]> code.delx.au - gnu-emacs/blob - src/alloc.c
Merge from emacs-24; up to 2014-07-26T11:58:24Z!schwab@linux-m68k.org
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2014 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
29
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
33
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45 #ifdef HAVE_WINDOW_SYSTEM
46 #include TERM_HEADER
47 #endif /* HAVE_WINDOW_SYSTEM */
48
49 #include <verify.h>
50 #include <execinfo.h> /* For backtrace. */
51
52 #ifdef HAVE_LINUX_SYSINFO
53 #include <sys/sysinfo.h>
54 #endif
55
56 #ifdef MSDOS
57 #include "dosfns.h" /* For dos_memory_info. */
58 #endif
59
60 #if (defined ENABLE_CHECKING \
61 && defined HAVE_VALGRIND_VALGRIND_H \
62 && !defined USE_VALGRIND)
63 # define USE_VALGRIND 1
64 #endif
65
66 #if USE_VALGRIND
67 #include <valgrind/valgrind.h>
68 #include <valgrind/memcheck.h>
69 static bool valgrind_p;
70 #endif
71
72 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
73 Doable only if GC_MARK_STACK. */
74 #if ! GC_MARK_STACK
75 # undef GC_CHECK_MARKED_OBJECTS
76 #endif
77
78 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
79 memory. Can do this only if using gmalloc.c and if not checking
80 marked objects. */
81
82 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
83 || defined HYBRID_MALLOC || defined GC_CHECK_MARKED_OBJECTS)
84 #undef GC_MALLOC_CHECK
85 #endif
86
87 #include <unistd.h>
88 #include <fcntl.h>
89
90 #ifdef USE_GTK
91 # include "gtkutil.h"
92 #endif
93 #ifdef WINDOWSNT
94 #include "w32.h"
95 #include "w32heap.h" /* for sbrk */
96 #endif
97
98 #ifdef DOUG_LEA_MALLOC
99
100 #include <malloc.h>
101
102 /* Specify maximum number of areas to mmap. It would be nice to use a
103 value that explicitly means "no limit". */
104
105 #define MMAP_MAX_AREAS 100000000
106
107 #endif /* not DOUG_LEA_MALLOC */
108
109 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
110 to a struct Lisp_String. */
111
112 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
113 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
114 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
115
116 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
117 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
118 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
119
120 /* Default value of gc_cons_threshold (see below). */
121
122 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
123
124 /* Global variables. */
125 struct emacs_globals globals;
126
127 /* Number of bytes of consing done since the last gc. */
128
129 EMACS_INT consing_since_gc;
130
131 /* Similar minimum, computed from Vgc_cons_percentage. */
132
133 EMACS_INT gc_relative_threshold;
134
135 /* Minimum number of bytes of consing since GC before next GC,
136 when memory is full. */
137
138 EMACS_INT memory_full_cons_threshold;
139
140 /* True during GC. */
141
142 bool gc_in_progress;
143
144 /* True means abort if try to GC.
145 This is for code which is written on the assumption that
146 no GC will happen, so as to verify that assumption. */
147
148 bool abort_on_gc;
149
150 /* Number of live and free conses etc. */
151
152 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
153 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
154 static EMACS_INT total_free_floats, total_floats;
155
156 /* Points to memory space allocated as "spare", to be freed if we run
157 out of memory. We keep one large block, four cons-blocks, and
158 two string blocks. */
159
160 static char *spare_memory[7];
161
162 /* Amount of spare memory to keep in large reserve block, or to see
163 whether this much is available when malloc fails on a larger request. */
164
165 #define SPARE_MEMORY (1 << 14)
166
167 /* Initialize it to a nonzero value to force it into data space
168 (rather than bss space). That way unexec will remap it into text
169 space (pure), on some systems. We have not implemented the
170 remapping on more recent systems because this is less important
171 nowadays than in the days of small memories and timesharing. */
172
173 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
174 #define PUREBEG (char *) pure
175
176 /* Pointer to the pure area, and its size. */
177
178 static char *purebeg;
179 static ptrdiff_t pure_size;
180
181 /* Number of bytes of pure storage used before pure storage overflowed.
182 If this is non-zero, this implies that an overflow occurred. */
183
184 static ptrdiff_t pure_bytes_used_before_overflow;
185
186 /* True if P points into pure space. */
187
188 #define PURE_POINTER_P(P) \
189 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
190
191 /* Index in pure at which next pure Lisp object will be allocated.. */
192
193 static ptrdiff_t pure_bytes_used_lisp;
194
195 /* Number of bytes allocated for non-Lisp objects in pure storage. */
196
197 static ptrdiff_t pure_bytes_used_non_lisp;
198
199 /* If nonzero, this is a warning delivered by malloc and not yet
200 displayed. */
201
202 const char *pending_malloc_warning;
203
204 #if 0 /* Normally, pointer sanity only on request... */
205 #ifdef ENABLE_CHECKING
206 #define SUSPICIOUS_OBJECT_CHECKING 1
207 #endif
208 #endif
209
210 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
211 bug is unresolved. */
212 #define SUSPICIOUS_OBJECT_CHECKING 1
213
214 #ifdef SUSPICIOUS_OBJECT_CHECKING
215 struct suspicious_free_record
216 {
217 void *suspicious_object;
218 void *backtrace[128];
219 };
220 static void *suspicious_objects[32];
221 static int suspicious_object_index;
222 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
223 static int suspicious_free_history_index;
224 /* Find the first currently-monitored suspicious pointer in range
225 [begin,end) or NULL if no such pointer exists. */
226 static void *find_suspicious_object_in_range (void *begin, void *end);
227 static void detect_suspicious_free (void *ptr);
228 #else
229 # define find_suspicious_object_in_range(begin, end) NULL
230 # define detect_suspicious_free(ptr) (void)
231 #endif
232
233 /* Maximum amount of C stack to save when a GC happens. */
234
235 #ifndef MAX_SAVE_STACK
236 #define MAX_SAVE_STACK 16000
237 #endif
238
239 /* Buffer in which we save a copy of the C stack at each GC. */
240
241 #if MAX_SAVE_STACK > 0
242 static char *stack_copy;
243 static ptrdiff_t stack_copy_size;
244
245 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
246 avoiding any address sanitization. */
247
248 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
249 no_sanitize_memcpy (void *dest, void const *src, size_t size)
250 {
251 if (! ADDRESS_SANITIZER)
252 return memcpy (dest, src, size);
253 else
254 {
255 size_t i;
256 char *d = dest;
257 char const *s = src;
258 for (i = 0; i < size; i++)
259 d[i] = s[i];
260 return dest;
261 }
262 }
263
264 #endif /* MAX_SAVE_STACK > 0 */
265
266 static Lisp_Object Qconses;
267 static Lisp_Object Qsymbols;
268 static Lisp_Object Qmiscs;
269 static Lisp_Object Qstrings;
270 static Lisp_Object Qvectors;
271 static Lisp_Object Qfloats;
272 static Lisp_Object Qintervals;
273 static Lisp_Object Qbuffers;
274 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
275 static Lisp_Object Qgc_cons_threshold;
276 Lisp_Object Qautomatic_gc;
277 Lisp_Object Qchar_table_extra_slots;
278
279 /* Hook run after GC has finished. */
280
281 static Lisp_Object Qpost_gc_hook;
282
283 static void mark_terminals (void);
284 static void gc_sweep (void);
285 static Lisp_Object make_pure_vector (ptrdiff_t);
286 static void mark_buffer (struct buffer *);
287
288 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
289 static void refill_memory_reserve (void);
290 #endif
291 static void compact_small_strings (void);
292 static void free_large_strings (void);
293 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
294
295 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
296 what memory allocated via lisp_malloc and lisp_align_malloc is intended
297 for what purpose. This enumeration specifies the type of memory. */
298
299 enum mem_type
300 {
301 MEM_TYPE_NON_LISP,
302 MEM_TYPE_BUFFER,
303 MEM_TYPE_CONS,
304 MEM_TYPE_STRING,
305 MEM_TYPE_MISC,
306 MEM_TYPE_SYMBOL,
307 MEM_TYPE_FLOAT,
308 /* Since all non-bool pseudovectors are small enough to be
309 allocated from vector blocks, this memory type denotes
310 large regular vectors and large bool pseudovectors. */
311 MEM_TYPE_VECTORLIKE,
312 /* Special type to denote vector blocks. */
313 MEM_TYPE_VECTOR_BLOCK,
314 /* Special type to denote reserved memory. */
315 MEM_TYPE_SPARE
316 };
317
318 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
319
320 /* A unique object in pure space used to make some Lisp objects
321 on free lists recognizable in O(1). */
322
323 static Lisp_Object Vdead;
324 #define DEADP(x) EQ (x, Vdead)
325
326 #ifdef GC_MALLOC_CHECK
327
328 enum mem_type allocated_mem_type;
329
330 #endif /* GC_MALLOC_CHECK */
331
332 /* A node in the red-black tree describing allocated memory containing
333 Lisp data. Each such block is recorded with its start and end
334 address when it is allocated, and removed from the tree when it
335 is freed.
336
337 A red-black tree is a balanced binary tree with the following
338 properties:
339
340 1. Every node is either red or black.
341 2. Every leaf is black.
342 3. If a node is red, then both of its children are black.
343 4. Every simple path from a node to a descendant leaf contains
344 the same number of black nodes.
345 5. The root is always black.
346
347 When nodes are inserted into the tree, or deleted from the tree,
348 the tree is "fixed" so that these properties are always true.
349
350 A red-black tree with N internal nodes has height at most 2
351 log(N+1). Searches, insertions and deletions are done in O(log N).
352 Please see a text book about data structures for a detailed
353 description of red-black trees. Any book worth its salt should
354 describe them. */
355
356 struct mem_node
357 {
358 /* Children of this node. These pointers are never NULL. When there
359 is no child, the value is MEM_NIL, which points to a dummy node. */
360 struct mem_node *left, *right;
361
362 /* The parent of this node. In the root node, this is NULL. */
363 struct mem_node *parent;
364
365 /* Start and end of allocated region. */
366 void *start, *end;
367
368 /* Node color. */
369 enum {MEM_BLACK, MEM_RED} color;
370
371 /* Memory type. */
372 enum mem_type type;
373 };
374
375 /* Base address of stack. Set in main. */
376
377 Lisp_Object *stack_base;
378
379 /* Root of the tree describing allocated Lisp memory. */
380
381 static struct mem_node *mem_root;
382
383 /* Lowest and highest known address in the heap. */
384
385 static void *min_heap_address, *max_heap_address;
386
387 /* Sentinel node of the tree. */
388
389 static struct mem_node mem_z;
390 #define MEM_NIL &mem_z
391
392 static struct mem_node *mem_insert (void *, void *, enum mem_type);
393 static void mem_insert_fixup (struct mem_node *);
394 static void mem_rotate_left (struct mem_node *);
395 static void mem_rotate_right (struct mem_node *);
396 static void mem_delete (struct mem_node *);
397 static void mem_delete_fixup (struct mem_node *);
398 static struct mem_node *mem_find (void *);
399
400 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
401
402 #ifndef DEADP
403 # define DEADP(x) 0
404 #endif
405
406 /* Recording what needs to be marked for gc. */
407
408 struct gcpro *gcprolist;
409
410 /* Addresses of staticpro'd variables. Initialize it to a nonzero
411 value; otherwise some compilers put it into BSS. */
412
413 enum { NSTATICS = 2048 };
414 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
415
416 /* Index of next unused slot in staticvec. */
417
418 static int staticidx;
419
420 static void *pure_alloc (size_t, int);
421
422 /* Return X rounded to the next multiple of Y. Arguments should not
423 have side effects, as they are evaluated more than once. Assume X
424 + Y - 1 does not overflow. Tune for Y being a power of 2. */
425
426 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
427 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
428 : ((x) + (y) - 1) & ~ ((y) - 1))
429
430 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
431
432 static void *
433 ALIGN (void *ptr, int alignment)
434 {
435 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
436 }
437
438 static void
439 XFLOAT_INIT (Lisp_Object f, double n)
440 {
441 XFLOAT (f)->u.data = n;
442 }
443
444 static bool
445 pointers_fit_in_lispobj_p (void)
446 {
447 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
448 }
449
450 static bool
451 mmap_lisp_allowed_p (void)
452 {
453 /* If we can't store all memory addresses in our lisp objects, it's
454 risky to let the heap use mmap and give us addresses from all
455 over our address space. We also can't use mmap for lisp objects
456 if we might dump: unexec doesn't preserve the contents of mmapped
457 regions. */
458 return pointers_fit_in_lispobj_p () && !might_dump;
459 }
460
461 \f
462 /************************************************************************
463 Malloc
464 ************************************************************************/
465
466 /* Function malloc calls this if it finds we are near exhausting storage. */
467
468 void
469 malloc_warning (const char *str)
470 {
471 pending_malloc_warning = str;
472 }
473
474
475 /* Display an already-pending malloc warning. */
476
477 void
478 display_malloc_warning (void)
479 {
480 call3 (intern ("display-warning"),
481 intern ("alloc"),
482 build_string (pending_malloc_warning),
483 intern ("emergency"));
484 pending_malloc_warning = 0;
485 }
486 \f
487 /* Called if we can't allocate relocatable space for a buffer. */
488
489 void
490 buffer_memory_full (ptrdiff_t nbytes)
491 {
492 /* If buffers use the relocating allocator, no need to free
493 spare_memory, because we may have plenty of malloc space left
494 that we could get, and if we don't, the malloc that fails will
495 itself cause spare_memory to be freed. If buffers don't use the
496 relocating allocator, treat this like any other failing
497 malloc. */
498
499 #ifndef REL_ALLOC
500 memory_full (nbytes);
501 #else
502 /* This used to call error, but if we've run out of memory, we could
503 get infinite recursion trying to build the string. */
504 xsignal (Qnil, Vmemory_signal_data);
505 #endif
506 }
507
508 /* A common multiple of the positive integers A and B. Ideally this
509 would be the least common multiple, but there's no way to do that
510 as a constant expression in C, so do the best that we can easily do. */
511 #define COMMON_MULTIPLE(a, b) \
512 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
513
514 #ifndef XMALLOC_OVERRUN_CHECK
515 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
516 #else
517
518 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
519 around each block.
520
521 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
522 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
523 block size in little-endian order. The trailer consists of
524 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
525
526 The header is used to detect whether this block has been allocated
527 through these functions, as some low-level libc functions may
528 bypass the malloc hooks. */
529
530 #define XMALLOC_OVERRUN_CHECK_SIZE 16
531 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
532 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
533
534 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
535 hold a size_t value and (2) the header size is a multiple of the
536 alignment that Emacs needs for C types and for USE_LSB_TAG. */
537 #define XMALLOC_BASE_ALIGNMENT \
538 alignof (union { long double d; intmax_t i; void *p; })
539
540 #if USE_LSB_TAG
541 # define XMALLOC_HEADER_ALIGNMENT \
542 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
543 #else
544 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
545 #endif
546 #define XMALLOC_OVERRUN_SIZE_SIZE \
547 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
548 + XMALLOC_HEADER_ALIGNMENT - 1) \
549 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
550 - XMALLOC_OVERRUN_CHECK_SIZE)
551
552 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
553 { '\x9a', '\x9b', '\xae', '\xaf',
554 '\xbf', '\xbe', '\xce', '\xcf',
555 '\xea', '\xeb', '\xec', '\xed',
556 '\xdf', '\xde', '\x9c', '\x9d' };
557
558 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
559 { '\xaa', '\xab', '\xac', '\xad',
560 '\xba', '\xbb', '\xbc', '\xbd',
561 '\xca', '\xcb', '\xcc', '\xcd',
562 '\xda', '\xdb', '\xdc', '\xdd' };
563
564 /* Insert and extract the block size in the header. */
565
566 static void
567 xmalloc_put_size (unsigned char *ptr, size_t size)
568 {
569 int i;
570 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
571 {
572 *--ptr = size & ((1 << CHAR_BIT) - 1);
573 size >>= CHAR_BIT;
574 }
575 }
576
577 static size_t
578 xmalloc_get_size (unsigned char *ptr)
579 {
580 size_t size = 0;
581 int i;
582 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
583 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
584 {
585 size <<= CHAR_BIT;
586 size += *ptr++;
587 }
588 return size;
589 }
590
591
592 /* Like malloc, but wraps allocated block with header and trailer. */
593
594 static void *
595 overrun_check_malloc (size_t size)
596 {
597 register unsigned char *val;
598 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
599 emacs_abort ();
600
601 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
602 if (val)
603 {
604 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
605 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
606 xmalloc_put_size (val, size);
607 memcpy (val + size, xmalloc_overrun_check_trailer,
608 XMALLOC_OVERRUN_CHECK_SIZE);
609 }
610 return val;
611 }
612
613
614 /* Like realloc, but checks old block for overrun, and wraps new block
615 with header and trailer. */
616
617 static void *
618 overrun_check_realloc (void *block, size_t size)
619 {
620 register unsigned char *val = (unsigned char *) block;
621 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
622 emacs_abort ();
623
624 if (val
625 && memcmp (xmalloc_overrun_check_header,
626 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
627 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
628 {
629 size_t osize = xmalloc_get_size (val);
630 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
631 XMALLOC_OVERRUN_CHECK_SIZE))
632 emacs_abort ();
633 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
634 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
635 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
636 }
637
638 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
639
640 if (val)
641 {
642 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
643 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
644 xmalloc_put_size (val, size);
645 memcpy (val + size, xmalloc_overrun_check_trailer,
646 XMALLOC_OVERRUN_CHECK_SIZE);
647 }
648 return val;
649 }
650
651 /* Like free, but checks block for overrun. */
652
653 static void
654 overrun_check_free (void *block)
655 {
656 unsigned char *val = (unsigned char *) block;
657
658 if (val
659 && memcmp (xmalloc_overrun_check_header,
660 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
661 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
662 {
663 size_t osize = xmalloc_get_size (val);
664 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
665 XMALLOC_OVERRUN_CHECK_SIZE))
666 emacs_abort ();
667 #ifdef XMALLOC_CLEAR_FREE_MEMORY
668 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
669 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
670 #else
671 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
672 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
673 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
674 #endif
675 }
676
677 free (val);
678 }
679
680 #undef malloc
681 #undef realloc
682 #undef free
683 #define malloc overrun_check_malloc
684 #define realloc overrun_check_realloc
685 #define free overrun_check_free
686 #endif
687
688 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
689 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
690 If that variable is set, block input while in one of Emacs's memory
691 allocation functions. There should be no need for this debugging
692 option, since signal handlers do not allocate memory, but Emacs
693 formerly allocated memory in signal handlers and this compile-time
694 option remains as a way to help debug the issue should it rear its
695 ugly head again. */
696 #ifdef XMALLOC_BLOCK_INPUT_CHECK
697 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
698 static void
699 malloc_block_input (void)
700 {
701 if (block_input_in_memory_allocators)
702 block_input ();
703 }
704 static void
705 malloc_unblock_input (void)
706 {
707 if (block_input_in_memory_allocators)
708 unblock_input ();
709 }
710 # define MALLOC_BLOCK_INPUT malloc_block_input ()
711 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
712 #else
713 # define MALLOC_BLOCK_INPUT ((void) 0)
714 # define MALLOC_UNBLOCK_INPUT ((void) 0)
715 #endif
716
717 #define MALLOC_PROBE(size) \
718 do { \
719 if (profiler_memory_running) \
720 malloc_probe (size); \
721 } while (0)
722
723
724 /* Like malloc but check for no memory and block interrupt input.. */
725
726 void *
727 xmalloc (size_t size)
728 {
729 void *val;
730
731 MALLOC_BLOCK_INPUT;
732 val = malloc (size);
733 MALLOC_UNBLOCK_INPUT;
734
735 if (!val && size)
736 memory_full (size);
737 MALLOC_PROBE (size);
738 return val;
739 }
740
741 /* Like the above, but zeroes out the memory just allocated. */
742
743 void *
744 xzalloc (size_t size)
745 {
746 void *val;
747
748 MALLOC_BLOCK_INPUT;
749 val = malloc (size);
750 MALLOC_UNBLOCK_INPUT;
751
752 if (!val && size)
753 memory_full (size);
754 memset (val, 0, size);
755 MALLOC_PROBE (size);
756 return val;
757 }
758
759 /* Like realloc but check for no memory and block interrupt input.. */
760
761 void *
762 xrealloc (void *block, size_t size)
763 {
764 void *val;
765
766 MALLOC_BLOCK_INPUT;
767 /* We must call malloc explicitly when BLOCK is 0, since some
768 reallocs don't do this. */
769 if (! block)
770 val = malloc (size);
771 else
772 val = realloc (block, size);
773 MALLOC_UNBLOCK_INPUT;
774
775 if (!val && size)
776 memory_full (size);
777 MALLOC_PROBE (size);
778 return val;
779 }
780
781
782 /* Like free but block interrupt input. */
783
784 void
785 xfree (void *block)
786 {
787 if (!block)
788 return;
789 MALLOC_BLOCK_INPUT;
790 free (block);
791 MALLOC_UNBLOCK_INPUT;
792 /* We don't call refill_memory_reserve here
793 because in practice the call in r_alloc_free seems to suffice. */
794 }
795
796
797 /* Other parts of Emacs pass large int values to allocator functions
798 expecting ptrdiff_t. This is portable in practice, but check it to
799 be safe. */
800 verify (INT_MAX <= PTRDIFF_MAX);
801
802
803 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
804 Signal an error on memory exhaustion, and block interrupt input. */
805
806 void *
807 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
808 {
809 eassert (0 <= nitems && 0 < item_size);
810 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
811 memory_full (SIZE_MAX);
812 return xmalloc (nitems * item_size);
813 }
814
815
816 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
817 Signal an error on memory exhaustion, and block interrupt input. */
818
819 void *
820 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
821 {
822 eassert (0 <= nitems && 0 < item_size);
823 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
824 memory_full (SIZE_MAX);
825 return xrealloc (pa, nitems * item_size);
826 }
827
828
829 /* Grow PA, which points to an array of *NITEMS items, and return the
830 location of the reallocated array, updating *NITEMS to reflect its
831 new size. The new array will contain at least NITEMS_INCR_MIN more
832 items, but will not contain more than NITEMS_MAX items total.
833 ITEM_SIZE is the size of each item, in bytes.
834
835 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
836 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
837 infinity.
838
839 If PA is null, then allocate a new array instead of reallocating
840 the old one.
841
842 Block interrupt input as needed. If memory exhaustion occurs, set
843 *NITEMS to zero if PA is null, and signal an error (i.e., do not
844 return).
845
846 Thus, to grow an array A without saving its old contents, do
847 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
848 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
849 and signals an error, and later this code is reexecuted and
850 attempts to free A. */
851
852 void *
853 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
854 ptrdiff_t nitems_max, ptrdiff_t item_size)
855 {
856 /* The approximate size to use for initial small allocation
857 requests. This is the largest "small" request for the GNU C
858 library malloc. */
859 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
860
861 /* If the array is tiny, grow it to about (but no greater than)
862 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
863 ptrdiff_t n = *nitems;
864 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
865 ptrdiff_t half_again = n >> 1;
866 ptrdiff_t incr_estimate = max (tiny_max, half_again);
867
868 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
869 NITEMS_MAX, and what the C language can represent safely. */
870 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
871 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
872 ? nitems_max : C_language_max);
873 ptrdiff_t nitems_incr_max = n_max - n;
874 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
875
876 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
877 if (! pa)
878 *nitems = 0;
879 if (nitems_incr_max < incr)
880 memory_full (SIZE_MAX);
881 n += incr;
882 pa = xrealloc (pa, n * item_size);
883 *nitems = n;
884 return pa;
885 }
886
887
888 /* Like strdup, but uses xmalloc. */
889
890 char *
891 xstrdup (const char *s)
892 {
893 ptrdiff_t size;
894 eassert (s);
895 size = strlen (s) + 1;
896 return memcpy (xmalloc (size), s, size);
897 }
898
899 /* Like above, but duplicates Lisp string to C string. */
900
901 char *
902 xlispstrdup (Lisp_Object string)
903 {
904 ptrdiff_t size = SBYTES (string) + 1;
905 return memcpy (xmalloc (size), SSDATA (string), size);
906 }
907
908 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
909 pointed to. If STRING is null, assign it without copying anything.
910 Allocate before freeing, to avoid a dangling pointer if allocation
911 fails. */
912
913 void
914 dupstring (char **ptr, char const *string)
915 {
916 char *old = *ptr;
917 *ptr = string ? xstrdup (string) : 0;
918 xfree (old);
919 }
920
921
922 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
923 argument is a const pointer. */
924
925 void
926 xputenv (char const *string)
927 {
928 if (putenv ((char *) string) != 0)
929 memory_full (0);
930 }
931
932 /* Return a newly allocated memory block of SIZE bytes, remembering
933 to free it when unwinding. */
934 void *
935 record_xmalloc (size_t size)
936 {
937 void *p = xmalloc (size);
938 record_unwind_protect_ptr (xfree, p);
939 return p;
940 }
941
942
943 /* Like malloc but used for allocating Lisp data. NBYTES is the
944 number of bytes to allocate, TYPE describes the intended use of the
945 allocated memory block (for strings, for conses, ...). */
946
947 #if ! USE_LSB_TAG
948 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
949 #endif
950
951 static void *
952 lisp_malloc (size_t nbytes, enum mem_type type)
953 {
954 register void *val;
955
956 MALLOC_BLOCK_INPUT;
957
958 #ifdef GC_MALLOC_CHECK
959 allocated_mem_type = type;
960 #endif
961
962 val = malloc (nbytes);
963
964 #if ! USE_LSB_TAG
965 /* If the memory just allocated cannot be addressed thru a Lisp
966 object's pointer, and it needs to be,
967 that's equivalent to running out of memory. */
968 if (val && type != MEM_TYPE_NON_LISP)
969 {
970 Lisp_Object tem;
971 XSETCONS (tem, (char *) val + nbytes - 1);
972 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
973 {
974 lisp_malloc_loser = val;
975 free (val);
976 val = 0;
977 }
978 }
979 #endif
980
981 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
982 if (val && type != MEM_TYPE_NON_LISP)
983 mem_insert (val, (char *) val + nbytes, type);
984 #endif
985
986 MALLOC_UNBLOCK_INPUT;
987 if (!val && nbytes)
988 memory_full (nbytes);
989 MALLOC_PROBE (nbytes);
990 return val;
991 }
992
993 /* Free BLOCK. This must be called to free memory allocated with a
994 call to lisp_malloc. */
995
996 static void
997 lisp_free (void *block)
998 {
999 MALLOC_BLOCK_INPUT;
1000 free (block);
1001 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1002 mem_delete (mem_find (block));
1003 #endif
1004 MALLOC_UNBLOCK_INPUT;
1005 }
1006
1007 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1008
1009 /* The entry point is lisp_align_malloc which returns blocks of at most
1010 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1011
1012 /* Use aligned_alloc if it or a simple substitute is available.
1013 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1014 clang 3.3 anyway. */
1015
1016 #if ! ADDRESS_SANITIZER
1017 # if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC && !defined HYBRID_MALLOC
1018 # define USE_ALIGNED_ALLOC 1
1019 /* Defined in gmalloc.c. */
1020 void *aligned_alloc (size_t, size_t);
1021 # elif defined HYBRID_MALLOC
1022 # if defined ALIGNED_ALLOC || defined HAVE_POSIX_MEMALIGN
1023 # define USE_ALIGNED_ALLOC 1
1024 # define aligned_alloc hybrid_aligned_alloc
1025 /* Defined in gmalloc.c. */
1026 void *aligned_alloc (size_t, size_t);
1027 # endif
1028 # elif defined HAVE_ALIGNED_ALLOC
1029 # define USE_ALIGNED_ALLOC 1
1030 # elif defined HAVE_POSIX_MEMALIGN
1031 # define USE_ALIGNED_ALLOC 1
1032 static void *
1033 aligned_alloc (size_t alignment, size_t size)
1034 {
1035 void *p;
1036 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1037 }
1038 # endif
1039 #endif
1040
1041 /* BLOCK_ALIGN has to be a power of 2. */
1042 #define BLOCK_ALIGN (1 << 10)
1043
1044 /* Padding to leave at the end of a malloc'd block. This is to give
1045 malloc a chance to minimize the amount of memory wasted to alignment.
1046 It should be tuned to the particular malloc library used.
1047 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1048 aligned_alloc on the other hand would ideally prefer a value of 4
1049 because otherwise, there's 1020 bytes wasted between each ablocks.
1050 In Emacs, testing shows that those 1020 can most of the time be
1051 efficiently used by malloc to place other objects, so a value of 0 can
1052 still preferable unless you have a lot of aligned blocks and virtually
1053 nothing else. */
1054 #define BLOCK_PADDING 0
1055 #define BLOCK_BYTES \
1056 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1057
1058 /* Internal data structures and constants. */
1059
1060 #define ABLOCKS_SIZE 16
1061
1062 /* An aligned block of memory. */
1063 struct ablock
1064 {
1065 union
1066 {
1067 char payload[BLOCK_BYTES];
1068 struct ablock *next_free;
1069 } x;
1070 /* `abase' is the aligned base of the ablocks. */
1071 /* It is overloaded to hold the virtual `busy' field that counts
1072 the number of used ablock in the parent ablocks.
1073 The first ablock has the `busy' field, the others have the `abase'
1074 field. To tell the difference, we assume that pointers will have
1075 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1076 is used to tell whether the real base of the parent ablocks is `abase'
1077 (if not, the word before the first ablock holds a pointer to the
1078 real base). */
1079 struct ablocks *abase;
1080 /* The padding of all but the last ablock is unused. The padding of
1081 the last ablock in an ablocks is not allocated. */
1082 #if BLOCK_PADDING
1083 char padding[BLOCK_PADDING];
1084 #endif
1085 };
1086
1087 /* A bunch of consecutive aligned blocks. */
1088 struct ablocks
1089 {
1090 struct ablock blocks[ABLOCKS_SIZE];
1091 };
1092
1093 /* Size of the block requested from malloc or aligned_alloc. */
1094 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1095
1096 #define ABLOCK_ABASE(block) \
1097 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1098 ? (struct ablocks *)(block) \
1099 : (block)->abase)
1100
1101 /* Virtual `busy' field. */
1102 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1103
1104 /* Pointer to the (not necessarily aligned) malloc block. */
1105 #ifdef USE_ALIGNED_ALLOC
1106 #define ABLOCKS_BASE(abase) (abase)
1107 #else
1108 #define ABLOCKS_BASE(abase) \
1109 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1110 #endif
1111
1112 /* The list of free ablock. */
1113 static struct ablock *free_ablock;
1114
1115 /* Allocate an aligned block of nbytes.
1116 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1117 smaller or equal to BLOCK_BYTES. */
1118 static void *
1119 lisp_align_malloc (size_t nbytes, enum mem_type type)
1120 {
1121 void *base, *val;
1122 struct ablocks *abase;
1123
1124 eassert (nbytes <= BLOCK_BYTES);
1125
1126 MALLOC_BLOCK_INPUT;
1127
1128 #ifdef GC_MALLOC_CHECK
1129 allocated_mem_type = type;
1130 #endif
1131
1132 if (!free_ablock)
1133 {
1134 int i;
1135 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1136
1137 #ifdef DOUG_LEA_MALLOC
1138 if (!mmap_lisp_allowed_p ())
1139 mallopt (M_MMAP_MAX, 0);
1140 #endif
1141
1142 #ifdef USE_ALIGNED_ALLOC
1143 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1144 #else
1145 base = malloc (ABLOCKS_BYTES);
1146 abase = ALIGN (base, BLOCK_ALIGN);
1147 #endif
1148
1149 if (base == 0)
1150 {
1151 MALLOC_UNBLOCK_INPUT;
1152 memory_full (ABLOCKS_BYTES);
1153 }
1154
1155 aligned = (base == abase);
1156 if (!aligned)
1157 ((void **) abase)[-1] = base;
1158
1159 #ifdef DOUG_LEA_MALLOC
1160 if (!mmap_lisp_allowed_p ())
1161 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1162 #endif
1163
1164 #if ! USE_LSB_TAG
1165 /* If the memory just allocated cannot be addressed thru a Lisp
1166 object's pointer, and it needs to be, that's equivalent to
1167 running out of memory. */
1168 if (type != MEM_TYPE_NON_LISP)
1169 {
1170 Lisp_Object tem;
1171 char *end = (char *) base + ABLOCKS_BYTES - 1;
1172 XSETCONS (tem, end);
1173 if ((char *) XCONS (tem) != end)
1174 {
1175 lisp_malloc_loser = base;
1176 free (base);
1177 MALLOC_UNBLOCK_INPUT;
1178 memory_full (SIZE_MAX);
1179 }
1180 }
1181 #endif
1182
1183 /* Initialize the blocks and put them on the free list.
1184 If `base' was not properly aligned, we can't use the last block. */
1185 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1186 {
1187 abase->blocks[i].abase = abase;
1188 abase->blocks[i].x.next_free = free_ablock;
1189 free_ablock = &abase->blocks[i];
1190 }
1191 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1192
1193 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1194 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1195 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1196 eassert (ABLOCKS_BASE (abase) == base);
1197 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1198 }
1199
1200 abase = ABLOCK_ABASE (free_ablock);
1201 ABLOCKS_BUSY (abase)
1202 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1203 val = free_ablock;
1204 free_ablock = free_ablock->x.next_free;
1205
1206 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1207 if (type != MEM_TYPE_NON_LISP)
1208 mem_insert (val, (char *) val + nbytes, type);
1209 #endif
1210
1211 MALLOC_UNBLOCK_INPUT;
1212
1213 MALLOC_PROBE (nbytes);
1214
1215 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1216 return val;
1217 }
1218
1219 static void
1220 lisp_align_free (void *block)
1221 {
1222 struct ablock *ablock = block;
1223 struct ablocks *abase = ABLOCK_ABASE (ablock);
1224
1225 MALLOC_BLOCK_INPUT;
1226 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1227 mem_delete (mem_find (block));
1228 #endif
1229 /* Put on free list. */
1230 ablock->x.next_free = free_ablock;
1231 free_ablock = ablock;
1232 /* Update busy count. */
1233 ABLOCKS_BUSY (abase)
1234 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1235
1236 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1237 { /* All the blocks are free. */
1238 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1239 struct ablock **tem = &free_ablock;
1240 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1241
1242 while (*tem)
1243 {
1244 if (*tem >= (struct ablock *) abase && *tem < atop)
1245 {
1246 i++;
1247 *tem = (*tem)->x.next_free;
1248 }
1249 else
1250 tem = &(*tem)->x.next_free;
1251 }
1252 eassert ((aligned & 1) == aligned);
1253 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1254 #ifdef USE_POSIX_MEMALIGN
1255 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1256 #endif
1257 free (ABLOCKS_BASE (abase));
1258 }
1259 MALLOC_UNBLOCK_INPUT;
1260 }
1261
1262 \f
1263 /***********************************************************************
1264 Interval Allocation
1265 ***********************************************************************/
1266
1267 /* Number of intervals allocated in an interval_block structure.
1268 The 1020 is 1024 minus malloc overhead. */
1269
1270 #define INTERVAL_BLOCK_SIZE \
1271 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1272
1273 /* Intervals are allocated in chunks in the form of an interval_block
1274 structure. */
1275
1276 struct interval_block
1277 {
1278 /* Place `intervals' first, to preserve alignment. */
1279 struct interval intervals[INTERVAL_BLOCK_SIZE];
1280 struct interval_block *next;
1281 };
1282
1283 /* Current interval block. Its `next' pointer points to older
1284 blocks. */
1285
1286 static struct interval_block *interval_block;
1287
1288 /* Index in interval_block above of the next unused interval
1289 structure. */
1290
1291 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1292
1293 /* Number of free and live intervals. */
1294
1295 static EMACS_INT total_free_intervals, total_intervals;
1296
1297 /* List of free intervals. */
1298
1299 static INTERVAL interval_free_list;
1300
1301 /* Return a new interval. */
1302
1303 INTERVAL
1304 make_interval (void)
1305 {
1306 INTERVAL val;
1307
1308 MALLOC_BLOCK_INPUT;
1309
1310 if (interval_free_list)
1311 {
1312 val = interval_free_list;
1313 interval_free_list = INTERVAL_PARENT (interval_free_list);
1314 }
1315 else
1316 {
1317 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1318 {
1319 struct interval_block *newi
1320 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1321
1322 newi->next = interval_block;
1323 interval_block = newi;
1324 interval_block_index = 0;
1325 total_free_intervals += INTERVAL_BLOCK_SIZE;
1326 }
1327 val = &interval_block->intervals[interval_block_index++];
1328 }
1329
1330 MALLOC_UNBLOCK_INPUT;
1331
1332 consing_since_gc += sizeof (struct interval);
1333 intervals_consed++;
1334 total_free_intervals--;
1335 RESET_INTERVAL (val);
1336 val->gcmarkbit = 0;
1337 return val;
1338 }
1339
1340
1341 /* Mark Lisp objects in interval I. */
1342
1343 static void
1344 mark_interval (register INTERVAL i, Lisp_Object dummy)
1345 {
1346 /* Intervals should never be shared. So, if extra internal checking is
1347 enabled, GC aborts if it seems to have visited an interval twice. */
1348 eassert (!i->gcmarkbit);
1349 i->gcmarkbit = 1;
1350 mark_object (i->plist);
1351 }
1352
1353 /* Mark the interval tree rooted in I. */
1354
1355 #define MARK_INTERVAL_TREE(i) \
1356 do { \
1357 if (i && !i->gcmarkbit) \
1358 traverse_intervals_noorder (i, mark_interval, Qnil); \
1359 } while (0)
1360
1361 /***********************************************************************
1362 String Allocation
1363 ***********************************************************************/
1364
1365 /* Lisp_Strings are allocated in string_block structures. When a new
1366 string_block is allocated, all the Lisp_Strings it contains are
1367 added to a free-list string_free_list. When a new Lisp_String is
1368 needed, it is taken from that list. During the sweep phase of GC,
1369 string_blocks that are entirely free are freed, except two which
1370 we keep.
1371
1372 String data is allocated from sblock structures. Strings larger
1373 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1374 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1375
1376 Sblocks consist internally of sdata structures, one for each
1377 Lisp_String. The sdata structure points to the Lisp_String it
1378 belongs to. The Lisp_String points back to the `u.data' member of
1379 its sdata structure.
1380
1381 When a Lisp_String is freed during GC, it is put back on
1382 string_free_list, and its `data' member and its sdata's `string'
1383 pointer is set to null. The size of the string is recorded in the
1384 `n.nbytes' member of the sdata. So, sdata structures that are no
1385 longer used, can be easily recognized, and it's easy to compact the
1386 sblocks of small strings which we do in compact_small_strings. */
1387
1388 /* Size in bytes of an sblock structure used for small strings. This
1389 is 8192 minus malloc overhead. */
1390
1391 #define SBLOCK_SIZE 8188
1392
1393 /* Strings larger than this are considered large strings. String data
1394 for large strings is allocated from individual sblocks. */
1395
1396 #define LARGE_STRING_BYTES 1024
1397
1398 /* The SDATA typedef is a struct or union describing string memory
1399 sub-allocated from an sblock. This is where the contents of Lisp
1400 strings are stored. */
1401
1402 struct sdata
1403 {
1404 /* Back-pointer to the string this sdata belongs to. If null, this
1405 structure is free, and NBYTES (in this structure or in the union below)
1406 contains the string's byte size (the same value that STRING_BYTES
1407 would return if STRING were non-null). If non-null, STRING_BYTES
1408 (STRING) is the size of the data, and DATA contains the string's
1409 contents. */
1410 struct Lisp_String *string;
1411
1412 #ifdef GC_CHECK_STRING_BYTES
1413 ptrdiff_t nbytes;
1414 #endif
1415
1416 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1417 };
1418
1419 #ifdef GC_CHECK_STRING_BYTES
1420
1421 typedef struct sdata sdata;
1422 #define SDATA_NBYTES(S) (S)->nbytes
1423 #define SDATA_DATA(S) (S)->data
1424
1425 #else
1426
1427 typedef union
1428 {
1429 struct Lisp_String *string;
1430
1431 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1432 which has a flexible array member. However, if implemented by
1433 giving this union a member of type 'struct sdata', the union
1434 could not be the last (flexible) member of 'struct sblock',
1435 because C99 prohibits a flexible array member from having a type
1436 that is itself a flexible array. So, comment this member out here,
1437 but remember that the option's there when using this union. */
1438 #if 0
1439 struct sdata u;
1440 #endif
1441
1442 /* When STRING is null. */
1443 struct
1444 {
1445 struct Lisp_String *string;
1446 ptrdiff_t nbytes;
1447 } n;
1448 } sdata;
1449
1450 #define SDATA_NBYTES(S) (S)->n.nbytes
1451 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1452
1453 #endif /* not GC_CHECK_STRING_BYTES */
1454
1455 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1456
1457 /* Structure describing a block of memory which is sub-allocated to
1458 obtain string data memory for strings. Blocks for small strings
1459 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1460 as large as needed. */
1461
1462 struct sblock
1463 {
1464 /* Next in list. */
1465 struct sblock *next;
1466
1467 /* Pointer to the next free sdata block. This points past the end
1468 of the sblock if there isn't any space left in this block. */
1469 sdata *next_free;
1470
1471 /* String data. */
1472 sdata data[FLEXIBLE_ARRAY_MEMBER];
1473 };
1474
1475 /* Number of Lisp strings in a string_block structure. The 1020 is
1476 1024 minus malloc overhead. */
1477
1478 #define STRING_BLOCK_SIZE \
1479 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1480
1481 /* Structure describing a block from which Lisp_String structures
1482 are allocated. */
1483
1484 struct string_block
1485 {
1486 /* Place `strings' first, to preserve alignment. */
1487 struct Lisp_String strings[STRING_BLOCK_SIZE];
1488 struct string_block *next;
1489 };
1490
1491 /* Head and tail of the list of sblock structures holding Lisp string
1492 data. We always allocate from current_sblock. The NEXT pointers
1493 in the sblock structures go from oldest_sblock to current_sblock. */
1494
1495 static struct sblock *oldest_sblock, *current_sblock;
1496
1497 /* List of sblocks for large strings. */
1498
1499 static struct sblock *large_sblocks;
1500
1501 /* List of string_block structures. */
1502
1503 static struct string_block *string_blocks;
1504
1505 /* Free-list of Lisp_Strings. */
1506
1507 static struct Lisp_String *string_free_list;
1508
1509 /* Number of live and free Lisp_Strings. */
1510
1511 static EMACS_INT total_strings, total_free_strings;
1512
1513 /* Number of bytes used by live strings. */
1514
1515 static EMACS_INT total_string_bytes;
1516
1517 /* Given a pointer to a Lisp_String S which is on the free-list
1518 string_free_list, return a pointer to its successor in the
1519 free-list. */
1520
1521 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1522
1523 /* Return a pointer to the sdata structure belonging to Lisp string S.
1524 S must be live, i.e. S->data must not be null. S->data is actually
1525 a pointer to the `u.data' member of its sdata structure; the
1526 structure starts at a constant offset in front of that. */
1527
1528 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1529
1530
1531 #ifdef GC_CHECK_STRING_OVERRUN
1532
1533 /* We check for overrun in string data blocks by appending a small
1534 "cookie" after each allocated string data block, and check for the
1535 presence of this cookie during GC. */
1536
1537 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1538 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1539 { '\xde', '\xad', '\xbe', '\xef' };
1540
1541 #else
1542 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1543 #endif
1544
1545 /* Value is the size of an sdata structure large enough to hold NBYTES
1546 bytes of string data. The value returned includes a terminating
1547 NUL byte, the size of the sdata structure, and padding. */
1548
1549 #ifdef GC_CHECK_STRING_BYTES
1550
1551 #define SDATA_SIZE(NBYTES) \
1552 ((SDATA_DATA_OFFSET \
1553 + (NBYTES) + 1 \
1554 + sizeof (ptrdiff_t) - 1) \
1555 & ~(sizeof (ptrdiff_t) - 1))
1556
1557 #else /* not GC_CHECK_STRING_BYTES */
1558
1559 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1560 less than the size of that member. The 'max' is not needed when
1561 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1562 alignment code reserves enough space. */
1563
1564 #define SDATA_SIZE(NBYTES) \
1565 ((SDATA_DATA_OFFSET \
1566 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1567 ? NBYTES \
1568 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1569 + 1 \
1570 + sizeof (ptrdiff_t) - 1) \
1571 & ~(sizeof (ptrdiff_t) - 1))
1572
1573 #endif /* not GC_CHECK_STRING_BYTES */
1574
1575 /* Extra bytes to allocate for each string. */
1576
1577 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1578
1579 /* Exact bound on the number of bytes in a string, not counting the
1580 terminating null. A string cannot contain more bytes than
1581 STRING_BYTES_BOUND, nor can it be so long that the size_t
1582 arithmetic in allocate_string_data would overflow while it is
1583 calculating a value to be passed to malloc. */
1584 static ptrdiff_t const STRING_BYTES_MAX =
1585 min (STRING_BYTES_BOUND,
1586 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1587 - GC_STRING_EXTRA
1588 - offsetof (struct sblock, data)
1589 - SDATA_DATA_OFFSET)
1590 & ~(sizeof (EMACS_INT) - 1)));
1591
1592 /* Initialize string allocation. Called from init_alloc_once. */
1593
1594 static void
1595 init_strings (void)
1596 {
1597 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1598 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1599 }
1600
1601
1602 #ifdef GC_CHECK_STRING_BYTES
1603
1604 static int check_string_bytes_count;
1605
1606 /* Like STRING_BYTES, but with debugging check. Can be
1607 called during GC, so pay attention to the mark bit. */
1608
1609 ptrdiff_t
1610 string_bytes (struct Lisp_String *s)
1611 {
1612 ptrdiff_t nbytes =
1613 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1614
1615 if (!PURE_POINTER_P (s)
1616 && s->data
1617 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1618 emacs_abort ();
1619 return nbytes;
1620 }
1621
1622 /* Check validity of Lisp strings' string_bytes member in B. */
1623
1624 static void
1625 check_sblock (struct sblock *b)
1626 {
1627 sdata *from, *end, *from_end;
1628
1629 end = b->next_free;
1630
1631 for (from = b->data; from < end; from = from_end)
1632 {
1633 /* Compute the next FROM here because copying below may
1634 overwrite data we need to compute it. */
1635 ptrdiff_t nbytes;
1636
1637 /* Check that the string size recorded in the string is the
1638 same as the one recorded in the sdata structure. */
1639 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1640 : SDATA_NBYTES (from));
1641 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1642 }
1643 }
1644
1645
1646 /* Check validity of Lisp strings' string_bytes member. ALL_P
1647 means check all strings, otherwise check only most
1648 recently allocated strings. Used for hunting a bug. */
1649
1650 static void
1651 check_string_bytes (bool all_p)
1652 {
1653 if (all_p)
1654 {
1655 struct sblock *b;
1656
1657 for (b = large_sblocks; b; b = b->next)
1658 {
1659 struct Lisp_String *s = b->data[0].string;
1660 if (s)
1661 string_bytes (s);
1662 }
1663
1664 for (b = oldest_sblock; b; b = b->next)
1665 check_sblock (b);
1666 }
1667 else if (current_sblock)
1668 check_sblock (current_sblock);
1669 }
1670
1671 #else /* not GC_CHECK_STRING_BYTES */
1672
1673 #define check_string_bytes(all) ((void) 0)
1674
1675 #endif /* GC_CHECK_STRING_BYTES */
1676
1677 #ifdef GC_CHECK_STRING_FREE_LIST
1678
1679 /* Walk through the string free list looking for bogus next pointers.
1680 This may catch buffer overrun from a previous string. */
1681
1682 static void
1683 check_string_free_list (void)
1684 {
1685 struct Lisp_String *s;
1686
1687 /* Pop a Lisp_String off the free-list. */
1688 s = string_free_list;
1689 while (s != NULL)
1690 {
1691 if ((uintptr_t) s < 1024)
1692 emacs_abort ();
1693 s = NEXT_FREE_LISP_STRING (s);
1694 }
1695 }
1696 #else
1697 #define check_string_free_list()
1698 #endif
1699
1700 /* Return a new Lisp_String. */
1701
1702 static struct Lisp_String *
1703 allocate_string (void)
1704 {
1705 struct Lisp_String *s;
1706
1707 MALLOC_BLOCK_INPUT;
1708
1709 /* If the free-list is empty, allocate a new string_block, and
1710 add all the Lisp_Strings in it to the free-list. */
1711 if (string_free_list == NULL)
1712 {
1713 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1714 int i;
1715
1716 b->next = string_blocks;
1717 string_blocks = b;
1718
1719 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1720 {
1721 s = b->strings + i;
1722 /* Every string on a free list should have NULL data pointer. */
1723 s->data = NULL;
1724 NEXT_FREE_LISP_STRING (s) = string_free_list;
1725 string_free_list = s;
1726 }
1727
1728 total_free_strings += STRING_BLOCK_SIZE;
1729 }
1730
1731 check_string_free_list ();
1732
1733 /* Pop a Lisp_String off the free-list. */
1734 s = string_free_list;
1735 string_free_list = NEXT_FREE_LISP_STRING (s);
1736
1737 MALLOC_UNBLOCK_INPUT;
1738
1739 --total_free_strings;
1740 ++total_strings;
1741 ++strings_consed;
1742 consing_since_gc += sizeof *s;
1743
1744 #ifdef GC_CHECK_STRING_BYTES
1745 if (!noninteractive)
1746 {
1747 if (++check_string_bytes_count == 200)
1748 {
1749 check_string_bytes_count = 0;
1750 check_string_bytes (1);
1751 }
1752 else
1753 check_string_bytes (0);
1754 }
1755 #endif /* GC_CHECK_STRING_BYTES */
1756
1757 return s;
1758 }
1759
1760
1761 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1762 plus a NUL byte at the end. Allocate an sdata structure for S, and
1763 set S->data to its `u.data' member. Store a NUL byte at the end of
1764 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1765 S->data if it was initially non-null. */
1766
1767 void
1768 allocate_string_data (struct Lisp_String *s,
1769 EMACS_INT nchars, EMACS_INT nbytes)
1770 {
1771 sdata *data, *old_data;
1772 struct sblock *b;
1773 ptrdiff_t needed, old_nbytes;
1774
1775 if (STRING_BYTES_MAX < nbytes)
1776 string_overflow ();
1777
1778 /* Determine the number of bytes needed to store NBYTES bytes
1779 of string data. */
1780 needed = SDATA_SIZE (nbytes);
1781 if (s->data)
1782 {
1783 old_data = SDATA_OF_STRING (s);
1784 old_nbytes = STRING_BYTES (s);
1785 }
1786 else
1787 old_data = NULL;
1788
1789 MALLOC_BLOCK_INPUT;
1790
1791 if (nbytes > LARGE_STRING_BYTES)
1792 {
1793 size_t size = offsetof (struct sblock, data) + needed;
1794
1795 #ifdef DOUG_LEA_MALLOC
1796 if (!mmap_lisp_allowed_p ())
1797 mallopt (M_MMAP_MAX, 0);
1798 #endif
1799
1800 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1801
1802 #ifdef DOUG_LEA_MALLOC
1803 if (!mmap_lisp_allowed_p ())
1804 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1805 #endif
1806
1807 b->next_free = b->data;
1808 b->data[0].string = NULL;
1809 b->next = large_sblocks;
1810 large_sblocks = b;
1811 }
1812 else if (current_sblock == NULL
1813 || (((char *) current_sblock + SBLOCK_SIZE
1814 - (char *) current_sblock->next_free)
1815 < (needed + GC_STRING_EXTRA)))
1816 {
1817 /* Not enough room in the current sblock. */
1818 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1819 b->next_free = b->data;
1820 b->data[0].string = NULL;
1821 b->next = NULL;
1822
1823 if (current_sblock)
1824 current_sblock->next = b;
1825 else
1826 oldest_sblock = b;
1827 current_sblock = b;
1828 }
1829 else
1830 b = current_sblock;
1831
1832 data = b->next_free;
1833 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1834
1835 MALLOC_UNBLOCK_INPUT;
1836
1837 data->string = s;
1838 s->data = SDATA_DATA (data);
1839 #ifdef GC_CHECK_STRING_BYTES
1840 SDATA_NBYTES (data) = nbytes;
1841 #endif
1842 s->size = nchars;
1843 s->size_byte = nbytes;
1844 s->data[nbytes] = '\0';
1845 #ifdef GC_CHECK_STRING_OVERRUN
1846 memcpy ((char *) data + needed, string_overrun_cookie,
1847 GC_STRING_OVERRUN_COOKIE_SIZE);
1848 #endif
1849
1850 /* Note that Faset may call to this function when S has already data
1851 assigned. In this case, mark data as free by setting it's string
1852 back-pointer to null, and record the size of the data in it. */
1853 if (old_data)
1854 {
1855 SDATA_NBYTES (old_data) = old_nbytes;
1856 old_data->string = NULL;
1857 }
1858
1859 consing_since_gc += needed;
1860 }
1861
1862
1863 /* Sweep and compact strings. */
1864
1865 NO_INLINE /* For better stack traces */
1866 static void
1867 sweep_strings (void)
1868 {
1869 struct string_block *b, *next;
1870 struct string_block *live_blocks = NULL;
1871
1872 string_free_list = NULL;
1873 total_strings = total_free_strings = 0;
1874 total_string_bytes = 0;
1875
1876 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1877 for (b = string_blocks; b; b = next)
1878 {
1879 int i, nfree = 0;
1880 struct Lisp_String *free_list_before = string_free_list;
1881
1882 next = b->next;
1883
1884 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1885 {
1886 struct Lisp_String *s = b->strings + i;
1887
1888 if (s->data)
1889 {
1890 /* String was not on free-list before. */
1891 if (STRING_MARKED_P (s))
1892 {
1893 /* String is live; unmark it and its intervals. */
1894 UNMARK_STRING (s);
1895
1896 /* Do not use string_(set|get)_intervals here. */
1897 s->intervals = balance_intervals (s->intervals);
1898
1899 ++total_strings;
1900 total_string_bytes += STRING_BYTES (s);
1901 }
1902 else
1903 {
1904 /* String is dead. Put it on the free-list. */
1905 sdata *data = SDATA_OF_STRING (s);
1906
1907 /* Save the size of S in its sdata so that we know
1908 how large that is. Reset the sdata's string
1909 back-pointer so that we know it's free. */
1910 #ifdef GC_CHECK_STRING_BYTES
1911 if (string_bytes (s) != SDATA_NBYTES (data))
1912 emacs_abort ();
1913 #else
1914 data->n.nbytes = STRING_BYTES (s);
1915 #endif
1916 data->string = NULL;
1917
1918 /* Reset the strings's `data' member so that we
1919 know it's free. */
1920 s->data = NULL;
1921
1922 /* Put the string on the free-list. */
1923 NEXT_FREE_LISP_STRING (s) = string_free_list;
1924 string_free_list = s;
1925 ++nfree;
1926 }
1927 }
1928 else
1929 {
1930 /* S was on the free-list before. Put it there again. */
1931 NEXT_FREE_LISP_STRING (s) = string_free_list;
1932 string_free_list = s;
1933 ++nfree;
1934 }
1935 }
1936
1937 /* Free blocks that contain free Lisp_Strings only, except
1938 the first two of them. */
1939 if (nfree == STRING_BLOCK_SIZE
1940 && total_free_strings > STRING_BLOCK_SIZE)
1941 {
1942 lisp_free (b);
1943 string_free_list = free_list_before;
1944 }
1945 else
1946 {
1947 total_free_strings += nfree;
1948 b->next = live_blocks;
1949 live_blocks = b;
1950 }
1951 }
1952
1953 check_string_free_list ();
1954
1955 string_blocks = live_blocks;
1956 free_large_strings ();
1957 compact_small_strings ();
1958
1959 check_string_free_list ();
1960 }
1961
1962
1963 /* Free dead large strings. */
1964
1965 static void
1966 free_large_strings (void)
1967 {
1968 struct sblock *b, *next;
1969 struct sblock *live_blocks = NULL;
1970
1971 for (b = large_sblocks; b; b = next)
1972 {
1973 next = b->next;
1974
1975 if (b->data[0].string == NULL)
1976 lisp_free (b);
1977 else
1978 {
1979 b->next = live_blocks;
1980 live_blocks = b;
1981 }
1982 }
1983
1984 large_sblocks = live_blocks;
1985 }
1986
1987
1988 /* Compact data of small strings. Free sblocks that don't contain
1989 data of live strings after compaction. */
1990
1991 static void
1992 compact_small_strings (void)
1993 {
1994 struct sblock *b, *tb, *next;
1995 sdata *from, *to, *end, *tb_end;
1996 sdata *to_end, *from_end;
1997
1998 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1999 to, and TB_END is the end of TB. */
2000 tb = oldest_sblock;
2001 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2002 to = tb->data;
2003
2004 /* Step through the blocks from the oldest to the youngest. We
2005 expect that old blocks will stabilize over time, so that less
2006 copying will happen this way. */
2007 for (b = oldest_sblock; b; b = b->next)
2008 {
2009 end = b->next_free;
2010 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2011
2012 for (from = b->data; from < end; from = from_end)
2013 {
2014 /* Compute the next FROM here because copying below may
2015 overwrite data we need to compute it. */
2016 ptrdiff_t nbytes;
2017 struct Lisp_String *s = from->string;
2018
2019 #ifdef GC_CHECK_STRING_BYTES
2020 /* Check that the string size recorded in the string is the
2021 same as the one recorded in the sdata structure. */
2022 if (s && string_bytes (s) != SDATA_NBYTES (from))
2023 emacs_abort ();
2024 #endif /* GC_CHECK_STRING_BYTES */
2025
2026 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2027 eassert (nbytes <= LARGE_STRING_BYTES);
2028
2029 nbytes = SDATA_SIZE (nbytes);
2030 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2031
2032 #ifdef GC_CHECK_STRING_OVERRUN
2033 if (memcmp (string_overrun_cookie,
2034 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2035 GC_STRING_OVERRUN_COOKIE_SIZE))
2036 emacs_abort ();
2037 #endif
2038
2039 /* Non-NULL S means it's alive. Copy its data. */
2040 if (s)
2041 {
2042 /* If TB is full, proceed with the next sblock. */
2043 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2044 if (to_end > tb_end)
2045 {
2046 tb->next_free = to;
2047 tb = tb->next;
2048 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2049 to = tb->data;
2050 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2051 }
2052
2053 /* Copy, and update the string's `data' pointer. */
2054 if (from != to)
2055 {
2056 eassert (tb != b || to < from);
2057 memmove (to, from, nbytes + GC_STRING_EXTRA);
2058 to->string->data = SDATA_DATA (to);
2059 }
2060
2061 /* Advance past the sdata we copied to. */
2062 to = to_end;
2063 }
2064 }
2065 }
2066
2067 /* The rest of the sblocks following TB don't contain live data, so
2068 we can free them. */
2069 for (b = tb->next; b; b = next)
2070 {
2071 next = b->next;
2072 lisp_free (b);
2073 }
2074
2075 tb->next_free = to;
2076 tb->next = NULL;
2077 current_sblock = tb;
2078 }
2079
2080 void
2081 string_overflow (void)
2082 {
2083 error ("Maximum string size exceeded");
2084 }
2085
2086 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2087 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2088 LENGTH must be an integer.
2089 INIT must be an integer that represents a character. */)
2090 (Lisp_Object length, Lisp_Object init)
2091 {
2092 register Lisp_Object val;
2093 int c;
2094 EMACS_INT nbytes;
2095
2096 CHECK_NATNUM (length);
2097 CHECK_CHARACTER (init);
2098
2099 c = XFASTINT (init);
2100 if (ASCII_CHAR_P (c))
2101 {
2102 nbytes = XINT (length);
2103 val = make_uninit_string (nbytes);
2104 memset (SDATA (val), c, nbytes);
2105 SDATA (val)[nbytes] = 0;
2106 }
2107 else
2108 {
2109 unsigned char str[MAX_MULTIBYTE_LENGTH];
2110 ptrdiff_t len = CHAR_STRING (c, str);
2111 EMACS_INT string_len = XINT (length);
2112 unsigned char *p, *beg, *end;
2113
2114 if (string_len > STRING_BYTES_MAX / len)
2115 string_overflow ();
2116 nbytes = len * string_len;
2117 val = make_uninit_multibyte_string (string_len, nbytes);
2118 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2119 {
2120 /* First time we just copy `str' to the data of `val'. */
2121 if (p == beg)
2122 memcpy (p, str, len);
2123 else
2124 {
2125 /* Next time we copy largest possible chunk from
2126 initialized to uninitialized part of `val'. */
2127 len = min (p - beg, end - p);
2128 memcpy (p, beg, len);
2129 }
2130 }
2131 *p = 0;
2132 }
2133
2134 return val;
2135 }
2136
2137 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2138 Return A. */
2139
2140 Lisp_Object
2141 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2142 {
2143 EMACS_INT nbits = bool_vector_size (a);
2144 if (0 < nbits)
2145 {
2146 unsigned char *data = bool_vector_uchar_data (a);
2147 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2148 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2149 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2150 memset (data, pattern, nbytes - 1);
2151 data[nbytes - 1] = pattern & last_mask;
2152 }
2153 return a;
2154 }
2155
2156 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2157
2158 Lisp_Object
2159 make_uninit_bool_vector (EMACS_INT nbits)
2160 {
2161 Lisp_Object val;
2162 EMACS_INT words = bool_vector_words (nbits);
2163 EMACS_INT word_bytes = words * sizeof (bits_word);
2164 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2165 + word_size - 1)
2166 / word_size);
2167 struct Lisp_Bool_Vector *p
2168 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2169 XSETVECTOR (val, p);
2170 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2171 p->size = nbits;
2172
2173 /* Clear padding at the end. */
2174 if (words)
2175 p->data[words - 1] = 0;
2176
2177 return val;
2178 }
2179
2180 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2181 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2182 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2183 (Lisp_Object length, Lisp_Object init)
2184 {
2185 Lisp_Object val;
2186
2187 CHECK_NATNUM (length);
2188 val = make_uninit_bool_vector (XFASTINT (length));
2189 return bool_vector_fill (val, init);
2190 }
2191
2192 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2193 doc: /* Return a new bool-vector with specified arguments as elements.
2194 Any number of arguments, even zero arguments, are allowed.
2195 usage: (bool-vector &rest OBJECTS) */)
2196 (ptrdiff_t nargs, Lisp_Object *args)
2197 {
2198 ptrdiff_t i;
2199 Lisp_Object vector;
2200
2201 vector = make_uninit_bool_vector (nargs);
2202 for (i = 0; i < nargs; i++)
2203 bool_vector_set (vector, i, !NILP (args[i]));
2204
2205 return vector;
2206 }
2207
2208 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2209 of characters from the contents. This string may be unibyte or
2210 multibyte, depending on the contents. */
2211
2212 Lisp_Object
2213 make_string (const char *contents, ptrdiff_t nbytes)
2214 {
2215 register Lisp_Object val;
2216 ptrdiff_t nchars, multibyte_nbytes;
2217
2218 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2219 &nchars, &multibyte_nbytes);
2220 if (nbytes == nchars || nbytes != multibyte_nbytes)
2221 /* CONTENTS contains no multibyte sequences or contains an invalid
2222 multibyte sequence. We must make unibyte string. */
2223 val = make_unibyte_string (contents, nbytes);
2224 else
2225 val = make_multibyte_string (contents, nchars, nbytes);
2226 return val;
2227 }
2228
2229 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2230
2231 Lisp_Object
2232 make_unibyte_string (const char *contents, ptrdiff_t length)
2233 {
2234 register Lisp_Object val;
2235 val = make_uninit_string (length);
2236 memcpy (SDATA (val), contents, length);
2237 return val;
2238 }
2239
2240
2241 /* Make a multibyte string from NCHARS characters occupying NBYTES
2242 bytes at CONTENTS. */
2243
2244 Lisp_Object
2245 make_multibyte_string (const char *contents,
2246 ptrdiff_t nchars, ptrdiff_t nbytes)
2247 {
2248 register Lisp_Object val;
2249 val = make_uninit_multibyte_string (nchars, nbytes);
2250 memcpy (SDATA (val), contents, nbytes);
2251 return val;
2252 }
2253
2254
2255 /* Make a string from NCHARS characters occupying NBYTES bytes at
2256 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2257
2258 Lisp_Object
2259 make_string_from_bytes (const char *contents,
2260 ptrdiff_t nchars, ptrdiff_t nbytes)
2261 {
2262 register Lisp_Object val;
2263 val = make_uninit_multibyte_string (nchars, nbytes);
2264 memcpy (SDATA (val), contents, nbytes);
2265 if (SBYTES (val) == SCHARS (val))
2266 STRING_SET_UNIBYTE (val);
2267 return val;
2268 }
2269
2270
2271 /* Make a string from NCHARS characters occupying NBYTES bytes at
2272 CONTENTS. The argument MULTIBYTE controls whether to label the
2273 string as multibyte. If NCHARS is negative, it counts the number of
2274 characters by itself. */
2275
2276 Lisp_Object
2277 make_specified_string (const char *contents,
2278 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2279 {
2280 Lisp_Object val;
2281
2282 if (nchars < 0)
2283 {
2284 if (multibyte)
2285 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2286 nbytes);
2287 else
2288 nchars = nbytes;
2289 }
2290 val = make_uninit_multibyte_string (nchars, nbytes);
2291 memcpy (SDATA (val), contents, nbytes);
2292 if (!multibyte)
2293 STRING_SET_UNIBYTE (val);
2294 return val;
2295 }
2296
2297
2298 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2299 occupying LENGTH bytes. */
2300
2301 Lisp_Object
2302 make_uninit_string (EMACS_INT length)
2303 {
2304 Lisp_Object val;
2305
2306 if (!length)
2307 return empty_unibyte_string;
2308 val = make_uninit_multibyte_string (length, length);
2309 STRING_SET_UNIBYTE (val);
2310 return val;
2311 }
2312
2313
2314 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2315 which occupy NBYTES bytes. */
2316
2317 Lisp_Object
2318 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2319 {
2320 Lisp_Object string;
2321 struct Lisp_String *s;
2322
2323 if (nchars < 0)
2324 emacs_abort ();
2325 if (!nbytes)
2326 return empty_multibyte_string;
2327
2328 s = allocate_string ();
2329 s->intervals = NULL;
2330 allocate_string_data (s, nchars, nbytes);
2331 XSETSTRING (string, s);
2332 string_chars_consed += nbytes;
2333 return string;
2334 }
2335
2336 /* Print arguments to BUF according to a FORMAT, then return
2337 a Lisp_String initialized with the data from BUF. */
2338
2339 Lisp_Object
2340 make_formatted_string (char *buf, const char *format, ...)
2341 {
2342 va_list ap;
2343 int length;
2344
2345 va_start (ap, format);
2346 length = vsprintf (buf, format, ap);
2347 va_end (ap);
2348 return make_string (buf, length);
2349 }
2350
2351 \f
2352 /***********************************************************************
2353 Float Allocation
2354 ***********************************************************************/
2355
2356 /* We store float cells inside of float_blocks, allocating a new
2357 float_block with malloc whenever necessary. Float cells reclaimed
2358 by GC are put on a free list to be reallocated before allocating
2359 any new float cells from the latest float_block. */
2360
2361 #define FLOAT_BLOCK_SIZE \
2362 (((BLOCK_BYTES - sizeof (struct float_block *) \
2363 /* The compiler might add padding at the end. */ \
2364 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2365 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2366
2367 #define GETMARKBIT(block,n) \
2368 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2369 >> ((n) % BITS_PER_BITS_WORD)) \
2370 & 1)
2371
2372 #define SETMARKBIT(block,n) \
2373 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2374 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2375
2376 #define UNSETMARKBIT(block,n) \
2377 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2378 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2379
2380 #define FLOAT_BLOCK(fptr) \
2381 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2382
2383 #define FLOAT_INDEX(fptr) \
2384 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2385
2386 struct float_block
2387 {
2388 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2389 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2390 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2391 struct float_block *next;
2392 };
2393
2394 #define FLOAT_MARKED_P(fptr) \
2395 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2396
2397 #define FLOAT_MARK(fptr) \
2398 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2399
2400 #define FLOAT_UNMARK(fptr) \
2401 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2402
2403 /* Current float_block. */
2404
2405 static struct float_block *float_block;
2406
2407 /* Index of first unused Lisp_Float in the current float_block. */
2408
2409 static int float_block_index = FLOAT_BLOCK_SIZE;
2410
2411 /* Free-list of Lisp_Floats. */
2412
2413 static struct Lisp_Float *float_free_list;
2414
2415 /* Return a new float object with value FLOAT_VALUE. */
2416
2417 Lisp_Object
2418 make_float (double float_value)
2419 {
2420 register Lisp_Object val;
2421
2422 MALLOC_BLOCK_INPUT;
2423
2424 if (float_free_list)
2425 {
2426 /* We use the data field for chaining the free list
2427 so that we won't use the same field that has the mark bit. */
2428 XSETFLOAT (val, float_free_list);
2429 float_free_list = float_free_list->u.chain;
2430 }
2431 else
2432 {
2433 if (float_block_index == FLOAT_BLOCK_SIZE)
2434 {
2435 struct float_block *new
2436 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2437 new->next = float_block;
2438 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2439 float_block = new;
2440 float_block_index = 0;
2441 total_free_floats += FLOAT_BLOCK_SIZE;
2442 }
2443 XSETFLOAT (val, &float_block->floats[float_block_index]);
2444 float_block_index++;
2445 }
2446
2447 MALLOC_UNBLOCK_INPUT;
2448
2449 XFLOAT_INIT (val, float_value);
2450 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2451 consing_since_gc += sizeof (struct Lisp_Float);
2452 floats_consed++;
2453 total_free_floats--;
2454 return val;
2455 }
2456
2457
2458 \f
2459 /***********************************************************************
2460 Cons Allocation
2461 ***********************************************************************/
2462
2463 /* We store cons cells inside of cons_blocks, allocating a new
2464 cons_block with malloc whenever necessary. Cons cells reclaimed by
2465 GC are put on a free list to be reallocated before allocating
2466 any new cons cells from the latest cons_block. */
2467
2468 #define CONS_BLOCK_SIZE \
2469 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2470 /* The compiler might add padding at the end. */ \
2471 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2472 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2473
2474 #define CONS_BLOCK(fptr) \
2475 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2476
2477 #define CONS_INDEX(fptr) \
2478 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2479
2480 struct cons_block
2481 {
2482 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2483 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2484 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2485 struct cons_block *next;
2486 };
2487
2488 #define CONS_MARKED_P(fptr) \
2489 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2490
2491 #define CONS_MARK(fptr) \
2492 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2493
2494 #define CONS_UNMARK(fptr) \
2495 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2496
2497 /* Current cons_block. */
2498
2499 static struct cons_block *cons_block;
2500
2501 /* Index of first unused Lisp_Cons in the current block. */
2502
2503 static int cons_block_index = CONS_BLOCK_SIZE;
2504
2505 /* Free-list of Lisp_Cons structures. */
2506
2507 static struct Lisp_Cons *cons_free_list;
2508
2509 /* Explicitly free a cons cell by putting it on the free-list. */
2510
2511 void
2512 free_cons (struct Lisp_Cons *ptr)
2513 {
2514 ptr->u.chain = cons_free_list;
2515 #if GC_MARK_STACK
2516 ptr->car = Vdead;
2517 #endif
2518 cons_free_list = ptr;
2519 consing_since_gc -= sizeof *ptr;
2520 total_free_conses++;
2521 }
2522
2523 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2524 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2525 (Lisp_Object car, Lisp_Object cdr)
2526 {
2527 register Lisp_Object val;
2528
2529 MALLOC_BLOCK_INPUT;
2530
2531 if (cons_free_list)
2532 {
2533 /* We use the cdr for chaining the free list
2534 so that we won't use the same field that has the mark bit. */
2535 XSETCONS (val, cons_free_list);
2536 cons_free_list = cons_free_list->u.chain;
2537 }
2538 else
2539 {
2540 if (cons_block_index == CONS_BLOCK_SIZE)
2541 {
2542 struct cons_block *new
2543 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2544 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2545 new->next = cons_block;
2546 cons_block = new;
2547 cons_block_index = 0;
2548 total_free_conses += CONS_BLOCK_SIZE;
2549 }
2550 XSETCONS (val, &cons_block->conses[cons_block_index]);
2551 cons_block_index++;
2552 }
2553
2554 MALLOC_UNBLOCK_INPUT;
2555
2556 XSETCAR (val, car);
2557 XSETCDR (val, cdr);
2558 eassert (!CONS_MARKED_P (XCONS (val)));
2559 consing_since_gc += sizeof (struct Lisp_Cons);
2560 total_free_conses--;
2561 cons_cells_consed++;
2562 return val;
2563 }
2564
2565 #ifdef GC_CHECK_CONS_LIST
2566 /* Get an error now if there's any junk in the cons free list. */
2567 void
2568 check_cons_list (void)
2569 {
2570 struct Lisp_Cons *tail = cons_free_list;
2571
2572 while (tail)
2573 tail = tail->u.chain;
2574 }
2575 #endif
2576
2577 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2578
2579 Lisp_Object
2580 list1 (Lisp_Object arg1)
2581 {
2582 return Fcons (arg1, Qnil);
2583 }
2584
2585 Lisp_Object
2586 list2 (Lisp_Object arg1, Lisp_Object arg2)
2587 {
2588 return Fcons (arg1, Fcons (arg2, Qnil));
2589 }
2590
2591
2592 Lisp_Object
2593 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2594 {
2595 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2596 }
2597
2598
2599 Lisp_Object
2600 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2601 {
2602 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2603 }
2604
2605
2606 Lisp_Object
2607 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2608 {
2609 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2610 Fcons (arg5, Qnil)))));
2611 }
2612
2613 /* Make a list of COUNT Lisp_Objects, where ARG is the
2614 first one. Allocate conses from pure space if TYPE
2615 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2616
2617 Lisp_Object
2618 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2619 {
2620 Lisp_Object (*cons) (Lisp_Object, Lisp_Object);
2621 switch (type)
2622 {
2623 case CONSTYPE_PURE: cons = pure_cons; break;
2624 case CONSTYPE_HEAP: cons = Fcons; break;
2625 default: emacs_abort ();
2626 }
2627
2628 eassume (0 < count);
2629 Lisp_Object val = cons (arg, Qnil);
2630 Lisp_Object tail = val;
2631
2632 va_list ap;
2633 va_start (ap, arg);
2634 for (ptrdiff_t i = 1; i < count; i++)
2635 {
2636 Lisp_Object elem = cons (va_arg (ap, Lisp_Object), Qnil);
2637 XSETCDR (tail, elem);
2638 tail = elem;
2639 }
2640 va_end (ap);
2641
2642 return val;
2643 }
2644
2645 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2646 doc: /* Return a newly created list with specified arguments as elements.
2647 Any number of arguments, even zero arguments, are allowed.
2648 usage: (list &rest OBJECTS) */)
2649 (ptrdiff_t nargs, Lisp_Object *args)
2650 {
2651 register Lisp_Object val;
2652 val = Qnil;
2653
2654 while (nargs > 0)
2655 {
2656 nargs--;
2657 val = Fcons (args[nargs], val);
2658 }
2659 return val;
2660 }
2661
2662
2663 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2664 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2665 (register Lisp_Object length, Lisp_Object init)
2666 {
2667 register Lisp_Object val;
2668 register EMACS_INT size;
2669
2670 CHECK_NATNUM (length);
2671 size = XFASTINT (length);
2672
2673 val = Qnil;
2674 while (size > 0)
2675 {
2676 val = Fcons (init, val);
2677 --size;
2678
2679 if (size > 0)
2680 {
2681 val = Fcons (init, val);
2682 --size;
2683
2684 if (size > 0)
2685 {
2686 val = Fcons (init, val);
2687 --size;
2688
2689 if (size > 0)
2690 {
2691 val = Fcons (init, val);
2692 --size;
2693
2694 if (size > 0)
2695 {
2696 val = Fcons (init, val);
2697 --size;
2698 }
2699 }
2700 }
2701 }
2702
2703 QUIT;
2704 }
2705
2706 return val;
2707 }
2708
2709
2710 \f
2711 /***********************************************************************
2712 Vector Allocation
2713 ***********************************************************************/
2714
2715 /* Sometimes a vector's contents are merely a pointer internally used
2716 in vector allocation code. On the rare platforms where a null
2717 pointer cannot be tagged, represent it with a Lisp 0.
2718 Usually you don't want to touch this. */
2719
2720 static struct Lisp_Vector *
2721 next_vector (struct Lisp_Vector *v)
2722 {
2723 return XUNTAG (v->contents[0], 0);
2724 }
2725
2726 static void
2727 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2728 {
2729 v->contents[0] = make_lisp_ptr (p, 0);
2730 }
2731
2732 /* This value is balanced well enough to avoid too much internal overhead
2733 for the most common cases; it's not required to be a power of two, but
2734 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2735
2736 #define VECTOR_BLOCK_SIZE 4096
2737
2738 enum
2739 {
2740 /* Alignment of struct Lisp_Vector objects. */
2741 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2742 USE_LSB_TAG ? GCALIGNMENT : 1),
2743
2744 /* Vector size requests are a multiple of this. */
2745 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2746 };
2747
2748 /* Verify assumptions described above. */
2749 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2750 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2751
2752 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2753 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2754 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2755 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2756
2757 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2758
2759 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2760
2761 /* Size of the minimal vector allocated from block. */
2762
2763 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2764
2765 /* Size of the largest vector allocated from block. */
2766
2767 #define VBLOCK_BYTES_MAX \
2768 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2769
2770 /* We maintain one free list for each possible block-allocated
2771 vector size, and this is the number of free lists we have. */
2772
2773 #define VECTOR_MAX_FREE_LIST_INDEX \
2774 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2775
2776 /* Common shortcut to advance vector pointer over a block data. */
2777
2778 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2779
2780 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2781
2782 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2783
2784 /* Common shortcut to setup vector on a free list. */
2785
2786 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2787 do { \
2788 (tmp) = ((nbytes - header_size) / word_size); \
2789 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2790 eassert ((nbytes) % roundup_size == 0); \
2791 (tmp) = VINDEX (nbytes); \
2792 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2793 set_next_vector (v, vector_free_lists[tmp]); \
2794 vector_free_lists[tmp] = (v); \
2795 total_free_vector_slots += (nbytes) / word_size; \
2796 } while (0)
2797
2798 /* This internal type is used to maintain the list of large vectors
2799 which are allocated at their own, e.g. outside of vector blocks.
2800
2801 struct large_vector itself cannot contain a struct Lisp_Vector, as
2802 the latter contains a flexible array member and C99 does not allow
2803 such structs to be nested. Instead, each struct large_vector
2804 object LV is followed by a struct Lisp_Vector, which is at offset
2805 large_vector_offset from LV, and whose address is therefore
2806 large_vector_vec (&LV). */
2807
2808 struct large_vector
2809 {
2810 struct large_vector *next;
2811 };
2812
2813 enum
2814 {
2815 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2816 };
2817
2818 static struct Lisp_Vector *
2819 large_vector_vec (struct large_vector *p)
2820 {
2821 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2822 }
2823
2824 /* This internal type is used to maintain an underlying storage
2825 for small vectors. */
2826
2827 struct vector_block
2828 {
2829 char data[VECTOR_BLOCK_BYTES];
2830 struct vector_block *next;
2831 };
2832
2833 /* Chain of vector blocks. */
2834
2835 static struct vector_block *vector_blocks;
2836
2837 /* Vector free lists, where NTH item points to a chain of free
2838 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2839
2840 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2841
2842 /* Singly-linked list of large vectors. */
2843
2844 static struct large_vector *large_vectors;
2845
2846 /* The only vector with 0 slots, allocated from pure space. */
2847
2848 Lisp_Object zero_vector;
2849
2850 /* Number of live vectors. */
2851
2852 static EMACS_INT total_vectors;
2853
2854 /* Total size of live and free vectors, in Lisp_Object units. */
2855
2856 static EMACS_INT total_vector_slots, total_free_vector_slots;
2857
2858 /* Get a new vector block. */
2859
2860 static struct vector_block *
2861 allocate_vector_block (void)
2862 {
2863 struct vector_block *block = xmalloc (sizeof *block);
2864
2865 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2866 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2867 MEM_TYPE_VECTOR_BLOCK);
2868 #endif
2869
2870 block->next = vector_blocks;
2871 vector_blocks = block;
2872 return block;
2873 }
2874
2875 /* Called once to initialize vector allocation. */
2876
2877 static void
2878 init_vectors (void)
2879 {
2880 zero_vector = make_pure_vector (0);
2881 }
2882
2883 /* Allocate vector from a vector block. */
2884
2885 static struct Lisp_Vector *
2886 allocate_vector_from_block (size_t nbytes)
2887 {
2888 struct Lisp_Vector *vector;
2889 struct vector_block *block;
2890 size_t index, restbytes;
2891
2892 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2893 eassert (nbytes % roundup_size == 0);
2894
2895 /* First, try to allocate from a free list
2896 containing vectors of the requested size. */
2897 index = VINDEX (nbytes);
2898 if (vector_free_lists[index])
2899 {
2900 vector = vector_free_lists[index];
2901 vector_free_lists[index] = next_vector (vector);
2902 total_free_vector_slots -= nbytes / word_size;
2903 return vector;
2904 }
2905
2906 /* Next, check free lists containing larger vectors. Since
2907 we will split the result, we should have remaining space
2908 large enough to use for one-slot vector at least. */
2909 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2910 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2911 if (vector_free_lists[index])
2912 {
2913 /* This vector is larger than requested. */
2914 vector = vector_free_lists[index];
2915 vector_free_lists[index] = next_vector (vector);
2916 total_free_vector_slots -= nbytes / word_size;
2917
2918 /* Excess bytes are used for the smaller vector,
2919 which should be set on an appropriate free list. */
2920 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2921 eassert (restbytes % roundup_size == 0);
2922 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2923 return vector;
2924 }
2925
2926 /* Finally, need a new vector block. */
2927 block = allocate_vector_block ();
2928
2929 /* New vector will be at the beginning of this block. */
2930 vector = (struct Lisp_Vector *) block->data;
2931
2932 /* If the rest of space from this block is large enough
2933 for one-slot vector at least, set up it on a free list. */
2934 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2935 if (restbytes >= VBLOCK_BYTES_MIN)
2936 {
2937 eassert (restbytes % roundup_size == 0);
2938 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2939 }
2940 return vector;
2941 }
2942
2943 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2944
2945 #define VECTOR_IN_BLOCK(vector, block) \
2946 ((char *) (vector) <= (block)->data \
2947 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2948
2949 /* Return the memory footprint of V in bytes. */
2950
2951 static ptrdiff_t
2952 vector_nbytes (struct Lisp_Vector *v)
2953 {
2954 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2955 ptrdiff_t nwords;
2956
2957 if (size & PSEUDOVECTOR_FLAG)
2958 {
2959 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2960 {
2961 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2962 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
2963 * sizeof (bits_word));
2964 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
2965 verify (header_size <= bool_header_size);
2966 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
2967 }
2968 else
2969 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
2970 + ((size & PSEUDOVECTOR_REST_MASK)
2971 >> PSEUDOVECTOR_SIZE_BITS));
2972 }
2973 else
2974 nwords = size;
2975 return vroundup (header_size + word_size * nwords);
2976 }
2977
2978 /* Release extra resources still in use by VECTOR, which may be any
2979 vector-like object. For now, this is used just to free data in
2980 font objects. */
2981
2982 static void
2983 cleanup_vector (struct Lisp_Vector *vector)
2984 {
2985 detect_suspicious_free (vector);
2986 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
2987 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
2988 == FONT_OBJECT_MAX))
2989 {
2990 struct font_driver *drv = ((struct font *) vector)->driver;
2991
2992 /* The font driver might sometimes be NULL, e.g. if Emacs was
2993 interrupted before it had time to set it up. */
2994 if (drv)
2995 {
2996 /* Attempt to catch subtle bugs like Bug#16140. */
2997 eassert (valid_font_driver (drv));
2998 drv->close ((struct font *) vector);
2999 }
3000 }
3001 }
3002
3003 /* Reclaim space used by unmarked vectors. */
3004
3005 NO_INLINE /* For better stack traces */
3006 static void
3007 sweep_vectors (void)
3008 {
3009 struct vector_block *block, **bprev = &vector_blocks;
3010 struct large_vector *lv, **lvprev = &large_vectors;
3011 struct Lisp_Vector *vector, *next;
3012
3013 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3014 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3015
3016 /* Looking through vector blocks. */
3017
3018 for (block = vector_blocks; block; block = *bprev)
3019 {
3020 bool free_this_block = 0;
3021 ptrdiff_t nbytes;
3022
3023 for (vector = (struct Lisp_Vector *) block->data;
3024 VECTOR_IN_BLOCK (vector, block); vector = next)
3025 {
3026 if (VECTOR_MARKED_P (vector))
3027 {
3028 VECTOR_UNMARK (vector);
3029 total_vectors++;
3030 nbytes = vector_nbytes (vector);
3031 total_vector_slots += nbytes / word_size;
3032 next = ADVANCE (vector, nbytes);
3033 }
3034 else
3035 {
3036 ptrdiff_t total_bytes;
3037
3038 cleanup_vector (vector);
3039 nbytes = vector_nbytes (vector);
3040 total_bytes = nbytes;
3041 next = ADVANCE (vector, nbytes);
3042
3043 /* While NEXT is not marked, try to coalesce with VECTOR,
3044 thus making VECTOR of the largest possible size. */
3045
3046 while (VECTOR_IN_BLOCK (next, block))
3047 {
3048 if (VECTOR_MARKED_P (next))
3049 break;
3050 cleanup_vector (next);
3051 nbytes = vector_nbytes (next);
3052 total_bytes += nbytes;
3053 next = ADVANCE (next, nbytes);
3054 }
3055
3056 eassert (total_bytes % roundup_size == 0);
3057
3058 if (vector == (struct Lisp_Vector *) block->data
3059 && !VECTOR_IN_BLOCK (next, block))
3060 /* This block should be freed because all of its
3061 space was coalesced into the only free vector. */
3062 free_this_block = 1;
3063 else
3064 {
3065 size_t tmp;
3066 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3067 }
3068 }
3069 }
3070
3071 if (free_this_block)
3072 {
3073 *bprev = block->next;
3074 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3075 mem_delete (mem_find (block->data));
3076 #endif
3077 xfree (block);
3078 }
3079 else
3080 bprev = &block->next;
3081 }
3082
3083 /* Sweep large vectors. */
3084
3085 for (lv = large_vectors; lv; lv = *lvprev)
3086 {
3087 vector = large_vector_vec (lv);
3088 if (VECTOR_MARKED_P (vector))
3089 {
3090 VECTOR_UNMARK (vector);
3091 total_vectors++;
3092 if (vector->header.size & PSEUDOVECTOR_FLAG)
3093 {
3094 /* All non-bool pseudovectors are small enough to be allocated
3095 from vector blocks. This code should be redesigned if some
3096 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3097 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3098 total_vector_slots += vector_nbytes (vector) / word_size;
3099 }
3100 else
3101 total_vector_slots
3102 += header_size / word_size + vector->header.size;
3103 lvprev = &lv->next;
3104 }
3105 else
3106 {
3107 *lvprev = lv->next;
3108 lisp_free (lv);
3109 }
3110 }
3111 }
3112
3113 /* Value is a pointer to a newly allocated Lisp_Vector structure
3114 with room for LEN Lisp_Objects. */
3115
3116 static struct Lisp_Vector *
3117 allocate_vectorlike (ptrdiff_t len)
3118 {
3119 struct Lisp_Vector *p;
3120
3121 MALLOC_BLOCK_INPUT;
3122
3123 if (len == 0)
3124 p = XVECTOR (zero_vector);
3125 else
3126 {
3127 size_t nbytes = header_size + len * word_size;
3128
3129 #ifdef DOUG_LEA_MALLOC
3130 if (!mmap_lisp_allowed_p ())
3131 mallopt (M_MMAP_MAX, 0);
3132 #endif
3133
3134 if (nbytes <= VBLOCK_BYTES_MAX)
3135 p = allocate_vector_from_block (vroundup (nbytes));
3136 else
3137 {
3138 struct large_vector *lv
3139 = lisp_malloc ((large_vector_offset + header_size
3140 + len * word_size),
3141 MEM_TYPE_VECTORLIKE);
3142 lv->next = large_vectors;
3143 large_vectors = lv;
3144 p = large_vector_vec (lv);
3145 }
3146
3147 #ifdef DOUG_LEA_MALLOC
3148 if (!mmap_lisp_allowed_p ())
3149 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3150 #endif
3151
3152 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3153 emacs_abort ();
3154
3155 consing_since_gc += nbytes;
3156 vector_cells_consed += len;
3157 }
3158
3159 MALLOC_UNBLOCK_INPUT;
3160
3161 return p;
3162 }
3163
3164
3165 /* Allocate a vector with LEN slots. */
3166
3167 struct Lisp_Vector *
3168 allocate_vector (EMACS_INT len)
3169 {
3170 struct Lisp_Vector *v;
3171 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3172
3173 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3174 memory_full (SIZE_MAX);
3175 v = allocate_vectorlike (len);
3176 v->header.size = len;
3177 return v;
3178 }
3179
3180
3181 /* Allocate other vector-like structures. */
3182
3183 struct Lisp_Vector *
3184 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
3185 {
3186 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3187 int i;
3188
3189 /* Catch bogus values. */
3190 eassert (tag <= PVEC_FONT);
3191 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3192 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3193
3194 /* Only the first lisplen slots will be traced normally by the GC. */
3195 for (i = 0; i < lisplen; ++i)
3196 v->contents[i] = Qnil;
3197
3198 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3199 return v;
3200 }
3201
3202 struct buffer *
3203 allocate_buffer (void)
3204 {
3205 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3206
3207 BUFFER_PVEC_INIT (b);
3208 /* Put B on the chain of all buffers including killed ones. */
3209 b->next = all_buffers;
3210 all_buffers = b;
3211 /* Note that the rest fields of B are not initialized. */
3212 return b;
3213 }
3214
3215 struct Lisp_Hash_Table *
3216 allocate_hash_table (void)
3217 {
3218 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3219 }
3220
3221 struct window *
3222 allocate_window (void)
3223 {
3224 struct window *w;
3225
3226 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3227 /* Users assumes that non-Lisp data is zeroed. */
3228 memset (&w->current_matrix, 0,
3229 sizeof (*w) - offsetof (struct window, current_matrix));
3230 return w;
3231 }
3232
3233 struct terminal *
3234 allocate_terminal (void)
3235 {
3236 struct terminal *t;
3237
3238 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3239 /* Users assumes that non-Lisp data is zeroed. */
3240 memset (&t->next_terminal, 0,
3241 sizeof (*t) - offsetof (struct terminal, next_terminal));
3242 return t;
3243 }
3244
3245 struct frame *
3246 allocate_frame (void)
3247 {
3248 struct frame *f;
3249
3250 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3251 /* Users assumes that non-Lisp data is zeroed. */
3252 memset (&f->face_cache, 0,
3253 sizeof (*f) - offsetof (struct frame, face_cache));
3254 return f;
3255 }
3256
3257 struct Lisp_Process *
3258 allocate_process (void)
3259 {
3260 struct Lisp_Process *p;
3261
3262 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3263 /* Users assumes that non-Lisp data is zeroed. */
3264 memset (&p->pid, 0,
3265 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3266 return p;
3267 }
3268
3269 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3270 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3271 See also the function `vector'. */)
3272 (register Lisp_Object length, Lisp_Object init)
3273 {
3274 Lisp_Object vector;
3275 register ptrdiff_t sizei;
3276 register ptrdiff_t i;
3277 register struct Lisp_Vector *p;
3278
3279 CHECK_NATNUM (length);
3280
3281 p = allocate_vector (XFASTINT (length));
3282 sizei = XFASTINT (length);
3283 for (i = 0; i < sizei; i++)
3284 p->contents[i] = init;
3285
3286 XSETVECTOR (vector, p);
3287 return vector;
3288 }
3289
3290 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3291 doc: /* Return a newly created vector with specified arguments as elements.
3292 Any number of arguments, even zero arguments, are allowed.
3293 usage: (vector &rest OBJECTS) */)
3294 (ptrdiff_t nargs, Lisp_Object *args)
3295 {
3296 ptrdiff_t i;
3297 register Lisp_Object val = make_uninit_vector (nargs);
3298 register struct Lisp_Vector *p = XVECTOR (val);
3299
3300 for (i = 0; i < nargs; i++)
3301 p->contents[i] = args[i];
3302 return val;
3303 }
3304
3305 void
3306 make_byte_code (struct Lisp_Vector *v)
3307 {
3308 /* Don't allow the global zero_vector to become a byte code object. */
3309 eassert (0 < v->header.size);
3310
3311 if (v->header.size > 1 && STRINGP (v->contents[1])
3312 && STRING_MULTIBYTE (v->contents[1]))
3313 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3314 earlier because they produced a raw 8-bit string for byte-code
3315 and now such a byte-code string is loaded as multibyte while
3316 raw 8-bit characters converted to multibyte form. Thus, now we
3317 must convert them back to the original unibyte form. */
3318 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3319 XSETPVECTYPE (v, PVEC_COMPILED);
3320 }
3321
3322 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3323 doc: /* Create a byte-code object with specified arguments as elements.
3324 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3325 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3326 and (optional) INTERACTIVE-SPEC.
3327 The first four arguments are required; at most six have any
3328 significance.
3329 The ARGLIST can be either like the one of `lambda', in which case the arguments
3330 will be dynamically bound before executing the byte code, or it can be an
3331 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3332 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3333 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3334 argument to catch the left-over arguments. If such an integer is used, the
3335 arguments will not be dynamically bound but will be instead pushed on the
3336 stack before executing the byte-code.
3337 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3338 (ptrdiff_t nargs, Lisp_Object *args)
3339 {
3340 ptrdiff_t i;
3341 register Lisp_Object val = make_uninit_vector (nargs);
3342 register struct Lisp_Vector *p = XVECTOR (val);
3343
3344 /* We used to purecopy everything here, if purify-flag was set. This worked
3345 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3346 dangerous, since make-byte-code is used during execution to build
3347 closures, so any closure built during the preload phase would end up
3348 copied into pure space, including its free variables, which is sometimes
3349 just wasteful and other times plainly wrong (e.g. those free vars may want
3350 to be setcar'd). */
3351
3352 for (i = 0; i < nargs; i++)
3353 p->contents[i] = args[i];
3354 make_byte_code (p);
3355 XSETCOMPILED (val, p);
3356 return val;
3357 }
3358
3359
3360 \f
3361 /***********************************************************************
3362 Symbol Allocation
3363 ***********************************************************************/
3364
3365 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3366 of the required alignment if LSB tags are used. */
3367
3368 union aligned_Lisp_Symbol
3369 {
3370 struct Lisp_Symbol s;
3371 #if USE_LSB_TAG
3372 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3373 & -GCALIGNMENT];
3374 #endif
3375 };
3376
3377 /* Each symbol_block is just under 1020 bytes long, since malloc
3378 really allocates in units of powers of two and uses 4 bytes for its
3379 own overhead. */
3380
3381 #define SYMBOL_BLOCK_SIZE \
3382 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3383
3384 struct symbol_block
3385 {
3386 /* Place `symbols' first, to preserve alignment. */
3387 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3388 struct symbol_block *next;
3389 };
3390
3391 /* Current symbol block and index of first unused Lisp_Symbol
3392 structure in it. */
3393
3394 static struct symbol_block *symbol_block;
3395 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3396 /* Pointer to the first symbol_block that contains pinned symbols.
3397 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3398 10K of which are pinned (and all but 250 of them are interned in obarray),
3399 whereas a "typical session" has in the order of 30K symbols.
3400 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3401 than 30K to find the 10K symbols we need to mark. */
3402 static struct symbol_block *symbol_block_pinned;
3403
3404 /* List of free symbols. */
3405
3406 static struct Lisp_Symbol *symbol_free_list;
3407
3408 static void
3409 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3410 {
3411 XSYMBOL (sym)->name = name;
3412 }
3413
3414 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3415 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3416 Its value is void, and its function definition and property list are nil. */)
3417 (Lisp_Object name)
3418 {
3419 register Lisp_Object val;
3420 register struct Lisp_Symbol *p;
3421
3422 CHECK_STRING (name);
3423
3424 MALLOC_BLOCK_INPUT;
3425
3426 if (symbol_free_list)
3427 {
3428 XSETSYMBOL (val, symbol_free_list);
3429 symbol_free_list = symbol_free_list->next;
3430 }
3431 else
3432 {
3433 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3434 {
3435 struct symbol_block *new
3436 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3437 new->next = symbol_block;
3438 symbol_block = new;
3439 symbol_block_index = 0;
3440 total_free_symbols += SYMBOL_BLOCK_SIZE;
3441 }
3442 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3443 symbol_block_index++;
3444 }
3445
3446 MALLOC_UNBLOCK_INPUT;
3447
3448 p = XSYMBOL (val);
3449 set_symbol_name (val, name);
3450 set_symbol_plist (val, Qnil);
3451 p->redirect = SYMBOL_PLAINVAL;
3452 SET_SYMBOL_VAL (p, Qunbound);
3453 set_symbol_function (val, Qnil);
3454 set_symbol_next (val, NULL);
3455 p->gcmarkbit = false;
3456 p->interned = SYMBOL_UNINTERNED;
3457 p->constant = 0;
3458 p->declared_special = false;
3459 p->pinned = false;
3460 consing_since_gc += sizeof (struct Lisp_Symbol);
3461 symbols_consed++;
3462 total_free_symbols--;
3463 return val;
3464 }
3465
3466
3467 \f
3468 /***********************************************************************
3469 Marker (Misc) Allocation
3470 ***********************************************************************/
3471
3472 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3473 the required alignment when LSB tags are used. */
3474
3475 union aligned_Lisp_Misc
3476 {
3477 union Lisp_Misc m;
3478 #if USE_LSB_TAG
3479 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3480 & -GCALIGNMENT];
3481 #endif
3482 };
3483
3484 /* Allocation of markers and other objects that share that structure.
3485 Works like allocation of conses. */
3486
3487 #define MARKER_BLOCK_SIZE \
3488 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3489
3490 struct marker_block
3491 {
3492 /* Place `markers' first, to preserve alignment. */
3493 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3494 struct marker_block *next;
3495 };
3496
3497 static struct marker_block *marker_block;
3498 static int marker_block_index = MARKER_BLOCK_SIZE;
3499
3500 static union Lisp_Misc *marker_free_list;
3501
3502 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3503
3504 static Lisp_Object
3505 allocate_misc (enum Lisp_Misc_Type type)
3506 {
3507 Lisp_Object val;
3508
3509 MALLOC_BLOCK_INPUT;
3510
3511 if (marker_free_list)
3512 {
3513 XSETMISC (val, marker_free_list);
3514 marker_free_list = marker_free_list->u_free.chain;
3515 }
3516 else
3517 {
3518 if (marker_block_index == MARKER_BLOCK_SIZE)
3519 {
3520 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3521 new->next = marker_block;
3522 marker_block = new;
3523 marker_block_index = 0;
3524 total_free_markers += MARKER_BLOCK_SIZE;
3525 }
3526 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3527 marker_block_index++;
3528 }
3529
3530 MALLOC_UNBLOCK_INPUT;
3531
3532 --total_free_markers;
3533 consing_since_gc += sizeof (union Lisp_Misc);
3534 misc_objects_consed++;
3535 XMISCANY (val)->type = type;
3536 XMISCANY (val)->gcmarkbit = 0;
3537 return val;
3538 }
3539
3540 /* Free a Lisp_Misc object. */
3541
3542 void
3543 free_misc (Lisp_Object misc)
3544 {
3545 XMISCANY (misc)->type = Lisp_Misc_Free;
3546 XMISC (misc)->u_free.chain = marker_free_list;
3547 marker_free_list = XMISC (misc);
3548 consing_since_gc -= sizeof (union Lisp_Misc);
3549 total_free_markers++;
3550 }
3551
3552 /* Verify properties of Lisp_Save_Value's representation
3553 that are assumed here and elsewhere. */
3554
3555 verify (SAVE_UNUSED == 0);
3556 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3557 >> SAVE_SLOT_BITS)
3558 == 0);
3559
3560 /* Return Lisp_Save_Value objects for the various combinations
3561 that callers need. */
3562
3563 Lisp_Object
3564 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3565 {
3566 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3567 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3568 p->save_type = SAVE_TYPE_INT_INT_INT;
3569 p->data[0].integer = a;
3570 p->data[1].integer = b;
3571 p->data[2].integer = c;
3572 return val;
3573 }
3574
3575 Lisp_Object
3576 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3577 Lisp_Object d)
3578 {
3579 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3580 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3581 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3582 p->data[0].object = a;
3583 p->data[1].object = b;
3584 p->data[2].object = c;
3585 p->data[3].object = d;
3586 return val;
3587 }
3588
3589 Lisp_Object
3590 make_save_ptr (void *a)
3591 {
3592 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3593 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3594 p->save_type = SAVE_POINTER;
3595 p->data[0].pointer = a;
3596 return val;
3597 }
3598
3599 Lisp_Object
3600 make_save_ptr_int (void *a, ptrdiff_t b)
3601 {
3602 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3603 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3604 p->save_type = SAVE_TYPE_PTR_INT;
3605 p->data[0].pointer = a;
3606 p->data[1].integer = b;
3607 return val;
3608 }
3609
3610 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3611 Lisp_Object
3612 make_save_ptr_ptr (void *a, void *b)
3613 {
3614 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3615 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3616 p->save_type = SAVE_TYPE_PTR_PTR;
3617 p->data[0].pointer = a;
3618 p->data[1].pointer = b;
3619 return val;
3620 }
3621 #endif
3622
3623 Lisp_Object
3624 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3625 {
3626 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3627 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3628 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3629 p->data[0].funcpointer = a;
3630 p->data[1].pointer = b;
3631 p->data[2].object = c;
3632 return val;
3633 }
3634
3635 /* Return a Lisp_Save_Value object that represents an array A
3636 of N Lisp objects. */
3637
3638 Lisp_Object
3639 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3640 {
3641 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3642 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3643 p->save_type = SAVE_TYPE_MEMORY;
3644 p->data[0].pointer = a;
3645 p->data[1].integer = n;
3646 return val;
3647 }
3648
3649 /* Free a Lisp_Save_Value object. Do not use this function
3650 if SAVE contains pointer other than returned by xmalloc. */
3651
3652 void
3653 free_save_value (Lisp_Object save)
3654 {
3655 xfree (XSAVE_POINTER (save, 0));
3656 free_misc (save);
3657 }
3658
3659 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3660
3661 Lisp_Object
3662 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3663 {
3664 register Lisp_Object overlay;
3665
3666 overlay = allocate_misc (Lisp_Misc_Overlay);
3667 OVERLAY_START (overlay) = start;
3668 OVERLAY_END (overlay) = end;
3669 set_overlay_plist (overlay, plist);
3670 XOVERLAY (overlay)->next = NULL;
3671 return overlay;
3672 }
3673
3674 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3675 doc: /* Return a newly allocated marker which does not point at any place. */)
3676 (void)
3677 {
3678 register Lisp_Object val;
3679 register struct Lisp_Marker *p;
3680
3681 val = allocate_misc (Lisp_Misc_Marker);
3682 p = XMARKER (val);
3683 p->buffer = 0;
3684 p->bytepos = 0;
3685 p->charpos = 0;
3686 p->next = NULL;
3687 p->insertion_type = 0;
3688 p->need_adjustment = 0;
3689 return val;
3690 }
3691
3692 /* Return a newly allocated marker which points into BUF
3693 at character position CHARPOS and byte position BYTEPOS. */
3694
3695 Lisp_Object
3696 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3697 {
3698 Lisp_Object obj;
3699 struct Lisp_Marker *m;
3700
3701 /* No dead buffers here. */
3702 eassert (BUFFER_LIVE_P (buf));
3703
3704 /* Every character is at least one byte. */
3705 eassert (charpos <= bytepos);
3706
3707 obj = allocate_misc (Lisp_Misc_Marker);
3708 m = XMARKER (obj);
3709 m->buffer = buf;
3710 m->charpos = charpos;
3711 m->bytepos = bytepos;
3712 m->insertion_type = 0;
3713 m->need_adjustment = 0;
3714 m->next = BUF_MARKERS (buf);
3715 BUF_MARKERS (buf) = m;
3716 return obj;
3717 }
3718
3719 /* Put MARKER back on the free list after using it temporarily. */
3720
3721 void
3722 free_marker (Lisp_Object marker)
3723 {
3724 unchain_marker (XMARKER (marker));
3725 free_misc (marker);
3726 }
3727
3728 \f
3729 /* Return a newly created vector or string with specified arguments as
3730 elements. If all the arguments are characters that can fit
3731 in a string of events, make a string; otherwise, make a vector.
3732
3733 Any number of arguments, even zero arguments, are allowed. */
3734
3735 Lisp_Object
3736 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3737 {
3738 ptrdiff_t i;
3739
3740 for (i = 0; i < nargs; i++)
3741 /* The things that fit in a string
3742 are characters that are in 0...127,
3743 after discarding the meta bit and all the bits above it. */
3744 if (!INTEGERP (args[i])
3745 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3746 return Fvector (nargs, args);
3747
3748 /* Since the loop exited, we know that all the things in it are
3749 characters, so we can make a string. */
3750 {
3751 Lisp_Object result;
3752
3753 result = Fmake_string (make_number (nargs), make_number (0));
3754 for (i = 0; i < nargs; i++)
3755 {
3756 SSET (result, i, XINT (args[i]));
3757 /* Move the meta bit to the right place for a string char. */
3758 if (XINT (args[i]) & CHAR_META)
3759 SSET (result, i, SREF (result, i) | 0x80);
3760 }
3761
3762 return result;
3763 }
3764 }
3765
3766
3767 \f
3768 /************************************************************************
3769 Memory Full Handling
3770 ************************************************************************/
3771
3772
3773 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3774 there may have been size_t overflow so that malloc was never
3775 called, or perhaps malloc was invoked successfully but the
3776 resulting pointer had problems fitting into a tagged EMACS_INT. In
3777 either case this counts as memory being full even though malloc did
3778 not fail. */
3779
3780 void
3781 memory_full (size_t nbytes)
3782 {
3783 /* Do not go into hysterics merely because a large request failed. */
3784 bool enough_free_memory = 0;
3785 if (SPARE_MEMORY < nbytes)
3786 {
3787 void *p;
3788
3789 MALLOC_BLOCK_INPUT;
3790 p = malloc (SPARE_MEMORY);
3791 if (p)
3792 {
3793 free (p);
3794 enough_free_memory = 1;
3795 }
3796 MALLOC_UNBLOCK_INPUT;
3797 }
3798
3799 if (! enough_free_memory)
3800 {
3801 int i;
3802
3803 Vmemory_full = Qt;
3804
3805 memory_full_cons_threshold = sizeof (struct cons_block);
3806
3807 /* The first time we get here, free the spare memory. */
3808 for (i = 0; i < ARRAYELTS (spare_memory); i++)
3809 if (spare_memory[i])
3810 {
3811 if (i == 0)
3812 free (spare_memory[i]);
3813 else if (i >= 1 && i <= 4)
3814 lisp_align_free (spare_memory[i]);
3815 else
3816 lisp_free (spare_memory[i]);
3817 spare_memory[i] = 0;
3818 }
3819 }
3820
3821 /* This used to call error, but if we've run out of memory, we could
3822 get infinite recursion trying to build the string. */
3823 xsignal (Qnil, Vmemory_signal_data);
3824 }
3825
3826 /* If we released our reserve (due to running out of memory),
3827 and we have a fair amount free once again,
3828 try to set aside another reserve in case we run out once more.
3829
3830 This is called when a relocatable block is freed in ralloc.c,
3831 and also directly from this file, in case we're not using ralloc.c. */
3832
3833 void
3834 refill_memory_reserve (void)
3835 {
3836 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3837 if (spare_memory[0] == 0)
3838 spare_memory[0] = malloc (SPARE_MEMORY);
3839 if (spare_memory[1] == 0)
3840 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3841 MEM_TYPE_SPARE);
3842 if (spare_memory[2] == 0)
3843 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3844 MEM_TYPE_SPARE);
3845 if (spare_memory[3] == 0)
3846 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3847 MEM_TYPE_SPARE);
3848 if (spare_memory[4] == 0)
3849 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3850 MEM_TYPE_SPARE);
3851 if (spare_memory[5] == 0)
3852 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3853 MEM_TYPE_SPARE);
3854 if (spare_memory[6] == 0)
3855 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3856 MEM_TYPE_SPARE);
3857 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3858 Vmemory_full = Qnil;
3859 #endif
3860 }
3861 \f
3862 /************************************************************************
3863 C Stack Marking
3864 ************************************************************************/
3865
3866 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3867
3868 /* Conservative C stack marking requires a method to identify possibly
3869 live Lisp objects given a pointer value. We do this by keeping
3870 track of blocks of Lisp data that are allocated in a red-black tree
3871 (see also the comment of mem_node which is the type of nodes in
3872 that tree). Function lisp_malloc adds information for an allocated
3873 block to the red-black tree with calls to mem_insert, and function
3874 lisp_free removes it with mem_delete. Functions live_string_p etc
3875 call mem_find to lookup information about a given pointer in the
3876 tree, and use that to determine if the pointer points to a Lisp
3877 object or not. */
3878
3879 /* Initialize this part of alloc.c. */
3880
3881 static void
3882 mem_init (void)
3883 {
3884 mem_z.left = mem_z.right = MEM_NIL;
3885 mem_z.parent = NULL;
3886 mem_z.color = MEM_BLACK;
3887 mem_z.start = mem_z.end = NULL;
3888 mem_root = MEM_NIL;
3889 }
3890
3891
3892 /* Value is a pointer to the mem_node containing START. Value is
3893 MEM_NIL if there is no node in the tree containing START. */
3894
3895 static struct mem_node *
3896 mem_find (void *start)
3897 {
3898 struct mem_node *p;
3899
3900 if (start < min_heap_address || start > max_heap_address)
3901 return MEM_NIL;
3902
3903 /* Make the search always successful to speed up the loop below. */
3904 mem_z.start = start;
3905 mem_z.end = (char *) start + 1;
3906
3907 p = mem_root;
3908 while (start < p->start || start >= p->end)
3909 p = start < p->start ? p->left : p->right;
3910 return p;
3911 }
3912
3913
3914 /* Insert a new node into the tree for a block of memory with start
3915 address START, end address END, and type TYPE. Value is a
3916 pointer to the node that was inserted. */
3917
3918 static struct mem_node *
3919 mem_insert (void *start, void *end, enum mem_type type)
3920 {
3921 struct mem_node *c, *parent, *x;
3922
3923 if (min_heap_address == NULL || start < min_heap_address)
3924 min_heap_address = start;
3925 if (max_heap_address == NULL || end > max_heap_address)
3926 max_heap_address = end;
3927
3928 /* See where in the tree a node for START belongs. In this
3929 particular application, it shouldn't happen that a node is already
3930 present. For debugging purposes, let's check that. */
3931 c = mem_root;
3932 parent = NULL;
3933
3934 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3935
3936 while (c != MEM_NIL)
3937 {
3938 if (start >= c->start && start < c->end)
3939 emacs_abort ();
3940 parent = c;
3941 c = start < c->start ? c->left : c->right;
3942 }
3943
3944 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3945
3946 while (c != MEM_NIL)
3947 {
3948 parent = c;
3949 c = start < c->start ? c->left : c->right;
3950 }
3951
3952 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3953
3954 /* Create a new node. */
3955 #ifdef GC_MALLOC_CHECK
3956 x = malloc (sizeof *x);
3957 if (x == NULL)
3958 emacs_abort ();
3959 #else
3960 x = xmalloc (sizeof *x);
3961 #endif
3962 x->start = start;
3963 x->end = end;
3964 x->type = type;
3965 x->parent = parent;
3966 x->left = x->right = MEM_NIL;
3967 x->color = MEM_RED;
3968
3969 /* Insert it as child of PARENT or install it as root. */
3970 if (parent)
3971 {
3972 if (start < parent->start)
3973 parent->left = x;
3974 else
3975 parent->right = x;
3976 }
3977 else
3978 mem_root = x;
3979
3980 /* Re-establish red-black tree properties. */
3981 mem_insert_fixup (x);
3982
3983 return x;
3984 }
3985
3986
3987 /* Re-establish the red-black properties of the tree, and thereby
3988 balance the tree, after node X has been inserted; X is always red. */
3989
3990 static void
3991 mem_insert_fixup (struct mem_node *x)
3992 {
3993 while (x != mem_root && x->parent->color == MEM_RED)
3994 {
3995 /* X is red and its parent is red. This is a violation of
3996 red-black tree property #3. */
3997
3998 if (x->parent == x->parent->parent->left)
3999 {
4000 /* We're on the left side of our grandparent, and Y is our
4001 "uncle". */
4002 struct mem_node *y = x->parent->parent->right;
4003
4004 if (y->color == MEM_RED)
4005 {
4006 /* Uncle and parent are red but should be black because
4007 X is red. Change the colors accordingly and proceed
4008 with the grandparent. */
4009 x->parent->color = MEM_BLACK;
4010 y->color = MEM_BLACK;
4011 x->parent->parent->color = MEM_RED;
4012 x = x->parent->parent;
4013 }
4014 else
4015 {
4016 /* Parent and uncle have different colors; parent is
4017 red, uncle is black. */
4018 if (x == x->parent->right)
4019 {
4020 x = x->parent;
4021 mem_rotate_left (x);
4022 }
4023
4024 x->parent->color = MEM_BLACK;
4025 x->parent->parent->color = MEM_RED;
4026 mem_rotate_right (x->parent->parent);
4027 }
4028 }
4029 else
4030 {
4031 /* This is the symmetrical case of above. */
4032 struct mem_node *y = x->parent->parent->left;
4033
4034 if (y->color == MEM_RED)
4035 {
4036 x->parent->color = MEM_BLACK;
4037 y->color = MEM_BLACK;
4038 x->parent->parent->color = MEM_RED;
4039 x = x->parent->parent;
4040 }
4041 else
4042 {
4043 if (x == x->parent->left)
4044 {
4045 x = x->parent;
4046 mem_rotate_right (x);
4047 }
4048
4049 x->parent->color = MEM_BLACK;
4050 x->parent->parent->color = MEM_RED;
4051 mem_rotate_left (x->parent->parent);
4052 }
4053 }
4054 }
4055
4056 /* The root may have been changed to red due to the algorithm. Set
4057 it to black so that property #5 is satisfied. */
4058 mem_root->color = MEM_BLACK;
4059 }
4060
4061
4062 /* (x) (y)
4063 / \ / \
4064 a (y) ===> (x) c
4065 / \ / \
4066 b c a b */
4067
4068 static void
4069 mem_rotate_left (struct mem_node *x)
4070 {
4071 struct mem_node *y;
4072
4073 /* Turn y's left sub-tree into x's right sub-tree. */
4074 y = x->right;
4075 x->right = y->left;
4076 if (y->left != MEM_NIL)
4077 y->left->parent = x;
4078
4079 /* Y's parent was x's parent. */
4080 if (y != MEM_NIL)
4081 y->parent = x->parent;
4082
4083 /* Get the parent to point to y instead of x. */
4084 if (x->parent)
4085 {
4086 if (x == x->parent->left)
4087 x->parent->left = y;
4088 else
4089 x->parent->right = y;
4090 }
4091 else
4092 mem_root = y;
4093
4094 /* Put x on y's left. */
4095 y->left = x;
4096 if (x != MEM_NIL)
4097 x->parent = y;
4098 }
4099
4100
4101 /* (x) (Y)
4102 / \ / \
4103 (y) c ===> a (x)
4104 / \ / \
4105 a b b c */
4106
4107 static void
4108 mem_rotate_right (struct mem_node *x)
4109 {
4110 struct mem_node *y = x->left;
4111
4112 x->left = y->right;
4113 if (y->right != MEM_NIL)
4114 y->right->parent = x;
4115
4116 if (y != MEM_NIL)
4117 y->parent = x->parent;
4118 if (x->parent)
4119 {
4120 if (x == x->parent->right)
4121 x->parent->right = y;
4122 else
4123 x->parent->left = y;
4124 }
4125 else
4126 mem_root = y;
4127
4128 y->right = x;
4129 if (x != MEM_NIL)
4130 x->parent = y;
4131 }
4132
4133
4134 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4135
4136 static void
4137 mem_delete (struct mem_node *z)
4138 {
4139 struct mem_node *x, *y;
4140
4141 if (!z || z == MEM_NIL)
4142 return;
4143
4144 if (z->left == MEM_NIL || z->right == MEM_NIL)
4145 y = z;
4146 else
4147 {
4148 y = z->right;
4149 while (y->left != MEM_NIL)
4150 y = y->left;
4151 }
4152
4153 if (y->left != MEM_NIL)
4154 x = y->left;
4155 else
4156 x = y->right;
4157
4158 x->parent = y->parent;
4159 if (y->parent)
4160 {
4161 if (y == y->parent->left)
4162 y->parent->left = x;
4163 else
4164 y->parent->right = x;
4165 }
4166 else
4167 mem_root = x;
4168
4169 if (y != z)
4170 {
4171 z->start = y->start;
4172 z->end = y->end;
4173 z->type = y->type;
4174 }
4175
4176 if (y->color == MEM_BLACK)
4177 mem_delete_fixup (x);
4178
4179 #ifdef GC_MALLOC_CHECK
4180 free (y);
4181 #else
4182 xfree (y);
4183 #endif
4184 }
4185
4186
4187 /* Re-establish the red-black properties of the tree, after a
4188 deletion. */
4189
4190 static void
4191 mem_delete_fixup (struct mem_node *x)
4192 {
4193 while (x != mem_root && x->color == MEM_BLACK)
4194 {
4195 if (x == x->parent->left)
4196 {
4197 struct mem_node *w = x->parent->right;
4198
4199 if (w->color == MEM_RED)
4200 {
4201 w->color = MEM_BLACK;
4202 x->parent->color = MEM_RED;
4203 mem_rotate_left (x->parent);
4204 w = x->parent->right;
4205 }
4206
4207 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4208 {
4209 w->color = MEM_RED;
4210 x = x->parent;
4211 }
4212 else
4213 {
4214 if (w->right->color == MEM_BLACK)
4215 {
4216 w->left->color = MEM_BLACK;
4217 w->color = MEM_RED;
4218 mem_rotate_right (w);
4219 w = x->parent->right;
4220 }
4221 w->color = x->parent->color;
4222 x->parent->color = MEM_BLACK;
4223 w->right->color = MEM_BLACK;
4224 mem_rotate_left (x->parent);
4225 x = mem_root;
4226 }
4227 }
4228 else
4229 {
4230 struct mem_node *w = x->parent->left;
4231
4232 if (w->color == MEM_RED)
4233 {
4234 w->color = MEM_BLACK;
4235 x->parent->color = MEM_RED;
4236 mem_rotate_right (x->parent);
4237 w = x->parent->left;
4238 }
4239
4240 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4241 {
4242 w->color = MEM_RED;
4243 x = x->parent;
4244 }
4245 else
4246 {
4247 if (w->left->color == MEM_BLACK)
4248 {
4249 w->right->color = MEM_BLACK;
4250 w->color = MEM_RED;
4251 mem_rotate_left (w);
4252 w = x->parent->left;
4253 }
4254
4255 w->color = x->parent->color;
4256 x->parent->color = MEM_BLACK;
4257 w->left->color = MEM_BLACK;
4258 mem_rotate_right (x->parent);
4259 x = mem_root;
4260 }
4261 }
4262 }
4263
4264 x->color = MEM_BLACK;
4265 }
4266
4267
4268 /* Value is non-zero if P is a pointer to a live Lisp string on
4269 the heap. M is a pointer to the mem_block for P. */
4270
4271 static bool
4272 live_string_p (struct mem_node *m, void *p)
4273 {
4274 if (m->type == MEM_TYPE_STRING)
4275 {
4276 struct string_block *b = m->start;
4277 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4278
4279 /* P must point to the start of a Lisp_String structure, and it
4280 must not be on the free-list. */
4281 return (offset >= 0
4282 && offset % sizeof b->strings[0] == 0
4283 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4284 && ((struct Lisp_String *) p)->data != NULL);
4285 }
4286 else
4287 return 0;
4288 }
4289
4290
4291 /* Value is non-zero if P is a pointer to a live Lisp cons on
4292 the heap. M is a pointer to the mem_block for P. */
4293
4294 static bool
4295 live_cons_p (struct mem_node *m, void *p)
4296 {
4297 if (m->type == MEM_TYPE_CONS)
4298 {
4299 struct cons_block *b = m->start;
4300 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4301
4302 /* P must point to the start of a Lisp_Cons, not be
4303 one of the unused cells in the current cons block,
4304 and not be on the free-list. */
4305 return (offset >= 0
4306 && offset % sizeof b->conses[0] == 0
4307 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4308 && (b != cons_block
4309 || offset / sizeof b->conses[0] < cons_block_index)
4310 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4311 }
4312 else
4313 return 0;
4314 }
4315
4316
4317 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4318 the heap. M is a pointer to the mem_block for P. */
4319
4320 static bool
4321 live_symbol_p (struct mem_node *m, void *p)
4322 {
4323 if (m->type == MEM_TYPE_SYMBOL)
4324 {
4325 struct symbol_block *b = m->start;
4326 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4327
4328 /* P must point to the start of a Lisp_Symbol, not be
4329 one of the unused cells in the current symbol block,
4330 and not be on the free-list. */
4331 return (offset >= 0
4332 && offset % sizeof b->symbols[0] == 0
4333 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4334 && (b != symbol_block
4335 || offset / sizeof b->symbols[0] < symbol_block_index)
4336 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4337 }
4338 else
4339 return 0;
4340 }
4341
4342
4343 /* Value is non-zero if P is a pointer to a live Lisp float on
4344 the heap. M is a pointer to the mem_block for P. */
4345
4346 static bool
4347 live_float_p (struct mem_node *m, void *p)
4348 {
4349 if (m->type == MEM_TYPE_FLOAT)
4350 {
4351 struct float_block *b = m->start;
4352 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4353
4354 /* P must point to the start of a Lisp_Float and not be
4355 one of the unused cells in the current float block. */
4356 return (offset >= 0
4357 && offset % sizeof b->floats[0] == 0
4358 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4359 && (b != float_block
4360 || offset / sizeof b->floats[0] < float_block_index));
4361 }
4362 else
4363 return 0;
4364 }
4365
4366
4367 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4368 the heap. M is a pointer to the mem_block for P. */
4369
4370 static bool
4371 live_misc_p (struct mem_node *m, void *p)
4372 {
4373 if (m->type == MEM_TYPE_MISC)
4374 {
4375 struct marker_block *b = m->start;
4376 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4377
4378 /* P must point to the start of a Lisp_Misc, not be
4379 one of the unused cells in the current misc block,
4380 and not be on the free-list. */
4381 return (offset >= 0
4382 && offset % sizeof b->markers[0] == 0
4383 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4384 && (b != marker_block
4385 || offset / sizeof b->markers[0] < marker_block_index)
4386 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4387 }
4388 else
4389 return 0;
4390 }
4391
4392
4393 /* Value is non-zero if P is a pointer to a live vector-like object.
4394 M is a pointer to the mem_block for P. */
4395
4396 static bool
4397 live_vector_p (struct mem_node *m, void *p)
4398 {
4399 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4400 {
4401 /* This memory node corresponds to a vector block. */
4402 struct vector_block *block = m->start;
4403 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4404
4405 /* P is in the block's allocation range. Scan the block
4406 up to P and see whether P points to the start of some
4407 vector which is not on a free list. FIXME: check whether
4408 some allocation patterns (probably a lot of short vectors)
4409 may cause a substantial overhead of this loop. */
4410 while (VECTOR_IN_BLOCK (vector, block)
4411 && vector <= (struct Lisp_Vector *) p)
4412 {
4413 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4414 return 1;
4415 else
4416 vector = ADVANCE (vector, vector_nbytes (vector));
4417 }
4418 }
4419 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4420 /* This memory node corresponds to a large vector. */
4421 return 1;
4422 return 0;
4423 }
4424
4425
4426 /* Value is non-zero if P is a pointer to a live buffer. M is a
4427 pointer to the mem_block for P. */
4428
4429 static bool
4430 live_buffer_p (struct mem_node *m, void *p)
4431 {
4432 /* P must point to the start of the block, and the buffer
4433 must not have been killed. */
4434 return (m->type == MEM_TYPE_BUFFER
4435 && p == m->start
4436 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4437 }
4438
4439 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4440
4441 #if GC_MARK_STACK
4442
4443 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4444
4445 /* Currently not used, but may be called from gdb. */
4446
4447 void dump_zombies (void) EXTERNALLY_VISIBLE;
4448
4449 /* Array of objects that are kept alive because the C stack contains
4450 a pattern that looks like a reference to them. */
4451
4452 #define MAX_ZOMBIES 10
4453 static Lisp_Object zombies[MAX_ZOMBIES];
4454
4455 /* Number of zombie objects. */
4456
4457 static EMACS_INT nzombies;
4458
4459 /* Number of garbage collections. */
4460
4461 static EMACS_INT ngcs;
4462
4463 /* Average percentage of zombies per collection. */
4464
4465 static double avg_zombies;
4466
4467 /* Max. number of live and zombie objects. */
4468
4469 static EMACS_INT max_live, max_zombies;
4470
4471 /* Average number of live objects per GC. */
4472
4473 static double avg_live;
4474
4475 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4476 doc: /* Show information about live and zombie objects. */)
4477 (void)
4478 {
4479 Lisp_Object args[8], zombie_list = Qnil;
4480 EMACS_INT i;
4481 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4482 zombie_list = Fcons (zombies[i], zombie_list);
4483 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4484 args[1] = make_number (ngcs);
4485 args[2] = make_float (avg_live);
4486 args[3] = make_float (avg_zombies);
4487 args[4] = make_float (avg_zombies / avg_live / 100);
4488 args[5] = make_number (max_live);
4489 args[6] = make_number (max_zombies);
4490 args[7] = zombie_list;
4491 return Fmessage (8, args);
4492 }
4493
4494 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4495
4496
4497 /* Mark OBJ if we can prove it's a Lisp_Object. */
4498
4499 static void
4500 mark_maybe_object (Lisp_Object obj)
4501 {
4502 void *po;
4503 struct mem_node *m;
4504
4505 #if USE_VALGRIND
4506 if (valgrind_p)
4507 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4508 #endif
4509
4510 if (INTEGERP (obj))
4511 return;
4512
4513 po = (void *) XPNTR (obj);
4514 m = mem_find (po);
4515
4516 if (m != MEM_NIL)
4517 {
4518 bool mark_p = 0;
4519
4520 switch (XTYPE (obj))
4521 {
4522 case Lisp_String:
4523 mark_p = (live_string_p (m, po)
4524 && !STRING_MARKED_P ((struct Lisp_String *) po));
4525 break;
4526
4527 case Lisp_Cons:
4528 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4529 break;
4530
4531 case Lisp_Symbol:
4532 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4533 break;
4534
4535 case Lisp_Float:
4536 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4537 break;
4538
4539 case Lisp_Vectorlike:
4540 /* Note: can't check BUFFERP before we know it's a
4541 buffer because checking that dereferences the pointer
4542 PO which might point anywhere. */
4543 if (live_vector_p (m, po))
4544 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4545 else if (live_buffer_p (m, po))
4546 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4547 break;
4548
4549 case Lisp_Misc:
4550 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4551 break;
4552
4553 default:
4554 break;
4555 }
4556
4557 if (mark_p)
4558 {
4559 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4560 if (nzombies < MAX_ZOMBIES)
4561 zombies[nzombies] = obj;
4562 ++nzombies;
4563 #endif
4564 mark_object (obj);
4565 }
4566 }
4567 }
4568
4569 /* Return true if P can point to Lisp data, and false otherwise.
4570 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4571 Otherwise, assume that Lisp data is aligned on even addresses. */
4572
4573 static bool
4574 maybe_lisp_pointer (void *p)
4575 {
4576 return !((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2));
4577 }
4578
4579 /* If P points to Lisp data, mark that as live if it isn't already
4580 marked. */
4581
4582 static void
4583 mark_maybe_pointer (void *p)
4584 {
4585 struct mem_node *m;
4586
4587 #if USE_VALGRIND
4588 if (valgrind_p)
4589 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4590 #endif
4591
4592 if (!maybe_lisp_pointer (p))
4593 return;
4594
4595 m = mem_find (p);
4596 if (m != MEM_NIL)
4597 {
4598 Lisp_Object obj = Qnil;
4599
4600 switch (m->type)
4601 {
4602 case MEM_TYPE_NON_LISP:
4603 case MEM_TYPE_SPARE:
4604 /* Nothing to do; not a pointer to Lisp memory. */
4605 break;
4606
4607 case MEM_TYPE_BUFFER:
4608 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4609 XSETVECTOR (obj, p);
4610 break;
4611
4612 case MEM_TYPE_CONS:
4613 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4614 XSETCONS (obj, p);
4615 break;
4616
4617 case MEM_TYPE_STRING:
4618 if (live_string_p (m, p)
4619 && !STRING_MARKED_P ((struct Lisp_String *) p))
4620 XSETSTRING (obj, p);
4621 break;
4622
4623 case MEM_TYPE_MISC:
4624 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4625 XSETMISC (obj, p);
4626 break;
4627
4628 case MEM_TYPE_SYMBOL:
4629 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4630 XSETSYMBOL (obj, p);
4631 break;
4632
4633 case MEM_TYPE_FLOAT:
4634 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4635 XSETFLOAT (obj, p);
4636 break;
4637
4638 case MEM_TYPE_VECTORLIKE:
4639 case MEM_TYPE_VECTOR_BLOCK:
4640 if (live_vector_p (m, p))
4641 {
4642 Lisp_Object tem;
4643 XSETVECTOR (tem, p);
4644 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4645 obj = tem;
4646 }
4647 break;
4648
4649 default:
4650 emacs_abort ();
4651 }
4652
4653 if (!NILP (obj))
4654 mark_object (obj);
4655 }
4656 }
4657
4658
4659 /* Alignment of pointer values. Use alignof, as it sometimes returns
4660 a smaller alignment than GCC's __alignof__ and mark_memory might
4661 miss objects if __alignof__ were used. */
4662 #define GC_POINTER_ALIGNMENT alignof (void *)
4663
4664 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4665 not suffice, which is the typical case. A host where a Lisp_Object is
4666 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4667 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4668 suffice to widen it to to a Lisp_Object and check it that way. */
4669 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4670 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4671 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4672 nor mark_maybe_object can follow the pointers. This should not occur on
4673 any practical porting target. */
4674 # error "MSB type bits straddle pointer-word boundaries"
4675 # endif
4676 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4677 pointer words that hold pointers ORed with type bits. */
4678 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4679 #else
4680 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4681 words that hold unmodified pointers. */
4682 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4683 #endif
4684
4685 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4686 or END+OFFSET..START. */
4687
4688 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4689 mark_memory (void *start, void *end)
4690 {
4691 void **pp;
4692 int i;
4693
4694 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4695 nzombies = 0;
4696 #endif
4697
4698 /* Make START the pointer to the start of the memory region,
4699 if it isn't already. */
4700 if (end < start)
4701 {
4702 void *tem = start;
4703 start = end;
4704 end = tem;
4705 }
4706
4707 /* Mark Lisp data pointed to. This is necessary because, in some
4708 situations, the C compiler optimizes Lisp objects away, so that
4709 only a pointer to them remains. Example:
4710
4711 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4712 ()
4713 {
4714 Lisp_Object obj = build_string ("test");
4715 struct Lisp_String *s = XSTRING (obj);
4716 Fgarbage_collect ();
4717 fprintf (stderr, "test `%s'\n", s->data);
4718 return Qnil;
4719 }
4720
4721 Here, `obj' isn't really used, and the compiler optimizes it
4722 away. The only reference to the life string is through the
4723 pointer `s'. */
4724
4725 for (pp = start; (void *) pp < end; pp++)
4726 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4727 {
4728 void *p = *(void **) ((char *) pp + i);
4729 mark_maybe_pointer (p);
4730 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4731 mark_maybe_object (XIL ((intptr_t) p));
4732 }
4733 }
4734
4735 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4736
4737 static bool setjmp_tested_p;
4738 static int longjmps_done;
4739
4740 #define SETJMP_WILL_LIKELY_WORK "\
4741 \n\
4742 Emacs garbage collector has been changed to use conservative stack\n\
4743 marking. Emacs has determined that the method it uses to do the\n\
4744 marking will likely work on your system, but this isn't sure.\n\
4745 \n\
4746 If you are a system-programmer, or can get the help of a local wizard\n\
4747 who is, please take a look at the function mark_stack in alloc.c, and\n\
4748 verify that the methods used are appropriate for your system.\n\
4749 \n\
4750 Please mail the result to <emacs-devel@gnu.org>.\n\
4751 "
4752
4753 #define SETJMP_WILL_NOT_WORK "\
4754 \n\
4755 Emacs garbage collector has been changed to use conservative stack\n\
4756 marking. Emacs has determined that the default method it uses to do the\n\
4757 marking will not work on your system. We will need a system-dependent\n\
4758 solution for your system.\n\
4759 \n\
4760 Please take a look at the function mark_stack in alloc.c, and\n\
4761 try to find a way to make it work on your system.\n\
4762 \n\
4763 Note that you may get false negatives, depending on the compiler.\n\
4764 In particular, you need to use -O with GCC for this test.\n\
4765 \n\
4766 Please mail the result to <emacs-devel@gnu.org>.\n\
4767 "
4768
4769
4770 /* Perform a quick check if it looks like setjmp saves registers in a
4771 jmp_buf. Print a message to stderr saying so. When this test
4772 succeeds, this is _not_ a proof that setjmp is sufficient for
4773 conservative stack marking. Only the sources or a disassembly
4774 can prove that. */
4775
4776 static void
4777 test_setjmp (void)
4778 {
4779 char buf[10];
4780 register int x;
4781 sys_jmp_buf jbuf;
4782
4783 /* Arrange for X to be put in a register. */
4784 sprintf (buf, "1");
4785 x = strlen (buf);
4786 x = 2 * x - 1;
4787
4788 sys_setjmp (jbuf);
4789 if (longjmps_done == 1)
4790 {
4791 /* Came here after the longjmp at the end of the function.
4792
4793 If x == 1, the longjmp has restored the register to its
4794 value before the setjmp, and we can hope that setjmp
4795 saves all such registers in the jmp_buf, although that
4796 isn't sure.
4797
4798 For other values of X, either something really strange is
4799 taking place, or the setjmp just didn't save the register. */
4800
4801 if (x == 1)
4802 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4803 else
4804 {
4805 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4806 exit (1);
4807 }
4808 }
4809
4810 ++longjmps_done;
4811 x = 2;
4812 if (longjmps_done == 1)
4813 sys_longjmp (jbuf, 1);
4814 }
4815
4816 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4817
4818
4819 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4820
4821 /* Abort if anything GCPRO'd doesn't survive the GC. */
4822
4823 static void
4824 check_gcpros (void)
4825 {
4826 struct gcpro *p;
4827 ptrdiff_t i;
4828
4829 for (p = gcprolist; p; p = p->next)
4830 for (i = 0; i < p->nvars; ++i)
4831 if (!survives_gc_p (p->var[i]))
4832 /* FIXME: It's not necessarily a bug. It might just be that the
4833 GCPRO is unnecessary or should release the object sooner. */
4834 emacs_abort ();
4835 }
4836
4837 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4838
4839 void
4840 dump_zombies (void)
4841 {
4842 int i;
4843
4844 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4845 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4846 {
4847 fprintf (stderr, " %d = ", i);
4848 debug_print (zombies[i]);
4849 }
4850 }
4851
4852 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4853
4854
4855 /* Mark live Lisp objects on the C stack.
4856
4857 There are several system-dependent problems to consider when
4858 porting this to new architectures:
4859
4860 Processor Registers
4861
4862 We have to mark Lisp objects in CPU registers that can hold local
4863 variables or are used to pass parameters.
4864
4865 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4866 something that either saves relevant registers on the stack, or
4867 calls mark_maybe_object passing it each register's contents.
4868
4869 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4870 implementation assumes that calling setjmp saves registers we need
4871 to see in a jmp_buf which itself lies on the stack. This doesn't
4872 have to be true! It must be verified for each system, possibly
4873 by taking a look at the source code of setjmp.
4874
4875 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4876 can use it as a machine independent method to store all registers
4877 to the stack. In this case the macros described in the previous
4878 two paragraphs are not used.
4879
4880 Stack Layout
4881
4882 Architectures differ in the way their processor stack is organized.
4883 For example, the stack might look like this
4884
4885 +----------------+
4886 | Lisp_Object | size = 4
4887 +----------------+
4888 | something else | size = 2
4889 +----------------+
4890 | Lisp_Object | size = 4
4891 +----------------+
4892 | ... |
4893
4894 In such a case, not every Lisp_Object will be aligned equally. To
4895 find all Lisp_Object on the stack it won't be sufficient to walk
4896 the stack in steps of 4 bytes. Instead, two passes will be
4897 necessary, one starting at the start of the stack, and a second
4898 pass starting at the start of the stack + 2. Likewise, if the
4899 minimal alignment of Lisp_Objects on the stack is 1, four passes
4900 would be necessary, each one starting with one byte more offset
4901 from the stack start. */
4902
4903 static void
4904 mark_stack (void *end)
4905 {
4906
4907 /* This assumes that the stack is a contiguous region in memory. If
4908 that's not the case, something has to be done here to iterate
4909 over the stack segments. */
4910 mark_memory (stack_base, end);
4911
4912 /* Allow for marking a secondary stack, like the register stack on the
4913 ia64. */
4914 #ifdef GC_MARK_SECONDARY_STACK
4915 GC_MARK_SECONDARY_STACK ();
4916 #endif
4917
4918 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4919 check_gcpros ();
4920 #endif
4921 }
4922
4923 #else /* GC_MARK_STACK == 0 */
4924
4925 #define mark_maybe_object(obj) emacs_abort ()
4926
4927 #endif /* GC_MARK_STACK != 0 */
4928
4929
4930 /* Determine whether it is safe to access memory at address P. */
4931 static int
4932 valid_pointer_p (void *p)
4933 {
4934 #ifdef WINDOWSNT
4935 return w32_valid_pointer_p (p, 16);
4936 #else
4937 int fd[2];
4938
4939 /* Obviously, we cannot just access it (we would SEGV trying), so we
4940 trick the o/s to tell us whether p is a valid pointer.
4941 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4942 not validate p in that case. */
4943
4944 if (emacs_pipe (fd) == 0)
4945 {
4946 bool valid = emacs_write (fd[1], p, 16) == 16;
4947 emacs_close (fd[1]);
4948 emacs_close (fd[0]);
4949 return valid;
4950 }
4951
4952 return -1;
4953 #endif
4954 }
4955
4956 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4957 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4958 cannot validate OBJ. This function can be quite slow, so its primary
4959 use is the manual debugging. The only exception is print_object, where
4960 we use it to check whether the memory referenced by the pointer of
4961 Lisp_Save_Value object contains valid objects. */
4962
4963 int
4964 valid_lisp_object_p (Lisp_Object obj)
4965 {
4966 void *p;
4967 #if GC_MARK_STACK
4968 struct mem_node *m;
4969 #endif
4970
4971 if (INTEGERP (obj))
4972 return 1;
4973
4974 p = (void *) XPNTR (obj);
4975 if (PURE_POINTER_P (p))
4976 return 1;
4977
4978 if (p == &buffer_defaults || p == &buffer_local_symbols)
4979 return 2;
4980
4981 #if !GC_MARK_STACK
4982 return valid_pointer_p (p);
4983 #else
4984
4985 m = mem_find (p);
4986
4987 if (m == MEM_NIL)
4988 {
4989 int valid = valid_pointer_p (p);
4990 if (valid <= 0)
4991 return valid;
4992
4993 if (SUBRP (obj))
4994 return 1;
4995
4996 return 0;
4997 }
4998
4999 switch (m->type)
5000 {
5001 case MEM_TYPE_NON_LISP:
5002 case MEM_TYPE_SPARE:
5003 return 0;
5004
5005 case MEM_TYPE_BUFFER:
5006 return live_buffer_p (m, p) ? 1 : 2;
5007
5008 case MEM_TYPE_CONS:
5009 return live_cons_p (m, p);
5010
5011 case MEM_TYPE_STRING:
5012 return live_string_p (m, p);
5013
5014 case MEM_TYPE_MISC:
5015 return live_misc_p (m, p);
5016
5017 case MEM_TYPE_SYMBOL:
5018 return live_symbol_p (m, p);
5019
5020 case MEM_TYPE_FLOAT:
5021 return live_float_p (m, p);
5022
5023 case MEM_TYPE_VECTORLIKE:
5024 case MEM_TYPE_VECTOR_BLOCK:
5025 return live_vector_p (m, p);
5026
5027 default:
5028 break;
5029 }
5030
5031 return 0;
5032 #endif
5033 }
5034
5035 /* If GC_MARK_STACK, return 1 if STR is a relocatable data of Lisp_String
5036 (i.e. there is a non-pure Lisp_Object X so that SDATA (X) == STR) and 0
5037 if not. Otherwise we can't rely on valid_lisp_object_p and return -1.
5038 This function is slow and should be used for debugging purposes. */
5039
5040 int
5041 relocatable_string_data_p (const char *str)
5042 {
5043 if (PURE_POINTER_P (str))
5044 return 0;
5045 #if GC_MARK_STACK
5046 if (str)
5047 {
5048 struct sdata *sdata
5049 = (struct sdata *) (str - offsetof (struct sdata, data));
5050
5051 if (valid_pointer_p (sdata)
5052 && valid_pointer_p (sdata->string)
5053 && maybe_lisp_pointer (sdata->string))
5054 return (valid_lisp_object_p
5055 (make_lisp_ptr (sdata->string, Lisp_String))
5056 && (const char *) sdata->string->data == str);
5057 }
5058 return 0;
5059 #endif /* GC_MARK_STACK */
5060 return -1;
5061 }
5062
5063 /***********************************************************************
5064 Pure Storage Management
5065 ***********************************************************************/
5066
5067 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5068 pointer to it. TYPE is the Lisp type for which the memory is
5069 allocated. TYPE < 0 means it's not used for a Lisp object. */
5070
5071 static void *
5072 pure_alloc (size_t size, int type)
5073 {
5074 void *result;
5075 #if USE_LSB_TAG
5076 size_t alignment = GCALIGNMENT;
5077 #else
5078 size_t alignment = alignof (EMACS_INT);
5079
5080 /* Give Lisp_Floats an extra alignment. */
5081 if (type == Lisp_Float)
5082 alignment = alignof (struct Lisp_Float);
5083 #endif
5084
5085 again:
5086 if (type >= 0)
5087 {
5088 /* Allocate space for a Lisp object from the beginning of the free
5089 space with taking account of alignment. */
5090 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5091 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5092 }
5093 else
5094 {
5095 /* Allocate space for a non-Lisp object from the end of the free
5096 space. */
5097 pure_bytes_used_non_lisp += size;
5098 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5099 }
5100 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5101
5102 if (pure_bytes_used <= pure_size)
5103 return result;
5104
5105 /* Don't allocate a large amount here,
5106 because it might get mmap'd and then its address
5107 might not be usable. */
5108 purebeg = xmalloc (10000);
5109 pure_size = 10000;
5110 pure_bytes_used_before_overflow += pure_bytes_used - size;
5111 pure_bytes_used = 0;
5112 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5113 goto again;
5114 }
5115
5116
5117 /* Print a warning if PURESIZE is too small. */
5118
5119 void
5120 check_pure_size (void)
5121 {
5122 if (pure_bytes_used_before_overflow)
5123 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5124 " bytes needed)"),
5125 pure_bytes_used + pure_bytes_used_before_overflow);
5126 }
5127
5128
5129 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5130 the non-Lisp data pool of the pure storage, and return its start
5131 address. Return NULL if not found. */
5132
5133 static char *
5134 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5135 {
5136 int i;
5137 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5138 const unsigned char *p;
5139 char *non_lisp_beg;
5140
5141 if (pure_bytes_used_non_lisp <= nbytes)
5142 return NULL;
5143
5144 /* Set up the Boyer-Moore table. */
5145 skip = nbytes + 1;
5146 for (i = 0; i < 256; i++)
5147 bm_skip[i] = skip;
5148
5149 p = (const unsigned char *) data;
5150 while (--skip > 0)
5151 bm_skip[*p++] = skip;
5152
5153 last_char_skip = bm_skip['\0'];
5154
5155 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5156 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5157
5158 /* See the comments in the function `boyer_moore' (search.c) for the
5159 use of `infinity'. */
5160 infinity = pure_bytes_used_non_lisp + 1;
5161 bm_skip['\0'] = infinity;
5162
5163 p = (const unsigned char *) non_lisp_beg + nbytes;
5164 start = 0;
5165 do
5166 {
5167 /* Check the last character (== '\0'). */
5168 do
5169 {
5170 start += bm_skip[*(p + start)];
5171 }
5172 while (start <= start_max);
5173
5174 if (start < infinity)
5175 /* Couldn't find the last character. */
5176 return NULL;
5177
5178 /* No less than `infinity' means we could find the last
5179 character at `p[start - infinity]'. */
5180 start -= infinity;
5181
5182 /* Check the remaining characters. */
5183 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5184 /* Found. */
5185 return non_lisp_beg + start;
5186
5187 start += last_char_skip;
5188 }
5189 while (start <= start_max);
5190
5191 return NULL;
5192 }
5193
5194
5195 /* Return a string allocated in pure space. DATA is a buffer holding
5196 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5197 means make the result string multibyte.
5198
5199 Must get an error if pure storage is full, since if it cannot hold
5200 a large string it may be able to hold conses that point to that
5201 string; then the string is not protected from gc. */
5202
5203 Lisp_Object
5204 make_pure_string (const char *data,
5205 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5206 {
5207 Lisp_Object string;
5208 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5209 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5210 if (s->data == NULL)
5211 {
5212 s->data = pure_alloc (nbytes + 1, -1);
5213 memcpy (s->data, data, nbytes);
5214 s->data[nbytes] = '\0';
5215 }
5216 s->size = nchars;
5217 s->size_byte = multibyte ? nbytes : -1;
5218 s->intervals = NULL;
5219 XSETSTRING (string, s);
5220 return string;
5221 }
5222
5223 /* Return a string allocated in pure space. Do not
5224 allocate the string data, just point to DATA. */
5225
5226 Lisp_Object
5227 make_pure_c_string (const char *data, ptrdiff_t nchars)
5228 {
5229 Lisp_Object string;
5230 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5231 s->size = nchars;
5232 s->size_byte = -1;
5233 s->data = (unsigned char *) data;
5234 s->intervals = NULL;
5235 XSETSTRING (string, s);
5236 return string;
5237 }
5238
5239 static Lisp_Object purecopy (Lisp_Object obj);
5240
5241 /* Return a cons allocated from pure space. Give it pure copies
5242 of CAR as car and CDR as cdr. */
5243
5244 Lisp_Object
5245 pure_cons (Lisp_Object car, Lisp_Object cdr)
5246 {
5247 Lisp_Object new;
5248 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5249 XSETCONS (new, p);
5250 XSETCAR (new, purecopy (car));
5251 XSETCDR (new, purecopy (cdr));
5252 return new;
5253 }
5254
5255
5256 /* Value is a float object with value NUM allocated from pure space. */
5257
5258 static Lisp_Object
5259 make_pure_float (double num)
5260 {
5261 Lisp_Object new;
5262 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5263 XSETFLOAT (new, p);
5264 XFLOAT_INIT (new, num);
5265 return new;
5266 }
5267
5268
5269 /* Return a vector with room for LEN Lisp_Objects allocated from
5270 pure space. */
5271
5272 static Lisp_Object
5273 make_pure_vector (ptrdiff_t len)
5274 {
5275 Lisp_Object new;
5276 size_t size = header_size + len * word_size;
5277 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5278 XSETVECTOR (new, p);
5279 XVECTOR (new)->header.size = len;
5280 return new;
5281 }
5282
5283
5284 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5285 doc: /* Make a copy of object OBJ in pure storage.
5286 Recursively copies contents of vectors and cons cells.
5287 Does not copy symbols. Copies strings without text properties. */)
5288 (register Lisp_Object obj)
5289 {
5290 if (NILP (Vpurify_flag))
5291 return obj;
5292 else if (MARKERP (obj) || OVERLAYP (obj)
5293 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5294 /* Can't purify those. */
5295 return obj;
5296 else
5297 return purecopy (obj);
5298 }
5299
5300 static Lisp_Object
5301 purecopy (Lisp_Object obj)
5302 {
5303 if (PURE_POINTER_P (XPNTR (obj)) || INTEGERP (obj) || SUBRP (obj))
5304 return obj; /* Already pure. */
5305
5306 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5307 {
5308 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5309 if (!NILP (tmp))
5310 return tmp;
5311 }
5312
5313 if (CONSP (obj))
5314 obj = pure_cons (XCAR (obj), XCDR (obj));
5315 else if (FLOATP (obj))
5316 obj = make_pure_float (XFLOAT_DATA (obj));
5317 else if (STRINGP (obj))
5318 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5319 SBYTES (obj),
5320 STRING_MULTIBYTE (obj));
5321 else if (COMPILEDP (obj) || VECTORP (obj))
5322 {
5323 register struct Lisp_Vector *vec;
5324 register ptrdiff_t i;
5325 ptrdiff_t size;
5326
5327 size = ASIZE (obj);
5328 if (size & PSEUDOVECTOR_FLAG)
5329 size &= PSEUDOVECTOR_SIZE_MASK;
5330 vec = XVECTOR (make_pure_vector (size));
5331 for (i = 0; i < size; i++)
5332 vec->contents[i] = purecopy (AREF (obj, i));
5333 if (COMPILEDP (obj))
5334 {
5335 XSETPVECTYPE (vec, PVEC_COMPILED);
5336 XSETCOMPILED (obj, vec);
5337 }
5338 else
5339 XSETVECTOR (obj, vec);
5340 }
5341 else if (SYMBOLP (obj))
5342 {
5343 if (!XSYMBOL (obj)->pinned)
5344 { /* We can't purify them, but they appear in many pure objects.
5345 Mark them as `pinned' so we know to mark them at every GC cycle. */
5346 XSYMBOL (obj)->pinned = true;
5347 symbol_block_pinned = symbol_block;
5348 }
5349 return obj;
5350 }
5351 else
5352 {
5353 Lisp_Object args[2];
5354 args[0] = build_pure_c_string ("Don't know how to purify: %S");
5355 args[1] = obj;
5356 Fsignal (Qerror, (Fcons (Fformat (2, args), Qnil)));
5357 }
5358
5359 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5360 Fputhash (obj, obj, Vpurify_flag);
5361
5362 return obj;
5363 }
5364
5365
5366 \f
5367 /***********************************************************************
5368 Protection from GC
5369 ***********************************************************************/
5370
5371 /* Put an entry in staticvec, pointing at the variable with address
5372 VARADDRESS. */
5373
5374 void
5375 staticpro (Lisp_Object *varaddress)
5376 {
5377 if (staticidx >= NSTATICS)
5378 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5379 staticvec[staticidx++] = varaddress;
5380 }
5381
5382 \f
5383 /***********************************************************************
5384 Protection from GC
5385 ***********************************************************************/
5386
5387 /* Temporarily prevent garbage collection. */
5388
5389 ptrdiff_t
5390 inhibit_garbage_collection (void)
5391 {
5392 ptrdiff_t count = SPECPDL_INDEX ();
5393
5394 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5395 return count;
5396 }
5397
5398 /* Used to avoid possible overflows when
5399 converting from C to Lisp integers. */
5400
5401 static Lisp_Object
5402 bounded_number (EMACS_INT number)
5403 {
5404 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5405 }
5406
5407 /* Calculate total bytes of live objects. */
5408
5409 static size_t
5410 total_bytes_of_live_objects (void)
5411 {
5412 size_t tot = 0;
5413 tot += total_conses * sizeof (struct Lisp_Cons);
5414 tot += total_symbols * sizeof (struct Lisp_Symbol);
5415 tot += total_markers * sizeof (union Lisp_Misc);
5416 tot += total_string_bytes;
5417 tot += total_vector_slots * word_size;
5418 tot += total_floats * sizeof (struct Lisp_Float);
5419 tot += total_intervals * sizeof (struct interval);
5420 tot += total_strings * sizeof (struct Lisp_String);
5421 return tot;
5422 }
5423
5424 #ifdef HAVE_WINDOW_SYSTEM
5425
5426 /* This code has a few issues on MS-Windows, see Bug#15876 and Bug#16140. */
5427
5428 #if !defined (HAVE_NTGUI)
5429
5430 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5431 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5432
5433 static Lisp_Object
5434 compact_font_cache_entry (Lisp_Object entry)
5435 {
5436 Lisp_Object tail, *prev = &entry;
5437
5438 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5439 {
5440 bool drop = 0;
5441 Lisp_Object obj = XCAR (tail);
5442
5443 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5444 if (CONSP (obj) && FONT_SPEC_P (XCAR (obj))
5445 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj)))
5446 && VECTORP (XCDR (obj)))
5447 {
5448 ptrdiff_t i, size = ASIZE (XCDR (obj)) & ~ARRAY_MARK_FLAG;
5449
5450 /* If font-spec is not marked, most likely all font-entities
5451 are not marked too. But we must be sure that nothing is
5452 marked within OBJ before we really drop it. */
5453 for (i = 0; i < size; i++)
5454 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj), i))))
5455 break;
5456
5457 if (i == size)
5458 drop = 1;
5459 }
5460 if (drop)
5461 *prev = XCDR (tail);
5462 else
5463 prev = xcdr_addr (tail);
5464 }
5465 return entry;
5466 }
5467
5468 #endif /* not HAVE_NTGUI */
5469
5470 /* Compact font caches on all terminals and mark
5471 everything which is still here after compaction. */
5472
5473 static void
5474 compact_font_caches (void)
5475 {
5476 struct terminal *t;
5477
5478 for (t = terminal_list; t; t = t->next_terminal)
5479 {
5480 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5481 #if !defined (HAVE_NTGUI)
5482 if (CONSP (cache))
5483 {
5484 Lisp_Object entry;
5485
5486 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5487 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5488 }
5489 #endif /* not HAVE_NTGUI */
5490 mark_object (cache);
5491 }
5492 }
5493
5494 #else /* not HAVE_WINDOW_SYSTEM */
5495
5496 #define compact_font_caches() (void)(0)
5497
5498 #endif /* HAVE_WINDOW_SYSTEM */
5499
5500 /* Remove (MARKER . DATA) entries with unmarked MARKER
5501 from buffer undo LIST and return changed list. */
5502
5503 static Lisp_Object
5504 compact_undo_list (Lisp_Object list)
5505 {
5506 Lisp_Object tail, *prev = &list;
5507
5508 for (tail = list; CONSP (tail); tail = XCDR (tail))
5509 {
5510 if (CONSP (XCAR (tail))
5511 && MARKERP (XCAR (XCAR (tail)))
5512 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5513 *prev = XCDR (tail);
5514 else
5515 prev = xcdr_addr (tail);
5516 }
5517 return list;
5518 }
5519
5520 static void
5521 mark_pinned_symbols (void)
5522 {
5523 struct symbol_block *sblk;
5524 int lim = (symbol_block_pinned == symbol_block
5525 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5526
5527 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5528 {
5529 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5530 for (; sym < end; ++sym)
5531 if (sym->s.pinned)
5532 mark_object (make_lisp_ptr (&sym->s, Lisp_Symbol));
5533
5534 lim = SYMBOL_BLOCK_SIZE;
5535 }
5536 }
5537
5538 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5539 separate function so that we could limit mark_stack in searching
5540 the stack frames below this function, thus avoiding the rare cases
5541 where mark_stack finds values that look like live Lisp objects on
5542 portions of stack that couldn't possibly contain such live objects.
5543 For more details of this, see the discussion at
5544 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5545 static Lisp_Object
5546 garbage_collect_1 (void *end)
5547 {
5548 struct buffer *nextb;
5549 char stack_top_variable;
5550 ptrdiff_t i;
5551 bool message_p;
5552 ptrdiff_t count = SPECPDL_INDEX ();
5553 struct timespec start;
5554 Lisp_Object retval = Qnil;
5555 size_t tot_before = 0;
5556
5557 if (abort_on_gc)
5558 emacs_abort ();
5559
5560 /* Can't GC if pure storage overflowed because we can't determine
5561 if something is a pure object or not. */
5562 if (pure_bytes_used_before_overflow)
5563 return Qnil;
5564
5565 /* Record this function, so it appears on the profiler's backtraces. */
5566 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5567
5568 check_cons_list ();
5569
5570 /* Don't keep undo information around forever.
5571 Do this early on, so it is no problem if the user quits. */
5572 FOR_EACH_BUFFER (nextb)
5573 compact_buffer (nextb);
5574
5575 if (profiler_memory_running)
5576 tot_before = total_bytes_of_live_objects ();
5577
5578 start = current_timespec ();
5579
5580 /* In case user calls debug_print during GC,
5581 don't let that cause a recursive GC. */
5582 consing_since_gc = 0;
5583
5584 /* Save what's currently displayed in the echo area. */
5585 message_p = push_message ();
5586 record_unwind_protect_void (pop_message_unwind);
5587
5588 /* Save a copy of the contents of the stack, for debugging. */
5589 #if MAX_SAVE_STACK > 0
5590 if (NILP (Vpurify_flag))
5591 {
5592 char *stack;
5593 ptrdiff_t stack_size;
5594 if (&stack_top_variable < stack_bottom)
5595 {
5596 stack = &stack_top_variable;
5597 stack_size = stack_bottom - &stack_top_variable;
5598 }
5599 else
5600 {
5601 stack = stack_bottom;
5602 stack_size = &stack_top_variable - stack_bottom;
5603 }
5604 if (stack_size <= MAX_SAVE_STACK)
5605 {
5606 if (stack_copy_size < stack_size)
5607 {
5608 stack_copy = xrealloc (stack_copy, stack_size);
5609 stack_copy_size = stack_size;
5610 }
5611 no_sanitize_memcpy (stack_copy, stack, stack_size);
5612 }
5613 }
5614 #endif /* MAX_SAVE_STACK > 0 */
5615
5616 if (garbage_collection_messages)
5617 message1_nolog ("Garbage collecting...");
5618
5619 block_input ();
5620
5621 shrink_regexp_cache ();
5622
5623 gc_in_progress = 1;
5624
5625 /* Mark all the special slots that serve as the roots of accessibility. */
5626
5627 mark_buffer (&buffer_defaults);
5628 mark_buffer (&buffer_local_symbols);
5629
5630 for (i = 0; i < staticidx; i++)
5631 mark_object (*staticvec[i]);
5632
5633 mark_pinned_symbols ();
5634 mark_specpdl ();
5635 mark_terminals ();
5636 mark_kboards ();
5637
5638 #ifdef USE_GTK
5639 xg_mark_data ();
5640 #endif
5641
5642 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5643 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5644 mark_stack (end);
5645 #else
5646 {
5647 register struct gcpro *tail;
5648 for (tail = gcprolist; tail; tail = tail->next)
5649 for (i = 0; i < tail->nvars; i++)
5650 mark_object (tail->var[i]);
5651 }
5652 mark_byte_stack ();
5653 #endif
5654 {
5655 struct handler *handler;
5656 for (handler = handlerlist; handler; handler = handler->next)
5657 {
5658 mark_object (handler->tag_or_ch);
5659 mark_object (handler->val);
5660 }
5661 }
5662 #ifdef HAVE_WINDOW_SYSTEM
5663 mark_fringe_data ();
5664 #endif
5665
5666 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5667 mark_stack (end);
5668 #endif
5669
5670 /* Everything is now marked, except for the data in font caches
5671 and undo lists. They're compacted by removing an items which
5672 aren't reachable otherwise. */
5673
5674 compact_font_caches ();
5675
5676 FOR_EACH_BUFFER (nextb)
5677 {
5678 if (!EQ (BVAR (nextb, undo_list), Qt))
5679 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5680 /* Now that we have stripped the elements that need not be
5681 in the undo_list any more, we can finally mark the list. */
5682 mark_object (BVAR (nextb, undo_list));
5683 }
5684
5685 gc_sweep ();
5686
5687 /* Clear the mark bits that we set in certain root slots. */
5688
5689 unmark_byte_stack ();
5690 VECTOR_UNMARK (&buffer_defaults);
5691 VECTOR_UNMARK (&buffer_local_symbols);
5692
5693 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5694 dump_zombies ();
5695 #endif
5696
5697 check_cons_list ();
5698
5699 gc_in_progress = 0;
5700
5701 unblock_input ();
5702
5703 consing_since_gc = 0;
5704 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5705 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5706
5707 gc_relative_threshold = 0;
5708 if (FLOATP (Vgc_cons_percentage))
5709 { /* Set gc_cons_combined_threshold. */
5710 double tot = total_bytes_of_live_objects ();
5711
5712 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5713 if (0 < tot)
5714 {
5715 if (tot < TYPE_MAXIMUM (EMACS_INT))
5716 gc_relative_threshold = tot;
5717 else
5718 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5719 }
5720 }
5721
5722 if (garbage_collection_messages)
5723 {
5724 if (message_p || minibuf_level > 0)
5725 restore_message ();
5726 else
5727 message1_nolog ("Garbage collecting...done");
5728 }
5729
5730 unbind_to (count, Qnil);
5731 {
5732 Lisp_Object total[11];
5733 int total_size = 10;
5734
5735 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5736 bounded_number (total_conses),
5737 bounded_number (total_free_conses));
5738
5739 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5740 bounded_number (total_symbols),
5741 bounded_number (total_free_symbols));
5742
5743 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5744 bounded_number (total_markers),
5745 bounded_number (total_free_markers));
5746
5747 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5748 bounded_number (total_strings),
5749 bounded_number (total_free_strings));
5750
5751 total[4] = list3 (Qstring_bytes, make_number (1),
5752 bounded_number (total_string_bytes));
5753
5754 total[5] = list3 (Qvectors,
5755 make_number (header_size + sizeof (Lisp_Object)),
5756 bounded_number (total_vectors));
5757
5758 total[6] = list4 (Qvector_slots, make_number (word_size),
5759 bounded_number (total_vector_slots),
5760 bounded_number (total_free_vector_slots));
5761
5762 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5763 bounded_number (total_floats),
5764 bounded_number (total_free_floats));
5765
5766 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5767 bounded_number (total_intervals),
5768 bounded_number (total_free_intervals));
5769
5770 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5771 bounded_number (total_buffers));
5772
5773 #ifdef DOUG_LEA_MALLOC
5774 total_size++;
5775 total[10] = list4 (Qheap, make_number (1024),
5776 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5777 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5778 #endif
5779 retval = Flist (total_size, total);
5780 }
5781
5782 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5783 {
5784 /* Compute average percentage of zombies. */
5785 double nlive
5786 = (total_conses + total_symbols + total_markers + total_strings
5787 + total_vectors + total_floats + total_intervals + total_buffers);
5788
5789 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5790 max_live = max (nlive, max_live);
5791 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5792 max_zombies = max (nzombies, max_zombies);
5793 ++ngcs;
5794 }
5795 #endif
5796
5797 if (!NILP (Vpost_gc_hook))
5798 {
5799 ptrdiff_t gc_count = inhibit_garbage_collection ();
5800 safe_run_hooks (Qpost_gc_hook);
5801 unbind_to (gc_count, Qnil);
5802 }
5803
5804 /* Accumulate statistics. */
5805 if (FLOATP (Vgc_elapsed))
5806 {
5807 struct timespec since_start = timespec_sub (current_timespec (), start);
5808 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5809 + timespectod (since_start));
5810 }
5811
5812 gcs_done++;
5813
5814 /* Collect profiling data. */
5815 if (profiler_memory_running)
5816 {
5817 size_t swept = 0;
5818 size_t tot_after = total_bytes_of_live_objects ();
5819 if (tot_before > tot_after)
5820 swept = tot_before - tot_after;
5821 malloc_probe (swept);
5822 }
5823
5824 return retval;
5825 }
5826
5827 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5828 doc: /* Reclaim storage for Lisp objects no longer needed.
5829 Garbage collection happens automatically if you cons more than
5830 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5831 `garbage-collect' normally returns a list with info on amount of space in use,
5832 where each entry has the form (NAME SIZE USED FREE), where:
5833 - NAME is a symbol describing the kind of objects this entry represents,
5834 - SIZE is the number of bytes used by each one,
5835 - USED is the number of those objects that were found live in the heap,
5836 - FREE is the number of those objects that are not live but that Emacs
5837 keeps around for future allocations (maybe because it does not know how
5838 to return them to the OS).
5839 However, if there was overflow in pure space, `garbage-collect'
5840 returns nil, because real GC can't be done.
5841 See Info node `(elisp)Garbage Collection'. */)
5842 (void)
5843 {
5844 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5845 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS \
5846 || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
5847 void *end;
5848
5849 #ifdef HAVE___BUILTIN_UNWIND_INIT
5850 /* Force callee-saved registers and register windows onto the stack.
5851 This is the preferred method if available, obviating the need for
5852 machine dependent methods. */
5853 __builtin_unwind_init ();
5854 end = &end;
5855 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5856 #ifndef GC_SAVE_REGISTERS_ON_STACK
5857 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5858 union aligned_jmpbuf {
5859 Lisp_Object o;
5860 sys_jmp_buf j;
5861 } j;
5862 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
5863 #endif
5864 /* This trick flushes the register windows so that all the state of
5865 the process is contained in the stack. */
5866 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5867 needed on ia64 too. See mach_dep.c, where it also says inline
5868 assembler doesn't work with relevant proprietary compilers. */
5869 #ifdef __sparc__
5870 #if defined (__sparc64__) && defined (__FreeBSD__)
5871 /* FreeBSD does not have a ta 3 handler. */
5872 asm ("flushw");
5873 #else
5874 asm ("ta 3");
5875 #endif
5876 #endif
5877
5878 /* Save registers that we need to see on the stack. We need to see
5879 registers used to hold register variables and registers used to
5880 pass parameters. */
5881 #ifdef GC_SAVE_REGISTERS_ON_STACK
5882 GC_SAVE_REGISTERS_ON_STACK (end);
5883 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5884
5885 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5886 setjmp will definitely work, test it
5887 and print a message with the result
5888 of the test. */
5889 if (!setjmp_tested_p)
5890 {
5891 setjmp_tested_p = 1;
5892 test_setjmp ();
5893 }
5894 #endif /* GC_SETJMP_WORKS */
5895
5896 sys_setjmp (j.j);
5897 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
5898 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5899 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5900 return garbage_collect_1 (end);
5901 #elif (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE)
5902 /* Old GCPROs-based method without stack marking. */
5903 return garbage_collect_1 (NULL);
5904 #else
5905 emacs_abort ();
5906 #endif /* GC_MARK_STACK */
5907 }
5908
5909 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5910 only interesting objects referenced from glyphs are strings. */
5911
5912 static void
5913 mark_glyph_matrix (struct glyph_matrix *matrix)
5914 {
5915 struct glyph_row *row = matrix->rows;
5916 struct glyph_row *end = row + matrix->nrows;
5917
5918 for (; row < end; ++row)
5919 if (row->enabled_p)
5920 {
5921 int area;
5922 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5923 {
5924 struct glyph *glyph = row->glyphs[area];
5925 struct glyph *end_glyph = glyph + row->used[area];
5926
5927 for (; glyph < end_glyph; ++glyph)
5928 if (STRINGP (glyph->object)
5929 && !STRING_MARKED_P (XSTRING (glyph->object)))
5930 mark_object (glyph->object);
5931 }
5932 }
5933 }
5934
5935 /* Mark reference to a Lisp_Object.
5936 If the object referred to has not been seen yet, recursively mark
5937 all the references contained in it. */
5938
5939 #define LAST_MARKED_SIZE 500
5940 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5941 static int last_marked_index;
5942
5943 /* For debugging--call abort when we cdr down this many
5944 links of a list, in mark_object. In debugging,
5945 the call to abort will hit a breakpoint.
5946 Normally this is zero and the check never goes off. */
5947 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5948
5949 static void
5950 mark_vectorlike (struct Lisp_Vector *ptr)
5951 {
5952 ptrdiff_t size = ptr->header.size;
5953 ptrdiff_t i;
5954
5955 eassert (!VECTOR_MARKED_P (ptr));
5956 VECTOR_MARK (ptr); /* Else mark it. */
5957 if (size & PSEUDOVECTOR_FLAG)
5958 size &= PSEUDOVECTOR_SIZE_MASK;
5959
5960 /* Note that this size is not the memory-footprint size, but only
5961 the number of Lisp_Object fields that we should trace.
5962 The distinction is used e.g. by Lisp_Process which places extra
5963 non-Lisp_Object fields at the end of the structure... */
5964 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5965 mark_object (ptr->contents[i]);
5966 }
5967
5968 /* Like mark_vectorlike but optimized for char-tables (and
5969 sub-char-tables) assuming that the contents are mostly integers or
5970 symbols. */
5971
5972 static void
5973 mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
5974 {
5975 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5976 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
5977 int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);
5978
5979 eassert (!VECTOR_MARKED_P (ptr));
5980 VECTOR_MARK (ptr);
5981 for (i = idx; i < size; i++)
5982 {
5983 Lisp_Object val = ptr->contents[i];
5984
5985 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5986 continue;
5987 if (SUB_CHAR_TABLE_P (val))
5988 {
5989 if (! VECTOR_MARKED_P (XVECTOR (val)))
5990 mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
5991 }
5992 else
5993 mark_object (val);
5994 }
5995 }
5996
5997 NO_INLINE /* To reduce stack depth in mark_object. */
5998 static Lisp_Object
5999 mark_compiled (struct Lisp_Vector *ptr)
6000 {
6001 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6002
6003 VECTOR_MARK (ptr);
6004 for (i = 0; i < size; i++)
6005 if (i != COMPILED_CONSTANTS)
6006 mark_object (ptr->contents[i]);
6007 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
6008 }
6009
6010 /* Mark the chain of overlays starting at PTR. */
6011
6012 static void
6013 mark_overlay (struct Lisp_Overlay *ptr)
6014 {
6015 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
6016 {
6017 ptr->gcmarkbit = 1;
6018 /* These two are always markers and can be marked fast. */
6019 XMARKER (ptr->start)->gcmarkbit = 1;
6020 XMARKER (ptr->end)->gcmarkbit = 1;
6021 mark_object (ptr->plist);
6022 }
6023 }
6024
6025 /* Mark Lisp_Objects and special pointers in BUFFER. */
6026
6027 static void
6028 mark_buffer (struct buffer *buffer)
6029 {
6030 /* This is handled much like other pseudovectors... */
6031 mark_vectorlike ((struct Lisp_Vector *) buffer);
6032
6033 /* ...but there are some buffer-specific things. */
6034
6035 MARK_INTERVAL_TREE (buffer_intervals (buffer));
6036
6037 /* For now, we just don't mark the undo_list. It's done later in
6038 a special way just before the sweep phase, and after stripping
6039 some of its elements that are not needed any more. */
6040
6041 mark_overlay (buffer->overlays_before);
6042 mark_overlay (buffer->overlays_after);
6043
6044 /* If this is an indirect buffer, mark its base buffer. */
6045 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6046 mark_buffer (buffer->base_buffer);
6047 }
6048
6049 /* Mark Lisp faces in the face cache C. */
6050
6051 NO_INLINE /* To reduce stack depth in mark_object. */
6052 static void
6053 mark_face_cache (struct face_cache *c)
6054 {
6055 if (c)
6056 {
6057 int i, j;
6058 for (i = 0; i < c->used; ++i)
6059 {
6060 struct face *face = FACE_FROM_ID (c->f, i);
6061
6062 if (face)
6063 {
6064 if (face->font && !VECTOR_MARKED_P (face->font))
6065 mark_vectorlike ((struct Lisp_Vector *) face->font);
6066
6067 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
6068 mark_object (face->lface[j]);
6069 }
6070 }
6071 }
6072 }
6073
6074 NO_INLINE /* To reduce stack depth in mark_object. */
6075 static void
6076 mark_localized_symbol (struct Lisp_Symbol *ptr)
6077 {
6078 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6079 Lisp_Object where = blv->where;
6080 /* If the value is set up for a killed buffer or deleted
6081 frame, restore its global binding. If the value is
6082 forwarded to a C variable, either it's not a Lisp_Object
6083 var, or it's staticpro'd already. */
6084 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6085 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6086 swap_in_global_binding (ptr);
6087 mark_object (blv->where);
6088 mark_object (blv->valcell);
6089 mark_object (blv->defcell);
6090 }
6091
6092 NO_INLINE /* To reduce stack depth in mark_object. */
6093 static void
6094 mark_save_value (struct Lisp_Save_Value *ptr)
6095 {
6096 /* If `save_type' is zero, `data[0].pointer' is the address
6097 of a memory area containing `data[1].integer' potential
6098 Lisp_Objects. */
6099 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6100 {
6101 Lisp_Object *p = ptr->data[0].pointer;
6102 ptrdiff_t nelt;
6103 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6104 mark_maybe_object (*p);
6105 }
6106 else
6107 {
6108 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6109 int i;
6110 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6111 if (save_type (ptr, i) == SAVE_OBJECT)
6112 mark_object (ptr->data[i].object);
6113 }
6114 }
6115
6116 /* Remove killed buffers or items whose car is a killed buffer from
6117 LIST, and mark other items. Return changed LIST, which is marked. */
6118
6119 static Lisp_Object
6120 mark_discard_killed_buffers (Lisp_Object list)
6121 {
6122 Lisp_Object tail, *prev = &list;
6123
6124 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6125 tail = XCDR (tail))
6126 {
6127 Lisp_Object tem = XCAR (tail);
6128 if (CONSP (tem))
6129 tem = XCAR (tem);
6130 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6131 *prev = XCDR (tail);
6132 else
6133 {
6134 CONS_MARK (XCONS (tail));
6135 mark_object (XCAR (tail));
6136 prev = xcdr_addr (tail);
6137 }
6138 }
6139 mark_object (tail);
6140 return list;
6141 }
6142
6143 /* Determine type of generic Lisp_Object and mark it accordingly.
6144
6145 This function implements a straightforward depth-first marking
6146 algorithm and so the recursion depth may be very high (a few
6147 tens of thousands is not uncommon). To minimize stack usage,
6148 a few cold paths are moved out to NO_INLINE functions above.
6149 In general, inlining them doesn't help you to gain more speed. */
6150
6151 void
6152 mark_object (Lisp_Object arg)
6153 {
6154 register Lisp_Object obj = arg;
6155 #ifdef GC_CHECK_MARKED_OBJECTS
6156 void *po;
6157 struct mem_node *m;
6158 #endif
6159 ptrdiff_t cdr_count = 0;
6160
6161 loop:
6162
6163 if (PURE_POINTER_P (XPNTR (obj)))
6164 return;
6165
6166 last_marked[last_marked_index++] = obj;
6167 if (last_marked_index == LAST_MARKED_SIZE)
6168 last_marked_index = 0;
6169
6170 /* Perform some sanity checks on the objects marked here. Abort if
6171 we encounter an object we know is bogus. This increases GC time
6172 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
6173 #ifdef GC_CHECK_MARKED_OBJECTS
6174
6175 po = (void *) XPNTR (obj);
6176
6177 /* Check that the object pointed to by PO is known to be a Lisp
6178 structure allocated from the heap. */
6179 #define CHECK_ALLOCATED() \
6180 do { \
6181 m = mem_find (po); \
6182 if (m == MEM_NIL) \
6183 emacs_abort (); \
6184 } while (0)
6185
6186 /* Check that the object pointed to by PO is live, using predicate
6187 function LIVEP. */
6188 #define CHECK_LIVE(LIVEP) \
6189 do { \
6190 if (!LIVEP (m, po)) \
6191 emacs_abort (); \
6192 } while (0)
6193
6194 /* Check both of the above conditions. */
6195 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6196 do { \
6197 CHECK_ALLOCATED (); \
6198 CHECK_LIVE (LIVEP); \
6199 } while (0) \
6200
6201 #else /* not GC_CHECK_MARKED_OBJECTS */
6202
6203 #define CHECK_LIVE(LIVEP) (void) 0
6204 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
6205
6206 #endif /* not GC_CHECK_MARKED_OBJECTS */
6207
6208 switch (XTYPE (obj))
6209 {
6210 case Lisp_String:
6211 {
6212 register struct Lisp_String *ptr = XSTRING (obj);
6213 if (STRING_MARKED_P (ptr))
6214 break;
6215 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6216 MARK_STRING (ptr);
6217 MARK_INTERVAL_TREE (ptr->intervals);
6218 #ifdef GC_CHECK_STRING_BYTES
6219 /* Check that the string size recorded in the string is the
6220 same as the one recorded in the sdata structure. */
6221 string_bytes (ptr);
6222 #endif /* GC_CHECK_STRING_BYTES */
6223 }
6224 break;
6225
6226 case Lisp_Vectorlike:
6227 {
6228 register struct Lisp_Vector *ptr = XVECTOR (obj);
6229 register ptrdiff_t pvectype;
6230
6231 if (VECTOR_MARKED_P (ptr))
6232 break;
6233
6234 #ifdef GC_CHECK_MARKED_OBJECTS
6235 m = mem_find (po);
6236 if (m == MEM_NIL && !SUBRP (obj))
6237 emacs_abort ();
6238 #endif /* GC_CHECK_MARKED_OBJECTS */
6239
6240 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6241 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6242 >> PSEUDOVECTOR_AREA_BITS);
6243 else
6244 pvectype = PVEC_NORMAL_VECTOR;
6245
6246 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6247 CHECK_LIVE (live_vector_p);
6248
6249 switch (pvectype)
6250 {
6251 case PVEC_BUFFER:
6252 #ifdef GC_CHECK_MARKED_OBJECTS
6253 {
6254 struct buffer *b;
6255 FOR_EACH_BUFFER (b)
6256 if (b == po)
6257 break;
6258 if (b == NULL)
6259 emacs_abort ();
6260 }
6261 #endif /* GC_CHECK_MARKED_OBJECTS */
6262 mark_buffer ((struct buffer *) ptr);
6263 break;
6264
6265 case PVEC_COMPILED:
6266 /* Although we could treat this just like a vector, mark_compiled
6267 returns the COMPILED_CONSTANTS element, which is marked at the
6268 next iteration of goto-loop here. This is done to avoid a few
6269 recursive calls to mark_object. */
6270 obj = mark_compiled (ptr);
6271 if (!NILP (obj))
6272 goto loop;
6273 break;
6274
6275 case PVEC_FRAME:
6276 {
6277 struct frame *f = (struct frame *) ptr;
6278
6279 mark_vectorlike (ptr);
6280 mark_face_cache (f->face_cache);
6281 #ifdef HAVE_WINDOW_SYSTEM
6282 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6283 {
6284 struct font *font = FRAME_FONT (f);
6285
6286 if (font && !VECTOR_MARKED_P (font))
6287 mark_vectorlike ((struct Lisp_Vector *) font);
6288 }
6289 #endif
6290 }
6291 break;
6292
6293 case PVEC_WINDOW:
6294 {
6295 struct window *w = (struct window *) ptr;
6296
6297 mark_vectorlike (ptr);
6298
6299 /* Mark glyph matrices, if any. Marking window
6300 matrices is sufficient because frame matrices
6301 use the same glyph memory. */
6302 if (w->current_matrix)
6303 {
6304 mark_glyph_matrix (w->current_matrix);
6305 mark_glyph_matrix (w->desired_matrix);
6306 }
6307
6308 /* Filter out killed buffers from both buffer lists
6309 in attempt to help GC to reclaim killed buffers faster.
6310 We can do it elsewhere for live windows, but this is the
6311 best place to do it for dead windows. */
6312 wset_prev_buffers
6313 (w, mark_discard_killed_buffers (w->prev_buffers));
6314 wset_next_buffers
6315 (w, mark_discard_killed_buffers (w->next_buffers));
6316 }
6317 break;
6318
6319 case PVEC_HASH_TABLE:
6320 {
6321 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6322
6323 mark_vectorlike (ptr);
6324 mark_object (h->test.name);
6325 mark_object (h->test.user_hash_function);
6326 mark_object (h->test.user_cmp_function);
6327 /* If hash table is not weak, mark all keys and values.
6328 For weak tables, mark only the vector. */
6329 if (NILP (h->weak))
6330 mark_object (h->key_and_value);
6331 else
6332 VECTOR_MARK (XVECTOR (h->key_and_value));
6333 }
6334 break;
6335
6336 case PVEC_CHAR_TABLE:
6337 case PVEC_SUB_CHAR_TABLE:
6338 mark_char_table (ptr, (enum pvec_type) pvectype);
6339 break;
6340
6341 case PVEC_BOOL_VECTOR:
6342 /* No Lisp_Objects to mark in a bool vector. */
6343 VECTOR_MARK (ptr);
6344 break;
6345
6346 case PVEC_SUBR:
6347 break;
6348
6349 case PVEC_FREE:
6350 emacs_abort ();
6351
6352 default:
6353 mark_vectorlike (ptr);
6354 }
6355 }
6356 break;
6357
6358 case Lisp_Symbol:
6359 {
6360 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6361 nextsym:
6362 if (ptr->gcmarkbit)
6363 break;
6364 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6365 ptr->gcmarkbit = 1;
6366 /* Attempt to catch bogus objects. */
6367 eassert (valid_lisp_object_p (ptr->function) >= 1);
6368 mark_object (ptr->function);
6369 mark_object (ptr->plist);
6370 switch (ptr->redirect)
6371 {
6372 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6373 case SYMBOL_VARALIAS:
6374 {
6375 Lisp_Object tem;
6376 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6377 mark_object (tem);
6378 break;
6379 }
6380 case SYMBOL_LOCALIZED:
6381 mark_localized_symbol (ptr);
6382 break;
6383 case SYMBOL_FORWARDED:
6384 /* If the value is forwarded to a buffer or keyboard field,
6385 these are marked when we see the corresponding object.
6386 And if it's forwarded to a C variable, either it's not
6387 a Lisp_Object var, or it's staticpro'd already. */
6388 break;
6389 default: emacs_abort ();
6390 }
6391 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6392 MARK_STRING (XSTRING (ptr->name));
6393 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6394 /* Inner loop to mark next symbol in this bucket, if any. */
6395 ptr = ptr->next;
6396 if (ptr)
6397 goto nextsym;
6398 }
6399 break;
6400
6401 case Lisp_Misc:
6402 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6403
6404 if (XMISCANY (obj)->gcmarkbit)
6405 break;
6406
6407 switch (XMISCTYPE (obj))
6408 {
6409 case Lisp_Misc_Marker:
6410 /* DO NOT mark thru the marker's chain.
6411 The buffer's markers chain does not preserve markers from gc;
6412 instead, markers are removed from the chain when freed by gc. */
6413 XMISCANY (obj)->gcmarkbit = 1;
6414 break;
6415
6416 case Lisp_Misc_Save_Value:
6417 XMISCANY (obj)->gcmarkbit = 1;
6418 mark_save_value (XSAVE_VALUE (obj));
6419 break;
6420
6421 case Lisp_Misc_Overlay:
6422 mark_overlay (XOVERLAY (obj));
6423 break;
6424
6425 default:
6426 emacs_abort ();
6427 }
6428 break;
6429
6430 case Lisp_Cons:
6431 {
6432 register struct Lisp_Cons *ptr = XCONS (obj);
6433 if (CONS_MARKED_P (ptr))
6434 break;
6435 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6436 CONS_MARK (ptr);
6437 /* If the cdr is nil, avoid recursion for the car. */
6438 if (EQ (ptr->u.cdr, Qnil))
6439 {
6440 obj = ptr->car;
6441 cdr_count = 0;
6442 goto loop;
6443 }
6444 mark_object (ptr->car);
6445 obj = ptr->u.cdr;
6446 cdr_count++;
6447 if (cdr_count == mark_object_loop_halt)
6448 emacs_abort ();
6449 goto loop;
6450 }
6451
6452 case Lisp_Float:
6453 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6454 FLOAT_MARK (XFLOAT (obj));
6455 break;
6456
6457 case_Lisp_Int:
6458 break;
6459
6460 default:
6461 emacs_abort ();
6462 }
6463
6464 #undef CHECK_LIVE
6465 #undef CHECK_ALLOCATED
6466 #undef CHECK_ALLOCATED_AND_LIVE
6467 }
6468 /* Mark the Lisp pointers in the terminal objects.
6469 Called by Fgarbage_collect. */
6470
6471 static void
6472 mark_terminals (void)
6473 {
6474 struct terminal *t;
6475 for (t = terminal_list; t; t = t->next_terminal)
6476 {
6477 eassert (t->name != NULL);
6478 #ifdef HAVE_WINDOW_SYSTEM
6479 /* If a terminal object is reachable from a stacpro'ed object,
6480 it might have been marked already. Make sure the image cache
6481 gets marked. */
6482 mark_image_cache (t->image_cache);
6483 #endif /* HAVE_WINDOW_SYSTEM */
6484 if (!VECTOR_MARKED_P (t))
6485 mark_vectorlike ((struct Lisp_Vector *)t);
6486 }
6487 }
6488
6489
6490
6491 /* Value is non-zero if OBJ will survive the current GC because it's
6492 either marked or does not need to be marked to survive. */
6493
6494 bool
6495 survives_gc_p (Lisp_Object obj)
6496 {
6497 bool survives_p;
6498
6499 switch (XTYPE (obj))
6500 {
6501 case_Lisp_Int:
6502 survives_p = 1;
6503 break;
6504
6505 case Lisp_Symbol:
6506 survives_p = XSYMBOL (obj)->gcmarkbit;
6507 break;
6508
6509 case Lisp_Misc:
6510 survives_p = XMISCANY (obj)->gcmarkbit;
6511 break;
6512
6513 case Lisp_String:
6514 survives_p = STRING_MARKED_P (XSTRING (obj));
6515 break;
6516
6517 case Lisp_Vectorlike:
6518 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6519 break;
6520
6521 case Lisp_Cons:
6522 survives_p = CONS_MARKED_P (XCONS (obj));
6523 break;
6524
6525 case Lisp_Float:
6526 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6527 break;
6528
6529 default:
6530 emacs_abort ();
6531 }
6532
6533 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6534 }
6535
6536
6537 \f
6538
6539 NO_INLINE /* For better stack traces */
6540 static void
6541 sweep_conses (void)
6542 {
6543 struct cons_block *cblk;
6544 struct cons_block **cprev = &cons_block;
6545 int lim = cons_block_index;
6546 EMACS_INT num_free = 0, num_used = 0;
6547
6548 cons_free_list = 0;
6549
6550 for (cblk = cons_block; cblk; cblk = *cprev)
6551 {
6552 int i = 0;
6553 int this_free = 0;
6554 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6555
6556 /* Scan the mark bits an int at a time. */
6557 for (i = 0; i < ilim; i++)
6558 {
6559 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6560 {
6561 /* Fast path - all cons cells for this int are marked. */
6562 cblk->gcmarkbits[i] = 0;
6563 num_used += BITS_PER_BITS_WORD;
6564 }
6565 else
6566 {
6567 /* Some cons cells for this int are not marked.
6568 Find which ones, and free them. */
6569 int start, pos, stop;
6570
6571 start = i * BITS_PER_BITS_WORD;
6572 stop = lim - start;
6573 if (stop > BITS_PER_BITS_WORD)
6574 stop = BITS_PER_BITS_WORD;
6575 stop += start;
6576
6577 for (pos = start; pos < stop; pos++)
6578 {
6579 if (!CONS_MARKED_P (&cblk->conses[pos]))
6580 {
6581 this_free++;
6582 cblk->conses[pos].u.chain = cons_free_list;
6583 cons_free_list = &cblk->conses[pos];
6584 #if GC_MARK_STACK
6585 cons_free_list->car = Vdead;
6586 #endif
6587 }
6588 else
6589 {
6590 num_used++;
6591 CONS_UNMARK (&cblk->conses[pos]);
6592 }
6593 }
6594 }
6595 }
6596
6597 lim = CONS_BLOCK_SIZE;
6598 /* If this block contains only free conses and we have already
6599 seen more than two blocks worth of free conses then deallocate
6600 this block. */
6601 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6602 {
6603 *cprev = cblk->next;
6604 /* Unhook from the free list. */
6605 cons_free_list = cblk->conses[0].u.chain;
6606 lisp_align_free (cblk);
6607 }
6608 else
6609 {
6610 num_free += this_free;
6611 cprev = &cblk->next;
6612 }
6613 }
6614 total_conses = num_used;
6615 total_free_conses = num_free;
6616 }
6617
6618 NO_INLINE /* For better stack traces */
6619 static void
6620 sweep_floats (void)
6621 {
6622 register struct float_block *fblk;
6623 struct float_block **fprev = &float_block;
6624 register int lim = float_block_index;
6625 EMACS_INT num_free = 0, num_used = 0;
6626
6627 float_free_list = 0;
6628
6629 for (fblk = float_block; fblk; fblk = *fprev)
6630 {
6631 register int i;
6632 int this_free = 0;
6633 for (i = 0; i < lim; i++)
6634 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6635 {
6636 this_free++;
6637 fblk->floats[i].u.chain = float_free_list;
6638 float_free_list = &fblk->floats[i];
6639 }
6640 else
6641 {
6642 num_used++;
6643 FLOAT_UNMARK (&fblk->floats[i]);
6644 }
6645 lim = FLOAT_BLOCK_SIZE;
6646 /* If this block contains only free floats and we have already
6647 seen more than two blocks worth of free floats then deallocate
6648 this block. */
6649 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6650 {
6651 *fprev = fblk->next;
6652 /* Unhook from the free list. */
6653 float_free_list = fblk->floats[0].u.chain;
6654 lisp_align_free (fblk);
6655 }
6656 else
6657 {
6658 num_free += this_free;
6659 fprev = &fblk->next;
6660 }
6661 }
6662 total_floats = num_used;
6663 total_free_floats = num_free;
6664 }
6665
6666 NO_INLINE /* For better stack traces */
6667 static void
6668 sweep_intervals (void)
6669 {
6670 register struct interval_block *iblk;
6671 struct interval_block **iprev = &interval_block;
6672 register int lim = interval_block_index;
6673 EMACS_INT num_free = 0, num_used = 0;
6674
6675 interval_free_list = 0;
6676
6677 for (iblk = interval_block; iblk; iblk = *iprev)
6678 {
6679 register int i;
6680 int this_free = 0;
6681
6682 for (i = 0; i < lim; i++)
6683 {
6684 if (!iblk->intervals[i].gcmarkbit)
6685 {
6686 set_interval_parent (&iblk->intervals[i], interval_free_list);
6687 interval_free_list = &iblk->intervals[i];
6688 this_free++;
6689 }
6690 else
6691 {
6692 num_used++;
6693 iblk->intervals[i].gcmarkbit = 0;
6694 }
6695 }
6696 lim = INTERVAL_BLOCK_SIZE;
6697 /* If this block contains only free intervals and we have already
6698 seen more than two blocks worth of free intervals then
6699 deallocate this block. */
6700 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6701 {
6702 *iprev = iblk->next;
6703 /* Unhook from the free list. */
6704 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6705 lisp_free (iblk);
6706 }
6707 else
6708 {
6709 num_free += this_free;
6710 iprev = &iblk->next;
6711 }
6712 }
6713 total_intervals = num_used;
6714 total_free_intervals = num_free;
6715 }
6716
6717 NO_INLINE /* For better stack traces */
6718 static void
6719 sweep_symbols (void)
6720 {
6721 register struct symbol_block *sblk;
6722 struct symbol_block **sprev = &symbol_block;
6723 register int lim = symbol_block_index;
6724 EMACS_INT num_free = 0, num_used = 0;
6725
6726 symbol_free_list = NULL;
6727
6728 for (sblk = symbol_block; sblk; sblk = *sprev)
6729 {
6730 int this_free = 0;
6731 union aligned_Lisp_Symbol *sym = sblk->symbols;
6732 union aligned_Lisp_Symbol *end = sym + lim;
6733
6734 for (; sym < end; ++sym)
6735 {
6736 if (!sym->s.gcmarkbit)
6737 {
6738 if (sym->s.redirect == SYMBOL_LOCALIZED)
6739 xfree (SYMBOL_BLV (&sym->s));
6740 sym->s.next = symbol_free_list;
6741 symbol_free_list = &sym->s;
6742 #if GC_MARK_STACK
6743 symbol_free_list->function = Vdead;
6744 #endif
6745 ++this_free;
6746 }
6747 else
6748 {
6749 ++num_used;
6750 sym->s.gcmarkbit = 0;
6751 /* Attempt to catch bogus objects. */
6752 eassert (valid_lisp_object_p (sym->s.function) >= 1);
6753 }
6754 }
6755
6756 lim = SYMBOL_BLOCK_SIZE;
6757 /* If this block contains only free symbols and we have already
6758 seen more than two blocks worth of free symbols then deallocate
6759 this block. */
6760 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6761 {
6762 *sprev = sblk->next;
6763 /* Unhook from the free list. */
6764 symbol_free_list = sblk->symbols[0].s.next;
6765 lisp_free (sblk);
6766 }
6767 else
6768 {
6769 num_free += this_free;
6770 sprev = &sblk->next;
6771 }
6772 }
6773 total_symbols = num_used;
6774 total_free_symbols = num_free;
6775 }
6776
6777 NO_INLINE /* For better stack traces */
6778 static void
6779 sweep_misc (void)
6780 {
6781 register struct marker_block *mblk;
6782 struct marker_block **mprev = &marker_block;
6783 register int lim = marker_block_index;
6784 EMACS_INT num_free = 0, num_used = 0;
6785
6786 /* Put all unmarked misc's on free list. For a marker, first
6787 unchain it from the buffer it points into. */
6788
6789 marker_free_list = 0;
6790
6791 for (mblk = marker_block; mblk; mblk = *mprev)
6792 {
6793 register int i;
6794 int this_free = 0;
6795
6796 for (i = 0; i < lim; i++)
6797 {
6798 if (!mblk->markers[i].m.u_any.gcmarkbit)
6799 {
6800 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6801 unchain_marker (&mblk->markers[i].m.u_marker);
6802 /* Set the type of the freed object to Lisp_Misc_Free.
6803 We could leave the type alone, since nobody checks it,
6804 but this might catch bugs faster. */
6805 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6806 mblk->markers[i].m.u_free.chain = marker_free_list;
6807 marker_free_list = &mblk->markers[i].m;
6808 this_free++;
6809 }
6810 else
6811 {
6812 num_used++;
6813 mblk->markers[i].m.u_any.gcmarkbit = 0;
6814 }
6815 }
6816 lim = MARKER_BLOCK_SIZE;
6817 /* If this block contains only free markers and we have already
6818 seen more than two blocks worth of free markers then deallocate
6819 this block. */
6820 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6821 {
6822 *mprev = mblk->next;
6823 /* Unhook from the free list. */
6824 marker_free_list = mblk->markers[0].m.u_free.chain;
6825 lisp_free (mblk);
6826 }
6827 else
6828 {
6829 num_free += this_free;
6830 mprev = &mblk->next;
6831 }
6832 }
6833
6834 total_markers = num_used;
6835 total_free_markers = num_free;
6836 }
6837
6838 NO_INLINE /* For better stack traces */
6839 static void
6840 sweep_buffers (void)
6841 {
6842 register struct buffer *buffer, **bprev = &all_buffers;
6843
6844 total_buffers = 0;
6845 for (buffer = all_buffers; buffer; buffer = *bprev)
6846 if (!VECTOR_MARKED_P (buffer))
6847 {
6848 *bprev = buffer->next;
6849 lisp_free (buffer);
6850 }
6851 else
6852 {
6853 VECTOR_UNMARK (buffer);
6854 /* Do not use buffer_(set|get)_intervals here. */
6855 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6856 total_buffers++;
6857 bprev = &buffer->next;
6858 }
6859 }
6860
6861 /* Sweep: find all structures not marked, and free them. */
6862 static void
6863 gc_sweep (void)
6864 {
6865 /* Remove or mark entries in weak hash tables.
6866 This must be done before any object is unmarked. */
6867 sweep_weak_hash_tables ();
6868
6869 sweep_strings ();
6870 check_string_bytes (!noninteractive);
6871 sweep_conses ();
6872 sweep_floats ();
6873 sweep_intervals ();
6874 sweep_symbols ();
6875 sweep_misc ();
6876 sweep_buffers ();
6877 sweep_vectors ();
6878 check_string_bytes (!noninteractive);
6879 }
6880
6881 DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
6882 doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
6883 All values are in Kbytes. If there is no swap space,
6884 last two values are zero. If the system is not supported
6885 or memory information can't be obtained, return nil. */)
6886 (void)
6887 {
6888 #if defined HAVE_LINUX_SYSINFO
6889 struct sysinfo si;
6890 uintmax_t units;
6891
6892 if (sysinfo (&si))
6893 return Qnil;
6894 #ifdef LINUX_SYSINFO_UNIT
6895 units = si.mem_unit;
6896 #else
6897 units = 1;
6898 #endif
6899 return list4i ((uintmax_t) si.totalram * units / 1024,
6900 (uintmax_t) si.freeram * units / 1024,
6901 (uintmax_t) si.totalswap * units / 1024,
6902 (uintmax_t) si.freeswap * units / 1024);
6903 #elif defined WINDOWSNT
6904 unsigned long long totalram, freeram, totalswap, freeswap;
6905
6906 if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6907 return list4i ((uintmax_t) totalram / 1024,
6908 (uintmax_t) freeram / 1024,
6909 (uintmax_t) totalswap / 1024,
6910 (uintmax_t) freeswap / 1024);
6911 else
6912 return Qnil;
6913 #elif defined MSDOS
6914 unsigned long totalram, freeram, totalswap, freeswap;
6915
6916 if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6917 return list4i ((uintmax_t) totalram / 1024,
6918 (uintmax_t) freeram / 1024,
6919 (uintmax_t) totalswap / 1024,
6920 (uintmax_t) freeswap / 1024);
6921 else
6922 return Qnil;
6923 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6924 /* FIXME: add more systems. */
6925 return Qnil;
6926 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6927 }
6928
6929 /* Debugging aids. */
6930
6931 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6932 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6933 This may be helpful in debugging Emacs's memory usage.
6934 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6935 (void)
6936 {
6937 Lisp_Object end;
6938
6939 #ifdef HAVE_NS
6940 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
6941 XSETINT (end, 0);
6942 #else
6943 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6944 #endif
6945
6946 return end;
6947 }
6948
6949 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6950 doc: /* Return a list of counters that measure how much consing there has been.
6951 Each of these counters increments for a certain kind of object.
6952 The counters wrap around from the largest positive integer to zero.
6953 Garbage collection does not decrease them.
6954 The elements of the value are as follows:
6955 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6956 All are in units of 1 = one object consed
6957 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6958 objects consed.
6959 MISCS include overlays, markers, and some internal types.
6960 Frames, windows, buffers, and subprocesses count as vectors
6961 (but the contents of a buffer's text do not count here). */)
6962 (void)
6963 {
6964 return listn (CONSTYPE_HEAP, 8,
6965 bounded_number (cons_cells_consed),
6966 bounded_number (floats_consed),
6967 bounded_number (vector_cells_consed),
6968 bounded_number (symbols_consed),
6969 bounded_number (string_chars_consed),
6970 bounded_number (misc_objects_consed),
6971 bounded_number (intervals_consed),
6972 bounded_number (strings_consed));
6973 }
6974
6975 /* Find at most FIND_MAX symbols which have OBJ as their value or
6976 function. This is used in gdbinit's `xwhichsymbols' command. */
6977
6978 Lisp_Object
6979 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6980 {
6981 struct symbol_block *sblk;
6982 ptrdiff_t gc_count = inhibit_garbage_collection ();
6983 Lisp_Object found = Qnil;
6984
6985 if (! DEADP (obj))
6986 {
6987 for (sblk = symbol_block; sblk; sblk = sblk->next)
6988 {
6989 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6990 int bn;
6991
6992 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6993 {
6994 struct Lisp_Symbol *sym = &aligned_sym->s;
6995 Lisp_Object val;
6996 Lisp_Object tem;
6997
6998 if (sblk == symbol_block && bn >= symbol_block_index)
6999 break;
7000
7001 XSETSYMBOL (tem, sym);
7002 val = find_symbol_value (tem);
7003 if (EQ (val, obj)
7004 || EQ (sym->function, obj)
7005 || (!NILP (sym->function)
7006 && COMPILEDP (sym->function)
7007 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
7008 || (!NILP (val)
7009 && COMPILEDP (val)
7010 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
7011 {
7012 found = Fcons (tem, found);
7013 if (--find_max == 0)
7014 goto out;
7015 }
7016 }
7017 }
7018 }
7019
7020 out:
7021 unbind_to (gc_count, Qnil);
7022 return found;
7023 }
7024
7025 #ifdef SUSPICIOUS_OBJECT_CHECKING
7026
7027 static void *
7028 find_suspicious_object_in_range (void *begin, void *end)
7029 {
7030 char *begin_a = begin;
7031 char *end_a = end;
7032 int i;
7033
7034 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7035 {
7036 char *suspicious_object = suspicious_objects[i];
7037 if (begin_a <= suspicious_object && suspicious_object < end_a)
7038 return suspicious_object;
7039 }
7040
7041 return NULL;
7042 }
7043
7044 static void
7045 note_suspicious_free (void* ptr)
7046 {
7047 struct suspicious_free_record* rec;
7048
7049 rec = &suspicious_free_history[suspicious_free_history_index++];
7050 if (suspicious_free_history_index ==
7051 ARRAYELTS (suspicious_free_history))
7052 {
7053 suspicious_free_history_index = 0;
7054 }
7055
7056 memset (rec, 0, sizeof (*rec));
7057 rec->suspicious_object = ptr;
7058 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
7059 }
7060
7061 static void
7062 detect_suspicious_free (void* ptr)
7063 {
7064 int i;
7065
7066 eassert (ptr != NULL);
7067
7068 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7069 if (suspicious_objects[i] == ptr)
7070 {
7071 note_suspicious_free (ptr);
7072 suspicious_objects[i] = NULL;
7073 }
7074 }
7075
7076 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7077
7078 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7079 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7080 If Emacs is compiled with suspicious object checking, capture
7081 a stack trace when OBJ is freed in order to help track down
7082 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7083 (Lisp_Object obj)
7084 {
7085 #ifdef SUSPICIOUS_OBJECT_CHECKING
7086 /* Right now, we care only about vectors. */
7087 if (VECTORLIKEP (obj))
7088 {
7089 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7090 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7091 suspicious_object_index = 0;
7092 }
7093 #endif
7094 return obj;
7095 }
7096
7097 #ifdef ENABLE_CHECKING
7098
7099 bool suppress_checking;
7100
7101 void
7102 die (const char *msg, const char *file, int line)
7103 {
7104 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7105 file, line, msg);
7106 terminate_due_to_signal (SIGABRT, INT_MAX);
7107 }
7108
7109 #endif /* ENABLE_CHECKING */
7110
7111 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7112
7113 /* Debugging check whether STR is ASCII-only. */
7114
7115 const char *
7116 verify_ascii (const char *str)
7117 {
7118 const unsigned char *ptr = (unsigned char *) str, *end = ptr + strlen (str);
7119 while (ptr < end)
7120 {
7121 int c = STRING_CHAR_ADVANCE (ptr);
7122 if (!ASCII_CHAR_P (c))
7123 emacs_abort ();
7124 }
7125 return str;
7126 }
7127
7128 /* Stress alloca with inconveniently sized requests and check
7129 whether all allocated areas may be used for Lisp_Object. */
7130
7131 NO_INLINE static void
7132 verify_alloca (void)
7133 {
7134 int i;
7135 enum { ALLOCA_CHECK_MAX = 256 };
7136 /* Start from size of the smallest Lisp object. */
7137 for (i = sizeof (struct Lisp_Cons); i <= ALLOCA_CHECK_MAX; i++)
7138 {
7139 void *ptr = alloca (i);
7140 make_lisp_ptr (ptr, Lisp_Cons);
7141 }
7142 }
7143
7144 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7145
7146 #define verify_alloca() ((void) 0)
7147
7148 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7149
7150 /* Initialization. */
7151
7152 void
7153 init_alloc_once (void)
7154 {
7155 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
7156 purebeg = PUREBEG;
7157 pure_size = PURESIZE;
7158
7159 verify_alloca ();
7160
7161 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
7162 mem_init ();
7163 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7164 #endif
7165
7166 #ifdef DOUG_LEA_MALLOC
7167 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7168 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7169 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7170 #endif
7171 init_strings ();
7172 init_vectors ();
7173
7174 refill_memory_reserve ();
7175 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7176 }
7177
7178 void
7179 init_alloc (void)
7180 {
7181 gcprolist = 0;
7182 byte_stack_list = 0;
7183 #if GC_MARK_STACK
7184 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
7185 setjmp_tested_p = longjmps_done = 0;
7186 #endif
7187 #endif
7188 Vgc_elapsed = make_float (0.0);
7189 gcs_done = 0;
7190
7191 #if USE_VALGRIND
7192 valgrind_p = RUNNING_ON_VALGRIND != 0;
7193 #endif
7194 }
7195
7196 void
7197 syms_of_alloc (void)
7198 {
7199 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7200 doc: /* Number of bytes of consing between garbage collections.
7201 Garbage collection can happen automatically once this many bytes have been
7202 allocated since the last garbage collection. All data types count.
7203
7204 Garbage collection happens automatically only when `eval' is called.
7205
7206 By binding this temporarily to a large number, you can effectively
7207 prevent garbage collection during a part of the program.
7208 See also `gc-cons-percentage'. */);
7209
7210 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7211 doc: /* Portion of the heap used for allocation.
7212 Garbage collection can happen automatically once this portion of the heap
7213 has been allocated since the last garbage collection.
7214 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7215 Vgc_cons_percentage = make_float (0.1);
7216
7217 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7218 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7219
7220 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7221 doc: /* Number of cons cells that have been consed so far. */);
7222
7223 DEFVAR_INT ("floats-consed", floats_consed,
7224 doc: /* Number of floats that have been consed so far. */);
7225
7226 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7227 doc: /* Number of vector cells that have been consed so far. */);
7228
7229 DEFVAR_INT ("symbols-consed", symbols_consed,
7230 doc: /* Number of symbols that have been consed so far. */);
7231
7232 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7233 doc: /* Number of string characters that have been consed so far. */);
7234
7235 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7236 doc: /* Number of miscellaneous objects that have been consed so far.
7237 These include markers and overlays, plus certain objects not visible
7238 to users. */);
7239
7240 DEFVAR_INT ("intervals-consed", intervals_consed,
7241 doc: /* Number of intervals that have been consed so far. */);
7242
7243 DEFVAR_INT ("strings-consed", strings_consed,
7244 doc: /* Number of strings that have been consed so far. */);
7245
7246 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7247 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7248 This means that certain objects should be allocated in shared (pure) space.
7249 It can also be set to a hash-table, in which case this table is used to
7250 do hash-consing of the objects allocated to pure space. */);
7251
7252 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7253 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7254 garbage_collection_messages = 0;
7255
7256 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7257 doc: /* Hook run after garbage collection has finished. */);
7258 Vpost_gc_hook = Qnil;
7259 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7260
7261 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7262 doc: /* Precomputed `signal' argument for memory-full error. */);
7263 /* We build this in advance because if we wait until we need it, we might
7264 not be able to allocate the memory to hold it. */
7265 Vmemory_signal_data
7266 = listn (CONSTYPE_PURE, 2, Qerror,
7267 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7268
7269 DEFVAR_LISP ("memory-full", Vmemory_full,
7270 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7271 Vmemory_full = Qnil;
7272
7273 DEFSYM (Qconses, "conses");
7274 DEFSYM (Qsymbols, "symbols");
7275 DEFSYM (Qmiscs, "miscs");
7276 DEFSYM (Qstrings, "strings");
7277 DEFSYM (Qvectors, "vectors");
7278 DEFSYM (Qfloats, "floats");
7279 DEFSYM (Qintervals, "intervals");
7280 DEFSYM (Qbuffers, "buffers");
7281 DEFSYM (Qstring_bytes, "string-bytes");
7282 DEFSYM (Qvector_slots, "vector-slots");
7283 DEFSYM (Qheap, "heap");
7284 DEFSYM (Qautomatic_gc, "Automatic GC");
7285
7286 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7287 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7288
7289 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7290 doc: /* Accumulated time elapsed in garbage collections.
7291 The time is in seconds as a floating point value. */);
7292 DEFVAR_INT ("gcs-done", gcs_done,
7293 doc: /* Accumulated number of garbage collections done. */);
7294
7295 defsubr (&Scons);
7296 defsubr (&Slist);
7297 defsubr (&Svector);
7298 defsubr (&Sbool_vector);
7299 defsubr (&Smake_byte_code);
7300 defsubr (&Smake_list);
7301 defsubr (&Smake_vector);
7302 defsubr (&Smake_string);
7303 defsubr (&Smake_bool_vector);
7304 defsubr (&Smake_symbol);
7305 defsubr (&Smake_marker);
7306 defsubr (&Spurecopy);
7307 defsubr (&Sgarbage_collect);
7308 defsubr (&Smemory_limit);
7309 defsubr (&Smemory_info);
7310 defsubr (&Smemory_use_counts);
7311 defsubr (&Ssuspicious_object);
7312
7313 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7314 defsubr (&Sgc_status);
7315 #endif
7316 }
7317
7318 /* When compiled with GCC, GDB might say "No enum type named
7319 pvec_type" if we don't have at least one symbol with that type, and
7320 then xbacktrace could fail. Similarly for the other enums and
7321 their values. Some non-GCC compilers don't like these constructs. */
7322 #ifdef __GNUC__
7323 union
7324 {
7325 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7326 enum char_table_specials char_table_specials;
7327 enum char_bits char_bits;
7328 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7329 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7330 enum Lisp_Bits Lisp_Bits;
7331 enum Lisp_Compiled Lisp_Compiled;
7332 enum maxargs maxargs;
7333 enum MAX_ALLOCA MAX_ALLOCA;
7334 enum More_Lisp_Bits More_Lisp_Bits;
7335 enum pvec_type pvec_type;
7336 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7337 #endif /* __GNUC__ */