]> code.delx.au - gnu-emacs/blob - src/data.c
(redisplay): Don't call x_consider_frame_title.
[gnu-emacs] / src / data.c
1 /* Primitive operations on Lisp data types for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 1, or (at your option)
9 any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 #include <signal.h>
22
23 #include <config.h>
24 #include "lisp.h"
25 #include "puresize.h"
26
27 #ifndef standalone
28 #include "buffer.h"
29 #endif
30
31 #include "syssignal.h"
32
33 #ifdef MSDOS
34 /* These are redefined (correctly, but differently) in values.h. */
35 #undef INTBITS
36 #undef LONGBITS
37 #undef SHORTBITS
38 #endif
39
40 #ifdef LISP_FLOAT_TYPE
41
42 #ifdef STDC_HEADERS
43 #include <stdlib.h>
44 #endif
45
46 /* Work around a problem that happens because math.h on hpux 7
47 defines two static variables--which, in Emacs, are not really static,
48 because `static' is defined as nothing. The problem is that they are
49 here, in floatfns.c, and in lread.c.
50 These macros prevent the name conflict. */
51 #if defined (HPUX) && !defined (HPUX8)
52 #define _MAXLDBL data_c_maxldbl
53 #define _NMAXLDBL data_c_nmaxldbl
54 #endif
55
56 #include <math.h>
57 #endif /* LISP_FLOAT_TYPE */
58
59 #if !defined (atof)
60 extern double atof ();
61 #endif /* !atof */
62
63 Lisp_Object Qnil, Qt, Qquote, Qlambda, Qsubr, Qunbound;
64 Lisp_Object Qerror_conditions, Qerror_message, Qtop_level;
65 Lisp_Object Qerror, Qquit, Qwrong_type_argument, Qargs_out_of_range;
66 Lisp_Object Qvoid_variable, Qvoid_function, Qcyclic_function_indirection;
67 Lisp_Object Qsetting_constant, Qinvalid_read_syntax;
68 Lisp_Object Qinvalid_function, Qwrong_number_of_arguments, Qno_catch;
69 Lisp_Object Qend_of_file, Qarith_error, Qmark_inactive;
70 Lisp_Object Qbeginning_of_buffer, Qend_of_buffer, Qbuffer_read_only;
71 Lisp_Object Qintegerp, Qnatnump, Qwholenump, Qsymbolp, Qlistp, Qconsp;
72 Lisp_Object Qstringp, Qarrayp, Qsequencep, Qbufferp;
73 Lisp_Object Qchar_or_string_p, Qmarkerp, Qinteger_or_marker_p, Qvectorp;
74 Lisp_Object Qbuffer_or_string_p;
75 Lisp_Object Qboundp, Qfboundp;
76 Lisp_Object Qcdr;
77
78 Lisp_Object Qrange_error, Qdomain_error, Qsingularity_error;
79 Lisp_Object Qoverflow_error, Qunderflow_error;
80
81 #ifdef LISP_FLOAT_TYPE
82 Lisp_Object Qfloatp;
83 Lisp_Object Qnumberp, Qnumber_or_marker_p;
84 #endif
85
86 static Lisp_Object swap_in_symval_forwarding ();
87
88 Lisp_Object
89 wrong_type_argument (predicate, value)
90 register Lisp_Object predicate, value;
91 {
92 register Lisp_Object tem;
93 do
94 {
95 if (!EQ (Vmocklisp_arguments, Qt))
96 {
97 if (XTYPE (value) == Lisp_String &&
98 (EQ (predicate, Qintegerp) || EQ (predicate, Qinteger_or_marker_p)))
99 return Fstring_to_number (value);
100 if (XTYPE (value) == Lisp_Int && EQ (predicate, Qstringp))
101 return Fnumber_to_string (value);
102 }
103 value = Fsignal (Qwrong_type_argument, Fcons (predicate, Fcons (value, Qnil)));
104 tem = call1 (predicate, value);
105 }
106 while (NILP (tem));
107 return value;
108 }
109
110 pure_write_error ()
111 {
112 error ("Attempt to modify read-only object");
113 }
114
115 void
116 args_out_of_range (a1, a2)
117 Lisp_Object a1, a2;
118 {
119 while (1)
120 Fsignal (Qargs_out_of_range, Fcons (a1, Fcons (a2, Qnil)));
121 }
122
123 void
124 args_out_of_range_3 (a1, a2, a3)
125 Lisp_Object a1, a2, a3;
126 {
127 while (1)
128 Fsignal (Qargs_out_of_range, Fcons (a1, Fcons (a2, Fcons (a3, Qnil))));
129 }
130
131 Lisp_Object
132 make_number (num)
133 int num;
134 {
135 register Lisp_Object val;
136 XSET (val, Lisp_Int, num);
137 return val;
138 }
139
140 /* On some machines, XINT needs a temporary location.
141 Here it is, in case it is needed. */
142
143 int sign_extend_temp;
144
145 /* On a few machines, XINT can only be done by calling this. */
146
147 int
148 sign_extend_lisp_int (num)
149 int num;
150 {
151 if (num & (1 << (VALBITS - 1)))
152 return num | ((-1) << VALBITS);
153 else
154 return num & ((1 << VALBITS) - 1);
155 }
156 \f
157 /* Data type predicates */
158
159 DEFUN ("eq", Feq, Seq, 2, 2, 0,
160 "T if the two args are the same Lisp object.")
161 (obj1, obj2)
162 Lisp_Object obj1, obj2;
163 {
164 if (EQ (obj1, obj2))
165 return Qt;
166 return Qnil;
167 }
168
169 DEFUN ("null", Fnull, Snull, 1, 1, 0, "T if OBJECT is nil.")
170 (obj)
171 Lisp_Object obj;
172 {
173 if (NILP (obj))
174 return Qt;
175 return Qnil;
176 }
177
178 DEFUN ("consp", Fconsp, Sconsp, 1, 1, 0, "T if OBJECT is a cons cell.")
179 (obj)
180 Lisp_Object obj;
181 {
182 if (XTYPE (obj) == Lisp_Cons)
183 return Qt;
184 return Qnil;
185 }
186
187 DEFUN ("atom", Fatom, Satom, 1, 1, 0, "T if OBJECT is not a cons cell. This includes nil.")
188 (obj)
189 Lisp_Object obj;
190 {
191 if (XTYPE (obj) == Lisp_Cons)
192 return Qnil;
193 return Qt;
194 }
195
196 DEFUN ("listp", Flistp, Slistp, 1, 1, 0, "T if OBJECT is a list. This includes nil.")
197 (obj)
198 Lisp_Object obj;
199 {
200 if (XTYPE (obj) == Lisp_Cons || NILP (obj))
201 return Qt;
202 return Qnil;
203 }
204
205 DEFUN ("nlistp", Fnlistp, Snlistp, 1, 1, 0, "T if OBJECT is not a list. Lists include nil.")
206 (obj)
207 Lisp_Object obj;
208 {
209 if (XTYPE (obj) == Lisp_Cons || NILP (obj))
210 return Qnil;
211 return Qt;
212 }
213 \f
214 DEFUN ("symbolp", Fsymbolp, Ssymbolp, 1, 1, 0, "T if OBJECT is a symbol.")
215 (obj)
216 Lisp_Object obj;
217 {
218 if (XTYPE (obj) == Lisp_Symbol)
219 return Qt;
220 return Qnil;
221 }
222
223 DEFUN ("vectorp", Fvectorp, Svectorp, 1, 1, 0, "T if OBJECT is a vector.")
224 (obj)
225 Lisp_Object obj;
226 {
227 if (XTYPE (obj) == Lisp_Vector)
228 return Qt;
229 return Qnil;
230 }
231
232 DEFUN ("stringp", Fstringp, Sstringp, 1, 1, 0, "T if OBJECT is a string.")
233 (obj)
234 Lisp_Object obj;
235 {
236 if (XTYPE (obj) == Lisp_String)
237 return Qt;
238 return Qnil;
239 }
240
241 DEFUN ("arrayp", Farrayp, Sarrayp, 1, 1, 0, "T if OBJECT is an array (string or vector).")
242 (obj)
243 Lisp_Object obj;
244 {
245 if (XTYPE (obj) == Lisp_Vector || XTYPE (obj) == Lisp_String)
246 return Qt;
247 return Qnil;
248 }
249
250 DEFUN ("sequencep", Fsequencep, Ssequencep, 1, 1, 0,
251 "T if OBJECT is a sequence (list or array).")
252 (obj)
253 register Lisp_Object obj;
254 {
255 if (CONSP (obj) || NILP (obj) ||
256 XTYPE (obj) == Lisp_Vector || XTYPE (obj) == Lisp_String)
257 return Qt;
258 return Qnil;
259 }
260
261 DEFUN ("bufferp", Fbufferp, Sbufferp, 1, 1, 0, "T if OBJECT is an editor buffer.")
262 (obj)
263 Lisp_Object obj;
264 {
265 if (XTYPE (obj) == Lisp_Buffer)
266 return Qt;
267 return Qnil;
268 }
269
270 DEFUN ("markerp", Fmarkerp, Smarkerp, 1, 1, 0, "T if OBJECT is a marker (editor pointer).")
271 (obj)
272 Lisp_Object obj;
273 {
274 if (XTYPE (obj) == Lisp_Marker)
275 return Qt;
276 return Qnil;
277 }
278
279 DEFUN ("subrp", Fsubrp, Ssubrp, 1, 1, 0, "T if OBJECT is a built-in function.")
280 (obj)
281 Lisp_Object obj;
282 {
283 if (XTYPE (obj) == Lisp_Subr)
284 return Qt;
285 return Qnil;
286 }
287
288 DEFUN ("byte-code-function-p", Fbyte_code_function_p, Sbyte_code_function_p,
289 1, 1, 0, "T if OBJECT is a byte-compiled function object.")
290 (obj)
291 Lisp_Object obj;
292 {
293 if (XTYPE (obj) == Lisp_Compiled)
294 return Qt;
295 return Qnil;
296 }
297
298 DEFUN ("char-or-string-p", Fchar_or_string_p, Schar_or_string_p, 1, 1, 0,
299 "T if OBJECT is a character (an integer) or a string.")
300 (obj)
301 register Lisp_Object obj;
302 {
303 if (XTYPE (obj) == Lisp_Int || XTYPE (obj) == Lisp_String)
304 return Qt;
305 return Qnil;
306 }
307 \f
308 DEFUN ("integerp", Fintegerp, Sintegerp, 1, 1, 0, "T if OBJECT is an integer.")
309 (obj)
310 Lisp_Object obj;
311 {
312 if (XTYPE (obj) == Lisp_Int)
313 return Qt;
314 return Qnil;
315 }
316
317 DEFUN ("integer-or-marker-p", Finteger_or_marker_p, Sinteger_or_marker_p, 1, 1, 0,
318 "T if OBJECT is an integer or a marker (editor pointer).")
319 (obj)
320 register Lisp_Object obj;
321 {
322 if (XTYPE (obj) == Lisp_Marker || XTYPE (obj) == Lisp_Int)
323 return Qt;
324 return Qnil;
325 }
326
327 DEFUN ("natnump", Fnatnump, Snatnump, 1, 1, 0,
328 "T if OBJECT is a nonnegative integer.")
329 (obj)
330 Lisp_Object obj;
331 {
332 if (XTYPE (obj) == Lisp_Int && XINT (obj) >= 0)
333 return Qt;
334 return Qnil;
335 }
336
337 DEFUN ("numberp", Fnumberp, Snumberp, 1, 1, 0,
338 "T if OBJECT is a number (floating point or integer).")
339 (obj)
340 Lisp_Object obj;
341 {
342 if (NUMBERP (obj))
343 return Qt;
344 else
345 return Qnil;
346 }
347
348 DEFUN ("number-or-marker-p", Fnumber_or_marker_p,
349 Snumber_or_marker_p, 1, 1, 0,
350 "T if OBJECT is a number or a marker.")
351 (obj)
352 Lisp_Object obj;
353 {
354 if (NUMBERP (obj)
355 || XTYPE (obj) == Lisp_Marker)
356 return Qt;
357 return Qnil;
358 }
359
360 #ifdef LISP_FLOAT_TYPE
361 DEFUN ("floatp", Ffloatp, Sfloatp, 1, 1, 0,
362 "T if OBJECT is a floating point number.")
363 (obj)
364 Lisp_Object obj;
365 {
366 if (XTYPE (obj) == Lisp_Float)
367 return Qt;
368 return Qnil;
369 }
370 #endif /* LISP_FLOAT_TYPE */
371 \f
372 /* Extract and set components of lists */
373
374 DEFUN ("car", Fcar, Scar, 1, 1, 0,
375 "Return the car of CONSCELL. If arg is nil, return nil.\n\
376 Error if arg is not nil and not a cons cell. See also `car-safe'.")
377 (list)
378 register Lisp_Object list;
379 {
380 while (1)
381 {
382 if (XTYPE (list) == Lisp_Cons)
383 return XCONS (list)->car;
384 else if (EQ (list, Qnil))
385 return Qnil;
386 else
387 list = wrong_type_argument (Qlistp, list);
388 }
389 }
390
391 DEFUN ("car-safe", Fcar_safe, Scar_safe, 1, 1, 0,
392 "Return the car of OBJECT if it is a cons cell, or else nil.")
393 (object)
394 Lisp_Object object;
395 {
396 if (XTYPE (object) == Lisp_Cons)
397 return XCONS (object)->car;
398 else
399 return Qnil;
400 }
401
402 DEFUN ("cdr", Fcdr, Scdr, 1, 1, 0,
403 "Return the cdr of CONSCELL. If arg is nil, return nil.\n\
404 Error if arg is not nil and not a cons cell. See also `cdr-safe'.")
405
406 (list)
407 register Lisp_Object list;
408 {
409 while (1)
410 {
411 if (XTYPE (list) == Lisp_Cons)
412 return XCONS (list)->cdr;
413 else if (EQ (list, Qnil))
414 return Qnil;
415 else
416 list = wrong_type_argument (Qlistp, list);
417 }
418 }
419
420 DEFUN ("cdr-safe", Fcdr_safe, Scdr_safe, 1, 1, 0,
421 "Return the cdr of OBJECT if it is a cons cell, or else nil.")
422 (object)
423 Lisp_Object object;
424 {
425 if (XTYPE (object) == Lisp_Cons)
426 return XCONS (object)->cdr;
427 else
428 return Qnil;
429 }
430
431 DEFUN ("setcar", Fsetcar, Ssetcar, 2, 2, 0,
432 "Set the car of CONSCELL to be NEWCAR. Returns NEWCAR.")
433 (cell, newcar)
434 register Lisp_Object cell, newcar;
435 {
436 if (XTYPE (cell) != Lisp_Cons)
437 cell = wrong_type_argument (Qconsp, cell);
438
439 CHECK_IMPURE (cell);
440 XCONS (cell)->car = newcar;
441 return newcar;
442 }
443
444 DEFUN ("setcdr", Fsetcdr, Ssetcdr, 2, 2, 0,
445 "Set the cdr of CONSCELL to be NEWCDR. Returns NEWCDR.")
446 (cell, newcdr)
447 register Lisp_Object cell, newcdr;
448 {
449 if (XTYPE (cell) != Lisp_Cons)
450 cell = wrong_type_argument (Qconsp, cell);
451
452 CHECK_IMPURE (cell);
453 XCONS (cell)->cdr = newcdr;
454 return newcdr;
455 }
456 \f
457 /* Extract and set components of symbols */
458
459 DEFUN ("boundp", Fboundp, Sboundp, 1, 1, 0, "T if SYMBOL's value is not void.")
460 (sym)
461 register Lisp_Object sym;
462 {
463 Lisp_Object valcontents;
464 CHECK_SYMBOL (sym, 0);
465
466 valcontents = XSYMBOL (sym)->value;
467
468 #ifdef SWITCH_ENUM_BUG
469 switch ((int) XTYPE (valcontents))
470 #else
471 switch (XTYPE (valcontents))
472 #endif
473 {
474 case Lisp_Buffer_Local_Value:
475 case Lisp_Some_Buffer_Local_Value:
476 valcontents = swap_in_symval_forwarding (sym, valcontents);
477 }
478
479 return (XTYPE (valcontents) == Lisp_Void || EQ (valcontents, Qunbound)
480 ? Qnil : Qt);
481 }
482
483 DEFUN ("fboundp", Ffboundp, Sfboundp, 1, 1, 0, "T if SYMBOL's function definition is not void.")
484 (sym)
485 register Lisp_Object sym;
486 {
487 CHECK_SYMBOL (sym, 0);
488 return (XTYPE (XSYMBOL (sym)->function) == Lisp_Void
489 || EQ (XSYMBOL (sym)->function, Qunbound))
490 ? Qnil : Qt;
491 }
492
493 DEFUN ("makunbound", Fmakunbound, Smakunbound, 1, 1, 0, "Make SYMBOL's value be void.")
494 (sym)
495 register Lisp_Object sym;
496 {
497 CHECK_SYMBOL (sym, 0);
498 if (NILP (sym) || EQ (sym, Qt))
499 return Fsignal (Qsetting_constant, Fcons (sym, Qnil));
500 Fset (sym, Qunbound);
501 return sym;
502 }
503
504 DEFUN ("fmakunbound", Ffmakunbound, Sfmakunbound, 1, 1, 0, "Make SYMBOL's function definition be void.")
505 (sym)
506 register Lisp_Object sym;
507 {
508 CHECK_SYMBOL (sym, 0);
509 if (NILP (sym) || EQ (sym, Qt))
510 return Fsignal (Qsetting_constant, Fcons (sym, Qnil));
511 XSYMBOL (sym)->function = Qunbound;
512 return sym;
513 }
514
515 DEFUN ("symbol-function", Fsymbol_function, Ssymbol_function, 1, 1, 0,
516 "Return SYMBOL's function definition. Error if that is void.")
517 (symbol)
518 register Lisp_Object symbol;
519 {
520 CHECK_SYMBOL (symbol, 0);
521 if (EQ (XSYMBOL (symbol)->function, Qunbound))
522 return Fsignal (Qvoid_function, Fcons (symbol, Qnil));
523 return XSYMBOL (symbol)->function;
524 }
525
526 DEFUN ("symbol-plist", Fsymbol_plist, Ssymbol_plist, 1, 1, 0, "Return SYMBOL's property list.")
527 (sym)
528 register Lisp_Object sym;
529 {
530 CHECK_SYMBOL (sym, 0);
531 return XSYMBOL (sym)->plist;
532 }
533
534 DEFUN ("symbol-name", Fsymbol_name, Ssymbol_name, 1, 1, 0, "Return SYMBOL's name, a string.")
535 (sym)
536 register Lisp_Object sym;
537 {
538 register Lisp_Object name;
539
540 CHECK_SYMBOL (sym, 0);
541 XSET (name, Lisp_String, XSYMBOL (sym)->name);
542 return name;
543 }
544
545 DEFUN ("fset", Ffset, Sfset, 2, 2, 0,
546 "Set SYMBOL's function definition to NEWVAL, and return NEWVAL.")
547 (sym, newdef)
548 register Lisp_Object sym, newdef;
549 {
550 CHECK_SYMBOL (sym, 0);
551 if (NILP (sym) || EQ (sym, Qt))
552 return Fsignal (Qsetting_constant, Fcons (sym, Qnil));
553 if (!NILP (Vautoload_queue) && !EQ (XSYMBOL (sym)->function, Qunbound))
554 Vautoload_queue = Fcons (Fcons (sym, XSYMBOL (sym)->function),
555 Vautoload_queue);
556 XSYMBOL (sym)->function = newdef;
557 return newdef;
558 }
559
560 /* This name should be removed once it is eliminated from elsewhere. */
561
562 DEFUN ("defalias", Fdefalias, Sdefalias, 2, 2, 0,
563 "Set SYMBOL's function definition to NEWVAL, and return NEWVAL.\n\
564 Associates the function with the current load file, if any.")
565 (sym, newdef)
566 register Lisp_Object sym, newdef;
567 {
568 CHECK_SYMBOL (sym, 0);
569 if (!NILP (Vautoload_queue) && !EQ (XSYMBOL (sym)->function, Qunbound))
570 Vautoload_queue = Fcons (Fcons (sym, XSYMBOL (sym)->function),
571 Vautoload_queue);
572 XSYMBOL (sym)->function = newdef;
573 LOADHIST_ATTACH (sym);
574 return newdef;
575 }
576
577 DEFUN ("define-function", Fdefine_function, Sdefine_function, 2, 2, 0,
578 "Set SYMBOL's function definition to NEWVAL, and return NEWVAL.\n\
579 Associates the function with the current load file, if any.")
580 (sym, newdef)
581 register Lisp_Object sym, newdef;
582 {
583 CHECK_SYMBOL (sym, 0);
584 if (!NILP (Vautoload_queue) && !EQ (XSYMBOL (sym)->function, Qunbound))
585 Vautoload_queue = Fcons (Fcons (sym, XSYMBOL (sym)->function),
586 Vautoload_queue);
587 XSYMBOL (sym)->function = newdef;
588 LOADHIST_ATTACH (sym);
589 return newdef;
590 }
591
592 DEFUN ("setplist", Fsetplist, Ssetplist, 2, 2, 0,
593 "Set SYMBOL's property list to NEWVAL, and return NEWVAL.")
594 (sym, newplist)
595 register Lisp_Object sym, newplist;
596 {
597 CHECK_SYMBOL (sym, 0);
598 XSYMBOL (sym)->plist = newplist;
599 return newplist;
600 }
601
602 \f
603 /* Getting and setting values of symbols */
604
605 /* Given the raw contents of a symbol value cell,
606 return the Lisp value of the symbol.
607 This does not handle buffer-local variables; use
608 swap_in_symval_forwarding for that. */
609
610 Lisp_Object
611 do_symval_forwarding (valcontents)
612 register Lisp_Object valcontents;
613 {
614 register Lisp_Object val;
615 #ifdef SWITCH_ENUM_BUG
616 switch ((int) XTYPE (valcontents))
617 #else
618 switch (XTYPE (valcontents))
619 #endif
620 {
621 case Lisp_Intfwd:
622 XSET (val, Lisp_Int, *XINTPTR (valcontents));
623 return val;
624
625 case Lisp_Boolfwd:
626 if (*XINTPTR (valcontents))
627 return Qt;
628 return Qnil;
629
630 case Lisp_Objfwd:
631 return *XOBJFWD (valcontents);
632
633 case Lisp_Buffer_Objfwd:
634 return *(Lisp_Object *)(XUINT (valcontents) + (char *)current_buffer);
635 }
636 return valcontents;
637 }
638
639 /* Store NEWVAL into SYM, where VALCONTENTS is found in the value cell
640 of SYM. If SYM is buffer-local, VALCONTENTS should be the
641 buffer-independent contents of the value cell: forwarded just one
642 step past the buffer-localness. */
643
644 void
645 store_symval_forwarding (sym, valcontents, newval)
646 Lisp_Object sym;
647 register Lisp_Object valcontents, newval;
648 {
649 #ifdef SWITCH_ENUM_BUG
650 switch ((int) XTYPE (valcontents))
651 #else
652 switch (XTYPE (valcontents))
653 #endif
654 {
655 case Lisp_Intfwd:
656 CHECK_NUMBER (newval, 1);
657 *XINTPTR (valcontents) = XINT (newval);
658 break;
659
660 case Lisp_Boolfwd:
661 *XINTPTR (valcontents) = NILP(newval) ? 0 : 1;
662 break;
663
664 case Lisp_Objfwd:
665 *XOBJFWD (valcontents) = newval;
666 break;
667
668 case Lisp_Buffer_Objfwd:
669 {
670 unsigned int offset = XUINT (valcontents);
671 Lisp_Object type;
672
673 type = *(Lisp_Object *)(offset + (char *)&buffer_local_types);
674 if (! NILP (type) && ! NILP (newval)
675 && XTYPE (newval) != XINT (type))
676 buffer_slot_type_mismatch (valcontents, newval);
677
678 *(Lisp_Object *)(XUINT (valcontents) + (char *)current_buffer)
679 = newval;
680 break;
681 }
682
683 default:
684 valcontents = XSYMBOL (sym)->value;
685 if (XTYPE (valcontents) == Lisp_Buffer_Local_Value
686 || XTYPE (valcontents) == Lisp_Some_Buffer_Local_Value)
687 XCONS (XSYMBOL (sym)->value)->car = newval;
688 else
689 XSYMBOL (sym)->value = newval;
690 }
691 }
692
693 /* Set up the buffer-local symbol SYM for validity in the current
694 buffer. VALCONTENTS is the contents of its value cell.
695 Return the value forwarded one step past the buffer-local indicator. */
696
697 static Lisp_Object
698 swap_in_symval_forwarding (sym, valcontents)
699 Lisp_Object sym, valcontents;
700 {
701 /* valcontents is a list
702 (REALVALUE BUFFER CURRENT-ALIST-ELEMENT . DEFAULT-VALUE)).
703
704 CURRENT-ALIST-ELEMENT is a pointer to an element of BUFFER's
705 local_var_alist, that being the element whose car is this
706 variable. Or it can be a pointer to the
707 (CURRENT-ALIST-ELEMENT . DEFAULT-VALUE), if BUFFER does not have
708 an element in its alist for this variable.
709
710 If the current buffer is not BUFFER, we store the current
711 REALVALUE value into CURRENT-ALIST-ELEMENT, then find the
712 appropriate alist element for the buffer now current and set up
713 CURRENT-ALIST-ELEMENT. Then we set REALVALUE out of that
714 element, and store into BUFFER.
715
716 Note that REALVALUE can be a forwarding pointer. */
717
718 register Lisp_Object tem1;
719 tem1 = XCONS (XCONS (valcontents)->cdr)->car;
720
721 if (NILP (tem1) || current_buffer != XBUFFER (tem1))
722 {
723 tem1 = XCONS (XCONS (XCONS (valcontents)->cdr)->cdr)->car;
724 Fsetcdr (tem1, do_symval_forwarding (XCONS (valcontents)->car));
725 tem1 = assq_no_quit (sym, current_buffer->local_var_alist);
726 if (NILP (tem1))
727 tem1 = XCONS (XCONS (valcontents)->cdr)->cdr;
728 XCONS (XCONS (XCONS (valcontents)->cdr)->cdr)->car = tem1;
729 XSET (XCONS (XCONS (valcontents)->cdr)->car, Lisp_Buffer, current_buffer);
730 store_symval_forwarding (sym, XCONS (valcontents)->car, Fcdr (tem1));
731 }
732 return XCONS (valcontents)->car;
733 }
734 \f
735 /* Find the value of a symbol, returning Qunbound if it's not bound.
736 This is helpful for code which just wants to get a variable's value
737 if it has one, without signalling an error.
738 Note that it must not be possible to quit
739 within this function. Great care is required for this. */
740
741 Lisp_Object
742 find_symbol_value (sym)
743 Lisp_Object sym;
744 {
745 register Lisp_Object valcontents, tem1;
746 register Lisp_Object val;
747 CHECK_SYMBOL (sym, 0);
748 valcontents = XSYMBOL (sym)->value;
749
750 retry:
751 #ifdef SWITCH_ENUM_BUG
752 switch ((int) XTYPE (valcontents))
753 #else
754 switch (XTYPE (valcontents))
755 #endif
756 {
757 case Lisp_Buffer_Local_Value:
758 case Lisp_Some_Buffer_Local_Value:
759 valcontents = swap_in_symval_forwarding (sym, valcontents);
760 goto retry;
761
762 case Lisp_Intfwd:
763 XSET (val, Lisp_Int, *XINTPTR (valcontents));
764 return val;
765
766 case Lisp_Boolfwd:
767 if (*XINTPTR (valcontents))
768 return Qt;
769 return Qnil;
770
771 case Lisp_Objfwd:
772 return *XOBJFWD (valcontents);
773
774 case Lisp_Buffer_Objfwd:
775 return *(Lisp_Object *)(XUINT (valcontents) + (char *)current_buffer);
776
777 case Lisp_Void:
778 return Qunbound;
779 }
780
781 return valcontents;
782 }
783
784 DEFUN ("symbol-value", Fsymbol_value, Ssymbol_value, 1, 1, 0,
785 "Return SYMBOL's value. Error if that is void.")
786 (sym)
787 Lisp_Object sym;
788 {
789 Lisp_Object val;
790
791 val = find_symbol_value (sym);
792 if (EQ (val, Qunbound))
793 return Fsignal (Qvoid_variable, Fcons (sym, Qnil));
794 else
795 return val;
796 }
797
798 DEFUN ("set", Fset, Sset, 2, 2, 0,
799 "Set SYMBOL's value to NEWVAL, and return NEWVAL.")
800 (sym, newval)
801 register Lisp_Object sym, newval;
802 {
803 int voide = (XTYPE (newval) == Lisp_Void || EQ (newval, Qunbound));
804
805 #ifndef RTPC_REGISTER_BUG
806 register Lisp_Object valcontents, tem1, current_alist_element;
807 #else /* RTPC_REGISTER_BUG */
808 register Lisp_Object tem1;
809 Lisp_Object valcontents, current_alist_element;
810 #endif /* RTPC_REGISTER_BUG */
811
812 CHECK_SYMBOL (sym, 0);
813 if (NILP (sym) || EQ (sym, Qt))
814 return Fsignal (Qsetting_constant, Fcons (sym, Qnil));
815 valcontents = XSYMBOL (sym)->value;
816
817 if (XTYPE (valcontents) == Lisp_Buffer_Objfwd)
818 {
819 register int idx = XUINT (valcontents);
820 register int mask = *(int *)(idx + (char *) &buffer_local_flags);
821 if (mask > 0)
822 current_buffer->local_var_flags |= mask;
823 }
824
825 else if (XTYPE (valcontents) == Lisp_Buffer_Local_Value
826 || XTYPE (valcontents) == Lisp_Some_Buffer_Local_Value)
827 {
828 /* valcontents is actually a pointer to a cons heading something like:
829 (REALVALUE BUFFER CURRENT-ALIST-ELEMENT . DEFAULT-VALUE).
830
831 BUFFER is the last buffer for which this symbol's value was
832 made up to date.
833
834 CURRENT-ALIST-ELEMENT is a pointer to an element of BUFFER's
835 local_var_alist, that being the element whose car is this
836 variable. Or it can be a pointer to the
837 (CURRENT-ALIST-ELEMENT . DEFAULT-VALUE), if BUFFER does not
838 have an element in its alist for this variable (that is, if
839 BUFFER sees the default value of this variable).
840
841 If we want to examine or set the value and BUFFER is current,
842 we just examine or set REALVALUE. If BUFFER is not current, we
843 store the current REALVALUE value into CURRENT-ALIST-ELEMENT,
844 then find the appropriate alist element for the buffer now
845 current and set up CURRENT-ALIST-ELEMENT. Then we set
846 REALVALUE out of that element, and store into BUFFER.
847
848 If we are setting the variable and the current buffer does
849 not have an alist entry for this variable, an alist entry is
850 created.
851
852 Note that REALVALUE can be a forwarding pointer. Each time
853 it is examined or set, forwarding must be done. */
854
855 /* What value are we caching right now? */
856 current_alist_element =
857 XCONS (XCONS (XCONS (valcontents)->cdr)->cdr)->car;
858
859 /* If the current buffer is not the buffer whose binding is
860 currently cached, or if it's a Lisp_Buffer_Local_Value and
861 we're looking at the default value, the cache is invalid; we
862 need to write it out, and find the new CURRENT-ALIST-ELEMENT. */
863 if ((current_buffer
864 != XBUFFER (XCONS (XCONS (valcontents)->cdr)->car))
865 || (XTYPE (valcontents) == Lisp_Buffer_Local_Value
866 && EQ (XCONS (current_alist_element)->car,
867 current_alist_element)))
868 {
869 /* Write out the cached value for the old buffer; copy it
870 back to its alist element. This works if the current
871 buffer only sees the default value, too. */
872 Fsetcdr (current_alist_element,
873 do_symval_forwarding (XCONS (valcontents)->car));
874
875 /* Find the new value for CURRENT-ALIST-ELEMENT. */
876 tem1 = Fassq (sym, current_buffer->local_var_alist);
877 if (NILP (tem1))
878 {
879 /* This buffer still sees the default value. */
880
881 /* If the variable is a Lisp_Some_Buffer_Local_Value,
882 make CURRENT-ALIST-ELEMENT point to itself,
883 indicating that we're seeing the default value. */
884 if (XTYPE (valcontents) == Lisp_Some_Buffer_Local_Value)
885 tem1 = XCONS (XCONS (valcontents)->cdr)->cdr;
886
887 /* If it's a Lisp_Buffer_Local_Value, give this buffer a
888 new assoc for a local value and set
889 CURRENT-ALIST-ELEMENT to point to that. */
890 else
891 {
892 tem1 = Fcons (sym, Fcdr (current_alist_element));
893 current_buffer->local_var_alist =
894 Fcons (tem1, current_buffer->local_var_alist);
895 }
896 }
897 /* Cache the new buffer's assoc in CURRENT-ALIST-ELEMENT. */
898 XCONS (XCONS (XCONS (valcontents)->cdr)->cdr)->car = tem1;
899
900 /* Set BUFFER, now that CURRENT-ALIST-ELEMENT is accurate. */
901 XSET (XCONS (XCONS (valcontents)->cdr)->car,
902 Lisp_Buffer, current_buffer);
903 }
904 valcontents = XCONS (valcontents)->car;
905 }
906
907 /* If storing void (making the symbol void), forward only through
908 buffer-local indicator, not through Lisp_Objfwd, etc. */
909 if (voide)
910 store_symval_forwarding (sym, Qnil, newval);
911 else
912 store_symval_forwarding (sym, valcontents, newval);
913
914 return newval;
915 }
916 \f
917 /* Access or set a buffer-local symbol's default value. */
918
919 /* Return the default value of SYM, but don't check for voidness.
920 Return Qunbound or a Lisp_Void object if it is void. */
921
922 Lisp_Object
923 default_value (sym)
924 Lisp_Object sym;
925 {
926 register Lisp_Object valcontents;
927
928 CHECK_SYMBOL (sym, 0);
929 valcontents = XSYMBOL (sym)->value;
930
931 /* For a built-in buffer-local variable, get the default value
932 rather than letting do_symval_forwarding get the current value. */
933 if (XTYPE (valcontents) == Lisp_Buffer_Objfwd)
934 {
935 register int idx = XUINT (valcontents);
936
937 if (*(int *) (idx + (char *) &buffer_local_flags) != 0)
938 return *(Lisp_Object *)(idx + (char *) &buffer_defaults);
939 }
940
941 /* Handle user-created local variables. */
942 if (XTYPE (valcontents) == Lisp_Buffer_Local_Value
943 || XTYPE (valcontents) == Lisp_Some_Buffer_Local_Value)
944 {
945 /* If var is set up for a buffer that lacks a local value for it,
946 the current value is nominally the default value.
947 But the current value slot may be more up to date, since
948 ordinary setq stores just that slot. So use that. */
949 Lisp_Object current_alist_element, alist_element_car;
950 current_alist_element
951 = XCONS (XCONS (XCONS (valcontents)->cdr)->cdr)->car;
952 alist_element_car = XCONS (current_alist_element)->car;
953 if (EQ (alist_element_car, current_alist_element))
954 return do_symval_forwarding (XCONS (valcontents)->car);
955 else
956 return XCONS (XCONS (XCONS (valcontents)->cdr)->cdr)->cdr;
957 }
958 /* For other variables, get the current value. */
959 return do_symval_forwarding (valcontents);
960 }
961
962 DEFUN ("default-boundp", Fdefault_boundp, Sdefault_boundp, 1, 1, 0,
963 "Return T if SYMBOL has a non-void default value.\n\
964 This is the value that is seen in buffers that do not have their own values\n\
965 for this variable.")
966 (sym)
967 Lisp_Object sym;
968 {
969 register Lisp_Object value;
970
971 value = default_value (sym);
972 return (XTYPE (value) == Lisp_Void || EQ (value, Qunbound)
973 ? Qnil : Qt);
974 }
975
976 DEFUN ("default-value", Fdefault_value, Sdefault_value, 1, 1, 0,
977 "Return SYMBOL's default value.\n\
978 This is the value that is seen in buffers that do not have their own values\n\
979 for this variable. The default value is meaningful for variables with\n\
980 local bindings in certain buffers.")
981 (sym)
982 Lisp_Object sym;
983 {
984 register Lisp_Object value;
985
986 value = default_value (sym);
987 if (XTYPE (value) == Lisp_Void || EQ (value, Qunbound))
988 return Fsignal (Qvoid_variable, Fcons (sym, Qnil));
989 return value;
990 }
991
992 DEFUN ("set-default", Fset_default, Sset_default, 2, 2, 0,
993 "Set SYMBOL's default value to VAL. SYMBOL and VAL are evaluated.\n\
994 The default value is seen in buffers that do not have their own values\n\
995 for this variable.")
996 (sym, value)
997 Lisp_Object sym, value;
998 {
999 register Lisp_Object valcontents, current_alist_element, alist_element_buffer;
1000
1001 CHECK_SYMBOL (sym, 0);
1002 valcontents = XSYMBOL (sym)->value;
1003
1004 /* Handle variables like case-fold-search that have special slots
1005 in the buffer. Make them work apparently like Lisp_Buffer_Local_Value
1006 variables. */
1007 if (XTYPE (valcontents) == Lisp_Buffer_Objfwd)
1008 {
1009 register int idx = XUINT (valcontents);
1010 #ifndef RTPC_REGISTER_BUG
1011 register struct buffer *b;
1012 #else
1013 struct buffer *b;
1014 #endif
1015 register int mask = *(int *) (idx + (char *) &buffer_local_flags);
1016
1017 if (mask > 0)
1018 {
1019 *(Lisp_Object *)(idx + (char *) &buffer_defaults) = value;
1020 for (b = all_buffers; b; b = b->next)
1021 if (!(b->local_var_flags & mask))
1022 *(Lisp_Object *)(idx + (char *) b) = value;
1023 }
1024 return value;
1025 }
1026
1027 if (XTYPE (valcontents) != Lisp_Buffer_Local_Value &&
1028 XTYPE (valcontents) != Lisp_Some_Buffer_Local_Value)
1029 return Fset (sym, value);
1030
1031 /* Store new value into the DEFAULT-VALUE slot */
1032 XCONS (XCONS (XCONS (valcontents)->cdr)->cdr)->cdr = value;
1033
1034 /* If that slot is current, we must set the REALVALUE slot too */
1035 current_alist_element = XCONS (XCONS (XCONS (valcontents)->cdr)->cdr)->car;
1036 alist_element_buffer = Fcar (current_alist_element);
1037 if (EQ (alist_element_buffer, current_alist_element))
1038 store_symval_forwarding (sym, XCONS (valcontents)->car, value);
1039
1040 return value;
1041 }
1042
1043 DEFUN ("setq-default", Fsetq_default, Ssetq_default, 2, UNEVALLED, 0,
1044 "Set the default value of variable VAR to VALUE.\n\
1045 VAR, the variable name, is literal (not evaluated);\n\
1046 VALUE is an expression and it is evaluated.\n\
1047 The default value of a variable is seen in buffers\n\
1048 that do not have their own values for the variable.\n\
1049 \n\
1050 More generally, you can use multiple variables and values, as in\n\
1051 (setq-default SYM VALUE SYM VALUE...)\n\
1052 This sets each SYM's default value to the corresponding VALUE.\n\
1053 The VALUE for the Nth SYM can refer to the new default values\n\
1054 of previous SYMs.")
1055 (args)
1056 Lisp_Object args;
1057 {
1058 register Lisp_Object args_left;
1059 register Lisp_Object val, sym;
1060 struct gcpro gcpro1;
1061
1062 if (NILP (args))
1063 return Qnil;
1064
1065 args_left = args;
1066 GCPRO1 (args);
1067
1068 do
1069 {
1070 val = Feval (Fcar (Fcdr (args_left)));
1071 sym = Fcar (args_left);
1072 Fset_default (sym, val);
1073 args_left = Fcdr (Fcdr (args_left));
1074 }
1075 while (!NILP (args_left));
1076
1077 UNGCPRO;
1078 return val;
1079 }
1080 \f
1081 /* Lisp functions for creating and removing buffer-local variables. */
1082
1083 DEFUN ("make-variable-buffer-local", Fmake_variable_buffer_local, Smake_variable_buffer_local,
1084 1, 1, "vMake Variable Buffer Local: ",
1085 "Make VARIABLE have a separate value for each buffer.\n\
1086 At any time, the value for the current buffer is in effect.\n\
1087 There is also a default value which is seen in any buffer which has not yet\n\
1088 set its own value.\n\
1089 Using `set' or `setq' to set the variable causes it to have a separate value\n\
1090 for the current buffer if it was previously using the default value.\n\
1091 The function `default-value' gets the default value and `set-default' sets it.")
1092 (sym)
1093 register Lisp_Object sym;
1094 {
1095 register Lisp_Object tem, valcontents;
1096
1097 CHECK_SYMBOL (sym, 0);
1098
1099 if (EQ (sym, Qnil) || EQ (sym, Qt))
1100 error ("Symbol %s may not be buffer-local", XSYMBOL (sym)->name->data);
1101
1102 valcontents = XSYMBOL (sym)->value;
1103 if ((XTYPE (valcontents) == Lisp_Buffer_Local_Value) ||
1104 (XTYPE (valcontents) == Lisp_Buffer_Objfwd))
1105 return sym;
1106 if (XTYPE (valcontents) == Lisp_Some_Buffer_Local_Value)
1107 {
1108 XSETTYPE (XSYMBOL (sym)->value, Lisp_Buffer_Local_Value);
1109 return sym;
1110 }
1111 if (EQ (valcontents, Qunbound))
1112 XSYMBOL (sym)->value = Qnil;
1113 tem = Fcons (Qnil, Fsymbol_value (sym));
1114 XCONS (tem)->car = tem;
1115 XSYMBOL (sym)->value = Fcons (XSYMBOL (sym)->value, Fcons (Fcurrent_buffer (), tem));
1116 XSETTYPE (XSYMBOL (sym)->value, Lisp_Buffer_Local_Value);
1117 return sym;
1118 }
1119
1120 DEFUN ("make-local-variable", Fmake_local_variable, Smake_local_variable,
1121 1, 1, "vMake Local Variable: ",
1122 "Make VARIABLE have a separate value in the current buffer.\n\
1123 Other buffers will continue to share a common default value.\n\
1124 \(The buffer-local value of VARIABLE starts out as the same value\n\
1125 VARIABLE previously had. If VARIABLE was void, it remains void.\)\n\
1126 See also `make-variable-buffer-local'.\n\n\
1127 If the variable is already arranged to become local when set,\n\
1128 this function causes a local value to exist for this buffer,\n\
1129 just as if the variable were set.")
1130 (sym)
1131 register Lisp_Object sym;
1132 {
1133 register Lisp_Object tem, valcontents;
1134
1135 CHECK_SYMBOL (sym, 0);
1136
1137 if (EQ (sym, Qnil) || EQ (sym, Qt))
1138 error ("Symbol %s may not be buffer-local", XSYMBOL (sym)->name->data);
1139
1140 valcontents = XSYMBOL (sym)->value;
1141 if (XTYPE (valcontents) == Lisp_Buffer_Local_Value
1142 || XTYPE (valcontents) == Lisp_Buffer_Objfwd)
1143 {
1144 tem = Fboundp (sym);
1145
1146 /* Make sure the symbol has a local value in this particular buffer,
1147 by setting it to the same value it already has. */
1148 Fset (sym, (EQ (tem, Qt) ? Fsymbol_value (sym) : Qunbound));
1149 return sym;
1150 }
1151 /* Make sure sym is set up to hold per-buffer values */
1152 if (XTYPE (valcontents) != Lisp_Some_Buffer_Local_Value)
1153 {
1154 tem = Fcons (Qnil, do_symval_forwarding (valcontents));
1155 XCONS (tem)->car = tem;
1156 XSYMBOL (sym)->value = Fcons (XSYMBOL (sym)->value, Fcons (Qnil, tem));
1157 XSETTYPE (XSYMBOL (sym)->value, Lisp_Some_Buffer_Local_Value);
1158 }
1159 /* Make sure this buffer has its own value of sym */
1160 tem = Fassq (sym, current_buffer->local_var_alist);
1161 if (NILP (tem))
1162 {
1163 current_buffer->local_var_alist
1164 = Fcons (Fcons (sym, XCONS (XCONS (XCONS (XSYMBOL (sym)->value)->cdr)->cdr)->cdr),
1165 current_buffer->local_var_alist);
1166
1167 /* Make sure symbol does not think it is set up for this buffer;
1168 force it to look once again for this buffer's value */
1169 {
1170 /* This local variable avoids "expression too complex" on IBM RT. */
1171 Lisp_Object xs;
1172
1173 xs = XSYMBOL (sym)->value;
1174 if (current_buffer == XBUFFER (XCONS (XCONS (xs)->cdr)->car))
1175 XCONS (XCONS (XSYMBOL (sym)->value)->cdr)->car = Qnil;
1176 }
1177 }
1178
1179 /* If the symbol forwards into a C variable, then swap in the
1180 variable for this buffer immediately. If C code modifies the
1181 variable before we swap in, then that new value will clobber the
1182 default value the next time we swap. */
1183 valcontents = XCONS (XSYMBOL (sym)->value)->car;
1184 if (XTYPE (valcontents) == Lisp_Intfwd
1185 || XTYPE (valcontents) == Lisp_Boolfwd
1186 || XTYPE (valcontents) == Lisp_Objfwd)
1187 swap_in_symval_forwarding (sym, XSYMBOL (sym)->value);
1188
1189 return sym;
1190 }
1191
1192 DEFUN ("kill-local-variable", Fkill_local_variable, Skill_local_variable,
1193 1, 1, "vKill Local Variable: ",
1194 "Make VARIABLE no longer have a separate value in the current buffer.\n\
1195 From now on the default value will apply in this buffer.")
1196 (sym)
1197 register Lisp_Object sym;
1198 {
1199 register Lisp_Object tem, valcontents;
1200
1201 CHECK_SYMBOL (sym, 0);
1202
1203 valcontents = XSYMBOL (sym)->value;
1204
1205 if (XTYPE (valcontents) == Lisp_Buffer_Objfwd)
1206 {
1207 register int idx = XUINT (valcontents);
1208 register int mask = *(int *) (idx + (char *) &buffer_local_flags);
1209
1210 if (mask > 0)
1211 {
1212 *(Lisp_Object *)(idx + (char *) current_buffer)
1213 = *(Lisp_Object *)(idx + (char *) &buffer_defaults);
1214 current_buffer->local_var_flags &= ~mask;
1215 }
1216 return sym;
1217 }
1218
1219 if (XTYPE (valcontents) != Lisp_Buffer_Local_Value &&
1220 XTYPE (valcontents) != Lisp_Some_Buffer_Local_Value)
1221 return sym;
1222
1223 /* Get rid of this buffer's alist element, if any */
1224
1225 tem = Fassq (sym, current_buffer->local_var_alist);
1226 if (!NILP (tem))
1227 current_buffer->local_var_alist = Fdelq (tem, current_buffer->local_var_alist);
1228
1229 /* Make sure symbol does not think it is set up for this buffer;
1230 force it to look once again for this buffer's value */
1231 {
1232 Lisp_Object sv;
1233 sv = XSYMBOL (sym)->value;
1234 if (current_buffer == XBUFFER (XCONS (XCONS (sv)->cdr)->car))
1235 XCONS (XCONS (sv)->cdr)->car = Qnil;
1236 }
1237
1238 return sym;
1239 }
1240 \f
1241 /* Find the function at the end of a chain of symbol function indirections. */
1242
1243 /* If OBJECT is a symbol, find the end of its function chain and
1244 return the value found there. If OBJECT is not a symbol, just
1245 return it. If there is a cycle in the function chain, signal a
1246 cyclic-function-indirection error.
1247
1248 This is like Findirect_function, except that it doesn't signal an
1249 error if the chain ends up unbound. */
1250 Lisp_Object
1251 indirect_function (object)
1252 register Lisp_Object object;
1253 {
1254 Lisp_Object tortoise, hare;
1255
1256 hare = tortoise = object;
1257
1258 for (;;)
1259 {
1260 if (XTYPE (hare) != Lisp_Symbol || EQ (hare, Qunbound))
1261 break;
1262 hare = XSYMBOL (hare)->function;
1263 if (XTYPE (hare) != Lisp_Symbol || EQ (hare, Qunbound))
1264 break;
1265 hare = XSYMBOL (hare)->function;
1266
1267 tortoise = XSYMBOL (tortoise)->function;
1268
1269 if (EQ (hare, tortoise))
1270 Fsignal (Qcyclic_function_indirection, Fcons (object, Qnil));
1271 }
1272
1273 return hare;
1274 }
1275
1276 DEFUN ("indirect-function", Findirect_function, Sindirect_function, 1, 1, 0,
1277 "Return the function at the end of OBJECT's function chain.\n\
1278 If OBJECT is a symbol, follow all function indirections and return the final\n\
1279 function binding.\n\
1280 If OBJECT is not a symbol, just return it.\n\
1281 Signal a void-function error if the final symbol is unbound.\n\
1282 Signal a cyclic-function-indirection error if there is a loop in the\n\
1283 function chain of symbols.")
1284 (object)
1285 register Lisp_Object object;
1286 {
1287 Lisp_Object result;
1288
1289 result = indirect_function (object);
1290
1291 if (EQ (result, Qunbound))
1292 return Fsignal (Qvoid_function, Fcons (object, Qnil));
1293 return result;
1294 }
1295 \f
1296 /* Extract and set vector and string elements */
1297
1298 DEFUN ("aref", Faref, Saref, 2, 2, 0,
1299 "Return the element of ARRAY at index INDEX.\n\
1300 ARRAY may be a vector or a string, or a byte-code object. INDEX starts at 0.")
1301 (array, idx)
1302 register Lisp_Object array;
1303 Lisp_Object idx;
1304 {
1305 register int idxval;
1306
1307 CHECK_NUMBER (idx, 1);
1308 idxval = XINT (idx);
1309 if (XTYPE (array) != Lisp_Vector && XTYPE (array) != Lisp_String
1310 && XTYPE (array) != Lisp_Compiled)
1311 array = wrong_type_argument (Qarrayp, array);
1312 if (idxval < 0 || idxval >= XVECTOR (array)->size)
1313 args_out_of_range (array, idx);
1314 if (XTYPE (array) == Lisp_String)
1315 {
1316 Lisp_Object val;
1317 XFASTINT (val) = (unsigned char) XSTRING (array)->data[idxval];
1318 return val;
1319 }
1320 else
1321 return XVECTOR (array)->contents[idxval];
1322 }
1323
1324 DEFUN ("aset", Faset, Saset, 3, 3, 0,
1325 "Store into the element of ARRAY at index IDX the value NEWELT.\n\
1326 ARRAY may be a vector or a string. IDX starts at 0.")
1327 (array, idx, newelt)
1328 register Lisp_Object array;
1329 Lisp_Object idx, newelt;
1330 {
1331 register int idxval;
1332
1333 CHECK_NUMBER (idx, 1);
1334 idxval = XINT (idx);
1335 if (XTYPE (array) != Lisp_Vector && XTYPE (array) != Lisp_String)
1336 array = wrong_type_argument (Qarrayp, array);
1337 if (idxval < 0 || idxval >= XVECTOR (array)->size)
1338 args_out_of_range (array, idx);
1339 CHECK_IMPURE (array);
1340
1341 if (XTYPE (array) == Lisp_Vector)
1342 XVECTOR (array)->contents[idxval] = newelt;
1343 else
1344 {
1345 CHECK_NUMBER (newelt, 2);
1346 XSTRING (array)->data[idxval] = XINT (newelt);
1347 }
1348
1349 return newelt;
1350 }
1351
1352 Lisp_Object
1353 Farray_length (array)
1354 register Lisp_Object array;
1355 {
1356 register Lisp_Object size;
1357 if (XTYPE (array) != Lisp_Vector && XTYPE (array) != Lisp_String
1358 && XTYPE (array) != Lisp_Compiled)
1359 array = wrong_type_argument (Qarrayp, array);
1360 XFASTINT (size) = XVECTOR (array)->size;
1361 return size;
1362 }
1363 \f
1364 /* Arithmetic functions */
1365
1366 enum comparison { equal, notequal, less, grtr, less_or_equal, grtr_or_equal };
1367
1368 Lisp_Object
1369 arithcompare (num1, num2, comparison)
1370 Lisp_Object num1, num2;
1371 enum comparison comparison;
1372 {
1373 double f1, f2;
1374 int floatp = 0;
1375
1376 #ifdef LISP_FLOAT_TYPE
1377 CHECK_NUMBER_OR_FLOAT_COERCE_MARKER (num1, 0);
1378 CHECK_NUMBER_OR_FLOAT_COERCE_MARKER (num2, 0);
1379
1380 if (XTYPE (num1) == Lisp_Float || XTYPE (num2) == Lisp_Float)
1381 {
1382 floatp = 1;
1383 f1 = (XTYPE (num1) == Lisp_Float) ? XFLOAT (num1)->data : XINT (num1);
1384 f2 = (XTYPE (num2) == Lisp_Float) ? XFLOAT (num2)->data : XINT (num2);
1385 }
1386 #else
1387 CHECK_NUMBER_COERCE_MARKER (num1, 0);
1388 CHECK_NUMBER_COERCE_MARKER (num2, 0);
1389 #endif /* LISP_FLOAT_TYPE */
1390
1391 switch (comparison)
1392 {
1393 case equal:
1394 if (floatp ? f1 == f2 : XINT (num1) == XINT (num2))
1395 return Qt;
1396 return Qnil;
1397
1398 case notequal:
1399 if (floatp ? f1 != f2 : XINT (num1) != XINT (num2))
1400 return Qt;
1401 return Qnil;
1402
1403 case less:
1404 if (floatp ? f1 < f2 : XINT (num1) < XINT (num2))
1405 return Qt;
1406 return Qnil;
1407
1408 case less_or_equal:
1409 if (floatp ? f1 <= f2 : XINT (num1) <= XINT (num2))
1410 return Qt;
1411 return Qnil;
1412
1413 case grtr:
1414 if (floatp ? f1 > f2 : XINT (num1) > XINT (num2))
1415 return Qt;
1416 return Qnil;
1417
1418 case grtr_or_equal:
1419 if (floatp ? f1 >= f2 : XINT (num1) >= XINT (num2))
1420 return Qt;
1421 return Qnil;
1422
1423 default:
1424 abort ();
1425 }
1426 }
1427
1428 DEFUN ("=", Feqlsign, Seqlsign, 2, 2, 0,
1429 "T if two args, both numbers or markers, are equal.")
1430 (num1, num2)
1431 register Lisp_Object num1, num2;
1432 {
1433 return arithcompare (num1, num2, equal);
1434 }
1435
1436 DEFUN ("<", Flss, Slss, 2, 2, 0,
1437 "T if first arg is less than second arg. Both must be numbers or markers.")
1438 (num1, num2)
1439 register Lisp_Object num1, num2;
1440 {
1441 return arithcompare (num1, num2, less);
1442 }
1443
1444 DEFUN (">", Fgtr, Sgtr, 2, 2, 0,
1445 "T if first arg is greater than second arg. Both must be numbers or markers.")
1446 (num1, num2)
1447 register Lisp_Object num1, num2;
1448 {
1449 return arithcompare (num1, num2, grtr);
1450 }
1451
1452 DEFUN ("<=", Fleq, Sleq, 2, 2, 0,
1453 "T if first arg is less than or equal to second arg.\n\
1454 Both must be numbers or markers.")
1455 (num1, num2)
1456 register Lisp_Object num1, num2;
1457 {
1458 return arithcompare (num1, num2, less_or_equal);
1459 }
1460
1461 DEFUN (">=", Fgeq, Sgeq, 2, 2, 0,
1462 "T if first arg is greater than or equal to second arg.\n\
1463 Both must be numbers or markers.")
1464 (num1, num2)
1465 register Lisp_Object num1, num2;
1466 {
1467 return arithcompare (num1, num2, grtr_or_equal);
1468 }
1469
1470 DEFUN ("/=", Fneq, Sneq, 2, 2, 0,
1471 "T if first arg is not equal to second arg. Both must be numbers or markers.")
1472 (num1, num2)
1473 register Lisp_Object num1, num2;
1474 {
1475 return arithcompare (num1, num2, notequal);
1476 }
1477
1478 DEFUN ("zerop", Fzerop, Szerop, 1, 1, 0, "T if NUMBER is zero.")
1479 (num)
1480 register Lisp_Object num;
1481 {
1482 #ifdef LISP_FLOAT_TYPE
1483 CHECK_NUMBER_OR_FLOAT (num, 0);
1484
1485 if (XTYPE(num) == Lisp_Float)
1486 {
1487 if (XFLOAT(num)->data == 0.0)
1488 return Qt;
1489 return Qnil;
1490 }
1491 #else
1492 CHECK_NUMBER (num, 0);
1493 #endif /* LISP_FLOAT_TYPE */
1494
1495 if (!XINT (num))
1496 return Qt;
1497 return Qnil;
1498 }
1499 \f
1500 /* Convert between 32-bit values and pairs of lispy 24-bit values. */
1501
1502 Lisp_Object
1503 long_to_cons (i)
1504 unsigned long i;
1505 {
1506 unsigned int top = i >> 16;
1507 unsigned int bot = i & 0xFFFF;
1508 if (top == 0)
1509 return make_number (bot);
1510 if (top == 0xFFFF)
1511 return Fcons (make_number (-1), make_number (bot));
1512 return Fcons (make_number (top), make_number (bot));
1513 }
1514
1515 unsigned long
1516 cons_to_long (c)
1517 Lisp_Object c;
1518 {
1519 Lisp_Object top, bot;
1520 if (INTEGERP (c))
1521 return XINT (c);
1522 top = XCONS (c)->car;
1523 bot = XCONS (c)->cdr;
1524 if (CONSP (bot))
1525 bot = XCONS (bot)->car;
1526 return ((XINT (top) << 16) | XINT (bot));
1527 }
1528 \f
1529 DEFUN ("number-to-string", Fnumber_to_string, Snumber_to_string, 1, 1, 0,
1530 "Convert NUM to a string by printing it in decimal.\n\
1531 Uses a minus sign if negative.\n\
1532 NUM may be an integer or a floating point number.")
1533 (num)
1534 Lisp_Object num;
1535 {
1536 char buffer[20];
1537
1538 #ifndef LISP_FLOAT_TYPE
1539 CHECK_NUMBER (num, 0);
1540 #else
1541 CHECK_NUMBER_OR_FLOAT (num, 0);
1542
1543 if (XTYPE(num) == Lisp_Float)
1544 {
1545 char pigbuf[350]; /* see comments in float_to_string */
1546
1547 float_to_string (pigbuf, XFLOAT(num)->data);
1548 return build_string (pigbuf);
1549 }
1550 #endif /* LISP_FLOAT_TYPE */
1551
1552 sprintf (buffer, "%d", XINT (num));
1553 return build_string (buffer);
1554 }
1555
1556 DEFUN ("string-to-number", Fstring_to_number, Sstring_to_number, 1, 1, 0,
1557 "Convert STRING to a number by parsing it as a decimal number.\n\
1558 This parses both integers and floating point numbers.\n\
1559 It ignores leading spaces and tabs.")
1560 (str)
1561 register Lisp_Object str;
1562 {
1563 unsigned char *p;
1564
1565 CHECK_STRING (str, 0);
1566
1567 p = XSTRING (str)->data;
1568
1569 /* Skip any whitespace at the front of the number. Some versions of
1570 atoi do this anyway, so we might as well make Emacs lisp consistent. */
1571 while (*p == ' ' || *p == '\t')
1572 p++;
1573
1574 #ifdef LISP_FLOAT_TYPE
1575 if (isfloat_string (p))
1576 return make_float (atof (p));
1577 #endif /* LISP_FLOAT_TYPE */
1578
1579 return make_number (atoi (p));
1580 }
1581 \f
1582 enum arithop
1583 { Aadd, Asub, Amult, Adiv, Alogand, Alogior, Alogxor, Amax, Amin };
1584
1585 extern Lisp_Object float_arith_driver ();
1586
1587 Lisp_Object
1588 arith_driver (code, nargs, args)
1589 enum arithop code;
1590 int nargs;
1591 register Lisp_Object *args;
1592 {
1593 register Lisp_Object val;
1594 register int argnum;
1595 register int accum;
1596 register int next;
1597
1598 #ifdef SWITCH_ENUM_BUG
1599 switch ((int) code)
1600 #else
1601 switch (code)
1602 #endif
1603 {
1604 case Alogior:
1605 case Alogxor:
1606 case Aadd:
1607 case Asub:
1608 accum = 0; break;
1609 case Amult:
1610 accum = 1; break;
1611 case Alogand:
1612 accum = -1; break;
1613 }
1614
1615 for (argnum = 0; argnum < nargs; argnum++)
1616 {
1617 val = args[argnum]; /* using args[argnum] as argument to CHECK_NUMBER_... */
1618 #ifdef LISP_FLOAT_TYPE
1619 CHECK_NUMBER_OR_FLOAT_COERCE_MARKER (val, argnum);
1620
1621 if (XTYPE (val) == Lisp_Float) /* time to do serious math */
1622 return (float_arith_driver ((double) accum, argnum, code,
1623 nargs, args));
1624 #else
1625 CHECK_NUMBER_COERCE_MARKER (val, argnum);
1626 #endif /* LISP_FLOAT_TYPE */
1627 args[argnum] = val; /* runs into a compiler bug. */
1628 next = XINT (args[argnum]);
1629 #ifdef SWITCH_ENUM_BUG
1630 switch ((int) code)
1631 #else
1632 switch (code)
1633 #endif
1634 {
1635 case Aadd: accum += next; break;
1636 case Asub:
1637 if (!argnum && nargs != 1)
1638 next = - next;
1639 accum -= next;
1640 break;
1641 case Amult: accum *= next; break;
1642 case Adiv:
1643 if (!argnum) accum = next;
1644 else
1645 {
1646 if (next == 0)
1647 Fsignal (Qarith_error, Qnil);
1648 accum /= next;
1649 }
1650 break;
1651 case Alogand: accum &= next; break;
1652 case Alogior: accum |= next; break;
1653 case Alogxor: accum ^= next; break;
1654 case Amax: if (!argnum || next > accum) accum = next; break;
1655 case Amin: if (!argnum || next < accum) accum = next; break;
1656 }
1657 }
1658
1659 XSET (val, Lisp_Int, accum);
1660 return val;
1661 }
1662
1663 #ifdef LISP_FLOAT_TYPE
1664
1665 #undef isnan
1666 #define isnan(x) ((x) != (x))
1667
1668 Lisp_Object
1669 float_arith_driver (accum, argnum, code, nargs, args)
1670 double accum;
1671 register int argnum;
1672 enum arithop code;
1673 int nargs;
1674 register Lisp_Object *args;
1675 {
1676 register Lisp_Object val;
1677 double next;
1678
1679 for (; argnum < nargs; argnum++)
1680 {
1681 val = args[argnum]; /* using args[argnum] as argument to CHECK_NUMBER_... */
1682 CHECK_NUMBER_OR_FLOAT_COERCE_MARKER (val, argnum);
1683
1684 if (XTYPE (val) == Lisp_Float)
1685 {
1686 next = XFLOAT (val)->data;
1687 }
1688 else
1689 {
1690 args[argnum] = val; /* runs into a compiler bug. */
1691 next = XINT (args[argnum]);
1692 }
1693 #ifdef SWITCH_ENUM_BUG
1694 switch ((int) code)
1695 #else
1696 switch (code)
1697 #endif
1698 {
1699 case Aadd:
1700 accum += next;
1701 break;
1702 case Asub:
1703 if (!argnum && nargs != 1)
1704 next = - next;
1705 accum -= next;
1706 break;
1707 case Amult:
1708 accum *= next;
1709 break;
1710 case Adiv:
1711 if (!argnum)
1712 accum = next;
1713 else
1714 {
1715 if (next == 0)
1716 Fsignal (Qarith_error, Qnil);
1717 accum /= next;
1718 }
1719 break;
1720 case Alogand:
1721 case Alogior:
1722 case Alogxor:
1723 return wrong_type_argument (Qinteger_or_marker_p, val);
1724 case Amax:
1725 if (!argnum || isnan (next) || next > accum)
1726 accum = next;
1727 break;
1728 case Amin:
1729 if (!argnum || isnan (next) || next < accum)
1730 accum = next;
1731 break;
1732 }
1733 }
1734
1735 return make_float (accum);
1736 }
1737 #endif /* LISP_FLOAT_TYPE */
1738
1739 DEFUN ("+", Fplus, Splus, 0, MANY, 0,
1740 "Return sum of any number of arguments, which are numbers or markers.")
1741 (nargs, args)
1742 int nargs;
1743 Lisp_Object *args;
1744 {
1745 return arith_driver (Aadd, nargs, args);
1746 }
1747
1748 DEFUN ("-", Fminus, Sminus, 0, MANY, 0,
1749 "Negate number or subtract numbers or markers.\n\
1750 With one arg, negates it. With more than one arg,\n\
1751 subtracts all but the first from the first.")
1752 (nargs, args)
1753 int nargs;
1754 Lisp_Object *args;
1755 {
1756 return arith_driver (Asub, nargs, args);
1757 }
1758
1759 DEFUN ("*", Ftimes, Stimes, 0, MANY, 0,
1760 "Returns product of any number of arguments, which are numbers or markers.")
1761 (nargs, args)
1762 int nargs;
1763 Lisp_Object *args;
1764 {
1765 return arith_driver (Amult, nargs, args);
1766 }
1767
1768 DEFUN ("/", Fquo, Squo, 2, MANY, 0,
1769 "Returns first argument divided by all the remaining arguments.\n\
1770 The arguments must be numbers or markers.")
1771 (nargs, args)
1772 int nargs;
1773 Lisp_Object *args;
1774 {
1775 return arith_driver (Adiv, nargs, args);
1776 }
1777
1778 DEFUN ("%", Frem, Srem, 2, 2, 0,
1779 "Returns remainder of first arg divided by second.\n\
1780 Both must be integers or markers.")
1781 (num1, num2)
1782 register Lisp_Object num1, num2;
1783 {
1784 Lisp_Object val;
1785
1786 CHECK_NUMBER_COERCE_MARKER (num1, 0);
1787 CHECK_NUMBER_COERCE_MARKER (num2, 1);
1788
1789 if (XFASTINT (num2) == 0)
1790 Fsignal (Qarith_error, Qnil);
1791
1792 XSET (val, Lisp_Int, XINT (num1) % XINT (num2));
1793 return val;
1794 }
1795
1796 #ifndef HAVE_FMOD
1797 double
1798 fmod (f1, f2)
1799 double f1, f2;
1800 {
1801 #ifdef HAVE_DREM /* Some systems use this non-standard name. */
1802 return (drem (f1, f2));
1803 #else /* Other systems don't seem to have it at all. */
1804 return (f1 - f2 * floor (f1/f2));
1805 #endif
1806 }
1807 #endif /* ! HAVE_FMOD */
1808
1809 DEFUN ("mod", Fmod, Smod, 2, 2, 0,
1810 "Returns X modulo Y.\n\
1811 The result falls between zero (inclusive) and Y (exclusive).\n\
1812 Both X and Y must be numbers or markers.")
1813 (num1, num2)
1814 register Lisp_Object num1, num2;
1815 {
1816 Lisp_Object val;
1817 int i1, i2;
1818
1819 #ifdef LISP_FLOAT_TYPE
1820 CHECK_NUMBER_OR_FLOAT_COERCE_MARKER (num1, 0);
1821 CHECK_NUMBER_OR_FLOAT_COERCE_MARKER (num2, 1);
1822
1823 if (XTYPE (num1) == Lisp_Float || XTYPE (num2) == Lisp_Float)
1824 {
1825 double f1, f2;
1826
1827 f1 = XTYPE (num1) == Lisp_Float ? XFLOAT (num1)->data : XINT (num1);
1828 f2 = XTYPE (num2) == Lisp_Float ? XFLOAT (num2)->data : XINT (num2);
1829 if (f2 == 0)
1830 Fsignal (Qarith_error, Qnil);
1831
1832 f1 = fmod (f1, f2);
1833 /* If the "remainder" comes out with the wrong sign, fix it. */
1834 if ((f1 < 0) != (f2 < 0))
1835 f1 += f2;
1836 return (make_float (f1));
1837 }
1838 #else /* not LISP_FLOAT_TYPE */
1839 CHECK_NUMBER_COERCE_MARKER (num1, 0);
1840 CHECK_NUMBER_COERCE_MARKER (num2, 1);
1841 #endif /* not LISP_FLOAT_TYPE */
1842
1843 i1 = XINT (num1);
1844 i2 = XINT (num2);
1845
1846 if (i2 == 0)
1847 Fsignal (Qarith_error, Qnil);
1848
1849 i1 %= i2;
1850
1851 /* If the "remainder" comes out with the wrong sign, fix it. */
1852 if ((i1 < 0) != (i2 < 0))
1853 i1 += i2;
1854
1855 XSET (val, Lisp_Int, i1);
1856 return val;
1857 }
1858
1859 DEFUN ("max", Fmax, Smax, 1, MANY, 0,
1860 "Return largest of all the arguments (which must be numbers or markers).\n\
1861 The value is always a number; markers are converted to numbers.")
1862 (nargs, args)
1863 int nargs;
1864 Lisp_Object *args;
1865 {
1866 return arith_driver (Amax, nargs, args);
1867 }
1868
1869 DEFUN ("min", Fmin, Smin, 1, MANY, 0,
1870 "Return smallest of all the arguments (which must be numbers or markers).\n\
1871 The value is always a number; markers are converted to numbers.")
1872 (nargs, args)
1873 int nargs;
1874 Lisp_Object *args;
1875 {
1876 return arith_driver (Amin, nargs, args);
1877 }
1878
1879 DEFUN ("logand", Flogand, Slogand, 0, MANY, 0,
1880 "Return bitwise-and of all the arguments.\n\
1881 Arguments may be integers, or markers converted to integers.")
1882 (nargs, args)
1883 int nargs;
1884 Lisp_Object *args;
1885 {
1886 return arith_driver (Alogand, nargs, args);
1887 }
1888
1889 DEFUN ("logior", Flogior, Slogior, 0, MANY, 0,
1890 "Return bitwise-or of all the arguments.\n\
1891 Arguments may be integers, or markers converted to integers.")
1892 (nargs, args)
1893 int nargs;
1894 Lisp_Object *args;
1895 {
1896 return arith_driver (Alogior, nargs, args);
1897 }
1898
1899 DEFUN ("logxor", Flogxor, Slogxor, 0, MANY, 0,
1900 "Return bitwise-exclusive-or of all the arguments.\n\
1901 Arguments may be integers, or markers converted to integers.")
1902 (nargs, args)
1903 int nargs;
1904 Lisp_Object *args;
1905 {
1906 return arith_driver (Alogxor, nargs, args);
1907 }
1908
1909 DEFUN ("ash", Fash, Sash, 2, 2, 0,
1910 "Return VALUE with its bits shifted left by COUNT.\n\
1911 If COUNT is negative, shifting is actually to the right.\n\
1912 In this case, the sign bit is duplicated.")
1913 (num1, num2)
1914 register Lisp_Object num1, num2;
1915 {
1916 register Lisp_Object val;
1917
1918 CHECK_NUMBER (num1, 0);
1919 CHECK_NUMBER (num2, 1);
1920
1921 if (XINT (num2) > 0)
1922 XSET (val, Lisp_Int, XINT (num1) << XFASTINT (num2));
1923 else
1924 XSET (val, Lisp_Int, XINT (num1) >> -XINT (num2));
1925 return val;
1926 }
1927
1928 DEFUN ("lsh", Flsh, Slsh, 2, 2, 0,
1929 "Return VALUE with its bits shifted left by COUNT.\n\
1930 If COUNT is negative, shifting is actually to the right.\n\
1931 In this case, zeros are shifted in on the left.")
1932 (num1, num2)
1933 register Lisp_Object num1, num2;
1934 {
1935 register Lisp_Object val;
1936
1937 CHECK_NUMBER (num1, 0);
1938 CHECK_NUMBER (num2, 1);
1939
1940 if (XINT (num2) > 0)
1941 XSET (val, Lisp_Int, (unsigned) XFASTINT (num1) << XFASTINT (num2));
1942 else
1943 XSET (val, Lisp_Int, (unsigned) XFASTINT (num1) >> -XINT (num2));
1944 return val;
1945 }
1946
1947 DEFUN ("1+", Fadd1, Sadd1, 1, 1, 0,
1948 "Return NUMBER plus one. NUMBER may be a number or a marker.\n\
1949 Markers are converted to integers.")
1950 (num)
1951 register Lisp_Object num;
1952 {
1953 #ifdef LISP_FLOAT_TYPE
1954 CHECK_NUMBER_OR_FLOAT_COERCE_MARKER (num, 0);
1955
1956 if (XTYPE (num) == Lisp_Float)
1957 return (make_float (1.0 + XFLOAT (num)->data));
1958 #else
1959 CHECK_NUMBER_COERCE_MARKER (num, 0);
1960 #endif /* LISP_FLOAT_TYPE */
1961
1962 XSETINT (num, XFASTINT (num) + 1);
1963 return num;
1964 }
1965
1966 DEFUN ("1-", Fsub1, Ssub1, 1, 1, 0,
1967 "Return NUMBER minus one. NUMBER may be a number or a marker.\n\
1968 Markers are converted to integers.")
1969 (num)
1970 register Lisp_Object num;
1971 {
1972 #ifdef LISP_FLOAT_TYPE
1973 CHECK_NUMBER_OR_FLOAT_COERCE_MARKER (num, 0);
1974
1975 if (XTYPE (num) == Lisp_Float)
1976 return (make_float (-1.0 + XFLOAT (num)->data));
1977 #else
1978 CHECK_NUMBER_COERCE_MARKER (num, 0);
1979 #endif /* LISP_FLOAT_TYPE */
1980
1981 XSETINT (num, XFASTINT (num) - 1);
1982 return num;
1983 }
1984
1985 DEFUN ("lognot", Flognot, Slognot, 1, 1, 0,
1986 "Return the bitwise complement of ARG. ARG must be an integer.")
1987 (num)
1988 register Lisp_Object num;
1989 {
1990 CHECK_NUMBER (num, 0);
1991 XSETINT (num, ~XFASTINT (num));
1992 return num;
1993 }
1994 \f
1995 void
1996 syms_of_data ()
1997 {
1998 Lisp_Object error_tail, arith_tail;
1999
2000 Qquote = intern ("quote");
2001 Qlambda = intern ("lambda");
2002 Qsubr = intern ("subr");
2003 Qerror_conditions = intern ("error-conditions");
2004 Qerror_message = intern ("error-message");
2005 Qtop_level = intern ("top-level");
2006
2007 Qerror = intern ("error");
2008 Qquit = intern ("quit");
2009 Qwrong_type_argument = intern ("wrong-type-argument");
2010 Qargs_out_of_range = intern ("args-out-of-range");
2011 Qvoid_function = intern ("void-function");
2012 Qcyclic_function_indirection = intern ("cyclic-function-indirection");
2013 Qvoid_variable = intern ("void-variable");
2014 Qsetting_constant = intern ("setting-constant");
2015 Qinvalid_read_syntax = intern ("invalid-read-syntax");
2016
2017 Qinvalid_function = intern ("invalid-function");
2018 Qwrong_number_of_arguments = intern ("wrong-number-of-arguments");
2019 Qno_catch = intern ("no-catch");
2020 Qend_of_file = intern ("end-of-file");
2021 Qarith_error = intern ("arith-error");
2022 Qbeginning_of_buffer = intern ("beginning-of-buffer");
2023 Qend_of_buffer = intern ("end-of-buffer");
2024 Qbuffer_read_only = intern ("buffer-read-only");
2025 Qmark_inactive = intern ("mark-inactive");
2026
2027 Qlistp = intern ("listp");
2028 Qconsp = intern ("consp");
2029 Qsymbolp = intern ("symbolp");
2030 Qintegerp = intern ("integerp");
2031 Qnatnump = intern ("natnump");
2032 Qwholenump = intern ("wholenump");
2033 Qstringp = intern ("stringp");
2034 Qarrayp = intern ("arrayp");
2035 Qsequencep = intern ("sequencep");
2036 Qbufferp = intern ("bufferp");
2037 Qvectorp = intern ("vectorp");
2038 Qchar_or_string_p = intern ("char-or-string-p");
2039 Qmarkerp = intern ("markerp");
2040 Qbuffer_or_string_p = intern ("buffer-or-string-p");
2041 Qinteger_or_marker_p = intern ("integer-or-marker-p");
2042 Qboundp = intern ("boundp");
2043 Qfboundp = intern ("fboundp");
2044
2045 #ifdef LISP_FLOAT_TYPE
2046 Qfloatp = intern ("floatp");
2047 Qnumberp = intern ("numberp");
2048 Qnumber_or_marker_p = intern ("number-or-marker-p");
2049 #endif /* LISP_FLOAT_TYPE */
2050
2051 Qcdr = intern ("cdr");
2052
2053 error_tail = Fcons (Qerror, Qnil);
2054
2055 /* ERROR is used as a signaler for random errors for which nothing else is right */
2056
2057 Fput (Qerror, Qerror_conditions,
2058 error_tail);
2059 Fput (Qerror, Qerror_message,
2060 build_string ("error"));
2061
2062 Fput (Qquit, Qerror_conditions,
2063 Fcons (Qquit, Qnil));
2064 Fput (Qquit, Qerror_message,
2065 build_string ("Quit"));
2066
2067 Fput (Qwrong_type_argument, Qerror_conditions,
2068 Fcons (Qwrong_type_argument, error_tail));
2069 Fput (Qwrong_type_argument, Qerror_message,
2070 build_string ("Wrong type argument"));
2071
2072 Fput (Qargs_out_of_range, Qerror_conditions,
2073 Fcons (Qargs_out_of_range, error_tail));
2074 Fput (Qargs_out_of_range, Qerror_message,
2075 build_string ("Args out of range"));
2076
2077 Fput (Qvoid_function, Qerror_conditions,
2078 Fcons (Qvoid_function, error_tail));
2079 Fput (Qvoid_function, Qerror_message,
2080 build_string ("Symbol's function definition is void"));
2081
2082 Fput (Qcyclic_function_indirection, Qerror_conditions,
2083 Fcons (Qcyclic_function_indirection, error_tail));
2084 Fput (Qcyclic_function_indirection, Qerror_message,
2085 build_string ("Symbol's chain of function indirections contains a loop"));
2086
2087 Fput (Qvoid_variable, Qerror_conditions,
2088 Fcons (Qvoid_variable, error_tail));
2089 Fput (Qvoid_variable, Qerror_message,
2090 build_string ("Symbol's value as variable is void"));
2091
2092 Fput (Qsetting_constant, Qerror_conditions,
2093 Fcons (Qsetting_constant, error_tail));
2094 Fput (Qsetting_constant, Qerror_message,
2095 build_string ("Attempt to set a constant symbol"));
2096
2097 Fput (Qinvalid_read_syntax, Qerror_conditions,
2098 Fcons (Qinvalid_read_syntax, error_tail));
2099 Fput (Qinvalid_read_syntax, Qerror_message,
2100 build_string ("Invalid read syntax"));
2101
2102 Fput (Qinvalid_function, Qerror_conditions,
2103 Fcons (Qinvalid_function, error_tail));
2104 Fput (Qinvalid_function, Qerror_message,
2105 build_string ("Invalid function"));
2106
2107 Fput (Qwrong_number_of_arguments, Qerror_conditions,
2108 Fcons (Qwrong_number_of_arguments, error_tail));
2109 Fput (Qwrong_number_of_arguments, Qerror_message,
2110 build_string ("Wrong number of arguments"));
2111
2112 Fput (Qno_catch, Qerror_conditions,
2113 Fcons (Qno_catch, error_tail));
2114 Fput (Qno_catch, Qerror_message,
2115 build_string ("No catch for tag"));
2116
2117 Fput (Qend_of_file, Qerror_conditions,
2118 Fcons (Qend_of_file, error_tail));
2119 Fput (Qend_of_file, Qerror_message,
2120 build_string ("End of file during parsing"));
2121
2122 arith_tail = Fcons (Qarith_error, error_tail);
2123 Fput (Qarith_error, Qerror_conditions,
2124 arith_tail);
2125 Fput (Qarith_error, Qerror_message,
2126 build_string ("Arithmetic error"));
2127
2128 Fput (Qbeginning_of_buffer, Qerror_conditions,
2129 Fcons (Qbeginning_of_buffer, error_tail));
2130 Fput (Qbeginning_of_buffer, Qerror_message,
2131 build_string ("Beginning of buffer"));
2132
2133 Fput (Qend_of_buffer, Qerror_conditions,
2134 Fcons (Qend_of_buffer, error_tail));
2135 Fput (Qend_of_buffer, Qerror_message,
2136 build_string ("End of buffer"));
2137
2138 Fput (Qbuffer_read_only, Qerror_conditions,
2139 Fcons (Qbuffer_read_only, error_tail));
2140 Fput (Qbuffer_read_only, Qerror_message,
2141 build_string ("Buffer is read-only"));
2142
2143 #ifdef LISP_FLOAT_TYPE
2144 Qrange_error = intern ("range-error");
2145 Qdomain_error = intern ("domain-error");
2146 Qsingularity_error = intern ("singularity-error");
2147 Qoverflow_error = intern ("overflow-error");
2148 Qunderflow_error = intern ("underflow-error");
2149
2150 Fput (Qdomain_error, Qerror_conditions,
2151 Fcons (Qdomain_error, arith_tail));
2152 Fput (Qdomain_error, Qerror_message,
2153 build_string ("Arithmetic domain error"));
2154
2155 Fput (Qrange_error, Qerror_conditions,
2156 Fcons (Qrange_error, arith_tail));
2157 Fput (Qrange_error, Qerror_message,
2158 build_string ("Arithmetic range error"));
2159
2160 Fput (Qsingularity_error, Qerror_conditions,
2161 Fcons (Qsingularity_error, Fcons (Qdomain_error, arith_tail)));
2162 Fput (Qsingularity_error, Qerror_message,
2163 build_string ("Arithmetic singularity error"));
2164
2165 Fput (Qoverflow_error, Qerror_conditions,
2166 Fcons (Qoverflow_error, Fcons (Qdomain_error, arith_tail)));
2167 Fput (Qoverflow_error, Qerror_message,
2168 build_string ("Arithmetic overflow error"));
2169
2170 Fput (Qunderflow_error, Qerror_conditions,
2171 Fcons (Qunderflow_error, Fcons (Qdomain_error, arith_tail)));
2172 Fput (Qunderflow_error, Qerror_message,
2173 build_string ("Arithmetic underflow error"));
2174
2175 staticpro (&Qrange_error);
2176 staticpro (&Qdomain_error);
2177 staticpro (&Qsingularity_error);
2178 staticpro (&Qoverflow_error);
2179 staticpro (&Qunderflow_error);
2180 #endif /* LISP_FLOAT_TYPE */
2181
2182 staticpro (&Qnil);
2183 staticpro (&Qt);
2184 staticpro (&Qquote);
2185 staticpro (&Qlambda);
2186 staticpro (&Qsubr);
2187 staticpro (&Qunbound);
2188 staticpro (&Qerror_conditions);
2189 staticpro (&Qerror_message);
2190 staticpro (&Qtop_level);
2191
2192 staticpro (&Qerror);
2193 staticpro (&Qquit);
2194 staticpro (&Qwrong_type_argument);
2195 staticpro (&Qargs_out_of_range);
2196 staticpro (&Qvoid_function);
2197 staticpro (&Qcyclic_function_indirection);
2198 staticpro (&Qvoid_variable);
2199 staticpro (&Qsetting_constant);
2200 staticpro (&Qinvalid_read_syntax);
2201 staticpro (&Qwrong_number_of_arguments);
2202 staticpro (&Qinvalid_function);
2203 staticpro (&Qno_catch);
2204 staticpro (&Qend_of_file);
2205 staticpro (&Qarith_error);
2206 staticpro (&Qbeginning_of_buffer);
2207 staticpro (&Qend_of_buffer);
2208 staticpro (&Qbuffer_read_only);
2209 staticpro (&Qmark_inactive);
2210
2211 staticpro (&Qlistp);
2212 staticpro (&Qconsp);
2213 staticpro (&Qsymbolp);
2214 staticpro (&Qintegerp);
2215 staticpro (&Qnatnump);
2216 staticpro (&Qwholenump);
2217 staticpro (&Qstringp);
2218 staticpro (&Qarrayp);
2219 staticpro (&Qsequencep);
2220 staticpro (&Qbufferp);
2221 staticpro (&Qvectorp);
2222 staticpro (&Qchar_or_string_p);
2223 staticpro (&Qmarkerp);
2224 staticpro (&Qbuffer_or_string_p);
2225 staticpro (&Qinteger_or_marker_p);
2226 #ifdef LISP_FLOAT_TYPE
2227 staticpro (&Qfloatp);
2228 staticpro (&Qnumberp);
2229 staticpro (&Qnumber_or_marker_p);
2230 #endif /* LISP_FLOAT_TYPE */
2231
2232 staticpro (&Qboundp);
2233 staticpro (&Qfboundp);
2234 staticpro (&Qcdr);
2235
2236 defsubr (&Seq);
2237 defsubr (&Snull);
2238 defsubr (&Slistp);
2239 defsubr (&Snlistp);
2240 defsubr (&Sconsp);
2241 defsubr (&Satom);
2242 defsubr (&Sintegerp);
2243 defsubr (&Sinteger_or_marker_p);
2244 defsubr (&Snumberp);
2245 defsubr (&Snumber_or_marker_p);
2246 #ifdef LISP_FLOAT_TYPE
2247 defsubr (&Sfloatp);
2248 #endif /* LISP_FLOAT_TYPE */
2249 defsubr (&Snatnump);
2250 defsubr (&Ssymbolp);
2251 defsubr (&Sstringp);
2252 defsubr (&Svectorp);
2253 defsubr (&Sarrayp);
2254 defsubr (&Ssequencep);
2255 defsubr (&Sbufferp);
2256 defsubr (&Smarkerp);
2257 defsubr (&Ssubrp);
2258 defsubr (&Sbyte_code_function_p);
2259 defsubr (&Schar_or_string_p);
2260 defsubr (&Scar);
2261 defsubr (&Scdr);
2262 defsubr (&Scar_safe);
2263 defsubr (&Scdr_safe);
2264 defsubr (&Ssetcar);
2265 defsubr (&Ssetcdr);
2266 defsubr (&Ssymbol_function);
2267 defsubr (&Sindirect_function);
2268 defsubr (&Ssymbol_plist);
2269 defsubr (&Ssymbol_name);
2270 defsubr (&Smakunbound);
2271 defsubr (&Sfmakunbound);
2272 defsubr (&Sboundp);
2273 defsubr (&Sfboundp);
2274 defsubr (&Sfset);
2275 defsubr (&Sdefalias);
2276 defsubr (&Sdefine_function);
2277 defsubr (&Ssetplist);
2278 defsubr (&Ssymbol_value);
2279 defsubr (&Sset);
2280 defsubr (&Sdefault_boundp);
2281 defsubr (&Sdefault_value);
2282 defsubr (&Sset_default);
2283 defsubr (&Ssetq_default);
2284 defsubr (&Smake_variable_buffer_local);
2285 defsubr (&Smake_local_variable);
2286 defsubr (&Skill_local_variable);
2287 defsubr (&Saref);
2288 defsubr (&Saset);
2289 defsubr (&Snumber_to_string);
2290 defsubr (&Sstring_to_number);
2291 defsubr (&Seqlsign);
2292 defsubr (&Slss);
2293 defsubr (&Sgtr);
2294 defsubr (&Sleq);
2295 defsubr (&Sgeq);
2296 defsubr (&Sneq);
2297 defsubr (&Szerop);
2298 defsubr (&Splus);
2299 defsubr (&Sminus);
2300 defsubr (&Stimes);
2301 defsubr (&Squo);
2302 defsubr (&Srem);
2303 defsubr (&Smod);
2304 defsubr (&Smax);
2305 defsubr (&Smin);
2306 defsubr (&Slogand);
2307 defsubr (&Slogior);
2308 defsubr (&Slogxor);
2309 defsubr (&Slsh);
2310 defsubr (&Sash);
2311 defsubr (&Sadd1);
2312 defsubr (&Ssub1);
2313 defsubr (&Slognot);
2314
2315 Fset (Qwholenump, Qnatnump);
2316 }
2317
2318 SIGTYPE
2319 arith_error (signo)
2320 int signo;
2321 {
2322 #ifdef USG
2323 /* USG systems forget handlers when they are used;
2324 must reestablish each time */
2325 signal (signo, arith_error);
2326 #endif /* USG */
2327 #ifdef VMS
2328 /* VMS systems are like USG. */
2329 signal (signo, arith_error);
2330 #endif /* VMS */
2331 #ifdef BSD4_1
2332 sigrelse (SIGFPE);
2333 #else /* not BSD4_1 */
2334 sigsetmask (SIGEMPTYMASK);
2335 #endif /* not BSD4_1 */
2336
2337 Fsignal (Qarith_error, Qnil);
2338 }
2339
2340 init_data ()
2341 {
2342 /* Don't do this if just dumping out.
2343 We don't want to call `signal' in this case
2344 so that we don't have trouble with dumping
2345 signal-delivering routines in an inconsistent state. */
2346 #ifndef CANNOT_DUMP
2347 if (!initialized)
2348 return;
2349 #endif /* CANNOT_DUMP */
2350 signal (SIGFPE, arith_error);
2351
2352 #ifdef uts
2353 signal (SIGEMT, arith_error);
2354 #endif /* uts */
2355 }