]> code.delx.au - gnu-emacs/blob - src/fns.c
(Flength): Return SUB_CHAR_TABLE_ORDINARY_SLOTS for sub char tables.
[gnu-emacs] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985, 86, 87, 93, 94, 95, 97, 98, 99, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23
24 #ifdef HAVE_UNISTD_H
25 #include <unistd.h>
26 #endif
27 #include <time.h>
28
29 #ifndef MAC_OSX
30 /* On Mac OS X, defining this conflicts with precompiled headers. */
31
32 /* Note on some machines this defines `vector' as a typedef,
33 so make sure we don't use that name in this file. */
34 #undef vector
35 #define vector *****
36
37 #endif /* ! MAC_OSX */
38
39 #include "lisp.h"
40 #include "commands.h"
41 #include "charset.h"
42 #include "coding.h"
43 #include "buffer.h"
44 #include "keyboard.h"
45 #include "keymap.h"
46 #include "intervals.h"
47 #include "frame.h"
48 #include "window.h"
49 #include "blockinput.h"
50 #if defined (HAVE_MENUS) && defined (HAVE_X_WINDOWS)
51 #include "xterm.h"
52 #endif
53
54 #ifndef NULL
55 #define NULL ((POINTER_TYPE *)0)
56 #endif
57
58 /* Nonzero enables use of dialog boxes for questions
59 asked by mouse commands. */
60 int use_dialog_box;
61
62 extern int minibuffer_auto_raise;
63 extern Lisp_Object minibuf_window;
64 extern Lisp_Object Vlocale_coding_system;
65
66 Lisp_Object Qstring_lessp, Qprovide, Qrequire;
67 Lisp_Object Qyes_or_no_p_history;
68 Lisp_Object Qcursor_in_echo_area;
69 Lisp_Object Qwidget_type;
70 Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
71
72 extern Lisp_Object Qinput_method_function;
73
74 static int internal_equal ();
75
76 extern long get_random ();
77 extern void seed_random ();
78
79 #ifndef HAVE_UNISTD_H
80 extern long time ();
81 #endif
82 \f
83 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
84 doc: /* Return the argument unchanged. */)
85 (arg)
86 Lisp_Object arg;
87 {
88 return arg;
89 }
90
91 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
92 doc: /* Return a pseudo-random number.
93 All integers representable in Lisp are equally likely.
94 On most systems, this is 28 bits' worth.
95 With positive integer argument N, return random number in interval [0,N).
96 With argument t, set the random number seed from the current time and pid. */)
97 (n)
98 Lisp_Object n;
99 {
100 EMACS_INT val;
101 Lisp_Object lispy_val;
102 unsigned long denominator;
103
104 if (EQ (n, Qt))
105 seed_random (getpid () + time (NULL));
106 if (NATNUMP (n) && XFASTINT (n) != 0)
107 {
108 /* Try to take our random number from the higher bits of VAL,
109 not the lower, since (says Gentzel) the low bits of `random'
110 are less random than the higher ones. We do this by using the
111 quotient rather than the remainder. At the high end of the RNG
112 it's possible to get a quotient larger than n; discarding
113 these values eliminates the bias that would otherwise appear
114 when using a large n. */
115 denominator = ((unsigned long)1 << VALBITS) / XFASTINT (n);
116 do
117 val = get_random () / denominator;
118 while (val >= XFASTINT (n));
119 }
120 else
121 val = get_random ();
122 XSETINT (lispy_val, val);
123 return lispy_val;
124 }
125 \f
126 /* Random data-structure functions */
127
128 DEFUN ("length", Flength, Slength, 1, 1, 0,
129 doc: /* Return the length of vector, list or string SEQUENCE.
130 A byte-code function object is also allowed.
131 If the string contains multibyte characters, this is not necessarily
132 the number of bytes in the string; it is the number of characters.
133 To get the number of bytes, use `string-bytes'. */)
134 (sequence)
135 register Lisp_Object sequence;
136 {
137 register Lisp_Object val;
138 register int i;
139
140 retry:
141 if (STRINGP (sequence))
142 XSETFASTINT (val, SCHARS (sequence));
143 else if (VECTORP (sequence))
144 XSETFASTINT (val, XVECTOR (sequence)->size);
145 else if (SUB_CHAR_TABLE_P (sequence))
146 XSETFASTINT (val, SUB_CHAR_TABLE_ORDINARY_SLOTS);
147 else if (CHAR_TABLE_P (sequence))
148 XSETFASTINT (val, MAX_CHAR);
149 else if (BOOL_VECTOR_P (sequence))
150 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
151 else if (COMPILEDP (sequence))
152 XSETFASTINT (val, XVECTOR (sequence)->size & PSEUDOVECTOR_SIZE_MASK);
153 else if (CONSP (sequence))
154 {
155 i = 0;
156 while (CONSP (sequence))
157 {
158 sequence = XCDR (sequence);
159 ++i;
160
161 if (!CONSP (sequence))
162 break;
163
164 sequence = XCDR (sequence);
165 ++i;
166 QUIT;
167 }
168
169 if (!NILP (sequence))
170 wrong_type_argument (Qlistp, sequence);
171
172 val = make_number (i);
173 }
174 else if (NILP (sequence))
175 XSETFASTINT (val, 0);
176 else
177 {
178 sequence = wrong_type_argument (Qsequencep, sequence);
179 goto retry;
180 }
181 return val;
182 }
183
184 /* This does not check for quits. That is safe
185 since it must terminate. */
186
187 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
188 doc: /* Return the length of a list, but avoid error or infinite loop.
189 This function never gets an error. If LIST is not really a list,
190 it returns 0. If LIST is circular, it returns a finite value
191 which is at least the number of distinct elements. */)
192 (list)
193 Lisp_Object list;
194 {
195 Lisp_Object tail, halftail, length;
196 int len = 0;
197
198 /* halftail is used to detect circular lists. */
199 halftail = list;
200 for (tail = list; CONSP (tail); tail = XCDR (tail))
201 {
202 if (EQ (tail, halftail) && len != 0)
203 break;
204 len++;
205 if ((len & 1) == 0)
206 halftail = XCDR (halftail);
207 }
208
209 XSETINT (length, len);
210 return length;
211 }
212
213 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
214 doc: /* Return the number of bytes in STRING.
215 If STRING is a multibyte string, this is greater than the length of STRING. */)
216 (string)
217 Lisp_Object string;
218 {
219 CHECK_STRING (string);
220 return make_number (SBYTES (string));
221 }
222
223 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
224 doc: /* Return t if two strings have identical contents.
225 Case is significant, but text properties are ignored.
226 Symbols are also allowed; their print names are used instead. */)
227 (s1, s2)
228 register Lisp_Object s1, s2;
229 {
230 if (SYMBOLP (s1))
231 s1 = SYMBOL_NAME (s1);
232 if (SYMBOLP (s2))
233 s2 = SYMBOL_NAME (s2);
234 CHECK_STRING (s1);
235 CHECK_STRING (s2);
236
237 if (SCHARS (s1) != SCHARS (s2)
238 || SBYTES (s1) != SBYTES (s2)
239 || bcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
240 return Qnil;
241 return Qt;
242 }
243
244 DEFUN ("compare-strings", Fcompare_strings,
245 Scompare_strings, 6, 7, 0,
246 doc: /* Compare the contents of two strings, converting to multibyte if needed.
247 In string STR1, skip the first START1 characters and stop at END1.
248 In string STR2, skip the first START2 characters and stop at END2.
249 END1 and END2 default to the full lengths of the respective strings.
250
251 Case is significant in this comparison if IGNORE-CASE is nil.
252 Unibyte strings are converted to multibyte for comparison.
253
254 The value is t if the strings (or specified portions) match.
255 If string STR1 is less, the value is a negative number N;
256 - 1 - N is the number of characters that match at the beginning.
257 If string STR1 is greater, the value is a positive number N;
258 N - 1 is the number of characters that match at the beginning. */)
259 (str1, start1, end1, str2, start2, end2, ignore_case)
260 Lisp_Object str1, start1, end1, start2, str2, end2, ignore_case;
261 {
262 register int end1_char, end2_char;
263 register int i1, i1_byte, i2, i2_byte;
264
265 CHECK_STRING (str1);
266 CHECK_STRING (str2);
267 if (NILP (start1))
268 start1 = make_number (0);
269 if (NILP (start2))
270 start2 = make_number (0);
271 CHECK_NATNUM (start1);
272 CHECK_NATNUM (start2);
273 if (! NILP (end1))
274 CHECK_NATNUM (end1);
275 if (! NILP (end2))
276 CHECK_NATNUM (end2);
277
278 i1 = XINT (start1);
279 i2 = XINT (start2);
280
281 i1_byte = string_char_to_byte (str1, i1);
282 i2_byte = string_char_to_byte (str2, i2);
283
284 end1_char = SCHARS (str1);
285 if (! NILP (end1) && end1_char > XINT (end1))
286 end1_char = XINT (end1);
287
288 end2_char = SCHARS (str2);
289 if (! NILP (end2) && end2_char > XINT (end2))
290 end2_char = XINT (end2);
291
292 while (i1 < end1_char && i2 < end2_char)
293 {
294 /* When we find a mismatch, we must compare the
295 characters, not just the bytes. */
296 int c1, c2;
297
298 if (STRING_MULTIBYTE (str1))
299 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
300 else
301 {
302 c1 = SREF (str1, i1++);
303 c1 = unibyte_char_to_multibyte (c1);
304 }
305
306 if (STRING_MULTIBYTE (str2))
307 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
308 else
309 {
310 c2 = SREF (str2, i2++);
311 c2 = unibyte_char_to_multibyte (c2);
312 }
313
314 if (c1 == c2)
315 continue;
316
317 if (! NILP (ignore_case))
318 {
319 Lisp_Object tem;
320
321 tem = Fupcase (make_number (c1));
322 c1 = XINT (tem);
323 tem = Fupcase (make_number (c2));
324 c2 = XINT (tem);
325 }
326
327 if (c1 == c2)
328 continue;
329
330 /* Note that I1 has already been incremented
331 past the character that we are comparing;
332 hence we don't add or subtract 1 here. */
333 if (c1 < c2)
334 return make_number (- i1 + XINT (start1));
335 else
336 return make_number (i1 - XINT (start1));
337 }
338
339 if (i1 < end1_char)
340 return make_number (i1 - XINT (start1) + 1);
341 if (i2 < end2_char)
342 return make_number (- i1 + XINT (start1) - 1);
343
344 return Qt;
345 }
346
347 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
348 doc: /* Return t if first arg string is less than second in lexicographic order.
349 Case is significant.
350 Symbols are also allowed; their print names are used instead. */)
351 (s1, s2)
352 register Lisp_Object s1, s2;
353 {
354 register int end;
355 register int i1, i1_byte, i2, i2_byte;
356
357 if (SYMBOLP (s1))
358 s1 = SYMBOL_NAME (s1);
359 if (SYMBOLP (s2))
360 s2 = SYMBOL_NAME (s2);
361 CHECK_STRING (s1);
362 CHECK_STRING (s2);
363
364 i1 = i1_byte = i2 = i2_byte = 0;
365
366 end = SCHARS (s1);
367 if (end > SCHARS (s2))
368 end = SCHARS (s2);
369
370 while (i1 < end)
371 {
372 /* When we find a mismatch, we must compare the
373 characters, not just the bytes. */
374 int c1, c2;
375
376 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
377 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
378
379 if (c1 != c2)
380 return c1 < c2 ? Qt : Qnil;
381 }
382 return i1 < SCHARS (s2) ? Qt : Qnil;
383 }
384 \f
385 static Lisp_Object concat ();
386
387 /* ARGSUSED */
388 Lisp_Object
389 concat2 (s1, s2)
390 Lisp_Object s1, s2;
391 {
392 #ifdef NO_ARG_ARRAY
393 Lisp_Object args[2];
394 args[0] = s1;
395 args[1] = s2;
396 return concat (2, args, Lisp_String, 0);
397 #else
398 return concat (2, &s1, Lisp_String, 0);
399 #endif /* NO_ARG_ARRAY */
400 }
401
402 /* ARGSUSED */
403 Lisp_Object
404 concat3 (s1, s2, s3)
405 Lisp_Object s1, s2, s3;
406 {
407 #ifdef NO_ARG_ARRAY
408 Lisp_Object args[3];
409 args[0] = s1;
410 args[1] = s2;
411 args[2] = s3;
412 return concat (3, args, Lisp_String, 0);
413 #else
414 return concat (3, &s1, Lisp_String, 0);
415 #endif /* NO_ARG_ARRAY */
416 }
417
418 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
419 doc: /* Concatenate all the arguments and make the result a list.
420 The result is a list whose elements are the elements of all the arguments.
421 Each argument may be a list, vector or string.
422 The last argument is not copied, just used as the tail of the new list.
423 usage: (append &rest SEQUENCES) */)
424 (nargs, args)
425 int nargs;
426 Lisp_Object *args;
427 {
428 return concat (nargs, args, Lisp_Cons, 1);
429 }
430
431 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
432 doc: /* Concatenate all the arguments and make the result a string.
433 The result is a string whose elements are the elements of all the arguments.
434 Each argument may be a string or a list or vector of characters (integers).
435 usage: (concat &rest SEQUENCES) */)
436 (nargs, args)
437 int nargs;
438 Lisp_Object *args;
439 {
440 return concat (nargs, args, Lisp_String, 0);
441 }
442
443 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
444 doc: /* Concatenate all the arguments and make the result a vector.
445 The result is a vector whose elements are the elements of all the arguments.
446 Each argument may be a list, vector or string.
447 usage: (vconcat &rest SEQUENCES) */)
448 (nargs, args)
449 int nargs;
450 Lisp_Object *args;
451 {
452 return concat (nargs, args, Lisp_Vectorlike, 0);
453 }
454
455 /* Return a copy of a sub char table ARG. The elements except for a
456 nested sub char table are not copied. */
457 static Lisp_Object
458 copy_sub_char_table (arg)
459 Lisp_Object arg;
460 {
461 Lisp_Object copy = make_sub_char_table (XCHAR_TABLE (arg)->defalt);
462 int i;
463
464 /* Copy all the contents. */
465 bcopy (XCHAR_TABLE (arg)->contents, XCHAR_TABLE (copy)->contents,
466 SUB_CHAR_TABLE_ORDINARY_SLOTS * sizeof (Lisp_Object));
467 /* Recursively copy any sub char-tables in the ordinary slots. */
468 for (i = 32; i < SUB_CHAR_TABLE_ORDINARY_SLOTS; i++)
469 if (SUB_CHAR_TABLE_P (XCHAR_TABLE (arg)->contents[i]))
470 XCHAR_TABLE (copy)->contents[i]
471 = copy_sub_char_table (XCHAR_TABLE (copy)->contents[i]);
472
473 return copy;
474 }
475
476
477 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
478 doc: /* Return a copy of a list, vector, string or char-table.
479 The elements of a list or vector are not copied; they are shared
480 with the original. */)
481 (arg)
482 Lisp_Object arg;
483 {
484 if (NILP (arg)) return arg;
485
486 if (CHAR_TABLE_P (arg))
487 {
488 int i;
489 Lisp_Object copy;
490
491 copy = Fmake_char_table (XCHAR_TABLE (arg)->purpose, Qnil);
492 /* Copy all the slots, including the extra ones. */
493 bcopy (XVECTOR (arg)->contents, XVECTOR (copy)->contents,
494 ((XCHAR_TABLE (arg)->size & PSEUDOVECTOR_SIZE_MASK)
495 * sizeof (Lisp_Object)));
496
497 /* Recursively copy any sub char tables in the ordinary slots
498 for multibyte characters. */
499 for (i = CHAR_TABLE_SINGLE_BYTE_SLOTS;
500 i < CHAR_TABLE_ORDINARY_SLOTS; i++)
501 if (SUB_CHAR_TABLE_P (XCHAR_TABLE (arg)->contents[i]))
502 XCHAR_TABLE (copy)->contents[i]
503 = copy_sub_char_table (XCHAR_TABLE (copy)->contents[i]);
504
505 return copy;
506 }
507
508 if (BOOL_VECTOR_P (arg))
509 {
510 Lisp_Object val;
511 int size_in_chars
512 = (XBOOL_VECTOR (arg)->size + BITS_PER_CHAR - 1) / BITS_PER_CHAR;
513
514 val = Fmake_bool_vector (Flength (arg), Qnil);
515 bcopy (XBOOL_VECTOR (arg)->data, XBOOL_VECTOR (val)->data,
516 size_in_chars);
517 return val;
518 }
519
520 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
521 arg = wrong_type_argument (Qsequencep, arg);
522 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
523 }
524
525 /* In string STR of length LEN, see if bytes before STR[I] combine
526 with bytes after STR[I] to form a single character. If so, return
527 the number of bytes after STR[I] which combine in this way.
528 Otherwize, return 0. */
529
530 static int
531 count_combining (str, len, i)
532 unsigned char *str;
533 int len, i;
534 {
535 int j = i - 1, bytes;
536
537 if (i == 0 || i == len || CHAR_HEAD_P (str[i]))
538 return 0;
539 while (j >= 0 && !CHAR_HEAD_P (str[j])) j--;
540 if (j < 0 || ! BASE_LEADING_CODE_P (str[j]))
541 return 0;
542 PARSE_MULTIBYTE_SEQ (str + j, len - j, bytes);
543 return (bytes <= i - j ? 0 : bytes - (i - j));
544 }
545
546 /* This structure holds information of an argument of `concat' that is
547 a string and has text properties to be copied. */
548 struct textprop_rec
549 {
550 int argnum; /* refer to ARGS (arguments of `concat') */
551 int from; /* refer to ARGS[argnum] (argument string) */
552 int to; /* refer to VAL (the target string) */
553 };
554
555 static Lisp_Object
556 concat (nargs, args, target_type, last_special)
557 int nargs;
558 Lisp_Object *args;
559 enum Lisp_Type target_type;
560 int last_special;
561 {
562 Lisp_Object val;
563 register Lisp_Object tail;
564 register Lisp_Object this;
565 int toindex;
566 int toindex_byte = 0;
567 register int result_len;
568 register int result_len_byte;
569 register int argnum;
570 Lisp_Object last_tail;
571 Lisp_Object prev;
572 int some_multibyte;
573 /* When we make a multibyte string, we can't copy text properties
574 while concatinating each string because the length of resulting
575 string can't be decided until we finish the whole concatination.
576 So, we record strings that have text properties to be copied
577 here, and copy the text properties after the concatination. */
578 struct textprop_rec *textprops = NULL;
579 /* Number of elments in textprops. */
580 int num_textprops = 0;
581
582 tail = Qnil;
583
584 /* In append, the last arg isn't treated like the others */
585 if (last_special && nargs > 0)
586 {
587 nargs--;
588 last_tail = args[nargs];
589 }
590 else
591 last_tail = Qnil;
592
593 /* Canonicalize each argument. */
594 for (argnum = 0; argnum < nargs; argnum++)
595 {
596 this = args[argnum];
597 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
598 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
599 {
600 args[argnum] = wrong_type_argument (Qsequencep, this);
601 }
602 }
603
604 /* Compute total length in chars of arguments in RESULT_LEN.
605 If desired output is a string, also compute length in bytes
606 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
607 whether the result should be a multibyte string. */
608 result_len_byte = 0;
609 result_len = 0;
610 some_multibyte = 0;
611 for (argnum = 0; argnum < nargs; argnum++)
612 {
613 int len;
614 this = args[argnum];
615 len = XFASTINT (Flength (this));
616 if (target_type == Lisp_String)
617 {
618 /* We must count the number of bytes needed in the string
619 as well as the number of characters. */
620 int i;
621 Lisp_Object ch;
622 int this_len_byte;
623
624 if (VECTORP (this))
625 for (i = 0; i < len; i++)
626 {
627 ch = XVECTOR (this)->contents[i];
628 if (! INTEGERP (ch))
629 wrong_type_argument (Qintegerp, ch);
630 this_len_byte = CHAR_BYTES (XINT (ch));
631 result_len_byte += this_len_byte;
632 if (!SINGLE_BYTE_CHAR_P (XINT (ch)))
633 some_multibyte = 1;
634 }
635 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
636 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
637 else if (CONSP (this))
638 for (; CONSP (this); this = XCDR (this))
639 {
640 ch = XCAR (this);
641 if (! INTEGERP (ch))
642 wrong_type_argument (Qintegerp, ch);
643 this_len_byte = CHAR_BYTES (XINT (ch));
644 result_len_byte += this_len_byte;
645 if (!SINGLE_BYTE_CHAR_P (XINT (ch)))
646 some_multibyte = 1;
647 }
648 else if (STRINGP (this))
649 {
650 if (STRING_MULTIBYTE (this))
651 {
652 some_multibyte = 1;
653 result_len_byte += SBYTES (this);
654 }
655 else
656 result_len_byte += count_size_as_multibyte (SDATA (this),
657 SCHARS (this));
658 }
659 }
660
661 result_len += len;
662 }
663
664 if (! some_multibyte)
665 result_len_byte = result_len;
666
667 /* Create the output object. */
668 if (target_type == Lisp_Cons)
669 val = Fmake_list (make_number (result_len), Qnil);
670 else if (target_type == Lisp_Vectorlike)
671 val = Fmake_vector (make_number (result_len), Qnil);
672 else if (some_multibyte)
673 val = make_uninit_multibyte_string (result_len, result_len_byte);
674 else
675 val = make_uninit_string (result_len);
676
677 /* In `append', if all but last arg are nil, return last arg. */
678 if (target_type == Lisp_Cons && EQ (val, Qnil))
679 return last_tail;
680
681 /* Copy the contents of the args into the result. */
682 if (CONSP (val))
683 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
684 else
685 toindex = 0, toindex_byte = 0;
686
687 prev = Qnil;
688 if (STRINGP (val))
689 textprops
690 = (struct textprop_rec *) alloca (sizeof (struct textprop_rec) * nargs);
691
692 for (argnum = 0; argnum < nargs; argnum++)
693 {
694 Lisp_Object thislen;
695 int thisleni = 0;
696 register unsigned int thisindex = 0;
697 register unsigned int thisindex_byte = 0;
698
699 this = args[argnum];
700 if (!CONSP (this))
701 thislen = Flength (this), thisleni = XINT (thislen);
702
703 /* Between strings of the same kind, copy fast. */
704 if (STRINGP (this) && STRINGP (val)
705 && STRING_MULTIBYTE (this) == some_multibyte)
706 {
707 int thislen_byte = SBYTES (this);
708 int combined;
709
710 bcopy (SDATA (this), SDATA (val) + toindex_byte,
711 SBYTES (this));
712 combined = (some_multibyte && toindex_byte > 0
713 ? count_combining (SDATA (val),
714 toindex_byte + thislen_byte,
715 toindex_byte)
716 : 0);
717 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
718 {
719 textprops[num_textprops].argnum = argnum;
720 /* We ignore text properties on characters being combined. */
721 textprops[num_textprops].from = combined;
722 textprops[num_textprops++].to = toindex;
723 }
724 toindex_byte += thislen_byte;
725 toindex += thisleni - combined;
726 STRING_SET_CHARS (val, SCHARS (val) - combined);
727 }
728 /* Copy a single-byte string to a multibyte string. */
729 else if (STRINGP (this) && STRINGP (val))
730 {
731 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
732 {
733 textprops[num_textprops].argnum = argnum;
734 textprops[num_textprops].from = 0;
735 textprops[num_textprops++].to = toindex;
736 }
737 toindex_byte += copy_text (SDATA (this),
738 SDATA (val) + toindex_byte,
739 SCHARS (this), 0, 1);
740 toindex += thisleni;
741 }
742 else
743 /* Copy element by element. */
744 while (1)
745 {
746 register Lisp_Object elt;
747
748 /* Fetch next element of `this' arg into `elt', or break if
749 `this' is exhausted. */
750 if (NILP (this)) break;
751 if (CONSP (this))
752 elt = XCAR (this), this = XCDR (this);
753 else if (thisindex >= thisleni)
754 break;
755 else if (STRINGP (this))
756 {
757 int c;
758 if (STRING_MULTIBYTE (this))
759 {
760 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
761 thisindex,
762 thisindex_byte);
763 XSETFASTINT (elt, c);
764 }
765 else
766 {
767 XSETFASTINT (elt, SREF (this, thisindex++));
768 if (some_multibyte
769 && (XINT (elt) >= 0240
770 || (XINT (elt) >= 0200
771 && ! NILP (Vnonascii_translation_table)))
772 && XINT (elt) < 0400)
773 {
774 c = unibyte_char_to_multibyte (XINT (elt));
775 XSETINT (elt, c);
776 }
777 }
778 }
779 else if (BOOL_VECTOR_P (this))
780 {
781 int byte;
782 byte = XBOOL_VECTOR (this)->data[thisindex / BITS_PER_CHAR];
783 if (byte & (1 << (thisindex % BITS_PER_CHAR)))
784 elt = Qt;
785 else
786 elt = Qnil;
787 thisindex++;
788 }
789 else
790 elt = XVECTOR (this)->contents[thisindex++];
791
792 /* Store this element into the result. */
793 if (toindex < 0)
794 {
795 XSETCAR (tail, elt);
796 prev = tail;
797 tail = XCDR (tail);
798 }
799 else if (VECTORP (val))
800 XVECTOR (val)->contents[toindex++] = elt;
801 else
802 {
803 CHECK_NUMBER (elt);
804 if (SINGLE_BYTE_CHAR_P (XINT (elt)))
805 {
806 if (some_multibyte)
807 toindex_byte
808 += CHAR_STRING (XINT (elt),
809 SDATA (val) + toindex_byte);
810 else
811 SSET (val, toindex_byte++, XINT (elt));
812 if (some_multibyte
813 && toindex_byte > 0
814 && count_combining (SDATA (val),
815 toindex_byte, toindex_byte - 1))
816 STRING_SET_CHARS (val, SCHARS (val) - 1);
817 else
818 toindex++;
819 }
820 else
821 /* If we have any multibyte characters,
822 we already decided to make a multibyte string. */
823 {
824 int c = XINT (elt);
825 /* P exists as a variable
826 to avoid a bug on the Masscomp C compiler. */
827 unsigned char *p = SDATA (val) + toindex_byte;
828
829 toindex_byte += CHAR_STRING (c, p);
830 toindex++;
831 }
832 }
833 }
834 }
835 if (!NILP (prev))
836 XSETCDR (prev, last_tail);
837
838 if (num_textprops > 0)
839 {
840 Lisp_Object props;
841 int last_to_end = -1;
842
843 for (argnum = 0; argnum < num_textprops; argnum++)
844 {
845 this = args[textprops[argnum].argnum];
846 props = text_property_list (this,
847 make_number (0),
848 make_number (SCHARS (this)),
849 Qnil);
850 /* If successive arguments have properites, be sure that the
851 value of `composition' property be the copy. */
852 if (last_to_end == textprops[argnum].to)
853 make_composition_value_copy (props);
854 add_text_properties_from_list (val, props,
855 make_number (textprops[argnum].to));
856 last_to_end = textprops[argnum].to + SCHARS (this);
857 }
858 }
859 return val;
860 }
861 \f
862 static Lisp_Object string_char_byte_cache_string;
863 static int string_char_byte_cache_charpos;
864 static int string_char_byte_cache_bytepos;
865
866 void
867 clear_string_char_byte_cache ()
868 {
869 string_char_byte_cache_string = Qnil;
870 }
871
872 /* Return the character index corresponding to CHAR_INDEX in STRING. */
873
874 int
875 string_char_to_byte (string, char_index)
876 Lisp_Object string;
877 int char_index;
878 {
879 int i, i_byte;
880 int best_below, best_below_byte;
881 int best_above, best_above_byte;
882
883 if (! STRING_MULTIBYTE (string))
884 return char_index;
885
886 best_below = best_below_byte = 0;
887 best_above = SCHARS (string);
888 best_above_byte = SBYTES (string);
889
890 if (EQ (string, string_char_byte_cache_string))
891 {
892 if (string_char_byte_cache_charpos < char_index)
893 {
894 best_below = string_char_byte_cache_charpos;
895 best_below_byte = string_char_byte_cache_bytepos;
896 }
897 else
898 {
899 best_above = string_char_byte_cache_charpos;
900 best_above_byte = string_char_byte_cache_bytepos;
901 }
902 }
903
904 if (char_index - best_below < best_above - char_index)
905 {
906 while (best_below < char_index)
907 {
908 int c;
909 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, string,
910 best_below, best_below_byte);
911 }
912 i = best_below;
913 i_byte = best_below_byte;
914 }
915 else
916 {
917 while (best_above > char_index)
918 {
919 unsigned char *pend = SDATA (string) + best_above_byte;
920 unsigned char *pbeg = pend - best_above_byte;
921 unsigned char *p = pend - 1;
922 int bytes;
923
924 while (p > pbeg && !CHAR_HEAD_P (*p)) p--;
925 PARSE_MULTIBYTE_SEQ (p, pend - p, bytes);
926 if (bytes == pend - p)
927 best_above_byte -= bytes;
928 else if (bytes > pend - p)
929 best_above_byte -= (pend - p);
930 else
931 best_above_byte--;
932 best_above--;
933 }
934 i = best_above;
935 i_byte = best_above_byte;
936 }
937
938 string_char_byte_cache_bytepos = i_byte;
939 string_char_byte_cache_charpos = i;
940 string_char_byte_cache_string = string;
941
942 return i_byte;
943 }
944 \f
945 /* Return the character index corresponding to BYTE_INDEX in STRING. */
946
947 int
948 string_byte_to_char (string, byte_index)
949 Lisp_Object string;
950 int byte_index;
951 {
952 int i, i_byte;
953 int best_below, best_below_byte;
954 int best_above, best_above_byte;
955
956 if (! STRING_MULTIBYTE (string))
957 return byte_index;
958
959 best_below = best_below_byte = 0;
960 best_above = SCHARS (string);
961 best_above_byte = SBYTES (string);
962
963 if (EQ (string, string_char_byte_cache_string))
964 {
965 if (string_char_byte_cache_bytepos < byte_index)
966 {
967 best_below = string_char_byte_cache_charpos;
968 best_below_byte = string_char_byte_cache_bytepos;
969 }
970 else
971 {
972 best_above = string_char_byte_cache_charpos;
973 best_above_byte = string_char_byte_cache_bytepos;
974 }
975 }
976
977 if (byte_index - best_below_byte < best_above_byte - byte_index)
978 {
979 while (best_below_byte < byte_index)
980 {
981 int c;
982 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, string,
983 best_below, best_below_byte);
984 }
985 i = best_below;
986 i_byte = best_below_byte;
987 }
988 else
989 {
990 while (best_above_byte > byte_index)
991 {
992 unsigned char *pend = SDATA (string) + best_above_byte;
993 unsigned char *pbeg = pend - best_above_byte;
994 unsigned char *p = pend - 1;
995 int bytes;
996
997 while (p > pbeg && !CHAR_HEAD_P (*p)) p--;
998 PARSE_MULTIBYTE_SEQ (p, pend - p, bytes);
999 if (bytes == pend - p)
1000 best_above_byte -= bytes;
1001 else if (bytes > pend - p)
1002 best_above_byte -= (pend - p);
1003 else
1004 best_above_byte--;
1005 best_above--;
1006 }
1007 i = best_above;
1008 i_byte = best_above_byte;
1009 }
1010
1011 string_char_byte_cache_bytepos = i_byte;
1012 string_char_byte_cache_charpos = i;
1013 string_char_byte_cache_string = string;
1014
1015 return i;
1016 }
1017 \f
1018 /* Convert STRING to a multibyte string.
1019 Single-byte characters 0240 through 0377 are converted
1020 by adding nonascii_insert_offset to each. */
1021
1022 Lisp_Object
1023 string_make_multibyte (string)
1024 Lisp_Object string;
1025 {
1026 unsigned char *buf;
1027 int nbytes;
1028
1029 if (STRING_MULTIBYTE (string))
1030 return string;
1031
1032 nbytes = count_size_as_multibyte (SDATA (string),
1033 SCHARS (string));
1034 /* If all the chars are ASCII, they won't need any more bytes
1035 once converted. In that case, we can return STRING itself. */
1036 if (nbytes == SBYTES (string))
1037 return string;
1038
1039 buf = (unsigned char *) alloca (nbytes);
1040 copy_text (SDATA (string), buf, SBYTES (string),
1041 0, 1);
1042
1043 return make_multibyte_string (buf, SCHARS (string), nbytes);
1044 }
1045
1046
1047 /* Convert STRING to a multibyte string without changing each
1048 character codes. Thus, characters 0200 trough 0237 are converted
1049 to eight-bit-control characters, and characters 0240 through 0377
1050 are converted eight-bit-graphic characters. */
1051
1052 Lisp_Object
1053 string_to_multibyte (string)
1054 Lisp_Object string;
1055 {
1056 unsigned char *buf;
1057 int nbytes;
1058
1059 if (STRING_MULTIBYTE (string))
1060 return string;
1061
1062 nbytes = parse_str_to_multibyte (SDATA (string), SBYTES (string));
1063 /* If all the chars are ASCII or eight-bit-graphic, they won't need
1064 any more bytes once converted. */
1065 if (nbytes == SBYTES (string))
1066 return make_multibyte_string (SDATA (string), nbytes, nbytes);
1067
1068 buf = (unsigned char *) alloca (nbytes);
1069 bcopy (SDATA (string), buf, SBYTES (string));
1070 str_to_multibyte (buf, nbytes, SBYTES (string));
1071
1072 return make_multibyte_string (buf, SCHARS (string), nbytes);
1073 }
1074
1075
1076 /* Convert STRING to a single-byte string. */
1077
1078 Lisp_Object
1079 string_make_unibyte (string)
1080 Lisp_Object string;
1081 {
1082 unsigned char *buf;
1083
1084 if (! STRING_MULTIBYTE (string))
1085 return string;
1086
1087 buf = (unsigned char *) alloca (SCHARS (string));
1088
1089 copy_text (SDATA (string), buf, SBYTES (string),
1090 1, 0);
1091
1092 return make_unibyte_string (buf, SCHARS (string));
1093 }
1094
1095 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
1096 1, 1, 0,
1097 doc: /* Return the multibyte equivalent of STRING.
1098 The function `unibyte-char-to-multibyte' is used to convert
1099 each unibyte character to a multibyte character. */)
1100 (string)
1101 Lisp_Object string;
1102 {
1103 CHECK_STRING (string);
1104
1105 return string_make_multibyte (string);
1106 }
1107
1108 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
1109 1, 1, 0,
1110 doc: /* Return the unibyte equivalent of STRING.
1111 Multibyte character codes are converted to unibyte according to
1112 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
1113 If the lookup in the translation table fails, this function takes just
1114 the low 8 bits of each character. */)
1115 (string)
1116 Lisp_Object string;
1117 {
1118 CHECK_STRING (string);
1119
1120 return string_make_unibyte (string);
1121 }
1122
1123 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1124 1, 1, 0,
1125 doc: /* Return a unibyte string with the same individual bytes as STRING.
1126 If STRING is unibyte, the result is STRING itself.
1127 Otherwise it is a newly created string, with no text properties.
1128 If STRING is multibyte and contains a character of charset
1129 `eight-bit-control' or `eight-bit-graphic', it is converted to the
1130 corresponding single byte. */)
1131 (string)
1132 Lisp_Object string;
1133 {
1134 CHECK_STRING (string);
1135
1136 if (STRING_MULTIBYTE (string))
1137 {
1138 int bytes = SBYTES (string);
1139 unsigned char *str = (unsigned char *) xmalloc (bytes);
1140
1141 bcopy (SDATA (string), str, bytes);
1142 bytes = str_as_unibyte (str, bytes);
1143 string = make_unibyte_string (str, bytes);
1144 xfree (str);
1145 }
1146 return string;
1147 }
1148
1149 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1150 1, 1, 0,
1151 doc: /* Return a multibyte string with the same individual bytes as STRING.
1152 If STRING is multibyte, the result is STRING itself.
1153 Otherwise it is a newly created string, with no text properties.
1154 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1155 part of a multibyte form), it is converted to the corresponding
1156 multibyte character of charset `eight-bit-control' or `eight-bit-graphic'. */)
1157 (string)
1158 Lisp_Object string;
1159 {
1160 CHECK_STRING (string);
1161
1162 if (! STRING_MULTIBYTE (string))
1163 {
1164 Lisp_Object new_string;
1165 int nchars, nbytes;
1166
1167 parse_str_as_multibyte (SDATA (string),
1168 SBYTES (string),
1169 &nchars, &nbytes);
1170 new_string = make_uninit_multibyte_string (nchars, nbytes);
1171 bcopy (SDATA (string), SDATA (new_string),
1172 SBYTES (string));
1173 if (nbytes != SBYTES (string))
1174 str_as_multibyte (SDATA (new_string), nbytes,
1175 SBYTES (string), NULL);
1176 string = new_string;
1177 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1178 }
1179 return string;
1180 }
1181
1182 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1183 1, 1, 0,
1184 doc: /* Return a multibyte string with the same individual chars as STRING.
1185 If STRING is multibyte, the result is STRING itself.
1186 Otherwise it is a newly created string, with no text properties.
1187 Characters 0200 through 0237 are converted to eight-bit-control
1188 characters of the same character code. Characters 0240 through 0377
1189 are converted to eight-bit-control characters of the same character
1190 codes. */)
1191 (string)
1192 Lisp_Object string;
1193 {
1194 CHECK_STRING (string);
1195
1196 return string_to_multibyte (string);
1197 }
1198
1199 \f
1200 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1201 doc: /* Return a copy of ALIST.
1202 This is an alist which represents the same mapping from objects to objects,
1203 but does not share the alist structure with ALIST.
1204 The objects mapped (cars and cdrs of elements of the alist)
1205 are shared, however.
1206 Elements of ALIST that are not conses are also shared. */)
1207 (alist)
1208 Lisp_Object alist;
1209 {
1210 register Lisp_Object tem;
1211
1212 CHECK_LIST (alist);
1213 if (NILP (alist))
1214 return alist;
1215 alist = concat (1, &alist, Lisp_Cons, 0);
1216 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1217 {
1218 register Lisp_Object car;
1219 car = XCAR (tem);
1220
1221 if (CONSP (car))
1222 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1223 }
1224 return alist;
1225 }
1226
1227 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1228 doc: /* Return a substring of STRING, starting at index FROM and ending before TO.
1229 TO may be nil or omitted; then the substring runs to the end of STRING.
1230 FROM and TO start at 0. If either is negative, it counts from the end.
1231
1232 This function allows vectors as well as strings. */)
1233 (string, from, to)
1234 Lisp_Object string;
1235 register Lisp_Object from, to;
1236 {
1237 Lisp_Object res;
1238 int size;
1239 int size_byte = 0;
1240 int from_char, to_char;
1241 int from_byte = 0, to_byte = 0;
1242
1243 if (! (STRINGP (string) || VECTORP (string)))
1244 wrong_type_argument (Qarrayp, string);
1245
1246 CHECK_NUMBER (from);
1247
1248 if (STRINGP (string))
1249 {
1250 size = SCHARS (string);
1251 size_byte = SBYTES (string);
1252 }
1253 else
1254 size = XVECTOR (string)->size;
1255
1256 if (NILP (to))
1257 {
1258 to_char = size;
1259 to_byte = size_byte;
1260 }
1261 else
1262 {
1263 CHECK_NUMBER (to);
1264
1265 to_char = XINT (to);
1266 if (to_char < 0)
1267 to_char += size;
1268
1269 if (STRINGP (string))
1270 to_byte = string_char_to_byte (string, to_char);
1271 }
1272
1273 from_char = XINT (from);
1274 if (from_char < 0)
1275 from_char += size;
1276 if (STRINGP (string))
1277 from_byte = string_char_to_byte (string, from_char);
1278
1279 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1280 args_out_of_range_3 (string, make_number (from_char),
1281 make_number (to_char));
1282
1283 if (STRINGP (string))
1284 {
1285 res = make_specified_string (SDATA (string) + from_byte,
1286 to_char - from_char, to_byte - from_byte,
1287 STRING_MULTIBYTE (string));
1288 copy_text_properties (make_number (from_char), make_number (to_char),
1289 string, make_number (0), res, Qnil);
1290 }
1291 else
1292 res = Fvector (to_char - from_char,
1293 XVECTOR (string)->contents + from_char);
1294
1295 return res;
1296 }
1297
1298
1299 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1300 doc: /* Return a substring of STRING, without text properties.
1301 It starts at index FROM and ending before TO.
1302 TO may be nil or omitted; then the substring runs to the end of STRING.
1303 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1304 If FROM or TO is negative, it counts from the end.
1305
1306 With one argument, just copy STRING without its properties. */)
1307 (string, from, to)
1308 Lisp_Object string;
1309 register Lisp_Object from, to;
1310 {
1311 int size, size_byte;
1312 int from_char, to_char;
1313 int from_byte, to_byte;
1314
1315 CHECK_STRING (string);
1316
1317 size = SCHARS (string);
1318 size_byte = SBYTES (string);
1319
1320 if (NILP (from))
1321 from_char = from_byte = 0;
1322 else
1323 {
1324 CHECK_NUMBER (from);
1325 from_char = XINT (from);
1326 if (from_char < 0)
1327 from_char += size;
1328
1329 from_byte = string_char_to_byte (string, from_char);
1330 }
1331
1332 if (NILP (to))
1333 {
1334 to_char = size;
1335 to_byte = size_byte;
1336 }
1337 else
1338 {
1339 CHECK_NUMBER (to);
1340
1341 to_char = XINT (to);
1342 if (to_char < 0)
1343 to_char += size;
1344
1345 to_byte = string_char_to_byte (string, to_char);
1346 }
1347
1348 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1349 args_out_of_range_3 (string, make_number (from_char),
1350 make_number (to_char));
1351
1352 return make_specified_string (SDATA (string) + from_byte,
1353 to_char - from_char, to_byte - from_byte,
1354 STRING_MULTIBYTE (string));
1355 }
1356
1357 /* Extract a substring of STRING, giving start and end positions
1358 both in characters and in bytes. */
1359
1360 Lisp_Object
1361 substring_both (string, from, from_byte, to, to_byte)
1362 Lisp_Object string;
1363 int from, from_byte, to, to_byte;
1364 {
1365 Lisp_Object res;
1366 int size;
1367 int size_byte;
1368
1369 if (! (STRINGP (string) || VECTORP (string)))
1370 wrong_type_argument (Qarrayp, string);
1371
1372 if (STRINGP (string))
1373 {
1374 size = SCHARS (string);
1375 size_byte = SBYTES (string);
1376 }
1377 else
1378 size = XVECTOR (string)->size;
1379
1380 if (!(0 <= from && from <= to && to <= size))
1381 args_out_of_range_3 (string, make_number (from), make_number (to));
1382
1383 if (STRINGP (string))
1384 {
1385 res = make_specified_string (SDATA (string) + from_byte,
1386 to - from, to_byte - from_byte,
1387 STRING_MULTIBYTE (string));
1388 copy_text_properties (make_number (from), make_number (to),
1389 string, make_number (0), res, Qnil);
1390 }
1391 else
1392 res = Fvector (to - from,
1393 XVECTOR (string)->contents + from);
1394
1395 return res;
1396 }
1397 \f
1398 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1399 doc: /* Take cdr N times on LIST, returns the result. */)
1400 (n, list)
1401 Lisp_Object n;
1402 register Lisp_Object list;
1403 {
1404 register int i, num;
1405 CHECK_NUMBER (n);
1406 num = XINT (n);
1407 for (i = 0; i < num && !NILP (list); i++)
1408 {
1409 QUIT;
1410 if (! CONSP (list))
1411 wrong_type_argument (Qlistp, list);
1412 list = XCDR (list);
1413 }
1414 return list;
1415 }
1416
1417 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1418 doc: /* Return the Nth element of LIST.
1419 N counts from zero. If LIST is not that long, nil is returned. */)
1420 (n, list)
1421 Lisp_Object n, list;
1422 {
1423 return Fcar (Fnthcdr (n, list));
1424 }
1425
1426 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1427 doc: /* Return element of SEQUENCE at index N. */)
1428 (sequence, n)
1429 register Lisp_Object sequence, n;
1430 {
1431 CHECK_NUMBER (n);
1432 while (1)
1433 {
1434 if (CONSP (sequence) || NILP (sequence))
1435 return Fcar (Fnthcdr (n, sequence));
1436 else if (STRINGP (sequence) || VECTORP (sequence)
1437 || BOOL_VECTOR_P (sequence) || CHAR_TABLE_P (sequence))
1438 return Faref (sequence, n);
1439 else
1440 sequence = wrong_type_argument (Qsequencep, sequence);
1441 }
1442 }
1443
1444 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1445 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1446 The value is actually the tail of LIST whose car is ELT. */)
1447 (elt, list)
1448 register Lisp_Object elt;
1449 Lisp_Object list;
1450 {
1451 register Lisp_Object tail;
1452 for (tail = list; !NILP (tail); tail = XCDR (tail))
1453 {
1454 register Lisp_Object tem;
1455 if (! CONSP (tail))
1456 wrong_type_argument (Qlistp, list);
1457 tem = XCAR (tail);
1458 if (! NILP (Fequal (elt, tem)))
1459 return tail;
1460 QUIT;
1461 }
1462 return Qnil;
1463 }
1464
1465 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1466 doc: /* Return non-nil if ELT is an element of LIST.
1467 Comparison done with EQ. The value is actually the tail of LIST
1468 whose car is ELT. */)
1469 (elt, list)
1470 Lisp_Object elt, list;
1471 {
1472 while (1)
1473 {
1474 if (!CONSP (list) || EQ (XCAR (list), elt))
1475 break;
1476
1477 list = XCDR (list);
1478 if (!CONSP (list) || EQ (XCAR (list), elt))
1479 break;
1480
1481 list = XCDR (list);
1482 if (!CONSP (list) || EQ (XCAR (list), elt))
1483 break;
1484
1485 list = XCDR (list);
1486 QUIT;
1487 }
1488
1489 if (!CONSP (list) && !NILP (list))
1490 list = wrong_type_argument (Qlistp, list);
1491
1492 return list;
1493 }
1494
1495 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1496 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1497 The value is actually the element of LIST whose car is KEY.
1498 Elements of LIST that are not conses are ignored. */)
1499 (key, list)
1500 Lisp_Object key, list;
1501 {
1502 Lisp_Object result;
1503
1504 while (1)
1505 {
1506 if (!CONSP (list)
1507 || (CONSP (XCAR (list))
1508 && EQ (XCAR (XCAR (list)), key)))
1509 break;
1510
1511 list = XCDR (list);
1512 if (!CONSP (list)
1513 || (CONSP (XCAR (list))
1514 && EQ (XCAR (XCAR (list)), key)))
1515 break;
1516
1517 list = XCDR (list);
1518 if (!CONSP (list)
1519 || (CONSP (XCAR (list))
1520 && EQ (XCAR (XCAR (list)), key)))
1521 break;
1522
1523 list = XCDR (list);
1524 QUIT;
1525 }
1526
1527 if (CONSP (list))
1528 result = XCAR (list);
1529 else if (NILP (list))
1530 result = Qnil;
1531 else
1532 result = wrong_type_argument (Qlistp, list);
1533
1534 return result;
1535 }
1536
1537 /* Like Fassq but never report an error and do not allow quits.
1538 Use only on lists known never to be circular. */
1539
1540 Lisp_Object
1541 assq_no_quit (key, list)
1542 Lisp_Object key, list;
1543 {
1544 while (CONSP (list)
1545 && (!CONSP (XCAR (list))
1546 || !EQ (XCAR (XCAR (list)), key)))
1547 list = XCDR (list);
1548
1549 return CONSP (list) ? XCAR (list) : Qnil;
1550 }
1551
1552 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1553 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1554 The value is actually the element of LIST whose car equals KEY. */)
1555 (key, list)
1556 Lisp_Object key, list;
1557 {
1558 Lisp_Object result, car;
1559
1560 while (1)
1561 {
1562 if (!CONSP (list)
1563 || (CONSP (XCAR (list))
1564 && (car = XCAR (XCAR (list)),
1565 EQ (car, key) || !NILP (Fequal (car, key)))))
1566 break;
1567
1568 list = XCDR (list);
1569 if (!CONSP (list)
1570 || (CONSP (XCAR (list))
1571 && (car = XCAR (XCAR (list)),
1572 EQ (car, key) || !NILP (Fequal (car, key)))))
1573 break;
1574
1575 list = XCDR (list);
1576 if (!CONSP (list)
1577 || (CONSP (XCAR (list))
1578 && (car = XCAR (XCAR (list)),
1579 EQ (car, key) || !NILP (Fequal (car, key)))))
1580 break;
1581
1582 list = XCDR (list);
1583 QUIT;
1584 }
1585
1586 if (CONSP (list))
1587 result = XCAR (list);
1588 else if (NILP (list))
1589 result = Qnil;
1590 else
1591 result = wrong_type_argument (Qlistp, list);
1592
1593 return result;
1594 }
1595
1596 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1597 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1598 The value is actually the element of LIST whose cdr is KEY. */)
1599 (key, list)
1600 register Lisp_Object key;
1601 Lisp_Object list;
1602 {
1603 Lisp_Object result;
1604
1605 while (1)
1606 {
1607 if (!CONSP (list)
1608 || (CONSP (XCAR (list))
1609 && EQ (XCDR (XCAR (list)), key)))
1610 break;
1611
1612 list = XCDR (list);
1613 if (!CONSP (list)
1614 || (CONSP (XCAR (list))
1615 && EQ (XCDR (XCAR (list)), key)))
1616 break;
1617
1618 list = XCDR (list);
1619 if (!CONSP (list)
1620 || (CONSP (XCAR (list))
1621 && EQ (XCDR (XCAR (list)), key)))
1622 break;
1623
1624 list = XCDR (list);
1625 QUIT;
1626 }
1627
1628 if (NILP (list))
1629 result = Qnil;
1630 else if (CONSP (list))
1631 result = XCAR (list);
1632 else
1633 result = wrong_type_argument (Qlistp, list);
1634
1635 return result;
1636 }
1637
1638 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1639 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1640 The value is actually the element of LIST whose cdr equals KEY. */)
1641 (key, list)
1642 Lisp_Object key, list;
1643 {
1644 Lisp_Object result, cdr;
1645
1646 while (1)
1647 {
1648 if (!CONSP (list)
1649 || (CONSP (XCAR (list))
1650 && (cdr = XCDR (XCAR (list)),
1651 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1652 break;
1653
1654 list = XCDR (list);
1655 if (!CONSP (list)
1656 || (CONSP (XCAR (list))
1657 && (cdr = XCDR (XCAR (list)),
1658 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1659 break;
1660
1661 list = XCDR (list);
1662 if (!CONSP (list)
1663 || (CONSP (XCAR (list))
1664 && (cdr = XCDR (XCAR (list)),
1665 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1666 break;
1667
1668 list = XCDR (list);
1669 QUIT;
1670 }
1671
1672 if (CONSP (list))
1673 result = XCAR (list);
1674 else if (NILP (list))
1675 result = Qnil;
1676 else
1677 result = wrong_type_argument (Qlistp, list);
1678
1679 return result;
1680 }
1681 \f
1682 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1683 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1684 The modified LIST is returned. Comparison is done with `eq'.
1685 If the first member of LIST is ELT, there is no way to remove it by side effect;
1686 therefore, write `(setq foo (delq element foo))'
1687 to be sure of changing the value of `foo'. */)
1688 (elt, list)
1689 register Lisp_Object elt;
1690 Lisp_Object list;
1691 {
1692 register Lisp_Object tail, prev;
1693 register Lisp_Object tem;
1694
1695 tail = list;
1696 prev = Qnil;
1697 while (!NILP (tail))
1698 {
1699 if (! CONSP (tail))
1700 wrong_type_argument (Qlistp, list);
1701 tem = XCAR (tail);
1702 if (EQ (elt, tem))
1703 {
1704 if (NILP (prev))
1705 list = XCDR (tail);
1706 else
1707 Fsetcdr (prev, XCDR (tail));
1708 }
1709 else
1710 prev = tail;
1711 tail = XCDR (tail);
1712 QUIT;
1713 }
1714 return list;
1715 }
1716
1717 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1718 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1719 SEQ must be a list, a vector, or a string.
1720 The modified SEQ is returned. Comparison is done with `equal'.
1721 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1722 is not a side effect; it is simply using a different sequence.
1723 Therefore, write `(setq foo (delete element foo))'
1724 to be sure of changing the value of `foo'. */)
1725 (elt, seq)
1726 Lisp_Object elt, seq;
1727 {
1728 if (VECTORP (seq))
1729 {
1730 EMACS_INT i, n;
1731
1732 for (i = n = 0; i < ASIZE (seq); ++i)
1733 if (NILP (Fequal (AREF (seq, i), elt)))
1734 ++n;
1735
1736 if (n != ASIZE (seq))
1737 {
1738 struct Lisp_Vector *p = allocate_vector (n);
1739
1740 for (i = n = 0; i < ASIZE (seq); ++i)
1741 if (NILP (Fequal (AREF (seq, i), elt)))
1742 p->contents[n++] = AREF (seq, i);
1743
1744 XSETVECTOR (seq, p);
1745 }
1746 }
1747 else if (STRINGP (seq))
1748 {
1749 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1750 int c;
1751
1752 for (i = nchars = nbytes = ibyte = 0;
1753 i < SCHARS (seq);
1754 ++i, ibyte += cbytes)
1755 {
1756 if (STRING_MULTIBYTE (seq))
1757 {
1758 c = STRING_CHAR (SDATA (seq) + ibyte,
1759 SBYTES (seq) - ibyte);
1760 cbytes = CHAR_BYTES (c);
1761 }
1762 else
1763 {
1764 c = SREF (seq, i);
1765 cbytes = 1;
1766 }
1767
1768 if (!INTEGERP (elt) || c != XINT (elt))
1769 {
1770 ++nchars;
1771 nbytes += cbytes;
1772 }
1773 }
1774
1775 if (nchars != SCHARS (seq))
1776 {
1777 Lisp_Object tem;
1778
1779 tem = make_uninit_multibyte_string (nchars, nbytes);
1780 if (!STRING_MULTIBYTE (seq))
1781 STRING_SET_UNIBYTE (tem);
1782
1783 for (i = nchars = nbytes = ibyte = 0;
1784 i < SCHARS (seq);
1785 ++i, ibyte += cbytes)
1786 {
1787 if (STRING_MULTIBYTE (seq))
1788 {
1789 c = STRING_CHAR (SDATA (seq) + ibyte,
1790 SBYTES (seq) - ibyte);
1791 cbytes = CHAR_BYTES (c);
1792 }
1793 else
1794 {
1795 c = SREF (seq, i);
1796 cbytes = 1;
1797 }
1798
1799 if (!INTEGERP (elt) || c != XINT (elt))
1800 {
1801 unsigned char *from = SDATA (seq) + ibyte;
1802 unsigned char *to = SDATA (tem) + nbytes;
1803 EMACS_INT n;
1804
1805 ++nchars;
1806 nbytes += cbytes;
1807
1808 for (n = cbytes; n--; )
1809 *to++ = *from++;
1810 }
1811 }
1812
1813 seq = tem;
1814 }
1815 }
1816 else
1817 {
1818 Lisp_Object tail, prev;
1819
1820 for (tail = seq, prev = Qnil; !NILP (tail); tail = XCDR (tail))
1821 {
1822 if (!CONSP (tail))
1823 wrong_type_argument (Qlistp, seq);
1824
1825 if (!NILP (Fequal (elt, XCAR (tail))))
1826 {
1827 if (NILP (prev))
1828 seq = XCDR (tail);
1829 else
1830 Fsetcdr (prev, XCDR (tail));
1831 }
1832 else
1833 prev = tail;
1834 QUIT;
1835 }
1836 }
1837
1838 return seq;
1839 }
1840
1841 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1842 doc: /* Reverse LIST by modifying cdr pointers.
1843 Returns the beginning of the reversed list. */)
1844 (list)
1845 Lisp_Object list;
1846 {
1847 register Lisp_Object prev, tail, next;
1848
1849 if (NILP (list)) return list;
1850 prev = Qnil;
1851 tail = list;
1852 while (!NILP (tail))
1853 {
1854 QUIT;
1855 if (! CONSP (tail))
1856 wrong_type_argument (Qlistp, list);
1857 next = XCDR (tail);
1858 Fsetcdr (tail, prev);
1859 prev = tail;
1860 tail = next;
1861 }
1862 return prev;
1863 }
1864
1865 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1866 doc: /* Reverse LIST, copying. Returns the beginning of the reversed list.
1867 See also the function `nreverse', which is used more often. */)
1868 (list)
1869 Lisp_Object list;
1870 {
1871 Lisp_Object new;
1872
1873 for (new = Qnil; CONSP (list); list = XCDR (list))
1874 {
1875 QUIT;
1876 new = Fcons (XCAR (list), new);
1877 }
1878 if (!NILP (list))
1879 wrong_type_argument (Qconsp, list);
1880 return new;
1881 }
1882 \f
1883 Lisp_Object merge ();
1884
1885 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1886 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1887 Returns the sorted list. LIST is modified by side effects.
1888 PREDICATE is called with two elements of LIST, and should return t
1889 if the first element is "less" than the second. */)
1890 (list, predicate)
1891 Lisp_Object list, predicate;
1892 {
1893 Lisp_Object front, back;
1894 register Lisp_Object len, tem;
1895 struct gcpro gcpro1, gcpro2;
1896 register int length;
1897
1898 front = list;
1899 len = Flength (list);
1900 length = XINT (len);
1901 if (length < 2)
1902 return list;
1903
1904 XSETINT (len, (length / 2) - 1);
1905 tem = Fnthcdr (len, list);
1906 back = Fcdr (tem);
1907 Fsetcdr (tem, Qnil);
1908
1909 GCPRO2 (front, back);
1910 front = Fsort (front, predicate);
1911 back = Fsort (back, predicate);
1912 UNGCPRO;
1913 return merge (front, back, predicate);
1914 }
1915
1916 Lisp_Object
1917 merge (org_l1, org_l2, pred)
1918 Lisp_Object org_l1, org_l2;
1919 Lisp_Object pred;
1920 {
1921 Lisp_Object value;
1922 register Lisp_Object tail;
1923 Lisp_Object tem;
1924 register Lisp_Object l1, l2;
1925 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1926
1927 l1 = org_l1;
1928 l2 = org_l2;
1929 tail = Qnil;
1930 value = Qnil;
1931
1932 /* It is sufficient to protect org_l1 and org_l2.
1933 When l1 and l2 are updated, we copy the new values
1934 back into the org_ vars. */
1935 GCPRO4 (org_l1, org_l2, pred, value);
1936
1937 while (1)
1938 {
1939 if (NILP (l1))
1940 {
1941 UNGCPRO;
1942 if (NILP (tail))
1943 return l2;
1944 Fsetcdr (tail, l2);
1945 return value;
1946 }
1947 if (NILP (l2))
1948 {
1949 UNGCPRO;
1950 if (NILP (tail))
1951 return l1;
1952 Fsetcdr (tail, l1);
1953 return value;
1954 }
1955 tem = call2 (pred, Fcar (l2), Fcar (l1));
1956 if (NILP (tem))
1957 {
1958 tem = l1;
1959 l1 = Fcdr (l1);
1960 org_l1 = l1;
1961 }
1962 else
1963 {
1964 tem = l2;
1965 l2 = Fcdr (l2);
1966 org_l2 = l2;
1967 }
1968 if (NILP (tail))
1969 value = tem;
1970 else
1971 Fsetcdr (tail, tem);
1972 tail = tem;
1973 }
1974 }
1975
1976 \f
1977 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1978 doc: /* Extract a value from a property list.
1979 PLIST is a property list, which is a list of the form
1980 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1981 corresponding to the given PROP, or nil if PROP is not
1982 one of the properties on the list. */)
1983 (plist, prop)
1984 Lisp_Object plist;
1985 Lisp_Object prop;
1986 {
1987 Lisp_Object tail;
1988
1989 for (tail = plist;
1990 CONSP (tail) && CONSP (XCDR (tail));
1991 tail = XCDR (XCDR (tail)))
1992 {
1993 if (EQ (prop, XCAR (tail)))
1994 return XCAR (XCDR (tail));
1995
1996 /* This function can be called asynchronously
1997 (setup_coding_system). Don't QUIT in that case. */
1998 if (!interrupt_input_blocked)
1999 QUIT;
2000 }
2001
2002 if (!NILP (tail))
2003 wrong_type_argument (Qlistp, prop);
2004
2005 return Qnil;
2006 }
2007
2008 DEFUN ("get", Fget, Sget, 2, 2, 0,
2009 doc: /* Return the value of SYMBOL's PROPNAME property.
2010 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
2011 (symbol, propname)
2012 Lisp_Object symbol, propname;
2013 {
2014 CHECK_SYMBOL (symbol);
2015 return Fplist_get (XSYMBOL (symbol)->plist, propname);
2016 }
2017
2018 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
2019 doc: /* Change value in PLIST of PROP to VAL.
2020 PLIST is a property list, which is a list of the form
2021 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
2022 If PROP is already a property on the list, its value is set to VAL,
2023 otherwise the new PROP VAL pair is added. The new plist is returned;
2024 use `(setq x (plist-put x prop val))' to be sure to use the new value.
2025 The PLIST is modified by side effects. */)
2026 (plist, prop, val)
2027 Lisp_Object plist;
2028 register Lisp_Object prop;
2029 Lisp_Object val;
2030 {
2031 register Lisp_Object tail, prev;
2032 Lisp_Object newcell;
2033 prev = Qnil;
2034 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2035 tail = XCDR (XCDR (tail)))
2036 {
2037 if (EQ (prop, XCAR (tail)))
2038 {
2039 Fsetcar (XCDR (tail), val);
2040 return plist;
2041 }
2042
2043 prev = tail;
2044 QUIT;
2045 }
2046 newcell = Fcons (prop, Fcons (val, Qnil));
2047 if (NILP (prev))
2048 return newcell;
2049 else
2050 Fsetcdr (XCDR (prev), newcell);
2051 return plist;
2052 }
2053
2054 DEFUN ("put", Fput, Sput, 3, 3, 0,
2055 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
2056 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
2057 (symbol, propname, value)
2058 Lisp_Object symbol, propname, value;
2059 {
2060 CHECK_SYMBOL (symbol);
2061 XSYMBOL (symbol)->plist
2062 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
2063 return value;
2064 }
2065 \f
2066 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
2067 doc: /* Extract a value from a property list, comparing with `equal'.
2068 PLIST is a property list, which is a list of the form
2069 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
2070 corresponding to the given PROP, or nil if PROP is not
2071 one of the properties on the list. */)
2072 (plist, prop)
2073 Lisp_Object plist;
2074 Lisp_Object prop;
2075 {
2076 Lisp_Object tail;
2077
2078 for (tail = plist;
2079 CONSP (tail) && CONSP (XCDR (tail));
2080 tail = XCDR (XCDR (tail)))
2081 {
2082 if (! NILP (Fequal (prop, XCAR (tail))))
2083 return XCAR (XCDR (tail));
2084
2085 QUIT;
2086 }
2087
2088 if (!NILP (tail))
2089 wrong_type_argument (Qlistp, prop);
2090
2091 return Qnil;
2092 }
2093
2094 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
2095 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
2096 PLIST is a property list, which is a list of the form
2097 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
2098 If PROP is already a property on the list, its value is set to VAL,
2099 otherwise the new PROP VAL pair is added. The new plist is returned;
2100 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
2101 The PLIST is modified by side effects. */)
2102 (plist, prop, val)
2103 Lisp_Object plist;
2104 register Lisp_Object prop;
2105 Lisp_Object val;
2106 {
2107 register Lisp_Object tail, prev;
2108 Lisp_Object newcell;
2109 prev = Qnil;
2110 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2111 tail = XCDR (XCDR (tail)))
2112 {
2113 if (! NILP (Fequal (prop, XCAR (tail))))
2114 {
2115 Fsetcar (XCDR (tail), val);
2116 return plist;
2117 }
2118
2119 prev = tail;
2120 QUIT;
2121 }
2122 newcell = Fcons (prop, Fcons (val, Qnil));
2123 if (NILP (prev))
2124 return newcell;
2125 else
2126 Fsetcdr (XCDR (prev), newcell);
2127 return plist;
2128 }
2129 \f
2130 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
2131 doc: /* Return t if two Lisp objects have similar structure and contents.
2132 They must have the same data type.
2133 Conses are compared by comparing the cars and the cdrs.
2134 Vectors and strings are compared element by element.
2135 Numbers are compared by value, but integers cannot equal floats.
2136 (Use `=' if you want integers and floats to be able to be equal.)
2137 Symbols must match exactly. */)
2138 (o1, o2)
2139 register Lisp_Object o1, o2;
2140 {
2141 return internal_equal (o1, o2, 0) ? Qt : Qnil;
2142 }
2143
2144 static int
2145 internal_equal (o1, o2, depth)
2146 register Lisp_Object o1, o2;
2147 int depth;
2148 {
2149 if (depth > 200)
2150 error ("Stack overflow in equal");
2151
2152 tail_recurse:
2153 QUIT;
2154 if (EQ (o1, o2))
2155 return 1;
2156 if (XTYPE (o1) != XTYPE (o2))
2157 return 0;
2158
2159 switch (XTYPE (o1))
2160 {
2161 case Lisp_Float:
2162 return (extract_float (o1) == extract_float (o2));
2163
2164 case Lisp_Cons:
2165 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1))
2166 return 0;
2167 o1 = XCDR (o1);
2168 o2 = XCDR (o2);
2169 goto tail_recurse;
2170
2171 case Lisp_Misc:
2172 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2173 return 0;
2174 if (OVERLAYP (o1))
2175 {
2176 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2177 depth + 1)
2178 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2179 depth + 1))
2180 return 0;
2181 o1 = XOVERLAY (o1)->plist;
2182 o2 = XOVERLAY (o2)->plist;
2183 goto tail_recurse;
2184 }
2185 if (MARKERP (o1))
2186 {
2187 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2188 && (XMARKER (o1)->buffer == 0
2189 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2190 }
2191 break;
2192
2193 case Lisp_Vectorlike:
2194 {
2195 register int i, size;
2196 size = XVECTOR (o1)->size;
2197 /* Pseudovectors have the type encoded in the size field, so this test
2198 actually checks that the objects have the same type as well as the
2199 same size. */
2200 if (XVECTOR (o2)->size != size)
2201 return 0;
2202 /* Boolvectors are compared much like strings. */
2203 if (BOOL_VECTOR_P (o1))
2204 {
2205 int size_in_chars
2206 = (XBOOL_VECTOR (o1)->size + BITS_PER_CHAR - 1) / BITS_PER_CHAR;
2207
2208 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2209 return 0;
2210 if (bcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2211 size_in_chars))
2212 return 0;
2213 return 1;
2214 }
2215 if (WINDOW_CONFIGURATIONP (o1))
2216 return compare_window_configurations (o1, o2, 0);
2217
2218 /* Aside from them, only true vectors, char-tables, and compiled
2219 functions are sensible to compare, so eliminate the others now. */
2220 if (size & PSEUDOVECTOR_FLAG)
2221 {
2222 if (!(size & (PVEC_COMPILED | PVEC_CHAR_TABLE)))
2223 return 0;
2224 size &= PSEUDOVECTOR_SIZE_MASK;
2225 }
2226 for (i = 0; i < size; i++)
2227 {
2228 Lisp_Object v1, v2;
2229 v1 = XVECTOR (o1)->contents [i];
2230 v2 = XVECTOR (o2)->contents [i];
2231 if (!internal_equal (v1, v2, depth + 1))
2232 return 0;
2233 }
2234 return 1;
2235 }
2236 break;
2237
2238 case Lisp_String:
2239 if (SCHARS (o1) != SCHARS (o2))
2240 return 0;
2241 if (SBYTES (o1) != SBYTES (o2))
2242 return 0;
2243 if (bcmp (SDATA (o1), SDATA (o2),
2244 SBYTES (o1)))
2245 return 0;
2246 return 1;
2247
2248 case Lisp_Int:
2249 case Lisp_Symbol:
2250 case Lisp_Type_Limit:
2251 break;
2252 }
2253
2254 return 0;
2255 }
2256 \f
2257 extern Lisp_Object Fmake_char_internal ();
2258
2259 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2260 doc: /* Store each element of ARRAY with ITEM.
2261 ARRAY is a vector, string, char-table, or bool-vector. */)
2262 (array, item)
2263 Lisp_Object array, item;
2264 {
2265 register int size, index, charval;
2266 retry:
2267 if (VECTORP (array))
2268 {
2269 register Lisp_Object *p = XVECTOR (array)->contents;
2270 size = XVECTOR (array)->size;
2271 for (index = 0; index < size; index++)
2272 p[index] = item;
2273 }
2274 else if (CHAR_TABLE_P (array))
2275 {
2276 register Lisp_Object *p = XCHAR_TABLE (array)->contents;
2277 size = CHAR_TABLE_ORDINARY_SLOTS;
2278 for (index = 0; index < size; index++)
2279 p[index] = item;
2280 XCHAR_TABLE (array)->defalt = Qnil;
2281 }
2282 else if (STRINGP (array))
2283 {
2284 register unsigned char *p = SDATA (array);
2285 CHECK_NUMBER (item);
2286 charval = XINT (item);
2287 size = SCHARS (array);
2288 if (STRING_MULTIBYTE (array))
2289 {
2290 unsigned char str[MAX_MULTIBYTE_LENGTH];
2291 int len = CHAR_STRING (charval, str);
2292 int size_byte = SBYTES (array);
2293 unsigned char *p1 = p, *endp = p + size_byte;
2294 int i;
2295
2296 if (size != size_byte)
2297 while (p1 < endp)
2298 {
2299 int this_len = MULTIBYTE_FORM_LENGTH (p1, endp - p1);
2300 if (len != this_len)
2301 error ("Attempt to change byte length of a string");
2302 p1 += this_len;
2303 }
2304 for (i = 0; i < size_byte; i++)
2305 *p++ = str[i % len];
2306 }
2307 else
2308 for (index = 0; index < size; index++)
2309 p[index] = charval;
2310 }
2311 else if (BOOL_VECTOR_P (array))
2312 {
2313 register unsigned char *p = XBOOL_VECTOR (array)->data;
2314 int size_in_chars
2315 = (XBOOL_VECTOR (array)->size + BITS_PER_CHAR - 1) / BITS_PER_CHAR;
2316
2317 charval = (! NILP (item) ? -1 : 0);
2318 for (index = 0; index < size_in_chars; index++)
2319 p[index] = charval;
2320 }
2321 else
2322 {
2323 array = wrong_type_argument (Qarrayp, array);
2324 goto retry;
2325 }
2326 return array;
2327 }
2328 \f
2329 DEFUN ("char-table-subtype", Fchar_table_subtype, Schar_table_subtype,
2330 1, 1, 0,
2331 doc: /* Return the subtype of char-table CHAR-TABLE. The value is a symbol. */)
2332 (char_table)
2333 Lisp_Object char_table;
2334 {
2335 CHECK_CHAR_TABLE (char_table);
2336
2337 return XCHAR_TABLE (char_table)->purpose;
2338 }
2339
2340 DEFUN ("char-table-parent", Fchar_table_parent, Schar_table_parent,
2341 1, 1, 0,
2342 doc: /* Return the parent char-table of CHAR-TABLE.
2343 The value is either nil or another char-table.
2344 If CHAR-TABLE holds nil for a given character,
2345 then the actual applicable value is inherited from the parent char-table
2346 \(or from its parents, if necessary). */)
2347 (char_table)
2348 Lisp_Object char_table;
2349 {
2350 CHECK_CHAR_TABLE (char_table);
2351
2352 return XCHAR_TABLE (char_table)->parent;
2353 }
2354
2355 DEFUN ("set-char-table-parent", Fset_char_table_parent, Sset_char_table_parent,
2356 2, 2, 0,
2357 doc: /* Set the parent char-table of CHAR-TABLE to PARENT.
2358 PARENT must be either nil or another char-table. */)
2359 (char_table, parent)
2360 Lisp_Object char_table, parent;
2361 {
2362 Lisp_Object temp;
2363
2364 CHECK_CHAR_TABLE (char_table);
2365
2366 if (!NILP (parent))
2367 {
2368 CHECK_CHAR_TABLE (parent);
2369
2370 for (temp = parent; !NILP (temp); temp = XCHAR_TABLE (temp)->parent)
2371 if (EQ (temp, char_table))
2372 error ("Attempt to make a chartable be its own parent");
2373 }
2374
2375 XCHAR_TABLE (char_table)->parent = parent;
2376
2377 return parent;
2378 }
2379
2380 DEFUN ("char-table-extra-slot", Fchar_table_extra_slot, Schar_table_extra_slot,
2381 2, 2, 0,
2382 doc: /* Return the value of CHAR-TABLE's extra-slot number N. */)
2383 (char_table, n)
2384 Lisp_Object char_table, n;
2385 {
2386 CHECK_CHAR_TABLE (char_table);
2387 CHECK_NUMBER (n);
2388 if (XINT (n) < 0
2389 || XINT (n) >= CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (char_table)))
2390 args_out_of_range (char_table, n);
2391
2392 return XCHAR_TABLE (char_table)->extras[XINT (n)];
2393 }
2394
2395 DEFUN ("set-char-table-extra-slot", Fset_char_table_extra_slot,
2396 Sset_char_table_extra_slot,
2397 3, 3, 0,
2398 doc: /* Set CHAR-TABLE's extra-slot number N to VALUE. */)
2399 (char_table, n, value)
2400 Lisp_Object char_table, n, value;
2401 {
2402 CHECK_CHAR_TABLE (char_table);
2403 CHECK_NUMBER (n);
2404 if (XINT (n) < 0
2405 || XINT (n) >= CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (char_table)))
2406 args_out_of_range (char_table, n);
2407
2408 return XCHAR_TABLE (char_table)->extras[XINT (n)] = value;
2409 }
2410 \f
2411 DEFUN ("char-table-range", Fchar_table_range, Schar_table_range,
2412 2, 2, 0,
2413 doc: /* Return the value in CHAR-TABLE for a range of characters RANGE.
2414 RANGE should be nil (for the default value)
2415 a vector which identifies a character set or a row of a character set,
2416 a character set name, or a character code. */)
2417 (char_table, range)
2418 Lisp_Object char_table, range;
2419 {
2420 CHECK_CHAR_TABLE (char_table);
2421
2422 if (EQ (range, Qnil))
2423 return XCHAR_TABLE (char_table)->defalt;
2424 else if (INTEGERP (range))
2425 return Faref (char_table, range);
2426 else if (SYMBOLP (range))
2427 {
2428 Lisp_Object charset_info;
2429
2430 charset_info = Fget (range, Qcharset);
2431 CHECK_VECTOR (charset_info);
2432
2433 return Faref (char_table,
2434 make_number (XINT (XVECTOR (charset_info)->contents[0])
2435 + 128));
2436 }
2437 else if (VECTORP (range))
2438 {
2439 if (XVECTOR (range)->size == 1)
2440 return Faref (char_table,
2441 make_number (XINT (XVECTOR (range)->contents[0]) + 128));
2442 else
2443 {
2444 int size = XVECTOR (range)->size;
2445 Lisp_Object *val = XVECTOR (range)->contents;
2446 Lisp_Object ch = Fmake_char_internal (size <= 0 ? Qnil : val[0],
2447 size <= 1 ? Qnil : val[1],
2448 size <= 2 ? Qnil : val[2]);
2449 return Faref (char_table, ch);
2450 }
2451 }
2452 else
2453 error ("Invalid RANGE argument to `char-table-range'");
2454 return Qt;
2455 }
2456
2457 DEFUN ("set-char-table-range", Fset_char_table_range, Sset_char_table_range,
2458 3, 3, 0,
2459 doc: /* Set the value in CHAR-TABLE for a range of characters RANGE to VALUE.
2460 RANGE should be t (for all characters), nil (for the default value)
2461 a vector which identifies a character set or a row of a character set,
2462 a coding system, or a character code. */)
2463 (char_table, range, value)
2464 Lisp_Object char_table, range, value;
2465 {
2466 int i;
2467
2468 CHECK_CHAR_TABLE (char_table);
2469
2470 if (EQ (range, Qt))
2471 for (i = 0; i < CHAR_TABLE_ORDINARY_SLOTS; i++)
2472 XCHAR_TABLE (char_table)->contents[i] = value;
2473 else if (EQ (range, Qnil))
2474 XCHAR_TABLE (char_table)->defalt = value;
2475 else if (SYMBOLP (range))
2476 {
2477 Lisp_Object charset_info;
2478
2479 charset_info = Fget (range, Qcharset);
2480 CHECK_VECTOR (charset_info);
2481
2482 return Faset (char_table,
2483 make_number (XINT (XVECTOR (charset_info)->contents[0])
2484 + 128),
2485 value);
2486 }
2487 else if (INTEGERP (range))
2488 Faset (char_table, range, value);
2489 else if (VECTORP (range))
2490 {
2491 if (XVECTOR (range)->size == 1)
2492 return Faset (char_table,
2493 make_number (XINT (XVECTOR (range)->contents[0]) + 128),
2494 value);
2495 else
2496 {
2497 int size = XVECTOR (range)->size;
2498 Lisp_Object *val = XVECTOR (range)->contents;
2499 Lisp_Object ch = Fmake_char_internal (size <= 0 ? Qnil : val[0],
2500 size <= 1 ? Qnil : val[1],
2501 size <= 2 ? Qnil : val[2]);
2502 return Faset (char_table, ch, value);
2503 }
2504 }
2505 else
2506 error ("Invalid RANGE argument to `set-char-table-range'");
2507
2508 return value;
2509 }
2510
2511 DEFUN ("set-char-table-default", Fset_char_table_default,
2512 Sset_char_table_default, 3, 3, 0,
2513 doc: /* Set the default value in CHAR-TABLE for a generic character CHAR to VALUE.
2514 The generic character specifies the group of characters.
2515 See also the documentation of make-char. */)
2516 (char_table, ch, value)
2517 Lisp_Object char_table, ch, value;
2518 {
2519 int c, charset, code1, code2;
2520 Lisp_Object temp;
2521
2522 CHECK_CHAR_TABLE (char_table);
2523 CHECK_NUMBER (ch);
2524
2525 c = XINT (ch);
2526 SPLIT_CHAR (c, charset, code1, code2);
2527
2528 /* Since we may want to set the default value for a character set
2529 not yet defined, we check only if the character set is in the
2530 valid range or not, instead of it is already defined or not. */
2531 if (! CHARSET_VALID_P (charset))
2532 invalid_character (c);
2533
2534 if (charset == CHARSET_ASCII)
2535 return (XCHAR_TABLE (char_table)->defalt = value);
2536
2537 /* Even if C is not a generic char, we had better behave as if a
2538 generic char is specified. */
2539 if (!CHARSET_DEFINED_P (charset) || CHARSET_DIMENSION (charset) == 1)
2540 code1 = 0;
2541 temp = XCHAR_TABLE (char_table)->contents[charset + 128];
2542 if (!code1)
2543 {
2544 if (SUB_CHAR_TABLE_P (temp))
2545 XCHAR_TABLE (temp)->defalt = value;
2546 else
2547 XCHAR_TABLE (char_table)->contents[charset + 128] = value;
2548 return value;
2549 }
2550 if (SUB_CHAR_TABLE_P (temp))
2551 char_table = temp;
2552 else
2553 char_table = (XCHAR_TABLE (char_table)->contents[charset + 128]
2554 = make_sub_char_table (temp));
2555 temp = XCHAR_TABLE (char_table)->contents[code1];
2556 if (SUB_CHAR_TABLE_P (temp))
2557 XCHAR_TABLE (temp)->defalt = value;
2558 else
2559 XCHAR_TABLE (char_table)->contents[code1] = value;
2560 return value;
2561 }
2562
2563 /* Look up the element in TABLE at index CH,
2564 and return it as an integer.
2565 If the element is nil, return CH itself.
2566 (Actually we do that for any non-integer.) */
2567
2568 int
2569 char_table_translate (table, ch)
2570 Lisp_Object table;
2571 int ch;
2572 {
2573 Lisp_Object value;
2574 value = Faref (table, make_number (ch));
2575 if (! INTEGERP (value))
2576 return ch;
2577 return XINT (value);
2578 }
2579
2580 static void
2581 optimize_sub_char_table (table, chars)
2582 Lisp_Object *table;
2583 int chars;
2584 {
2585 Lisp_Object elt;
2586 int from, to;
2587
2588 if (chars == 94)
2589 from = 33, to = 127;
2590 else
2591 from = 32, to = 128;
2592
2593 if (!SUB_CHAR_TABLE_P (*table))
2594 return;
2595 elt = XCHAR_TABLE (*table)->contents[from++];
2596 for (; from < to; from++)
2597 if (NILP (Fequal (elt, XCHAR_TABLE (*table)->contents[from])))
2598 return;
2599 *table = elt;
2600 }
2601
2602 DEFUN ("optimize-char-table", Foptimize_char_table, Soptimize_char_table,
2603 1, 1, 0, doc: /* Optimize char table TABLE. */)
2604 (table)
2605 Lisp_Object table;
2606 {
2607 Lisp_Object elt;
2608 int dim;
2609 int i, j;
2610
2611 CHECK_CHAR_TABLE (table);
2612
2613 for (i = CHAR_TABLE_SINGLE_BYTE_SLOTS; i < CHAR_TABLE_ORDINARY_SLOTS; i++)
2614 {
2615 elt = XCHAR_TABLE (table)->contents[i];
2616 if (!SUB_CHAR_TABLE_P (elt))
2617 continue;
2618 dim = CHARSET_DIMENSION (i - 128);
2619 if (dim == 2)
2620 for (j = 32; j < SUB_CHAR_TABLE_ORDINARY_SLOTS; j++)
2621 optimize_sub_char_table (XCHAR_TABLE (elt)->contents + j, dim);
2622 optimize_sub_char_table (XCHAR_TABLE (table)->contents + i, dim);
2623 }
2624 return Qnil;
2625 }
2626
2627 \f
2628 /* Map C_FUNCTION or FUNCTION over SUBTABLE, calling it for each
2629 character or group of characters that share a value.
2630 DEPTH is the current depth in the originally specified
2631 chartable, and INDICES contains the vector indices
2632 for the levels our callers have descended.
2633
2634 ARG is passed to C_FUNCTION when that is called. */
2635
2636 void
2637 map_char_table (c_function, function, subtable, arg, depth, indices)
2638 void (*c_function) P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
2639 Lisp_Object function, subtable, arg, *indices;
2640 int depth;
2641 {
2642 int i, to;
2643
2644 if (depth == 0)
2645 {
2646 /* At first, handle ASCII and 8-bit European characters. */
2647 for (i = 0; i < CHAR_TABLE_SINGLE_BYTE_SLOTS; i++)
2648 {
2649 Lisp_Object elt = XCHAR_TABLE (subtable)->contents[i];
2650 if (c_function)
2651 (*c_function) (arg, make_number (i), elt);
2652 else
2653 call2 (function, make_number (i), elt);
2654 }
2655 #if 0 /* If the char table has entries for higher characters,
2656 we should report them. */
2657 if (NILP (current_buffer->enable_multibyte_characters))
2658 return;
2659 #endif
2660 to = CHAR_TABLE_ORDINARY_SLOTS;
2661 }
2662 else
2663 {
2664 int charset = XFASTINT (indices[0]) - 128;
2665
2666 i = 32;
2667 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
2668 if (CHARSET_CHARS (charset) == 94)
2669 i++, to--;
2670 }
2671
2672 for (; i < to; i++)
2673 {
2674 Lisp_Object elt;
2675 int charset;
2676
2677 elt = XCHAR_TABLE (subtable)->contents[i];
2678 XSETFASTINT (indices[depth], i);
2679 charset = XFASTINT (indices[0]) - 128;
2680 if (depth == 0
2681 && (!CHARSET_DEFINED_P (charset)
2682 || charset == CHARSET_8_BIT_CONTROL
2683 || charset == CHARSET_8_BIT_GRAPHIC))
2684 continue;
2685
2686 if (SUB_CHAR_TABLE_P (elt))
2687 {
2688 if (depth >= 3)
2689 error ("Too deep char table");
2690 map_char_table (c_function, function, elt, arg, depth + 1, indices);
2691 }
2692 else
2693 {
2694 int c1, c2, c;
2695
2696 if (NILP (elt))
2697 elt = XCHAR_TABLE (subtable)->defalt;
2698 c1 = depth >= 1 ? XFASTINT (indices[1]) : 0;
2699 c2 = depth >= 2 ? XFASTINT (indices[2]) : 0;
2700 c = MAKE_CHAR (charset, c1, c2);
2701 if (c_function)
2702 (*c_function) (arg, make_number (c), elt);
2703 else
2704 call2 (function, make_number (c), elt);
2705 }
2706 }
2707 }
2708
2709 static void void_call2 P_ ((Lisp_Object a, Lisp_Object b, Lisp_Object c));
2710 static void
2711 void_call2 (a, b, c)
2712 Lisp_Object a, b, c;
2713 {
2714 call2 (a, b, c);
2715 }
2716
2717 DEFUN ("map-char-table", Fmap_char_table, Smap_char_table,
2718 2, 2, 0,
2719 doc: /* Call FUNCTION for each (normal and generic) characters in CHAR-TABLE.
2720 FUNCTION is called with two arguments--a key and a value.
2721 The key is always a possible IDX argument to `aref'. */)
2722 (function, char_table)
2723 Lisp_Object function, char_table;
2724 {
2725 /* The depth of char table is at most 3. */
2726 Lisp_Object indices[3];
2727
2728 CHECK_CHAR_TABLE (char_table);
2729
2730 /* When Lisp_Object is represented as a union, `call2' cannot directly
2731 be passed to map_char_table because it returns a Lisp_Object rather
2732 than returning nothing.
2733 Casting leads to crashes on some architectures. -stef */
2734 map_char_table (void_call2, Qnil, char_table, function, 0, indices);
2735 return Qnil;
2736 }
2737
2738 /* Return a value for character C in char-table TABLE. Store the
2739 actual index for that value in *IDX. Ignore the default value of
2740 TABLE. */
2741
2742 Lisp_Object
2743 char_table_ref_and_index (table, c, idx)
2744 Lisp_Object table;
2745 int c, *idx;
2746 {
2747 int charset, c1, c2;
2748 Lisp_Object elt;
2749
2750 if (SINGLE_BYTE_CHAR_P (c))
2751 {
2752 *idx = c;
2753 return XCHAR_TABLE (table)->contents[c];
2754 }
2755 SPLIT_CHAR (c, charset, c1, c2);
2756 elt = XCHAR_TABLE (table)->contents[charset + 128];
2757 *idx = MAKE_CHAR (charset, 0, 0);
2758 if (!SUB_CHAR_TABLE_P (elt))
2759 return elt;
2760 if (c1 < 32 || NILP (XCHAR_TABLE (elt)->contents[c1]))
2761 return XCHAR_TABLE (elt)->defalt;
2762 elt = XCHAR_TABLE (elt)->contents[c1];
2763 *idx = MAKE_CHAR (charset, c1, 0);
2764 if (!SUB_CHAR_TABLE_P (elt))
2765 return elt;
2766 if (c2 < 32 || NILP (XCHAR_TABLE (elt)->contents[c2]))
2767 return XCHAR_TABLE (elt)->defalt;
2768 *idx = c;
2769 return XCHAR_TABLE (elt)->contents[c2];
2770 }
2771
2772 \f
2773 /* ARGSUSED */
2774 Lisp_Object
2775 nconc2 (s1, s2)
2776 Lisp_Object s1, s2;
2777 {
2778 #ifdef NO_ARG_ARRAY
2779 Lisp_Object args[2];
2780 args[0] = s1;
2781 args[1] = s2;
2782 return Fnconc (2, args);
2783 #else
2784 return Fnconc (2, &s1);
2785 #endif /* NO_ARG_ARRAY */
2786 }
2787
2788 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2789 doc: /* Concatenate any number of lists by altering them.
2790 Only the last argument is not altered, and need not be a list.
2791 usage: (nconc &rest LISTS) */)
2792 (nargs, args)
2793 int nargs;
2794 Lisp_Object *args;
2795 {
2796 register int argnum;
2797 register Lisp_Object tail, tem, val;
2798
2799 val = tail = Qnil;
2800
2801 for (argnum = 0; argnum < nargs; argnum++)
2802 {
2803 tem = args[argnum];
2804 if (NILP (tem)) continue;
2805
2806 if (NILP (val))
2807 val = tem;
2808
2809 if (argnum + 1 == nargs) break;
2810
2811 if (!CONSP (tem))
2812 tem = wrong_type_argument (Qlistp, tem);
2813
2814 while (CONSP (tem))
2815 {
2816 tail = tem;
2817 tem = XCDR (tail);
2818 QUIT;
2819 }
2820
2821 tem = args[argnum + 1];
2822 Fsetcdr (tail, tem);
2823 if (NILP (tem))
2824 args[argnum + 1] = tail;
2825 }
2826
2827 return val;
2828 }
2829 \f
2830 /* This is the guts of all mapping functions.
2831 Apply FN to each element of SEQ, one by one,
2832 storing the results into elements of VALS, a C vector of Lisp_Objects.
2833 LENI is the length of VALS, which should also be the length of SEQ. */
2834
2835 static void
2836 mapcar1 (leni, vals, fn, seq)
2837 int leni;
2838 Lisp_Object *vals;
2839 Lisp_Object fn, seq;
2840 {
2841 register Lisp_Object tail;
2842 Lisp_Object dummy;
2843 register int i;
2844 struct gcpro gcpro1, gcpro2, gcpro3;
2845
2846 if (vals)
2847 {
2848 /* Don't let vals contain any garbage when GC happens. */
2849 for (i = 0; i < leni; i++)
2850 vals[i] = Qnil;
2851
2852 GCPRO3 (dummy, fn, seq);
2853 gcpro1.var = vals;
2854 gcpro1.nvars = leni;
2855 }
2856 else
2857 GCPRO2 (fn, seq);
2858 /* We need not explicitly protect `tail' because it is used only on lists, and
2859 1) lists are not relocated and 2) the list is marked via `seq' so will not be freed */
2860
2861 if (VECTORP (seq))
2862 {
2863 for (i = 0; i < leni; i++)
2864 {
2865 dummy = XVECTOR (seq)->contents[i];
2866 dummy = call1 (fn, dummy);
2867 if (vals)
2868 vals[i] = dummy;
2869 }
2870 }
2871 else if (BOOL_VECTOR_P (seq))
2872 {
2873 for (i = 0; i < leni; i++)
2874 {
2875 int byte;
2876 byte = XBOOL_VECTOR (seq)->data[i / BITS_PER_CHAR];
2877 if (byte & (1 << (i % BITS_PER_CHAR)))
2878 dummy = Qt;
2879 else
2880 dummy = Qnil;
2881
2882 dummy = call1 (fn, dummy);
2883 if (vals)
2884 vals[i] = dummy;
2885 }
2886 }
2887 else if (STRINGP (seq))
2888 {
2889 int i_byte;
2890
2891 for (i = 0, i_byte = 0; i < leni;)
2892 {
2893 int c;
2894 int i_before = i;
2895
2896 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2897 XSETFASTINT (dummy, c);
2898 dummy = call1 (fn, dummy);
2899 if (vals)
2900 vals[i_before] = dummy;
2901 }
2902 }
2903 else /* Must be a list, since Flength did not get an error */
2904 {
2905 tail = seq;
2906 for (i = 0; i < leni; i++)
2907 {
2908 dummy = call1 (fn, Fcar (tail));
2909 if (vals)
2910 vals[i] = dummy;
2911 tail = XCDR (tail);
2912 }
2913 }
2914
2915 UNGCPRO;
2916 }
2917
2918 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2919 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2920 In between each pair of results, stick in SEPARATOR. Thus, " " as
2921 SEPARATOR results in spaces between the values returned by FUNCTION.
2922 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2923 (function, sequence, separator)
2924 Lisp_Object function, sequence, separator;
2925 {
2926 Lisp_Object len;
2927 register int leni;
2928 int nargs;
2929 register Lisp_Object *args;
2930 register int i;
2931 struct gcpro gcpro1;
2932
2933 len = Flength (sequence);
2934 leni = XINT (len);
2935 nargs = leni + leni - 1;
2936 if (nargs < 0) return build_string ("");
2937
2938 args = (Lisp_Object *) alloca (nargs * sizeof (Lisp_Object));
2939
2940 GCPRO1 (separator);
2941 mapcar1 (leni, args, function, sequence);
2942 UNGCPRO;
2943
2944 for (i = leni - 1; i >= 0; i--)
2945 args[i + i] = args[i];
2946
2947 for (i = 1; i < nargs; i += 2)
2948 args[i] = separator;
2949
2950 return Fconcat (nargs, args);
2951 }
2952
2953 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2954 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2955 The result is a list just as long as SEQUENCE.
2956 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2957 (function, sequence)
2958 Lisp_Object function, sequence;
2959 {
2960 register Lisp_Object len;
2961 register int leni;
2962 register Lisp_Object *args;
2963
2964 len = Flength (sequence);
2965 leni = XFASTINT (len);
2966 args = (Lisp_Object *) alloca (leni * sizeof (Lisp_Object));
2967
2968 mapcar1 (leni, args, function, sequence);
2969
2970 return Flist (leni, args);
2971 }
2972
2973 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2974 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2975 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2976 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2977 (function, sequence)
2978 Lisp_Object function, sequence;
2979 {
2980 register int leni;
2981
2982 leni = XFASTINT (Flength (sequence));
2983 mapcar1 (leni, 0, function, sequence);
2984
2985 return sequence;
2986 }
2987 \f
2988 /* Anything that calls this function must protect from GC! */
2989
2990 DEFUN ("y-or-n-p", Fy_or_n_p, Sy_or_n_p, 1, 1, 0,
2991 doc: /* Ask user a "y or n" question. Return t if answer is "y".
2992 Takes one argument, which is the string to display to ask the question.
2993 It should end in a space; `y-or-n-p' adds `(y or n) ' to it.
2994 No confirmation of the answer is requested; a single character is enough.
2995 Also accepts Space to mean yes, or Delete to mean no. \(Actually, it uses
2996 the bindings in `query-replace-map'; see the documentation of that variable
2997 for more information. In this case, the useful bindings are `act', `skip',
2998 `recenter', and `quit'.\)
2999
3000 Under a windowing system a dialog box will be used if `last-nonmenu-event'
3001 is nil and `use-dialog-box' is non-nil. */)
3002 (prompt)
3003 Lisp_Object prompt;
3004 {
3005 register Lisp_Object obj, key, def, map;
3006 register int answer;
3007 Lisp_Object xprompt;
3008 Lisp_Object args[2];
3009 struct gcpro gcpro1, gcpro2;
3010 int count = SPECPDL_INDEX ();
3011
3012 specbind (Qcursor_in_echo_area, Qt);
3013
3014 map = Fsymbol_value (intern ("query-replace-map"));
3015
3016 CHECK_STRING (prompt);
3017 xprompt = prompt;
3018 GCPRO2 (prompt, xprompt);
3019
3020 #ifdef HAVE_X_WINDOWS
3021 if (display_hourglass_p)
3022 cancel_hourglass ();
3023 #endif
3024
3025 while (1)
3026 {
3027
3028 #ifdef HAVE_MENUS
3029 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3030 && use_dialog_box
3031 && have_menus_p ())
3032 {
3033 Lisp_Object pane, menu;
3034 redisplay_preserve_echo_area (3);
3035 pane = Fcons (Fcons (build_string ("Yes"), Qt),
3036 Fcons (Fcons (build_string ("No"), Qnil),
3037 Qnil));
3038 menu = Fcons (prompt, pane);
3039 obj = Fx_popup_dialog (Qt, menu);
3040 answer = !NILP (obj);
3041 break;
3042 }
3043 #endif /* HAVE_MENUS */
3044 cursor_in_echo_area = 1;
3045 choose_minibuf_frame ();
3046
3047 {
3048 Lisp_Object pargs[3];
3049
3050 /* Colorize prompt according to `minibuffer-prompt' face. */
3051 pargs[0] = build_string ("%s(y or n) ");
3052 pargs[1] = intern ("face");
3053 pargs[2] = intern ("minibuffer-prompt");
3054 args[0] = Fpropertize (3, pargs);
3055 args[1] = xprompt;
3056 Fmessage (2, args);
3057 }
3058
3059 if (minibuffer_auto_raise)
3060 {
3061 Lisp_Object mini_frame;
3062
3063 mini_frame = WINDOW_FRAME (XWINDOW (minibuf_window));
3064
3065 Fraise_frame (mini_frame);
3066 }
3067
3068 obj = read_filtered_event (1, 0, 0, 0);
3069 cursor_in_echo_area = 0;
3070 /* If we need to quit, quit with cursor_in_echo_area = 0. */
3071 QUIT;
3072
3073 key = Fmake_vector (make_number (1), obj);
3074 def = Flookup_key (map, key, Qt);
3075
3076 if (EQ (def, intern ("skip")))
3077 {
3078 answer = 0;
3079 break;
3080 }
3081 else if (EQ (def, intern ("act")))
3082 {
3083 answer = 1;
3084 break;
3085 }
3086 else if (EQ (def, intern ("recenter")))
3087 {
3088 Frecenter (Qnil);
3089 xprompt = prompt;
3090 continue;
3091 }
3092 else if (EQ (def, intern ("quit")))
3093 Vquit_flag = Qt;
3094 /* We want to exit this command for exit-prefix,
3095 and this is the only way to do it. */
3096 else if (EQ (def, intern ("exit-prefix")))
3097 Vquit_flag = Qt;
3098
3099 QUIT;
3100
3101 /* If we don't clear this, then the next call to read_char will
3102 return quit_char again, and we'll enter an infinite loop. */
3103 Vquit_flag = Qnil;
3104
3105 Fding (Qnil);
3106 Fdiscard_input ();
3107 if (EQ (xprompt, prompt))
3108 {
3109 args[0] = build_string ("Please answer y or n. ");
3110 args[1] = prompt;
3111 xprompt = Fconcat (2, args);
3112 }
3113 }
3114 UNGCPRO;
3115
3116 if (! noninteractive)
3117 {
3118 cursor_in_echo_area = -1;
3119 message_with_string (answer ? "%s(y or n) y" : "%s(y or n) n",
3120 xprompt, 0);
3121 }
3122
3123 unbind_to (count, Qnil);
3124 return answer ? Qt : Qnil;
3125 }
3126 \f
3127 /* This is how C code calls `yes-or-no-p' and allows the user
3128 to redefined it.
3129
3130 Anything that calls this function must protect from GC! */
3131
3132 Lisp_Object
3133 do_yes_or_no_p (prompt)
3134 Lisp_Object prompt;
3135 {
3136 return call1 (intern ("yes-or-no-p"), prompt);
3137 }
3138
3139 /* Anything that calls this function must protect from GC! */
3140
3141 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
3142 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
3143 Takes one argument, which is the string to display to ask the question.
3144 It should end in a space; `yes-or-no-p' adds `(yes or no) ' to it.
3145 The user must confirm the answer with RET,
3146 and can edit it until it has been confirmed.
3147
3148 Under a windowing system a dialog box will be used if `last-nonmenu-event'
3149 is nil, and `use-dialog-box' is non-nil. */)
3150 (prompt)
3151 Lisp_Object prompt;
3152 {
3153 register Lisp_Object ans;
3154 Lisp_Object args[2];
3155 struct gcpro gcpro1;
3156
3157 CHECK_STRING (prompt);
3158
3159 #ifdef HAVE_MENUS
3160 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3161 && use_dialog_box
3162 && have_menus_p ())
3163 {
3164 Lisp_Object pane, menu, obj;
3165 redisplay_preserve_echo_area (4);
3166 pane = Fcons (Fcons (build_string ("Yes"), Qt),
3167 Fcons (Fcons (build_string ("No"), Qnil),
3168 Qnil));
3169 GCPRO1 (pane);
3170 menu = Fcons (prompt, pane);
3171 obj = Fx_popup_dialog (Qt, menu);
3172 UNGCPRO;
3173 return obj;
3174 }
3175 #endif /* HAVE_MENUS */
3176
3177 args[0] = prompt;
3178 args[1] = build_string ("(yes or no) ");
3179 prompt = Fconcat (2, args);
3180
3181 GCPRO1 (prompt);
3182
3183 while (1)
3184 {
3185 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
3186 Qyes_or_no_p_history, Qnil,
3187 Qnil));
3188 if (SCHARS (ans) == 3 && !strcmp (SDATA (ans), "yes"))
3189 {
3190 UNGCPRO;
3191 return Qt;
3192 }
3193 if (SCHARS (ans) == 2 && !strcmp (SDATA (ans), "no"))
3194 {
3195 UNGCPRO;
3196 return Qnil;
3197 }
3198
3199 Fding (Qnil);
3200 Fdiscard_input ();
3201 message ("Please answer yes or no.");
3202 Fsleep_for (make_number (2), Qnil);
3203 }
3204 }
3205 \f
3206 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
3207 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
3208
3209 Each of the three load averages is multiplied by 100, then converted
3210 to integer.
3211
3212 When USE-FLOATS is non-nil, floats will be used instead of integers.
3213 These floats are not multiplied by 100.
3214
3215 If the 5-minute or 15-minute load averages are not available, return a
3216 shortened list, containing only those averages which are available. */)
3217 (use_floats)
3218 Lisp_Object use_floats;
3219 {
3220 double load_ave[3];
3221 int loads = getloadavg (load_ave, 3);
3222 Lisp_Object ret = Qnil;
3223
3224 if (loads < 0)
3225 error ("load-average not implemented for this operating system");
3226
3227 while (loads-- > 0)
3228 {
3229 Lisp_Object load = (NILP (use_floats) ?
3230 make_number ((int) (100.0 * load_ave[loads]))
3231 : make_float (load_ave[loads]));
3232 ret = Fcons (load, ret);
3233 }
3234
3235 return ret;
3236 }
3237 \f
3238 Lisp_Object Vfeatures, Qsubfeatures;
3239 extern Lisp_Object Vafter_load_alist;
3240
3241 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
3242 doc: /* Returns t if FEATURE is present in this Emacs.
3243
3244 Use this to conditionalize execution of lisp code based on the
3245 presence or absence of emacs or environment extensions.
3246 Use `provide' to declare that a feature is available. This function
3247 looks at the value of the variable `features'. The optional argument
3248 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
3249 (feature, subfeature)
3250 Lisp_Object feature, subfeature;
3251 {
3252 register Lisp_Object tem;
3253 CHECK_SYMBOL (feature);
3254 tem = Fmemq (feature, Vfeatures);
3255 if (!NILP (tem) && !NILP (subfeature))
3256 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
3257 return (NILP (tem)) ? Qnil : Qt;
3258 }
3259
3260 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
3261 doc: /* Announce that FEATURE is a feature of the current Emacs.
3262 The optional argument SUBFEATURES should be a list of symbols listing
3263 particular subfeatures supported in this version of FEATURE. */)
3264 (feature, subfeatures)
3265 Lisp_Object feature, subfeatures;
3266 {
3267 register Lisp_Object tem;
3268 CHECK_SYMBOL (feature);
3269 CHECK_LIST (subfeatures);
3270 if (!NILP (Vautoload_queue))
3271 Vautoload_queue = Fcons (Fcons (Vfeatures, Qnil), Vautoload_queue);
3272 tem = Fmemq (feature, Vfeatures);
3273 if (NILP (tem))
3274 Vfeatures = Fcons (feature, Vfeatures);
3275 if (!NILP (subfeatures))
3276 Fput (feature, Qsubfeatures, subfeatures);
3277 LOADHIST_ATTACH (Fcons (Qprovide, feature));
3278
3279 /* Run any load-hooks for this file. */
3280 tem = Fassq (feature, Vafter_load_alist);
3281 if (CONSP (tem))
3282 Fprogn (XCDR (tem));
3283
3284 return feature;
3285 }
3286 \f
3287 /* `require' and its subroutines. */
3288
3289 /* List of features currently being require'd, innermost first. */
3290
3291 Lisp_Object require_nesting_list;
3292
3293 Lisp_Object
3294 require_unwind (old_value)
3295 Lisp_Object old_value;
3296 {
3297 return require_nesting_list = old_value;
3298 }
3299
3300 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
3301 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
3302 If FEATURE is not a member of the list `features', then the feature
3303 is not loaded; so load the file FILENAME.
3304 If FILENAME is omitted, the printname of FEATURE is used as the file name,
3305 and `load' will try to load this name appended with the suffix `.elc',
3306 `.el' or the unmodified name, in that order.
3307 If the optional third argument NOERROR is non-nil,
3308 then return nil if the file is not found instead of signaling an error.
3309 Normally the return value is FEATURE.
3310 The normal messages at start and end of loading FILENAME are suppressed. */)
3311 (feature, filename, noerror)
3312 Lisp_Object feature, filename, noerror;
3313 {
3314 register Lisp_Object tem;
3315 struct gcpro gcpro1, gcpro2;
3316
3317 CHECK_SYMBOL (feature);
3318
3319 tem = Fmemq (feature, Vfeatures);
3320
3321 if (NILP (tem))
3322 {
3323 int count = SPECPDL_INDEX ();
3324 int nesting = 0;
3325
3326 LOADHIST_ATTACH (Fcons (Qrequire, feature));
3327
3328 /* This is to make sure that loadup.el gives a clear picture
3329 of what files are preloaded and when. */
3330 if (! NILP (Vpurify_flag))
3331 error ("(require %s) while preparing to dump",
3332 SDATA (SYMBOL_NAME (feature)));
3333
3334 /* A certain amount of recursive `require' is legitimate,
3335 but if we require the same feature recursively 3 times,
3336 signal an error. */
3337 tem = require_nesting_list;
3338 while (! NILP (tem))
3339 {
3340 if (! NILP (Fequal (feature, XCAR (tem))))
3341 nesting++;
3342 tem = XCDR (tem);
3343 }
3344 if (nesting > 3)
3345 error ("Recursive `require' for feature `%s'",
3346 SDATA (SYMBOL_NAME (feature)));
3347
3348 /* Update the list for any nested `require's that occur. */
3349 record_unwind_protect (require_unwind, require_nesting_list);
3350 require_nesting_list = Fcons (feature, require_nesting_list);
3351
3352 /* Value saved here is to be restored into Vautoload_queue */
3353 record_unwind_protect (un_autoload, Vautoload_queue);
3354 Vautoload_queue = Qt;
3355
3356 /* Load the file. */
3357 GCPRO2 (feature, filename);
3358 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
3359 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
3360 UNGCPRO;
3361
3362 /* If load failed entirely, return nil. */
3363 if (NILP (tem))
3364 return unbind_to (count, Qnil);
3365
3366 tem = Fmemq (feature, Vfeatures);
3367 if (NILP (tem))
3368 error ("Required feature `%s' was not provided",
3369 SDATA (SYMBOL_NAME (feature)));
3370
3371 /* Once loading finishes, don't undo it. */
3372 Vautoload_queue = Qt;
3373 feature = unbind_to (count, feature);
3374 }
3375
3376 return feature;
3377 }
3378 \f
3379 /* Primitives for work of the "widget" library.
3380 In an ideal world, this section would not have been necessary.
3381 However, lisp function calls being as slow as they are, it turns
3382 out that some functions in the widget library (wid-edit.el) are the
3383 bottleneck of Widget operation. Here is their translation to C,
3384 for the sole reason of efficiency. */
3385
3386 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
3387 doc: /* Return non-nil if PLIST has the property PROP.
3388 PLIST is a property list, which is a list of the form
3389 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
3390 Unlike `plist-get', this allows you to distinguish between a missing
3391 property and a property with the value nil.
3392 The value is actually the tail of PLIST whose car is PROP. */)
3393 (plist, prop)
3394 Lisp_Object plist, prop;
3395 {
3396 while (CONSP (plist) && !EQ (XCAR (plist), prop))
3397 {
3398 QUIT;
3399 plist = XCDR (plist);
3400 plist = CDR (plist);
3401 }
3402 return plist;
3403 }
3404
3405 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
3406 doc: /* In WIDGET, set PROPERTY to VALUE.
3407 The value can later be retrieved with `widget-get'. */)
3408 (widget, property, value)
3409 Lisp_Object widget, property, value;
3410 {
3411 CHECK_CONS (widget);
3412 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
3413 return value;
3414 }
3415
3416 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
3417 doc: /* In WIDGET, get the value of PROPERTY.
3418 The value could either be specified when the widget was created, or
3419 later with `widget-put'. */)
3420 (widget, property)
3421 Lisp_Object widget, property;
3422 {
3423 Lisp_Object tmp;
3424
3425 while (1)
3426 {
3427 if (NILP (widget))
3428 return Qnil;
3429 CHECK_CONS (widget);
3430 tmp = Fplist_member (XCDR (widget), property);
3431 if (CONSP (tmp))
3432 {
3433 tmp = XCDR (tmp);
3434 return CAR (tmp);
3435 }
3436 tmp = XCAR (widget);
3437 if (NILP (tmp))
3438 return Qnil;
3439 widget = Fget (tmp, Qwidget_type);
3440 }
3441 }
3442
3443 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
3444 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
3445 ARGS are passed as extra arguments to the function.
3446 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
3447 (nargs, args)
3448 int nargs;
3449 Lisp_Object *args;
3450 {
3451 /* This function can GC. */
3452 Lisp_Object newargs[3];
3453 struct gcpro gcpro1, gcpro2;
3454 Lisp_Object result;
3455
3456 newargs[0] = Fwidget_get (args[0], args[1]);
3457 newargs[1] = args[0];
3458 newargs[2] = Flist (nargs - 2, args + 2);
3459 GCPRO2 (newargs[0], newargs[2]);
3460 result = Fapply (3, newargs);
3461 UNGCPRO;
3462 return result;
3463 }
3464
3465 #ifdef HAVE_LANGINFO_CODESET
3466 #include <langinfo.h>
3467 #endif
3468
3469 DEFUN ("langinfo", Flanginfo, Slanginfo, 1, 1, 0,
3470 doc: /* Access locale data ITEM, if available.
3471
3472 ITEM may be one of the following:
3473 `codeset', returning the character set as a string (locale item CODESET);
3474 `days', returning a 7-element vector of day names (locale items DAY_n);
3475 `months', returning a 12-element vector of month names (locale items MON_n);
3476 `paper', returning a list (WIDTH, HEIGHT) for the default paper size,
3477 where the width and height are in mm (locale items PAPER_WIDTH,
3478 PAPER_HEIGHT).
3479
3480 If the system can't provide such information through a call to
3481 nl_langinfo(3), return nil.
3482
3483 See also Info node `(libc)Locales'.
3484
3485 The data read from the system are decoded using `locale-coding-system'. */)
3486 (item)
3487 Lisp_Object item;
3488 {
3489 char *str = NULL;
3490 #ifdef HAVE_LANGINFO_CODESET
3491 Lisp_Object val;
3492 if (EQ (item, Qcodeset))
3493 {
3494 str = nl_langinfo (CODESET);
3495 return build_string (str);
3496 }
3497 #ifdef DAY_1
3498 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
3499 {
3500 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
3501 int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
3502 int i;
3503 synchronize_system_time_locale ();
3504 for (i = 0; i < 7; i++)
3505 {
3506 str = nl_langinfo (days[i]);
3507 val = make_unibyte_string (str, strlen (str));
3508 /* Fixme: Is this coding system necessarily right, even if
3509 it is consistent with CODESET? If not, what to do? */
3510 Faset (v, make_number (i),
3511 code_convert_string_norecord (val, Vlocale_coding_system,
3512 0));
3513 }
3514 return v;
3515 }
3516 #endif /* DAY_1 */
3517 #ifdef MON_1
3518 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
3519 {
3520 struct Lisp_Vector *p = allocate_vector (12);
3521 int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
3522 MON_8, MON_9, MON_10, MON_11, MON_12};
3523 int i;
3524 synchronize_system_time_locale ();
3525 for (i = 0; i < 12; i++)
3526 {
3527 str = nl_langinfo (months[i]);
3528 val = make_unibyte_string (str, strlen (str));
3529 p->contents[i] =
3530 code_convert_string_norecord (val, Vlocale_coding_system, 0);
3531 }
3532 XSETVECTOR (val, p);
3533 return val;
3534 }
3535 #endif /* MON_1 */
3536 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
3537 but is in the locale files. This could be used by ps-print. */
3538 #ifdef PAPER_WIDTH
3539 else if (EQ (item, Qpaper))
3540 {
3541 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
3542 make_number (nl_langinfo (PAPER_HEIGHT)));
3543 }
3544 #endif /* PAPER_WIDTH */
3545 #endif /* HAVE_LANGINFO_CODESET*/
3546 return Qnil;
3547 }
3548 \f
3549 /* base64 encode/decode functions (RFC 2045).
3550 Based on code from GNU recode. */
3551
3552 #define MIME_LINE_LENGTH 76
3553
3554 #define IS_ASCII(Character) \
3555 ((Character) < 128)
3556 #define IS_BASE64(Character) \
3557 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
3558 #define IS_BASE64_IGNORABLE(Character) \
3559 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
3560 || (Character) == '\f' || (Character) == '\r')
3561
3562 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
3563 character or return retval if there are no characters left to
3564 process. */
3565 #define READ_QUADRUPLET_BYTE(retval) \
3566 do \
3567 { \
3568 if (i == length) \
3569 { \
3570 if (nchars_return) \
3571 *nchars_return = nchars; \
3572 return (retval); \
3573 } \
3574 c = from[i++]; \
3575 } \
3576 while (IS_BASE64_IGNORABLE (c))
3577
3578 /* Don't use alloca for regions larger than this, lest we overflow
3579 their stack. */
3580 #define MAX_ALLOCA 16*1024
3581
3582 /* Table of characters coding the 64 values. */
3583 static char base64_value_to_char[64] =
3584 {
3585 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
3586 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
3587 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
3588 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
3589 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
3590 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
3591 '8', '9', '+', '/' /* 60-63 */
3592 };
3593
3594 /* Table of base64 values for first 128 characters. */
3595 static short base64_char_to_value[128] =
3596 {
3597 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
3598 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
3599 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
3600 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
3601 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
3602 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
3603 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
3604 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
3605 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
3606 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
3607 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
3608 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
3609 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
3610 };
3611
3612 /* The following diagram shows the logical steps by which three octets
3613 get transformed into four base64 characters.
3614
3615 .--------. .--------. .--------.
3616 |aaaaaabb| |bbbbcccc| |ccdddddd|
3617 `--------' `--------' `--------'
3618 6 2 4 4 2 6
3619 .--------+--------+--------+--------.
3620 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
3621 `--------+--------+--------+--------'
3622
3623 .--------+--------+--------+--------.
3624 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
3625 `--------+--------+--------+--------'
3626
3627 The octets are divided into 6 bit chunks, which are then encoded into
3628 base64 characters. */
3629
3630
3631 static int base64_encode_1 P_ ((const char *, char *, int, int, int));
3632 static int base64_decode_1 P_ ((const char *, char *, int, int, int *));
3633
3634 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
3635 2, 3, "r",
3636 doc: /* Base64-encode the region between BEG and END.
3637 Return the length of the encoded text.
3638 Optional third argument NO-LINE-BREAK means do not break long lines
3639 into shorter lines. */)
3640 (beg, end, no_line_break)
3641 Lisp_Object beg, end, no_line_break;
3642 {
3643 char *encoded;
3644 int allength, length;
3645 int ibeg, iend, encoded_length;
3646 int old_pos = PT;
3647
3648 validate_region (&beg, &end);
3649
3650 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3651 iend = CHAR_TO_BYTE (XFASTINT (end));
3652 move_gap_both (XFASTINT (beg), ibeg);
3653
3654 /* We need to allocate enough room for encoding the text.
3655 We need 33 1/3% more space, plus a newline every 76
3656 characters, and then we round up. */
3657 length = iend - ibeg;
3658 allength = length + length/3 + 1;
3659 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3660
3661 if (allength <= MAX_ALLOCA)
3662 encoded = (char *) alloca (allength);
3663 else
3664 encoded = (char *) xmalloc (allength);
3665 encoded_length = base64_encode_1 (BYTE_POS_ADDR (ibeg), encoded, length,
3666 NILP (no_line_break),
3667 !NILP (current_buffer->enable_multibyte_characters));
3668 if (encoded_length > allength)
3669 abort ();
3670
3671 if (encoded_length < 0)
3672 {
3673 /* The encoding wasn't possible. */
3674 if (length > MAX_ALLOCA)
3675 xfree (encoded);
3676 error ("Multibyte character in data for base64 encoding");
3677 }
3678
3679 /* Now we have encoded the region, so we insert the new contents
3680 and delete the old. (Insert first in order to preserve markers.) */
3681 SET_PT_BOTH (XFASTINT (beg), ibeg);
3682 insert (encoded, encoded_length);
3683 if (allength > MAX_ALLOCA)
3684 xfree (encoded);
3685 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3686
3687 /* If point was outside of the region, restore it exactly; else just
3688 move to the beginning of the region. */
3689 if (old_pos >= XFASTINT (end))
3690 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3691 else if (old_pos > XFASTINT (beg))
3692 old_pos = XFASTINT (beg);
3693 SET_PT (old_pos);
3694
3695 /* We return the length of the encoded text. */
3696 return make_number (encoded_length);
3697 }
3698
3699 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3700 1, 2, 0,
3701 doc: /* Base64-encode STRING and return the result.
3702 Optional second argument NO-LINE-BREAK means do not break long lines
3703 into shorter lines. */)
3704 (string, no_line_break)
3705 Lisp_Object string, no_line_break;
3706 {
3707 int allength, length, encoded_length;
3708 char *encoded;
3709 Lisp_Object encoded_string;
3710
3711 CHECK_STRING (string);
3712
3713 /* We need to allocate enough room for encoding the text.
3714 We need 33 1/3% more space, plus a newline every 76
3715 characters, and then we round up. */
3716 length = SBYTES (string);
3717 allength = length + length/3 + 1;
3718 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3719
3720 /* We need to allocate enough room for decoding the text. */
3721 if (allength <= MAX_ALLOCA)
3722 encoded = (char *) alloca (allength);
3723 else
3724 encoded = (char *) xmalloc (allength);
3725
3726 encoded_length = base64_encode_1 (SDATA (string),
3727 encoded, length, NILP (no_line_break),
3728 STRING_MULTIBYTE (string));
3729 if (encoded_length > allength)
3730 abort ();
3731
3732 if (encoded_length < 0)
3733 {
3734 /* The encoding wasn't possible. */
3735 if (length > MAX_ALLOCA)
3736 xfree (encoded);
3737 error ("Multibyte character in data for base64 encoding");
3738 }
3739
3740 encoded_string = make_unibyte_string (encoded, encoded_length);
3741 if (allength > MAX_ALLOCA)
3742 xfree (encoded);
3743
3744 return encoded_string;
3745 }
3746
3747 static int
3748 base64_encode_1 (from, to, length, line_break, multibyte)
3749 const char *from;
3750 char *to;
3751 int length;
3752 int line_break;
3753 int multibyte;
3754 {
3755 int counter = 0, i = 0;
3756 char *e = to;
3757 int c;
3758 unsigned int value;
3759 int bytes;
3760
3761 while (i < length)
3762 {
3763 if (multibyte)
3764 {
3765 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3766 if (c >= 256)
3767 return -1;
3768 i += bytes;
3769 }
3770 else
3771 c = from[i++];
3772
3773 /* Wrap line every 76 characters. */
3774
3775 if (line_break)
3776 {
3777 if (counter < MIME_LINE_LENGTH / 4)
3778 counter++;
3779 else
3780 {
3781 *e++ = '\n';
3782 counter = 1;
3783 }
3784 }
3785
3786 /* Process first byte of a triplet. */
3787
3788 *e++ = base64_value_to_char[0x3f & c >> 2];
3789 value = (0x03 & c) << 4;
3790
3791 /* Process second byte of a triplet. */
3792
3793 if (i == length)
3794 {
3795 *e++ = base64_value_to_char[value];
3796 *e++ = '=';
3797 *e++ = '=';
3798 break;
3799 }
3800
3801 if (multibyte)
3802 {
3803 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3804 if (c >= 256)
3805 return -1;
3806 i += bytes;
3807 }
3808 else
3809 c = from[i++];
3810
3811 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3812 value = (0x0f & c) << 2;
3813
3814 /* Process third byte of a triplet. */
3815
3816 if (i == length)
3817 {
3818 *e++ = base64_value_to_char[value];
3819 *e++ = '=';
3820 break;
3821 }
3822
3823 if (multibyte)
3824 {
3825 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3826 if (c >= 256)
3827 return -1;
3828 i += bytes;
3829 }
3830 else
3831 c = from[i++];
3832
3833 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3834 *e++ = base64_value_to_char[0x3f & c];
3835 }
3836
3837 return e - to;
3838 }
3839
3840
3841 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3842 2, 2, "r",
3843 doc: /* Base64-decode the region between BEG and END.
3844 Return the length of the decoded text.
3845 If the region can't be decoded, signal an error and don't modify the buffer. */)
3846 (beg, end)
3847 Lisp_Object beg, end;
3848 {
3849 int ibeg, iend, length, allength;
3850 char *decoded;
3851 int old_pos = PT;
3852 int decoded_length;
3853 int inserted_chars;
3854 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
3855
3856 validate_region (&beg, &end);
3857
3858 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3859 iend = CHAR_TO_BYTE (XFASTINT (end));
3860
3861 length = iend - ibeg;
3862
3863 /* We need to allocate enough room for decoding the text. If we are
3864 working on a multibyte buffer, each decoded code may occupy at
3865 most two bytes. */
3866 allength = multibyte ? length * 2 : length;
3867 if (allength <= MAX_ALLOCA)
3868 decoded = (char *) alloca (allength);
3869 else
3870 decoded = (char *) xmalloc (allength);
3871
3872 move_gap_both (XFASTINT (beg), ibeg);
3873 decoded_length = base64_decode_1 (BYTE_POS_ADDR (ibeg), decoded, length,
3874 multibyte, &inserted_chars);
3875 if (decoded_length > allength)
3876 abort ();
3877
3878 if (decoded_length < 0)
3879 {
3880 /* The decoding wasn't possible. */
3881 if (allength > MAX_ALLOCA)
3882 xfree (decoded);
3883 error ("Invalid base64 data");
3884 }
3885
3886 /* Now we have decoded the region, so we insert the new contents
3887 and delete the old. (Insert first in order to preserve markers.) */
3888 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3889 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3890 if (allength > MAX_ALLOCA)
3891 xfree (decoded);
3892 /* Delete the original text. */
3893 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3894 iend + decoded_length, 1);
3895
3896 /* If point was outside of the region, restore it exactly; else just
3897 move to the beginning of the region. */
3898 if (old_pos >= XFASTINT (end))
3899 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3900 else if (old_pos > XFASTINT (beg))
3901 old_pos = XFASTINT (beg);
3902 SET_PT (old_pos > ZV ? ZV : old_pos);
3903
3904 return make_number (inserted_chars);
3905 }
3906
3907 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3908 1, 1, 0,
3909 doc: /* Base64-decode STRING and return the result. */)
3910 (string)
3911 Lisp_Object string;
3912 {
3913 char *decoded;
3914 int length, decoded_length;
3915 Lisp_Object decoded_string;
3916
3917 CHECK_STRING (string);
3918
3919 length = SBYTES (string);
3920 /* We need to allocate enough room for decoding the text. */
3921 if (length <= MAX_ALLOCA)
3922 decoded = (char *) alloca (length);
3923 else
3924 decoded = (char *) xmalloc (length);
3925
3926 /* The decoded result should be unibyte. */
3927 decoded_length = base64_decode_1 (SDATA (string), decoded, length,
3928 0, NULL);
3929 if (decoded_length > length)
3930 abort ();
3931 else if (decoded_length >= 0)
3932 decoded_string = make_unibyte_string (decoded, decoded_length);
3933 else
3934 decoded_string = Qnil;
3935
3936 if (length > MAX_ALLOCA)
3937 xfree (decoded);
3938 if (!STRINGP (decoded_string))
3939 error ("Invalid base64 data");
3940
3941 return decoded_string;
3942 }
3943
3944 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
3945 MULTIBYTE is nonzero, the decoded result should be in multibyte
3946 form. If NCHARS_RETRUN is not NULL, store the number of produced
3947 characters in *NCHARS_RETURN. */
3948
3949 static int
3950 base64_decode_1 (from, to, length, multibyte, nchars_return)
3951 const char *from;
3952 char *to;
3953 int length;
3954 int multibyte;
3955 int *nchars_return;
3956 {
3957 int i = 0;
3958 char *e = to;
3959 unsigned char c;
3960 unsigned long value;
3961 int nchars = 0;
3962
3963 while (1)
3964 {
3965 /* Process first byte of a quadruplet. */
3966
3967 READ_QUADRUPLET_BYTE (e-to);
3968
3969 if (!IS_BASE64 (c))
3970 return -1;
3971 value = base64_char_to_value[c] << 18;
3972
3973 /* Process second byte of a quadruplet. */
3974
3975 READ_QUADRUPLET_BYTE (-1);
3976
3977 if (!IS_BASE64 (c))
3978 return -1;
3979 value |= base64_char_to_value[c] << 12;
3980
3981 c = (unsigned char) (value >> 16);
3982 if (multibyte)
3983 e += CHAR_STRING (c, e);
3984 else
3985 *e++ = c;
3986 nchars++;
3987
3988 /* Process third byte of a quadruplet. */
3989
3990 READ_QUADRUPLET_BYTE (-1);
3991
3992 if (c == '=')
3993 {
3994 READ_QUADRUPLET_BYTE (-1);
3995
3996 if (c != '=')
3997 return -1;
3998 continue;
3999 }
4000
4001 if (!IS_BASE64 (c))
4002 return -1;
4003 value |= base64_char_to_value[c] << 6;
4004
4005 c = (unsigned char) (0xff & value >> 8);
4006 if (multibyte)
4007 e += CHAR_STRING (c, e);
4008 else
4009 *e++ = c;
4010 nchars++;
4011
4012 /* Process fourth byte of a quadruplet. */
4013
4014 READ_QUADRUPLET_BYTE (-1);
4015
4016 if (c == '=')
4017 continue;
4018
4019 if (!IS_BASE64 (c))
4020 return -1;
4021 value |= base64_char_to_value[c];
4022
4023 c = (unsigned char) (0xff & value);
4024 if (multibyte)
4025 e += CHAR_STRING (c, e);
4026 else
4027 *e++ = c;
4028 nchars++;
4029 }
4030 }
4031
4032
4033 \f
4034 /***********************************************************************
4035 ***** *****
4036 ***** Hash Tables *****
4037 ***** *****
4038 ***********************************************************************/
4039
4040 /* Implemented by gerd@gnu.org. This hash table implementation was
4041 inspired by CMUCL hash tables. */
4042
4043 /* Ideas:
4044
4045 1. For small tables, association lists are probably faster than
4046 hash tables because they have lower overhead.
4047
4048 For uses of hash tables where the O(1) behavior of table
4049 operations is not a requirement, it might therefore be a good idea
4050 not to hash. Instead, we could just do a linear search in the
4051 key_and_value vector of the hash table. This could be done
4052 if a `:linear-search t' argument is given to make-hash-table. */
4053
4054
4055 /* The list of all weak hash tables. Don't staticpro this one. */
4056
4057 Lisp_Object Vweak_hash_tables;
4058
4059 /* Various symbols. */
4060
4061 Lisp_Object Qhash_table_p, Qeq, Qeql, Qequal, Qkey, Qvalue;
4062 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
4063 Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
4064
4065 /* Function prototypes. */
4066
4067 static struct Lisp_Hash_Table *check_hash_table P_ ((Lisp_Object));
4068 static int get_key_arg P_ ((Lisp_Object, int, Lisp_Object *, char *));
4069 static void maybe_resize_hash_table P_ ((struct Lisp_Hash_Table *));
4070 static int cmpfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
4071 Lisp_Object, unsigned));
4072 static int cmpfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
4073 Lisp_Object, unsigned));
4074 static int cmpfn_user_defined P_ ((struct Lisp_Hash_Table *, Lisp_Object,
4075 unsigned, Lisp_Object, unsigned));
4076 static unsigned hashfn_eq P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4077 static unsigned hashfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4078 static unsigned hashfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4079 static unsigned hashfn_user_defined P_ ((struct Lisp_Hash_Table *,
4080 Lisp_Object));
4081 static unsigned sxhash_string P_ ((unsigned char *, int));
4082 static unsigned sxhash_list P_ ((Lisp_Object, int));
4083 static unsigned sxhash_vector P_ ((Lisp_Object, int));
4084 static unsigned sxhash_bool_vector P_ ((Lisp_Object));
4085 static int sweep_weak_table P_ ((struct Lisp_Hash_Table *, int));
4086
4087
4088 \f
4089 /***********************************************************************
4090 Utilities
4091 ***********************************************************************/
4092
4093 /* If OBJ is a Lisp hash table, return a pointer to its struct
4094 Lisp_Hash_Table. Otherwise, signal an error. */
4095
4096 static struct Lisp_Hash_Table *
4097 check_hash_table (obj)
4098 Lisp_Object obj;
4099 {
4100 CHECK_HASH_TABLE (obj);
4101 return XHASH_TABLE (obj);
4102 }
4103
4104
4105 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
4106 number. */
4107
4108 int
4109 next_almost_prime (n)
4110 int n;
4111 {
4112 if (n % 2 == 0)
4113 n += 1;
4114 if (n % 3 == 0)
4115 n += 2;
4116 if (n % 7 == 0)
4117 n += 4;
4118 return n;
4119 }
4120
4121
4122 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
4123 which USED[I] is non-zero. If found at index I in ARGS, set
4124 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
4125 -1. This function is used to extract a keyword/argument pair from
4126 a DEFUN parameter list. */
4127
4128 static int
4129 get_key_arg (key, nargs, args, used)
4130 Lisp_Object key;
4131 int nargs;
4132 Lisp_Object *args;
4133 char *used;
4134 {
4135 int i;
4136
4137 for (i = 0; i < nargs - 1; ++i)
4138 if (!used[i] && EQ (args[i], key))
4139 break;
4140
4141 if (i >= nargs - 1)
4142 i = -1;
4143 else
4144 {
4145 used[i++] = 1;
4146 used[i] = 1;
4147 }
4148
4149 return i;
4150 }
4151
4152
4153 /* Return a Lisp vector which has the same contents as VEC but has
4154 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
4155 vector that are not copied from VEC are set to INIT. */
4156
4157 Lisp_Object
4158 larger_vector (vec, new_size, init)
4159 Lisp_Object vec;
4160 int new_size;
4161 Lisp_Object init;
4162 {
4163 struct Lisp_Vector *v;
4164 int i, old_size;
4165
4166 xassert (VECTORP (vec));
4167 old_size = XVECTOR (vec)->size;
4168 xassert (new_size >= old_size);
4169
4170 v = allocate_vector (new_size);
4171 bcopy (XVECTOR (vec)->contents, v->contents,
4172 old_size * sizeof *v->contents);
4173 for (i = old_size; i < new_size; ++i)
4174 v->contents[i] = init;
4175 XSETVECTOR (vec, v);
4176 return vec;
4177 }
4178
4179
4180 /***********************************************************************
4181 Low-level Functions
4182 ***********************************************************************/
4183
4184 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
4185 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
4186 KEY2 are the same. */
4187
4188 static int
4189 cmpfn_eql (h, key1, hash1, key2, hash2)
4190 struct Lisp_Hash_Table *h;
4191 Lisp_Object key1, key2;
4192 unsigned hash1, hash2;
4193 {
4194 return (FLOATP (key1)
4195 && FLOATP (key2)
4196 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
4197 }
4198
4199
4200 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
4201 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
4202 KEY2 are the same. */
4203
4204 static int
4205 cmpfn_equal (h, key1, hash1, key2, hash2)
4206 struct Lisp_Hash_Table *h;
4207 Lisp_Object key1, key2;
4208 unsigned hash1, hash2;
4209 {
4210 return hash1 == hash2 && !NILP (Fequal (key1, key2));
4211 }
4212
4213
4214 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
4215 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
4216 if KEY1 and KEY2 are the same. */
4217
4218 static int
4219 cmpfn_user_defined (h, key1, hash1, key2, hash2)
4220 struct Lisp_Hash_Table *h;
4221 Lisp_Object key1, key2;
4222 unsigned hash1, hash2;
4223 {
4224 if (hash1 == hash2)
4225 {
4226 Lisp_Object args[3];
4227
4228 args[0] = h->user_cmp_function;
4229 args[1] = key1;
4230 args[2] = key2;
4231 return !NILP (Ffuncall (3, args));
4232 }
4233 else
4234 return 0;
4235 }
4236
4237
4238 /* Value is a hash code for KEY for use in hash table H which uses
4239 `eq' to compare keys. The hash code returned is guaranteed to fit
4240 in a Lisp integer. */
4241
4242 static unsigned
4243 hashfn_eq (h, key)
4244 struct Lisp_Hash_Table *h;
4245 Lisp_Object key;
4246 {
4247 unsigned hash = XUINT (key) ^ XGCTYPE (key);
4248 xassert ((hash & ~VALMASK) == 0);
4249 return hash;
4250 }
4251
4252
4253 /* Value is a hash code for KEY for use in hash table H which uses
4254 `eql' to compare keys. The hash code returned is guaranteed to fit
4255 in a Lisp integer. */
4256
4257 static unsigned
4258 hashfn_eql (h, key)
4259 struct Lisp_Hash_Table *h;
4260 Lisp_Object key;
4261 {
4262 unsigned hash;
4263 if (FLOATP (key))
4264 hash = sxhash (key, 0);
4265 else
4266 hash = XUINT (key) ^ XGCTYPE (key);
4267 xassert ((hash & ~VALMASK) == 0);
4268 return hash;
4269 }
4270
4271
4272 /* Value is a hash code for KEY for use in hash table H which uses
4273 `equal' to compare keys. The hash code returned is guaranteed to fit
4274 in a Lisp integer. */
4275
4276 static unsigned
4277 hashfn_equal (h, key)
4278 struct Lisp_Hash_Table *h;
4279 Lisp_Object key;
4280 {
4281 unsigned hash = sxhash (key, 0);
4282 xassert ((hash & ~VALMASK) == 0);
4283 return hash;
4284 }
4285
4286
4287 /* Value is a hash code for KEY for use in hash table H which uses as
4288 user-defined function to compare keys. The hash code returned is
4289 guaranteed to fit in a Lisp integer. */
4290
4291 static unsigned
4292 hashfn_user_defined (h, key)
4293 struct Lisp_Hash_Table *h;
4294 Lisp_Object key;
4295 {
4296 Lisp_Object args[2], hash;
4297
4298 args[0] = h->user_hash_function;
4299 args[1] = key;
4300 hash = Ffuncall (2, args);
4301 if (!INTEGERP (hash))
4302 Fsignal (Qerror,
4303 list2 (build_string ("Invalid hash code returned from \
4304 user-supplied hash function"),
4305 hash));
4306 return XUINT (hash);
4307 }
4308
4309
4310 /* Create and initialize a new hash table.
4311
4312 TEST specifies the test the hash table will use to compare keys.
4313 It must be either one of the predefined tests `eq', `eql' or
4314 `equal' or a symbol denoting a user-defined test named TEST with
4315 test and hash functions USER_TEST and USER_HASH.
4316
4317 Give the table initial capacity SIZE, SIZE >= 0, an integer.
4318
4319 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
4320 new size when it becomes full is computed by adding REHASH_SIZE to
4321 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
4322 table's new size is computed by multiplying its old size with
4323 REHASH_SIZE.
4324
4325 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
4326 be resized when the ratio of (number of entries in the table) /
4327 (table size) is >= REHASH_THRESHOLD.
4328
4329 WEAK specifies the weakness of the table. If non-nil, it must be
4330 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
4331
4332 Lisp_Object
4333 make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4334 user_test, user_hash)
4335 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4336 Lisp_Object user_test, user_hash;
4337 {
4338 struct Lisp_Hash_Table *h;
4339 Lisp_Object table;
4340 int index_size, i, sz;
4341
4342 /* Preconditions. */
4343 xassert (SYMBOLP (test));
4344 xassert (INTEGERP (size) && XINT (size) >= 0);
4345 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
4346 || (FLOATP (rehash_size) && XFLOATINT (rehash_size) > 1.0));
4347 xassert (FLOATP (rehash_threshold)
4348 && XFLOATINT (rehash_threshold) > 0
4349 && XFLOATINT (rehash_threshold) <= 1.0);
4350
4351 if (XFASTINT (size) == 0)
4352 size = make_number (1);
4353
4354 /* Allocate a table and initialize it. */
4355 h = allocate_hash_table ();
4356
4357 /* Initialize hash table slots. */
4358 sz = XFASTINT (size);
4359
4360 h->test = test;
4361 if (EQ (test, Qeql))
4362 {
4363 h->cmpfn = cmpfn_eql;
4364 h->hashfn = hashfn_eql;
4365 }
4366 else if (EQ (test, Qeq))
4367 {
4368 h->cmpfn = NULL;
4369 h->hashfn = hashfn_eq;
4370 }
4371 else if (EQ (test, Qequal))
4372 {
4373 h->cmpfn = cmpfn_equal;
4374 h->hashfn = hashfn_equal;
4375 }
4376 else
4377 {
4378 h->user_cmp_function = user_test;
4379 h->user_hash_function = user_hash;
4380 h->cmpfn = cmpfn_user_defined;
4381 h->hashfn = hashfn_user_defined;
4382 }
4383
4384 h->weak = weak;
4385 h->rehash_threshold = rehash_threshold;
4386 h->rehash_size = rehash_size;
4387 h->count = make_number (0);
4388 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
4389 h->hash = Fmake_vector (size, Qnil);
4390 h->next = Fmake_vector (size, Qnil);
4391 /* Cast to int here avoids losing with gcc 2.95 on Tru64/Alpha... */
4392 index_size = next_almost_prime ((int) (sz / XFLOATINT (rehash_threshold)));
4393 h->index = Fmake_vector (make_number (index_size), Qnil);
4394
4395 /* Set up the free list. */
4396 for (i = 0; i < sz - 1; ++i)
4397 HASH_NEXT (h, i) = make_number (i + 1);
4398 h->next_free = make_number (0);
4399
4400 XSET_HASH_TABLE (table, h);
4401 xassert (HASH_TABLE_P (table));
4402 xassert (XHASH_TABLE (table) == h);
4403
4404 /* Maybe add this hash table to the list of all weak hash tables. */
4405 if (NILP (h->weak))
4406 h->next_weak = Qnil;
4407 else
4408 {
4409 h->next_weak = Vweak_hash_tables;
4410 Vweak_hash_tables = table;
4411 }
4412
4413 return table;
4414 }
4415
4416
4417 /* Return a copy of hash table H1. Keys and values are not copied,
4418 only the table itself is. */
4419
4420 Lisp_Object
4421 copy_hash_table (h1)
4422 struct Lisp_Hash_Table *h1;
4423 {
4424 Lisp_Object table;
4425 struct Lisp_Hash_Table *h2;
4426 struct Lisp_Vector *next;
4427
4428 h2 = allocate_hash_table ();
4429 next = h2->vec_next;
4430 bcopy (h1, h2, sizeof *h2);
4431 h2->vec_next = next;
4432 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
4433 h2->hash = Fcopy_sequence (h1->hash);
4434 h2->next = Fcopy_sequence (h1->next);
4435 h2->index = Fcopy_sequence (h1->index);
4436 XSET_HASH_TABLE (table, h2);
4437
4438 /* Maybe add this hash table to the list of all weak hash tables. */
4439 if (!NILP (h2->weak))
4440 {
4441 h2->next_weak = Vweak_hash_tables;
4442 Vweak_hash_tables = table;
4443 }
4444
4445 return table;
4446 }
4447
4448
4449 /* Resize hash table H if it's too full. If H cannot be resized
4450 because it's already too large, throw an error. */
4451
4452 static INLINE void
4453 maybe_resize_hash_table (h)
4454 struct Lisp_Hash_Table *h;
4455 {
4456 if (NILP (h->next_free))
4457 {
4458 int old_size = HASH_TABLE_SIZE (h);
4459 int i, new_size, index_size;
4460
4461 if (INTEGERP (h->rehash_size))
4462 new_size = old_size + XFASTINT (h->rehash_size);
4463 else
4464 new_size = old_size * XFLOATINT (h->rehash_size);
4465 new_size = max (old_size + 1, new_size);
4466 index_size = next_almost_prime ((int)
4467 (new_size
4468 / XFLOATINT (h->rehash_threshold)));
4469 if (max (index_size, 2 * new_size) & ~VALMASK)
4470 error ("Hash table too large to resize");
4471
4472 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
4473 h->next = larger_vector (h->next, new_size, Qnil);
4474 h->hash = larger_vector (h->hash, new_size, Qnil);
4475 h->index = Fmake_vector (make_number (index_size), Qnil);
4476
4477 /* Update the free list. Do it so that new entries are added at
4478 the end of the free list. This makes some operations like
4479 maphash faster. */
4480 for (i = old_size; i < new_size - 1; ++i)
4481 HASH_NEXT (h, i) = make_number (i + 1);
4482
4483 if (!NILP (h->next_free))
4484 {
4485 Lisp_Object last, next;
4486
4487 last = h->next_free;
4488 while (next = HASH_NEXT (h, XFASTINT (last)),
4489 !NILP (next))
4490 last = next;
4491
4492 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
4493 }
4494 else
4495 XSETFASTINT (h->next_free, old_size);
4496
4497 /* Rehash. */
4498 for (i = 0; i < old_size; ++i)
4499 if (!NILP (HASH_HASH (h, i)))
4500 {
4501 unsigned hash_code = XUINT (HASH_HASH (h, i));
4502 int start_of_bucket = hash_code % XVECTOR (h->index)->size;
4503 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4504 HASH_INDEX (h, start_of_bucket) = make_number (i);
4505 }
4506 }
4507 }
4508
4509
4510 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
4511 the hash code of KEY. Value is the index of the entry in H
4512 matching KEY, or -1 if not found. */
4513
4514 int
4515 hash_lookup (h, key, hash)
4516 struct Lisp_Hash_Table *h;
4517 Lisp_Object key;
4518 unsigned *hash;
4519 {
4520 unsigned hash_code;
4521 int start_of_bucket;
4522 Lisp_Object idx;
4523
4524 hash_code = h->hashfn (h, key);
4525 if (hash)
4526 *hash = hash_code;
4527
4528 start_of_bucket = hash_code % XVECTOR (h->index)->size;
4529 idx = HASH_INDEX (h, start_of_bucket);
4530
4531 /* We need not gcpro idx since it's either an integer or nil. */
4532 while (!NILP (idx))
4533 {
4534 int i = XFASTINT (idx);
4535 if (EQ (key, HASH_KEY (h, i))
4536 || (h->cmpfn
4537 && h->cmpfn (h, key, hash_code,
4538 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4539 break;
4540 idx = HASH_NEXT (h, i);
4541 }
4542
4543 return NILP (idx) ? -1 : XFASTINT (idx);
4544 }
4545
4546
4547 /* Put an entry into hash table H that associates KEY with VALUE.
4548 HASH is a previously computed hash code of KEY.
4549 Value is the index of the entry in H matching KEY. */
4550
4551 int
4552 hash_put (h, key, value, hash)
4553 struct Lisp_Hash_Table *h;
4554 Lisp_Object key, value;
4555 unsigned hash;
4556 {
4557 int start_of_bucket, i;
4558
4559 xassert ((hash & ~VALMASK) == 0);
4560
4561 /* Increment count after resizing because resizing may fail. */
4562 maybe_resize_hash_table (h);
4563 h->count = make_number (XFASTINT (h->count) + 1);
4564
4565 /* Store key/value in the key_and_value vector. */
4566 i = XFASTINT (h->next_free);
4567 h->next_free = HASH_NEXT (h, i);
4568 HASH_KEY (h, i) = key;
4569 HASH_VALUE (h, i) = value;
4570
4571 /* Remember its hash code. */
4572 HASH_HASH (h, i) = make_number (hash);
4573
4574 /* Add new entry to its collision chain. */
4575 start_of_bucket = hash % XVECTOR (h->index)->size;
4576 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4577 HASH_INDEX (h, start_of_bucket) = make_number (i);
4578 return i;
4579 }
4580
4581
4582 /* Remove the entry matching KEY from hash table H, if there is one. */
4583
4584 void
4585 hash_remove (h, key)
4586 struct Lisp_Hash_Table *h;
4587 Lisp_Object key;
4588 {
4589 unsigned hash_code;
4590 int start_of_bucket;
4591 Lisp_Object idx, prev;
4592
4593 hash_code = h->hashfn (h, key);
4594 start_of_bucket = hash_code % XVECTOR (h->index)->size;
4595 idx = HASH_INDEX (h, start_of_bucket);
4596 prev = Qnil;
4597
4598 /* We need not gcpro idx, prev since they're either integers or nil. */
4599 while (!NILP (idx))
4600 {
4601 int i = XFASTINT (idx);
4602
4603 if (EQ (key, HASH_KEY (h, i))
4604 || (h->cmpfn
4605 && h->cmpfn (h, key, hash_code,
4606 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4607 {
4608 /* Take entry out of collision chain. */
4609 if (NILP (prev))
4610 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
4611 else
4612 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
4613
4614 /* Clear slots in key_and_value and add the slots to
4615 the free list. */
4616 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
4617 HASH_NEXT (h, i) = h->next_free;
4618 h->next_free = make_number (i);
4619 h->count = make_number (XFASTINT (h->count) - 1);
4620 xassert (XINT (h->count) >= 0);
4621 break;
4622 }
4623 else
4624 {
4625 prev = idx;
4626 idx = HASH_NEXT (h, i);
4627 }
4628 }
4629 }
4630
4631
4632 /* Clear hash table H. */
4633
4634 void
4635 hash_clear (h)
4636 struct Lisp_Hash_Table *h;
4637 {
4638 if (XFASTINT (h->count) > 0)
4639 {
4640 int i, size = HASH_TABLE_SIZE (h);
4641
4642 for (i = 0; i < size; ++i)
4643 {
4644 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
4645 HASH_KEY (h, i) = Qnil;
4646 HASH_VALUE (h, i) = Qnil;
4647 HASH_HASH (h, i) = Qnil;
4648 }
4649
4650 for (i = 0; i < XVECTOR (h->index)->size; ++i)
4651 XVECTOR (h->index)->contents[i] = Qnil;
4652
4653 h->next_free = make_number (0);
4654 h->count = make_number (0);
4655 }
4656 }
4657
4658
4659 \f
4660 /************************************************************************
4661 Weak Hash Tables
4662 ************************************************************************/
4663
4664 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
4665 entries from the table that don't survive the current GC.
4666 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
4667 non-zero if anything was marked. */
4668
4669 static int
4670 sweep_weak_table (h, remove_entries_p)
4671 struct Lisp_Hash_Table *h;
4672 int remove_entries_p;
4673 {
4674 int bucket, n, marked;
4675
4676 n = XVECTOR (h->index)->size & ~ARRAY_MARK_FLAG;
4677 marked = 0;
4678
4679 for (bucket = 0; bucket < n; ++bucket)
4680 {
4681 Lisp_Object idx, next, prev;
4682
4683 /* Follow collision chain, removing entries that
4684 don't survive this garbage collection. */
4685 prev = Qnil;
4686 for (idx = HASH_INDEX (h, bucket); !GC_NILP (idx); idx = next)
4687 {
4688 int i = XFASTINT (idx);
4689 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
4690 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
4691 int remove_p;
4692
4693 if (EQ (h->weak, Qkey))
4694 remove_p = !key_known_to_survive_p;
4695 else if (EQ (h->weak, Qvalue))
4696 remove_p = !value_known_to_survive_p;
4697 else if (EQ (h->weak, Qkey_or_value))
4698 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
4699 else if (EQ (h->weak, Qkey_and_value))
4700 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
4701 else
4702 abort ();
4703
4704 next = HASH_NEXT (h, i);
4705
4706 if (remove_entries_p)
4707 {
4708 if (remove_p)
4709 {
4710 /* Take out of collision chain. */
4711 if (GC_NILP (prev))
4712 HASH_INDEX (h, bucket) = next;
4713 else
4714 HASH_NEXT (h, XFASTINT (prev)) = next;
4715
4716 /* Add to free list. */
4717 HASH_NEXT (h, i) = h->next_free;
4718 h->next_free = idx;
4719
4720 /* Clear key, value, and hash. */
4721 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
4722 HASH_HASH (h, i) = Qnil;
4723
4724 h->count = make_number (XFASTINT (h->count) - 1);
4725 }
4726 }
4727 else
4728 {
4729 if (!remove_p)
4730 {
4731 /* Make sure key and value survive. */
4732 if (!key_known_to_survive_p)
4733 {
4734 mark_object (&HASH_KEY (h, i));
4735 marked = 1;
4736 }
4737
4738 if (!value_known_to_survive_p)
4739 {
4740 mark_object (&HASH_VALUE (h, i));
4741 marked = 1;
4742 }
4743 }
4744 }
4745 }
4746 }
4747
4748 return marked;
4749 }
4750
4751 /* Remove elements from weak hash tables that don't survive the
4752 current garbage collection. Remove weak tables that don't survive
4753 from Vweak_hash_tables. Called from gc_sweep. */
4754
4755 void
4756 sweep_weak_hash_tables ()
4757 {
4758 Lisp_Object table, used, next;
4759 struct Lisp_Hash_Table *h;
4760 int marked;
4761
4762 /* Mark all keys and values that are in use. Keep on marking until
4763 there is no more change. This is necessary for cases like
4764 value-weak table A containing an entry X -> Y, where Y is used in a
4765 key-weak table B, Z -> Y. If B comes after A in the list of weak
4766 tables, X -> Y might be removed from A, although when looking at B
4767 one finds that it shouldn't. */
4768 do
4769 {
4770 marked = 0;
4771 for (table = Vweak_hash_tables; !GC_NILP (table); table = h->next_weak)
4772 {
4773 h = XHASH_TABLE (table);
4774 if (h->size & ARRAY_MARK_FLAG)
4775 marked |= sweep_weak_table (h, 0);
4776 }
4777 }
4778 while (marked);
4779
4780 /* Remove tables and entries that aren't used. */
4781 for (table = Vweak_hash_tables, used = Qnil; !GC_NILP (table); table = next)
4782 {
4783 h = XHASH_TABLE (table);
4784 next = h->next_weak;
4785
4786 if (h->size & ARRAY_MARK_FLAG)
4787 {
4788 /* TABLE is marked as used. Sweep its contents. */
4789 if (XFASTINT (h->count) > 0)
4790 sweep_weak_table (h, 1);
4791
4792 /* Add table to the list of used weak hash tables. */
4793 h->next_weak = used;
4794 used = table;
4795 }
4796 }
4797
4798 Vweak_hash_tables = used;
4799 }
4800
4801
4802 \f
4803 /***********************************************************************
4804 Hash Code Computation
4805 ***********************************************************************/
4806
4807 /* Maximum depth up to which to dive into Lisp structures. */
4808
4809 #define SXHASH_MAX_DEPTH 3
4810
4811 /* Maximum length up to which to take list and vector elements into
4812 account. */
4813
4814 #define SXHASH_MAX_LEN 7
4815
4816 /* Combine two integers X and Y for hashing. */
4817
4818 #define SXHASH_COMBINE(X, Y) \
4819 ((((unsigned)(X) << 4) + (((unsigned)(X) >> 24) & 0x0fffffff)) \
4820 + (unsigned)(Y))
4821
4822
4823 /* Return a hash for string PTR which has length LEN. The hash
4824 code returned is guaranteed to fit in a Lisp integer. */
4825
4826 static unsigned
4827 sxhash_string (ptr, len)
4828 unsigned char *ptr;
4829 int len;
4830 {
4831 unsigned char *p = ptr;
4832 unsigned char *end = p + len;
4833 unsigned char c;
4834 unsigned hash = 0;
4835
4836 while (p != end)
4837 {
4838 c = *p++;
4839 if (c >= 0140)
4840 c -= 40;
4841 hash = ((hash << 3) + (hash >> 28) + c);
4842 }
4843
4844 return hash & VALMASK;
4845 }
4846
4847
4848 /* Return a hash for list LIST. DEPTH is the current depth in the
4849 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4850
4851 static unsigned
4852 sxhash_list (list, depth)
4853 Lisp_Object list;
4854 int depth;
4855 {
4856 unsigned hash = 0;
4857 int i;
4858
4859 if (depth < SXHASH_MAX_DEPTH)
4860 for (i = 0;
4861 CONSP (list) && i < SXHASH_MAX_LEN;
4862 list = XCDR (list), ++i)
4863 {
4864 unsigned hash2 = sxhash (XCAR (list), depth + 1);
4865 hash = SXHASH_COMBINE (hash, hash2);
4866 }
4867
4868 return hash;
4869 }
4870
4871
4872 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4873 the Lisp structure. */
4874
4875 static unsigned
4876 sxhash_vector (vec, depth)
4877 Lisp_Object vec;
4878 int depth;
4879 {
4880 unsigned hash = XVECTOR (vec)->size;
4881 int i, n;
4882
4883 n = min (SXHASH_MAX_LEN, XVECTOR (vec)->size);
4884 for (i = 0; i < n; ++i)
4885 {
4886 unsigned hash2 = sxhash (XVECTOR (vec)->contents[i], depth + 1);
4887 hash = SXHASH_COMBINE (hash, hash2);
4888 }
4889
4890 return hash;
4891 }
4892
4893
4894 /* Return a hash for bool-vector VECTOR. */
4895
4896 static unsigned
4897 sxhash_bool_vector (vec)
4898 Lisp_Object vec;
4899 {
4900 unsigned hash = XBOOL_VECTOR (vec)->size;
4901 int i, n;
4902
4903 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->vector_size);
4904 for (i = 0; i < n; ++i)
4905 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4906
4907 return hash;
4908 }
4909
4910
4911 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4912 structure. Value is an unsigned integer clipped to VALMASK. */
4913
4914 unsigned
4915 sxhash (obj, depth)
4916 Lisp_Object obj;
4917 int depth;
4918 {
4919 unsigned hash;
4920
4921 if (depth > SXHASH_MAX_DEPTH)
4922 return 0;
4923
4924 switch (XTYPE (obj))
4925 {
4926 case Lisp_Int:
4927 hash = XUINT (obj);
4928 break;
4929
4930 case Lisp_Symbol:
4931 hash = sxhash_string (SDATA (SYMBOL_NAME (obj)),
4932 SCHARS (SYMBOL_NAME (obj)));
4933 break;
4934
4935 case Lisp_Misc:
4936 hash = XUINT (obj);
4937 break;
4938
4939 case Lisp_String:
4940 hash = sxhash_string (SDATA (obj), SCHARS (obj));
4941 break;
4942
4943 /* This can be everything from a vector to an overlay. */
4944 case Lisp_Vectorlike:
4945 if (VECTORP (obj))
4946 /* According to the CL HyperSpec, two arrays are equal only if
4947 they are `eq', except for strings and bit-vectors. In
4948 Emacs, this works differently. We have to compare element
4949 by element. */
4950 hash = sxhash_vector (obj, depth);
4951 else if (BOOL_VECTOR_P (obj))
4952 hash = sxhash_bool_vector (obj);
4953 else
4954 /* Others are `equal' if they are `eq', so let's take their
4955 address as hash. */
4956 hash = XUINT (obj);
4957 break;
4958
4959 case Lisp_Cons:
4960 hash = sxhash_list (obj, depth);
4961 break;
4962
4963 case Lisp_Float:
4964 {
4965 unsigned char *p = (unsigned char *) &XFLOAT_DATA (obj);
4966 unsigned char *e = p + sizeof XFLOAT_DATA (obj);
4967 for (hash = 0; p < e; ++p)
4968 hash = SXHASH_COMBINE (hash, *p);
4969 break;
4970 }
4971
4972 default:
4973 abort ();
4974 }
4975
4976 return hash & VALMASK;
4977 }
4978
4979
4980 \f
4981 /***********************************************************************
4982 Lisp Interface
4983 ***********************************************************************/
4984
4985
4986 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4987 doc: /* Compute a hash code for OBJ and return it as integer. */)
4988 (obj)
4989 Lisp_Object obj;
4990 {
4991 unsigned hash = sxhash (obj, 0);;
4992 return make_number (hash);
4993 }
4994
4995
4996 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4997 doc: /* Create and return a new hash table.
4998
4999 Arguments are specified as keyword/argument pairs. The following
5000 arguments are defined:
5001
5002 :test TEST -- TEST must be a symbol that specifies how to compare
5003 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
5004 `equal'. User-supplied test and hash functions can be specified via
5005 `define-hash-table-test'.
5006
5007 :size SIZE -- A hint as to how many elements will be put in the table.
5008 Default is 65.
5009
5010 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
5011 fills up. If REHASH-SIZE is an integer, add that many space. If it
5012 is a float, it must be > 1.0, and the new size is computed by
5013 multiplying the old size with that factor. Default is 1.5.
5014
5015 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
5016 Resize the hash table when ratio of the number of entries in the
5017 table. Default is 0.8.
5018
5019 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
5020 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
5021 returned is a weak table. Key/value pairs are removed from a weak
5022 hash table when there are no non-weak references pointing to their
5023 key, value, one of key or value, or both key and value, depending on
5024 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
5025 is nil.
5026
5027 usage: (make-hash-table &rest KEYWORD-ARGS) */)
5028 (nargs, args)
5029 int nargs;
5030 Lisp_Object *args;
5031 {
5032 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
5033 Lisp_Object user_test, user_hash;
5034 char *used;
5035 int i;
5036
5037 /* The vector `used' is used to keep track of arguments that
5038 have been consumed. */
5039 used = (char *) alloca (nargs * sizeof *used);
5040 bzero (used, nargs * sizeof *used);
5041
5042 /* See if there's a `:test TEST' among the arguments. */
5043 i = get_key_arg (QCtest, nargs, args, used);
5044 test = i < 0 ? Qeql : args[i];
5045 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
5046 {
5047 /* See if it is a user-defined test. */
5048 Lisp_Object prop;
5049
5050 prop = Fget (test, Qhash_table_test);
5051 if (!CONSP (prop) || !CONSP (XCDR (prop)))
5052 Fsignal (Qerror, list2 (build_string ("Invalid hash table test"),
5053 test));
5054 user_test = XCAR (prop);
5055 user_hash = XCAR (XCDR (prop));
5056 }
5057 else
5058 user_test = user_hash = Qnil;
5059
5060 /* See if there's a `:size SIZE' argument. */
5061 i = get_key_arg (QCsize, nargs, args, used);
5062 size = i < 0 ? Qnil : args[i];
5063 if (NILP (size))
5064 size = make_number (DEFAULT_HASH_SIZE);
5065 else if (!INTEGERP (size) || XINT (size) < 0)
5066 Fsignal (Qerror,
5067 list2 (build_string ("Invalid hash table size"),
5068 size));
5069
5070 /* Look for `:rehash-size SIZE'. */
5071 i = get_key_arg (QCrehash_size, nargs, args, used);
5072 rehash_size = i < 0 ? make_float (DEFAULT_REHASH_SIZE) : args[i];
5073 if (!NUMBERP (rehash_size)
5074 || (INTEGERP (rehash_size) && XINT (rehash_size) <= 0)
5075 || XFLOATINT (rehash_size) <= 1.0)
5076 Fsignal (Qerror,
5077 list2 (build_string ("Invalid hash table rehash size"),
5078 rehash_size));
5079
5080 /* Look for `:rehash-threshold THRESHOLD'. */
5081 i = get_key_arg (QCrehash_threshold, nargs, args, used);
5082 rehash_threshold = i < 0 ? make_float (DEFAULT_REHASH_THRESHOLD) : args[i];
5083 if (!FLOATP (rehash_threshold)
5084 || XFLOATINT (rehash_threshold) <= 0.0
5085 || XFLOATINT (rehash_threshold) > 1.0)
5086 Fsignal (Qerror,
5087 list2 (build_string ("Invalid hash table rehash threshold"),
5088 rehash_threshold));
5089
5090 /* Look for `:weakness WEAK'. */
5091 i = get_key_arg (QCweakness, nargs, args, used);
5092 weak = i < 0 ? Qnil : args[i];
5093 if (EQ (weak, Qt))
5094 weak = Qkey_and_value;
5095 if (!NILP (weak)
5096 && !EQ (weak, Qkey)
5097 && !EQ (weak, Qvalue)
5098 && !EQ (weak, Qkey_or_value)
5099 && !EQ (weak, Qkey_and_value))
5100 Fsignal (Qerror, list2 (build_string ("Invalid hash table weakness"),
5101 weak));
5102
5103 /* Now, all args should have been used up, or there's a problem. */
5104 for (i = 0; i < nargs; ++i)
5105 if (!used[i])
5106 Fsignal (Qerror,
5107 list2 (build_string ("Invalid argument list"), args[i]));
5108
5109 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
5110 user_test, user_hash);
5111 }
5112
5113
5114 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
5115 doc: /* Return a copy of hash table TABLE. */)
5116 (table)
5117 Lisp_Object table;
5118 {
5119 return copy_hash_table (check_hash_table (table));
5120 }
5121
5122
5123 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
5124 doc: /* Return the number of elements in TABLE. */)
5125 (table)
5126 Lisp_Object table;
5127 {
5128 return check_hash_table (table)->count;
5129 }
5130
5131
5132 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
5133 Shash_table_rehash_size, 1, 1, 0,
5134 doc: /* Return the current rehash size of TABLE. */)
5135 (table)
5136 Lisp_Object table;
5137 {
5138 return check_hash_table (table)->rehash_size;
5139 }
5140
5141
5142 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
5143 Shash_table_rehash_threshold, 1, 1, 0,
5144 doc: /* Return the current rehash threshold of TABLE. */)
5145 (table)
5146 Lisp_Object table;
5147 {
5148 return check_hash_table (table)->rehash_threshold;
5149 }
5150
5151
5152 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
5153 doc: /* Return the size of TABLE.
5154 The size can be used as an argument to `make-hash-table' to create
5155 a hash table than can hold as many elements of TABLE holds
5156 without need for resizing. */)
5157 (table)
5158 Lisp_Object table;
5159 {
5160 struct Lisp_Hash_Table *h = check_hash_table (table);
5161 return make_number (HASH_TABLE_SIZE (h));
5162 }
5163
5164
5165 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
5166 doc: /* Return the test TABLE uses. */)
5167 (table)
5168 Lisp_Object table;
5169 {
5170 return check_hash_table (table)->test;
5171 }
5172
5173
5174 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
5175 1, 1, 0,
5176 doc: /* Return the weakness of TABLE. */)
5177 (table)
5178 Lisp_Object table;
5179 {
5180 return check_hash_table (table)->weak;
5181 }
5182
5183
5184 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
5185 doc: /* Return t if OBJ is a Lisp hash table object. */)
5186 (obj)
5187 Lisp_Object obj;
5188 {
5189 return HASH_TABLE_P (obj) ? Qt : Qnil;
5190 }
5191
5192
5193 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
5194 doc: /* Clear hash table TABLE. */)
5195 (table)
5196 Lisp_Object table;
5197 {
5198 hash_clear (check_hash_table (table));
5199 return Qnil;
5200 }
5201
5202
5203 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
5204 doc: /* Look up KEY in TABLE and return its associated value.
5205 If KEY is not found, return DFLT which defaults to nil. */)
5206 (key, table, dflt)
5207 Lisp_Object key, table, dflt;
5208 {
5209 struct Lisp_Hash_Table *h = check_hash_table (table);
5210 int i = hash_lookup (h, key, NULL);
5211 return i >= 0 ? HASH_VALUE (h, i) : dflt;
5212 }
5213
5214
5215 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
5216 doc: /* Associate KEY with VALUE in hash table TABLE.
5217 If KEY is already present in table, replace its current value with
5218 VALUE. */)
5219 (key, value, table)
5220 Lisp_Object key, value, table;
5221 {
5222 struct Lisp_Hash_Table *h = check_hash_table (table);
5223 int i;
5224 unsigned hash;
5225
5226 i = hash_lookup (h, key, &hash);
5227 if (i >= 0)
5228 HASH_VALUE (h, i) = value;
5229 else
5230 hash_put (h, key, value, hash);
5231
5232 return value;
5233 }
5234
5235
5236 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
5237 doc: /* Remove KEY from TABLE. */)
5238 (key, table)
5239 Lisp_Object key, table;
5240 {
5241 struct Lisp_Hash_Table *h = check_hash_table (table);
5242 hash_remove (h, key);
5243 return Qnil;
5244 }
5245
5246
5247 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
5248 doc: /* Call FUNCTION for all entries in hash table TABLE.
5249 FUNCTION is called with 2 arguments KEY and VALUE. */)
5250 (function, table)
5251 Lisp_Object function, table;
5252 {
5253 struct Lisp_Hash_Table *h = check_hash_table (table);
5254 Lisp_Object args[3];
5255 int i;
5256
5257 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
5258 if (!NILP (HASH_HASH (h, i)))
5259 {
5260 args[0] = function;
5261 args[1] = HASH_KEY (h, i);
5262 args[2] = HASH_VALUE (h, i);
5263 Ffuncall (3, args);
5264 }
5265
5266 return Qnil;
5267 }
5268
5269
5270 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
5271 Sdefine_hash_table_test, 3, 3, 0,
5272 doc: /* Define a new hash table test with name NAME, a symbol.
5273
5274 In hash tables created with NAME specified as test, use TEST to
5275 compare keys, and HASH for computing hash codes of keys.
5276
5277 TEST must be a function taking two arguments and returning non-nil if
5278 both arguments are the same. HASH must be a function taking one
5279 argument and return an integer that is the hash code of the argument.
5280 Hash code computation should use the whole value range of integers,
5281 including negative integers. */)
5282 (name, test, hash)
5283 Lisp_Object name, test, hash;
5284 {
5285 return Fput (name, Qhash_table_test, list2 (test, hash));
5286 }
5287
5288
5289 \f
5290 /************************************************************************
5291 MD5
5292 ************************************************************************/
5293
5294 #include "md5.h"
5295 #include "coding.h"
5296
5297 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
5298 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
5299
5300 A message digest is a cryptographic checksum of a document, and the
5301 algorithm to calculate it is defined in RFC 1321.
5302
5303 The two optional arguments START and END are character positions
5304 specifying for which part of OBJECT the message digest should be
5305 computed. If nil or omitted, the digest is computed for the whole
5306 OBJECT.
5307
5308 The MD5 message digest is computed from the result of encoding the
5309 text in a coding system, not directly from the internal Emacs form of
5310 the text. The optional fourth argument CODING-SYSTEM specifies which
5311 coding system to encode the text with. It should be the same coding
5312 system that you used or will use when actually writing the text into a
5313 file.
5314
5315 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
5316 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
5317 system would be chosen by default for writing this text into a file.
5318
5319 If OBJECT is a string, the most preferred coding system (see the
5320 command `prefer-coding-system') is used.
5321
5322 If NOERROR is non-nil, silently assume the `raw-text' coding if the
5323 guesswork fails. Normally, an error is signaled in such case. */)
5324 (object, start, end, coding_system, noerror)
5325 Lisp_Object object, start, end, coding_system, noerror;
5326 {
5327 unsigned char digest[16];
5328 unsigned char value[33];
5329 int i;
5330 int size;
5331 int size_byte = 0;
5332 int start_char = 0, end_char = 0;
5333 int start_byte = 0, end_byte = 0;
5334 register int b, e;
5335 register struct buffer *bp;
5336 int temp;
5337
5338 if (STRINGP (object))
5339 {
5340 if (NILP (coding_system))
5341 {
5342 /* Decide the coding-system to encode the data with. */
5343
5344 if (STRING_MULTIBYTE (object))
5345 /* use default, we can't guess correct value */
5346 coding_system = SYMBOL_VALUE (XCAR (Vcoding_category_list));
5347 else
5348 coding_system = Qraw_text;
5349 }
5350
5351 if (NILP (Fcoding_system_p (coding_system)))
5352 {
5353 /* Invalid coding system. */
5354
5355 if (!NILP (noerror))
5356 coding_system = Qraw_text;
5357 else
5358 while (1)
5359 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
5360 }
5361
5362 if (STRING_MULTIBYTE (object))
5363 object = code_convert_string1 (object, coding_system, Qnil, 1);
5364
5365 size = SCHARS (object);
5366 size_byte = SBYTES (object);
5367
5368 if (!NILP (start))
5369 {
5370 CHECK_NUMBER (start);
5371
5372 start_char = XINT (start);
5373
5374 if (start_char < 0)
5375 start_char += size;
5376
5377 start_byte = string_char_to_byte (object, start_char);
5378 }
5379
5380 if (NILP (end))
5381 {
5382 end_char = size;
5383 end_byte = size_byte;
5384 }
5385 else
5386 {
5387 CHECK_NUMBER (end);
5388
5389 end_char = XINT (end);
5390
5391 if (end_char < 0)
5392 end_char += size;
5393
5394 end_byte = string_char_to_byte (object, end_char);
5395 }
5396
5397 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
5398 args_out_of_range_3 (object, make_number (start_char),
5399 make_number (end_char));
5400 }
5401 else
5402 {
5403 CHECK_BUFFER (object);
5404
5405 bp = XBUFFER (object);
5406
5407 if (NILP (start))
5408 b = BUF_BEGV (bp);
5409 else
5410 {
5411 CHECK_NUMBER_COERCE_MARKER (start);
5412 b = XINT (start);
5413 }
5414
5415 if (NILP (end))
5416 e = BUF_ZV (bp);
5417 else
5418 {
5419 CHECK_NUMBER_COERCE_MARKER (end);
5420 e = XINT (end);
5421 }
5422
5423 if (b > e)
5424 temp = b, b = e, e = temp;
5425
5426 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
5427 args_out_of_range (start, end);
5428
5429 if (NILP (coding_system))
5430 {
5431 /* Decide the coding-system to encode the data with.
5432 See fileio.c:Fwrite-region */
5433
5434 if (!NILP (Vcoding_system_for_write))
5435 coding_system = Vcoding_system_for_write;
5436 else
5437 {
5438 int force_raw_text = 0;
5439
5440 coding_system = XBUFFER (object)->buffer_file_coding_system;
5441 if (NILP (coding_system)
5442 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
5443 {
5444 coding_system = Qnil;
5445 if (NILP (current_buffer->enable_multibyte_characters))
5446 force_raw_text = 1;
5447 }
5448
5449 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
5450 {
5451 /* Check file-coding-system-alist. */
5452 Lisp_Object args[4], val;
5453
5454 args[0] = Qwrite_region; args[1] = start; args[2] = end;
5455 args[3] = Fbuffer_file_name(object);
5456 val = Ffind_operation_coding_system (4, args);
5457 if (CONSP (val) && !NILP (XCDR (val)))
5458 coding_system = XCDR (val);
5459 }
5460
5461 if (NILP (coding_system)
5462 && !NILP (XBUFFER (object)->buffer_file_coding_system))
5463 {
5464 /* If we still have not decided a coding system, use the
5465 default value of buffer-file-coding-system. */
5466 coding_system = XBUFFER (object)->buffer_file_coding_system;
5467 }
5468
5469 if (!force_raw_text
5470 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
5471 /* Confirm that VAL can surely encode the current region. */
5472 coding_system = call4 (Vselect_safe_coding_system_function,
5473 make_number (b), make_number (e),
5474 coding_system, Qnil);
5475
5476 if (force_raw_text)
5477 coding_system = Qraw_text;
5478 }
5479
5480 if (NILP (Fcoding_system_p (coding_system)))
5481 {
5482 /* Invalid coding system. */
5483
5484 if (!NILP (noerror))
5485 coding_system = Qraw_text;
5486 else
5487 while (1)
5488 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
5489 }
5490 }
5491
5492 object = make_buffer_string (b, e, 0);
5493
5494 if (STRING_MULTIBYTE (object))
5495 object = code_convert_string1 (object, coding_system, Qnil, 1);
5496 }
5497
5498 md5_buffer (SDATA (object) + start_byte,
5499 SBYTES (object) - (size_byte - end_byte),
5500 digest);
5501
5502 for (i = 0; i < 16; i++)
5503 sprintf (&value[2 * i], "%02x", digest[i]);
5504 value[32] = '\0';
5505
5506 return make_string (value, 32);
5507 }
5508
5509 \f
5510 void
5511 syms_of_fns ()
5512 {
5513 /* Hash table stuff. */
5514 Qhash_table_p = intern ("hash-table-p");
5515 staticpro (&Qhash_table_p);
5516 Qeq = intern ("eq");
5517 staticpro (&Qeq);
5518 Qeql = intern ("eql");
5519 staticpro (&Qeql);
5520 Qequal = intern ("equal");
5521 staticpro (&Qequal);
5522 QCtest = intern (":test");
5523 staticpro (&QCtest);
5524 QCsize = intern (":size");
5525 staticpro (&QCsize);
5526 QCrehash_size = intern (":rehash-size");
5527 staticpro (&QCrehash_size);
5528 QCrehash_threshold = intern (":rehash-threshold");
5529 staticpro (&QCrehash_threshold);
5530 QCweakness = intern (":weakness");
5531 staticpro (&QCweakness);
5532 Qkey = intern ("key");
5533 staticpro (&Qkey);
5534 Qvalue = intern ("value");
5535 staticpro (&Qvalue);
5536 Qhash_table_test = intern ("hash-table-test");
5537 staticpro (&Qhash_table_test);
5538 Qkey_or_value = intern ("key-or-value");
5539 staticpro (&Qkey_or_value);
5540 Qkey_and_value = intern ("key-and-value");
5541 staticpro (&Qkey_and_value);
5542
5543 defsubr (&Ssxhash);
5544 defsubr (&Smake_hash_table);
5545 defsubr (&Scopy_hash_table);
5546 defsubr (&Shash_table_count);
5547 defsubr (&Shash_table_rehash_size);
5548 defsubr (&Shash_table_rehash_threshold);
5549 defsubr (&Shash_table_size);
5550 defsubr (&Shash_table_test);
5551 defsubr (&Shash_table_weakness);
5552 defsubr (&Shash_table_p);
5553 defsubr (&Sclrhash);
5554 defsubr (&Sgethash);
5555 defsubr (&Sputhash);
5556 defsubr (&Sremhash);
5557 defsubr (&Smaphash);
5558 defsubr (&Sdefine_hash_table_test);
5559
5560 Qstring_lessp = intern ("string-lessp");
5561 staticpro (&Qstring_lessp);
5562 Qprovide = intern ("provide");
5563 staticpro (&Qprovide);
5564 Qrequire = intern ("require");
5565 staticpro (&Qrequire);
5566 Qyes_or_no_p_history = intern ("yes-or-no-p-history");
5567 staticpro (&Qyes_or_no_p_history);
5568 Qcursor_in_echo_area = intern ("cursor-in-echo-area");
5569 staticpro (&Qcursor_in_echo_area);
5570 Qwidget_type = intern ("widget-type");
5571 staticpro (&Qwidget_type);
5572
5573 staticpro (&string_char_byte_cache_string);
5574 string_char_byte_cache_string = Qnil;
5575
5576 require_nesting_list = Qnil;
5577 staticpro (&require_nesting_list);
5578
5579 Fset (Qyes_or_no_p_history, Qnil);
5580
5581 DEFVAR_LISP ("features", &Vfeatures,
5582 doc: /* A list of symbols which are the features of the executing emacs.
5583 Used by `featurep' and `require', and altered by `provide'. */);
5584 Vfeatures = Qnil;
5585 Qsubfeatures = intern ("subfeatures");
5586 staticpro (&Qsubfeatures);
5587
5588 #ifdef HAVE_LANGINFO_CODESET
5589 Qcodeset = intern ("codeset");
5590 staticpro (&Qcodeset);
5591 Qdays = intern ("days");
5592 staticpro (&Qdays);
5593 Qmonths = intern ("months");
5594 staticpro (&Qmonths);
5595 Qpaper = intern ("paper");
5596 staticpro (&Qpaper);
5597 #endif /* HAVE_LANGINFO_CODESET */
5598
5599 DEFVAR_BOOL ("use-dialog-box", &use_dialog_box,
5600 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
5601 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
5602 invoked by mouse clicks and mouse menu items. */);
5603 use_dialog_box = 1;
5604
5605 defsubr (&Sidentity);
5606 defsubr (&Srandom);
5607 defsubr (&Slength);
5608 defsubr (&Ssafe_length);
5609 defsubr (&Sstring_bytes);
5610 defsubr (&Sstring_equal);
5611 defsubr (&Scompare_strings);
5612 defsubr (&Sstring_lessp);
5613 defsubr (&Sappend);
5614 defsubr (&Sconcat);
5615 defsubr (&Svconcat);
5616 defsubr (&Scopy_sequence);
5617 defsubr (&Sstring_make_multibyte);
5618 defsubr (&Sstring_make_unibyte);
5619 defsubr (&Sstring_as_multibyte);
5620 defsubr (&Sstring_as_unibyte);
5621 defsubr (&Sstring_to_multibyte);
5622 defsubr (&Scopy_alist);
5623 defsubr (&Ssubstring);
5624 defsubr (&Ssubstring_no_properties);
5625 defsubr (&Snthcdr);
5626 defsubr (&Snth);
5627 defsubr (&Selt);
5628 defsubr (&Smember);
5629 defsubr (&Smemq);
5630 defsubr (&Sassq);
5631 defsubr (&Sassoc);
5632 defsubr (&Srassq);
5633 defsubr (&Srassoc);
5634 defsubr (&Sdelq);
5635 defsubr (&Sdelete);
5636 defsubr (&Snreverse);
5637 defsubr (&Sreverse);
5638 defsubr (&Ssort);
5639 defsubr (&Splist_get);
5640 defsubr (&Sget);
5641 defsubr (&Splist_put);
5642 defsubr (&Sput);
5643 defsubr (&Slax_plist_get);
5644 defsubr (&Slax_plist_put);
5645 defsubr (&Sequal);
5646 defsubr (&Sfillarray);
5647 defsubr (&Schar_table_subtype);
5648 defsubr (&Schar_table_parent);
5649 defsubr (&Sset_char_table_parent);
5650 defsubr (&Schar_table_extra_slot);
5651 defsubr (&Sset_char_table_extra_slot);
5652 defsubr (&Schar_table_range);
5653 defsubr (&Sset_char_table_range);
5654 defsubr (&Sset_char_table_default);
5655 defsubr (&Soptimize_char_table);
5656 defsubr (&Smap_char_table);
5657 defsubr (&Snconc);
5658 defsubr (&Smapcar);
5659 defsubr (&Smapc);
5660 defsubr (&Smapconcat);
5661 defsubr (&Sy_or_n_p);
5662 defsubr (&Syes_or_no_p);
5663 defsubr (&Sload_average);
5664 defsubr (&Sfeaturep);
5665 defsubr (&Srequire);
5666 defsubr (&Sprovide);
5667 defsubr (&Splist_member);
5668 defsubr (&Swidget_put);
5669 defsubr (&Swidget_get);
5670 defsubr (&Swidget_apply);
5671 defsubr (&Sbase64_encode_region);
5672 defsubr (&Sbase64_decode_region);
5673 defsubr (&Sbase64_encode_string);
5674 defsubr (&Sbase64_decode_string);
5675 defsubr (&Smd5);
5676 defsubr (&Slanginfo);
5677 }
5678
5679
5680 void
5681 init_fns ()
5682 {
5683 Vweak_hash_tables = Qnil;
5684 }