]> code.delx.au - gnu-emacs/blob - src/editfns.c
Prefer assignment to memcpy when either will do.
[gnu-emacs] / src / editfns.c
1 /* Lisp functions pertaining to editing.
2
3 Copyright (C) 1985-1987, 1989, 1993-2012 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include <config.h>
22 #include <sys/types.h>
23 #include <stdio.h>
24 #include <setjmp.h>
25
26 #ifdef HAVE_PWD_H
27 #include <pwd.h>
28 #endif
29
30 #include <unistd.h>
31
32 #ifdef HAVE_SYS_UTSNAME_H
33 #include <sys/utsname.h>
34 #endif
35
36 #include "lisp.h"
37
38 /* systime.h includes <sys/time.h> which, on some systems, is required
39 for <sys/resource.h>; thus systime.h must be included before
40 <sys/resource.h> */
41 #include "systime.h"
42
43 #if defined HAVE_SYS_RESOURCE_H
44 #include <sys/resource.h>
45 #endif
46
47 #include <float.h>
48 #include <limits.h>
49 #include <intprops.h>
50 #include <strftime.h>
51 #include <verify.h>
52
53 #include "intervals.h"
54 #include "character.h"
55 #include "buffer.h"
56 #include "coding.h"
57 #include "frame.h"
58 #include "window.h"
59 #include "blockinput.h"
60
61 #define TM_YEAR_BASE 1900
62
63 #ifdef WINDOWSNT
64 extern Lisp_Object w32_get_internal_run_time (void);
65 #endif
66
67 static Lisp_Object format_time_string (char const *, ptrdiff_t, EMACS_TIME,
68 bool, struct tm *);
69 static int tm_diff (struct tm *, struct tm *);
70 static void update_buffer_properties (ptrdiff_t, ptrdiff_t);
71
72 static Lisp_Object Qbuffer_access_fontify_functions;
73
74 /* Symbol for the text property used to mark fields. */
75
76 Lisp_Object Qfield;
77
78 /* A special value for Qfield properties. */
79
80 static Lisp_Object Qboundary;
81
82
83 void
84 init_editfns (void)
85 {
86 const char *user_name;
87 register char *p;
88 struct passwd *pw; /* password entry for the current user */
89 Lisp_Object tem;
90
91 /* Set up system_name even when dumping. */
92 init_system_name ();
93
94 #ifndef CANNOT_DUMP
95 /* Don't bother with this on initial start when just dumping out */
96 if (!initialized)
97 return;
98 #endif /* not CANNOT_DUMP */
99
100 pw = getpwuid (getuid ());
101 #ifdef MSDOS
102 /* We let the real user name default to "root" because that's quite
103 accurate on MSDOG and because it lets Emacs find the init file.
104 (The DVX libraries override the Djgpp libraries here.) */
105 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
106 #else
107 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
108 #endif
109
110 /* Get the effective user name, by consulting environment variables,
111 or the effective uid if those are unset. */
112 user_name = getenv ("LOGNAME");
113 if (!user_name)
114 #ifdef WINDOWSNT
115 user_name = getenv ("USERNAME"); /* it's USERNAME on NT */
116 #else /* WINDOWSNT */
117 user_name = getenv ("USER");
118 #endif /* WINDOWSNT */
119 if (!user_name)
120 {
121 pw = getpwuid (geteuid ());
122 user_name = pw ? pw->pw_name : "unknown";
123 }
124 Vuser_login_name = build_string (user_name);
125
126 /* If the user name claimed in the environment vars differs from
127 the real uid, use the claimed name to find the full name. */
128 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
129 if (! NILP (tem))
130 tem = Vuser_login_name;
131 else
132 {
133 uid_t euid = geteuid ();
134 tem = make_fixnum_or_float (euid);
135 }
136 Vuser_full_name = Fuser_full_name (tem);
137
138 p = getenv ("NAME");
139 if (p)
140 Vuser_full_name = build_string (p);
141 else if (NILP (Vuser_full_name))
142 Vuser_full_name = build_string ("unknown");
143
144 #ifdef HAVE_SYS_UTSNAME_H
145 {
146 struct utsname uts;
147 uname (&uts);
148 Voperating_system_release = build_string (uts.release);
149 }
150 #else
151 Voperating_system_release = Qnil;
152 #endif
153 }
154 \f
155 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
156 doc: /* Convert arg CHAR to a string containing that character.
157 usage: (char-to-string CHAR) */)
158 (Lisp_Object character)
159 {
160 int c, len;
161 unsigned char str[MAX_MULTIBYTE_LENGTH];
162
163 CHECK_CHARACTER (character);
164 c = XFASTINT (character);
165
166 len = CHAR_STRING (c, str);
167 return make_string_from_bytes ((char *) str, 1, len);
168 }
169
170 DEFUN ("byte-to-string", Fbyte_to_string, Sbyte_to_string, 1, 1, 0,
171 doc: /* Convert arg BYTE to a unibyte string containing that byte. */)
172 (Lisp_Object byte)
173 {
174 unsigned char b;
175 CHECK_NUMBER (byte);
176 if (XINT (byte) < 0 || XINT (byte) > 255)
177 error ("Invalid byte");
178 b = XINT (byte);
179 return make_string_from_bytes ((char *) &b, 1, 1);
180 }
181
182 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
183 doc: /* Return the first character in STRING. */)
184 (register Lisp_Object string)
185 {
186 register Lisp_Object val;
187 CHECK_STRING (string);
188 if (SCHARS (string))
189 {
190 if (STRING_MULTIBYTE (string))
191 XSETFASTINT (val, STRING_CHAR (SDATA (string)));
192 else
193 XSETFASTINT (val, SREF (string, 0));
194 }
195 else
196 XSETFASTINT (val, 0);
197 return val;
198 }
199
200 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
201 doc: /* Return value of point, as an integer.
202 Beginning of buffer is position (point-min). */)
203 (void)
204 {
205 Lisp_Object temp;
206 XSETFASTINT (temp, PT);
207 return temp;
208 }
209
210 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
211 doc: /* Return value of point, as a marker object. */)
212 (void)
213 {
214 return build_marker (current_buffer, PT, PT_BYTE);
215 }
216
217 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
218 doc: /* Set point to POSITION, a number or marker.
219 Beginning of buffer is position (point-min), end is (point-max).
220
221 The return value is POSITION. */)
222 (register Lisp_Object position)
223 {
224 ptrdiff_t pos;
225
226 if (MARKERP (position)
227 && current_buffer == XMARKER (position)->buffer)
228 {
229 pos = marker_position (position);
230 if (pos < BEGV)
231 SET_PT_BOTH (BEGV, BEGV_BYTE);
232 else if (pos > ZV)
233 SET_PT_BOTH (ZV, ZV_BYTE);
234 else
235 SET_PT_BOTH (pos, marker_byte_position (position));
236
237 return position;
238 }
239
240 CHECK_NUMBER_COERCE_MARKER (position);
241
242 pos = clip_to_bounds (BEGV, XINT (position), ZV);
243 SET_PT (pos);
244 return position;
245 }
246
247
248 /* Return the start or end position of the region.
249 BEGINNINGP means return the start.
250 If there is no region active, signal an error. */
251
252 static Lisp_Object
253 region_limit (bool beginningp)
254 {
255 Lisp_Object m;
256
257 if (!NILP (Vtransient_mark_mode)
258 && NILP (Vmark_even_if_inactive)
259 && NILP (BVAR (current_buffer, mark_active)))
260 xsignal0 (Qmark_inactive);
261
262 m = Fmarker_position (BVAR (current_buffer, mark));
263 if (NILP (m))
264 error ("The mark is not set now, so there is no region");
265
266 /* Clip to the current narrowing (bug#11770). */
267 return make_number ((PT < XFASTINT (m)) == beginningp
268 ? PT
269 : clip_to_bounds (BEGV, XFASTINT (m), ZV));
270 }
271
272 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
273 doc: /* Return the integer value of point or mark, whichever is smaller. */)
274 (void)
275 {
276 return region_limit (1);
277 }
278
279 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
280 doc: /* Return the integer value of point or mark, whichever is larger. */)
281 (void)
282 {
283 return region_limit (0);
284 }
285
286 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
287 doc: /* Return this buffer's mark, as a marker object.
288 Watch out! Moving this marker changes the mark position.
289 If you set the marker not to point anywhere, the buffer will have no mark. */)
290 (void)
291 {
292 return BVAR (current_buffer, mark);
293 }
294
295 \f
296 /* Find all the overlays in the current buffer that touch position POS.
297 Return the number found, and store them in a vector in VEC
298 of length LEN. */
299
300 static ptrdiff_t
301 overlays_around (EMACS_INT pos, Lisp_Object *vec, ptrdiff_t len)
302 {
303 Lisp_Object overlay, start, end;
304 struct Lisp_Overlay *tail;
305 ptrdiff_t startpos, endpos;
306 ptrdiff_t idx = 0;
307
308 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
309 {
310 XSETMISC (overlay, tail);
311
312 end = OVERLAY_END (overlay);
313 endpos = OVERLAY_POSITION (end);
314 if (endpos < pos)
315 break;
316 start = OVERLAY_START (overlay);
317 startpos = OVERLAY_POSITION (start);
318 if (startpos <= pos)
319 {
320 if (idx < len)
321 vec[idx] = overlay;
322 /* Keep counting overlays even if we can't return them all. */
323 idx++;
324 }
325 }
326
327 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
328 {
329 XSETMISC (overlay, tail);
330
331 start = OVERLAY_START (overlay);
332 startpos = OVERLAY_POSITION (start);
333 if (pos < startpos)
334 break;
335 end = OVERLAY_END (overlay);
336 endpos = OVERLAY_POSITION (end);
337 if (pos <= endpos)
338 {
339 if (idx < len)
340 vec[idx] = overlay;
341 idx++;
342 }
343 }
344
345 return idx;
346 }
347
348 /* Return the value of property PROP, in OBJECT at POSITION.
349 It's the value of PROP that a char inserted at POSITION would get.
350 OBJECT is optional and defaults to the current buffer.
351 If OBJECT is a buffer, then overlay properties are considered as well as
352 text properties.
353 If OBJECT is a window, then that window's buffer is used, but
354 window-specific overlays are considered only if they are associated
355 with OBJECT. */
356 Lisp_Object
357 get_pos_property (Lisp_Object position, register Lisp_Object prop, Lisp_Object object)
358 {
359 CHECK_NUMBER_COERCE_MARKER (position);
360
361 if (NILP (object))
362 XSETBUFFER (object, current_buffer);
363 else if (WINDOWP (object))
364 object = XWINDOW (object)->buffer;
365
366 if (!BUFFERP (object))
367 /* pos-property only makes sense in buffers right now, since strings
368 have no overlays and no notion of insertion for which stickiness
369 could be obeyed. */
370 return Fget_text_property (position, prop, object);
371 else
372 {
373 EMACS_INT posn = XINT (position);
374 ptrdiff_t noverlays;
375 Lisp_Object *overlay_vec, tem;
376 struct buffer *obuf = current_buffer;
377
378 set_buffer_temp (XBUFFER (object));
379
380 /* First try with room for 40 overlays. */
381 noverlays = 40;
382 overlay_vec = alloca (noverlays * sizeof *overlay_vec);
383 noverlays = overlays_around (posn, overlay_vec, noverlays);
384
385 /* If there are more than 40,
386 make enough space for all, and try again. */
387 if (noverlays > 40)
388 {
389 overlay_vec = alloca (noverlays * sizeof *overlay_vec);
390 noverlays = overlays_around (posn, overlay_vec, noverlays);
391 }
392 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
393
394 set_buffer_temp (obuf);
395
396 /* Now check the overlays in order of decreasing priority. */
397 while (--noverlays >= 0)
398 {
399 Lisp_Object ol = overlay_vec[noverlays];
400 tem = Foverlay_get (ol, prop);
401 if (!NILP (tem))
402 {
403 /* Check the overlay is indeed active at point. */
404 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
405 if ((OVERLAY_POSITION (start) == posn
406 && XMARKER (start)->insertion_type == 1)
407 || (OVERLAY_POSITION (finish) == posn
408 && XMARKER (finish)->insertion_type == 0))
409 ; /* The overlay will not cover a char inserted at point. */
410 else
411 {
412 return tem;
413 }
414 }
415 }
416
417 { /* Now check the text properties. */
418 int stickiness = text_property_stickiness (prop, position, object);
419 if (stickiness > 0)
420 return Fget_text_property (position, prop, object);
421 else if (stickiness < 0
422 && XINT (position) > BUF_BEGV (XBUFFER (object)))
423 return Fget_text_property (make_number (XINT (position) - 1),
424 prop, object);
425 else
426 return Qnil;
427 }
428 }
429 }
430
431 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
432 the value of point is used instead. If BEG or END is null,
433 means don't store the beginning or end of the field.
434
435 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
436 results; they do not effect boundary behavior.
437
438 If MERGE_AT_BOUNDARY is non-nil, then if POS is at the very first
439 position of a field, then the beginning of the previous field is
440 returned instead of the beginning of POS's field (since the end of a
441 field is actually also the beginning of the next input field, this
442 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
443 non-nil case, if two fields are separated by a field with the special
444 value `boundary', and POS lies within it, then the two separated
445 fields are considered to be adjacent, and POS between them, when
446 finding the beginning and ending of the "merged" field.
447
448 Either BEG or END may be 0, in which case the corresponding value
449 is not stored. */
450
451 static void
452 find_field (Lisp_Object pos, Lisp_Object merge_at_boundary,
453 Lisp_Object beg_limit,
454 ptrdiff_t *beg, Lisp_Object end_limit, ptrdiff_t *end)
455 {
456 /* Fields right before and after the point. */
457 Lisp_Object before_field, after_field;
458 /* True if POS counts as the start of a field. */
459 bool at_field_start = 0;
460 /* True if POS counts as the end of a field. */
461 bool at_field_end = 0;
462
463 if (NILP (pos))
464 XSETFASTINT (pos, PT);
465 else
466 CHECK_NUMBER_COERCE_MARKER (pos);
467
468 after_field
469 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
470 before_field
471 = (XFASTINT (pos) > BEGV
472 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
473 Qfield, Qnil, NULL)
474 /* Using nil here would be a more obvious choice, but it would
475 fail when the buffer starts with a non-sticky field. */
476 : after_field);
477
478 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
479 and POS is at beginning of a field, which can also be interpreted
480 as the end of the previous field. Note that the case where if
481 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
482 more natural one; then we avoid treating the beginning of a field
483 specially. */
484 if (NILP (merge_at_boundary))
485 {
486 Lisp_Object field = get_pos_property (pos, Qfield, Qnil);
487 if (!EQ (field, after_field))
488 at_field_end = 1;
489 if (!EQ (field, before_field))
490 at_field_start = 1;
491 if (NILP (field) && at_field_start && at_field_end)
492 /* If an inserted char would have a nil field while the surrounding
493 text is non-nil, we're probably not looking at a
494 zero-length field, but instead at a non-nil field that's
495 not intended for editing (such as comint's prompts). */
496 at_field_end = at_field_start = 0;
497 }
498
499 /* Note about special `boundary' fields:
500
501 Consider the case where the point (`.') is between the fields `x' and `y':
502
503 xxxx.yyyy
504
505 In this situation, if merge_at_boundary is non-nil, consider the
506 `x' and `y' fields as forming one big merged field, and so the end
507 of the field is the end of `y'.
508
509 However, if `x' and `y' are separated by a special `boundary' field
510 (a field with a `field' char-property of 'boundary), then ignore
511 this special field when merging adjacent fields. Here's the same
512 situation, but with a `boundary' field between the `x' and `y' fields:
513
514 xxx.BBBByyyy
515
516 Here, if point is at the end of `x', the beginning of `y', or
517 anywhere in-between (within the `boundary' field), merge all
518 three fields and consider the beginning as being the beginning of
519 the `x' field, and the end as being the end of the `y' field. */
520
521 if (beg)
522 {
523 if (at_field_start)
524 /* POS is at the edge of a field, and we should consider it as
525 the beginning of the following field. */
526 *beg = XFASTINT (pos);
527 else
528 /* Find the previous field boundary. */
529 {
530 Lisp_Object p = pos;
531 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
532 /* Skip a `boundary' field. */
533 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
534 beg_limit);
535
536 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
537 beg_limit);
538 *beg = NILP (p) ? BEGV : XFASTINT (p);
539 }
540 }
541
542 if (end)
543 {
544 if (at_field_end)
545 /* POS is at the edge of a field, and we should consider it as
546 the end of the previous field. */
547 *end = XFASTINT (pos);
548 else
549 /* Find the next field boundary. */
550 {
551 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
552 /* Skip a `boundary' field. */
553 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
554 end_limit);
555
556 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
557 end_limit);
558 *end = NILP (pos) ? ZV : XFASTINT (pos);
559 }
560 }
561 }
562
563 \f
564 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
565 doc: /* Delete the field surrounding POS.
566 A field is a region of text with the same `field' property.
567 If POS is nil, the value of point is used for POS. */)
568 (Lisp_Object pos)
569 {
570 ptrdiff_t beg, end;
571 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
572 if (beg != end)
573 del_range (beg, end);
574 return Qnil;
575 }
576
577 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
578 doc: /* Return the contents of the field surrounding POS as a string.
579 A field is a region of text with the same `field' property.
580 If POS is nil, the value of point is used for POS. */)
581 (Lisp_Object pos)
582 {
583 ptrdiff_t beg, end;
584 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
585 return make_buffer_string (beg, end, 1);
586 }
587
588 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
589 doc: /* Return the contents of the field around POS, without text properties.
590 A field is a region of text with the same `field' property.
591 If POS is nil, the value of point is used for POS. */)
592 (Lisp_Object pos)
593 {
594 ptrdiff_t beg, end;
595 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
596 return make_buffer_string (beg, end, 0);
597 }
598
599 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
600 doc: /* Return the beginning of the field surrounding POS.
601 A field is a region of text with the same `field' property.
602 If POS is nil, the value of point is used for POS.
603 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
604 field, then the beginning of the *previous* field is returned.
605 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
606 is before LIMIT, then LIMIT will be returned instead. */)
607 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
608 {
609 ptrdiff_t beg;
610 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
611 return make_number (beg);
612 }
613
614 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
615 doc: /* Return the end of the field surrounding POS.
616 A field is a region of text with the same `field' property.
617 If POS is nil, the value of point is used for POS.
618 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
619 then the end of the *following* field is returned.
620 If LIMIT is non-nil, it is a buffer position; if the end of the field
621 is after LIMIT, then LIMIT will be returned instead. */)
622 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
623 {
624 ptrdiff_t end;
625 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
626 return make_number (end);
627 }
628
629 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
630 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
631 A field is a region of text with the same `field' property.
632
633 If NEW-POS is nil, then use the current point instead, and move point
634 to the resulting constrained position, in addition to returning that
635 position.
636
637 If OLD-POS is at the boundary of two fields, then the allowable
638 positions for NEW-POS depends on the value of the optional argument
639 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
640 constrained to the field that has the same `field' char-property
641 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
642 is non-nil, NEW-POS is constrained to the union of the two adjacent
643 fields. Additionally, if two fields are separated by another field with
644 the special value `boundary', then any point within this special field is
645 also considered to be `on the boundary'.
646
647 If the optional argument ONLY-IN-LINE is non-nil and constraining
648 NEW-POS would move it to a different line, NEW-POS is returned
649 unconstrained. This useful for commands that move by line, like
650 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
651 only in the case where they can still move to the right line.
652
653 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
654 a non-nil property of that name, then any field boundaries are ignored.
655
656 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
657 (Lisp_Object new_pos, Lisp_Object old_pos, Lisp_Object escape_from_edge, Lisp_Object only_in_line, Lisp_Object inhibit_capture_property)
658 {
659 /* If non-zero, then the original point, before re-positioning. */
660 ptrdiff_t orig_point = 0;
661 bool fwd;
662 Lisp_Object prev_old, prev_new;
663
664 if (NILP (new_pos))
665 /* Use the current point, and afterwards, set it. */
666 {
667 orig_point = PT;
668 XSETFASTINT (new_pos, PT);
669 }
670
671 CHECK_NUMBER_COERCE_MARKER (new_pos);
672 CHECK_NUMBER_COERCE_MARKER (old_pos);
673
674 fwd = (XINT (new_pos) > XINT (old_pos));
675
676 prev_old = make_number (XINT (old_pos) - 1);
677 prev_new = make_number (XINT (new_pos) - 1);
678
679 if (NILP (Vinhibit_field_text_motion)
680 && !EQ (new_pos, old_pos)
681 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
682 || !NILP (Fget_char_property (old_pos, Qfield, Qnil))
683 /* To recognize field boundaries, we must also look at the
684 previous positions; we could use `get_pos_property'
685 instead, but in itself that would fail inside non-sticky
686 fields (like comint prompts). */
687 || (XFASTINT (new_pos) > BEGV
688 && !NILP (Fget_char_property (prev_new, Qfield, Qnil)))
689 || (XFASTINT (old_pos) > BEGV
690 && !NILP (Fget_char_property (prev_old, Qfield, Qnil))))
691 && (NILP (inhibit_capture_property)
692 /* Field boundaries are again a problem; but now we must
693 decide the case exactly, so we need to call
694 `get_pos_property' as well. */
695 || (NILP (get_pos_property (old_pos, inhibit_capture_property, Qnil))
696 && (XFASTINT (old_pos) <= BEGV
697 || NILP (Fget_char_property (old_pos, inhibit_capture_property, Qnil))
698 || NILP (Fget_char_property (prev_old, inhibit_capture_property, Qnil))))))
699 /* It is possible that NEW_POS is not within the same field as
700 OLD_POS; try to move NEW_POS so that it is. */
701 {
702 ptrdiff_t shortage;
703 Lisp_Object field_bound;
704
705 if (fwd)
706 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
707 else
708 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
709
710 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
711 other side of NEW_POS, which would mean that NEW_POS is
712 already acceptable, and it's not necessary to constrain it
713 to FIELD_BOUND. */
714 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
715 /* NEW_POS should be constrained, but only if either
716 ONLY_IN_LINE is nil (in which case any constraint is OK),
717 or NEW_POS and FIELD_BOUND are on the same line (in which
718 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
719 && (NILP (only_in_line)
720 /* This is the ONLY_IN_LINE case, check that NEW_POS and
721 FIELD_BOUND are on the same line by seeing whether
722 there's an intervening newline or not. */
723 || (scan_buffer ('\n',
724 XFASTINT (new_pos), XFASTINT (field_bound),
725 fwd ? -1 : 1, &shortage, 1),
726 shortage != 0)))
727 /* Constrain NEW_POS to FIELD_BOUND. */
728 new_pos = field_bound;
729
730 if (orig_point && XFASTINT (new_pos) != orig_point)
731 /* The NEW_POS argument was originally nil, so automatically set PT. */
732 SET_PT (XFASTINT (new_pos));
733 }
734
735 return new_pos;
736 }
737
738 \f
739 DEFUN ("line-beginning-position",
740 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
741 doc: /* Return the character position of the first character on the current line.
742 With argument N not nil or 1, move forward N - 1 lines first.
743 If scan reaches end of buffer, return that position.
744
745 The returned position is of the first character in the logical order,
746 i.e. the one that has the smallest character position.
747
748 This function constrains the returned position to the current field
749 unless that would be on a different line than the original,
750 unconstrained result. If N is nil or 1, and a front-sticky field
751 starts at point, the scan stops as soon as it starts. To ignore field
752 boundaries bind `inhibit-field-text-motion' to t.
753
754 This function does not move point. */)
755 (Lisp_Object n)
756 {
757 ptrdiff_t orig, orig_byte, end;
758 ptrdiff_t count = SPECPDL_INDEX ();
759 specbind (Qinhibit_point_motion_hooks, Qt);
760
761 if (NILP (n))
762 XSETFASTINT (n, 1);
763 else
764 CHECK_NUMBER (n);
765
766 orig = PT;
767 orig_byte = PT_BYTE;
768 Fforward_line (make_number (XINT (n) - 1));
769 end = PT;
770
771 SET_PT_BOTH (orig, orig_byte);
772
773 unbind_to (count, Qnil);
774
775 /* Return END constrained to the current input field. */
776 return Fconstrain_to_field (make_number (end), make_number (orig),
777 XINT (n) != 1 ? Qt : Qnil,
778 Qt, Qnil);
779 }
780
781 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
782 doc: /* Return the character position of the last character on the current line.
783 With argument N not nil or 1, move forward N - 1 lines first.
784 If scan reaches end of buffer, return that position.
785
786 The returned position is of the last character in the logical order,
787 i.e. the character whose buffer position is the largest one.
788
789 This function constrains the returned position to the current field
790 unless that would be on a different line than the original,
791 unconstrained result. If N is nil or 1, and a rear-sticky field ends
792 at point, the scan stops as soon as it starts. To ignore field
793 boundaries bind `inhibit-field-text-motion' to t.
794
795 This function does not move point. */)
796 (Lisp_Object n)
797 {
798 ptrdiff_t clipped_n;
799 ptrdiff_t end_pos;
800 ptrdiff_t orig = PT;
801
802 if (NILP (n))
803 XSETFASTINT (n, 1);
804 else
805 CHECK_NUMBER (n);
806
807 clipped_n = clip_to_bounds (PTRDIFF_MIN + 1, XINT (n), PTRDIFF_MAX);
808 end_pos = find_before_next_newline (orig, 0, clipped_n - (clipped_n <= 0));
809
810 /* Return END_POS constrained to the current input field. */
811 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
812 Qnil, Qt, Qnil);
813 }
814
815 \f
816 Lisp_Object
817 save_excursion_save (void)
818 {
819 bool visible = (XBUFFER (XWINDOW (selected_window)->buffer)
820 == current_buffer);
821
822 return Fcons (Fpoint_marker (),
823 Fcons (Fcopy_marker (BVAR (current_buffer, mark), Qnil),
824 Fcons (visible ? Qt : Qnil,
825 Fcons (BVAR (current_buffer, mark_active),
826 selected_window))));
827 }
828
829 Lisp_Object
830 save_excursion_restore (Lisp_Object info)
831 {
832 Lisp_Object tem, tem1, omark, nmark;
833 struct gcpro gcpro1, gcpro2, gcpro3;
834 bool visible_p;
835
836 tem = Fmarker_buffer (XCAR (info));
837 /* If buffer being returned to is now deleted, avoid error */
838 /* Otherwise could get error here while unwinding to top level
839 and crash */
840 /* In that case, Fmarker_buffer returns nil now. */
841 if (NILP (tem))
842 return Qnil;
843
844 omark = nmark = Qnil;
845 GCPRO3 (info, omark, nmark);
846
847 Fset_buffer (tem);
848
849 /* Point marker. */
850 tem = XCAR (info);
851 Fgoto_char (tem);
852 unchain_marker (XMARKER (tem));
853
854 /* Mark marker. */
855 info = XCDR (info);
856 tem = XCAR (info);
857 omark = Fmarker_position (BVAR (current_buffer, mark));
858 Fset_marker (BVAR (current_buffer, mark), tem, Fcurrent_buffer ());
859 nmark = Fmarker_position (tem);
860 unchain_marker (XMARKER (tem));
861
862 /* visible */
863 info = XCDR (info);
864 visible_p = !NILP (XCAR (info));
865
866 #if 0 /* We used to make the current buffer visible in the selected window
867 if that was true previously. That avoids some anomalies.
868 But it creates others, and it wasn't documented, and it is simpler
869 and cleaner never to alter the window/buffer connections. */
870 tem1 = Fcar (tem);
871 if (!NILP (tem1)
872 && current_buffer != XBUFFER (XWINDOW (selected_window)->buffer))
873 Fswitch_to_buffer (Fcurrent_buffer (), Qnil);
874 #endif /* 0 */
875
876 /* Mark active */
877 info = XCDR (info);
878 tem = XCAR (info);
879 tem1 = BVAR (current_buffer, mark_active);
880 bset_mark_active (current_buffer, tem);
881
882 /* If mark is active now, and either was not active
883 or was at a different place, run the activate hook. */
884 if (! NILP (tem))
885 {
886 if (! EQ (omark, nmark))
887 {
888 tem = intern ("activate-mark-hook");
889 Frun_hooks (1, &tem);
890 }
891 }
892 /* If mark has ceased to be active, run deactivate hook. */
893 else if (! NILP (tem1))
894 {
895 tem = intern ("deactivate-mark-hook");
896 Frun_hooks (1, &tem);
897 }
898
899 /* If buffer was visible in a window, and a different window was
900 selected, and the old selected window is still showing this
901 buffer, restore point in that window. */
902 tem = XCDR (info);
903 if (visible_p
904 && !EQ (tem, selected_window)
905 && (tem1 = XWINDOW (tem)->buffer,
906 (/* Window is live... */
907 BUFFERP (tem1)
908 /* ...and it shows the current buffer. */
909 && XBUFFER (tem1) == current_buffer)))
910 Fset_window_point (tem, make_number (PT));
911
912 UNGCPRO;
913 return Qnil;
914 }
915
916 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
917 doc: /* Save point, mark, and current buffer; execute BODY; restore those things.
918 Executes BODY just like `progn'.
919 The values of point, mark and the current buffer are restored
920 even in case of abnormal exit (throw or error).
921 The state of activation of the mark is also restored.
922
923 This construct does not save `deactivate-mark', and therefore
924 functions that change the buffer will still cause deactivation
925 of the mark at the end of the command. To prevent that, bind
926 `deactivate-mark' with `let'.
927
928 If you only want to save the current buffer but not point nor mark,
929 then just use `save-current-buffer', or even `with-current-buffer'.
930
931 usage: (save-excursion &rest BODY) */)
932 (Lisp_Object args)
933 {
934 register Lisp_Object val;
935 ptrdiff_t count = SPECPDL_INDEX ();
936
937 record_unwind_protect (save_excursion_restore, save_excursion_save ());
938
939 val = Fprogn (args);
940 return unbind_to (count, val);
941 }
942
943 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
944 doc: /* Record which buffer is current; execute BODY; make that buffer current.
945 BODY is executed just like `progn'.
946 usage: (save-current-buffer &rest BODY) */)
947 (Lisp_Object args)
948 {
949 ptrdiff_t count = SPECPDL_INDEX ();
950
951 record_unwind_current_buffer ();
952 return unbind_to (count, Fprogn (args));
953 }
954 \f
955 DEFUN ("buffer-size", Fbufsize, Sbufsize, 0, 1, 0,
956 doc: /* Return the number of characters in the current buffer.
957 If BUFFER, return the number of characters in that buffer instead. */)
958 (Lisp_Object buffer)
959 {
960 if (NILP (buffer))
961 return make_number (Z - BEG);
962 else
963 {
964 CHECK_BUFFER (buffer);
965 return make_number (BUF_Z (XBUFFER (buffer))
966 - BUF_BEG (XBUFFER (buffer)));
967 }
968 }
969
970 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
971 doc: /* Return the minimum permissible value of point in the current buffer.
972 This is 1, unless narrowing (a buffer restriction) is in effect. */)
973 (void)
974 {
975 Lisp_Object temp;
976 XSETFASTINT (temp, BEGV);
977 return temp;
978 }
979
980 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
981 doc: /* Return a marker to the minimum permissible value of point in this buffer.
982 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
983 (void)
984 {
985 return build_marker (current_buffer, BEGV, BEGV_BYTE);
986 }
987
988 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
989 doc: /* Return the maximum permissible value of point in the current buffer.
990 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
991 is in effect, in which case it is less. */)
992 (void)
993 {
994 Lisp_Object temp;
995 XSETFASTINT (temp, ZV);
996 return temp;
997 }
998
999 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
1000 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1001 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1002 is in effect, in which case it is less. */)
1003 (void)
1004 {
1005 return build_marker (current_buffer, ZV, ZV_BYTE);
1006 }
1007
1008 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1009 doc: /* Return the position of the gap, in the current buffer.
1010 See also `gap-size'. */)
1011 (void)
1012 {
1013 Lisp_Object temp;
1014 XSETFASTINT (temp, GPT);
1015 return temp;
1016 }
1017
1018 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1019 doc: /* Return the size of the current buffer's gap.
1020 See also `gap-position'. */)
1021 (void)
1022 {
1023 Lisp_Object temp;
1024 XSETFASTINT (temp, GAP_SIZE);
1025 return temp;
1026 }
1027
1028 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1029 doc: /* Return the byte position for character position POSITION.
1030 If POSITION is out of range, the value is nil. */)
1031 (Lisp_Object position)
1032 {
1033 CHECK_NUMBER_COERCE_MARKER (position);
1034 if (XINT (position) < BEG || XINT (position) > Z)
1035 return Qnil;
1036 return make_number (CHAR_TO_BYTE (XINT (position)));
1037 }
1038
1039 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1040 doc: /* Return the character position for byte position BYTEPOS.
1041 If BYTEPOS is out of range, the value is nil. */)
1042 (Lisp_Object bytepos)
1043 {
1044 CHECK_NUMBER (bytepos);
1045 if (XINT (bytepos) < BEG_BYTE || XINT (bytepos) > Z_BYTE)
1046 return Qnil;
1047 return make_number (BYTE_TO_CHAR (XINT (bytepos)));
1048 }
1049 \f
1050 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1051 doc: /* Return the character following point, as a number.
1052 At the end of the buffer or accessible region, return 0. */)
1053 (void)
1054 {
1055 Lisp_Object temp;
1056 if (PT >= ZV)
1057 XSETFASTINT (temp, 0);
1058 else
1059 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1060 return temp;
1061 }
1062
1063 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1064 doc: /* Return the character preceding point, as a number.
1065 At the beginning of the buffer or accessible region, return 0. */)
1066 (void)
1067 {
1068 Lisp_Object temp;
1069 if (PT <= BEGV)
1070 XSETFASTINT (temp, 0);
1071 else if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1072 {
1073 ptrdiff_t pos = PT_BYTE;
1074 DEC_POS (pos);
1075 XSETFASTINT (temp, FETCH_CHAR (pos));
1076 }
1077 else
1078 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1079 return temp;
1080 }
1081
1082 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1083 doc: /* Return t if point is at the beginning of the buffer.
1084 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1085 (void)
1086 {
1087 if (PT == BEGV)
1088 return Qt;
1089 return Qnil;
1090 }
1091
1092 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1093 doc: /* Return t if point is at the end of the buffer.
1094 If the buffer is narrowed, this means the end of the narrowed part. */)
1095 (void)
1096 {
1097 if (PT == ZV)
1098 return Qt;
1099 return Qnil;
1100 }
1101
1102 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1103 doc: /* Return t if point is at the beginning of a line. */)
1104 (void)
1105 {
1106 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1107 return Qt;
1108 return Qnil;
1109 }
1110
1111 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1112 doc: /* Return t if point is at the end of a line.
1113 `End of a line' includes point being at the end of the buffer. */)
1114 (void)
1115 {
1116 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1117 return Qt;
1118 return Qnil;
1119 }
1120
1121 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1122 doc: /* Return character in current buffer at position POS.
1123 POS is an integer or a marker and defaults to point.
1124 If POS is out of range, the value is nil. */)
1125 (Lisp_Object pos)
1126 {
1127 register ptrdiff_t pos_byte;
1128
1129 if (NILP (pos))
1130 {
1131 pos_byte = PT_BYTE;
1132 XSETFASTINT (pos, PT);
1133 }
1134
1135 if (MARKERP (pos))
1136 {
1137 pos_byte = marker_byte_position (pos);
1138 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1139 return Qnil;
1140 }
1141 else
1142 {
1143 CHECK_NUMBER_COERCE_MARKER (pos);
1144 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1145 return Qnil;
1146
1147 pos_byte = CHAR_TO_BYTE (XINT (pos));
1148 }
1149
1150 return make_number (FETCH_CHAR (pos_byte));
1151 }
1152
1153 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1154 doc: /* Return character in current buffer preceding position POS.
1155 POS is an integer or a marker and defaults to point.
1156 If POS is out of range, the value is nil. */)
1157 (Lisp_Object pos)
1158 {
1159 register Lisp_Object val;
1160 register ptrdiff_t pos_byte;
1161
1162 if (NILP (pos))
1163 {
1164 pos_byte = PT_BYTE;
1165 XSETFASTINT (pos, PT);
1166 }
1167
1168 if (MARKERP (pos))
1169 {
1170 pos_byte = marker_byte_position (pos);
1171
1172 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1173 return Qnil;
1174 }
1175 else
1176 {
1177 CHECK_NUMBER_COERCE_MARKER (pos);
1178
1179 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1180 return Qnil;
1181
1182 pos_byte = CHAR_TO_BYTE (XINT (pos));
1183 }
1184
1185 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1186 {
1187 DEC_POS (pos_byte);
1188 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1189 }
1190 else
1191 {
1192 pos_byte--;
1193 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1194 }
1195 return val;
1196 }
1197 \f
1198 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1199 doc: /* Return the name under which the user logged in, as a string.
1200 This is based on the effective uid, not the real uid.
1201 Also, if the environment variables LOGNAME or USER are set,
1202 that determines the value of this function.
1203
1204 If optional argument UID is an integer or a float, return the login name
1205 of the user with that uid, or nil if there is no such user. */)
1206 (Lisp_Object uid)
1207 {
1208 struct passwd *pw;
1209 uid_t id;
1210
1211 /* Set up the user name info if we didn't do it before.
1212 (That can happen if Emacs is dumpable
1213 but you decide to run `temacs -l loadup' and not dump. */
1214 if (INTEGERP (Vuser_login_name))
1215 init_editfns ();
1216
1217 if (NILP (uid))
1218 return Vuser_login_name;
1219
1220 CONS_TO_INTEGER (uid, uid_t, id);
1221 BLOCK_INPUT;
1222 pw = getpwuid (id);
1223 UNBLOCK_INPUT;
1224 return (pw ? build_string (pw->pw_name) : Qnil);
1225 }
1226
1227 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1228 0, 0, 0,
1229 doc: /* Return the name of the user's real uid, as a string.
1230 This ignores the environment variables LOGNAME and USER, so it differs from
1231 `user-login-name' when running under `su'. */)
1232 (void)
1233 {
1234 /* Set up the user name info if we didn't do it before.
1235 (That can happen if Emacs is dumpable
1236 but you decide to run `temacs -l loadup' and not dump. */
1237 if (INTEGERP (Vuser_login_name))
1238 init_editfns ();
1239 return Vuser_real_login_name;
1240 }
1241
1242 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1243 doc: /* Return the effective uid of Emacs.
1244 Value is an integer or a float, depending on the value. */)
1245 (void)
1246 {
1247 uid_t euid = geteuid ();
1248 return make_fixnum_or_float (euid);
1249 }
1250
1251 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1252 doc: /* Return the real uid of Emacs.
1253 Value is an integer or a float, depending on the value. */)
1254 (void)
1255 {
1256 uid_t uid = getuid ();
1257 return make_fixnum_or_float (uid);
1258 }
1259
1260 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1261 doc: /* Return the full name of the user logged in, as a string.
1262 If the full name corresponding to Emacs's userid is not known,
1263 return "unknown".
1264
1265 If optional argument UID is an integer or float, return the full name
1266 of the user with that uid, or nil if there is no such user.
1267 If UID is a string, return the full name of the user with that login
1268 name, or nil if there is no such user. */)
1269 (Lisp_Object uid)
1270 {
1271 struct passwd *pw;
1272 register char *p, *q;
1273 Lisp_Object full;
1274
1275 if (NILP (uid))
1276 return Vuser_full_name;
1277 else if (NUMBERP (uid))
1278 {
1279 uid_t u;
1280 CONS_TO_INTEGER (uid, uid_t, u);
1281 BLOCK_INPUT;
1282 pw = getpwuid (u);
1283 UNBLOCK_INPUT;
1284 }
1285 else if (STRINGP (uid))
1286 {
1287 BLOCK_INPUT;
1288 pw = getpwnam (SSDATA (uid));
1289 UNBLOCK_INPUT;
1290 }
1291 else
1292 error ("Invalid UID specification");
1293
1294 if (!pw)
1295 return Qnil;
1296
1297 p = USER_FULL_NAME;
1298 /* Chop off everything after the first comma. */
1299 q = strchr (p, ',');
1300 full = make_string (p, q ? q - p : strlen (p));
1301
1302 #ifdef AMPERSAND_FULL_NAME
1303 p = SSDATA (full);
1304 q = strchr (p, '&');
1305 /* Substitute the login name for the &, upcasing the first character. */
1306 if (q)
1307 {
1308 register char *r;
1309 Lisp_Object login;
1310
1311 login = Fuser_login_name (make_number (pw->pw_uid));
1312 r = alloca (strlen (p) + SCHARS (login) + 1);
1313 memcpy (r, p, q - p);
1314 r[q - p] = 0;
1315 strcat (r, SSDATA (login));
1316 r[q - p] = upcase ((unsigned char) r[q - p]);
1317 strcat (r, q + 1);
1318 full = build_string (r);
1319 }
1320 #endif /* AMPERSAND_FULL_NAME */
1321
1322 return full;
1323 }
1324
1325 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1326 doc: /* Return the host name of the machine you are running on, as a string. */)
1327 (void)
1328 {
1329 return Vsystem_name;
1330 }
1331
1332 const char *
1333 get_system_name (void)
1334 {
1335 if (STRINGP (Vsystem_name))
1336 return SSDATA (Vsystem_name);
1337 else
1338 return "";
1339 }
1340
1341 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1342 doc: /* Return the process ID of Emacs, as a number. */)
1343 (void)
1344 {
1345 pid_t pid = getpid ();
1346 return make_fixnum_or_float (pid);
1347 }
1348
1349 \f
1350
1351 #ifndef TIME_T_MIN
1352 # define TIME_T_MIN TYPE_MINIMUM (time_t)
1353 #endif
1354 #ifndef TIME_T_MAX
1355 # define TIME_T_MAX TYPE_MAXIMUM (time_t)
1356 #endif
1357
1358 /* Report that a time value is out of range for Emacs. */
1359 void
1360 time_overflow (void)
1361 {
1362 error ("Specified time is not representable");
1363 }
1364
1365 /* Return the upper part of the time T (everything but the bottom 16 bits). */
1366 static EMACS_INT
1367 hi_time (time_t t)
1368 {
1369 time_t hi = t >> 16;
1370
1371 /* Check for overflow, helping the compiler for common cases where
1372 no runtime check is needed, and taking care not to convert
1373 negative numbers to unsigned before comparing them. */
1374 if (! ((! TYPE_SIGNED (time_t)
1375 || MOST_NEGATIVE_FIXNUM <= TIME_T_MIN >> 16
1376 || MOST_NEGATIVE_FIXNUM <= hi)
1377 && (TIME_T_MAX >> 16 <= MOST_POSITIVE_FIXNUM
1378 || hi <= MOST_POSITIVE_FIXNUM)))
1379 time_overflow ();
1380
1381 return hi;
1382 }
1383
1384 /* Return the bottom 16 bits of the time T. */
1385 static int
1386 lo_time (time_t t)
1387 {
1388 return t & ((1 << 16) - 1);
1389 }
1390
1391 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1392 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1393 The time is returned as a list of integers (HIGH LOW USEC PSEC).
1394 HIGH has the most significant bits of the seconds, while LOW has the
1395 least significant 16 bits. USEC and PSEC are the microsecond and
1396 picosecond counts. */)
1397 (void)
1398 {
1399 return make_lisp_time (current_emacs_time ());
1400 }
1401
1402 DEFUN ("get-internal-run-time", Fget_internal_run_time, Sget_internal_run_time,
1403 0, 0, 0,
1404 doc: /* Return the current run time used by Emacs.
1405 The time is returned as a list (HIGH LOW USEC PSEC), using the same
1406 style as (current-time).
1407
1408 On systems that can't determine the run time, `get-internal-run-time'
1409 does the same thing as `current-time'. */)
1410 (void)
1411 {
1412 #ifdef HAVE_GETRUSAGE
1413 struct rusage usage;
1414 time_t secs;
1415 int usecs;
1416
1417 if (getrusage (RUSAGE_SELF, &usage) < 0)
1418 /* This shouldn't happen. What action is appropriate? */
1419 xsignal0 (Qerror);
1420
1421 /* Sum up user time and system time. */
1422 secs = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
1423 usecs = usage.ru_utime.tv_usec + usage.ru_stime.tv_usec;
1424 if (usecs >= 1000000)
1425 {
1426 usecs -= 1000000;
1427 secs++;
1428 }
1429 return make_lisp_time (make_emacs_time (secs, usecs * 1000));
1430 #else /* ! HAVE_GETRUSAGE */
1431 #ifdef WINDOWSNT
1432 return w32_get_internal_run_time ();
1433 #else /* ! WINDOWSNT */
1434 return Fcurrent_time ();
1435 #endif /* WINDOWSNT */
1436 #endif /* HAVE_GETRUSAGE */
1437 }
1438 \f
1439
1440 /* Make a Lisp list that represents the time T with fraction TAIL. */
1441 static Lisp_Object
1442 make_time_tail (time_t t, Lisp_Object tail)
1443 {
1444 return Fcons (make_number (hi_time (t)),
1445 Fcons (make_number (lo_time (t)), tail));
1446 }
1447
1448 /* Make a Lisp list that represents the system time T. */
1449 static Lisp_Object
1450 make_time (time_t t)
1451 {
1452 return make_time_tail (t, Qnil);
1453 }
1454
1455 /* Make a Lisp list that represents the Emacs time T. T may be an
1456 invalid time, with a slightly negative tv_nsec value such as
1457 UNKNOWN_MODTIME_NSECS; in that case, the Lisp list contains a
1458 correspondingly negative picosecond count. */
1459 Lisp_Object
1460 make_lisp_time (EMACS_TIME t)
1461 {
1462 int ns = EMACS_NSECS (t);
1463 return make_time_tail (EMACS_SECS (t),
1464 list2 (make_number (ns / 1000),
1465 make_number (ns % 1000 * 1000)));
1466 }
1467
1468 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1469 Set *PHIGH, *PLOW, *PUSEC, *PPSEC to its parts; do not check their values.
1470 Return true if successful. */
1471 static bool
1472 disassemble_lisp_time (Lisp_Object specified_time, Lisp_Object *phigh,
1473 Lisp_Object *plow, Lisp_Object *pusec,
1474 Lisp_Object *ppsec)
1475 {
1476 if (CONSP (specified_time))
1477 {
1478 Lisp_Object low = XCDR (specified_time);
1479 Lisp_Object usec = make_number (0);
1480 Lisp_Object psec = make_number (0);
1481 if (CONSP (low))
1482 {
1483 Lisp_Object low_tail = XCDR (low);
1484 low = XCAR (low);
1485 if (CONSP (low_tail))
1486 {
1487 usec = XCAR (low_tail);
1488 low_tail = XCDR (low_tail);
1489 if (CONSP (low_tail))
1490 psec = XCAR (low_tail);
1491 }
1492 else if (!NILP (low_tail))
1493 usec = low_tail;
1494 }
1495
1496 *phigh = XCAR (specified_time);
1497 *plow = low;
1498 *pusec = usec;
1499 *ppsec = psec;
1500 return 1;
1501 }
1502
1503 return 0;
1504 }
1505
1506 /* From the time components HIGH, LOW, USEC and PSEC taken from a Lisp
1507 list, generate the corresponding time value.
1508
1509 If RESULT is not null, store into *RESULT the converted time;
1510 this can fail if the converted time does not fit into EMACS_TIME.
1511 If *DRESULT is not null, store into *DRESULT the number of
1512 seconds since the start of the POSIX Epoch.
1513
1514 Return true if successful. */
1515 bool
1516 decode_time_components (Lisp_Object high, Lisp_Object low, Lisp_Object usec,
1517 Lisp_Object psec,
1518 EMACS_TIME *result, double *dresult)
1519 {
1520 EMACS_INT hi, lo, us, ps;
1521 if (! (INTEGERP (high) && INTEGERP (low)
1522 && INTEGERP (usec) && INTEGERP (psec)))
1523 return 0;
1524 hi = XINT (high);
1525 lo = XINT (low);
1526 us = XINT (usec);
1527 ps = XINT (psec);
1528
1529 /* Normalize out-of-range lower-order components by carrying
1530 each overflow into the next higher-order component. */
1531 us += ps / 1000000 - (ps % 1000000 < 0);
1532 lo += us / 1000000 - (us % 1000000 < 0);
1533 hi += lo >> 16;
1534 ps = ps % 1000000 + 1000000 * (ps % 1000000 < 0);
1535 us = us % 1000000 + 1000000 * (us % 1000000 < 0);
1536 lo &= (1 << 16) - 1;
1537
1538 if (result)
1539 {
1540 if ((TYPE_SIGNED (time_t) ? TIME_T_MIN >> 16 <= hi : 0 <= hi)
1541 && hi <= TIME_T_MAX >> 16)
1542 {
1543 /* Return the greatest representable time that is not greater
1544 than the requested time. */
1545 time_t sec = hi;
1546 *result = make_emacs_time ((sec << 16) + lo, us * 1000 + ps / 1000);
1547 }
1548 else
1549 {
1550 /* Overflow in the highest-order component. */
1551 return 0;
1552 }
1553 }
1554
1555 if (dresult)
1556 *dresult = (us * 1e6 + ps) / 1e12 + lo + hi * 65536.0;
1557
1558 return 1;
1559 }
1560
1561 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1562 If SPECIFIED_TIME is nil, use the current time.
1563
1564 Round the time down to the nearest EMACS_TIME value.
1565 Return seconds since the Epoch.
1566 Signal an error if unsuccessful. */
1567 EMACS_TIME
1568 lisp_time_argument (Lisp_Object specified_time)
1569 {
1570 EMACS_TIME t;
1571 if (NILP (specified_time))
1572 t = current_emacs_time ();
1573 else
1574 {
1575 Lisp_Object high, low, usec, psec;
1576 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1577 && decode_time_components (high, low, usec, psec, &t, 0)))
1578 error ("Invalid time specification");
1579 }
1580 return t;
1581 }
1582
1583 /* Like lisp_time_argument, except decode only the seconds part,
1584 do not allow out-of-range time stamps, do not check the subseconds part,
1585 and always round down. */
1586 static time_t
1587 lisp_seconds_argument (Lisp_Object specified_time)
1588 {
1589 if (NILP (specified_time))
1590 return time (NULL);
1591 else
1592 {
1593 Lisp_Object high, low, usec, psec;
1594 EMACS_TIME t;
1595 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1596 && decode_time_components (high, low, make_number (0),
1597 make_number (0), &t, 0)))
1598 error ("Invalid time specification");
1599 return EMACS_SECS (t);
1600 }
1601 }
1602
1603 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1604 doc: /* Return the current time, as a float number of seconds since the epoch.
1605 If SPECIFIED-TIME is given, it is the time to convert to float
1606 instead of the current time. The argument should have the form
1607 (HIGH LOW) or (HIGH LOW USEC) or (HIGH LOW USEC PSEC). Thus,
1608 you can use times from `current-time' and from `file-attributes'.
1609 SPECIFIED-TIME can also have the form (HIGH . LOW), but this is
1610 considered obsolete.
1611
1612 WARNING: Since the result is floating point, it may not be exact.
1613 If precise time stamps are required, use either `current-time',
1614 or (if you need time as a string) `format-time-string'. */)
1615 (Lisp_Object specified_time)
1616 {
1617 double t;
1618 if (NILP (specified_time))
1619 {
1620 EMACS_TIME now = current_emacs_time ();
1621 t = EMACS_SECS (now) + EMACS_NSECS (now) / 1e9;
1622 }
1623 else
1624 {
1625 Lisp_Object high, low, usec, psec;
1626 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1627 && decode_time_components (high, low, usec, psec, 0, &t)))
1628 error ("Invalid time specification");
1629 }
1630 return make_float (t);
1631 }
1632
1633 /* Write information into buffer S of size MAXSIZE, according to the
1634 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1635 Default to Universal Time if UT, local time otherwise.
1636 Use NS as the number of nanoseconds in the %N directive.
1637 Return the number of bytes written, not including the terminating
1638 '\0'. If S is NULL, nothing will be written anywhere; so to
1639 determine how many bytes would be written, use NULL for S and
1640 ((size_t) -1) for MAXSIZE.
1641
1642 This function behaves like nstrftime, except it allows null
1643 bytes in FORMAT and it does not support nanoseconds. */
1644 static size_t
1645 emacs_nmemftime (char *s, size_t maxsize, const char *format,
1646 size_t format_len, const struct tm *tp, bool ut, int ns)
1647 {
1648 size_t total = 0;
1649
1650 /* Loop through all the null-terminated strings in the format
1651 argument. Normally there's just one null-terminated string, but
1652 there can be arbitrarily many, concatenated together, if the
1653 format contains '\0' bytes. nstrftime stops at the first
1654 '\0' byte so we must invoke it separately for each such string. */
1655 for (;;)
1656 {
1657 size_t len;
1658 size_t result;
1659
1660 if (s)
1661 s[0] = '\1';
1662
1663 result = nstrftime (s, maxsize, format, tp, ut, ns);
1664
1665 if (s)
1666 {
1667 if (result == 0 && s[0] != '\0')
1668 return 0;
1669 s += result + 1;
1670 }
1671
1672 maxsize -= result + 1;
1673 total += result;
1674 len = strlen (format);
1675 if (len == format_len)
1676 return total;
1677 total++;
1678 format += len + 1;
1679 format_len -= len + 1;
1680 }
1681 }
1682
1683 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1684 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1685 TIME is specified as (HIGH LOW USEC PSEC), as returned by
1686 `current-time' or `file-attributes'. The obsolete form (HIGH . LOW)
1687 is also still accepted.
1688 The third, optional, argument UNIVERSAL, if non-nil, means describe TIME
1689 as Universal Time; nil means describe TIME in the local time zone.
1690 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1691 by text that describes the specified date and time in TIME:
1692
1693 %Y is the year, %y within the century, %C the century.
1694 %G is the year corresponding to the ISO week, %g within the century.
1695 %m is the numeric month.
1696 %b and %h are the locale's abbreviated month name, %B the full name.
1697 %d is the day of the month, zero-padded, %e is blank-padded.
1698 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1699 %a is the locale's abbreviated name of the day of week, %A the full name.
1700 %U is the week number starting on Sunday, %W starting on Monday,
1701 %V according to ISO 8601.
1702 %j is the day of the year.
1703
1704 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1705 only blank-padded, %l is like %I blank-padded.
1706 %p is the locale's equivalent of either AM or PM.
1707 %M is the minute.
1708 %S is the second.
1709 %N is the nanosecond, %6N the microsecond, %3N the millisecond, etc.
1710 %Z is the time zone name, %z is the numeric form.
1711 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1712
1713 %c is the locale's date and time format.
1714 %x is the locale's "preferred" date format.
1715 %D is like "%m/%d/%y".
1716
1717 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
1718 %X is the locale's "preferred" time format.
1719
1720 Finally, %n is a newline, %t is a tab, %% is a literal %.
1721
1722 Certain flags and modifiers are available with some format controls.
1723 The flags are `_', `-', `^' and `#'. For certain characters X,
1724 %_X is like %X, but padded with blanks; %-X is like %X,
1725 but without padding. %^X is like %X, but with all textual
1726 characters up-cased; %#X is like %X, but with letter-case of
1727 all textual characters reversed.
1728 %NX (where N stands for an integer) is like %X,
1729 but takes up at least N (a number) positions.
1730 The modifiers are `E' and `O'. For certain characters X,
1731 %EX is a locale's alternative version of %X;
1732 %OX is like %X, but uses the locale's number symbols.
1733
1734 For example, to produce full ISO 8601 format, use "%Y-%m-%dT%T%z".
1735
1736 usage: (format-time-string FORMAT-STRING &optional TIME UNIVERSAL) */)
1737 (Lisp_Object format_string, Lisp_Object timeval, Lisp_Object universal)
1738 {
1739 EMACS_TIME t = lisp_time_argument (timeval);
1740 struct tm tm;
1741
1742 CHECK_STRING (format_string);
1743 format_string = code_convert_string_norecord (format_string,
1744 Vlocale_coding_system, 1);
1745 return format_time_string (SSDATA (format_string), SBYTES (format_string),
1746 t, ! NILP (universal), &tm);
1747 }
1748
1749 static Lisp_Object
1750 format_time_string (char const *format, ptrdiff_t formatlen,
1751 EMACS_TIME t, bool ut, struct tm *tmp)
1752 {
1753 char buffer[4000];
1754 char *buf = buffer;
1755 ptrdiff_t size = sizeof buffer;
1756 size_t len;
1757 Lisp_Object bufstring;
1758 int ns = EMACS_NSECS (t);
1759 struct tm *tm;
1760 USE_SAFE_ALLOCA;
1761
1762 while (1)
1763 {
1764 time_t *taddr = emacs_secs_addr (&t);
1765 BLOCK_INPUT;
1766
1767 synchronize_system_time_locale ();
1768
1769 tm = ut ? gmtime (taddr) : localtime (taddr);
1770 if (! tm)
1771 {
1772 UNBLOCK_INPUT;
1773 time_overflow ();
1774 }
1775 *tmp = *tm;
1776
1777 buf[0] = '\1';
1778 len = emacs_nmemftime (buf, size, format, formatlen, tm, ut, ns);
1779 if ((0 < len && len < size) || (len == 0 && buf[0] == '\0'))
1780 break;
1781
1782 /* Buffer was too small, so make it bigger and try again. */
1783 len = emacs_nmemftime (NULL, SIZE_MAX, format, formatlen, tm, ut, ns);
1784 UNBLOCK_INPUT;
1785 if (STRING_BYTES_BOUND <= len)
1786 string_overflow ();
1787 size = len + 1;
1788 buf = SAFE_ALLOCA (size);
1789 }
1790
1791 UNBLOCK_INPUT;
1792 bufstring = make_unibyte_string (buf, len);
1793 SAFE_FREE ();
1794 return code_convert_string_norecord (bufstring, Vlocale_coding_system, 0);
1795 }
1796
1797 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 1, 0,
1798 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST ZONE).
1799 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED),
1800 as from `current-time' and `file-attributes', or nil to use the
1801 current time. The obsolete form (HIGH . LOW) is also still accepted.
1802 The list has the following nine members: SEC is an integer between 0
1803 and 60; SEC is 60 for a leap second, which only some operating systems
1804 support. MINUTE is an integer between 0 and 59. HOUR is an integer
1805 between 0 and 23. DAY is an integer between 1 and 31. MONTH is an
1806 integer between 1 and 12. YEAR is an integer indicating the
1807 four-digit year. DOW is the day of week, an integer between 0 and 6,
1808 where 0 is Sunday. DST is t if daylight saving time is in effect,
1809 otherwise nil. ZONE is an integer indicating the number of seconds
1810 east of Greenwich. (Note that Common Lisp has different meanings for
1811 DOW and ZONE.) */)
1812 (Lisp_Object specified_time)
1813 {
1814 time_t time_spec = lisp_seconds_argument (specified_time);
1815 struct tm save_tm;
1816 struct tm *decoded_time;
1817 Lisp_Object list_args[9];
1818
1819 BLOCK_INPUT;
1820 decoded_time = localtime (&time_spec);
1821 if (decoded_time)
1822 save_tm = *decoded_time;
1823 UNBLOCK_INPUT;
1824 if (! (decoded_time
1825 && MOST_NEGATIVE_FIXNUM - TM_YEAR_BASE <= save_tm.tm_year
1826 && save_tm.tm_year <= MOST_POSITIVE_FIXNUM - TM_YEAR_BASE))
1827 time_overflow ();
1828 XSETFASTINT (list_args[0], save_tm.tm_sec);
1829 XSETFASTINT (list_args[1], save_tm.tm_min);
1830 XSETFASTINT (list_args[2], save_tm.tm_hour);
1831 XSETFASTINT (list_args[3], save_tm.tm_mday);
1832 XSETFASTINT (list_args[4], save_tm.tm_mon + 1);
1833 /* On 64-bit machines an int is narrower than EMACS_INT, thus the
1834 cast below avoids overflow in int arithmetics. */
1835 XSETINT (list_args[5], TM_YEAR_BASE + (EMACS_INT) save_tm.tm_year);
1836 XSETFASTINT (list_args[6], save_tm.tm_wday);
1837 list_args[7] = save_tm.tm_isdst ? Qt : Qnil;
1838
1839 BLOCK_INPUT;
1840 decoded_time = gmtime (&time_spec);
1841 if (decoded_time == 0)
1842 list_args[8] = Qnil;
1843 else
1844 XSETINT (list_args[8], tm_diff (&save_tm, decoded_time));
1845 UNBLOCK_INPUT;
1846 return Flist (9, list_args);
1847 }
1848
1849 /* Return OBJ - OFFSET, checking that OBJ is a valid fixnum and that
1850 the result is representable as an int. Assume OFFSET is small and
1851 nonnegative. */
1852 static int
1853 check_tm_member (Lisp_Object obj, int offset)
1854 {
1855 EMACS_INT n;
1856 CHECK_NUMBER (obj);
1857 n = XINT (obj);
1858 if (! (INT_MIN + offset <= n && n - offset <= INT_MAX))
1859 time_overflow ();
1860 return n - offset;
1861 }
1862
1863 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
1864 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
1865 This is the reverse operation of `decode-time', which see.
1866 ZONE defaults to the current time zone rule. This can
1867 be a string or t (as from `set-time-zone-rule'), or it can be a list
1868 \(as from `current-time-zone') or an integer (as from `decode-time')
1869 applied without consideration for daylight saving time.
1870
1871 You can pass more than 7 arguments; then the first six arguments
1872 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
1873 The intervening arguments are ignored.
1874 This feature lets (apply 'encode-time (decode-time ...)) work.
1875
1876 Out-of-range values for SECOND, MINUTE, HOUR, DAY, or MONTH are allowed;
1877 for example, a DAY of 0 means the day preceding the given month.
1878 Year numbers less than 100 are treated just like other year numbers.
1879 If you want them to stand for years in this century, you must do that yourself.
1880
1881 Years before 1970 are not guaranteed to work. On some systems,
1882 year values as low as 1901 do work.
1883
1884 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
1885 (ptrdiff_t nargs, Lisp_Object *args)
1886 {
1887 time_t value;
1888 struct tm tm;
1889 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
1890
1891 tm.tm_sec = check_tm_member (args[0], 0);
1892 tm.tm_min = check_tm_member (args[1], 0);
1893 tm.tm_hour = check_tm_member (args[2], 0);
1894 tm.tm_mday = check_tm_member (args[3], 0);
1895 tm.tm_mon = check_tm_member (args[4], 1);
1896 tm.tm_year = check_tm_member (args[5], TM_YEAR_BASE);
1897 tm.tm_isdst = -1;
1898
1899 if (CONSP (zone))
1900 zone = XCAR (zone);
1901 if (NILP (zone))
1902 {
1903 BLOCK_INPUT;
1904 value = mktime (&tm);
1905 UNBLOCK_INPUT;
1906 }
1907 else
1908 {
1909 char tzbuf[100];
1910 const char *tzstring;
1911 char **oldenv = environ, **newenv;
1912
1913 if (EQ (zone, Qt))
1914 tzstring = "UTC0";
1915 else if (STRINGP (zone))
1916 tzstring = SSDATA (zone);
1917 else if (INTEGERP (zone))
1918 {
1919 EMACS_INT abszone = eabs (XINT (zone));
1920 EMACS_INT zone_hr = abszone / (60*60);
1921 int zone_min = (abszone/60) % 60;
1922 int zone_sec = abszone % 60;
1923 sprintf (tzbuf, "XXX%s%"pI"d:%02d:%02d", "-" + (XINT (zone) < 0),
1924 zone_hr, zone_min, zone_sec);
1925 tzstring = tzbuf;
1926 }
1927 else
1928 error ("Invalid time zone specification");
1929
1930 BLOCK_INPUT;
1931
1932 /* Set TZ before calling mktime; merely adjusting mktime's returned
1933 value doesn't suffice, since that would mishandle leap seconds. */
1934 set_time_zone_rule (tzstring);
1935
1936 value = mktime (&tm);
1937
1938 /* Restore TZ to previous value. */
1939 newenv = environ;
1940 environ = oldenv;
1941 #ifdef LOCALTIME_CACHE
1942 tzset ();
1943 #endif
1944 UNBLOCK_INPUT;
1945
1946 xfree (newenv);
1947 }
1948
1949 if (value == (time_t) -1)
1950 time_overflow ();
1951
1952 return make_time (value);
1953 }
1954
1955 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string, 0, 1, 0,
1956 doc: /* Return the current local time, as a human-readable string.
1957 Programs can use this function to decode a time,
1958 since the number of columns in each field is fixed
1959 if the year is in the range 1000-9999.
1960 The format is `Sun Sep 16 01:03:52 1973'.
1961 However, see also the functions `decode-time' and `format-time-string'
1962 which provide a much more powerful and general facility.
1963
1964 If SPECIFIED-TIME is given, it is a time to format instead of the
1965 current time. The argument should have the form (HIGH LOW . IGNORED).
1966 Thus, you can use times obtained from `current-time' and from
1967 `file-attributes'. SPECIFIED-TIME can also have the form (HIGH . LOW),
1968 but this is considered obsolete. */)
1969 (Lisp_Object specified_time)
1970 {
1971 time_t value = lisp_seconds_argument (specified_time);
1972 struct tm *tm;
1973 char buf[sizeof "Mon Apr 30 12:49:17 " + INT_STRLEN_BOUND (int) + 1];
1974 int len IF_LINT (= 0);
1975
1976 /* Convert to a string in ctime format, except without the trailing
1977 newline, and without the 4-digit year limit. Don't use asctime
1978 or ctime, as they might dump core if the year is outside the
1979 range -999 .. 9999. */
1980 BLOCK_INPUT;
1981 tm = localtime (&value);
1982 if (tm)
1983 {
1984 static char const wday_name[][4] =
1985 { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
1986 static char const mon_name[][4] =
1987 { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
1988 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
1989 printmax_t year_base = TM_YEAR_BASE;
1990
1991 len = sprintf (buf, "%s %s%3d %02d:%02d:%02d %"pMd,
1992 wday_name[tm->tm_wday], mon_name[tm->tm_mon], tm->tm_mday,
1993 tm->tm_hour, tm->tm_min, tm->tm_sec,
1994 tm->tm_year + year_base);
1995 }
1996 UNBLOCK_INPUT;
1997 if (! tm)
1998 time_overflow ();
1999
2000 return make_unibyte_string (buf, len);
2001 }
2002
2003 /* Yield A - B, measured in seconds.
2004 This function is copied from the GNU C Library. */
2005 static int
2006 tm_diff (struct tm *a, struct tm *b)
2007 {
2008 /* Compute intervening leap days correctly even if year is negative.
2009 Take care to avoid int overflow in leap day calculations,
2010 but it's OK to assume that A and B are close to each other. */
2011 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
2012 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
2013 int a100 = a4 / 25 - (a4 % 25 < 0);
2014 int b100 = b4 / 25 - (b4 % 25 < 0);
2015 int a400 = a100 >> 2;
2016 int b400 = b100 >> 2;
2017 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
2018 int years = a->tm_year - b->tm_year;
2019 int days = (365 * years + intervening_leap_days
2020 + (a->tm_yday - b->tm_yday));
2021 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
2022 + (a->tm_min - b->tm_min))
2023 + (a->tm_sec - b->tm_sec));
2024 }
2025
2026 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 1, 0,
2027 doc: /* Return the offset and name for the local time zone.
2028 This returns a list of the form (OFFSET NAME).
2029 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
2030 A negative value means west of Greenwich.
2031 NAME is a string giving the name of the time zone.
2032 If SPECIFIED-TIME is given, the time zone offset is determined from it
2033 instead of using the current time. The argument should have the form
2034 (HIGH LOW . IGNORED). Thus, you can use times obtained from
2035 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
2036 have the form (HIGH . LOW), but this is considered obsolete.
2037
2038 Some operating systems cannot provide all this information to Emacs;
2039 in this case, `current-time-zone' returns a list containing nil for
2040 the data it can't find. */)
2041 (Lisp_Object specified_time)
2042 {
2043 EMACS_TIME value;
2044 int offset;
2045 struct tm *t;
2046 struct tm localtm;
2047 Lisp_Object zone_offset, zone_name;
2048
2049 zone_offset = Qnil;
2050 value = make_emacs_time (lisp_seconds_argument (specified_time), 0);
2051 zone_name = format_time_string ("%Z", sizeof "%Z" - 1, value, 0, &localtm);
2052 BLOCK_INPUT;
2053 t = gmtime (emacs_secs_addr (&value));
2054 if (t)
2055 offset = tm_diff (&localtm, t);
2056 UNBLOCK_INPUT;
2057
2058 if (t)
2059 {
2060 zone_offset = make_number (offset);
2061 if (SCHARS (zone_name) == 0)
2062 {
2063 /* No local time zone name is available; use "+-NNNN" instead. */
2064 int m = offset / 60;
2065 int am = offset < 0 ? - m : m;
2066 char buf[sizeof "+00" + INT_STRLEN_BOUND (int)];
2067 zone_name = make_formatted_string (buf, "%c%02d%02d",
2068 (offset < 0 ? '-' : '+'),
2069 am / 60, am % 60);
2070 }
2071 }
2072
2073 return list2 (zone_offset, zone_name);
2074 }
2075
2076 /* This holds the value of `environ' produced by the previous
2077 call to Fset_time_zone_rule, or 0 if Fset_time_zone_rule
2078 has never been called. */
2079 static char **environbuf;
2080
2081 /* This holds the startup value of the TZ environment variable so it
2082 can be restored if the user calls set-time-zone-rule with a nil
2083 argument. */
2084 static char *initial_tz;
2085
2086 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
2087 doc: /* Set the local time zone using TZ, a string specifying a time zone rule.
2088 If TZ is nil, use implementation-defined default time zone information.
2089 If TZ is t, use Universal Time.
2090
2091 Instead of calling this function, you typically want (setenv "TZ" TZ).
2092 That changes both the environment of the Emacs process and the
2093 variable `process-environment', whereas `set-time-zone-rule' affects
2094 only the former. */)
2095 (Lisp_Object tz)
2096 {
2097 const char *tzstring;
2098 char **old_environbuf;
2099
2100 if (! (NILP (tz) || EQ (tz, Qt)))
2101 CHECK_STRING (tz);
2102
2103 BLOCK_INPUT;
2104
2105 /* When called for the first time, save the original TZ. */
2106 old_environbuf = environbuf;
2107 if (!old_environbuf)
2108 initial_tz = (char *) getenv ("TZ");
2109
2110 if (NILP (tz))
2111 tzstring = initial_tz;
2112 else if (EQ (tz, Qt))
2113 tzstring = "UTC0";
2114 else
2115 tzstring = SSDATA (tz);
2116
2117 set_time_zone_rule (tzstring);
2118 environbuf = environ;
2119
2120 UNBLOCK_INPUT;
2121
2122 xfree (old_environbuf);
2123 return Qnil;
2124 }
2125
2126 #ifdef LOCALTIME_CACHE
2127
2128 /* These two values are known to load tz files in buggy implementations,
2129 i.e. Solaris 1 executables running under either Solaris 1 or Solaris 2.
2130 Their values shouldn't matter in non-buggy implementations.
2131 We don't use string literals for these strings,
2132 since if a string in the environment is in readonly
2133 storage, it runs afoul of bugs in SVR4 and Solaris 2.3.
2134 See Sun bugs 1113095 and 1114114, ``Timezone routines
2135 improperly modify environment''. */
2136
2137 static char set_time_zone_rule_tz1[] = "TZ=GMT+0";
2138 static char set_time_zone_rule_tz2[] = "TZ=GMT+1";
2139
2140 #endif
2141
2142 /* Set the local time zone rule to TZSTRING.
2143 This allocates memory into `environ', which it is the caller's
2144 responsibility to free. */
2145
2146 void
2147 set_time_zone_rule (const char *tzstring)
2148 {
2149 ptrdiff_t envptrs;
2150 char **from, **to, **newenv;
2151
2152 /* Make the ENVIRON vector longer with room for TZSTRING. */
2153 for (from = environ; *from; from++)
2154 continue;
2155 envptrs = from - environ + 2;
2156 newenv = to = xmalloc (envptrs * sizeof *newenv
2157 + (tzstring ? strlen (tzstring) + 4 : 0));
2158
2159 /* Add TZSTRING to the end of environ, as a value for TZ. */
2160 if (tzstring)
2161 {
2162 char *t = (char *) (to + envptrs);
2163 strcpy (t, "TZ=");
2164 strcat (t, tzstring);
2165 *to++ = t;
2166 }
2167
2168 /* Copy the old environ vector elements into NEWENV,
2169 but don't copy the TZ variable.
2170 So we have only one definition of TZ, which came from TZSTRING. */
2171 for (from = environ; *from; from++)
2172 if (strncmp (*from, "TZ=", 3) != 0)
2173 *to++ = *from;
2174 *to = 0;
2175
2176 environ = newenv;
2177
2178 /* If we do have a TZSTRING, NEWENV points to the vector slot where
2179 the TZ variable is stored. If we do not have a TZSTRING,
2180 TO points to the vector slot which has the terminating null. */
2181
2182 #ifdef LOCALTIME_CACHE
2183 {
2184 /* In SunOS 4.1.3_U1 and 4.1.4, if TZ has a value like
2185 "US/Pacific" that loads a tz file, then changes to a value like
2186 "XXX0" that does not load a tz file, and then changes back to
2187 its original value, the last change is (incorrectly) ignored.
2188 Also, if TZ changes twice in succession to values that do
2189 not load a tz file, tzset can dump core (see Sun bug#1225179).
2190 The following code works around these bugs. */
2191
2192 if (tzstring)
2193 {
2194 /* Temporarily set TZ to a value that loads a tz file
2195 and that differs from tzstring. */
2196 char *tz = *newenv;
2197 *newenv = (strcmp (tzstring, set_time_zone_rule_tz1 + 3) == 0
2198 ? set_time_zone_rule_tz2 : set_time_zone_rule_tz1);
2199 tzset ();
2200 *newenv = tz;
2201 }
2202 else
2203 {
2204 /* The implied tzstring is unknown, so temporarily set TZ to
2205 two different values that each load a tz file. */
2206 *to = set_time_zone_rule_tz1;
2207 to[1] = 0;
2208 tzset ();
2209 *to = set_time_zone_rule_tz2;
2210 tzset ();
2211 *to = 0;
2212 }
2213
2214 /* Now TZ has the desired value, and tzset can be invoked safely. */
2215 }
2216
2217 tzset ();
2218 #endif
2219 }
2220 \f
2221 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
2222 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
2223 type of object is Lisp_String). INHERIT is passed to
2224 INSERT_FROM_STRING_FUNC as the last argument. */
2225
2226 static void
2227 general_insert_function (void (*insert_func)
2228 (const char *, ptrdiff_t),
2229 void (*insert_from_string_func)
2230 (Lisp_Object, ptrdiff_t, ptrdiff_t,
2231 ptrdiff_t, ptrdiff_t, bool),
2232 bool inherit, ptrdiff_t nargs, Lisp_Object *args)
2233 {
2234 ptrdiff_t argnum;
2235 Lisp_Object val;
2236
2237 for (argnum = 0; argnum < nargs; argnum++)
2238 {
2239 val = args[argnum];
2240 if (CHARACTERP (val))
2241 {
2242 int c = XFASTINT (val);
2243 unsigned char str[MAX_MULTIBYTE_LENGTH];
2244 int len;
2245
2246 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2247 len = CHAR_STRING (c, str);
2248 else
2249 {
2250 str[0] = ASCII_CHAR_P (c) ? c : multibyte_char_to_unibyte (c);
2251 len = 1;
2252 }
2253 (*insert_func) ((char *) str, len);
2254 }
2255 else if (STRINGP (val))
2256 {
2257 (*insert_from_string_func) (val, 0, 0,
2258 SCHARS (val),
2259 SBYTES (val),
2260 inherit);
2261 }
2262 else
2263 wrong_type_argument (Qchar_or_string_p, val);
2264 }
2265 }
2266
2267 void
2268 insert1 (Lisp_Object arg)
2269 {
2270 Finsert (1, &arg);
2271 }
2272
2273
2274 /* Callers passing one argument to Finsert need not gcpro the
2275 argument "array", since the only element of the array will
2276 not be used after calling insert or insert_from_string, so
2277 we don't care if it gets trashed. */
2278
2279 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2280 doc: /* Insert the arguments, either strings or characters, at point.
2281 Point and before-insertion markers move forward to end up
2282 after the inserted text.
2283 Any other markers at the point of insertion remain before the text.
2284
2285 If the current buffer is multibyte, unibyte strings are converted
2286 to multibyte for insertion (see `string-make-multibyte').
2287 If the current buffer is unibyte, multibyte strings are converted
2288 to unibyte for insertion (see `string-make-unibyte').
2289
2290 When operating on binary data, it may be necessary to preserve the
2291 original bytes of a unibyte string when inserting it into a multibyte
2292 buffer; to accomplish this, apply `string-as-multibyte' to the string
2293 and insert the result.
2294
2295 usage: (insert &rest ARGS) */)
2296 (ptrdiff_t nargs, Lisp_Object *args)
2297 {
2298 general_insert_function (insert, insert_from_string, 0, nargs, args);
2299 return Qnil;
2300 }
2301
2302 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2303 0, MANY, 0,
2304 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2305 Point and before-insertion markers move forward to end up
2306 after the inserted text.
2307 Any other markers at the point of insertion remain before the text.
2308
2309 If the current buffer is multibyte, unibyte strings are converted
2310 to multibyte for insertion (see `unibyte-char-to-multibyte').
2311 If the current buffer is unibyte, multibyte strings are converted
2312 to unibyte for insertion.
2313
2314 usage: (insert-and-inherit &rest ARGS) */)
2315 (ptrdiff_t nargs, Lisp_Object *args)
2316 {
2317 general_insert_function (insert_and_inherit, insert_from_string, 1,
2318 nargs, args);
2319 return Qnil;
2320 }
2321
2322 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2323 doc: /* Insert strings or characters at point, relocating markers after the text.
2324 Point and markers move forward to end up after the inserted text.
2325
2326 If the current buffer is multibyte, unibyte strings are converted
2327 to multibyte for insertion (see `unibyte-char-to-multibyte').
2328 If the current buffer is unibyte, multibyte strings are converted
2329 to unibyte for insertion.
2330
2331 usage: (insert-before-markers &rest ARGS) */)
2332 (ptrdiff_t nargs, Lisp_Object *args)
2333 {
2334 general_insert_function (insert_before_markers,
2335 insert_from_string_before_markers, 0,
2336 nargs, args);
2337 return Qnil;
2338 }
2339
2340 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2341 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2342 doc: /* Insert text at point, relocating markers and inheriting properties.
2343 Point and markers move forward to end up after the inserted text.
2344
2345 If the current buffer is multibyte, unibyte strings are converted
2346 to multibyte for insertion (see `unibyte-char-to-multibyte').
2347 If the current buffer is unibyte, multibyte strings are converted
2348 to unibyte for insertion.
2349
2350 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2351 (ptrdiff_t nargs, Lisp_Object *args)
2352 {
2353 general_insert_function (insert_before_markers_and_inherit,
2354 insert_from_string_before_markers, 1,
2355 nargs, args);
2356 return Qnil;
2357 }
2358 \f
2359 DEFUN ("insert-char", Finsert_char, Sinsert_char, 1, 3,
2360 "(list (read-char-by-name \"Insert character (Unicode name or hex): \")\
2361 (prefix-numeric-value current-prefix-arg)\
2362 t))",
2363 doc: /* Insert COUNT copies of CHARACTER.
2364 Interactively, prompt for CHARACTER. You can specify CHARACTER in one
2365 of these ways:
2366
2367 - As its Unicode character name, e.g. \"LATIN SMALL LETTER A\".
2368 Completion is available; if you type a substring of the name
2369 preceded by an asterisk `*', Emacs shows all names which include
2370 that substring, not necessarily at the beginning of the name.
2371
2372 - As a hexadecimal code point, e.g. 263A. Note that code points in
2373 Emacs are equivalent to Unicode up to 10FFFF (which is the limit of
2374 the Unicode code space).
2375
2376 - As a code point with a radix specified with #, e.g. #o21430
2377 (octal), #x2318 (hex), or #10r8984 (decimal).
2378
2379 If called interactively, COUNT is given by the prefix argument. If
2380 omitted or nil, it defaults to 1.
2381
2382 Inserting the character(s) relocates point and before-insertion
2383 markers in the same ways as the function `insert'.
2384
2385 The optional third argument INHERIT, if non-nil, says to inherit text
2386 properties from adjoining text, if those properties are sticky. If
2387 called interactively, INHERIT is t. */)
2388 (Lisp_Object character, Lisp_Object count, Lisp_Object inherit)
2389 {
2390 int i, stringlen;
2391 register ptrdiff_t n;
2392 int c, len;
2393 unsigned char str[MAX_MULTIBYTE_LENGTH];
2394 char string[4000];
2395
2396 CHECK_CHARACTER (character);
2397 if (NILP (count))
2398 XSETFASTINT (count, 1);
2399 CHECK_NUMBER (count);
2400 c = XFASTINT (character);
2401
2402 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2403 len = CHAR_STRING (c, str);
2404 else
2405 str[0] = c, len = 1;
2406 if (XINT (count) <= 0)
2407 return Qnil;
2408 if (BUF_BYTES_MAX / len < XINT (count))
2409 buffer_overflow ();
2410 n = XINT (count) * len;
2411 stringlen = min (n, sizeof string - sizeof string % len);
2412 for (i = 0; i < stringlen; i++)
2413 string[i] = str[i % len];
2414 while (n > stringlen)
2415 {
2416 QUIT;
2417 if (!NILP (inherit))
2418 insert_and_inherit (string, stringlen);
2419 else
2420 insert (string, stringlen);
2421 n -= stringlen;
2422 }
2423 if (!NILP (inherit))
2424 insert_and_inherit (string, n);
2425 else
2426 insert (string, n);
2427 return Qnil;
2428 }
2429
2430 DEFUN ("insert-byte", Finsert_byte, Sinsert_byte, 2, 3, 0,
2431 doc: /* Insert COUNT (second arg) copies of BYTE (first arg).
2432 Both arguments are required.
2433 BYTE is a number of the range 0..255.
2434
2435 If BYTE is 128..255 and the current buffer is multibyte, the
2436 corresponding eight-bit character is inserted.
2437
2438 Point, and before-insertion markers, are relocated as in the function `insert'.
2439 The optional third arg INHERIT, if non-nil, says to inherit text properties
2440 from adjoining text, if those properties are sticky. */)
2441 (Lisp_Object byte, Lisp_Object count, Lisp_Object inherit)
2442 {
2443 CHECK_NUMBER (byte);
2444 if (XINT (byte) < 0 || XINT (byte) > 255)
2445 args_out_of_range_3 (byte, make_number (0), make_number (255));
2446 if (XINT (byte) >= 128
2447 && ! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2448 XSETFASTINT (byte, BYTE8_TO_CHAR (XINT (byte)));
2449 return Finsert_char (byte, count, inherit);
2450 }
2451
2452 \f
2453 /* Making strings from buffer contents. */
2454
2455 /* Return a Lisp_String containing the text of the current buffer from
2456 START to END. If text properties are in use and the current buffer
2457 has properties in the range specified, the resulting string will also
2458 have them, if PROPS is true.
2459
2460 We don't want to use plain old make_string here, because it calls
2461 make_uninit_string, which can cause the buffer arena to be
2462 compacted. make_string has no way of knowing that the data has
2463 been moved, and thus copies the wrong data into the string. This
2464 doesn't effect most of the other users of make_string, so it should
2465 be left as is. But we should use this function when conjuring
2466 buffer substrings. */
2467
2468 Lisp_Object
2469 make_buffer_string (ptrdiff_t start, ptrdiff_t end, bool props)
2470 {
2471 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
2472 ptrdiff_t end_byte = CHAR_TO_BYTE (end);
2473
2474 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2475 }
2476
2477 /* Return a Lisp_String containing the text of the current buffer from
2478 START / START_BYTE to END / END_BYTE.
2479
2480 If text properties are in use and the current buffer
2481 has properties in the range specified, the resulting string will also
2482 have them, if PROPS is true.
2483
2484 We don't want to use plain old make_string here, because it calls
2485 make_uninit_string, which can cause the buffer arena to be
2486 compacted. make_string has no way of knowing that the data has
2487 been moved, and thus copies the wrong data into the string. This
2488 doesn't effect most of the other users of make_string, so it should
2489 be left as is. But we should use this function when conjuring
2490 buffer substrings. */
2491
2492 Lisp_Object
2493 make_buffer_string_both (ptrdiff_t start, ptrdiff_t start_byte,
2494 ptrdiff_t end, ptrdiff_t end_byte, bool props)
2495 {
2496 Lisp_Object result, tem, tem1;
2497
2498 if (start < GPT && GPT < end)
2499 move_gap (start);
2500
2501 if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2502 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2503 else
2504 result = make_uninit_string (end - start);
2505 memcpy (SDATA (result), BYTE_POS_ADDR (start_byte), end_byte - start_byte);
2506
2507 /* If desired, update and copy the text properties. */
2508 if (props)
2509 {
2510 update_buffer_properties (start, end);
2511
2512 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2513 tem1 = Ftext_properties_at (make_number (start), Qnil);
2514
2515 if (XINT (tem) != end || !NILP (tem1))
2516 copy_intervals_to_string (result, current_buffer, start,
2517 end - start);
2518 }
2519
2520 return result;
2521 }
2522
2523 /* Call Vbuffer_access_fontify_functions for the range START ... END
2524 in the current buffer, if necessary. */
2525
2526 static void
2527 update_buffer_properties (ptrdiff_t start, ptrdiff_t end)
2528 {
2529 /* If this buffer has some access functions,
2530 call them, specifying the range of the buffer being accessed. */
2531 if (!NILP (Vbuffer_access_fontify_functions))
2532 {
2533 Lisp_Object args[3];
2534 Lisp_Object tem;
2535
2536 args[0] = Qbuffer_access_fontify_functions;
2537 XSETINT (args[1], start);
2538 XSETINT (args[2], end);
2539
2540 /* But don't call them if we can tell that the work
2541 has already been done. */
2542 if (!NILP (Vbuffer_access_fontified_property))
2543 {
2544 tem = Ftext_property_any (args[1], args[2],
2545 Vbuffer_access_fontified_property,
2546 Qnil, Qnil);
2547 if (! NILP (tem))
2548 Frun_hook_with_args (3, args);
2549 }
2550 else
2551 Frun_hook_with_args (3, args);
2552 }
2553 }
2554
2555 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2556 doc: /* Return the contents of part of the current buffer as a string.
2557 The two arguments START and END are character positions;
2558 they can be in either order.
2559 The string returned is multibyte if the buffer is multibyte.
2560
2561 This function copies the text properties of that part of the buffer
2562 into the result string; if you don't want the text properties,
2563 use `buffer-substring-no-properties' instead. */)
2564 (Lisp_Object start, Lisp_Object end)
2565 {
2566 register ptrdiff_t b, e;
2567
2568 validate_region (&start, &end);
2569 b = XINT (start);
2570 e = XINT (end);
2571
2572 return make_buffer_string (b, e, 1);
2573 }
2574
2575 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2576 Sbuffer_substring_no_properties, 2, 2, 0,
2577 doc: /* Return the characters of part of the buffer, without the text properties.
2578 The two arguments START and END are character positions;
2579 they can be in either order. */)
2580 (Lisp_Object start, Lisp_Object end)
2581 {
2582 register ptrdiff_t b, e;
2583
2584 validate_region (&start, &end);
2585 b = XINT (start);
2586 e = XINT (end);
2587
2588 return make_buffer_string (b, e, 0);
2589 }
2590
2591 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2592 doc: /* Return the contents of the current buffer as a string.
2593 If narrowing is in effect, this function returns only the visible part
2594 of the buffer. */)
2595 (void)
2596 {
2597 return make_buffer_string (BEGV, ZV, 1);
2598 }
2599
2600 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2601 1, 3, 0,
2602 doc: /* Insert before point a substring of the contents of BUFFER.
2603 BUFFER may be a buffer or a buffer name.
2604 Arguments START and END are character positions specifying the substring.
2605 They default to the values of (point-min) and (point-max) in BUFFER. */)
2606 (Lisp_Object buffer, Lisp_Object start, Lisp_Object end)
2607 {
2608 register EMACS_INT b, e, temp;
2609 register struct buffer *bp, *obuf;
2610 Lisp_Object buf;
2611
2612 buf = Fget_buffer (buffer);
2613 if (NILP (buf))
2614 nsberror (buffer);
2615 bp = XBUFFER (buf);
2616 if (!BUFFER_LIVE_P (bp))
2617 error ("Selecting deleted buffer");
2618
2619 if (NILP (start))
2620 b = BUF_BEGV (bp);
2621 else
2622 {
2623 CHECK_NUMBER_COERCE_MARKER (start);
2624 b = XINT (start);
2625 }
2626 if (NILP (end))
2627 e = BUF_ZV (bp);
2628 else
2629 {
2630 CHECK_NUMBER_COERCE_MARKER (end);
2631 e = XINT (end);
2632 }
2633
2634 if (b > e)
2635 temp = b, b = e, e = temp;
2636
2637 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2638 args_out_of_range (start, end);
2639
2640 obuf = current_buffer;
2641 set_buffer_internal_1 (bp);
2642 update_buffer_properties (b, e);
2643 set_buffer_internal_1 (obuf);
2644
2645 insert_from_buffer (bp, b, e - b, 0);
2646 return Qnil;
2647 }
2648
2649 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2650 6, 6, 0,
2651 doc: /* Compare two substrings of two buffers; return result as number.
2652 the value is -N if first string is less after N-1 chars,
2653 +N if first string is greater after N-1 chars, or 0 if strings match.
2654 Each substring is represented as three arguments: BUFFER, START and END.
2655 That makes six args in all, three for each substring.
2656
2657 The value of `case-fold-search' in the current buffer
2658 determines whether case is significant or ignored. */)
2659 (Lisp_Object buffer1, Lisp_Object start1, Lisp_Object end1, Lisp_Object buffer2, Lisp_Object start2, Lisp_Object end2)
2660 {
2661 register EMACS_INT begp1, endp1, begp2, endp2, temp;
2662 register struct buffer *bp1, *bp2;
2663 register Lisp_Object trt
2664 = (!NILP (BVAR (current_buffer, case_fold_search))
2665 ? BVAR (current_buffer, case_canon_table) : Qnil);
2666 ptrdiff_t chars = 0;
2667 ptrdiff_t i1, i2, i1_byte, i2_byte;
2668
2669 /* Find the first buffer and its substring. */
2670
2671 if (NILP (buffer1))
2672 bp1 = current_buffer;
2673 else
2674 {
2675 Lisp_Object buf1;
2676 buf1 = Fget_buffer (buffer1);
2677 if (NILP (buf1))
2678 nsberror (buffer1);
2679 bp1 = XBUFFER (buf1);
2680 if (!BUFFER_LIVE_P (bp1))
2681 error ("Selecting deleted buffer");
2682 }
2683
2684 if (NILP (start1))
2685 begp1 = BUF_BEGV (bp1);
2686 else
2687 {
2688 CHECK_NUMBER_COERCE_MARKER (start1);
2689 begp1 = XINT (start1);
2690 }
2691 if (NILP (end1))
2692 endp1 = BUF_ZV (bp1);
2693 else
2694 {
2695 CHECK_NUMBER_COERCE_MARKER (end1);
2696 endp1 = XINT (end1);
2697 }
2698
2699 if (begp1 > endp1)
2700 temp = begp1, begp1 = endp1, endp1 = temp;
2701
2702 if (!(BUF_BEGV (bp1) <= begp1
2703 && begp1 <= endp1
2704 && endp1 <= BUF_ZV (bp1)))
2705 args_out_of_range (start1, end1);
2706
2707 /* Likewise for second substring. */
2708
2709 if (NILP (buffer2))
2710 bp2 = current_buffer;
2711 else
2712 {
2713 Lisp_Object buf2;
2714 buf2 = Fget_buffer (buffer2);
2715 if (NILP (buf2))
2716 nsberror (buffer2);
2717 bp2 = XBUFFER (buf2);
2718 if (!BUFFER_LIVE_P (bp2))
2719 error ("Selecting deleted buffer");
2720 }
2721
2722 if (NILP (start2))
2723 begp2 = BUF_BEGV (bp2);
2724 else
2725 {
2726 CHECK_NUMBER_COERCE_MARKER (start2);
2727 begp2 = XINT (start2);
2728 }
2729 if (NILP (end2))
2730 endp2 = BUF_ZV (bp2);
2731 else
2732 {
2733 CHECK_NUMBER_COERCE_MARKER (end2);
2734 endp2 = XINT (end2);
2735 }
2736
2737 if (begp2 > endp2)
2738 temp = begp2, begp2 = endp2, endp2 = temp;
2739
2740 if (!(BUF_BEGV (bp2) <= begp2
2741 && begp2 <= endp2
2742 && endp2 <= BUF_ZV (bp2)))
2743 args_out_of_range (start2, end2);
2744
2745 i1 = begp1;
2746 i2 = begp2;
2747 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2748 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2749
2750 while (i1 < endp1 && i2 < endp2)
2751 {
2752 /* When we find a mismatch, we must compare the
2753 characters, not just the bytes. */
2754 int c1, c2;
2755
2756 QUIT;
2757
2758 if (! NILP (BVAR (bp1, enable_multibyte_characters)))
2759 {
2760 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2761 BUF_INC_POS (bp1, i1_byte);
2762 i1++;
2763 }
2764 else
2765 {
2766 c1 = BUF_FETCH_BYTE (bp1, i1);
2767 MAKE_CHAR_MULTIBYTE (c1);
2768 i1++;
2769 }
2770
2771 if (! NILP (BVAR (bp2, enable_multibyte_characters)))
2772 {
2773 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
2774 BUF_INC_POS (bp2, i2_byte);
2775 i2++;
2776 }
2777 else
2778 {
2779 c2 = BUF_FETCH_BYTE (bp2, i2);
2780 MAKE_CHAR_MULTIBYTE (c2);
2781 i2++;
2782 }
2783
2784 if (!NILP (trt))
2785 {
2786 c1 = char_table_translate (trt, c1);
2787 c2 = char_table_translate (trt, c2);
2788 }
2789 if (c1 < c2)
2790 return make_number (- 1 - chars);
2791 if (c1 > c2)
2792 return make_number (chars + 1);
2793
2794 chars++;
2795 }
2796
2797 /* The strings match as far as they go.
2798 If one is shorter, that one is less. */
2799 if (chars < endp1 - begp1)
2800 return make_number (chars + 1);
2801 else if (chars < endp2 - begp2)
2802 return make_number (- chars - 1);
2803
2804 /* Same length too => they are equal. */
2805 return make_number (0);
2806 }
2807 \f
2808 static Lisp_Object
2809 subst_char_in_region_unwind (Lisp_Object arg)
2810 {
2811 bset_undo_list (current_buffer, arg);
2812 return arg;
2813 }
2814
2815 static Lisp_Object
2816 subst_char_in_region_unwind_1 (Lisp_Object arg)
2817 {
2818 bset_filename (current_buffer, arg);
2819 return arg;
2820 }
2821
2822 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
2823 Ssubst_char_in_region, 4, 5, 0,
2824 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
2825 If optional arg NOUNDO is non-nil, don't record this change for undo
2826 and don't mark the buffer as really changed.
2827 Both characters must have the same length of multi-byte form. */)
2828 (Lisp_Object start, Lisp_Object end, Lisp_Object fromchar, Lisp_Object tochar, Lisp_Object noundo)
2829 {
2830 register ptrdiff_t pos, pos_byte, stop, i, len, end_byte;
2831 /* Keep track of the first change in the buffer:
2832 if 0 we haven't found it yet.
2833 if < 0 we've found it and we've run the before-change-function.
2834 if > 0 we've actually performed it and the value is its position. */
2835 ptrdiff_t changed = 0;
2836 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
2837 unsigned char *p;
2838 ptrdiff_t count = SPECPDL_INDEX ();
2839 #define COMBINING_NO 0
2840 #define COMBINING_BEFORE 1
2841 #define COMBINING_AFTER 2
2842 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
2843 int maybe_byte_combining = COMBINING_NO;
2844 ptrdiff_t last_changed = 0;
2845 bool multibyte_p
2846 = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2847 int fromc, toc;
2848
2849 restart:
2850
2851 validate_region (&start, &end);
2852 CHECK_CHARACTER (fromchar);
2853 CHECK_CHARACTER (tochar);
2854 fromc = XFASTINT (fromchar);
2855 toc = XFASTINT (tochar);
2856
2857 if (multibyte_p)
2858 {
2859 len = CHAR_STRING (fromc, fromstr);
2860 if (CHAR_STRING (toc, tostr) != len)
2861 error ("Characters in `subst-char-in-region' have different byte-lengths");
2862 if (!ASCII_BYTE_P (*tostr))
2863 {
2864 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
2865 complete multibyte character, it may be combined with the
2866 after bytes. If it is in the range 0xA0..0xFF, it may be
2867 combined with the before and after bytes. */
2868 if (!CHAR_HEAD_P (*tostr))
2869 maybe_byte_combining = COMBINING_BOTH;
2870 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
2871 maybe_byte_combining = COMBINING_AFTER;
2872 }
2873 }
2874 else
2875 {
2876 len = 1;
2877 fromstr[0] = fromc;
2878 tostr[0] = toc;
2879 }
2880
2881 pos = XINT (start);
2882 pos_byte = CHAR_TO_BYTE (pos);
2883 stop = CHAR_TO_BYTE (XINT (end));
2884 end_byte = stop;
2885
2886 /* If we don't want undo, turn off putting stuff on the list.
2887 That's faster than getting rid of things,
2888 and it prevents even the entry for a first change.
2889 Also inhibit locking the file. */
2890 if (!changed && !NILP (noundo))
2891 {
2892 record_unwind_protect (subst_char_in_region_unwind,
2893 BVAR (current_buffer, undo_list));
2894 bset_undo_list (current_buffer, Qt);
2895 /* Don't do file-locking. */
2896 record_unwind_protect (subst_char_in_region_unwind_1,
2897 BVAR (current_buffer, filename));
2898 bset_filename (current_buffer, Qnil);
2899 }
2900
2901 if (pos_byte < GPT_BYTE)
2902 stop = min (stop, GPT_BYTE);
2903 while (1)
2904 {
2905 ptrdiff_t pos_byte_next = pos_byte;
2906
2907 if (pos_byte >= stop)
2908 {
2909 if (pos_byte >= end_byte) break;
2910 stop = end_byte;
2911 }
2912 p = BYTE_POS_ADDR (pos_byte);
2913 if (multibyte_p)
2914 INC_POS (pos_byte_next);
2915 else
2916 ++pos_byte_next;
2917 if (pos_byte_next - pos_byte == len
2918 && p[0] == fromstr[0]
2919 && (len == 1
2920 || (p[1] == fromstr[1]
2921 && (len == 2 || (p[2] == fromstr[2]
2922 && (len == 3 || p[3] == fromstr[3]))))))
2923 {
2924 if (changed < 0)
2925 /* We've already seen this and run the before-change-function;
2926 this time we only need to record the actual position. */
2927 changed = pos;
2928 else if (!changed)
2929 {
2930 changed = -1;
2931 modify_region (current_buffer, pos, XINT (end), 0);
2932
2933 if (! NILP (noundo))
2934 {
2935 if (MODIFF - 1 == SAVE_MODIFF)
2936 SAVE_MODIFF++;
2937 if (MODIFF - 1 == BUF_AUTOSAVE_MODIFF (current_buffer))
2938 BUF_AUTOSAVE_MODIFF (current_buffer)++;
2939 }
2940
2941 /* The before-change-function may have moved the gap
2942 or even modified the buffer so we should start over. */
2943 goto restart;
2944 }
2945
2946 /* Take care of the case where the new character
2947 combines with neighboring bytes. */
2948 if (maybe_byte_combining
2949 && (maybe_byte_combining == COMBINING_AFTER
2950 ? (pos_byte_next < Z_BYTE
2951 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2952 : ((pos_byte_next < Z_BYTE
2953 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2954 || (pos_byte > BEG_BYTE
2955 && ! ASCII_BYTE_P (FETCH_BYTE (pos_byte - 1))))))
2956 {
2957 Lisp_Object tem, string;
2958
2959 struct gcpro gcpro1;
2960
2961 tem = BVAR (current_buffer, undo_list);
2962 GCPRO1 (tem);
2963
2964 /* Make a multibyte string containing this single character. */
2965 string = make_multibyte_string ((char *) tostr, 1, len);
2966 /* replace_range is less efficient, because it moves the gap,
2967 but it handles combining correctly. */
2968 replace_range (pos, pos + 1, string,
2969 0, 0, 1);
2970 pos_byte_next = CHAR_TO_BYTE (pos);
2971 if (pos_byte_next > pos_byte)
2972 /* Before combining happened. We should not increment
2973 POS. So, to cancel the later increment of POS,
2974 decrease it now. */
2975 pos--;
2976 else
2977 INC_POS (pos_byte_next);
2978
2979 if (! NILP (noundo))
2980 bset_undo_list (current_buffer, tem);
2981
2982 UNGCPRO;
2983 }
2984 else
2985 {
2986 if (NILP (noundo))
2987 record_change (pos, 1);
2988 for (i = 0; i < len; i++) *p++ = tostr[i];
2989 }
2990 last_changed = pos + 1;
2991 }
2992 pos_byte = pos_byte_next;
2993 pos++;
2994 }
2995
2996 if (changed > 0)
2997 {
2998 signal_after_change (changed,
2999 last_changed - changed, last_changed - changed);
3000 update_compositions (changed, last_changed, CHECK_ALL);
3001 }
3002
3003 unbind_to (count, Qnil);
3004 return Qnil;
3005 }
3006
3007
3008 static Lisp_Object check_translation (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3009 Lisp_Object);
3010
3011 /* Helper function for Ftranslate_region_internal.
3012
3013 Check if a character sequence at POS (POS_BYTE) matches an element
3014 of VAL. VAL is a list (([FROM-CHAR ...] . TO) ...). If a matching
3015 element is found, return it. Otherwise return Qnil. */
3016
3017 static Lisp_Object
3018 check_translation (ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t end,
3019 Lisp_Object val)
3020 {
3021 int buf_size = 16, buf_used = 0;
3022 int *buf = alloca (sizeof (int) * buf_size);
3023
3024 for (; CONSP (val); val = XCDR (val))
3025 {
3026 Lisp_Object elt;
3027 ptrdiff_t len, i;
3028
3029 elt = XCAR (val);
3030 if (! CONSP (elt))
3031 continue;
3032 elt = XCAR (elt);
3033 if (! VECTORP (elt))
3034 continue;
3035 len = ASIZE (elt);
3036 if (len <= end - pos)
3037 {
3038 for (i = 0; i < len; i++)
3039 {
3040 if (buf_used <= i)
3041 {
3042 unsigned char *p = BYTE_POS_ADDR (pos_byte);
3043 int len1;
3044
3045 if (buf_used == buf_size)
3046 {
3047 int *newbuf;
3048
3049 buf_size += 16;
3050 newbuf = alloca (sizeof (int) * buf_size);
3051 memcpy (newbuf, buf, sizeof (int) * buf_used);
3052 buf = newbuf;
3053 }
3054 buf[buf_used++] = STRING_CHAR_AND_LENGTH (p, len1);
3055 pos_byte += len1;
3056 }
3057 if (XINT (AREF (elt, i)) != buf[i])
3058 break;
3059 }
3060 if (i == len)
3061 return XCAR (val);
3062 }
3063 }
3064 return Qnil;
3065 }
3066
3067
3068 DEFUN ("translate-region-internal", Ftranslate_region_internal,
3069 Stranslate_region_internal, 3, 3, 0,
3070 doc: /* Internal use only.
3071 From START to END, translate characters according to TABLE.
3072 TABLE is a string or a char-table; the Nth character in it is the
3073 mapping for the character with code N.
3074 It returns the number of characters changed. */)
3075 (Lisp_Object start, Lisp_Object end, register Lisp_Object table)
3076 {
3077 register unsigned char *tt; /* Trans table. */
3078 register int nc; /* New character. */
3079 int cnt; /* Number of changes made. */
3080 ptrdiff_t size; /* Size of translate table. */
3081 ptrdiff_t pos, pos_byte, end_pos;
3082 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3083 bool string_multibyte IF_LINT (= 0);
3084
3085 validate_region (&start, &end);
3086 if (CHAR_TABLE_P (table))
3087 {
3088 if (! EQ (XCHAR_TABLE (table)->purpose, Qtranslation_table))
3089 error ("Not a translation table");
3090 size = MAX_CHAR;
3091 tt = NULL;
3092 }
3093 else
3094 {
3095 CHECK_STRING (table);
3096
3097 if (! multibyte && (SCHARS (table) < SBYTES (table)))
3098 table = string_make_unibyte (table);
3099 string_multibyte = SCHARS (table) < SBYTES (table);
3100 size = SBYTES (table);
3101 tt = SDATA (table);
3102 }
3103
3104 pos = XINT (start);
3105 pos_byte = CHAR_TO_BYTE (pos);
3106 end_pos = XINT (end);
3107 modify_region (current_buffer, pos, end_pos, 0);
3108
3109 cnt = 0;
3110 for (; pos < end_pos; )
3111 {
3112 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
3113 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
3114 int len, str_len;
3115 int oc;
3116 Lisp_Object val;
3117
3118 if (multibyte)
3119 oc = STRING_CHAR_AND_LENGTH (p, len);
3120 else
3121 oc = *p, len = 1;
3122 if (oc < size)
3123 {
3124 if (tt)
3125 {
3126 /* Reload as signal_after_change in last iteration may GC. */
3127 tt = SDATA (table);
3128 if (string_multibyte)
3129 {
3130 str = tt + string_char_to_byte (table, oc);
3131 nc = STRING_CHAR_AND_LENGTH (str, str_len);
3132 }
3133 else
3134 {
3135 nc = tt[oc];
3136 if (! ASCII_BYTE_P (nc) && multibyte)
3137 {
3138 str_len = BYTE8_STRING (nc, buf);
3139 str = buf;
3140 }
3141 else
3142 {
3143 str_len = 1;
3144 str = tt + oc;
3145 }
3146 }
3147 }
3148 else
3149 {
3150 nc = oc;
3151 val = CHAR_TABLE_REF (table, oc);
3152 if (CHARACTERP (val))
3153 {
3154 nc = XFASTINT (val);
3155 str_len = CHAR_STRING (nc, buf);
3156 str = buf;
3157 }
3158 else if (VECTORP (val) || (CONSP (val)))
3159 {
3160 /* VAL is [TO_CHAR ...] or (([FROM-CHAR ...] . TO) ...)
3161 where TO is TO-CHAR or [TO-CHAR ...]. */
3162 nc = -1;
3163 }
3164 }
3165
3166 if (nc != oc && nc >= 0)
3167 {
3168 /* Simple one char to one char translation. */
3169 if (len != str_len)
3170 {
3171 Lisp_Object string;
3172
3173 /* This is less efficient, because it moves the gap,
3174 but it should handle multibyte characters correctly. */
3175 string = make_multibyte_string ((char *) str, 1, str_len);
3176 replace_range (pos, pos + 1, string, 1, 0, 1);
3177 len = str_len;
3178 }
3179 else
3180 {
3181 record_change (pos, 1);
3182 while (str_len-- > 0)
3183 *p++ = *str++;
3184 signal_after_change (pos, 1, 1);
3185 update_compositions (pos, pos + 1, CHECK_BORDER);
3186 }
3187 ++cnt;
3188 }
3189 else if (nc < 0)
3190 {
3191 Lisp_Object string;
3192
3193 if (CONSP (val))
3194 {
3195 val = check_translation (pos, pos_byte, end_pos, val);
3196 if (NILP (val))
3197 {
3198 pos_byte += len;
3199 pos++;
3200 continue;
3201 }
3202 /* VAL is ([FROM-CHAR ...] . TO). */
3203 len = ASIZE (XCAR (val));
3204 val = XCDR (val);
3205 }
3206 else
3207 len = 1;
3208
3209 if (VECTORP (val))
3210 {
3211 string = Fconcat (1, &val);
3212 }
3213 else
3214 {
3215 string = Fmake_string (make_number (1), val);
3216 }
3217 replace_range (pos, pos + len, string, 1, 0, 1);
3218 pos_byte += SBYTES (string);
3219 pos += SCHARS (string);
3220 cnt += SCHARS (string);
3221 end_pos += SCHARS (string) - len;
3222 continue;
3223 }
3224 }
3225 pos_byte += len;
3226 pos++;
3227 }
3228
3229 return make_number (cnt);
3230 }
3231
3232 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
3233 doc: /* Delete the text between START and END.
3234 If called interactively, delete the region between point and mark.
3235 This command deletes buffer text without modifying the kill ring. */)
3236 (Lisp_Object start, Lisp_Object end)
3237 {
3238 validate_region (&start, &end);
3239 del_range (XINT (start), XINT (end));
3240 return Qnil;
3241 }
3242
3243 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
3244 Sdelete_and_extract_region, 2, 2, 0,
3245 doc: /* Delete the text between START and END and return it. */)
3246 (Lisp_Object start, Lisp_Object end)
3247 {
3248 validate_region (&start, &end);
3249 if (XINT (start) == XINT (end))
3250 return empty_unibyte_string;
3251 return del_range_1 (XINT (start), XINT (end), 1, 1);
3252 }
3253 \f
3254 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
3255 doc: /* Remove restrictions (narrowing) from current buffer.
3256 This allows the buffer's full text to be seen and edited. */)
3257 (void)
3258 {
3259 if (BEG != BEGV || Z != ZV)
3260 current_buffer->clip_changed = 1;
3261 BEGV = BEG;
3262 BEGV_BYTE = BEG_BYTE;
3263 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
3264 /* Changing the buffer bounds invalidates any recorded current column. */
3265 invalidate_current_column ();
3266 return Qnil;
3267 }
3268
3269 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
3270 doc: /* Restrict editing in this buffer to the current region.
3271 The rest of the text becomes temporarily invisible and untouchable
3272 but is not deleted; if you save the buffer in a file, the invisible
3273 text is included in the file. \\[widen] makes all visible again.
3274 See also `save-restriction'.
3275
3276 When calling from a program, pass two arguments; positions (integers
3277 or markers) bounding the text that should remain visible. */)
3278 (register Lisp_Object start, Lisp_Object end)
3279 {
3280 CHECK_NUMBER_COERCE_MARKER (start);
3281 CHECK_NUMBER_COERCE_MARKER (end);
3282
3283 if (XINT (start) > XINT (end))
3284 {
3285 Lisp_Object tem;
3286 tem = start; start = end; end = tem;
3287 }
3288
3289 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
3290 args_out_of_range (start, end);
3291
3292 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
3293 current_buffer->clip_changed = 1;
3294
3295 SET_BUF_BEGV (current_buffer, XFASTINT (start));
3296 SET_BUF_ZV (current_buffer, XFASTINT (end));
3297 if (PT < XFASTINT (start))
3298 SET_PT (XFASTINT (start));
3299 if (PT > XFASTINT (end))
3300 SET_PT (XFASTINT (end));
3301 /* Changing the buffer bounds invalidates any recorded current column. */
3302 invalidate_current_column ();
3303 return Qnil;
3304 }
3305
3306 Lisp_Object
3307 save_restriction_save (void)
3308 {
3309 if (BEGV == BEG && ZV == Z)
3310 /* The common case that the buffer isn't narrowed.
3311 We return just the buffer object, which save_restriction_restore
3312 recognizes as meaning `no restriction'. */
3313 return Fcurrent_buffer ();
3314 else
3315 /* We have to save a restriction, so return a pair of markers, one
3316 for the beginning and one for the end. */
3317 {
3318 Lisp_Object beg, end;
3319
3320 beg = build_marker (current_buffer, BEGV, BEGV_BYTE);
3321 end = build_marker (current_buffer, ZV, ZV_BYTE);
3322
3323 /* END must move forward if text is inserted at its exact location. */
3324 XMARKER (end)->insertion_type = 1;
3325
3326 return Fcons (beg, end);
3327 }
3328 }
3329
3330 Lisp_Object
3331 save_restriction_restore (Lisp_Object data)
3332 {
3333 struct buffer *cur = NULL;
3334 struct buffer *buf = (CONSP (data)
3335 ? XMARKER (XCAR (data))->buffer
3336 : XBUFFER (data));
3337
3338 if (buf && buf != current_buffer && !NILP (BVAR (buf, pt_marker)))
3339 { /* If `buf' uses markers to keep track of PT, BEGV, and ZV (as
3340 is the case if it is or has an indirect buffer), then make
3341 sure it is current before we update BEGV, so
3342 set_buffer_internal takes care of managing those markers. */
3343 cur = current_buffer;
3344 set_buffer_internal (buf);
3345 }
3346
3347 if (CONSP (data))
3348 /* A pair of marks bounding a saved restriction. */
3349 {
3350 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3351 struct Lisp_Marker *end = XMARKER (XCDR (data));
3352 eassert (buf == end->buffer);
3353
3354 if (buf /* Verify marker still points to a buffer. */
3355 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3356 /* The restriction has changed from the saved one, so restore
3357 the saved restriction. */
3358 {
3359 ptrdiff_t pt = BUF_PT (buf);
3360
3361 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3362 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3363
3364 if (pt < beg->charpos || pt > end->charpos)
3365 /* The point is outside the new visible range, move it inside. */
3366 SET_BUF_PT_BOTH (buf,
3367 clip_to_bounds (beg->charpos, pt, end->charpos),
3368 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3369 end->bytepos));
3370
3371 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3372 }
3373 /* These aren't needed anymore, so don't wait for GC. */
3374 free_marker (XCAR (data));
3375 free_marker (XCDR (data));
3376 free_cons (XCONS (data));
3377 }
3378 else
3379 /* A buffer, which means that there was no old restriction. */
3380 {
3381 if (buf /* Verify marker still points to a buffer. */
3382 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3383 /* The buffer has been narrowed, get rid of the narrowing. */
3384 {
3385 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3386 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3387
3388 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3389 }
3390 }
3391
3392 /* Changing the buffer bounds invalidates any recorded current column. */
3393 invalidate_current_column ();
3394
3395 if (cur)
3396 set_buffer_internal (cur);
3397
3398 return Qnil;
3399 }
3400
3401 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3402 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3403 The buffer's restrictions make parts of the beginning and end invisible.
3404 \(They are set up with `narrow-to-region' and eliminated with `widen'.)
3405 This special form, `save-restriction', saves the current buffer's restrictions
3406 when it is entered, and restores them when it is exited.
3407 So any `narrow-to-region' within BODY lasts only until the end of the form.
3408 The old restrictions settings are restored
3409 even in case of abnormal exit (throw or error).
3410
3411 The value returned is the value of the last form in BODY.
3412
3413 Note: if you are using both `save-excursion' and `save-restriction',
3414 use `save-excursion' outermost:
3415 (save-excursion (save-restriction ...))
3416
3417 usage: (save-restriction &rest BODY) */)
3418 (Lisp_Object body)
3419 {
3420 register Lisp_Object val;
3421 ptrdiff_t count = SPECPDL_INDEX ();
3422
3423 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3424 val = Fprogn (body);
3425 return unbind_to (count, val);
3426 }
3427 \f
3428 /* Buffer for the most recent text displayed by Fmessage_box. */
3429 static char *message_text;
3430
3431 /* Allocated length of that buffer. */
3432 static ptrdiff_t message_length;
3433
3434 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3435 doc: /* Display a message at the bottom of the screen.
3436 The message also goes into the `*Messages*' buffer.
3437 \(In keyboard macros, that's all it does.)
3438 Return the message.
3439
3440 The first argument is a format control string, and the rest are data
3441 to be formatted under control of the string. See `format' for details.
3442
3443 Note: Use (message "%s" VALUE) to print the value of expressions and
3444 variables to avoid accidentally interpreting `%' as format specifiers.
3445
3446 If the first argument is nil or the empty string, the function clears
3447 any existing message; this lets the minibuffer contents show. See
3448 also `current-message'.
3449
3450 usage: (message FORMAT-STRING &rest ARGS) */)
3451 (ptrdiff_t nargs, Lisp_Object *args)
3452 {
3453 if (NILP (args[0])
3454 || (STRINGP (args[0])
3455 && SBYTES (args[0]) == 0))
3456 {
3457 message (0);
3458 return args[0];
3459 }
3460 else
3461 {
3462 register Lisp_Object val;
3463 val = Fformat (nargs, args);
3464 message3 (val, SBYTES (val), STRING_MULTIBYTE (val));
3465 return val;
3466 }
3467 }
3468
3469 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3470 doc: /* Display a message, in a dialog box if possible.
3471 If a dialog box is not available, use the echo area.
3472 The first argument is a format control string, and the rest are data
3473 to be formatted under control of the string. See `format' for details.
3474
3475 If the first argument is nil or the empty string, clear any existing
3476 message; let the minibuffer contents show.
3477
3478 usage: (message-box FORMAT-STRING &rest ARGS) */)
3479 (ptrdiff_t nargs, Lisp_Object *args)
3480 {
3481 if (NILP (args[0]))
3482 {
3483 message (0);
3484 return Qnil;
3485 }
3486 else
3487 {
3488 register Lisp_Object val;
3489 val = Fformat (nargs, args);
3490 #ifdef HAVE_MENUS
3491 /* The MS-DOS frames support popup menus even though they are
3492 not FRAME_WINDOW_P. */
3493 if (FRAME_WINDOW_P (XFRAME (selected_frame))
3494 || FRAME_MSDOS_P (XFRAME (selected_frame)))
3495 {
3496 Lisp_Object pane, menu;
3497 struct gcpro gcpro1;
3498 pane = Fcons (Fcons (build_string ("OK"), Qt), Qnil);
3499 GCPRO1 (pane);
3500 menu = Fcons (val, pane);
3501 Fx_popup_dialog (Qt, menu, Qt);
3502 UNGCPRO;
3503 return val;
3504 }
3505 #endif /* HAVE_MENUS */
3506 /* Copy the data so that it won't move when we GC. */
3507 if (SBYTES (val) > message_length)
3508 {
3509 ptrdiff_t new_length = SBYTES (val) + 80;
3510 message_text = xrealloc (message_text, new_length);
3511 message_length = new_length;
3512 }
3513 memcpy (message_text, SDATA (val), SBYTES (val));
3514 message2 (message_text, SBYTES (val),
3515 STRING_MULTIBYTE (val));
3516 return val;
3517 }
3518 }
3519
3520 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3521 doc: /* Display a message in a dialog box or in the echo area.
3522 If this command was invoked with the mouse, use a dialog box if
3523 `use-dialog-box' is non-nil.
3524 Otherwise, use the echo area.
3525 The first argument is a format control string, and the rest are data
3526 to be formatted under control of the string. See `format' for details.
3527
3528 If the first argument is nil or the empty string, clear any existing
3529 message; let the minibuffer contents show.
3530
3531 usage: (message-or-box FORMAT-STRING &rest ARGS) */)
3532 (ptrdiff_t nargs, Lisp_Object *args)
3533 {
3534 #ifdef HAVE_MENUS
3535 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3536 && use_dialog_box)
3537 return Fmessage_box (nargs, args);
3538 #endif
3539 return Fmessage (nargs, args);
3540 }
3541
3542 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3543 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3544 (void)
3545 {
3546 return current_message ();
3547 }
3548
3549
3550 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3551 doc: /* Return a copy of STRING with text properties added.
3552 First argument is the string to copy.
3553 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3554 properties to add to the result.
3555 usage: (propertize STRING &rest PROPERTIES) */)
3556 (ptrdiff_t nargs, Lisp_Object *args)
3557 {
3558 Lisp_Object properties, string;
3559 struct gcpro gcpro1, gcpro2;
3560 ptrdiff_t i;
3561
3562 /* Number of args must be odd. */
3563 if ((nargs & 1) == 0)
3564 error ("Wrong number of arguments");
3565
3566 properties = string = Qnil;
3567 GCPRO2 (properties, string);
3568
3569 /* First argument must be a string. */
3570 CHECK_STRING (args[0]);
3571 string = Fcopy_sequence (args[0]);
3572
3573 for (i = 1; i < nargs; i += 2)
3574 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3575
3576 Fadd_text_properties (make_number (0),
3577 make_number (SCHARS (string)),
3578 properties, string);
3579 RETURN_UNGCPRO (string);
3580 }
3581
3582 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3583 doc: /* Format a string out of a format-string and arguments.
3584 The first argument is a format control string.
3585 The other arguments are substituted into it to make the result, a string.
3586
3587 The format control string may contain %-sequences meaning to substitute
3588 the next available argument:
3589
3590 %s means print a string argument. Actually, prints any object, with `princ'.
3591 %d means print as number in decimal (%o octal, %x hex).
3592 %X is like %x, but uses upper case.
3593 %e means print a number in exponential notation.
3594 %f means print a number in decimal-point notation.
3595 %g means print a number in exponential notation
3596 or decimal-point notation, whichever uses fewer characters.
3597 %c means print a number as a single character.
3598 %S means print any object as an s-expression (using `prin1').
3599
3600 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3601 Use %% to put a single % into the output.
3602
3603 A %-sequence may contain optional flag, width, and precision
3604 specifiers, as follows:
3605
3606 %<flags><width><precision>character
3607
3608 where flags is [+ #-0]+, width is [0-9]+, and precision is .[0-9]+
3609
3610 The + flag character inserts a + before any positive number, while a
3611 space inserts a space before any positive number; these flags only
3612 affect %d, %e, %f, and %g sequences, and the + flag takes precedence.
3613 The - and 0 flags affect the width specifier, as described below.
3614
3615 The # flag means to use an alternate display form for %o, %x, %X, %e,
3616 %f, and %g sequences: for %o, it ensures that the result begins with
3617 \"0\"; for %x and %X, it prefixes the result with \"0x\" or \"0X\";
3618 for %e, %f, and %g, it causes a decimal point to be included even if
3619 the precision is zero.
3620
3621 The width specifier supplies a lower limit for the length of the
3622 printed representation. The padding, if any, normally goes on the
3623 left, but it goes on the right if the - flag is present. The padding
3624 character is normally a space, but it is 0 if the 0 flag is present.
3625 The 0 flag is ignored if the - flag is present, or the format sequence
3626 is something other than %d, %e, %f, and %g.
3627
3628 For %e, %f, and %g sequences, the number after the "." in the
3629 precision specifier says how many decimal places to show; if zero, the
3630 decimal point itself is omitted. For %s and %S, the precision
3631 specifier truncates the string to the given width.
3632
3633 usage: (format STRING &rest OBJECTS) */)
3634 (ptrdiff_t nargs, Lisp_Object *args)
3635 {
3636 ptrdiff_t n; /* The number of the next arg to substitute */
3637 char initial_buffer[4000];
3638 char *buf = initial_buffer;
3639 ptrdiff_t bufsize = sizeof initial_buffer;
3640 ptrdiff_t max_bufsize = STRING_BYTES_BOUND + 1;
3641 char *p;
3642 Lisp_Object buf_save_value IF_LINT (= {0});
3643 char *format, *end, *format_start;
3644 ptrdiff_t formatlen, nchars;
3645 /* True if the format is multibyte. */
3646 bool multibyte_format = 0;
3647 /* True if the output should be a multibyte string,
3648 which is true if any of the inputs is one. */
3649 bool multibyte = 0;
3650 /* When we make a multibyte string, we must pay attention to the
3651 byte combining problem, i.e., a byte may be combined with a
3652 multibyte character of the previous string. This flag tells if we
3653 must consider such a situation or not. */
3654 bool maybe_combine_byte;
3655 Lisp_Object val;
3656 bool arg_intervals = 0;
3657 USE_SAFE_ALLOCA;
3658
3659 /* discarded[I] is 1 if byte I of the format
3660 string was not copied into the output.
3661 It is 2 if byte I was not the first byte of its character. */
3662 char *discarded;
3663
3664 /* Each element records, for one argument,
3665 the start and end bytepos in the output string,
3666 whether the argument has been converted to string (e.g., due to "%S"),
3667 and whether the argument is a string with intervals.
3668 info[0] is unused. Unused elements have -1 for start. */
3669 struct info
3670 {
3671 ptrdiff_t start, end;
3672 unsigned converted_to_string : 1;
3673 unsigned intervals : 1;
3674 } *info = 0;
3675
3676 /* It should not be necessary to GCPRO ARGS, because
3677 the caller in the interpreter should take care of that. */
3678
3679 CHECK_STRING (args[0]);
3680 format_start = SSDATA (args[0]);
3681 formatlen = SBYTES (args[0]);
3682
3683 /* Allocate the info and discarded tables. */
3684 {
3685 ptrdiff_t i;
3686 if ((SIZE_MAX - formatlen) / sizeof (struct info) <= nargs)
3687 memory_full (SIZE_MAX);
3688 info = SAFE_ALLOCA ((nargs + 1) * sizeof *info + formatlen);
3689 discarded = (char *) &info[nargs + 1];
3690 for (i = 0; i < nargs + 1; i++)
3691 {
3692 info[i].start = -1;
3693 info[i].intervals = info[i].converted_to_string = 0;
3694 }
3695 memset (discarded, 0, formatlen);
3696 }
3697
3698 /* Try to determine whether the result should be multibyte.
3699 This is not always right; sometimes the result needs to be multibyte
3700 because of an object that we will pass through prin1,
3701 and in that case, we won't know it here. */
3702 multibyte_format = STRING_MULTIBYTE (args[0]);
3703 multibyte = multibyte_format;
3704 for (n = 1; !multibyte && n < nargs; n++)
3705 if (STRINGP (args[n]) && STRING_MULTIBYTE (args[n]))
3706 multibyte = 1;
3707
3708 /* If we start out planning a unibyte result,
3709 then discover it has to be multibyte, we jump back to retry. */
3710 retry:
3711
3712 p = buf;
3713 nchars = 0;
3714 n = 0;
3715
3716 /* Scan the format and store result in BUF. */
3717 format = format_start;
3718 end = format + formatlen;
3719 maybe_combine_byte = 0;
3720
3721 while (format != end)
3722 {
3723 /* The values of N and FORMAT when the loop body is entered. */
3724 ptrdiff_t n0 = n;
3725 char *format0 = format;
3726
3727 /* Bytes needed to represent the output of this conversion. */
3728 ptrdiff_t convbytes;
3729
3730 if (*format == '%')
3731 {
3732 /* General format specifications look like
3733
3734 '%' [flags] [field-width] [precision] format
3735
3736 where
3737
3738 flags ::= [-+0# ]+
3739 field-width ::= [0-9]+
3740 precision ::= '.' [0-9]*
3741
3742 If a field-width is specified, it specifies to which width
3743 the output should be padded with blanks, if the output
3744 string is shorter than field-width.
3745
3746 If precision is specified, it specifies the number of
3747 digits to print after the '.' for floats, or the max.
3748 number of chars to print from a string. */
3749
3750 bool minus_flag = 0;
3751 bool plus_flag = 0;
3752 bool space_flag = 0;
3753 bool sharp_flag = 0;
3754 bool zero_flag = 0;
3755 ptrdiff_t field_width;
3756 bool precision_given;
3757 uintmax_t precision = UINTMAX_MAX;
3758 char *num_end;
3759 char conversion;
3760
3761 while (1)
3762 {
3763 switch (*++format)
3764 {
3765 case '-': minus_flag = 1; continue;
3766 case '+': plus_flag = 1; continue;
3767 case ' ': space_flag = 1; continue;
3768 case '#': sharp_flag = 1; continue;
3769 case '0': zero_flag = 1; continue;
3770 }
3771 break;
3772 }
3773
3774 /* Ignore flags when sprintf ignores them. */
3775 space_flag &= ~ plus_flag;
3776 zero_flag &= ~ minus_flag;
3777
3778 {
3779 uintmax_t w = strtoumax (format, &num_end, 10);
3780 if (max_bufsize <= w)
3781 string_overflow ();
3782 field_width = w;
3783 }
3784 precision_given = *num_end == '.';
3785 if (precision_given)
3786 precision = strtoumax (num_end + 1, &num_end, 10);
3787 format = num_end;
3788
3789 if (format == end)
3790 error ("Format string ends in middle of format specifier");
3791
3792 memset (&discarded[format0 - format_start], 1, format - format0);
3793 conversion = *format;
3794 if (conversion == '%')
3795 goto copy_char;
3796 discarded[format - format_start] = 1;
3797 format++;
3798
3799 ++n;
3800 if (! (n < nargs))
3801 error ("Not enough arguments for format string");
3802
3803 /* For 'S', prin1 the argument, and then treat like 's'.
3804 For 's', princ any argument that is not a string or
3805 symbol. But don't do this conversion twice, which might
3806 happen after retrying. */
3807 if ((conversion == 'S'
3808 || (conversion == 's'
3809 && ! STRINGP (args[n]) && ! SYMBOLP (args[n]))))
3810 {
3811 if (! info[n].converted_to_string)
3812 {
3813 Lisp_Object noescape = conversion == 'S' ? Qnil : Qt;
3814 args[n] = Fprin1_to_string (args[n], noescape);
3815 info[n].converted_to_string = 1;
3816 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3817 {
3818 multibyte = 1;
3819 goto retry;
3820 }
3821 }
3822 conversion = 's';
3823 }
3824 else if (conversion == 'c')
3825 {
3826 if (FLOATP (args[n]))
3827 {
3828 double d = XFLOAT_DATA (args[n]);
3829 args[n] = make_number (FIXNUM_OVERFLOW_P (d) ? -1 : d);
3830 }
3831
3832 if (INTEGERP (args[n]) && ! ASCII_CHAR_P (XINT (args[n])))
3833 {
3834 if (!multibyte)
3835 {
3836 multibyte = 1;
3837 goto retry;
3838 }
3839 args[n] = Fchar_to_string (args[n]);
3840 info[n].converted_to_string = 1;
3841 }
3842
3843 if (info[n].converted_to_string)
3844 conversion = 's';
3845 zero_flag = 0;
3846 }
3847
3848 if (SYMBOLP (args[n]))
3849 {
3850 args[n] = SYMBOL_NAME (args[n]);
3851 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3852 {
3853 multibyte = 1;
3854 goto retry;
3855 }
3856 }
3857
3858 if (conversion == 's')
3859 {
3860 /* handle case (precision[n] >= 0) */
3861
3862 ptrdiff_t width, padding, nbytes;
3863 ptrdiff_t nchars_string;
3864
3865 ptrdiff_t prec = -1;
3866 if (precision_given && precision <= TYPE_MAXIMUM (ptrdiff_t))
3867 prec = precision;
3868
3869 /* lisp_string_width ignores a precision of 0, but GNU
3870 libc functions print 0 characters when the precision
3871 is 0. Imitate libc behavior here. Changing
3872 lisp_string_width is the right thing, and will be
3873 done, but meanwhile we work with it. */
3874
3875 if (prec == 0)
3876 width = nchars_string = nbytes = 0;
3877 else
3878 {
3879 ptrdiff_t nch, nby;
3880 width = lisp_string_width (args[n], prec, &nch, &nby);
3881 if (prec < 0)
3882 {
3883 nchars_string = SCHARS (args[n]);
3884 nbytes = SBYTES (args[n]);
3885 }
3886 else
3887 {
3888 nchars_string = nch;
3889 nbytes = nby;
3890 }
3891 }
3892
3893 convbytes = nbytes;
3894 if (convbytes && multibyte && ! STRING_MULTIBYTE (args[n]))
3895 convbytes = count_size_as_multibyte (SDATA (args[n]), nbytes);
3896
3897 padding = width < field_width ? field_width - width : 0;
3898
3899 if (max_bufsize - padding <= convbytes)
3900 string_overflow ();
3901 convbytes += padding;
3902 if (convbytes <= buf + bufsize - p)
3903 {
3904 if (! minus_flag)
3905 {
3906 memset (p, ' ', padding);
3907 p += padding;
3908 nchars += padding;
3909 }
3910
3911 if (p > buf
3912 && multibyte
3913 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3914 && STRING_MULTIBYTE (args[n])
3915 && !CHAR_HEAD_P (SREF (args[n], 0)))
3916 maybe_combine_byte = 1;
3917
3918 p += copy_text (SDATA (args[n]), (unsigned char *) p,
3919 nbytes,
3920 STRING_MULTIBYTE (args[n]), multibyte);
3921
3922 info[n].start = nchars;
3923 nchars += nchars_string;
3924 info[n].end = nchars;
3925
3926 if (minus_flag)
3927 {
3928 memset (p, ' ', padding);
3929 p += padding;
3930 nchars += padding;
3931 }
3932
3933 /* If this argument has text properties, record where
3934 in the result string it appears. */
3935 if (string_intervals (args[n]))
3936 info[n].intervals = arg_intervals = 1;
3937
3938 continue;
3939 }
3940 }
3941 else if (! (conversion == 'c' || conversion == 'd'
3942 || conversion == 'e' || conversion == 'f'
3943 || conversion == 'g' || conversion == 'i'
3944 || conversion == 'o' || conversion == 'x'
3945 || conversion == 'X'))
3946 error ("Invalid format operation %%%c",
3947 STRING_CHAR ((unsigned char *) format - 1));
3948 else if (! (INTEGERP (args[n]) || FLOATP (args[n])))
3949 error ("Format specifier doesn't match argument type");
3950 else
3951 {
3952 enum
3953 {
3954 /* Maximum precision for a %f conversion such that the
3955 trailing output digit might be nonzero. Any precision
3956 larger than this will not yield useful information. */
3957 USEFUL_PRECISION_MAX =
3958 ((1 - DBL_MIN_EXP)
3959 * (FLT_RADIX == 2 || FLT_RADIX == 10 ? 1
3960 : FLT_RADIX == 16 ? 4
3961 : -1)),
3962
3963 /* Maximum number of bytes generated by any format, if
3964 precision is no more than USEFUL_PRECISION_MAX.
3965 On all practical hosts, %f is the worst case. */
3966 SPRINTF_BUFSIZE =
3967 sizeof "-." + (DBL_MAX_10_EXP + 1) + USEFUL_PRECISION_MAX,
3968
3969 /* Length of pM (that is, of pMd without the
3970 trailing "d"). */
3971 pMlen = sizeof pMd - 2
3972 };
3973 verify (0 < USEFUL_PRECISION_MAX);
3974
3975 int prec;
3976 ptrdiff_t padding, sprintf_bytes;
3977 uintmax_t excess_precision, numwidth;
3978 uintmax_t leading_zeros = 0, trailing_zeros = 0;
3979
3980 char sprintf_buf[SPRINTF_BUFSIZE];
3981
3982 /* Copy of conversion specification, modified somewhat.
3983 At most three flags F can be specified at once. */
3984 char convspec[sizeof "%FFF.*d" + pMlen];
3985
3986 /* Avoid undefined behavior in underlying sprintf. */
3987 if (conversion == 'd' || conversion == 'i')
3988 sharp_flag = 0;
3989
3990 /* Create the copy of the conversion specification, with
3991 any width and precision removed, with ".*" inserted,
3992 and with pM inserted for integer formats. */
3993 {
3994 char *f = convspec;
3995 *f++ = '%';
3996 *f = '-'; f += minus_flag;
3997 *f = '+'; f += plus_flag;
3998 *f = ' '; f += space_flag;
3999 *f = '#'; f += sharp_flag;
4000 *f = '0'; f += zero_flag;
4001 *f++ = '.';
4002 *f++ = '*';
4003 if (conversion == 'd' || conversion == 'i'
4004 || conversion == 'o' || conversion == 'x'
4005 || conversion == 'X')
4006 {
4007 memcpy (f, pMd, pMlen);
4008 f += pMlen;
4009 zero_flag &= ~ precision_given;
4010 }
4011 *f++ = conversion;
4012 *f = '\0';
4013 }
4014
4015 prec = -1;
4016 if (precision_given)
4017 prec = min (precision, USEFUL_PRECISION_MAX);
4018
4019 /* Use sprintf to format this number into sprintf_buf. Omit
4020 padding and excess precision, though, because sprintf limits
4021 output length to INT_MAX.
4022
4023 There are four types of conversion: double, unsigned
4024 char (passed as int), wide signed int, and wide
4025 unsigned int. Treat them separately because the
4026 sprintf ABI is sensitive to which type is passed. Be
4027 careful about integer overflow, NaNs, infinities, and
4028 conversions; for example, the min and max macros are
4029 not suitable here. */
4030 if (conversion == 'e' || conversion == 'f' || conversion == 'g')
4031 {
4032 double x = (INTEGERP (args[n])
4033 ? XINT (args[n])
4034 : XFLOAT_DATA (args[n]));
4035 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4036 }
4037 else if (conversion == 'c')
4038 {
4039 /* Don't use sprintf here, as it might mishandle prec. */
4040 sprintf_buf[0] = XINT (args[n]);
4041 sprintf_bytes = prec != 0;
4042 }
4043 else if (conversion == 'd')
4044 {
4045 /* For float, maybe we should use "%1.0f"
4046 instead so it also works for values outside
4047 the integer range. */
4048 printmax_t x;
4049 if (INTEGERP (args[n]))
4050 x = XINT (args[n]);
4051 else
4052 {
4053 double d = XFLOAT_DATA (args[n]);
4054 if (d < 0)
4055 {
4056 x = TYPE_MINIMUM (printmax_t);
4057 if (x < d)
4058 x = d;
4059 }
4060 else
4061 {
4062 x = TYPE_MAXIMUM (printmax_t);
4063 if (d < x)
4064 x = d;
4065 }
4066 }
4067 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4068 }
4069 else
4070 {
4071 /* Don't sign-extend for octal or hex printing. */
4072 uprintmax_t x;
4073 if (INTEGERP (args[n]))
4074 x = XUINT (args[n]);
4075 else
4076 {
4077 double d = XFLOAT_DATA (args[n]);
4078 if (d < 0)
4079 x = 0;
4080 else
4081 {
4082 x = TYPE_MAXIMUM (uprintmax_t);
4083 if (d < x)
4084 x = d;
4085 }
4086 }
4087 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4088 }
4089
4090 /* Now the length of the formatted item is known, except it omits
4091 padding and excess precision. Deal with excess precision
4092 first. This happens only when the format specifies
4093 ridiculously large precision. */
4094 excess_precision = precision - prec;
4095 if (excess_precision)
4096 {
4097 if (conversion == 'e' || conversion == 'f'
4098 || conversion == 'g')
4099 {
4100 if ((conversion == 'g' && ! sharp_flag)
4101 || ! ('0' <= sprintf_buf[sprintf_bytes - 1]
4102 && sprintf_buf[sprintf_bytes - 1] <= '9'))
4103 excess_precision = 0;
4104 else
4105 {
4106 if (conversion == 'g')
4107 {
4108 char *dot = strchr (sprintf_buf, '.');
4109 if (!dot)
4110 excess_precision = 0;
4111 }
4112 }
4113 trailing_zeros = excess_precision;
4114 }
4115 else
4116 leading_zeros = excess_precision;
4117 }
4118
4119 /* Compute the total bytes needed for this item, including
4120 excess precision and padding. */
4121 numwidth = sprintf_bytes + excess_precision;
4122 padding = numwidth < field_width ? field_width - numwidth : 0;
4123 if (max_bufsize - sprintf_bytes <= excess_precision
4124 || max_bufsize - padding <= numwidth)
4125 string_overflow ();
4126 convbytes = numwidth + padding;
4127
4128 if (convbytes <= buf + bufsize - p)
4129 {
4130 /* Copy the formatted item from sprintf_buf into buf,
4131 inserting padding and excess-precision zeros. */
4132
4133 char *src = sprintf_buf;
4134 char src0 = src[0];
4135 int exponent_bytes = 0;
4136 bool signedp = src0 == '-' || src0 == '+' || src0 == ' ';
4137 int significand_bytes;
4138 if (zero_flag
4139 && ((src[signedp] >= '0' && src[signedp] <= '9')
4140 || (src[signedp] >= 'a' && src[signedp] <= 'f')
4141 || (src[signedp] >= 'A' && src[signedp] <= 'F')))
4142 {
4143 leading_zeros += padding;
4144 padding = 0;
4145 }
4146
4147 if (excess_precision
4148 && (conversion == 'e' || conversion == 'g'))
4149 {
4150 char *e = strchr (src, 'e');
4151 if (e)
4152 exponent_bytes = src + sprintf_bytes - e;
4153 }
4154
4155 if (! minus_flag)
4156 {
4157 memset (p, ' ', padding);
4158 p += padding;
4159 nchars += padding;
4160 }
4161
4162 *p = src0;
4163 src += signedp;
4164 p += signedp;
4165 memset (p, '0', leading_zeros);
4166 p += leading_zeros;
4167 significand_bytes = sprintf_bytes - signedp - exponent_bytes;
4168 memcpy (p, src, significand_bytes);
4169 p += significand_bytes;
4170 src += significand_bytes;
4171 memset (p, '0', trailing_zeros);
4172 p += trailing_zeros;
4173 memcpy (p, src, exponent_bytes);
4174 p += exponent_bytes;
4175
4176 info[n].start = nchars;
4177 nchars += leading_zeros + sprintf_bytes + trailing_zeros;
4178 info[n].end = nchars;
4179
4180 if (minus_flag)
4181 {
4182 memset (p, ' ', padding);
4183 p += padding;
4184 nchars += padding;
4185 }
4186
4187 continue;
4188 }
4189 }
4190 }
4191 else
4192 copy_char:
4193 {
4194 /* Copy a single character from format to buf. */
4195
4196 char *src = format;
4197 unsigned char str[MAX_MULTIBYTE_LENGTH];
4198
4199 if (multibyte_format)
4200 {
4201 /* Copy a whole multibyte character. */
4202 if (p > buf
4203 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
4204 && !CHAR_HEAD_P (*format))
4205 maybe_combine_byte = 1;
4206
4207 do
4208 format++;
4209 while (! CHAR_HEAD_P (*format));
4210
4211 convbytes = format - src;
4212 memset (&discarded[src + 1 - format_start], 2, convbytes - 1);
4213 }
4214 else
4215 {
4216 unsigned char uc = *format++;
4217 if (! multibyte || ASCII_BYTE_P (uc))
4218 convbytes = 1;
4219 else
4220 {
4221 int c = BYTE8_TO_CHAR (uc);
4222 convbytes = CHAR_STRING (c, str);
4223 src = (char *) str;
4224 }
4225 }
4226
4227 if (convbytes <= buf + bufsize - p)
4228 {
4229 memcpy (p, src, convbytes);
4230 p += convbytes;
4231 nchars++;
4232 continue;
4233 }
4234 }
4235
4236 /* There wasn't enough room to store this conversion or single
4237 character. CONVBYTES says how much room is needed. Allocate
4238 enough room (and then some) and do it again. */
4239 {
4240 ptrdiff_t used = p - buf;
4241
4242 if (max_bufsize - used < convbytes)
4243 string_overflow ();
4244 bufsize = used + convbytes;
4245 bufsize = bufsize < max_bufsize / 2 ? bufsize * 2 : max_bufsize;
4246
4247 if (buf == initial_buffer)
4248 {
4249 buf = xmalloc (bufsize);
4250 sa_must_free = 1;
4251 buf_save_value = make_save_value (buf, 0);
4252 record_unwind_protect (safe_alloca_unwind, buf_save_value);
4253 memcpy (buf, initial_buffer, used);
4254 }
4255 else
4256 XSAVE_VALUE (buf_save_value)->pointer = buf = xrealloc (buf, bufsize);
4257
4258 p = buf + used;
4259 }
4260
4261 format = format0;
4262 n = n0;
4263 }
4264
4265 if (bufsize < p - buf)
4266 emacs_abort ();
4267
4268 if (maybe_combine_byte)
4269 nchars = multibyte_chars_in_text ((unsigned char *) buf, p - buf);
4270 val = make_specified_string (buf, nchars, p - buf, multibyte);
4271
4272 /* If we allocated BUF with malloc, free it too. */
4273 SAFE_FREE ();
4274
4275 /* If the format string has text properties, or any of the string
4276 arguments has text properties, set up text properties of the
4277 result string. */
4278
4279 if (string_intervals (args[0]) || arg_intervals)
4280 {
4281 Lisp_Object len, new_len, props;
4282 struct gcpro gcpro1;
4283
4284 /* Add text properties from the format string. */
4285 len = make_number (SCHARS (args[0]));
4286 props = text_property_list (args[0], make_number (0), len, Qnil);
4287 GCPRO1 (props);
4288
4289 if (CONSP (props))
4290 {
4291 ptrdiff_t bytepos = 0, position = 0, translated = 0;
4292 ptrdiff_t argn = 1;
4293 Lisp_Object list;
4294
4295 /* Adjust the bounds of each text property
4296 to the proper start and end in the output string. */
4297
4298 /* Put the positions in PROPS in increasing order, so that
4299 we can do (effectively) one scan through the position
4300 space of the format string. */
4301 props = Fnreverse (props);
4302
4303 /* BYTEPOS is the byte position in the format string,
4304 POSITION is the untranslated char position in it,
4305 TRANSLATED is the translated char position in BUF,
4306 and ARGN is the number of the next arg we will come to. */
4307 for (list = props; CONSP (list); list = XCDR (list))
4308 {
4309 Lisp_Object item;
4310 ptrdiff_t pos;
4311
4312 item = XCAR (list);
4313
4314 /* First adjust the property start position. */
4315 pos = XINT (XCAR (item));
4316
4317 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
4318 up to this position. */
4319 for (; position < pos; bytepos++)
4320 {
4321 if (! discarded[bytepos])
4322 position++, translated++;
4323 else if (discarded[bytepos] == 1)
4324 {
4325 position++;
4326 if (translated == info[argn].start)
4327 {
4328 translated += info[argn].end - info[argn].start;
4329 argn++;
4330 }
4331 }
4332 }
4333
4334 XSETCAR (item, make_number (translated));
4335
4336 /* Likewise adjust the property end position. */
4337 pos = XINT (XCAR (XCDR (item)));
4338
4339 for (; position < pos; bytepos++)
4340 {
4341 if (! discarded[bytepos])
4342 position++, translated++;
4343 else if (discarded[bytepos] == 1)
4344 {
4345 position++;
4346 if (translated == info[argn].start)
4347 {
4348 translated += info[argn].end - info[argn].start;
4349 argn++;
4350 }
4351 }
4352 }
4353
4354 XSETCAR (XCDR (item), make_number (translated));
4355 }
4356
4357 add_text_properties_from_list (val, props, make_number (0));
4358 }
4359
4360 /* Add text properties from arguments. */
4361 if (arg_intervals)
4362 for (n = 1; n < nargs; ++n)
4363 if (info[n].intervals)
4364 {
4365 len = make_number (SCHARS (args[n]));
4366 new_len = make_number (info[n].end - info[n].start);
4367 props = text_property_list (args[n], make_number (0), len, Qnil);
4368 props = extend_property_ranges (props, new_len);
4369 /* If successive arguments have properties, be sure that
4370 the value of `composition' property be the copy. */
4371 if (n > 1 && info[n - 1].end)
4372 make_composition_value_copy (props);
4373 add_text_properties_from_list (val, props,
4374 make_number (info[n].start));
4375 }
4376
4377 UNGCPRO;
4378 }
4379
4380 return val;
4381 }
4382
4383 Lisp_Object
4384 format2 (const char *string1, Lisp_Object arg0, Lisp_Object arg1)
4385 {
4386 Lisp_Object args[3];
4387 args[0] = build_string (string1);
4388 args[1] = arg0;
4389 args[2] = arg1;
4390 return Fformat (3, args);
4391 }
4392 \f
4393 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
4394 doc: /* Return t if two characters match, optionally ignoring case.
4395 Both arguments must be characters (i.e. integers).
4396 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
4397 (register Lisp_Object c1, Lisp_Object c2)
4398 {
4399 int i1, i2;
4400 /* Check they're chars, not just integers, otherwise we could get array
4401 bounds violations in downcase. */
4402 CHECK_CHARACTER (c1);
4403 CHECK_CHARACTER (c2);
4404
4405 if (XINT (c1) == XINT (c2))
4406 return Qt;
4407 if (NILP (BVAR (current_buffer, case_fold_search)))
4408 return Qnil;
4409
4410 i1 = XFASTINT (c1);
4411 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
4412 && ! ASCII_CHAR_P (i1))
4413 {
4414 MAKE_CHAR_MULTIBYTE (i1);
4415 }
4416 i2 = XFASTINT (c2);
4417 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
4418 && ! ASCII_CHAR_P (i2))
4419 {
4420 MAKE_CHAR_MULTIBYTE (i2);
4421 }
4422 return (downcase (i1) == downcase (i2) ? Qt : Qnil);
4423 }
4424 \f
4425 /* Transpose the markers in two regions of the current buffer, and
4426 adjust the ones between them if necessary (i.e.: if the regions
4427 differ in size).
4428
4429 START1, END1 are the character positions of the first region.
4430 START1_BYTE, END1_BYTE are the byte positions.
4431 START2, END2 are the character positions of the second region.
4432 START2_BYTE, END2_BYTE are the byte positions.
4433
4434 Traverses the entire marker list of the buffer to do so, adding an
4435 appropriate amount to some, subtracting from some, and leaving the
4436 rest untouched. Most of this is copied from adjust_markers in insdel.c.
4437
4438 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
4439
4440 static void
4441 transpose_markers (ptrdiff_t start1, ptrdiff_t end1,
4442 ptrdiff_t start2, ptrdiff_t end2,
4443 ptrdiff_t start1_byte, ptrdiff_t end1_byte,
4444 ptrdiff_t start2_byte, ptrdiff_t end2_byte)
4445 {
4446 register ptrdiff_t amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
4447 register struct Lisp_Marker *marker;
4448
4449 /* Update point as if it were a marker. */
4450 if (PT < start1)
4451 ;
4452 else if (PT < end1)
4453 TEMP_SET_PT_BOTH (PT + (end2 - end1),
4454 PT_BYTE + (end2_byte - end1_byte));
4455 else if (PT < start2)
4456 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
4457 (PT_BYTE + (end2_byte - start2_byte)
4458 - (end1_byte - start1_byte)));
4459 else if (PT < end2)
4460 TEMP_SET_PT_BOTH (PT - (start2 - start1),
4461 PT_BYTE - (start2_byte - start1_byte));
4462
4463 /* We used to adjust the endpoints here to account for the gap, but that
4464 isn't good enough. Even if we assume the caller has tried to move the
4465 gap out of our way, it might still be at start1 exactly, for example;
4466 and that places it `inside' the interval, for our purposes. The amount
4467 of adjustment is nontrivial if there's a `denormalized' marker whose
4468 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
4469 the dirty work to Fmarker_position, below. */
4470
4471 /* The difference between the region's lengths */
4472 diff = (end2 - start2) - (end1 - start1);
4473 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
4474
4475 /* For shifting each marker in a region by the length of the other
4476 region plus the distance between the regions. */
4477 amt1 = (end2 - start2) + (start2 - end1);
4478 amt2 = (end1 - start1) + (start2 - end1);
4479 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
4480 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
4481
4482 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
4483 {
4484 mpos = marker->bytepos;
4485 if (mpos >= start1_byte && mpos < end2_byte)
4486 {
4487 if (mpos < end1_byte)
4488 mpos += amt1_byte;
4489 else if (mpos < start2_byte)
4490 mpos += diff_byte;
4491 else
4492 mpos -= amt2_byte;
4493 marker->bytepos = mpos;
4494 }
4495 mpos = marker->charpos;
4496 if (mpos >= start1 && mpos < end2)
4497 {
4498 if (mpos < end1)
4499 mpos += amt1;
4500 else if (mpos < start2)
4501 mpos += diff;
4502 else
4503 mpos -= amt2;
4504 }
4505 marker->charpos = mpos;
4506 }
4507 }
4508
4509 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
4510 doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2.
4511 The regions should not be overlapping, because the size of the buffer is
4512 never changed in a transposition.
4513
4514 Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update
4515 any markers that happen to be located in the regions.
4516
4517 Transposing beyond buffer boundaries is an error. */)
4518 (Lisp_Object startr1, Lisp_Object endr1, Lisp_Object startr2, Lisp_Object endr2, Lisp_Object leave_markers)
4519 {
4520 register ptrdiff_t start1, end1, start2, end2;
4521 ptrdiff_t start1_byte, start2_byte, len1_byte, len2_byte;
4522 ptrdiff_t gap, len1, len_mid, len2;
4523 unsigned char *start1_addr, *start2_addr, *temp;
4524
4525 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2, tmp_interval3;
4526 Lisp_Object buf;
4527
4528 XSETBUFFER (buf, current_buffer);
4529 cur_intv = buffer_intervals (current_buffer);
4530
4531 validate_region (&startr1, &endr1);
4532 validate_region (&startr2, &endr2);
4533
4534 start1 = XFASTINT (startr1);
4535 end1 = XFASTINT (endr1);
4536 start2 = XFASTINT (startr2);
4537 end2 = XFASTINT (endr2);
4538 gap = GPT;
4539
4540 /* Swap the regions if they're reversed. */
4541 if (start2 < end1)
4542 {
4543 register ptrdiff_t glumph = start1;
4544 start1 = start2;
4545 start2 = glumph;
4546 glumph = end1;
4547 end1 = end2;
4548 end2 = glumph;
4549 }
4550
4551 len1 = end1 - start1;
4552 len2 = end2 - start2;
4553
4554 if (start2 < end1)
4555 error ("Transposed regions overlap");
4556 /* Nothing to change for adjacent regions with one being empty */
4557 else if ((start1 == end1 || start2 == end2) && end1 == start2)
4558 return Qnil;
4559
4560 /* The possibilities are:
4561 1. Adjacent (contiguous) regions, or separate but equal regions
4562 (no, really equal, in this case!), or
4563 2. Separate regions of unequal size.
4564
4565 The worst case is usually No. 2. It means that (aside from
4566 potential need for getting the gap out of the way), there also
4567 needs to be a shifting of the text between the two regions. So
4568 if they are spread far apart, we are that much slower... sigh. */
4569
4570 /* It must be pointed out that the really studly thing to do would
4571 be not to move the gap at all, but to leave it in place and work
4572 around it if necessary. This would be extremely efficient,
4573 especially considering that people are likely to do
4574 transpositions near where they are working interactively, which
4575 is exactly where the gap would be found. However, such code
4576 would be much harder to write and to read. So, if you are
4577 reading this comment and are feeling squirrely, by all means have
4578 a go! I just didn't feel like doing it, so I will simply move
4579 the gap the minimum distance to get it out of the way, and then
4580 deal with an unbroken array. */
4581
4582 /* Make sure the gap won't interfere, by moving it out of the text
4583 we will operate on. */
4584 if (start1 < gap && gap < end2)
4585 {
4586 if (gap - start1 < end2 - gap)
4587 move_gap (start1);
4588 else
4589 move_gap (end2);
4590 }
4591
4592 start1_byte = CHAR_TO_BYTE (start1);
4593 start2_byte = CHAR_TO_BYTE (start2);
4594 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4595 len2_byte = CHAR_TO_BYTE (end2) - start2_byte;
4596
4597 #ifdef BYTE_COMBINING_DEBUG
4598 if (end1 == start2)
4599 {
4600 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4601 len2_byte, start1, start1_byte)
4602 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4603 len1_byte, end2, start2_byte + len2_byte)
4604 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4605 len1_byte, end2, start2_byte + len2_byte))
4606 emacs_abort ();
4607 }
4608 else
4609 {
4610 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4611 len2_byte, start1, start1_byte)
4612 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4613 len1_byte, start2, start2_byte)
4614 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4615 len2_byte, end1, start1_byte + len1_byte)
4616 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4617 len1_byte, end2, start2_byte + len2_byte))
4618 emacs_abort ();
4619 }
4620 #endif
4621
4622 /* Hmmm... how about checking to see if the gap is large
4623 enough to use as the temporary storage? That would avoid an
4624 allocation... interesting. Later, don't fool with it now. */
4625
4626 /* Working without memmove, for portability (sigh), so must be
4627 careful of overlapping subsections of the array... */
4628
4629 if (end1 == start2) /* adjacent regions */
4630 {
4631 modify_region (current_buffer, start1, end2, 0);
4632 record_change (start1, len1 + len2);
4633
4634 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4635 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4636 /* Don't use Fset_text_properties: that can cause GC, which can
4637 clobber objects stored in the tmp_intervals. */
4638 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4639 if (tmp_interval3)
4640 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4641
4642 /* First region smaller than second. */
4643 if (len1_byte < len2_byte)
4644 {
4645 USE_SAFE_ALLOCA;
4646
4647 temp = SAFE_ALLOCA (len2_byte);
4648
4649 /* Don't precompute these addresses. We have to compute them
4650 at the last minute, because the relocating allocator might
4651 have moved the buffer around during the xmalloc. */
4652 start1_addr = BYTE_POS_ADDR (start1_byte);
4653 start2_addr = BYTE_POS_ADDR (start2_byte);
4654
4655 memcpy (temp, start2_addr, len2_byte);
4656 memcpy (start1_addr + len2_byte, start1_addr, len1_byte);
4657 memcpy (start1_addr, temp, len2_byte);
4658 SAFE_FREE ();
4659 }
4660 else
4661 /* First region not smaller than second. */
4662 {
4663 USE_SAFE_ALLOCA;
4664
4665 temp = SAFE_ALLOCA (len1_byte);
4666 start1_addr = BYTE_POS_ADDR (start1_byte);
4667 start2_addr = BYTE_POS_ADDR (start2_byte);
4668 memcpy (temp, start1_addr, len1_byte);
4669 memcpy (start1_addr, start2_addr, len2_byte);
4670 memcpy (start1_addr + len2_byte, temp, len1_byte);
4671 SAFE_FREE ();
4672 }
4673 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4674 len1, current_buffer, 0);
4675 graft_intervals_into_buffer (tmp_interval2, start1,
4676 len2, current_buffer, 0);
4677 update_compositions (start1, start1 + len2, CHECK_BORDER);
4678 update_compositions (start1 + len2, end2, CHECK_TAIL);
4679 }
4680 /* Non-adjacent regions, because end1 != start2, bleagh... */
4681 else
4682 {
4683 len_mid = start2_byte - (start1_byte + len1_byte);
4684
4685 if (len1_byte == len2_byte)
4686 /* Regions are same size, though, how nice. */
4687 {
4688 USE_SAFE_ALLOCA;
4689
4690 modify_region (current_buffer, start1, end1, 0);
4691 modify_region (current_buffer, start2, end2, 0);
4692 record_change (start1, len1);
4693 record_change (start2, len2);
4694 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4695 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4696
4697 tmp_interval3 = validate_interval_range (buf, &startr1, &endr1, 0);
4698 if (tmp_interval3)
4699 set_text_properties_1 (startr1, endr1, Qnil, buf, tmp_interval3);
4700
4701 tmp_interval3 = validate_interval_range (buf, &startr2, &endr2, 0);
4702 if (tmp_interval3)
4703 set_text_properties_1 (startr2, endr2, Qnil, buf, tmp_interval3);
4704
4705 temp = SAFE_ALLOCA (len1_byte);
4706 start1_addr = BYTE_POS_ADDR (start1_byte);
4707 start2_addr = BYTE_POS_ADDR (start2_byte);
4708 memcpy (temp, start1_addr, len1_byte);
4709 memcpy (start1_addr, start2_addr, len2_byte);
4710 memcpy (start2_addr, temp, len1_byte);
4711 SAFE_FREE ();
4712
4713 graft_intervals_into_buffer (tmp_interval1, start2,
4714 len1, current_buffer, 0);
4715 graft_intervals_into_buffer (tmp_interval2, start1,
4716 len2, current_buffer, 0);
4717 }
4718
4719 else if (len1_byte < len2_byte) /* Second region larger than first */
4720 /* Non-adjacent & unequal size, area between must also be shifted. */
4721 {
4722 USE_SAFE_ALLOCA;
4723
4724 modify_region (current_buffer, start1, end2, 0);
4725 record_change (start1, (end2 - start1));
4726 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4727 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4728 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4729
4730 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4731 if (tmp_interval3)
4732 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4733
4734 /* holds region 2 */
4735 temp = SAFE_ALLOCA (len2_byte);
4736 start1_addr = BYTE_POS_ADDR (start1_byte);
4737 start2_addr = BYTE_POS_ADDR (start2_byte);
4738 memcpy (temp, start2_addr, len2_byte);
4739 memcpy (start1_addr + len_mid + len2_byte, start1_addr, len1_byte);
4740 memmove (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4741 memcpy (start1_addr, temp, len2_byte);
4742 SAFE_FREE ();
4743
4744 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4745 len1, current_buffer, 0);
4746 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4747 len_mid, current_buffer, 0);
4748 graft_intervals_into_buffer (tmp_interval2, start1,
4749 len2, current_buffer, 0);
4750 }
4751 else
4752 /* Second region smaller than first. */
4753 {
4754 USE_SAFE_ALLOCA;
4755
4756 record_change (start1, (end2 - start1));
4757 modify_region (current_buffer, start1, end2, 0);
4758
4759 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4760 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4761 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4762
4763 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4764 if (tmp_interval3)
4765 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4766
4767 /* holds region 1 */
4768 temp = SAFE_ALLOCA (len1_byte);
4769 start1_addr = BYTE_POS_ADDR (start1_byte);
4770 start2_addr = BYTE_POS_ADDR (start2_byte);
4771 memcpy (temp, start1_addr, len1_byte);
4772 memcpy (start1_addr, start2_addr, len2_byte);
4773 memcpy (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4774 memcpy (start1_addr + len2_byte + len_mid, temp, len1_byte);
4775 SAFE_FREE ();
4776
4777 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4778 len1, current_buffer, 0);
4779 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4780 len_mid, current_buffer, 0);
4781 graft_intervals_into_buffer (tmp_interval2, start1,
4782 len2, current_buffer, 0);
4783 }
4784
4785 update_compositions (start1, start1 + len2, CHECK_BORDER);
4786 update_compositions (end2 - len1, end2, CHECK_BORDER);
4787 }
4788
4789 /* When doing multiple transpositions, it might be nice
4790 to optimize this. Perhaps the markers in any one buffer
4791 should be organized in some sorted data tree. */
4792 if (NILP (leave_markers))
4793 {
4794 transpose_markers (start1, end1, start2, end2,
4795 start1_byte, start1_byte + len1_byte,
4796 start2_byte, start2_byte + len2_byte);
4797 fix_start_end_in_overlays (start1, end2);
4798 }
4799
4800 signal_after_change (start1, end2 - start1, end2 - start1);
4801 return Qnil;
4802 }
4803
4804 \f
4805 void
4806 syms_of_editfns (void)
4807 {
4808 environbuf = 0;
4809 initial_tz = 0;
4810
4811 DEFSYM (Qbuffer_access_fontify_functions, "buffer-access-fontify-functions");
4812
4813 DEFVAR_LISP ("inhibit-field-text-motion", Vinhibit_field_text_motion,
4814 doc: /* Non-nil means text motion commands don't notice fields. */);
4815 Vinhibit_field_text_motion = Qnil;
4816
4817 DEFVAR_LISP ("buffer-access-fontify-functions",
4818 Vbuffer_access_fontify_functions,
4819 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
4820 Each function is called with two arguments which specify the range
4821 of the buffer being accessed. */);
4822 Vbuffer_access_fontify_functions = Qnil;
4823
4824 {
4825 Lisp_Object obuf;
4826 obuf = Fcurrent_buffer ();
4827 /* Do this here, because init_buffer_once is too early--it won't work. */
4828 Fset_buffer (Vprin1_to_string_buffer);
4829 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
4830 Fset (Fmake_local_variable (intern_c_string ("buffer-access-fontify-functions")),
4831 Qnil);
4832 Fset_buffer (obuf);
4833 }
4834
4835 DEFVAR_LISP ("buffer-access-fontified-property",
4836 Vbuffer_access_fontified_property,
4837 doc: /* Property which (if non-nil) indicates text has been fontified.
4838 `buffer-substring' need not call the `buffer-access-fontify-functions'
4839 functions if all the text being accessed has this property. */);
4840 Vbuffer_access_fontified_property = Qnil;
4841
4842 DEFVAR_LISP ("system-name", Vsystem_name,
4843 doc: /* The host name of the machine Emacs is running on. */);
4844
4845 DEFVAR_LISP ("user-full-name", Vuser_full_name,
4846 doc: /* The full name of the user logged in. */);
4847
4848 DEFVAR_LISP ("user-login-name", Vuser_login_name,
4849 doc: /* The user's name, taken from environment variables if possible. */);
4850
4851 DEFVAR_LISP ("user-real-login-name", Vuser_real_login_name,
4852 doc: /* The user's name, based upon the real uid only. */);
4853
4854 DEFVAR_LISP ("operating-system-release", Voperating_system_release,
4855 doc: /* The release of the operating system Emacs is running on. */);
4856
4857 defsubr (&Spropertize);
4858 defsubr (&Schar_equal);
4859 defsubr (&Sgoto_char);
4860 defsubr (&Sstring_to_char);
4861 defsubr (&Schar_to_string);
4862 defsubr (&Sbyte_to_string);
4863 defsubr (&Sbuffer_substring);
4864 defsubr (&Sbuffer_substring_no_properties);
4865 defsubr (&Sbuffer_string);
4866
4867 defsubr (&Spoint_marker);
4868 defsubr (&Smark_marker);
4869 defsubr (&Spoint);
4870 defsubr (&Sregion_beginning);
4871 defsubr (&Sregion_end);
4872
4873 DEFSYM (Qfield, "field");
4874 DEFSYM (Qboundary, "boundary");
4875 defsubr (&Sfield_beginning);
4876 defsubr (&Sfield_end);
4877 defsubr (&Sfield_string);
4878 defsubr (&Sfield_string_no_properties);
4879 defsubr (&Sdelete_field);
4880 defsubr (&Sconstrain_to_field);
4881
4882 defsubr (&Sline_beginning_position);
4883 defsubr (&Sline_end_position);
4884
4885 /* defsubr (&Smark); */
4886 /* defsubr (&Sset_mark); */
4887 defsubr (&Ssave_excursion);
4888 defsubr (&Ssave_current_buffer);
4889
4890 defsubr (&Sbufsize);
4891 defsubr (&Spoint_max);
4892 defsubr (&Spoint_min);
4893 defsubr (&Spoint_min_marker);
4894 defsubr (&Spoint_max_marker);
4895 defsubr (&Sgap_position);
4896 defsubr (&Sgap_size);
4897 defsubr (&Sposition_bytes);
4898 defsubr (&Sbyte_to_position);
4899
4900 defsubr (&Sbobp);
4901 defsubr (&Seobp);
4902 defsubr (&Sbolp);
4903 defsubr (&Seolp);
4904 defsubr (&Sfollowing_char);
4905 defsubr (&Sprevious_char);
4906 defsubr (&Schar_after);
4907 defsubr (&Schar_before);
4908 defsubr (&Sinsert);
4909 defsubr (&Sinsert_before_markers);
4910 defsubr (&Sinsert_and_inherit);
4911 defsubr (&Sinsert_and_inherit_before_markers);
4912 defsubr (&Sinsert_char);
4913 defsubr (&Sinsert_byte);
4914
4915 defsubr (&Suser_login_name);
4916 defsubr (&Suser_real_login_name);
4917 defsubr (&Suser_uid);
4918 defsubr (&Suser_real_uid);
4919 defsubr (&Suser_full_name);
4920 defsubr (&Semacs_pid);
4921 defsubr (&Scurrent_time);
4922 defsubr (&Sget_internal_run_time);
4923 defsubr (&Sformat_time_string);
4924 defsubr (&Sfloat_time);
4925 defsubr (&Sdecode_time);
4926 defsubr (&Sencode_time);
4927 defsubr (&Scurrent_time_string);
4928 defsubr (&Scurrent_time_zone);
4929 defsubr (&Sset_time_zone_rule);
4930 defsubr (&Ssystem_name);
4931 defsubr (&Smessage);
4932 defsubr (&Smessage_box);
4933 defsubr (&Smessage_or_box);
4934 defsubr (&Scurrent_message);
4935 defsubr (&Sformat);
4936
4937 defsubr (&Sinsert_buffer_substring);
4938 defsubr (&Scompare_buffer_substrings);
4939 defsubr (&Ssubst_char_in_region);
4940 defsubr (&Stranslate_region_internal);
4941 defsubr (&Sdelete_region);
4942 defsubr (&Sdelete_and_extract_region);
4943 defsubr (&Swiden);
4944 defsubr (&Snarrow_to_region);
4945 defsubr (&Ssave_restriction);
4946 defsubr (&Stranspose_regions);
4947 }