]> code.delx.au - gnu-emacs/blob - src/intervals.c
(mallocobj): Don't add gmalloc if using glibc.
[gnu-emacs] / src / intervals.c
1 /* Code for doing intervals.
2 Copyright (C) 1993, 1994, 1995 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* NOTES:
23
24 Have to ensure that we can't put symbol nil on a plist, or some
25 functions may work incorrectly.
26
27 An idea: Have the owner of the tree keep count of splits and/or
28 insertion lengths (in intervals), and balance after every N.
29
30 Need to call *_left_hook when buffer is killed.
31
32 Scan for zero-length, or 0-length to see notes about handling
33 zero length interval-markers.
34
35 There are comments around about freeing intervals. It might be
36 faster to explicitly free them (put them on the free list) than
37 to GC them.
38
39 */
40
41
42 #include <config.h>
43 #include "lisp.h"
44 #include "intervals.h"
45 #include "buffer.h"
46 #include "puresize.h"
47 #include "keyboard.h"
48
49 /* The rest of the file is within this conditional. */
50 #ifdef USE_TEXT_PROPERTIES
51
52 /* Test for membership, allowing for t (actually any non-cons) to mean the
53 universal set. */
54
55 #define TMEM(sym, set) (CONSP (set) ? ! NILP (Fmemq (sym, set)) : ! NILP (set))
56
57 #define min(x, y) ((x) < (y) ? (x) : (y))
58
59 Lisp_Object merge_properties_sticky ();
60 \f
61 /* Utility functions for intervals. */
62
63
64 /* Create the root interval of some object, a buffer or string. */
65
66 INTERVAL
67 create_root_interval (parent)
68 Lisp_Object parent;
69 {
70 INTERVAL new;
71
72 CHECK_IMPURE (parent);
73
74 new = make_interval ();
75
76 if (BUFFERP (parent))
77 {
78 new->total_length = (BUF_Z (XBUFFER (parent))
79 - BUF_BEG (XBUFFER (parent)));
80 BUF_INTERVALS (XBUFFER (parent)) = new;
81 }
82 else if (STRINGP (parent))
83 {
84 new->total_length = XSTRING (parent)->size;
85 XSTRING (parent)->intervals = new;
86 }
87
88 new->parent = (INTERVAL) parent;
89 new->position = 1;
90
91 return new;
92 }
93
94 /* Make the interval TARGET have exactly the properties of SOURCE */
95
96 void
97 copy_properties (source, target)
98 register INTERVAL source, target;
99 {
100 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
101 return;
102
103 COPY_INTERVAL_CACHE (source, target);
104 target->plist = Fcopy_sequence (source->plist);
105 }
106
107 /* Merge the properties of interval SOURCE into the properties
108 of interval TARGET. That is to say, each property in SOURCE
109 is added to TARGET if TARGET has no such property as yet. */
110
111 static void
112 merge_properties (source, target)
113 register INTERVAL source, target;
114 {
115 register Lisp_Object o, sym, val;
116
117 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
118 return;
119
120 MERGE_INTERVAL_CACHE (source, target);
121
122 o = source->plist;
123 while (! EQ (o, Qnil))
124 {
125 sym = Fcar (o);
126 val = Fmemq (sym, target->plist);
127
128 if (NILP (val))
129 {
130 o = Fcdr (o);
131 val = Fcar (o);
132 target->plist = Fcons (sym, Fcons (val, target->plist));
133 o = Fcdr (o);
134 }
135 else
136 o = Fcdr (Fcdr (o));
137 }
138 }
139
140 /* Return 1 if the two intervals have the same properties,
141 0 otherwise. */
142
143 int
144 intervals_equal (i0, i1)
145 INTERVAL i0, i1;
146 {
147 register Lisp_Object i0_cdr, i0_sym, i1_val;
148 register i1_len;
149
150 if (DEFAULT_INTERVAL_P (i0) && DEFAULT_INTERVAL_P (i1))
151 return 1;
152
153 if (DEFAULT_INTERVAL_P (i0) || DEFAULT_INTERVAL_P (i1))
154 return 0;
155
156 i1_len = XFASTINT (Flength (i1->plist));
157 if (i1_len & 0x1) /* Paranoia -- plists are always even */
158 abort ();
159 i1_len /= 2;
160 i0_cdr = i0->plist;
161 while (!NILP (i0_cdr))
162 {
163 /* Lengths of the two plists were unequal. */
164 if (i1_len == 0)
165 return 0;
166
167 i0_sym = Fcar (i0_cdr);
168 i1_val = Fmemq (i0_sym, i1->plist);
169
170 /* i0 has something i1 doesn't. */
171 if (EQ (i1_val, Qnil))
172 return 0;
173
174 /* i0 and i1 both have sym, but it has different values in each. */
175 i0_cdr = Fcdr (i0_cdr);
176 if (! EQ (Fcar (Fcdr (i1_val)), Fcar (i0_cdr)))
177 return 0;
178
179 i0_cdr = Fcdr (i0_cdr);
180 i1_len--;
181 }
182
183 /* Lengths of the two plists were unequal. */
184 if (i1_len > 0)
185 return 0;
186
187 return 1;
188 }
189 \f
190 static int icount;
191 static int idepth;
192 static int zero_length;
193
194 /* Traverse an interval tree TREE, performing FUNCTION on each node.
195 Pass FUNCTION two args: an interval, and ARG. */
196
197 void
198 traverse_intervals (tree, position, depth, function, arg)
199 INTERVAL tree;
200 int position, depth;
201 void (* function) ();
202 Lisp_Object arg;
203 {
204 if (NULL_INTERVAL_P (tree))
205 return;
206
207 traverse_intervals (tree->left, position, depth + 1, function, arg);
208 position += LEFT_TOTAL_LENGTH (tree);
209 tree->position = position;
210 (*function) (tree, arg);
211 position += LENGTH (tree);
212 traverse_intervals (tree->right, position, depth + 1, function, arg);
213 }
214 \f
215 #if 0
216 /* These functions are temporary, for debugging purposes only. */
217
218 INTERVAL search_interval, found_interval;
219
220 void
221 check_for_interval (i)
222 register INTERVAL i;
223 {
224 if (i == search_interval)
225 {
226 found_interval = i;
227 icount++;
228 }
229 }
230
231 INTERVAL
232 search_for_interval (i, tree)
233 register INTERVAL i, tree;
234 {
235 icount = 0;
236 search_interval = i;
237 found_interval = NULL_INTERVAL;
238 traverse_intervals (tree, 1, 0, &check_for_interval, Qnil);
239 return found_interval;
240 }
241
242 static void
243 inc_interval_count (i)
244 INTERVAL i;
245 {
246 icount++;
247 if (LENGTH (i) == 0)
248 zero_length++;
249 if (depth > idepth)
250 idepth = depth;
251 }
252
253 int
254 count_intervals (i)
255 register INTERVAL i;
256 {
257 icount = 0;
258 idepth = 0;
259 zero_length = 0;
260 traverse_intervals (i, 1, 0, &inc_interval_count, Qnil);
261
262 return icount;
263 }
264
265 static INTERVAL
266 root_interval (interval)
267 INTERVAL interval;
268 {
269 register INTERVAL i = interval;
270
271 while (! ROOT_INTERVAL_P (i))
272 i = i->parent;
273
274 return i;
275 }
276 #endif
277 \f
278 /* Assuming that a left child exists, perform the following operation:
279
280 A B
281 / \ / \
282 B => A
283 / \ / \
284 c c
285 */
286
287 static INTERVAL
288 rotate_right (interval)
289 INTERVAL interval;
290 {
291 INTERVAL i;
292 INTERVAL B = interval->left;
293 int old_total = interval->total_length;
294
295 /* Deal with any Parent of A; make it point to B. */
296 if (! ROOT_INTERVAL_P (interval))
297 if (AM_LEFT_CHILD (interval))
298 interval->parent->left = B;
299 else
300 interval->parent->right = B;
301 B->parent = interval->parent;
302
303 /* Make B the parent of A */
304 i = B->right;
305 B->right = interval;
306 interval->parent = B;
307
308 /* Make A point to c */
309 interval->left = i;
310 if (! NULL_INTERVAL_P (i))
311 i->parent = interval;
312
313 /* A's total length is decreased by the length of B and its left child. */
314 interval->total_length -= B->total_length - LEFT_TOTAL_LENGTH (interval);
315
316 /* B must have the same total length of A. */
317 B->total_length = old_total;
318
319 return B;
320 }
321
322 /* Assuming that a right child exists, perform the following operation:
323
324 A B
325 / \ / \
326 B => A
327 / \ / \
328 c c
329 */
330
331 static INTERVAL
332 rotate_left (interval)
333 INTERVAL interval;
334 {
335 INTERVAL i;
336 INTERVAL B = interval->right;
337 int old_total = interval->total_length;
338
339 /* Deal with any parent of A; make it point to B. */
340 if (! ROOT_INTERVAL_P (interval))
341 if (AM_LEFT_CHILD (interval))
342 interval->parent->left = B;
343 else
344 interval->parent->right = B;
345 B->parent = interval->parent;
346
347 /* Make B the parent of A */
348 i = B->left;
349 B->left = interval;
350 interval->parent = B;
351
352 /* Make A point to c */
353 interval->right = i;
354 if (! NULL_INTERVAL_P (i))
355 i->parent = interval;
356
357 /* A's total length is decreased by the length of B and its right child. */
358 interval->total_length -= B->total_length - RIGHT_TOTAL_LENGTH (interval);
359
360 /* B must have the same total length of A. */
361 B->total_length = old_total;
362
363 return B;
364 }
365 \f
366 /* Balance an interval tree with the assumption that the subtrees
367 themselves are already balanced. */
368
369 static INTERVAL
370 balance_an_interval (i)
371 INTERVAL i;
372 {
373 register int old_diff, new_diff;
374
375 while (1)
376 {
377 old_diff = LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i);
378 if (old_diff > 0)
379 {
380 new_diff = i->total_length - i->left->total_length
381 + RIGHT_TOTAL_LENGTH (i->left) - LEFT_TOTAL_LENGTH (i->left);
382 if (abs (new_diff) >= old_diff)
383 break;
384 i = rotate_right (i);
385 balance_an_interval (i->right);
386 }
387 else if (old_diff < 0)
388 {
389 new_diff = i->total_length - i->right->total_length
390 + LEFT_TOTAL_LENGTH (i->right) - RIGHT_TOTAL_LENGTH (i->right);
391 if (abs (new_diff) >= -old_diff)
392 break;
393 i = rotate_left (i);
394 balance_an_interval (i->left);
395 }
396 else
397 break;
398 }
399 return i;
400 }
401
402 /* Balance INTERVAL, potentially stuffing it back into its parent
403 Lisp Object. */
404
405 static INLINE INTERVAL
406 balance_possible_root_interval (interval)
407 register INTERVAL interval;
408 {
409 Lisp_Object parent;
410
411 if (interval->parent == NULL_INTERVAL)
412 return interval;
413
414 parent = (Lisp_Object) (interval->parent);
415 interval = balance_an_interval (interval);
416
417 if (BUFFERP (parent))
418 BUF_INTERVALS (XBUFFER (parent)) = interval;
419 else if (STRINGP (parent))
420 XSTRING (parent)->intervals = interval;
421
422 return interval;
423 }
424
425 /* Balance the interval tree TREE. Balancing is by weight
426 (the amount of text). */
427
428 static INTERVAL
429 balance_intervals_internal (tree)
430 register INTERVAL tree;
431 {
432 /* Balance within each side. */
433 if (tree->left)
434 balance_intervals_internal (tree->left);
435 if (tree->right)
436 balance_intervals_internal (tree->right);
437 return balance_an_interval (tree);
438 }
439
440 /* Advertised interface to balance intervals. */
441
442 INTERVAL
443 balance_intervals (tree)
444 INTERVAL tree;
445 {
446 if (tree == NULL_INTERVAL)
447 return NULL_INTERVAL;
448
449 return balance_intervals_internal (tree);
450 }
451 \f
452 /* Split INTERVAL into two pieces, starting the second piece at
453 character position OFFSET (counting from 0), relative to INTERVAL.
454 INTERVAL becomes the left-hand piece, and the right-hand piece
455 (second, lexicographically) is returned.
456
457 The size and position fields of the two intervals are set based upon
458 those of the original interval. The property list of the new interval
459 is reset, thus it is up to the caller to do the right thing with the
460 result.
461
462 Note that this does not change the position of INTERVAL; if it is a root,
463 it is still a root after this operation. */
464
465 INTERVAL
466 split_interval_right (interval, offset)
467 INTERVAL interval;
468 int offset;
469 {
470 INTERVAL new = make_interval ();
471 int position = interval->position;
472 int new_length = LENGTH (interval) - offset;
473
474 new->position = position + offset;
475 new->parent = interval;
476
477 if (NULL_RIGHT_CHILD (interval))
478 {
479 interval->right = new;
480 new->total_length = new_length;
481
482 return new;
483 }
484
485 /* Insert the new node between INTERVAL and its right child. */
486 new->right = interval->right;
487 interval->right->parent = new;
488 interval->right = new;
489 new->total_length = new_length + new->right->total_length;
490
491 balance_an_interval (new);
492 balance_possible_root_interval (interval);
493
494 return new;
495 }
496
497 /* Split INTERVAL into two pieces, starting the second piece at
498 character position OFFSET (counting from 0), relative to INTERVAL.
499 INTERVAL becomes the right-hand piece, and the left-hand piece
500 (first, lexicographically) is returned.
501
502 The size and position fields of the two intervals are set based upon
503 those of the original interval. The property list of the new interval
504 is reset, thus it is up to the caller to do the right thing with the
505 result.
506
507 Note that this does not change the position of INTERVAL; if it is a root,
508 it is still a root after this operation. */
509
510 INTERVAL
511 split_interval_left (interval, offset)
512 INTERVAL interval;
513 int offset;
514 {
515 INTERVAL new = make_interval ();
516 int position = interval->position;
517 int new_length = offset;
518
519 new->position = interval->position;
520 interval->position = interval->position + offset;
521 new->parent = interval;
522
523 if (NULL_LEFT_CHILD (interval))
524 {
525 interval->left = new;
526 new->total_length = new_length;
527
528 return new;
529 }
530
531 /* Insert the new node between INTERVAL and its left child. */
532 new->left = interval->left;
533 new->left->parent = new;
534 interval->left = new;
535 new->total_length = new_length + new->left->total_length;
536
537 balance_an_interval (new);
538 balance_possible_root_interval (interval);
539
540 return new;
541 }
542 \f
543 /* Find the interval containing text position POSITION in the text
544 represented by the interval tree TREE. POSITION is a buffer
545 position; the earliest position is 1. If POSITION is at the end of
546 the buffer, return the interval containing the last character.
547
548 The `position' field, which is a cache of an interval's position,
549 is updated in the interval found. Other functions (e.g., next_interval)
550 will update this cache based on the result of find_interval. */
551
552 INLINE INTERVAL
553 find_interval (tree, position)
554 register INTERVAL tree;
555 register int position;
556 {
557 /* The distance from the left edge of the subtree at TREE
558 to POSITION. */
559 register int relative_position = position - BEG;
560
561 if (NULL_INTERVAL_P (tree))
562 return NULL_INTERVAL;
563
564 if (relative_position > TOTAL_LENGTH (tree))
565 abort (); /* Paranoia */
566
567 tree = balance_possible_root_interval (tree);
568
569 while (1)
570 {
571 if (relative_position < LEFT_TOTAL_LENGTH (tree))
572 {
573 tree = tree->left;
574 }
575 else if (! NULL_RIGHT_CHILD (tree)
576 && relative_position >= (TOTAL_LENGTH (tree)
577 - RIGHT_TOTAL_LENGTH (tree)))
578 {
579 relative_position -= (TOTAL_LENGTH (tree)
580 - RIGHT_TOTAL_LENGTH (tree));
581 tree = tree->right;
582 }
583 else
584 {
585 tree->position =
586 (position - relative_position /* the left edge of *tree */
587 + LEFT_TOTAL_LENGTH (tree)); /* the left edge of this interval */
588
589 return tree;
590 }
591 }
592 }
593 \f
594 /* Find the succeeding interval (lexicographically) to INTERVAL.
595 Sets the `position' field based on that of INTERVAL (see
596 find_interval). */
597
598 INTERVAL
599 next_interval (interval)
600 register INTERVAL interval;
601 {
602 register INTERVAL i = interval;
603 register int next_position;
604
605 if (NULL_INTERVAL_P (i))
606 return NULL_INTERVAL;
607 next_position = interval->position + LENGTH (interval);
608
609 if (! NULL_RIGHT_CHILD (i))
610 {
611 i = i->right;
612 while (! NULL_LEFT_CHILD (i))
613 i = i->left;
614
615 i->position = next_position;
616 return i;
617 }
618
619 while (! NULL_PARENT (i))
620 {
621 if (AM_LEFT_CHILD (i))
622 {
623 i = i->parent;
624 i->position = next_position;
625 return i;
626 }
627
628 i = i->parent;
629 }
630
631 return NULL_INTERVAL;
632 }
633
634 /* Find the preceding interval (lexicographically) to INTERVAL.
635 Sets the `position' field based on that of INTERVAL (see
636 find_interval). */
637
638 INTERVAL
639 previous_interval (interval)
640 register INTERVAL interval;
641 {
642 register INTERVAL i;
643 register position_of_previous;
644
645 if (NULL_INTERVAL_P (interval))
646 return NULL_INTERVAL;
647
648 if (! NULL_LEFT_CHILD (interval))
649 {
650 i = interval->left;
651 while (! NULL_RIGHT_CHILD (i))
652 i = i->right;
653
654 i->position = interval->position - LENGTH (i);
655 return i;
656 }
657
658 i = interval;
659 while (! NULL_PARENT (i))
660 {
661 if (AM_RIGHT_CHILD (i))
662 {
663 i = i->parent;
664
665 i->position = interval->position - LENGTH (i);
666 return i;
667 }
668 i = i->parent;
669 }
670
671 return NULL_INTERVAL;
672 }
673 \f
674 #if 0
675 /* Traverse a path down the interval tree TREE to the interval
676 containing POSITION, adjusting all nodes on the path for
677 an addition of LENGTH characters. Insertion between two intervals
678 (i.e., point == i->position, where i is second interval) means
679 text goes into second interval.
680
681 Modifications are needed to handle the hungry bits -- after simply
682 finding the interval at position (don't add length going down),
683 if it's the beginning of the interval, get the previous interval
684 and check the hungry bits of both. Then add the length going back up
685 to the root. */
686
687 static INTERVAL
688 adjust_intervals_for_insertion (tree, position, length)
689 INTERVAL tree;
690 int position, length;
691 {
692 register int relative_position;
693 register INTERVAL this;
694
695 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
696 abort ();
697
698 /* If inserting at point-max of a buffer, that position
699 will be out of range */
700 if (position > TOTAL_LENGTH (tree))
701 position = TOTAL_LENGTH (tree);
702 relative_position = position;
703 this = tree;
704
705 while (1)
706 {
707 if (relative_position <= LEFT_TOTAL_LENGTH (this))
708 {
709 this->total_length += length;
710 this = this->left;
711 }
712 else if (relative_position > (TOTAL_LENGTH (this)
713 - RIGHT_TOTAL_LENGTH (this)))
714 {
715 relative_position -= (TOTAL_LENGTH (this)
716 - RIGHT_TOTAL_LENGTH (this));
717 this->total_length += length;
718 this = this->right;
719 }
720 else
721 {
722 /* If we are to use zero-length intervals as buffer pointers,
723 then this code will have to change. */
724 this->total_length += length;
725 this->position = LEFT_TOTAL_LENGTH (this)
726 + position - relative_position + 1;
727 return tree;
728 }
729 }
730 }
731 #endif
732
733 /* Effect an adjustment corresponding to the addition of LENGTH characters
734 of text. Do this by finding the interval containing POSITION in the
735 interval tree TREE, and then adjusting all of its ancestors by adding
736 LENGTH to them.
737
738 If POSITION is the first character of an interval, meaning that point
739 is actually between the two intervals, make the new text belong to
740 the interval which is "sticky".
741
742 If both intervals are "sticky", then make them belong to the left-most
743 interval. Another possibility would be to create a new interval for
744 this text, and make it have the merged properties of both ends. */
745
746 static INTERVAL
747 adjust_intervals_for_insertion (tree, position, length)
748 INTERVAL tree;
749 int position, length;
750 {
751 register INTERVAL i;
752 register INTERVAL temp;
753 int eobp = 0;
754
755 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
756 abort ();
757
758 /* If inserting at point-max of a buffer, that position will be out
759 of range. Remember that buffer positions are 1-based. */
760 if (position >= BEG + TOTAL_LENGTH (tree)){
761 position = BEG + TOTAL_LENGTH (tree);
762 eobp = 1;
763 }
764
765 i = find_interval (tree, position);
766
767 /* If in middle of an interval which is not sticky either way,
768 we must not just give its properties to the insertion.
769 So split this interval at the insertion point. */
770 if (! (position == i->position || eobp)
771 && END_NONSTICKY_P (i)
772 && FRONT_NONSTICKY_P (i))
773 {
774 Lisp_Object tail;
775 Lisp_Object front, rear;
776
777 front = textget (i->plist, Qfront_sticky);
778 rear = textget (i->plist, Qrear_nonsticky);
779
780 /* Does any actual property pose an actual problem? */
781 for (tail = i->plist; ! NILP (tail); tail = Fcdr (Fcdr (tail)))
782 {
783 Lisp_Object prop;
784 prop = XCONS (tail)->car;
785
786 /* Is this particular property rear-sticky?
787 Note, if REAR isn't a cons, it must be non-nil,
788 which means that all properties are rear-nonsticky. */
789 if (CONSP (rear) && NILP (Fmemq (prop, rear)))
790 continue;
791
792 /* Is this particular property front-sticky?
793 Note, if FRONT isn't a cons, it must be nil,
794 which means that all properties are front-nonsticky. */
795 if (CONSP (front) && ! NILP (Fmemq (prop, front)))
796 continue;
797
798 /* PROP isn't sticky on either side => it is a real problem. */
799 break;
800 }
801
802 /* If any property is a real problem, split the interval. */
803 if (! NILP (tail))
804 {
805 temp = split_interval_right (i, position - i->position);
806 copy_properties (i, temp);
807 i = temp;
808 }
809 }
810
811 /* If we are positioned between intervals, check the stickiness of
812 both of them. We have to do this too, if we are at BEG or Z. */
813 if (position == i->position || eobp)
814 {
815 register INTERVAL prev;
816
817 if (position == BEG)
818 prev = 0;
819 else if (eobp)
820 {
821 prev = i;
822 i = 0;
823 }
824 else
825 prev = previous_interval (i);
826
827 /* Even if we are positioned between intervals, we default
828 to the left one if it exists. We extend it now and split
829 off a part later, if stickiness demands it. */
830 for (temp = prev ? prev : i;! NULL_INTERVAL_P (temp); temp = temp->parent)
831 {
832 temp->total_length += length;
833 temp = balance_possible_root_interval (temp);
834 }
835
836 /* If at least one interval has sticky properties,
837 we check the stickiness property by property. */
838 if (END_NONSTICKY_P (prev) || FRONT_STICKY_P (i))
839 {
840 Lisp_Object pleft, pright;
841 struct interval newi;
842
843 pleft = NULL_INTERVAL_P (prev) ? Qnil : prev->plist;
844 pright = NULL_INTERVAL_P (i) ? Qnil : i->plist;
845 newi.plist = merge_properties_sticky (pleft, pright);
846
847 if(! prev) /* i.e. position == BEG */
848 {
849 if (! intervals_equal (i, &newi))
850 {
851 i = split_interval_left (i, length);
852 i->plist = newi.plist;
853 }
854 }
855 else if (! intervals_equal (prev, &newi))
856 {
857 prev = split_interval_right (prev,
858 position - prev->position);
859 prev->plist = newi.plist;
860 if (! NULL_INTERVAL_P (i)
861 && intervals_equal (prev, i))
862 merge_interval_right (prev);
863 }
864
865 /* We will need to update the cache here later. */
866 }
867 else if (! prev && ! NILP (i->plist))
868 {
869 /* Just split off a new interval at the left.
870 Since I wasn't front-sticky, the empty plist is ok. */
871 i = split_interval_left (i, length);
872 }
873 }
874
875 /* Otherwise just extend the interval. */
876 else
877 {
878 for (temp = i; ! NULL_INTERVAL_P (temp); temp = temp->parent)
879 {
880 temp->total_length += length;
881 temp = balance_possible_root_interval (temp);
882 }
883 }
884
885 return tree;
886 }
887
888 /* Any property might be front-sticky on the left, rear-sticky on the left,
889 front-sticky on the right, or rear-sticky on the right; the 16 combinations
890 can be arranged in a matrix with rows denoting the left conditions and
891 columns denoting the right conditions:
892 _ __ _
893 _ FR FR FR FR
894 FR__ 0 1 2 3
895 _FR 4 5 6 7
896 FR 8 9 A B
897 FR C D E F
898
899 left-props = '(front-sticky (p8 p9 pa pb pc pd pe pf)
900 rear-nonsticky (p4 p5 p6 p7 p8 p9 pa pb)
901 p0 L p1 L p2 L p3 L p4 L p5 L p6 L p7 L
902 p8 L p9 L pa L pb L pc L pd L pe L pf L)
903 right-props = '(front-sticky (p2 p3 p6 p7 pa pb pe pf)
904 rear-nonsticky (p1 p2 p5 p6 p9 pa pd pe)
905 p0 R p1 R p2 R p3 R p4 R p5 R p6 R p7 R
906 p8 R p9 R pa R pb R pc R pd R pe R pf R)
907
908 We inherit from whoever has a sticky side facing us. If both sides
909 do (cases 2, 3, E, and F), then we inherit from whichever side has a
910 non-nil value for the current property. If both sides do, then we take
911 from the left.
912
913 When we inherit a property, we get its stickiness as well as its value.
914 So, when we merge the above two lists, we expect to get this:
915
916 result = '(front-sticky (p6 p7 pa pb pc pd pe pf)
917 rear-nonsticky (p6 pa)
918 p0 L p1 L p2 L p3 L p6 R p7 R
919 pa R pb R pc L pd L pe L pf L)
920
921 The optimizable special cases are:
922 left rear-nonsticky = nil, right front-sticky = nil (inherit left)
923 left rear-nonsticky = t, right front-sticky = t (inherit right)
924 left rear-nonsticky = t, right front-sticky = nil (inherit none)
925 */
926
927 Lisp_Object
928 merge_properties_sticky (pleft, pright)
929 Lisp_Object pleft, pright;
930 {
931 register Lisp_Object props, front, rear;
932 Lisp_Object lfront, lrear, rfront, rrear;
933 register Lisp_Object tail1, tail2, sym, lval, rval, cat;
934 int use_left, use_right;
935 int lpresent;
936
937 props = Qnil;
938 front = Qnil;
939 rear = Qnil;
940 lfront = textget (pleft, Qfront_sticky);
941 lrear = textget (pleft, Qrear_nonsticky);
942 rfront = textget (pright, Qfront_sticky);
943 rrear = textget (pright, Qrear_nonsticky);
944
945 /* Go through each element of PRIGHT. */
946 for (tail1 = pright; ! NILP (tail1); tail1 = Fcdr (Fcdr (tail1)))
947 {
948 sym = Fcar (tail1);
949
950 /* Sticky properties get special treatment. */
951 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
952 continue;
953
954 rval = Fcar (Fcdr (tail1));
955 for (tail2 = pleft; ! NILP (tail2); tail2 = Fcdr (Fcdr (tail2)))
956 if (EQ (sym, Fcar (tail2)))
957 break;
958
959 /* Indicate whether the property is explicitly defined on the left.
960 (We know it is defined explicitly on the right
961 because otherwise we don't get here.) */
962 lpresent = ! NILP (tail2);
963 lval = (NILP (tail2) ? Qnil : Fcar (Fcdr (tail2)));
964
965 use_left = ! TMEM (sym, lrear) && lpresent;
966 use_right = TMEM (sym, rfront);
967 if (use_left && use_right)
968 {
969 if (NILP (lval))
970 use_left = 0;
971 else if (NILP (rval))
972 use_right = 0;
973 }
974 if (use_left)
975 {
976 /* We build props as (value sym ...) rather than (sym value ...)
977 because we plan to nreverse it when we're done. */
978 props = Fcons (lval, Fcons (sym, props));
979 if (TMEM (sym, lfront))
980 front = Fcons (sym, front);
981 if (TMEM (sym, lrear))
982 rear = Fcons (sym, rear);
983 }
984 else if (use_right)
985 {
986 props = Fcons (rval, Fcons (sym, props));
987 if (TMEM (sym, rfront))
988 front = Fcons (sym, front);
989 if (TMEM (sym, rrear))
990 rear = Fcons (sym, rear);
991 }
992 }
993
994 /* Now go through each element of PLEFT. */
995 for (tail2 = pleft; ! NILP (tail2); tail2 = Fcdr (Fcdr (tail2)))
996 {
997 sym = Fcar (tail2);
998
999 /* Sticky properties get special treatment. */
1000 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1001 continue;
1002
1003 /* If sym is in PRIGHT, we've already considered it. */
1004 for (tail1 = pright; ! NILP (tail1); tail1 = Fcdr (Fcdr (tail1)))
1005 if (EQ (sym, Fcar (tail1)))
1006 break;
1007 if (! NILP (tail1))
1008 continue;
1009
1010 lval = Fcar (Fcdr (tail2));
1011
1012 /* Since rval is known to be nil in this loop, the test simplifies. */
1013 if (! TMEM (sym, lrear))
1014 {
1015 props = Fcons (lval, Fcons (sym, props));
1016 if (TMEM (sym, lfront))
1017 front = Fcons (sym, front);
1018 }
1019 else if (TMEM (sym, rfront))
1020 {
1021 /* The value is nil, but we still inherit the stickiness
1022 from the right. */
1023 front = Fcons (sym, front);
1024 if (TMEM (sym, rrear))
1025 rear = Fcons (sym, rear);
1026 }
1027 }
1028 props = Fnreverse (props);
1029 if (! NILP (rear))
1030 props = Fcons (Qrear_nonsticky, Fcons (Fnreverse (rear), props));
1031
1032 cat = textget (props, Qcategory);
1033 if (! NILP (front)
1034 &&
1035 /* If we have inherited a front-stick category property that is t,
1036 we don't need to set up a detailed one. */
1037 ! (! NILP (cat) && SYMBOLP (cat)
1038 && EQ (Fget (cat, Qfront_sticky), Qt)))
1039 props = Fcons (Qfront_sticky, Fcons (Fnreverse (front), props));
1040 return props;
1041 }
1042
1043 \f
1044 /* Delete an node I from its interval tree by merging its subtrees
1045 into one subtree which is then returned. Caller is responsible for
1046 storing the resulting subtree into its parent. */
1047
1048 static INTERVAL
1049 delete_node (i)
1050 register INTERVAL i;
1051 {
1052 register INTERVAL migrate, this;
1053 register int migrate_amt;
1054
1055 if (NULL_INTERVAL_P (i->left))
1056 return i->right;
1057 if (NULL_INTERVAL_P (i->right))
1058 return i->left;
1059
1060 migrate = i->left;
1061 migrate_amt = i->left->total_length;
1062 this = i->right;
1063 this->total_length += migrate_amt;
1064 while (! NULL_INTERVAL_P (this->left))
1065 {
1066 this = this->left;
1067 this->total_length += migrate_amt;
1068 }
1069 this->left = migrate;
1070 migrate->parent = this;
1071
1072 return i->right;
1073 }
1074
1075 /* Delete interval I from its tree by calling `delete_node'
1076 and properly connecting the resultant subtree.
1077
1078 I is presumed to be empty; that is, no adjustments are made
1079 for the length of I. */
1080
1081 void
1082 delete_interval (i)
1083 register INTERVAL i;
1084 {
1085 register INTERVAL parent;
1086 int amt = LENGTH (i);
1087
1088 if (amt > 0) /* Only used on zero-length intervals now. */
1089 abort ();
1090
1091 if (ROOT_INTERVAL_P (i))
1092 {
1093 Lisp_Object owner;
1094 owner = (Lisp_Object) i->parent;
1095 parent = delete_node (i);
1096 if (! NULL_INTERVAL_P (parent))
1097 parent->parent = (INTERVAL) owner;
1098
1099 if (BUFFERP (owner))
1100 BUF_INTERVALS (XBUFFER (owner)) = parent;
1101 else if (STRINGP (owner))
1102 XSTRING (owner)->intervals = parent;
1103 else
1104 abort ();
1105
1106 return;
1107 }
1108
1109 parent = i->parent;
1110 if (AM_LEFT_CHILD (i))
1111 {
1112 parent->left = delete_node (i);
1113 if (! NULL_INTERVAL_P (parent->left))
1114 parent->left->parent = parent;
1115 }
1116 else
1117 {
1118 parent->right = delete_node (i);
1119 if (! NULL_INTERVAL_P (parent->right))
1120 parent->right->parent = parent;
1121 }
1122 }
1123 \f
1124 /* Find the interval in TREE corresponding to the relative position
1125 FROM and delete as much as possible of AMOUNT from that interval.
1126 Return the amount actually deleted, and if the interval was
1127 zeroed-out, delete that interval node from the tree.
1128
1129 Note that FROM is actually origin zero, aka relative to the
1130 leftmost edge of tree. This is appropriate since we call ourselves
1131 recursively on subtrees.
1132
1133 Do this by recursing down TREE to the interval in question, and
1134 deleting the appropriate amount of text. */
1135
1136 static int
1137 interval_deletion_adjustment (tree, from, amount)
1138 register INTERVAL tree;
1139 register int from, amount;
1140 {
1141 register int relative_position = from;
1142
1143 if (NULL_INTERVAL_P (tree))
1144 return 0;
1145
1146 /* Left branch */
1147 if (relative_position < LEFT_TOTAL_LENGTH (tree))
1148 {
1149 int subtract = interval_deletion_adjustment (tree->left,
1150 relative_position,
1151 amount);
1152 tree->total_length -= subtract;
1153 return subtract;
1154 }
1155 /* Right branch */
1156 else if (relative_position >= (TOTAL_LENGTH (tree)
1157 - RIGHT_TOTAL_LENGTH (tree)))
1158 {
1159 int subtract;
1160
1161 relative_position -= (tree->total_length
1162 - RIGHT_TOTAL_LENGTH (tree));
1163 subtract = interval_deletion_adjustment (tree->right,
1164 relative_position,
1165 amount);
1166 tree->total_length -= subtract;
1167 return subtract;
1168 }
1169 /* Here -- this node. */
1170 else
1171 {
1172 /* How much can we delete from this interval? */
1173 int my_amount = ((tree->total_length
1174 - RIGHT_TOTAL_LENGTH (tree))
1175 - relative_position);
1176
1177 if (amount > my_amount)
1178 amount = my_amount;
1179
1180 tree->total_length -= amount;
1181 if (LENGTH (tree) == 0)
1182 delete_interval (tree);
1183
1184 return amount;
1185 }
1186
1187 /* Never reach here. */
1188 }
1189
1190 /* Effect the adjustments necessary to the interval tree of BUFFER to
1191 correspond to the deletion of LENGTH characters from that buffer
1192 text. The deletion is effected at position START (which is a
1193 buffer position, i.e. origin 1). */
1194
1195 static void
1196 adjust_intervals_for_deletion (buffer, start, length)
1197 struct buffer *buffer;
1198 int start, length;
1199 {
1200 register int left_to_delete = length;
1201 register INTERVAL tree = BUF_INTERVALS (buffer);
1202 register int deleted;
1203
1204 if (NULL_INTERVAL_P (tree))
1205 return;
1206
1207 if (start > BEG + TOTAL_LENGTH (tree)
1208 || start + length > BEG + TOTAL_LENGTH (tree))
1209 abort ();
1210
1211 if (length == TOTAL_LENGTH (tree))
1212 {
1213 BUF_INTERVALS (buffer) = NULL_INTERVAL;
1214 return;
1215 }
1216
1217 if (ONLY_INTERVAL_P (tree))
1218 {
1219 tree->total_length -= length;
1220 return;
1221 }
1222
1223 if (start > BEG + TOTAL_LENGTH (tree))
1224 start = BEG + TOTAL_LENGTH (tree);
1225 while (left_to_delete > 0)
1226 {
1227 left_to_delete -= interval_deletion_adjustment (tree, start - 1,
1228 left_to_delete);
1229 tree = BUF_INTERVALS (buffer);
1230 if (left_to_delete == tree->total_length)
1231 {
1232 BUF_INTERVALS (buffer) = NULL_INTERVAL;
1233 return;
1234 }
1235 }
1236 }
1237 \f
1238 /* Make the adjustments necessary to the interval tree of BUFFER to
1239 represent an addition or deletion of LENGTH characters starting
1240 at position START. Addition or deletion is indicated by the sign
1241 of LENGTH. */
1242
1243 INLINE void
1244 offset_intervals (buffer, start, length)
1245 struct buffer *buffer;
1246 int start, length;
1247 {
1248 if (NULL_INTERVAL_P (BUF_INTERVALS (buffer)) || length == 0)
1249 return;
1250
1251 if (length > 0)
1252 adjust_intervals_for_insertion (BUF_INTERVALS (buffer), start, length);
1253 else
1254 adjust_intervals_for_deletion (buffer, start, -length);
1255 }
1256 \f
1257 /* Merge interval I with its lexicographic successor. The resulting
1258 interval is returned, and has the properties of the original
1259 successor. The properties of I are lost. I is removed from the
1260 interval tree.
1261
1262 IMPORTANT:
1263 The caller must verify that this is not the last (rightmost)
1264 interval. */
1265
1266 INTERVAL
1267 merge_interval_right (i)
1268 register INTERVAL i;
1269 {
1270 register int absorb = LENGTH (i);
1271 register INTERVAL successor;
1272
1273 /* Zero out this interval. */
1274 i->total_length -= absorb;
1275
1276 /* Find the succeeding interval. */
1277 if (! NULL_RIGHT_CHILD (i)) /* It's below us. Add absorb
1278 as we descend. */
1279 {
1280 successor = i->right;
1281 while (! NULL_LEFT_CHILD (successor))
1282 {
1283 successor->total_length += absorb;
1284 successor = successor->left;
1285 }
1286
1287 successor->total_length += absorb;
1288 delete_interval (i);
1289 return successor;
1290 }
1291
1292 successor = i;
1293 while (! NULL_PARENT (successor)) /* It's above us. Subtract as
1294 we ascend. */
1295 {
1296 if (AM_LEFT_CHILD (successor))
1297 {
1298 successor = successor->parent;
1299 delete_interval (i);
1300 return successor;
1301 }
1302
1303 successor = successor->parent;
1304 successor->total_length -= absorb;
1305 }
1306
1307 /* This must be the rightmost or last interval and cannot
1308 be merged right. The caller should have known. */
1309 abort ();
1310 }
1311 \f
1312 /* Merge interval I with its lexicographic predecessor. The resulting
1313 interval is returned, and has the properties of the original predecessor.
1314 The properties of I are lost. Interval node I is removed from the tree.
1315
1316 IMPORTANT:
1317 The caller must verify that this is not the first (leftmost) interval. */
1318
1319 INTERVAL
1320 merge_interval_left (i)
1321 register INTERVAL i;
1322 {
1323 register int absorb = LENGTH (i);
1324 register INTERVAL predecessor;
1325
1326 /* Zero out this interval. */
1327 i->total_length -= absorb;
1328
1329 /* Find the preceding interval. */
1330 if (! NULL_LEFT_CHILD (i)) /* It's below us. Go down,
1331 adding ABSORB as we go. */
1332 {
1333 predecessor = i->left;
1334 while (! NULL_RIGHT_CHILD (predecessor))
1335 {
1336 predecessor->total_length += absorb;
1337 predecessor = predecessor->right;
1338 }
1339
1340 predecessor->total_length += absorb;
1341 delete_interval (i);
1342 return predecessor;
1343 }
1344
1345 predecessor = i;
1346 while (! NULL_PARENT (predecessor)) /* It's above us. Go up,
1347 subtracting ABSORB. */
1348 {
1349 if (AM_RIGHT_CHILD (predecessor))
1350 {
1351 predecessor = predecessor->parent;
1352 delete_interval (i);
1353 return predecessor;
1354 }
1355
1356 predecessor = predecessor->parent;
1357 predecessor->total_length -= absorb;
1358 }
1359
1360 /* This must be the leftmost or first interval and cannot
1361 be merged left. The caller should have known. */
1362 abort ();
1363 }
1364 \f
1365 /* Make an exact copy of interval tree SOURCE which descends from
1366 PARENT. This is done by recursing through SOURCE, copying
1367 the current interval and its properties, and then adjusting
1368 the pointers of the copy. */
1369
1370 static INTERVAL
1371 reproduce_tree (source, parent)
1372 INTERVAL source, parent;
1373 {
1374 register INTERVAL t = make_interval ();
1375
1376 bcopy (source, t, INTERVAL_SIZE);
1377 copy_properties (source, t);
1378 t->parent = parent;
1379 if (! NULL_LEFT_CHILD (source))
1380 t->left = reproduce_tree (source->left, t);
1381 if (! NULL_RIGHT_CHILD (source))
1382 t->right = reproduce_tree (source->right, t);
1383
1384 return t;
1385 }
1386
1387 #if 0
1388 /* Nobody calls this. Perhaps it's a vestige of an earlier design. */
1389
1390 /* Make a new interval of length LENGTH starting at START in the
1391 group of intervals INTERVALS, which is actually an interval tree.
1392 Returns the new interval.
1393
1394 Generate an error if the new positions would overlap an existing
1395 interval. */
1396
1397 static INTERVAL
1398 make_new_interval (intervals, start, length)
1399 INTERVAL intervals;
1400 int start, length;
1401 {
1402 INTERVAL slot;
1403
1404 slot = find_interval (intervals, start);
1405 if (start + length > slot->position + LENGTH (slot))
1406 error ("Interval would overlap");
1407
1408 if (start == slot->position && length == LENGTH (slot))
1409 return slot;
1410
1411 if (slot->position == start)
1412 {
1413 /* New right node. */
1414 split_interval_right (slot, length);
1415 return slot;
1416 }
1417
1418 if (slot->position + LENGTH (slot) == start + length)
1419 {
1420 /* New left node. */
1421 split_interval_left (slot, LENGTH (slot) - length);
1422 return slot;
1423 }
1424
1425 /* Convert interval SLOT into three intervals. */
1426 split_interval_left (slot, start - slot->position);
1427 split_interval_right (slot, length);
1428 return slot;
1429 }
1430 #endif
1431 \f
1432 /* Insert the intervals of SOURCE into BUFFER at POSITION.
1433 LENGTH is the length of the text in SOURCE.
1434
1435 This is used in insdel.c when inserting Lisp_Strings into the
1436 buffer. The text corresponding to SOURCE is already in the buffer
1437 when this is called. The intervals of new tree are a copy of those
1438 belonging to the string being inserted; intervals are never
1439 shared.
1440
1441 If the inserted text had no intervals associated, and we don't
1442 want to inherit the surrounding text's properties, this function
1443 simply returns -- offset_intervals should handle placing the
1444 text in the correct interval, depending on the sticky bits.
1445
1446 If the inserted text had properties (intervals), then there are two
1447 cases -- either insertion happened in the middle of some interval,
1448 or between two intervals.
1449
1450 If the text goes into the middle of an interval, then new
1451 intervals are created in the middle with only the properties of
1452 the new text, *unless* the macro MERGE_INSERTIONS is true, in
1453 which case the new text has the union of its properties and those
1454 of the text into which it was inserted.
1455
1456 If the text goes between two intervals, then if neither interval
1457 had its appropriate sticky property set (front_sticky, rear_sticky),
1458 the new text has only its properties. If one of the sticky properties
1459 is set, then the new text "sticks" to that region and its properties
1460 depend on merging as above. If both the preceding and succeeding
1461 intervals to the new text are "sticky", then the new text retains
1462 only its properties, as if neither sticky property were set. Perhaps
1463 we should consider merging all three sets of properties onto the new
1464 text... */
1465
1466 void
1467 graft_intervals_into_buffer (source, position, length, buffer, inherit)
1468 INTERVAL source;
1469 int position, length;
1470 struct buffer *buffer;
1471 int inherit;
1472 {
1473 register INTERVAL under, over, this, prev;
1474 register INTERVAL tree;
1475 int middle;
1476
1477 tree = BUF_INTERVALS (buffer);
1478
1479 /* If the new text has no properties, it becomes part of whatever
1480 interval it was inserted into. */
1481 if (NULL_INTERVAL_P (source))
1482 {
1483 Lisp_Object buf;
1484 if (!inherit && ! NULL_INTERVAL_P (tree))
1485 {
1486 XSETBUFFER (buf, buffer);
1487 Fset_text_properties (make_number (position),
1488 make_number (position + length),
1489 Qnil, buf);
1490 }
1491 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer)))
1492 BUF_INTERVALS (buffer) = balance_an_interval (BUF_INTERVALS (buffer));
1493 return;
1494 }
1495
1496 if (NULL_INTERVAL_P (tree))
1497 {
1498 /* The inserted text constitutes the whole buffer, so
1499 simply copy over the interval structure. */
1500 if ((BUF_Z (buffer) - BUF_BEG (buffer)) == TOTAL_LENGTH (source))
1501 {
1502 Lisp_Object buf;
1503 XSETBUFFER (buf, buffer);
1504 BUF_INTERVALS (buffer) = reproduce_tree (source, buf);
1505 /* Explicitly free the old tree here. */
1506
1507 return;
1508 }
1509
1510 /* Create an interval tree in which to place a copy
1511 of the intervals of the inserted string. */
1512 {
1513 Lisp_Object buf;
1514 XSETBUFFER (buf, buffer);
1515 tree = create_root_interval (buf);
1516 }
1517 }
1518 else if (TOTAL_LENGTH (tree) == TOTAL_LENGTH (source))
1519 /* If the buffer contains only the new string, but
1520 there was already some interval tree there, then it may be
1521 some zero length intervals. Eventually, do something clever
1522 about inserting properly. For now, just waste the old intervals. */
1523 {
1524 BUF_INTERVALS (buffer) = reproduce_tree (source, tree->parent);
1525 /* Explicitly free the old tree here. */
1526
1527 return;
1528 }
1529 /* Paranoia -- the text has already been added, so this buffer
1530 should be of non-zero length. */
1531 else if (TOTAL_LENGTH (tree) == 0)
1532 abort ();
1533
1534 this = under = find_interval (tree, position);
1535 if (NULL_INTERVAL_P (under)) /* Paranoia */
1536 abort ();
1537 over = find_interval (source, 1);
1538
1539 /* Here for insertion in the middle of an interval.
1540 Split off an equivalent interval to the right,
1541 then don't bother with it any more. */
1542
1543 if (position > under->position)
1544 {
1545 INTERVAL end_unchanged
1546 = split_interval_left (this, position - under->position);
1547 copy_properties (under, end_unchanged);
1548 under->position = position;
1549 prev = 0;
1550 middle = 1;
1551 }
1552 else
1553 {
1554 prev = previous_interval (under);
1555 if (prev && !END_NONSTICKY_P (prev))
1556 prev = 0;
1557 }
1558
1559 /* Insertion is now at beginning of UNDER. */
1560
1561 /* The inserted text "sticks" to the interval `under',
1562 which means it gets those properties.
1563 The properties of under are the result of
1564 adjust_intervals_for_insertion, so stickiness has
1565 already been taken care of. */
1566
1567 while (! NULL_INTERVAL_P (over))
1568 {
1569 if (LENGTH (over) < LENGTH (under))
1570 {
1571 this = split_interval_left (under, LENGTH (over));
1572 copy_properties (under, this);
1573 }
1574 else
1575 this = under;
1576 copy_properties (over, this);
1577 if (inherit)
1578 merge_properties (over, this);
1579 else
1580 copy_properties (over, this);
1581 over = next_interval (over);
1582 }
1583
1584 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer)))
1585 BUF_INTERVALS (buffer) = balance_an_interval (BUF_INTERVALS (buffer));
1586 return;
1587 }
1588
1589 /* Get the value of property PROP from PLIST,
1590 which is the plist of an interval.
1591 We check for direct properties, for categories with property PROP,
1592 and for PROP appearing on the default-text-properties list. */
1593
1594 Lisp_Object
1595 textget (plist, prop)
1596 Lisp_Object plist;
1597 register Lisp_Object prop;
1598 {
1599 register Lisp_Object tail, fallback;
1600 fallback = Qnil;
1601
1602 for (tail = plist; !NILP (tail); tail = Fcdr (Fcdr (tail)))
1603 {
1604 register Lisp_Object tem;
1605 tem = Fcar (tail);
1606 if (EQ (prop, tem))
1607 return Fcar (Fcdr (tail));
1608 if (EQ (tem, Qcategory))
1609 {
1610 tem = Fcar (Fcdr (tail));
1611 if (SYMBOLP (tem))
1612 fallback = Fget (tem, prop);
1613 }
1614 }
1615
1616 if (! NILP (fallback))
1617 return fallback;
1618 if (CONSP (Vdefault_text_properties))
1619 return Fplist_get (Vdefault_text_properties, prop);
1620 return Qnil;
1621 }
1622
1623 \f
1624 /* Set point in BUFFER to POSITION. If the target position is
1625 before an intangible character, move to an ok place. */
1626
1627 void
1628 set_point (position, buffer)
1629 register int position;
1630 register struct buffer *buffer;
1631 {
1632 register INTERVAL to, from, toprev, fromprev, target;
1633 int buffer_point;
1634 register Lisp_Object obj;
1635 int old_position = BUF_PT (buffer);
1636 int backwards = (position < old_position ? 1 : 0);
1637 int have_overlays;
1638 int original_position;
1639
1640 buffer->point_before_scroll = Qnil;
1641
1642 if (position == BUF_PT (buffer))
1643 return;
1644
1645 /* Check this now, before checking if the buffer has any intervals.
1646 That way, we can catch conditions which break this sanity check
1647 whether or not there are intervals in the buffer. */
1648 if (position > BUF_ZV (buffer) || position < BUF_BEGV (buffer))
1649 abort ();
1650
1651 have_overlays = (! NILP (buffer->overlays_before)
1652 || ! NILP (buffer->overlays_after));
1653
1654 /* If we have no text properties and overlays,
1655 then we can do it quickly. */
1656 if (NULL_INTERVAL_P (BUF_INTERVALS (buffer)) && ! have_overlays)
1657 {
1658 BUF_PT (buffer) = position;
1659 return;
1660 }
1661
1662 /* Set TO to the interval containing the char after POSITION,
1663 and TOPREV to the interval containing the char before POSITION.
1664 Either one may be null. They may be equal. */
1665 to = find_interval (BUF_INTERVALS (buffer), position);
1666 if (position == BUF_BEGV (buffer))
1667 toprev = 0;
1668 else if (to && to->position == position)
1669 toprev = previous_interval (to);
1670 else
1671 toprev = to;
1672
1673 buffer_point = (BUF_PT (buffer) == BUF_ZV (buffer)
1674 ? BUF_ZV (buffer) - 1
1675 : BUF_PT (buffer));
1676
1677 /* Set FROM to the interval containing the char after PT,
1678 and FROMPREV to the interval containing the char before PT.
1679 Either one may be null. They may be equal. */
1680 /* We could cache this and save time. */
1681 from = find_interval (BUF_INTERVALS (buffer), buffer_point);
1682 if (buffer_point == BUF_BEGV (buffer))
1683 fromprev = 0;
1684 else if (from && from->position == BUF_PT (buffer))
1685 fromprev = previous_interval (from);
1686 else if (buffer_point != BUF_PT (buffer))
1687 fromprev = from, from = 0;
1688 else
1689 fromprev = from;
1690
1691 /* Moving within an interval. */
1692 if (to == from && toprev == fromprev && INTERVAL_VISIBLE_P (to)
1693 && ! have_overlays)
1694 {
1695 BUF_PT (buffer) = position;
1696 return;
1697 }
1698
1699 original_position = position;
1700
1701 /* If the new position is between two intangible characters
1702 with the same intangible property value,
1703 move forward or backward until a change in that property. */
1704 if (NILP (Vinhibit_point_motion_hooks)
1705 && ((! NULL_INTERVAL_P (to) && ! NULL_INTERVAL_P (toprev))
1706 || have_overlays)
1707 /* Intangibility never stops us from positioning at the beginning
1708 or end of the buffer, so don't bother checking in that case. */
1709 && position != BEGV && position != ZV)
1710 {
1711 Lisp_Object intangible_propval;
1712 Lisp_Object pos;
1713
1714 XSETINT (pos, position);
1715
1716 if (backwards)
1717 {
1718 intangible_propval = Fget_char_property (make_number (position),
1719 Qintangible, Qnil);
1720
1721 /* If following char is intangible,
1722 skip back over all chars with matching intangible property. */
1723 if (! NILP (intangible_propval))
1724 while (XINT (pos) > BUF_BEGV (buffer)
1725 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
1726 Qintangible, Qnil),
1727 intangible_propval))
1728 pos = Fprevious_char_property_change (pos, Qnil);
1729 }
1730 else
1731 {
1732 intangible_propval = Fget_char_property (make_number (position - 1),
1733 Qintangible, Qnil);
1734
1735 /* If following char is intangible,
1736 skip back over all chars with matching intangible property. */
1737 if (! NILP (intangible_propval))
1738 while (XINT (pos) < BUF_ZV (buffer)
1739 && EQ (Fget_char_property (pos, Qintangible, Qnil),
1740 intangible_propval))
1741 pos = Fnext_char_property_change (pos, Qnil);
1742
1743 }
1744
1745 position = XINT (pos);
1746 }
1747
1748 if (position != original_position)
1749 {
1750 /* Set TO to the interval containing the char after POSITION,
1751 and TOPREV to the interval containing the char before POSITION.
1752 Either one may be null. They may be equal. */
1753 to = find_interval (BUF_INTERVALS (buffer), position);
1754 if (position == BUF_BEGV (buffer))
1755 toprev = 0;
1756 else if (to && to->position == position)
1757 toprev = previous_interval (to);
1758 else
1759 toprev = to;
1760 }
1761
1762 /* Here TO is the interval after the stopping point
1763 and TOPREV is the interval before the stopping point.
1764 One or the other may be null. */
1765
1766 BUF_PT (buffer) = position;
1767
1768 /* We run point-left and point-entered hooks here, iff the
1769 two intervals are not equivalent. These hooks take
1770 (old_point, new_point) as arguments. */
1771 if (NILP (Vinhibit_point_motion_hooks)
1772 && (! intervals_equal (from, to)
1773 || ! intervals_equal (fromprev, toprev)))
1774 {
1775 Lisp_Object leave_after, leave_before, enter_after, enter_before;
1776
1777 if (fromprev)
1778 leave_after = textget (fromprev->plist, Qpoint_left);
1779 else
1780 leave_after = Qnil;
1781 if (from)
1782 leave_before = textget (from->plist, Qpoint_left);
1783 else
1784 leave_before = Qnil;
1785
1786 if (toprev)
1787 enter_after = textget (toprev->plist, Qpoint_entered);
1788 else
1789 enter_after = Qnil;
1790 if (to)
1791 enter_before = textget (to->plist, Qpoint_entered);
1792 else
1793 enter_before = Qnil;
1794
1795 if (! EQ (leave_before, enter_before) && !NILP (leave_before))
1796 call2 (leave_before, old_position, position);
1797 if (! EQ (leave_after, enter_after) && !NILP (leave_after))
1798 call2 (leave_after, old_position, position);
1799
1800 if (! EQ (enter_before, leave_before) && !NILP (enter_before))
1801 call2 (enter_before, old_position, position);
1802 if (! EQ (enter_after, leave_after) && !NILP (enter_after))
1803 call2 (enter_after, old_position, position);
1804 }
1805 }
1806
1807 /* Set point temporarily, without checking any text properties. */
1808
1809 INLINE void
1810 temp_set_point (position, buffer)
1811 int position;
1812 struct buffer *buffer;
1813 {
1814 BUF_PT (buffer) = position;
1815 }
1816 \f
1817 /* Return the proper local map for position POSITION in BUFFER.
1818 Use the map specified by the local-map property, if any.
1819 Otherwise, use BUFFER's local map. */
1820
1821 Lisp_Object
1822 get_local_map (position, buffer)
1823 register int position;
1824 register struct buffer *buffer;
1825 {
1826 Lisp_Object prop, tem, lispy_position, lispy_buffer;
1827 int old_begv, old_zv;
1828
1829 /* Perhaps we should just change `position' to the limit. */
1830 if (position > BUF_Z (buffer) || position < BUF_BEG (buffer))
1831 abort ();
1832
1833 /* Ignore narrowing, so that a local map continues to be valid even if
1834 the visible region contains no characters and hence no properties. */
1835 old_begv = BUF_BEGV (buffer);
1836 old_zv = BUF_ZV (buffer);
1837 BUF_BEGV (buffer) = BUF_BEG (buffer);
1838 BUF_ZV (buffer) = BUF_Z (buffer);
1839
1840 /* There are no properties at the end of the buffer, so in that case
1841 check for a local map on the last character of the buffer instead. */
1842 if (position == BUF_Z (buffer) && BUF_Z (buffer) > BUF_BEG (buffer))
1843 --position;
1844 XSETFASTINT (lispy_position, position);
1845 XSETBUFFER (lispy_buffer, buffer);
1846 prop = Fget_char_property (lispy_position, Qlocal_map, lispy_buffer);
1847
1848 BUF_BEGV (buffer) = old_begv;
1849 BUF_ZV (buffer) = old_zv;
1850
1851 /* Use the local map only if it is valid. */
1852 /* Do allow symbols that are defined as keymaps. */
1853 if (SYMBOLP (prop) && !NILP (prop))
1854 prop = Findirect_function (prop);
1855 if (!NILP (prop)
1856 && (tem = Fkeymapp (prop), !NILP (tem)))
1857 return prop;
1858
1859 return buffer->keymap;
1860 }
1861 \f
1862 /* Produce an interval tree reflecting the intervals in
1863 TREE from START to START + LENGTH. */
1864
1865 INTERVAL
1866 copy_intervals (tree, start, length)
1867 INTERVAL tree;
1868 int start, length;
1869 {
1870 register INTERVAL i, new, t;
1871 register int got, prevlen;
1872
1873 if (NULL_INTERVAL_P (tree) || length <= 0)
1874 return NULL_INTERVAL;
1875
1876 i = find_interval (tree, start);
1877 if (NULL_INTERVAL_P (i) || LENGTH (i) == 0)
1878 abort ();
1879
1880 /* If there is only one interval and it's the default, return nil. */
1881 if ((start - i->position + 1 + length) < LENGTH (i)
1882 && DEFAULT_INTERVAL_P (i))
1883 return NULL_INTERVAL;
1884
1885 new = make_interval ();
1886 new->position = 1;
1887 got = (LENGTH (i) - (start - i->position));
1888 new->total_length = length;
1889 copy_properties (i, new);
1890
1891 t = new;
1892 prevlen = got;
1893 while (got < length)
1894 {
1895 i = next_interval (i);
1896 t = split_interval_right (t, prevlen);
1897 copy_properties (i, t);
1898 prevlen = LENGTH (i);
1899 got += prevlen;
1900 }
1901
1902 return balance_an_interval (new);
1903 }
1904
1905 /* Give STRING the properties of BUFFER from POSITION to LENGTH. */
1906
1907 INLINE void
1908 copy_intervals_to_string (string, buffer, position, length)
1909 Lisp_Object string;
1910 struct buffer *buffer;
1911 int position, length;
1912 {
1913 INTERVAL interval_copy = copy_intervals (BUF_INTERVALS (buffer),
1914 position, length);
1915 if (NULL_INTERVAL_P (interval_copy))
1916 return;
1917
1918 interval_copy->parent = (INTERVAL) string;
1919 XSTRING (string)->intervals = interval_copy;
1920 }
1921 \f
1922 /* Return 1 if string S1 and S2 have identical properties; 0 otherwise.
1923 Assume they have identical characters. */
1924
1925 int
1926 compare_string_intervals (s1, s2)
1927 Lisp_Object s1, s2;
1928 {
1929 INTERVAL i1, i2;
1930 int pos = 1;
1931 int end = XSTRING (s1)->size + 1;
1932
1933 /* We specify 1 as position because the interval functions
1934 always use positions starting at 1. */
1935 i1 = find_interval (XSTRING (s1)->intervals, 1);
1936 i2 = find_interval (XSTRING (s2)->intervals, 1);
1937
1938 while (pos < end)
1939 {
1940 /* Determine how far we can go before we reach the end of I1 or I2. */
1941 int len1 = (i1 != 0 ? INTERVAL_LAST_POS (i1) : end) - pos;
1942 int len2 = (i2 != 0 ? INTERVAL_LAST_POS (i2) : end) - pos;
1943 int distance = min (len1, len2);
1944
1945 /* If we ever find a mismatch between the strings,
1946 they differ. */
1947 if (! intervals_equal (i1, i2))
1948 return 0;
1949
1950 /* Advance POS till the end of the shorter interval,
1951 and advance one or both interval pointers for the new position. */
1952 pos += distance;
1953 if (len1 == distance)
1954 i1 = next_interval (i1);
1955 if (len2 == distance)
1956 i2 = next_interval (i2);
1957 }
1958 return 1;
1959 }
1960
1961 #endif /* USE_TEXT_PROPERTIES */