]> code.delx.au - gnu-emacs/blob - src/fns.c
Fix hang for mouse press on menubar but not on an item (Bug#6499).
[gnu-emacs] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985, 1986, 1987, 1993, 1994, 1995, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004,
4 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 This file is part of GNU Emacs.
8
9 GNU Emacs is free software: you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation, either version 3 of the License, or
12 (at your option) any later version.
13
14 GNU Emacs is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include <config.h>
23
24 #ifdef HAVE_UNISTD_H
25 #include <unistd.h>
26 #endif
27 #include <time.h>
28 #include <setjmp.h>
29
30 /* Note on some machines this defines `vector' as a typedef,
31 so make sure we don't use that name in this file. */
32 #undef vector
33 #define vector *****
34
35 #include "lisp.h"
36 #include "commands.h"
37 #include "character.h"
38 #include "coding.h"
39 #include "buffer.h"
40 #include "keyboard.h"
41 #include "keymap.h"
42 #include "intervals.h"
43 #include "frame.h"
44 #include "window.h"
45 #include "blockinput.h"
46 #ifdef HAVE_MENUS
47 #if defined (HAVE_X_WINDOWS)
48 #include "xterm.h"
49 #endif
50 #endif /* HAVE_MENUS */
51
52 #ifndef NULL
53 #define NULL ((POINTER_TYPE *)0)
54 #endif
55
56 /* Nonzero enables use of dialog boxes for questions
57 asked by mouse commands. */
58 int use_dialog_box;
59
60 /* Nonzero enables use of a file dialog for file name
61 questions asked by mouse commands. */
62 int use_file_dialog;
63
64 extern int minibuffer_auto_raise;
65 extern Lisp_Object minibuf_window;
66 extern Lisp_Object Vlocale_coding_system;
67 extern int load_in_progress;
68
69 Lisp_Object Qstring_lessp, Qprovide, Qrequire;
70 Lisp_Object Qyes_or_no_p_history;
71 Lisp_Object Qcursor_in_echo_area;
72 Lisp_Object Qwidget_type;
73 Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
74
75 extern Lisp_Object Qinput_method_function;
76
77 static int internal_equal P_ ((Lisp_Object , Lisp_Object, int, int));
78
79 extern long get_random ();
80 extern void seed_random P_ ((long));
81
82 #ifndef HAVE_UNISTD_H
83 extern long time ();
84 #endif
85 \f
86 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
87 doc: /* Return the argument unchanged. */)
88 (arg)
89 Lisp_Object arg;
90 {
91 return arg;
92 }
93
94 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
95 doc: /* Return a pseudo-random number.
96 All integers representable in Lisp are equally likely.
97 On most systems, this is 29 bits' worth.
98 With positive integer LIMIT, return random number in interval [0,LIMIT).
99 With argument t, set the random number seed from the current time and pid.
100 Other values of LIMIT are ignored. */)
101 (limit)
102 Lisp_Object limit;
103 {
104 EMACS_INT val;
105 Lisp_Object lispy_val;
106 unsigned long denominator;
107
108 if (EQ (limit, Qt))
109 seed_random (getpid () + time (NULL));
110 if (NATNUMP (limit) && XFASTINT (limit) != 0)
111 {
112 /* Try to take our random number from the higher bits of VAL,
113 not the lower, since (says Gentzel) the low bits of `random'
114 are less random than the higher ones. We do this by using the
115 quotient rather than the remainder. At the high end of the RNG
116 it's possible to get a quotient larger than n; discarding
117 these values eliminates the bias that would otherwise appear
118 when using a large n. */
119 denominator = ((unsigned long)1 << VALBITS) / XFASTINT (limit);
120 do
121 val = get_random () / denominator;
122 while (val >= XFASTINT (limit));
123 }
124 else
125 val = get_random ();
126 XSETINT (lispy_val, val);
127 return lispy_val;
128 }
129 \f
130 /* Random data-structure functions */
131
132 DEFUN ("length", Flength, Slength, 1, 1, 0,
133 doc: /* Return the length of vector, list or string SEQUENCE.
134 A byte-code function object is also allowed.
135 If the string contains multibyte characters, this is not necessarily
136 the number of bytes in the string; it is the number of characters.
137 To get the number of bytes, use `string-bytes'. */)
138 (sequence)
139 register Lisp_Object sequence;
140 {
141 register Lisp_Object val;
142 register int i;
143
144 if (STRINGP (sequence))
145 XSETFASTINT (val, SCHARS (sequence));
146 else if (VECTORP (sequence))
147 XSETFASTINT (val, ASIZE (sequence));
148 else if (CHAR_TABLE_P (sequence))
149 XSETFASTINT (val, MAX_CHAR);
150 else if (BOOL_VECTOR_P (sequence))
151 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
152 else if (COMPILEDP (sequence))
153 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
154 else if (CONSP (sequence))
155 {
156 i = 0;
157 while (CONSP (sequence))
158 {
159 sequence = XCDR (sequence);
160 ++i;
161
162 if (!CONSP (sequence))
163 break;
164
165 sequence = XCDR (sequence);
166 ++i;
167 QUIT;
168 }
169
170 CHECK_LIST_END (sequence, sequence);
171
172 val = make_number (i);
173 }
174 else if (NILP (sequence))
175 XSETFASTINT (val, 0);
176 else
177 wrong_type_argument (Qsequencep, sequence);
178
179 return val;
180 }
181
182 /* This does not check for quits. That is safe since it must terminate. */
183
184 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
185 doc: /* Return the length of a list, but avoid error or infinite loop.
186 This function never gets an error. If LIST is not really a list,
187 it returns 0. If LIST is circular, it returns a finite value
188 which is at least the number of distinct elements. */)
189 (list)
190 Lisp_Object list;
191 {
192 Lisp_Object tail, halftail, length;
193 int len = 0;
194
195 /* halftail is used to detect circular lists. */
196 halftail = list;
197 for (tail = list; CONSP (tail); tail = XCDR (tail))
198 {
199 if (EQ (tail, halftail) && len != 0)
200 break;
201 len++;
202 if ((len & 1) == 0)
203 halftail = XCDR (halftail);
204 }
205
206 XSETINT (length, len);
207 return length;
208 }
209
210 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
211 doc: /* Return the number of bytes in STRING.
212 If STRING is multibyte, this may be greater than the length of STRING. */)
213 (string)
214 Lisp_Object string;
215 {
216 CHECK_STRING (string);
217 return make_number (SBYTES (string));
218 }
219
220 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
221 doc: /* Return t if two strings have identical contents.
222 Case is significant, but text properties are ignored.
223 Symbols are also allowed; their print names are used instead. */)
224 (s1, s2)
225 register Lisp_Object s1, s2;
226 {
227 if (SYMBOLP (s1))
228 s1 = SYMBOL_NAME (s1);
229 if (SYMBOLP (s2))
230 s2 = SYMBOL_NAME (s2);
231 CHECK_STRING (s1);
232 CHECK_STRING (s2);
233
234 if (SCHARS (s1) != SCHARS (s2)
235 || SBYTES (s1) != SBYTES (s2)
236 || bcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
237 return Qnil;
238 return Qt;
239 }
240
241 DEFUN ("compare-strings", Fcompare_strings,
242 Scompare_strings, 6, 7, 0,
243 doc: /* Compare the contents of two strings, converting to multibyte if needed.
244 In string STR1, skip the first START1 characters and stop at END1.
245 In string STR2, skip the first START2 characters and stop at END2.
246 END1 and END2 default to the full lengths of the respective strings.
247
248 Case is significant in this comparison if IGNORE-CASE is nil.
249 Unibyte strings are converted to multibyte for comparison.
250
251 The value is t if the strings (or specified portions) match.
252 If string STR1 is less, the value is a negative number N;
253 - 1 - N is the number of characters that match at the beginning.
254 If string STR1 is greater, the value is a positive number N;
255 N - 1 is the number of characters that match at the beginning. */)
256 (str1, start1, end1, str2, start2, end2, ignore_case)
257 Lisp_Object str1, start1, end1, start2, str2, end2, ignore_case;
258 {
259 register int end1_char, end2_char;
260 register int i1, i1_byte, i2, i2_byte;
261
262 CHECK_STRING (str1);
263 CHECK_STRING (str2);
264 if (NILP (start1))
265 start1 = make_number (0);
266 if (NILP (start2))
267 start2 = make_number (0);
268 CHECK_NATNUM (start1);
269 CHECK_NATNUM (start2);
270 if (! NILP (end1))
271 CHECK_NATNUM (end1);
272 if (! NILP (end2))
273 CHECK_NATNUM (end2);
274
275 i1 = XINT (start1);
276 i2 = XINT (start2);
277
278 i1_byte = string_char_to_byte (str1, i1);
279 i2_byte = string_char_to_byte (str2, i2);
280
281 end1_char = SCHARS (str1);
282 if (! NILP (end1) && end1_char > XINT (end1))
283 end1_char = XINT (end1);
284
285 end2_char = SCHARS (str2);
286 if (! NILP (end2) && end2_char > XINT (end2))
287 end2_char = XINT (end2);
288
289 while (i1 < end1_char && i2 < end2_char)
290 {
291 /* When we find a mismatch, we must compare the
292 characters, not just the bytes. */
293 int c1, c2;
294
295 if (STRING_MULTIBYTE (str1))
296 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
297 else
298 {
299 c1 = SREF (str1, i1++);
300 MAKE_CHAR_MULTIBYTE (c1);
301 }
302
303 if (STRING_MULTIBYTE (str2))
304 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
305 else
306 {
307 c2 = SREF (str2, i2++);
308 MAKE_CHAR_MULTIBYTE (c2);
309 }
310
311 if (c1 == c2)
312 continue;
313
314 if (! NILP (ignore_case))
315 {
316 Lisp_Object tem;
317
318 tem = Fupcase (make_number (c1));
319 c1 = XINT (tem);
320 tem = Fupcase (make_number (c2));
321 c2 = XINT (tem);
322 }
323
324 if (c1 == c2)
325 continue;
326
327 /* Note that I1 has already been incremented
328 past the character that we are comparing;
329 hence we don't add or subtract 1 here. */
330 if (c1 < c2)
331 return make_number (- i1 + XINT (start1));
332 else
333 return make_number (i1 - XINT (start1));
334 }
335
336 if (i1 < end1_char)
337 return make_number (i1 - XINT (start1) + 1);
338 if (i2 < end2_char)
339 return make_number (- i1 + XINT (start1) - 1);
340
341 return Qt;
342 }
343
344 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
345 doc: /* Return t if first arg string is less than second in lexicographic order.
346 Case is significant.
347 Symbols are also allowed; their print names are used instead. */)
348 (s1, s2)
349 register Lisp_Object s1, s2;
350 {
351 register int end;
352 register int i1, i1_byte, i2, i2_byte;
353
354 if (SYMBOLP (s1))
355 s1 = SYMBOL_NAME (s1);
356 if (SYMBOLP (s2))
357 s2 = SYMBOL_NAME (s2);
358 CHECK_STRING (s1);
359 CHECK_STRING (s2);
360
361 i1 = i1_byte = i2 = i2_byte = 0;
362
363 end = SCHARS (s1);
364 if (end > SCHARS (s2))
365 end = SCHARS (s2);
366
367 while (i1 < end)
368 {
369 /* When we find a mismatch, we must compare the
370 characters, not just the bytes. */
371 int c1, c2;
372
373 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
374 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
375
376 if (c1 != c2)
377 return c1 < c2 ? Qt : Qnil;
378 }
379 return i1 < SCHARS (s2) ? Qt : Qnil;
380 }
381 \f
382 #if __GNUC__
383 /* "gcc -O3" enables automatic function inlining, which optimizes out
384 the arguments for the invocations of this function, whereas it
385 expects these values on the stack. */
386 static Lisp_Object concat P_ ((int nargs, Lisp_Object *args, enum Lisp_Type target_type, int last_special)) __attribute__((noinline));
387 #else /* !__GNUC__ */
388 static Lisp_Object concat P_ ((int nargs, Lisp_Object *args, enum Lisp_Type target_type, int last_special));
389 #endif
390
391 /* ARGSUSED */
392 Lisp_Object
393 concat2 (s1, s2)
394 Lisp_Object s1, s2;
395 {
396 #ifdef NO_ARG_ARRAY
397 Lisp_Object args[2];
398 args[0] = s1;
399 args[1] = s2;
400 return concat (2, args, Lisp_String, 0);
401 #else
402 return concat (2, &s1, Lisp_String, 0);
403 #endif /* NO_ARG_ARRAY */
404 }
405
406 /* ARGSUSED */
407 Lisp_Object
408 concat3 (s1, s2, s3)
409 Lisp_Object s1, s2, s3;
410 {
411 #ifdef NO_ARG_ARRAY
412 Lisp_Object args[3];
413 args[0] = s1;
414 args[1] = s2;
415 args[2] = s3;
416 return concat (3, args, Lisp_String, 0);
417 #else
418 return concat (3, &s1, Lisp_String, 0);
419 #endif /* NO_ARG_ARRAY */
420 }
421
422 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
423 doc: /* Concatenate all the arguments and make the result a list.
424 The result is a list whose elements are the elements of all the arguments.
425 Each argument may be a list, vector or string.
426 The last argument is not copied, just used as the tail of the new list.
427 usage: (append &rest SEQUENCES) */)
428 (nargs, args)
429 int nargs;
430 Lisp_Object *args;
431 {
432 return concat (nargs, args, Lisp_Cons, 1);
433 }
434
435 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
436 doc: /* Concatenate all the arguments and make the result a string.
437 The result is a string whose elements are the elements of all the arguments.
438 Each argument may be a string or a list or vector of characters (integers).
439 usage: (concat &rest SEQUENCES) */)
440 (nargs, args)
441 int nargs;
442 Lisp_Object *args;
443 {
444 return concat (nargs, args, Lisp_String, 0);
445 }
446
447 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
448 doc: /* Concatenate all the arguments and make the result a vector.
449 The result is a vector whose elements are the elements of all the arguments.
450 Each argument may be a list, vector or string.
451 usage: (vconcat &rest SEQUENCES) */)
452 (nargs, args)
453 int nargs;
454 Lisp_Object *args;
455 {
456 return concat (nargs, args, Lisp_Vectorlike, 0);
457 }
458
459
460 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
461 doc: /* Return a copy of a list, vector, string or char-table.
462 The elements of a list or vector are not copied; they are shared
463 with the original. */)
464 (arg)
465 Lisp_Object arg;
466 {
467 if (NILP (arg)) return arg;
468
469 if (CHAR_TABLE_P (arg))
470 {
471 return copy_char_table (arg);
472 }
473
474 if (BOOL_VECTOR_P (arg))
475 {
476 Lisp_Object val;
477 int size_in_chars
478 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
479 / BOOL_VECTOR_BITS_PER_CHAR);
480
481 val = Fmake_bool_vector (Flength (arg), Qnil);
482 bcopy (XBOOL_VECTOR (arg)->data, XBOOL_VECTOR (val)->data,
483 size_in_chars);
484 return val;
485 }
486
487 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
488 wrong_type_argument (Qsequencep, arg);
489
490 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
491 }
492
493 /* This structure holds information of an argument of `concat' that is
494 a string and has text properties to be copied. */
495 struct textprop_rec
496 {
497 int argnum; /* refer to ARGS (arguments of `concat') */
498 int from; /* refer to ARGS[argnum] (argument string) */
499 int to; /* refer to VAL (the target string) */
500 };
501
502 static Lisp_Object
503 concat (nargs, args, target_type, last_special)
504 int nargs;
505 Lisp_Object *args;
506 enum Lisp_Type target_type;
507 int last_special;
508 {
509 Lisp_Object val;
510 register Lisp_Object tail;
511 register Lisp_Object this;
512 int toindex;
513 int toindex_byte = 0;
514 register int result_len;
515 register int result_len_byte;
516 register int argnum;
517 Lisp_Object last_tail;
518 Lisp_Object prev;
519 int some_multibyte;
520 /* When we make a multibyte string, we can't copy text properties
521 while concatinating each string because the length of resulting
522 string can't be decided until we finish the whole concatination.
523 So, we record strings that have text properties to be copied
524 here, and copy the text properties after the concatination. */
525 struct textprop_rec *textprops = NULL;
526 /* Number of elements in textprops. */
527 int num_textprops = 0;
528 USE_SAFE_ALLOCA;
529
530 tail = Qnil;
531
532 /* In append, the last arg isn't treated like the others */
533 if (last_special && nargs > 0)
534 {
535 nargs--;
536 last_tail = args[nargs];
537 }
538 else
539 last_tail = Qnil;
540
541 /* Check each argument. */
542 for (argnum = 0; argnum < nargs; argnum++)
543 {
544 this = args[argnum];
545 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
546 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
547 wrong_type_argument (Qsequencep, this);
548 }
549
550 /* Compute total length in chars of arguments in RESULT_LEN.
551 If desired output is a string, also compute length in bytes
552 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
553 whether the result should be a multibyte string. */
554 result_len_byte = 0;
555 result_len = 0;
556 some_multibyte = 0;
557 for (argnum = 0; argnum < nargs; argnum++)
558 {
559 int len;
560 this = args[argnum];
561 len = XFASTINT (Flength (this));
562 if (target_type == Lisp_String)
563 {
564 /* We must count the number of bytes needed in the string
565 as well as the number of characters. */
566 int i;
567 Lisp_Object ch;
568 int this_len_byte;
569
570 if (VECTORP (this))
571 for (i = 0; i < len; i++)
572 {
573 ch = AREF (this, i);
574 CHECK_CHARACTER (ch);
575 this_len_byte = CHAR_BYTES (XINT (ch));
576 result_len_byte += this_len_byte;
577 if (! ASCII_CHAR_P (XINT (ch)) && ! CHAR_BYTE8_P (XINT (ch)))
578 some_multibyte = 1;
579 }
580 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
581 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
582 else if (CONSP (this))
583 for (; CONSP (this); this = XCDR (this))
584 {
585 ch = XCAR (this);
586 CHECK_CHARACTER (ch);
587 this_len_byte = CHAR_BYTES (XINT (ch));
588 result_len_byte += this_len_byte;
589 if (! ASCII_CHAR_P (XINT (ch)) && ! CHAR_BYTE8_P (XINT (ch)))
590 some_multibyte = 1;
591 }
592 else if (STRINGP (this))
593 {
594 if (STRING_MULTIBYTE (this))
595 {
596 some_multibyte = 1;
597 result_len_byte += SBYTES (this);
598 }
599 else
600 result_len_byte += count_size_as_multibyte (SDATA (this),
601 SCHARS (this));
602 }
603 }
604
605 result_len += len;
606 if (result_len < 0)
607 error ("String overflow");
608 }
609
610 if (! some_multibyte)
611 result_len_byte = result_len;
612
613 /* Create the output object. */
614 if (target_type == Lisp_Cons)
615 val = Fmake_list (make_number (result_len), Qnil);
616 else if (target_type == Lisp_Vectorlike)
617 val = Fmake_vector (make_number (result_len), Qnil);
618 else if (some_multibyte)
619 val = make_uninit_multibyte_string (result_len, result_len_byte);
620 else
621 val = make_uninit_string (result_len);
622
623 /* In `append', if all but last arg are nil, return last arg. */
624 if (target_type == Lisp_Cons && EQ (val, Qnil))
625 return last_tail;
626
627 /* Copy the contents of the args into the result. */
628 if (CONSP (val))
629 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
630 else
631 toindex = 0, toindex_byte = 0;
632
633 prev = Qnil;
634 if (STRINGP (val))
635 SAFE_ALLOCA (textprops, struct textprop_rec *, sizeof (struct textprop_rec) * nargs);
636
637 for (argnum = 0; argnum < nargs; argnum++)
638 {
639 Lisp_Object thislen;
640 int thisleni = 0;
641 register unsigned int thisindex = 0;
642 register unsigned int thisindex_byte = 0;
643
644 this = args[argnum];
645 if (!CONSP (this))
646 thislen = Flength (this), thisleni = XINT (thislen);
647
648 /* Between strings of the same kind, copy fast. */
649 if (STRINGP (this) && STRINGP (val)
650 && STRING_MULTIBYTE (this) == some_multibyte)
651 {
652 int thislen_byte = SBYTES (this);
653
654 bcopy (SDATA (this), SDATA (val) + toindex_byte,
655 SBYTES (this));
656 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
657 {
658 textprops[num_textprops].argnum = argnum;
659 textprops[num_textprops].from = 0;
660 textprops[num_textprops++].to = toindex;
661 }
662 toindex_byte += thislen_byte;
663 toindex += thisleni;
664 }
665 /* Copy a single-byte string to a multibyte string. */
666 else if (STRINGP (this) && STRINGP (val))
667 {
668 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
669 {
670 textprops[num_textprops].argnum = argnum;
671 textprops[num_textprops].from = 0;
672 textprops[num_textprops++].to = toindex;
673 }
674 toindex_byte += copy_text (SDATA (this),
675 SDATA (val) + toindex_byte,
676 SCHARS (this), 0, 1);
677 toindex += thisleni;
678 }
679 else
680 /* Copy element by element. */
681 while (1)
682 {
683 register Lisp_Object elt;
684
685 /* Fetch next element of `this' arg into `elt', or break if
686 `this' is exhausted. */
687 if (NILP (this)) break;
688 if (CONSP (this))
689 elt = XCAR (this), this = XCDR (this);
690 else if (thisindex >= thisleni)
691 break;
692 else if (STRINGP (this))
693 {
694 int c;
695 if (STRING_MULTIBYTE (this))
696 {
697 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
698 thisindex,
699 thisindex_byte);
700 XSETFASTINT (elt, c);
701 }
702 else
703 {
704 XSETFASTINT (elt, SREF (this, thisindex)); thisindex++;
705 if (some_multibyte
706 && !ASCII_CHAR_P (XINT (elt))
707 && XINT (elt) < 0400)
708 {
709 c = BYTE8_TO_CHAR (XINT (elt));
710 XSETINT (elt, c);
711 }
712 }
713 }
714 else if (BOOL_VECTOR_P (this))
715 {
716 int byte;
717 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
718 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
719 elt = Qt;
720 else
721 elt = Qnil;
722 thisindex++;
723 }
724 else
725 {
726 elt = AREF (this, thisindex);
727 thisindex++;
728 }
729
730 /* Store this element into the result. */
731 if (toindex < 0)
732 {
733 XSETCAR (tail, elt);
734 prev = tail;
735 tail = XCDR (tail);
736 }
737 else if (VECTORP (val))
738 {
739 ASET (val, toindex, elt);
740 toindex++;
741 }
742 else
743 {
744 CHECK_NUMBER (elt);
745 if (some_multibyte)
746 toindex_byte += CHAR_STRING (XINT (elt),
747 SDATA (val) + toindex_byte);
748 else
749 SSET (val, toindex_byte++, XINT (elt));
750 toindex++;
751 }
752 }
753 }
754 if (!NILP (prev))
755 XSETCDR (prev, last_tail);
756
757 if (num_textprops > 0)
758 {
759 Lisp_Object props;
760 int last_to_end = -1;
761
762 for (argnum = 0; argnum < num_textprops; argnum++)
763 {
764 this = args[textprops[argnum].argnum];
765 props = text_property_list (this,
766 make_number (0),
767 make_number (SCHARS (this)),
768 Qnil);
769 /* If successive arguments have properites, be sure that the
770 value of `composition' property be the copy. */
771 if (last_to_end == textprops[argnum].to)
772 make_composition_value_copy (props);
773 add_text_properties_from_list (val, props,
774 make_number (textprops[argnum].to));
775 last_to_end = textprops[argnum].to + SCHARS (this);
776 }
777 }
778
779 SAFE_FREE ();
780 return val;
781 }
782 \f
783 static Lisp_Object string_char_byte_cache_string;
784 static EMACS_INT string_char_byte_cache_charpos;
785 static EMACS_INT string_char_byte_cache_bytepos;
786
787 void
788 clear_string_char_byte_cache ()
789 {
790 string_char_byte_cache_string = Qnil;
791 }
792
793 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
794
795 EMACS_INT
796 string_char_to_byte (string, char_index)
797 Lisp_Object string;
798 EMACS_INT char_index;
799 {
800 EMACS_INT i_byte;
801 EMACS_INT best_below, best_below_byte;
802 EMACS_INT best_above, best_above_byte;
803
804 best_below = best_below_byte = 0;
805 best_above = SCHARS (string);
806 best_above_byte = SBYTES (string);
807 if (best_above == best_above_byte)
808 return char_index;
809
810 if (EQ (string, string_char_byte_cache_string))
811 {
812 if (string_char_byte_cache_charpos < char_index)
813 {
814 best_below = string_char_byte_cache_charpos;
815 best_below_byte = string_char_byte_cache_bytepos;
816 }
817 else
818 {
819 best_above = string_char_byte_cache_charpos;
820 best_above_byte = string_char_byte_cache_bytepos;
821 }
822 }
823
824 if (char_index - best_below < best_above - char_index)
825 {
826 unsigned char *p = SDATA (string) + best_below_byte;
827
828 while (best_below < char_index)
829 {
830 p += BYTES_BY_CHAR_HEAD (*p);
831 best_below++;
832 }
833 i_byte = p - SDATA (string);
834 }
835 else
836 {
837 unsigned char *p = SDATA (string) + best_above_byte;
838
839 while (best_above > char_index)
840 {
841 p--;
842 while (!CHAR_HEAD_P (*p)) p--;
843 best_above--;
844 }
845 i_byte = p - SDATA (string);
846 }
847
848 string_char_byte_cache_bytepos = i_byte;
849 string_char_byte_cache_charpos = char_index;
850 string_char_byte_cache_string = string;
851
852 return i_byte;
853 }
854 \f
855 /* Return the character index corresponding to BYTE_INDEX in STRING. */
856
857 EMACS_INT
858 string_byte_to_char (string, byte_index)
859 Lisp_Object string;
860 EMACS_INT byte_index;
861 {
862 EMACS_INT i, i_byte;
863 EMACS_INT best_below, best_below_byte;
864 EMACS_INT best_above, best_above_byte;
865
866 best_below = best_below_byte = 0;
867 best_above = SCHARS (string);
868 best_above_byte = SBYTES (string);
869 if (best_above == best_above_byte)
870 return byte_index;
871
872 if (EQ (string, string_char_byte_cache_string))
873 {
874 if (string_char_byte_cache_bytepos < byte_index)
875 {
876 best_below = string_char_byte_cache_charpos;
877 best_below_byte = string_char_byte_cache_bytepos;
878 }
879 else
880 {
881 best_above = string_char_byte_cache_charpos;
882 best_above_byte = string_char_byte_cache_bytepos;
883 }
884 }
885
886 if (byte_index - best_below_byte < best_above_byte - byte_index)
887 {
888 unsigned char *p = SDATA (string) + best_below_byte;
889 unsigned char *pend = SDATA (string) + byte_index;
890
891 while (p < pend)
892 {
893 p += BYTES_BY_CHAR_HEAD (*p);
894 best_below++;
895 }
896 i = best_below;
897 i_byte = p - SDATA (string);
898 }
899 else
900 {
901 unsigned char *p = SDATA (string) + best_above_byte;
902 unsigned char *pbeg = SDATA (string) + byte_index;
903
904 while (p > pbeg)
905 {
906 p--;
907 while (!CHAR_HEAD_P (*p)) p--;
908 best_above--;
909 }
910 i = best_above;
911 i_byte = p - SDATA (string);
912 }
913
914 string_char_byte_cache_bytepos = i_byte;
915 string_char_byte_cache_charpos = i;
916 string_char_byte_cache_string = string;
917
918 return i;
919 }
920 \f
921 /* Convert STRING to a multibyte string. */
922
923 Lisp_Object
924 string_make_multibyte (string)
925 Lisp_Object string;
926 {
927 unsigned char *buf;
928 EMACS_INT nbytes;
929 Lisp_Object ret;
930 USE_SAFE_ALLOCA;
931
932 if (STRING_MULTIBYTE (string))
933 return string;
934
935 nbytes = count_size_as_multibyte (SDATA (string),
936 SCHARS (string));
937 /* If all the chars are ASCII, they won't need any more bytes
938 once converted. In that case, we can return STRING itself. */
939 if (nbytes == SBYTES (string))
940 return string;
941
942 SAFE_ALLOCA (buf, unsigned char *, nbytes);
943 copy_text (SDATA (string), buf, SBYTES (string),
944 0, 1);
945
946 ret = make_multibyte_string (buf, SCHARS (string), nbytes);
947 SAFE_FREE ();
948
949 return ret;
950 }
951
952
953 /* Convert STRING (if unibyte) to a multibyte string without changing
954 the number of characters. Characters 0200 trough 0237 are
955 converted to eight-bit characters. */
956
957 Lisp_Object
958 string_to_multibyte (string)
959 Lisp_Object string;
960 {
961 unsigned char *buf;
962 EMACS_INT nbytes;
963 Lisp_Object ret;
964 USE_SAFE_ALLOCA;
965
966 if (STRING_MULTIBYTE (string))
967 return string;
968
969 nbytes = parse_str_to_multibyte (SDATA (string), SBYTES (string));
970 /* If all the chars are ASCII, they won't need any more bytes once
971 converted. */
972 if (nbytes == SBYTES (string))
973 return make_multibyte_string (SDATA (string), nbytes, nbytes);
974
975 SAFE_ALLOCA (buf, unsigned char *, nbytes);
976 bcopy (SDATA (string), buf, SBYTES (string));
977 str_to_multibyte (buf, nbytes, SBYTES (string));
978
979 ret = make_multibyte_string (buf, SCHARS (string), nbytes);
980 SAFE_FREE ();
981
982 return ret;
983 }
984
985
986 /* Convert STRING to a single-byte string. */
987
988 Lisp_Object
989 string_make_unibyte (string)
990 Lisp_Object string;
991 {
992 int nchars;
993 unsigned char *buf;
994 Lisp_Object ret;
995 USE_SAFE_ALLOCA;
996
997 if (! STRING_MULTIBYTE (string))
998 return string;
999
1000 nchars = SCHARS (string);
1001
1002 SAFE_ALLOCA (buf, unsigned char *, nchars);
1003 copy_text (SDATA (string), buf, SBYTES (string),
1004 1, 0);
1005
1006 ret = make_unibyte_string (buf, nchars);
1007 SAFE_FREE ();
1008
1009 return ret;
1010 }
1011
1012 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
1013 1, 1, 0,
1014 doc: /* Return the multibyte equivalent of STRING.
1015 If STRING is unibyte and contains non-ASCII characters, the function
1016 `unibyte-char-to-multibyte' is used to convert each unibyte character
1017 to a multibyte character. In this case, the returned string is a
1018 newly created string with no text properties. If STRING is multibyte
1019 or entirely ASCII, it is returned unchanged. In particular, when
1020 STRING is unibyte and entirely ASCII, the returned string is unibyte.
1021 \(When the characters are all ASCII, Emacs primitives will treat the
1022 string the same way whether it is unibyte or multibyte.) */)
1023 (string)
1024 Lisp_Object string;
1025 {
1026 CHECK_STRING (string);
1027
1028 return string_make_multibyte (string);
1029 }
1030
1031 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
1032 1, 1, 0,
1033 doc: /* Return the unibyte equivalent of STRING.
1034 Multibyte character codes are converted to unibyte according to
1035 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
1036 If the lookup in the translation table fails, this function takes just
1037 the low 8 bits of each character. */)
1038 (string)
1039 Lisp_Object string;
1040 {
1041 CHECK_STRING (string);
1042
1043 return string_make_unibyte (string);
1044 }
1045
1046 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1047 1, 1, 0,
1048 doc: /* Return a unibyte string with the same individual bytes as STRING.
1049 If STRING is unibyte, the result is STRING itself.
1050 Otherwise it is a newly created string, with no text properties.
1051 If STRING is multibyte and contains a character of charset
1052 `eight-bit', it is converted to the corresponding single byte. */)
1053 (string)
1054 Lisp_Object string;
1055 {
1056 CHECK_STRING (string);
1057
1058 if (STRING_MULTIBYTE (string))
1059 {
1060 int bytes = SBYTES (string);
1061 unsigned char *str = (unsigned char *) xmalloc (bytes);
1062
1063 bcopy (SDATA (string), str, bytes);
1064 bytes = str_as_unibyte (str, bytes);
1065 string = make_unibyte_string (str, bytes);
1066 xfree (str);
1067 }
1068 return string;
1069 }
1070
1071 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1072 1, 1, 0,
1073 doc: /* Return a multibyte string with the same individual bytes as STRING.
1074 If STRING is multibyte, the result is STRING itself.
1075 Otherwise it is a newly created string, with no text properties.
1076
1077 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1078 part of a correct utf-8 sequence), it is converted to the corresponding
1079 multibyte character of charset `eight-bit'.
1080 See also `string-to-multibyte'.
1081
1082 Beware, this often doesn't really do what you think it does.
1083 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1084 If you're not sure, whether to use `string-as-multibyte' or
1085 `string-to-multibyte', use `string-to-multibyte'. */)
1086 (string)
1087 Lisp_Object string;
1088 {
1089 CHECK_STRING (string);
1090
1091 if (! STRING_MULTIBYTE (string))
1092 {
1093 Lisp_Object new_string;
1094 int nchars, nbytes;
1095
1096 parse_str_as_multibyte (SDATA (string),
1097 SBYTES (string),
1098 &nchars, &nbytes);
1099 new_string = make_uninit_multibyte_string (nchars, nbytes);
1100 bcopy (SDATA (string), SDATA (new_string),
1101 SBYTES (string));
1102 if (nbytes != SBYTES (string))
1103 str_as_multibyte (SDATA (new_string), nbytes,
1104 SBYTES (string), NULL);
1105 string = new_string;
1106 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1107 }
1108 return string;
1109 }
1110
1111 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1112 1, 1, 0,
1113 doc: /* Return a multibyte string with the same individual chars as STRING.
1114 If STRING is multibyte, the result is STRING itself.
1115 Otherwise it is a newly created string, with no text properties.
1116
1117 If STRING is unibyte and contains an 8-bit byte, it is converted to
1118 the corresponding multibyte character of charset `eight-bit'.
1119
1120 This differs from `string-as-multibyte' by converting each byte of a correct
1121 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1122 correct sequence. */)
1123 (string)
1124 Lisp_Object string;
1125 {
1126 CHECK_STRING (string);
1127
1128 return string_to_multibyte (string);
1129 }
1130
1131 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1132 1, 1, 0,
1133 doc: /* Return a unibyte string with the same individual chars as STRING.
1134 If STRING is unibyte, the result is STRING itself.
1135 Otherwise it is a newly created string, with no text properties,
1136 where each `eight-bit' character is converted to the corresponding byte.
1137 If STRING contains a non-ASCII, non-`eight-bit' character,
1138 an error is signaled. */)
1139 (string)
1140 Lisp_Object string;
1141 {
1142 CHECK_STRING (string);
1143
1144 if (STRING_MULTIBYTE (string))
1145 {
1146 EMACS_INT chars = SCHARS (string);
1147 unsigned char *str = (unsigned char *) xmalloc (chars);
1148 EMACS_INT converted = str_to_unibyte (SDATA (string), str, chars, 0);
1149
1150 if (converted < chars)
1151 error ("Can't convert the %dth character to unibyte", converted);
1152 string = make_unibyte_string (str, chars);
1153 xfree (str);
1154 }
1155 return string;
1156 }
1157
1158 \f
1159 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1160 doc: /* Return a copy of ALIST.
1161 This is an alist which represents the same mapping from objects to objects,
1162 but does not share the alist structure with ALIST.
1163 The objects mapped (cars and cdrs of elements of the alist)
1164 are shared, however.
1165 Elements of ALIST that are not conses are also shared. */)
1166 (alist)
1167 Lisp_Object alist;
1168 {
1169 register Lisp_Object tem;
1170
1171 CHECK_LIST (alist);
1172 if (NILP (alist))
1173 return alist;
1174 alist = concat (1, &alist, Lisp_Cons, 0);
1175 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1176 {
1177 register Lisp_Object car;
1178 car = XCAR (tem);
1179
1180 if (CONSP (car))
1181 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1182 }
1183 return alist;
1184 }
1185
1186 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1187 doc: /* Return a new string whose contents are a substring of STRING.
1188 The returned string consists of the characters between index FROM
1189 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1190 zero-indexed: 0 means the first character of STRING. Negative values
1191 are counted from the end of STRING. If TO is nil, the substring runs
1192 to the end of STRING.
1193
1194 The STRING argument may also be a vector. In that case, the return
1195 value is a new vector that contains the elements between index FROM
1196 \(inclusive) and index TO (exclusive) of that vector argument. */)
1197 (string, from, to)
1198 Lisp_Object string;
1199 register Lisp_Object from, to;
1200 {
1201 Lisp_Object res;
1202 int size;
1203 int size_byte = 0;
1204 int from_char, to_char;
1205 int from_byte = 0, to_byte = 0;
1206
1207 CHECK_VECTOR_OR_STRING (string);
1208 CHECK_NUMBER (from);
1209
1210 if (STRINGP (string))
1211 {
1212 size = SCHARS (string);
1213 size_byte = SBYTES (string);
1214 }
1215 else
1216 size = ASIZE (string);
1217
1218 if (NILP (to))
1219 {
1220 to_char = size;
1221 to_byte = size_byte;
1222 }
1223 else
1224 {
1225 CHECK_NUMBER (to);
1226
1227 to_char = XINT (to);
1228 if (to_char < 0)
1229 to_char += size;
1230
1231 if (STRINGP (string))
1232 to_byte = string_char_to_byte (string, to_char);
1233 }
1234
1235 from_char = XINT (from);
1236 if (from_char < 0)
1237 from_char += size;
1238 if (STRINGP (string))
1239 from_byte = string_char_to_byte (string, from_char);
1240
1241 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1242 args_out_of_range_3 (string, make_number (from_char),
1243 make_number (to_char));
1244
1245 if (STRINGP (string))
1246 {
1247 res = make_specified_string (SDATA (string) + from_byte,
1248 to_char - from_char, to_byte - from_byte,
1249 STRING_MULTIBYTE (string));
1250 copy_text_properties (make_number (from_char), make_number (to_char),
1251 string, make_number (0), res, Qnil);
1252 }
1253 else
1254 res = Fvector (to_char - from_char, &AREF (string, from_char));
1255
1256 return res;
1257 }
1258
1259
1260 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1261 doc: /* Return a substring of STRING, without text properties.
1262 It starts at index FROM and ending before TO.
1263 TO may be nil or omitted; then the substring runs to the end of STRING.
1264 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1265 If FROM or TO is negative, it counts from the end.
1266
1267 With one argument, just copy STRING without its properties. */)
1268 (string, from, to)
1269 Lisp_Object string;
1270 register Lisp_Object from, to;
1271 {
1272 int size, size_byte;
1273 int from_char, to_char;
1274 int from_byte, to_byte;
1275
1276 CHECK_STRING (string);
1277
1278 size = SCHARS (string);
1279 size_byte = SBYTES (string);
1280
1281 if (NILP (from))
1282 from_char = from_byte = 0;
1283 else
1284 {
1285 CHECK_NUMBER (from);
1286 from_char = XINT (from);
1287 if (from_char < 0)
1288 from_char += size;
1289
1290 from_byte = string_char_to_byte (string, from_char);
1291 }
1292
1293 if (NILP (to))
1294 {
1295 to_char = size;
1296 to_byte = size_byte;
1297 }
1298 else
1299 {
1300 CHECK_NUMBER (to);
1301
1302 to_char = XINT (to);
1303 if (to_char < 0)
1304 to_char += size;
1305
1306 to_byte = string_char_to_byte (string, to_char);
1307 }
1308
1309 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1310 args_out_of_range_3 (string, make_number (from_char),
1311 make_number (to_char));
1312
1313 return make_specified_string (SDATA (string) + from_byte,
1314 to_char - from_char, to_byte - from_byte,
1315 STRING_MULTIBYTE (string));
1316 }
1317
1318 /* Extract a substring of STRING, giving start and end positions
1319 both in characters and in bytes. */
1320
1321 Lisp_Object
1322 substring_both (string, from, from_byte, to, to_byte)
1323 Lisp_Object string;
1324 int from, from_byte, to, to_byte;
1325 {
1326 Lisp_Object res;
1327 int size;
1328 int size_byte;
1329
1330 CHECK_VECTOR_OR_STRING (string);
1331
1332 if (STRINGP (string))
1333 {
1334 size = SCHARS (string);
1335 size_byte = SBYTES (string);
1336 }
1337 else
1338 size = ASIZE (string);
1339
1340 if (!(0 <= from && from <= to && to <= size))
1341 args_out_of_range_3 (string, make_number (from), make_number (to));
1342
1343 if (STRINGP (string))
1344 {
1345 res = make_specified_string (SDATA (string) + from_byte,
1346 to - from, to_byte - from_byte,
1347 STRING_MULTIBYTE (string));
1348 copy_text_properties (make_number (from), make_number (to),
1349 string, make_number (0), res, Qnil);
1350 }
1351 else
1352 res = Fvector (to - from, &AREF (string, from));
1353
1354 return res;
1355 }
1356 \f
1357 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1358 doc: /* Take cdr N times on LIST, returns the result. */)
1359 (n, list)
1360 Lisp_Object n;
1361 register Lisp_Object list;
1362 {
1363 register int i, num;
1364 CHECK_NUMBER (n);
1365 num = XINT (n);
1366 for (i = 0; i < num && !NILP (list); i++)
1367 {
1368 QUIT;
1369 CHECK_LIST_CONS (list, list);
1370 list = XCDR (list);
1371 }
1372 return list;
1373 }
1374
1375 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1376 doc: /* Return the Nth element of LIST.
1377 N counts from zero. If LIST is not that long, nil is returned. */)
1378 (n, list)
1379 Lisp_Object n, list;
1380 {
1381 return Fcar (Fnthcdr (n, list));
1382 }
1383
1384 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1385 doc: /* Return element of SEQUENCE at index N. */)
1386 (sequence, n)
1387 register Lisp_Object sequence, n;
1388 {
1389 CHECK_NUMBER (n);
1390 if (CONSP (sequence) || NILP (sequence))
1391 return Fcar (Fnthcdr (n, sequence));
1392
1393 /* Faref signals a "not array" error, so check here. */
1394 CHECK_ARRAY (sequence, Qsequencep);
1395 return Faref (sequence, n);
1396 }
1397
1398 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1399 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1400 The value is actually the tail of LIST whose car is ELT. */)
1401 (elt, list)
1402 register Lisp_Object elt;
1403 Lisp_Object list;
1404 {
1405 register Lisp_Object tail;
1406 for (tail = list; CONSP (tail); tail = XCDR (tail))
1407 {
1408 register Lisp_Object tem;
1409 CHECK_LIST_CONS (tail, list);
1410 tem = XCAR (tail);
1411 if (! NILP (Fequal (elt, tem)))
1412 return tail;
1413 QUIT;
1414 }
1415 return Qnil;
1416 }
1417
1418 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1419 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1420 The value is actually the tail of LIST whose car is ELT. */)
1421 (elt, list)
1422 register Lisp_Object elt, list;
1423 {
1424 while (1)
1425 {
1426 if (!CONSP (list) || EQ (XCAR (list), elt))
1427 break;
1428
1429 list = XCDR (list);
1430 if (!CONSP (list) || EQ (XCAR (list), elt))
1431 break;
1432
1433 list = XCDR (list);
1434 if (!CONSP (list) || EQ (XCAR (list), elt))
1435 break;
1436
1437 list = XCDR (list);
1438 QUIT;
1439 }
1440
1441 CHECK_LIST (list);
1442 return list;
1443 }
1444
1445 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1446 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1447 The value is actually the tail of LIST whose car is ELT. */)
1448 (elt, list)
1449 register Lisp_Object elt;
1450 Lisp_Object list;
1451 {
1452 register Lisp_Object tail;
1453
1454 if (!FLOATP (elt))
1455 return Fmemq (elt, list);
1456
1457 for (tail = list; CONSP (tail); tail = XCDR (tail))
1458 {
1459 register Lisp_Object tem;
1460 CHECK_LIST_CONS (tail, list);
1461 tem = XCAR (tail);
1462 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1463 return tail;
1464 QUIT;
1465 }
1466 return Qnil;
1467 }
1468
1469 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1470 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1471 The value is actually the first element of LIST whose car is KEY.
1472 Elements of LIST that are not conses are ignored. */)
1473 (key, list)
1474 Lisp_Object key, list;
1475 {
1476 while (1)
1477 {
1478 if (!CONSP (list)
1479 || (CONSP (XCAR (list))
1480 && EQ (XCAR (XCAR (list)), key)))
1481 break;
1482
1483 list = XCDR (list);
1484 if (!CONSP (list)
1485 || (CONSP (XCAR (list))
1486 && EQ (XCAR (XCAR (list)), key)))
1487 break;
1488
1489 list = XCDR (list);
1490 if (!CONSP (list)
1491 || (CONSP (XCAR (list))
1492 && EQ (XCAR (XCAR (list)), key)))
1493 break;
1494
1495 list = XCDR (list);
1496 QUIT;
1497 }
1498
1499 return CAR (list);
1500 }
1501
1502 /* Like Fassq but never report an error and do not allow quits.
1503 Use only on lists known never to be circular. */
1504
1505 Lisp_Object
1506 assq_no_quit (key, list)
1507 Lisp_Object key, list;
1508 {
1509 while (CONSP (list)
1510 && (!CONSP (XCAR (list))
1511 || !EQ (XCAR (XCAR (list)), key)))
1512 list = XCDR (list);
1513
1514 return CAR_SAFE (list);
1515 }
1516
1517 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1518 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1519 The value is actually the first element of LIST whose car equals KEY. */)
1520 (key, list)
1521 Lisp_Object key, list;
1522 {
1523 Lisp_Object car;
1524
1525 while (1)
1526 {
1527 if (!CONSP (list)
1528 || (CONSP (XCAR (list))
1529 && (car = XCAR (XCAR (list)),
1530 EQ (car, key) || !NILP (Fequal (car, key)))))
1531 break;
1532
1533 list = XCDR (list);
1534 if (!CONSP (list)
1535 || (CONSP (XCAR (list))
1536 && (car = XCAR (XCAR (list)),
1537 EQ (car, key) || !NILP (Fequal (car, key)))))
1538 break;
1539
1540 list = XCDR (list);
1541 if (!CONSP (list)
1542 || (CONSP (XCAR (list))
1543 && (car = XCAR (XCAR (list)),
1544 EQ (car, key) || !NILP (Fequal (car, key)))))
1545 break;
1546
1547 list = XCDR (list);
1548 QUIT;
1549 }
1550
1551 return CAR (list);
1552 }
1553
1554 /* Like Fassoc but never report an error and do not allow quits.
1555 Use only on lists known never to be circular. */
1556
1557 Lisp_Object
1558 assoc_no_quit (key, list)
1559 Lisp_Object key, list;
1560 {
1561 while (CONSP (list)
1562 && (!CONSP (XCAR (list))
1563 || (!EQ (XCAR (XCAR (list)), key)
1564 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1565 list = XCDR (list);
1566
1567 return CONSP (list) ? XCAR (list) : Qnil;
1568 }
1569
1570 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1571 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1572 The value is actually the first element of LIST whose cdr is KEY. */)
1573 (key, list)
1574 register Lisp_Object key;
1575 Lisp_Object list;
1576 {
1577 while (1)
1578 {
1579 if (!CONSP (list)
1580 || (CONSP (XCAR (list))
1581 && EQ (XCDR (XCAR (list)), key)))
1582 break;
1583
1584 list = XCDR (list);
1585 if (!CONSP (list)
1586 || (CONSP (XCAR (list))
1587 && EQ (XCDR (XCAR (list)), key)))
1588 break;
1589
1590 list = XCDR (list);
1591 if (!CONSP (list)
1592 || (CONSP (XCAR (list))
1593 && EQ (XCDR (XCAR (list)), key)))
1594 break;
1595
1596 list = XCDR (list);
1597 QUIT;
1598 }
1599
1600 return CAR (list);
1601 }
1602
1603 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1604 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1605 The value is actually the first element of LIST whose cdr equals KEY. */)
1606 (key, list)
1607 Lisp_Object key, list;
1608 {
1609 Lisp_Object cdr;
1610
1611 while (1)
1612 {
1613 if (!CONSP (list)
1614 || (CONSP (XCAR (list))
1615 && (cdr = XCDR (XCAR (list)),
1616 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1617 break;
1618
1619 list = XCDR (list);
1620 if (!CONSP (list)
1621 || (CONSP (XCAR (list))
1622 && (cdr = XCDR (XCAR (list)),
1623 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1624 break;
1625
1626 list = XCDR (list);
1627 if (!CONSP (list)
1628 || (CONSP (XCAR (list))
1629 && (cdr = XCDR (XCAR (list)),
1630 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1631 break;
1632
1633 list = XCDR (list);
1634 QUIT;
1635 }
1636
1637 return CAR (list);
1638 }
1639 \f
1640 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1641 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1642 The modified LIST is returned. Comparison is done with `eq'.
1643 If the first member of LIST is ELT, there is no way to remove it by side effect;
1644 therefore, write `(setq foo (delq element foo))'
1645 to be sure of changing the value of `foo'. */)
1646 (elt, list)
1647 register Lisp_Object elt;
1648 Lisp_Object list;
1649 {
1650 register Lisp_Object tail, prev;
1651 register Lisp_Object tem;
1652
1653 tail = list;
1654 prev = Qnil;
1655 while (!NILP (tail))
1656 {
1657 CHECK_LIST_CONS (tail, list);
1658 tem = XCAR (tail);
1659 if (EQ (elt, tem))
1660 {
1661 if (NILP (prev))
1662 list = XCDR (tail);
1663 else
1664 Fsetcdr (prev, XCDR (tail));
1665 }
1666 else
1667 prev = tail;
1668 tail = XCDR (tail);
1669 QUIT;
1670 }
1671 return list;
1672 }
1673
1674 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1675 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1676 SEQ must be a list, a vector, or a string.
1677 The modified SEQ is returned. Comparison is done with `equal'.
1678 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1679 is not a side effect; it is simply using a different sequence.
1680 Therefore, write `(setq foo (delete element foo))'
1681 to be sure of changing the value of `foo'. */)
1682 (elt, seq)
1683 Lisp_Object elt, seq;
1684 {
1685 if (VECTORP (seq))
1686 {
1687 EMACS_INT i, n;
1688
1689 for (i = n = 0; i < ASIZE (seq); ++i)
1690 if (NILP (Fequal (AREF (seq, i), elt)))
1691 ++n;
1692
1693 if (n != ASIZE (seq))
1694 {
1695 struct Lisp_Vector *p = allocate_vector (n);
1696
1697 for (i = n = 0; i < ASIZE (seq); ++i)
1698 if (NILP (Fequal (AREF (seq, i), elt)))
1699 p->contents[n++] = AREF (seq, i);
1700
1701 XSETVECTOR (seq, p);
1702 }
1703 }
1704 else if (STRINGP (seq))
1705 {
1706 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1707 int c;
1708
1709 for (i = nchars = nbytes = ibyte = 0;
1710 i < SCHARS (seq);
1711 ++i, ibyte += cbytes)
1712 {
1713 if (STRING_MULTIBYTE (seq))
1714 {
1715 c = STRING_CHAR (SDATA (seq) + ibyte);
1716 cbytes = CHAR_BYTES (c);
1717 }
1718 else
1719 {
1720 c = SREF (seq, i);
1721 cbytes = 1;
1722 }
1723
1724 if (!INTEGERP (elt) || c != XINT (elt))
1725 {
1726 ++nchars;
1727 nbytes += cbytes;
1728 }
1729 }
1730
1731 if (nchars != SCHARS (seq))
1732 {
1733 Lisp_Object tem;
1734
1735 tem = make_uninit_multibyte_string (nchars, nbytes);
1736 if (!STRING_MULTIBYTE (seq))
1737 STRING_SET_UNIBYTE (tem);
1738
1739 for (i = nchars = nbytes = ibyte = 0;
1740 i < SCHARS (seq);
1741 ++i, ibyte += cbytes)
1742 {
1743 if (STRING_MULTIBYTE (seq))
1744 {
1745 c = STRING_CHAR (SDATA (seq) + ibyte);
1746 cbytes = CHAR_BYTES (c);
1747 }
1748 else
1749 {
1750 c = SREF (seq, i);
1751 cbytes = 1;
1752 }
1753
1754 if (!INTEGERP (elt) || c != XINT (elt))
1755 {
1756 unsigned char *from = SDATA (seq) + ibyte;
1757 unsigned char *to = SDATA (tem) + nbytes;
1758 EMACS_INT n;
1759
1760 ++nchars;
1761 nbytes += cbytes;
1762
1763 for (n = cbytes; n--; )
1764 *to++ = *from++;
1765 }
1766 }
1767
1768 seq = tem;
1769 }
1770 }
1771 else
1772 {
1773 Lisp_Object tail, prev;
1774
1775 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1776 {
1777 CHECK_LIST_CONS (tail, seq);
1778
1779 if (!NILP (Fequal (elt, XCAR (tail))))
1780 {
1781 if (NILP (prev))
1782 seq = XCDR (tail);
1783 else
1784 Fsetcdr (prev, XCDR (tail));
1785 }
1786 else
1787 prev = tail;
1788 QUIT;
1789 }
1790 }
1791
1792 return seq;
1793 }
1794
1795 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1796 doc: /* Reverse LIST by modifying cdr pointers.
1797 Return the reversed list. */)
1798 (list)
1799 Lisp_Object list;
1800 {
1801 register Lisp_Object prev, tail, next;
1802
1803 if (NILP (list)) return list;
1804 prev = Qnil;
1805 tail = list;
1806 while (!NILP (tail))
1807 {
1808 QUIT;
1809 CHECK_LIST_CONS (tail, list);
1810 next = XCDR (tail);
1811 Fsetcdr (tail, prev);
1812 prev = tail;
1813 tail = next;
1814 }
1815 return prev;
1816 }
1817
1818 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1819 doc: /* Reverse LIST, copying. Return the reversed list.
1820 See also the function `nreverse', which is used more often. */)
1821 (list)
1822 Lisp_Object list;
1823 {
1824 Lisp_Object new;
1825
1826 for (new = Qnil; CONSP (list); list = XCDR (list))
1827 {
1828 QUIT;
1829 new = Fcons (XCAR (list), new);
1830 }
1831 CHECK_LIST_END (list, list);
1832 return new;
1833 }
1834 \f
1835 Lisp_Object merge ();
1836
1837 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1838 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1839 Returns the sorted list. LIST is modified by side effects.
1840 PREDICATE is called with two elements of LIST, and should return non-nil
1841 if the first element should sort before the second. */)
1842 (list, predicate)
1843 Lisp_Object list, predicate;
1844 {
1845 Lisp_Object front, back;
1846 register Lisp_Object len, tem;
1847 struct gcpro gcpro1, gcpro2;
1848 register int length;
1849
1850 front = list;
1851 len = Flength (list);
1852 length = XINT (len);
1853 if (length < 2)
1854 return list;
1855
1856 XSETINT (len, (length / 2) - 1);
1857 tem = Fnthcdr (len, list);
1858 back = Fcdr (tem);
1859 Fsetcdr (tem, Qnil);
1860
1861 GCPRO2 (front, back);
1862 front = Fsort (front, predicate);
1863 back = Fsort (back, predicate);
1864 UNGCPRO;
1865 return merge (front, back, predicate);
1866 }
1867
1868 Lisp_Object
1869 merge (org_l1, org_l2, pred)
1870 Lisp_Object org_l1, org_l2;
1871 Lisp_Object pred;
1872 {
1873 Lisp_Object value;
1874 register Lisp_Object tail;
1875 Lisp_Object tem;
1876 register Lisp_Object l1, l2;
1877 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1878
1879 l1 = org_l1;
1880 l2 = org_l2;
1881 tail = Qnil;
1882 value = Qnil;
1883
1884 /* It is sufficient to protect org_l1 and org_l2.
1885 When l1 and l2 are updated, we copy the new values
1886 back into the org_ vars. */
1887 GCPRO4 (org_l1, org_l2, pred, value);
1888
1889 while (1)
1890 {
1891 if (NILP (l1))
1892 {
1893 UNGCPRO;
1894 if (NILP (tail))
1895 return l2;
1896 Fsetcdr (tail, l2);
1897 return value;
1898 }
1899 if (NILP (l2))
1900 {
1901 UNGCPRO;
1902 if (NILP (tail))
1903 return l1;
1904 Fsetcdr (tail, l1);
1905 return value;
1906 }
1907 tem = call2 (pred, Fcar (l2), Fcar (l1));
1908 if (NILP (tem))
1909 {
1910 tem = l1;
1911 l1 = Fcdr (l1);
1912 org_l1 = l1;
1913 }
1914 else
1915 {
1916 tem = l2;
1917 l2 = Fcdr (l2);
1918 org_l2 = l2;
1919 }
1920 if (NILP (tail))
1921 value = tem;
1922 else
1923 Fsetcdr (tail, tem);
1924 tail = tem;
1925 }
1926 }
1927
1928 \f
1929 /* This does not check for quits. That is safe since it must terminate. */
1930
1931 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1932 doc: /* Extract a value from a property list.
1933 PLIST is a property list, which is a list of the form
1934 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1935 corresponding to the given PROP, or nil if PROP is not one of the
1936 properties on the list. This function never signals an error. */)
1937 (plist, prop)
1938 Lisp_Object plist;
1939 Lisp_Object prop;
1940 {
1941 Lisp_Object tail, halftail;
1942
1943 /* halftail is used to detect circular lists. */
1944 tail = halftail = plist;
1945 while (CONSP (tail) && CONSP (XCDR (tail)))
1946 {
1947 if (EQ (prop, XCAR (tail)))
1948 return XCAR (XCDR (tail));
1949
1950 tail = XCDR (XCDR (tail));
1951 halftail = XCDR (halftail);
1952 if (EQ (tail, halftail))
1953 break;
1954
1955 #if 0 /* Unsafe version. */
1956 /* This function can be called asynchronously
1957 (setup_coding_system). Don't QUIT in that case. */
1958 if (!interrupt_input_blocked)
1959 QUIT;
1960 #endif
1961 }
1962
1963 return Qnil;
1964 }
1965
1966 DEFUN ("get", Fget, Sget, 2, 2, 0,
1967 doc: /* Return the value of SYMBOL's PROPNAME property.
1968 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1969 (symbol, propname)
1970 Lisp_Object symbol, propname;
1971 {
1972 CHECK_SYMBOL (symbol);
1973 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1974 }
1975
1976 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1977 doc: /* Change value in PLIST of PROP to VAL.
1978 PLIST is a property list, which is a list of the form
1979 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1980 If PROP is already a property on the list, its value is set to VAL,
1981 otherwise the new PROP VAL pair is added. The new plist is returned;
1982 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1983 The PLIST is modified by side effects. */)
1984 (plist, prop, val)
1985 Lisp_Object plist;
1986 register Lisp_Object prop;
1987 Lisp_Object val;
1988 {
1989 register Lisp_Object tail, prev;
1990 Lisp_Object newcell;
1991 prev = Qnil;
1992 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1993 tail = XCDR (XCDR (tail)))
1994 {
1995 if (EQ (prop, XCAR (tail)))
1996 {
1997 Fsetcar (XCDR (tail), val);
1998 return plist;
1999 }
2000
2001 prev = tail;
2002 QUIT;
2003 }
2004 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
2005 if (NILP (prev))
2006 return newcell;
2007 else
2008 Fsetcdr (XCDR (prev), newcell);
2009 return plist;
2010 }
2011
2012 DEFUN ("put", Fput, Sput, 3, 3, 0,
2013 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
2014 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
2015 (symbol, propname, value)
2016 Lisp_Object symbol, propname, value;
2017 {
2018 CHECK_SYMBOL (symbol);
2019 XSYMBOL (symbol)->plist
2020 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
2021 return value;
2022 }
2023 \f
2024 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
2025 doc: /* Extract a value from a property list, comparing with `equal'.
2026 PLIST is a property list, which is a list of the form
2027 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
2028 corresponding to the given PROP, or nil if PROP is not
2029 one of the properties on the list. */)
2030 (plist, prop)
2031 Lisp_Object plist;
2032 Lisp_Object prop;
2033 {
2034 Lisp_Object tail;
2035
2036 for (tail = plist;
2037 CONSP (tail) && CONSP (XCDR (tail));
2038 tail = XCDR (XCDR (tail)))
2039 {
2040 if (! NILP (Fequal (prop, XCAR (tail))))
2041 return XCAR (XCDR (tail));
2042
2043 QUIT;
2044 }
2045
2046 CHECK_LIST_END (tail, prop);
2047
2048 return Qnil;
2049 }
2050
2051 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
2052 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
2053 PLIST is a property list, which is a list of the form
2054 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
2055 If PROP is already a property on the list, its value is set to VAL,
2056 otherwise the new PROP VAL pair is added. The new plist is returned;
2057 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
2058 The PLIST is modified by side effects. */)
2059 (plist, prop, val)
2060 Lisp_Object plist;
2061 register Lisp_Object prop;
2062 Lisp_Object val;
2063 {
2064 register Lisp_Object tail, prev;
2065 Lisp_Object newcell;
2066 prev = Qnil;
2067 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2068 tail = XCDR (XCDR (tail)))
2069 {
2070 if (! NILP (Fequal (prop, XCAR (tail))))
2071 {
2072 Fsetcar (XCDR (tail), val);
2073 return plist;
2074 }
2075
2076 prev = tail;
2077 QUIT;
2078 }
2079 newcell = Fcons (prop, Fcons (val, Qnil));
2080 if (NILP (prev))
2081 return newcell;
2082 else
2083 Fsetcdr (XCDR (prev), newcell);
2084 return plist;
2085 }
2086 \f
2087 DEFUN ("eql", Feql, Seql, 2, 2, 0,
2088 doc: /* Return t if the two args are the same Lisp object.
2089 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
2090 (obj1, obj2)
2091 Lisp_Object obj1, obj2;
2092 {
2093 if (FLOATP (obj1))
2094 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
2095 else
2096 return EQ (obj1, obj2) ? Qt : Qnil;
2097 }
2098
2099 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
2100 doc: /* Return t if two Lisp objects have similar structure and contents.
2101 They must have the same data type.
2102 Conses are compared by comparing the cars and the cdrs.
2103 Vectors and strings are compared element by element.
2104 Numbers are compared by value, but integers cannot equal floats.
2105 (Use `=' if you want integers and floats to be able to be equal.)
2106 Symbols must match exactly. */)
2107 (o1, o2)
2108 register Lisp_Object o1, o2;
2109 {
2110 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
2111 }
2112
2113 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2114 doc: /* Return t if two Lisp objects have similar structure and contents.
2115 This is like `equal' except that it compares the text properties
2116 of strings. (`equal' ignores text properties.) */)
2117 (o1, o2)
2118 register Lisp_Object o1, o2;
2119 {
2120 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2121 }
2122
2123 /* DEPTH is current depth of recursion. Signal an error if it
2124 gets too deep.
2125 PROPS, if non-nil, means compare string text properties too. */
2126
2127 static int
2128 internal_equal (o1, o2, depth, props)
2129 register Lisp_Object o1, o2;
2130 int depth, props;
2131 {
2132 if (depth > 200)
2133 error ("Stack overflow in equal");
2134
2135 tail_recurse:
2136 QUIT;
2137 if (EQ (o1, o2))
2138 return 1;
2139 if (XTYPE (o1) != XTYPE (o2))
2140 return 0;
2141
2142 switch (XTYPE (o1))
2143 {
2144 case Lisp_Float:
2145 {
2146 double d1, d2;
2147
2148 d1 = extract_float (o1);
2149 d2 = extract_float (o2);
2150 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2151 though they are not =. */
2152 return d1 == d2 || (d1 != d1 && d2 != d2);
2153 }
2154
2155 case Lisp_Cons:
2156 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2157 return 0;
2158 o1 = XCDR (o1);
2159 o2 = XCDR (o2);
2160 goto tail_recurse;
2161
2162 case Lisp_Misc:
2163 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2164 return 0;
2165 if (OVERLAYP (o1))
2166 {
2167 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2168 depth + 1, props)
2169 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2170 depth + 1, props))
2171 return 0;
2172 o1 = XOVERLAY (o1)->plist;
2173 o2 = XOVERLAY (o2)->plist;
2174 goto tail_recurse;
2175 }
2176 if (MARKERP (o1))
2177 {
2178 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2179 && (XMARKER (o1)->buffer == 0
2180 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2181 }
2182 break;
2183
2184 case Lisp_Vectorlike:
2185 {
2186 register int i;
2187 EMACS_INT size = ASIZE (o1);
2188 /* Pseudovectors have the type encoded in the size field, so this test
2189 actually checks that the objects have the same type as well as the
2190 same size. */
2191 if (ASIZE (o2) != size)
2192 return 0;
2193 /* Boolvectors are compared much like strings. */
2194 if (BOOL_VECTOR_P (o1))
2195 {
2196 int size_in_chars
2197 = ((XBOOL_VECTOR (o1)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2198 / BOOL_VECTOR_BITS_PER_CHAR);
2199
2200 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2201 return 0;
2202 if (bcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2203 size_in_chars))
2204 return 0;
2205 return 1;
2206 }
2207 if (WINDOW_CONFIGURATIONP (o1))
2208 return compare_window_configurations (o1, o2, 0);
2209
2210 /* Aside from them, only true vectors, char-tables, compiled
2211 functions, and fonts (font-spec, font-entity, font-ojbect)
2212 are sensible to compare, so eliminate the others now. */
2213 if (size & PSEUDOVECTOR_FLAG)
2214 {
2215 if (!(size & (PVEC_COMPILED
2216 | PVEC_CHAR_TABLE | PVEC_SUB_CHAR_TABLE | PVEC_FONT)))
2217 return 0;
2218 size &= PSEUDOVECTOR_SIZE_MASK;
2219 }
2220 for (i = 0; i < size; i++)
2221 {
2222 Lisp_Object v1, v2;
2223 v1 = AREF (o1, i);
2224 v2 = AREF (o2, i);
2225 if (!internal_equal (v1, v2, depth + 1, props))
2226 return 0;
2227 }
2228 return 1;
2229 }
2230 break;
2231
2232 case Lisp_String:
2233 if (SCHARS (o1) != SCHARS (o2))
2234 return 0;
2235 if (SBYTES (o1) != SBYTES (o2))
2236 return 0;
2237 if (bcmp (SDATA (o1), SDATA (o2),
2238 SBYTES (o1)))
2239 return 0;
2240 if (props && !compare_string_intervals (o1, o2))
2241 return 0;
2242 return 1;
2243
2244 default:
2245 break;
2246 }
2247
2248 return 0;
2249 }
2250 \f
2251 extern Lisp_Object Fmake_char_internal ();
2252
2253 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2254 doc: /* Store each element of ARRAY with ITEM.
2255 ARRAY is a vector, string, char-table, or bool-vector. */)
2256 (array, item)
2257 Lisp_Object array, item;
2258 {
2259 register int size, index, charval;
2260 if (VECTORP (array))
2261 {
2262 register Lisp_Object *p = XVECTOR (array)->contents;
2263 size = ASIZE (array);
2264 for (index = 0; index < size; index++)
2265 p[index] = item;
2266 }
2267 else if (CHAR_TABLE_P (array))
2268 {
2269 int i;
2270
2271 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2272 XCHAR_TABLE (array)->contents[i] = item;
2273 XCHAR_TABLE (array)->defalt = item;
2274 }
2275 else if (STRINGP (array))
2276 {
2277 register unsigned char *p = SDATA (array);
2278 CHECK_NUMBER (item);
2279 charval = XINT (item);
2280 size = SCHARS (array);
2281 if (STRING_MULTIBYTE (array))
2282 {
2283 unsigned char str[MAX_MULTIBYTE_LENGTH];
2284 int len = CHAR_STRING (charval, str);
2285 int size_byte = SBYTES (array);
2286 unsigned char *p1 = p, *endp = p + size_byte;
2287 int i;
2288
2289 if (size != size_byte)
2290 while (p1 < endp)
2291 {
2292 int this_len = MULTIBYTE_FORM_LENGTH (p1, endp - p1);
2293 if (len != this_len)
2294 error ("Attempt to change byte length of a string");
2295 p1 += this_len;
2296 }
2297 for (i = 0; i < size_byte; i++)
2298 *p++ = str[i % len];
2299 }
2300 else
2301 for (index = 0; index < size; index++)
2302 p[index] = charval;
2303 }
2304 else if (BOOL_VECTOR_P (array))
2305 {
2306 register unsigned char *p = XBOOL_VECTOR (array)->data;
2307 int size_in_chars
2308 = ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2309 / BOOL_VECTOR_BITS_PER_CHAR);
2310
2311 charval = (! NILP (item) ? -1 : 0);
2312 for (index = 0; index < size_in_chars - 1; index++)
2313 p[index] = charval;
2314 if (index < size_in_chars)
2315 {
2316 /* Mask out bits beyond the vector size. */
2317 if (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)
2318 charval &= (1 << (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2319 p[index] = charval;
2320 }
2321 }
2322 else
2323 wrong_type_argument (Qarrayp, array);
2324 return array;
2325 }
2326
2327 DEFUN ("clear-string", Fclear_string, Sclear_string,
2328 1, 1, 0,
2329 doc: /* Clear the contents of STRING.
2330 This makes STRING unibyte and may change its length. */)
2331 (string)
2332 Lisp_Object string;
2333 {
2334 int len;
2335 CHECK_STRING (string);
2336 len = SBYTES (string);
2337 bzero (SDATA (string), len);
2338 STRING_SET_CHARS (string, len);
2339 STRING_SET_UNIBYTE (string);
2340 return Qnil;
2341 }
2342 \f
2343 /* ARGSUSED */
2344 Lisp_Object
2345 nconc2 (s1, s2)
2346 Lisp_Object s1, s2;
2347 {
2348 #ifdef NO_ARG_ARRAY
2349 Lisp_Object args[2];
2350 args[0] = s1;
2351 args[1] = s2;
2352 return Fnconc (2, args);
2353 #else
2354 return Fnconc (2, &s1);
2355 #endif /* NO_ARG_ARRAY */
2356 }
2357
2358 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2359 doc: /* Concatenate any number of lists by altering them.
2360 Only the last argument is not altered, and need not be a list.
2361 usage: (nconc &rest LISTS) */)
2362 (nargs, args)
2363 int nargs;
2364 Lisp_Object *args;
2365 {
2366 register int argnum;
2367 register Lisp_Object tail, tem, val;
2368
2369 val = tail = Qnil;
2370
2371 for (argnum = 0; argnum < nargs; argnum++)
2372 {
2373 tem = args[argnum];
2374 if (NILP (tem)) continue;
2375
2376 if (NILP (val))
2377 val = tem;
2378
2379 if (argnum + 1 == nargs) break;
2380
2381 CHECK_LIST_CONS (tem, tem);
2382
2383 while (CONSP (tem))
2384 {
2385 tail = tem;
2386 tem = XCDR (tail);
2387 QUIT;
2388 }
2389
2390 tem = args[argnum + 1];
2391 Fsetcdr (tail, tem);
2392 if (NILP (tem))
2393 args[argnum + 1] = tail;
2394 }
2395
2396 return val;
2397 }
2398 \f
2399 /* This is the guts of all mapping functions.
2400 Apply FN to each element of SEQ, one by one,
2401 storing the results into elements of VALS, a C vector of Lisp_Objects.
2402 LENI is the length of VALS, which should also be the length of SEQ. */
2403
2404 static void
2405 mapcar1 (leni, vals, fn, seq)
2406 int leni;
2407 Lisp_Object *vals;
2408 Lisp_Object fn, seq;
2409 {
2410 register Lisp_Object tail;
2411 Lisp_Object dummy;
2412 register int i;
2413 struct gcpro gcpro1, gcpro2, gcpro3;
2414
2415 if (vals)
2416 {
2417 /* Don't let vals contain any garbage when GC happens. */
2418 for (i = 0; i < leni; i++)
2419 vals[i] = Qnil;
2420
2421 GCPRO3 (dummy, fn, seq);
2422 gcpro1.var = vals;
2423 gcpro1.nvars = leni;
2424 }
2425 else
2426 GCPRO2 (fn, seq);
2427 /* We need not explicitly protect `tail' because it is used only on lists, and
2428 1) lists are not relocated and 2) the list is marked via `seq' so will not
2429 be freed */
2430
2431 if (VECTORP (seq))
2432 {
2433 for (i = 0; i < leni; i++)
2434 {
2435 dummy = call1 (fn, AREF (seq, i));
2436 if (vals)
2437 vals[i] = dummy;
2438 }
2439 }
2440 else if (BOOL_VECTOR_P (seq))
2441 {
2442 for (i = 0; i < leni; i++)
2443 {
2444 int byte;
2445 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2446 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2447 dummy = call1 (fn, dummy);
2448 if (vals)
2449 vals[i] = dummy;
2450 }
2451 }
2452 else if (STRINGP (seq))
2453 {
2454 int i_byte;
2455
2456 for (i = 0, i_byte = 0; i < leni;)
2457 {
2458 int c;
2459 int i_before = i;
2460
2461 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2462 XSETFASTINT (dummy, c);
2463 dummy = call1 (fn, dummy);
2464 if (vals)
2465 vals[i_before] = dummy;
2466 }
2467 }
2468 else /* Must be a list, since Flength did not get an error */
2469 {
2470 tail = seq;
2471 for (i = 0; i < leni && CONSP (tail); i++)
2472 {
2473 dummy = call1 (fn, XCAR (tail));
2474 if (vals)
2475 vals[i] = dummy;
2476 tail = XCDR (tail);
2477 }
2478 }
2479
2480 UNGCPRO;
2481 }
2482
2483 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2484 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2485 In between each pair of results, stick in SEPARATOR. Thus, " " as
2486 SEPARATOR results in spaces between the values returned by FUNCTION.
2487 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2488 (function, sequence, separator)
2489 Lisp_Object function, sequence, separator;
2490 {
2491 Lisp_Object len;
2492 register int leni;
2493 int nargs;
2494 register Lisp_Object *args;
2495 register int i;
2496 struct gcpro gcpro1;
2497 Lisp_Object ret;
2498 USE_SAFE_ALLOCA;
2499
2500 len = Flength (sequence);
2501 if (CHAR_TABLE_P (sequence))
2502 wrong_type_argument (Qlistp, sequence);
2503 leni = XINT (len);
2504 nargs = leni + leni - 1;
2505 if (nargs < 0) return empty_unibyte_string;
2506
2507 SAFE_ALLOCA_LISP (args, nargs);
2508
2509 GCPRO1 (separator);
2510 mapcar1 (leni, args, function, sequence);
2511 UNGCPRO;
2512
2513 for (i = leni - 1; i > 0; i--)
2514 args[i + i] = args[i];
2515
2516 for (i = 1; i < nargs; i += 2)
2517 args[i] = separator;
2518
2519 ret = Fconcat (nargs, args);
2520 SAFE_FREE ();
2521
2522 return ret;
2523 }
2524
2525 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2526 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2527 The result is a list just as long as SEQUENCE.
2528 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2529 (function, sequence)
2530 Lisp_Object function, sequence;
2531 {
2532 register Lisp_Object len;
2533 register int leni;
2534 register Lisp_Object *args;
2535 Lisp_Object ret;
2536 USE_SAFE_ALLOCA;
2537
2538 len = Flength (sequence);
2539 if (CHAR_TABLE_P (sequence))
2540 wrong_type_argument (Qlistp, sequence);
2541 leni = XFASTINT (len);
2542
2543 SAFE_ALLOCA_LISP (args, leni);
2544
2545 mapcar1 (leni, args, function, sequence);
2546
2547 ret = Flist (leni, args);
2548 SAFE_FREE ();
2549
2550 return ret;
2551 }
2552
2553 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2554 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2555 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2556 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2557 (function, sequence)
2558 Lisp_Object function, sequence;
2559 {
2560 register int leni;
2561
2562 leni = XFASTINT (Flength (sequence));
2563 if (CHAR_TABLE_P (sequence))
2564 wrong_type_argument (Qlistp, sequence);
2565 mapcar1 (leni, 0, function, sequence);
2566
2567 return sequence;
2568 }
2569 \f
2570 /* Anything that calls this function must protect from GC! */
2571
2572 DEFUN ("y-or-n-p", Fy_or_n_p, Sy_or_n_p, 1, 1, 0,
2573 doc: /* Ask user a "y or n" question. Return t if answer is "y".
2574 Takes one argument, which is the string to display to ask the question.
2575 It should end in a space; `y-or-n-p' adds `(y or n) ' to it.
2576 No confirmation of the answer is requested; a single character is enough.
2577 Also accepts Space to mean yes, or Delete to mean no. \(Actually, it uses
2578 the bindings in `query-replace-map'; see the documentation of that variable
2579 for more information. In this case, the useful bindings are `act', `skip',
2580 `recenter', and `quit'.\)
2581
2582 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2583 is nil and `use-dialog-box' is non-nil. */)
2584 (prompt)
2585 Lisp_Object prompt;
2586 {
2587 register Lisp_Object obj, key, def, map;
2588 register int answer;
2589 Lisp_Object xprompt;
2590 Lisp_Object args[2];
2591 struct gcpro gcpro1, gcpro2;
2592 int count = SPECPDL_INDEX ();
2593
2594 specbind (Qcursor_in_echo_area, Qt);
2595
2596 map = Fsymbol_value (intern ("query-replace-map"));
2597
2598 CHECK_STRING (prompt);
2599 xprompt = prompt;
2600 GCPRO2 (prompt, xprompt);
2601
2602 #ifdef HAVE_WINDOW_SYSTEM
2603 if (display_hourglass_p)
2604 cancel_hourglass ();
2605 #endif
2606
2607 while (1)
2608 {
2609
2610 #ifdef HAVE_MENUS
2611 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2612 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2613 && use_dialog_box
2614 && have_menus_p ())
2615 {
2616 Lisp_Object pane, menu;
2617 redisplay_preserve_echo_area (3);
2618 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2619 Fcons (Fcons (build_string ("No"), Qnil),
2620 Qnil));
2621 menu = Fcons (prompt, pane);
2622 obj = Fx_popup_dialog (Qt, menu, Qnil);
2623 answer = !NILP (obj);
2624 break;
2625 }
2626 #endif /* HAVE_MENUS */
2627 cursor_in_echo_area = 1;
2628 choose_minibuf_frame ();
2629
2630 {
2631 Lisp_Object pargs[3];
2632
2633 /* Colorize prompt according to `minibuffer-prompt' face. */
2634 pargs[0] = build_string ("%s(y or n) ");
2635 pargs[1] = intern ("face");
2636 pargs[2] = intern ("minibuffer-prompt");
2637 args[0] = Fpropertize (3, pargs);
2638 args[1] = xprompt;
2639 Fmessage (2, args);
2640 }
2641
2642 if (minibuffer_auto_raise)
2643 {
2644 Lisp_Object mini_frame;
2645
2646 mini_frame = WINDOW_FRAME (XWINDOW (minibuf_window));
2647
2648 Fraise_frame (mini_frame);
2649 }
2650
2651 temporarily_switch_to_single_kboard (SELECTED_FRAME ());
2652 obj = read_filtered_event (1, 0, 0, 0, Qnil);
2653 cursor_in_echo_area = 0;
2654 /* If we need to quit, quit with cursor_in_echo_area = 0. */
2655 QUIT;
2656
2657 key = Fmake_vector (make_number (1), obj);
2658 def = Flookup_key (map, key, Qt);
2659
2660 if (EQ (def, intern ("skip")))
2661 {
2662 answer = 0;
2663 break;
2664 }
2665 else if (EQ (def, intern ("act")))
2666 {
2667 answer = 1;
2668 break;
2669 }
2670 else if (EQ (def, intern ("recenter")))
2671 {
2672 Frecenter (Qnil);
2673 xprompt = prompt;
2674 continue;
2675 }
2676 else if (EQ (def, intern ("quit")))
2677 Vquit_flag = Qt;
2678 /* We want to exit this command for exit-prefix,
2679 and this is the only way to do it. */
2680 else if (EQ (def, intern ("exit-prefix")))
2681 Vquit_flag = Qt;
2682
2683 QUIT;
2684
2685 /* If we don't clear this, then the next call to read_char will
2686 return quit_char again, and we'll enter an infinite loop. */
2687 Vquit_flag = Qnil;
2688
2689 Fding (Qnil);
2690 Fdiscard_input ();
2691 if (EQ (xprompt, prompt))
2692 {
2693 args[0] = build_string ("Please answer y or n. ");
2694 args[1] = prompt;
2695 xprompt = Fconcat (2, args);
2696 }
2697 }
2698 UNGCPRO;
2699
2700 if (! noninteractive)
2701 {
2702 cursor_in_echo_area = -1;
2703 message_with_string (answer ? "%s(y or n) y" : "%s(y or n) n",
2704 xprompt, 0);
2705 }
2706
2707 unbind_to (count, Qnil);
2708 return answer ? Qt : Qnil;
2709 }
2710 \f
2711 /* This is how C code calls `yes-or-no-p' and allows the user
2712 to redefined it.
2713
2714 Anything that calls this function must protect from GC! */
2715
2716 Lisp_Object
2717 do_yes_or_no_p (prompt)
2718 Lisp_Object prompt;
2719 {
2720 return call1 (intern ("yes-or-no-p"), prompt);
2721 }
2722
2723 /* Anything that calls this function must protect from GC! */
2724
2725 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2726 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2727 Takes one argument, which is the string to display to ask the question.
2728 It should end in a space; `yes-or-no-p' adds `(yes or no) ' to it.
2729 The user must confirm the answer with RET,
2730 and can edit it until it has been confirmed.
2731
2732 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2733 is nil, and `use-dialog-box' is non-nil. */)
2734 (prompt)
2735 Lisp_Object prompt;
2736 {
2737 register Lisp_Object ans;
2738 Lisp_Object args[2];
2739 struct gcpro gcpro1;
2740
2741 CHECK_STRING (prompt);
2742
2743 #ifdef HAVE_MENUS
2744 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2745 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2746 && use_dialog_box
2747 && have_menus_p ())
2748 {
2749 Lisp_Object pane, menu, obj;
2750 redisplay_preserve_echo_area (4);
2751 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2752 Fcons (Fcons (build_string ("No"), Qnil),
2753 Qnil));
2754 GCPRO1 (pane);
2755 menu = Fcons (prompt, pane);
2756 obj = Fx_popup_dialog (Qt, menu, Qnil);
2757 UNGCPRO;
2758 return obj;
2759 }
2760 #endif /* HAVE_MENUS */
2761
2762 args[0] = prompt;
2763 args[1] = build_string ("(yes or no) ");
2764 prompt = Fconcat (2, args);
2765
2766 GCPRO1 (prompt);
2767
2768 while (1)
2769 {
2770 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2771 Qyes_or_no_p_history, Qnil,
2772 Qnil));
2773 if (SCHARS (ans) == 3 && !strcmp (SDATA (ans), "yes"))
2774 {
2775 UNGCPRO;
2776 return Qt;
2777 }
2778 if (SCHARS (ans) == 2 && !strcmp (SDATA (ans), "no"))
2779 {
2780 UNGCPRO;
2781 return Qnil;
2782 }
2783
2784 Fding (Qnil);
2785 Fdiscard_input ();
2786 message ("Please answer yes or no.");
2787 Fsleep_for (make_number (2), Qnil);
2788 }
2789 }
2790 \f
2791 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2792 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2793
2794 Each of the three load averages is multiplied by 100, then converted
2795 to integer.
2796
2797 When USE-FLOATS is non-nil, floats will be used instead of integers.
2798 These floats are not multiplied by 100.
2799
2800 If the 5-minute or 15-minute load averages are not available, return a
2801 shortened list, containing only those averages which are available.
2802
2803 An error is thrown if the load average can't be obtained. In some
2804 cases making it work would require Emacs being installed setuid or
2805 setgid so that it can read kernel information, and that usually isn't
2806 advisable. */)
2807 (use_floats)
2808 Lisp_Object use_floats;
2809 {
2810 double load_ave[3];
2811 int loads = getloadavg (load_ave, 3);
2812 Lisp_Object ret = Qnil;
2813
2814 if (loads < 0)
2815 error ("load-average not implemented for this operating system");
2816
2817 while (loads-- > 0)
2818 {
2819 Lisp_Object load = (NILP (use_floats) ?
2820 make_number ((int) (100.0 * load_ave[loads]))
2821 : make_float (load_ave[loads]));
2822 ret = Fcons (load, ret);
2823 }
2824
2825 return ret;
2826 }
2827 \f
2828 Lisp_Object Vfeatures, Qsubfeatures;
2829 extern Lisp_Object Vafter_load_alist;
2830
2831 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2832 doc: /* Returns t if FEATURE is present in this Emacs.
2833
2834 Use this to conditionalize execution of lisp code based on the
2835 presence or absence of Emacs or environment extensions.
2836 Use `provide' to declare that a feature is available. This function
2837 looks at the value of the variable `features'. The optional argument
2838 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2839 (feature, subfeature)
2840 Lisp_Object feature, subfeature;
2841 {
2842 register Lisp_Object tem;
2843 CHECK_SYMBOL (feature);
2844 tem = Fmemq (feature, Vfeatures);
2845 if (!NILP (tem) && !NILP (subfeature))
2846 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2847 return (NILP (tem)) ? Qnil : Qt;
2848 }
2849
2850 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2851 doc: /* Announce that FEATURE is a feature of the current Emacs.
2852 The optional argument SUBFEATURES should be a list of symbols listing
2853 particular subfeatures supported in this version of FEATURE. */)
2854 (feature, subfeatures)
2855 Lisp_Object feature, subfeatures;
2856 {
2857 register Lisp_Object tem;
2858 CHECK_SYMBOL (feature);
2859 CHECK_LIST (subfeatures);
2860 if (!NILP (Vautoload_queue))
2861 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2862 Vautoload_queue);
2863 tem = Fmemq (feature, Vfeatures);
2864 if (NILP (tem))
2865 Vfeatures = Fcons (feature, Vfeatures);
2866 if (!NILP (subfeatures))
2867 Fput (feature, Qsubfeatures, subfeatures);
2868 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2869
2870 /* Run any load-hooks for this file. */
2871 tem = Fassq (feature, Vafter_load_alist);
2872 if (CONSP (tem))
2873 Fprogn (XCDR (tem));
2874
2875 return feature;
2876 }
2877 \f
2878 /* `require' and its subroutines. */
2879
2880 /* List of features currently being require'd, innermost first. */
2881
2882 Lisp_Object require_nesting_list;
2883
2884 Lisp_Object
2885 require_unwind (old_value)
2886 Lisp_Object old_value;
2887 {
2888 return require_nesting_list = old_value;
2889 }
2890
2891 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2892 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2893 If FEATURE is not a member of the list `features', then the feature
2894 is not loaded; so load the file FILENAME.
2895 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2896 and `load' will try to load this name appended with the suffix `.elc' or
2897 `.el', in that order. The name without appended suffix will not be used.
2898 If the optional third argument NOERROR is non-nil,
2899 then return nil if the file is not found instead of signaling an error.
2900 Normally the return value is FEATURE.
2901 The normal messages at start and end of loading FILENAME are suppressed. */)
2902 (feature, filename, noerror)
2903 Lisp_Object feature, filename, noerror;
2904 {
2905 register Lisp_Object tem;
2906 struct gcpro gcpro1, gcpro2;
2907 int from_file = load_in_progress;
2908
2909 CHECK_SYMBOL (feature);
2910
2911 /* Record the presence of `require' in this file
2912 even if the feature specified is already loaded.
2913 But not more than once in any file,
2914 and not when we aren't loading or reading from a file. */
2915 if (!from_file)
2916 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2917 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2918 from_file = 1;
2919
2920 if (from_file)
2921 {
2922 tem = Fcons (Qrequire, feature);
2923 if (NILP (Fmember (tem, Vcurrent_load_list)))
2924 LOADHIST_ATTACH (tem);
2925 }
2926 tem = Fmemq (feature, Vfeatures);
2927
2928 if (NILP (tem))
2929 {
2930 int count = SPECPDL_INDEX ();
2931 int nesting = 0;
2932
2933 /* This is to make sure that loadup.el gives a clear picture
2934 of what files are preloaded and when. */
2935 if (! NILP (Vpurify_flag))
2936 error ("(require %s) while preparing to dump",
2937 SDATA (SYMBOL_NAME (feature)));
2938
2939 /* A certain amount of recursive `require' is legitimate,
2940 but if we require the same feature recursively 3 times,
2941 signal an error. */
2942 tem = require_nesting_list;
2943 while (! NILP (tem))
2944 {
2945 if (! NILP (Fequal (feature, XCAR (tem))))
2946 nesting++;
2947 tem = XCDR (tem);
2948 }
2949 if (nesting > 3)
2950 error ("Recursive `require' for feature `%s'",
2951 SDATA (SYMBOL_NAME (feature)));
2952
2953 /* Update the list for any nested `require's that occur. */
2954 record_unwind_protect (require_unwind, require_nesting_list);
2955 require_nesting_list = Fcons (feature, require_nesting_list);
2956
2957 /* Value saved here is to be restored into Vautoload_queue */
2958 record_unwind_protect (un_autoload, Vautoload_queue);
2959 Vautoload_queue = Qt;
2960
2961 /* Load the file. */
2962 GCPRO2 (feature, filename);
2963 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2964 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2965 UNGCPRO;
2966
2967 /* If load failed entirely, return nil. */
2968 if (NILP (tem))
2969 return unbind_to (count, Qnil);
2970
2971 tem = Fmemq (feature, Vfeatures);
2972 if (NILP (tem))
2973 error ("Required feature `%s' was not provided",
2974 SDATA (SYMBOL_NAME (feature)));
2975
2976 /* Once loading finishes, don't undo it. */
2977 Vautoload_queue = Qt;
2978 feature = unbind_to (count, feature);
2979 }
2980
2981 return feature;
2982 }
2983 \f
2984 /* Primitives for work of the "widget" library.
2985 In an ideal world, this section would not have been necessary.
2986 However, lisp function calls being as slow as they are, it turns
2987 out that some functions in the widget library (wid-edit.el) are the
2988 bottleneck of Widget operation. Here is their translation to C,
2989 for the sole reason of efficiency. */
2990
2991 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2992 doc: /* Return non-nil if PLIST has the property PROP.
2993 PLIST is a property list, which is a list of the form
2994 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2995 Unlike `plist-get', this allows you to distinguish between a missing
2996 property and a property with the value nil.
2997 The value is actually the tail of PLIST whose car is PROP. */)
2998 (plist, prop)
2999 Lisp_Object plist, prop;
3000 {
3001 while (CONSP (plist) && !EQ (XCAR (plist), prop))
3002 {
3003 QUIT;
3004 plist = XCDR (plist);
3005 plist = CDR (plist);
3006 }
3007 return plist;
3008 }
3009
3010 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
3011 doc: /* In WIDGET, set PROPERTY to VALUE.
3012 The value can later be retrieved with `widget-get'. */)
3013 (widget, property, value)
3014 Lisp_Object widget, property, value;
3015 {
3016 CHECK_CONS (widget);
3017 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
3018 return value;
3019 }
3020
3021 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
3022 doc: /* In WIDGET, get the value of PROPERTY.
3023 The value could either be specified when the widget was created, or
3024 later with `widget-put'. */)
3025 (widget, property)
3026 Lisp_Object widget, property;
3027 {
3028 Lisp_Object tmp;
3029
3030 while (1)
3031 {
3032 if (NILP (widget))
3033 return Qnil;
3034 CHECK_CONS (widget);
3035 tmp = Fplist_member (XCDR (widget), property);
3036 if (CONSP (tmp))
3037 {
3038 tmp = XCDR (tmp);
3039 return CAR (tmp);
3040 }
3041 tmp = XCAR (widget);
3042 if (NILP (tmp))
3043 return Qnil;
3044 widget = Fget (tmp, Qwidget_type);
3045 }
3046 }
3047
3048 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
3049 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
3050 ARGS are passed as extra arguments to the function.
3051 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
3052 (nargs, args)
3053 int nargs;
3054 Lisp_Object *args;
3055 {
3056 /* This function can GC. */
3057 Lisp_Object newargs[3];
3058 struct gcpro gcpro1, gcpro2;
3059 Lisp_Object result;
3060
3061 newargs[0] = Fwidget_get (args[0], args[1]);
3062 newargs[1] = args[0];
3063 newargs[2] = Flist (nargs - 2, args + 2);
3064 GCPRO2 (newargs[0], newargs[2]);
3065 result = Fapply (3, newargs);
3066 UNGCPRO;
3067 return result;
3068 }
3069
3070 #ifdef HAVE_LANGINFO_CODESET
3071 #include <langinfo.h>
3072 #endif
3073
3074 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
3075 doc: /* Access locale data ITEM for the current C locale, if available.
3076 ITEM should be one of the following:
3077
3078 `codeset', returning the character set as a string (locale item CODESET);
3079
3080 `days', returning a 7-element vector of day names (locale items DAY_n);
3081
3082 `months', returning a 12-element vector of month names (locale items MON_n);
3083
3084 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
3085 both measured in milimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
3086
3087 If the system can't provide such information through a call to
3088 `nl_langinfo', or if ITEM isn't from the list above, return nil.
3089
3090 See also Info node `(libc)Locales'.
3091
3092 The data read from the system are decoded using `locale-coding-system'. */)
3093 (item)
3094 Lisp_Object item;
3095 {
3096 char *str = NULL;
3097 #ifdef HAVE_LANGINFO_CODESET
3098 Lisp_Object val;
3099 if (EQ (item, Qcodeset))
3100 {
3101 str = nl_langinfo (CODESET);
3102 return build_string (str);
3103 }
3104 #ifdef DAY_1
3105 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
3106 {
3107 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
3108 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
3109 int i;
3110 struct gcpro gcpro1;
3111 GCPRO1 (v);
3112 synchronize_system_time_locale ();
3113 for (i = 0; i < 7; i++)
3114 {
3115 str = nl_langinfo (days[i]);
3116 val = make_unibyte_string (str, strlen (str));
3117 /* Fixme: Is this coding system necessarily right, even if
3118 it is consistent with CODESET? If not, what to do? */
3119 Faset (v, make_number (i),
3120 code_convert_string_norecord (val, Vlocale_coding_system,
3121 0));
3122 }
3123 UNGCPRO;
3124 return v;
3125 }
3126 #endif /* DAY_1 */
3127 #ifdef MON_1
3128 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
3129 {
3130 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
3131 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
3132 MON_8, MON_9, MON_10, MON_11, MON_12};
3133 int i;
3134 struct gcpro gcpro1;
3135 GCPRO1 (v);
3136 synchronize_system_time_locale ();
3137 for (i = 0; i < 12; i++)
3138 {
3139 str = nl_langinfo (months[i]);
3140 val = make_unibyte_string (str, strlen (str));
3141 Faset (v, make_number (i),
3142 code_convert_string_norecord (val, Vlocale_coding_system, 0));
3143 }
3144 UNGCPRO;
3145 return v;
3146 }
3147 #endif /* MON_1 */
3148 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
3149 but is in the locale files. This could be used by ps-print. */
3150 #ifdef PAPER_WIDTH
3151 else if (EQ (item, Qpaper))
3152 {
3153 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
3154 make_number (nl_langinfo (PAPER_HEIGHT)));
3155 }
3156 #endif /* PAPER_WIDTH */
3157 #endif /* HAVE_LANGINFO_CODESET*/
3158 return Qnil;
3159 }
3160 \f
3161 /* base64 encode/decode functions (RFC 2045).
3162 Based on code from GNU recode. */
3163
3164 #define MIME_LINE_LENGTH 76
3165
3166 #define IS_ASCII(Character) \
3167 ((Character) < 128)
3168 #define IS_BASE64(Character) \
3169 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
3170 #define IS_BASE64_IGNORABLE(Character) \
3171 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
3172 || (Character) == '\f' || (Character) == '\r')
3173
3174 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
3175 character or return retval if there are no characters left to
3176 process. */
3177 #define READ_QUADRUPLET_BYTE(retval) \
3178 do \
3179 { \
3180 if (i == length) \
3181 { \
3182 if (nchars_return) \
3183 *nchars_return = nchars; \
3184 return (retval); \
3185 } \
3186 c = from[i++]; \
3187 } \
3188 while (IS_BASE64_IGNORABLE (c))
3189
3190 /* Table of characters coding the 64 values. */
3191 static const char base64_value_to_char[64] =
3192 {
3193 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
3194 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
3195 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
3196 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
3197 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
3198 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
3199 '8', '9', '+', '/' /* 60-63 */
3200 };
3201
3202 /* Table of base64 values for first 128 characters. */
3203 static const short base64_char_to_value[128] =
3204 {
3205 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
3206 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
3207 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
3208 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
3209 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
3210 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
3211 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
3212 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
3213 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
3214 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
3215 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
3216 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
3217 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
3218 };
3219
3220 /* The following diagram shows the logical steps by which three octets
3221 get transformed into four base64 characters.
3222
3223 .--------. .--------. .--------.
3224 |aaaaaabb| |bbbbcccc| |ccdddddd|
3225 `--------' `--------' `--------'
3226 6 2 4 4 2 6
3227 .--------+--------+--------+--------.
3228 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
3229 `--------+--------+--------+--------'
3230
3231 .--------+--------+--------+--------.
3232 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
3233 `--------+--------+--------+--------'
3234
3235 The octets are divided into 6 bit chunks, which are then encoded into
3236 base64 characters. */
3237
3238
3239 static int base64_encode_1 P_ ((const char *, char *, int, int, int));
3240 static int base64_decode_1 P_ ((const char *, char *, int, int, int *));
3241
3242 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
3243 2, 3, "r",
3244 doc: /* Base64-encode the region between BEG and END.
3245 Return the length of the encoded text.
3246 Optional third argument NO-LINE-BREAK means do not break long lines
3247 into shorter lines. */)
3248 (beg, end, no_line_break)
3249 Lisp_Object beg, end, no_line_break;
3250 {
3251 char *encoded;
3252 int allength, length;
3253 int ibeg, iend, encoded_length;
3254 int old_pos = PT;
3255 USE_SAFE_ALLOCA;
3256
3257 validate_region (&beg, &end);
3258
3259 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3260 iend = CHAR_TO_BYTE (XFASTINT (end));
3261 move_gap_both (XFASTINT (beg), ibeg);
3262
3263 /* We need to allocate enough room for encoding the text.
3264 We need 33 1/3% more space, plus a newline every 76
3265 characters, and then we round up. */
3266 length = iend - ibeg;
3267 allength = length + length/3 + 1;
3268 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3269
3270 SAFE_ALLOCA (encoded, char *, allength);
3271 encoded_length = base64_encode_1 (BYTE_POS_ADDR (ibeg), encoded, length,
3272 NILP (no_line_break),
3273 !NILP (current_buffer->enable_multibyte_characters));
3274 if (encoded_length > allength)
3275 abort ();
3276
3277 if (encoded_length < 0)
3278 {
3279 /* The encoding wasn't possible. */
3280 SAFE_FREE ();
3281 error ("Multibyte character in data for base64 encoding");
3282 }
3283
3284 /* Now we have encoded the region, so we insert the new contents
3285 and delete the old. (Insert first in order to preserve markers.) */
3286 SET_PT_BOTH (XFASTINT (beg), ibeg);
3287 insert (encoded, encoded_length);
3288 SAFE_FREE ();
3289 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3290
3291 /* If point was outside of the region, restore it exactly; else just
3292 move to the beginning of the region. */
3293 if (old_pos >= XFASTINT (end))
3294 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3295 else if (old_pos > XFASTINT (beg))
3296 old_pos = XFASTINT (beg);
3297 SET_PT (old_pos);
3298
3299 /* We return the length of the encoded text. */
3300 return make_number (encoded_length);
3301 }
3302
3303 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3304 1, 2, 0,
3305 doc: /* Base64-encode STRING and return the result.
3306 Optional second argument NO-LINE-BREAK means do not break long lines
3307 into shorter lines. */)
3308 (string, no_line_break)
3309 Lisp_Object string, no_line_break;
3310 {
3311 int allength, length, encoded_length;
3312 char *encoded;
3313 Lisp_Object encoded_string;
3314 USE_SAFE_ALLOCA;
3315
3316 CHECK_STRING (string);
3317
3318 /* We need to allocate enough room for encoding the text.
3319 We need 33 1/3% more space, plus a newline every 76
3320 characters, and then we round up. */
3321 length = SBYTES (string);
3322 allength = length + length/3 + 1;
3323 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3324
3325 /* We need to allocate enough room for decoding the text. */
3326 SAFE_ALLOCA (encoded, char *, allength);
3327
3328 encoded_length = base64_encode_1 (SDATA (string),
3329 encoded, length, NILP (no_line_break),
3330 STRING_MULTIBYTE (string));
3331 if (encoded_length > allength)
3332 abort ();
3333
3334 if (encoded_length < 0)
3335 {
3336 /* The encoding wasn't possible. */
3337 SAFE_FREE ();
3338 error ("Multibyte character in data for base64 encoding");
3339 }
3340
3341 encoded_string = make_unibyte_string (encoded, encoded_length);
3342 SAFE_FREE ();
3343
3344 return encoded_string;
3345 }
3346
3347 static int
3348 base64_encode_1 (from, to, length, line_break, multibyte)
3349 const char *from;
3350 char *to;
3351 int length;
3352 int line_break;
3353 int multibyte;
3354 {
3355 int counter = 0, i = 0;
3356 char *e = to;
3357 int c;
3358 unsigned int value;
3359 int bytes;
3360
3361 while (i < length)
3362 {
3363 if (multibyte)
3364 {
3365 c = STRING_CHAR_AND_LENGTH (from + i, bytes);
3366 if (CHAR_BYTE8_P (c))
3367 c = CHAR_TO_BYTE8 (c);
3368 else if (c >= 256)
3369 return -1;
3370 i += bytes;
3371 }
3372 else
3373 c = from[i++];
3374
3375 /* Wrap line every 76 characters. */
3376
3377 if (line_break)
3378 {
3379 if (counter < MIME_LINE_LENGTH / 4)
3380 counter++;
3381 else
3382 {
3383 *e++ = '\n';
3384 counter = 1;
3385 }
3386 }
3387
3388 /* Process first byte of a triplet. */
3389
3390 *e++ = base64_value_to_char[0x3f & c >> 2];
3391 value = (0x03 & c) << 4;
3392
3393 /* Process second byte of a triplet. */
3394
3395 if (i == length)
3396 {
3397 *e++ = base64_value_to_char[value];
3398 *e++ = '=';
3399 *e++ = '=';
3400 break;
3401 }
3402
3403 if (multibyte)
3404 {
3405 c = STRING_CHAR_AND_LENGTH (from + i, bytes);
3406 if (CHAR_BYTE8_P (c))
3407 c = CHAR_TO_BYTE8 (c);
3408 else if (c >= 256)
3409 return -1;
3410 i += bytes;
3411 }
3412 else
3413 c = from[i++];
3414
3415 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3416 value = (0x0f & c) << 2;
3417
3418 /* Process third byte of a triplet. */
3419
3420 if (i == length)
3421 {
3422 *e++ = base64_value_to_char[value];
3423 *e++ = '=';
3424 break;
3425 }
3426
3427 if (multibyte)
3428 {
3429 c = STRING_CHAR_AND_LENGTH (from + i, bytes);
3430 if (CHAR_BYTE8_P (c))
3431 c = CHAR_TO_BYTE8 (c);
3432 else if (c >= 256)
3433 return -1;
3434 i += bytes;
3435 }
3436 else
3437 c = from[i++];
3438
3439 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3440 *e++ = base64_value_to_char[0x3f & c];
3441 }
3442
3443 return e - to;
3444 }
3445
3446
3447 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3448 2, 2, "r",
3449 doc: /* Base64-decode the region between BEG and END.
3450 Return the length of the decoded text.
3451 If the region can't be decoded, signal an error and don't modify the buffer. */)
3452 (beg, end)
3453 Lisp_Object beg, end;
3454 {
3455 int ibeg, iend, length, allength;
3456 char *decoded;
3457 int old_pos = PT;
3458 int decoded_length;
3459 int inserted_chars;
3460 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
3461 USE_SAFE_ALLOCA;
3462
3463 validate_region (&beg, &end);
3464
3465 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3466 iend = CHAR_TO_BYTE (XFASTINT (end));
3467
3468 length = iend - ibeg;
3469
3470 /* We need to allocate enough room for decoding the text. If we are
3471 working on a multibyte buffer, each decoded code may occupy at
3472 most two bytes. */
3473 allength = multibyte ? length * 2 : length;
3474 SAFE_ALLOCA (decoded, char *, allength);
3475
3476 move_gap_both (XFASTINT (beg), ibeg);
3477 decoded_length = base64_decode_1 (BYTE_POS_ADDR (ibeg), decoded, length,
3478 multibyte, &inserted_chars);
3479 if (decoded_length > allength)
3480 abort ();
3481
3482 if (decoded_length < 0)
3483 {
3484 /* The decoding wasn't possible. */
3485 SAFE_FREE ();
3486 error ("Invalid base64 data");
3487 }
3488
3489 /* Now we have decoded the region, so we insert the new contents
3490 and delete the old. (Insert first in order to preserve markers.) */
3491 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3492 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3493 SAFE_FREE ();
3494
3495 /* Delete the original text. */
3496 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3497 iend + decoded_length, 1);
3498
3499 /* If point was outside of the region, restore it exactly; else just
3500 move to the beginning of the region. */
3501 if (old_pos >= XFASTINT (end))
3502 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3503 else if (old_pos > XFASTINT (beg))
3504 old_pos = XFASTINT (beg);
3505 SET_PT (old_pos > ZV ? ZV : old_pos);
3506
3507 return make_number (inserted_chars);
3508 }
3509
3510 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3511 1, 1, 0,
3512 doc: /* Base64-decode STRING and return the result. */)
3513 (string)
3514 Lisp_Object string;
3515 {
3516 char *decoded;
3517 int length, decoded_length;
3518 Lisp_Object decoded_string;
3519 USE_SAFE_ALLOCA;
3520
3521 CHECK_STRING (string);
3522
3523 length = SBYTES (string);
3524 /* We need to allocate enough room for decoding the text. */
3525 SAFE_ALLOCA (decoded, char *, length);
3526
3527 /* The decoded result should be unibyte. */
3528 decoded_length = base64_decode_1 (SDATA (string), decoded, length,
3529 0, NULL);
3530 if (decoded_length > length)
3531 abort ();
3532 else if (decoded_length >= 0)
3533 decoded_string = make_unibyte_string (decoded, decoded_length);
3534 else
3535 decoded_string = Qnil;
3536
3537 SAFE_FREE ();
3538 if (!STRINGP (decoded_string))
3539 error ("Invalid base64 data");
3540
3541 return decoded_string;
3542 }
3543
3544 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
3545 MULTIBYTE is nonzero, the decoded result should be in multibyte
3546 form. If NCHARS_RETRUN is not NULL, store the number of produced
3547 characters in *NCHARS_RETURN. */
3548
3549 static int
3550 base64_decode_1 (from, to, length, multibyte, nchars_return)
3551 const char *from;
3552 char *to;
3553 int length;
3554 int multibyte;
3555 int *nchars_return;
3556 {
3557 int i = 0;
3558 char *e = to;
3559 unsigned char c;
3560 unsigned long value;
3561 int nchars = 0;
3562
3563 while (1)
3564 {
3565 /* Process first byte of a quadruplet. */
3566
3567 READ_QUADRUPLET_BYTE (e-to);
3568
3569 if (!IS_BASE64 (c))
3570 return -1;
3571 value = base64_char_to_value[c] << 18;
3572
3573 /* Process second byte of a quadruplet. */
3574
3575 READ_QUADRUPLET_BYTE (-1);
3576
3577 if (!IS_BASE64 (c))
3578 return -1;
3579 value |= base64_char_to_value[c] << 12;
3580
3581 c = (unsigned char) (value >> 16);
3582 if (multibyte && c >= 128)
3583 e += BYTE8_STRING (c, e);
3584 else
3585 *e++ = c;
3586 nchars++;
3587
3588 /* Process third byte of a quadruplet. */
3589
3590 READ_QUADRUPLET_BYTE (-1);
3591
3592 if (c == '=')
3593 {
3594 READ_QUADRUPLET_BYTE (-1);
3595
3596 if (c != '=')
3597 return -1;
3598 continue;
3599 }
3600
3601 if (!IS_BASE64 (c))
3602 return -1;
3603 value |= base64_char_to_value[c] << 6;
3604
3605 c = (unsigned char) (0xff & value >> 8);
3606 if (multibyte && c >= 128)
3607 e += BYTE8_STRING (c, e);
3608 else
3609 *e++ = c;
3610 nchars++;
3611
3612 /* Process fourth byte of a quadruplet. */
3613
3614 READ_QUADRUPLET_BYTE (-1);
3615
3616 if (c == '=')
3617 continue;
3618
3619 if (!IS_BASE64 (c))
3620 return -1;
3621 value |= base64_char_to_value[c];
3622
3623 c = (unsigned char) (0xff & value);
3624 if (multibyte && c >= 128)
3625 e += BYTE8_STRING (c, e);
3626 else
3627 *e++ = c;
3628 nchars++;
3629 }
3630 }
3631
3632
3633 \f
3634 /***********************************************************************
3635 ***** *****
3636 ***** Hash Tables *****
3637 ***** *****
3638 ***********************************************************************/
3639
3640 /* Implemented by gerd@gnu.org. This hash table implementation was
3641 inspired by CMUCL hash tables. */
3642
3643 /* Ideas:
3644
3645 1. For small tables, association lists are probably faster than
3646 hash tables because they have lower overhead.
3647
3648 For uses of hash tables where the O(1) behavior of table
3649 operations is not a requirement, it might therefore be a good idea
3650 not to hash. Instead, we could just do a linear search in the
3651 key_and_value vector of the hash table. This could be done
3652 if a `:linear-search t' argument is given to make-hash-table. */
3653
3654
3655 /* The list of all weak hash tables. Don't staticpro this one. */
3656
3657 struct Lisp_Hash_Table *weak_hash_tables;
3658
3659 /* Various symbols. */
3660
3661 Lisp_Object Qhash_table_p, Qeq, Qeql, Qequal, Qkey, Qvalue;
3662 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3663 Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3664
3665 /* Function prototypes. */
3666
3667 static struct Lisp_Hash_Table *check_hash_table P_ ((Lisp_Object));
3668 static int get_key_arg P_ ((Lisp_Object, int, Lisp_Object *, char *));
3669 static void maybe_resize_hash_table P_ ((struct Lisp_Hash_Table *));
3670 static int cmpfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
3671 Lisp_Object, unsigned));
3672 static int cmpfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
3673 Lisp_Object, unsigned));
3674 static int cmpfn_user_defined P_ ((struct Lisp_Hash_Table *, Lisp_Object,
3675 unsigned, Lisp_Object, unsigned));
3676 static unsigned hashfn_eq P_ ((struct Lisp_Hash_Table *, Lisp_Object));
3677 static unsigned hashfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object));
3678 static unsigned hashfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object));
3679 static unsigned hashfn_user_defined P_ ((struct Lisp_Hash_Table *,
3680 Lisp_Object));
3681 static unsigned sxhash_string P_ ((unsigned char *, int));
3682 static unsigned sxhash_list P_ ((Lisp_Object, int));
3683 static unsigned sxhash_vector P_ ((Lisp_Object, int));
3684 static unsigned sxhash_bool_vector P_ ((Lisp_Object));
3685 static int sweep_weak_table P_ ((struct Lisp_Hash_Table *, int));
3686
3687
3688 \f
3689 /***********************************************************************
3690 Utilities
3691 ***********************************************************************/
3692
3693 /* If OBJ is a Lisp hash table, return a pointer to its struct
3694 Lisp_Hash_Table. Otherwise, signal an error. */
3695
3696 static struct Lisp_Hash_Table *
3697 check_hash_table (obj)
3698 Lisp_Object obj;
3699 {
3700 CHECK_HASH_TABLE (obj);
3701 return XHASH_TABLE (obj);
3702 }
3703
3704
3705 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3706 number. */
3707
3708 int
3709 next_almost_prime (n)
3710 int n;
3711 {
3712 if (n % 2 == 0)
3713 n += 1;
3714 if (n % 3 == 0)
3715 n += 2;
3716 if (n % 7 == 0)
3717 n += 4;
3718 return n;
3719 }
3720
3721
3722 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3723 which USED[I] is non-zero. If found at index I in ARGS, set
3724 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3725 -1. This function is used to extract a keyword/argument pair from
3726 a DEFUN parameter list. */
3727
3728 static int
3729 get_key_arg (key, nargs, args, used)
3730 Lisp_Object key;
3731 int nargs;
3732 Lisp_Object *args;
3733 char *used;
3734 {
3735 int i;
3736
3737 for (i = 0; i < nargs - 1; ++i)
3738 if (!used[i] && EQ (args[i], key))
3739 break;
3740
3741 if (i >= nargs - 1)
3742 i = -1;
3743 else
3744 {
3745 used[i++] = 1;
3746 used[i] = 1;
3747 }
3748
3749 return i;
3750 }
3751
3752
3753 /* Return a Lisp vector which has the same contents as VEC but has
3754 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
3755 vector that are not copied from VEC are set to INIT. */
3756
3757 Lisp_Object
3758 larger_vector (vec, new_size, init)
3759 Lisp_Object vec;
3760 int new_size;
3761 Lisp_Object init;
3762 {
3763 struct Lisp_Vector *v;
3764 int i, old_size;
3765
3766 xassert (VECTORP (vec));
3767 old_size = ASIZE (vec);
3768 xassert (new_size >= old_size);
3769
3770 v = allocate_vector (new_size);
3771 bcopy (XVECTOR (vec)->contents, v->contents,
3772 old_size * sizeof *v->contents);
3773 for (i = old_size; i < new_size; ++i)
3774 v->contents[i] = init;
3775 XSETVECTOR (vec, v);
3776 return vec;
3777 }
3778
3779
3780 /***********************************************************************
3781 Low-level Functions
3782 ***********************************************************************/
3783
3784 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3785 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
3786 KEY2 are the same. */
3787
3788 static int
3789 cmpfn_eql (h, key1, hash1, key2, hash2)
3790 struct Lisp_Hash_Table *h;
3791 Lisp_Object key1, key2;
3792 unsigned hash1, hash2;
3793 {
3794 return (FLOATP (key1)
3795 && FLOATP (key2)
3796 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3797 }
3798
3799
3800 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3801 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
3802 KEY2 are the same. */
3803
3804 static int
3805 cmpfn_equal (h, key1, hash1, key2, hash2)
3806 struct Lisp_Hash_Table *h;
3807 Lisp_Object key1, key2;
3808 unsigned hash1, hash2;
3809 {
3810 return hash1 == hash2 && !NILP (Fequal (key1, key2));
3811 }
3812
3813
3814 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3815 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
3816 if KEY1 and KEY2 are the same. */
3817
3818 static int
3819 cmpfn_user_defined (h, key1, hash1, key2, hash2)
3820 struct Lisp_Hash_Table *h;
3821 Lisp_Object key1, key2;
3822 unsigned hash1, hash2;
3823 {
3824 if (hash1 == hash2)
3825 {
3826 Lisp_Object args[3];
3827
3828 args[0] = h->user_cmp_function;
3829 args[1] = key1;
3830 args[2] = key2;
3831 return !NILP (Ffuncall (3, args));
3832 }
3833 else
3834 return 0;
3835 }
3836
3837
3838 /* Value is a hash code for KEY for use in hash table H which uses
3839 `eq' to compare keys. The hash code returned is guaranteed to fit
3840 in a Lisp integer. */
3841
3842 static unsigned
3843 hashfn_eq (h, key)
3844 struct Lisp_Hash_Table *h;
3845 Lisp_Object key;
3846 {
3847 unsigned hash = XUINT (key) ^ XTYPE (key);
3848 xassert ((hash & ~INTMASK) == 0);
3849 return hash;
3850 }
3851
3852
3853 /* Value is a hash code for KEY for use in hash table H which uses
3854 `eql' to compare keys. The hash code returned is guaranteed to fit
3855 in a Lisp integer. */
3856
3857 static unsigned
3858 hashfn_eql (h, key)
3859 struct Lisp_Hash_Table *h;
3860 Lisp_Object key;
3861 {
3862 unsigned hash;
3863 if (FLOATP (key))
3864 hash = sxhash (key, 0);
3865 else
3866 hash = XUINT (key) ^ XTYPE (key);
3867 xassert ((hash & ~INTMASK) == 0);
3868 return hash;
3869 }
3870
3871
3872 /* Value is a hash code for KEY for use in hash table H which uses
3873 `equal' to compare keys. The hash code returned is guaranteed to fit
3874 in a Lisp integer. */
3875
3876 static unsigned
3877 hashfn_equal (h, key)
3878 struct Lisp_Hash_Table *h;
3879 Lisp_Object key;
3880 {
3881 unsigned hash = sxhash (key, 0);
3882 xassert ((hash & ~INTMASK) == 0);
3883 return hash;
3884 }
3885
3886
3887 /* Value is a hash code for KEY for use in hash table H which uses as
3888 user-defined function to compare keys. The hash code returned is
3889 guaranteed to fit in a Lisp integer. */
3890
3891 static unsigned
3892 hashfn_user_defined (h, key)
3893 struct Lisp_Hash_Table *h;
3894 Lisp_Object key;
3895 {
3896 Lisp_Object args[2], hash;
3897
3898 args[0] = h->user_hash_function;
3899 args[1] = key;
3900 hash = Ffuncall (2, args);
3901 if (!INTEGERP (hash))
3902 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3903 return XUINT (hash);
3904 }
3905
3906
3907 /* Create and initialize a new hash table.
3908
3909 TEST specifies the test the hash table will use to compare keys.
3910 It must be either one of the predefined tests `eq', `eql' or
3911 `equal' or a symbol denoting a user-defined test named TEST with
3912 test and hash functions USER_TEST and USER_HASH.
3913
3914 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3915
3916 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3917 new size when it becomes full is computed by adding REHASH_SIZE to
3918 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3919 table's new size is computed by multiplying its old size with
3920 REHASH_SIZE.
3921
3922 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3923 be resized when the ratio of (number of entries in the table) /
3924 (table size) is >= REHASH_THRESHOLD.
3925
3926 WEAK specifies the weakness of the table. If non-nil, it must be
3927 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3928
3929 Lisp_Object
3930 make_hash_table (test, size, rehash_size, rehash_threshold, weak,
3931 user_test, user_hash)
3932 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
3933 Lisp_Object user_test, user_hash;
3934 {
3935 struct Lisp_Hash_Table *h;
3936 Lisp_Object table;
3937 int index_size, i, sz;
3938
3939 /* Preconditions. */
3940 xassert (SYMBOLP (test));
3941 xassert (INTEGERP (size) && XINT (size) >= 0);
3942 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3943 || (FLOATP (rehash_size) && XFLOATINT (rehash_size) > 1.0));
3944 xassert (FLOATP (rehash_threshold)
3945 && XFLOATINT (rehash_threshold) > 0
3946 && XFLOATINT (rehash_threshold) <= 1.0);
3947
3948 if (XFASTINT (size) == 0)
3949 size = make_number (1);
3950
3951 /* Allocate a table and initialize it. */
3952 h = allocate_hash_table ();
3953
3954 /* Initialize hash table slots. */
3955 sz = XFASTINT (size);
3956
3957 h->test = test;
3958 if (EQ (test, Qeql))
3959 {
3960 h->cmpfn = cmpfn_eql;
3961 h->hashfn = hashfn_eql;
3962 }
3963 else if (EQ (test, Qeq))
3964 {
3965 h->cmpfn = NULL;
3966 h->hashfn = hashfn_eq;
3967 }
3968 else if (EQ (test, Qequal))
3969 {
3970 h->cmpfn = cmpfn_equal;
3971 h->hashfn = hashfn_equal;
3972 }
3973 else
3974 {
3975 h->user_cmp_function = user_test;
3976 h->user_hash_function = user_hash;
3977 h->cmpfn = cmpfn_user_defined;
3978 h->hashfn = hashfn_user_defined;
3979 }
3980
3981 h->weak = weak;
3982 h->rehash_threshold = rehash_threshold;
3983 h->rehash_size = rehash_size;
3984 h->count = 0;
3985 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3986 h->hash = Fmake_vector (size, Qnil);
3987 h->next = Fmake_vector (size, Qnil);
3988 /* Cast to int here avoids losing with gcc 2.95 on Tru64/Alpha... */
3989 index_size = next_almost_prime ((int) (sz / XFLOATINT (rehash_threshold)));
3990 h->index = Fmake_vector (make_number (index_size), Qnil);
3991
3992 /* Set up the free list. */
3993 for (i = 0; i < sz - 1; ++i)
3994 HASH_NEXT (h, i) = make_number (i + 1);
3995 h->next_free = make_number (0);
3996
3997 XSET_HASH_TABLE (table, h);
3998 xassert (HASH_TABLE_P (table));
3999 xassert (XHASH_TABLE (table) == h);
4000
4001 /* Maybe add this hash table to the list of all weak hash tables. */
4002 if (NILP (h->weak))
4003 h->next_weak = NULL;
4004 else
4005 {
4006 h->next_weak = weak_hash_tables;
4007 weak_hash_tables = h;
4008 }
4009
4010 return table;
4011 }
4012
4013
4014 /* Return a copy of hash table H1. Keys and values are not copied,
4015 only the table itself is. */
4016
4017 Lisp_Object
4018 copy_hash_table (h1)
4019 struct Lisp_Hash_Table *h1;
4020 {
4021 Lisp_Object table;
4022 struct Lisp_Hash_Table *h2;
4023 struct Lisp_Vector *next;
4024
4025 h2 = allocate_hash_table ();
4026 next = h2->vec_next;
4027 bcopy (h1, h2, sizeof *h2);
4028 h2->vec_next = next;
4029 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
4030 h2->hash = Fcopy_sequence (h1->hash);
4031 h2->next = Fcopy_sequence (h1->next);
4032 h2->index = Fcopy_sequence (h1->index);
4033 XSET_HASH_TABLE (table, h2);
4034
4035 /* Maybe add this hash table to the list of all weak hash tables. */
4036 if (!NILP (h2->weak))
4037 {
4038 h2->next_weak = weak_hash_tables;
4039 weak_hash_tables = h2;
4040 }
4041
4042 return table;
4043 }
4044
4045
4046 /* Resize hash table H if it's too full. If H cannot be resized
4047 because it's already too large, throw an error. */
4048
4049 static INLINE void
4050 maybe_resize_hash_table (h)
4051 struct Lisp_Hash_Table *h;
4052 {
4053 if (NILP (h->next_free))
4054 {
4055 int old_size = HASH_TABLE_SIZE (h);
4056 int i, new_size, index_size;
4057 EMACS_INT nsize;
4058
4059 if (INTEGERP (h->rehash_size))
4060 new_size = old_size + XFASTINT (h->rehash_size);
4061 else
4062 new_size = old_size * XFLOATINT (h->rehash_size);
4063 new_size = max (old_size + 1, new_size);
4064 index_size = next_almost_prime ((int)
4065 (new_size
4066 / XFLOATINT (h->rehash_threshold)));
4067 /* Assignment to EMACS_INT stops GCC whining about limited range
4068 of data type. */
4069 nsize = max (index_size, 2 * new_size);
4070 if (nsize > MOST_POSITIVE_FIXNUM)
4071 error ("Hash table too large to resize");
4072
4073 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
4074 h->next = larger_vector (h->next, new_size, Qnil);
4075 h->hash = larger_vector (h->hash, new_size, Qnil);
4076 h->index = Fmake_vector (make_number (index_size), Qnil);
4077
4078 /* Update the free list. Do it so that new entries are added at
4079 the end of the free list. This makes some operations like
4080 maphash faster. */
4081 for (i = old_size; i < new_size - 1; ++i)
4082 HASH_NEXT (h, i) = make_number (i + 1);
4083
4084 if (!NILP (h->next_free))
4085 {
4086 Lisp_Object last, next;
4087
4088 last = h->next_free;
4089 while (next = HASH_NEXT (h, XFASTINT (last)),
4090 !NILP (next))
4091 last = next;
4092
4093 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
4094 }
4095 else
4096 XSETFASTINT (h->next_free, old_size);
4097
4098 /* Rehash. */
4099 for (i = 0; i < old_size; ++i)
4100 if (!NILP (HASH_HASH (h, i)))
4101 {
4102 unsigned hash_code = XUINT (HASH_HASH (h, i));
4103 int start_of_bucket = hash_code % ASIZE (h->index);
4104 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4105 HASH_INDEX (h, start_of_bucket) = make_number (i);
4106 }
4107 }
4108 }
4109
4110
4111 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
4112 the hash code of KEY. Value is the index of the entry in H
4113 matching KEY, or -1 if not found. */
4114
4115 int
4116 hash_lookup (h, key, hash)
4117 struct Lisp_Hash_Table *h;
4118 Lisp_Object key;
4119 unsigned *hash;
4120 {
4121 unsigned hash_code;
4122 int start_of_bucket;
4123 Lisp_Object idx;
4124
4125 hash_code = h->hashfn (h, key);
4126 if (hash)
4127 *hash = hash_code;
4128
4129 start_of_bucket = hash_code % ASIZE (h->index);
4130 idx = HASH_INDEX (h, start_of_bucket);
4131
4132 /* We need not gcpro idx since it's either an integer or nil. */
4133 while (!NILP (idx))
4134 {
4135 int i = XFASTINT (idx);
4136 if (EQ (key, HASH_KEY (h, i))
4137 || (h->cmpfn
4138 && h->cmpfn (h, key, hash_code,
4139 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4140 break;
4141 idx = HASH_NEXT (h, i);
4142 }
4143
4144 return NILP (idx) ? -1 : XFASTINT (idx);
4145 }
4146
4147
4148 /* Put an entry into hash table H that associates KEY with VALUE.
4149 HASH is a previously computed hash code of KEY.
4150 Value is the index of the entry in H matching KEY. */
4151
4152 int
4153 hash_put (h, key, value, hash)
4154 struct Lisp_Hash_Table *h;
4155 Lisp_Object key, value;
4156 unsigned hash;
4157 {
4158 int start_of_bucket, i;
4159
4160 xassert ((hash & ~INTMASK) == 0);
4161
4162 /* Increment count after resizing because resizing may fail. */
4163 maybe_resize_hash_table (h);
4164 h->count++;
4165
4166 /* Store key/value in the key_and_value vector. */
4167 i = XFASTINT (h->next_free);
4168 h->next_free = HASH_NEXT (h, i);
4169 HASH_KEY (h, i) = key;
4170 HASH_VALUE (h, i) = value;
4171
4172 /* Remember its hash code. */
4173 HASH_HASH (h, i) = make_number (hash);
4174
4175 /* Add new entry to its collision chain. */
4176 start_of_bucket = hash % ASIZE (h->index);
4177 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4178 HASH_INDEX (h, start_of_bucket) = make_number (i);
4179 return i;
4180 }
4181
4182
4183 /* Remove the entry matching KEY from hash table H, if there is one. */
4184
4185 static void
4186 hash_remove_from_table (h, key)
4187 struct Lisp_Hash_Table *h;
4188 Lisp_Object key;
4189 {
4190 unsigned hash_code;
4191 int start_of_bucket;
4192 Lisp_Object idx, prev;
4193
4194 hash_code = h->hashfn (h, key);
4195 start_of_bucket = hash_code % ASIZE (h->index);
4196 idx = HASH_INDEX (h, start_of_bucket);
4197 prev = Qnil;
4198
4199 /* We need not gcpro idx, prev since they're either integers or nil. */
4200 while (!NILP (idx))
4201 {
4202 int i = XFASTINT (idx);
4203
4204 if (EQ (key, HASH_KEY (h, i))
4205 || (h->cmpfn
4206 && h->cmpfn (h, key, hash_code,
4207 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4208 {
4209 /* Take entry out of collision chain. */
4210 if (NILP (prev))
4211 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
4212 else
4213 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
4214
4215 /* Clear slots in key_and_value and add the slots to
4216 the free list. */
4217 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
4218 HASH_NEXT (h, i) = h->next_free;
4219 h->next_free = make_number (i);
4220 h->count--;
4221 xassert (h->count >= 0);
4222 break;
4223 }
4224 else
4225 {
4226 prev = idx;
4227 idx = HASH_NEXT (h, i);
4228 }
4229 }
4230 }
4231
4232
4233 /* Clear hash table H. */
4234
4235 void
4236 hash_clear (h)
4237 struct Lisp_Hash_Table *h;
4238 {
4239 if (h->count > 0)
4240 {
4241 int i, size = HASH_TABLE_SIZE (h);
4242
4243 for (i = 0; i < size; ++i)
4244 {
4245 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
4246 HASH_KEY (h, i) = Qnil;
4247 HASH_VALUE (h, i) = Qnil;
4248 HASH_HASH (h, i) = Qnil;
4249 }
4250
4251 for (i = 0; i < ASIZE (h->index); ++i)
4252 ASET (h->index, i, Qnil);
4253
4254 h->next_free = make_number (0);
4255 h->count = 0;
4256 }
4257 }
4258
4259
4260 \f
4261 /************************************************************************
4262 Weak Hash Tables
4263 ************************************************************************/
4264
4265 void
4266 init_weak_hash_tables ()
4267 {
4268 weak_hash_tables = NULL;
4269 }
4270
4271 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
4272 entries from the table that don't survive the current GC.
4273 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
4274 non-zero if anything was marked. */
4275
4276 static int
4277 sweep_weak_table (h, remove_entries_p)
4278 struct Lisp_Hash_Table *h;
4279 int remove_entries_p;
4280 {
4281 int bucket, n, marked;
4282
4283 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
4284 marked = 0;
4285
4286 for (bucket = 0; bucket < n; ++bucket)
4287 {
4288 Lisp_Object idx, next, prev;
4289
4290 /* Follow collision chain, removing entries that
4291 don't survive this garbage collection. */
4292 prev = Qnil;
4293 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
4294 {
4295 int i = XFASTINT (idx);
4296 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
4297 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
4298 int remove_p;
4299
4300 if (EQ (h->weak, Qkey))
4301 remove_p = !key_known_to_survive_p;
4302 else if (EQ (h->weak, Qvalue))
4303 remove_p = !value_known_to_survive_p;
4304 else if (EQ (h->weak, Qkey_or_value))
4305 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
4306 else if (EQ (h->weak, Qkey_and_value))
4307 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
4308 else
4309 abort ();
4310
4311 next = HASH_NEXT (h, i);
4312
4313 if (remove_entries_p)
4314 {
4315 if (remove_p)
4316 {
4317 /* Take out of collision chain. */
4318 if (NILP (prev))
4319 HASH_INDEX (h, bucket) = next;
4320 else
4321 HASH_NEXT (h, XFASTINT (prev)) = next;
4322
4323 /* Add to free list. */
4324 HASH_NEXT (h, i) = h->next_free;
4325 h->next_free = idx;
4326
4327 /* Clear key, value, and hash. */
4328 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
4329 HASH_HASH (h, i) = Qnil;
4330
4331 h->count--;
4332 }
4333 else
4334 {
4335 prev = idx;
4336 }
4337 }
4338 else
4339 {
4340 if (!remove_p)
4341 {
4342 /* Make sure key and value survive. */
4343 if (!key_known_to_survive_p)
4344 {
4345 mark_object (HASH_KEY (h, i));
4346 marked = 1;
4347 }
4348
4349 if (!value_known_to_survive_p)
4350 {
4351 mark_object (HASH_VALUE (h, i));
4352 marked = 1;
4353 }
4354 }
4355 }
4356 }
4357 }
4358
4359 return marked;
4360 }
4361
4362 /* Remove elements from weak hash tables that don't survive the
4363 current garbage collection. Remove weak tables that don't survive
4364 from Vweak_hash_tables. Called from gc_sweep. */
4365
4366 void
4367 sweep_weak_hash_tables ()
4368 {
4369 struct Lisp_Hash_Table *h, *used, *next;
4370 int marked;
4371
4372 /* Mark all keys and values that are in use. Keep on marking until
4373 there is no more change. This is necessary for cases like
4374 value-weak table A containing an entry X -> Y, where Y is used in a
4375 key-weak table B, Z -> Y. If B comes after A in the list of weak
4376 tables, X -> Y might be removed from A, although when looking at B
4377 one finds that it shouldn't. */
4378 do
4379 {
4380 marked = 0;
4381 for (h = weak_hash_tables; h; h = h->next_weak)
4382 {
4383 if (h->size & ARRAY_MARK_FLAG)
4384 marked |= sweep_weak_table (h, 0);
4385 }
4386 }
4387 while (marked);
4388
4389 /* Remove tables and entries that aren't used. */
4390 for (h = weak_hash_tables, used = NULL; h; h = next)
4391 {
4392 next = h->next_weak;
4393
4394 if (h->size & ARRAY_MARK_FLAG)
4395 {
4396 /* TABLE is marked as used. Sweep its contents. */
4397 if (h->count > 0)
4398 sweep_weak_table (h, 1);
4399
4400 /* Add table to the list of used weak hash tables. */
4401 h->next_weak = used;
4402 used = h;
4403 }
4404 }
4405
4406 weak_hash_tables = used;
4407 }
4408
4409
4410 \f
4411 /***********************************************************************
4412 Hash Code Computation
4413 ***********************************************************************/
4414
4415 /* Maximum depth up to which to dive into Lisp structures. */
4416
4417 #define SXHASH_MAX_DEPTH 3
4418
4419 /* Maximum length up to which to take list and vector elements into
4420 account. */
4421
4422 #define SXHASH_MAX_LEN 7
4423
4424 /* Combine two integers X and Y for hashing. */
4425
4426 #define SXHASH_COMBINE(X, Y) \
4427 ((((unsigned)(X) << 4) + (((unsigned)(X) >> 24) & 0x0fffffff)) \
4428 + (unsigned)(Y))
4429
4430
4431 /* Return a hash for string PTR which has length LEN. The hash
4432 code returned is guaranteed to fit in a Lisp integer. */
4433
4434 static unsigned
4435 sxhash_string (ptr, len)
4436 unsigned char *ptr;
4437 int len;
4438 {
4439 unsigned char *p = ptr;
4440 unsigned char *end = p + len;
4441 unsigned char c;
4442 unsigned hash = 0;
4443
4444 while (p != end)
4445 {
4446 c = *p++;
4447 if (c >= 0140)
4448 c -= 40;
4449 hash = ((hash << 4) + (hash >> 28) + c);
4450 }
4451
4452 return hash & INTMASK;
4453 }
4454
4455
4456 /* Return a hash for list LIST. DEPTH is the current depth in the
4457 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4458
4459 static unsigned
4460 sxhash_list (list, depth)
4461 Lisp_Object list;
4462 int depth;
4463 {
4464 unsigned hash = 0;
4465 int i;
4466
4467 if (depth < SXHASH_MAX_DEPTH)
4468 for (i = 0;
4469 CONSP (list) && i < SXHASH_MAX_LEN;
4470 list = XCDR (list), ++i)
4471 {
4472 unsigned hash2 = sxhash (XCAR (list), depth + 1);
4473 hash = SXHASH_COMBINE (hash, hash2);
4474 }
4475
4476 if (!NILP (list))
4477 {
4478 unsigned hash2 = sxhash (list, depth + 1);
4479 hash = SXHASH_COMBINE (hash, hash2);
4480 }
4481
4482 return hash;
4483 }
4484
4485
4486 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4487 the Lisp structure. */
4488
4489 static unsigned
4490 sxhash_vector (vec, depth)
4491 Lisp_Object vec;
4492 int depth;
4493 {
4494 unsigned hash = ASIZE (vec);
4495 int i, n;
4496
4497 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4498 for (i = 0; i < n; ++i)
4499 {
4500 unsigned hash2 = sxhash (AREF (vec, i), depth + 1);
4501 hash = SXHASH_COMBINE (hash, hash2);
4502 }
4503
4504 return hash;
4505 }
4506
4507
4508 /* Return a hash for bool-vector VECTOR. */
4509
4510 static unsigned
4511 sxhash_bool_vector (vec)
4512 Lisp_Object vec;
4513 {
4514 unsigned hash = XBOOL_VECTOR (vec)->size;
4515 int i, n;
4516
4517 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->vector_size);
4518 for (i = 0; i < n; ++i)
4519 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4520
4521 return hash;
4522 }
4523
4524
4525 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4526 structure. Value is an unsigned integer clipped to INTMASK. */
4527
4528 unsigned
4529 sxhash (obj, depth)
4530 Lisp_Object obj;
4531 int depth;
4532 {
4533 unsigned hash;
4534
4535 if (depth > SXHASH_MAX_DEPTH)
4536 return 0;
4537
4538 switch (XTYPE (obj))
4539 {
4540 case_Lisp_Int:
4541 hash = XUINT (obj);
4542 break;
4543
4544 case Lisp_Misc:
4545 hash = XUINT (obj);
4546 break;
4547
4548 case Lisp_Symbol:
4549 obj = SYMBOL_NAME (obj);
4550 /* Fall through. */
4551
4552 case Lisp_String:
4553 hash = sxhash_string (SDATA (obj), SCHARS (obj));
4554 break;
4555
4556 /* This can be everything from a vector to an overlay. */
4557 case Lisp_Vectorlike:
4558 if (VECTORP (obj))
4559 /* According to the CL HyperSpec, two arrays are equal only if
4560 they are `eq', except for strings and bit-vectors. In
4561 Emacs, this works differently. We have to compare element
4562 by element. */
4563 hash = sxhash_vector (obj, depth);
4564 else if (BOOL_VECTOR_P (obj))
4565 hash = sxhash_bool_vector (obj);
4566 else
4567 /* Others are `equal' if they are `eq', so let's take their
4568 address as hash. */
4569 hash = XUINT (obj);
4570 break;
4571
4572 case Lisp_Cons:
4573 hash = sxhash_list (obj, depth);
4574 break;
4575
4576 case Lisp_Float:
4577 {
4578 double val = XFLOAT_DATA (obj);
4579 unsigned char *p = (unsigned char *) &val;
4580 unsigned char *e = p + sizeof val;
4581 for (hash = 0; p < e; ++p)
4582 hash = SXHASH_COMBINE (hash, *p);
4583 break;
4584 }
4585
4586 default:
4587 abort ();
4588 }
4589
4590 return hash & INTMASK;
4591 }
4592
4593
4594 \f
4595 /***********************************************************************
4596 Lisp Interface
4597 ***********************************************************************/
4598
4599
4600 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4601 doc: /* Compute a hash code for OBJ and return it as integer. */)
4602 (obj)
4603 Lisp_Object obj;
4604 {
4605 unsigned hash = sxhash (obj, 0);
4606 return make_number (hash);
4607 }
4608
4609
4610 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4611 doc: /* Create and return a new hash table.
4612
4613 Arguments are specified as keyword/argument pairs. The following
4614 arguments are defined:
4615
4616 :test TEST -- TEST must be a symbol that specifies how to compare
4617 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4618 `equal'. User-supplied test and hash functions can be specified via
4619 `define-hash-table-test'.
4620
4621 :size SIZE -- A hint as to how many elements will be put in the table.
4622 Default is 65.
4623
4624 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4625 fills up. If REHASH-SIZE is an integer, add that many space. If it
4626 is a float, it must be > 1.0, and the new size is computed by
4627 multiplying the old size with that factor. Default is 1.5.
4628
4629 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4630 Resize the hash table when ratio of the number of entries in the
4631 table. Default is 0.8.
4632
4633 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4634 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4635 returned is a weak table. Key/value pairs are removed from a weak
4636 hash table when there are no non-weak references pointing to their
4637 key, value, one of key or value, or both key and value, depending on
4638 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4639 is nil.
4640
4641 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4642 (nargs, args)
4643 int nargs;
4644 Lisp_Object *args;
4645 {
4646 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4647 Lisp_Object user_test, user_hash;
4648 char *used;
4649 int i;
4650
4651 /* The vector `used' is used to keep track of arguments that
4652 have been consumed. */
4653 used = (char *) alloca (nargs * sizeof *used);
4654 bzero (used, nargs * sizeof *used);
4655
4656 /* See if there's a `:test TEST' among the arguments. */
4657 i = get_key_arg (QCtest, nargs, args, used);
4658 test = i < 0 ? Qeql : args[i];
4659 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
4660 {
4661 /* See if it is a user-defined test. */
4662 Lisp_Object prop;
4663
4664 prop = Fget (test, Qhash_table_test);
4665 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4666 signal_error ("Invalid hash table test", test);
4667 user_test = XCAR (prop);
4668 user_hash = XCAR (XCDR (prop));
4669 }
4670 else
4671 user_test = user_hash = Qnil;
4672
4673 /* See if there's a `:size SIZE' argument. */
4674 i = get_key_arg (QCsize, nargs, args, used);
4675 size = i < 0 ? Qnil : args[i];
4676 if (NILP (size))
4677 size = make_number (DEFAULT_HASH_SIZE);
4678 else if (!INTEGERP (size) || XINT (size) < 0)
4679 signal_error ("Invalid hash table size", size);
4680
4681 /* Look for `:rehash-size SIZE'. */
4682 i = get_key_arg (QCrehash_size, nargs, args, used);
4683 rehash_size = i < 0 ? make_float (DEFAULT_REHASH_SIZE) : args[i];
4684 if (!NUMBERP (rehash_size)
4685 || (INTEGERP (rehash_size) && XINT (rehash_size) <= 0)
4686 || XFLOATINT (rehash_size) <= 1.0)
4687 signal_error ("Invalid hash table rehash size", rehash_size);
4688
4689 /* Look for `:rehash-threshold THRESHOLD'. */
4690 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4691 rehash_threshold = i < 0 ? make_float (DEFAULT_REHASH_THRESHOLD) : args[i];
4692 if (!FLOATP (rehash_threshold)
4693 || XFLOATINT (rehash_threshold) <= 0.0
4694 || XFLOATINT (rehash_threshold) > 1.0)
4695 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4696
4697 /* Look for `:weakness WEAK'. */
4698 i = get_key_arg (QCweakness, nargs, args, used);
4699 weak = i < 0 ? Qnil : args[i];
4700 if (EQ (weak, Qt))
4701 weak = Qkey_and_value;
4702 if (!NILP (weak)
4703 && !EQ (weak, Qkey)
4704 && !EQ (weak, Qvalue)
4705 && !EQ (weak, Qkey_or_value)
4706 && !EQ (weak, Qkey_and_value))
4707 signal_error ("Invalid hash table weakness", weak);
4708
4709 /* Now, all args should have been used up, or there's a problem. */
4710 for (i = 0; i < nargs; ++i)
4711 if (!used[i])
4712 signal_error ("Invalid argument list", args[i]);
4713
4714 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4715 user_test, user_hash);
4716 }
4717
4718
4719 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4720 doc: /* Return a copy of hash table TABLE. */)
4721 (table)
4722 Lisp_Object table;
4723 {
4724 return copy_hash_table (check_hash_table (table));
4725 }
4726
4727
4728 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4729 doc: /* Return the number of elements in TABLE. */)
4730 (table)
4731 Lisp_Object table;
4732 {
4733 return make_number (check_hash_table (table)->count);
4734 }
4735
4736
4737 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4738 Shash_table_rehash_size, 1, 1, 0,
4739 doc: /* Return the current rehash size of TABLE. */)
4740 (table)
4741 Lisp_Object table;
4742 {
4743 return check_hash_table (table)->rehash_size;
4744 }
4745
4746
4747 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4748 Shash_table_rehash_threshold, 1, 1, 0,
4749 doc: /* Return the current rehash threshold of TABLE. */)
4750 (table)
4751 Lisp_Object table;
4752 {
4753 return check_hash_table (table)->rehash_threshold;
4754 }
4755
4756
4757 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4758 doc: /* Return the size of TABLE.
4759 The size can be used as an argument to `make-hash-table' to create
4760 a hash table than can hold as many elements of TABLE holds
4761 without need for resizing. */)
4762 (table)
4763 Lisp_Object table;
4764 {
4765 struct Lisp_Hash_Table *h = check_hash_table (table);
4766 return make_number (HASH_TABLE_SIZE (h));
4767 }
4768
4769
4770 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4771 doc: /* Return the test TABLE uses. */)
4772 (table)
4773 Lisp_Object table;
4774 {
4775 return check_hash_table (table)->test;
4776 }
4777
4778
4779 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4780 1, 1, 0,
4781 doc: /* Return the weakness of TABLE. */)
4782 (table)
4783 Lisp_Object table;
4784 {
4785 return check_hash_table (table)->weak;
4786 }
4787
4788
4789 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4790 doc: /* Return t if OBJ is a Lisp hash table object. */)
4791 (obj)
4792 Lisp_Object obj;
4793 {
4794 return HASH_TABLE_P (obj) ? Qt : Qnil;
4795 }
4796
4797
4798 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4799 doc: /* Clear hash table TABLE and return it. */)
4800 (table)
4801 Lisp_Object table;
4802 {
4803 hash_clear (check_hash_table (table));
4804 /* Be compatible with XEmacs. */
4805 return table;
4806 }
4807
4808
4809 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4810 doc: /* Look up KEY in TABLE and return its associated value.
4811 If KEY is not found, return DFLT which defaults to nil. */)
4812 (key, table, dflt)
4813 Lisp_Object key, table, dflt;
4814 {
4815 struct Lisp_Hash_Table *h = check_hash_table (table);
4816 int i = hash_lookup (h, key, NULL);
4817 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4818 }
4819
4820
4821 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4822 doc: /* Associate KEY with VALUE in hash table TABLE.
4823 If KEY is already present in table, replace its current value with
4824 VALUE. */)
4825 (key, value, table)
4826 Lisp_Object key, value, table;
4827 {
4828 struct Lisp_Hash_Table *h = check_hash_table (table);
4829 int i;
4830 unsigned hash;
4831
4832 i = hash_lookup (h, key, &hash);
4833 if (i >= 0)
4834 HASH_VALUE (h, i) = value;
4835 else
4836 hash_put (h, key, value, hash);
4837
4838 return value;
4839 }
4840
4841
4842 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4843 doc: /* Remove KEY from TABLE. */)
4844 (key, table)
4845 Lisp_Object key, table;
4846 {
4847 struct Lisp_Hash_Table *h = check_hash_table (table);
4848 hash_remove_from_table (h, key);
4849 return Qnil;
4850 }
4851
4852
4853 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4854 doc: /* Call FUNCTION for all entries in hash table TABLE.
4855 FUNCTION is called with two arguments, KEY and VALUE. */)
4856 (function, table)
4857 Lisp_Object function, table;
4858 {
4859 struct Lisp_Hash_Table *h = check_hash_table (table);
4860 Lisp_Object args[3];
4861 int i;
4862
4863 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4864 if (!NILP (HASH_HASH (h, i)))
4865 {
4866 args[0] = function;
4867 args[1] = HASH_KEY (h, i);
4868 args[2] = HASH_VALUE (h, i);
4869 Ffuncall (3, args);
4870 }
4871
4872 return Qnil;
4873 }
4874
4875
4876 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4877 Sdefine_hash_table_test, 3, 3, 0,
4878 doc: /* Define a new hash table test with name NAME, a symbol.
4879
4880 In hash tables created with NAME specified as test, use TEST to
4881 compare keys, and HASH for computing hash codes of keys.
4882
4883 TEST must be a function taking two arguments and returning non-nil if
4884 both arguments are the same. HASH must be a function taking one
4885 argument and return an integer that is the hash code of the argument.
4886 Hash code computation should use the whole value range of integers,
4887 including negative integers. */)
4888 (name, test, hash)
4889 Lisp_Object name, test, hash;
4890 {
4891 return Fput (name, Qhash_table_test, list2 (test, hash));
4892 }
4893
4894
4895 \f
4896 /************************************************************************
4897 MD5
4898 ************************************************************************/
4899
4900 #include "md5.h"
4901
4902 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4903 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4904
4905 A message digest is a cryptographic checksum of a document, and the
4906 algorithm to calculate it is defined in RFC 1321.
4907
4908 The two optional arguments START and END are character positions
4909 specifying for which part of OBJECT the message digest should be
4910 computed. If nil or omitted, the digest is computed for the whole
4911 OBJECT.
4912
4913 The MD5 message digest is computed from the result of encoding the
4914 text in a coding system, not directly from the internal Emacs form of
4915 the text. The optional fourth argument CODING-SYSTEM specifies which
4916 coding system to encode the text with. It should be the same coding
4917 system that you used or will use when actually writing the text into a
4918 file.
4919
4920 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4921 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4922 system would be chosen by default for writing this text into a file.
4923
4924 If OBJECT is a string, the most preferred coding system (see the
4925 command `prefer-coding-system') is used.
4926
4927 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4928 guesswork fails. Normally, an error is signaled in such case. */)
4929 (object, start, end, coding_system, noerror)
4930 Lisp_Object object, start, end, coding_system, noerror;
4931 {
4932 unsigned char digest[16];
4933 unsigned char value[33];
4934 int i;
4935 int size;
4936 int size_byte = 0;
4937 int start_char = 0, end_char = 0;
4938 int start_byte = 0, end_byte = 0;
4939 register int b, e;
4940 register struct buffer *bp;
4941 int temp;
4942
4943 if (STRINGP (object))
4944 {
4945 if (NILP (coding_system))
4946 {
4947 /* Decide the coding-system to encode the data with. */
4948
4949 if (STRING_MULTIBYTE (object))
4950 /* use default, we can't guess correct value */
4951 coding_system = preferred_coding_system ();
4952 else
4953 coding_system = Qraw_text;
4954 }
4955
4956 if (NILP (Fcoding_system_p (coding_system)))
4957 {
4958 /* Invalid coding system. */
4959
4960 if (!NILP (noerror))
4961 coding_system = Qraw_text;
4962 else
4963 xsignal1 (Qcoding_system_error, coding_system);
4964 }
4965
4966 if (STRING_MULTIBYTE (object))
4967 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4968
4969 size = SCHARS (object);
4970 size_byte = SBYTES (object);
4971
4972 if (!NILP (start))
4973 {
4974 CHECK_NUMBER (start);
4975
4976 start_char = XINT (start);
4977
4978 if (start_char < 0)
4979 start_char += size;
4980
4981 start_byte = string_char_to_byte (object, start_char);
4982 }
4983
4984 if (NILP (end))
4985 {
4986 end_char = size;
4987 end_byte = size_byte;
4988 }
4989 else
4990 {
4991 CHECK_NUMBER (end);
4992
4993 end_char = XINT (end);
4994
4995 if (end_char < 0)
4996 end_char += size;
4997
4998 end_byte = string_char_to_byte (object, end_char);
4999 }
5000
5001 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
5002 args_out_of_range_3 (object, make_number (start_char),
5003 make_number (end_char));
5004 }
5005 else
5006 {
5007 struct buffer *prev = current_buffer;
5008
5009 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
5010
5011 CHECK_BUFFER (object);
5012
5013 bp = XBUFFER (object);
5014 if (bp != current_buffer)
5015 set_buffer_internal (bp);
5016
5017 if (NILP (start))
5018 b = BEGV;
5019 else
5020 {
5021 CHECK_NUMBER_COERCE_MARKER (start);
5022 b = XINT (start);
5023 }
5024
5025 if (NILP (end))
5026 e = ZV;
5027 else
5028 {
5029 CHECK_NUMBER_COERCE_MARKER (end);
5030 e = XINT (end);
5031 }
5032
5033 if (b > e)
5034 temp = b, b = e, e = temp;
5035
5036 if (!(BEGV <= b && e <= ZV))
5037 args_out_of_range (start, end);
5038
5039 if (NILP (coding_system))
5040 {
5041 /* Decide the coding-system to encode the data with.
5042 See fileio.c:Fwrite-region */
5043
5044 if (!NILP (Vcoding_system_for_write))
5045 coding_system = Vcoding_system_for_write;
5046 else
5047 {
5048 int force_raw_text = 0;
5049
5050 coding_system = XBUFFER (object)->buffer_file_coding_system;
5051 if (NILP (coding_system)
5052 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
5053 {
5054 coding_system = Qnil;
5055 if (NILP (current_buffer->enable_multibyte_characters))
5056 force_raw_text = 1;
5057 }
5058
5059 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
5060 {
5061 /* Check file-coding-system-alist. */
5062 Lisp_Object args[4], val;
5063
5064 args[0] = Qwrite_region; args[1] = start; args[2] = end;
5065 args[3] = Fbuffer_file_name(object);
5066 val = Ffind_operation_coding_system (4, args);
5067 if (CONSP (val) && !NILP (XCDR (val)))
5068 coding_system = XCDR (val);
5069 }
5070
5071 if (NILP (coding_system)
5072 && !NILP (XBUFFER (object)->buffer_file_coding_system))
5073 {
5074 /* If we still have not decided a coding system, use the
5075 default value of buffer-file-coding-system. */
5076 coding_system = XBUFFER (object)->buffer_file_coding_system;
5077 }
5078
5079 if (!force_raw_text
5080 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
5081 /* Confirm that VAL can surely encode the current region. */
5082 coding_system = call4 (Vselect_safe_coding_system_function,
5083 make_number (b), make_number (e),
5084 coding_system, Qnil);
5085
5086 if (force_raw_text)
5087 coding_system = Qraw_text;
5088 }
5089
5090 if (NILP (Fcoding_system_p (coding_system)))
5091 {
5092 /* Invalid coding system. */
5093
5094 if (!NILP (noerror))
5095 coding_system = Qraw_text;
5096 else
5097 xsignal1 (Qcoding_system_error, coding_system);
5098 }
5099 }
5100
5101 object = make_buffer_string (b, e, 0);
5102 if (prev != current_buffer)
5103 set_buffer_internal (prev);
5104 /* Discard the unwind protect for recovering the current
5105 buffer. */
5106 specpdl_ptr--;
5107
5108 if (STRING_MULTIBYTE (object))
5109 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
5110 }
5111
5112 md5_buffer (SDATA (object) + start_byte,
5113 SBYTES (object) - (size_byte - end_byte),
5114 digest);
5115
5116 for (i = 0; i < 16; i++)
5117 sprintf (&value[2 * i], "%02x", digest[i]);
5118 value[32] = '\0';
5119
5120 return make_string (value, 32);
5121 }
5122
5123 \f
5124 void
5125 syms_of_fns ()
5126 {
5127 /* Hash table stuff. */
5128 Qhash_table_p = intern_c_string ("hash-table-p");
5129 staticpro (&Qhash_table_p);
5130 Qeq = intern_c_string ("eq");
5131 staticpro (&Qeq);
5132 Qeql = intern_c_string ("eql");
5133 staticpro (&Qeql);
5134 Qequal = intern_c_string ("equal");
5135 staticpro (&Qequal);
5136 QCtest = intern_c_string (":test");
5137 staticpro (&QCtest);
5138 QCsize = intern_c_string (":size");
5139 staticpro (&QCsize);
5140 QCrehash_size = intern_c_string (":rehash-size");
5141 staticpro (&QCrehash_size);
5142 QCrehash_threshold = intern_c_string (":rehash-threshold");
5143 staticpro (&QCrehash_threshold);
5144 QCweakness = intern_c_string (":weakness");
5145 staticpro (&QCweakness);
5146 Qkey = intern_c_string ("key");
5147 staticpro (&Qkey);
5148 Qvalue = intern_c_string ("value");
5149 staticpro (&Qvalue);
5150 Qhash_table_test = intern_c_string ("hash-table-test");
5151 staticpro (&Qhash_table_test);
5152 Qkey_or_value = intern_c_string ("key-or-value");
5153 staticpro (&Qkey_or_value);
5154 Qkey_and_value = intern_c_string ("key-and-value");
5155 staticpro (&Qkey_and_value);
5156
5157 defsubr (&Ssxhash);
5158 defsubr (&Smake_hash_table);
5159 defsubr (&Scopy_hash_table);
5160 defsubr (&Shash_table_count);
5161 defsubr (&Shash_table_rehash_size);
5162 defsubr (&Shash_table_rehash_threshold);
5163 defsubr (&Shash_table_size);
5164 defsubr (&Shash_table_test);
5165 defsubr (&Shash_table_weakness);
5166 defsubr (&Shash_table_p);
5167 defsubr (&Sclrhash);
5168 defsubr (&Sgethash);
5169 defsubr (&Sputhash);
5170 defsubr (&Sremhash);
5171 defsubr (&Smaphash);
5172 defsubr (&Sdefine_hash_table_test);
5173
5174 Qstring_lessp = intern_c_string ("string-lessp");
5175 staticpro (&Qstring_lessp);
5176 Qprovide = intern_c_string ("provide");
5177 staticpro (&Qprovide);
5178 Qrequire = intern_c_string ("require");
5179 staticpro (&Qrequire);
5180 Qyes_or_no_p_history = intern_c_string ("yes-or-no-p-history");
5181 staticpro (&Qyes_or_no_p_history);
5182 Qcursor_in_echo_area = intern_c_string ("cursor-in-echo-area");
5183 staticpro (&Qcursor_in_echo_area);
5184 Qwidget_type = intern_c_string ("widget-type");
5185 staticpro (&Qwidget_type);
5186
5187 staticpro (&string_char_byte_cache_string);
5188 string_char_byte_cache_string = Qnil;
5189
5190 require_nesting_list = Qnil;
5191 staticpro (&require_nesting_list);
5192
5193 Fset (Qyes_or_no_p_history, Qnil);
5194
5195 DEFVAR_LISP ("features", &Vfeatures,
5196 doc: /* A list of symbols which are the features of the executing Emacs.
5197 Used by `featurep' and `require', and altered by `provide'. */);
5198 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
5199 Qsubfeatures = intern_c_string ("subfeatures");
5200 staticpro (&Qsubfeatures);
5201
5202 #ifdef HAVE_LANGINFO_CODESET
5203 Qcodeset = intern_c_string ("codeset");
5204 staticpro (&Qcodeset);
5205 Qdays = intern_c_string ("days");
5206 staticpro (&Qdays);
5207 Qmonths = intern_c_string ("months");
5208 staticpro (&Qmonths);
5209 Qpaper = intern_c_string ("paper");
5210 staticpro (&Qpaper);
5211 #endif /* HAVE_LANGINFO_CODESET */
5212
5213 DEFVAR_BOOL ("use-dialog-box", &use_dialog_box,
5214 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
5215 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
5216 invoked by mouse clicks and mouse menu items.
5217
5218 On some platforms, file selection dialogs are also enabled if this is
5219 non-nil. */);
5220 use_dialog_box = 1;
5221
5222 DEFVAR_BOOL ("use-file-dialog", &use_file_dialog,
5223 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
5224 This applies to commands from menus and tool bar buttons even when
5225 they are initiated from the keyboard. If `use-dialog-box' is nil,
5226 that disables the use of a file dialog, regardless of the value of
5227 this variable. */);
5228 use_file_dialog = 1;
5229
5230 defsubr (&Sidentity);
5231 defsubr (&Srandom);
5232 defsubr (&Slength);
5233 defsubr (&Ssafe_length);
5234 defsubr (&Sstring_bytes);
5235 defsubr (&Sstring_equal);
5236 defsubr (&Scompare_strings);
5237 defsubr (&Sstring_lessp);
5238 defsubr (&Sappend);
5239 defsubr (&Sconcat);
5240 defsubr (&Svconcat);
5241 defsubr (&Scopy_sequence);
5242 defsubr (&Sstring_make_multibyte);
5243 defsubr (&Sstring_make_unibyte);
5244 defsubr (&Sstring_as_multibyte);
5245 defsubr (&Sstring_as_unibyte);
5246 defsubr (&Sstring_to_multibyte);
5247 defsubr (&Sstring_to_unibyte);
5248 defsubr (&Scopy_alist);
5249 defsubr (&Ssubstring);
5250 defsubr (&Ssubstring_no_properties);
5251 defsubr (&Snthcdr);
5252 defsubr (&Snth);
5253 defsubr (&Selt);
5254 defsubr (&Smember);
5255 defsubr (&Smemq);
5256 defsubr (&Smemql);
5257 defsubr (&Sassq);
5258 defsubr (&Sassoc);
5259 defsubr (&Srassq);
5260 defsubr (&Srassoc);
5261 defsubr (&Sdelq);
5262 defsubr (&Sdelete);
5263 defsubr (&Snreverse);
5264 defsubr (&Sreverse);
5265 defsubr (&Ssort);
5266 defsubr (&Splist_get);
5267 defsubr (&Sget);
5268 defsubr (&Splist_put);
5269 defsubr (&Sput);
5270 defsubr (&Slax_plist_get);
5271 defsubr (&Slax_plist_put);
5272 defsubr (&Seql);
5273 defsubr (&Sequal);
5274 defsubr (&Sequal_including_properties);
5275 defsubr (&Sfillarray);
5276 defsubr (&Sclear_string);
5277 defsubr (&Snconc);
5278 defsubr (&Smapcar);
5279 defsubr (&Smapc);
5280 defsubr (&Smapconcat);
5281 defsubr (&Sy_or_n_p);
5282 defsubr (&Syes_or_no_p);
5283 defsubr (&Sload_average);
5284 defsubr (&Sfeaturep);
5285 defsubr (&Srequire);
5286 defsubr (&Sprovide);
5287 defsubr (&Splist_member);
5288 defsubr (&Swidget_put);
5289 defsubr (&Swidget_get);
5290 defsubr (&Swidget_apply);
5291 defsubr (&Sbase64_encode_region);
5292 defsubr (&Sbase64_decode_region);
5293 defsubr (&Sbase64_encode_string);
5294 defsubr (&Sbase64_decode_string);
5295 defsubr (&Smd5);
5296 defsubr (&Slocale_info);
5297 }
5298
5299
5300 void
5301 init_fns ()
5302 {
5303 }
5304
5305 /* arch-tag: 787f8219-5b74-46bd-8469-7e1cc475fa31
5306 (do not change this comment) */