 0)
1554
1555 #endif /* GC_CHECK_STRING_BYTES */
1556
1557 #ifdef GC_CHECK_STRING_FREE_LIST
1558
1559 /* Walk through the string free list looking for bogus next pointers.
1560 This may catch buffer overrun from a previous string. */
1561
1562 static void
1563 check_string_free_list (void)
1564 {
1565 struct Lisp_String *s;
1566
1567 /* Pop a Lisp_String off the free-list. */
1568 s = string_free_list;
1569 while (s != NULL)
1570 {
1571 if ((uintptr_t) s < 1024)
1572 emacs_abort ();
1573 s = NEXT_FREE_LISP_STRING (s);
1574 }
1575 }
1576 #else
1577 #define check_string_free_list()
1578 #endif
1579
1580 /* Return a new Lisp_String. */
1581
1582 static struct Lisp_String *
1583 allocate_string (void)
1584 {
1585 struct Lisp_String *s;
1586
1587 MALLOC_BLOCK_INPUT;
1588
1589 /* If the free-list is empty, allocate a new string_block, and
1590 add all the Lisp_Strings in it to the free-list. */
1591 if (string_free_list == NULL)
1592 {
1593 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1594 int i;
1595
1596 b->next = string_blocks;
1597 string_blocks = b;
1598
1599 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1600 {
1601 s = b->strings + i;
1602 /* Every string on a free list should have NULL data pointer. */
1603 s->data = NULL;
1604 NEXT_FREE_LISP_STRING (s) = string_free_list;
1605 string_free_list = s;
1606 }
1607
1608 total_free_strings += STRING_BLOCK_SIZE;
1609 }
1610
1611 check_string_free_list ();
1612
1613 /* Pop a Lisp_String off the free-list. */
1614 s = string_free_list;
1615 string_free_list = NEXT_FREE_LISP_STRING (s);
1616
1617 MALLOC_UNBLOCK_INPUT;
1618
1619 --total_free_strings;
1620 ++total_strings;
1621 ++strings_consed;
1622 consing_since_gc += sizeof *s;
1623
1624 #ifdef GC_CHECK_STRING_BYTES
1625 if (!noninteractive)
1626 {
1627 if (++check_string_bytes_count == 200)
1628 {
1629 check_string_bytes_count = 0;
1630 check_string_bytes (1);
1631 }
1632 else
1633 check_string_bytes (0);
1634 }
1635 #endif /* GC_CHECK_STRING_BYTES */
1636
1637 return s;
1638 }
1639
1640
1641 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1642 plus a NUL byte at the end. Allocate an sdata structure for S, and
1643 set S->data to its `u.data' member. Store a NUL byte at the end of
1644 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1645 S->data if it was initially non-null. */
1646
1647 void
1648 allocate_string_data (struct Lisp_String *s,
1649 EMACS_INT nchars, EMACS_INT nbytes)
1650 {
1651 struct sdata *data, *old_data;
1652 struct sblock *b;
1653 ptrdiff_t needed, old_nbytes;
1654
1655 if (STRING_BYTES_MAX < nbytes)
1656 string_overflow ();
1657
1658 /* Determine the number of bytes needed to store NBYTES bytes
1659 of string data. */
1660 needed = SDATA_SIZE (nbytes);
1661 if (s->data)
1662 {
1663 old_data = SDATA_OF_STRING (s);
1664 old_nbytes = STRING_BYTES (s);
1665 }
1666 else
1667 old_data = NULL;
1668
1669 MALLOC_BLOCK_INPUT;
1670
1671 if (nbytes > LARGE_STRING_BYTES)
1672 {
1673 size_t size = offsetof (struct sblock, first_data) + needed;
1674
1675 #ifdef DOUG_LEA_MALLOC
1676 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1677 because mapped region contents are not preserved in
1678 a dumped Emacs.
1679
1680 In case you think of allowing it in a dumped Emacs at the
1681 cost of not being able to re-dump, there's another reason:
1682 mmap'ed data typically have an address towards the top of the
1683 address space, which won't fit into an EMACS_INT (at least on
1684 32-bit systems with the current tagging scheme). --fx */
1685 mallopt (M_MMAP_MAX, 0);
1686 #endif
1687
1688 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1689
1690 #ifdef DOUG_LEA_MALLOC
1691 /* Back to a reasonable maximum of mmap'ed areas. */
1692 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1693 #endif
1694
1695 b->next_free = &b->first_data;
1696 b->first_data.string = NULL;
1697 b->next = large_sblocks;
1698 large_sblocks = b;
1699 }
1700 else if (current_sblock == NULL
1701 || (((char *) current_sblock + SBLOCK_SIZE
1702 - (char *) current_sblock->next_free)
1703 < (needed + GC_STRING_EXTRA)))
1704 {
1705 /* Not enough room in the current sblock. */
1706 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1707 b->next_free = &b->first_data;
1708 b->first_data.string = NULL;
1709 b->next = NULL;
1710
1711 if (current_sblock)
1712 current_sblock->next = b;
1713 else
1714 oldest_sblock = b;
1715 current_sblock = b;
1716 }
1717 else
1718 b = current_sblock;
1719
1720 data = b->next_free;
1721 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1722
1723 MALLOC_UNBLOCK_INPUT;
1724
1725 data->string = s;
1726 s->data = SDATA_DATA (data);
1727 #ifdef GC_CHECK_STRING_BYTES
1728 SDATA_NBYTES (data) = nbytes;
1729 #endif
1730 s->size = nchars;
1731 s->size_byte = nbytes;
1732 s->data[nbytes] = '\0';
1733 #ifdef GC_CHECK_STRING_OVERRUN
1734 memcpy ((char *) data + needed, string_overrun_cookie,
1735 GC_STRING_OVERRUN_COOKIE_SIZE);
1736 #endif
1737
1738 /* Note that Faset may call to this function when S has already data
1739 assigned. In this case, mark data as free by setting it's string
1740 back-pointer to null, and record the size of the data in it. */
1741 if (old_data)
1742 {
1743 SDATA_NBYTES (old_data) = old_nbytes;
1744 old_data->string = NULL;
1745 }
1746
1747 consing_since_gc += needed;
1748 }
1749
1750
1751 /* Sweep and compact strings. */
1752
1753 static void
1754 sweep_strings (void)
1755 {
1756 struct string_block *b, *next;
1757 struct string_block *live_blocks = NULL;
1758
1759 string_free_list = NULL;
1760 total_strings = total_free_strings = 0;
1761 total_string_bytes = 0;
1762
1763 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1764 for (b = string_blocks; b; b = next)
1765 {
1766 int i, nfree = 0;
1767 struct Lisp_String *free_list_before = string_free_list;
1768
1769 next = b->next;
1770
1771 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1772 {
1773 struct Lisp_String *s = b->strings + i;
1774
1775 if (s->data)
1776 {
1777 /* String was not on free-list before. */
1778 if (STRING_MARKED_P (s))
1779 {
1780 /* String is live; unmark it and its intervals. */
1781 UNMARK_STRING (s);
1782
1783 /* Do not use string_(set|get)_intervals here. */
1784 s->intervals = balance_intervals (s->intervals);
1785
1786 ++total_strings;
1787 total_string_bytes += STRING_BYTES (s);
1788 }
1789 else
1790 {
1791 /* String is dead. Put it on the free-list. */
1792 struct sdata *data = SDATA_OF_STRING (s);
1793
1794 /* Save the size of S in its sdata so that we know
1795 how large that is. Reset the sdata's string
1796 back-pointer so that we know it's free. */
1797 #ifdef GC_CHECK_STRING_BYTES
1798 if (string_bytes (s) != SDATA_NBYTES (data))
1799 emacs_abort ();
1800 #else
1801 data->u.nbytes = STRING_BYTES (s);
1802 #endif
1803 data->string = NULL;
1804
1805 /* Reset the strings's `data' member so that we
1806 know it's free. */
1807 s->data = NULL;
1808
1809 /* Put the string on the free-list. */
1810 NEXT_FREE_LISP_STRING (s) = string_free_list;
1811 string_free_list = s;
1812 ++nfree;
1813 }
1814 }
1815 else
1816 {
1817 /* S was on the free-list before. Put it there again. */
1818 NEXT_FREE_LISP_STRING (s) = string_free_list;
1819 string_free_list = s;
1820 ++nfree;
1821 }
1822 }
1823
1824 /* Free blocks that contain free Lisp_Strings only, except
1825 the first two of them. */
1826 if (nfree == STRING_BLOCK_SIZE
1827 && total_free_strings > STRING_BLOCK_SIZE)
1828 {
1829 lisp_free (b);
1830 string_free_list = free_list_before;
1831 }
1832 else
1833 {
1834 total_free_strings += nfree;
1835 b->next = live_blocks;
1836 live_blocks = b;
1837 }
1838 }
1839
1840 check_string_free_list ();
1841
1842 string_blocks = live_blocks;
1843 free_large_strings ();
1844 compact_small_strings ();
1845
1846 check_string_free_list ();
1847 }
1848
1849
1850 /* Free dead large strings. */
1851
1852 static void
1853 free_large_strings (void)
1854 {
1855 struct sblock *b, *next;
1856 struct sblock *live_blocks = NULL;
1857
1858 for (b = large_sblocks; b; b = next)
1859 {
1860 next = b->next;
1861
1862 if (b->first_data.string == NULL)
1863 lisp_free (b);
1864 else
1865 {
1866 b->next = live_blocks;
1867 live_blocks = b;
1868 }
1869 }
1870
1871 large_sblocks = live_blocks;
1872 }
1873
1874
1875 /* Compact data of small strings. Free sblocks that don't contain
1876 data of live strings after compaction. */
1877
1878 static void
1879 compact_small_strings (void)
1880 {
1881 struct sblock *b, *tb, *next;
1882 struct sdata *from, *to, *end, *tb_end;
1883 struct sdata *to_end, *from_end;
1884
1885 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1886 to, and TB_END is the end of TB. */
1887 tb = oldest_sblock;
1888 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1889 to = &tb->first_data;
1890
1891 /* Step through the blocks from the oldest to the youngest. We
1892 expect that old blocks will stabilize over time, so that less
1893 copying will happen this way. */
1894 for (b = oldest_sblock; b; b = b->next)
1895 {
1896 end = b->next_free;
1897 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1898
1899 for (from = &b->first_data; from < end; from = from_end)
1900 {
1901 /* Compute the next FROM here because copying below may
1902 overwrite data we need to compute it. */
1903 ptrdiff_t nbytes;
1904 struct Lisp_String *s = from->string;
1905
1906 #ifdef GC_CHECK_STRING_BYTES
1907 /* Check that the string size recorded in the string is the
1908 same as the one recorded in the sdata structure. */
1909 if (s && string_bytes (s) != SDATA_NBYTES (from))
1910 emacs_abort ();
1911 #endif /* GC_CHECK_STRING_BYTES */
1912
1913 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1914 eassert (nbytes <= LARGE_STRING_BYTES);
1915
1916 nbytes = SDATA_SIZE (nbytes);
1917 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1918
1919 #ifdef GC_CHECK_STRING_OVERRUN
1920 if (memcmp (string_overrun_cookie,
1921 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1922 GC_STRING_OVERRUN_COOKIE_SIZE))
1923 emacs_abort ();
1924 #endif
1925
1926 /* Non-NULL S means it's alive. Copy its data. */
1927 if (s)
1928 {
1929 /* If TB is full, proceed with the next sblock. */
1930 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1931 if (to_end > tb_end)
1932 {
1933 tb->next_free = to;
1934 tb = tb->next;
1935 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1936 to = &tb->first_data;
1937 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1938 }
1939
1940 /* Copy, and update the string's `data' pointer. */
1941 if (from != to)
1942 {
1943 eassert (tb != b || to < from);
1944 memmove (to, from, nbytes + GC_STRING_EXTRA);
1945 to->string->data = SDATA_DATA (to);
1946 }
1947
1948 /* Advance past the sdata we copied to. */
1949 to = to_end;
1950 }
1951 }
1952 }
1953
1954 /* The rest of the sblocks following TB don't contain live data, so
1955 we can free them. */
1956 for (b = tb->next; b; b = next)
1957 {
1958 next = b->next;
1959 lisp_free (b);
1960 }
1961
1962 tb->next_free = to;
1963 tb->next = NULL;
1964 current_sblock = tb;
1965 }
1966
1967 void
1968 string_overflow (void)
1969 {
1970 error ("Maximum string size exceeded");
1971 }
1972
1973 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1974 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1975 LENGTH must be an integer.
1976 INIT must be an integer that represents a character. */)
1977 (Lisp_Object length, Lisp_Object init)
1978 {
1979 register Lisp_Object val;
1980 register unsigned char *p, *end;
1981 int c;
1982 EMACS_INT nbytes;
1983
1984 CHECK_NATNUM (length);
1985 CHECK_CHARACTER (init);
1986
1987 c = XFASTINT (init);
1988 if (ASCII_CHAR_P (c))
1989 {
1990 nbytes = XINT (length);
1991 val = make_uninit_string (nbytes);
1992 p = SDATA (val);
1993 end = p + SCHARS (val);
1994 while (p != end)
1995 *p++ = c;
1996 }
1997 else
1998 {
1999 unsigned char str[MAX_MULTIBYTE_LENGTH];
2000 int len = CHAR_STRING (c, str);
2001 EMACS_INT string_len = XINT (length);
2002
2003 if (string_len > STRING_BYTES_MAX / len)
2004 string_overflow ();
2005 nbytes = len * string_len;
2006 val = make_uninit_multibyte_string (string_len, nbytes);
2007 p = SDATA (val);
2008 end = p + nbytes;
2009 while (p != end)
2010 {
2011 memcpy (p, str, len);
2012 p += len;
2013 }
2014 }
2015
2016 *p = 0;
2017 return val;
2018 }
2019
2020
2021 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2022 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2023 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2024 (Lisp_Object length, Lisp_Object init)
2025 {
2026 register Lisp_Object val;
2027 struct Lisp_Bool_Vector *p;
2028 ptrdiff_t length_in_chars;
2029 EMACS_INT length_in_elts;
2030 int bits_per_value;
2031 int extra_bool_elts = ((bool_header_size - header_size + word_size - 1)
2032 / word_size);
2033
2034 CHECK_NATNUM (length);
2035
2036 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2037
2038 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2039
2040 val = Fmake_vector (make_number (length_in_elts + extra_bool_elts), Qnil);
2041
2042 /* No Lisp_Object to trace in there. */
2043 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2044
2045 p = XBOOL_VECTOR (val);
2046 p->size = XFASTINT (length);
2047
2048 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2049 / BOOL_VECTOR_BITS_PER_CHAR);
2050 if (length_in_chars)
2051 {
2052 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2053
2054 /* Clear any extraneous bits in the last byte. */
2055 p->data[length_in_chars - 1]
2056 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2057 }
2058
2059 return val;
2060 }
2061
2062
2063 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2064 of characters from the contents. This string may be unibyte or
2065 multibyte, depending on the contents. */
2066
2067 Lisp_Object
2068 make_string (const char *contents, ptrdiff_t nbytes)
2069 {
2070 register Lisp_Object val;
2071 ptrdiff_t nchars, multibyte_nbytes;
2072
2073 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2074 &nchars, &multibyte_nbytes);
2075 if (nbytes == nchars || nbytes != multibyte_nbytes)
2076 /* CONTENTS contains no multibyte sequences or contains an invalid
2077 multibyte sequence. We must make unibyte string. */
2078 val = make_unibyte_string (contents, nbytes);
2079 else
2080 val = make_multibyte_string (contents, nchars, nbytes);
2081 return val;
2082 }
2083
2084
2085 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2086
2087 Lisp_Object
2088 make_unibyte_string (const char *contents, ptrdiff_t length)
2089 {
2090 register Lisp_Object val;
2091 val = make_uninit_string (length);
2092 memcpy (SDATA (val), contents, length);
2093 return val;
2094 }
2095
2096
2097 /* Make a multibyte string from NCHARS characters occupying NBYTES
2098 bytes at CONTENTS. */
2099
2100 Lisp_Object
2101 make_multibyte_string (const char *contents,
2102 ptrdiff_t nchars, ptrdiff_t nbytes)
2103 {
2104 register Lisp_Object val;
2105 val = make_uninit_multibyte_string (nchars, nbytes);
2106 memcpy (SDATA (val), contents, nbytes);
2107 return val;
2108 }
2109
2110
2111 /* Make a string from NCHARS characters occupying NBYTES bytes at
2112 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2113
2114 Lisp_Object
2115 make_string_from_bytes (const char *contents,
2116 ptrdiff_t nchars, ptrdiff_t nbytes)
2117 {
2118 register Lisp_Object val;
2119 val = make_uninit_multibyte_string (nchars, nbytes);
2120 memcpy (SDATA (val), contents, nbytes);
2121 if (SBYTES (val) == SCHARS (val))
2122 STRING_SET_UNIBYTE (val);
2123 return val;
2124 }
2125
2126
2127 /* Make a string from NCHARS characters occupying NBYTES bytes at
2128 CONTENTS. The argument MULTIBYTE controls whether to label the
2129 string as multibyte. If NCHARS is negative, it counts the number of
2130 characters by itself. */
2131
2132 Lisp_Object
2133 make_specified_string (const char *contents,
2134 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2135 {
2136 Lisp_Object val;
2137
2138 if (nchars < 0)
2139 {
2140 if (multibyte)
2141 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2142 nbytes);
2143 else
2144 nchars = nbytes;
2145 }
2146 val = make_uninit_multibyte_string (nchars, nbytes);
2147 memcpy (SDATA (val), contents, nbytes);
2148 if (!multibyte)
2149 STRING_SET_UNIBYTE (val);
2150 return val;
2151 }
2152
2153
2154 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2155 occupying LENGTH bytes. */
2156
2157 Lisp_Object
2158 make_uninit_string (EMACS_INT length)
2159 {
2160 Lisp_Object val;
2161
2162 if (!length)
2163 return empty_unibyte_string;
2164 val = make_uninit_multibyte_string (length, length);
2165 STRING_SET_UNIBYTE (val);
2166 return val;
2167 }
2168
2169
2170 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2171 which occupy NBYTES bytes. */
2172
2173 Lisp_Object
2174 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2175 {
2176 Lisp_Object string;
2177 struct Lisp_String *s;
2178
2179 if (nchars < 0)
2180 emacs_abort ();
2181 if (!nbytes)
2182 return empty_multibyte_string;
2183
2184 s = allocate_string ();
2185 s->intervals = NULL;
2186 allocate_string_data (s, nchars, nbytes);
2187 XSETSTRING (string, s);
2188 string_chars_consed += nbytes;
2189 return string;
2190 }
2191
2192 /* Print arguments to BUF according to a FORMAT, then return
2193 a Lisp_String initialized with the data from BUF. */
2194
2195 Lisp_Object
2196 make_formatted_string (char *buf, const char *format, ...)
2197 {
2198 va_list ap;
2199 int length;
2200
2201 va_start (ap, format);
2202 length = vsprintf (buf, format, ap);
2203 va_end (ap);
2204 return make_string (buf, length);
2205 }
2206
2207 \f
2208 /***********************************************************************
2209 Float Allocation
2210 ***********************************************************************/
2211
2212 /* We store float cells inside of float_blocks, allocating a new
2213 float_block with malloc whenever necessary. Float cells reclaimed
2214 by GC are put on a free list to be reallocated before allocating
2215 any new float cells from the latest float_block. */
2216
2217 #define FLOAT_BLOCK_SIZE \
2218 (((BLOCK_BYTES - sizeof (struct float_block *) \
2219 /* The compiler might add padding at the end. */ \
2220 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2221 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2222
2223 #define GETMARKBIT(block,n) \
2224 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2225 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2226 & 1)
2227
2228 #define SETMARKBIT(block,n) \
2229 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2230 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2231
2232 #define UNSETMARKBIT(block,n) \
2233 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2234 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2235
2236 #define FLOAT_BLOCK(fptr) \
2237 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2238
2239 #define FLOAT_INDEX(fptr) \
2240 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2241
2242 struct float_block
2243 {
2244 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2245 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2246 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2247 struct float_block *next;
2248 };
2249
2250 #define FLOAT_MARKED_P(fptr) \
2251 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2252
2253 #define FLOAT_MARK(fptr) \
2254 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2255
2256 #define FLOAT_UNMARK(fptr) \
2257 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2258
2259 /* Current float_block. */
2260
2261 static struct float_block *float_block;
2262
2263 /* Index of first unused Lisp_Float in the current float_block. */
2264
2265 static int float_block_index = FLOAT_BLOCK_SIZE;
2266
2267 /* Free-list of Lisp_Floats. */
2268
2269 static struct Lisp_Float *float_free_list;
2270
2271 /* Return a new float object with value FLOAT_VALUE. */
2272
2273 Lisp_Object
2274 make_float (double float_value)
2275 {
2276 register Lisp_Object val;
2277
2278 MALLOC_BLOCK_INPUT;
2279
2280 if (float_free_list)
2281 {
2282 /* We use the data field for chaining the free list
2283 so that we won't use the same field that has the mark bit. */
2284 XSETFLOAT (val, float_free_list);
2285 float_free_list = float_free_list->u.chain;
2286 }
2287 else
2288 {
2289 if (float_block_index == FLOAT_BLOCK_SIZE)
2290 {
2291 struct float_block *new
2292 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2293 new->next = float_block;
2294 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2295 float_block = new;
2296 float_block_index = 0;
2297 total_free_floats += FLOAT_BLOCK_SIZE;
2298 }
2299 XSETFLOAT (val, &float_block->floats[float_block_index]);
2300 float_block_index++;
2301 }
2302
2303 MALLOC_UNBLOCK_INPUT;
2304
2305 XFLOAT_INIT (val, float_value);
2306 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2307 consing_since_gc += sizeof (struct Lisp_Float);
2308 floats_consed++;
2309 total_free_floats--;
2310 return val;
2311 }
2312
2313
2314 \f
2315 /***********************************************************************
2316 Cons Allocation
2317 ***********************************************************************/
2318
2319 /* We store cons cells inside of cons_blocks, allocating a new
2320 cons_block with malloc whenever necessary. Cons cells reclaimed by
2321 GC are put on a free list to be reallocated before allocating
2322 any new cons cells from the latest cons_block. */
2323
2324 #define CONS_BLOCK_SIZE \
2325 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2326 /* The compiler might add padding at the end. */ \
2327 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2328 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2329
2330 #define CONS_BLOCK(fptr) \
2331 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2332
2333 #define CONS_INDEX(fptr) \
2334 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2335
2336 struct cons_block
2337 {
2338 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2339 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2340 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2341 struct cons_block *next;
2342 };
2343
2344 #define CONS_MARKED_P(fptr) \
2345 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2346
2347 #define CONS_MARK(fptr) \
2348 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2349
2350 #define CONS_UNMARK(fptr) \
2351 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2352
2353 /* Current cons_block. */
2354
2355 static struct cons_block *cons_block;
2356
2357 /* Index of first unused Lisp_Cons in the current block. */
2358
2359 static int cons_block_index = CONS_BLOCK_SIZE;
2360
2361 /* Free-list of Lisp_Cons structures. */
2362
2363 static struct Lisp_Cons *cons_free_list;
2364
2365 /* Explicitly free a cons cell by putting it on the free-list. */
2366
2367 void
2368 free_cons (struct Lisp_Cons *ptr)
2369 {
2370 ptr->u.chain = cons_free_list;
2371 #if GC_MARK_STACK
2372 ptr->car = Vdead;
2373 #endif
2374 cons_free_list = ptr;
2375 consing_since_gc -= sizeof *ptr;
2376 total_free_conses++;
2377 }
2378
2379 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2380 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2381 (Lisp_Object car, Lisp_Object cdr)
2382 {
2383 register Lisp_Object val;
2384
2385 MALLOC_BLOCK_INPUT;
2386
2387 if (cons_free_list)
2388 {
2389 /* We use the cdr for chaining the free list
2390 so that we won't use the same field that has the mark bit. */
2391 XSETCONS (val, cons_free_list);
2392 cons_free_list = cons_free_list->u.chain;
2393 }
2394 else
2395 {
2396 if (cons_block_index == CONS_BLOCK_SIZE)
2397 {
2398 struct cons_block *new
2399 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2400 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2401 new->next = cons_block;
2402 cons_block = new;
2403 cons_block_index = 0;
2404 total_free_conses += CONS_BLOCK_SIZE;
2405 }
2406 XSETCONS (val, &cons_block->conses[cons_block_index]);
2407 cons_block_index++;
2408 }
2409
2410 MALLOC_UNBLOCK_INPUT;
2411
2412 XSETCAR (val, car);
2413 XSETCDR (val, cdr);
2414 eassert (!CONS_MARKED_P (XCONS (val)));
2415 consing_since_gc += sizeof (struct Lisp_Cons);
2416 total_free_conses--;
2417 cons_cells_consed++;
2418 return val;
2419 }
2420
2421 #ifdef GC_CHECK_CONS_LIST
2422 /* Get an error now if there's any junk in the cons free list. */
2423 void
2424 check_cons_list (void)
2425 {
2426 struct Lisp_Cons *tail = cons_free_list;
2427
2428 while (tail)
2429 tail = tail->u.chain;
2430 }
2431 #endif
2432
2433 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2434
2435 Lisp_Object
2436 list1 (Lisp_Object arg1)
2437 {
2438 return Fcons (arg1, Qnil);
2439 }
2440
2441 Lisp_Object
2442 list2 (Lisp_Object arg1, Lisp_Object arg2)
2443 {
2444 return Fcons (arg1, Fcons (arg2, Qnil));
2445 }
2446
2447
2448 Lisp_Object
2449 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2450 {
2451 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2452 }
2453
2454
2455 Lisp_Object
2456 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2457 {
2458 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2459 }
2460
2461
2462 Lisp_Object
2463 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2464 {
2465 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2466 Fcons (arg5, Qnil)))));
2467 }
2468
2469 /* Make a list of COUNT Lisp_Objects, where ARG is the
2470 first one. Allocate conses from pure space if TYPE
2471 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2472
2473 Lisp_Object
2474 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2475 {
2476 va_list ap;
2477 ptrdiff_t i;
2478 Lisp_Object val, *objp;
2479
2480 /* Change to SAFE_ALLOCA if you hit this eassert. */
2481 eassert (count <= MAX_ALLOCA / word_size);
2482
2483 objp = alloca (count * word_size);
2484 objp[0] = arg;
2485 va_start (ap, arg);
2486 for (i = 1; i < count; i++)
2487 objp[i] = va_arg (ap, Lisp_Object);
2488 va_end (ap);
2489
2490 for (val = Qnil, i = count - 1; i >= 0; i--)
2491 {
2492 if (type == CONSTYPE_PURE)
2493 val = pure_cons (objp[i], val);
2494 else if (type == CONSTYPE_HEAP)
2495 val = Fcons (objp[i], val);
2496 else
2497 emacs_abort ();
2498 }
2499 return val;
2500 }
2501
2502 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2503 doc: /* Return a newly created list with specified arguments as elements.
2504 Any number of arguments, even zero arguments, are allowed.
2505 usage: (list &rest OBJECTS) */)
2506 (ptrdiff_t nargs, Lisp_Object *args)
2507 {
2508 register Lisp_Object val;
2509 val = Qnil;
2510
2511 while (nargs > 0)
2512 {
2513 nargs--;
2514 val = Fcons (args[nargs], val);
2515 }
2516 return val;
2517 }
2518
2519
2520 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2521 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2522 (register Lisp_Object length, Lisp_Object init)
2523 {
2524 register Lisp_Object val;
2525 register EMACS_INT size;
2526
2527 CHECK_NATNUM (length);
2528 size = XFASTINT (length);
2529
2530 val = Qnil;
2531 while (size > 0)
2532 {
2533 val = Fcons (init, val);
2534 --size;
2535
2536 if (size > 0)
2537 {
2538 val = Fcons (init, val);
2539 --size;
2540
2541 if (size > 0)
2542 {
2543 val = Fcons (init, val);
2544 --size;
2545
2546 if (size > 0)
2547 {
2548 val = Fcons (init, val);
2549 --size;
2550
2551 if (size > 0)
2552 {
2553 val = Fcons (init, val);
2554 --size;
2555 }
2556 }
2557 }
2558 }
2559
2560 QUIT;
2561 }
2562
2563 return val;
2564 }
2565
2566
2567 \f
2568 /***********************************************************************
2569 Vector Allocation
2570 ***********************************************************************/
2571
2572 /* This value is balanced well enough to avoid too much internal overhead
2573 for the most common cases; it's not required to be a power of two, but
2574 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2575
2576 #define VECTOR_BLOCK_SIZE 4096
2577
2578 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2579 enum
2580 {
2581 roundup_size = COMMON_MULTIPLE (word_size, USE_LSB_TAG ? GCALIGNMENT : 1)
2582 };
2583
2584 /* ROUNDUP_SIZE must be a power of 2. */
2585 verify ((roundup_size & (roundup_size - 1)) == 0);
2586
2587 /* Verify assumptions described above. */
2588 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2589 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2590
2591 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2592
2593 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2594
2595 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2596
2597 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2598
2599 /* Size of the minimal vector allocated from block. */
2600
2601 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2602
2603 /* Size of the largest vector allocated from block. */
2604
2605 #define VBLOCK_BYTES_MAX \
2606 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2607
2608 /* We maintain one free list for each possible block-allocated
2609 vector size, and this is the number of free lists we have. */
2610
2611 #define VECTOR_MAX_FREE_LIST_INDEX \
2612 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2613
2614 /* Common shortcut to advance vector pointer over a block data. */
2615
2616 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2617
2618 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2619
2620 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2621
2622 /* Common shortcut to setup vector on a free list. */
2623
2624 #define SETUP_ON_FREE_LIST(v, nbytes, index) \
2625 do { \
2626 XSETPVECTYPESIZE (v, PVEC_FREE, nbytes); \
2627 eassert ((nbytes) % roundup_size == 0); \
2628 (index) = VINDEX (nbytes); \
2629 eassert ((index) < VECTOR_MAX_FREE_LIST_INDEX); \
2630 (v)->header.next.vector = vector_free_lists[index]; \
2631 vector_free_lists[index] = (v); \
2632 total_free_vector_slots += (nbytes) / word_size; \
2633 } while (0)
2634
2635 struct vector_block
2636 {
2637 char data[VECTOR_BLOCK_BYTES];
2638 struct vector_block *next;
2639 };
2640
2641 /* Chain of vector blocks. */
2642
2643 static struct vector_block *vector_blocks;
2644
2645 /* Vector free lists, where NTH item points to a chain of free
2646 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2647
2648 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2649
2650 /* Singly-linked list of large vectors. */
2651
2652 static struct Lisp_Vector *large_vectors;
2653
2654 /* The only vector with 0 slots, allocated from pure space. */
2655
2656 Lisp_Object zero_vector;
2657
2658 /* Number of live vectors. */
2659
2660 static EMACS_INT total_vectors;
2661
2662 /* Total size of live and free vectors, in Lisp_Object units. */
2663
2664 static EMACS_INT total_vector_slots, total_free_vector_slots;
2665
2666 /* Get a new vector block. */
2667
2668 static struct vector_block *
2669 allocate_vector_block (void)
2670 {
2671 struct vector_block *block = xmalloc (sizeof *block);
2672
2673 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2674 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2675 MEM_TYPE_VECTOR_BLOCK);
2676 #endif
2677
2678 block->next = vector_blocks;
2679 vector_blocks = block;
2680 return block;
2681 }
2682
2683 /* Called once to initialize vector allocation. */
2684
2685 static void
2686 init_vectors (void)
2687 {
2688 zero_vector = make_pure_vector (0);
2689 }
2690
2691 /* Allocate vector from a vector block. */
2692
2693 static struct Lisp_Vector *
2694 allocate_vector_from_block (size_t nbytes)
2695 {
2696 struct Lisp_Vector *vector, *rest;
2697 struct vector_block *block;
2698 size_t index, restbytes;
2699
2700 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2701 eassert (nbytes % roundup_size == 0);
2702
2703 /* First, try to allocate from a free list
2704 containing vectors of the requested size. */
2705 index = VINDEX (nbytes);
2706 if (vector_free_lists[index])
2707 {
2708 vector = vector_free_lists[index];
2709 vector_free_lists[index] = vector->header.next.vector;
2710 vector->header.next.nbytes = nbytes;
2711 total_free_vector_slots -= nbytes / word_size;
2712 return vector;
2713 }
2714
2715 /* Next, check free lists containing larger vectors. Since
2716 we will split the result, we should have remaining space
2717 large enough to use for one-slot vector at least. */
2718 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2719 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2720 if (vector_free_lists[index])
2721 {
2722 /* This vector is larger than requested. */
2723 vector = vector_free_lists[index];
2724 vector_free_lists[index] = vector->header.next.vector;
2725 vector->header.next.nbytes = nbytes;
2726 total_free_vector_slots -= nbytes / word_size;
2727
2728 /* Excess bytes are used for the smaller vector,
2729 which should be set on an appropriate free list. */
2730 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2731 eassert (restbytes % roundup_size == 0);
2732 rest = ADVANCE (vector, nbytes);
2733 SETUP_ON_FREE_LIST (rest, restbytes, index);
2734 return vector;
2735 }
2736
2737 /* Finally, need a new vector block. */
2738 block = allocate_vector_block ();
2739
2740 /* New vector will be at the beginning of this block. */
2741 vector = (struct Lisp_Vector *) block->data;
2742 vector->header.next.nbytes = nbytes;
2743
2744 /* If the rest of space from this block is large enough
2745 for one-slot vector at least, set up it on a free list. */
2746 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2747 if (restbytes >= VBLOCK_BYTES_MIN)
2748 {
2749 eassert (restbytes % roundup_size == 0);
2750 rest = ADVANCE (vector, nbytes);
2751 SETUP_ON_FREE_LIST (rest, restbytes, index);
2752 }
2753 return vector;
2754 }
2755
2756 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2757
2758 #define VECTOR_IN_BLOCK(vector, block) \
2759 ((char *) (vector) <= (block)->data \
2760 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2761
2762 /* Number of bytes used by vector-block-allocated object. This is the only
2763 place where we actually use the `nbytes' field of the vector-header.
2764 I.e. we could get rid of the `nbytes' field by computing it based on the
2765 vector-type. */
2766
2767 #define PSEUDOVECTOR_NBYTES(vector) \
2768 (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) \
2769 ? vector->header.size & PSEUDOVECTOR_SIZE_MASK \
2770 : vector->header.next.nbytes)
2771
2772 /* Reclaim space used by unmarked vectors. */
2773
2774 static void
2775 sweep_vectors (void)
2776 {
2777 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
2778 struct Lisp_Vector *vector, *next, **vprev = &large_vectors;
2779
2780 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2781 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2782
2783 /* Looking through vector blocks. */
2784
2785 for (block = vector_blocks; block; block = *bprev)
2786 {
2787 bool free_this_block = 0;
2788
2789 for (vector = (struct Lisp_Vector *) block->data;
2790 VECTOR_IN_BLOCK (vector, block); vector = next)
2791 {
2792 if (VECTOR_MARKED_P (vector))
2793 {
2794 VECTOR_UNMARK (vector);
2795 total_vectors++;
2796 total_vector_slots += vector->header.next.nbytes / word_size;
2797 next = ADVANCE (vector, vector->header.next.nbytes);
2798 }
2799 else
2800 {
2801 ptrdiff_t nbytes = PSEUDOVECTOR_NBYTES (vector);
2802 ptrdiff_t total_bytes = nbytes;
2803
2804 next = ADVANCE (vector, nbytes);
2805
2806 /* While NEXT is not marked, try to coalesce with VECTOR,
2807 thus making VECTOR of the largest possible size. */
2808
2809 while (VECTOR_IN_BLOCK (next, block))
2810 {
2811 if (VECTOR_MARKED_P (next))
2812 break;
2813 nbytes = PSEUDOVECTOR_NBYTES (next);
2814 total_bytes += nbytes;
2815 next = ADVANCE (next, nbytes);
2816 }
2817
2818 eassert (total_bytes % roundup_size == 0);
2819
2820 if (vector == (struct Lisp_Vector *) block->data
2821 && !VECTOR_IN_BLOCK (next, block))
2822 /* This block should be freed because all of it's
2823 space was coalesced into the only free vector. */
2824 free_this_block = 1;
2825 else
2826 {
2827 int tmp;
2828 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2829 }
2830 }
2831 }
2832
2833 if (free_this_block)
2834 {
2835 *bprev = block->next;
2836 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2837 mem_delete (mem_find (block->data));
2838 #endif
2839 xfree (block);
2840 }
2841 else
2842 bprev = &block->next;
2843 }
2844
2845 /* Sweep large vectors. */
2846
2847 for (vector = large_vectors; vector; vector = *vprev)
2848 {
2849 if (VECTOR_MARKED_P (vector))
2850 {
2851 VECTOR_UNMARK (vector);
2852 total_vectors++;
2853 if (vector->header.size & PSEUDOVECTOR_FLAG)
2854 {
2855 struct Lisp_Bool_Vector *b = (struct Lisp_Bool_Vector *) vector;
2856
2857 /* All non-bool pseudovectors are small enough to be allocated
2858 from vector blocks. This code should be redesigned if some
2859 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2860 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
2861
2862 total_vector_slots
2863 += (bool_header_size
2864 + ((b->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2865 / BOOL_VECTOR_BITS_PER_CHAR)) / word_size;
2866 }
2867 else
2868 total_vector_slots
2869 += header_size / word_size + vector->header.size;
2870 vprev = &vector->header.next.vector;
2871 }
2872 else
2873 {
2874 *vprev = vector->header.next.vector;
2875 lisp_free (vector);
2876 }
2877 }
2878 }
2879
2880 /* Value is a pointer to a newly allocated Lisp_Vector structure
2881 with room for LEN Lisp_Objects. */
2882
2883 static struct Lisp_Vector *
2884 allocate_vectorlike (ptrdiff_t len)
2885 {
2886 struct Lisp_Vector *p;
2887
2888 MALLOC_BLOCK_INPUT;
2889
2890 if (len == 0)
2891 p = XVECTOR (zero_vector);
2892 else
2893 {
2894 size_t nbytes = header_size + len * word_size;
2895
2896 #ifdef DOUG_LEA_MALLOC
2897 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2898 because mapped region contents are not preserved in
2899 a dumped Emacs. */
2900 mallopt (M_MMAP_MAX, 0);
2901 #endif
2902
2903 if (nbytes <= VBLOCK_BYTES_MAX)
2904 p = allocate_vector_from_block (vroundup (nbytes));
2905 else
2906 {
2907 p = lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2908 p->header.next.vector = large_vectors;
2909 large_vectors = p;
2910 }
2911
2912 #ifdef DOUG_LEA_MALLOC
2913 /* Back to a reasonable maximum of mmap'ed areas. */
2914 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2915 #endif
2916
2917 consing_since_gc += nbytes;
2918 vector_cells_consed += len;
2919 }
2920
2921 MALLOC_UNBLOCK_INPUT;
2922
2923 return p;
2924 }
2925
2926
2927 /* Allocate a vector with LEN slots. */
2928
2929 struct Lisp_Vector *
2930 allocate_vector (EMACS_INT len)
2931 {
2932 struct Lisp_Vector *v;
2933 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
2934
2935 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
2936 memory_full (SIZE_MAX);
2937 v = allocate_vectorlike (len);
2938 v->header.size = len;
2939 return v;
2940 }
2941
2942
2943 /* Allocate other vector-like structures. */
2944
2945 struct Lisp_Vector *
2946 allocate_pseudovector (int memlen, int lisplen, int tag)
2947 {
2948 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2949 int i;
2950
2951 /* Only the first lisplen slots will be traced normally by the GC. */
2952 for (i = 0; i < lisplen; ++i)
2953 v->contents[i] = Qnil;
2954
2955 XSETPVECTYPESIZE (v, tag, lisplen);
2956 return v;
2957 }
2958
2959 struct buffer *
2960 allocate_buffer (void)
2961 {
2962 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
2963
2964 XSETPVECTYPESIZE (b, PVEC_BUFFER, (offsetof (struct buffer, own_text)
2965 - header_size) / word_size);
2966 /* Put B on the chain of all buffers including killed ones. */
2967 b->header.next.buffer = all_buffers;
2968 all_buffers = b;
2969 /* Note that the rest fields of B are not initialized. */
2970 return b;
2971 }
2972
2973 struct Lisp_Hash_Table *
2974 allocate_hash_table (void)
2975 {
2976 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2977 }
2978
2979 struct window *
2980 allocate_window (void)
2981 {
2982 struct window *w;
2983
2984 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
2985 /* Users assumes that non-Lisp data is zeroed. */
2986 memset (&w->current_matrix, 0,
2987 sizeof (*w) - offsetof (struct window, current_matrix));
2988 return w;
2989 }
2990
2991 struct terminal *
2992 allocate_terminal (void)
2993 {
2994 struct terminal *t;
2995
2996 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
2997 /* Users assumes that non-Lisp data is zeroed. */
2998 memset (&t->next_terminal, 0,
2999 sizeof (*t) - offsetof (struct terminal, next_terminal));
3000 return t;
3001 }
3002
3003 struct frame *
3004 allocate_frame (void)
3005 {
3006 struct frame *f;
3007
3008 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3009 /* Users assumes that non-Lisp data is zeroed. */
3010 memset (&f->face_cache, 0,
3011 sizeof (*f) - offsetof (struct frame, face_cache));
3012 return f;
3013 }
3014
3015 struct Lisp_Process *
3016 allocate_process (void)
3017 {
3018 struct Lisp_Process *p;
3019
3020 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3021 /* Users assumes that non-Lisp data is zeroed. */
3022 memset (&p->pid, 0,
3023 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3024 return p;
3025 }
3026
3027 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3028 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3029 See also the function `vector'. */)
3030 (register Lisp_Object length, Lisp_Object init)
3031 {
3032 Lisp_Object vector;
3033 register ptrdiff_t sizei;
3034 register ptrdiff_t i;
3035 register struct Lisp_Vector *p;
3036
3037 CHECK_NATNUM (length);
3038
3039 p = allocate_vector (XFASTINT (length));
3040 sizei = XFASTINT (length);
3041 for (i = 0; i < sizei; i++)
3042 p->contents[i] = init;
3043
3044 XSETVECTOR (vector, p);
3045 return vector;
3046 }
3047
3048
3049 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3050 doc: /* Return a newly created vector with specified arguments as elements.
3051 Any number of arguments, even zero arguments, are allowed.
3052 usage: (vector &rest OBJECTS) */)
3053 (ptrdiff_t nargs, Lisp_Object *args)
3054 {
3055 register Lisp_Object len, val;
3056 ptrdiff_t i;
3057 register struct Lisp_Vector *p;
3058
3059 XSETFASTINT (len, nargs);
3060 val = Fmake_vector (len, Qnil);
3061 p = XVECTOR (val);
3062 for (i = 0; i < nargs; i++)
3063 p->contents[i] = args[i];
3064 return val;
3065 }
3066
3067 void
3068 make_byte_code (struct Lisp_Vector *v)
3069 {
3070 if (v->header.size > 1 && STRINGP (v->contents[1])
3071 && STRING_MULTIBYTE (v->contents[1]))
3072 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3073 earlier because they produced a raw 8-bit string for byte-code
3074 and now such a byte-code string is loaded as multibyte while
3075 raw 8-bit characters converted to multibyte form. Thus, now we
3076 must convert them back to the original unibyte form. */
3077 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3078 XSETPVECTYPE (v, PVEC_COMPILED);
3079 }
3080
3081 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3082 doc: /* Create a byte-code object with specified arguments as elements.
3083 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3084 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3085 and (optional) INTERACTIVE-SPEC.
3086 The first four arguments are required; at most six have any
3087 significance.
3088 The ARGLIST can be either like the one of `lambda', in which case the arguments
3089 will be dynamically bound before executing the byte code, or it can be an
3090 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3091 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3092 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3093 argument to catch the left-over arguments. If such an integer is used, the
3094 arguments will not be dynamically bound but will be instead pushed on the
3095 stack before executing the byte-code.
3096 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3097 (ptrdiff_t nargs, Lisp_Object *args)
3098 {
3099 register Lisp_Object len, val;
3100 ptrdiff_t i;
3101 register struct Lisp_Vector *p;
3102
3103 /* We used to purecopy everything here, if purify-flag was set. This worked
3104 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3105 dangerous, since make-byte-code is used during execution to build
3106 closures, so any closure built during the preload phase would end up
3107 copied into pure space, including its free variables, which is sometimes
3108 just wasteful and other times plainly wrong (e.g. those free vars may want
3109 to be setcar'd). */
3110
3111 XSETFASTINT (len, nargs);
3112 val = Fmake_vector (len, Qnil);
3113
3114 p = XVECTOR (val);
3115 for (i = 0; i < nargs; i++)
3116 p->contents[i] = args[i];
3117 make_byte_code (p);
3118 XSETCOMPILED (val, p);
3119 return val;
3120 }
3121
3122
3123 \f
3124 /***********************************************************************
3125 Symbol Allocation
3126 ***********************************************************************/
3127
3128 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3129 of the required alignment if LSB tags are used. */
3130
3131 union aligned_Lisp_Symbol
3132 {
3133 struct Lisp_Symbol s;
3134 #if USE_LSB_TAG
3135 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3136 & -GCALIGNMENT];
3137 #endif
3138 };
3139
3140 /* Each symbol_block is just under 1020 bytes long, since malloc
3141 really allocates in units of powers of two and uses 4 bytes for its
3142 own overhead. */
3143
3144 #define SYMBOL_BLOCK_SIZE \
3145 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3146
3147 struct symbol_block
3148 {
3149 /* Place `symbols' first, to preserve alignment. */
3150 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3151 struct symbol_block *next;
3152 };
3153
3154 /* Current symbol block and index of first unused Lisp_Symbol
3155 structure in it. */
3156
3157 static struct symbol_block *symbol_block;
3158 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3159
3160 /* List of free symbols. */
3161
3162 static struct Lisp_Symbol *symbol_free_list;
3163
3164 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3165 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3166 Its value and function definition are void, and its property list is nil. */)
3167 (Lisp_Object name)
3168 {
3169 register Lisp_Object val;
3170 register struct Lisp_Symbol *p;
3171
3172 CHECK_STRING (name);
3173
3174 MALLOC_BLOCK_INPUT;
3175
3176 if (symbol_free_list)
3177 {
3178 XSETSYMBOL (val, symbol_free_list);
3179 symbol_free_list = symbol_free_list->next;
3180 }
3181 else
3182 {
3183 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3184 {
3185 struct symbol_block *new
3186 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3187 new->next = symbol_block;
3188 symbol_block = new;
3189 symbol_block_index = 0;
3190 total_free_symbols += SYMBOL_BLOCK_SIZE;
3191 }
3192 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3193 symbol_block_index++;
3194 }
3195
3196 MALLOC_UNBLOCK_INPUT;
3197
3198 p = XSYMBOL (val);
3199 set_symbol_name (val, name);
3200 set_symbol_plist (val, Qnil);
3201 p->redirect = SYMBOL_PLAINVAL;
3202 SET_SYMBOL_VAL (p, Qunbound);
3203 set_symbol_function (val, Qunbound);
3204 set_symbol_next (val, NULL);
3205 p->gcmarkbit = 0;
3206 p->interned = SYMBOL_UNINTERNED;
3207 p->constant = 0;
3208 p->declared_special = 0;
3209 consing_since_gc += sizeof (struct Lisp_Symbol);
3210 symbols_consed++;
3211 total_free_symbols--;
3212 return val;
3213 }
3214
3215
3216 \f
3217 /***********************************************************************
3218 Marker (Misc) Allocation
3219 ***********************************************************************/
3220
3221 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3222 the required alignment when LSB tags are used. */
3223
3224 union aligned_Lisp_Misc
3225 {
3226 union Lisp_Misc m;
3227 #if USE_LSB_TAG
3228 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3229 & -GCALIGNMENT];
3230 #endif
3231 };
3232
3233 /* Allocation of markers and other objects that share that structure.
3234 Works like allocation of conses. */
3235
3236 #define MARKER_BLOCK_SIZE \
3237 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3238
3239 struct marker_block
3240 {
3241 /* Place `markers' first, to preserve alignment. */
3242 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3243 struct marker_block *next;
3244 };
3245
3246 static struct marker_block *marker_block;
3247 static int marker_block_index = MARKER_BLOCK_SIZE;
3248
3249 static union Lisp_Misc *marker_free_list;
3250
3251 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3252
3253 static Lisp_Object
3254 allocate_misc (enum Lisp_Misc_Type type)
3255 {
3256 Lisp_Object val;
3257
3258 MALLOC_BLOCK_INPUT;
3259
3260 if (marker_free_list)
3261 {
3262 XSETMISC (val, marker_free_list);
3263 marker_free_list = marker_free_list->u_free.chain;
3264 }
3265 else
3266 {
3267 if (marker_block_index == MARKER_BLOCK_SIZE)
3268 {
3269 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3270 new->next = marker_block;
3271 marker_block = new;
3272 marker_block_index = 0;
3273 total_free_markers += MARKER_BLOCK_SIZE;
3274 }
3275 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3276 marker_block_index++;
3277 }
3278
3279 MALLOC_UNBLOCK_INPUT;
3280
3281 --total_free_markers;
3282 consing_since_gc += sizeof (union Lisp_Misc);
3283 misc_objects_consed++;
3284 XMISCTYPE (val) = type;
3285 XMISCANY (val)->gcmarkbit = 0;
3286 return val;
3287 }
3288
3289 /* Free a Lisp_Misc object */
3290
3291 static void
3292 free_misc (Lisp_Object misc)
3293 {
3294 XMISCTYPE (misc) = Lisp_Misc_Free;
3295 XMISC (misc)->u_free.chain = marker_free_list;
3296 marker_free_list = XMISC (misc);
3297 consing_since_gc -= sizeof (union Lisp_Misc);
3298 total_free_markers++;
3299 }
3300
3301 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3302 INTEGER. This is used to package C values to call record_unwind_protect.
3303 The unwind function can get the C values back using XSAVE_VALUE. */
3304
3305 Lisp_Object
3306 make_save_value (void *pointer, ptrdiff_t integer)
3307 {
3308 register Lisp_Object val;
3309 register struct Lisp_Save_Value *p;
3310
3311 val = allocate_misc (Lisp_Misc_Save_Value);
3312 p = XSAVE_VALUE (val);
3313 p->pointer = pointer;
3314 p->integer = integer;
3315 p->dogc = 0;
3316 return val;
3317 }
3318
3319 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3320
3321 Lisp_Object
3322 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3323 {
3324 register Lisp_Object overlay;
3325
3326 overlay = allocate_misc (Lisp_Misc_Overlay);
3327 OVERLAY_START (overlay) = start;
3328 OVERLAY_END (overlay) = end;
3329 set_overlay_plist (overlay, plist);
3330 XOVERLAY (overlay)->next = NULL;
3331 return overlay;
3332 }
3333
3334 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3335 doc: /* Return a newly allocated marker which does not point at any place. */)
3336 (void)
3337 {
3338 register Lisp_Object val;
3339 register struct Lisp_Marker *p;
3340
3341 val = allocate_misc (Lisp_Misc_Marker);
3342 p = XMARKER (val);
3343 p->buffer = 0;
3344 p->bytepos = 0;
3345 p->charpos = 0;
3346 p->next = NULL;
3347 p->insertion_type = 0;
3348 return val;
3349 }
3350
3351 /* Return a newly allocated marker which points into BUF
3352 at character position CHARPOS and byte position BYTEPOS. */
3353
3354 Lisp_Object
3355 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3356 {
3357 Lisp_Object obj;
3358 struct Lisp_Marker *m;
3359
3360 /* No dead buffers here. */
3361 eassert (BUFFER_LIVE_P (buf));
3362
3363 /* Every character is at least one byte. */
3364 eassert (charpos <= bytepos);
3365
3366 obj = allocate_misc (Lisp_Misc_Marker);
3367 m = XMARKER (obj);
3368 m->buffer = buf;
3369 m->charpos = charpos;
3370 m->bytepos = bytepos;
3371 m->insertion_type = 0;
3372 m->next = BUF_MARKERS (buf);
3373 BUF_MARKERS (buf) = m;
3374 return obj;
3375 }
3376
3377 /* Put MARKER back on the free list after using it temporarily. */
3378
3379 void
3380 free_marker (Lisp_Object marker)
3381 {
3382 unchain_marker (XMARKER (marker));
3383 free_misc (marker);
3384 }
3385
3386 \f
3387 /* Return a newly created vector or string with specified arguments as
3388 elements. If all the arguments are characters that can fit
3389 in a string of events, make a string; otherwise, make a vector.
3390
3391 Any number of arguments, even zero arguments, are allowed. */
3392
3393 Lisp_Object
3394 make_event_array (register int nargs, Lisp_Object *args)
3395 {
3396 int i;
3397
3398 for (i = 0; i < nargs; i++)
3399 /* The things that fit in a string
3400 are characters that are in 0...127,
3401 after discarding the meta bit and all the bits above it. */
3402 if (!INTEGERP (args[i])
3403 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3404 return Fvector (nargs, args);
3405
3406 /* Since the loop exited, we know that all the things in it are
3407 characters, so we can make a string. */
3408 {
3409 Lisp_Object result;
3410
3411 result = Fmake_string (make_number (nargs), make_number (0));
3412 for (i = 0; i < nargs; i++)
3413 {
3414 SSET (result, i, XINT (args[i]));
3415 /* Move the meta bit to the right place for a string char. */
3416 if (XINT (args[i]) & CHAR_META)
3417 SSET (result, i, SREF (result, i) | 0x80);
3418 }
3419
3420 return result;
3421 }
3422 }
3423
3424
3425 \f
3426 /************************************************************************
3427 Memory Full Handling
3428 ************************************************************************/
3429
3430
3431 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3432 there may have been size_t overflow so that malloc was never
3433 called, or perhaps malloc was invoked successfully but the
3434 resulting pointer had problems fitting into a tagged EMACS_INT. In
3435 either case this counts as memory being full even though malloc did
3436 not fail. */
3437
3438 void
3439 memory_full (size_t nbytes)
3440 {
3441 /* Do not go into hysterics merely because a large request failed. */
3442 bool enough_free_memory = 0;
3443 if (SPARE_MEMORY < nbytes)
3444 {
3445 void *p;
3446
3447 MALLOC_BLOCK_INPUT;
3448 p = malloc (SPARE_MEMORY);
3449 if (p)
3450 {
3451 free (p);
3452 enough_free_memory = 1;
3453 }
3454 MALLOC_UNBLOCK_INPUT;
3455 }
3456
3457 if (! enough_free_memory)
3458 {
3459 int i;
3460
3461 Vmemory_full = Qt;
3462
3463 memory_full_cons_threshold = sizeof (struct cons_block);
3464
3465 /* The first time we get here, free the spare memory. */
3466 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3467 if (spare_memory[i])
3468 {
3469 if (i == 0)
3470 free (spare_memory[i]);
3471 else if (i >= 1 && i <= 4)
3472 lisp_align_free (spare_memory[i]);
3473 else
3474 lisp_free (spare_memory[i]);
3475 spare_memory[i] = 0;
3476 }
3477 }
3478
3479 /* This used to call error, but if we've run out of memory, we could
3480 get infinite recursion trying to build the string. */
3481 xsignal (Qnil, Vmemory_signal_data);
3482 }
3483
3484 /* If we released our reserve (due to running out of memory),
3485 and we have a fair amount free once again,
3486 try to set aside another reserve in case we run out once more.
3487
3488 This is called when a relocatable block is freed in ralloc.c,
3489 and also directly from this file, in case we're not using ralloc.c. */
3490
3491 void
3492 refill_memory_reserve (void)
3493 {
3494 #ifndef SYSTEM_MALLOC
3495 if (spare_memory[0] == 0)
3496 spare_memory[0] = malloc (SPARE_MEMORY);
3497 if (spare_memory[1] == 0)
3498 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3499 MEM_TYPE_SPARE);
3500 if (spare_memory[2] == 0)
3501 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3502 MEM_TYPE_SPARE);
3503 if (spare_memory[3] == 0)
3504 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3505 MEM_TYPE_SPARE);
3506 if (spare_memory[4] == 0)
3507 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3508 MEM_TYPE_SPARE);
3509 if (spare_memory[5] == 0)
3510 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3511 MEM_TYPE_SPARE);
3512 if (spare_memory[6] == 0)
3513 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3514 MEM_TYPE_SPARE);
3515 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3516 Vmemory_full = Qnil;
3517 #endif
3518 }
3519 \f
3520 /************************************************************************
3521 C Stack Marking
3522 ************************************************************************/
3523
3524 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3525
3526 /* Conservative C stack marking requires a method to identify possibly
3527 live Lisp objects given a pointer value. We do this by keeping
3528 track of blocks of Lisp data that are allocated in a red-black tree
3529 (see also the comment of mem_node which is the type of nodes in
3530 that tree). Function lisp_malloc adds information for an allocated
3531 block to the red-black tree with calls to mem_insert, and function
3532 lisp_free removes it with mem_delete. Functions live_string_p etc
3533 call mem_find to lookup information about a given pointer in the
3534 tree, and use that to determine if the pointer points to a Lisp
3535 object or not. */
3536
3537 /* Initialize this part of alloc.c. */
3538
3539 static void
3540 mem_init (void)
3541 {
3542 mem_z.left = mem_z.right = MEM_NIL;
3543 mem_z.parent = NULL;
3544 mem_z.color = MEM_BLACK;
3545 mem_z.start = mem_z.end = NULL;
3546 mem_root = MEM_NIL;
3547 }
3548
3549
3550 /* Value is a pointer to the mem_node containing START. Value is
3551 MEM_NIL if there is no node in the tree containing START. */
3552
3553 static struct mem_node *
3554 mem_find (void *start)
3555 {
3556 struct mem_node *p;
3557
3558 if (start < min_heap_address || start > max_heap_address)
3559 return MEM_NIL;
3560
3561 /* Make the search always successful to speed up the loop below. */
3562 mem_z.start = start;
3563 mem_z.end = (char *) start + 1;
3564
3565 p = mem_root;
3566 while (start < p->start || start >= p->end)
3567 p = start < p->start ? p->left : p->right;
3568 return p;
3569 }
3570
3571
3572 /* Insert a new node into the tree for a block of memory with start
3573 address START, end address END, and type TYPE. Value is a
3574 pointer to the node that was inserted. */
3575
3576 static struct mem_node *
3577 mem_insert (void *start, void *end, enum mem_type type)
3578 {
3579 struct mem_node *c, *parent, *x;
3580
3581 if (min_heap_address == NULL || start < min_heap_address)
3582 min_heap_address = start;
3583 if (max_heap_address == NULL || end > max_heap_address)
3584 max_heap_address = end;
3585
3586 /* See where in the tree a node for START belongs. In this
3587 particular application, it shouldn't happen that a node is already
3588 present. For debugging purposes, let's check that. */
3589 c = mem_root;
3590 parent = NULL;
3591
3592 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3593
3594 while (c != MEM_NIL)
3595 {
3596 if (start >= c->start && start < c->end)
3597 emacs_abort ();
3598 parent = c;
3599 c = start < c->start ? c->left : c->right;
3600 }
3601
3602 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3603
3604 while (c != MEM_NIL)
3605 {
3606 parent = c;
3607 c = start < c->start ? c->left : c->right;
3608 }
3609
3610 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3611
3612 /* Create a new node. */
3613 #ifdef GC_MALLOC_CHECK
3614 x = malloc (sizeof *x);
3615 if (x == NULL)
3616 emacs_abort ();
3617 #else
3618 x = xmalloc (sizeof *x);
3619 #endif
3620 x->start = start;
3621 x->end = end;
3622 x->type = type;
3623 x->parent = parent;
3624 x->left = x->right = MEM_NIL;
3625 x->color = MEM_RED;
3626
3627 /* Insert it as child of PARENT or install it as root. */
3628 if (parent)
3629 {
3630 if (start < parent->start)
3631 parent->left = x;
3632 else
3633 parent->right = x;
3634 }
3635 else
3636 mem_root = x;
3637
3638 /* Re-establish red-black tree properties. */
3639 mem_insert_fixup (x);
3640
3641 return x;
3642 }
3643
3644
3645 /* Re-establish the red-black properties of the tree, and thereby
3646 balance the tree, after node X has been inserted; X is always red. */
3647
3648 static void
3649 mem_insert_fixup (struct mem_node *x)
3650 {
3651 while (x != mem_root && x->parent->color == MEM_RED)
3652 {
3653 /* X is red and its parent is red. This is a violation of
3654 red-black tree property #3. */
3655
3656 if (x->parent == x->parent->parent->left)
3657 {
3658 /* We're on the left side of our grandparent, and Y is our
3659 "uncle". */
3660 struct mem_node *y = x->parent->parent->right;
3661
3662 if (y->color == MEM_RED)
3663 {
3664 /* Uncle and parent are red but should be black because
3665 X is red. Change the colors accordingly and proceed
3666 with the grandparent. */
3667 x->parent->color = MEM_BLACK;
3668 y->color = MEM_BLACK;
3669 x->parent->parent->color = MEM_RED;
3670 x = x->parent->parent;
3671 }
3672 else
3673 {
3674 /* Parent and uncle have different colors; parent is
3675 red, uncle is black. */
3676 if (x == x->parent->right)
3677 {
3678 x = x->parent;
3679 mem_rotate_left (x);
3680 }
3681
3682 x->parent->color = MEM_BLACK;
3683 x->parent->parent->color = MEM_RED;
3684 mem_rotate_right (x->parent->parent);
3685 }
3686 }
3687 else
3688 {
3689 /* This is the symmetrical case of above. */
3690 struct mem_node *y = x->parent->parent->left;
3691
3692 if (y->color == MEM_RED)
3693 {
3694 x->parent->color = MEM_BLACK;
3695 y->color = MEM_BLACK;
3696 x->parent->parent->color = MEM_RED;
3697 x = x->parent->parent;
3698 }
3699 else
3700 {
3701 if (x == x->parent->left)
3702 {
3703 x = x->parent;
3704 mem_rotate_right (x);
3705 }
3706
3707 x->parent->color = MEM_BLACK;
3708 x->parent->parent->color = MEM_RED;
3709 mem_rotate_left (x->parent->parent);
3710 }
3711 }
3712 }
3713
3714 /* The root may have been changed to red due to the algorithm. Set
3715 it to black so that property #5 is satisfied. */
3716 mem_root->color = MEM_BLACK;
3717 }
3718
3719
3720 /* (x) (y)
3721 / \ / \
3722 a (y) ===> (x) c
3723 / \ / \
3724 b c a b */
3725
3726 static void
3727 mem_rotate_left (struct mem_node *x)
3728 {
3729 struct mem_node *y;
3730
3731 /* Turn y's left sub-tree into x's right sub-tree. */
3732 y = x->right;
3733 x->right = y->left;
3734 if (y->left != MEM_NIL)
3735 y->left->parent = x;
3736
3737 /* Y's parent was x's parent. */
3738 if (y != MEM_NIL)
3739 y->parent = x->parent;
3740
3741 /* Get the parent to point to y instead of x. */
3742 if (x->parent)
3743 {
3744 if (x == x->parent->left)
3745 x->parent->left = y;
3746 else
3747 x->parent->right = y;
3748 }
3749 else
3750 mem_root = y;
3751
3752 /* Put x on y's left. */
3753 y->left = x;
3754 if (x != MEM_NIL)
3755 x->parent = y;
3756 }
3757
3758
3759 /* (x) (Y)
3760 / \ / \
3761 (y) c ===> a (x)
3762 / \ / \
3763 a b b c */
3764
3765 static void
3766 mem_rotate_right (struct mem_node *x)
3767 {
3768 struct mem_node *y = x->left;
3769
3770 x->left = y->right;
3771 if (y->right != MEM_NIL)
3772 y->right->parent = x;
3773
3774 if (y != MEM_NIL)
3775 y->parent = x->parent;
3776 if (x->parent)
3777 {
3778 if (x == x->parent->right)
3779 x->parent->right = y;
3780 else
3781 x->parent->left = y;
3782 }
3783 else
3784 mem_root = y;
3785
3786 y->right = x;
3787 if (x != MEM_NIL)
3788 x->parent = y;
3789 }
3790
3791
3792 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3793
3794 static void
3795 mem_delete (struct mem_node *z)
3796 {
3797 struct mem_node *x, *y;
3798
3799 if (!z || z == MEM_NIL)
3800 return;
3801
3802 if (z->left == MEM_NIL || z->right == MEM_NIL)
3803 y = z;
3804 else
3805 {
3806 y = z->right;
3807 while (y->left != MEM_NIL)
3808 y = y->left;
3809 }
3810
3811 if (y->left != MEM_NIL)
3812 x = y->left;
3813 else
3814 x = y->right;
3815
3816 x->parent = y->parent;
3817 if (y->parent)
3818 {
3819 if (y == y->parent->left)
3820 y->parent->left = x;
3821 else
3822 y->parent->right = x;
3823 }
3824 else
3825 mem_root = x;
3826
3827 if (y != z)
3828 {
3829 z->start = y->start;
3830 z->end = y->end;
3831 z->type = y->type;
3832 }
3833
3834 if (y->color == MEM_BLACK)
3835 mem_delete_fixup (x);
3836
3837 #ifdef GC_MALLOC_CHECK
3838 free (y);
3839 #else
3840 xfree (y);
3841 #endif
3842 }
3843
3844
3845 /* Re-establish the red-black properties of the tree, after a
3846 deletion. */
3847
3848 static void
3849 mem_delete_fixup (struct mem_node *x)
3850 {
3851 while (x != mem_root && x->color == MEM_BLACK)
3852 {
3853 if (x == x->parent->left)
3854 {
3855 struct mem_node *w = x->parent->right;
3856
3857 if (w->color == MEM_RED)
3858 {
3859 w->color = MEM_BLACK;
3860 x->parent->color = MEM_RED;
3861 mem_rotate_left (x->parent);
3862 w = x->parent->right;
3863 }
3864
3865 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3866 {
3867 w->color = MEM_RED;
3868 x = x->parent;
3869 }
3870 else
3871 {
3872 if (w->right->color == MEM_BLACK)
3873 {
3874 w->left->color = MEM_BLACK;
3875 w->color = MEM_RED;
3876 mem_rotate_right (w);
3877 w = x->parent->right;
3878 }
3879 w->color = x->parent->color;
3880 x->parent->color = MEM_BLACK;
3881 w->right->color = MEM_BLACK;
3882 mem_rotate_left (x->parent);
3883 x = mem_root;
3884 }
3885 }
3886 else
3887 {
3888 struct mem_node *w = x->parent->left;
3889
3890 if (w->color == MEM_RED)
3891 {
3892 w->color = MEM_BLACK;
3893 x->parent->color = MEM_RED;
3894 mem_rotate_right (x->parent);
3895 w = x->parent->left;
3896 }
3897
3898 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3899 {
3900 w->color = MEM_RED;
3901 x = x->parent;
3902 }
3903 else
3904 {
3905 if (w->left->color == MEM_BLACK)
3906 {
3907 w->right->color = MEM_BLACK;
3908 w->color = MEM_RED;
3909 mem_rotate_left (w);
3910 w = x->parent->left;
3911 }
3912
3913 w->color = x->parent->color;
3914 x->parent->color = MEM_BLACK;
3915 w->left->color = MEM_BLACK;
3916 mem_rotate_right (x->parent);
3917 x = mem_root;
3918 }
3919 }
3920 }
3921
3922 x->color = MEM_BLACK;
3923 }
3924
3925
3926 /* Value is non-zero if P is a pointer to a live Lisp string on
3927 the heap. M is a pointer to the mem_block for P. */
3928
3929 static bool
3930 live_string_p (struct mem_node *m, void *p)
3931 {
3932 if (m->type == MEM_TYPE_STRING)
3933 {
3934 struct string_block *b = (struct string_block *) m->start;
3935 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3936
3937 /* P must point to the start of a Lisp_String structure, and it
3938 must not be on the free-list. */
3939 return (offset >= 0
3940 && offset % sizeof b->strings[0] == 0
3941 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3942 && ((struct Lisp_String *) p)->data != NULL);
3943 }
3944 else
3945 return 0;
3946 }
3947
3948
3949 /* Value is non-zero if P is a pointer to a live Lisp cons on
3950 the heap. M is a pointer to the mem_block for P. */
3951
3952 static bool
3953 live_cons_p (struct mem_node *m, void *p)
3954 {
3955 if (m->type == MEM_TYPE_CONS)
3956 {
3957 struct cons_block *b = (struct cons_block *) m->start;
3958 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3959
3960 /* P must point to the start of a Lisp_Cons, not be
3961 one of the unused cells in the current cons block,
3962 and not be on the free-list. */
3963 return (offset >= 0
3964 && offset % sizeof b->conses[0] == 0
3965 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3966 && (b != cons_block
3967 || offset / sizeof b->conses[0] < cons_block_index)
3968 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3969 }
3970 else
3971 return 0;
3972 }
3973
3974
3975 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3976 the heap. M is a pointer to the mem_block for P. */
3977
3978 static bool
3979 live_symbol_p (struct mem_node *m, void *p)
3980 {
3981 if (m->type == MEM_TYPE_SYMBOL)
3982 {
3983 struct symbol_block *b = (struct symbol_block *) m->start;
3984 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3985
3986 /* P must point to the start of a Lisp_Symbol, not be
3987 one of the unused cells in the current symbol block,
3988 and not be on the free-list. */
3989 return (offset >= 0
3990 && offset % sizeof b->symbols[0] == 0
3991 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3992 && (b != symbol_block
3993 || offset / sizeof b->symbols[0] < symbol_block_index)
3994 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
3995 }
3996 else
3997 return 0;
3998 }
3999
4000
4001 /* Value is non-zero if P is a pointer to a live Lisp float on
4002 the heap. M is a pointer to the mem_block for P. */
4003
4004 static bool
4005 live_float_p (struct mem_node *m, void *p)
4006 {
4007 if (m->type == MEM_TYPE_FLOAT)
4008 {
4009 struct float_block *b = (struct float_block *) m->start;
4010 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4011
4012 /* P must point to the start of a Lisp_Float and not be
4013 one of the unused cells in the current float block. */
4014 return (offset >= 0
4015 && offset % sizeof b->floats[0] == 0
4016 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4017 && (b != float_block
4018 || offset / sizeof b->floats[0] < float_block_index));
4019 }
4020 else
4021 return 0;
4022 }
4023
4024
4025 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4026 the heap. M is a pointer to the mem_block for P. */
4027
4028 static bool
4029 live_misc_p (struct mem_node *m, void *p)
4030 {
4031 if (m->type == MEM_TYPE_MISC)
4032 {
4033 struct marker_block *b = (struct marker_block *) m->start;
4034 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4035
4036 /* P must point to the start of a Lisp_Misc, not be
4037 one of the unused cells in the current misc block,
4038 and not be on the free-list. */
4039 return (offset >= 0
4040 && offset % sizeof b->markers[0] == 0
4041 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4042 && (b != marker_block
4043 || offset / sizeof b->markers[0] < marker_block_index)
4044 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4045 }
4046 else
4047 return 0;
4048 }
4049
4050
4051 /* Value is non-zero if P is a pointer to a live vector-like object.
4052 M is a pointer to the mem_block for P. */
4053
4054 static bool
4055 live_vector_p (struct mem_node *m, void *p)
4056 {
4057 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4058 {
4059 /* This memory node corresponds to a vector block. */
4060 struct vector_block *block = (struct vector_block *) m->start;
4061 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4062
4063 /* P is in the block's allocation range. Scan the block
4064 up to P and see whether P points to the start of some
4065 vector which is not on a free list. FIXME: check whether
4066 some allocation patterns (probably a lot of short vectors)
4067 may cause a substantial overhead of this loop. */
4068 while (VECTOR_IN_BLOCK (vector, block)
4069 && vector <= (struct Lisp_Vector *) p)
4070 {
4071 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE))
4072 vector = ADVANCE (vector, (vector->header.size
4073 & PSEUDOVECTOR_SIZE_MASK));
4074 else if (vector == p)
4075 return 1;
4076 else
4077 vector = ADVANCE (vector, vector->header.next.nbytes);
4078 }
4079 }
4080 else if (m->type == MEM_TYPE_VECTORLIKE && p == m->start)
4081 /* This memory node corresponds to a large vector. */
4082 return 1;
4083 return 0;
4084 }
4085
4086
4087 /* Value is non-zero if P is a pointer to a live buffer. M is a
4088 pointer to the mem_block for P. */
4089
4090 static bool
4091 live_buffer_p (struct mem_node *m, void *p)
4092 {
4093 /* P must point to the start of the block, and the buffer
4094 must not have been killed. */
4095 return (m->type == MEM_TYPE_BUFFER
4096 && p == m->start
4097 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4098 }
4099
4100 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4101
4102 #if GC_MARK_STACK
4103
4104 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4105
4106 /* Array of objects that are kept alive because the C stack contains
4107 a pattern that looks like a reference to them . */
4108
4109 #define MAX_ZOMBIES 10
4110 static Lisp_Object zombies[MAX_ZOMBIES];
4111
4112 /* Number of zombie objects. */
4113
4114 static EMACS_INT nzombies;
4115
4116 /* Number of garbage collections. */
4117
4118 static EMACS_INT ngcs;
4119
4120 /* Average percentage of zombies per collection. */
4121
4122 static double avg_zombies;
4123
4124 /* Max. number of live and zombie objects. */
4125
4126 static EMACS_INT max_live, max_zombies;
4127
4128 /* Average number of live objects per GC. */
4129
4130 static double avg_live;
4131
4132 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4133 doc: /* Show information about live and zombie objects. */)
4134 (void)
4135 {
4136 Lisp_Object args[8], zombie_list = Qnil;
4137 EMACS_INT i;
4138 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4139 zombie_list = Fcons (zombies[i], zombie_list);
4140 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4141 args[1] = make_number (ngcs);
4142 args[2] = make_float (avg_live);
4143 args[3] = make_float (avg_zombies);
4144 args[4] = make_float (avg_zombies / avg_live / 100);
4145 args[5] = make_number (max_live);
4146 args[6] = make_number (max_zombies);
4147 args[7] = zombie_list;
4148 return Fmessage (8, args);
4149 }
4150
4151 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4152
4153
4154 /* Mark OBJ if we can prove it's a Lisp_Object. */
4155
4156 static void
4157 mark_maybe_object (Lisp_Object obj)
4158 {
4159 void *po;
4160 struct mem_node *m;
4161
4162 if (INTEGERP (obj))
4163 return;
4164
4165 po = (void *) XPNTR (obj);
4166 m = mem_find (po);
4167
4168 if (m != MEM_NIL)
4169 {
4170 bool mark_p = 0;
4171
4172 switch (XTYPE (obj))
4173 {
4174 case Lisp_String:
4175 mark_p = (live_string_p (m, po)
4176 && !STRING_MARKED_P ((struct Lisp_String *) po));
4177 break;
4178
4179 case Lisp_Cons:
4180 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4181 break;
4182
4183 case Lisp_Symbol:
4184 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4185 break;
4186
4187 case Lisp_Float:
4188 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4189 break;
4190
4191 case Lisp_Vectorlike:
4192 /* Note: can't check BUFFERP before we know it's a
4193 buffer because checking that dereferences the pointer
4194 PO which might point anywhere. */
4195 if (live_vector_p (m, po))
4196 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4197 else if (live_buffer_p (m, po))
4198 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4199 break;
4200
4201 case Lisp_Misc:
4202 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4203 break;
4204
4205 default:
4206 break;
4207 }
4208
4209 if (mark_p)
4210 {
4211 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4212 if (nzombies < MAX_ZOMBIES)
4213 zombies[nzombies] = obj;
4214 ++nzombies;
4215 #endif
4216 mark_object (obj);
4217 }
4218 }
4219 }
4220
4221
4222 /* If P points to Lisp data, mark that as live if it isn't already
4223 marked. */
4224
4225 static void
4226 mark_maybe_pointer (void *p)
4227 {
4228 struct mem_node *m;
4229
4230 /* Quickly rule out some values which can't point to Lisp data.
4231 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4232 Otherwise, assume that Lisp data is aligned on even addresses. */
4233 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4234 return;
4235
4236 m = mem_find (p);
4237 if (m != MEM_NIL)
4238 {
4239 Lisp_Object obj = Qnil;
4240
4241 switch (m->type)
4242 {
4243 case MEM_TYPE_NON_LISP:
4244 case MEM_TYPE_SPARE:
4245 /* Nothing to do; not a pointer to Lisp memory. */
4246 break;
4247
4248 case MEM_TYPE_BUFFER:
4249 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4250 XSETVECTOR (obj, p);
4251 break;
4252
4253 case MEM_TYPE_CONS:
4254 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4255 XSETCONS (obj, p);
4256 break;
4257
4258 case MEM_TYPE_STRING:
4259 if (live_string_p (m, p)
4260 && !STRING_MARKED_P ((struct Lisp_String *) p))
4261 XSETSTRING (obj, p);
4262 break;
4263
4264 case MEM_TYPE_MISC:
4265 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4266 XSETMISC (obj, p);
4267 break;
4268
4269 case MEM_TYPE_SYMBOL:
4270 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4271 XSETSYMBOL (obj, p);
4272 break;
4273
4274 case MEM_TYPE_FLOAT:
4275 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4276 XSETFLOAT (obj, p);
4277 break;
4278
4279 case MEM_TYPE_VECTORLIKE:
4280 case MEM_TYPE_VECTOR_BLOCK:
4281 if (live_vector_p (m, p))
4282 {
4283 Lisp_Object tem;
4284 XSETVECTOR (tem, p);
4285 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4286 obj = tem;
4287 }
4288 break;
4289
4290 default:
4291 emacs_abort ();
4292 }
4293
4294 if (!NILP (obj))
4295 mark_object (obj);
4296 }
4297 }
4298
4299
4300 /* Alignment of pointer values. Use alignof, as it sometimes returns
4301 a smaller alignment than GCC's __alignof__ and mark_memory might
4302 miss objects if __alignof__ were used. */
4303 #define GC_POINTER_ALIGNMENT alignof (void *)
4304
4305 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4306 not suffice, which is the typical case. A host where a Lisp_Object is
4307 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4308 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4309 suffice to widen it to to a Lisp_Object and check it that way. */
4310 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4311 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4312 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4313 nor mark_maybe_object can follow the pointers. This should not occur on
4314 any practical porting target. */
4315 # error "MSB type bits straddle pointer-word boundaries"
4316 # endif
4317 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4318 pointer words that hold pointers ORed with type bits. */
4319 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4320 #else
4321 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4322 words that hold unmodified pointers. */
4323 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4324 #endif
4325
4326 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4327 or END+OFFSET..START. */
4328
4329 static void
4330 mark_memory (void *start, void *end)
4331 #if defined (__clang__) && defined (__has_feature)
4332 #if __has_feature(address_sanitizer)
4333 /* Do not allow -faddress-sanitizer to check this function, since it
4334 crosses the function stack boundary, and thus would yield many
4335 false positives. */
4336 __attribute__((no_address_safety_analysis))
4337 #endif
4338 #endif
4339 {
4340 void **pp;
4341 int i;
4342
4343 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4344 nzombies = 0;
4345 #endif
4346
4347 /* Make START the pointer to the start of the memory region,
4348 if it isn't already. */
4349 if (end < start)
4350 {
4351 void *tem = start;
4352 start = end;
4353 end = tem;
4354 }
4355
4356 /* Mark Lisp data pointed to. This is necessary because, in some
4357 situations, the C compiler optimizes Lisp objects away, so that
4358 only a pointer to them remains. Example:
4359
4360 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4361 ()
4362 {
4363 Lisp_Object obj = build_string ("test");
4364 struct Lisp_String *s = XSTRING (obj);
4365 Fgarbage_collect ();
4366 fprintf (stderr, "test `%s'\n", s->data);
4367 return Qnil;
4368 }
4369
4370 Here, `obj' isn't really used, and the compiler optimizes it
4371 away. The only reference to the life string is through the
4372 pointer `s'. */
4373
4374 for (pp = start; (void *) pp < end; pp++)
4375 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4376 {
4377 void *p = *(void **) ((char *) pp + i);
4378 mark_maybe_pointer (p);
4379 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4380 mark_maybe_object (XIL ((intptr_t) p));
4381 }
4382 }
4383
4384 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4385 the GCC system configuration. In gcc 3.2, the only systems for
4386 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4387 by others?) and ns32k-pc532-min. */
4388
4389 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4390
4391 static bool setjmp_tested_p;
4392 static int longjmps_done;
4393
4394 #define SETJMP_WILL_LIKELY_WORK "\
4395 \n\
4396 Emacs garbage collector has been changed to use conservative stack\n\
4397 marking. Emacs has determined that the method it uses to do the\n\
4398 marking will likely work on your system, but this isn't sure.\n\
4399 \n\
4400 If you are a system-programmer, or can get the help of a local wizard\n\
4401 who is, please take a look at the function mark_stack in alloc.c, and\n\
4402 verify that the methods used are appropriate for your system.\n\
4403 \n\
4404 Please mail the result to <emacs-devel@gnu.org>.\n\
4405 "
4406
4407 #define SETJMP_WILL_NOT_WORK "\
4408 \n\
4409 Emacs garbage collector has been changed to use conservative stack\n\
4410 marking. Emacs has determined that the default method it uses to do the\n\
4411 marking will not work on your system. We will need a system-dependent\n\
4412 solution for your system.\n\
4413 \n\
4414 Please take a look at the function mark_stack in alloc.c, and\n\
4415 try to find a way to make it work on your system.\n\
4416 \n\
4417 Note that you may get false negatives, depending on the compiler.\n\
4418 In particular, you need to use -O with GCC for this test.\n\
4419 \n\
4420 Please mail the result to <emacs-devel@gnu.org>.\n\
4421 "
4422
4423
4424 /* Perform a quick check if it looks like setjmp saves registers in a
4425 jmp_buf. Print a message to stderr saying so. When this test
4426 succeeds, this is _not_ a proof that setjmp is sufficient for
4427 conservative stack marking. Only the sources or a disassembly
4428 can prove that. */
4429
4430 static void
4431 test_setjmp (void)
4432 {
4433 char buf[10];
4434 register int x;
4435 sys_jmp_buf jbuf;
4436
4437 /* Arrange for X to be put in a register. */
4438 sprintf (buf, "1");
4439 x = strlen (buf);
4440 x = 2 * x - 1;
4441
4442 sys_setjmp (jbuf);
4443 if (longjmps_done == 1)
4444 {
4445 /* Came here after the longjmp at the end of the function.
4446
4447 If x == 1, the longjmp has restored the register to its
4448 value before the setjmp, and we can hope that setjmp
4449 saves all such registers in the jmp_buf, although that
4450 isn't sure.
4451
4452 For other values of X, either something really strange is
4453 taking place, or the setjmp just didn't save the register. */
4454
4455 if (x == 1)
4456 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4457 else
4458 {
4459 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4460 exit (1);
4461 }
4462 }
4463
4464 ++longjmps_done;
4465 x = 2;
4466 if (longjmps_done == 1)
4467 sys_longjmp (jbuf, 1);
4468 }
4469
4470 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4471
4472
4473 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4474
4475 /* Abort if anything GCPRO'd doesn't survive the GC. */
4476
4477 static void
4478 check_gcpros (void)
4479 {
4480 struct gcpro *p;
4481 ptrdiff_t i;
4482
4483 for (p = gcprolist; p; p = p->next)
4484 for (i = 0; i < p->nvars; ++i)
4485 if (!survives_gc_p (p->var[i]))
4486 /* FIXME: It's not necessarily a bug. It might just be that the
4487 GCPRO is unnecessary or should release the object sooner. */
4488 emacs_abort ();
4489 }
4490
4491 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4492
4493 static void
4494 dump_zombies (void)
4495 {
4496 int i;
4497
4498 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4499 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4500 {
4501 fprintf (stderr, " %d = ", i);
4502 debug_print (zombies[i]);
4503 }
4504 }
4505
4506 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4507
4508
4509 /* Mark live Lisp objects on the C stack.
4510
4511 There are several system-dependent problems to consider when
4512 porting this to new architectures:
4513
4514 Processor Registers
4515
4516 We have to mark Lisp objects in CPU registers that can hold local
4517 variables or are used to pass parameters.
4518
4519 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4520 something that either saves relevant registers on the stack, or
4521 calls mark_maybe_object passing it each register's contents.
4522
4523 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4524 implementation assumes that calling setjmp saves registers we need
4525 to see in a jmp_buf which itself lies on the stack. This doesn't
4526 have to be true! It must be verified for each system, possibly
4527 by taking a look at the source code of setjmp.
4528
4529 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4530 can use it as a machine independent method to store all registers
4531 to the stack. In this case the macros described in the previous
4532 two paragraphs are not used.
4533
4534 Stack Layout
4535
4536 Architectures differ in the way their processor stack is organized.
4537 For example, the stack might look like this
4538
4539 +----------------+
4540 | Lisp_Object | size = 4
4541 +----------------+
4542 | something else | size = 2
4543 +----------------+
4544 | Lisp_Object | size = 4
4545 +----------------+
4546 | ... |
4547
4548 In such a case, not every Lisp_Object will be aligned equally. To
4549 find all Lisp_Object on the stack it won't be sufficient to walk
4550 the stack in steps of 4 bytes. Instead, two passes will be
4551 necessary, one starting at the start of the stack, and a second
4552 pass starting at the start of the stack + 2. Likewise, if the
4553 minimal alignment of Lisp_Objects on the stack is 1, four passes
4554 would be necessary, each one starting with one byte more offset
4555 from the stack start. */
4556
4557 static void
4558 mark_stack (void)
4559 {
4560 void *end;
4561
4562 #ifdef HAVE___BUILTIN_UNWIND_INIT
4563 /* Force callee-saved registers and register windows onto the stack.
4564 This is the preferred method if available, obviating the need for
4565 machine dependent methods. */
4566 __builtin_unwind_init ();
4567 end = &end;
4568 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4569 #ifndef GC_SAVE_REGISTERS_ON_STACK
4570 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4571 union aligned_jmpbuf {
4572 Lisp_Object o;
4573 sys_jmp_buf j;
4574 } j;
4575 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4576 #endif
4577 /* This trick flushes the register windows so that all the state of
4578 the process is contained in the stack. */
4579 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4580 needed on ia64 too. See mach_dep.c, where it also says inline
4581 assembler doesn't work with relevant proprietary compilers. */
4582 #ifdef __sparc__
4583 #if defined (__sparc64__) && defined (__FreeBSD__)
4584 /* FreeBSD does not have a ta 3 handler. */
4585 asm ("flushw");
4586 #else
4587 asm ("ta 3");
4588 #endif
4589 #endif
4590
4591 /* Save registers that we need to see on the stack. We need to see
4592 registers used to hold register variables and registers used to
4593 pass parameters. */
4594 #ifdef GC_SAVE_REGISTERS_ON_STACK
4595 GC_SAVE_REGISTERS_ON_STACK (end);
4596 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4597
4598 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4599 setjmp will definitely work, test it
4600 and print a message with the result
4601 of the test. */
4602 if (!setjmp_tested_p)
4603 {
4604 setjmp_tested_p = 1;
4605 test_setjmp ();
4606 }
4607 #endif /* GC_SETJMP_WORKS */
4608
4609 sys_setjmp (j.j);
4610 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4611 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4612 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4613
4614 /* This assumes that the stack is a contiguous region in memory. If
4615 that's not the case, something has to be done here to iterate
4616 over the stack segments. */
4617 mark_memory (stack_base, end);
4618
4619 /* Allow for marking a secondary stack, like the register stack on the
4620 ia64. */
4621 #ifdef GC_MARK_SECONDARY_STACK
4622 GC_MARK_SECONDARY_STACK ();
4623 #endif
4624
4625 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4626 check_gcpros ();
4627 #endif
4628 }
4629
4630 #endif /* GC_MARK_STACK != 0 */
4631
4632
4633 /* Determine whether it is safe to access memory at address P. */
4634 static int
4635 valid_pointer_p (void *p)
4636 {
4637 #ifdef WINDOWSNT
4638 return w32_valid_pointer_p (p, 16);
4639 #else
4640 int fd[2];
4641
4642 /* Obviously, we cannot just access it (we would SEGV trying), so we
4643 trick the o/s to tell us whether p is a valid pointer.
4644 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4645 not validate p in that case. */
4646
4647 if (pipe (fd) == 0)
4648 {
4649 bool valid = emacs_write (fd[1], (char *) p, 16) == 16;
4650 emacs_close (fd[1]);
4651 emacs_close (fd[0]);
4652 return valid;
4653 }
4654
4655 return -1;
4656 #endif
4657 }
4658
4659 /* Return 2 if OBJ is a killed or special buffer object.
4660 Return 1 if OBJ is a valid lisp object.
4661 Return 0 if OBJ is NOT a valid lisp object.
4662 Return -1 if we cannot validate OBJ.
4663 This function can be quite slow,
4664 so it should only be used in code for manual debugging. */
4665
4666 int
4667 valid_lisp_object_p (Lisp_Object obj)
4668 {
4669 void *p;
4670 #if GC_MARK_STACK
4671 struct mem_node *m;
4672 #endif
4673
4674 if (INTEGERP (obj))
4675 return 1;
4676
4677 p = (void *) XPNTR (obj);
4678 if (PURE_POINTER_P (p))
4679 return 1;
4680
4681 if (p == &buffer_defaults || p == &buffer_local_symbols)
4682 return 2;
4683
4684 #if !GC_MARK_STACK
4685 return valid_pointer_p (p);
4686 #else
4687
4688 m = mem_find (p);
4689
4690 if (m == MEM_NIL)
4691 {
4692 int valid = valid_pointer_p (p);
4693 if (valid <= 0)
4694 return valid;
4695
4696 if (SUBRP (obj))
4697 return 1;
4698
4699 return 0;
4700 }
4701
4702 switch (m->type)
4703 {
4704 case MEM_TYPE_NON_LISP:
4705 case MEM_TYPE_SPARE:
4706 return 0;
4707
4708 case MEM_TYPE_BUFFER:
4709 return live_buffer_p (m, p) ? 1 : 2;
4710
4711 case MEM_TYPE_CONS:
4712 return live_cons_p (m, p);
4713
4714 case MEM_TYPE_STRING:
4715 return live_string_p (m, p);
4716
4717 case MEM_TYPE_MISC:
4718 return live_misc_p (m, p);
4719
4720 case MEM_TYPE_SYMBOL:
4721 return live_symbol_p (m, p);
4722
4723 case MEM_TYPE_FLOAT:
4724 return live_float_p (m, p);
4725
4726 case MEM_TYPE_VECTORLIKE:
4727 case MEM_TYPE_VECTOR_BLOCK:
4728 return live_vector_p (m, p);
4729
4730 default:
4731 break;
4732 }
4733
4734 return 0;
4735 #endif
4736 }
4737
4738
4739
4740 \f
4741 /***********************************************************************
4742 Pure Storage Management
4743 ***********************************************************************/
4744
4745 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4746 pointer to it. TYPE is the Lisp type for which the memory is
4747 allocated. TYPE < 0 means it's not used for a Lisp object. */
4748
4749 static void *
4750 pure_alloc (size_t size, int type)
4751 {
4752 void *result;
4753 #if USE_LSB_TAG
4754 size_t alignment = GCALIGNMENT;
4755 #else
4756 size_t alignment = alignof (EMACS_INT);
4757
4758 /* Give Lisp_Floats an extra alignment. */
4759 if (type == Lisp_Float)
4760 alignment = alignof (struct Lisp_Float);
4761 #endif
4762
4763 again:
4764 if (type >= 0)
4765 {
4766 /* Allocate space for a Lisp object from the beginning of the free
4767 space with taking account of alignment. */
4768 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4769 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4770 }
4771 else
4772 {
4773 /* Allocate space for a non-Lisp object from the end of the free
4774 space. */
4775 pure_bytes_used_non_lisp += size;
4776 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4777 }
4778 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4779
4780 if (pure_bytes_used <= pure_size)
4781 return result;
4782
4783 /* Don't allocate a large amount here,
4784 because it might get mmap'd and then its address
4785 might not be usable. */
4786 purebeg = xmalloc (10000);
4787 pure_size = 10000;
4788 pure_bytes_used_before_overflow += pure_bytes_used - size;
4789 pure_bytes_used = 0;
4790 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4791 goto again;
4792 }
4793
4794
4795 /* Print a warning if PURESIZE is too small. */
4796
4797 void
4798 check_pure_size (void)
4799 {
4800 if (pure_bytes_used_before_overflow)
4801 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4802 " bytes needed)"),
4803 pure_bytes_used + pure_bytes_used_before_overflow);
4804 }
4805
4806
4807 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4808 the non-Lisp data pool of the pure storage, and return its start
4809 address. Return NULL if not found. */
4810
4811 static char *
4812 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
4813 {
4814 int i;
4815 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4816 const unsigned char *p;
4817 char *non_lisp_beg;
4818
4819 if (pure_bytes_used_non_lisp <= nbytes)
4820 return NULL;
4821
4822 /* Set up the Boyer-Moore table. */
4823 skip = nbytes + 1;
4824 for (i = 0; i < 256; i++)
4825 bm_skip[i] = skip;
4826
4827 p = (const unsigned char *) data;
4828 while (--skip > 0)
4829 bm_skip[*p++] = skip;
4830
4831 last_char_skip = bm_skip['\0'];
4832
4833 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4834 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4835
4836 /* See the comments in the function `boyer_moore' (search.c) for the
4837 use of `infinity'. */
4838 infinity = pure_bytes_used_non_lisp + 1;
4839 bm_skip['\0'] = infinity;
4840
4841 p = (const unsigned char *) non_lisp_beg + nbytes;
4842 start = 0;
4843 do
4844 {
4845 /* Check the last character (== '\0'). */
4846 do
4847 {
4848 start += bm_skip[*(p + start)];
4849 }
4850 while (start <= start_max);
4851
4852 if (start < infinity)
4853 /* Couldn't find the last character. */
4854 return NULL;
4855
4856 /* No less than `infinity' means we could find the last
4857 character at `p[start - infinity]'. */
4858 start -= infinity;
4859
4860 /* Check the remaining characters. */
4861 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4862 /* Found. */
4863 return non_lisp_beg + start;
4864
4865 start += last_char_skip;
4866 }
4867 while (start <= start_max);
4868
4869 return NULL;
4870 }
4871
4872
4873 /* Return a string allocated in pure space. DATA is a buffer holding
4874 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4875 means make the result string multibyte.
4876
4877 Must get an error if pure storage is full, since if it cannot hold
4878 a large string it may be able to hold conses that point to that
4879 string; then the string is not protected from gc. */
4880
4881 Lisp_Object
4882 make_pure_string (const char *data,
4883 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
4884 {
4885 Lisp_Object string;
4886 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
4887 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4888 if (s->data == NULL)
4889 {
4890 s->data = pure_alloc (nbytes + 1, -1);
4891 memcpy (s->data, data, nbytes);
4892 s->data[nbytes] = '\0';
4893 }
4894 s->size = nchars;
4895 s->size_byte = multibyte ? nbytes : -1;
4896 s->intervals = NULL;
4897 XSETSTRING (string, s);
4898 return string;
4899 }
4900
4901 /* Return a string allocated in pure space. Do not
4902 allocate the string data, just point to DATA. */
4903
4904 Lisp_Object
4905 make_pure_c_string (const char *data, ptrdiff_t nchars)
4906 {
4907 Lisp_Object string;
4908 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
4909 s->size = nchars;
4910 s->size_byte = -1;
4911 s->data = (unsigned char *) data;
4912 s->intervals = NULL;
4913 XSETSTRING (string, s);
4914 return string;
4915 }
4916
4917 /* Return a cons allocated from pure space. Give it pure copies
4918 of CAR as car and CDR as cdr. */
4919
4920 Lisp_Object
4921 pure_cons (Lisp_Object car, Lisp_Object cdr)
4922 {
4923 Lisp_Object new;
4924 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
4925 XSETCONS (new, p);
4926 XSETCAR (new, Fpurecopy (car));
4927 XSETCDR (new, Fpurecopy (cdr));
4928 return new;
4929 }
4930
4931
4932 /* Value is a float object with value NUM allocated from pure space. */
4933
4934 static Lisp_Object
4935 make_pure_float (double num)
4936 {
4937 Lisp_Object new;
4938 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
4939 XSETFLOAT (new, p);
4940 XFLOAT_INIT (new, num);
4941 return new;
4942 }
4943
4944
4945 /* Return a vector with room for LEN Lisp_Objects allocated from
4946 pure space. */
4947
4948 static Lisp_Object
4949 make_pure_vector (ptrdiff_t len)
4950 {
4951 Lisp_Object new;
4952 size_t size = header_size + len * word_size;
4953 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
4954 XSETVECTOR (new, p);
4955 XVECTOR (new)->header.size = len;
4956 return new;
4957 }
4958
4959
4960 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4961 doc: /* Make a copy of object OBJ in pure storage.
4962 Recursively copies contents of vectors and cons cells.
4963 Does not copy symbols. Copies strings without text properties. */)
4964 (register Lisp_Object obj)
4965 {
4966 if (NILP (Vpurify_flag))
4967 return obj;
4968
4969 if (PURE_POINTER_P (XPNTR (obj)))
4970 return obj;
4971
4972 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4973 {
4974 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4975 if (!NILP (tmp))
4976 return tmp;
4977 }
4978
4979 if (CONSP (obj))
4980 obj = pure_cons (XCAR (obj), XCDR (obj));
4981 else if (FLOATP (obj))
4982 obj = make_pure_float (XFLOAT_DATA (obj));
4983 else if (STRINGP (obj))
4984 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
4985 SBYTES (obj),
4986 STRING_MULTIBYTE (obj));
4987 else if (COMPILEDP (obj) || VECTORP (obj))
4988 {
4989 register struct Lisp_Vector *vec;
4990 register ptrdiff_t i;
4991 ptrdiff_t size;
4992
4993 size = ASIZE (obj);
4994 if (size & PSEUDOVECTOR_FLAG)
4995 size &= PSEUDOVECTOR_SIZE_MASK;
4996 vec = XVECTOR (make_pure_vector (size));
4997 for (i = 0; i < size; i++)
4998 vec->contents[i] = Fpurecopy (AREF (obj, i));
4999 if (COMPILEDP (obj))
5000 {
5001 XSETPVECTYPE (vec, PVEC_COMPILED);
5002 XSETCOMPILED (obj, vec);
5003 }
5004 else
5005 XSETVECTOR (obj, vec);
5006 }
5007 else if (MARKERP (obj))
5008 error ("Attempt to copy a marker to pure storage");
5009 else
5010 /* Not purified, don't hash-cons. */
5011 return obj;
5012
5013 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5014 Fputhash (obj, obj, Vpurify_flag);
5015
5016 return obj;
5017 }
5018
5019
5020 \f
5021 /***********************************************************************
5022 Protection from GC
5023 ***********************************************************************/
5024
5025 /* Put an entry in staticvec, pointing at the variable with address
5026 VARADDRESS. */
5027
5028 void
5029 staticpro (Lisp_Object *varaddress)
5030 {
5031 staticvec[staticidx++] = varaddress;
5032 if (staticidx >= NSTATICS)
5033 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5034 }
5035
5036 \f
5037 /***********************************************************************
5038 Protection from GC
5039 ***********************************************************************/
5040
5041 /* Temporarily prevent garbage collection. */
5042
5043 ptrdiff_t
5044 inhibit_garbage_collection (void)
5045 {
5046 ptrdiff_t count = SPECPDL_INDEX ();
5047
5048 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5049 return count;
5050 }
5051
5052 /* Used to avoid possible overflows when
5053 converting from C to Lisp integers. */
5054
5055 static Lisp_Object
5056 bounded_number (EMACS_INT number)
5057 {
5058 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5059 }
5060
5061 /* Calculate total bytes of live objects. */
5062
5063 static size_t
5064 total_bytes_of_live_objects (void)
5065 {
5066 size_t tot = 0;
5067 tot += total_conses * sizeof (struct Lisp_Cons);
5068 tot += total_symbols * sizeof (struct Lisp_Symbol);
5069 tot += total_markers * sizeof (union Lisp_Misc);
5070 tot += total_string_bytes;
5071 tot += total_vector_slots * word_size;
5072 tot += total_floats * sizeof (struct Lisp_Float);
5073 tot += total_intervals * sizeof (struct interval);
5074 tot += total_strings * sizeof (struct Lisp_String);
5075 return tot;
5076 }
5077
5078 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5079 doc: /* Reclaim storage for Lisp objects no longer needed.
5080 Garbage collection happens automatically if you cons more than
5081 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5082 `garbage-collect' normally returns a list with info on amount of space in use,
5083 where each entry has the form (NAME SIZE USED FREE), where:
5084 - NAME is a symbol describing the kind of objects this entry represents,
5085 - SIZE is the number of bytes used by each one,
5086 - USED is the number of those objects that were found live in the heap,
5087 - FREE is the number of those objects that are not live but that Emacs
5088 keeps around for future allocations (maybe because it does not know how
5089 to return them to the OS).
5090 However, if there was overflow in pure space, `garbage-collect'
5091 returns nil, because real GC can't be done.
5092 See Info node `(elisp)Garbage Collection'. */)
5093 (void)
5094 {
5095 struct specbinding *bind;
5096 struct buffer *nextb;
5097 char stack_top_variable;
5098 ptrdiff_t i;
5099 bool message_p;
5100 ptrdiff_t count = SPECPDL_INDEX ();
5101 EMACS_TIME start;
5102 Lisp_Object retval = Qnil;
5103 size_t tot_before = 0;
5104 struct backtrace backtrace;
5105
5106 if (abort_on_gc)
5107 emacs_abort ();
5108
5109 /* Can't GC if pure storage overflowed because we can't determine
5110 if something is a pure object or not. */
5111 if (pure_bytes_used_before_overflow)
5112 return Qnil;
5113
5114 /* Record this function, so it appears on the profiler's backtraces. */
5115 backtrace.next = backtrace_list;
5116 backtrace.function = Qautomatic_gc;
5117 backtrace.args = &Qnil;
5118 backtrace.nargs = 0;
5119 backtrace.debug_on_exit = 0;
5120 backtrace_list = &backtrace;
5121
5122 check_cons_list ();
5123
5124 /* Don't keep undo information around forever.
5125 Do this early on, so it is no problem if the user quits. */
5126 FOR_EACH_BUFFER (nextb)
5127 compact_buffer (nextb);
5128
5129 if (profiler_memory_running)
5130 tot_before = total_bytes_of_live_objects ();
5131
5132 start = current_emacs_time ();
5133
5134 /* In case user calls debug_print during GC,
5135 don't let that cause a recursive GC. */
5136 consing_since_gc = 0;
5137
5138 /* Save what's currently displayed in the echo area. */
5139 message_p = push_message ();
5140 record_unwind_protect (pop_message_unwind, Qnil);
5141
5142 /* Save a copy of the contents of the stack, for debugging. */
5143 #if MAX_SAVE_STACK > 0
5144 if (NILP (Vpurify_flag))
5145 {
5146 char *stack;
5147 ptrdiff_t stack_size;
5148 if (&stack_top_variable < stack_bottom)
5149 {
5150 stack = &stack_top_variable;
5151 stack_size = stack_bottom - &stack_top_variable;
5152 }
5153 else
5154 {
5155 stack = stack_bottom;
5156 stack_size = &stack_top_variable - stack_bottom;
5157 }
5158 if (stack_size <= MAX_SAVE_STACK)
5159 {
5160 if (stack_copy_size < stack_size)
5161 {
5162 stack_copy = xrealloc (stack_copy, stack_size);
5163 stack_copy_size = stack_size;
5164 }
5165 memcpy (stack_copy, stack, stack_size);
5166 }
5167 }
5168 #endif /* MAX_SAVE_STACK > 0 */
5169
5170 if (garbage_collection_messages)
5171 message1_nolog ("Garbage collecting...");
5172
5173 block_input ();
5174
5175 shrink_regexp_cache ();
5176
5177 gc_in_progress = 1;
5178
5179 /* Mark all the special slots that serve as the roots of accessibility. */
5180
5181 mark_buffer (&buffer_defaults);
5182 mark_buffer (&buffer_local_symbols);
5183
5184 for (i = 0; i < staticidx; i++)
5185 mark_object (*staticvec[i]);
5186
5187 for (bind = specpdl; bind != specpdl_ptr; bind++)
5188 {
5189 mark_object (bind->symbol);
5190 mark_object (bind->old_value);
5191 }
5192 mark_terminals ();
5193 mark_kboards ();
5194
5195 #ifdef USE_GTK
5196 xg_mark_data ();
5197 #endif
5198
5199 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5200 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5201 mark_stack ();
5202 #else
5203 {
5204 register struct gcpro *tail;
5205 for (tail = gcprolist; tail; tail = tail->next)
5206 for (i = 0; i < tail->nvars; i++)
5207 mark_object (tail->var[i]);
5208 }
5209 mark_byte_stack ();
5210 {
5211 struct catchtag *catch;
5212 struct handler *handler;
5213
5214 for (catch = catchlist; catch; catch = catch->next)
5215 {
5216 mark_object (catch->tag);
5217 mark_object (catch->val);
5218 }
5219 for (handler = handlerlist; handler; handler = handler->next)
5220 {
5221 mark_object (handler->handler);
5222 mark_object (handler->var);
5223 }
5224 }
5225 mark_backtrace ();
5226 #endif
5227
5228 #ifdef HAVE_WINDOW_SYSTEM
5229 mark_fringe_data ();
5230 #endif
5231
5232 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5233 mark_stack ();
5234 #endif
5235
5236 /* Everything is now marked, except for the things that require special
5237 finalization, i.e. the undo_list.
5238 Look thru every buffer's undo list
5239 for elements that update markers that were not marked,
5240 and delete them. */
5241 FOR_EACH_BUFFER (nextb)
5242 {
5243 /* If a buffer's undo list is Qt, that means that undo is
5244 turned off in that buffer. Calling truncate_undo_list on
5245 Qt tends to return NULL, which effectively turns undo back on.
5246 So don't call truncate_undo_list if undo_list is Qt. */
5247 if (! EQ (nextb->INTERNAL_FIELD (undo_list), Qt))
5248 {
5249 Lisp_Object tail, prev;
5250 tail = nextb->INTERNAL_FIELD (undo_list);
5251 prev = Qnil;
5252 while (CONSP (tail))
5253 {
5254 if (CONSP (XCAR (tail))
5255 && MARKERP (XCAR (XCAR (tail)))
5256 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5257 {
5258 if (NILP (prev))
5259 nextb->INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5260 else
5261 {
5262 tail = XCDR (tail);
5263 XSETCDR (prev, tail);
5264 }
5265 }
5266 else
5267 {
5268 prev = tail;
5269 tail = XCDR (tail);
5270 }
5271 }
5272 }
5273 /* Now that we have stripped the elements that need not be in the
5274 undo_list any more, we can finally mark the list. */
5275 mark_object (nextb->INTERNAL_FIELD (undo_list));
5276 }
5277
5278 gc_sweep ();
5279
5280 /* Clear the mark bits that we set in certain root slots. */
5281
5282 unmark_byte_stack ();
5283 VECTOR_UNMARK (&buffer_defaults);
5284 VECTOR_UNMARK (&buffer_local_symbols);
5285
5286 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5287 dump_zombies ();
5288 #endif
5289
5290 unblock_input ();
5291
5292 check_cons_list ();
5293
5294 gc_in_progress = 0;
5295
5296 consing_since_gc = 0;
5297 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5298 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5299
5300 gc_relative_threshold = 0;
5301 if (FLOATP (Vgc_cons_percentage))
5302 { /* Set gc_cons_combined_threshold. */
5303 double tot = total_bytes_of_live_objects ();
5304
5305 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5306 if (0 < tot)
5307 {
5308 if (tot < TYPE_MAXIMUM (EMACS_INT))
5309 gc_relative_threshold = tot;
5310 else
5311 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5312 }
5313 }
5314
5315 if (garbage_collection_messages)
5316 {
5317 if (message_p || minibuf_level > 0)
5318 restore_message ();
5319 else
5320 message1_nolog ("Garbage collecting...done");
5321 }
5322
5323 unbind_to (count, Qnil);
5324 {
5325 Lisp_Object total[11];
5326 int total_size = 10;
5327
5328 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5329 bounded_number (total_conses),
5330 bounded_number (total_free_conses));
5331
5332 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5333 bounded_number (total_symbols),
5334 bounded_number (total_free_symbols));
5335
5336 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5337 bounded_number (total_markers),
5338 bounded_number (total_free_markers));
5339
5340 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5341 bounded_number (total_strings),
5342 bounded_number (total_free_strings));
5343
5344 total[4] = list3 (Qstring_bytes, make_number (1),
5345 bounded_number (total_string_bytes));
5346
5347 total[5] = list3 (Qvectors, make_number (sizeof (struct Lisp_Vector)),
5348 bounded_number (total_vectors));
5349
5350 total[6] = list4 (Qvector_slots, make_number (word_size),
5351 bounded_number (total_vector_slots),
5352 bounded_number (total_free_vector_slots));
5353
5354 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5355 bounded_number (total_floats),
5356 bounded_number (total_free_floats));
5357
5358 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5359 bounded_number (total_intervals),
5360 bounded_number (total_free_intervals));
5361
5362 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5363 bounded_number (total_buffers));
5364
5365 #ifdef DOUG_LEA_MALLOC
5366 total_size++;
5367 total[10] = list4 (Qheap, make_number (1024),
5368 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5369 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5370 #endif
5371 retval = Flist (total_size, total);
5372 }
5373
5374 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5375 {
5376 /* Compute average percentage of zombies. */
5377 double nlive
5378 = (total_conses + total_symbols + total_markers + total_strings
5379 + total_vectors + total_floats + total_intervals + total_buffers);
5380
5381 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5382 max_live = max (nlive, max_live);
5383 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5384 max_zombies = max (nzombies, max_zombies);
5385 ++ngcs;
5386 }
5387 #endif
5388
5389 if (!NILP (Vpost_gc_hook))
5390 {
5391 ptrdiff_t gc_count = inhibit_garbage_collection ();
5392 safe_run_hooks (Qpost_gc_hook);
5393 unbind_to (gc_count, Qnil);
5394 }
5395
5396 /* Accumulate statistics. */
5397 if (FLOATP (Vgc_elapsed))
5398 {
5399 EMACS_TIME since_start = sub_emacs_time (current_emacs_time (), start);
5400 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5401 + EMACS_TIME_TO_DOUBLE (since_start));
5402 }
5403
5404 gcs_done++;
5405
5406 /* Collect profiling data. */
5407 if (profiler_memory_running)
5408 {
5409 size_t swept = 0;
5410 size_t tot_after = total_bytes_of_live_objects ();
5411 if (tot_before > tot_after)
5412 swept = tot_before - tot_after;
5413 malloc_probe (swept);
5414 }
5415
5416 backtrace_list = backtrace.next;
5417 return retval;
5418 }
5419
5420
5421 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5422 only interesting objects referenced from glyphs are strings. */
5423
5424 static void
5425 mark_glyph_matrix (struct glyph_matrix *matrix)
5426 {
5427 struct glyph_row *row = matrix->rows;
5428 struct glyph_row *end = row + matrix->nrows;
5429
5430 for (; row < end; ++row)
5431 if (row->enabled_p)
5432 {
5433 int area;
5434 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5435 {
5436 struct glyph *glyph = row->glyphs[area];
5437 struct glyph *end_glyph = glyph + row->used[area];
5438
5439 for (; glyph < end_glyph; ++glyph)
5440 if (STRINGP (glyph->object)
5441 && !STRING_MARKED_P (XSTRING (glyph->object)))
5442 mark_object (glyph->object);
5443 }
5444 }
5445 }
5446
5447
5448 /* Mark Lisp faces in the face cache C. */
5449
5450 static void
5451 mark_face_cache (struct face_cache *c)
5452 {
5453 if (c)
5454 {
5455 int i, j;
5456 for (i = 0; i < c->used; ++i)
5457 {
5458 struct face *face = FACE_FROM_ID (c->f, i);
5459
5460 if (face)
5461 {
5462 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5463 mark_object (face->lface[j]);
5464 }
5465 }
5466 }
5467 }
5468
5469
5470 \f
5471 /* Mark reference to a Lisp_Object.
5472 If the object referred to has not been seen yet, recursively mark
5473 all the references contained in it. */
5474
5475 #define LAST_MARKED_SIZE 500
5476 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5477 static int last_marked_index;
5478
5479 /* For debugging--call abort when we cdr down this many
5480 links of a list, in mark_object. In debugging,
5481 the call to abort will hit a breakpoint.
5482 Normally this is zero and the check never goes off. */
5483 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5484
5485 static void
5486 mark_vectorlike (struct Lisp_Vector *ptr)
5487 {
5488 ptrdiff_t size = ptr->header.size;
5489 ptrdiff_t i;
5490
5491 eassert (!VECTOR_MARKED_P (ptr));
5492 VECTOR_MARK (ptr); /* Else mark it. */
5493 if (size & PSEUDOVECTOR_FLAG)
5494 size &= PSEUDOVECTOR_SIZE_MASK;
5495
5496 /* Note that this size is not the memory-footprint size, but only
5497 the number of Lisp_Object fields that we should trace.
5498 The distinction is used e.g. by Lisp_Process which places extra
5499 non-Lisp_Object fields at the end of the structure... */
5500 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5501 mark_object (ptr->contents[i]);
5502 }
5503
5504 /* Like mark_vectorlike but optimized for char-tables (and
5505 sub-char-tables) assuming that the contents are mostly integers or
5506 symbols. */
5507
5508 static void
5509 mark_char_table (struct Lisp_Vector *ptr)
5510 {
5511 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5512 int i;
5513
5514 eassert (!VECTOR_MARKED_P (ptr));
5515 VECTOR_MARK (ptr);
5516 for (i = 0; i < size; i++)
5517 {
5518 Lisp_Object val = ptr->contents[i];
5519
5520 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5521 continue;
5522 if (SUB_CHAR_TABLE_P (val))
5523 {
5524 if (! VECTOR_MARKED_P (XVECTOR (val)))
5525 mark_char_table (XVECTOR (val));
5526 }
5527 else
5528 mark_object (val);
5529 }
5530 }
5531
5532 /* Mark the chain of overlays starting at PTR. */
5533
5534 static void
5535 mark_overlay (struct Lisp_Overlay *ptr)
5536 {
5537 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5538 {
5539 ptr->gcmarkbit = 1;
5540 mark_object (ptr->start);
5541 mark_object (ptr->end);
5542 mark_object (ptr->plist);
5543 }
5544 }
5545
5546 /* Mark Lisp_Objects and special pointers in BUFFER. */
5547
5548 static void
5549 mark_buffer (struct buffer *buffer)
5550 {
5551 /* This is handled much like other pseudovectors... */
5552 mark_vectorlike ((struct Lisp_Vector *) buffer);
5553
5554 /* ...but there are some buffer-specific things. */
5555
5556 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5557
5558 /* For now, we just don't mark the undo_list. It's done later in
5559 a special way just before the sweep phase, and after stripping
5560 some of its elements that are not needed any more. */
5561
5562 mark_overlay (buffer->overlays_before);
5563 mark_overlay (buffer->overlays_after);
5564
5565 /* If this is an indirect buffer, mark its base buffer. */
5566 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5567 mark_buffer (buffer->base_buffer);
5568 }
5569
5570 /* Remove killed buffers or items whose car is a killed buffer from
5571 LIST, and mark other items. Return changed LIST, which is marked. */
5572
5573 static Lisp_Object
5574 mark_discard_killed_buffers (Lisp_Object list)
5575 {
5576 Lisp_Object tail, *prev = &list;
5577
5578 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5579 tail = XCDR (tail))
5580 {
5581 Lisp_Object tem = XCAR (tail);
5582 if (CONSP (tem))
5583 tem = XCAR (tem);
5584 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5585 *prev = XCDR (tail);
5586 else
5587 {
5588 CONS_MARK (XCONS (tail));
5589 mark_object (XCAR (tail));
5590 prev = &XCDR_AS_LVALUE (tail);
5591 }
5592 }
5593 mark_object (tail);
5594 return list;
5595 }
5596
5597 /* Determine type of generic Lisp_Object and mark it accordingly. */
5598
5599 void
5600 mark_object (Lisp_Object arg)
5601 {
5602 register Lisp_Object obj = arg;
5603 #ifdef GC_CHECK_MARKED_OBJECTS
5604 void *po;
5605 struct mem_node *m;
5606 #endif
5607 ptrdiff_t cdr_count = 0;
5608
5609 loop:
5610
5611 if (PURE_POINTER_P (XPNTR (obj)))
5612 return;
5613
5614 last_marked[last_marked_index++] = obj;
5615 if (last_marked_index == LAST_MARKED_SIZE)
5616 last_marked_index = 0;
5617
5618 /* Perform some sanity checks on the objects marked here. Abort if
5619 we encounter an object we know is bogus. This increases GC time
5620 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5621 #ifdef GC_CHECK_MARKED_OBJECTS
5622
5623 po = (void *) XPNTR (obj);
5624
5625 /* Check that the object pointed to by PO is known to be a Lisp
5626 structure allocated from the heap. */
5627 #define CHECK_ALLOCATED() \
5628 do { \
5629 m = mem_find (po); \
5630 if (m == MEM_NIL) \
5631 emacs_abort (); \
5632 } while (0)
5633
5634 /* Check that the object pointed to by PO is live, using predicate
5635 function LIVEP. */
5636 #define CHECK_LIVE(LIVEP) \
5637 do { \
5638 if (!LIVEP (m, po)) \
5639 emacs_abort (); \
5640 } while (0)
5641
5642 /* Check both of the above conditions. */
5643 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5644 do { \
5645 CHECK_ALLOCATED (); \
5646 CHECK_LIVE (LIVEP); \
5647 } while (0) \
5648
5649 #else /* not GC_CHECK_MARKED_OBJECTS */
5650
5651 #define CHECK_LIVE(LIVEP) (void) 0
5652 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5653
5654 #endif /* not GC_CHECK_MARKED_OBJECTS */
5655
5656 switch (XTYPE (obj))
5657 {
5658 case Lisp_String:
5659 {
5660 register struct Lisp_String *ptr = XSTRING (obj);
5661 if (STRING_MARKED_P (ptr))
5662 break;
5663 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5664 MARK_STRING (ptr);
5665 MARK_INTERVAL_TREE (ptr->intervals);
5666 #ifdef GC_CHECK_STRING_BYTES
5667 /* Check that the string size recorded in the string is the
5668 same as the one recorded in the sdata structure. */
5669 string_bytes (ptr);
5670 #endif /* GC_CHECK_STRING_BYTES */
5671 }
5672 break;
5673
5674 case Lisp_Vectorlike:
5675 {
5676 register struct Lisp_Vector *ptr = XVECTOR (obj);
5677 register ptrdiff_t pvectype;
5678
5679 if (VECTOR_MARKED_P (ptr))
5680 break;
5681
5682 #ifdef GC_CHECK_MARKED_OBJECTS
5683 m = mem_find (po);
5684 if (m == MEM_NIL && !SUBRP (obj))
5685 emacs_abort ();
5686 #endif /* GC_CHECK_MARKED_OBJECTS */
5687
5688 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5689 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5690 >> PSEUDOVECTOR_SIZE_BITS);
5691 else
5692 pvectype = PVEC_NORMAL_VECTOR;
5693
5694 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5695 CHECK_LIVE (live_vector_p);
5696
5697 switch (pvectype)
5698 {
5699 case PVEC_BUFFER:
5700 #ifdef GC_CHECK_MARKED_OBJECTS
5701 {
5702 struct buffer *b;
5703 FOR_EACH_BUFFER (b)
5704 if (b == po)
5705 break;
5706 if (b == NULL)
5707 emacs_abort ();
5708 }
5709 #endif /* GC_CHECK_MARKED_OBJECTS */
5710 mark_buffer ((struct buffer *) ptr);
5711 break;
5712
5713 case PVEC_COMPILED:
5714 { /* We could treat this just like a vector, but it is better
5715 to save the COMPILED_CONSTANTS element for last and avoid
5716 recursion there. */
5717 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5718 int i;
5719
5720 VECTOR_MARK (ptr);
5721 for (i = 0; i < size; i++)
5722 if (i != COMPILED_CONSTANTS)
5723 mark_object (ptr->contents[i]);
5724 if (size > COMPILED_CONSTANTS)
5725 {
5726 obj = ptr->contents[COMPILED_CONSTANTS];
5727 goto loop;
5728 }
5729 }
5730 break;
5731
5732 case PVEC_FRAME:
5733 mark_vectorlike (ptr);
5734 mark_face_cache (((struct frame *) ptr)->face_cache);
5735 break;
5736
5737 case PVEC_WINDOW:
5738 {
5739 struct window *w = (struct window *) ptr;
5740 bool leaf = NILP (w->hchild) && NILP (w->vchild);
5741
5742 mark_vectorlike (ptr);
5743
5744 /* Mark glyphs for leaf windows. Marking window
5745 matrices is sufficient because frame matrices
5746 use the same glyph memory. */
5747 if (leaf && w->current_matrix)
5748 {
5749 mark_glyph_matrix (w->current_matrix);
5750 mark_glyph_matrix (w->desired_matrix);
5751 }
5752
5753 /* Filter out killed buffers from both buffer lists
5754 in attempt to help GC to reclaim killed buffers faster.
5755 We can do it elsewhere for live windows, but this is the
5756 best place to do it for dead windows. */
5757 wset_prev_buffers
5758 (w, mark_discard_killed_buffers (w->prev_buffers));
5759 wset_next_buffers
5760 (w, mark_discard_killed_buffers (w->next_buffers));
5761 }
5762 break;
5763
5764 case PVEC_HASH_TABLE:
5765 {
5766 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
5767
5768 mark_vectorlike (ptr);
5769 /* If hash table is not weak, mark all keys and values.
5770 For weak tables, mark only the vector. */
5771 if (NILP (h->weak))
5772 mark_object (h->key_and_value);
5773 else
5774 VECTOR_MARK (XVECTOR (h->key_and_value));
5775 }
5776 break;
5777
5778 case PVEC_CHAR_TABLE:
5779 mark_char_table (ptr);
5780 break;
5781
5782 case PVEC_BOOL_VECTOR:
5783 /* No Lisp_Objects to mark in a bool vector. */
5784 VECTOR_MARK (ptr);
5785 break;
5786
5787 case PVEC_SUBR:
5788 break;
5789
5790 case PVEC_FREE:
5791 emacs_abort ();
5792
5793 default:
5794 mark_vectorlike (ptr);
5795 }
5796 }
5797 break;
5798
5799 case Lisp_Symbol:
5800 {
5801 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5802 struct Lisp_Symbol *ptrx;
5803
5804 if (ptr->gcmarkbit)
5805 break;
5806 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5807 ptr->gcmarkbit = 1;
5808 mark_object (ptr->function);
5809 mark_object (ptr->plist);
5810 switch (ptr->redirect)
5811 {
5812 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5813 case SYMBOL_VARALIAS:
5814 {
5815 Lisp_Object tem;
5816 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5817 mark_object (tem);
5818 break;
5819 }
5820 case SYMBOL_LOCALIZED:
5821 {
5822 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5823 Lisp_Object where = blv->where;
5824 /* If the value is set up for a killed buffer or deleted
5825 frame, restore it's global binding. If the value is
5826 forwarded to a C variable, either it's not a Lisp_Object
5827 var, or it's staticpro'd already. */
5828 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
5829 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
5830 swap_in_global_binding (ptr);
5831 mark_object (blv->where);
5832 mark_object (blv->valcell);
5833 mark_object (blv->defcell);
5834 break;
5835 }
5836 case SYMBOL_FORWARDED:
5837 /* If the value is forwarded to a buffer or keyboard field,
5838 these are marked when we see the corresponding object.
5839 And if it's forwarded to a C variable, either it's not
5840 a Lisp_Object var, or it's staticpro'd already. */
5841 break;
5842 default: emacs_abort ();
5843 }
5844 if (!PURE_POINTER_P (XSTRING (ptr->name)))
5845 MARK_STRING (XSTRING (ptr->name));
5846 MARK_INTERVAL_TREE (string_intervals (ptr->name));
5847
5848 ptr = ptr->next;
5849 if (ptr)
5850 {
5851 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
5852 XSETSYMBOL (obj, ptrx);
5853 goto loop;
5854 }
5855 }
5856 break;
5857
5858 case Lisp_Misc:
5859 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5860
5861 if (XMISCANY (obj)->gcmarkbit)
5862 break;
5863
5864 switch (XMISCTYPE (obj))
5865 {
5866 case Lisp_Misc_Marker:
5867 /* DO NOT mark thru the marker's chain.
5868 The buffer's markers chain does not preserve markers from gc;
5869 instead, markers are removed from the chain when freed by gc. */
5870 XMISCANY (obj)->gcmarkbit = 1;
5871 break;
5872
5873 case Lisp_Misc_Save_Value:
5874 XMISCANY (obj)->gcmarkbit = 1;
5875 #if GC_MARK_STACK
5876 {
5877 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5878 /* If DOGC is set, POINTER is the address of a memory
5879 area containing INTEGER potential Lisp_Objects. */
5880 if (ptr->dogc)
5881 {
5882 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5883 ptrdiff_t nelt;
5884 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5885 mark_maybe_object (*p);
5886 }
5887 }
5888 #endif
5889 break;
5890
5891 case Lisp_Misc_Overlay:
5892 mark_overlay (XOVERLAY (obj));
5893 break;
5894
5895 default:
5896 emacs_abort ();
5897 }
5898 break;
5899
5900 case Lisp_Cons:
5901 {
5902 register struct Lisp_Cons *ptr = XCONS (obj);
5903 if (CONS_MARKED_P (ptr))
5904 break;
5905 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5906 CONS_MARK (ptr);
5907 /* If the cdr is nil, avoid recursion for the car. */
5908 if (EQ (ptr->u.cdr, Qnil))
5909 {
5910 obj = ptr->car;
5911 cdr_count = 0;
5912 goto loop;
5913 }
5914 mark_object (ptr->car);
5915 obj = ptr->u.cdr;
5916 cdr_count++;
5917 if (cdr_count == mark_object_loop_halt)
5918 emacs_abort ();
5919 goto loop;
5920 }
5921
5922 case Lisp_Float:
5923 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5924 FLOAT_MARK (XFLOAT (obj));
5925 break;
5926
5927 case_Lisp_Int:
5928 break;
5929
5930 default:
5931 emacs_abort ();
5932 }
5933
5934 #undef CHECK_LIVE
5935 #undef CHECK_ALLOCATED
5936 #undef CHECK_ALLOCATED_AND_LIVE
5937 }
5938 /* Mark the Lisp pointers in the terminal objects.
5939 Called by Fgarbage_collect. */
5940
5941 static void
5942 mark_terminals (void)
5943 {
5944 struct terminal *t;
5945 for (t = terminal_list; t; t = t->next_terminal)
5946 {
5947 eassert (t->name != NULL);
5948 #ifdef HAVE_WINDOW_SYSTEM
5949 /* If a terminal object is reachable from a stacpro'ed object,
5950 it might have been marked already. Make sure the image cache
5951 gets marked. */
5952 mark_image_cache (t->image_cache);
5953 #endif /* HAVE_WINDOW_SYSTEM */
5954 if (!VECTOR_MARKED_P (t))
5955 mark_vectorlike ((struct Lisp_Vector *)t);
5956 }
5957 }
5958
5959
5960
5961 /* Value is non-zero if OBJ will survive the current GC because it's
5962 either marked or does not need to be marked to survive. */
5963
5964 bool
5965 survives_gc_p (Lisp_Object obj)
5966 {
5967 bool survives_p;
5968
5969 switch (XTYPE (obj))
5970 {
5971 case_Lisp_Int:
5972 survives_p = 1;
5973 break;
5974
5975 case Lisp_Symbol:
5976 survives_p = XSYMBOL (obj)->gcmarkbit;
5977 break;
5978
5979 case Lisp_Misc:
5980 survives_p = XMISCANY (obj)->gcmarkbit;
5981 break;
5982
5983 case Lisp_String:
5984 survives_p = STRING_MARKED_P (XSTRING (obj));
5985 break;
5986
5987 case Lisp_Vectorlike:
5988 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5989 break;
5990
5991 case Lisp_Cons:
5992 survives_p = CONS_MARKED_P (XCONS (obj));
5993 break;
5994
5995 case Lisp_Float:
5996 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5997 break;
5998
5999 default:
6000 emacs_abort ();
6001 }
6002
6003 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6004 }
6005
6006
6007 \f
6008 /* Sweep: find all structures not marked, and free them. */
6009
6010 static void
6011 gc_sweep (void)
6012 {
6013 /* Remove or mark entries in weak hash tables.
6014 This must be done before any object is unmarked. */
6015 sweep_weak_hash_tables ();
6016
6017 sweep_strings ();
6018 check_string_bytes (!noninteractive);
6019
6020 /* Put all unmarked conses on free list */
6021 {
6022 register struct cons_block *cblk;
6023 struct cons_block **cprev = &cons_block;
6024 register int lim = cons_block_index;
6025 EMACS_INT num_free = 0, num_used = 0;
6026
6027 cons_free_list = 0;
6028
6029 for (cblk = cons_block; cblk; cblk = *cprev)
6030 {
6031 register int i = 0;
6032 int this_free = 0;
6033 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6034
6035 /* Scan the mark bits an int at a time. */
6036 for (i = 0; i < ilim; i++)
6037 {
6038 if (cblk->gcmarkbits[i] == -1)
6039 {
6040 /* Fast path - all cons cells for this int are marked. */
6041 cblk->gcmarkbits[i] = 0;
6042 num_used += BITS_PER_INT;
6043 }
6044 else
6045 {
6046 /* Some cons cells for this int are not marked.
6047 Find which ones, and free them. */
6048 int start, pos, stop;
6049
6050 start = i * BITS_PER_INT;
6051 stop = lim - start;
6052 if (stop > BITS_PER_INT)
6053 stop = BITS_PER_INT;
6054 stop += start;
6055
6056 for (pos = start; pos < stop; pos++)
6057 {
6058 if (!CONS_MARKED_P (&cblk->conses[pos]))
6059 {
6060 this_free++;
6061 cblk->conses[pos].u.chain = cons_free_list;
6062 cons_free_list = &cblk->conses[pos];
6063 #if GC_MARK_STACK
6064 cons_free_list->car = Vdead;
6065 #endif
6066 }
6067 else
6068 {
6069 num_used++;
6070 CONS_UNMARK (&cblk->conses[pos]);
6071 }
6072 }
6073 }
6074 }
6075
6076 lim = CONS_BLOCK_SIZE;
6077 /* If this block contains only free conses and we have already
6078 seen more than two blocks worth of free conses then deallocate
6079 this block. */
6080 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6081 {
6082 *cprev = cblk->next;
6083 /* Unhook from the free list. */
6084 cons_free_list = cblk->conses[0].u.chain;
6085 lisp_align_free (cblk);
6086 }
6087 else
6088 {
6089 num_free += this_free;
6090 cprev = &cblk->next;
6091 }
6092 }
6093 total_conses = num_used;
6094 total_free_conses = num_free;
6095 }
6096
6097 /* Put all unmarked floats on free list */
6098 {
6099 register struct float_block *fblk;
6100 struct float_block **fprev = &float_block;
6101 register int lim = float_block_index;
6102 EMACS_INT num_free = 0, num_used = 0;
6103
6104 float_free_list = 0;
6105
6106 for (fblk = float_block; fblk; fblk = *fprev)
6107 {
6108 register int i;
6109 int this_free = 0;
6110 for (i = 0; i < lim; i++)
6111 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6112 {
6113 this_free++;
6114 fblk->floats[i].u.chain = float_free_list;
6115 float_free_list = &fblk->floats[i];
6116 }
6117 else
6118 {
6119 num_used++;
6120 FLOAT_UNMARK (&fblk->floats[i]);
6121 }
6122 lim = FLOAT_BLOCK_SIZE;
6123 /* If this block contains only free floats and we have already
6124 seen more than two blocks worth of free floats then deallocate
6125 this block. */
6126 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6127 {
6128 *fprev = fblk->next;
6129 /* Unhook from the free list. */
6130 float_free_list = fblk->floats[0].u.chain;
6131 lisp_align_free (fblk);
6132 }
6133 else
6134 {
6135 num_free += this_free;
6136 fprev = &fblk->next;
6137 }
6138 }
6139 total_floats = num_used;
6140 total_free_floats = num_free;
6141 }
6142
6143 /* Put all unmarked intervals on free list */
6144 {
6145 register struct interval_block *iblk;
6146 struct interval_block **iprev = &interval_block;
6147 register int lim = interval_block_index;
6148 EMACS_INT num_free = 0, num_used = 0;
6149
6150 interval_free_list = 0;
6151
6152 for (iblk = interval_block; iblk; iblk = *iprev)
6153 {
6154 register int i;
6155 int this_free = 0;
6156
6157 for (i = 0; i < lim; i++)
6158 {
6159 if (!iblk->intervals[i].gcmarkbit)
6160 {
6161 set_interval_parent (&iblk->intervals[i], interval_free_list);
6162 interval_free_list = &iblk->intervals[i];
6163 this_free++;
6164 }
6165 else
6166 {
6167 num_used++;
6168 iblk->intervals[i].gcmarkbit = 0;
6169 }
6170 }
6171 lim = INTERVAL_BLOCK_SIZE;
6172 /* If this block contains only free intervals and we have already
6173 seen more than two blocks worth of free intervals then
6174 deallocate this block. */
6175 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6176 {
6177 *iprev = iblk->next;
6178 /* Unhook from the free list. */
6179 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6180 lisp_free (iblk);
6181 }
6182 else
6183 {
6184 num_free += this_free;
6185 iprev = &iblk->next;
6186 }
6187 }
6188 total_intervals = num_used;
6189 total_free_intervals = num_free;
6190 }
6191
6192 /* Put all unmarked symbols on free list */
6193 {
6194 register struct symbol_block *sblk;
6195 struct symbol_block **sprev = &symbol_block;
6196 register int lim = symbol_block_index;
6197 EMACS_INT num_free = 0, num_used = 0;
6198
6199 symbol_free_list = NULL;
6200
6201 for (sblk = symbol_block; sblk; sblk = *sprev)
6202 {
6203 int this_free = 0;
6204 union aligned_Lisp_Symbol *sym = sblk->symbols;
6205 union aligned_Lisp_Symbol *end = sym + lim;
6206
6207 for (; sym < end; ++sym)
6208 {
6209 /* Check if the symbol was created during loadup. In such a case
6210 it might be pointed to by pure bytecode which we don't trace,
6211 so we conservatively assume that it is live. */
6212 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6213
6214 if (!sym->s.gcmarkbit && !pure_p)
6215 {
6216 if (sym->s.redirect == SYMBOL_LOCALIZED)
6217 xfree (SYMBOL_BLV (&sym->s));
6218 sym->s.next = symbol_free_list;
6219 symbol_free_list = &sym->s;
6220 #if GC_MARK_STACK
6221 symbol_free_list->function = Vdead;
6222 #endif
6223 ++this_free;
6224 }
6225 else
6226 {
6227 ++num_used;
6228 if (!pure_p)
6229 UNMARK_STRING (XSTRING (sym->s.name));
6230 sym->s.gcmarkbit = 0;
6231 }
6232 }
6233
6234 lim = SYMBOL_BLOCK_SIZE;
6235 /* If this block contains only free symbols and we have already
6236 seen more than two blocks worth of free symbols then deallocate
6237 this block. */
6238 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6239 {
6240 *sprev = sblk->next;
6241 /* Unhook from the free list. */
6242 symbol_free_list = sblk->symbols[0].s.next;
6243 lisp_free (sblk);
6244 }
6245 else
6246 {
6247 num_free += this_free;
6248 sprev = &sblk->next;
6249 }
6250 }
6251 total_symbols = num_used;
6252 total_free_symbols = num_free;
6253 }
6254
6255 /* Put all unmarked misc's on free list.
6256 For a marker, first unchain it from the buffer it points into. */
6257 {
6258 register struct marker_block *mblk;
6259 struct marker_block **mprev = &marker_block;
6260 register int lim = marker_block_index;
6261 EMACS_INT num_free = 0, num_used = 0;
6262
6263 marker_free_list = 0;
6264
6265 for (mblk = marker_block; mblk; mblk = *mprev)
6266 {
6267 register int i;
6268 int this_free = 0;
6269
6270 for (i = 0; i < lim; i++)
6271 {
6272 if (!mblk->markers[i].m.u_any.gcmarkbit)
6273 {
6274 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6275 unchain_marker (&mblk->markers[i].m.u_marker);
6276 /* Set the type of the freed object to Lisp_Misc_Free.
6277 We could leave the type alone, since nobody checks it,
6278 but this might catch bugs faster. */
6279 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6280 mblk->markers[i].m.u_free.chain = marker_free_list;
6281 marker_free_list = &mblk->markers[i].m;
6282 this_free++;
6283 }
6284 else
6285 {
6286 num_used++;
6287 mblk->markers[i].m.u_any.gcmarkbit = 0;
6288 }
6289 }
6290 lim = MARKER_BLOCK_SIZE;
6291 /* If this block contains only free markers and we have already
6292 seen more than two blocks worth of free markers then deallocate
6293 this block. */
6294 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6295 {
6296 *mprev = mblk->next;
6297 /* Unhook from the free list. */
6298 marker_free_list = mblk->markers[0].m.u_free.chain;
6299 lisp_free (mblk);
6300 }
6301 else
6302 {
6303 num_free += this_free;
6304 mprev = &mblk->next;
6305 }
6306 }
6307
6308 total_markers = num_used;
6309 total_free_markers = num_free;
6310 }
6311
6312 /* Free all unmarked buffers */
6313 {
6314 register struct buffer *buffer, **bprev = &all_buffers;
6315
6316 total_buffers = 0;
6317 for (buffer = all_buffers; buffer; buffer = *bprev)
6318 if (!VECTOR_MARKED_P (buffer))
6319 {
6320 *bprev = buffer->header.next.buffer;
6321 lisp_free (buffer);
6322 }
6323 else
6324 {
6325 VECTOR_UNMARK (buffer);
6326 /* Do not use buffer_(set|get)_intervals here. */
6327 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6328 total_buffers++;
6329 bprev = &buffer->header.next.buffer;
6330 }
6331 }
6332
6333 sweep_vectors ();
6334 check_string_bytes (!noninteractive);
6335 }
6336
6337
6338
6339 \f
6340 /* Debugging aids. */
6341
6342 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6343 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6344 This may be helpful in debugging Emacs's memory usage.
6345 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6346 (void)
6347 {
6348 Lisp_Object end;
6349
6350 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6351
6352 return end;
6353 }
6354
6355 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6356 doc: /* Return a list of counters that measure how much consing there has been.
6357 Each of these counters increments for a certain kind of object.
6358 The counters wrap around from the largest positive integer to zero.
6359 Garbage collection does not decrease them.
6360 The elements of the value are as follows:
6361 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6362 All are in units of 1 = one object consed
6363 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6364 objects consed.
6365 MISCS include overlays, markers, and some internal types.
6366 Frames, windows, buffers, and subprocesses count as vectors
6367 (but the contents of a buffer's text do not count here). */)
6368 (void)
6369 {
6370 return listn (CONSTYPE_HEAP, 8,
6371 bounded_number (cons_cells_consed),
6372 bounded_number (floats_consed),
6373 bounded_number (vector_cells_consed),
6374 bounded_number (symbols_consed),
6375 bounded_number (string_chars_consed),
6376 bounded_number (misc_objects_consed),
6377 bounded_number (intervals_consed),
6378 bounded_number (strings_consed));
6379 }
6380
6381 /* Find at most FIND_MAX symbols which have OBJ as their value or
6382 function. This is used in gdbinit's `xwhichsymbols' command. */
6383
6384 Lisp_Object
6385 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6386 {
6387 struct symbol_block *sblk;
6388 ptrdiff_t gc_count = inhibit_garbage_collection ();
6389 Lisp_Object found = Qnil;
6390
6391 if (! DEADP (obj))
6392 {
6393 for (sblk = symbol_block; sblk; sblk = sblk->next)
6394 {
6395 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6396 int bn;
6397
6398 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6399 {
6400 struct Lisp_Symbol *sym = &aligned_sym->s;
6401 Lisp_Object val;
6402 Lisp_Object tem;
6403
6404 if (sblk == symbol_block && bn >= symbol_block_index)
6405 break;
6406
6407 XSETSYMBOL (tem, sym);
6408 val = find_symbol_value (tem);
6409 if (EQ (val, obj)
6410 || EQ (sym->function, obj)
6411 || (!NILP (sym->function)
6412 && COMPILEDP (sym->function)
6413 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6414 || (!NILP (val)
6415 && COMPILEDP (val)
6416 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6417 {
6418 found = Fcons (tem, found);
6419 if (--find_max == 0)
6420 goto out;
6421 }
6422 }
6423 }
6424 }
6425
6426 out:
6427 unbind_to (gc_count, Qnil);
6428 return found;
6429 }
6430
6431 #ifdef ENABLE_CHECKING
6432
6433 bool suppress_checking;
6434
6435 void
6436 die (const char *msg, const char *file, int line)
6437 {
6438 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6439 file, line, msg);
6440 terminate_due_to_signal (SIGABRT, INT_MAX);
6441 }
6442 #endif
6443 \f
6444 /* Initialization */
6445
6446 void
6447 init_alloc_once (void)
6448 {
6449 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6450 purebeg = PUREBEG;
6451 pure_size = PURESIZE;
6452
6453 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6454 mem_init ();
6455 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6456 #endif
6457
6458 #ifdef DOUG_LEA_MALLOC
6459 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6460 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6461 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6462 #endif
6463 init_strings ();
6464 init_vectors ();
6465
6466 refill_memory_reserve ();
6467 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6468 }
6469
6470 void
6471 init_alloc (void)
6472 {
6473 gcprolist = 0;
6474 byte_stack_list = 0;
6475 #if GC_MARK_STACK
6476 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6477 setjmp_tested_p = longjmps_done = 0;
6478 #endif
6479 #endif
6480 Vgc_elapsed = make_float (0.0);
6481 gcs_done = 0;
6482 }
6483
6484 void
6485 syms_of_alloc (void)
6486 {
6487 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6488 doc: /* Number of bytes of consing between garbage collections.
6489 Garbage collection can happen automatically once this many bytes have been
6490 allocated since the last garbage collection. All data types count.
6491
6492 Garbage collection happens automatically only when `eval' is called.
6493
6494 By binding this temporarily to a large number, you can effectively
6495 prevent garbage collection during a part of the program.
6496 See also `gc-cons-percentage'. */);
6497
6498 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6499 doc: /* Portion of the heap used for allocation.
6500 Garbage collection can happen automatically once this portion of the heap
6501 has been allocated since the last garbage collection.
6502 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6503 Vgc_cons_percentage = make_float (0.1);
6504
6505 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6506 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6507
6508 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6509 doc: /* Number of cons cells that have been consed so far. */);
6510
6511 DEFVAR_INT ("floats-consed", floats_consed,
6512 doc: /* Number of floats that have been consed so far. */);
6513
6514 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6515 doc: /* Number of vector cells that have been consed so far. */);
6516
6517 DEFVAR_INT ("symbols-consed", symbols_consed,
6518 doc: /* Number of symbols that have been consed so far. */);
6519
6520 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6521 doc: /* Number of string characters that have been consed so far. */);
6522
6523 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6524 doc: /* Number of miscellaneous objects that have been consed so far.
6525 These include markers and overlays, plus certain objects not visible
6526 to users. */);
6527
6528 DEFVAR_INT ("intervals-consed", intervals_consed,
6529 doc: /* Number of intervals that have been consed so far. */);
6530
6531 DEFVAR_INT ("strings-consed", strings_consed,
6532 doc: /* Number of strings that have been consed so far. */);
6533
6534 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6535 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6536 This means that certain objects should be allocated in shared (pure) space.
6537 It can also be set to a hash-table, in which case this table is used to
6538 do hash-consing of the objects allocated to pure space. */);
6539
6540 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6541 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6542 garbage_collection_messages = 0;
6543
6544 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6545 doc: /* Hook run after garbage collection has finished. */);
6546 Vpost_gc_hook = Qnil;
6547 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6548
6549 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6550 doc: /* Precomputed `signal' argument for memory-full error. */);
6551 /* We build this in advance because if we wait until we need it, we might
6552 not be able to allocate the memory to hold it. */
6553 Vmemory_signal_data
6554 = listn (CONSTYPE_PURE, 2, Qerror,
6555 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6556
6557 DEFVAR_LISP ("memory-full", Vmemory_full,
6558 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6559 Vmemory_full = Qnil;
6560
6561 DEFSYM (Qconses, "conses");
6562 DEFSYM (Qsymbols, "symbols");
6563 DEFSYM (Qmiscs, "miscs");
6564 DEFSYM (Qstrings, "strings");
6565 DEFSYM (Qvectors, "vectors");
6566 DEFSYM (Qfloats, "floats");
6567 DEFSYM (Qintervals, "intervals");
6568 DEFSYM (Qbuffers, "buffers");
6569 DEFSYM (Qstring_bytes, "string-bytes");
6570 DEFSYM (Qvector_slots, "vector-slots");
6571 DEFSYM (Qheap, "heap");
6572 DEFSYM (Qautomatic_gc, "Automatic GC");
6573
6574 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6575 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6576
6577 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6578 doc: /* Accumulated time elapsed in garbage collections.
6579 The time is in seconds as a floating point value. */);
6580 DEFVAR_INT ("gcs-done", gcs_done,
6581 doc: /* Accumulated number of garbage collections done. */);
6582
6583 defsubr (&Scons);
6584 defsubr (&Slist);
6585 defsubr (&Svector);
6586 defsubr (&Smake_byte_code);
6587 defsubr (&Smake_list);
6588 defsubr (&Smake_vector);
6589 defsubr (&Smake_string);
6590 defsubr (&Smake_bool_vector);
6591 defsubr (&Smake_symbol);
6592 defsubr (&Smake_marker);
6593 defsubr (&Spurecopy);
6594 defsubr (&Sgarbage_collect);
6595 defsubr (&Smemory_limit);
6596 defsubr (&Smemory_use_counts);
6597
6598 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6599 defsubr (&Sgc_status);
6600 #endif
6601 }
6602
6603 /* When compiled with GCC, GDB might say "No enum type named
6604 pvec_type" if we don't have at least one symbol with that type, and
6605 then xbacktrace could fail. Similarly for the other enums and
6606 their values. Some non-GCC compilers don't like these constructs. */
6607 #ifdef __GNUC__
6608 union
6609 {
6610 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6611 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6612 enum char_bits char_bits;
6613 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6614 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6615 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6616 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6617 enum Lisp_Bits Lisp_Bits;
6618 enum Lisp_Compiled Lisp_Compiled;
6619 enum maxargs maxargs;
6620 enum MAX_ALLOCA MAX_ALLOCA;
6621 enum More_Lisp_Bits More_Lisp_Bits;
6622 enum pvec_type pvec_type;
6623 #if USE_LSB_TAG
6624 enum lsb_bits lsb_bits;
6625 #endif
6626 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6627 #endif /* __GNUC__ */