]> code.delx.au - gnu-emacs/blob - src/alloc.c
(undo_outer_limit): New variable.
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985,86,88,93,94,95,97,98,1999,2000,01,02,03,2004
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
29
30 /* Note that this declares bzero on OSF/1. How dumb. */
31
32 #include <signal.h>
33
34 /* This file is part of the core Lisp implementation, and thus must
35 deal with the real data structures. If the Lisp implementation is
36 replaced, this file likely will not be used. */
37
38 #undef HIDE_LISP_IMPLEMENTATION
39 #include "lisp.h"
40 #include "process.h"
41 #include "intervals.h"
42 #include "puresize.h"
43 #include "buffer.h"
44 #include "window.h"
45 #include "keyboard.h"
46 #include "frame.h"
47 #include "blockinput.h"
48 #include "charset.h"
49 #include "syssignal.h"
50 #include <setjmp.h>
51
52 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
53 memory. Can do this only if using gmalloc.c. */
54
55 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
56 #undef GC_MALLOC_CHECK
57 #endif
58
59 #ifdef HAVE_UNISTD_H
60 #include <unistd.h>
61 #else
62 extern POINTER_TYPE *sbrk ();
63 #endif
64
65 #ifdef DOUG_LEA_MALLOC
66
67 #include <malloc.h>
68 /* malloc.h #defines this as size_t, at least in glibc2. */
69 #ifndef __malloc_size_t
70 #define __malloc_size_t int
71 #endif
72
73 /* Specify maximum number of areas to mmap. It would be nice to use a
74 value that explicitly means "no limit". */
75
76 #define MMAP_MAX_AREAS 100000000
77
78 #else /* not DOUG_LEA_MALLOC */
79
80 /* The following come from gmalloc.c. */
81
82 #define __malloc_size_t size_t
83 extern __malloc_size_t _bytes_used;
84 extern __malloc_size_t __malloc_extra_blocks;
85
86 #endif /* not DOUG_LEA_MALLOC */
87
88 /* Value of _bytes_used, when spare_memory was freed. */
89
90 static __malloc_size_t bytes_used_when_full;
91
92 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
93 to a struct Lisp_String. */
94
95 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
96 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
97 #define STRING_MARKED_P(S) ((S)->size & ARRAY_MARK_FLAG)
98
99 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
100 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
101 #define VECTOR_MARKED_P(V) ((V)->size & ARRAY_MARK_FLAG)
102
103 /* Value is the number of bytes/chars of S, a pointer to a struct
104 Lisp_String. This must be used instead of STRING_BYTES (S) or
105 S->size during GC, because S->size contains the mark bit for
106 strings. */
107
108 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
109 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
110
111 /* Number of bytes of consing done since the last gc. */
112
113 int consing_since_gc;
114
115 /* Count the amount of consing of various sorts of space. */
116
117 EMACS_INT cons_cells_consed;
118 EMACS_INT floats_consed;
119 EMACS_INT vector_cells_consed;
120 EMACS_INT symbols_consed;
121 EMACS_INT string_chars_consed;
122 EMACS_INT misc_objects_consed;
123 EMACS_INT intervals_consed;
124 EMACS_INT strings_consed;
125
126 /* Number of bytes of consing since GC before another GC should be done. */
127
128 EMACS_INT gc_cons_threshold;
129
130 /* Nonzero during GC. */
131
132 int gc_in_progress;
133
134 /* Nonzero means abort if try to GC.
135 This is for code which is written on the assumption that
136 no GC will happen, so as to verify that assumption. */
137
138 int abort_on_gc;
139
140 /* Nonzero means display messages at beginning and end of GC. */
141
142 int garbage_collection_messages;
143
144 #ifndef VIRT_ADDR_VARIES
145 extern
146 #endif /* VIRT_ADDR_VARIES */
147 int malloc_sbrk_used;
148
149 #ifndef VIRT_ADDR_VARIES
150 extern
151 #endif /* VIRT_ADDR_VARIES */
152 int malloc_sbrk_unused;
153
154 /* Two limits controlling how much undo information to keep. */
155
156 EMACS_INT undo_limit;
157 EMACS_INT undo_strong_limit;
158 EMACS_INT undo_outer_limit;
159
160 /* Number of live and free conses etc. */
161
162 static int total_conses, total_markers, total_symbols, total_vector_size;
163 static int total_free_conses, total_free_markers, total_free_symbols;
164 static int total_free_floats, total_floats;
165
166 /* Points to memory space allocated as "spare", to be freed if we run
167 out of memory. */
168
169 static char *spare_memory;
170
171 /* Amount of spare memory to keep in reserve. */
172
173 #define SPARE_MEMORY (1 << 14)
174
175 /* Number of extra blocks malloc should get when it needs more core. */
176
177 static int malloc_hysteresis;
178
179 /* Non-nil means defun should do purecopy on the function definition. */
180
181 Lisp_Object Vpurify_flag;
182
183 /* Non-nil means we are handling a memory-full error. */
184
185 Lisp_Object Vmemory_full;
186
187 #ifndef HAVE_SHM
188
189 /* Force it into data space! Initialize it to a nonzero value;
190 otherwise some compilers put it into BSS. */
191
192 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
193 #define PUREBEG (char *) pure
194
195 #else /* HAVE_SHM */
196
197 #define pure PURE_SEG_BITS /* Use shared memory segment */
198 #define PUREBEG (char *)PURE_SEG_BITS
199
200 #endif /* HAVE_SHM */
201
202 /* Pointer to the pure area, and its size. */
203
204 static char *purebeg;
205 static size_t pure_size;
206
207 /* Number of bytes of pure storage used before pure storage overflowed.
208 If this is non-zero, this implies that an overflow occurred. */
209
210 static size_t pure_bytes_used_before_overflow;
211
212 /* Value is non-zero if P points into pure space. */
213
214 #define PURE_POINTER_P(P) \
215 (((PNTR_COMPARISON_TYPE) (P) \
216 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
217 && ((PNTR_COMPARISON_TYPE) (P) \
218 >= (PNTR_COMPARISON_TYPE) purebeg))
219
220 /* Index in pure at which next pure object will be allocated.. */
221
222 EMACS_INT pure_bytes_used;
223
224 /* If nonzero, this is a warning delivered by malloc and not yet
225 displayed. */
226
227 char *pending_malloc_warning;
228
229 /* Pre-computed signal argument for use when memory is exhausted. */
230
231 Lisp_Object Vmemory_signal_data;
232
233 /* Maximum amount of C stack to save when a GC happens. */
234
235 #ifndef MAX_SAVE_STACK
236 #define MAX_SAVE_STACK 16000
237 #endif
238
239 /* Buffer in which we save a copy of the C stack at each GC. */
240
241 char *stack_copy;
242 int stack_copy_size;
243
244 /* Non-zero means ignore malloc warnings. Set during initialization.
245 Currently not used. */
246
247 int ignore_warnings;
248
249 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
250
251 /* Hook run after GC has finished. */
252
253 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
254
255 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
256 EMACS_INT gcs_done; /* accumulated GCs */
257
258 static void mark_buffer P_ ((Lisp_Object));
259 extern void mark_kboards P_ ((void));
260 extern void mark_backtrace P_ ((void));
261 static void gc_sweep P_ ((void));
262 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
263 static void mark_face_cache P_ ((struct face_cache *));
264
265 #ifdef HAVE_WINDOW_SYSTEM
266 static void mark_image P_ ((struct image *));
267 static void mark_image_cache P_ ((struct frame *));
268 #endif /* HAVE_WINDOW_SYSTEM */
269
270 static struct Lisp_String *allocate_string P_ ((void));
271 static void compact_small_strings P_ ((void));
272 static void free_large_strings P_ ((void));
273 static void sweep_strings P_ ((void));
274
275 extern int message_enable_multibyte;
276
277 /* When scanning the C stack for live Lisp objects, Emacs keeps track
278 of what memory allocated via lisp_malloc is intended for what
279 purpose. This enumeration specifies the type of memory. */
280
281 enum mem_type
282 {
283 MEM_TYPE_NON_LISP,
284 MEM_TYPE_BUFFER,
285 MEM_TYPE_CONS,
286 MEM_TYPE_STRING,
287 MEM_TYPE_MISC,
288 MEM_TYPE_SYMBOL,
289 MEM_TYPE_FLOAT,
290 /* Keep the following vector-like types together, with
291 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
292 first. Or change the code of live_vector_p, for instance. */
293 MEM_TYPE_VECTOR,
294 MEM_TYPE_PROCESS,
295 MEM_TYPE_HASH_TABLE,
296 MEM_TYPE_FRAME,
297 MEM_TYPE_WINDOW
298 };
299
300 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
301
302 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
303 #include <stdio.h> /* For fprintf. */
304 #endif
305
306 /* A unique object in pure space used to make some Lisp objects
307 on free lists recognizable in O(1). */
308
309 Lisp_Object Vdead;
310
311 #ifdef GC_MALLOC_CHECK
312
313 enum mem_type allocated_mem_type;
314 int dont_register_blocks;
315
316 #endif /* GC_MALLOC_CHECK */
317
318 /* A node in the red-black tree describing allocated memory containing
319 Lisp data. Each such block is recorded with its start and end
320 address when it is allocated, and removed from the tree when it
321 is freed.
322
323 A red-black tree is a balanced binary tree with the following
324 properties:
325
326 1. Every node is either red or black.
327 2. Every leaf is black.
328 3. If a node is red, then both of its children are black.
329 4. Every simple path from a node to a descendant leaf contains
330 the same number of black nodes.
331 5. The root is always black.
332
333 When nodes are inserted into the tree, or deleted from the tree,
334 the tree is "fixed" so that these properties are always true.
335
336 A red-black tree with N internal nodes has height at most 2
337 log(N+1). Searches, insertions and deletions are done in O(log N).
338 Please see a text book about data structures for a detailed
339 description of red-black trees. Any book worth its salt should
340 describe them. */
341
342 struct mem_node
343 {
344 /* Children of this node. These pointers are never NULL. When there
345 is no child, the value is MEM_NIL, which points to a dummy node. */
346 struct mem_node *left, *right;
347
348 /* The parent of this node. In the root node, this is NULL. */
349 struct mem_node *parent;
350
351 /* Start and end of allocated region. */
352 void *start, *end;
353
354 /* Node color. */
355 enum {MEM_BLACK, MEM_RED} color;
356
357 /* Memory type. */
358 enum mem_type type;
359 };
360
361 /* Base address of stack. Set in main. */
362
363 Lisp_Object *stack_base;
364
365 /* Root of the tree describing allocated Lisp memory. */
366
367 static struct mem_node *mem_root;
368
369 /* Lowest and highest known address in the heap. */
370
371 static void *min_heap_address, *max_heap_address;
372
373 /* Sentinel node of the tree. */
374
375 static struct mem_node mem_z;
376 #define MEM_NIL &mem_z
377
378 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
379 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
380 static void lisp_free P_ ((POINTER_TYPE *));
381 static void mark_stack P_ ((void));
382 static int live_vector_p P_ ((struct mem_node *, void *));
383 static int live_buffer_p P_ ((struct mem_node *, void *));
384 static int live_string_p P_ ((struct mem_node *, void *));
385 static int live_cons_p P_ ((struct mem_node *, void *));
386 static int live_symbol_p P_ ((struct mem_node *, void *));
387 static int live_float_p P_ ((struct mem_node *, void *));
388 static int live_misc_p P_ ((struct mem_node *, void *));
389 static void mark_maybe_object P_ ((Lisp_Object));
390 static void mark_memory P_ ((void *, void *));
391 static void mem_init P_ ((void));
392 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
393 static void mem_insert_fixup P_ ((struct mem_node *));
394 static void mem_rotate_left P_ ((struct mem_node *));
395 static void mem_rotate_right P_ ((struct mem_node *));
396 static void mem_delete P_ ((struct mem_node *));
397 static void mem_delete_fixup P_ ((struct mem_node *));
398 static INLINE struct mem_node *mem_find P_ ((void *));
399
400 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
401 static void check_gcpros P_ ((void));
402 #endif
403
404 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
405
406 /* Recording what needs to be marked for gc. */
407
408 struct gcpro *gcprolist;
409
410 /* Addresses of staticpro'd variables. Initialize it to a nonzero
411 value; otherwise some compilers put it into BSS. */
412
413 #define NSTATICS 1280
414 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
415
416 /* Index of next unused slot in staticvec. */
417
418 int staticidx = 0;
419
420 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
421
422
423 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
424 ALIGNMENT must be a power of 2. */
425
426 #define ALIGN(ptr, ALIGNMENT) \
427 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
428 & ~((ALIGNMENT) - 1)))
429
430
431 \f
432 /************************************************************************
433 Malloc
434 ************************************************************************/
435
436 /* Function malloc calls this if it finds we are near exhausting storage. */
437
438 void
439 malloc_warning (str)
440 char *str;
441 {
442 pending_malloc_warning = str;
443 }
444
445
446 /* Display an already-pending malloc warning. */
447
448 void
449 display_malloc_warning ()
450 {
451 call3 (intern ("display-warning"),
452 intern ("alloc"),
453 build_string (pending_malloc_warning),
454 intern ("emergency"));
455 pending_malloc_warning = 0;
456 }
457
458
459 #ifdef DOUG_LEA_MALLOC
460 # define BYTES_USED (mallinfo ().arena)
461 #else
462 # define BYTES_USED _bytes_used
463 #endif
464
465
466 /* Called if malloc returns zero. */
467
468 void
469 memory_full ()
470 {
471 Vmemory_full = Qt;
472
473 #ifndef SYSTEM_MALLOC
474 bytes_used_when_full = BYTES_USED;
475 #endif
476
477 /* The first time we get here, free the spare memory. */
478 if (spare_memory)
479 {
480 free (spare_memory);
481 spare_memory = 0;
482 }
483
484 /* This used to call error, but if we've run out of memory, we could
485 get infinite recursion trying to build the string. */
486 while (1)
487 Fsignal (Qnil, Vmemory_signal_data);
488 }
489
490
491 /* Called if we can't allocate relocatable space for a buffer. */
492
493 void
494 buffer_memory_full ()
495 {
496 /* If buffers use the relocating allocator, no need to free
497 spare_memory, because we may have plenty of malloc space left
498 that we could get, and if we don't, the malloc that fails will
499 itself cause spare_memory to be freed. If buffers don't use the
500 relocating allocator, treat this like any other failing
501 malloc. */
502
503 #ifndef REL_ALLOC
504 memory_full ();
505 #endif
506
507 Vmemory_full = Qt;
508
509 /* This used to call error, but if we've run out of memory, we could
510 get infinite recursion trying to build the string. */
511 while (1)
512 Fsignal (Qnil, Vmemory_signal_data);
513 }
514
515
516 /* Like malloc but check for no memory and block interrupt input.. */
517
518 POINTER_TYPE *
519 xmalloc (size)
520 size_t size;
521 {
522 register POINTER_TYPE *val;
523
524 BLOCK_INPUT;
525 val = (POINTER_TYPE *) malloc (size);
526 UNBLOCK_INPUT;
527
528 if (!val && size)
529 memory_full ();
530 return val;
531 }
532
533
534 /* Like realloc but check for no memory and block interrupt input.. */
535
536 POINTER_TYPE *
537 xrealloc (block, size)
538 POINTER_TYPE *block;
539 size_t size;
540 {
541 register POINTER_TYPE *val;
542
543 BLOCK_INPUT;
544 /* We must call malloc explicitly when BLOCK is 0, since some
545 reallocs don't do this. */
546 if (! block)
547 val = (POINTER_TYPE *) malloc (size);
548 else
549 val = (POINTER_TYPE *) realloc (block, size);
550 UNBLOCK_INPUT;
551
552 if (!val && size) memory_full ();
553 return val;
554 }
555
556
557 /* Like free but block interrupt input. */
558
559 void
560 xfree (block)
561 POINTER_TYPE *block;
562 {
563 BLOCK_INPUT;
564 free (block);
565 UNBLOCK_INPUT;
566 }
567
568
569 /* Like strdup, but uses xmalloc. */
570
571 char *
572 xstrdup (s)
573 const char *s;
574 {
575 size_t len = strlen (s) + 1;
576 char *p = (char *) xmalloc (len);
577 bcopy (s, p, len);
578 return p;
579 }
580
581
582 /* Like malloc but used for allocating Lisp data. NBYTES is the
583 number of bytes to allocate, TYPE describes the intended use of the
584 allcated memory block (for strings, for conses, ...). */
585
586 static void *lisp_malloc_loser;
587
588 static POINTER_TYPE *
589 lisp_malloc (nbytes, type)
590 size_t nbytes;
591 enum mem_type type;
592 {
593 register void *val;
594
595 BLOCK_INPUT;
596
597 #ifdef GC_MALLOC_CHECK
598 allocated_mem_type = type;
599 #endif
600
601 val = (void *) malloc (nbytes);
602
603 #ifndef USE_LSB_TAG
604 /* If the memory just allocated cannot be addressed thru a Lisp
605 object's pointer, and it needs to be,
606 that's equivalent to running out of memory. */
607 if (val && type != MEM_TYPE_NON_LISP)
608 {
609 Lisp_Object tem;
610 XSETCONS (tem, (char *) val + nbytes - 1);
611 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
612 {
613 lisp_malloc_loser = val;
614 free (val);
615 val = 0;
616 }
617 }
618 #endif
619
620 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
621 if (val && type != MEM_TYPE_NON_LISP)
622 mem_insert (val, (char *) val + nbytes, type);
623 #endif
624
625 UNBLOCK_INPUT;
626 if (!val && nbytes)
627 memory_full ();
628 return val;
629 }
630
631 /* Free BLOCK. This must be called to free memory allocated with a
632 call to lisp_malloc. */
633
634 static void
635 lisp_free (block)
636 POINTER_TYPE *block;
637 {
638 BLOCK_INPUT;
639 free (block);
640 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
641 mem_delete (mem_find (block));
642 #endif
643 UNBLOCK_INPUT;
644 }
645
646 /* Allocation of aligned blocks of memory to store Lisp data. */
647 /* The entry point is lisp_align_malloc which returns blocks of at most */
648 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
649
650
651 /* BLOCK_ALIGN has to be a power of 2. */
652 #define BLOCK_ALIGN (1 << 10)
653
654 /* Padding to leave at the end of a malloc'd block. This is to give
655 malloc a chance to minimize the amount of memory wasted to alignment.
656 It should be tuned to the particular malloc library used.
657 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
658 posix_memalign on the other hand would ideally prefer a value of 4
659 because otherwise, there's 1020 bytes wasted between each ablocks.
660 But testing shows that those 1020 will most of the time be efficiently
661 used by malloc to place other objects, so a value of 0 is still preferable
662 unless you have a lot of cons&floats and virtually nothing else. */
663 #define BLOCK_PADDING 0
664 #define BLOCK_BYTES \
665 (BLOCK_ALIGN - sizeof (struct aligned_block *) - BLOCK_PADDING)
666
667 /* Internal data structures and constants. */
668
669 #define ABLOCKS_SIZE 16
670
671 /* An aligned block of memory. */
672 struct ablock
673 {
674 union
675 {
676 char payload[BLOCK_BYTES];
677 struct ablock *next_free;
678 } x;
679 /* `abase' is the aligned base of the ablocks. */
680 /* It is overloaded to hold the virtual `busy' field that counts
681 the number of used ablock in the parent ablocks.
682 The first ablock has the `busy' field, the others have the `abase'
683 field. To tell the difference, we assume that pointers will have
684 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
685 is used to tell whether the real base of the parent ablocks is `abase'
686 (if not, the word before the first ablock holds a pointer to the
687 real base). */
688 struct ablocks *abase;
689 /* The padding of all but the last ablock is unused. The padding of
690 the last ablock in an ablocks is not allocated. */
691 #if BLOCK_PADDING
692 char padding[BLOCK_PADDING];
693 #endif
694 };
695
696 /* A bunch of consecutive aligned blocks. */
697 struct ablocks
698 {
699 struct ablock blocks[ABLOCKS_SIZE];
700 };
701
702 /* Size of the block requested from malloc or memalign. */
703 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
704
705 #define ABLOCK_ABASE(block) \
706 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
707 ? (struct ablocks *)(block) \
708 : (block)->abase)
709
710 /* Virtual `busy' field. */
711 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
712
713 /* Pointer to the (not necessarily aligned) malloc block. */
714 #ifdef HAVE_POSIX_MEMALIGN
715 #define ABLOCKS_BASE(abase) (abase)
716 #else
717 #define ABLOCKS_BASE(abase) \
718 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
719 #endif
720
721 /* The list of free ablock. */
722 static struct ablock *free_ablock;
723
724 /* Allocate an aligned block of nbytes.
725 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
726 smaller or equal to BLOCK_BYTES. */
727 static POINTER_TYPE *
728 lisp_align_malloc (nbytes, type)
729 size_t nbytes;
730 enum mem_type type;
731 {
732 void *base, *val;
733 struct ablocks *abase;
734
735 eassert (nbytes <= BLOCK_BYTES);
736
737 BLOCK_INPUT;
738
739 #ifdef GC_MALLOC_CHECK
740 allocated_mem_type = type;
741 #endif
742
743 if (!free_ablock)
744 {
745 int i;
746 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
747
748 #ifdef DOUG_LEA_MALLOC
749 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
750 because mapped region contents are not preserved in
751 a dumped Emacs. */
752 mallopt (M_MMAP_MAX, 0);
753 #endif
754
755 #ifdef HAVE_POSIX_MEMALIGN
756 {
757 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
758 if (err)
759 base = NULL;
760 abase = base;
761 }
762 #else
763 base = malloc (ABLOCKS_BYTES);
764 abase = ALIGN (base, BLOCK_ALIGN);
765 #endif
766
767 if (base == 0)
768 {
769 UNBLOCK_INPUT;
770 memory_full ();
771 }
772
773 aligned = (base == abase);
774 if (!aligned)
775 ((void**)abase)[-1] = base;
776
777 #ifdef DOUG_LEA_MALLOC
778 /* Back to a reasonable maximum of mmap'ed areas. */
779 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
780 #endif
781
782 #ifndef USE_LSB_TAG
783 /* If the memory just allocated cannot be addressed thru a Lisp
784 object's pointer, and it needs to be, that's equivalent to
785 running out of memory. */
786 if (type != MEM_TYPE_NON_LISP)
787 {
788 Lisp_Object tem;
789 char *end = (char *) base + ABLOCKS_BYTES - 1;
790 XSETCONS (tem, end);
791 if ((char *) XCONS (tem) != end)
792 {
793 lisp_malloc_loser = base;
794 free (base);
795 UNBLOCK_INPUT;
796 memory_full ();
797 }
798 }
799 #endif
800
801 /* Initialize the blocks and put them on the free list.
802 Is `base' was not properly aligned, we can't use the last block. */
803 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
804 {
805 abase->blocks[i].abase = abase;
806 abase->blocks[i].x.next_free = free_ablock;
807 free_ablock = &abase->blocks[i];
808 }
809 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
810
811 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
812 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
813 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
814 eassert (ABLOCKS_BASE (abase) == base);
815 eassert (aligned == (long) ABLOCKS_BUSY (abase));
816 }
817
818 abase = ABLOCK_ABASE (free_ablock);
819 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
820 val = free_ablock;
821 free_ablock = free_ablock->x.next_free;
822
823 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
824 if (val && type != MEM_TYPE_NON_LISP)
825 mem_insert (val, (char *) val + nbytes, type);
826 #endif
827
828 UNBLOCK_INPUT;
829 if (!val && nbytes)
830 memory_full ();
831
832 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
833 return val;
834 }
835
836 static void
837 lisp_align_free (block)
838 POINTER_TYPE *block;
839 {
840 struct ablock *ablock = block;
841 struct ablocks *abase = ABLOCK_ABASE (ablock);
842
843 BLOCK_INPUT;
844 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
845 mem_delete (mem_find (block));
846 #endif
847 /* Put on free list. */
848 ablock->x.next_free = free_ablock;
849 free_ablock = ablock;
850 /* Update busy count. */
851 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
852
853 if (2 > (long) ABLOCKS_BUSY (abase))
854 { /* All the blocks are free. */
855 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
856 struct ablock **tem = &free_ablock;
857 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
858
859 while (*tem)
860 {
861 if (*tem >= (struct ablock *) abase && *tem < atop)
862 {
863 i++;
864 *tem = (*tem)->x.next_free;
865 }
866 else
867 tem = &(*tem)->x.next_free;
868 }
869 eassert ((aligned & 1) == aligned);
870 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
871 free (ABLOCKS_BASE (abase));
872 }
873 UNBLOCK_INPUT;
874 }
875
876 /* Return a new buffer structure allocated from the heap with
877 a call to lisp_malloc. */
878
879 struct buffer *
880 allocate_buffer ()
881 {
882 struct buffer *b
883 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
884 MEM_TYPE_BUFFER);
885 return b;
886 }
887
888 \f
889 /* Arranging to disable input signals while we're in malloc.
890
891 This only works with GNU malloc. To help out systems which can't
892 use GNU malloc, all the calls to malloc, realloc, and free
893 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
894 pairs; unfortunately, we have no idea what C library functions
895 might call malloc, so we can't really protect them unless you're
896 using GNU malloc. Fortunately, most of the major operating systems
897 can use GNU malloc. */
898
899 #ifndef SYSTEM_MALLOC
900 #ifndef DOUG_LEA_MALLOC
901 extern void * (*__malloc_hook) P_ ((size_t));
902 extern void * (*__realloc_hook) P_ ((void *, size_t));
903 extern void (*__free_hook) P_ ((void *));
904 /* Else declared in malloc.h, perhaps with an extra arg. */
905 #endif /* DOUG_LEA_MALLOC */
906 static void * (*old_malloc_hook) ();
907 static void * (*old_realloc_hook) ();
908 static void (*old_free_hook) ();
909
910 /* This function is used as the hook for free to call. */
911
912 static void
913 emacs_blocked_free (ptr)
914 void *ptr;
915 {
916 BLOCK_INPUT;
917
918 #ifdef GC_MALLOC_CHECK
919 if (ptr)
920 {
921 struct mem_node *m;
922
923 m = mem_find (ptr);
924 if (m == MEM_NIL || m->start != ptr)
925 {
926 fprintf (stderr,
927 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
928 abort ();
929 }
930 else
931 {
932 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
933 mem_delete (m);
934 }
935 }
936 #endif /* GC_MALLOC_CHECK */
937
938 __free_hook = old_free_hook;
939 free (ptr);
940
941 /* If we released our reserve (due to running out of memory),
942 and we have a fair amount free once again,
943 try to set aside another reserve in case we run out once more. */
944 if (spare_memory == 0
945 /* Verify there is enough space that even with the malloc
946 hysteresis this call won't run out again.
947 The code here is correct as long as SPARE_MEMORY
948 is substantially larger than the block size malloc uses. */
949 && (bytes_used_when_full
950 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
951 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
952
953 __free_hook = emacs_blocked_free;
954 UNBLOCK_INPUT;
955 }
956
957
958 /* If we released our reserve (due to running out of memory),
959 and we have a fair amount free once again,
960 try to set aside another reserve in case we run out once more.
961
962 This is called when a relocatable block is freed in ralloc.c. */
963
964 void
965 refill_memory_reserve ()
966 {
967 if (spare_memory == 0)
968 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
969 }
970
971
972 /* This function is the malloc hook that Emacs uses. */
973
974 static void *
975 emacs_blocked_malloc (size)
976 size_t size;
977 {
978 void *value;
979
980 BLOCK_INPUT;
981 __malloc_hook = old_malloc_hook;
982 #ifdef DOUG_LEA_MALLOC
983 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
984 #else
985 __malloc_extra_blocks = malloc_hysteresis;
986 #endif
987
988 value = (void *) malloc (size);
989
990 #ifdef GC_MALLOC_CHECK
991 {
992 struct mem_node *m = mem_find (value);
993 if (m != MEM_NIL)
994 {
995 fprintf (stderr, "Malloc returned %p which is already in use\n",
996 value);
997 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
998 m->start, m->end, (char *) m->end - (char *) m->start,
999 m->type);
1000 abort ();
1001 }
1002
1003 if (!dont_register_blocks)
1004 {
1005 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1006 allocated_mem_type = MEM_TYPE_NON_LISP;
1007 }
1008 }
1009 #endif /* GC_MALLOC_CHECK */
1010
1011 __malloc_hook = emacs_blocked_malloc;
1012 UNBLOCK_INPUT;
1013
1014 /* fprintf (stderr, "%p malloc\n", value); */
1015 return value;
1016 }
1017
1018
1019 /* This function is the realloc hook that Emacs uses. */
1020
1021 static void *
1022 emacs_blocked_realloc (ptr, size)
1023 void *ptr;
1024 size_t size;
1025 {
1026 void *value;
1027
1028 BLOCK_INPUT;
1029 __realloc_hook = old_realloc_hook;
1030
1031 #ifdef GC_MALLOC_CHECK
1032 if (ptr)
1033 {
1034 struct mem_node *m = mem_find (ptr);
1035 if (m == MEM_NIL || m->start != ptr)
1036 {
1037 fprintf (stderr,
1038 "Realloc of %p which wasn't allocated with malloc\n",
1039 ptr);
1040 abort ();
1041 }
1042
1043 mem_delete (m);
1044 }
1045
1046 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1047
1048 /* Prevent malloc from registering blocks. */
1049 dont_register_blocks = 1;
1050 #endif /* GC_MALLOC_CHECK */
1051
1052 value = (void *) realloc (ptr, size);
1053
1054 #ifdef GC_MALLOC_CHECK
1055 dont_register_blocks = 0;
1056
1057 {
1058 struct mem_node *m = mem_find (value);
1059 if (m != MEM_NIL)
1060 {
1061 fprintf (stderr, "Realloc returns memory that is already in use\n");
1062 abort ();
1063 }
1064
1065 /* Can't handle zero size regions in the red-black tree. */
1066 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1067 }
1068
1069 /* fprintf (stderr, "%p <- realloc\n", value); */
1070 #endif /* GC_MALLOC_CHECK */
1071
1072 __realloc_hook = emacs_blocked_realloc;
1073 UNBLOCK_INPUT;
1074
1075 return value;
1076 }
1077
1078
1079 /* Called from main to set up malloc to use our hooks. */
1080
1081 void
1082 uninterrupt_malloc ()
1083 {
1084 if (__free_hook != emacs_blocked_free)
1085 old_free_hook = __free_hook;
1086 __free_hook = emacs_blocked_free;
1087
1088 if (__malloc_hook != emacs_blocked_malloc)
1089 old_malloc_hook = __malloc_hook;
1090 __malloc_hook = emacs_blocked_malloc;
1091
1092 if (__realloc_hook != emacs_blocked_realloc)
1093 old_realloc_hook = __realloc_hook;
1094 __realloc_hook = emacs_blocked_realloc;
1095 }
1096
1097 #endif /* not SYSTEM_MALLOC */
1098
1099
1100 \f
1101 /***********************************************************************
1102 Interval Allocation
1103 ***********************************************************************/
1104
1105 /* Number of intervals allocated in an interval_block structure.
1106 The 1020 is 1024 minus malloc overhead. */
1107
1108 #define INTERVAL_BLOCK_SIZE \
1109 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1110
1111 /* Intervals are allocated in chunks in form of an interval_block
1112 structure. */
1113
1114 struct interval_block
1115 {
1116 /* Place `intervals' first, to preserve alignment. */
1117 struct interval intervals[INTERVAL_BLOCK_SIZE];
1118 struct interval_block *next;
1119 };
1120
1121 /* Current interval block. Its `next' pointer points to older
1122 blocks. */
1123
1124 struct interval_block *interval_block;
1125
1126 /* Index in interval_block above of the next unused interval
1127 structure. */
1128
1129 static int interval_block_index;
1130
1131 /* Number of free and live intervals. */
1132
1133 static int total_free_intervals, total_intervals;
1134
1135 /* List of free intervals. */
1136
1137 INTERVAL interval_free_list;
1138
1139 /* Total number of interval blocks now in use. */
1140
1141 int n_interval_blocks;
1142
1143
1144 /* Initialize interval allocation. */
1145
1146 static void
1147 init_intervals ()
1148 {
1149 interval_block = NULL;
1150 interval_block_index = INTERVAL_BLOCK_SIZE;
1151 interval_free_list = 0;
1152 n_interval_blocks = 0;
1153 }
1154
1155
1156 /* Return a new interval. */
1157
1158 INTERVAL
1159 make_interval ()
1160 {
1161 INTERVAL val;
1162
1163 if (interval_free_list)
1164 {
1165 val = interval_free_list;
1166 interval_free_list = INTERVAL_PARENT (interval_free_list);
1167 }
1168 else
1169 {
1170 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1171 {
1172 register struct interval_block *newi;
1173
1174 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1175 MEM_TYPE_NON_LISP);
1176
1177 newi->next = interval_block;
1178 interval_block = newi;
1179 interval_block_index = 0;
1180 n_interval_blocks++;
1181 }
1182 val = &interval_block->intervals[interval_block_index++];
1183 }
1184 consing_since_gc += sizeof (struct interval);
1185 intervals_consed++;
1186 RESET_INTERVAL (val);
1187 val->gcmarkbit = 0;
1188 return val;
1189 }
1190
1191
1192 /* Mark Lisp objects in interval I. */
1193
1194 static void
1195 mark_interval (i, dummy)
1196 register INTERVAL i;
1197 Lisp_Object dummy;
1198 {
1199 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1200 i->gcmarkbit = 1;
1201 mark_object (i->plist);
1202 }
1203
1204
1205 /* Mark the interval tree rooted in TREE. Don't call this directly;
1206 use the macro MARK_INTERVAL_TREE instead. */
1207
1208 static void
1209 mark_interval_tree (tree)
1210 register INTERVAL tree;
1211 {
1212 /* No need to test if this tree has been marked already; this
1213 function is always called through the MARK_INTERVAL_TREE macro,
1214 which takes care of that. */
1215
1216 traverse_intervals_noorder (tree, mark_interval, Qnil);
1217 }
1218
1219
1220 /* Mark the interval tree rooted in I. */
1221
1222 #define MARK_INTERVAL_TREE(i) \
1223 do { \
1224 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1225 mark_interval_tree (i); \
1226 } while (0)
1227
1228
1229 #define UNMARK_BALANCE_INTERVALS(i) \
1230 do { \
1231 if (! NULL_INTERVAL_P (i)) \
1232 (i) = balance_intervals (i); \
1233 } while (0)
1234
1235 \f
1236 /* Number support. If NO_UNION_TYPE isn't in effect, we
1237 can't create number objects in macros. */
1238 #ifndef make_number
1239 Lisp_Object
1240 make_number (n)
1241 int n;
1242 {
1243 Lisp_Object obj;
1244 obj.s.val = n;
1245 obj.s.type = Lisp_Int;
1246 return obj;
1247 }
1248 #endif
1249 \f
1250 /***********************************************************************
1251 String Allocation
1252 ***********************************************************************/
1253
1254 /* Lisp_Strings are allocated in string_block structures. When a new
1255 string_block is allocated, all the Lisp_Strings it contains are
1256 added to a free-list string_free_list. When a new Lisp_String is
1257 needed, it is taken from that list. During the sweep phase of GC,
1258 string_blocks that are entirely free are freed, except two which
1259 we keep.
1260
1261 String data is allocated from sblock structures. Strings larger
1262 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1263 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1264
1265 Sblocks consist internally of sdata structures, one for each
1266 Lisp_String. The sdata structure points to the Lisp_String it
1267 belongs to. The Lisp_String points back to the `u.data' member of
1268 its sdata structure.
1269
1270 When a Lisp_String is freed during GC, it is put back on
1271 string_free_list, and its `data' member and its sdata's `string'
1272 pointer is set to null. The size of the string is recorded in the
1273 `u.nbytes' member of the sdata. So, sdata structures that are no
1274 longer used, can be easily recognized, and it's easy to compact the
1275 sblocks of small strings which we do in compact_small_strings. */
1276
1277 /* Size in bytes of an sblock structure used for small strings. This
1278 is 8192 minus malloc overhead. */
1279
1280 #define SBLOCK_SIZE 8188
1281
1282 /* Strings larger than this are considered large strings. String data
1283 for large strings is allocated from individual sblocks. */
1284
1285 #define LARGE_STRING_BYTES 1024
1286
1287 /* Structure describing string memory sub-allocated from an sblock.
1288 This is where the contents of Lisp strings are stored. */
1289
1290 struct sdata
1291 {
1292 /* Back-pointer to the string this sdata belongs to. If null, this
1293 structure is free, and the NBYTES member of the union below
1294 contains the string's byte size (the same value that STRING_BYTES
1295 would return if STRING were non-null). If non-null, STRING_BYTES
1296 (STRING) is the size of the data, and DATA contains the string's
1297 contents. */
1298 struct Lisp_String *string;
1299
1300 #ifdef GC_CHECK_STRING_BYTES
1301
1302 EMACS_INT nbytes;
1303 unsigned char data[1];
1304
1305 #define SDATA_NBYTES(S) (S)->nbytes
1306 #define SDATA_DATA(S) (S)->data
1307
1308 #else /* not GC_CHECK_STRING_BYTES */
1309
1310 union
1311 {
1312 /* When STRING in non-null. */
1313 unsigned char data[1];
1314
1315 /* When STRING is null. */
1316 EMACS_INT nbytes;
1317 } u;
1318
1319
1320 #define SDATA_NBYTES(S) (S)->u.nbytes
1321 #define SDATA_DATA(S) (S)->u.data
1322
1323 #endif /* not GC_CHECK_STRING_BYTES */
1324 };
1325
1326
1327 /* Structure describing a block of memory which is sub-allocated to
1328 obtain string data memory for strings. Blocks for small strings
1329 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1330 as large as needed. */
1331
1332 struct sblock
1333 {
1334 /* Next in list. */
1335 struct sblock *next;
1336
1337 /* Pointer to the next free sdata block. This points past the end
1338 of the sblock if there isn't any space left in this block. */
1339 struct sdata *next_free;
1340
1341 /* Start of data. */
1342 struct sdata first_data;
1343 };
1344
1345 /* Number of Lisp strings in a string_block structure. The 1020 is
1346 1024 minus malloc overhead. */
1347
1348 #define STRING_BLOCK_SIZE \
1349 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1350
1351 /* Structure describing a block from which Lisp_String structures
1352 are allocated. */
1353
1354 struct string_block
1355 {
1356 /* Place `strings' first, to preserve alignment. */
1357 struct Lisp_String strings[STRING_BLOCK_SIZE];
1358 struct string_block *next;
1359 };
1360
1361 /* Head and tail of the list of sblock structures holding Lisp string
1362 data. We always allocate from current_sblock. The NEXT pointers
1363 in the sblock structures go from oldest_sblock to current_sblock. */
1364
1365 static struct sblock *oldest_sblock, *current_sblock;
1366
1367 /* List of sblocks for large strings. */
1368
1369 static struct sblock *large_sblocks;
1370
1371 /* List of string_block structures, and how many there are. */
1372
1373 static struct string_block *string_blocks;
1374 static int n_string_blocks;
1375
1376 /* Free-list of Lisp_Strings. */
1377
1378 static struct Lisp_String *string_free_list;
1379
1380 /* Number of live and free Lisp_Strings. */
1381
1382 static int total_strings, total_free_strings;
1383
1384 /* Number of bytes used by live strings. */
1385
1386 static int total_string_size;
1387
1388 /* Given a pointer to a Lisp_String S which is on the free-list
1389 string_free_list, return a pointer to its successor in the
1390 free-list. */
1391
1392 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1393
1394 /* Return a pointer to the sdata structure belonging to Lisp string S.
1395 S must be live, i.e. S->data must not be null. S->data is actually
1396 a pointer to the `u.data' member of its sdata structure; the
1397 structure starts at a constant offset in front of that. */
1398
1399 #ifdef GC_CHECK_STRING_BYTES
1400
1401 #define SDATA_OF_STRING(S) \
1402 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1403 - sizeof (EMACS_INT)))
1404
1405 #else /* not GC_CHECK_STRING_BYTES */
1406
1407 #define SDATA_OF_STRING(S) \
1408 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1409
1410 #endif /* not GC_CHECK_STRING_BYTES */
1411
1412 /* Value is the size of an sdata structure large enough to hold NBYTES
1413 bytes of string data. The value returned includes a terminating
1414 NUL byte, the size of the sdata structure, and padding. */
1415
1416 #ifdef GC_CHECK_STRING_BYTES
1417
1418 #define SDATA_SIZE(NBYTES) \
1419 ((sizeof (struct Lisp_String *) \
1420 + (NBYTES) + 1 \
1421 + sizeof (EMACS_INT) \
1422 + sizeof (EMACS_INT) - 1) \
1423 & ~(sizeof (EMACS_INT) - 1))
1424
1425 #else /* not GC_CHECK_STRING_BYTES */
1426
1427 #define SDATA_SIZE(NBYTES) \
1428 ((sizeof (struct Lisp_String *) \
1429 + (NBYTES) + 1 \
1430 + sizeof (EMACS_INT) - 1) \
1431 & ~(sizeof (EMACS_INT) - 1))
1432
1433 #endif /* not GC_CHECK_STRING_BYTES */
1434
1435 /* Initialize string allocation. Called from init_alloc_once. */
1436
1437 void
1438 init_strings ()
1439 {
1440 total_strings = total_free_strings = total_string_size = 0;
1441 oldest_sblock = current_sblock = large_sblocks = NULL;
1442 string_blocks = NULL;
1443 n_string_blocks = 0;
1444 string_free_list = NULL;
1445 }
1446
1447
1448 #ifdef GC_CHECK_STRING_BYTES
1449
1450 static int check_string_bytes_count;
1451
1452 void check_string_bytes P_ ((int));
1453 void check_sblock P_ ((struct sblock *));
1454
1455 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1456
1457
1458 /* Like GC_STRING_BYTES, but with debugging check. */
1459
1460 int
1461 string_bytes (s)
1462 struct Lisp_String *s;
1463 {
1464 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1465 if (!PURE_POINTER_P (s)
1466 && s->data
1467 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1468 abort ();
1469 return nbytes;
1470 }
1471
1472 /* Check validity of Lisp strings' string_bytes member in B. */
1473
1474 void
1475 check_sblock (b)
1476 struct sblock *b;
1477 {
1478 struct sdata *from, *end, *from_end;
1479
1480 end = b->next_free;
1481
1482 for (from = &b->first_data; from < end; from = from_end)
1483 {
1484 /* Compute the next FROM here because copying below may
1485 overwrite data we need to compute it. */
1486 int nbytes;
1487
1488 /* Check that the string size recorded in the string is the
1489 same as the one recorded in the sdata structure. */
1490 if (from->string)
1491 CHECK_STRING_BYTES (from->string);
1492
1493 if (from->string)
1494 nbytes = GC_STRING_BYTES (from->string);
1495 else
1496 nbytes = SDATA_NBYTES (from);
1497
1498 nbytes = SDATA_SIZE (nbytes);
1499 from_end = (struct sdata *) ((char *) from + nbytes);
1500 }
1501 }
1502
1503
1504 /* Check validity of Lisp strings' string_bytes member. ALL_P
1505 non-zero means check all strings, otherwise check only most
1506 recently allocated strings. Used for hunting a bug. */
1507
1508 void
1509 check_string_bytes (all_p)
1510 int all_p;
1511 {
1512 if (all_p)
1513 {
1514 struct sblock *b;
1515
1516 for (b = large_sblocks; b; b = b->next)
1517 {
1518 struct Lisp_String *s = b->first_data.string;
1519 if (s)
1520 CHECK_STRING_BYTES (s);
1521 }
1522
1523 for (b = oldest_sblock; b; b = b->next)
1524 check_sblock (b);
1525 }
1526 else
1527 check_sblock (current_sblock);
1528 }
1529
1530 #endif /* GC_CHECK_STRING_BYTES */
1531
1532
1533 /* Return a new Lisp_String. */
1534
1535 static struct Lisp_String *
1536 allocate_string ()
1537 {
1538 struct Lisp_String *s;
1539
1540 /* If the free-list is empty, allocate a new string_block, and
1541 add all the Lisp_Strings in it to the free-list. */
1542 if (string_free_list == NULL)
1543 {
1544 struct string_block *b;
1545 int i;
1546
1547 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1548 bzero (b, sizeof *b);
1549 b->next = string_blocks;
1550 string_blocks = b;
1551 ++n_string_blocks;
1552
1553 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1554 {
1555 s = b->strings + i;
1556 NEXT_FREE_LISP_STRING (s) = string_free_list;
1557 string_free_list = s;
1558 }
1559
1560 total_free_strings += STRING_BLOCK_SIZE;
1561 }
1562
1563 /* Pop a Lisp_String off the free-list. */
1564 s = string_free_list;
1565 string_free_list = NEXT_FREE_LISP_STRING (s);
1566
1567 /* Probably not strictly necessary, but play it safe. */
1568 bzero (s, sizeof *s);
1569
1570 --total_free_strings;
1571 ++total_strings;
1572 ++strings_consed;
1573 consing_since_gc += sizeof *s;
1574
1575 #ifdef GC_CHECK_STRING_BYTES
1576 if (!noninteractive
1577 #ifdef MAC_OS8
1578 && current_sblock
1579 #endif
1580 )
1581 {
1582 if (++check_string_bytes_count == 200)
1583 {
1584 check_string_bytes_count = 0;
1585 check_string_bytes (1);
1586 }
1587 else
1588 check_string_bytes (0);
1589 }
1590 #endif /* GC_CHECK_STRING_BYTES */
1591
1592 return s;
1593 }
1594
1595
1596 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1597 plus a NUL byte at the end. Allocate an sdata structure for S, and
1598 set S->data to its `u.data' member. Store a NUL byte at the end of
1599 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1600 S->data if it was initially non-null. */
1601
1602 void
1603 allocate_string_data (s, nchars, nbytes)
1604 struct Lisp_String *s;
1605 int nchars, nbytes;
1606 {
1607 struct sdata *data, *old_data;
1608 struct sblock *b;
1609 int needed, old_nbytes;
1610
1611 /* Determine the number of bytes needed to store NBYTES bytes
1612 of string data. */
1613 needed = SDATA_SIZE (nbytes);
1614
1615 if (nbytes > LARGE_STRING_BYTES)
1616 {
1617 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1618
1619 #ifdef DOUG_LEA_MALLOC
1620 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1621 because mapped region contents are not preserved in
1622 a dumped Emacs.
1623
1624 In case you think of allowing it in a dumped Emacs at the
1625 cost of not being able to re-dump, there's another reason:
1626 mmap'ed data typically have an address towards the top of the
1627 address space, which won't fit into an EMACS_INT (at least on
1628 32-bit systems with the current tagging scheme). --fx */
1629 mallopt (M_MMAP_MAX, 0);
1630 #endif
1631
1632 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
1633
1634 #ifdef DOUG_LEA_MALLOC
1635 /* Back to a reasonable maximum of mmap'ed areas. */
1636 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1637 #endif
1638
1639 b->next_free = &b->first_data;
1640 b->first_data.string = NULL;
1641 b->next = large_sblocks;
1642 large_sblocks = b;
1643 }
1644 else if (current_sblock == NULL
1645 || (((char *) current_sblock + SBLOCK_SIZE
1646 - (char *) current_sblock->next_free)
1647 < needed))
1648 {
1649 /* Not enough room in the current sblock. */
1650 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1651 b->next_free = &b->first_data;
1652 b->first_data.string = NULL;
1653 b->next = NULL;
1654
1655 if (current_sblock)
1656 current_sblock->next = b;
1657 else
1658 oldest_sblock = b;
1659 current_sblock = b;
1660 }
1661 else
1662 b = current_sblock;
1663
1664 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1665 old_nbytes = GC_STRING_BYTES (s);
1666
1667 data = b->next_free;
1668 data->string = s;
1669 s->data = SDATA_DATA (data);
1670 #ifdef GC_CHECK_STRING_BYTES
1671 SDATA_NBYTES (data) = nbytes;
1672 #endif
1673 s->size = nchars;
1674 s->size_byte = nbytes;
1675 s->data[nbytes] = '\0';
1676 b->next_free = (struct sdata *) ((char *) data + needed);
1677
1678 /* If S had already data assigned, mark that as free by setting its
1679 string back-pointer to null, and recording the size of the data
1680 in it. */
1681 if (old_data)
1682 {
1683 SDATA_NBYTES (old_data) = old_nbytes;
1684 old_data->string = NULL;
1685 }
1686
1687 consing_since_gc += needed;
1688 }
1689
1690
1691 /* Sweep and compact strings. */
1692
1693 static void
1694 sweep_strings ()
1695 {
1696 struct string_block *b, *next;
1697 struct string_block *live_blocks = NULL;
1698
1699 string_free_list = NULL;
1700 total_strings = total_free_strings = 0;
1701 total_string_size = 0;
1702
1703 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1704 for (b = string_blocks; b; b = next)
1705 {
1706 int i, nfree = 0;
1707 struct Lisp_String *free_list_before = string_free_list;
1708
1709 next = b->next;
1710
1711 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1712 {
1713 struct Lisp_String *s = b->strings + i;
1714
1715 if (s->data)
1716 {
1717 /* String was not on free-list before. */
1718 if (STRING_MARKED_P (s))
1719 {
1720 /* String is live; unmark it and its intervals. */
1721 UNMARK_STRING (s);
1722
1723 if (!NULL_INTERVAL_P (s->intervals))
1724 UNMARK_BALANCE_INTERVALS (s->intervals);
1725
1726 ++total_strings;
1727 total_string_size += STRING_BYTES (s);
1728 }
1729 else
1730 {
1731 /* String is dead. Put it on the free-list. */
1732 struct sdata *data = SDATA_OF_STRING (s);
1733
1734 /* Save the size of S in its sdata so that we know
1735 how large that is. Reset the sdata's string
1736 back-pointer so that we know it's free. */
1737 #ifdef GC_CHECK_STRING_BYTES
1738 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1739 abort ();
1740 #else
1741 data->u.nbytes = GC_STRING_BYTES (s);
1742 #endif
1743 data->string = NULL;
1744
1745 /* Reset the strings's `data' member so that we
1746 know it's free. */
1747 s->data = NULL;
1748
1749 /* Put the string on the free-list. */
1750 NEXT_FREE_LISP_STRING (s) = string_free_list;
1751 string_free_list = s;
1752 ++nfree;
1753 }
1754 }
1755 else
1756 {
1757 /* S was on the free-list before. Put it there again. */
1758 NEXT_FREE_LISP_STRING (s) = string_free_list;
1759 string_free_list = s;
1760 ++nfree;
1761 }
1762 }
1763
1764 /* Free blocks that contain free Lisp_Strings only, except
1765 the first two of them. */
1766 if (nfree == STRING_BLOCK_SIZE
1767 && total_free_strings > STRING_BLOCK_SIZE)
1768 {
1769 lisp_free (b);
1770 --n_string_blocks;
1771 string_free_list = free_list_before;
1772 }
1773 else
1774 {
1775 total_free_strings += nfree;
1776 b->next = live_blocks;
1777 live_blocks = b;
1778 }
1779 }
1780
1781 string_blocks = live_blocks;
1782 free_large_strings ();
1783 compact_small_strings ();
1784 }
1785
1786
1787 /* Free dead large strings. */
1788
1789 static void
1790 free_large_strings ()
1791 {
1792 struct sblock *b, *next;
1793 struct sblock *live_blocks = NULL;
1794
1795 for (b = large_sblocks; b; b = next)
1796 {
1797 next = b->next;
1798
1799 if (b->first_data.string == NULL)
1800 lisp_free (b);
1801 else
1802 {
1803 b->next = live_blocks;
1804 live_blocks = b;
1805 }
1806 }
1807
1808 large_sblocks = live_blocks;
1809 }
1810
1811
1812 /* Compact data of small strings. Free sblocks that don't contain
1813 data of live strings after compaction. */
1814
1815 static void
1816 compact_small_strings ()
1817 {
1818 struct sblock *b, *tb, *next;
1819 struct sdata *from, *to, *end, *tb_end;
1820 struct sdata *to_end, *from_end;
1821
1822 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1823 to, and TB_END is the end of TB. */
1824 tb = oldest_sblock;
1825 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1826 to = &tb->first_data;
1827
1828 /* Step through the blocks from the oldest to the youngest. We
1829 expect that old blocks will stabilize over time, so that less
1830 copying will happen this way. */
1831 for (b = oldest_sblock; b; b = b->next)
1832 {
1833 end = b->next_free;
1834 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1835
1836 for (from = &b->first_data; from < end; from = from_end)
1837 {
1838 /* Compute the next FROM here because copying below may
1839 overwrite data we need to compute it. */
1840 int nbytes;
1841
1842 #ifdef GC_CHECK_STRING_BYTES
1843 /* Check that the string size recorded in the string is the
1844 same as the one recorded in the sdata structure. */
1845 if (from->string
1846 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
1847 abort ();
1848 #endif /* GC_CHECK_STRING_BYTES */
1849
1850 if (from->string)
1851 nbytes = GC_STRING_BYTES (from->string);
1852 else
1853 nbytes = SDATA_NBYTES (from);
1854
1855 nbytes = SDATA_SIZE (nbytes);
1856 from_end = (struct sdata *) ((char *) from + nbytes);
1857
1858 /* FROM->string non-null means it's alive. Copy its data. */
1859 if (from->string)
1860 {
1861 /* If TB is full, proceed with the next sblock. */
1862 to_end = (struct sdata *) ((char *) to + nbytes);
1863 if (to_end > tb_end)
1864 {
1865 tb->next_free = to;
1866 tb = tb->next;
1867 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1868 to = &tb->first_data;
1869 to_end = (struct sdata *) ((char *) to + nbytes);
1870 }
1871
1872 /* Copy, and update the string's `data' pointer. */
1873 if (from != to)
1874 {
1875 xassert (tb != b || to <= from);
1876 safe_bcopy ((char *) from, (char *) to, nbytes);
1877 to->string->data = SDATA_DATA (to);
1878 }
1879
1880 /* Advance past the sdata we copied to. */
1881 to = to_end;
1882 }
1883 }
1884 }
1885
1886 /* The rest of the sblocks following TB don't contain live data, so
1887 we can free them. */
1888 for (b = tb->next; b; b = next)
1889 {
1890 next = b->next;
1891 lisp_free (b);
1892 }
1893
1894 tb->next_free = to;
1895 tb->next = NULL;
1896 current_sblock = tb;
1897 }
1898
1899
1900 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1901 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1902 LENGTH must be an integer.
1903 INIT must be an integer that represents a character. */)
1904 (length, init)
1905 Lisp_Object length, init;
1906 {
1907 register Lisp_Object val;
1908 register unsigned char *p, *end;
1909 int c, nbytes;
1910
1911 CHECK_NATNUM (length);
1912 CHECK_NUMBER (init);
1913
1914 c = XINT (init);
1915 if (SINGLE_BYTE_CHAR_P (c))
1916 {
1917 nbytes = XINT (length);
1918 val = make_uninit_string (nbytes);
1919 p = SDATA (val);
1920 end = p + SCHARS (val);
1921 while (p != end)
1922 *p++ = c;
1923 }
1924 else
1925 {
1926 unsigned char str[MAX_MULTIBYTE_LENGTH];
1927 int len = CHAR_STRING (c, str);
1928
1929 nbytes = len * XINT (length);
1930 val = make_uninit_multibyte_string (XINT (length), nbytes);
1931 p = SDATA (val);
1932 end = p + nbytes;
1933 while (p != end)
1934 {
1935 bcopy (str, p, len);
1936 p += len;
1937 }
1938 }
1939
1940 *p = 0;
1941 return val;
1942 }
1943
1944
1945 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
1946 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
1947 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1948 (length, init)
1949 Lisp_Object length, init;
1950 {
1951 register Lisp_Object val;
1952 struct Lisp_Bool_Vector *p;
1953 int real_init, i;
1954 int length_in_chars, length_in_elts, bits_per_value;
1955
1956 CHECK_NATNUM (length);
1957
1958 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
1959
1960 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1961 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
1962 / BOOL_VECTOR_BITS_PER_CHAR);
1963
1964 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1965 slot `size' of the struct Lisp_Bool_Vector. */
1966 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1967 p = XBOOL_VECTOR (val);
1968
1969 /* Get rid of any bits that would cause confusion. */
1970 p->vector_size = 0;
1971 XSETBOOL_VECTOR (val, p);
1972 p->size = XFASTINT (length);
1973
1974 real_init = (NILP (init) ? 0 : -1);
1975 for (i = 0; i < length_in_chars ; i++)
1976 p->data[i] = real_init;
1977
1978 /* Clear the extraneous bits in the last byte. */
1979 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
1980 XBOOL_VECTOR (val)->data[length_in_chars - 1]
1981 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
1982
1983 return val;
1984 }
1985
1986
1987 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
1988 of characters from the contents. This string may be unibyte or
1989 multibyte, depending on the contents. */
1990
1991 Lisp_Object
1992 make_string (contents, nbytes)
1993 const char *contents;
1994 int nbytes;
1995 {
1996 register Lisp_Object val;
1997 int nchars, multibyte_nbytes;
1998
1999 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2000 if (nbytes == nchars || nbytes != multibyte_nbytes)
2001 /* CONTENTS contains no multibyte sequences or contains an invalid
2002 multibyte sequence. We must make unibyte string. */
2003 val = make_unibyte_string (contents, nbytes);
2004 else
2005 val = make_multibyte_string (contents, nchars, nbytes);
2006 return val;
2007 }
2008
2009
2010 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2011
2012 Lisp_Object
2013 make_unibyte_string (contents, length)
2014 const char *contents;
2015 int length;
2016 {
2017 register Lisp_Object val;
2018 val = make_uninit_string (length);
2019 bcopy (contents, SDATA (val), length);
2020 STRING_SET_UNIBYTE (val);
2021 return val;
2022 }
2023
2024
2025 /* Make a multibyte string from NCHARS characters occupying NBYTES
2026 bytes at CONTENTS. */
2027
2028 Lisp_Object
2029 make_multibyte_string (contents, nchars, nbytes)
2030 const char *contents;
2031 int nchars, nbytes;
2032 {
2033 register Lisp_Object val;
2034 val = make_uninit_multibyte_string (nchars, nbytes);
2035 bcopy (contents, SDATA (val), nbytes);
2036 return val;
2037 }
2038
2039
2040 /* Make a string from NCHARS characters occupying NBYTES bytes at
2041 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2042
2043 Lisp_Object
2044 make_string_from_bytes (contents, nchars, nbytes)
2045 const char *contents;
2046 int nchars, nbytes;
2047 {
2048 register Lisp_Object val;
2049 val = make_uninit_multibyte_string (nchars, nbytes);
2050 bcopy (contents, SDATA (val), nbytes);
2051 if (SBYTES (val) == SCHARS (val))
2052 STRING_SET_UNIBYTE (val);
2053 return val;
2054 }
2055
2056
2057 /* Make a string from NCHARS characters occupying NBYTES bytes at
2058 CONTENTS. The argument MULTIBYTE controls whether to label the
2059 string as multibyte. If NCHARS is negative, it counts the number of
2060 characters by itself. */
2061
2062 Lisp_Object
2063 make_specified_string (contents, nchars, nbytes, multibyte)
2064 const char *contents;
2065 int nchars, nbytes;
2066 int multibyte;
2067 {
2068 register Lisp_Object val;
2069
2070 if (nchars < 0)
2071 {
2072 if (multibyte)
2073 nchars = multibyte_chars_in_text (contents, nbytes);
2074 else
2075 nchars = nbytes;
2076 }
2077 val = make_uninit_multibyte_string (nchars, nbytes);
2078 bcopy (contents, SDATA (val), nbytes);
2079 if (!multibyte)
2080 STRING_SET_UNIBYTE (val);
2081 return val;
2082 }
2083
2084
2085 /* Make a string from the data at STR, treating it as multibyte if the
2086 data warrants. */
2087
2088 Lisp_Object
2089 build_string (str)
2090 const char *str;
2091 {
2092 return make_string (str, strlen (str));
2093 }
2094
2095
2096 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2097 occupying LENGTH bytes. */
2098
2099 Lisp_Object
2100 make_uninit_string (length)
2101 int length;
2102 {
2103 Lisp_Object val;
2104 val = make_uninit_multibyte_string (length, length);
2105 STRING_SET_UNIBYTE (val);
2106 return val;
2107 }
2108
2109
2110 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2111 which occupy NBYTES bytes. */
2112
2113 Lisp_Object
2114 make_uninit_multibyte_string (nchars, nbytes)
2115 int nchars, nbytes;
2116 {
2117 Lisp_Object string;
2118 struct Lisp_String *s;
2119
2120 if (nchars < 0)
2121 abort ();
2122
2123 s = allocate_string ();
2124 allocate_string_data (s, nchars, nbytes);
2125 XSETSTRING (string, s);
2126 string_chars_consed += nbytes;
2127 return string;
2128 }
2129
2130
2131 \f
2132 /***********************************************************************
2133 Float Allocation
2134 ***********************************************************************/
2135
2136 /* We store float cells inside of float_blocks, allocating a new
2137 float_block with malloc whenever necessary. Float cells reclaimed
2138 by GC are put on a free list to be reallocated before allocating
2139 any new float cells from the latest float_block. */
2140
2141 #define FLOAT_BLOCK_SIZE \
2142 (((BLOCK_BYTES - sizeof (struct float_block *) \
2143 /* The compiler might add padding at the end. */ \
2144 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2145 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2146
2147 #define GETMARKBIT(block,n) \
2148 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2149 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2150 & 1)
2151
2152 #define SETMARKBIT(block,n) \
2153 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2154 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2155
2156 #define UNSETMARKBIT(block,n) \
2157 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2158 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2159
2160 #define FLOAT_BLOCK(fptr) \
2161 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2162
2163 #define FLOAT_INDEX(fptr) \
2164 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2165
2166 struct float_block
2167 {
2168 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2169 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2170 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2171 struct float_block *next;
2172 };
2173
2174 #define FLOAT_MARKED_P(fptr) \
2175 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2176
2177 #define FLOAT_MARK(fptr) \
2178 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2179
2180 #define FLOAT_UNMARK(fptr) \
2181 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2182
2183 /* Current float_block. */
2184
2185 struct float_block *float_block;
2186
2187 /* Index of first unused Lisp_Float in the current float_block. */
2188
2189 int float_block_index;
2190
2191 /* Total number of float blocks now in use. */
2192
2193 int n_float_blocks;
2194
2195 /* Free-list of Lisp_Floats. */
2196
2197 struct Lisp_Float *float_free_list;
2198
2199
2200 /* Initialize float allocation. */
2201
2202 void
2203 init_float ()
2204 {
2205 float_block = NULL;
2206 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2207 float_free_list = 0;
2208 n_float_blocks = 0;
2209 }
2210
2211
2212 /* Explicitly free a float cell by putting it on the free-list. */
2213
2214 void
2215 free_float (ptr)
2216 struct Lisp_Float *ptr;
2217 {
2218 *(struct Lisp_Float **)&ptr->data = float_free_list;
2219 float_free_list = ptr;
2220 }
2221
2222
2223 /* Return a new float object with value FLOAT_VALUE. */
2224
2225 Lisp_Object
2226 make_float (float_value)
2227 double float_value;
2228 {
2229 register Lisp_Object val;
2230
2231 if (float_free_list)
2232 {
2233 /* We use the data field for chaining the free list
2234 so that we won't use the same field that has the mark bit. */
2235 XSETFLOAT (val, float_free_list);
2236 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2237 }
2238 else
2239 {
2240 if (float_block_index == FLOAT_BLOCK_SIZE)
2241 {
2242 register struct float_block *new;
2243
2244 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2245 MEM_TYPE_FLOAT);
2246 new->next = float_block;
2247 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2248 float_block = new;
2249 float_block_index = 0;
2250 n_float_blocks++;
2251 }
2252 XSETFLOAT (val, &float_block->floats[float_block_index]);
2253 float_block_index++;
2254 }
2255
2256 XFLOAT_DATA (val) = float_value;
2257 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2258 consing_since_gc += sizeof (struct Lisp_Float);
2259 floats_consed++;
2260 return val;
2261 }
2262
2263
2264 \f
2265 /***********************************************************************
2266 Cons Allocation
2267 ***********************************************************************/
2268
2269 /* We store cons cells inside of cons_blocks, allocating a new
2270 cons_block with malloc whenever necessary. Cons cells reclaimed by
2271 GC are put on a free list to be reallocated before allocating
2272 any new cons cells from the latest cons_block. */
2273
2274 #define CONS_BLOCK_SIZE \
2275 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2276 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2277
2278 #define CONS_BLOCK(fptr) \
2279 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2280
2281 #define CONS_INDEX(fptr) \
2282 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2283
2284 struct cons_block
2285 {
2286 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2287 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2288 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2289 struct cons_block *next;
2290 };
2291
2292 #define CONS_MARKED_P(fptr) \
2293 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2294
2295 #define CONS_MARK(fptr) \
2296 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2297
2298 #define CONS_UNMARK(fptr) \
2299 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2300
2301 /* Current cons_block. */
2302
2303 struct cons_block *cons_block;
2304
2305 /* Index of first unused Lisp_Cons in the current block. */
2306
2307 int cons_block_index;
2308
2309 /* Free-list of Lisp_Cons structures. */
2310
2311 struct Lisp_Cons *cons_free_list;
2312
2313 /* Total number of cons blocks now in use. */
2314
2315 int n_cons_blocks;
2316
2317
2318 /* Initialize cons allocation. */
2319
2320 void
2321 init_cons ()
2322 {
2323 cons_block = NULL;
2324 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2325 cons_free_list = 0;
2326 n_cons_blocks = 0;
2327 }
2328
2329
2330 /* Explicitly free a cons cell by putting it on the free-list. */
2331
2332 void
2333 free_cons (ptr)
2334 struct Lisp_Cons *ptr;
2335 {
2336 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2337 #if GC_MARK_STACK
2338 ptr->car = Vdead;
2339 #endif
2340 cons_free_list = ptr;
2341 }
2342
2343 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2344 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2345 (car, cdr)
2346 Lisp_Object car, cdr;
2347 {
2348 register Lisp_Object val;
2349
2350 if (cons_free_list)
2351 {
2352 /* We use the cdr for chaining the free list
2353 so that we won't use the same field that has the mark bit. */
2354 XSETCONS (val, cons_free_list);
2355 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2356 }
2357 else
2358 {
2359 if (cons_block_index == CONS_BLOCK_SIZE)
2360 {
2361 register struct cons_block *new;
2362 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2363 MEM_TYPE_CONS);
2364 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2365 new->next = cons_block;
2366 cons_block = new;
2367 cons_block_index = 0;
2368 n_cons_blocks++;
2369 }
2370 XSETCONS (val, &cons_block->conses[cons_block_index]);
2371 cons_block_index++;
2372 }
2373
2374 XSETCAR (val, car);
2375 XSETCDR (val, cdr);
2376 eassert (!CONS_MARKED_P (XCONS (val)));
2377 consing_since_gc += sizeof (struct Lisp_Cons);
2378 cons_cells_consed++;
2379 return val;
2380 }
2381
2382
2383 /* Make a list of 2, 3, 4 or 5 specified objects. */
2384
2385 Lisp_Object
2386 list2 (arg1, arg2)
2387 Lisp_Object arg1, arg2;
2388 {
2389 return Fcons (arg1, Fcons (arg2, Qnil));
2390 }
2391
2392
2393 Lisp_Object
2394 list3 (arg1, arg2, arg3)
2395 Lisp_Object arg1, arg2, arg3;
2396 {
2397 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2398 }
2399
2400
2401 Lisp_Object
2402 list4 (arg1, arg2, arg3, arg4)
2403 Lisp_Object arg1, arg2, arg3, arg4;
2404 {
2405 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2406 }
2407
2408
2409 Lisp_Object
2410 list5 (arg1, arg2, arg3, arg4, arg5)
2411 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2412 {
2413 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2414 Fcons (arg5, Qnil)))));
2415 }
2416
2417
2418 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2419 doc: /* Return a newly created list with specified arguments as elements.
2420 Any number of arguments, even zero arguments, are allowed.
2421 usage: (list &rest OBJECTS) */)
2422 (nargs, args)
2423 int nargs;
2424 register Lisp_Object *args;
2425 {
2426 register Lisp_Object val;
2427 val = Qnil;
2428
2429 while (nargs > 0)
2430 {
2431 nargs--;
2432 val = Fcons (args[nargs], val);
2433 }
2434 return val;
2435 }
2436
2437
2438 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2439 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2440 (length, init)
2441 register Lisp_Object length, init;
2442 {
2443 register Lisp_Object val;
2444 register int size;
2445
2446 CHECK_NATNUM (length);
2447 size = XFASTINT (length);
2448
2449 val = Qnil;
2450 while (size > 0)
2451 {
2452 val = Fcons (init, val);
2453 --size;
2454
2455 if (size > 0)
2456 {
2457 val = Fcons (init, val);
2458 --size;
2459
2460 if (size > 0)
2461 {
2462 val = Fcons (init, val);
2463 --size;
2464
2465 if (size > 0)
2466 {
2467 val = Fcons (init, val);
2468 --size;
2469
2470 if (size > 0)
2471 {
2472 val = Fcons (init, val);
2473 --size;
2474 }
2475 }
2476 }
2477 }
2478
2479 QUIT;
2480 }
2481
2482 return val;
2483 }
2484
2485
2486 \f
2487 /***********************************************************************
2488 Vector Allocation
2489 ***********************************************************************/
2490
2491 /* Singly-linked list of all vectors. */
2492
2493 struct Lisp_Vector *all_vectors;
2494
2495 /* Total number of vector-like objects now in use. */
2496
2497 int n_vectors;
2498
2499
2500 /* Value is a pointer to a newly allocated Lisp_Vector structure
2501 with room for LEN Lisp_Objects. */
2502
2503 static struct Lisp_Vector *
2504 allocate_vectorlike (len, type)
2505 EMACS_INT len;
2506 enum mem_type type;
2507 {
2508 struct Lisp_Vector *p;
2509 size_t nbytes;
2510
2511 #ifdef DOUG_LEA_MALLOC
2512 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2513 because mapped region contents are not preserved in
2514 a dumped Emacs. */
2515 BLOCK_INPUT;
2516 mallopt (M_MMAP_MAX, 0);
2517 UNBLOCK_INPUT;
2518 #endif
2519
2520 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2521 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2522
2523 #ifdef DOUG_LEA_MALLOC
2524 /* Back to a reasonable maximum of mmap'ed areas. */
2525 BLOCK_INPUT;
2526 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2527 UNBLOCK_INPUT;
2528 #endif
2529
2530 consing_since_gc += nbytes;
2531 vector_cells_consed += len;
2532
2533 p->next = all_vectors;
2534 all_vectors = p;
2535 ++n_vectors;
2536 return p;
2537 }
2538
2539
2540 /* Allocate a vector with NSLOTS slots. */
2541
2542 struct Lisp_Vector *
2543 allocate_vector (nslots)
2544 EMACS_INT nslots;
2545 {
2546 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2547 v->size = nslots;
2548 return v;
2549 }
2550
2551
2552 /* Allocate other vector-like structures. */
2553
2554 struct Lisp_Hash_Table *
2555 allocate_hash_table ()
2556 {
2557 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2558 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2559 EMACS_INT i;
2560
2561 v->size = len;
2562 for (i = 0; i < len; ++i)
2563 v->contents[i] = Qnil;
2564
2565 return (struct Lisp_Hash_Table *) v;
2566 }
2567
2568
2569 struct window *
2570 allocate_window ()
2571 {
2572 EMACS_INT len = VECSIZE (struct window);
2573 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2574 EMACS_INT i;
2575
2576 for (i = 0; i < len; ++i)
2577 v->contents[i] = Qnil;
2578 v->size = len;
2579
2580 return (struct window *) v;
2581 }
2582
2583
2584 struct frame *
2585 allocate_frame ()
2586 {
2587 EMACS_INT len = VECSIZE (struct frame);
2588 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2589 EMACS_INT i;
2590
2591 for (i = 0; i < len; ++i)
2592 v->contents[i] = make_number (0);
2593 v->size = len;
2594 return (struct frame *) v;
2595 }
2596
2597
2598 struct Lisp_Process *
2599 allocate_process ()
2600 {
2601 EMACS_INT len = VECSIZE (struct Lisp_Process);
2602 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2603 EMACS_INT i;
2604
2605 for (i = 0; i < len; ++i)
2606 v->contents[i] = Qnil;
2607 v->size = len;
2608
2609 return (struct Lisp_Process *) v;
2610 }
2611
2612
2613 struct Lisp_Vector *
2614 allocate_other_vector (len)
2615 EMACS_INT len;
2616 {
2617 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2618 EMACS_INT i;
2619
2620 for (i = 0; i < len; ++i)
2621 v->contents[i] = Qnil;
2622 v->size = len;
2623
2624 return v;
2625 }
2626
2627
2628 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2629 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2630 See also the function `vector'. */)
2631 (length, init)
2632 register Lisp_Object length, init;
2633 {
2634 Lisp_Object vector;
2635 register EMACS_INT sizei;
2636 register int index;
2637 register struct Lisp_Vector *p;
2638
2639 CHECK_NATNUM (length);
2640 sizei = XFASTINT (length);
2641
2642 p = allocate_vector (sizei);
2643 for (index = 0; index < sizei; index++)
2644 p->contents[index] = init;
2645
2646 XSETVECTOR (vector, p);
2647 return vector;
2648 }
2649
2650
2651 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
2652 doc: /* Return a newly created char-table, with purpose PURPOSE.
2653 Each element is initialized to INIT, which defaults to nil.
2654 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
2655 The property's value should be an integer between 0 and 10. */)
2656 (purpose, init)
2657 register Lisp_Object purpose, init;
2658 {
2659 Lisp_Object vector;
2660 Lisp_Object n;
2661 CHECK_SYMBOL (purpose);
2662 n = Fget (purpose, Qchar_table_extra_slots);
2663 CHECK_NUMBER (n);
2664 if (XINT (n) < 0 || XINT (n) > 10)
2665 args_out_of_range (n, Qnil);
2666 /* Add 2 to the size for the defalt and parent slots. */
2667 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
2668 init);
2669 XCHAR_TABLE (vector)->top = Qt;
2670 XCHAR_TABLE (vector)->parent = Qnil;
2671 XCHAR_TABLE (vector)->purpose = purpose;
2672 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2673 return vector;
2674 }
2675
2676
2677 /* Return a newly created sub char table with default value DEFALT.
2678 Since a sub char table does not appear as a top level Emacs Lisp
2679 object, we don't need a Lisp interface to make it. */
2680
2681 Lisp_Object
2682 make_sub_char_table (defalt)
2683 Lisp_Object defalt;
2684 {
2685 Lisp_Object vector
2686 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
2687 XCHAR_TABLE (vector)->top = Qnil;
2688 XCHAR_TABLE (vector)->defalt = defalt;
2689 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2690 return vector;
2691 }
2692
2693
2694 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2695 doc: /* Return a newly created vector with specified arguments as elements.
2696 Any number of arguments, even zero arguments, are allowed.
2697 usage: (vector &rest OBJECTS) */)
2698 (nargs, args)
2699 register int nargs;
2700 Lisp_Object *args;
2701 {
2702 register Lisp_Object len, val;
2703 register int index;
2704 register struct Lisp_Vector *p;
2705
2706 XSETFASTINT (len, nargs);
2707 val = Fmake_vector (len, Qnil);
2708 p = XVECTOR (val);
2709 for (index = 0; index < nargs; index++)
2710 p->contents[index] = args[index];
2711 return val;
2712 }
2713
2714
2715 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2716 doc: /* Create a byte-code object with specified arguments as elements.
2717 The arguments should be the arglist, bytecode-string, constant vector,
2718 stack size, (optional) doc string, and (optional) interactive spec.
2719 The first four arguments are required; at most six have any
2720 significance.
2721 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2722 (nargs, args)
2723 register int nargs;
2724 Lisp_Object *args;
2725 {
2726 register Lisp_Object len, val;
2727 register int index;
2728 register struct Lisp_Vector *p;
2729
2730 XSETFASTINT (len, nargs);
2731 if (!NILP (Vpurify_flag))
2732 val = make_pure_vector ((EMACS_INT) nargs);
2733 else
2734 val = Fmake_vector (len, Qnil);
2735
2736 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2737 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2738 earlier because they produced a raw 8-bit string for byte-code
2739 and now such a byte-code string is loaded as multibyte while
2740 raw 8-bit characters converted to multibyte form. Thus, now we
2741 must convert them back to the original unibyte form. */
2742 args[1] = Fstring_as_unibyte (args[1]);
2743
2744 p = XVECTOR (val);
2745 for (index = 0; index < nargs; index++)
2746 {
2747 if (!NILP (Vpurify_flag))
2748 args[index] = Fpurecopy (args[index]);
2749 p->contents[index] = args[index];
2750 }
2751 XSETCOMPILED (val, p);
2752 return val;
2753 }
2754
2755
2756 \f
2757 /***********************************************************************
2758 Symbol Allocation
2759 ***********************************************************************/
2760
2761 /* Each symbol_block is just under 1020 bytes long, since malloc
2762 really allocates in units of powers of two and uses 4 bytes for its
2763 own overhead. */
2764
2765 #define SYMBOL_BLOCK_SIZE \
2766 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2767
2768 struct symbol_block
2769 {
2770 /* Place `symbols' first, to preserve alignment. */
2771 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2772 struct symbol_block *next;
2773 };
2774
2775 /* Current symbol block and index of first unused Lisp_Symbol
2776 structure in it. */
2777
2778 struct symbol_block *symbol_block;
2779 int symbol_block_index;
2780
2781 /* List of free symbols. */
2782
2783 struct Lisp_Symbol *symbol_free_list;
2784
2785 /* Total number of symbol blocks now in use. */
2786
2787 int n_symbol_blocks;
2788
2789
2790 /* Initialize symbol allocation. */
2791
2792 void
2793 init_symbol ()
2794 {
2795 symbol_block = NULL;
2796 symbol_block_index = SYMBOL_BLOCK_SIZE;
2797 symbol_free_list = 0;
2798 n_symbol_blocks = 0;
2799 }
2800
2801
2802 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
2803 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
2804 Its value and function definition are void, and its property list is nil. */)
2805 (name)
2806 Lisp_Object name;
2807 {
2808 register Lisp_Object val;
2809 register struct Lisp_Symbol *p;
2810
2811 CHECK_STRING (name);
2812
2813 if (symbol_free_list)
2814 {
2815 XSETSYMBOL (val, symbol_free_list);
2816 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
2817 }
2818 else
2819 {
2820 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2821 {
2822 struct symbol_block *new;
2823 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2824 MEM_TYPE_SYMBOL);
2825 new->next = symbol_block;
2826 symbol_block = new;
2827 symbol_block_index = 0;
2828 n_symbol_blocks++;
2829 }
2830 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
2831 symbol_block_index++;
2832 }
2833
2834 p = XSYMBOL (val);
2835 p->xname = name;
2836 p->plist = Qnil;
2837 p->value = Qunbound;
2838 p->function = Qunbound;
2839 p->next = NULL;
2840 p->gcmarkbit = 0;
2841 p->interned = SYMBOL_UNINTERNED;
2842 p->constant = 0;
2843 p->indirect_variable = 0;
2844 consing_since_gc += sizeof (struct Lisp_Symbol);
2845 symbols_consed++;
2846 return val;
2847 }
2848
2849
2850 \f
2851 /***********************************************************************
2852 Marker (Misc) Allocation
2853 ***********************************************************************/
2854
2855 /* Allocation of markers and other objects that share that structure.
2856 Works like allocation of conses. */
2857
2858 #define MARKER_BLOCK_SIZE \
2859 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2860
2861 struct marker_block
2862 {
2863 /* Place `markers' first, to preserve alignment. */
2864 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
2865 struct marker_block *next;
2866 };
2867
2868 struct marker_block *marker_block;
2869 int marker_block_index;
2870
2871 union Lisp_Misc *marker_free_list;
2872
2873 /* Total number of marker blocks now in use. */
2874
2875 int n_marker_blocks;
2876
2877 void
2878 init_marker ()
2879 {
2880 marker_block = NULL;
2881 marker_block_index = MARKER_BLOCK_SIZE;
2882 marker_free_list = 0;
2883 n_marker_blocks = 0;
2884 }
2885
2886 /* Return a newly allocated Lisp_Misc object, with no substructure. */
2887
2888 Lisp_Object
2889 allocate_misc ()
2890 {
2891 Lisp_Object val;
2892
2893 if (marker_free_list)
2894 {
2895 XSETMISC (val, marker_free_list);
2896 marker_free_list = marker_free_list->u_free.chain;
2897 }
2898 else
2899 {
2900 if (marker_block_index == MARKER_BLOCK_SIZE)
2901 {
2902 struct marker_block *new;
2903 new = (struct marker_block *) lisp_malloc (sizeof *new,
2904 MEM_TYPE_MISC);
2905 new->next = marker_block;
2906 marker_block = new;
2907 marker_block_index = 0;
2908 n_marker_blocks++;
2909 }
2910 XSETMISC (val, &marker_block->markers[marker_block_index]);
2911 marker_block_index++;
2912 }
2913
2914 consing_since_gc += sizeof (union Lisp_Misc);
2915 misc_objects_consed++;
2916 XMARKER (val)->gcmarkbit = 0;
2917 return val;
2918 }
2919
2920 /* Return a Lisp_Misc_Save_Value object containing POINTER and
2921 INTEGER. This is used to package C values to call record_unwind_protect.
2922 The unwind function can get the C values back using XSAVE_VALUE. */
2923
2924 Lisp_Object
2925 make_save_value (pointer, integer)
2926 void *pointer;
2927 int integer;
2928 {
2929 register Lisp_Object val;
2930 register struct Lisp_Save_Value *p;
2931
2932 val = allocate_misc ();
2933 XMISCTYPE (val) = Lisp_Misc_Save_Value;
2934 p = XSAVE_VALUE (val);
2935 p->pointer = pointer;
2936 p->integer = integer;
2937 return val;
2938 }
2939
2940 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
2941 doc: /* Return a newly allocated marker which does not point at any place. */)
2942 ()
2943 {
2944 register Lisp_Object val;
2945 register struct Lisp_Marker *p;
2946
2947 val = allocate_misc ();
2948 XMISCTYPE (val) = Lisp_Misc_Marker;
2949 p = XMARKER (val);
2950 p->buffer = 0;
2951 p->bytepos = 0;
2952 p->charpos = 0;
2953 p->next = NULL;
2954 p->insertion_type = 0;
2955 return val;
2956 }
2957
2958 /* Put MARKER back on the free list after using it temporarily. */
2959
2960 void
2961 free_marker (marker)
2962 Lisp_Object marker;
2963 {
2964 unchain_marker (XMARKER (marker));
2965
2966 XMISC (marker)->u_marker.type = Lisp_Misc_Free;
2967 XMISC (marker)->u_free.chain = marker_free_list;
2968 marker_free_list = XMISC (marker);
2969
2970 total_free_markers++;
2971 }
2972
2973 \f
2974 /* Return a newly created vector or string with specified arguments as
2975 elements. If all the arguments are characters that can fit
2976 in a string of events, make a string; otherwise, make a vector.
2977
2978 Any number of arguments, even zero arguments, are allowed. */
2979
2980 Lisp_Object
2981 make_event_array (nargs, args)
2982 register int nargs;
2983 Lisp_Object *args;
2984 {
2985 int i;
2986
2987 for (i = 0; i < nargs; i++)
2988 /* The things that fit in a string
2989 are characters that are in 0...127,
2990 after discarding the meta bit and all the bits above it. */
2991 if (!INTEGERP (args[i])
2992 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
2993 return Fvector (nargs, args);
2994
2995 /* Since the loop exited, we know that all the things in it are
2996 characters, so we can make a string. */
2997 {
2998 Lisp_Object result;
2999
3000 result = Fmake_string (make_number (nargs), make_number (0));
3001 for (i = 0; i < nargs; i++)
3002 {
3003 SSET (result, i, XINT (args[i]));
3004 /* Move the meta bit to the right place for a string char. */
3005 if (XINT (args[i]) & CHAR_META)
3006 SSET (result, i, SREF (result, i) | 0x80);
3007 }
3008
3009 return result;
3010 }
3011 }
3012
3013
3014 \f
3015 /************************************************************************
3016 C Stack Marking
3017 ************************************************************************/
3018
3019 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3020
3021 /* Conservative C stack marking requires a method to identify possibly
3022 live Lisp objects given a pointer value. We do this by keeping
3023 track of blocks of Lisp data that are allocated in a red-black tree
3024 (see also the comment of mem_node which is the type of nodes in
3025 that tree). Function lisp_malloc adds information for an allocated
3026 block to the red-black tree with calls to mem_insert, and function
3027 lisp_free removes it with mem_delete. Functions live_string_p etc
3028 call mem_find to lookup information about a given pointer in the
3029 tree, and use that to determine if the pointer points to a Lisp
3030 object or not. */
3031
3032 /* Initialize this part of alloc.c. */
3033
3034 static void
3035 mem_init ()
3036 {
3037 mem_z.left = mem_z.right = MEM_NIL;
3038 mem_z.parent = NULL;
3039 mem_z.color = MEM_BLACK;
3040 mem_z.start = mem_z.end = NULL;
3041 mem_root = MEM_NIL;
3042 }
3043
3044
3045 /* Value is a pointer to the mem_node containing START. Value is
3046 MEM_NIL if there is no node in the tree containing START. */
3047
3048 static INLINE struct mem_node *
3049 mem_find (start)
3050 void *start;
3051 {
3052 struct mem_node *p;
3053
3054 if (start < min_heap_address || start > max_heap_address)
3055 return MEM_NIL;
3056
3057 /* Make the search always successful to speed up the loop below. */
3058 mem_z.start = start;
3059 mem_z.end = (char *) start + 1;
3060
3061 p = mem_root;
3062 while (start < p->start || start >= p->end)
3063 p = start < p->start ? p->left : p->right;
3064 return p;
3065 }
3066
3067
3068 /* Insert a new node into the tree for a block of memory with start
3069 address START, end address END, and type TYPE. Value is a
3070 pointer to the node that was inserted. */
3071
3072 static struct mem_node *
3073 mem_insert (start, end, type)
3074 void *start, *end;
3075 enum mem_type type;
3076 {
3077 struct mem_node *c, *parent, *x;
3078
3079 if (start < min_heap_address)
3080 min_heap_address = start;
3081 if (end > max_heap_address)
3082 max_heap_address = end;
3083
3084 /* See where in the tree a node for START belongs. In this
3085 particular application, it shouldn't happen that a node is already
3086 present. For debugging purposes, let's check that. */
3087 c = mem_root;
3088 parent = NULL;
3089
3090 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3091
3092 while (c != MEM_NIL)
3093 {
3094 if (start >= c->start && start < c->end)
3095 abort ();
3096 parent = c;
3097 c = start < c->start ? c->left : c->right;
3098 }
3099
3100 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3101
3102 while (c != MEM_NIL)
3103 {
3104 parent = c;
3105 c = start < c->start ? c->left : c->right;
3106 }
3107
3108 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3109
3110 /* Create a new node. */
3111 #ifdef GC_MALLOC_CHECK
3112 x = (struct mem_node *) _malloc_internal (sizeof *x);
3113 if (x == NULL)
3114 abort ();
3115 #else
3116 x = (struct mem_node *) xmalloc (sizeof *x);
3117 #endif
3118 x->start = start;
3119 x->end = end;
3120 x->type = type;
3121 x->parent = parent;
3122 x->left = x->right = MEM_NIL;
3123 x->color = MEM_RED;
3124
3125 /* Insert it as child of PARENT or install it as root. */
3126 if (parent)
3127 {
3128 if (start < parent->start)
3129 parent->left = x;
3130 else
3131 parent->right = x;
3132 }
3133 else
3134 mem_root = x;
3135
3136 /* Re-establish red-black tree properties. */
3137 mem_insert_fixup (x);
3138
3139 return x;
3140 }
3141
3142
3143 /* Re-establish the red-black properties of the tree, and thereby
3144 balance the tree, after node X has been inserted; X is always red. */
3145
3146 static void
3147 mem_insert_fixup (x)
3148 struct mem_node *x;
3149 {
3150 while (x != mem_root && x->parent->color == MEM_RED)
3151 {
3152 /* X is red and its parent is red. This is a violation of
3153 red-black tree property #3. */
3154
3155 if (x->parent == x->parent->parent->left)
3156 {
3157 /* We're on the left side of our grandparent, and Y is our
3158 "uncle". */
3159 struct mem_node *y = x->parent->parent->right;
3160
3161 if (y->color == MEM_RED)
3162 {
3163 /* Uncle and parent are red but should be black because
3164 X is red. Change the colors accordingly and proceed
3165 with the grandparent. */
3166 x->parent->color = MEM_BLACK;
3167 y->color = MEM_BLACK;
3168 x->parent->parent->color = MEM_RED;
3169 x = x->parent->parent;
3170 }
3171 else
3172 {
3173 /* Parent and uncle have different colors; parent is
3174 red, uncle is black. */
3175 if (x == x->parent->right)
3176 {
3177 x = x->parent;
3178 mem_rotate_left (x);
3179 }
3180
3181 x->parent->color = MEM_BLACK;
3182 x->parent->parent->color = MEM_RED;
3183 mem_rotate_right (x->parent->parent);
3184 }
3185 }
3186 else
3187 {
3188 /* This is the symmetrical case of above. */
3189 struct mem_node *y = x->parent->parent->left;
3190
3191 if (y->color == MEM_RED)
3192 {
3193 x->parent->color = MEM_BLACK;
3194 y->color = MEM_BLACK;
3195 x->parent->parent->color = MEM_RED;
3196 x = x->parent->parent;
3197 }
3198 else
3199 {
3200 if (x == x->parent->left)
3201 {
3202 x = x->parent;
3203 mem_rotate_right (x);
3204 }
3205
3206 x->parent->color = MEM_BLACK;
3207 x->parent->parent->color = MEM_RED;
3208 mem_rotate_left (x->parent->parent);
3209 }
3210 }
3211 }
3212
3213 /* The root may have been changed to red due to the algorithm. Set
3214 it to black so that property #5 is satisfied. */
3215 mem_root->color = MEM_BLACK;
3216 }
3217
3218
3219 /* (x) (y)
3220 / \ / \
3221 a (y) ===> (x) c
3222 / \ / \
3223 b c a b */
3224
3225 static void
3226 mem_rotate_left (x)
3227 struct mem_node *x;
3228 {
3229 struct mem_node *y;
3230
3231 /* Turn y's left sub-tree into x's right sub-tree. */
3232 y = x->right;
3233 x->right = y->left;
3234 if (y->left != MEM_NIL)
3235 y->left->parent = x;
3236
3237 /* Y's parent was x's parent. */
3238 if (y != MEM_NIL)
3239 y->parent = x->parent;
3240
3241 /* Get the parent to point to y instead of x. */
3242 if (x->parent)
3243 {
3244 if (x == x->parent->left)
3245 x->parent->left = y;
3246 else
3247 x->parent->right = y;
3248 }
3249 else
3250 mem_root = y;
3251
3252 /* Put x on y's left. */
3253 y->left = x;
3254 if (x != MEM_NIL)
3255 x->parent = y;
3256 }
3257
3258
3259 /* (x) (Y)
3260 / \ / \
3261 (y) c ===> a (x)
3262 / \ / \
3263 a b b c */
3264
3265 static void
3266 mem_rotate_right (x)
3267 struct mem_node *x;
3268 {
3269 struct mem_node *y = x->left;
3270
3271 x->left = y->right;
3272 if (y->right != MEM_NIL)
3273 y->right->parent = x;
3274
3275 if (y != MEM_NIL)
3276 y->parent = x->parent;
3277 if (x->parent)
3278 {
3279 if (x == x->parent->right)
3280 x->parent->right = y;
3281 else
3282 x->parent->left = y;
3283 }
3284 else
3285 mem_root = y;
3286
3287 y->right = x;
3288 if (x != MEM_NIL)
3289 x->parent = y;
3290 }
3291
3292
3293 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3294
3295 static void
3296 mem_delete (z)
3297 struct mem_node *z;
3298 {
3299 struct mem_node *x, *y;
3300
3301 if (!z || z == MEM_NIL)
3302 return;
3303
3304 if (z->left == MEM_NIL || z->right == MEM_NIL)
3305 y = z;
3306 else
3307 {
3308 y = z->right;
3309 while (y->left != MEM_NIL)
3310 y = y->left;
3311 }
3312
3313 if (y->left != MEM_NIL)
3314 x = y->left;
3315 else
3316 x = y->right;
3317
3318 x->parent = y->parent;
3319 if (y->parent)
3320 {
3321 if (y == y->parent->left)
3322 y->parent->left = x;
3323 else
3324 y->parent->right = x;
3325 }
3326 else
3327 mem_root = x;
3328
3329 if (y != z)
3330 {
3331 z->start = y->start;
3332 z->end = y->end;
3333 z->type = y->type;
3334 }
3335
3336 if (y->color == MEM_BLACK)
3337 mem_delete_fixup (x);
3338
3339 #ifdef GC_MALLOC_CHECK
3340 _free_internal (y);
3341 #else
3342 xfree (y);
3343 #endif
3344 }
3345
3346
3347 /* Re-establish the red-black properties of the tree, after a
3348 deletion. */
3349
3350 static void
3351 mem_delete_fixup (x)
3352 struct mem_node *x;
3353 {
3354 while (x != mem_root && x->color == MEM_BLACK)
3355 {
3356 if (x == x->parent->left)
3357 {
3358 struct mem_node *w = x->parent->right;
3359
3360 if (w->color == MEM_RED)
3361 {
3362 w->color = MEM_BLACK;
3363 x->parent->color = MEM_RED;
3364 mem_rotate_left (x->parent);
3365 w = x->parent->right;
3366 }
3367
3368 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3369 {
3370 w->color = MEM_RED;
3371 x = x->parent;
3372 }
3373 else
3374 {
3375 if (w->right->color == MEM_BLACK)
3376 {
3377 w->left->color = MEM_BLACK;
3378 w->color = MEM_RED;
3379 mem_rotate_right (w);
3380 w = x->parent->right;
3381 }
3382 w->color = x->parent->color;
3383 x->parent->color = MEM_BLACK;
3384 w->right->color = MEM_BLACK;
3385 mem_rotate_left (x->parent);
3386 x = mem_root;
3387 }
3388 }
3389 else
3390 {
3391 struct mem_node *w = x->parent->left;
3392
3393 if (w->color == MEM_RED)
3394 {
3395 w->color = MEM_BLACK;
3396 x->parent->color = MEM_RED;
3397 mem_rotate_right (x->parent);
3398 w = x->parent->left;
3399 }
3400
3401 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3402 {
3403 w->color = MEM_RED;
3404 x = x->parent;
3405 }
3406 else
3407 {
3408 if (w->left->color == MEM_BLACK)
3409 {
3410 w->right->color = MEM_BLACK;
3411 w->color = MEM_RED;
3412 mem_rotate_left (w);
3413 w = x->parent->left;
3414 }
3415
3416 w->color = x->parent->color;
3417 x->parent->color = MEM_BLACK;
3418 w->left->color = MEM_BLACK;
3419 mem_rotate_right (x->parent);
3420 x = mem_root;
3421 }
3422 }
3423 }
3424
3425 x->color = MEM_BLACK;
3426 }
3427
3428
3429 /* Value is non-zero if P is a pointer to a live Lisp string on
3430 the heap. M is a pointer to the mem_block for P. */
3431
3432 static INLINE int
3433 live_string_p (m, p)
3434 struct mem_node *m;
3435 void *p;
3436 {
3437 if (m->type == MEM_TYPE_STRING)
3438 {
3439 struct string_block *b = (struct string_block *) m->start;
3440 int offset = (char *) p - (char *) &b->strings[0];
3441
3442 /* P must point to the start of a Lisp_String structure, and it
3443 must not be on the free-list. */
3444 return (offset >= 0
3445 && offset % sizeof b->strings[0] == 0
3446 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3447 && ((struct Lisp_String *) p)->data != NULL);
3448 }
3449 else
3450 return 0;
3451 }
3452
3453
3454 /* Value is non-zero if P is a pointer to a live Lisp cons on
3455 the heap. M is a pointer to the mem_block for P. */
3456
3457 static INLINE int
3458 live_cons_p (m, p)
3459 struct mem_node *m;
3460 void *p;
3461 {
3462 if (m->type == MEM_TYPE_CONS)
3463 {
3464 struct cons_block *b = (struct cons_block *) m->start;
3465 int offset = (char *) p - (char *) &b->conses[0];
3466
3467 /* P must point to the start of a Lisp_Cons, not be
3468 one of the unused cells in the current cons block,
3469 and not be on the free-list. */
3470 return (offset >= 0
3471 && offset % sizeof b->conses[0] == 0
3472 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3473 && (b != cons_block
3474 || offset / sizeof b->conses[0] < cons_block_index)
3475 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3476 }
3477 else
3478 return 0;
3479 }
3480
3481
3482 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3483 the heap. M is a pointer to the mem_block for P. */
3484
3485 static INLINE int
3486 live_symbol_p (m, p)
3487 struct mem_node *m;
3488 void *p;
3489 {
3490 if (m->type == MEM_TYPE_SYMBOL)
3491 {
3492 struct symbol_block *b = (struct symbol_block *) m->start;
3493 int offset = (char *) p - (char *) &b->symbols[0];
3494
3495 /* P must point to the start of a Lisp_Symbol, not be
3496 one of the unused cells in the current symbol block,
3497 and not be on the free-list. */
3498 return (offset >= 0
3499 && offset % sizeof b->symbols[0] == 0
3500 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3501 && (b != symbol_block
3502 || offset / sizeof b->symbols[0] < symbol_block_index)
3503 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3504 }
3505 else
3506 return 0;
3507 }
3508
3509
3510 /* Value is non-zero if P is a pointer to a live Lisp float on
3511 the heap. M is a pointer to the mem_block for P. */
3512
3513 static INLINE int
3514 live_float_p (m, p)
3515 struct mem_node *m;
3516 void *p;
3517 {
3518 if (m->type == MEM_TYPE_FLOAT)
3519 {
3520 struct float_block *b = (struct float_block *) m->start;
3521 int offset = (char *) p - (char *) &b->floats[0];
3522
3523 /* P must point to the start of a Lisp_Float and not be
3524 one of the unused cells in the current float block. */
3525 return (offset >= 0
3526 && offset % sizeof b->floats[0] == 0
3527 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3528 && (b != float_block
3529 || offset / sizeof b->floats[0] < float_block_index));
3530 }
3531 else
3532 return 0;
3533 }
3534
3535
3536 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3537 the heap. M is a pointer to the mem_block for P. */
3538
3539 static INLINE int
3540 live_misc_p (m, p)
3541 struct mem_node *m;
3542 void *p;
3543 {
3544 if (m->type == MEM_TYPE_MISC)
3545 {
3546 struct marker_block *b = (struct marker_block *) m->start;
3547 int offset = (char *) p - (char *) &b->markers[0];
3548
3549 /* P must point to the start of a Lisp_Misc, not be
3550 one of the unused cells in the current misc block,
3551 and not be on the free-list. */
3552 return (offset >= 0
3553 && offset % sizeof b->markers[0] == 0
3554 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3555 && (b != marker_block
3556 || offset / sizeof b->markers[0] < marker_block_index)
3557 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3558 }
3559 else
3560 return 0;
3561 }
3562
3563
3564 /* Value is non-zero if P is a pointer to a live vector-like object.
3565 M is a pointer to the mem_block for P. */
3566
3567 static INLINE int
3568 live_vector_p (m, p)
3569 struct mem_node *m;
3570 void *p;
3571 {
3572 return (p == m->start
3573 && m->type >= MEM_TYPE_VECTOR
3574 && m->type <= MEM_TYPE_WINDOW);
3575 }
3576
3577
3578 /* Value is non-zero if P is a pointer to a live buffer. M is a
3579 pointer to the mem_block for P. */
3580
3581 static INLINE int
3582 live_buffer_p (m, p)
3583 struct mem_node *m;
3584 void *p;
3585 {
3586 /* P must point to the start of the block, and the buffer
3587 must not have been killed. */
3588 return (m->type == MEM_TYPE_BUFFER
3589 && p == m->start
3590 && !NILP (((struct buffer *) p)->name));
3591 }
3592
3593 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3594
3595 #if GC_MARK_STACK
3596
3597 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3598
3599 /* Array of objects that are kept alive because the C stack contains
3600 a pattern that looks like a reference to them . */
3601
3602 #define MAX_ZOMBIES 10
3603 static Lisp_Object zombies[MAX_ZOMBIES];
3604
3605 /* Number of zombie objects. */
3606
3607 static int nzombies;
3608
3609 /* Number of garbage collections. */
3610
3611 static int ngcs;
3612
3613 /* Average percentage of zombies per collection. */
3614
3615 static double avg_zombies;
3616
3617 /* Max. number of live and zombie objects. */
3618
3619 static int max_live, max_zombies;
3620
3621 /* Average number of live objects per GC. */
3622
3623 static double avg_live;
3624
3625 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3626 doc: /* Show information about live and zombie objects. */)
3627 ()
3628 {
3629 Lisp_Object args[8], zombie_list = Qnil;
3630 int i;
3631 for (i = 0; i < nzombies; i++)
3632 zombie_list = Fcons (zombies[i], zombie_list);
3633 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3634 args[1] = make_number (ngcs);
3635 args[2] = make_float (avg_live);
3636 args[3] = make_float (avg_zombies);
3637 args[4] = make_float (avg_zombies / avg_live / 100);
3638 args[5] = make_number (max_live);
3639 args[6] = make_number (max_zombies);
3640 args[7] = zombie_list;
3641 return Fmessage (8, args);
3642 }
3643
3644 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3645
3646
3647 /* Mark OBJ if we can prove it's a Lisp_Object. */
3648
3649 static INLINE void
3650 mark_maybe_object (obj)
3651 Lisp_Object obj;
3652 {
3653 void *po = (void *) XPNTR (obj);
3654 struct mem_node *m = mem_find (po);
3655
3656 if (m != MEM_NIL)
3657 {
3658 int mark_p = 0;
3659
3660 switch (XGCTYPE (obj))
3661 {
3662 case Lisp_String:
3663 mark_p = (live_string_p (m, po)
3664 && !STRING_MARKED_P ((struct Lisp_String *) po));
3665 break;
3666
3667 case Lisp_Cons:
3668 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3669 break;
3670
3671 case Lisp_Symbol:
3672 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3673 break;
3674
3675 case Lisp_Float:
3676 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3677 break;
3678
3679 case Lisp_Vectorlike:
3680 /* Note: can't check GC_BUFFERP before we know it's a
3681 buffer because checking that dereferences the pointer
3682 PO which might point anywhere. */
3683 if (live_vector_p (m, po))
3684 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3685 else if (live_buffer_p (m, po))
3686 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3687 break;
3688
3689 case Lisp_Misc:
3690 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
3691 break;
3692
3693 case Lisp_Int:
3694 case Lisp_Type_Limit:
3695 break;
3696 }
3697
3698 if (mark_p)
3699 {
3700 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3701 if (nzombies < MAX_ZOMBIES)
3702 zombies[nzombies] = obj;
3703 ++nzombies;
3704 #endif
3705 mark_object (obj);
3706 }
3707 }
3708 }
3709
3710
3711 /* If P points to Lisp data, mark that as live if it isn't already
3712 marked. */
3713
3714 static INLINE void
3715 mark_maybe_pointer (p)
3716 void *p;
3717 {
3718 struct mem_node *m;
3719
3720 /* Quickly rule out some values which can't point to Lisp data. We
3721 assume that Lisp data is aligned on even addresses. */
3722 if ((EMACS_INT) p & 1)
3723 return;
3724
3725 m = mem_find (p);
3726 if (m != MEM_NIL)
3727 {
3728 Lisp_Object obj = Qnil;
3729
3730 switch (m->type)
3731 {
3732 case MEM_TYPE_NON_LISP:
3733 /* Nothing to do; not a pointer to Lisp memory. */
3734 break;
3735
3736 case MEM_TYPE_BUFFER:
3737 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
3738 XSETVECTOR (obj, p);
3739 break;
3740
3741 case MEM_TYPE_CONS:
3742 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
3743 XSETCONS (obj, p);
3744 break;
3745
3746 case MEM_TYPE_STRING:
3747 if (live_string_p (m, p)
3748 && !STRING_MARKED_P ((struct Lisp_String *) p))
3749 XSETSTRING (obj, p);
3750 break;
3751
3752 case MEM_TYPE_MISC:
3753 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
3754 XSETMISC (obj, p);
3755 break;
3756
3757 case MEM_TYPE_SYMBOL:
3758 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
3759 XSETSYMBOL (obj, p);
3760 break;
3761
3762 case MEM_TYPE_FLOAT:
3763 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
3764 XSETFLOAT (obj, p);
3765 break;
3766
3767 case MEM_TYPE_VECTOR:
3768 case MEM_TYPE_PROCESS:
3769 case MEM_TYPE_HASH_TABLE:
3770 case MEM_TYPE_FRAME:
3771 case MEM_TYPE_WINDOW:
3772 if (live_vector_p (m, p))
3773 {
3774 Lisp_Object tem;
3775 XSETVECTOR (tem, p);
3776 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
3777 obj = tem;
3778 }
3779 break;
3780
3781 default:
3782 abort ();
3783 }
3784
3785 if (!GC_NILP (obj))
3786 mark_object (obj);
3787 }
3788 }
3789
3790
3791 /* Mark Lisp objects referenced from the address range START..END. */
3792
3793 static void
3794 mark_memory (start, end)
3795 void *start, *end;
3796 {
3797 Lisp_Object *p;
3798 void **pp;
3799
3800 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3801 nzombies = 0;
3802 #endif
3803
3804 /* Make START the pointer to the start of the memory region,
3805 if it isn't already. */
3806 if (end < start)
3807 {
3808 void *tem = start;
3809 start = end;
3810 end = tem;
3811 }
3812
3813 /* Mark Lisp_Objects. */
3814 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
3815 mark_maybe_object (*p);
3816
3817 /* Mark Lisp data pointed to. This is necessary because, in some
3818 situations, the C compiler optimizes Lisp objects away, so that
3819 only a pointer to them remains. Example:
3820
3821 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
3822 ()
3823 {
3824 Lisp_Object obj = build_string ("test");
3825 struct Lisp_String *s = XSTRING (obj);
3826 Fgarbage_collect ();
3827 fprintf (stderr, "test `%s'\n", s->data);
3828 return Qnil;
3829 }
3830
3831 Here, `obj' isn't really used, and the compiler optimizes it
3832 away. The only reference to the life string is through the
3833 pointer `s'. */
3834
3835 for (pp = (void **) start; (void *) pp < end; ++pp)
3836 mark_maybe_pointer (*pp);
3837 }
3838
3839 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
3840 the GCC system configuration. In gcc 3.2, the only systems for
3841 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
3842 by others?) and ns32k-pc532-min. */
3843
3844 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3845
3846 static int setjmp_tested_p, longjmps_done;
3847
3848 #define SETJMP_WILL_LIKELY_WORK "\
3849 \n\
3850 Emacs garbage collector has been changed to use conservative stack\n\
3851 marking. Emacs has determined that the method it uses to do the\n\
3852 marking will likely work on your system, but this isn't sure.\n\
3853 \n\
3854 If you are a system-programmer, or can get the help of a local wizard\n\
3855 who is, please take a look at the function mark_stack in alloc.c, and\n\
3856 verify that the methods used are appropriate for your system.\n\
3857 \n\
3858 Please mail the result to <emacs-devel@gnu.org>.\n\
3859 "
3860
3861 #define SETJMP_WILL_NOT_WORK "\
3862 \n\
3863 Emacs garbage collector has been changed to use conservative stack\n\
3864 marking. Emacs has determined that the default method it uses to do the\n\
3865 marking will not work on your system. We will need a system-dependent\n\
3866 solution for your system.\n\
3867 \n\
3868 Please take a look at the function mark_stack in alloc.c, and\n\
3869 try to find a way to make it work on your system.\n\
3870 \n\
3871 Note that you may get false negatives, depending on the compiler.\n\
3872 In particular, you need to use -O with GCC for this test.\n\
3873 \n\
3874 Please mail the result to <emacs-devel@gnu.org>.\n\
3875 "
3876
3877
3878 /* Perform a quick check if it looks like setjmp saves registers in a
3879 jmp_buf. Print a message to stderr saying so. When this test
3880 succeeds, this is _not_ a proof that setjmp is sufficient for
3881 conservative stack marking. Only the sources or a disassembly
3882 can prove that. */
3883
3884 static void
3885 test_setjmp ()
3886 {
3887 char buf[10];
3888 register int x;
3889 jmp_buf jbuf;
3890 int result = 0;
3891
3892 /* Arrange for X to be put in a register. */
3893 sprintf (buf, "1");
3894 x = strlen (buf);
3895 x = 2 * x - 1;
3896
3897 setjmp (jbuf);
3898 if (longjmps_done == 1)
3899 {
3900 /* Came here after the longjmp at the end of the function.
3901
3902 If x == 1, the longjmp has restored the register to its
3903 value before the setjmp, and we can hope that setjmp
3904 saves all such registers in the jmp_buf, although that
3905 isn't sure.
3906
3907 For other values of X, either something really strange is
3908 taking place, or the setjmp just didn't save the register. */
3909
3910 if (x == 1)
3911 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3912 else
3913 {
3914 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3915 exit (1);
3916 }
3917 }
3918
3919 ++longjmps_done;
3920 x = 2;
3921 if (longjmps_done == 1)
3922 longjmp (jbuf, 1);
3923 }
3924
3925 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3926
3927
3928 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3929
3930 /* Abort if anything GCPRO'd doesn't survive the GC. */
3931
3932 static void
3933 check_gcpros ()
3934 {
3935 struct gcpro *p;
3936 int i;
3937
3938 for (p = gcprolist; p; p = p->next)
3939 for (i = 0; i < p->nvars; ++i)
3940 if (!survives_gc_p (p->var[i]))
3941 /* FIXME: It's not necessarily a bug. It might just be that the
3942 GCPRO is unnecessary or should release the object sooner. */
3943 abort ();
3944 }
3945
3946 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3947
3948 static void
3949 dump_zombies ()
3950 {
3951 int i;
3952
3953 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3954 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3955 {
3956 fprintf (stderr, " %d = ", i);
3957 debug_print (zombies[i]);
3958 }
3959 }
3960
3961 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3962
3963
3964 /* Mark live Lisp objects on the C stack.
3965
3966 There are several system-dependent problems to consider when
3967 porting this to new architectures:
3968
3969 Processor Registers
3970
3971 We have to mark Lisp objects in CPU registers that can hold local
3972 variables or are used to pass parameters.
3973
3974 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
3975 something that either saves relevant registers on the stack, or
3976 calls mark_maybe_object passing it each register's contents.
3977
3978 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
3979 implementation assumes that calling setjmp saves registers we need
3980 to see in a jmp_buf which itself lies on the stack. This doesn't
3981 have to be true! It must be verified for each system, possibly
3982 by taking a look at the source code of setjmp.
3983
3984 Stack Layout
3985
3986 Architectures differ in the way their processor stack is organized.
3987 For example, the stack might look like this
3988
3989 +----------------+
3990 | Lisp_Object | size = 4
3991 +----------------+
3992 | something else | size = 2
3993 +----------------+
3994 | Lisp_Object | size = 4
3995 +----------------+
3996 | ... |
3997
3998 In such a case, not every Lisp_Object will be aligned equally. To
3999 find all Lisp_Object on the stack it won't be sufficient to walk
4000 the stack in steps of 4 bytes. Instead, two passes will be
4001 necessary, one starting at the start of the stack, and a second
4002 pass starting at the start of the stack + 2. Likewise, if the
4003 minimal alignment of Lisp_Objects on the stack is 1, four passes
4004 would be necessary, each one starting with one byte more offset
4005 from the stack start.
4006
4007 The current code assumes by default that Lisp_Objects are aligned
4008 equally on the stack. */
4009
4010 static void
4011 mark_stack ()
4012 {
4013 int i;
4014 jmp_buf j;
4015 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4016 void *end;
4017
4018 /* This trick flushes the register windows so that all the state of
4019 the process is contained in the stack. */
4020 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4021 needed on ia64 too. See mach_dep.c, where it also says inline
4022 assembler doesn't work with relevant proprietary compilers. */
4023 #ifdef sparc
4024 asm ("ta 3");
4025 #endif
4026
4027 /* Save registers that we need to see on the stack. We need to see
4028 registers used to hold register variables and registers used to
4029 pass parameters. */
4030 #ifdef GC_SAVE_REGISTERS_ON_STACK
4031 GC_SAVE_REGISTERS_ON_STACK (end);
4032 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4033
4034 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4035 setjmp will definitely work, test it
4036 and print a message with the result
4037 of the test. */
4038 if (!setjmp_tested_p)
4039 {
4040 setjmp_tested_p = 1;
4041 test_setjmp ();
4042 }
4043 #endif /* GC_SETJMP_WORKS */
4044
4045 setjmp (j);
4046 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4047 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4048
4049 /* This assumes that the stack is a contiguous region in memory. If
4050 that's not the case, something has to be done here to iterate
4051 over the stack segments. */
4052 #ifndef GC_LISP_OBJECT_ALIGNMENT
4053 #ifdef __GNUC__
4054 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4055 #else
4056 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4057 #endif
4058 #endif
4059 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4060 mark_memory ((char *) stack_base + i, end);
4061
4062 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4063 check_gcpros ();
4064 #endif
4065 }
4066
4067
4068 #endif /* GC_MARK_STACK != 0 */
4069
4070
4071 \f
4072 /***********************************************************************
4073 Pure Storage Management
4074 ***********************************************************************/
4075
4076 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4077 pointer to it. TYPE is the Lisp type for which the memory is
4078 allocated. TYPE < 0 means it's not used for a Lisp object.
4079
4080 If store_pure_type_info is set and TYPE is >= 0, the type of
4081 the allocated object is recorded in pure_types. */
4082
4083 static POINTER_TYPE *
4084 pure_alloc (size, type)
4085 size_t size;
4086 int type;
4087 {
4088 POINTER_TYPE *result;
4089 #ifdef USE_LSB_TAG
4090 size_t alignment = (1 << GCTYPEBITS);
4091 #else
4092 size_t alignment = sizeof (EMACS_INT);
4093
4094 /* Give Lisp_Floats an extra alignment. */
4095 if (type == Lisp_Float)
4096 {
4097 #if defined __GNUC__ && __GNUC__ >= 2
4098 alignment = __alignof (struct Lisp_Float);
4099 #else
4100 alignment = sizeof (struct Lisp_Float);
4101 #endif
4102 }
4103 #endif
4104
4105 again:
4106 result = ALIGN (purebeg + pure_bytes_used, alignment);
4107 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4108
4109 if (pure_bytes_used <= pure_size)
4110 return result;
4111
4112 /* Don't allocate a large amount here,
4113 because it might get mmap'd and then its address
4114 might not be usable. */
4115 purebeg = (char *) xmalloc (10000);
4116 pure_size = 10000;
4117 pure_bytes_used_before_overflow += pure_bytes_used - size;
4118 pure_bytes_used = 0;
4119 goto again;
4120 }
4121
4122
4123 /* Print a warning if PURESIZE is too small. */
4124
4125 void
4126 check_pure_size ()
4127 {
4128 if (pure_bytes_used_before_overflow)
4129 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4130 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4131 }
4132
4133
4134 /* Return a string allocated in pure space. DATA is a buffer holding
4135 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4136 non-zero means make the result string multibyte.
4137
4138 Must get an error if pure storage is full, since if it cannot hold
4139 a large string it may be able to hold conses that point to that
4140 string; then the string is not protected from gc. */
4141
4142 Lisp_Object
4143 make_pure_string (data, nchars, nbytes, multibyte)
4144 char *data;
4145 int nchars, nbytes;
4146 int multibyte;
4147 {
4148 Lisp_Object string;
4149 struct Lisp_String *s;
4150
4151 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4152 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4153 s->size = nchars;
4154 s->size_byte = multibyte ? nbytes : -1;
4155 bcopy (data, s->data, nbytes);
4156 s->data[nbytes] = '\0';
4157 s->intervals = NULL_INTERVAL;
4158 XSETSTRING (string, s);
4159 return string;
4160 }
4161
4162
4163 /* Return a cons allocated from pure space. Give it pure copies
4164 of CAR as car and CDR as cdr. */
4165
4166 Lisp_Object
4167 pure_cons (car, cdr)
4168 Lisp_Object car, cdr;
4169 {
4170 register Lisp_Object new;
4171 struct Lisp_Cons *p;
4172
4173 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4174 XSETCONS (new, p);
4175 XSETCAR (new, Fpurecopy (car));
4176 XSETCDR (new, Fpurecopy (cdr));
4177 return new;
4178 }
4179
4180
4181 /* Value is a float object with value NUM allocated from pure space. */
4182
4183 Lisp_Object
4184 make_pure_float (num)
4185 double num;
4186 {
4187 register Lisp_Object new;
4188 struct Lisp_Float *p;
4189
4190 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4191 XSETFLOAT (new, p);
4192 XFLOAT_DATA (new) = num;
4193 return new;
4194 }
4195
4196
4197 /* Return a vector with room for LEN Lisp_Objects allocated from
4198 pure space. */
4199
4200 Lisp_Object
4201 make_pure_vector (len)
4202 EMACS_INT len;
4203 {
4204 Lisp_Object new;
4205 struct Lisp_Vector *p;
4206 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4207
4208 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4209 XSETVECTOR (new, p);
4210 XVECTOR (new)->size = len;
4211 return new;
4212 }
4213
4214
4215 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4216 doc: /* Make a copy of OBJECT in pure storage.
4217 Recursively copies contents of vectors and cons cells.
4218 Does not copy symbols. Copies strings without text properties. */)
4219 (obj)
4220 register Lisp_Object obj;
4221 {
4222 if (NILP (Vpurify_flag))
4223 return obj;
4224
4225 if (PURE_POINTER_P (XPNTR (obj)))
4226 return obj;
4227
4228 if (CONSP (obj))
4229 return pure_cons (XCAR (obj), XCDR (obj));
4230 else if (FLOATP (obj))
4231 return make_pure_float (XFLOAT_DATA (obj));
4232 else if (STRINGP (obj))
4233 return make_pure_string (SDATA (obj), SCHARS (obj),
4234 SBYTES (obj),
4235 STRING_MULTIBYTE (obj));
4236 else if (COMPILEDP (obj) || VECTORP (obj))
4237 {
4238 register struct Lisp_Vector *vec;
4239 register int i;
4240 EMACS_INT size;
4241
4242 size = XVECTOR (obj)->size;
4243 if (size & PSEUDOVECTOR_FLAG)
4244 size &= PSEUDOVECTOR_SIZE_MASK;
4245 vec = XVECTOR (make_pure_vector (size));
4246 for (i = 0; i < size; i++)
4247 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4248 if (COMPILEDP (obj))
4249 XSETCOMPILED (obj, vec);
4250 else
4251 XSETVECTOR (obj, vec);
4252 return obj;
4253 }
4254 else if (MARKERP (obj))
4255 error ("Attempt to copy a marker to pure storage");
4256
4257 return obj;
4258 }
4259
4260
4261 \f
4262 /***********************************************************************
4263 Protection from GC
4264 ***********************************************************************/
4265
4266 /* Put an entry in staticvec, pointing at the variable with address
4267 VARADDRESS. */
4268
4269 void
4270 staticpro (varaddress)
4271 Lisp_Object *varaddress;
4272 {
4273 staticvec[staticidx++] = varaddress;
4274 if (staticidx >= NSTATICS)
4275 abort ();
4276 }
4277
4278 struct catchtag
4279 {
4280 Lisp_Object tag;
4281 Lisp_Object val;
4282 struct catchtag *next;
4283 };
4284
4285 \f
4286 /***********************************************************************
4287 Protection from GC
4288 ***********************************************************************/
4289
4290 /* Temporarily prevent garbage collection. */
4291
4292 int
4293 inhibit_garbage_collection ()
4294 {
4295 int count = SPECPDL_INDEX ();
4296 int nbits = min (VALBITS, BITS_PER_INT);
4297
4298 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4299 return count;
4300 }
4301
4302
4303 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4304 doc: /* Reclaim storage for Lisp objects no longer needed.
4305 Garbage collection happens automatically if you cons more than
4306 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4307 `garbage-collect' normally returns a list with info on amount of space in use:
4308 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4309 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4310 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4311 (USED-STRINGS . FREE-STRINGS))
4312 However, if there was overflow in pure space, `garbage-collect'
4313 returns nil, because real GC can't be done. */)
4314 ()
4315 {
4316 register struct specbinding *bind;
4317 struct catchtag *catch;
4318 struct handler *handler;
4319 char stack_top_variable;
4320 register int i;
4321 int message_p;
4322 Lisp_Object total[8];
4323 int count = SPECPDL_INDEX ();
4324 EMACS_TIME t1, t2, t3;
4325
4326 if (abort_on_gc)
4327 abort ();
4328
4329 EMACS_GET_TIME (t1);
4330
4331 /* Can't GC if pure storage overflowed because we can't determine
4332 if something is a pure object or not. */
4333 if (pure_bytes_used_before_overflow)
4334 return Qnil;
4335
4336 /* In case user calls debug_print during GC,
4337 don't let that cause a recursive GC. */
4338 consing_since_gc = 0;
4339
4340 /* Save what's currently displayed in the echo area. */
4341 message_p = push_message ();
4342 record_unwind_protect (pop_message_unwind, Qnil);
4343
4344 /* Save a copy of the contents of the stack, for debugging. */
4345 #if MAX_SAVE_STACK > 0
4346 if (NILP (Vpurify_flag))
4347 {
4348 i = &stack_top_variable - stack_bottom;
4349 if (i < 0) i = -i;
4350 if (i < MAX_SAVE_STACK)
4351 {
4352 if (stack_copy == 0)
4353 stack_copy = (char *) xmalloc (stack_copy_size = i);
4354 else if (stack_copy_size < i)
4355 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4356 if (stack_copy)
4357 {
4358 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4359 bcopy (stack_bottom, stack_copy, i);
4360 else
4361 bcopy (&stack_top_variable, stack_copy, i);
4362 }
4363 }
4364 }
4365 #endif /* MAX_SAVE_STACK > 0 */
4366
4367 if (garbage_collection_messages)
4368 message1_nolog ("Garbage collecting...");
4369
4370 BLOCK_INPUT;
4371
4372 shrink_regexp_cache ();
4373
4374 /* Don't keep undo information around forever. */
4375 {
4376 register struct buffer *nextb = all_buffers;
4377
4378 while (nextb)
4379 {
4380 /* If a buffer's undo list is Qt, that means that undo is
4381 turned off in that buffer. Calling truncate_undo_list on
4382 Qt tends to return NULL, which effectively turns undo back on.
4383 So don't call truncate_undo_list if undo_list is Qt. */
4384 if (! EQ (nextb->undo_list, Qt))
4385 nextb->undo_list
4386 = truncate_undo_list (nextb->undo_list, undo_limit,
4387 undo_strong_limit, undo_outer_limit);
4388
4389 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4390 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4391 {
4392 /* If a buffer's gap size is more than 10% of the buffer
4393 size, or larger than 2000 bytes, then shrink it
4394 accordingly. Keep a minimum size of 20 bytes. */
4395 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4396
4397 if (nextb->text->gap_size > size)
4398 {
4399 struct buffer *save_current = current_buffer;
4400 current_buffer = nextb;
4401 make_gap (-(nextb->text->gap_size - size));
4402 current_buffer = save_current;
4403 }
4404 }
4405
4406 nextb = nextb->next;
4407 }
4408 }
4409
4410 gc_in_progress = 1;
4411
4412 /* clear_marks (); */
4413
4414 /* Mark all the special slots that serve as the roots of accessibility. */
4415
4416 for (i = 0; i < staticidx; i++)
4417 mark_object (*staticvec[i]);
4418
4419 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4420 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4421 mark_stack ();
4422 #else
4423 {
4424 register struct gcpro *tail;
4425 for (tail = gcprolist; tail; tail = tail->next)
4426 for (i = 0; i < tail->nvars; i++)
4427 mark_object (tail->var[i]);
4428 }
4429 #endif
4430
4431 mark_byte_stack ();
4432 for (bind = specpdl; bind != specpdl_ptr; bind++)
4433 {
4434 mark_object (bind->symbol);
4435 mark_object (bind->old_value);
4436 }
4437 for (catch = catchlist; catch; catch = catch->next)
4438 {
4439 mark_object (catch->tag);
4440 mark_object (catch->val);
4441 }
4442 for (handler = handlerlist; handler; handler = handler->next)
4443 {
4444 mark_object (handler->handler);
4445 mark_object (handler->var);
4446 }
4447 mark_backtrace ();
4448 mark_kboards ();
4449
4450 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4451 mark_stack ();
4452 #endif
4453
4454 #ifdef USE_GTK
4455 {
4456 extern void xg_mark_data ();
4457 xg_mark_data ();
4458 }
4459 #endif
4460
4461 /* Everything is now marked, except for the things that require special
4462 finalization, i.e. the undo_list.
4463 Look thru every buffer's undo list
4464 for elements that update markers that were not marked,
4465 and delete them. */
4466 {
4467 register struct buffer *nextb = all_buffers;
4468
4469 while (nextb)
4470 {
4471 /* If a buffer's undo list is Qt, that means that undo is
4472 turned off in that buffer. Calling truncate_undo_list on
4473 Qt tends to return NULL, which effectively turns undo back on.
4474 So don't call truncate_undo_list if undo_list is Qt. */
4475 if (! EQ (nextb->undo_list, Qt))
4476 {
4477 Lisp_Object tail, prev;
4478 tail = nextb->undo_list;
4479 prev = Qnil;
4480 while (CONSP (tail))
4481 {
4482 if (GC_CONSP (XCAR (tail))
4483 && GC_MARKERP (XCAR (XCAR (tail)))
4484 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4485 {
4486 if (NILP (prev))
4487 nextb->undo_list = tail = XCDR (tail);
4488 else
4489 {
4490 tail = XCDR (tail);
4491 XSETCDR (prev, tail);
4492 }
4493 }
4494 else
4495 {
4496 prev = tail;
4497 tail = XCDR (tail);
4498 }
4499 }
4500 }
4501 /* Now that we have stripped the elements that need not be in the
4502 undo_list any more, we can finally mark the list. */
4503 mark_object (nextb->undo_list);
4504
4505 nextb = nextb->next;
4506 }
4507 }
4508
4509 gc_sweep ();
4510
4511 /* Clear the mark bits that we set in certain root slots. */
4512
4513 unmark_byte_stack ();
4514 VECTOR_UNMARK (&buffer_defaults);
4515 VECTOR_UNMARK (&buffer_local_symbols);
4516
4517 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4518 dump_zombies ();
4519 #endif
4520
4521 UNBLOCK_INPUT;
4522
4523 /* clear_marks (); */
4524 gc_in_progress = 0;
4525
4526 consing_since_gc = 0;
4527 if (gc_cons_threshold < 10000)
4528 gc_cons_threshold = 10000;
4529
4530 if (garbage_collection_messages)
4531 {
4532 if (message_p || minibuf_level > 0)
4533 restore_message ();
4534 else
4535 message1_nolog ("Garbage collecting...done");
4536 }
4537
4538 unbind_to (count, Qnil);
4539
4540 total[0] = Fcons (make_number (total_conses),
4541 make_number (total_free_conses));
4542 total[1] = Fcons (make_number (total_symbols),
4543 make_number (total_free_symbols));
4544 total[2] = Fcons (make_number (total_markers),
4545 make_number (total_free_markers));
4546 total[3] = make_number (total_string_size);
4547 total[4] = make_number (total_vector_size);
4548 total[5] = Fcons (make_number (total_floats),
4549 make_number (total_free_floats));
4550 total[6] = Fcons (make_number (total_intervals),
4551 make_number (total_free_intervals));
4552 total[7] = Fcons (make_number (total_strings),
4553 make_number (total_free_strings));
4554
4555 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4556 {
4557 /* Compute average percentage of zombies. */
4558 double nlive = 0;
4559
4560 for (i = 0; i < 7; ++i)
4561 if (CONSP (total[i]))
4562 nlive += XFASTINT (XCAR (total[i]));
4563
4564 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4565 max_live = max (nlive, max_live);
4566 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4567 max_zombies = max (nzombies, max_zombies);
4568 ++ngcs;
4569 }
4570 #endif
4571
4572 if (!NILP (Vpost_gc_hook))
4573 {
4574 int count = inhibit_garbage_collection ();
4575 safe_run_hooks (Qpost_gc_hook);
4576 unbind_to (count, Qnil);
4577 }
4578
4579 /* Accumulate statistics. */
4580 EMACS_GET_TIME (t2);
4581 EMACS_SUB_TIME (t3, t2, t1);
4582 if (FLOATP (Vgc_elapsed))
4583 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4584 EMACS_SECS (t3) +
4585 EMACS_USECS (t3) * 1.0e-6);
4586 gcs_done++;
4587
4588 return Flist (sizeof total / sizeof *total, total);
4589 }
4590
4591
4592 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4593 only interesting objects referenced from glyphs are strings. */
4594
4595 static void
4596 mark_glyph_matrix (matrix)
4597 struct glyph_matrix *matrix;
4598 {
4599 struct glyph_row *row = matrix->rows;
4600 struct glyph_row *end = row + matrix->nrows;
4601
4602 for (; row < end; ++row)
4603 if (row->enabled_p)
4604 {
4605 int area;
4606 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4607 {
4608 struct glyph *glyph = row->glyphs[area];
4609 struct glyph *end_glyph = glyph + row->used[area];
4610
4611 for (; glyph < end_glyph; ++glyph)
4612 if (GC_STRINGP (glyph->object)
4613 && !STRING_MARKED_P (XSTRING (glyph->object)))
4614 mark_object (glyph->object);
4615 }
4616 }
4617 }
4618
4619
4620 /* Mark Lisp faces in the face cache C. */
4621
4622 static void
4623 mark_face_cache (c)
4624 struct face_cache *c;
4625 {
4626 if (c)
4627 {
4628 int i, j;
4629 for (i = 0; i < c->used; ++i)
4630 {
4631 struct face *face = FACE_FROM_ID (c->f, i);
4632
4633 if (face)
4634 {
4635 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
4636 mark_object (face->lface[j]);
4637 }
4638 }
4639 }
4640 }
4641
4642
4643 #ifdef HAVE_WINDOW_SYSTEM
4644
4645 /* Mark Lisp objects in image IMG. */
4646
4647 static void
4648 mark_image (img)
4649 struct image *img;
4650 {
4651 mark_object (img->spec);
4652
4653 if (!NILP (img->data.lisp_val))
4654 mark_object (img->data.lisp_val);
4655 }
4656
4657
4658 /* Mark Lisp objects in image cache of frame F. It's done this way so
4659 that we don't have to include xterm.h here. */
4660
4661 static void
4662 mark_image_cache (f)
4663 struct frame *f;
4664 {
4665 forall_images_in_image_cache (f, mark_image);
4666 }
4667
4668 #endif /* HAVE_X_WINDOWS */
4669
4670
4671 \f
4672 /* Mark reference to a Lisp_Object.
4673 If the object referred to has not been seen yet, recursively mark
4674 all the references contained in it. */
4675
4676 #define LAST_MARKED_SIZE 500
4677 Lisp_Object last_marked[LAST_MARKED_SIZE];
4678 int last_marked_index;
4679
4680 /* For debugging--call abort when we cdr down this many
4681 links of a list, in mark_object. In debugging,
4682 the call to abort will hit a breakpoint.
4683 Normally this is zero and the check never goes off. */
4684 int mark_object_loop_halt;
4685
4686 void
4687 mark_object (arg)
4688 Lisp_Object arg;
4689 {
4690 register Lisp_Object obj = arg;
4691 #ifdef GC_CHECK_MARKED_OBJECTS
4692 void *po;
4693 struct mem_node *m;
4694 #endif
4695 int cdr_count = 0;
4696
4697 loop:
4698
4699 if (PURE_POINTER_P (XPNTR (obj)))
4700 return;
4701
4702 last_marked[last_marked_index++] = obj;
4703 if (last_marked_index == LAST_MARKED_SIZE)
4704 last_marked_index = 0;
4705
4706 /* Perform some sanity checks on the objects marked here. Abort if
4707 we encounter an object we know is bogus. This increases GC time
4708 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4709 #ifdef GC_CHECK_MARKED_OBJECTS
4710
4711 po = (void *) XPNTR (obj);
4712
4713 /* Check that the object pointed to by PO is known to be a Lisp
4714 structure allocated from the heap. */
4715 #define CHECK_ALLOCATED() \
4716 do { \
4717 m = mem_find (po); \
4718 if (m == MEM_NIL) \
4719 abort (); \
4720 } while (0)
4721
4722 /* Check that the object pointed to by PO is live, using predicate
4723 function LIVEP. */
4724 #define CHECK_LIVE(LIVEP) \
4725 do { \
4726 if (!LIVEP (m, po)) \
4727 abort (); \
4728 } while (0)
4729
4730 /* Check both of the above conditions. */
4731 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4732 do { \
4733 CHECK_ALLOCATED (); \
4734 CHECK_LIVE (LIVEP); \
4735 } while (0) \
4736
4737 #else /* not GC_CHECK_MARKED_OBJECTS */
4738
4739 #define CHECK_ALLOCATED() (void) 0
4740 #define CHECK_LIVE(LIVEP) (void) 0
4741 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
4742
4743 #endif /* not GC_CHECK_MARKED_OBJECTS */
4744
4745 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
4746 {
4747 case Lisp_String:
4748 {
4749 register struct Lisp_String *ptr = XSTRING (obj);
4750 CHECK_ALLOCATED_AND_LIVE (live_string_p);
4751 MARK_INTERVAL_TREE (ptr->intervals);
4752 MARK_STRING (ptr);
4753 #ifdef GC_CHECK_STRING_BYTES
4754 /* Check that the string size recorded in the string is the
4755 same as the one recorded in the sdata structure. */
4756 CHECK_STRING_BYTES (ptr);
4757 #endif /* GC_CHECK_STRING_BYTES */
4758 }
4759 break;
4760
4761 case Lisp_Vectorlike:
4762 #ifdef GC_CHECK_MARKED_OBJECTS
4763 m = mem_find (po);
4764 if (m == MEM_NIL && !GC_SUBRP (obj)
4765 && po != &buffer_defaults
4766 && po != &buffer_local_symbols)
4767 abort ();
4768 #endif /* GC_CHECK_MARKED_OBJECTS */
4769
4770 if (GC_BUFFERP (obj))
4771 {
4772 if (!VECTOR_MARKED_P (XBUFFER (obj)))
4773 {
4774 #ifdef GC_CHECK_MARKED_OBJECTS
4775 if (po != &buffer_defaults && po != &buffer_local_symbols)
4776 {
4777 struct buffer *b;
4778 for (b = all_buffers; b && b != po; b = b->next)
4779 ;
4780 if (b == NULL)
4781 abort ();
4782 }
4783 #endif /* GC_CHECK_MARKED_OBJECTS */
4784 mark_buffer (obj);
4785 }
4786 }
4787 else if (GC_SUBRP (obj))
4788 break;
4789 else if (GC_COMPILEDP (obj))
4790 /* We could treat this just like a vector, but it is better to
4791 save the COMPILED_CONSTANTS element for last and avoid
4792 recursion there. */
4793 {
4794 register struct Lisp_Vector *ptr = XVECTOR (obj);
4795 register EMACS_INT size = ptr->size;
4796 register int i;
4797
4798 if (VECTOR_MARKED_P (ptr))
4799 break; /* Already marked */
4800
4801 CHECK_LIVE (live_vector_p);
4802 VECTOR_MARK (ptr); /* Else mark it */
4803 size &= PSEUDOVECTOR_SIZE_MASK;
4804 for (i = 0; i < size; i++) /* and then mark its elements */
4805 {
4806 if (i != COMPILED_CONSTANTS)
4807 mark_object (ptr->contents[i]);
4808 }
4809 obj = ptr->contents[COMPILED_CONSTANTS];
4810 goto loop;
4811 }
4812 else if (GC_FRAMEP (obj))
4813 {
4814 register struct frame *ptr = XFRAME (obj);
4815
4816 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4817 VECTOR_MARK (ptr); /* Else mark it */
4818
4819 CHECK_LIVE (live_vector_p);
4820 mark_object (ptr->name);
4821 mark_object (ptr->icon_name);
4822 mark_object (ptr->title);
4823 mark_object (ptr->focus_frame);
4824 mark_object (ptr->selected_window);
4825 mark_object (ptr->minibuffer_window);
4826 mark_object (ptr->param_alist);
4827 mark_object (ptr->scroll_bars);
4828 mark_object (ptr->condemned_scroll_bars);
4829 mark_object (ptr->menu_bar_items);
4830 mark_object (ptr->face_alist);
4831 mark_object (ptr->menu_bar_vector);
4832 mark_object (ptr->buffer_predicate);
4833 mark_object (ptr->buffer_list);
4834 mark_object (ptr->menu_bar_window);
4835 mark_object (ptr->tool_bar_window);
4836 mark_face_cache (ptr->face_cache);
4837 #ifdef HAVE_WINDOW_SYSTEM
4838 mark_image_cache (ptr);
4839 mark_object (ptr->tool_bar_items);
4840 mark_object (ptr->desired_tool_bar_string);
4841 mark_object (ptr->current_tool_bar_string);
4842 #endif /* HAVE_WINDOW_SYSTEM */
4843 }
4844 else if (GC_BOOL_VECTOR_P (obj))
4845 {
4846 register struct Lisp_Vector *ptr = XVECTOR (obj);
4847
4848 if (VECTOR_MARKED_P (ptr))
4849 break; /* Already marked */
4850 CHECK_LIVE (live_vector_p);
4851 VECTOR_MARK (ptr); /* Else mark it */
4852 }
4853 else if (GC_WINDOWP (obj))
4854 {
4855 register struct Lisp_Vector *ptr = XVECTOR (obj);
4856 struct window *w = XWINDOW (obj);
4857 register int i;
4858
4859 /* Stop if already marked. */
4860 if (VECTOR_MARKED_P (ptr))
4861 break;
4862
4863 /* Mark it. */
4864 CHECK_LIVE (live_vector_p);
4865 VECTOR_MARK (ptr);
4866
4867 /* There is no Lisp data above The member CURRENT_MATRIX in
4868 struct WINDOW. Stop marking when that slot is reached. */
4869 for (i = 0;
4870 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
4871 i++)
4872 mark_object (ptr->contents[i]);
4873
4874 /* Mark glyphs for leaf windows. Marking window matrices is
4875 sufficient because frame matrices use the same glyph
4876 memory. */
4877 if (NILP (w->hchild)
4878 && NILP (w->vchild)
4879 && w->current_matrix)
4880 {
4881 mark_glyph_matrix (w->current_matrix);
4882 mark_glyph_matrix (w->desired_matrix);
4883 }
4884 }
4885 else if (GC_HASH_TABLE_P (obj))
4886 {
4887 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
4888
4889 /* Stop if already marked. */
4890 if (VECTOR_MARKED_P (h))
4891 break;
4892
4893 /* Mark it. */
4894 CHECK_LIVE (live_vector_p);
4895 VECTOR_MARK (h);
4896
4897 /* Mark contents. */
4898 /* Do not mark next_free or next_weak.
4899 Being in the next_weak chain
4900 should not keep the hash table alive.
4901 No need to mark `count' since it is an integer. */
4902 mark_object (h->test);
4903 mark_object (h->weak);
4904 mark_object (h->rehash_size);
4905 mark_object (h->rehash_threshold);
4906 mark_object (h->hash);
4907 mark_object (h->next);
4908 mark_object (h->index);
4909 mark_object (h->user_hash_function);
4910 mark_object (h->user_cmp_function);
4911
4912 /* If hash table is not weak, mark all keys and values.
4913 For weak tables, mark only the vector. */
4914 if (GC_NILP (h->weak))
4915 mark_object (h->key_and_value);
4916 else
4917 VECTOR_MARK (XVECTOR (h->key_and_value));
4918 }
4919 else
4920 {
4921 register struct Lisp_Vector *ptr = XVECTOR (obj);
4922 register EMACS_INT size = ptr->size;
4923 register int i;
4924
4925 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4926 CHECK_LIVE (live_vector_p);
4927 VECTOR_MARK (ptr); /* Else mark it */
4928 if (size & PSEUDOVECTOR_FLAG)
4929 size &= PSEUDOVECTOR_SIZE_MASK;
4930
4931 for (i = 0; i < size; i++) /* and then mark its elements */
4932 mark_object (ptr->contents[i]);
4933 }
4934 break;
4935
4936 case Lisp_Symbol:
4937 {
4938 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
4939 struct Lisp_Symbol *ptrx;
4940
4941 if (ptr->gcmarkbit) break;
4942 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
4943 ptr->gcmarkbit = 1;
4944 mark_object (ptr->value);
4945 mark_object (ptr->function);
4946 mark_object (ptr->plist);
4947
4948 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
4949 MARK_STRING (XSTRING (ptr->xname));
4950 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
4951
4952 /* Note that we do not mark the obarray of the symbol.
4953 It is safe not to do so because nothing accesses that
4954 slot except to check whether it is nil. */
4955 ptr = ptr->next;
4956 if (ptr)
4957 {
4958 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
4959 XSETSYMBOL (obj, ptrx);
4960 goto loop;
4961 }
4962 }
4963 break;
4964
4965 case Lisp_Misc:
4966 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
4967 if (XMARKER (obj)->gcmarkbit)
4968 break;
4969 XMARKER (obj)->gcmarkbit = 1;
4970 switch (XMISCTYPE (obj))
4971 {
4972 case Lisp_Misc_Buffer_Local_Value:
4973 case Lisp_Misc_Some_Buffer_Local_Value:
4974 {
4975 register struct Lisp_Buffer_Local_Value *ptr
4976 = XBUFFER_LOCAL_VALUE (obj);
4977 /* If the cdr is nil, avoid recursion for the car. */
4978 if (EQ (ptr->cdr, Qnil))
4979 {
4980 obj = ptr->realvalue;
4981 goto loop;
4982 }
4983 mark_object (ptr->realvalue);
4984 mark_object (ptr->buffer);
4985 mark_object (ptr->frame);
4986 obj = ptr->cdr;
4987 goto loop;
4988 }
4989
4990 case Lisp_Misc_Marker:
4991 /* DO NOT mark thru the marker's chain.
4992 The buffer's markers chain does not preserve markers from gc;
4993 instead, markers are removed from the chain when freed by gc. */
4994 case Lisp_Misc_Intfwd:
4995 case Lisp_Misc_Boolfwd:
4996 case Lisp_Misc_Objfwd:
4997 case Lisp_Misc_Buffer_Objfwd:
4998 case Lisp_Misc_Kboard_Objfwd:
4999 /* Don't bother with Lisp_Buffer_Objfwd,
5000 since all markable slots in current buffer marked anyway. */
5001 /* Don't need to do Lisp_Objfwd, since the places they point
5002 are protected with staticpro. */
5003 case Lisp_Misc_Save_Value:
5004 break;
5005
5006 case Lisp_Misc_Overlay:
5007 {
5008 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5009 mark_object (ptr->start);
5010 mark_object (ptr->end);
5011 mark_object (ptr->plist);
5012 if (ptr->next)
5013 {
5014 XSETMISC (obj, ptr->next);
5015 goto loop;
5016 }
5017 }
5018 break;
5019
5020 default:
5021 abort ();
5022 }
5023 break;
5024
5025 case Lisp_Cons:
5026 {
5027 register struct Lisp_Cons *ptr = XCONS (obj);
5028 if (CONS_MARKED_P (ptr)) break;
5029 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5030 CONS_MARK (ptr);
5031 /* If the cdr is nil, avoid recursion for the car. */
5032 if (EQ (ptr->cdr, Qnil))
5033 {
5034 obj = ptr->car;
5035 cdr_count = 0;
5036 goto loop;
5037 }
5038 mark_object (ptr->car);
5039 obj = ptr->cdr;
5040 cdr_count++;
5041 if (cdr_count == mark_object_loop_halt)
5042 abort ();
5043 goto loop;
5044 }
5045
5046 case Lisp_Float:
5047 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5048 FLOAT_MARK (XFLOAT (obj));
5049 break;
5050
5051 case Lisp_Int:
5052 break;
5053
5054 default:
5055 abort ();
5056 }
5057
5058 #undef CHECK_LIVE
5059 #undef CHECK_ALLOCATED
5060 #undef CHECK_ALLOCATED_AND_LIVE
5061 }
5062
5063 /* Mark the pointers in a buffer structure. */
5064
5065 static void
5066 mark_buffer (buf)
5067 Lisp_Object buf;
5068 {
5069 register struct buffer *buffer = XBUFFER (buf);
5070 register Lisp_Object *ptr, tmp;
5071 Lisp_Object base_buffer;
5072
5073 VECTOR_MARK (buffer);
5074
5075 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5076
5077 /* For now, we just don't mark the undo_list. It's done later in
5078 a special way just before the sweep phase, and after stripping
5079 some of its elements that are not needed any more. */
5080
5081 if (buffer->overlays_before)
5082 {
5083 XSETMISC (tmp, buffer->overlays_before);
5084 mark_object (tmp);
5085 }
5086 if (buffer->overlays_after)
5087 {
5088 XSETMISC (tmp, buffer->overlays_after);
5089 mark_object (tmp);
5090 }
5091
5092 for (ptr = &buffer->name;
5093 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5094 ptr++)
5095 mark_object (*ptr);
5096
5097 /* If this is an indirect buffer, mark its base buffer. */
5098 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5099 {
5100 XSETBUFFER (base_buffer, buffer->base_buffer);
5101 mark_buffer (base_buffer);
5102 }
5103 }
5104
5105
5106 /* Value is non-zero if OBJ will survive the current GC because it's
5107 either marked or does not need to be marked to survive. */
5108
5109 int
5110 survives_gc_p (obj)
5111 Lisp_Object obj;
5112 {
5113 int survives_p;
5114
5115 switch (XGCTYPE (obj))
5116 {
5117 case Lisp_Int:
5118 survives_p = 1;
5119 break;
5120
5121 case Lisp_Symbol:
5122 survives_p = XSYMBOL (obj)->gcmarkbit;
5123 break;
5124
5125 case Lisp_Misc:
5126 survives_p = XMARKER (obj)->gcmarkbit;
5127 break;
5128
5129 case Lisp_String:
5130 survives_p = STRING_MARKED_P (XSTRING (obj));
5131 break;
5132
5133 case Lisp_Vectorlike:
5134 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5135 break;
5136
5137 case Lisp_Cons:
5138 survives_p = CONS_MARKED_P (XCONS (obj));
5139 break;
5140
5141 case Lisp_Float:
5142 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5143 break;
5144
5145 default:
5146 abort ();
5147 }
5148
5149 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5150 }
5151
5152
5153 \f
5154 /* Sweep: find all structures not marked, and free them. */
5155
5156 static void
5157 gc_sweep ()
5158 {
5159 /* Remove or mark entries in weak hash tables.
5160 This must be done before any object is unmarked. */
5161 sweep_weak_hash_tables ();
5162
5163 sweep_strings ();
5164 #ifdef GC_CHECK_STRING_BYTES
5165 if (!noninteractive)
5166 check_string_bytes (1);
5167 #endif
5168
5169 /* Put all unmarked conses on free list */
5170 {
5171 register struct cons_block *cblk;
5172 struct cons_block **cprev = &cons_block;
5173 register int lim = cons_block_index;
5174 register int num_free = 0, num_used = 0;
5175
5176 cons_free_list = 0;
5177
5178 for (cblk = cons_block; cblk; cblk = *cprev)
5179 {
5180 register int i;
5181 int this_free = 0;
5182 for (i = 0; i < lim; i++)
5183 if (!CONS_MARKED_P (&cblk->conses[i]))
5184 {
5185 this_free++;
5186 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5187 cons_free_list = &cblk->conses[i];
5188 #if GC_MARK_STACK
5189 cons_free_list->car = Vdead;
5190 #endif
5191 }
5192 else
5193 {
5194 num_used++;
5195 CONS_UNMARK (&cblk->conses[i]);
5196 }
5197 lim = CONS_BLOCK_SIZE;
5198 /* If this block contains only free conses and we have already
5199 seen more than two blocks worth of free conses then deallocate
5200 this block. */
5201 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5202 {
5203 *cprev = cblk->next;
5204 /* Unhook from the free list. */
5205 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5206 lisp_align_free (cblk);
5207 n_cons_blocks--;
5208 }
5209 else
5210 {
5211 num_free += this_free;
5212 cprev = &cblk->next;
5213 }
5214 }
5215 total_conses = num_used;
5216 total_free_conses = num_free;
5217 }
5218
5219 /* Put all unmarked floats on free list */
5220 {
5221 register struct float_block *fblk;
5222 struct float_block **fprev = &float_block;
5223 register int lim = float_block_index;
5224 register int num_free = 0, num_used = 0;
5225
5226 float_free_list = 0;
5227
5228 for (fblk = float_block; fblk; fblk = *fprev)
5229 {
5230 register int i;
5231 int this_free = 0;
5232 for (i = 0; i < lim; i++)
5233 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5234 {
5235 this_free++;
5236 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5237 float_free_list = &fblk->floats[i];
5238 }
5239 else
5240 {
5241 num_used++;
5242 FLOAT_UNMARK (&fblk->floats[i]);
5243 }
5244 lim = FLOAT_BLOCK_SIZE;
5245 /* If this block contains only free floats and we have already
5246 seen more than two blocks worth of free floats then deallocate
5247 this block. */
5248 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5249 {
5250 *fprev = fblk->next;
5251 /* Unhook from the free list. */
5252 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5253 lisp_align_free (fblk);
5254 n_float_blocks--;
5255 }
5256 else
5257 {
5258 num_free += this_free;
5259 fprev = &fblk->next;
5260 }
5261 }
5262 total_floats = num_used;
5263 total_free_floats = num_free;
5264 }
5265
5266 /* Put all unmarked intervals on free list */
5267 {
5268 register struct interval_block *iblk;
5269 struct interval_block **iprev = &interval_block;
5270 register int lim = interval_block_index;
5271 register int num_free = 0, num_used = 0;
5272
5273 interval_free_list = 0;
5274
5275 for (iblk = interval_block; iblk; iblk = *iprev)
5276 {
5277 register int i;
5278 int this_free = 0;
5279
5280 for (i = 0; i < lim; i++)
5281 {
5282 if (!iblk->intervals[i].gcmarkbit)
5283 {
5284 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5285 interval_free_list = &iblk->intervals[i];
5286 this_free++;
5287 }
5288 else
5289 {
5290 num_used++;
5291 iblk->intervals[i].gcmarkbit = 0;
5292 }
5293 }
5294 lim = INTERVAL_BLOCK_SIZE;
5295 /* If this block contains only free intervals and we have already
5296 seen more than two blocks worth of free intervals then
5297 deallocate this block. */
5298 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5299 {
5300 *iprev = iblk->next;
5301 /* Unhook from the free list. */
5302 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5303 lisp_free (iblk);
5304 n_interval_blocks--;
5305 }
5306 else
5307 {
5308 num_free += this_free;
5309 iprev = &iblk->next;
5310 }
5311 }
5312 total_intervals = num_used;
5313 total_free_intervals = num_free;
5314 }
5315
5316 /* Put all unmarked symbols on free list */
5317 {
5318 register struct symbol_block *sblk;
5319 struct symbol_block **sprev = &symbol_block;
5320 register int lim = symbol_block_index;
5321 register int num_free = 0, num_used = 0;
5322
5323 symbol_free_list = NULL;
5324
5325 for (sblk = symbol_block; sblk; sblk = *sprev)
5326 {
5327 int this_free = 0;
5328 struct Lisp_Symbol *sym = sblk->symbols;
5329 struct Lisp_Symbol *end = sym + lim;
5330
5331 for (; sym < end; ++sym)
5332 {
5333 /* Check if the symbol was created during loadup. In such a case
5334 it might be pointed to by pure bytecode which we don't trace,
5335 so we conservatively assume that it is live. */
5336 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5337
5338 if (!sym->gcmarkbit && !pure_p)
5339 {
5340 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5341 symbol_free_list = sym;
5342 #if GC_MARK_STACK
5343 symbol_free_list->function = Vdead;
5344 #endif
5345 ++this_free;
5346 }
5347 else
5348 {
5349 ++num_used;
5350 if (!pure_p)
5351 UNMARK_STRING (XSTRING (sym->xname));
5352 sym->gcmarkbit = 0;
5353 }
5354 }
5355
5356 lim = SYMBOL_BLOCK_SIZE;
5357 /* If this block contains only free symbols and we have already
5358 seen more than two blocks worth of free symbols then deallocate
5359 this block. */
5360 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5361 {
5362 *sprev = sblk->next;
5363 /* Unhook from the free list. */
5364 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5365 lisp_free (sblk);
5366 n_symbol_blocks--;
5367 }
5368 else
5369 {
5370 num_free += this_free;
5371 sprev = &sblk->next;
5372 }
5373 }
5374 total_symbols = num_used;
5375 total_free_symbols = num_free;
5376 }
5377
5378 /* Put all unmarked misc's on free list.
5379 For a marker, first unchain it from the buffer it points into. */
5380 {
5381 register struct marker_block *mblk;
5382 struct marker_block **mprev = &marker_block;
5383 register int lim = marker_block_index;
5384 register int num_free = 0, num_used = 0;
5385
5386 marker_free_list = 0;
5387
5388 for (mblk = marker_block; mblk; mblk = *mprev)
5389 {
5390 register int i;
5391 int this_free = 0;
5392
5393 for (i = 0; i < lim; i++)
5394 {
5395 if (!mblk->markers[i].u_marker.gcmarkbit)
5396 {
5397 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5398 unchain_marker (&mblk->markers[i].u_marker);
5399 /* Set the type of the freed object to Lisp_Misc_Free.
5400 We could leave the type alone, since nobody checks it,
5401 but this might catch bugs faster. */
5402 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5403 mblk->markers[i].u_free.chain = marker_free_list;
5404 marker_free_list = &mblk->markers[i];
5405 this_free++;
5406 }
5407 else
5408 {
5409 num_used++;
5410 mblk->markers[i].u_marker.gcmarkbit = 0;
5411 }
5412 }
5413 lim = MARKER_BLOCK_SIZE;
5414 /* If this block contains only free markers and we have already
5415 seen more than two blocks worth of free markers then deallocate
5416 this block. */
5417 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5418 {
5419 *mprev = mblk->next;
5420 /* Unhook from the free list. */
5421 marker_free_list = mblk->markers[0].u_free.chain;
5422 lisp_free (mblk);
5423 n_marker_blocks--;
5424 }
5425 else
5426 {
5427 num_free += this_free;
5428 mprev = &mblk->next;
5429 }
5430 }
5431
5432 total_markers = num_used;
5433 total_free_markers = num_free;
5434 }
5435
5436 /* Free all unmarked buffers */
5437 {
5438 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5439
5440 while (buffer)
5441 if (!VECTOR_MARKED_P (buffer))
5442 {
5443 if (prev)
5444 prev->next = buffer->next;
5445 else
5446 all_buffers = buffer->next;
5447 next = buffer->next;
5448 lisp_free (buffer);
5449 buffer = next;
5450 }
5451 else
5452 {
5453 VECTOR_UNMARK (buffer);
5454 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5455 prev = buffer, buffer = buffer->next;
5456 }
5457 }
5458
5459 /* Free all unmarked vectors */
5460 {
5461 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5462 total_vector_size = 0;
5463
5464 while (vector)
5465 if (!VECTOR_MARKED_P (vector))
5466 {
5467 if (prev)
5468 prev->next = vector->next;
5469 else
5470 all_vectors = vector->next;
5471 next = vector->next;
5472 lisp_free (vector);
5473 n_vectors--;
5474 vector = next;
5475
5476 }
5477 else
5478 {
5479 VECTOR_UNMARK (vector);
5480 if (vector->size & PSEUDOVECTOR_FLAG)
5481 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5482 else
5483 total_vector_size += vector->size;
5484 prev = vector, vector = vector->next;
5485 }
5486 }
5487
5488 #ifdef GC_CHECK_STRING_BYTES
5489 if (!noninteractive)
5490 check_string_bytes (1);
5491 #endif
5492 }
5493
5494
5495
5496 \f
5497 /* Debugging aids. */
5498
5499 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5500 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5501 This may be helpful in debugging Emacs's memory usage.
5502 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5503 ()
5504 {
5505 Lisp_Object end;
5506
5507 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5508
5509 return end;
5510 }
5511
5512 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5513 doc: /* Return a list of counters that measure how much consing there has been.
5514 Each of these counters increments for a certain kind of object.
5515 The counters wrap around from the largest positive integer to zero.
5516 Garbage collection does not decrease them.
5517 The elements of the value are as follows:
5518 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5519 All are in units of 1 = one object consed
5520 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5521 objects consed.
5522 MISCS include overlays, markers, and some internal types.
5523 Frames, windows, buffers, and subprocesses count as vectors
5524 (but the contents of a buffer's text do not count here). */)
5525 ()
5526 {
5527 Lisp_Object consed[8];
5528
5529 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5530 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5531 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5532 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5533 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5534 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5535 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5536 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5537
5538 return Flist (8, consed);
5539 }
5540
5541 int suppress_checking;
5542 void
5543 die (msg, file, line)
5544 const char *msg;
5545 const char *file;
5546 int line;
5547 {
5548 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5549 file, line, msg);
5550 abort ();
5551 }
5552 \f
5553 /* Initialization */
5554
5555 void
5556 init_alloc_once ()
5557 {
5558 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5559 purebeg = PUREBEG;
5560 pure_size = PURESIZE;
5561 pure_bytes_used = 0;
5562 pure_bytes_used_before_overflow = 0;
5563
5564 /* Initialize the list of free aligned blocks. */
5565 free_ablock = NULL;
5566
5567 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5568 mem_init ();
5569 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5570 #endif
5571
5572 all_vectors = 0;
5573 ignore_warnings = 1;
5574 #ifdef DOUG_LEA_MALLOC
5575 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5576 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5577 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5578 #endif
5579 init_strings ();
5580 init_cons ();
5581 init_symbol ();
5582 init_marker ();
5583 init_float ();
5584 init_intervals ();
5585
5586 #ifdef REL_ALLOC
5587 malloc_hysteresis = 32;
5588 #else
5589 malloc_hysteresis = 0;
5590 #endif
5591
5592 spare_memory = (char *) malloc (SPARE_MEMORY);
5593
5594 ignore_warnings = 0;
5595 gcprolist = 0;
5596 byte_stack_list = 0;
5597 staticidx = 0;
5598 consing_since_gc = 0;
5599 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5600 #ifdef VIRT_ADDR_VARIES
5601 malloc_sbrk_unused = 1<<22; /* A large number */
5602 malloc_sbrk_used = 100000; /* as reasonable as any number */
5603 #endif /* VIRT_ADDR_VARIES */
5604 }
5605
5606 void
5607 init_alloc ()
5608 {
5609 gcprolist = 0;
5610 byte_stack_list = 0;
5611 #if GC_MARK_STACK
5612 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5613 setjmp_tested_p = longjmps_done = 0;
5614 #endif
5615 #endif
5616 Vgc_elapsed = make_float (0.0);
5617 gcs_done = 0;
5618 }
5619
5620 void
5621 syms_of_alloc ()
5622 {
5623 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
5624 doc: /* *Number of bytes of consing between garbage collections.
5625 Garbage collection can happen automatically once this many bytes have been
5626 allocated since the last garbage collection. All data types count.
5627
5628 Garbage collection happens automatically only when `eval' is called.
5629
5630 By binding this temporarily to a large number, you can effectively
5631 prevent garbage collection during a part of the program. */);
5632
5633 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
5634 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
5635
5636 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
5637 doc: /* Number of cons cells that have been consed so far. */);
5638
5639 DEFVAR_INT ("floats-consed", &floats_consed,
5640 doc: /* Number of floats that have been consed so far. */);
5641
5642 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
5643 doc: /* Number of vector cells that have been consed so far. */);
5644
5645 DEFVAR_INT ("symbols-consed", &symbols_consed,
5646 doc: /* Number of symbols that have been consed so far. */);
5647
5648 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
5649 doc: /* Number of string characters that have been consed so far. */);
5650
5651 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
5652 doc: /* Number of miscellaneous objects that have been consed so far. */);
5653
5654 DEFVAR_INT ("intervals-consed", &intervals_consed,
5655 doc: /* Number of intervals that have been consed so far. */);
5656
5657 DEFVAR_INT ("strings-consed", &strings_consed,
5658 doc: /* Number of strings that have been consed so far. */);
5659
5660 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
5661 doc: /* Non-nil means loading Lisp code in order to dump an executable.
5662 This means that certain objects should be allocated in shared (pure) space. */);
5663
5664 DEFVAR_INT ("undo-limit", &undo_limit,
5665 doc: /* Keep no more undo information once it exceeds this size.
5666 This limit is applied when garbage collection happens.
5667 The size is counted as the number of bytes occupied,
5668 which includes both saved text and other data. */);
5669 undo_limit = 20000;
5670
5671 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
5672 doc: /* Don't keep more than this much size of undo information.
5673 A previous command which pushes the undo list past this size
5674 is entirely forgotten when GC happens.
5675 The size is counted as the number of bytes occupied,
5676 which includes both saved text and other data. */);
5677 undo_strong_limit = 30000;
5678
5679 DEFVAR_INT ("undo-outer-limit", &undo_outer_limit,
5680 doc: /* Don't keep more than this much size of undo information.
5681 If the current command has produced more than this much undo information,
5682 GC discards it. This is a last-ditch limit to prevent memory overflow.
5683 The size is counted as the number of bytes occupied,
5684 which includes both saved text and other data. */);
5685 undo_outer_limit = 300000;
5686
5687 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
5688 doc: /* Non-nil means display messages at start and end of garbage collection. */);
5689 garbage_collection_messages = 0;
5690
5691 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
5692 doc: /* Hook run after garbage collection has finished. */);
5693 Vpost_gc_hook = Qnil;
5694 Qpost_gc_hook = intern ("post-gc-hook");
5695 staticpro (&Qpost_gc_hook);
5696
5697 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
5698 doc: /* Precomputed `signal' argument for memory-full error. */);
5699 /* We build this in advance because if we wait until we need it, we might
5700 not be able to allocate the memory to hold it. */
5701 Vmemory_signal_data
5702 = list2 (Qerror,
5703 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
5704
5705 DEFVAR_LISP ("memory-full", &Vmemory_full,
5706 doc: /* Non-nil means we are handling a memory-full error. */);
5707 Vmemory_full = Qnil;
5708
5709 staticpro (&Qgc_cons_threshold);
5710 Qgc_cons_threshold = intern ("gc-cons-threshold");
5711
5712 staticpro (&Qchar_table_extra_slots);
5713 Qchar_table_extra_slots = intern ("char-table-extra-slots");
5714
5715 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
5716 doc: /* Accumulated time elapsed in garbage collections.
5717 The time is in seconds as a floating point value. */);
5718 DEFVAR_INT ("gcs-done", &gcs_done,
5719 doc: /* Accumulated number of garbage collections done. */);
5720
5721 defsubr (&Scons);
5722 defsubr (&Slist);
5723 defsubr (&Svector);
5724 defsubr (&Smake_byte_code);
5725 defsubr (&Smake_list);
5726 defsubr (&Smake_vector);
5727 defsubr (&Smake_char_table);
5728 defsubr (&Smake_string);
5729 defsubr (&Smake_bool_vector);
5730 defsubr (&Smake_symbol);
5731 defsubr (&Smake_marker);
5732 defsubr (&Spurecopy);
5733 defsubr (&Sgarbage_collect);
5734 defsubr (&Smemory_limit);
5735 defsubr (&Smemory_use_counts);
5736
5737 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5738 defsubr (&Sgc_status);
5739 #endif
5740 }
5741
5742 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
5743 (do not change this comment) */