]> code.delx.au - gnu-emacs/blob - src/lisp.h
Avoid missing inline functions from lisp.h in TAGS
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter. -*- coding: utf-8 -*-
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2015 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
40 # define ID (some integer preprocessor expression of type TYPE)
41 DEFINE_GDB_SYMBOL_END (ID)
42
43 This hack is for the benefit of compilers that do not make macro
44 definitions or enums visible to the debugger. It's used for symbols
45 that .gdbinit needs. */
46
47 #define DECLARE_GDB_SYM(type, id) type const id EXTERNALLY_VISIBLE
48 #ifdef MAIN_PROGRAM
49 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) DECLARE_GDB_SYM (type, id)
50 # define DEFINE_GDB_SYMBOL_END(id) = id;
51 #else
52 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) extern DECLARE_GDB_SYM (type, id)
53 # define DEFINE_GDB_SYMBOL_END(val) ;
54 #endif
55
56 /* The ubiquitous max and min macros. */
57 #undef min
58 #undef max
59 #define max(a, b) ((a) > (b) ? (a) : (b))
60 #define min(a, b) ((a) < (b) ? (a) : (b))
61
62 /* Number of elements in an array. */
63 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
64
65 /* Number of bits in a Lisp_Object tag. */
66 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
67 #define GCTYPEBITS 3
68 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
69
70 /* The number of bits needed in an EMACS_INT over and above the number
71 of bits in a pointer. This is 0 on systems where:
72 1. We can specify multiple-of-8 alignment on static variables.
73 2. We know malloc returns a multiple of 8. */
74 #if (defined alignas \
75 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
76 || defined DARWIN_OS || defined __sun || defined __MINGW32__ \
77 || defined CYGWIN))
78 # define NONPOINTER_BITS 0
79 #else
80 # define NONPOINTER_BITS GCTYPEBITS
81 #endif
82
83 /* EMACS_INT - signed integer wide enough to hold an Emacs value
84 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
85 pI - printf length modifier for EMACS_INT
86 EMACS_UINT - unsigned variant of EMACS_INT */
87 #ifndef EMACS_INT_MAX
88 # if INTPTR_MAX <= 0
89 # error "INTPTR_MAX misconfigured"
90 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
91 typedef int EMACS_INT;
92 typedef unsigned int EMACS_UINT;
93 # define EMACS_INT_MAX INT_MAX
94 # define pI ""
95 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
96 typedef long int EMACS_INT;
97 typedef unsigned long EMACS_UINT;
98 # define EMACS_INT_MAX LONG_MAX
99 # define pI "l"
100 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
101 In theory this is not safe, but in practice it seems to be OK. */
102 # elif INTPTR_MAX <= LLONG_MAX
103 typedef long long int EMACS_INT;
104 typedef unsigned long long int EMACS_UINT;
105 # define EMACS_INT_MAX LLONG_MAX
106 # define pI "ll"
107 # else
108 # error "INTPTR_MAX too large"
109 # endif
110 #endif
111
112 /* Number of bits to put in each character in the internal representation
113 of bool vectors. This should not vary across implementations. */
114 enum { BOOL_VECTOR_BITS_PER_CHAR =
115 #define BOOL_VECTOR_BITS_PER_CHAR 8
116 BOOL_VECTOR_BITS_PER_CHAR
117 };
118
119 /* An unsigned integer type representing a fixed-length bit sequence,
120 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
121 for speed, but it is unsigned char on weird platforms. */
122 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
123 typedef size_t bits_word;
124 # define BITS_WORD_MAX SIZE_MAX
125 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
126 #else
127 typedef unsigned char bits_word;
128 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
129 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
130 #endif
131 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
132
133 /* Number of bits in some machine integer types. */
134 enum
135 {
136 BITS_PER_CHAR = CHAR_BIT,
137 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
138 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
139 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
140 };
141
142 /* printmax_t and uprintmax_t are types for printing large integers.
143 These are the widest integers that are supported for printing.
144 pMd etc. are conversions for printing them.
145 On C99 hosts, there's no problem, as even the widest integers work.
146 Fall back on EMACS_INT on pre-C99 hosts. */
147 #ifdef PRIdMAX
148 typedef intmax_t printmax_t;
149 typedef uintmax_t uprintmax_t;
150 # define pMd PRIdMAX
151 # define pMu PRIuMAX
152 #else
153 typedef EMACS_INT printmax_t;
154 typedef EMACS_UINT uprintmax_t;
155 # define pMd pI"d"
156 # define pMu pI"u"
157 #endif
158
159 /* Use pD to format ptrdiff_t values, which suffice for indexes into
160 buffers and strings. Emacs never allocates objects larger than
161 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
162 In C99, pD can always be "t"; configure it here for the sake of
163 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
164 #if PTRDIFF_MAX == INT_MAX
165 # define pD ""
166 #elif PTRDIFF_MAX == LONG_MAX
167 # define pD "l"
168 #elif PTRDIFF_MAX == LLONG_MAX
169 # define pD "ll"
170 #else
171 # define pD "t"
172 #endif
173
174 /* Extra internal type checking? */
175
176 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
177 'assume (COND)'. COND should be free of side effects, as it may or
178 may not be evaluated.
179
180 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
181 defined and suppress_checking is false, and does nothing otherwise.
182 Emacs dies if COND is checked and is false. The suppress_checking
183 variable is initialized to 0 in alloc.c. Set it to 1 using a
184 debugger to temporarily disable aborting on detected internal
185 inconsistencies or error conditions.
186
187 In some cases, a good compiler may be able to optimize away the
188 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
189 uses eassert to test STRINGP (x), but a particular use of XSTRING
190 is invoked only after testing that STRINGP (x) is true, making the
191 test redundant.
192
193 eassume is like eassert except that it also causes the compiler to
194 assume that COND is true afterwards, regardless of whether runtime
195 checking is enabled. This can improve performance in some cases,
196 though it can degrade performance in others. It's often suboptimal
197 for COND to call external functions or access volatile storage. */
198
199 #ifndef ENABLE_CHECKING
200 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
201 # define eassume(cond) assume (cond)
202 #else /* ENABLE_CHECKING */
203
204 extern _Noreturn void die (const char *, const char *, int);
205
206 extern bool suppress_checking EXTERNALLY_VISIBLE;
207
208 # define eassert(cond) \
209 (suppress_checking || (cond) \
210 ? (void) 0 \
211 : die (# cond, __FILE__, __LINE__))
212 # define eassume(cond) \
213 (suppress_checking \
214 ? assume (cond) \
215 : (cond) \
216 ? (void) 0 \
217 : die (# cond, __FILE__, __LINE__))
218 #endif /* ENABLE_CHECKING */
219
220 \f
221 /* Use the configure flag --enable-check-lisp-object-type to make
222 Lisp_Object use a struct type instead of the default int. The flag
223 causes CHECK_LISP_OBJECT_TYPE to be defined. */
224
225 /***** Select the tagging scheme. *****/
226 /* The following option controls the tagging scheme:
227 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
228 always 0, and we can thus use them to hold tag bits, without
229 restricting our addressing space.
230
231 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
232 restricting our possible address range.
233
234 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
235 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
236 on the few static Lisp_Objects used: lispsym, all the defsubr, and
237 the two special buffers buffer_defaults and buffer_local_symbols. */
238
239 enum Lisp_Bits
240 {
241 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
242 integer constant, for MSVC. */
243 #define GCALIGNMENT 8
244
245 /* Number of bits in a Lisp_Object value, not counting the tag. */
246 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
247
248 /* Number of bits in a Lisp fixnum tag. */
249 INTTYPEBITS = GCTYPEBITS - 1,
250
251 /* Number of bits in a Lisp fixnum value, not counting the tag. */
252 FIXNUM_BITS = VALBITS + 1
253 };
254
255 #if GCALIGNMENT != 1 << GCTYPEBITS
256 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
257 #endif
258
259 /* The maximum value that can be stored in a EMACS_INT, assuming all
260 bits other than the type bits contribute to a nonnegative signed value.
261 This can be used in #if, e.g., '#if USB_TAG' below expands to an
262 expression involving VAL_MAX. */
263 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
264
265 /* Whether the least-significant bits of an EMACS_INT contain the tag.
266 On hosts where pointers-as-ints do not exceed VAL_MAX / 2, USE_LSB_TAG is:
267 a. unnecessary, because the top bits of an EMACS_INT are unused, and
268 b. slower, because it typically requires extra masking.
269 So, USE_LSB_TAG is true only on hosts where it might be useful. */
270 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
271 #define USE_LSB_TAG (VAL_MAX / 2 < INTPTR_MAX)
272 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
273
274 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
275 # error "USE_LSB_TAG not supported on this platform; please report this." \
276 "Try 'configure --with-wide-int' to work around the problem."
277 error !;
278 #endif
279
280 #ifndef alignas
281 # error "alignas not defined"
282 #endif
283
284 #ifdef HAVE_STRUCT_ATTRIBUTE_ALIGNED
285 # define GCALIGNED __attribute__ ((aligned (GCALIGNMENT)))
286 #else
287 # define GCALIGNED /* empty */
288 #endif
289
290 /* Some operations are so commonly executed that they are implemented
291 as macros, not functions, because otherwise runtime performance would
292 suffer too much when compiling with GCC without optimization.
293 There's no need to inline everything, just the operations that
294 would otherwise cause a serious performance problem.
295
296 For each such operation OP, define a macro lisp_h_OP that contains
297 the operation's implementation. That way, OP can be implemented
298 via a macro definition like this:
299
300 #define OP(x) lisp_h_OP (x)
301
302 and/or via a function definition like this:
303
304 LISP_MACRO_DEFUN (OP, Lisp_Object, (Lisp_Object x), (x))
305
306 which macro-expands to this:
307
308 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
309
310 without worrying about the implementations diverging, since
311 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
312 are intended to be private to this include file, and should not be
313 used elsewhere.
314
315 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
316 functions, once most developers have access to GCC 4.8 or later and
317 can use "gcc -Og" to debug. Maybe in the year 2016. See
318 Bug#11935.
319
320 Commentary for these macros can be found near their corresponding
321 functions, below.
322
323 Note: Each use of LISP_MACRO_DEFUN should have a semi-colon ; at
324 its end, although the expansion of that macro doesn't require that.
325 That's because any inline function defined immediately after the
326 use of that macro will otherwise be missed by 'etags' (because
327 'etags' works on un-preprocessed source, and treats the invocation
328 of LISP_MACRO_DEFUN as some kind of data type), and will not end up
329 in TAGS. */
330
331 #if CHECK_LISP_OBJECT_TYPE
332 # define lisp_h_XLI(o) ((o).i)
333 # define lisp_h_XIL(i) ((Lisp_Object) { i })
334 #else
335 # define lisp_h_XLI(o) (o)
336 # define lisp_h_XIL(i) (i)
337 #endif
338 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
339 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
340 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
341 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
342 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
343 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
344 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
345 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
346 #define lisp_h_INTEGERP(x) ((XTYPE (x) & (Lisp_Int0 | ~Lisp_Int1)) == Lisp_Int0)
347 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
348 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
349 #define lisp_h_NILP(x) EQ (x, Qnil)
350 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
351 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
352 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
353 #define lisp_h_SYMBOL_VAL(sym) \
354 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
355 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
356 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
357 #define lisp_h_XCAR(c) XCONS (c)->car
358 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
359 #define lisp_h_XCONS(a) \
360 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
361 #define lisp_h_XHASH(a) XUINT (a)
362 #ifndef GC_CHECK_CONS_LIST
363 # define lisp_h_check_cons_list() ((void) 0)
364 #endif
365 #if USE_LSB_TAG
366 # define lisp_h_make_number(n) \
367 XIL ((EMACS_INT) (((EMACS_UINT) (n) << INTTYPEBITS) + Lisp_Int0))
368 # define lisp_h_XFASTINT(a) XINT (a)
369 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
370 # define lisp_h_XSYMBOL(a) \
371 (eassert (SYMBOLP (a)), \
372 (struct Lisp_Symbol *) ((uintptr_t) XLI (a) - Lisp_Symbol \
373 + (char *) lispsym))
374 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
375 # define lisp_h_XUNTAG(a, type) ((void *) (intptr_t) (XLI (a) - (type)))
376 #endif
377
378 /* When compiling via gcc -O0, define the key operations as macros, as
379 Emacs is too slow otherwise. To disable this optimization, compile
380 with -DINLINING=false. */
381 #if (defined __NO_INLINE__ \
382 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
383 && ! (defined INLINING && ! INLINING))
384 # define XLI(o) lisp_h_XLI (o)
385 # define XIL(i) lisp_h_XIL (i)
386 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
387 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
388 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
389 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
390 # define CONSP(x) lisp_h_CONSP (x)
391 # define EQ(x, y) lisp_h_EQ (x, y)
392 # define FLOATP(x) lisp_h_FLOATP (x)
393 # define INTEGERP(x) lisp_h_INTEGERP (x)
394 # define MARKERP(x) lisp_h_MARKERP (x)
395 # define MISCP(x) lisp_h_MISCP (x)
396 # define NILP(x) lisp_h_NILP (x)
397 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
398 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
399 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
400 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
401 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
402 # define XCAR(c) lisp_h_XCAR (c)
403 # define XCDR(c) lisp_h_XCDR (c)
404 # define XCONS(a) lisp_h_XCONS (a)
405 # define XHASH(a) lisp_h_XHASH (a)
406 # ifndef GC_CHECK_CONS_LIST
407 # define check_cons_list() lisp_h_check_cons_list ()
408 # endif
409 # if USE_LSB_TAG
410 # define make_number(n) lisp_h_make_number (n)
411 # define XFASTINT(a) lisp_h_XFASTINT (a)
412 # define XINT(a) lisp_h_XINT (a)
413 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
414 # define XTYPE(a) lisp_h_XTYPE (a)
415 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
416 # endif
417 #endif
418
419 /* Define NAME as a lisp.h inline function that returns TYPE and has
420 arguments declared as ARGDECLS and passed as ARGS. ARGDECLS and
421 ARGS should be parenthesized. Implement the function by calling
422 lisp_h_NAME ARGS. */
423 #define LISP_MACRO_DEFUN(name, type, argdecls, args) \
424 INLINE type (name) argdecls { return lisp_h_##name args; }
425
426 /* like LISP_MACRO_DEFUN, except NAME returns void. */
427 #define LISP_MACRO_DEFUN_VOID(name, argdecls, args) \
428 INLINE void (name) argdecls { lisp_h_##name args; }
429
430
431 /* Define the fundamental Lisp data structures. */
432
433 /* This is the set of Lisp data types. If you want to define a new
434 data type, read the comments after Lisp_Fwd_Type definition
435 below. */
436
437 /* Lisp integers use 2 tags, to give them one extra bit, thus
438 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
439 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
440 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
441
442 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
443 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
444 vociferously about them. */
445 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
446 || (defined __SUNPRO_C && __STDC__))
447 #define ENUM_BF(TYPE) unsigned int
448 #else
449 #define ENUM_BF(TYPE) enum TYPE
450 #endif
451
452
453 enum Lisp_Type
454 {
455 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
456 Lisp_Symbol = 0,
457
458 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
459 whose first member indicates the subtype. */
460 Lisp_Misc = 1,
461
462 /* Integer. XINT (obj) is the integer value. */
463 Lisp_Int0 = 2,
464 Lisp_Int1 = USE_LSB_TAG ? 6 : 3,
465
466 /* String. XSTRING (object) points to a struct Lisp_String.
467 The length of the string, and its contents, are stored therein. */
468 Lisp_String = 4,
469
470 /* Vector of Lisp objects, or something resembling it.
471 XVECTOR (object) points to a struct Lisp_Vector, which contains
472 the size and contents. The size field also contains the type
473 information, if it's not a real vector object. */
474 Lisp_Vectorlike = 5,
475
476 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
477 Lisp_Cons = USE_LSB_TAG ? 3 : 6,
478
479 Lisp_Float = 7
480 };
481
482 /* This is the set of data types that share a common structure.
483 The first member of the structure is a type code from this set.
484 The enum values are arbitrary, but we'll use large numbers to make it
485 more likely that we'll spot the error if a random word in memory is
486 mistakenly interpreted as a Lisp_Misc. */
487 enum Lisp_Misc_Type
488 {
489 Lisp_Misc_Free = 0x5eab,
490 Lisp_Misc_Marker,
491 Lisp_Misc_Overlay,
492 Lisp_Misc_Save_Value,
493 Lisp_Misc_Finalizer,
494 /* Currently floats are not a misc type,
495 but let's define this in case we want to change that. */
496 Lisp_Misc_Float,
497 /* This is not a type code. It is for range checking. */
498 Lisp_Misc_Limit
499 };
500
501 /* These are the types of forwarding objects used in the value slot
502 of symbols for special built-in variables whose value is stored in
503 C variables. */
504 enum Lisp_Fwd_Type
505 {
506 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
507 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
508 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
509 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
510 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
511 };
512
513 /* If you want to define a new Lisp data type, here are some
514 instructions. See the thread at
515 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
516 for more info.
517
518 First, there are already a couple of Lisp types that can be used if
519 your new type does not need to be exposed to Lisp programs nor
520 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
521 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
522 is suitable for temporarily stashing away pointers and integers in
523 a Lisp object. The latter is useful for vector-like Lisp objects
524 that need to be used as part of other objects, but which are never
525 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
526 an example).
527
528 These two types don't look pretty when printed, so they are
529 unsuitable for Lisp objects that can be exposed to users.
530
531 To define a new data type, add one more Lisp_Misc subtype or one
532 more pseudovector subtype. Pseudovectors are more suitable for
533 objects with several slots that need to support fast random access,
534 while Lisp_Misc types are for everything else. A pseudovector object
535 provides one or more slots for Lisp objects, followed by struct
536 members that are accessible only from C. A Lisp_Misc object is a
537 wrapper for a C struct that can contain anything you like.
538
539 Explicit freeing is discouraged for Lisp objects in general. But if
540 you really need to exploit this, use Lisp_Misc (check free_misc in
541 alloc.c to see why). There is no way to free a vectorlike object.
542
543 To add a new pseudovector type, extend the pvec_type enumeration;
544 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
545
546 For a Lisp_Misc, you will also need to add your entry to union
547 Lisp_Misc (but make sure the first word has the same structure as
548 the others, starting with a 16-bit member of the Lisp_Misc_Type
549 enumeration and a 1-bit GC markbit) and make sure the overall size
550 of the union is not increased by your addition.
551
552 For a new pseudovector, it's highly desirable to limit the size
553 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
554 Otherwise you will need to change sweep_vectors (also in alloc.c).
555
556 Then you will need to add switch branches in print.c (in
557 print_object, to print your object, and possibly also in
558 print_preprocess) and to alloc.c, to mark your object (in
559 mark_object) and to free it (in gc_sweep). The latter is also the
560 right place to call any code specific to your data type that needs
561 to run when the object is recycled -- e.g., free any additional
562 resources allocated for it that are not Lisp objects. You can even
563 make a pointer to the function that frees the resources a slot in
564 your object -- this way, the same object could be used to represent
565 several disparate C structures. */
566
567 #ifdef CHECK_LISP_OBJECT_TYPE
568
569 typedef struct { EMACS_INT i; } Lisp_Object;
570
571 #define LISP_INITIALLY(i) {i}
572
573 #undef CHECK_LISP_OBJECT_TYPE
574 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
575 #else /* CHECK_LISP_OBJECT_TYPE */
576
577 /* If a struct type is not wanted, define Lisp_Object as just a number. */
578
579 typedef EMACS_INT Lisp_Object;
580 #define LISP_INITIALLY(i) (i)
581 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
582 #endif /* CHECK_LISP_OBJECT_TYPE */
583
584 #define LISP_INITIALLY_ZERO LISP_INITIALLY (0)
585 \f
586 /* Forward declarations. */
587
588 /* Defined in this file. */
589 union Lisp_Fwd;
590 INLINE bool BOOL_VECTOR_P (Lisp_Object);
591 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
592 INLINE bool BUFFERP (Lisp_Object);
593 INLINE bool CHAR_TABLE_P (Lisp_Object);
594 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
595 INLINE bool (CONSP) (Lisp_Object);
596 INLINE bool (FLOATP) (Lisp_Object);
597 INLINE bool functionp (Lisp_Object);
598 INLINE bool (INTEGERP) (Lisp_Object);
599 INLINE bool (MARKERP) (Lisp_Object);
600 INLINE bool (MISCP) (Lisp_Object);
601 INLINE bool (NILP) (Lisp_Object);
602 INLINE bool OVERLAYP (Lisp_Object);
603 INLINE bool PROCESSP (Lisp_Object);
604 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
605 INLINE bool SAVE_VALUEP (Lisp_Object);
606 INLINE bool FINALIZERP (Lisp_Object);
607 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
608 Lisp_Object);
609 INLINE bool STRINGP (Lisp_Object);
610 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
611 INLINE bool SUBRP (Lisp_Object);
612 INLINE bool (SYMBOLP) (Lisp_Object);
613 INLINE bool (VECTORLIKEP) (Lisp_Object);
614 INLINE bool WINDOWP (Lisp_Object);
615 INLINE bool TERMINALP (Lisp_Object);
616 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
617 INLINE struct Lisp_Finalizer *XFINALIZER (Lisp_Object);
618 INLINE struct Lisp_Symbol *(XSYMBOL) (Lisp_Object);
619 INLINE void *(XUNTAG) (Lisp_Object, int);
620
621 /* Defined in chartab.c. */
622 extern Lisp_Object char_table_ref (Lisp_Object, int);
623 extern void char_table_set (Lisp_Object, int, Lisp_Object);
624
625 /* Defined in data.c. */
626 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
627 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
628
629 /* Defined in emacs.c. */
630 extern bool might_dump;
631 /* True means Emacs has already been initialized.
632 Used during startup to detect startup of dumped Emacs. */
633 extern bool initialized;
634
635 /* Defined in floatfns.c. */
636 extern double extract_float (Lisp_Object);
637
638 \f
639 /* Interned state of a symbol. */
640
641 enum symbol_interned
642 {
643 SYMBOL_UNINTERNED = 0,
644 SYMBOL_INTERNED = 1,
645 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
646 };
647
648 enum symbol_redirect
649 {
650 SYMBOL_PLAINVAL = 4,
651 SYMBOL_VARALIAS = 1,
652 SYMBOL_LOCALIZED = 2,
653 SYMBOL_FORWARDED = 3
654 };
655
656 struct Lisp_Symbol
657 {
658 bool_bf gcmarkbit : 1;
659
660 /* Indicates where the value can be found:
661 0 : it's a plain var, the value is in the `value' field.
662 1 : it's a varalias, the value is really in the `alias' symbol.
663 2 : it's a localized var, the value is in the `blv' object.
664 3 : it's a forwarding variable, the value is in `forward'. */
665 ENUM_BF (symbol_redirect) redirect : 3;
666
667 /* Non-zero means symbol is constant, i.e. changing its value
668 should signal an error. If the value is 3, then the var
669 can be changed, but only by `defconst'. */
670 unsigned constant : 2;
671
672 /* Interned state of the symbol. This is an enumerator from
673 enum symbol_interned. */
674 unsigned interned : 2;
675
676 /* True means that this variable has been explicitly declared
677 special (with `defvar' etc), and shouldn't be lexically bound. */
678 bool_bf declared_special : 1;
679
680 /* True if pointed to from purespace and hence can't be GC'd. */
681 bool_bf pinned : 1;
682
683 /* The symbol's name, as a Lisp string. */
684 Lisp_Object name;
685
686 /* Value of the symbol or Qunbound if unbound. Which alternative of the
687 union is used depends on the `redirect' field above. */
688 union {
689 Lisp_Object value;
690 struct Lisp_Symbol *alias;
691 struct Lisp_Buffer_Local_Value *blv;
692 union Lisp_Fwd *fwd;
693 } val;
694
695 /* Function value of the symbol or Qnil if not fboundp. */
696 Lisp_Object function;
697
698 /* The symbol's property list. */
699 Lisp_Object plist;
700
701 /* Next symbol in obarray bucket, if the symbol is interned. */
702 struct Lisp_Symbol *next;
703 };
704
705 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
706 meaning as in the DEFUN macro, and is used to construct a prototype. */
707 /* We can use the same trick as in the DEFUN macro to generate the
708 appropriate prototype. */
709 #define EXFUN(fnname, maxargs) \
710 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
711
712 /* Note that the weird token-substitution semantics of ANSI C makes
713 this work for MANY and UNEVALLED. */
714 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
715 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
716 #define DEFUN_ARGS_0 (void)
717 #define DEFUN_ARGS_1 (Lisp_Object)
718 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
719 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
720 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
721 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
722 Lisp_Object)
723 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
724 Lisp_Object, Lisp_Object)
725 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
726 Lisp_Object, Lisp_Object, Lisp_Object)
727 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
728 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
729
730 /* Yield an integer that contains TAG along with PTR. */
731 #define TAG_PTR(tag, ptr) \
732 ((USE_LSB_TAG ? (tag) : (EMACS_UINT) (tag) << VALBITS) + (uintptr_t) (ptr))
733
734 /* Yield an integer that contains a symbol tag along with OFFSET.
735 OFFSET should be the offset in bytes from 'lispsym' to the symbol. */
736 #define TAG_SYMOFFSET(offset) TAG_PTR (Lisp_Symbol, offset)
737
738 /* XLI_BUILTIN_LISPSYM (iQwhatever) is equivalent to
739 XLI (builtin_lisp_symbol (Qwhatever)),
740 except the former expands to an integer constant expression. */
741 #define XLI_BUILTIN_LISPSYM(iname) TAG_SYMOFFSET ((iname) * sizeof *lispsym)
742
743 /* Declare extern constants for Lisp symbols. These can be helpful
744 when using a debugger like GDB, on older platforms where the debug
745 format does not represent C macros. */
746 #define DEFINE_LISP_SYMBOL(name) \
747 DEFINE_GDB_SYMBOL_BEGIN (Lisp_Object, name) \
748 DEFINE_GDB_SYMBOL_END (LISP_INITIALLY (XLI_BUILTIN_LISPSYM (i##name)))
749
750 /* By default, define macros for Qt, etc., as this leads to a bit
751 better performance in the core Emacs interpreter. A plugin can
752 define DEFINE_NON_NIL_Q_SYMBOL_MACROS to be false, to be portable to
753 other Emacs instances that assign different values to Qt, etc. */
754 #ifndef DEFINE_NON_NIL_Q_SYMBOL_MACROS
755 # define DEFINE_NON_NIL_Q_SYMBOL_MACROS true
756 #endif
757
758 #include "globals.h"
759
760 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
761 At the machine level, these operations are no-ops. */
762 LISP_MACRO_DEFUN (XLI, EMACS_INT, (Lisp_Object o), (o));
763 LISP_MACRO_DEFUN (XIL, Lisp_Object, (EMACS_INT i), (i));
764
765 /* In the size word of a vector, this bit means the vector has been marked. */
766
767 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
768 # define ARRAY_MARK_FLAG PTRDIFF_MIN
769 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
770
771 /* In the size word of a struct Lisp_Vector, this bit means it's really
772 some other vector-like object. */
773 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
774 # define PSEUDOVECTOR_FLAG (PTRDIFF_MAX - PTRDIFF_MAX / 2)
775 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
776
777 /* In a pseudovector, the size field actually contains a word with one
778 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
779 with PVEC_TYPE_MASK to indicate the actual type. */
780 enum pvec_type
781 {
782 PVEC_NORMAL_VECTOR,
783 PVEC_FREE,
784 PVEC_PROCESS,
785 PVEC_FRAME,
786 PVEC_WINDOW,
787 PVEC_BOOL_VECTOR,
788 PVEC_BUFFER,
789 PVEC_HASH_TABLE,
790 PVEC_TERMINAL,
791 PVEC_WINDOW_CONFIGURATION,
792 PVEC_SUBR,
793 PVEC_OTHER,
794 /* These should be last, check internal_equal to see why. */
795 PVEC_COMPILED,
796 PVEC_CHAR_TABLE,
797 PVEC_SUB_CHAR_TABLE,
798 PVEC_FONT /* Should be last because it's used for range checking. */
799 };
800
801 enum More_Lisp_Bits
802 {
803 /* For convenience, we also store the number of elements in these bits.
804 Note that this size is not necessarily the memory-footprint size, but
805 only the number of Lisp_Object fields (that need to be traced by GC).
806 The distinction is used, e.g., by Lisp_Process, which places extra
807 non-Lisp_Object fields at the end of the structure. */
808 PSEUDOVECTOR_SIZE_BITS = 12,
809 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
810
811 /* To calculate the memory footprint of the pseudovector, it's useful
812 to store the size of non-Lisp area in word_size units here. */
813 PSEUDOVECTOR_REST_BITS = 12,
814 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
815 << PSEUDOVECTOR_SIZE_BITS),
816
817 /* Used to extract pseudovector subtype information. */
818 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
819 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
820 };
821 \f
822 /* These functions extract various sorts of values from a Lisp_Object.
823 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
824 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
825 that cons. */
826
827 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
828 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
829 # define VALMASK (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
830 DEFINE_GDB_SYMBOL_END (VALMASK)
831
832 /* Largest and smallest representable fixnum values. These are the C
833 values. They are macros for use in static initializers. */
834 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
835 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
836
837 #if USE_LSB_TAG
838
839 LISP_MACRO_DEFUN (make_number, Lisp_Object, (EMACS_INT n), (n));
840 LISP_MACRO_DEFUN (XINT, EMACS_INT, (Lisp_Object a), (a));
841 LISP_MACRO_DEFUN (XFASTINT, EMACS_INT, (Lisp_Object a), (a));
842 LISP_MACRO_DEFUN (XSYMBOL, struct Lisp_Symbol *, (Lisp_Object a), (a));
843 LISP_MACRO_DEFUN (XTYPE, enum Lisp_Type, (Lisp_Object a), (a));
844 LISP_MACRO_DEFUN (XUNTAG, void *, (Lisp_Object a, int type), (a, type));
845
846 #else /* ! USE_LSB_TAG */
847
848 /* Although compiled only if ! USE_LSB_TAG, the following functions
849 also work when USE_LSB_TAG; this is to aid future maintenance when
850 the lisp_h_* macros are eventually removed. */
851
852 /* Make a Lisp integer representing the value of the low order
853 bits of N. */
854 INLINE Lisp_Object
855 make_number (EMACS_INT n)
856 {
857 EMACS_INT int0 = Lisp_Int0;
858 if (USE_LSB_TAG)
859 {
860 EMACS_UINT u = n;
861 n = u << INTTYPEBITS;
862 n += int0;
863 }
864 else
865 {
866 n &= INTMASK;
867 n += (int0 << VALBITS);
868 }
869 return XIL (n);
870 }
871
872 /* Extract A's value as a signed integer. */
873 INLINE EMACS_INT
874 XINT (Lisp_Object a)
875 {
876 EMACS_INT i = XLI (a);
877 if (! USE_LSB_TAG)
878 {
879 EMACS_UINT u = i;
880 i = u << INTTYPEBITS;
881 }
882 return i >> INTTYPEBITS;
883 }
884
885 /* Like XINT (A), but may be faster. A must be nonnegative.
886 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
887 integers have zero-bits in their tags. */
888 INLINE EMACS_INT
889 XFASTINT (Lisp_Object a)
890 {
891 EMACS_INT int0 = Lisp_Int0;
892 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a) - (int0 << VALBITS);
893 eassert (0 <= n);
894 return n;
895 }
896
897 /* Extract A's value as a symbol. */
898 INLINE struct Lisp_Symbol *
899 XSYMBOL (Lisp_Object a)
900 {
901 uintptr_t i = (uintptr_t) XUNTAG (a, Lisp_Symbol);
902 void *p = (char *) lispsym + i;
903 return p;
904 }
905
906 /* Extract A's type. */
907 INLINE enum Lisp_Type
908 XTYPE (Lisp_Object a)
909 {
910 EMACS_UINT i = XLI (a);
911 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
912 }
913
914 /* Extract A's pointer value, assuming A's type is TYPE. */
915 INLINE void *
916 XUNTAG (Lisp_Object a, int type)
917 {
918 intptr_t i = USE_LSB_TAG ? XLI (a) - type : XLI (a) & VALMASK;
919 return (void *) i;
920 }
921
922 #endif /* ! USE_LSB_TAG */
923
924 /* Extract A's value as an unsigned integer. */
925 INLINE EMACS_UINT
926 XUINT (Lisp_Object a)
927 {
928 EMACS_UINT i = XLI (a);
929 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
930 }
931
932 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
933 right now, but XUINT should only be applied to objects we know are
934 integers. */
935 LISP_MACRO_DEFUN (XHASH, EMACS_INT, (Lisp_Object a), (a));
936
937 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
938 INLINE Lisp_Object
939 make_natnum (EMACS_INT n)
940 {
941 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
942 EMACS_INT int0 = Lisp_Int0;
943 return USE_LSB_TAG ? make_number (n) : XIL (n + (int0 << VALBITS));
944 }
945
946 /* Return true if X and Y are the same object. */
947 LISP_MACRO_DEFUN (EQ, bool, (Lisp_Object x, Lisp_Object y), (x, y));
948
949 /* Value is true if I doesn't fit into a Lisp fixnum. It is
950 written this way so that it also works if I is of unsigned
951 type or if I is a NaN. */
952
953 #define FIXNUM_OVERFLOW_P(i) \
954 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
955
956 INLINE ptrdiff_t
957 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
958 {
959 return num < lower ? lower : num <= upper ? num : upper;
960 }
961 \f
962
963 /* Extract a value or address from a Lisp_Object. */
964
965 LISP_MACRO_DEFUN (XCONS, struct Lisp_Cons *, (Lisp_Object a), (a));
966
967 INLINE struct Lisp_Vector *
968 XVECTOR (Lisp_Object a)
969 {
970 eassert (VECTORLIKEP (a));
971 return XUNTAG (a, Lisp_Vectorlike);
972 }
973
974 INLINE struct Lisp_String *
975 XSTRING (Lisp_Object a)
976 {
977 eassert (STRINGP (a));
978 return XUNTAG (a, Lisp_String);
979 }
980
981 /* The index of the C-defined Lisp symbol SYM.
982 This can be used in a static initializer. */
983 #define SYMBOL_INDEX(sym) i##sym
984
985 INLINE struct Lisp_Float *
986 XFLOAT (Lisp_Object a)
987 {
988 eassert (FLOATP (a));
989 return XUNTAG (a, Lisp_Float);
990 }
991
992 /* Pseudovector types. */
993
994 INLINE struct Lisp_Process *
995 XPROCESS (Lisp_Object a)
996 {
997 eassert (PROCESSP (a));
998 return XUNTAG (a, Lisp_Vectorlike);
999 }
1000
1001 INLINE struct window *
1002 XWINDOW (Lisp_Object a)
1003 {
1004 eassert (WINDOWP (a));
1005 return XUNTAG (a, Lisp_Vectorlike);
1006 }
1007
1008 INLINE struct terminal *
1009 XTERMINAL (Lisp_Object a)
1010 {
1011 eassert (TERMINALP (a));
1012 return XUNTAG (a, Lisp_Vectorlike);
1013 }
1014
1015 INLINE struct Lisp_Subr *
1016 XSUBR (Lisp_Object a)
1017 {
1018 eassert (SUBRP (a));
1019 return XUNTAG (a, Lisp_Vectorlike);
1020 }
1021
1022 INLINE struct buffer *
1023 XBUFFER (Lisp_Object a)
1024 {
1025 eassert (BUFFERP (a));
1026 return XUNTAG (a, Lisp_Vectorlike);
1027 }
1028
1029 INLINE struct Lisp_Char_Table *
1030 XCHAR_TABLE (Lisp_Object a)
1031 {
1032 eassert (CHAR_TABLE_P (a));
1033 return XUNTAG (a, Lisp_Vectorlike);
1034 }
1035
1036 INLINE struct Lisp_Sub_Char_Table *
1037 XSUB_CHAR_TABLE (Lisp_Object a)
1038 {
1039 eassert (SUB_CHAR_TABLE_P (a));
1040 return XUNTAG (a, Lisp_Vectorlike);
1041 }
1042
1043 INLINE struct Lisp_Bool_Vector *
1044 XBOOL_VECTOR (Lisp_Object a)
1045 {
1046 eassert (BOOL_VECTOR_P (a));
1047 return XUNTAG (a, Lisp_Vectorlike);
1048 }
1049
1050 /* Construct a Lisp_Object from a value or address. */
1051
1052 INLINE Lisp_Object
1053 make_lisp_ptr (void *ptr, enum Lisp_Type type)
1054 {
1055 Lisp_Object a = XIL (TAG_PTR (type, ptr));
1056 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
1057 return a;
1058 }
1059
1060 INLINE Lisp_Object
1061 make_lisp_symbol (struct Lisp_Symbol *sym)
1062 {
1063 Lisp_Object a = XIL (TAG_SYMOFFSET ((char *) sym - (char *) lispsym));
1064 eassert (XSYMBOL (a) == sym);
1065 return a;
1066 }
1067
1068 INLINE Lisp_Object
1069 builtin_lisp_symbol (int index)
1070 {
1071 return make_lisp_symbol (lispsym + index);
1072 }
1073
1074 #define XSETINT(a, b) ((a) = make_number (b))
1075 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
1076 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
1077 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
1078 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
1079 #define XSETSYMBOL(a, b) ((a) = make_lisp_symbol (b))
1080 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
1081 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
1082
1083 /* Pseudovector types. */
1084
1085 #define XSETPVECTYPE(v, code) \
1086 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
1087 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
1088 ((v)->header.size = (PSEUDOVECTOR_FLAG \
1089 | ((code) << PSEUDOVECTOR_AREA_BITS) \
1090 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
1091 | (lispsize)))
1092
1093 /* The cast to struct vectorlike_header * avoids aliasing issues. */
1094 #define XSETPSEUDOVECTOR(a, b, code) \
1095 XSETTYPED_PSEUDOVECTOR (a, b, \
1096 (((struct vectorlike_header *) \
1097 XUNTAG (a, Lisp_Vectorlike)) \
1098 ->size), \
1099 code)
1100 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
1101 (XSETVECTOR (a, b), \
1102 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
1103 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
1104
1105 #define XSETWINDOW_CONFIGURATION(a, b) \
1106 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
1107 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
1108 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
1109 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
1110 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
1111 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
1112 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
1113 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
1114 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
1115 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
1116
1117 /* Efficiently convert a pointer to a Lisp object and back. The
1118 pointer is represented as a Lisp integer, so the garbage collector
1119 does not know about it. The pointer should not have both Lisp_Int1
1120 bits set, which makes this conversion inherently unportable. */
1121
1122 INLINE void *
1123 XINTPTR (Lisp_Object a)
1124 {
1125 return XUNTAG (a, Lisp_Int0);
1126 }
1127
1128 INLINE Lisp_Object
1129 make_pointer_integer (void *p)
1130 {
1131 Lisp_Object a = XIL (TAG_PTR (Lisp_Int0, p));
1132 eassert (INTEGERP (a) && XINTPTR (a) == p);
1133 return a;
1134 }
1135
1136 /* Type checking. */
1137
1138 LISP_MACRO_DEFUN_VOID (CHECK_TYPE,
1139 (int ok, Lisp_Object predicate, Lisp_Object x),
1140 (ok, predicate, x));
1141
1142 /* See the macros in intervals.h. */
1143
1144 typedef struct interval *INTERVAL;
1145
1146 struct GCALIGNED Lisp_Cons
1147 {
1148 /* Car of this cons cell. */
1149 Lisp_Object car;
1150
1151 union
1152 {
1153 /* Cdr of this cons cell. */
1154 Lisp_Object cdr;
1155
1156 /* Used to chain conses on a free list. */
1157 struct Lisp_Cons *chain;
1158 } u;
1159 };
1160
1161 /* Take the car or cdr of something known to be a cons cell. */
1162 /* The _addr functions shouldn't be used outside of the minimal set
1163 of code that has to know what a cons cell looks like. Other code not
1164 part of the basic lisp implementation should assume that the car and cdr
1165 fields are not accessible. (What if we want to switch to
1166 a copying collector someday? Cached cons cell field addresses may be
1167 invalidated at arbitrary points.) */
1168 INLINE Lisp_Object *
1169 xcar_addr (Lisp_Object c)
1170 {
1171 return &XCONS (c)->car;
1172 }
1173 INLINE Lisp_Object *
1174 xcdr_addr (Lisp_Object c)
1175 {
1176 return &XCONS (c)->u.cdr;
1177 }
1178
1179 /* Use these from normal code. */
1180 LISP_MACRO_DEFUN (XCAR, Lisp_Object, (Lisp_Object c), (c));
1181 LISP_MACRO_DEFUN (XCDR, Lisp_Object, (Lisp_Object c), (c));
1182
1183 /* Use these to set the fields of a cons cell.
1184
1185 Note that both arguments may refer to the same object, so 'n'
1186 should not be read after 'c' is first modified. */
1187 INLINE void
1188 XSETCAR (Lisp_Object c, Lisp_Object n)
1189 {
1190 *xcar_addr (c) = n;
1191 }
1192 INLINE void
1193 XSETCDR (Lisp_Object c, Lisp_Object n)
1194 {
1195 *xcdr_addr (c) = n;
1196 }
1197
1198 /* Take the car or cdr of something whose type is not known. */
1199 INLINE Lisp_Object
1200 CAR (Lisp_Object c)
1201 {
1202 return (CONSP (c) ? XCAR (c)
1203 : NILP (c) ? Qnil
1204 : wrong_type_argument (Qlistp, c));
1205 }
1206 INLINE Lisp_Object
1207 CDR (Lisp_Object c)
1208 {
1209 return (CONSP (c) ? XCDR (c)
1210 : NILP (c) ? Qnil
1211 : wrong_type_argument (Qlistp, c));
1212 }
1213
1214 /* Take the car or cdr of something whose type is not known. */
1215 INLINE Lisp_Object
1216 CAR_SAFE (Lisp_Object c)
1217 {
1218 return CONSP (c) ? XCAR (c) : Qnil;
1219 }
1220 INLINE Lisp_Object
1221 CDR_SAFE (Lisp_Object c)
1222 {
1223 return CONSP (c) ? XCDR (c) : Qnil;
1224 }
1225
1226 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1227
1228 struct GCALIGNED Lisp_String
1229 {
1230 ptrdiff_t size;
1231 ptrdiff_t size_byte;
1232 INTERVAL intervals; /* Text properties in this string. */
1233 unsigned char *data;
1234 };
1235
1236 /* True if STR is a multibyte string. */
1237 INLINE bool
1238 STRING_MULTIBYTE (Lisp_Object str)
1239 {
1240 return 0 <= XSTRING (str)->size_byte;
1241 }
1242
1243 /* An upper bound on the number of bytes in a Lisp string, not
1244 counting the terminating null. This a tight enough bound to
1245 prevent integer overflow errors that would otherwise occur during
1246 string size calculations. A string cannot contain more bytes than
1247 a fixnum can represent, nor can it be so long that C pointer
1248 arithmetic stops working on the string plus its terminating null.
1249 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1250 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1251 would expose alloc.c internal details that we'd rather keep
1252 private.
1253
1254 This is a macro for use in static initializers. The cast to
1255 ptrdiff_t ensures that the macro is signed. */
1256 #define STRING_BYTES_BOUND \
1257 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1258
1259 /* Mark STR as a unibyte string. */
1260 #define STRING_SET_UNIBYTE(STR) \
1261 do { \
1262 if (EQ (STR, empty_multibyte_string)) \
1263 (STR) = empty_unibyte_string; \
1264 else \
1265 XSTRING (STR)->size_byte = -1; \
1266 } while (false)
1267
1268 /* Mark STR as a multibyte string. Assure that STR contains only
1269 ASCII characters in advance. */
1270 #define STRING_SET_MULTIBYTE(STR) \
1271 do { \
1272 if (EQ (STR, empty_unibyte_string)) \
1273 (STR) = empty_multibyte_string; \
1274 else \
1275 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1276 } while (false)
1277
1278 /* Convenience functions for dealing with Lisp strings. */
1279
1280 INLINE unsigned char *
1281 SDATA (Lisp_Object string)
1282 {
1283 return XSTRING (string)->data;
1284 }
1285 INLINE char *
1286 SSDATA (Lisp_Object string)
1287 {
1288 /* Avoid "differ in sign" warnings. */
1289 return (char *) SDATA (string);
1290 }
1291 INLINE unsigned char
1292 SREF (Lisp_Object string, ptrdiff_t index)
1293 {
1294 return SDATA (string)[index];
1295 }
1296 INLINE void
1297 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1298 {
1299 SDATA (string)[index] = new;
1300 }
1301 INLINE ptrdiff_t
1302 SCHARS (Lisp_Object string)
1303 {
1304 return XSTRING (string)->size;
1305 }
1306
1307 #ifdef GC_CHECK_STRING_BYTES
1308 extern ptrdiff_t string_bytes (struct Lisp_String *);
1309 #endif
1310 INLINE ptrdiff_t
1311 STRING_BYTES (struct Lisp_String *s)
1312 {
1313 #ifdef GC_CHECK_STRING_BYTES
1314 return string_bytes (s);
1315 #else
1316 return s->size_byte < 0 ? s->size : s->size_byte;
1317 #endif
1318 }
1319
1320 INLINE ptrdiff_t
1321 SBYTES (Lisp_Object string)
1322 {
1323 return STRING_BYTES (XSTRING (string));
1324 }
1325 INLINE void
1326 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1327 {
1328 XSTRING (string)->size = newsize;
1329 }
1330
1331 /* Header of vector-like objects. This documents the layout constraints on
1332 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1333 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1334 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1335 because when two such pointers potentially alias, a compiler won't
1336 incorrectly reorder loads and stores to their size fields. See
1337 Bug#8546. */
1338 struct vectorlike_header
1339 {
1340 /* The only field contains various pieces of information:
1341 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1342 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1343 vector (0) or a pseudovector (1).
1344 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1345 of slots) of the vector.
1346 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1347 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1348 - b) number of Lisp_Objects slots at the beginning of the object
1349 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1350 traced by the GC;
1351 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1352 measured in word_size units. Rest fields may also include
1353 Lisp_Objects, but these objects usually needs some special treatment
1354 during GC.
1355 There are some exceptions. For PVEC_FREE, b) is always zero. For
1356 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1357 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1358 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1359 ptrdiff_t size;
1360 };
1361
1362 /* A regular vector is just a header plus an array of Lisp_Objects. */
1363
1364 struct Lisp_Vector
1365 {
1366 struct vectorlike_header header;
1367 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1368 };
1369
1370 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1371 enum
1372 {
1373 ALIGNOF_STRUCT_LISP_VECTOR
1374 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1375 };
1376
1377 /* A boolvector is a kind of vectorlike, with contents like a string. */
1378
1379 struct Lisp_Bool_Vector
1380 {
1381 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1382 just the subtype information. */
1383 struct vectorlike_header header;
1384 /* This is the size in bits. */
1385 EMACS_INT size;
1386 /* The actual bits, packed into bytes.
1387 Zeros fill out the last word if needed.
1388 The bits are in little-endian order in the bytes, and
1389 the bytes are in little-endian order in the words. */
1390 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1391 };
1392
1393 INLINE EMACS_INT
1394 bool_vector_size (Lisp_Object a)
1395 {
1396 EMACS_INT size = XBOOL_VECTOR (a)->size;
1397 eassume (0 <= size);
1398 return size;
1399 }
1400
1401 INLINE bits_word *
1402 bool_vector_data (Lisp_Object a)
1403 {
1404 return XBOOL_VECTOR (a)->data;
1405 }
1406
1407 INLINE unsigned char *
1408 bool_vector_uchar_data (Lisp_Object a)
1409 {
1410 return (unsigned char *) bool_vector_data (a);
1411 }
1412
1413 /* The number of data words and bytes in a bool vector with SIZE bits. */
1414
1415 INLINE EMACS_INT
1416 bool_vector_words (EMACS_INT size)
1417 {
1418 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1419 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1420 }
1421
1422 INLINE EMACS_INT
1423 bool_vector_bytes (EMACS_INT size)
1424 {
1425 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1426 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1427 }
1428
1429 /* True if A's Ith bit is set. */
1430
1431 INLINE bool
1432 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1433 {
1434 eassume (0 <= i && i < bool_vector_size (a));
1435 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1436 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1437 }
1438
1439 INLINE Lisp_Object
1440 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1441 {
1442 return bool_vector_bitref (a, i) ? Qt : Qnil;
1443 }
1444
1445 /* Set A's Ith bit to B. */
1446
1447 INLINE void
1448 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1449 {
1450 unsigned char *addr;
1451
1452 eassume (0 <= i && i < bool_vector_size (a));
1453 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1454
1455 if (b)
1456 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1457 else
1458 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1459 }
1460
1461 /* Some handy constants for calculating sizes
1462 and offsets, mostly of vectorlike objects. */
1463
1464 enum
1465 {
1466 header_size = offsetof (struct Lisp_Vector, contents),
1467 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1468 word_size = sizeof (Lisp_Object)
1469 };
1470
1471 /* Conveniences for dealing with Lisp arrays. */
1472
1473 INLINE Lisp_Object
1474 AREF (Lisp_Object array, ptrdiff_t idx)
1475 {
1476 return XVECTOR (array)->contents[idx];
1477 }
1478
1479 INLINE Lisp_Object *
1480 aref_addr (Lisp_Object array, ptrdiff_t idx)
1481 {
1482 return & XVECTOR (array)->contents[idx];
1483 }
1484
1485 INLINE ptrdiff_t
1486 ASIZE (Lisp_Object array)
1487 {
1488 return XVECTOR (array)->header.size;
1489 }
1490
1491 INLINE void
1492 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1493 {
1494 eassert (0 <= idx && idx < ASIZE (array));
1495 XVECTOR (array)->contents[idx] = val;
1496 }
1497
1498 INLINE void
1499 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1500 {
1501 /* Like ASET, but also can be used in the garbage collector:
1502 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1503 eassert (0 <= idx && idx < (ASIZE (array) & ~ARRAY_MARK_FLAG));
1504 XVECTOR (array)->contents[idx] = val;
1505 }
1506
1507 /* True, since Qnil's representation is zero. Every place in the code
1508 that assumes Qnil is zero should verify (NIL_IS_ZERO), to make it easy
1509 to find such assumptions later if we change Qnil to be nonzero. */
1510 enum { NIL_IS_ZERO = XLI_BUILTIN_LISPSYM (iQnil) == 0 };
1511
1512 /* Clear the object addressed by P, with size NBYTES, so that all its
1513 bytes are zero and all its Lisp values are nil. */
1514 INLINE void
1515 memclear (void *p, ptrdiff_t nbytes)
1516 {
1517 eassert (0 <= nbytes);
1518 verify (NIL_IS_ZERO);
1519 /* Since Qnil is zero, memset suffices. */
1520 memset (p, 0, nbytes);
1521 }
1522
1523 /* If a struct is made to look like a vector, this macro returns the length
1524 of the shortest vector that would hold that struct. */
1525
1526 #define VECSIZE(type) \
1527 ((sizeof (type) - header_size + word_size - 1) / word_size)
1528
1529 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1530 at the end and we need to compute the number of Lisp_Object fields (the
1531 ones that the GC needs to trace). */
1532
1533 #define PSEUDOVECSIZE(type, nonlispfield) \
1534 ((offsetof (type, nonlispfield) - header_size) / word_size)
1535
1536 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1537 should be integer expressions. This is not the same as
1538 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1539 returns true. For efficiency, prefer plain unsigned comparison if A
1540 and B's sizes both fit (after integer promotion). */
1541 #define UNSIGNED_CMP(a, op, b) \
1542 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1543 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1544 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1545
1546 /* True iff C is an ASCII character. */
1547 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1548
1549 /* A char-table is a kind of vectorlike, with contents are like a
1550 vector but with a few other slots. For some purposes, it makes
1551 sense to handle a char-table with type struct Lisp_Vector. An
1552 element of a char table can be any Lisp objects, but if it is a sub
1553 char-table, we treat it a table that contains information of a
1554 specific range of characters. A sub char-table is like a vector but
1555 with two integer fields between the header and Lisp data, which means
1556 that it has to be marked with some precautions (see mark_char_table
1557 in alloc.c). A sub char-table appears only in an element of a char-table,
1558 and there's no way to access it directly from Emacs Lisp program. */
1559
1560 enum CHARTAB_SIZE_BITS
1561 {
1562 CHARTAB_SIZE_BITS_0 = 6,
1563 CHARTAB_SIZE_BITS_1 = 4,
1564 CHARTAB_SIZE_BITS_2 = 5,
1565 CHARTAB_SIZE_BITS_3 = 7
1566 };
1567
1568 extern const int chartab_size[4];
1569
1570 struct Lisp_Char_Table
1571 {
1572 /* HEADER.SIZE is the vector's size field, which also holds the
1573 pseudovector type information. It holds the size, too.
1574 The size counts the defalt, parent, purpose, ascii,
1575 contents, and extras slots. */
1576 struct vectorlike_header header;
1577
1578 /* This holds a default value,
1579 which is used whenever the value for a specific character is nil. */
1580 Lisp_Object defalt;
1581
1582 /* This points to another char table, which we inherit from when the
1583 value for a specific character is nil. The `defalt' slot takes
1584 precedence over this. */
1585 Lisp_Object parent;
1586
1587 /* This is a symbol which says what kind of use this char-table is
1588 meant for. */
1589 Lisp_Object purpose;
1590
1591 /* The bottom sub char-table for characters of the range 0..127. It
1592 is nil if none of ASCII character has a specific value. */
1593 Lisp_Object ascii;
1594
1595 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1596
1597 /* These hold additional data. It is a vector. */
1598 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1599 };
1600
1601 struct Lisp_Sub_Char_Table
1602 {
1603 /* HEADER.SIZE is the vector's size field, which also holds the
1604 pseudovector type information. It holds the size, too. */
1605 struct vectorlike_header header;
1606
1607 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1608 char-table of depth 1 contains 16 elements, and each element
1609 covers 4096 (128*32) characters. A sub char-table of depth 2
1610 contains 32 elements, and each element covers 128 characters. A
1611 sub char-table of depth 3 contains 128 elements, and each element
1612 is for one character. */
1613 int depth;
1614
1615 /* Minimum character covered by the sub char-table. */
1616 int min_char;
1617
1618 /* Use set_sub_char_table_contents to set this. */
1619 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1620 };
1621
1622 INLINE Lisp_Object
1623 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1624 {
1625 struct Lisp_Char_Table *tbl = NULL;
1626 Lisp_Object val;
1627 do
1628 {
1629 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1630 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1631 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1632 if (NILP (val))
1633 val = tbl->defalt;
1634 }
1635 while (NILP (val) && ! NILP (tbl->parent));
1636
1637 return val;
1638 }
1639
1640 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1641 characters. Do not check validity of CT. */
1642 INLINE Lisp_Object
1643 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1644 {
1645 return (ASCII_CHAR_P (idx)
1646 ? CHAR_TABLE_REF_ASCII (ct, idx)
1647 : char_table_ref (ct, idx));
1648 }
1649
1650 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1651 8-bit European characters. Do not check validity of CT. */
1652 INLINE void
1653 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1654 {
1655 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1656 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1657 else
1658 char_table_set (ct, idx, val);
1659 }
1660
1661 /* This structure describes a built-in function.
1662 It is generated by the DEFUN macro only.
1663 defsubr makes it into a Lisp object. */
1664
1665 struct Lisp_Subr
1666 {
1667 struct vectorlike_header header;
1668 union {
1669 Lisp_Object (*a0) (void);
1670 Lisp_Object (*a1) (Lisp_Object);
1671 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1672 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1673 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1674 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1675 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1676 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1677 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1678 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1679 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1680 } function;
1681 short min_args, max_args;
1682 const char *symbol_name;
1683 const char *intspec;
1684 const char *doc;
1685 };
1686
1687 enum char_table_specials
1688 {
1689 /* This is the number of slots that every char table must have. This
1690 counts the ordinary slots and the top, defalt, parent, and purpose
1691 slots. */
1692 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1693
1694 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1695 when the latter is treated as an ordinary Lisp_Vector. */
1696 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1697 };
1698
1699 /* Return the number of "extra" slots in the char table CT. */
1700
1701 INLINE int
1702 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1703 {
1704 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1705 - CHAR_TABLE_STANDARD_SLOTS);
1706 }
1707
1708 /* Make sure that sub char-table contents slot is where we think it is. */
1709 verify (offsetof (struct Lisp_Sub_Char_Table, contents)
1710 == offsetof (struct Lisp_Vector, contents[SUB_CHAR_TABLE_OFFSET]));
1711
1712 /***********************************************************************
1713 Symbols
1714 ***********************************************************************/
1715
1716 /* Value is name of symbol. */
1717
1718 LISP_MACRO_DEFUN (SYMBOL_VAL, Lisp_Object, (struct Lisp_Symbol *sym), (sym));
1719
1720 INLINE struct Lisp_Symbol *
1721 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1722 {
1723 eassert (sym->redirect == SYMBOL_VARALIAS);
1724 return sym->val.alias;
1725 }
1726 INLINE struct Lisp_Buffer_Local_Value *
1727 SYMBOL_BLV (struct Lisp_Symbol *sym)
1728 {
1729 eassert (sym->redirect == SYMBOL_LOCALIZED);
1730 return sym->val.blv;
1731 }
1732 INLINE union Lisp_Fwd *
1733 SYMBOL_FWD (struct Lisp_Symbol *sym)
1734 {
1735 eassert (sym->redirect == SYMBOL_FORWARDED);
1736 return sym->val.fwd;
1737 }
1738
1739 LISP_MACRO_DEFUN_VOID (SET_SYMBOL_VAL,
1740 (struct Lisp_Symbol *sym, Lisp_Object v), (sym, v));
1741
1742 INLINE void
1743 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1744 {
1745 eassert (sym->redirect == SYMBOL_VARALIAS);
1746 sym->val.alias = v;
1747 }
1748 INLINE void
1749 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1750 {
1751 eassert (sym->redirect == SYMBOL_LOCALIZED);
1752 sym->val.blv = v;
1753 }
1754 INLINE void
1755 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1756 {
1757 eassert (sym->redirect == SYMBOL_FORWARDED);
1758 sym->val.fwd = v;
1759 }
1760
1761 INLINE Lisp_Object
1762 SYMBOL_NAME (Lisp_Object sym)
1763 {
1764 return XSYMBOL (sym)->name;
1765 }
1766
1767 /* Value is true if SYM is an interned symbol. */
1768
1769 INLINE bool
1770 SYMBOL_INTERNED_P (Lisp_Object sym)
1771 {
1772 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1773 }
1774
1775 /* Value is true if SYM is interned in initial_obarray. */
1776
1777 INLINE bool
1778 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1779 {
1780 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1781 }
1782
1783 /* Value is non-zero if symbol is considered a constant, i.e. its
1784 value cannot be changed (there is an exception for keyword symbols,
1785 whose value can be set to the keyword symbol itself). */
1786
1787 LISP_MACRO_DEFUN (SYMBOL_CONSTANT_P, int, (Lisp_Object sym), (sym));
1788
1789 /* Placeholder for make-docfile to process. The actual symbol
1790 definition is done by lread.c's defsym. */
1791 #define DEFSYM(sym, name) /* empty */
1792
1793 \f
1794 /***********************************************************************
1795 Hash Tables
1796 ***********************************************************************/
1797
1798 /* The structure of a Lisp hash table. */
1799
1800 struct hash_table_test
1801 {
1802 /* Name of the function used to compare keys. */
1803 Lisp_Object name;
1804
1805 /* User-supplied hash function, or nil. */
1806 Lisp_Object user_hash_function;
1807
1808 /* User-supplied key comparison function, or nil. */
1809 Lisp_Object user_cmp_function;
1810
1811 /* C function to compare two keys. */
1812 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1813
1814 /* C function to compute hash code. */
1815 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1816 };
1817
1818 struct Lisp_Hash_Table
1819 {
1820 /* This is for Lisp; the hash table code does not refer to it. */
1821 struct vectorlike_header header;
1822
1823 /* Nil if table is non-weak. Otherwise a symbol describing the
1824 weakness of the table. */
1825 Lisp_Object weak;
1826
1827 /* When the table is resized, and this is an integer, compute the
1828 new size by adding this to the old size. If a float, compute the
1829 new size by multiplying the old size with this factor. */
1830 Lisp_Object rehash_size;
1831
1832 /* Resize hash table when number of entries/ table size is >= this
1833 ratio, a float. */
1834 Lisp_Object rehash_threshold;
1835
1836 /* Vector of hash codes. If hash[I] is nil, this means that the
1837 I-th entry is unused. */
1838 Lisp_Object hash;
1839
1840 /* Vector used to chain entries. If entry I is free, next[I] is the
1841 entry number of the next free item. If entry I is non-free,
1842 next[I] is the index of the next entry in the collision chain. */
1843 Lisp_Object next;
1844
1845 /* Index of first free entry in free list. */
1846 Lisp_Object next_free;
1847
1848 /* Bucket vector. A non-nil entry is the index of the first item in
1849 a collision chain. This vector's size can be larger than the
1850 hash table size to reduce collisions. */
1851 Lisp_Object index;
1852
1853 /* Only the fields above are traced normally by the GC. The ones below
1854 `count' are special and are either ignored by the GC or traced in
1855 a special way (e.g. because of weakness). */
1856
1857 /* Number of key/value entries in the table. */
1858 ptrdiff_t count;
1859
1860 /* Vector of keys and values. The key of item I is found at index
1861 2 * I, the value is found at index 2 * I + 1.
1862 This is gc_marked specially if the table is weak. */
1863 Lisp_Object key_and_value;
1864
1865 /* The comparison and hash functions. */
1866 struct hash_table_test test;
1867
1868 /* Next weak hash table if this is a weak hash table. The head
1869 of the list is in weak_hash_tables. */
1870 struct Lisp_Hash_Table *next_weak;
1871 };
1872
1873
1874 INLINE struct Lisp_Hash_Table *
1875 XHASH_TABLE (Lisp_Object a)
1876 {
1877 return XUNTAG (a, Lisp_Vectorlike);
1878 }
1879
1880 #define XSET_HASH_TABLE(VAR, PTR) \
1881 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1882
1883 INLINE bool
1884 HASH_TABLE_P (Lisp_Object a)
1885 {
1886 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1887 }
1888
1889 /* Value is the key part of entry IDX in hash table H. */
1890 INLINE Lisp_Object
1891 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1892 {
1893 return AREF (h->key_and_value, 2 * idx);
1894 }
1895
1896 /* Value is the value part of entry IDX in hash table H. */
1897 INLINE Lisp_Object
1898 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1899 {
1900 return AREF (h->key_and_value, 2 * idx + 1);
1901 }
1902
1903 /* Value is the index of the next entry following the one at IDX
1904 in hash table H. */
1905 INLINE Lisp_Object
1906 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1907 {
1908 return AREF (h->next, idx);
1909 }
1910
1911 /* Value is the hash code computed for entry IDX in hash table H. */
1912 INLINE Lisp_Object
1913 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1914 {
1915 return AREF (h->hash, idx);
1916 }
1917
1918 /* Value is the index of the element in hash table H that is the
1919 start of the collision list at index IDX in the index vector of H. */
1920 INLINE Lisp_Object
1921 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1922 {
1923 return AREF (h->index, idx);
1924 }
1925
1926 /* Value is the size of hash table H. */
1927 INLINE ptrdiff_t
1928 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
1929 {
1930 return ASIZE (h->next);
1931 }
1932
1933 /* Default size for hash tables if not specified. */
1934
1935 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
1936
1937 /* Default threshold specifying when to resize a hash table. The
1938 value gives the ratio of current entries in the hash table and the
1939 size of the hash table. */
1940
1941 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
1942
1943 /* Default factor by which to increase the size of a hash table. */
1944
1945 static double const DEFAULT_REHASH_SIZE = 1.5;
1946
1947 /* Combine two integers X and Y for hashing. The result might not fit
1948 into a Lisp integer. */
1949
1950 INLINE EMACS_UINT
1951 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
1952 {
1953 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
1954 }
1955
1956 /* Hash X, returning a value that fits into a fixnum. */
1957
1958 INLINE EMACS_UINT
1959 SXHASH_REDUCE (EMACS_UINT x)
1960 {
1961 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
1962 }
1963
1964 /* These structures are used for various misc types. */
1965
1966 struct Lisp_Misc_Any /* Supertype of all Misc types. */
1967 {
1968 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
1969 bool_bf gcmarkbit : 1;
1970 unsigned spacer : 15;
1971 };
1972
1973 struct Lisp_Marker
1974 {
1975 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
1976 bool_bf gcmarkbit : 1;
1977 unsigned spacer : 13;
1978 /* This flag is temporarily used in the functions
1979 decode/encode_coding_object to record that the marker position
1980 must be adjusted after the conversion. */
1981 bool_bf need_adjustment : 1;
1982 /* True means normal insertion at the marker's position
1983 leaves the marker after the inserted text. */
1984 bool_bf insertion_type : 1;
1985 /* This is the buffer that the marker points into, or 0 if it points nowhere.
1986 Note: a chain of markers can contain markers pointing into different
1987 buffers (the chain is per buffer_text rather than per buffer, so it's
1988 shared between indirect buffers). */
1989 /* This is used for (other than NULL-checking):
1990 - Fmarker_buffer
1991 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
1992 - unchain_marker: to find the list from which to unchain.
1993 - Fkill_buffer: to only unchain the markers of current indirect buffer.
1994 */
1995 struct buffer *buffer;
1996
1997 /* The remaining fields are meaningless in a marker that
1998 does not point anywhere. */
1999
2000 /* For markers that point somewhere,
2001 this is used to chain of all the markers in a given buffer. */
2002 /* We could remove it and use an array in buffer_text instead.
2003 That would also allow to preserve it ordered. */
2004 struct Lisp_Marker *next;
2005 /* This is the char position where the marker points. */
2006 ptrdiff_t charpos;
2007 /* This is the byte position.
2008 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
2009 used to implement the functionality of markers, but rather to (ab)use
2010 markers as a cache for char<->byte mappings). */
2011 ptrdiff_t bytepos;
2012 };
2013
2014 /* START and END are markers in the overlay's buffer, and
2015 PLIST is the overlay's property list. */
2016 struct Lisp_Overlay
2017 /* An overlay's real data content is:
2018 - plist
2019 - buffer (really there are two buffer pointers, one per marker,
2020 and both points to the same buffer)
2021 - insertion type of both ends (per-marker fields)
2022 - start & start byte (of start marker)
2023 - end & end byte (of end marker)
2024 - next (singly linked list of overlays)
2025 - next fields of start and end markers (singly linked list of markers).
2026 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
2027 */
2028 {
2029 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
2030 bool_bf gcmarkbit : 1;
2031 unsigned spacer : 15;
2032 struct Lisp_Overlay *next;
2033 Lisp_Object start;
2034 Lisp_Object end;
2035 Lisp_Object plist;
2036 };
2037
2038 /* Types of data which may be saved in a Lisp_Save_Value. */
2039
2040 enum
2041 {
2042 SAVE_UNUSED,
2043 SAVE_INTEGER,
2044 SAVE_FUNCPOINTER,
2045 SAVE_POINTER,
2046 SAVE_OBJECT
2047 };
2048
2049 /* Number of bits needed to store one of the above values. */
2050 enum { SAVE_SLOT_BITS = 3 };
2051
2052 /* Number of slots in a save value where save_type is nonzero. */
2053 enum { SAVE_VALUE_SLOTS = 4 };
2054
2055 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
2056
2057 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
2058
2059 enum Lisp_Save_Type
2060 {
2061 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2062 SAVE_TYPE_INT_INT_INT
2063 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
2064 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
2065 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
2066 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
2067 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
2068 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2069 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
2070 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
2071 SAVE_TYPE_FUNCPTR_PTR_OBJ
2072 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
2073
2074 /* This has an extra bit indicating it's raw memory. */
2075 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
2076 };
2077
2078 /* Special object used to hold a different values for later use.
2079
2080 This is mostly used to package C integers and pointers to call
2081 record_unwind_protect when two or more values need to be saved.
2082 For example:
2083
2084 ...
2085 struct my_data *md = get_my_data ();
2086 ptrdiff_t mi = get_my_integer ();
2087 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2088 ...
2089
2090 Lisp_Object my_unwind (Lisp_Object arg)
2091 {
2092 struct my_data *md = XSAVE_POINTER (arg, 0);
2093 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2094 ...
2095 }
2096
2097 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2098 saved objects and raise eassert if type of the saved object doesn't match
2099 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2100 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2101 slot 0 is a pointer. */
2102
2103 typedef void (*voidfuncptr) (void);
2104
2105 struct Lisp_Save_Value
2106 {
2107 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2108 bool_bf gcmarkbit : 1;
2109 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2110
2111 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2112 V's data entries are determined by V->save_type. E.g., if
2113 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2114 V->data[1] is an integer, and V's other data entries are unused.
2115
2116 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2117 a memory area containing V->data[1].integer potential Lisp_Objects. */
2118 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2119 union {
2120 void *pointer;
2121 voidfuncptr funcpointer;
2122 ptrdiff_t integer;
2123 Lisp_Object object;
2124 } data[SAVE_VALUE_SLOTS];
2125 };
2126
2127 /* Return the type of V's Nth saved value. */
2128 INLINE int
2129 save_type (struct Lisp_Save_Value *v, int n)
2130 {
2131 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2132 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2133 }
2134
2135 /* Get and set the Nth saved pointer. */
2136
2137 INLINE void *
2138 XSAVE_POINTER (Lisp_Object obj, int n)
2139 {
2140 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2141 return XSAVE_VALUE (obj)->data[n].pointer;
2142 }
2143 INLINE void
2144 set_save_pointer (Lisp_Object obj, int n, void *val)
2145 {
2146 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2147 XSAVE_VALUE (obj)->data[n].pointer = val;
2148 }
2149 INLINE voidfuncptr
2150 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2151 {
2152 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2153 return XSAVE_VALUE (obj)->data[n].funcpointer;
2154 }
2155
2156 /* Likewise for the saved integer. */
2157
2158 INLINE ptrdiff_t
2159 XSAVE_INTEGER (Lisp_Object obj, int n)
2160 {
2161 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2162 return XSAVE_VALUE (obj)->data[n].integer;
2163 }
2164 INLINE void
2165 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2166 {
2167 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2168 XSAVE_VALUE (obj)->data[n].integer = val;
2169 }
2170
2171 /* Extract Nth saved object. */
2172
2173 INLINE Lisp_Object
2174 XSAVE_OBJECT (Lisp_Object obj, int n)
2175 {
2176 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2177 return XSAVE_VALUE (obj)->data[n].object;
2178 }
2179
2180 /* A finalizer sentinel. */
2181 struct Lisp_Finalizer
2182 {
2183 struct Lisp_Misc_Any base;
2184
2185 /* Circular list of all active weak references. */
2186 struct Lisp_Finalizer *prev;
2187 struct Lisp_Finalizer *next;
2188
2189 /* Call FUNCTION when the finalizer becomes unreachable, even if
2190 FUNCTION contains a reference to the finalizer; i.e., call
2191 FUNCTION when it is reachable _only_ through finalizers. */
2192 Lisp_Object function;
2193 };
2194
2195 /* A miscellaneous object, when it's on the free list. */
2196 struct Lisp_Free
2197 {
2198 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2199 bool_bf gcmarkbit : 1;
2200 unsigned spacer : 15;
2201 union Lisp_Misc *chain;
2202 };
2203
2204 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2205 It uses one of these struct subtypes to get the type field. */
2206
2207 union Lisp_Misc
2208 {
2209 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2210 struct Lisp_Free u_free;
2211 struct Lisp_Marker u_marker;
2212 struct Lisp_Overlay u_overlay;
2213 struct Lisp_Save_Value u_save_value;
2214 struct Lisp_Finalizer u_finalizer;
2215 };
2216
2217 INLINE union Lisp_Misc *
2218 XMISC (Lisp_Object a)
2219 {
2220 return XUNTAG (a, Lisp_Misc);
2221 }
2222
2223 INLINE struct Lisp_Misc_Any *
2224 XMISCANY (Lisp_Object a)
2225 {
2226 eassert (MISCP (a));
2227 return & XMISC (a)->u_any;
2228 }
2229
2230 INLINE enum Lisp_Misc_Type
2231 XMISCTYPE (Lisp_Object a)
2232 {
2233 return XMISCANY (a)->type;
2234 }
2235
2236 INLINE struct Lisp_Marker *
2237 XMARKER (Lisp_Object a)
2238 {
2239 eassert (MARKERP (a));
2240 return & XMISC (a)->u_marker;
2241 }
2242
2243 INLINE struct Lisp_Overlay *
2244 XOVERLAY (Lisp_Object a)
2245 {
2246 eassert (OVERLAYP (a));
2247 return & XMISC (a)->u_overlay;
2248 }
2249
2250 INLINE struct Lisp_Save_Value *
2251 XSAVE_VALUE (Lisp_Object a)
2252 {
2253 eassert (SAVE_VALUEP (a));
2254 return & XMISC (a)->u_save_value;
2255 }
2256
2257 INLINE struct Lisp_Finalizer *
2258 XFINALIZER (Lisp_Object a)
2259 {
2260 eassert (FINALIZERP (a));
2261 return & XMISC (a)->u_finalizer;
2262 }
2263
2264 \f
2265 /* Forwarding pointer to an int variable.
2266 This is allowed only in the value cell of a symbol,
2267 and it means that the symbol's value really lives in the
2268 specified int variable. */
2269 struct Lisp_Intfwd
2270 {
2271 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2272 EMACS_INT *intvar;
2273 };
2274
2275 /* Boolean forwarding pointer to an int variable.
2276 This is like Lisp_Intfwd except that the ostensible
2277 "value" of the symbol is t if the bool variable is true,
2278 nil if it is false. */
2279 struct Lisp_Boolfwd
2280 {
2281 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2282 bool *boolvar;
2283 };
2284
2285 /* Forwarding pointer to a Lisp_Object variable.
2286 This is allowed only in the value cell of a symbol,
2287 and it means that the symbol's value really lives in the
2288 specified variable. */
2289 struct Lisp_Objfwd
2290 {
2291 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2292 Lisp_Object *objvar;
2293 };
2294
2295 /* Like Lisp_Objfwd except that value lives in a slot in the
2296 current buffer. Value is byte index of slot within buffer. */
2297 struct Lisp_Buffer_Objfwd
2298 {
2299 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2300 int offset;
2301 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2302 Lisp_Object predicate;
2303 };
2304
2305 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2306 the symbol has buffer-local or frame-local bindings. (Exception:
2307 some buffer-local variables are built-in, with their values stored
2308 in the buffer structure itself. They are handled differently,
2309 using struct Lisp_Buffer_Objfwd.)
2310
2311 The `realvalue' slot holds the variable's current value, or a
2312 forwarding pointer to where that value is kept. This value is the
2313 one that corresponds to the loaded binding. To read or set the
2314 variable, you must first make sure the right binding is loaded;
2315 then you can access the value in (or through) `realvalue'.
2316
2317 `buffer' and `frame' are the buffer and frame for which the loaded
2318 binding was found. If those have changed, to make sure the right
2319 binding is loaded it is necessary to find which binding goes with
2320 the current buffer and selected frame, then load it. To load it,
2321 first unload the previous binding, then copy the value of the new
2322 binding into `realvalue' (or through it). Also update
2323 LOADED-BINDING to point to the newly loaded binding.
2324
2325 `local_if_set' indicates that merely setting the variable creates a
2326 local binding for the current buffer. Otherwise the latter, setting
2327 the variable does not do that; only make-local-variable does that. */
2328
2329 struct Lisp_Buffer_Local_Value
2330 {
2331 /* True means that merely setting the variable creates a local
2332 binding for the current buffer. */
2333 bool_bf local_if_set : 1;
2334 /* True means this variable can have frame-local bindings, otherwise, it is
2335 can have buffer-local bindings. The two cannot be combined. */
2336 bool_bf frame_local : 1;
2337 /* True means that the binding now loaded was found.
2338 Presumably equivalent to (defcell!=valcell). */
2339 bool_bf found : 1;
2340 /* If non-NULL, a forwarding to the C var where it should also be set. */
2341 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2342 /* The buffer or frame for which the loaded binding was found. */
2343 Lisp_Object where;
2344 /* A cons cell that holds the default value. It has the form
2345 (SYMBOL . DEFAULT-VALUE). */
2346 Lisp_Object defcell;
2347 /* The cons cell from `where's parameter alist.
2348 It always has the form (SYMBOL . VALUE)
2349 Note that if `forward' is non-nil, VALUE may be out of date.
2350 Also if the currently loaded binding is the default binding, then
2351 this is `eq'ual to defcell. */
2352 Lisp_Object valcell;
2353 };
2354
2355 /* Like Lisp_Objfwd except that value lives in a slot in the
2356 current kboard. */
2357 struct Lisp_Kboard_Objfwd
2358 {
2359 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2360 int offset;
2361 };
2362
2363 union Lisp_Fwd
2364 {
2365 struct Lisp_Intfwd u_intfwd;
2366 struct Lisp_Boolfwd u_boolfwd;
2367 struct Lisp_Objfwd u_objfwd;
2368 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2369 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2370 };
2371
2372 INLINE enum Lisp_Fwd_Type
2373 XFWDTYPE (union Lisp_Fwd *a)
2374 {
2375 return a->u_intfwd.type;
2376 }
2377
2378 INLINE struct Lisp_Buffer_Objfwd *
2379 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2380 {
2381 eassert (BUFFER_OBJFWDP (a));
2382 return &a->u_buffer_objfwd;
2383 }
2384 \f
2385 /* Lisp floating point type. */
2386 struct Lisp_Float
2387 {
2388 union
2389 {
2390 double data;
2391 struct Lisp_Float *chain;
2392 } u;
2393 };
2394
2395 INLINE double
2396 XFLOAT_DATA (Lisp_Object f)
2397 {
2398 return XFLOAT (f)->u.data;
2399 }
2400
2401 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2402 representations, have infinities and NaNs, and do not trap on
2403 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2404 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2405 wanted here, but is not quite right because Emacs does not require
2406 all the features of C11 Annex F (and does not require C11 at all,
2407 for that matter). */
2408 enum
2409 {
2410 IEEE_FLOATING_POINT
2411 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2412 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2413 };
2414
2415 /* A character, declared with the following typedef, is a member
2416 of some character set associated with the current buffer. */
2417 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2418 #define _UCHAR_T
2419 typedef unsigned char UCHAR;
2420 #endif
2421
2422 /* Meanings of slots in a Lisp_Compiled: */
2423
2424 enum Lisp_Compiled
2425 {
2426 COMPILED_ARGLIST = 0,
2427 COMPILED_BYTECODE = 1,
2428 COMPILED_CONSTANTS = 2,
2429 COMPILED_STACK_DEPTH = 3,
2430 COMPILED_DOC_STRING = 4,
2431 COMPILED_INTERACTIVE = 5
2432 };
2433
2434 /* Flag bits in a character. These also get used in termhooks.h.
2435 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2436 (MUlti-Lingual Emacs) might need 22 bits for the character value
2437 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2438 enum char_bits
2439 {
2440 CHAR_ALT = 0x0400000,
2441 CHAR_SUPER = 0x0800000,
2442 CHAR_HYPER = 0x1000000,
2443 CHAR_SHIFT = 0x2000000,
2444 CHAR_CTL = 0x4000000,
2445 CHAR_META = 0x8000000,
2446
2447 CHAR_MODIFIER_MASK =
2448 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2449
2450 /* Actually, the current Emacs uses 22 bits for the character value
2451 itself. */
2452 CHARACTERBITS = 22
2453 };
2454 \f
2455 /* Data type checking. */
2456
2457 LISP_MACRO_DEFUN (NILP, bool, (Lisp_Object x), (x));
2458
2459 INLINE bool
2460 NUMBERP (Lisp_Object x)
2461 {
2462 return INTEGERP (x) || FLOATP (x);
2463 }
2464 INLINE bool
2465 NATNUMP (Lisp_Object x)
2466 {
2467 return INTEGERP (x) && 0 <= XINT (x);
2468 }
2469
2470 INLINE bool
2471 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2472 {
2473 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2474 }
2475
2476 #define TYPE_RANGED_INTEGERP(type, x) \
2477 (INTEGERP (x) \
2478 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2479 && XINT (x) <= TYPE_MAXIMUM (type))
2480
2481 LISP_MACRO_DEFUN (CONSP, bool, (Lisp_Object x), (x));
2482 LISP_MACRO_DEFUN (FLOATP, bool, (Lisp_Object x), (x));
2483 LISP_MACRO_DEFUN (MISCP, bool, (Lisp_Object x), (x));
2484 LISP_MACRO_DEFUN (SYMBOLP, bool, (Lisp_Object x), (x));
2485 LISP_MACRO_DEFUN (INTEGERP, bool, (Lisp_Object x), (x));
2486 LISP_MACRO_DEFUN (VECTORLIKEP, bool, (Lisp_Object x), (x));
2487 LISP_MACRO_DEFUN (MARKERP, bool, (Lisp_Object x), (x));
2488
2489 INLINE bool
2490 STRINGP (Lisp_Object x)
2491 {
2492 return XTYPE (x) == Lisp_String;
2493 }
2494 INLINE bool
2495 VECTORP (Lisp_Object x)
2496 {
2497 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2498 }
2499 INLINE bool
2500 OVERLAYP (Lisp_Object x)
2501 {
2502 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2503 }
2504 INLINE bool
2505 SAVE_VALUEP (Lisp_Object x)
2506 {
2507 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2508 }
2509
2510 INLINE bool
2511 FINALIZERP (Lisp_Object x)
2512 {
2513 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Finalizer;
2514 }
2515
2516 INLINE bool
2517 AUTOLOADP (Lisp_Object x)
2518 {
2519 return CONSP (x) && EQ (Qautoload, XCAR (x));
2520 }
2521
2522 INLINE bool
2523 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2524 {
2525 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2526 }
2527
2528 INLINE bool
2529 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2530 {
2531 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2532 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2533 }
2534
2535 /* True if A is a pseudovector whose code is CODE. */
2536 INLINE bool
2537 PSEUDOVECTORP (Lisp_Object a, int code)
2538 {
2539 if (! VECTORLIKEP (a))
2540 return false;
2541 else
2542 {
2543 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2544 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2545 return PSEUDOVECTOR_TYPEP (h, code);
2546 }
2547 }
2548
2549
2550 /* Test for specific pseudovector types. */
2551
2552 INLINE bool
2553 WINDOW_CONFIGURATIONP (Lisp_Object a)
2554 {
2555 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2556 }
2557
2558 INLINE bool
2559 PROCESSP (Lisp_Object a)
2560 {
2561 return PSEUDOVECTORP (a, PVEC_PROCESS);
2562 }
2563
2564 INLINE bool
2565 WINDOWP (Lisp_Object a)
2566 {
2567 return PSEUDOVECTORP (a, PVEC_WINDOW);
2568 }
2569
2570 INLINE bool
2571 TERMINALP (Lisp_Object a)
2572 {
2573 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2574 }
2575
2576 INLINE bool
2577 SUBRP (Lisp_Object a)
2578 {
2579 return PSEUDOVECTORP (a, PVEC_SUBR);
2580 }
2581
2582 INLINE bool
2583 COMPILEDP (Lisp_Object a)
2584 {
2585 return PSEUDOVECTORP (a, PVEC_COMPILED);
2586 }
2587
2588 INLINE bool
2589 BUFFERP (Lisp_Object a)
2590 {
2591 return PSEUDOVECTORP (a, PVEC_BUFFER);
2592 }
2593
2594 INLINE bool
2595 CHAR_TABLE_P (Lisp_Object a)
2596 {
2597 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2598 }
2599
2600 INLINE bool
2601 SUB_CHAR_TABLE_P (Lisp_Object a)
2602 {
2603 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2604 }
2605
2606 INLINE bool
2607 BOOL_VECTOR_P (Lisp_Object a)
2608 {
2609 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2610 }
2611
2612 INLINE bool
2613 FRAMEP (Lisp_Object a)
2614 {
2615 return PSEUDOVECTORP (a, PVEC_FRAME);
2616 }
2617
2618 /* Test for image (image . spec) */
2619 INLINE bool
2620 IMAGEP (Lisp_Object x)
2621 {
2622 return CONSP (x) && EQ (XCAR (x), Qimage);
2623 }
2624
2625 /* Array types. */
2626 INLINE bool
2627 ARRAYP (Lisp_Object x)
2628 {
2629 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2630 }
2631 \f
2632 INLINE void
2633 CHECK_LIST (Lisp_Object x)
2634 {
2635 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2636 }
2637
2638 LISP_MACRO_DEFUN_VOID (CHECK_LIST_CONS, (Lisp_Object x, Lisp_Object y), (x, y));
2639 LISP_MACRO_DEFUN_VOID (CHECK_SYMBOL, (Lisp_Object x), (x));
2640 LISP_MACRO_DEFUN_VOID (CHECK_NUMBER, (Lisp_Object x), (x));
2641
2642 INLINE void
2643 CHECK_STRING (Lisp_Object x)
2644 {
2645 CHECK_TYPE (STRINGP (x), Qstringp, x);
2646 }
2647 INLINE void
2648 CHECK_STRING_CAR (Lisp_Object x)
2649 {
2650 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2651 }
2652 INLINE void
2653 CHECK_CONS (Lisp_Object x)
2654 {
2655 CHECK_TYPE (CONSP (x), Qconsp, x);
2656 }
2657 INLINE void
2658 CHECK_VECTOR (Lisp_Object x)
2659 {
2660 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2661 }
2662 INLINE void
2663 CHECK_BOOL_VECTOR (Lisp_Object x)
2664 {
2665 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2666 }
2667 /* This is a bit special because we always need size afterwards. */
2668 INLINE ptrdiff_t
2669 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2670 {
2671 if (VECTORP (x))
2672 return ASIZE (x);
2673 if (STRINGP (x))
2674 return SCHARS (x);
2675 wrong_type_argument (Qarrayp, x);
2676 }
2677 INLINE void
2678 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2679 {
2680 CHECK_TYPE (ARRAYP (x), predicate, x);
2681 }
2682 INLINE void
2683 CHECK_BUFFER (Lisp_Object x)
2684 {
2685 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2686 }
2687 INLINE void
2688 CHECK_WINDOW (Lisp_Object x)
2689 {
2690 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2691 }
2692 #ifdef subprocesses
2693 INLINE void
2694 CHECK_PROCESS (Lisp_Object x)
2695 {
2696 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2697 }
2698 #endif
2699 INLINE void
2700 CHECK_NATNUM (Lisp_Object x)
2701 {
2702 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2703 }
2704
2705 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2706 do { \
2707 CHECK_NUMBER (x); \
2708 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2709 args_out_of_range_3 \
2710 (x, \
2711 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2712 ? MOST_NEGATIVE_FIXNUM \
2713 : (lo)), \
2714 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2715 } while (false)
2716 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2717 do { \
2718 if (TYPE_SIGNED (type)) \
2719 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2720 else \
2721 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2722 } while (false)
2723
2724 #define CHECK_NUMBER_COERCE_MARKER(x) \
2725 do { \
2726 if (MARKERP ((x))) \
2727 XSETFASTINT (x, marker_position (x)); \
2728 else \
2729 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2730 } while (false)
2731
2732 INLINE double
2733 XFLOATINT (Lisp_Object n)
2734 {
2735 return extract_float (n);
2736 }
2737
2738 INLINE void
2739 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2740 {
2741 CHECK_TYPE (NUMBERP (x), Qnumberp, x);
2742 }
2743
2744 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2745 do { \
2746 if (MARKERP (x)) \
2747 XSETFASTINT (x, marker_position (x)); \
2748 else \
2749 CHECK_TYPE (NUMBERP (x), Qnumber_or_marker_p, x); \
2750 } while (false)
2751
2752 /* Since we can't assign directly to the CAR or CDR fields of a cons
2753 cell, use these when checking that those fields contain numbers. */
2754 INLINE void
2755 CHECK_NUMBER_CAR (Lisp_Object x)
2756 {
2757 Lisp_Object tmp = XCAR (x);
2758 CHECK_NUMBER (tmp);
2759 XSETCAR (x, tmp);
2760 }
2761
2762 INLINE void
2763 CHECK_NUMBER_CDR (Lisp_Object x)
2764 {
2765 Lisp_Object tmp = XCDR (x);
2766 CHECK_NUMBER (tmp);
2767 XSETCDR (x, tmp);
2768 }
2769 \f
2770 /* Define a built-in function for calling from Lisp.
2771 `lname' should be the name to give the function in Lisp,
2772 as a null-terminated C string.
2773 `fnname' should be the name of the function in C.
2774 By convention, it starts with F.
2775 `sname' should be the name for the C constant structure
2776 that records information on this function for internal use.
2777 By convention, it should be the same as `fnname' but with S instead of F.
2778 It's too bad that C macros can't compute this from `fnname'.
2779 `minargs' should be a number, the minimum number of arguments allowed.
2780 `maxargs' should be a number, the maximum number of arguments allowed,
2781 or else MANY or UNEVALLED.
2782 MANY means pass a vector of evaluated arguments,
2783 in the form of an integer number-of-arguments
2784 followed by the address of a vector of Lisp_Objects
2785 which contains the argument values.
2786 UNEVALLED means pass the list of unevaluated arguments
2787 `intspec' says how interactive arguments are to be fetched.
2788 If the string starts with a `(', `intspec' is evaluated and the resulting
2789 list is the list of arguments.
2790 If it's a string that doesn't start with `(', the value should follow
2791 the one of the doc string for `interactive'.
2792 A null string means call interactively with no arguments.
2793 `doc' is documentation for the user. */
2794
2795 /* This version of DEFUN declares a function prototype with the right
2796 arguments, so we can catch errors with maxargs at compile-time. */
2797 #ifdef _MSC_VER
2798 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2799 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2800 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2801 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2802 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2803 { (Lisp_Object (__cdecl *)(void))fnname }, \
2804 minargs, maxargs, lname, intspec, 0}; \
2805 Lisp_Object fnname
2806 #else /* not _MSC_VER */
2807 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2808 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2809 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2810 { .a ## maxargs = fnname }, \
2811 minargs, maxargs, lname, intspec, 0}; \
2812 Lisp_Object fnname
2813 #endif
2814
2815 /* True if OBJ is a Lisp function. */
2816 INLINE bool
2817 FUNCTIONP (Lisp_Object obj)
2818 {
2819 return functionp (obj);
2820 }
2821
2822 /* defsubr (Sname);
2823 is how we define the symbol for function `name' at start-up time. */
2824 extern void defsubr (struct Lisp_Subr *);
2825
2826 enum maxargs
2827 {
2828 MANY = -2,
2829 UNEVALLED = -1
2830 };
2831
2832 /* Call a function F that accepts many args, passing it ARRAY's elements. */
2833 #define CALLMANY(f, array) (f) (ARRAYELTS (array), array)
2834
2835 /* Call a function F that accepts many args, passing it the remaining args,
2836 E.g., 'return CALLN (Fformat, fmt, text);' is less error-prone than
2837 '{ Lisp_Object a[2]; a[0] = fmt; a[1] = text; return Fformat (2, a); }'.
2838 CALLN is overkill for simple usages like 'Finsert (1, &text);'. */
2839 #define CALLN(f, ...) CALLMANY (f, ((Lisp_Object []) {__VA_ARGS__}))
2840
2841 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2842 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2843 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
2844 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
2845 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
2846
2847 /* Macros we use to define forwarded Lisp variables.
2848 These are used in the syms_of_FILENAME functions.
2849
2850 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
2851 lisp variable is actually a field in `struct emacs_globals'. The
2852 field's name begins with "f_", which is a convention enforced by
2853 these macros. Each such global has a corresponding #define in
2854 globals.h; the plain name should be used in the code.
2855
2856 E.g., the global "cons_cells_consed" is declared as "int
2857 f_cons_cells_consed" in globals.h, but there is a define:
2858
2859 #define cons_cells_consed globals.f_cons_cells_consed
2860
2861 All C code uses the `cons_cells_consed' name. This is all done
2862 this way to support indirection for multi-threaded Emacs. */
2863
2864 #define DEFVAR_LISP(lname, vname, doc) \
2865 do { \
2866 static struct Lisp_Objfwd o_fwd; \
2867 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
2868 } while (false)
2869 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
2870 do { \
2871 static struct Lisp_Objfwd o_fwd; \
2872 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
2873 } while (false)
2874 #define DEFVAR_BOOL(lname, vname, doc) \
2875 do { \
2876 static struct Lisp_Boolfwd b_fwd; \
2877 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
2878 } while (false)
2879 #define DEFVAR_INT(lname, vname, doc) \
2880 do { \
2881 static struct Lisp_Intfwd i_fwd; \
2882 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
2883 } while (false)
2884
2885 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
2886 do { \
2887 static struct Lisp_Objfwd o_fwd; \
2888 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
2889 } while (false)
2890
2891 #define DEFVAR_KBOARD(lname, vname, doc) \
2892 do { \
2893 static struct Lisp_Kboard_Objfwd ko_fwd; \
2894 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
2895 } while (false)
2896 \f
2897 /* Save and restore the instruction and environment pointers,
2898 without affecting the signal mask. */
2899
2900 #ifdef HAVE__SETJMP
2901 typedef jmp_buf sys_jmp_buf;
2902 # define sys_setjmp(j) _setjmp (j)
2903 # define sys_longjmp(j, v) _longjmp (j, v)
2904 #elif defined HAVE_SIGSETJMP
2905 typedef sigjmp_buf sys_jmp_buf;
2906 # define sys_setjmp(j) sigsetjmp (j, 0)
2907 # define sys_longjmp(j, v) siglongjmp (j, v)
2908 #else
2909 /* A platform that uses neither _longjmp nor siglongjmp; assume
2910 longjmp does not affect the sigmask. */
2911 typedef jmp_buf sys_jmp_buf;
2912 # define sys_setjmp(j) setjmp (j)
2913 # define sys_longjmp(j, v) longjmp (j, v)
2914 #endif
2915
2916 \f
2917 /* Elisp uses several stacks:
2918 - the C stack.
2919 - the bytecode stack: used internally by the bytecode interpreter.
2920 Allocated from the C stack.
2921 - The specpdl stack: keeps track of active unwind-protect and
2922 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
2923 managed stack.
2924 - The handler stack: keeps track of active catch tags and condition-case
2925 handlers. Allocated in a manually managed stack implemented by a
2926 doubly-linked list allocated via xmalloc and never freed. */
2927
2928 /* Structure for recording Lisp call stack for backtrace purposes. */
2929
2930 /* The special binding stack holds the outer values of variables while
2931 they are bound by a function application or a let form, stores the
2932 code to be executed for unwind-protect forms.
2933
2934 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
2935 used all over the place, needs to be fast, and needs to know the size of
2936 union specbinding. But only eval.c should access it. */
2937
2938 enum specbind_tag {
2939 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
2940 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
2941 SPECPDL_UNWIND_INT, /* Likewise, on int. */
2942 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
2943 SPECPDL_BACKTRACE, /* An element of the backtrace. */
2944 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
2945 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
2946 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
2947 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
2948 };
2949
2950 union specbinding
2951 {
2952 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2953 struct {
2954 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2955 void (*func) (Lisp_Object);
2956 Lisp_Object arg;
2957 } unwind;
2958 struct {
2959 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2960 void (*func) (void *);
2961 void *arg;
2962 } unwind_ptr;
2963 struct {
2964 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2965 void (*func) (int);
2966 int arg;
2967 } unwind_int;
2968 struct {
2969 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2970 void (*func) (void);
2971 } unwind_void;
2972 struct {
2973 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2974 /* `where' is not used in the case of SPECPDL_LET. */
2975 Lisp_Object symbol, old_value, where;
2976 } let;
2977 struct {
2978 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2979 bool_bf debug_on_exit : 1;
2980 Lisp_Object function;
2981 Lisp_Object *args;
2982 ptrdiff_t nargs;
2983 } bt;
2984 };
2985
2986 extern union specbinding *specpdl;
2987 extern union specbinding *specpdl_ptr;
2988 extern ptrdiff_t specpdl_size;
2989
2990 INLINE ptrdiff_t
2991 SPECPDL_INDEX (void)
2992 {
2993 return specpdl_ptr - specpdl;
2994 }
2995
2996 /* This structure helps implement the `catch/throw' and `condition-case/signal'
2997 control structures. A struct handler contains all the information needed to
2998 restore the state of the interpreter after a non-local jump.
2999
3000 handler structures are chained together in a doubly linked list; the `next'
3001 member points to the next outer catchtag and the `nextfree' member points in
3002 the other direction to the next inner element (which is typically the next
3003 free element since we mostly use it on the deepest handler).
3004
3005 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
3006 member is TAG, and then unbinds to it. The `val' member is used to
3007 hold VAL while the stack is unwound; `val' is returned as the value
3008 of the catch form.
3009
3010 All the other members are concerned with restoring the interpreter
3011 state.
3012
3013 Members are volatile if their values need to survive _longjmp when
3014 a 'struct handler' is a local variable. */
3015
3016 enum handlertype { CATCHER, CONDITION_CASE };
3017
3018 struct handler
3019 {
3020 enum handlertype type;
3021 Lisp_Object tag_or_ch;
3022 Lisp_Object val;
3023 struct handler *next;
3024 struct handler *nextfree;
3025
3026 /* The bytecode interpreter can have several handlers active at the same
3027 time, so when we longjmp to one of them, it needs to know which handler
3028 this was and what was the corresponding internal state. This is stored
3029 here, and when we longjmp we make sure that handlerlist points to the
3030 proper handler. */
3031 Lisp_Object *bytecode_top;
3032 int bytecode_dest;
3033
3034 /* Most global vars are reset to their value via the specpdl mechanism,
3035 but a few others are handled by storing their value here. */
3036 sys_jmp_buf jmp;
3037 EMACS_INT lisp_eval_depth;
3038 ptrdiff_t pdlcount;
3039 int poll_suppress_count;
3040 int interrupt_input_blocked;
3041 struct byte_stack *byte_stack;
3042 };
3043
3044 /* Fill in the components of c, and put it on the list. */
3045 #define PUSH_HANDLER(c, tag_ch_val, handlertype) \
3046 if (handlerlist->nextfree) \
3047 (c) = handlerlist->nextfree; \
3048 else \
3049 { \
3050 (c) = xmalloc (sizeof (struct handler)); \
3051 (c)->nextfree = NULL; \
3052 handlerlist->nextfree = (c); \
3053 } \
3054 (c)->type = (handlertype); \
3055 (c)->tag_or_ch = (tag_ch_val); \
3056 (c)->val = Qnil; \
3057 (c)->next = handlerlist; \
3058 (c)->lisp_eval_depth = lisp_eval_depth; \
3059 (c)->pdlcount = SPECPDL_INDEX (); \
3060 (c)->poll_suppress_count = poll_suppress_count; \
3061 (c)->interrupt_input_blocked = interrupt_input_blocked;\
3062 (c)->byte_stack = byte_stack_list; \
3063 handlerlist = (c);
3064
3065
3066 extern Lisp_Object memory_signal_data;
3067
3068 /* An address near the bottom of the stack.
3069 Tells GC how to save a copy of the stack. */
3070 extern char *stack_bottom;
3071
3072 /* Check quit-flag and quit if it is non-nil.
3073 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
3074 So the program needs to do QUIT at times when it is safe to quit.
3075 Every loop that might run for a long time or might not exit
3076 ought to do QUIT at least once, at a safe place.
3077 Unless that is impossible, of course.
3078 But it is very desirable to avoid creating loops where QUIT is impossible.
3079
3080 Exception: if you set immediate_quit to true,
3081 then the handler that responds to the C-g does the quit itself.
3082 This is a good thing to do around a loop that has no side effects
3083 and (in particular) cannot call arbitrary Lisp code.
3084
3085 If quit-flag is set to `kill-emacs' the SIGINT handler has received
3086 a request to exit Emacs when it is safe to do. */
3087
3088 extern void process_pending_signals (void);
3089 extern bool volatile pending_signals;
3090
3091 extern void process_quit_flag (void);
3092 #define QUIT \
3093 do { \
3094 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
3095 process_quit_flag (); \
3096 else if (pending_signals) \
3097 process_pending_signals (); \
3098 } while (false)
3099
3100
3101 /* True if ought to quit now. */
3102
3103 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
3104 \f
3105 extern Lisp_Object Vascii_downcase_table;
3106 extern Lisp_Object Vascii_canon_table;
3107 \f
3108 /* Call staticpro (&var) to protect static variable `var'. */
3109
3110 void staticpro (Lisp_Object *);
3111 \f
3112 /* Forward declarations for prototypes. */
3113 struct window;
3114 struct frame;
3115
3116 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3117
3118 INLINE void
3119 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3120 {
3121 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3122 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3123 }
3124
3125 /* Functions to modify hash tables. */
3126
3127 INLINE void
3128 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3129 {
3130 gc_aset (h->key_and_value, 2 * idx, val);
3131 }
3132
3133 INLINE void
3134 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3135 {
3136 gc_aset (h->key_and_value, 2 * idx + 1, val);
3137 }
3138
3139 /* Use these functions to set Lisp_Object
3140 or pointer slots of struct Lisp_Symbol. */
3141
3142 INLINE void
3143 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3144 {
3145 XSYMBOL (sym)->function = function;
3146 }
3147
3148 INLINE void
3149 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3150 {
3151 XSYMBOL (sym)->plist = plist;
3152 }
3153
3154 INLINE void
3155 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3156 {
3157 XSYMBOL (sym)->next = next;
3158 }
3159
3160 /* Buffer-local (also frame-local) variable access functions. */
3161
3162 INLINE int
3163 blv_found (struct Lisp_Buffer_Local_Value *blv)
3164 {
3165 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3166 return blv->found;
3167 }
3168
3169 /* Set overlay's property list. */
3170
3171 INLINE void
3172 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3173 {
3174 XOVERLAY (overlay)->plist = plist;
3175 }
3176
3177 /* Get text properties of S. */
3178
3179 INLINE INTERVAL
3180 string_intervals (Lisp_Object s)
3181 {
3182 return XSTRING (s)->intervals;
3183 }
3184
3185 /* Set text properties of S to I. */
3186
3187 INLINE void
3188 set_string_intervals (Lisp_Object s, INTERVAL i)
3189 {
3190 XSTRING (s)->intervals = i;
3191 }
3192
3193 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3194 of setting slots directly. */
3195
3196 INLINE void
3197 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3198 {
3199 XCHAR_TABLE (table)->defalt = val;
3200 }
3201 INLINE void
3202 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3203 {
3204 XCHAR_TABLE (table)->purpose = val;
3205 }
3206
3207 /* Set different slots in (sub)character tables. */
3208
3209 INLINE void
3210 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3211 {
3212 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3213 XCHAR_TABLE (table)->extras[idx] = val;
3214 }
3215
3216 INLINE void
3217 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3218 {
3219 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3220 XCHAR_TABLE (table)->contents[idx] = val;
3221 }
3222
3223 INLINE void
3224 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3225 {
3226 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3227 }
3228
3229 /* Defined in data.c. */
3230 extern Lisp_Object indirect_function (Lisp_Object);
3231 extern Lisp_Object find_symbol_value (Lisp_Object);
3232 enum Arith_Comparison {
3233 ARITH_EQUAL,
3234 ARITH_NOTEQUAL,
3235 ARITH_LESS,
3236 ARITH_GRTR,
3237 ARITH_LESS_OR_EQUAL,
3238 ARITH_GRTR_OR_EQUAL
3239 };
3240 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3241 enum Arith_Comparison comparison);
3242
3243 /* Convert the integer I to an Emacs representation, either the integer
3244 itself, or a cons of two or three integers, or if all else fails a float.
3245 I should not have side effects. */
3246 #define INTEGER_TO_CONS(i) \
3247 (! FIXNUM_OVERFLOW_P (i) \
3248 ? make_number (i) \
3249 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16) \
3250 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16)) \
3251 && FIXNUM_OVERFLOW_P ((i) >> 16)) \
3252 ? Fcons (make_number ((i) >> 16), make_number ((i) & 0xffff)) \
3253 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16 >> 24) \
3254 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16 >> 24)) \
3255 && FIXNUM_OVERFLOW_P ((i) >> 16 >> 24)) \
3256 ? Fcons (make_number ((i) >> 16 >> 24), \
3257 Fcons (make_number ((i) >> 16 & 0xffffff), \
3258 make_number ((i) & 0xffff))) \
3259 : make_float (i))
3260
3261 /* Convert the Emacs representation CONS back to an integer of type
3262 TYPE, storing the result the variable VAR. Signal an error if CONS
3263 is not a valid representation or is out of range for TYPE. */
3264 #define CONS_TO_INTEGER(cons, type, var) \
3265 (TYPE_SIGNED (type) \
3266 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3267 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3268 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3269 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3270
3271 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3272 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3273 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3274 Lisp_Object);
3275 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3276 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3277 extern void syms_of_data (void);
3278 extern void swap_in_global_binding (struct Lisp_Symbol *);
3279
3280 /* Defined in cmds.c */
3281 extern void syms_of_cmds (void);
3282 extern void keys_of_cmds (void);
3283
3284 /* Defined in coding.c. */
3285 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3286 ptrdiff_t, bool, bool, Lisp_Object);
3287 extern void init_coding (void);
3288 extern void init_coding_once (void);
3289 extern void syms_of_coding (void);
3290
3291 /* Defined in character.c. */
3292 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3293 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3294 extern void syms_of_character (void);
3295
3296 /* Defined in charset.c. */
3297 extern void init_charset (void);
3298 extern void init_charset_once (void);
3299 extern void syms_of_charset (void);
3300 /* Structure forward declarations. */
3301 struct charset;
3302
3303 /* Defined in syntax.c. */
3304 extern void init_syntax_once (void);
3305 extern void syms_of_syntax (void);
3306
3307 /* Defined in fns.c. */
3308 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3309 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3310 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3311 extern void sweep_weak_hash_tables (void);
3312 EMACS_UINT hash_string (char const *, ptrdiff_t);
3313 EMACS_UINT sxhash (Lisp_Object, int);
3314 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3315 Lisp_Object, Lisp_Object);
3316 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3317 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3318 EMACS_UINT);
3319 extern struct hash_table_test hashtest_eql, hashtest_equal;
3320 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3321 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3322 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3323 ptrdiff_t, ptrdiff_t);
3324 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3325 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3326 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3327 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3328 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3329 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3330 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3331 extern void clear_string_char_byte_cache (void);
3332 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3333 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3334 extern Lisp_Object string_to_multibyte (Lisp_Object);
3335 extern Lisp_Object string_make_unibyte (Lisp_Object);
3336 extern void syms_of_fns (void);
3337
3338 /* Defined in floatfns.c. */
3339 extern void syms_of_floatfns (void);
3340 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3341
3342 /* Defined in fringe.c. */
3343 extern void syms_of_fringe (void);
3344 extern void init_fringe (void);
3345 #ifdef HAVE_WINDOW_SYSTEM
3346 extern void mark_fringe_data (void);
3347 extern void init_fringe_once (void);
3348 #endif /* HAVE_WINDOW_SYSTEM */
3349
3350 /* Defined in image.c. */
3351 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3352 extern void reset_image_types (void);
3353 extern void syms_of_image (void);
3354
3355 /* Defined in insdel.c. */
3356 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3357 extern _Noreturn void buffer_overflow (void);
3358 extern void make_gap (ptrdiff_t);
3359 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3360 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3361 ptrdiff_t, bool, bool);
3362 extern int count_combining_before (const unsigned char *,
3363 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3364 extern int count_combining_after (const unsigned char *,
3365 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3366 extern void insert (const char *, ptrdiff_t);
3367 extern void insert_and_inherit (const char *, ptrdiff_t);
3368 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3369 bool, bool, bool);
3370 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3371 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3372 ptrdiff_t, ptrdiff_t, bool);
3373 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3374 extern void insert_char (int);
3375 extern void insert_string (const char *);
3376 extern void insert_before_markers (const char *, ptrdiff_t);
3377 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3378 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3379 ptrdiff_t, ptrdiff_t,
3380 ptrdiff_t, bool);
3381 extern void del_range (ptrdiff_t, ptrdiff_t);
3382 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3383 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3384 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3385 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3386 ptrdiff_t, ptrdiff_t, bool);
3387 extern void modify_text (ptrdiff_t, ptrdiff_t);
3388 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3389 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3390 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3391 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3392 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3393 ptrdiff_t, ptrdiff_t);
3394 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3395 ptrdiff_t, ptrdiff_t);
3396 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3397 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3398 const char *, ptrdiff_t, ptrdiff_t, bool);
3399 extern void syms_of_insdel (void);
3400
3401 /* Defined in dispnew.c. */
3402 #if (defined PROFILING \
3403 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3404 _Noreturn void __executable_start (void);
3405 #endif
3406 extern Lisp_Object Vwindow_system;
3407 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3408
3409 /* Defined in xdisp.c. */
3410 extern bool noninteractive_need_newline;
3411 extern Lisp_Object echo_area_buffer[2];
3412 extern void add_to_log (char const *, ...);
3413 extern void vadd_to_log (char const *, va_list);
3414 extern void check_message_stack (void);
3415 extern void setup_echo_area_for_printing (bool);
3416 extern bool push_message (void);
3417 extern void pop_message_unwind (void);
3418 extern Lisp_Object restore_message_unwind (Lisp_Object);
3419 extern void restore_message (void);
3420 extern Lisp_Object current_message (void);
3421 extern void clear_message (bool, bool);
3422 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3423 extern void message1 (const char *);
3424 extern void message1_nolog (const char *);
3425 extern void message3 (Lisp_Object);
3426 extern void message3_nolog (Lisp_Object);
3427 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3428 extern void message_with_string (const char *, Lisp_Object, bool);
3429 extern void message_log_maybe_newline (void);
3430 extern void update_echo_area (void);
3431 extern void truncate_echo_area (ptrdiff_t);
3432 extern void redisplay (void);
3433
3434 void set_frame_cursor_types (struct frame *, Lisp_Object);
3435 extern void syms_of_xdisp (void);
3436 extern void init_xdisp (void);
3437 extern Lisp_Object safe_eval (Lisp_Object);
3438 extern bool pos_visible_p (struct window *, ptrdiff_t, int *,
3439 int *, int *, int *, int *, int *);
3440
3441 /* Defined in xsettings.c. */
3442 extern void syms_of_xsettings (void);
3443
3444 /* Defined in vm-limit.c. */
3445 extern void memory_warnings (void *, void (*warnfun) (const char *));
3446
3447 /* Defined in character.c. */
3448 extern void parse_str_as_multibyte (const unsigned char *, ptrdiff_t,
3449 ptrdiff_t *, ptrdiff_t *);
3450
3451 /* Defined in alloc.c. */
3452 extern void check_pure_size (void);
3453 extern void free_misc (Lisp_Object);
3454 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3455 extern void malloc_warning (const char *);
3456 extern _Noreturn void memory_full (size_t);
3457 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3458 extern bool survives_gc_p (Lisp_Object);
3459 extern void mark_object (Lisp_Object);
3460 #if defined REL_ALLOC && !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3461 extern void refill_memory_reserve (void);
3462 #endif
3463 extern const char *pending_malloc_warning;
3464 extern Lisp_Object zero_vector;
3465 extern Lisp_Object *stack_base;
3466 extern EMACS_INT consing_since_gc;
3467 extern EMACS_INT gc_relative_threshold;
3468 extern EMACS_INT memory_full_cons_threshold;
3469 extern Lisp_Object list1 (Lisp_Object);
3470 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3471 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3472 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3473 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3474 Lisp_Object);
3475 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3476 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3477
3478 /* Build a frequently used 2/3/4-integer lists. */
3479
3480 INLINE Lisp_Object
3481 list2i (EMACS_INT x, EMACS_INT y)
3482 {
3483 return list2 (make_number (x), make_number (y));
3484 }
3485
3486 INLINE Lisp_Object
3487 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3488 {
3489 return list3 (make_number (x), make_number (y), make_number (w));
3490 }
3491
3492 INLINE Lisp_Object
3493 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3494 {
3495 return list4 (make_number (x), make_number (y),
3496 make_number (w), make_number (h));
3497 }
3498
3499 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3500 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3501 extern _Noreturn void string_overflow (void);
3502 extern Lisp_Object make_string (const char *, ptrdiff_t);
3503 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3504 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3505 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3506
3507 /* Make unibyte string from C string when the length isn't known. */
3508
3509 INLINE Lisp_Object
3510 build_unibyte_string (const char *str)
3511 {
3512 return make_unibyte_string (str, strlen (str));
3513 }
3514
3515 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3516 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3517 extern Lisp_Object make_uninit_string (EMACS_INT);
3518 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3519 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3520 extern Lisp_Object make_specified_string (const char *,
3521 ptrdiff_t, ptrdiff_t, bool);
3522 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3523 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3524
3525 /* Make a string allocated in pure space, use STR as string data. */
3526
3527 INLINE Lisp_Object
3528 build_pure_c_string (const char *str)
3529 {
3530 return make_pure_c_string (str, strlen (str));
3531 }
3532
3533 /* Make a string from the data at STR, treating it as multibyte if the
3534 data warrants. */
3535
3536 INLINE Lisp_Object
3537 build_string (const char *str)
3538 {
3539 return make_string (str, strlen (str));
3540 }
3541
3542 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3543 extern void make_byte_code (struct Lisp_Vector *);
3544 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3545
3546 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3547 be sure that GC cannot happen until the vector is completely
3548 initialized. E.g. the following code is likely to crash:
3549
3550 v = make_uninit_vector (3);
3551 ASET (v, 0, obj0);
3552 ASET (v, 1, Ffunction_can_gc ());
3553 ASET (v, 2, obj1); */
3554
3555 INLINE Lisp_Object
3556 make_uninit_vector (ptrdiff_t size)
3557 {
3558 Lisp_Object v;
3559 struct Lisp_Vector *p;
3560
3561 p = allocate_vector (size);
3562 XSETVECTOR (v, p);
3563 return v;
3564 }
3565
3566 /* Like above, but special for sub char-tables. */
3567
3568 INLINE Lisp_Object
3569 make_uninit_sub_char_table (int depth, int min_char)
3570 {
3571 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3572 Lisp_Object v = make_uninit_vector (slots);
3573
3574 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3575 XSUB_CHAR_TABLE (v)->depth = depth;
3576 XSUB_CHAR_TABLE (v)->min_char = min_char;
3577 return v;
3578 }
3579
3580 extern struct Lisp_Vector *allocate_pseudovector (int, int, int,
3581 enum pvec_type);
3582
3583 /* Allocate partially initialized pseudovector where all Lisp_Object
3584 slots are set to Qnil but the rest (if any) is left uninitialized. */
3585
3586 #define ALLOCATE_PSEUDOVECTOR(type, field, tag) \
3587 ((type *) allocate_pseudovector (VECSIZE (type), \
3588 PSEUDOVECSIZE (type, field), \
3589 PSEUDOVECSIZE (type, field), tag))
3590
3591 /* Allocate fully initialized pseudovector where all Lisp_Object
3592 slots are set to Qnil and the rest (if any) is zeroed. */
3593
3594 #define ALLOCATE_ZEROED_PSEUDOVECTOR(type, field, tag) \
3595 ((type *) allocate_pseudovector (VECSIZE (type), \
3596 PSEUDOVECSIZE (type, field), \
3597 VECSIZE (type), tag))
3598
3599 extern bool gc_in_progress;
3600 extern bool abort_on_gc;
3601 extern Lisp_Object make_float (double);
3602 extern void display_malloc_warning (void);
3603 extern ptrdiff_t inhibit_garbage_collection (void);
3604 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3605 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3606 Lisp_Object, Lisp_Object);
3607 extern Lisp_Object make_save_ptr (void *);
3608 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3609 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3610 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3611 Lisp_Object);
3612 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3613 extern void free_save_value (Lisp_Object);
3614 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3615 extern void free_marker (Lisp_Object);
3616 extern void free_cons (struct Lisp_Cons *);
3617 extern void init_alloc_once (void);
3618 extern void init_alloc (void);
3619 extern void syms_of_alloc (void);
3620 extern struct buffer * allocate_buffer (void);
3621 extern int valid_lisp_object_p (Lisp_Object);
3622 #ifdef GC_CHECK_CONS_LIST
3623 extern void check_cons_list (void);
3624 #else
3625 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3626 #endif
3627
3628 #ifdef REL_ALLOC
3629 /* Defined in ralloc.c. */
3630 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3631 extern void r_alloc_free (void **);
3632 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3633 extern void r_alloc_reset_variable (void **, void **);
3634 extern void r_alloc_inhibit_buffer_relocation (int);
3635 #endif
3636
3637 /* Defined in chartab.c. */
3638 extern Lisp_Object copy_char_table (Lisp_Object);
3639 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3640 int *, int *);
3641 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3642 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3643 Lisp_Object),
3644 Lisp_Object, Lisp_Object, Lisp_Object);
3645 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3646 Lisp_Object, Lisp_Object,
3647 Lisp_Object, struct charset *,
3648 unsigned, unsigned);
3649 extern Lisp_Object uniprop_table (Lisp_Object);
3650 extern void syms_of_chartab (void);
3651
3652 /* Defined in print.c. */
3653 extern Lisp_Object Vprin1_to_string_buffer;
3654 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3655 extern void temp_output_buffer_setup (const char *);
3656 extern int print_level;
3657 extern void write_string (const char *);
3658 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3659 Lisp_Object);
3660 extern Lisp_Object internal_with_output_to_temp_buffer
3661 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3662 #define FLOAT_TO_STRING_BUFSIZE 350
3663 extern int float_to_string (char *, double);
3664 extern void init_print_once (void);
3665 extern void syms_of_print (void);
3666
3667 /* Defined in doprnt.c. */
3668 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3669 va_list);
3670 extern ptrdiff_t esprintf (char *, char const *, ...)
3671 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3672 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3673 char const *, ...)
3674 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3675 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3676 char const *, va_list)
3677 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3678
3679 /* Defined in lread.c. */
3680 extern Lisp_Object check_obarray (Lisp_Object);
3681 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3682 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3683 extern Lisp_Object intern_driver (Lisp_Object, Lisp_Object, Lisp_Object);
3684 extern void init_symbol (Lisp_Object, Lisp_Object);
3685 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3686 INLINE void
3687 LOADHIST_ATTACH (Lisp_Object x)
3688 {
3689 if (initialized)
3690 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3691 }
3692 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3693 Lisp_Object *, Lisp_Object, bool);
3694 extern Lisp_Object string_to_number (char const *, int, bool);
3695 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3696 Lisp_Object);
3697 extern void dir_warning (const char *, Lisp_Object);
3698 extern void init_obarray (void);
3699 extern void init_lread (void);
3700 extern void syms_of_lread (void);
3701
3702 INLINE Lisp_Object
3703 intern (const char *str)
3704 {
3705 return intern_1 (str, strlen (str));
3706 }
3707
3708 INLINE Lisp_Object
3709 intern_c_string (const char *str)
3710 {
3711 return intern_c_string_1 (str, strlen (str));
3712 }
3713
3714 /* Defined in eval.c. */
3715 extern EMACS_INT lisp_eval_depth;
3716 extern Lisp_Object Vautoload_queue;
3717 extern Lisp_Object Vrun_hooks;
3718 extern Lisp_Object Vsignaling_function;
3719 extern Lisp_Object inhibit_lisp_code;
3720 extern struct handler *handlerlist;
3721
3722 /* To run a normal hook, use the appropriate function from the list below.
3723 The calling convention:
3724
3725 if (!NILP (Vrun_hooks))
3726 call1 (Vrun_hooks, Qmy_funny_hook);
3727
3728 should no longer be used. */
3729 extern void run_hook (Lisp_Object);
3730 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3731 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3732 Lisp_Object (*funcall)
3733 (ptrdiff_t nargs, Lisp_Object *args));
3734 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3735 extern _Noreturn void xsignal0 (Lisp_Object);
3736 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3737 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3738 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3739 Lisp_Object);
3740 extern _Noreturn void signal_error (const char *, Lisp_Object);
3741 extern Lisp_Object eval_sub (Lisp_Object form);
3742 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3743 extern Lisp_Object call0 (Lisp_Object);
3744 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3745 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3746 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3747 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3748 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3749 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3750 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3751 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3752 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3753 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3754 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3755 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3756 extern Lisp_Object internal_condition_case_n
3757 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3758 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3759 extern void specbind (Lisp_Object, Lisp_Object);
3760 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3761 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3762 extern void record_unwind_protect_int (void (*) (int), int);
3763 extern void record_unwind_protect_void (void (*) (void));
3764 extern void record_unwind_protect_nothing (void);
3765 extern void clear_unwind_protect (ptrdiff_t);
3766 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3767 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3768 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3769 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3770 extern _Noreturn void verror (const char *, va_list)
3771 ATTRIBUTE_FORMAT_PRINTF (1, 0);
3772 extern void un_autoload (Lisp_Object);
3773 extern Lisp_Object call_debugger (Lisp_Object arg);
3774 extern void *near_C_stack_top (void);
3775 extern void init_eval_once (void);
3776 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
3777 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
3778 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3779 extern void init_eval (void);
3780 extern void syms_of_eval (void);
3781 extern void unwind_body (Lisp_Object);
3782 extern ptrdiff_t record_in_backtrace (Lisp_Object, Lisp_Object *, ptrdiff_t);
3783 extern void mark_specpdl (void);
3784 extern void get_backtrace (Lisp_Object array);
3785 Lisp_Object backtrace_top_function (void);
3786 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
3787 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
3788
3789
3790 /* Defined in editfns.c. */
3791 extern void insert1 (Lisp_Object);
3792 extern Lisp_Object save_excursion_save (void);
3793 extern Lisp_Object save_restriction_save (void);
3794 extern void save_excursion_restore (Lisp_Object);
3795 extern void save_restriction_restore (Lisp_Object);
3796 extern _Noreturn void time_overflow (void);
3797 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
3798 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3799 ptrdiff_t, bool);
3800 extern void init_editfns (bool);
3801 extern void syms_of_editfns (void);
3802
3803 /* Defined in buffer.c. */
3804 extern bool mouse_face_overlay_overlaps (Lisp_Object);
3805 extern _Noreturn void nsberror (Lisp_Object);
3806 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
3807 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
3808 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
3809 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
3810 Lisp_Object, Lisp_Object, Lisp_Object);
3811 extern bool overlay_touches_p (ptrdiff_t);
3812 extern Lisp_Object other_buffer_safely (Lisp_Object);
3813 extern Lisp_Object get_truename_buffer (Lisp_Object);
3814 extern void init_buffer_once (void);
3815 extern void init_buffer (int);
3816 extern void syms_of_buffer (void);
3817 extern void keys_of_buffer (void);
3818
3819 /* Defined in marker.c. */
3820
3821 extern ptrdiff_t marker_position (Lisp_Object);
3822 extern ptrdiff_t marker_byte_position (Lisp_Object);
3823 extern void clear_charpos_cache (struct buffer *);
3824 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
3825 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
3826 extern void unchain_marker (struct Lisp_Marker *marker);
3827 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
3828 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
3829 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
3830 ptrdiff_t, ptrdiff_t);
3831 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
3832 extern void syms_of_marker (void);
3833
3834 /* Defined in fileio.c. */
3835
3836 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
3837 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
3838 Lisp_Object, Lisp_Object, Lisp_Object,
3839 Lisp_Object, int);
3840 extern void close_file_unwind (int);
3841 extern void fclose_unwind (void *);
3842 extern void restore_point_unwind (Lisp_Object);
3843 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
3844 extern _Noreturn void report_file_error (const char *, Lisp_Object);
3845 extern _Noreturn void report_file_notify_error (const char *, Lisp_Object);
3846 extern bool internal_delete_file (Lisp_Object);
3847 extern Lisp_Object emacs_readlinkat (int, const char *);
3848 extern bool file_directory_p (const char *);
3849 extern bool file_accessible_directory_p (Lisp_Object);
3850 extern void init_fileio (void);
3851 extern void syms_of_fileio (void);
3852 extern Lisp_Object make_temp_name (Lisp_Object, bool);
3853
3854 /* Defined in search.c. */
3855 extern void shrink_regexp_cache (void);
3856 extern void restore_search_regs (void);
3857 extern void record_unwind_save_match_data (void);
3858 struct re_registers;
3859 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
3860 struct re_registers *,
3861 Lisp_Object, bool, bool);
3862 extern ptrdiff_t fast_string_match_internal (Lisp_Object, Lisp_Object,
3863 Lisp_Object);
3864
3865 INLINE ptrdiff_t
3866 fast_string_match (Lisp_Object regexp, Lisp_Object string)
3867 {
3868 return fast_string_match_internal (regexp, string, Qnil);
3869 }
3870
3871 INLINE ptrdiff_t
3872 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
3873 {
3874 return fast_string_match_internal (regexp, string, Vascii_canon_table);
3875 }
3876
3877 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
3878 ptrdiff_t);
3879 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
3880 ptrdiff_t, ptrdiff_t, Lisp_Object);
3881 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3882 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
3883 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3884 ptrdiff_t, bool);
3885 extern ptrdiff_t scan_newline_from_point (ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3886 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
3887 ptrdiff_t, ptrdiff_t *);
3888 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
3889 ptrdiff_t, ptrdiff_t *);
3890 extern void syms_of_search (void);
3891 extern void clear_regexp_cache (void);
3892
3893 /* Defined in minibuf.c. */
3894
3895 extern Lisp_Object Vminibuffer_list;
3896 extern Lisp_Object last_minibuf_string;
3897 extern Lisp_Object get_minibuffer (EMACS_INT);
3898 extern void init_minibuf_once (void);
3899 extern void syms_of_minibuf (void);
3900
3901 /* Defined in callint.c. */
3902
3903 extern void syms_of_callint (void);
3904
3905 /* Defined in casefiddle.c. */
3906
3907 extern void syms_of_casefiddle (void);
3908 extern void keys_of_casefiddle (void);
3909
3910 /* Defined in casetab.c. */
3911
3912 extern void init_casetab_once (void);
3913 extern void syms_of_casetab (void);
3914
3915 /* Defined in keyboard.c. */
3916
3917 extern Lisp_Object echo_message_buffer;
3918 extern struct kboard *echo_kboard;
3919 extern void cancel_echoing (void);
3920 extern Lisp_Object last_undo_boundary;
3921 extern bool input_pending;
3922 #ifdef HAVE_STACK_OVERFLOW_HANDLING
3923 extern sigjmp_buf return_to_command_loop;
3924 #endif
3925 extern Lisp_Object menu_bar_items (Lisp_Object);
3926 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
3927 extern void discard_mouse_events (void);
3928 #ifdef USABLE_SIGIO
3929 void handle_input_available_signal (int);
3930 #endif
3931 extern Lisp_Object pending_funcalls;
3932 extern bool detect_input_pending (void);
3933 extern bool detect_input_pending_ignore_squeezables (void);
3934 extern bool detect_input_pending_run_timers (bool);
3935 extern void safe_run_hooks (Lisp_Object);
3936 extern void cmd_error_internal (Lisp_Object, const char *);
3937 extern Lisp_Object command_loop_1 (void);
3938 extern Lisp_Object read_menu_command (void);
3939 extern Lisp_Object recursive_edit_1 (void);
3940 extern void record_auto_save (void);
3941 extern void force_auto_save_soon (void);
3942 extern void init_keyboard (void);
3943 extern void syms_of_keyboard (void);
3944 extern void keys_of_keyboard (void);
3945
3946 /* Defined in indent.c. */
3947 extern ptrdiff_t current_column (void);
3948 extern void invalidate_current_column (void);
3949 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
3950 extern void syms_of_indent (void);
3951
3952 /* Defined in frame.c. */
3953 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
3954 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
3955 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
3956 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
3957 extern void frames_discard_buffer (Lisp_Object);
3958 extern void syms_of_frame (void);
3959
3960 /* Defined in emacs.c. */
3961 extern char **initial_argv;
3962 extern int initial_argc;
3963 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
3964 extern bool display_arg;
3965 #endif
3966 extern Lisp_Object decode_env_path (const char *, const char *, bool);
3967 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
3968 extern _Noreturn void terminate_due_to_signal (int, int);
3969 #ifdef WINDOWSNT
3970 extern Lisp_Object Vlibrary_cache;
3971 #endif
3972 #if HAVE_SETLOCALE
3973 void fixup_locale (void);
3974 void synchronize_system_messages_locale (void);
3975 void synchronize_system_time_locale (void);
3976 #else
3977 INLINE void fixup_locale (void) {}
3978 INLINE void synchronize_system_messages_locale (void) {}
3979 INLINE void synchronize_system_time_locale (void) {}
3980 #endif
3981 extern void shut_down_emacs (int, Lisp_Object);
3982
3983 /* True means don't do interactive redisplay and don't change tty modes. */
3984 extern bool noninteractive;
3985
3986 /* True means remove site-lisp directories from load-path. */
3987 extern bool no_site_lisp;
3988
3989 /* Pipe used to send exit notification to the daemon parent at
3990 startup. On Windows, we use a kernel event instead. */
3991 #ifndef WINDOWSNT
3992 extern int daemon_pipe[2];
3993 #define IS_DAEMON (daemon_pipe[1] != 0)
3994 #define DAEMON_RUNNING (daemon_pipe[1] >= 0)
3995 #else /* WINDOWSNT */
3996 extern void *w32_daemon_event;
3997 #define IS_DAEMON (w32_daemon_event != NULL)
3998 #define DAEMON_RUNNING (w32_daemon_event != INVALID_HANDLE_VALUE)
3999 #endif
4000
4001 /* True if handling a fatal error already. */
4002 extern bool fatal_error_in_progress;
4003
4004 /* True means don't do use window-system-specific display code. */
4005 extern bool inhibit_window_system;
4006 /* True means that a filter or a sentinel is running. */
4007 extern bool running_asynch_code;
4008
4009 /* Defined in process.c. */
4010 extern void kill_buffer_processes (Lisp_Object);
4011 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4012 struct Lisp_Process *, int);
4013 /* Max value for the first argument of wait_reading_process_output. */
4014 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4015 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4016 The bug merely causes a bogus warning, but the warning is annoying. */
4017 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4018 #else
4019 # define WAIT_READING_MAX INTMAX_MAX
4020 #endif
4021 #ifdef HAVE_TIMERFD
4022 extern void add_timer_wait_descriptor (int);
4023 #endif
4024 extern void add_keyboard_wait_descriptor (int);
4025 extern void delete_keyboard_wait_descriptor (int);
4026 #ifdef HAVE_GPM
4027 extern void add_gpm_wait_descriptor (int);
4028 extern void delete_gpm_wait_descriptor (int);
4029 #endif
4030 extern void init_process_emacs (void);
4031 extern void syms_of_process (void);
4032 extern void setup_process_coding_systems (Lisp_Object);
4033
4034 /* Defined in callproc.c. */
4035 #ifndef DOS_NT
4036 _Noreturn
4037 #endif
4038 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4039 extern void init_callproc_1 (void);
4040 extern void init_callproc (void);
4041 extern void set_initial_environment (void);
4042 extern void syms_of_callproc (void);
4043
4044 /* Defined in doc.c. */
4045 enum text_quoting_style
4046 {
4047 /* Use curved single quotes ‘like this’. */
4048 CURVE_QUOTING_STYLE,
4049
4050 /* Use grave accent and apostrophe `like this'. */
4051 GRAVE_QUOTING_STYLE,
4052
4053 /* Use apostrophes 'like this'. */
4054 STRAIGHT_QUOTING_STYLE
4055 };
4056 extern enum text_quoting_style text_quoting_style (void);
4057 extern Lisp_Object read_doc_string (Lisp_Object);
4058 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4059 extern void syms_of_doc (void);
4060 extern int read_bytecode_char (bool);
4061
4062 /* Defined in bytecode.c. */
4063 extern void syms_of_bytecode (void);
4064 extern struct byte_stack *byte_stack_list;
4065 extern void relocate_byte_stack (void);
4066 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4067 Lisp_Object, ptrdiff_t, Lisp_Object *);
4068
4069 /* Defined in macros.c. */
4070 extern void init_macros (void);
4071 extern void syms_of_macros (void);
4072
4073 /* Defined in undo.c. */
4074 extern void truncate_undo_list (struct buffer *);
4075 extern void record_insert (ptrdiff_t, ptrdiff_t);
4076 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4077 extern void record_first_change (void);
4078 extern void record_change (ptrdiff_t, ptrdiff_t);
4079 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4080 Lisp_Object, Lisp_Object,
4081 Lisp_Object);
4082 extern void syms_of_undo (void);
4083
4084 /* Defined in textprop.c. */
4085 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4086
4087 /* Defined in menu.c. */
4088 extern void syms_of_menu (void);
4089
4090 /* Defined in xmenu.c. */
4091 extern void syms_of_xmenu (void);
4092
4093 /* Defined in termchar.h. */
4094 struct tty_display_info;
4095
4096 /* Defined in termhooks.h. */
4097 struct terminal;
4098
4099 /* Defined in sysdep.c. */
4100 #ifndef HAVE_GET_CURRENT_DIR_NAME
4101 extern char *get_current_dir_name (void);
4102 #endif
4103 extern void stuff_char (char c);
4104 extern void init_foreground_group (void);
4105 extern void sys_subshell (void);
4106 extern void sys_suspend (void);
4107 extern void discard_tty_input (void);
4108 extern void init_sys_modes (struct tty_display_info *);
4109 extern void reset_sys_modes (struct tty_display_info *);
4110 extern void init_all_sys_modes (void);
4111 extern void reset_all_sys_modes (void);
4112 extern void child_setup_tty (int);
4113 extern void setup_pty (int);
4114 extern int set_window_size (int, int, int);
4115 extern EMACS_INT get_random (void);
4116 extern void seed_random (void *, ptrdiff_t);
4117 extern void init_random (void);
4118 extern void emacs_backtrace (int);
4119 extern _Noreturn void emacs_abort (void) NO_INLINE;
4120 extern int emacs_open (const char *, int, int);
4121 extern int emacs_pipe (int[2]);
4122 extern int emacs_close (int);
4123 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4124 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4125 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4126 extern void emacs_perror (char const *);
4127
4128 extern void unlock_all_files (void);
4129 extern void lock_file (Lisp_Object);
4130 extern void unlock_file (Lisp_Object);
4131 extern void unlock_buffer (struct buffer *);
4132 extern void syms_of_filelock (void);
4133 extern int str_collate (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4134
4135 /* Defined in sound.c. */
4136 extern void syms_of_sound (void);
4137
4138 /* Defined in category.c. */
4139 extern void init_category_once (void);
4140 extern Lisp_Object char_category_set (int);
4141 extern void syms_of_category (void);
4142
4143 /* Defined in ccl.c. */
4144 extern void syms_of_ccl (void);
4145
4146 /* Defined in dired.c. */
4147 extern void syms_of_dired (void);
4148 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4149 Lisp_Object, Lisp_Object,
4150 bool, Lisp_Object);
4151
4152 /* Defined in term.c. */
4153 extern int *char_ins_del_vector;
4154 extern void syms_of_term (void);
4155 extern _Noreturn void fatal (const char *msgid, ...)
4156 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4157
4158 /* Defined in terminal.c. */
4159 extern void syms_of_terminal (void);
4160
4161 /* Defined in font.c. */
4162 extern void syms_of_font (void);
4163 extern void init_font (void);
4164
4165 #ifdef HAVE_WINDOW_SYSTEM
4166 /* Defined in fontset.c. */
4167 extern void syms_of_fontset (void);
4168 #endif
4169
4170 /* Defined in gfilenotify.c */
4171 #ifdef HAVE_GFILENOTIFY
4172 extern void globals_of_gfilenotify (void);
4173 extern void syms_of_gfilenotify (void);
4174 #endif
4175
4176 /* Defined in inotify.c */
4177 #ifdef HAVE_INOTIFY
4178 extern void syms_of_inotify (void);
4179 #endif
4180
4181 #ifdef HAVE_W32NOTIFY
4182 /* Defined on w32notify.c. */
4183 extern void syms_of_w32notify (void);
4184 #endif
4185
4186 /* Defined in xfaces.c. */
4187 extern Lisp_Object Vface_alternative_font_family_alist;
4188 extern Lisp_Object Vface_alternative_font_registry_alist;
4189 extern void syms_of_xfaces (void);
4190
4191 #ifdef HAVE_X_WINDOWS
4192 /* Defined in xfns.c. */
4193 extern void syms_of_xfns (void);
4194
4195 /* Defined in xsmfns.c. */
4196 extern void syms_of_xsmfns (void);
4197
4198 /* Defined in xselect.c. */
4199 extern void syms_of_xselect (void);
4200
4201 /* Defined in xterm.c. */
4202 extern void init_xterm (void);
4203 extern void syms_of_xterm (void);
4204 #endif /* HAVE_X_WINDOWS */
4205
4206 #ifdef HAVE_WINDOW_SYSTEM
4207 /* Defined in xterm.c, nsterm.m, w32term.c. */
4208 extern char *x_get_keysym_name (int);
4209 #endif /* HAVE_WINDOW_SYSTEM */
4210
4211 #ifdef HAVE_LIBXML2
4212 /* Defined in xml.c. */
4213 extern void syms_of_xml (void);
4214 extern void xml_cleanup_parser (void);
4215 #endif
4216
4217 #ifdef HAVE_ZLIB
4218 /* Defined in decompress.c. */
4219 extern void syms_of_decompress (void);
4220 #endif
4221
4222 #ifdef HAVE_DBUS
4223 /* Defined in dbusbind.c. */
4224 void init_dbusbind (void);
4225 void syms_of_dbusbind (void);
4226 #endif
4227
4228
4229 /* Defined in profiler.c. */
4230 extern bool profiler_memory_running;
4231 extern void malloc_probe (size_t);
4232 extern void syms_of_profiler (void);
4233
4234
4235 #ifdef DOS_NT
4236 /* Defined in msdos.c, w32.c. */
4237 extern char *emacs_root_dir (void);
4238 #endif /* DOS_NT */
4239
4240 /* Defined in lastfile.c. */
4241 extern char my_edata[];
4242 extern char my_endbss[];
4243 extern char *my_endbss_static;
4244
4245 /* True means ^G can quit instantly. */
4246 extern bool immediate_quit;
4247
4248 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4249 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4250 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4251 extern void xfree (void *);
4252 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4253 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4254 ATTRIBUTE_ALLOC_SIZE ((2,3));
4255 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4256
4257 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4258 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4259 extern void dupstring (char **, char const *);
4260
4261 /* Make DEST a copy of STRING's data. Return a pointer to DEST's terminating
4262 null byte. This is like stpcpy, except the source is a Lisp string. */
4263
4264 INLINE char *
4265 lispstpcpy (char *dest, Lisp_Object string)
4266 {
4267 ptrdiff_t len = SBYTES (string);
4268 memcpy (dest, SDATA (string), len + 1);
4269 return dest + len;
4270 }
4271
4272 extern void xputenv (const char *);
4273
4274 extern char *egetenv_internal (const char *, ptrdiff_t);
4275
4276 INLINE char *
4277 egetenv (const char *var)
4278 {
4279 /* When VAR is a string literal, strlen can be optimized away. */
4280 return egetenv_internal (var, strlen (var));
4281 }
4282
4283 /* Set up the name of the machine we're running on. */
4284 extern void init_system_name (void);
4285
4286 /* Return the absolute value of X. X should be a signed integer
4287 expression without side effects, and X's absolute value should not
4288 exceed the maximum for its promoted type. This is called 'eabs'
4289 because 'abs' is reserved by the C standard. */
4290 #define eabs(x) ((x) < 0 ? -(x) : (x))
4291
4292 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4293 fixnum. */
4294
4295 #define make_fixnum_or_float(val) \
4296 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4297
4298 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4299 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4300
4301 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4302
4303 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4304
4305 #define USE_SAFE_ALLOCA \
4306 ptrdiff_t sa_avail = MAX_ALLOCA; \
4307 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4308
4309 #define AVAIL_ALLOCA(size) (sa_avail -= (size), alloca (size))
4310
4311 /* SAFE_ALLOCA allocates a simple buffer. */
4312
4313 #define SAFE_ALLOCA(size) ((size) <= sa_avail \
4314 ? AVAIL_ALLOCA (size) \
4315 : (sa_must_free = true, record_xmalloc (size)))
4316
4317 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4318 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4319 positive. The code is tuned for MULTIPLIER being a constant. */
4320
4321 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4322 do { \
4323 if ((nitems) <= sa_avail / sizeof *(buf) / (multiplier)) \
4324 (buf) = AVAIL_ALLOCA (sizeof *(buf) * (multiplier) * (nitems)); \
4325 else \
4326 { \
4327 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4328 sa_must_free = true; \
4329 record_unwind_protect_ptr (xfree, buf); \
4330 } \
4331 } while (false)
4332
4333 /* SAFE_ALLOCA_STRING allocates a C copy of a Lisp string. */
4334
4335 #define SAFE_ALLOCA_STRING(ptr, string) \
4336 do { \
4337 (ptr) = SAFE_ALLOCA (SBYTES (string) + 1); \
4338 memcpy (ptr, SDATA (string), SBYTES (string) + 1); \
4339 } while (false)
4340
4341 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4342
4343 #define SAFE_FREE() \
4344 do { \
4345 if (sa_must_free) { \
4346 sa_must_free = false; \
4347 unbind_to (sa_count, Qnil); \
4348 } \
4349 } while (false)
4350
4351
4352 /* Return floor (NBYTES / WORD_SIZE). */
4353
4354 INLINE ptrdiff_t
4355 lisp_word_count (ptrdiff_t nbytes)
4356 {
4357 if (-1 >> 1 == -1)
4358 switch (word_size + 0)
4359 {
4360 case 2: return nbytes >> 1;
4361 case 4: return nbytes >> 2;
4362 case 8: return nbytes >> 3;
4363 case 16: return nbytes >> 4;
4364 default: break;
4365 }
4366 return nbytes / word_size - (nbytes % word_size < 0);
4367 }
4368
4369 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4370
4371 #define SAFE_ALLOCA_LISP(buf, nelt) \
4372 do { \
4373 if ((nelt) <= lisp_word_count (sa_avail)) \
4374 (buf) = AVAIL_ALLOCA ((nelt) * word_size); \
4375 else if ((nelt) <= min (PTRDIFF_MAX, SIZE_MAX) / word_size) \
4376 { \
4377 Lisp_Object arg_; \
4378 (buf) = xmalloc ((nelt) * word_size); \
4379 arg_ = make_save_memory (buf, nelt); \
4380 sa_must_free = true; \
4381 record_unwind_protect (free_save_value, arg_); \
4382 } \
4383 else \
4384 memory_full (SIZE_MAX); \
4385 } while (false)
4386
4387
4388 /* If USE_STACK_LISP_OBJECTS, define macros that and functions that allocate
4389 block-scoped conses and strings. These objects are not
4390 managed by the garbage collector, so they are dangerous: passing them
4391 out of their scope (e.g., to user code) results in undefined behavior.
4392 Conversely, they have better performance because GC is not involved.
4393
4394 This feature is experimental and requires careful debugging.
4395 Build with CPPFLAGS='-DUSE_STACK_LISP_OBJECTS=0' to disable it. */
4396
4397 #ifndef USE_STACK_LISP_OBJECTS
4398 # define USE_STACK_LISP_OBJECTS true
4399 #endif
4400
4401 #ifdef GC_CHECK_STRING_BYTES
4402 enum { defined_GC_CHECK_STRING_BYTES = true };
4403 #else
4404 enum { defined_GC_CHECK_STRING_BYTES = false };
4405 #endif
4406
4407 /* Struct inside unions that are typically no larger and aligned enough. */
4408
4409 union Aligned_Cons
4410 {
4411 struct Lisp_Cons s;
4412 double d; intmax_t i; void *p;
4413 };
4414
4415 union Aligned_String
4416 {
4417 struct Lisp_String s;
4418 double d; intmax_t i; void *p;
4419 };
4420
4421 /* True for stack-based cons and string implementations, respectively.
4422 Use stack-based strings only if stack-based cons also works.
4423 Otherwise, STACK_CONS would create heap-based cons cells that
4424 could point to stack-based strings, which is a no-no. */
4425
4426 enum
4427 {
4428 USE_STACK_CONS = (USE_STACK_LISP_OBJECTS
4429 && alignof (union Aligned_Cons) % GCALIGNMENT == 0),
4430 USE_STACK_STRING = (USE_STACK_CONS
4431 && !defined_GC_CHECK_STRING_BYTES
4432 && alignof (union Aligned_String) % GCALIGNMENT == 0)
4433 };
4434
4435 /* Auxiliary macros used for auto allocation of Lisp objects. Please
4436 use these only in macros like AUTO_CONS that declare a local
4437 variable whose lifetime will be clear to the programmer. */
4438 #define STACK_CONS(a, b) \
4439 make_lisp_ptr (&(union Aligned_Cons) { { a, { b } } }.s, Lisp_Cons)
4440 #define AUTO_CONS_EXPR(a, b) \
4441 (USE_STACK_CONS ? STACK_CONS (a, b) : Fcons (a, b))
4442
4443 /* Declare NAME as an auto Lisp cons or short list if possible, a
4444 GC-based one otherwise. This is in the sense of the C keyword
4445 'auto'; i.e., the object has the lifetime of the containing block.
4446 The resulting object should not be made visible to user Lisp code. */
4447
4448 #define AUTO_CONS(name, a, b) Lisp_Object name = AUTO_CONS_EXPR (a, b)
4449 #define AUTO_LIST1(name, a) \
4450 Lisp_Object name = (USE_STACK_CONS ? STACK_CONS (a, Qnil) : list1 (a))
4451 #define AUTO_LIST2(name, a, b) \
4452 Lisp_Object name = (USE_STACK_CONS \
4453 ? STACK_CONS (a, STACK_CONS (b, Qnil)) \
4454 : list2 (a, b))
4455 #define AUTO_LIST3(name, a, b, c) \
4456 Lisp_Object name = (USE_STACK_CONS \
4457 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, Qnil))) \
4458 : list3 (a, b, c))
4459 #define AUTO_LIST4(name, a, b, c, d) \
4460 Lisp_Object name \
4461 = (USE_STACK_CONS \
4462 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, \
4463 STACK_CONS (d, Qnil)))) \
4464 : list4 (a, b, c, d))
4465
4466 /* Check whether stack-allocated strings are ASCII-only. */
4467
4468 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
4469 extern const char *verify_ascii (const char *);
4470 #else
4471 # define verify_ascii(str) (str)
4472 #endif
4473
4474 /* Declare NAME as an auto Lisp string if possible, a GC-based one if not.
4475 Take its value from STR. STR is not necessarily copied and should
4476 contain only ASCII characters. The resulting Lisp string should
4477 not be modified or made visible to user code. */
4478
4479 #define AUTO_STRING(name, str) \
4480 Lisp_Object name = \
4481 (USE_STACK_STRING \
4482 ? (make_lisp_ptr \
4483 ((&(union Aligned_String) \
4484 {{strlen (str), -1, 0, (unsigned char *) verify_ascii (str)}}.s), \
4485 Lisp_String)) \
4486 : build_string (verify_ascii (str)))
4487
4488 /* Loop over all tails of a list, checking for cycles.
4489 FIXME: Make tortoise and n internal declarations.
4490 FIXME: Unroll the loop body so we don't need `n'. */
4491 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4492 for ((tortoise) = (hare) = (list), (n) = true; \
4493 CONSP (hare); \
4494 (hare = XCDR (hare), (n) = !(n), \
4495 ((n) \
4496 ? (EQ (hare, tortoise) \
4497 ? xsignal1 (Qcircular_list, list) \
4498 : (void) 0) \
4499 /* Move tortoise before the next iteration, in case */ \
4500 /* the next iteration does an Fsetcdr. */ \
4501 : (void) ((tortoise) = XCDR (tortoise)))))
4502
4503 /* Do a `for' loop over alist values. */
4504
4505 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4506 for ((list_var) = (head_var); \
4507 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4508 (list_var) = XCDR (list_var))
4509
4510 /* Check whether it's time for GC, and run it if so. */
4511
4512 INLINE void
4513 maybe_gc (void)
4514 {
4515 if ((consing_since_gc > gc_cons_threshold
4516 && consing_since_gc > gc_relative_threshold)
4517 || (!NILP (Vmemory_full)
4518 && consing_since_gc > memory_full_cons_threshold))
4519 Fgarbage_collect ();
4520 }
4521
4522 INLINE bool
4523 functionp (Lisp_Object object)
4524 {
4525 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4526 {
4527 object = Findirect_function (object, Qt);
4528
4529 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4530 {
4531 /* Autoloaded symbols are functions, except if they load
4532 macros or keymaps. */
4533 int i;
4534 for (i = 0; i < 4 && CONSP (object); i++)
4535 object = XCDR (object);
4536
4537 return ! (CONSP (object) && !NILP (XCAR (object)));
4538 }
4539 }
4540
4541 if (SUBRP (object))
4542 return XSUBR (object)->max_args != UNEVALLED;
4543 else if (COMPILEDP (object))
4544 return true;
4545 else if (CONSP (object))
4546 {
4547 Lisp_Object car = XCAR (object);
4548 return EQ (car, Qlambda) || EQ (car, Qclosure);
4549 }
4550 else
4551 return false;
4552 }
4553
4554 INLINE_HEADER_END
4555
4556 #endif /* EMACS_LISP_H */