]> code.delx.au - gnu-emacs/blob - src/regex.c
*** empty log message ***
[gnu-emacs] / src / regex.c
1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
4
5 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
6 2002, 2003, 2004, 2005, 2006, 2007
7 Free Software Foundation, Inc.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
22 USA. */
23
24 /* TODO:
25 - structure the opcode space into opcode+flag.
26 - merge with glibc's regex.[ch].
27 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
28 need to modify the compiled regexp so that re_match can be reentrant.
29 - get rid of on_failure_jump_smart by doing the optimization in re_comp
30 rather than at run-time, so that re_match can be reentrant.
31 */
32
33 /* AIX requires this to be the first thing in the file. */
34 #if defined _AIX && !defined REGEX_MALLOC
35 #pragma alloca
36 #endif
37
38 #ifdef HAVE_CONFIG_H
39 # include <config.h>
40 #endif
41
42 #if defined STDC_HEADERS && !defined emacs
43 # include <stddef.h>
44 #else
45 /* We need this for `regex.h', and perhaps for the Emacs include files. */
46 # include <sys/types.h>
47 #endif
48
49 /* Whether to use ISO C Amendment 1 wide char functions.
50 Those should not be used for Emacs since it uses its own. */
51 #if defined _LIBC
52 #define WIDE_CHAR_SUPPORT 1
53 #else
54 #define WIDE_CHAR_SUPPORT \
55 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
56 #endif
57
58 /* For platform which support the ISO C amendement 1 functionality we
59 support user defined character classes. */
60 #if WIDE_CHAR_SUPPORT
61 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
62 # include <wchar.h>
63 # include <wctype.h>
64 #endif
65
66 #ifdef _LIBC
67 /* We have to keep the namespace clean. */
68 # define regfree(preg) __regfree (preg)
69 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
70 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
71 # define regerror(err_code, preg, errbuf, errbuf_size) \
72 __regerror(err_code, preg, errbuf, errbuf_size)
73 # define re_set_registers(bu, re, nu, st, en) \
74 __re_set_registers (bu, re, nu, st, en)
75 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
76 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
77 # define re_match(bufp, string, size, pos, regs) \
78 __re_match (bufp, string, size, pos, regs)
79 # define re_search(bufp, string, size, startpos, range, regs) \
80 __re_search (bufp, string, size, startpos, range, regs)
81 # define re_compile_pattern(pattern, length, bufp) \
82 __re_compile_pattern (pattern, length, bufp)
83 # define re_set_syntax(syntax) __re_set_syntax (syntax)
84 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
85 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
86 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
87
88 /* Make sure we call libc's function even if the user overrides them. */
89 # define btowc __btowc
90 # define iswctype __iswctype
91 # define wctype __wctype
92
93 # define WEAK_ALIAS(a,b) weak_alias (a, b)
94
95 /* We are also using some library internals. */
96 # include <locale/localeinfo.h>
97 # include <locale/elem-hash.h>
98 # include <langinfo.h>
99 #else
100 # define WEAK_ALIAS(a,b)
101 #endif
102
103 /* This is for other GNU distributions with internationalized messages. */
104 #if HAVE_LIBINTL_H || defined _LIBC
105 # include <libintl.h>
106 #else
107 # define gettext(msgid) (msgid)
108 #endif
109
110 #ifndef gettext_noop
111 /* This define is so xgettext can find the internationalizable
112 strings. */
113 # define gettext_noop(String) String
114 #endif
115
116 /* The `emacs' switch turns on certain matching commands
117 that make sense only in Emacs. */
118 #ifdef emacs
119
120 # include "lisp.h"
121 # include "buffer.h"
122
123 /* Make syntax table lookup grant data in gl_state. */
124 # define SYNTAX_ENTRY_VIA_PROPERTY
125
126 # include "syntax.h"
127 # include "charset.h"
128 # include "category.h"
129
130 # ifdef malloc
131 # undef malloc
132 # endif
133 # define malloc xmalloc
134 # ifdef realloc
135 # undef realloc
136 # endif
137 # define realloc xrealloc
138 # ifdef free
139 # undef free
140 # endif
141 # define free xfree
142
143 /* Converts the pointer to the char to BEG-based offset from the start. */
144 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
145 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
146
147 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
148 # define RE_STRING_CHAR(p, s) \
149 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
150 # define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
151 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
152
153 /* Set C a (possibly multibyte) character before P. P points into a
154 string which is the virtual concatenation of STR1 (which ends at
155 END1) or STR2 (which ends at END2). */
156 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
157 do { \
158 if (multibyte) \
159 { \
160 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
161 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
162 re_char *d0 = dtemp; \
163 PREV_CHAR_BOUNDARY (d0, dlimit); \
164 c = STRING_CHAR (d0, dtemp - d0); \
165 } \
166 else \
167 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
168 } while (0)
169
170
171 #else /* not emacs */
172
173 /* If we are not linking with Emacs proper,
174 we can't use the relocating allocator
175 even if config.h says that we can. */
176 # undef REL_ALLOC
177
178 # if defined STDC_HEADERS || defined _LIBC
179 # include <stdlib.h>
180 # else
181 char *malloc ();
182 char *realloc ();
183 # endif
184
185 /* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
186
187 void *
188 xmalloc (size)
189 size_t size;
190 {
191 register void *val;
192 val = (void *) malloc (size);
193 if (!val && size)
194 {
195 write (2, "virtual memory exhausted\n", 25);
196 exit (1);
197 }
198 return val;
199 }
200
201 void *
202 xrealloc (block, size)
203 void *block;
204 size_t size;
205 {
206 register void *val;
207 /* We must call malloc explicitly when BLOCK is 0, since some
208 reallocs don't do this. */
209 if (! block)
210 val = (void *) malloc (size);
211 else
212 val = (void *) realloc (block, size);
213 if (!val && size)
214 {
215 write (2, "virtual memory exhausted\n", 25);
216 exit (1);
217 }
218 return val;
219 }
220
221 # ifdef malloc
222 # undef malloc
223 # endif
224 # define malloc xmalloc
225 # ifdef realloc
226 # undef realloc
227 # endif
228 # define realloc xrealloc
229
230 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
231 If nothing else has been done, use the method below. */
232 # ifdef INHIBIT_STRING_HEADER
233 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
234 # if !defined bzero && !defined bcopy
235 # undef INHIBIT_STRING_HEADER
236 # endif
237 # endif
238 # endif
239
240 /* This is the normal way of making sure we have memcpy, memcmp and bzero.
241 This is used in most programs--a few other programs avoid this
242 by defining INHIBIT_STRING_HEADER. */
243 # ifndef INHIBIT_STRING_HEADER
244 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
245 # include <string.h>
246 # ifndef bzero
247 # ifndef _LIBC
248 # define bzero(s, n) (memset (s, '\0', n), (s))
249 # else
250 # define bzero(s, n) __bzero (s, n)
251 # endif
252 # endif
253 # else
254 # include <strings.h>
255 # ifndef memcmp
256 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
257 # endif
258 # ifndef memcpy
259 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
260 # endif
261 # endif
262 # endif
263
264 /* Define the syntax stuff for \<, \>, etc. */
265
266 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
267 enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
268
269 # ifdef SWITCH_ENUM_BUG
270 # define SWITCH_ENUM_CAST(x) ((int)(x))
271 # else
272 # define SWITCH_ENUM_CAST(x) (x)
273 # endif
274
275 /* Dummy macros for non-Emacs environments. */
276 # define BASE_LEADING_CODE_P(c) (0)
277 # define CHAR_CHARSET(c) 0
278 # define CHARSET_LEADING_CODE_BASE(c) 0
279 # define MAX_MULTIBYTE_LENGTH 1
280 # define RE_MULTIBYTE_P(x) 0
281 # define WORD_BOUNDARY_P(c1, c2) (0)
282 # define CHAR_HEAD_P(p) (1)
283 # define SINGLE_BYTE_CHAR_P(c) (1)
284 # define SAME_CHARSET_P(c1, c2) (1)
285 # define MULTIBYTE_FORM_LENGTH(p, s) (1)
286 # define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
287 # define STRING_CHAR(p, s) (*(p))
288 # define RE_STRING_CHAR STRING_CHAR
289 # define CHAR_STRING(c, s) (*(s) = (c), 1)
290 # define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
291 # define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
292 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
293 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
294 # define MAKE_CHAR(charset, c1, c2) (c1)
295 #endif /* not emacs */
296
297 #ifndef RE_TRANSLATE
298 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
299 # define RE_TRANSLATE_P(TBL) (TBL)
300 #endif
301 \f
302 /* Get the interface, including the syntax bits. */
303 #include "regex.h"
304
305 /* isalpha etc. are used for the character classes. */
306 #include <ctype.h>
307
308 #ifdef emacs
309
310 /* 1 if C is an ASCII character. */
311 # define IS_REAL_ASCII(c) ((c) < 0200)
312
313 /* 1 if C is a unibyte character. */
314 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
315
316 /* The Emacs definitions should not be directly affected by locales. */
317
318 /* In Emacs, these are only used for single-byte characters. */
319 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
320 # define ISCNTRL(c) ((c) < ' ')
321 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
322 || ((c) >= 'a' && (c) <= 'f') \
323 || ((c) >= 'A' && (c) <= 'F'))
324
325 /* This is only used for single-byte characters. */
326 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
327
328 /* The rest must handle multibyte characters. */
329
330 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
331 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
332 : 1)
333
334 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
335 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
336 : 1)
337
338 # define ISALNUM(c) (IS_REAL_ASCII (c) \
339 ? (((c) >= 'a' && (c) <= 'z') \
340 || ((c) >= 'A' && (c) <= 'Z') \
341 || ((c) >= '0' && (c) <= '9')) \
342 : SYNTAX (c) == Sword)
343
344 # define ISALPHA(c) (IS_REAL_ASCII (c) \
345 ? (((c) >= 'a' && (c) <= 'z') \
346 || ((c) >= 'A' && (c) <= 'Z')) \
347 : SYNTAX (c) == Sword)
348
349 # define ISLOWER(c) (LOWERCASEP (c))
350
351 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
352 ? ((c) > ' ' && (c) < 0177 \
353 && !(((c) >= 'a' && (c) <= 'z') \
354 || ((c) >= 'A' && (c) <= 'Z') \
355 || ((c) >= '0' && (c) <= '9'))) \
356 : SYNTAX (c) != Sword)
357
358 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
359
360 # define ISUPPER(c) (UPPERCASEP (c))
361
362 # define ISWORD(c) (SYNTAX (c) == Sword)
363
364 #else /* not emacs */
365
366 /* Jim Meyering writes:
367
368 "... Some ctype macros are valid only for character codes that
369 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
370 using /bin/cc or gcc but without giving an ansi option). So, all
371 ctype uses should be through macros like ISPRINT... If
372 STDC_HEADERS is defined, then autoconf has verified that the ctype
373 macros don't need to be guarded with references to isascii. ...
374 Defining isascii to 1 should let any compiler worth its salt
375 eliminate the && through constant folding."
376 Solaris defines some of these symbols so we must undefine them first. */
377
378 # undef ISASCII
379 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
380 # define ISASCII(c) 1
381 # else
382 # define ISASCII(c) isascii(c)
383 # endif
384
385 /* 1 if C is an ASCII character. */
386 # define IS_REAL_ASCII(c) ((c) < 0200)
387
388 /* This distinction is not meaningful, except in Emacs. */
389 # define ISUNIBYTE(c) 1
390
391 # ifdef isblank
392 # define ISBLANK(c) (ISASCII (c) && isblank (c))
393 # else
394 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
395 # endif
396 # ifdef isgraph
397 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
398 # else
399 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
400 # endif
401
402 # undef ISPRINT
403 # define ISPRINT(c) (ISASCII (c) && isprint (c))
404 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
405 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
406 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
407 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
408 # define ISLOWER(c) (ISASCII (c) && islower (c))
409 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
410 # define ISSPACE(c) (ISASCII (c) && isspace (c))
411 # define ISUPPER(c) (ISASCII (c) && isupper (c))
412 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
413
414 # define ISWORD(c) ISALPHA(c)
415
416 # ifdef _tolower
417 # define TOLOWER(c) _tolower(c)
418 # else
419 # define TOLOWER(c) tolower(c)
420 # endif
421
422 /* How many characters in the character set. */
423 # define CHAR_SET_SIZE 256
424
425 # ifdef SYNTAX_TABLE
426
427 extern char *re_syntax_table;
428
429 # else /* not SYNTAX_TABLE */
430
431 static char re_syntax_table[CHAR_SET_SIZE];
432
433 static void
434 init_syntax_once ()
435 {
436 register int c;
437 static int done = 0;
438
439 if (done)
440 return;
441
442 bzero (re_syntax_table, sizeof re_syntax_table);
443
444 for (c = 0; c < CHAR_SET_SIZE; ++c)
445 if (ISALNUM (c))
446 re_syntax_table[c] = Sword;
447
448 re_syntax_table['_'] = Ssymbol;
449
450 done = 1;
451 }
452
453 # endif /* not SYNTAX_TABLE */
454
455 # define SYNTAX(c) re_syntax_table[(c)]
456
457 #endif /* not emacs */
458 \f
459 #ifndef NULL
460 # define NULL (void *)0
461 #endif
462
463 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
464 since ours (we hope) works properly with all combinations of
465 machines, compilers, `char' and `unsigned char' argument types.
466 (Per Bothner suggested the basic approach.) */
467 #undef SIGN_EXTEND_CHAR
468 #if __STDC__
469 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
470 #else /* not __STDC__ */
471 /* As in Harbison and Steele. */
472 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
473 #endif
474 \f
475 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
476 use `alloca' instead of `malloc'. This is because using malloc in
477 re_search* or re_match* could cause memory leaks when C-g is used in
478 Emacs; also, malloc is slower and causes storage fragmentation. On
479 the other hand, malloc is more portable, and easier to debug.
480
481 Because we sometimes use alloca, some routines have to be macros,
482 not functions -- `alloca'-allocated space disappears at the end of the
483 function it is called in. */
484
485 #ifdef REGEX_MALLOC
486
487 # define REGEX_ALLOCATE malloc
488 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
489 # define REGEX_FREE free
490
491 #else /* not REGEX_MALLOC */
492
493 /* Emacs already defines alloca, sometimes. */
494 # ifndef alloca
495
496 /* Make alloca work the best possible way. */
497 # ifdef __GNUC__
498 # define alloca __builtin_alloca
499 # else /* not __GNUC__ */
500 # if HAVE_ALLOCA_H
501 # include <alloca.h>
502 # endif /* HAVE_ALLOCA_H */
503 # endif /* not __GNUC__ */
504
505 # endif /* not alloca */
506
507 # define REGEX_ALLOCATE alloca
508
509 /* Assumes a `char *destination' variable. */
510 # define REGEX_REALLOCATE(source, osize, nsize) \
511 (destination = (char *) alloca (nsize), \
512 memcpy (destination, source, osize))
513
514 /* No need to do anything to free, after alloca. */
515 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
516
517 #endif /* not REGEX_MALLOC */
518
519 /* Define how to allocate the failure stack. */
520
521 #if defined REL_ALLOC && defined REGEX_MALLOC
522
523 # define REGEX_ALLOCATE_STACK(size) \
524 r_alloc (&failure_stack_ptr, (size))
525 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
526 r_re_alloc (&failure_stack_ptr, (nsize))
527 # define REGEX_FREE_STACK(ptr) \
528 r_alloc_free (&failure_stack_ptr)
529
530 #else /* not using relocating allocator */
531
532 # ifdef REGEX_MALLOC
533
534 # define REGEX_ALLOCATE_STACK malloc
535 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
536 # define REGEX_FREE_STACK free
537
538 # else /* not REGEX_MALLOC */
539
540 # define REGEX_ALLOCATE_STACK alloca
541
542 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
543 REGEX_REALLOCATE (source, osize, nsize)
544 /* No need to explicitly free anything. */
545 # define REGEX_FREE_STACK(arg) ((void)0)
546
547 # endif /* not REGEX_MALLOC */
548 #endif /* not using relocating allocator */
549
550
551 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
552 `string1' or just past its end. This works if PTR is NULL, which is
553 a good thing. */
554 #define FIRST_STRING_P(ptr) \
555 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
556
557 /* (Re)Allocate N items of type T using malloc, or fail. */
558 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
559 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
560 #define RETALLOC_IF(addr, n, t) \
561 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
562 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
563
564 #define BYTEWIDTH 8 /* In bits. */
565
566 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
567
568 #undef MAX
569 #undef MIN
570 #define MAX(a, b) ((a) > (b) ? (a) : (b))
571 #define MIN(a, b) ((a) < (b) ? (a) : (b))
572
573 /* Type of source-pattern and string chars. */
574 typedef const unsigned char re_char;
575
576 typedef char boolean;
577 #define false 0
578 #define true 1
579
580 static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
581 re_char *string1, int size1,
582 re_char *string2, int size2,
583 int pos,
584 struct re_registers *regs,
585 int stop));
586 \f
587 /* These are the command codes that appear in compiled regular
588 expressions. Some opcodes are followed by argument bytes. A
589 command code can specify any interpretation whatsoever for its
590 arguments. Zero bytes may appear in the compiled regular expression. */
591
592 typedef enum
593 {
594 no_op = 0,
595
596 /* Succeed right away--no more backtracking. */
597 succeed,
598
599 /* Followed by one byte giving n, then by n literal bytes. */
600 exactn,
601
602 /* Matches any (more or less) character. */
603 anychar,
604
605 /* Matches any one char belonging to specified set. First
606 following byte is number of bitmap bytes. Then come bytes
607 for a bitmap saying which chars are in. Bits in each byte
608 are ordered low-bit-first. A character is in the set if its
609 bit is 1. A character too large to have a bit in the map is
610 automatically not in the set.
611
612 If the length byte has the 0x80 bit set, then that stuff
613 is followed by a range table:
614 2 bytes of flags for character sets (low 8 bits, high 8 bits)
615 See RANGE_TABLE_WORK_BITS below.
616 2 bytes, the number of pairs that follow (upto 32767)
617 pairs, each 2 multibyte characters,
618 each multibyte character represented as 3 bytes. */
619 charset,
620
621 /* Same parameters as charset, but match any character that is
622 not one of those specified. */
623 charset_not,
624
625 /* Start remembering the text that is matched, for storing in a
626 register. Followed by one byte with the register number, in
627 the range 0 to one less than the pattern buffer's re_nsub
628 field. */
629 start_memory,
630
631 /* Stop remembering the text that is matched and store it in a
632 memory register. Followed by one byte with the register
633 number, in the range 0 to one less than `re_nsub' in the
634 pattern buffer. */
635 stop_memory,
636
637 /* Match a duplicate of something remembered. Followed by one
638 byte containing the register number. */
639 duplicate,
640
641 /* Fail unless at beginning of line. */
642 begline,
643
644 /* Fail unless at end of line. */
645 endline,
646
647 /* Succeeds if at beginning of buffer (if emacs) or at beginning
648 of string to be matched (if not). */
649 begbuf,
650
651 /* Analogously, for end of buffer/string. */
652 endbuf,
653
654 /* Followed by two byte relative address to which to jump. */
655 jump,
656
657 /* Followed by two-byte relative address of place to resume at
658 in case of failure. */
659 on_failure_jump,
660
661 /* Like on_failure_jump, but pushes a placeholder instead of the
662 current string position when executed. */
663 on_failure_keep_string_jump,
664
665 /* Just like `on_failure_jump', except that it checks that we
666 don't get stuck in an infinite loop (matching an empty string
667 indefinitely). */
668 on_failure_jump_loop,
669
670 /* Just like `on_failure_jump_loop', except that it checks for
671 a different kind of loop (the kind that shows up with non-greedy
672 operators). This operation has to be immediately preceded
673 by a `no_op'. */
674 on_failure_jump_nastyloop,
675
676 /* A smart `on_failure_jump' used for greedy * and + operators.
677 It analyses the loop before which it is put and if the
678 loop does not require backtracking, it changes itself to
679 `on_failure_keep_string_jump' and short-circuits the loop,
680 else it just defaults to changing itself into `on_failure_jump'.
681 It assumes that it is pointing to just past a `jump'. */
682 on_failure_jump_smart,
683
684 /* Followed by two-byte relative address and two-byte number n.
685 After matching N times, jump to the address upon failure.
686 Does not work if N starts at 0: use on_failure_jump_loop
687 instead. */
688 succeed_n,
689
690 /* Followed by two-byte relative address, and two-byte number n.
691 Jump to the address N times, then fail. */
692 jump_n,
693
694 /* Set the following two-byte relative address to the
695 subsequent two-byte number. The address *includes* the two
696 bytes of number. */
697 set_number_at,
698
699 wordbeg, /* Succeeds if at word beginning. */
700 wordend, /* Succeeds if at word end. */
701
702 wordbound, /* Succeeds if at a word boundary. */
703 notwordbound, /* Succeeds if not at a word boundary. */
704
705 symbeg, /* Succeeds if at symbol beginning. */
706 symend, /* Succeeds if at symbol end. */
707
708 /* Matches any character whose syntax is specified. Followed by
709 a byte which contains a syntax code, e.g., Sword. */
710 syntaxspec,
711
712 /* Matches any character whose syntax is not that specified. */
713 notsyntaxspec
714
715 #ifdef emacs
716 ,before_dot, /* Succeeds if before point. */
717 at_dot, /* Succeeds if at point. */
718 after_dot, /* Succeeds if after point. */
719
720 /* Matches any character whose category-set contains the specified
721 category. The operator is followed by a byte which contains a
722 category code (mnemonic ASCII character). */
723 categoryspec,
724
725 /* Matches any character whose category-set does not contain the
726 specified category. The operator is followed by a byte which
727 contains the category code (mnemonic ASCII character). */
728 notcategoryspec
729 #endif /* emacs */
730 } re_opcode_t;
731 \f
732 /* Common operations on the compiled pattern. */
733
734 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
735
736 #define STORE_NUMBER(destination, number) \
737 do { \
738 (destination)[0] = (number) & 0377; \
739 (destination)[1] = (number) >> 8; \
740 } while (0)
741
742 /* Same as STORE_NUMBER, except increment DESTINATION to
743 the byte after where the number is stored. Therefore, DESTINATION
744 must be an lvalue. */
745
746 #define STORE_NUMBER_AND_INCR(destination, number) \
747 do { \
748 STORE_NUMBER (destination, number); \
749 (destination) += 2; \
750 } while (0)
751
752 /* Put into DESTINATION a number stored in two contiguous bytes starting
753 at SOURCE. */
754
755 #define EXTRACT_NUMBER(destination, source) \
756 do { \
757 (destination) = *(source) & 0377; \
758 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
759 } while (0)
760
761 #ifdef DEBUG
762 static void extract_number _RE_ARGS ((int *dest, re_char *source));
763 static void
764 extract_number (dest, source)
765 int *dest;
766 re_char *source;
767 {
768 int temp = SIGN_EXTEND_CHAR (*(source + 1));
769 *dest = *source & 0377;
770 *dest += temp << 8;
771 }
772
773 # ifndef EXTRACT_MACROS /* To debug the macros. */
774 # undef EXTRACT_NUMBER
775 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
776 # endif /* not EXTRACT_MACROS */
777
778 #endif /* DEBUG */
779
780 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
781 SOURCE must be an lvalue. */
782
783 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
784 do { \
785 EXTRACT_NUMBER (destination, source); \
786 (source) += 2; \
787 } while (0)
788
789 #ifdef DEBUG
790 static void extract_number_and_incr _RE_ARGS ((int *destination,
791 re_char **source));
792 static void
793 extract_number_and_incr (destination, source)
794 int *destination;
795 re_char **source;
796 {
797 extract_number (destination, *source);
798 *source += 2;
799 }
800
801 # ifndef EXTRACT_MACROS
802 # undef EXTRACT_NUMBER_AND_INCR
803 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
804 extract_number_and_incr (&dest, &src)
805 # endif /* not EXTRACT_MACROS */
806
807 #endif /* DEBUG */
808 \f
809 /* Store a multibyte character in three contiguous bytes starting
810 DESTINATION, and increment DESTINATION to the byte after where the
811 character is stored. Therefore, DESTINATION must be an lvalue. */
812
813 #define STORE_CHARACTER_AND_INCR(destination, character) \
814 do { \
815 (destination)[0] = (character) & 0377; \
816 (destination)[1] = ((character) >> 8) & 0377; \
817 (destination)[2] = (character) >> 16; \
818 (destination) += 3; \
819 } while (0)
820
821 /* Put into DESTINATION a character stored in three contiguous bytes
822 starting at SOURCE. */
823
824 #define EXTRACT_CHARACTER(destination, source) \
825 do { \
826 (destination) = ((source)[0] \
827 | ((source)[1] << 8) \
828 | ((source)[2] << 16)); \
829 } while (0)
830
831
832 /* Macros for charset. */
833
834 /* Size of bitmap of charset P in bytes. P is a start of charset,
835 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
836 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
837
838 /* Nonzero if charset P has range table. */
839 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
840
841 /* Return the address of range table of charset P. But not the start
842 of table itself, but the before where the number of ranges is
843 stored. `2 +' means to skip re_opcode_t and size of bitmap,
844 and the 2 bytes of flags at the start of the range table. */
845 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
846
847 /* Extract the bit flags that start a range table. */
848 #define CHARSET_RANGE_TABLE_BITS(p) \
849 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
850 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
851
852 /* Test if C is listed in the bitmap of charset P. */
853 #define CHARSET_LOOKUP_BITMAP(p, c) \
854 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
855 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
856
857 /* Return the address of end of RANGE_TABLE. COUNT is number of
858 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
859 is start of range and end of range. `* 3' is size of each start
860 and end. */
861 #define CHARSET_RANGE_TABLE_END(range_table, count) \
862 ((range_table) + (count) * 2 * 3)
863
864 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
865 COUNT is number of ranges in RANGE_TABLE. */
866 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
867 do \
868 { \
869 re_wchar_t range_start, range_end; \
870 re_char *p; \
871 re_char *range_table_end \
872 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
873 \
874 for (p = (range_table); p < range_table_end; p += 2 * 3) \
875 { \
876 EXTRACT_CHARACTER (range_start, p); \
877 EXTRACT_CHARACTER (range_end, p + 3); \
878 \
879 if (range_start <= (c) && (c) <= range_end) \
880 { \
881 (not) = !(not); \
882 break; \
883 } \
884 } \
885 } \
886 while (0)
887
888 /* Test if C is in range table of CHARSET. The flag NOT is negated if
889 C is listed in it. */
890 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
891 do \
892 { \
893 /* Number of ranges in range table. */ \
894 int count; \
895 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
896 \
897 EXTRACT_NUMBER_AND_INCR (count, range_table); \
898 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
899 } \
900 while (0)
901 \f
902 /* If DEBUG is defined, Regex prints many voluminous messages about what
903 it is doing (if the variable `debug' is nonzero). If linked with the
904 main program in `iregex.c', you can enter patterns and strings
905 interactively. And if linked with the main program in `main.c' and
906 the other test files, you can run the already-written tests. */
907
908 #ifdef DEBUG
909
910 /* We use standard I/O for debugging. */
911 # include <stdio.h>
912
913 /* It is useful to test things that ``must'' be true when debugging. */
914 # include <assert.h>
915
916 static int debug = -100000;
917
918 # define DEBUG_STATEMENT(e) e
919 # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
920 # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
921 # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
922 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
923 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
924 if (debug > 0) print_partial_compiled_pattern (s, e)
925 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
926 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
927
928
929 /* Print the fastmap in human-readable form. */
930
931 void
932 print_fastmap (fastmap)
933 char *fastmap;
934 {
935 unsigned was_a_range = 0;
936 unsigned i = 0;
937
938 while (i < (1 << BYTEWIDTH))
939 {
940 if (fastmap[i++])
941 {
942 was_a_range = 0;
943 putchar (i - 1);
944 while (i < (1 << BYTEWIDTH) && fastmap[i])
945 {
946 was_a_range = 1;
947 i++;
948 }
949 if (was_a_range)
950 {
951 printf ("-");
952 putchar (i - 1);
953 }
954 }
955 }
956 putchar ('\n');
957 }
958
959
960 /* Print a compiled pattern string in human-readable form, starting at
961 the START pointer into it and ending just before the pointer END. */
962
963 void
964 print_partial_compiled_pattern (start, end)
965 re_char *start;
966 re_char *end;
967 {
968 int mcnt, mcnt2;
969 re_char *p = start;
970 re_char *pend = end;
971
972 if (start == NULL)
973 {
974 fprintf (stderr, "(null)\n");
975 return;
976 }
977
978 /* Loop over pattern commands. */
979 while (p < pend)
980 {
981 fprintf (stderr, "%d:\t", p - start);
982
983 switch ((re_opcode_t) *p++)
984 {
985 case no_op:
986 fprintf (stderr, "/no_op");
987 break;
988
989 case succeed:
990 fprintf (stderr, "/succeed");
991 break;
992
993 case exactn:
994 mcnt = *p++;
995 fprintf (stderr, "/exactn/%d", mcnt);
996 do
997 {
998 fprintf (stderr, "/%c", *p++);
999 }
1000 while (--mcnt);
1001 break;
1002
1003 case start_memory:
1004 fprintf (stderr, "/start_memory/%d", *p++);
1005 break;
1006
1007 case stop_memory:
1008 fprintf (stderr, "/stop_memory/%d", *p++);
1009 break;
1010
1011 case duplicate:
1012 fprintf (stderr, "/duplicate/%d", *p++);
1013 break;
1014
1015 case anychar:
1016 fprintf (stderr, "/anychar");
1017 break;
1018
1019 case charset:
1020 case charset_not:
1021 {
1022 register int c, last = -100;
1023 register int in_range = 0;
1024 int length = CHARSET_BITMAP_SIZE (p - 1);
1025 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
1026
1027 fprintf (stderr, "/charset [%s",
1028 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
1029
1030 if (p + *p >= pend)
1031 fprintf (stderr, " !extends past end of pattern! ");
1032
1033 for (c = 0; c < 256; c++)
1034 if (c / 8 < length
1035 && (p[1 + (c/8)] & (1 << (c % 8))))
1036 {
1037 /* Are we starting a range? */
1038 if (last + 1 == c && ! in_range)
1039 {
1040 fprintf (stderr, "-");
1041 in_range = 1;
1042 }
1043 /* Have we broken a range? */
1044 else if (last + 1 != c && in_range)
1045 {
1046 fprintf (stderr, "%c", last);
1047 in_range = 0;
1048 }
1049
1050 if (! in_range)
1051 fprintf (stderr, "%c", c);
1052
1053 last = c;
1054 }
1055
1056 if (in_range)
1057 fprintf (stderr, "%c", last);
1058
1059 fprintf (stderr, "]");
1060
1061 p += 1 + length;
1062
1063 if (has_range_table)
1064 {
1065 int count;
1066 fprintf (stderr, "has-range-table");
1067
1068 /* ??? Should print the range table; for now, just skip it. */
1069 p += 2; /* skip range table bits */
1070 EXTRACT_NUMBER_AND_INCR (count, p);
1071 p = CHARSET_RANGE_TABLE_END (p, count);
1072 }
1073 }
1074 break;
1075
1076 case begline:
1077 fprintf (stderr, "/begline");
1078 break;
1079
1080 case endline:
1081 fprintf (stderr, "/endline");
1082 break;
1083
1084 case on_failure_jump:
1085 extract_number_and_incr (&mcnt, &p);
1086 fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
1087 break;
1088
1089 case on_failure_keep_string_jump:
1090 extract_number_and_incr (&mcnt, &p);
1091 fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
1092 break;
1093
1094 case on_failure_jump_nastyloop:
1095 extract_number_and_incr (&mcnt, &p);
1096 fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
1097 break;
1098
1099 case on_failure_jump_loop:
1100 extract_number_and_incr (&mcnt, &p);
1101 fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
1102 break;
1103
1104 case on_failure_jump_smart:
1105 extract_number_and_incr (&mcnt, &p);
1106 fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
1107 break;
1108
1109 case jump:
1110 extract_number_and_incr (&mcnt, &p);
1111 fprintf (stderr, "/jump to %d", p + mcnt - start);
1112 break;
1113
1114 case succeed_n:
1115 extract_number_and_incr (&mcnt, &p);
1116 extract_number_and_incr (&mcnt2, &p);
1117 fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1118 break;
1119
1120 case jump_n:
1121 extract_number_and_incr (&mcnt, &p);
1122 extract_number_and_incr (&mcnt2, &p);
1123 fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1124 break;
1125
1126 case set_number_at:
1127 extract_number_and_incr (&mcnt, &p);
1128 extract_number_and_incr (&mcnt2, &p);
1129 fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
1130 break;
1131
1132 case wordbound:
1133 fprintf (stderr, "/wordbound");
1134 break;
1135
1136 case notwordbound:
1137 fprintf (stderr, "/notwordbound");
1138 break;
1139
1140 case wordbeg:
1141 fprintf (stderr, "/wordbeg");
1142 break;
1143
1144 case wordend:
1145 fprintf (stderr, "/wordend");
1146 break;
1147
1148 case symbeg:
1149 fprintf (stderr, "/symbeg");
1150 break;
1151
1152 case symend:
1153 fprintf (stderr, "/symend");
1154 break;
1155
1156 case syntaxspec:
1157 fprintf (stderr, "/syntaxspec");
1158 mcnt = *p++;
1159 fprintf (stderr, "/%d", mcnt);
1160 break;
1161
1162 case notsyntaxspec:
1163 fprintf (stderr, "/notsyntaxspec");
1164 mcnt = *p++;
1165 fprintf (stderr, "/%d", mcnt);
1166 break;
1167
1168 # ifdef emacs
1169 case before_dot:
1170 fprintf (stderr, "/before_dot");
1171 break;
1172
1173 case at_dot:
1174 fprintf (stderr, "/at_dot");
1175 break;
1176
1177 case after_dot:
1178 fprintf (stderr, "/after_dot");
1179 break;
1180
1181 case categoryspec:
1182 fprintf (stderr, "/categoryspec");
1183 mcnt = *p++;
1184 fprintf (stderr, "/%d", mcnt);
1185 break;
1186
1187 case notcategoryspec:
1188 fprintf (stderr, "/notcategoryspec");
1189 mcnt = *p++;
1190 fprintf (stderr, "/%d", mcnt);
1191 break;
1192 # endif /* emacs */
1193
1194 case begbuf:
1195 fprintf (stderr, "/begbuf");
1196 break;
1197
1198 case endbuf:
1199 fprintf (stderr, "/endbuf");
1200 break;
1201
1202 default:
1203 fprintf (stderr, "?%d", *(p-1));
1204 }
1205
1206 fprintf (stderr, "\n");
1207 }
1208
1209 fprintf (stderr, "%d:\tend of pattern.\n", p - start);
1210 }
1211
1212
1213 void
1214 print_compiled_pattern (bufp)
1215 struct re_pattern_buffer *bufp;
1216 {
1217 re_char *buffer = bufp->buffer;
1218
1219 print_partial_compiled_pattern (buffer, buffer + bufp->used);
1220 printf ("%ld bytes used/%ld bytes allocated.\n",
1221 bufp->used, bufp->allocated);
1222
1223 if (bufp->fastmap_accurate && bufp->fastmap)
1224 {
1225 printf ("fastmap: ");
1226 print_fastmap (bufp->fastmap);
1227 }
1228
1229 printf ("re_nsub: %d\t", bufp->re_nsub);
1230 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1231 printf ("can_be_null: %d\t", bufp->can_be_null);
1232 printf ("no_sub: %d\t", bufp->no_sub);
1233 printf ("not_bol: %d\t", bufp->not_bol);
1234 printf ("not_eol: %d\t", bufp->not_eol);
1235 printf ("syntax: %lx\n", bufp->syntax);
1236 fflush (stdout);
1237 /* Perhaps we should print the translate table? */
1238 }
1239
1240
1241 void
1242 print_double_string (where, string1, size1, string2, size2)
1243 re_char *where;
1244 re_char *string1;
1245 re_char *string2;
1246 int size1;
1247 int size2;
1248 {
1249 int this_char;
1250
1251 if (where == NULL)
1252 printf ("(null)");
1253 else
1254 {
1255 if (FIRST_STRING_P (where))
1256 {
1257 for (this_char = where - string1; this_char < size1; this_char++)
1258 putchar (string1[this_char]);
1259
1260 where = string2;
1261 }
1262
1263 for (this_char = where - string2; this_char < size2; this_char++)
1264 putchar (string2[this_char]);
1265 }
1266 }
1267
1268 #else /* not DEBUG */
1269
1270 # undef assert
1271 # define assert(e)
1272
1273 # define DEBUG_STATEMENT(e)
1274 # define DEBUG_PRINT1(x)
1275 # define DEBUG_PRINT2(x1, x2)
1276 # define DEBUG_PRINT3(x1, x2, x3)
1277 # define DEBUG_PRINT4(x1, x2, x3, x4)
1278 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1279 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1280
1281 #endif /* not DEBUG */
1282 \f
1283 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1284 also be assigned to arbitrarily: each pattern buffer stores its own
1285 syntax, so it can be changed between regex compilations. */
1286 /* This has no initializer because initialized variables in Emacs
1287 become read-only after dumping. */
1288 reg_syntax_t re_syntax_options;
1289
1290
1291 /* Specify the precise syntax of regexps for compilation. This provides
1292 for compatibility for various utilities which historically have
1293 different, incompatible syntaxes.
1294
1295 The argument SYNTAX is a bit mask comprised of the various bits
1296 defined in regex.h. We return the old syntax. */
1297
1298 reg_syntax_t
1299 re_set_syntax (syntax)
1300 reg_syntax_t syntax;
1301 {
1302 reg_syntax_t ret = re_syntax_options;
1303
1304 re_syntax_options = syntax;
1305 return ret;
1306 }
1307 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1308
1309 /* Regexp to use to replace spaces, or NULL meaning don't. */
1310 static re_char *whitespace_regexp;
1311
1312 void
1313 re_set_whitespace_regexp (regexp)
1314 const char *regexp;
1315 {
1316 whitespace_regexp = (re_char *) regexp;
1317 }
1318 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1319 \f
1320 /* This table gives an error message for each of the error codes listed
1321 in regex.h. Obviously the order here has to be same as there.
1322 POSIX doesn't require that we do anything for REG_NOERROR,
1323 but why not be nice? */
1324
1325 static const char *re_error_msgid[] =
1326 {
1327 gettext_noop ("Success"), /* REG_NOERROR */
1328 gettext_noop ("No match"), /* REG_NOMATCH */
1329 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1330 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1331 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1332 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1333 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1334 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1335 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1336 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1337 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1338 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1339 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1340 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1341 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1342 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1343 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1344 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
1345 };
1346 \f
1347 /* Avoiding alloca during matching, to placate r_alloc. */
1348
1349 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1350 searching and matching functions should not call alloca. On some
1351 systems, alloca is implemented in terms of malloc, and if we're
1352 using the relocating allocator routines, then malloc could cause a
1353 relocation, which might (if the strings being searched are in the
1354 ralloc heap) shift the data out from underneath the regexp
1355 routines.
1356
1357 Here's another reason to avoid allocation: Emacs
1358 processes input from X in a signal handler; processing X input may
1359 call malloc; if input arrives while a matching routine is calling
1360 malloc, then we're scrod. But Emacs can't just block input while
1361 calling matching routines; then we don't notice interrupts when
1362 they come in. So, Emacs blocks input around all regexp calls
1363 except the matching calls, which it leaves unprotected, in the
1364 faith that they will not malloc. */
1365
1366 /* Normally, this is fine. */
1367 #define MATCH_MAY_ALLOCATE
1368
1369 /* When using GNU C, we are not REALLY using the C alloca, no matter
1370 what config.h may say. So don't take precautions for it. */
1371 #ifdef __GNUC__
1372 # undef C_ALLOCA
1373 #endif
1374
1375 /* The match routines may not allocate if (1) they would do it with malloc
1376 and (2) it's not safe for them to use malloc.
1377 Note that if REL_ALLOC is defined, matching would not use malloc for the
1378 failure stack, but we would still use it for the register vectors;
1379 so REL_ALLOC should not affect this. */
1380 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1381 # undef MATCH_MAY_ALLOCATE
1382 #endif
1383
1384 \f
1385 /* Failure stack declarations and macros; both re_compile_fastmap and
1386 re_match_2 use a failure stack. These have to be macros because of
1387 REGEX_ALLOCATE_STACK. */
1388
1389
1390 /* Approximate number of failure points for which to initially allocate space
1391 when matching. If this number is exceeded, we allocate more
1392 space, so it is not a hard limit. */
1393 #ifndef INIT_FAILURE_ALLOC
1394 # define INIT_FAILURE_ALLOC 20
1395 #endif
1396
1397 /* Roughly the maximum number of failure points on the stack. Would be
1398 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1399 This is a variable only so users of regex can assign to it; we never
1400 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1401 before using it, so it should probably be a byte-count instead. */
1402 # if defined MATCH_MAY_ALLOCATE
1403 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1404 whose default stack limit is 2mb. In order for a larger
1405 value to work reliably, you have to try to make it accord
1406 with the process stack limit. */
1407 size_t re_max_failures = 40000;
1408 # else
1409 size_t re_max_failures = 4000;
1410 # endif
1411
1412 union fail_stack_elt
1413 {
1414 re_char *pointer;
1415 /* This should be the biggest `int' that's no bigger than a pointer. */
1416 long integer;
1417 };
1418
1419 typedef union fail_stack_elt fail_stack_elt_t;
1420
1421 typedef struct
1422 {
1423 fail_stack_elt_t *stack;
1424 size_t size;
1425 size_t avail; /* Offset of next open position. */
1426 size_t frame; /* Offset of the cur constructed frame. */
1427 } fail_stack_type;
1428
1429 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1430 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1431
1432
1433 /* Define macros to initialize and free the failure stack.
1434 Do `return -2' if the alloc fails. */
1435
1436 #ifdef MATCH_MAY_ALLOCATE
1437 # define INIT_FAIL_STACK() \
1438 do { \
1439 fail_stack.stack = (fail_stack_elt_t *) \
1440 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1441 * sizeof (fail_stack_elt_t)); \
1442 \
1443 if (fail_stack.stack == NULL) \
1444 return -2; \
1445 \
1446 fail_stack.size = INIT_FAILURE_ALLOC; \
1447 fail_stack.avail = 0; \
1448 fail_stack.frame = 0; \
1449 } while (0)
1450
1451 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1452 #else
1453 # define INIT_FAIL_STACK() \
1454 do { \
1455 fail_stack.avail = 0; \
1456 fail_stack.frame = 0; \
1457 } while (0)
1458
1459 # define RESET_FAIL_STACK() ((void)0)
1460 #endif
1461
1462
1463 /* Double the size of FAIL_STACK, up to a limit
1464 which allows approximately `re_max_failures' items.
1465
1466 Return 1 if succeeds, and 0 if either ran out of memory
1467 allocating space for it or it was already too large.
1468
1469 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1470
1471 /* Factor to increase the failure stack size by
1472 when we increase it.
1473 This used to be 2, but 2 was too wasteful
1474 because the old discarded stacks added up to as much space
1475 were as ultimate, maximum-size stack. */
1476 #define FAIL_STACK_GROWTH_FACTOR 4
1477
1478 #define GROW_FAIL_STACK(fail_stack) \
1479 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1480 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1481 ? 0 \
1482 : ((fail_stack).stack \
1483 = (fail_stack_elt_t *) \
1484 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1485 (fail_stack).size * sizeof (fail_stack_elt_t), \
1486 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1487 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1488 * FAIL_STACK_GROWTH_FACTOR))), \
1489 \
1490 (fail_stack).stack == NULL \
1491 ? 0 \
1492 : ((fail_stack).size \
1493 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1494 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1495 * FAIL_STACK_GROWTH_FACTOR)) \
1496 / sizeof (fail_stack_elt_t)), \
1497 1)))
1498
1499
1500 /* Push a pointer value onto the failure stack.
1501 Assumes the variable `fail_stack'. Probably should only
1502 be called from within `PUSH_FAILURE_POINT'. */
1503 #define PUSH_FAILURE_POINTER(item) \
1504 fail_stack.stack[fail_stack.avail++].pointer = (item)
1505
1506 /* This pushes an integer-valued item onto the failure stack.
1507 Assumes the variable `fail_stack'. Probably should only
1508 be called from within `PUSH_FAILURE_POINT'. */
1509 #define PUSH_FAILURE_INT(item) \
1510 fail_stack.stack[fail_stack.avail++].integer = (item)
1511
1512 /* Push a fail_stack_elt_t value onto the failure stack.
1513 Assumes the variable `fail_stack'. Probably should only
1514 be called from within `PUSH_FAILURE_POINT'. */
1515 #define PUSH_FAILURE_ELT(item) \
1516 fail_stack.stack[fail_stack.avail++] = (item)
1517
1518 /* These three POP... operations complement the three PUSH... operations.
1519 All assume that `fail_stack' is nonempty. */
1520 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1521 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1522 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1523
1524 /* Individual items aside from the registers. */
1525 #define NUM_NONREG_ITEMS 3
1526
1527 /* Used to examine the stack (to detect infinite loops). */
1528 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1529 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1530 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1531 #define TOP_FAILURE_HANDLE() fail_stack.frame
1532
1533
1534 #define ENSURE_FAIL_STACK(space) \
1535 while (REMAINING_AVAIL_SLOTS <= space) { \
1536 if (!GROW_FAIL_STACK (fail_stack)) \
1537 return -2; \
1538 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1539 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1540 }
1541
1542 /* Push register NUM onto the stack. */
1543 #define PUSH_FAILURE_REG(num) \
1544 do { \
1545 char *destination; \
1546 ENSURE_FAIL_STACK(3); \
1547 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1548 num, regstart[num], regend[num]); \
1549 PUSH_FAILURE_POINTER (regstart[num]); \
1550 PUSH_FAILURE_POINTER (regend[num]); \
1551 PUSH_FAILURE_INT (num); \
1552 } while (0)
1553
1554 /* Change the counter's value to VAL, but make sure that it will
1555 be reset when backtracking. */
1556 #define PUSH_NUMBER(ptr,val) \
1557 do { \
1558 char *destination; \
1559 int c; \
1560 ENSURE_FAIL_STACK(3); \
1561 EXTRACT_NUMBER (c, ptr); \
1562 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
1563 PUSH_FAILURE_INT (c); \
1564 PUSH_FAILURE_POINTER (ptr); \
1565 PUSH_FAILURE_INT (-1); \
1566 STORE_NUMBER (ptr, val); \
1567 } while (0)
1568
1569 /* Pop a saved register off the stack. */
1570 #define POP_FAILURE_REG_OR_COUNT() \
1571 do { \
1572 int reg = POP_FAILURE_INT (); \
1573 if (reg == -1) \
1574 { \
1575 /* It's a counter. */ \
1576 /* Here, we discard `const', making re_match non-reentrant. */ \
1577 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1578 reg = POP_FAILURE_INT (); \
1579 STORE_NUMBER (ptr, reg); \
1580 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1581 } \
1582 else \
1583 { \
1584 regend[reg] = POP_FAILURE_POINTER (); \
1585 regstart[reg] = POP_FAILURE_POINTER (); \
1586 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1587 reg, regstart[reg], regend[reg]); \
1588 } \
1589 } while (0)
1590
1591 /* Check that we are not stuck in an infinite loop. */
1592 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1593 do { \
1594 int failure = TOP_FAILURE_HANDLE (); \
1595 /* Check for infinite matching loops */ \
1596 while (failure > 0 \
1597 && (FAILURE_STR (failure) == string_place \
1598 || FAILURE_STR (failure) == NULL)) \
1599 { \
1600 assert (FAILURE_PAT (failure) >= bufp->buffer \
1601 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1602 if (FAILURE_PAT (failure) == pat_cur) \
1603 { \
1604 cycle = 1; \
1605 break; \
1606 } \
1607 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1608 failure = NEXT_FAILURE_HANDLE(failure); \
1609 } \
1610 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1611 } while (0)
1612
1613 /* Push the information about the state we will need
1614 if we ever fail back to it.
1615
1616 Requires variables fail_stack, regstart, regend and
1617 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1618 declared.
1619
1620 Does `return FAILURE_CODE' if runs out of memory. */
1621
1622 #define PUSH_FAILURE_POINT(pattern, string_place) \
1623 do { \
1624 char *destination; \
1625 /* Must be int, so when we don't save any registers, the arithmetic \
1626 of 0 + -1 isn't done as unsigned. */ \
1627 \
1628 DEBUG_STATEMENT (nfailure_points_pushed++); \
1629 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
1630 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1631 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1632 \
1633 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1634 \
1635 DEBUG_PRINT1 ("\n"); \
1636 \
1637 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1638 PUSH_FAILURE_INT (fail_stack.frame); \
1639 \
1640 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1641 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1642 DEBUG_PRINT1 ("'\n"); \
1643 PUSH_FAILURE_POINTER (string_place); \
1644 \
1645 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1646 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1647 PUSH_FAILURE_POINTER (pattern); \
1648 \
1649 /* Close the frame by moving the frame pointer past it. */ \
1650 fail_stack.frame = fail_stack.avail; \
1651 } while (0)
1652
1653 /* Estimate the size of data pushed by a typical failure stack entry.
1654 An estimate is all we need, because all we use this for
1655 is to choose a limit for how big to make the failure stack. */
1656 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1657 #define TYPICAL_FAILURE_SIZE 20
1658
1659 /* How many items can still be added to the stack without overflowing it. */
1660 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1661
1662
1663 /* Pops what PUSH_FAIL_STACK pushes.
1664
1665 We restore into the parameters, all of which should be lvalues:
1666 STR -- the saved data position.
1667 PAT -- the saved pattern position.
1668 REGSTART, REGEND -- arrays of string positions.
1669
1670 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1671 `pend', `string1', `size1', `string2', and `size2'. */
1672
1673 #define POP_FAILURE_POINT(str, pat) \
1674 do { \
1675 assert (!FAIL_STACK_EMPTY ()); \
1676 \
1677 /* Remove failure points and point to how many regs pushed. */ \
1678 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1679 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1680 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1681 \
1682 /* Pop the saved registers. */ \
1683 while (fail_stack.frame < fail_stack.avail) \
1684 POP_FAILURE_REG_OR_COUNT (); \
1685 \
1686 pat = POP_FAILURE_POINTER (); \
1687 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1688 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1689 \
1690 /* If the saved string location is NULL, it came from an \
1691 on_failure_keep_string_jump opcode, and we want to throw away the \
1692 saved NULL, thus retaining our current position in the string. */ \
1693 str = POP_FAILURE_POINTER (); \
1694 DEBUG_PRINT2 (" Popping string %p: `", str); \
1695 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1696 DEBUG_PRINT1 ("'\n"); \
1697 \
1698 fail_stack.frame = POP_FAILURE_INT (); \
1699 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1700 \
1701 assert (fail_stack.avail >= 0); \
1702 assert (fail_stack.frame <= fail_stack.avail); \
1703 \
1704 DEBUG_STATEMENT (nfailure_points_popped++); \
1705 } while (0) /* POP_FAILURE_POINT */
1706
1707
1708 \f
1709 /* Registers are set to a sentinel when they haven't yet matched. */
1710 #define REG_UNSET(e) ((e) == NULL)
1711 \f
1712 /* Subroutine declarations and macros for regex_compile. */
1713
1714 static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1715 reg_syntax_t syntax,
1716 struct re_pattern_buffer *bufp));
1717 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1718 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1719 int arg1, int arg2));
1720 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1721 int arg, unsigned char *end));
1722 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1723 int arg1, int arg2, unsigned char *end));
1724 static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1725 re_char *p,
1726 reg_syntax_t syntax));
1727 static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1728 re_char *pend,
1729 reg_syntax_t syntax));
1730 static re_char *skip_one_char _RE_ARGS ((re_char *p));
1731 static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
1732 char *fastmap, const int multibyte));
1733
1734 /* Fetch the next character in the uncompiled pattern, with no
1735 translation. */
1736 #define PATFETCH(c) \
1737 do { \
1738 int len; \
1739 if (p == pend) return REG_EEND; \
1740 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1741 p += len; \
1742 } while (0)
1743
1744
1745 /* If `translate' is non-null, return translate[D], else just D. We
1746 cast the subscript to translate because some data is declared as
1747 `char *', to avoid warnings when a string constant is passed. But
1748 when we use a character as a subscript we must make it unsigned. */
1749 #ifndef TRANSLATE
1750 # define TRANSLATE(d) \
1751 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1752 #endif
1753
1754
1755 /* Macros for outputting the compiled pattern into `buffer'. */
1756
1757 /* If the buffer isn't allocated when it comes in, use this. */
1758 #define INIT_BUF_SIZE 32
1759
1760 /* Make sure we have at least N more bytes of space in buffer. */
1761 #define GET_BUFFER_SPACE(n) \
1762 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1763 EXTEND_BUFFER ()
1764
1765 /* Make sure we have one more byte of buffer space and then add C to it. */
1766 #define BUF_PUSH(c) \
1767 do { \
1768 GET_BUFFER_SPACE (1); \
1769 *b++ = (unsigned char) (c); \
1770 } while (0)
1771
1772
1773 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1774 #define BUF_PUSH_2(c1, c2) \
1775 do { \
1776 GET_BUFFER_SPACE (2); \
1777 *b++ = (unsigned char) (c1); \
1778 *b++ = (unsigned char) (c2); \
1779 } while (0)
1780
1781
1782 /* As with BUF_PUSH_2, except for three bytes. */
1783 #define BUF_PUSH_3(c1, c2, c3) \
1784 do { \
1785 GET_BUFFER_SPACE (3); \
1786 *b++ = (unsigned char) (c1); \
1787 *b++ = (unsigned char) (c2); \
1788 *b++ = (unsigned char) (c3); \
1789 } while (0)
1790
1791
1792 /* Store a jump with opcode OP at LOC to location TO. We store a
1793 relative address offset by the three bytes the jump itself occupies. */
1794 #define STORE_JUMP(op, loc, to) \
1795 store_op1 (op, loc, (to) - (loc) - 3)
1796
1797 /* Likewise, for a two-argument jump. */
1798 #define STORE_JUMP2(op, loc, to, arg) \
1799 store_op2 (op, loc, (to) - (loc) - 3, arg)
1800
1801 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1802 #define INSERT_JUMP(op, loc, to) \
1803 insert_op1 (op, loc, (to) - (loc) - 3, b)
1804
1805 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1806 #define INSERT_JUMP2(op, loc, to, arg) \
1807 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1808
1809
1810 /* This is not an arbitrary limit: the arguments which represent offsets
1811 into the pattern are two bytes long. So if 2^15 bytes turns out to
1812 be too small, many things would have to change. */
1813 # define MAX_BUF_SIZE (1L << 15)
1814
1815 #if 0 /* This is when we thought it could be 2^16 bytes. */
1816 /* Any other compiler which, like MSC, has allocation limit below 2^16
1817 bytes will have to use approach similar to what was done below for
1818 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1819 reallocating to 0 bytes. Such thing is not going to work too well.
1820 You have been warned!! */
1821 #if defined _MSC_VER && !defined WIN32
1822 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1823 # define MAX_BUF_SIZE 65500L
1824 #else
1825 # define MAX_BUF_SIZE (1L << 16)
1826 #endif
1827 #endif /* 0 */
1828
1829 /* Extend the buffer by twice its current size via realloc and
1830 reset the pointers that pointed into the old block to point to the
1831 correct places in the new one. If extending the buffer results in it
1832 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1833 #if __BOUNDED_POINTERS__
1834 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1835 # define MOVE_BUFFER_POINTER(P) \
1836 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1837 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1838 else \
1839 { \
1840 SET_HIGH_BOUND (b); \
1841 SET_HIGH_BOUND (begalt); \
1842 if (fixup_alt_jump) \
1843 SET_HIGH_BOUND (fixup_alt_jump); \
1844 if (laststart) \
1845 SET_HIGH_BOUND (laststart); \
1846 if (pending_exact) \
1847 SET_HIGH_BOUND (pending_exact); \
1848 }
1849 #else
1850 # define MOVE_BUFFER_POINTER(P) (P) += incr
1851 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1852 #endif
1853 #define EXTEND_BUFFER() \
1854 do { \
1855 re_char *old_buffer = bufp->buffer; \
1856 if (bufp->allocated == MAX_BUF_SIZE) \
1857 return REG_ESIZE; \
1858 bufp->allocated <<= 1; \
1859 if (bufp->allocated > MAX_BUF_SIZE) \
1860 bufp->allocated = MAX_BUF_SIZE; \
1861 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1862 if (bufp->buffer == NULL) \
1863 return REG_ESPACE; \
1864 /* If the buffer moved, move all the pointers into it. */ \
1865 if (old_buffer != bufp->buffer) \
1866 { \
1867 int incr = bufp->buffer - old_buffer; \
1868 MOVE_BUFFER_POINTER (b); \
1869 MOVE_BUFFER_POINTER (begalt); \
1870 if (fixup_alt_jump) \
1871 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1872 if (laststart) \
1873 MOVE_BUFFER_POINTER (laststart); \
1874 if (pending_exact) \
1875 MOVE_BUFFER_POINTER (pending_exact); \
1876 } \
1877 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1878 } while (0)
1879
1880
1881 /* Since we have one byte reserved for the register number argument to
1882 {start,stop}_memory, the maximum number of groups we can report
1883 things about is what fits in that byte. */
1884 #define MAX_REGNUM 255
1885
1886 /* But patterns can have more than `MAX_REGNUM' registers. We just
1887 ignore the excess. */
1888 typedef int regnum_t;
1889
1890
1891 /* Macros for the compile stack. */
1892
1893 /* Since offsets can go either forwards or backwards, this type needs to
1894 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1895 /* int may be not enough when sizeof(int) == 2. */
1896 typedef long pattern_offset_t;
1897
1898 typedef struct
1899 {
1900 pattern_offset_t begalt_offset;
1901 pattern_offset_t fixup_alt_jump;
1902 pattern_offset_t laststart_offset;
1903 regnum_t regnum;
1904 } compile_stack_elt_t;
1905
1906
1907 typedef struct
1908 {
1909 compile_stack_elt_t *stack;
1910 unsigned size;
1911 unsigned avail; /* Offset of next open position. */
1912 } compile_stack_type;
1913
1914
1915 #define INIT_COMPILE_STACK_SIZE 32
1916
1917 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1918 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1919
1920 /* The next available element. */
1921 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1922
1923 /* Explicit quit checking is only used on NTemacs and whenever we
1924 use polling to process input events. */
1925 #if defined emacs && (defined WINDOWSNT || defined SYNC_INPUT) && defined QUIT
1926 extern int immediate_quit;
1927 # define IMMEDIATE_QUIT_CHECK \
1928 do { \
1929 if (immediate_quit) QUIT; \
1930 } while (0)
1931 #else
1932 # define IMMEDIATE_QUIT_CHECK ((void)0)
1933 #endif
1934 \f
1935 /* Structure to manage work area for range table. */
1936 struct range_table_work_area
1937 {
1938 int *table; /* actual work area. */
1939 int allocated; /* allocated size for work area in bytes. */
1940 int used; /* actually used size in words. */
1941 int bits; /* flag to record character classes */
1942 };
1943
1944 /* Make sure that WORK_AREA can hold more N multibyte characters.
1945 This is used only in set_image_of_range and set_image_of_range_1.
1946 It expects WORK_AREA to be a pointer.
1947 If it can't get the space, it returns from the surrounding function. */
1948
1949 #define EXTEND_RANGE_TABLE(work_area, n) \
1950 do { \
1951 if (((work_area)->used + (n)) * sizeof (int) > (work_area)->allocated) \
1952 { \
1953 extend_range_table_work_area (work_area); \
1954 if ((work_area)->table == 0) \
1955 return (REG_ESPACE); \
1956 } \
1957 } while (0)
1958
1959 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1960 (work_area).bits |= (bit)
1961
1962 /* Bits used to implement the multibyte-part of the various character classes
1963 such as [:alnum:] in a charset's range table. */
1964 #define BIT_WORD 0x1
1965 #define BIT_LOWER 0x2
1966 #define BIT_PUNCT 0x4
1967 #define BIT_SPACE 0x8
1968 #define BIT_UPPER 0x10
1969 #define BIT_MULTIBYTE 0x20
1970
1971 /* Set a range START..END to WORK_AREA.
1972 The range is passed through TRANSLATE, so START and END
1973 should be untranslated. */
1974 #define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
1975 do { \
1976 int tem; \
1977 tem = set_image_of_range (&work_area, start, end, translate); \
1978 if (tem > 0) \
1979 FREE_STACK_RETURN (tem); \
1980 } while (0)
1981
1982 /* Free allocated memory for WORK_AREA. */
1983 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1984 do { \
1985 if ((work_area).table) \
1986 free ((work_area).table); \
1987 } while (0)
1988
1989 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1990 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1991 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1992 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1993 \f
1994
1995 /* Set the bit for character C in a list. */
1996 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1997
1998
1999 /* Get the next unsigned number in the uncompiled pattern. */
2000 #define GET_UNSIGNED_NUMBER(num) \
2001 do { \
2002 if (p == pend) \
2003 FREE_STACK_RETURN (REG_EBRACE); \
2004 else \
2005 { \
2006 PATFETCH (c); \
2007 while ('0' <= c && c <= '9') \
2008 { \
2009 int prev; \
2010 if (num < 0) \
2011 num = 0; \
2012 prev = num; \
2013 num = num * 10 + c - '0'; \
2014 if (num / 10 != prev) \
2015 FREE_STACK_RETURN (REG_BADBR); \
2016 if (p == pend) \
2017 FREE_STACK_RETURN (REG_EBRACE); \
2018 PATFETCH (c); \
2019 } \
2020 } \
2021 } while (0)
2022 \f
2023 #if ! WIDE_CHAR_SUPPORT
2024
2025 /* Map a string to the char class it names (if any). */
2026 re_wctype_t
2027 re_wctype (str)
2028 re_char *str;
2029 {
2030 const char *string = str;
2031 if (STREQ (string, "alnum")) return RECC_ALNUM;
2032 else if (STREQ (string, "alpha")) return RECC_ALPHA;
2033 else if (STREQ (string, "word")) return RECC_WORD;
2034 else if (STREQ (string, "ascii")) return RECC_ASCII;
2035 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
2036 else if (STREQ (string, "graph")) return RECC_GRAPH;
2037 else if (STREQ (string, "lower")) return RECC_LOWER;
2038 else if (STREQ (string, "print")) return RECC_PRINT;
2039 else if (STREQ (string, "punct")) return RECC_PUNCT;
2040 else if (STREQ (string, "space")) return RECC_SPACE;
2041 else if (STREQ (string, "upper")) return RECC_UPPER;
2042 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
2043 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
2044 else if (STREQ (string, "digit")) return RECC_DIGIT;
2045 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
2046 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2047 else if (STREQ (string, "blank")) return RECC_BLANK;
2048 else return 0;
2049 }
2050
2051 /* True if CH is in the char class CC. */
2052 boolean
2053 re_iswctype (ch, cc)
2054 int ch;
2055 re_wctype_t cc;
2056 {
2057 switch (cc)
2058 {
2059 case RECC_ALNUM: return ISALNUM (ch);
2060 case RECC_ALPHA: return ISALPHA (ch);
2061 case RECC_BLANK: return ISBLANK (ch);
2062 case RECC_CNTRL: return ISCNTRL (ch);
2063 case RECC_DIGIT: return ISDIGIT (ch);
2064 case RECC_GRAPH: return ISGRAPH (ch);
2065 case RECC_LOWER: return ISLOWER (ch);
2066 case RECC_PRINT: return ISPRINT (ch);
2067 case RECC_PUNCT: return ISPUNCT (ch);
2068 case RECC_SPACE: return ISSPACE (ch);
2069 case RECC_UPPER: return ISUPPER (ch);
2070 case RECC_XDIGIT: return ISXDIGIT (ch);
2071 case RECC_ASCII: return IS_REAL_ASCII (ch);
2072 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2073 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2074 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2075 case RECC_WORD: return ISWORD (ch);
2076 case RECC_ERROR: return false;
2077 default:
2078 abort();
2079 }
2080 }
2081
2082 /* Return a bit-pattern to use in the range-table bits to match multibyte
2083 chars of class CC. */
2084 static int
2085 re_wctype_to_bit (cc)
2086 re_wctype_t cc;
2087 {
2088 switch (cc)
2089 {
2090 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
2091 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2092 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2093 case RECC_LOWER: return BIT_LOWER;
2094 case RECC_UPPER: return BIT_UPPER;
2095 case RECC_PUNCT: return BIT_PUNCT;
2096 case RECC_SPACE: return BIT_SPACE;
2097 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
2098 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2099 default:
2100 abort();
2101 }
2102 }
2103 #endif
2104 \f
2105 /* Filling in the work area of a range. */
2106
2107 /* Actually extend the space in WORK_AREA. */
2108
2109 static void
2110 extend_range_table_work_area (work_area)
2111 struct range_table_work_area *work_area;
2112 {
2113 work_area->allocated += 16 * sizeof (int);
2114 if (work_area->table)
2115 work_area->table
2116 = (int *) realloc (work_area->table, work_area->allocated);
2117 else
2118 work_area->table
2119 = (int *) malloc (work_area->allocated);
2120 }
2121
2122 #ifdef emacs
2123
2124 /* Carefully find the ranges of codes that are equivalent
2125 under case conversion to the range start..end when passed through
2126 TRANSLATE. Handle the case where non-letters can come in between
2127 two upper-case letters (which happens in Latin-1).
2128 Also handle the case of groups of more than 2 case-equivalent chars.
2129
2130 The basic method is to look at consecutive characters and see
2131 if they can form a run that can be handled as one.
2132
2133 Returns -1 if successful, REG_ESPACE if ran out of space. */
2134
2135 static int
2136 set_image_of_range_1 (work_area, start, end, translate)
2137 RE_TRANSLATE_TYPE translate;
2138 struct range_table_work_area *work_area;
2139 re_wchar_t start, end;
2140 {
2141 /* `one_case' indicates a character, or a run of characters,
2142 each of which is an isolate (no case-equivalents).
2143 This includes all ASCII non-letters.
2144
2145 `two_case' indicates a character, or a run of characters,
2146 each of which has two case-equivalent forms.
2147 This includes all ASCII letters.
2148
2149 `strange' indicates a character that has more than one
2150 case-equivalent. */
2151
2152 enum case_type {one_case, two_case, strange};
2153
2154 /* Describe the run that is in progress,
2155 which the next character can try to extend.
2156 If run_type is strange, that means there really is no run.
2157 If run_type is one_case, then run_start...run_end is the run.
2158 If run_type is two_case, then the run is run_start...run_end,
2159 and the case-equivalents end at run_eqv_end. */
2160
2161 enum case_type run_type = strange;
2162 int run_start, run_end, run_eqv_end;
2163
2164 Lisp_Object eqv_table;
2165
2166 if (!RE_TRANSLATE_P (translate))
2167 {
2168 EXTEND_RANGE_TABLE (work_area, 2);
2169 work_area->table[work_area->used++] = (start);
2170 work_area->table[work_area->used++] = (end);
2171 return -1;
2172 }
2173
2174 eqv_table = XCHAR_TABLE (translate)->extras[2];
2175
2176 for (; start <= end; start++)
2177 {
2178 enum case_type this_type;
2179 int eqv = RE_TRANSLATE (eqv_table, start);
2180 int minchar, maxchar;
2181
2182 /* Classify this character */
2183 if (eqv == start)
2184 this_type = one_case;
2185 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2186 this_type = two_case;
2187 else
2188 this_type = strange;
2189
2190 if (start < eqv)
2191 minchar = start, maxchar = eqv;
2192 else
2193 minchar = eqv, maxchar = start;
2194
2195 /* Can this character extend the run in progress? */
2196 if (this_type == strange || this_type != run_type
2197 || !(minchar == run_end + 1
2198 && (run_type == two_case
2199 ? maxchar == run_eqv_end + 1 : 1)))
2200 {
2201 /* No, end the run.
2202 Record each of its equivalent ranges. */
2203 if (run_type == one_case)
2204 {
2205 EXTEND_RANGE_TABLE (work_area, 2);
2206 work_area->table[work_area->used++] = run_start;
2207 work_area->table[work_area->used++] = run_end;
2208 }
2209 else if (run_type == two_case)
2210 {
2211 EXTEND_RANGE_TABLE (work_area, 4);
2212 work_area->table[work_area->used++] = run_start;
2213 work_area->table[work_area->used++] = run_end;
2214 work_area->table[work_area->used++]
2215 = RE_TRANSLATE (eqv_table, run_start);
2216 work_area->table[work_area->used++]
2217 = RE_TRANSLATE (eqv_table, run_end);
2218 }
2219 run_type = strange;
2220 }
2221
2222 if (this_type == strange)
2223 {
2224 /* For a strange character, add each of its equivalents, one
2225 by one. Don't start a range. */
2226 do
2227 {
2228 EXTEND_RANGE_TABLE (work_area, 2);
2229 work_area->table[work_area->used++] = eqv;
2230 work_area->table[work_area->used++] = eqv;
2231 eqv = RE_TRANSLATE (eqv_table, eqv);
2232 }
2233 while (eqv != start);
2234 }
2235
2236 /* Add this char to the run, or start a new run. */
2237 else if (run_type == strange)
2238 {
2239 /* Initialize a new range. */
2240 run_type = this_type;
2241 run_start = start;
2242 run_end = start;
2243 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2244 }
2245 else
2246 {
2247 /* Extend a running range. */
2248 run_end = minchar;
2249 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2250 }
2251 }
2252
2253 /* If a run is still in progress at the end, finish it now
2254 by recording its equivalent ranges. */
2255 if (run_type == one_case)
2256 {
2257 EXTEND_RANGE_TABLE (work_area, 2);
2258 work_area->table[work_area->used++] = run_start;
2259 work_area->table[work_area->used++] = run_end;
2260 }
2261 else if (run_type == two_case)
2262 {
2263 EXTEND_RANGE_TABLE (work_area, 4);
2264 work_area->table[work_area->used++] = run_start;
2265 work_area->table[work_area->used++] = run_end;
2266 work_area->table[work_area->used++]
2267 = RE_TRANSLATE (eqv_table, run_start);
2268 work_area->table[work_area->used++]
2269 = RE_TRANSLATE (eqv_table, run_end);
2270 }
2271
2272 return -1;
2273 }
2274
2275 #endif /* emacs */
2276
2277 /* Record the the image of the range start..end when passed through
2278 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2279 and is not even necessarily contiguous.
2280 Normally we approximate it with the smallest contiguous range that contains
2281 all the chars we need. However, for Latin-1 we go to extra effort
2282 to do a better job.
2283
2284 This function is not called for ASCII ranges.
2285
2286 Returns -1 if successful, REG_ESPACE if ran out of space. */
2287
2288 static int
2289 set_image_of_range (work_area, start, end, translate)
2290 RE_TRANSLATE_TYPE translate;
2291 struct range_table_work_area *work_area;
2292 re_wchar_t start, end;
2293 {
2294 re_wchar_t cmin, cmax;
2295
2296 #ifdef emacs
2297 /* For Latin-1 ranges, use set_image_of_range_1
2298 to get proper handling of ranges that include letters and nonletters.
2299 For a range that includes the whole of Latin-1, this is not necessary.
2300 For other character sets, we don't bother to get this right. */
2301 if (RE_TRANSLATE_P (translate) && start < 04400
2302 && !(start < 04200 && end >= 04377))
2303 {
2304 int newend;
2305 int tem;
2306 newend = end;
2307 if (newend > 04377)
2308 newend = 04377;
2309 tem = set_image_of_range_1 (work_area, start, newend, translate);
2310 if (tem > 0)
2311 return tem;
2312
2313 start = 04400;
2314 if (end < 04400)
2315 return -1;
2316 }
2317 #endif
2318
2319 EXTEND_RANGE_TABLE (work_area, 2);
2320 work_area->table[work_area->used++] = (start);
2321 work_area->table[work_area->used++] = (end);
2322
2323 cmin = -1, cmax = -1;
2324
2325 if (RE_TRANSLATE_P (translate))
2326 {
2327 int ch;
2328
2329 for (ch = start; ch <= end; ch++)
2330 {
2331 re_wchar_t c = TRANSLATE (ch);
2332 if (! (start <= c && c <= end))
2333 {
2334 if (cmin == -1)
2335 cmin = c, cmax = c;
2336 else
2337 {
2338 cmin = MIN (cmin, c);
2339 cmax = MAX (cmax, c);
2340 }
2341 }
2342 }
2343
2344 if (cmin != -1)
2345 {
2346 EXTEND_RANGE_TABLE (work_area, 2);
2347 work_area->table[work_area->used++] = (cmin);
2348 work_area->table[work_area->used++] = (cmax);
2349 }
2350 }
2351
2352 return -1;
2353 }
2354 \f
2355 #ifndef MATCH_MAY_ALLOCATE
2356
2357 /* If we cannot allocate large objects within re_match_2_internal,
2358 we make the fail stack and register vectors global.
2359 The fail stack, we grow to the maximum size when a regexp
2360 is compiled.
2361 The register vectors, we adjust in size each time we
2362 compile a regexp, according to the number of registers it needs. */
2363
2364 static fail_stack_type fail_stack;
2365
2366 /* Size with which the following vectors are currently allocated.
2367 That is so we can make them bigger as needed,
2368 but never make them smaller. */
2369 static int regs_allocated_size;
2370
2371 static re_char ** regstart, ** regend;
2372 static re_char **best_regstart, **best_regend;
2373
2374 /* Make the register vectors big enough for NUM_REGS registers,
2375 but don't make them smaller. */
2376
2377 static
2378 regex_grow_registers (num_regs)
2379 int num_regs;
2380 {
2381 if (num_regs > regs_allocated_size)
2382 {
2383 RETALLOC_IF (regstart, num_regs, re_char *);
2384 RETALLOC_IF (regend, num_regs, re_char *);
2385 RETALLOC_IF (best_regstart, num_regs, re_char *);
2386 RETALLOC_IF (best_regend, num_regs, re_char *);
2387
2388 regs_allocated_size = num_regs;
2389 }
2390 }
2391
2392 #endif /* not MATCH_MAY_ALLOCATE */
2393 \f
2394 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2395 compile_stack,
2396 regnum_t regnum));
2397
2398 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2399 Returns one of error codes defined in `regex.h', or zero for success.
2400
2401 Assumes the `allocated' (and perhaps `buffer') and `translate'
2402 fields are set in BUFP on entry.
2403
2404 If it succeeds, results are put in BUFP (if it returns an error, the
2405 contents of BUFP are undefined):
2406 `buffer' is the compiled pattern;
2407 `syntax' is set to SYNTAX;
2408 `used' is set to the length of the compiled pattern;
2409 `fastmap_accurate' is zero;
2410 `re_nsub' is the number of subexpressions in PATTERN;
2411 `not_bol' and `not_eol' are zero;
2412
2413 The `fastmap' field is neither examined nor set. */
2414
2415 /* Insert the `jump' from the end of last alternative to "here".
2416 The space for the jump has already been allocated. */
2417 #define FIXUP_ALT_JUMP() \
2418 do { \
2419 if (fixup_alt_jump) \
2420 STORE_JUMP (jump, fixup_alt_jump, b); \
2421 } while (0)
2422
2423
2424 /* Return, freeing storage we allocated. */
2425 #define FREE_STACK_RETURN(value) \
2426 do { \
2427 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2428 free (compile_stack.stack); \
2429 return value; \
2430 } while (0)
2431
2432 static reg_errcode_t
2433 regex_compile (pattern, size, syntax, bufp)
2434 re_char *pattern;
2435 size_t size;
2436 reg_syntax_t syntax;
2437 struct re_pattern_buffer *bufp;
2438 {
2439 /* We fetch characters from PATTERN here. */
2440 register re_wchar_t c, c1;
2441
2442 /* A random temporary spot in PATTERN. */
2443 re_char *p1;
2444
2445 /* Points to the end of the buffer, where we should append. */
2446 register unsigned char *b;
2447
2448 /* Keeps track of unclosed groups. */
2449 compile_stack_type compile_stack;
2450
2451 /* Points to the current (ending) position in the pattern. */
2452 #ifdef AIX
2453 /* `const' makes AIX compiler fail. */
2454 unsigned char *p = pattern;
2455 #else
2456 re_char *p = pattern;
2457 #endif
2458 re_char *pend = pattern + size;
2459
2460 /* How to translate the characters in the pattern. */
2461 RE_TRANSLATE_TYPE translate = bufp->translate;
2462
2463 /* Address of the count-byte of the most recently inserted `exactn'
2464 command. This makes it possible to tell if a new exact-match
2465 character can be added to that command or if the character requires
2466 a new `exactn' command. */
2467 unsigned char *pending_exact = 0;
2468
2469 /* Address of start of the most recently finished expression.
2470 This tells, e.g., postfix * where to find the start of its
2471 operand. Reset at the beginning of groups and alternatives. */
2472 unsigned char *laststart = 0;
2473
2474 /* Address of beginning of regexp, or inside of last group. */
2475 unsigned char *begalt;
2476
2477 /* Place in the uncompiled pattern (i.e., the {) to
2478 which to go back if the interval is invalid. */
2479 re_char *beg_interval;
2480
2481 /* Address of the place where a forward jump should go to the end of
2482 the containing expression. Each alternative of an `or' -- except the
2483 last -- ends with a forward jump of this sort. */
2484 unsigned char *fixup_alt_jump = 0;
2485
2486 /* Counts open-groups as they are encountered. Remembered for the
2487 matching close-group on the compile stack, so the same register
2488 number is put in the stop_memory as the start_memory. */
2489 regnum_t regnum = 0;
2490
2491 /* Work area for range table of charset. */
2492 struct range_table_work_area range_table_work;
2493
2494 /* If the object matched can contain multibyte characters. */
2495 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2496
2497 /* Nonzero if we have pushed down into a subpattern. */
2498 int in_subpattern = 0;
2499
2500 /* These hold the values of p, pattern, and pend from the main
2501 pattern when we have pushed into a subpattern. */
2502 re_char *main_p;
2503 re_char *main_pattern;
2504 re_char *main_pend;
2505
2506 #ifdef DEBUG
2507 debug++;
2508 DEBUG_PRINT1 ("\nCompiling pattern: ");
2509 if (debug > 0)
2510 {
2511 unsigned debug_count;
2512
2513 for (debug_count = 0; debug_count < size; debug_count++)
2514 putchar (pattern[debug_count]);
2515 putchar ('\n');
2516 }
2517 #endif /* DEBUG */
2518
2519 /* Initialize the compile stack. */
2520 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2521 if (compile_stack.stack == NULL)
2522 return REG_ESPACE;
2523
2524 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2525 compile_stack.avail = 0;
2526
2527 range_table_work.table = 0;
2528 range_table_work.allocated = 0;
2529
2530 /* Initialize the pattern buffer. */
2531 bufp->syntax = syntax;
2532 bufp->fastmap_accurate = 0;
2533 bufp->not_bol = bufp->not_eol = 0;
2534 bufp->used_syntax = 0;
2535
2536 /* Set `used' to zero, so that if we return an error, the pattern
2537 printer (for debugging) will think there's no pattern. We reset it
2538 at the end. */
2539 bufp->used = 0;
2540
2541 /* Always count groups, whether or not bufp->no_sub is set. */
2542 bufp->re_nsub = 0;
2543
2544 #if !defined emacs && !defined SYNTAX_TABLE
2545 /* Initialize the syntax table. */
2546 init_syntax_once ();
2547 #endif
2548
2549 if (bufp->allocated == 0)
2550 {
2551 if (bufp->buffer)
2552 { /* If zero allocated, but buffer is non-null, try to realloc
2553 enough space. This loses if buffer's address is bogus, but
2554 that is the user's responsibility. */
2555 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2556 }
2557 else
2558 { /* Caller did not allocate a buffer. Do it for them. */
2559 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2560 }
2561 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2562
2563 bufp->allocated = INIT_BUF_SIZE;
2564 }
2565
2566 begalt = b = bufp->buffer;
2567
2568 /* Loop through the uncompiled pattern until we're at the end. */
2569 while (1)
2570 {
2571 if (p == pend)
2572 {
2573 /* If this is the end of an included regexp,
2574 pop back to the main regexp and try again. */
2575 if (in_subpattern)
2576 {
2577 in_subpattern = 0;
2578 pattern = main_pattern;
2579 p = main_p;
2580 pend = main_pend;
2581 continue;
2582 }
2583 /* If this is the end of the main regexp, we are done. */
2584 break;
2585 }
2586
2587 PATFETCH (c);
2588
2589 switch (c)
2590 {
2591 case ' ':
2592 {
2593 re_char *p1 = p;
2594
2595 /* If there's no special whitespace regexp, treat
2596 spaces normally. And don't try to do this recursively. */
2597 if (!whitespace_regexp || in_subpattern)
2598 goto normal_char;
2599
2600 /* Peek past following spaces. */
2601 while (p1 != pend)
2602 {
2603 if (*p1 != ' ')
2604 break;
2605 p1++;
2606 }
2607 /* If the spaces are followed by a repetition op,
2608 treat them normally. */
2609 if (p1 != pend
2610 && (*p1 == '*' || *p1 == '+' || *p1 == '?'
2611 || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
2612 goto normal_char;
2613
2614 /* Replace the spaces with the whitespace regexp. */
2615 in_subpattern = 1;
2616 main_p = p1;
2617 main_pend = pend;
2618 main_pattern = pattern;
2619 p = pattern = whitespace_regexp;
2620 pend = p + strlen (p);
2621 break;
2622 }
2623
2624 case '^':
2625 {
2626 if ( /* If at start of pattern, it's an operator. */
2627 p == pattern + 1
2628 /* If context independent, it's an operator. */
2629 || syntax & RE_CONTEXT_INDEP_ANCHORS
2630 /* Otherwise, depends on what's come before. */
2631 || at_begline_loc_p (pattern, p, syntax))
2632 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
2633 else
2634 goto normal_char;
2635 }
2636 break;
2637
2638
2639 case '$':
2640 {
2641 if ( /* If at end of pattern, it's an operator. */
2642 p == pend
2643 /* If context independent, it's an operator. */
2644 || syntax & RE_CONTEXT_INDEP_ANCHORS
2645 /* Otherwise, depends on what's next. */
2646 || at_endline_loc_p (p, pend, syntax))
2647 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
2648 else
2649 goto normal_char;
2650 }
2651 break;
2652
2653
2654 case '+':
2655 case '?':
2656 if ((syntax & RE_BK_PLUS_QM)
2657 || (syntax & RE_LIMITED_OPS))
2658 goto normal_char;
2659 handle_plus:
2660 case '*':
2661 /* If there is no previous pattern... */
2662 if (!laststart)
2663 {
2664 if (syntax & RE_CONTEXT_INVALID_OPS)
2665 FREE_STACK_RETURN (REG_BADRPT);
2666 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2667 goto normal_char;
2668 }
2669
2670 {
2671 /* 1 means zero (many) matches is allowed. */
2672 boolean zero_times_ok = 0, many_times_ok = 0;
2673 boolean greedy = 1;
2674
2675 /* If there is a sequence of repetition chars, collapse it
2676 down to just one (the right one). We can't combine
2677 interval operators with these because of, e.g., `a{2}*',
2678 which should only match an even number of `a's. */
2679
2680 for (;;)
2681 {
2682 if ((syntax & RE_FRUGAL)
2683 && c == '?' && (zero_times_ok || many_times_ok))
2684 greedy = 0;
2685 else
2686 {
2687 zero_times_ok |= c != '+';
2688 many_times_ok |= c != '?';
2689 }
2690
2691 if (p == pend)
2692 break;
2693 else if (*p == '*'
2694 || (!(syntax & RE_BK_PLUS_QM)
2695 && (*p == '+' || *p == '?')))
2696 ;
2697 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
2698 {
2699 if (p+1 == pend)
2700 FREE_STACK_RETURN (REG_EESCAPE);
2701 if (p[1] == '+' || p[1] == '?')
2702 PATFETCH (c); /* Gobble up the backslash. */
2703 else
2704 break;
2705 }
2706 else
2707 break;
2708 /* If we get here, we found another repeat character. */
2709 PATFETCH (c);
2710 }
2711
2712 /* Star, etc. applied to an empty pattern is equivalent
2713 to an empty pattern. */
2714 if (!laststart || laststart == b)
2715 break;
2716
2717 /* Now we know whether or not zero matches is allowed
2718 and also whether or not two or more matches is allowed. */
2719 if (greedy)
2720 {
2721 if (many_times_ok)
2722 {
2723 boolean simple = skip_one_char (laststart) == b;
2724 unsigned int startoffset = 0;
2725 re_opcode_t ofj =
2726 /* Check if the loop can match the empty string. */
2727 (simple || !analyse_first (laststart, b, NULL, 0))
2728 ? on_failure_jump : on_failure_jump_loop;
2729 assert (skip_one_char (laststart) <= b);
2730
2731 if (!zero_times_ok && simple)
2732 { /* Since simple * loops can be made faster by using
2733 on_failure_keep_string_jump, we turn simple P+
2734 into PP* if P is simple. */
2735 unsigned char *p1, *p2;
2736 startoffset = b - laststart;
2737 GET_BUFFER_SPACE (startoffset);
2738 p1 = b; p2 = laststart;
2739 while (p2 < p1)
2740 *b++ = *p2++;
2741 zero_times_ok = 1;
2742 }
2743
2744 GET_BUFFER_SPACE (6);
2745 if (!zero_times_ok)
2746 /* A + loop. */
2747 STORE_JUMP (ofj, b, b + 6);
2748 else
2749 /* Simple * loops can use on_failure_keep_string_jump
2750 depending on what follows. But since we don't know
2751 that yet, we leave the decision up to
2752 on_failure_jump_smart. */
2753 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
2754 laststart + startoffset, b + 6);
2755 b += 3;
2756 STORE_JUMP (jump, b, laststart + startoffset);
2757 b += 3;
2758 }
2759 else
2760 {
2761 /* A simple ? pattern. */
2762 assert (zero_times_ok);
2763 GET_BUFFER_SPACE (3);
2764 INSERT_JUMP (on_failure_jump, laststart, b + 3);
2765 b += 3;
2766 }
2767 }
2768 else /* not greedy */
2769 { /* I wish the greedy and non-greedy cases could be merged. */
2770
2771 GET_BUFFER_SPACE (7); /* We might use less. */
2772 if (many_times_ok)
2773 {
2774 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2775
2776 /* The non-greedy multiple match looks like
2777 a repeat..until: we only need a conditional jump
2778 at the end of the loop. */
2779 if (emptyp) BUF_PUSH (no_op);
2780 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2781 : on_failure_jump, b, laststart);
2782 b += 3;
2783 if (zero_times_ok)
2784 {
2785 /* The repeat...until naturally matches one or more.
2786 To also match zero times, we need to first jump to
2787 the end of the loop (its conditional jump). */
2788 INSERT_JUMP (jump, laststart, b);
2789 b += 3;
2790 }
2791 }
2792 else
2793 {
2794 /* non-greedy a?? */
2795 INSERT_JUMP (jump, laststart, b + 3);
2796 b += 3;
2797 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2798 b += 3;
2799 }
2800 }
2801 }
2802 pending_exact = 0;
2803 break;
2804
2805
2806 case '.':
2807 laststart = b;
2808 BUF_PUSH (anychar);
2809 break;
2810
2811
2812 case '[':
2813 {
2814 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
2815
2816 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2817
2818 /* Ensure that we have enough space to push a charset: the
2819 opcode, the length count, and the bitset; 34 bytes in all. */
2820 GET_BUFFER_SPACE (34);
2821
2822 laststart = b;
2823
2824 /* We test `*p == '^' twice, instead of using an if
2825 statement, so we only need one BUF_PUSH. */
2826 BUF_PUSH (*p == '^' ? charset_not : charset);
2827 if (*p == '^')
2828 p++;
2829
2830 /* Remember the first position in the bracket expression. */
2831 p1 = p;
2832
2833 /* Push the number of bytes in the bitmap. */
2834 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2835
2836 /* Clear the whole map. */
2837 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2838
2839 /* charset_not matches newline according to a syntax bit. */
2840 if ((re_opcode_t) b[-2] == charset_not
2841 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2842 SET_LIST_BIT ('\n');
2843
2844 /* Read in characters and ranges, setting map bits. */
2845 for (;;)
2846 {
2847 boolean escaped_char = false;
2848 const unsigned char *p2 = p;
2849
2850 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2851
2852 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2853 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2854 So the translation is done later in a loop. Example:
2855 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2856 PATFETCH (c);
2857
2858 /* \ might escape characters inside [...] and [^...]. */
2859 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2860 {
2861 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2862
2863 PATFETCH (c);
2864 escaped_char = true;
2865 }
2866 else
2867 {
2868 /* Could be the end of the bracket expression. If it's
2869 not (i.e., when the bracket expression is `[]' so
2870 far), the ']' character bit gets set way below. */
2871 if (c == ']' && p2 != p1)
2872 break;
2873 }
2874
2875 /* What should we do for the character which is
2876 greater than 0x7F, but not BASE_LEADING_CODE_P?
2877 XXX */
2878
2879 /* See if we're at the beginning of a possible character
2880 class. */
2881
2882 if (!escaped_char &&
2883 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2884 {
2885 /* Leave room for the null. */
2886 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
2887 const unsigned char *class_beg;
2888
2889 PATFETCH (c);
2890 c1 = 0;
2891 class_beg = p;
2892
2893 /* If pattern is `[[:'. */
2894 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2895
2896 for (;;)
2897 {
2898 PATFETCH (c);
2899 if ((c == ':' && *p == ']') || p == pend)
2900 break;
2901 if (c1 < CHAR_CLASS_MAX_LENGTH)
2902 str[c1++] = c;
2903 else
2904 /* This is in any case an invalid class name. */
2905 str[0] = '\0';
2906 }
2907 str[c1] = '\0';
2908
2909 /* If isn't a word bracketed by `[:' and `:]':
2910 undo the ending character, the letters, and
2911 leave the leading `:' and `[' (but set bits for
2912 them). */
2913 if (c == ':' && *p == ']')
2914 {
2915 re_wchar_t ch;
2916 re_wctype_t cc;
2917
2918 cc = re_wctype (str);
2919
2920 if (cc == 0)
2921 FREE_STACK_RETURN (REG_ECTYPE);
2922
2923 /* Throw away the ] at the end of the character
2924 class. */
2925 PATFETCH (c);
2926
2927 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2928
2929 /* Most character classes in a multibyte match
2930 just set a flag. Exceptions are is_blank,
2931 is_digit, is_cntrl, and is_xdigit, since
2932 they can only match ASCII characters. We
2933 don't need to handle them for multibyte.
2934 They are distinguished by a negative wctype. */
2935
2936 if (multibyte)
2937 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
2938 re_wctype_to_bit (cc));
2939
2940 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2941 {
2942 int translated = TRANSLATE (ch);
2943 if (translated < (1 << BYTEWIDTH)
2944 && re_iswctype (btowc (ch), cc))
2945 SET_LIST_BIT (translated);
2946 }
2947
2948 /* In most cases the matching rule for char classes
2949 only uses the syntax table for multibyte chars,
2950 so that the content of the syntax-table it is not
2951 hardcoded in the range_table. SPACE and WORD are
2952 the two exceptions. */
2953 if ((1 << cc) & ((1 << RECC_SPACE) | (1 << RECC_WORD)))
2954 bufp->used_syntax = 1;
2955
2956 /* Repeat the loop. */
2957 continue;
2958 }
2959 else
2960 {
2961 /* Go back to right after the "[:". */
2962 p = class_beg;
2963 SET_LIST_BIT ('[');
2964
2965 /* Because the `:' may starts the range, we
2966 can't simply set bit and repeat the loop.
2967 Instead, just set it to C and handle below. */
2968 c = ':';
2969 }
2970 }
2971
2972 if (p < pend && p[0] == '-' && p[1] != ']')
2973 {
2974
2975 /* Discard the `-'. */
2976 PATFETCH (c1);
2977
2978 /* Fetch the character which ends the range. */
2979 PATFETCH (c1);
2980
2981 if (SINGLE_BYTE_CHAR_P (c))
2982 {
2983 if (! SINGLE_BYTE_CHAR_P (c1))
2984 {
2985 /* Handle a range starting with a
2986 character of less than 256, and ending
2987 with a character of not less than 256.
2988 Split that into two ranges, the low one
2989 ending at 0377, and the high one
2990 starting at the smallest character in
2991 the charset of C1 and ending at C1. */
2992 int charset = CHAR_CHARSET (c1);
2993 re_wchar_t c2 = MAKE_CHAR (charset, 0, 0);
2994
2995 SET_RANGE_TABLE_WORK_AREA (range_table_work,
2996 c2, c1);
2997 c1 = 0377;
2998 }
2999 }
3000 else if (!SAME_CHARSET_P (c, c1))
3001 FREE_STACK_RETURN (REG_ERANGEX);
3002 }
3003 else
3004 /* Range from C to C. */
3005 c1 = c;
3006
3007 /* Set the range ... */
3008 if (SINGLE_BYTE_CHAR_P (c))
3009 /* ... into bitmap. */
3010 {
3011 re_wchar_t this_char;
3012 re_wchar_t range_start = c, range_end = c1;
3013
3014 /* If the start is after the end, the range is empty. */
3015 if (range_start > range_end)
3016 {
3017 if (syntax & RE_NO_EMPTY_RANGES)
3018 FREE_STACK_RETURN (REG_ERANGE);
3019 /* Else, repeat the loop. */
3020 }
3021 else
3022 {
3023 for (this_char = range_start; this_char <= range_end;
3024 this_char++)
3025 {
3026 int translated = TRANSLATE (this_char);
3027 if (translated < (1 << BYTEWIDTH))
3028 SET_LIST_BIT (translated);
3029 else
3030 SET_RANGE_TABLE_WORK_AREA
3031 (range_table_work, translated, translated);
3032 }
3033 }
3034 }
3035 else
3036 /* ... into range table. */
3037 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
3038 }
3039
3040 /* Discard any (non)matching list bytes that are all 0 at the
3041 end of the map. Decrease the map-length byte too. */
3042 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3043 b[-1]--;
3044 b += b[-1];
3045
3046 /* Build real range table from work area. */
3047 if (RANGE_TABLE_WORK_USED (range_table_work)
3048 || RANGE_TABLE_WORK_BITS (range_table_work))
3049 {
3050 int i;
3051 int used = RANGE_TABLE_WORK_USED (range_table_work);
3052
3053 /* Allocate space for COUNT + RANGE_TABLE. Needs two
3054 bytes for flags, two for COUNT, and three bytes for
3055 each character. */
3056 GET_BUFFER_SPACE (4 + used * 3);
3057
3058 /* Indicate the existence of range table. */
3059 laststart[1] |= 0x80;
3060
3061 /* Store the character class flag bits into the range table.
3062 If not in emacs, these flag bits are always 0. */
3063 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
3064 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
3065
3066 STORE_NUMBER_AND_INCR (b, used / 2);
3067 for (i = 0; i < used; i++)
3068 STORE_CHARACTER_AND_INCR
3069 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
3070 }
3071 }
3072 break;
3073
3074
3075 case '(':
3076 if (syntax & RE_NO_BK_PARENS)
3077 goto handle_open;
3078 else
3079 goto normal_char;
3080
3081
3082 case ')':
3083 if (syntax & RE_NO_BK_PARENS)
3084 goto handle_close;
3085 else
3086 goto normal_char;
3087
3088
3089 case '\n':
3090 if (syntax & RE_NEWLINE_ALT)
3091 goto handle_alt;
3092 else
3093 goto normal_char;
3094
3095
3096 case '|':
3097 if (syntax & RE_NO_BK_VBAR)
3098 goto handle_alt;
3099 else
3100 goto normal_char;
3101
3102
3103 case '{':
3104 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3105 goto handle_interval;
3106 else
3107 goto normal_char;
3108
3109
3110 case '\\':
3111 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3112
3113 /* Do not translate the character after the \, so that we can
3114 distinguish, e.g., \B from \b, even if we normally would
3115 translate, e.g., B to b. */
3116 PATFETCH (c);
3117
3118 switch (c)
3119 {
3120 case '(':
3121 if (syntax & RE_NO_BK_PARENS)
3122 goto normal_backslash;
3123
3124 handle_open:
3125 {
3126 int shy = 0;
3127 if (p+1 < pend)
3128 {
3129 /* Look for a special (?...) construct */
3130 if ((syntax & RE_SHY_GROUPS) && *p == '?')
3131 {
3132 PATFETCH (c); /* Gobble up the '?'. */
3133 PATFETCH (c);
3134 switch (c)
3135 {
3136 case ':': shy = 1; break;
3137 default:
3138 /* Only (?:...) is supported right now. */
3139 FREE_STACK_RETURN (REG_BADPAT);
3140 }
3141 }
3142 }
3143
3144 if (!shy)
3145 {
3146 bufp->re_nsub++;
3147 regnum++;
3148 }
3149
3150 if (COMPILE_STACK_FULL)
3151 {
3152 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3153 compile_stack_elt_t);
3154 if (compile_stack.stack == NULL) return REG_ESPACE;
3155
3156 compile_stack.size <<= 1;
3157 }
3158
3159 /* These are the values to restore when we hit end of this
3160 group. They are all relative offsets, so that if the
3161 whole pattern moves because of realloc, they will still
3162 be valid. */
3163 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3164 COMPILE_STACK_TOP.fixup_alt_jump
3165 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3166 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
3167 COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
3168
3169 /* Do not push a
3170 start_memory for groups beyond the last one we can
3171 represent in the compiled pattern. */
3172 if (regnum <= MAX_REGNUM && !shy)
3173 BUF_PUSH_2 (start_memory, regnum);
3174
3175 compile_stack.avail++;
3176
3177 fixup_alt_jump = 0;
3178 laststart = 0;
3179 begalt = b;
3180 /* If we've reached MAX_REGNUM groups, then this open
3181 won't actually generate any code, so we'll have to
3182 clear pending_exact explicitly. */
3183 pending_exact = 0;
3184 break;
3185 }
3186
3187 case ')':
3188 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3189
3190 if (COMPILE_STACK_EMPTY)
3191 {
3192 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3193 goto normal_backslash;
3194 else
3195 FREE_STACK_RETURN (REG_ERPAREN);
3196 }
3197
3198 handle_close:
3199 FIXUP_ALT_JUMP ();
3200
3201 /* See similar code for backslashed left paren above. */
3202 if (COMPILE_STACK_EMPTY)
3203 {
3204 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3205 goto normal_char;
3206 else
3207 FREE_STACK_RETURN (REG_ERPAREN);
3208 }
3209
3210 /* Since we just checked for an empty stack above, this
3211 ``can't happen''. */
3212 assert (compile_stack.avail != 0);
3213 {
3214 /* We don't just want to restore into `regnum', because
3215 later groups should continue to be numbered higher,
3216 as in `(ab)c(de)' -- the second group is #2. */
3217 regnum_t this_group_regnum;
3218
3219 compile_stack.avail--;
3220 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3221 fixup_alt_jump
3222 = COMPILE_STACK_TOP.fixup_alt_jump
3223 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3224 : 0;
3225 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
3226 this_group_regnum = COMPILE_STACK_TOP.regnum;
3227 /* If we've reached MAX_REGNUM groups, then this open
3228 won't actually generate any code, so we'll have to
3229 clear pending_exact explicitly. */
3230 pending_exact = 0;
3231
3232 /* We're at the end of the group, so now we know how many
3233 groups were inside this one. */
3234 if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
3235 BUF_PUSH_2 (stop_memory, this_group_regnum);
3236 }
3237 break;
3238
3239
3240 case '|': /* `\|'. */
3241 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3242 goto normal_backslash;
3243 handle_alt:
3244 if (syntax & RE_LIMITED_OPS)
3245 goto normal_char;
3246
3247 /* Insert before the previous alternative a jump which
3248 jumps to this alternative if the former fails. */
3249 GET_BUFFER_SPACE (3);
3250 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3251 pending_exact = 0;
3252 b += 3;
3253
3254 /* The alternative before this one has a jump after it
3255 which gets executed if it gets matched. Adjust that
3256 jump so it will jump to this alternative's analogous
3257 jump (put in below, which in turn will jump to the next
3258 (if any) alternative's such jump, etc.). The last such
3259 jump jumps to the correct final destination. A picture:
3260 _____ _____
3261 | | | |
3262 | v | v
3263 a | b | c
3264
3265 If we are at `b', then fixup_alt_jump right now points to a
3266 three-byte space after `a'. We'll put in the jump, set
3267 fixup_alt_jump to right after `b', and leave behind three
3268 bytes which we'll fill in when we get to after `c'. */
3269
3270 FIXUP_ALT_JUMP ();
3271
3272 /* Mark and leave space for a jump after this alternative,
3273 to be filled in later either by next alternative or
3274 when know we're at the end of a series of alternatives. */
3275 fixup_alt_jump = b;
3276 GET_BUFFER_SPACE (3);
3277 b += 3;
3278
3279 laststart = 0;
3280 begalt = b;
3281 break;
3282
3283
3284 case '{':
3285 /* If \{ is a literal. */
3286 if (!(syntax & RE_INTERVALS)
3287 /* If we're at `\{' and it's not the open-interval
3288 operator. */
3289 || (syntax & RE_NO_BK_BRACES))
3290 goto normal_backslash;
3291
3292 handle_interval:
3293 {
3294 /* If got here, then the syntax allows intervals. */
3295
3296 /* At least (most) this many matches must be made. */
3297 int lower_bound = 0, upper_bound = -1;
3298
3299 beg_interval = p;
3300
3301 GET_UNSIGNED_NUMBER (lower_bound);
3302
3303 if (c == ',')
3304 GET_UNSIGNED_NUMBER (upper_bound);
3305 else
3306 /* Interval such as `{1}' => match exactly once. */
3307 upper_bound = lower_bound;
3308
3309 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
3310 || (upper_bound >= 0 && lower_bound > upper_bound))
3311 FREE_STACK_RETURN (REG_BADBR);
3312
3313 if (!(syntax & RE_NO_BK_BRACES))
3314 {
3315 if (c != '\\')
3316 FREE_STACK_RETURN (REG_BADBR);
3317 if (p == pend)
3318 FREE_STACK_RETURN (REG_EESCAPE);
3319 PATFETCH (c);
3320 }
3321
3322 if (c != '}')
3323 FREE_STACK_RETURN (REG_BADBR);
3324
3325 /* We just parsed a valid interval. */
3326
3327 /* If it's invalid to have no preceding re. */
3328 if (!laststart)
3329 {
3330 if (syntax & RE_CONTEXT_INVALID_OPS)
3331 FREE_STACK_RETURN (REG_BADRPT);
3332 else if (syntax & RE_CONTEXT_INDEP_OPS)
3333 laststart = b;
3334 else
3335 goto unfetch_interval;
3336 }
3337
3338 if (upper_bound == 0)
3339 /* If the upper bound is zero, just drop the sub pattern
3340 altogether. */
3341 b = laststart;
3342 else if (lower_bound == 1 && upper_bound == 1)
3343 /* Just match it once: nothing to do here. */
3344 ;
3345
3346 /* Otherwise, we have a nontrivial interval. When
3347 we're all done, the pattern will look like:
3348 set_number_at <jump count> <upper bound>
3349 set_number_at <succeed_n count> <lower bound>
3350 succeed_n <after jump addr> <succeed_n count>
3351 <body of loop>
3352 jump_n <succeed_n addr> <jump count>
3353 (The upper bound and `jump_n' are omitted if
3354 `upper_bound' is 1, though.) */
3355 else
3356 { /* If the upper bound is > 1, we need to insert
3357 more at the end of the loop. */
3358 unsigned int nbytes = (upper_bound < 0 ? 3
3359 : upper_bound > 1 ? 5 : 0);
3360 unsigned int startoffset = 0;
3361
3362 GET_BUFFER_SPACE (20); /* We might use less. */
3363
3364 if (lower_bound == 0)
3365 {
3366 /* A succeed_n that starts with 0 is really a
3367 a simple on_failure_jump_loop. */
3368 INSERT_JUMP (on_failure_jump_loop, laststart,
3369 b + 3 + nbytes);
3370 b += 3;
3371 }
3372 else
3373 {
3374 /* Initialize lower bound of the `succeed_n', even
3375 though it will be set during matching by its
3376 attendant `set_number_at' (inserted next),
3377 because `re_compile_fastmap' needs to know.
3378 Jump to the `jump_n' we might insert below. */
3379 INSERT_JUMP2 (succeed_n, laststart,
3380 b + 5 + nbytes,
3381 lower_bound);
3382 b += 5;
3383
3384 /* Code to initialize the lower bound. Insert
3385 before the `succeed_n'. The `5' is the last two
3386 bytes of this `set_number_at', plus 3 bytes of
3387 the following `succeed_n'. */
3388 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3389 b += 5;
3390 startoffset += 5;
3391 }
3392
3393 if (upper_bound < 0)
3394 {
3395 /* A negative upper bound stands for infinity,
3396 in which case it degenerates to a plain jump. */
3397 STORE_JUMP (jump, b, laststart + startoffset);
3398 b += 3;
3399 }
3400 else if (upper_bound > 1)
3401 { /* More than one repetition is allowed, so
3402 append a backward jump to the `succeed_n'
3403 that starts this interval.
3404
3405 When we've reached this during matching,
3406 we'll have matched the interval once, so
3407 jump back only `upper_bound - 1' times. */
3408 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3409 upper_bound - 1);
3410 b += 5;
3411
3412 /* The location we want to set is the second
3413 parameter of the `jump_n'; that is `b-2' as
3414 an absolute address. `laststart' will be
3415 the `set_number_at' we're about to insert;
3416 `laststart+3' the number to set, the source
3417 for the relative address. But we are
3418 inserting into the middle of the pattern --
3419 so everything is getting moved up by 5.
3420 Conclusion: (b - 2) - (laststart + 3) + 5,
3421 i.e., b - laststart.
3422
3423 We insert this at the beginning of the loop
3424 so that if we fail during matching, we'll
3425 reinitialize the bounds. */
3426 insert_op2 (set_number_at, laststart, b - laststart,
3427 upper_bound - 1, b);
3428 b += 5;
3429 }
3430 }
3431 pending_exact = 0;
3432 beg_interval = NULL;
3433 }
3434 break;
3435
3436 unfetch_interval:
3437 /* If an invalid interval, match the characters as literals. */
3438 assert (beg_interval);
3439 p = beg_interval;
3440 beg_interval = NULL;
3441
3442 /* normal_char and normal_backslash need `c'. */
3443 c = '{';
3444
3445 if (!(syntax & RE_NO_BK_BRACES))
3446 {
3447 assert (p > pattern && p[-1] == '\\');
3448 goto normal_backslash;
3449 }
3450 else
3451 goto normal_char;
3452
3453 #ifdef emacs
3454 /* There is no way to specify the before_dot and after_dot
3455 operators. rms says this is ok. --karl */
3456 case '=':
3457 BUF_PUSH (at_dot);
3458 break;
3459
3460 case 's':
3461 laststart = b;
3462 PATFETCH (c);
3463 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3464 break;
3465
3466 case 'S':
3467 laststart = b;
3468 PATFETCH (c);
3469 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3470 break;
3471
3472 case 'c':
3473 laststart = b;
3474 PATFETCH (c);
3475 BUF_PUSH_2 (categoryspec, c);
3476 break;
3477
3478 case 'C':
3479 laststart = b;
3480 PATFETCH (c);
3481 BUF_PUSH_2 (notcategoryspec, c);
3482 break;
3483 #endif /* emacs */
3484
3485
3486 case 'w':
3487 if (syntax & RE_NO_GNU_OPS)
3488 goto normal_char;
3489 laststart = b;
3490 BUF_PUSH_2 (syntaxspec, Sword);
3491 break;
3492
3493
3494 case 'W':
3495 if (syntax & RE_NO_GNU_OPS)
3496 goto normal_char;
3497 laststart = b;
3498 BUF_PUSH_2 (notsyntaxspec, Sword);
3499 break;
3500
3501
3502 case '<':
3503 if (syntax & RE_NO_GNU_OPS)
3504 goto normal_char;
3505 BUF_PUSH (wordbeg);
3506 break;
3507
3508 case '>':
3509 if (syntax & RE_NO_GNU_OPS)
3510 goto normal_char;
3511 BUF_PUSH (wordend);
3512 break;
3513
3514 case '_':
3515 if (syntax & RE_NO_GNU_OPS)
3516 goto normal_char;
3517 laststart = b;
3518 PATFETCH (c);
3519 if (c == '<')
3520 BUF_PUSH (symbeg);
3521 else if (c == '>')
3522 BUF_PUSH (symend);
3523 else
3524 FREE_STACK_RETURN (REG_BADPAT);
3525 break;
3526
3527 case 'b':
3528 if (syntax & RE_NO_GNU_OPS)
3529 goto normal_char;
3530 BUF_PUSH (wordbound);
3531 break;
3532
3533 case 'B':
3534 if (syntax & RE_NO_GNU_OPS)
3535 goto normal_char;
3536 BUF_PUSH (notwordbound);
3537 break;
3538
3539 case '`':
3540 if (syntax & RE_NO_GNU_OPS)
3541 goto normal_char;
3542 BUF_PUSH (begbuf);
3543 break;
3544
3545 case '\'':
3546 if (syntax & RE_NO_GNU_OPS)
3547 goto normal_char;
3548 BUF_PUSH (endbuf);
3549 break;
3550
3551 case '1': case '2': case '3': case '4': case '5':
3552 case '6': case '7': case '8': case '9':
3553 {
3554 regnum_t reg;
3555
3556 if (syntax & RE_NO_BK_REFS)
3557 goto normal_backslash;
3558
3559 reg = c - '0';
3560
3561 /* Can't back reference to a subexpression before its end. */
3562 if (reg > regnum || group_in_compile_stack (compile_stack, reg))
3563 FREE_STACK_RETURN (REG_ESUBREG);
3564
3565 laststart = b;
3566 BUF_PUSH_2 (duplicate, reg);
3567 }
3568 break;
3569
3570
3571 case '+':
3572 case '?':
3573 if (syntax & RE_BK_PLUS_QM)
3574 goto handle_plus;
3575 else
3576 goto normal_backslash;
3577
3578 default:
3579 normal_backslash:
3580 /* You might think it would be useful for \ to mean
3581 not to translate; but if we don't translate it
3582 it will never match anything. */
3583 goto normal_char;
3584 }
3585 break;
3586
3587
3588 default:
3589 /* Expects the character in `c'. */
3590 normal_char:
3591 /* If no exactn currently being built. */
3592 if (!pending_exact
3593
3594 /* If last exactn not at current position. */
3595 || pending_exact + *pending_exact + 1 != b
3596
3597 /* We have only one byte following the exactn for the count. */
3598 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
3599
3600 /* If followed by a repetition operator. */
3601 || (p != pend && (*p == '*' || *p == '^'))
3602 || ((syntax & RE_BK_PLUS_QM)
3603 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3604 : p != pend && (*p == '+' || *p == '?'))
3605 || ((syntax & RE_INTERVALS)
3606 && ((syntax & RE_NO_BK_BRACES)
3607 ? p != pend && *p == '{'
3608 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
3609 {
3610 /* Start building a new exactn. */
3611
3612 laststart = b;
3613
3614 BUF_PUSH_2 (exactn, 0);
3615 pending_exact = b - 1;
3616 }
3617
3618 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3619 {
3620 int len;
3621
3622 c = TRANSLATE (c);
3623 if (multibyte)
3624 len = CHAR_STRING (c, b);
3625 else
3626 *b = c, len = 1;
3627 b += len;
3628 (*pending_exact) += len;
3629 }
3630
3631 break;
3632 } /* switch (c) */
3633 } /* while p != pend */
3634
3635
3636 /* Through the pattern now. */
3637
3638 FIXUP_ALT_JUMP ();
3639
3640 if (!COMPILE_STACK_EMPTY)
3641 FREE_STACK_RETURN (REG_EPAREN);
3642
3643 /* If we don't want backtracking, force success
3644 the first time we reach the end of the compiled pattern. */
3645 if (syntax & RE_NO_POSIX_BACKTRACKING)
3646 BUF_PUSH (succeed);
3647
3648 /* We have succeeded; set the length of the buffer. */
3649 bufp->used = b - bufp->buffer;
3650
3651 #ifdef DEBUG
3652 if (debug > 0)
3653 {
3654 re_compile_fastmap (bufp);
3655 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3656 print_compiled_pattern (bufp);
3657 }
3658 debug--;
3659 #endif /* DEBUG */
3660
3661 #ifndef MATCH_MAY_ALLOCATE
3662 /* Initialize the failure stack to the largest possible stack. This
3663 isn't necessary unless we're trying to avoid calling alloca in
3664 the search and match routines. */
3665 {
3666 int num_regs = bufp->re_nsub + 1;
3667
3668 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
3669 {
3670 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
3671
3672 if (! fail_stack.stack)
3673 fail_stack.stack
3674 = (fail_stack_elt_t *) malloc (fail_stack.size
3675 * sizeof (fail_stack_elt_t));
3676 else
3677 fail_stack.stack
3678 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3679 (fail_stack.size
3680 * sizeof (fail_stack_elt_t)));
3681 }
3682
3683 regex_grow_registers (num_regs);
3684 }
3685 #endif /* not MATCH_MAY_ALLOCATE */
3686
3687 FREE_STACK_RETURN (REG_NOERROR);
3688 } /* regex_compile */
3689 \f
3690 /* Subroutines for `regex_compile'. */
3691
3692 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3693
3694 static void
3695 store_op1 (op, loc, arg)
3696 re_opcode_t op;
3697 unsigned char *loc;
3698 int arg;
3699 {
3700 *loc = (unsigned char) op;
3701 STORE_NUMBER (loc + 1, arg);
3702 }
3703
3704
3705 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3706
3707 static void
3708 store_op2 (op, loc, arg1, arg2)
3709 re_opcode_t op;
3710 unsigned char *loc;
3711 int arg1, arg2;
3712 {
3713 *loc = (unsigned char) op;
3714 STORE_NUMBER (loc + 1, arg1);
3715 STORE_NUMBER (loc + 3, arg2);
3716 }
3717
3718
3719 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3720 for OP followed by two-byte integer parameter ARG. */
3721
3722 static void
3723 insert_op1 (op, loc, arg, end)
3724 re_opcode_t op;
3725 unsigned char *loc;
3726 int arg;
3727 unsigned char *end;
3728 {
3729 register unsigned char *pfrom = end;
3730 register unsigned char *pto = end + 3;
3731
3732 while (pfrom != loc)
3733 *--pto = *--pfrom;
3734
3735 store_op1 (op, loc, arg);
3736 }
3737
3738
3739 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3740
3741 static void
3742 insert_op2 (op, loc, arg1, arg2, end)
3743 re_opcode_t op;
3744 unsigned char *loc;
3745 int arg1, arg2;
3746 unsigned char *end;
3747 {
3748 register unsigned char *pfrom = end;
3749 register unsigned char *pto = end + 5;
3750
3751 while (pfrom != loc)
3752 *--pto = *--pfrom;
3753
3754 store_op2 (op, loc, arg1, arg2);
3755 }
3756
3757
3758 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3759 after an alternative or a begin-subexpression. We assume there is at
3760 least one character before the ^. */
3761
3762 static boolean
3763 at_begline_loc_p (pattern, p, syntax)
3764 re_char *pattern, *p;
3765 reg_syntax_t syntax;
3766 {
3767 re_char *prev = p - 2;
3768 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3769
3770 return
3771 /* After a subexpression? */
3772 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3773 /* After an alternative? */
3774 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3775 /* After a shy subexpression? */
3776 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3777 && prev[-1] == '?' && prev[-2] == '('
3778 && (syntax & RE_NO_BK_PARENS
3779 || (prev - 3 >= pattern && prev[-3] == '\\')));
3780 }
3781
3782
3783 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3784 at least one character after the $, i.e., `P < PEND'. */
3785
3786 static boolean
3787 at_endline_loc_p (p, pend, syntax)
3788 re_char *p, *pend;
3789 reg_syntax_t syntax;
3790 {
3791 re_char *next = p;
3792 boolean next_backslash = *next == '\\';
3793 re_char *next_next = p + 1 < pend ? p + 1 : 0;
3794
3795 return
3796 /* Before a subexpression? */
3797 (syntax & RE_NO_BK_PARENS ? *next == ')'
3798 : next_backslash && next_next && *next_next == ')')
3799 /* Before an alternative? */
3800 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3801 : next_backslash && next_next && *next_next == '|');
3802 }
3803
3804
3805 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3806 false if it's not. */
3807
3808 static boolean
3809 group_in_compile_stack (compile_stack, regnum)
3810 compile_stack_type compile_stack;
3811 regnum_t regnum;
3812 {
3813 int this_element;
3814
3815 for (this_element = compile_stack.avail - 1;
3816 this_element >= 0;
3817 this_element--)
3818 if (compile_stack.stack[this_element].regnum == regnum)
3819 return true;
3820
3821 return false;
3822 }
3823 \f
3824 /* analyse_first.
3825 If fastmap is non-NULL, go through the pattern and fill fastmap
3826 with all the possible leading chars. If fastmap is NULL, don't
3827 bother filling it up (obviously) and only return whether the
3828 pattern could potentially match the empty string.
3829
3830 Return 1 if p..pend might match the empty string.
3831 Return 0 if p..pend matches at least one char.
3832 Return -1 if fastmap was not updated accurately. */
3833
3834 static int
3835 analyse_first (p, pend, fastmap, multibyte)
3836 re_char *p, *pend;
3837 char *fastmap;
3838 const int multibyte;
3839 {
3840 int j, k;
3841 boolean not;
3842
3843 /* If all elements for base leading-codes in fastmap is set, this
3844 flag is set true. */
3845 boolean match_any_multibyte_characters = false;
3846
3847 assert (p);
3848
3849 /* The loop below works as follows:
3850 - It has a working-list kept in the PATTERN_STACK and which basically
3851 starts by only containing a pointer to the first operation.
3852 - If the opcode we're looking at is a match against some set of
3853 chars, then we add those chars to the fastmap and go on to the
3854 next work element from the worklist (done via `break').
3855 - If the opcode is a control operator on the other hand, we either
3856 ignore it (if it's meaningless at this point, such as `start_memory')
3857 or execute it (if it's a jump). If the jump has several destinations
3858 (i.e. `on_failure_jump'), then we push the other destination onto the
3859 worklist.
3860 We guarantee termination by ignoring backward jumps (more or less),
3861 so that `p' is monotonically increasing. More to the point, we
3862 never set `p' (or push) anything `<= p1'. */
3863
3864 while (p < pend)
3865 {
3866 /* `p1' is used as a marker of how far back a `on_failure_jump'
3867 can go without being ignored. It is normally equal to `p'
3868 (which prevents any backward `on_failure_jump') except right
3869 after a plain `jump', to allow patterns such as:
3870 0: jump 10
3871 3..9: <body>
3872 10: on_failure_jump 3
3873 as used for the *? operator. */
3874 re_char *p1 = p;
3875
3876 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3877 {
3878 case succeed:
3879 return 1;
3880 continue;
3881
3882 case duplicate:
3883 /* If the first character has to match a backreference, that means
3884 that the group was empty (since it already matched). Since this
3885 is the only case that interests us here, we can assume that the
3886 backreference must match the empty string. */
3887 p++;
3888 continue;
3889
3890
3891 /* Following are the cases which match a character. These end
3892 with `break'. */
3893
3894 case exactn:
3895 if (fastmap)
3896 {
3897 int c = RE_STRING_CHAR (p + 1, pend - p);
3898 /* When fast-scanning, the fastmap can be indexed either with
3899 a char (smaller than 256) or with the first byte of
3900 a char's byte sequence. So we have to conservatively add
3901 both to the table. */
3902 if (SINGLE_BYTE_CHAR_P (c))
3903 fastmap[c] = 1;
3904 fastmap[p[1]] = 1;
3905 }
3906 break;
3907
3908
3909 case anychar:
3910 /* We could put all the chars except for \n (and maybe \0)
3911 but we don't bother since it is generally not worth it. */
3912 if (!fastmap) break;
3913 return -1;
3914
3915
3916 case charset_not:
3917 /* Chars beyond end of bitmap are possible matches.
3918 All the single-byte codes can occur in multibyte buffers.
3919 So any that are not listed in the charset
3920 are possible matches, even in multibyte buffers. */
3921 if (!fastmap) break;
3922 /* We don't need to mark LEADING_CODE_8_BIT_CONTROL specially
3923 because it will automatically be set when needed by virtue of
3924 being larger than the highest char of its charset (0xbf) but
3925 smaller than (1<<BYTEWIDTH). */
3926 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3927 j < (1 << BYTEWIDTH); j++)
3928 fastmap[j] = 1;
3929 /* Fallthrough */
3930 case charset:
3931 if (!fastmap) break;
3932 not = (re_opcode_t) *(p - 1) == charset_not;
3933 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3934 j >= 0; j--)
3935 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
3936 {
3937 fastmap[j] = 1;
3938 #ifdef emacs
3939 if (j >= 0x80 && j < 0xa0)
3940 fastmap[LEADING_CODE_8_BIT_CONTROL] = 1;
3941 #endif
3942 }
3943
3944 if ((not && multibyte)
3945 /* Any character set can possibly contain a character
3946 which doesn't match the specified set of characters. */
3947 || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3948 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3949 /* If we can match a character class, we can match
3950 any character set. */
3951 {
3952 set_fastmap_for_multibyte_characters:
3953 if (match_any_multibyte_characters == false)
3954 {
3955 for (j = 0x80; j < 0xA0; j++) /* XXX */
3956 if (BASE_LEADING_CODE_P (j))
3957 fastmap[j] = 1;
3958 match_any_multibyte_characters = true;
3959 }
3960 }
3961
3962 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3963 && match_any_multibyte_characters == false)
3964 {
3965 /* Set fastmap[I] 1 where I is a base leading code of each
3966 multibyte character in the range table. */
3967 int c, count;
3968
3969 /* Make P points the range table. `+ 2' is to skip flag
3970 bits for a character class. */
3971 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
3972
3973 /* Extract the number of ranges in range table into COUNT. */
3974 EXTRACT_NUMBER_AND_INCR (count, p);
3975 for (; count > 0; count--, p += 2 * 3) /* XXX */
3976 {
3977 /* Extract the start of each range. */
3978 EXTRACT_CHARACTER (c, p);
3979 j = CHAR_CHARSET (c);
3980 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3981 }
3982 }
3983 break;
3984
3985 case syntaxspec:
3986 case notsyntaxspec:
3987 if (!fastmap) break;
3988 #ifndef emacs
3989 not = (re_opcode_t)p[-1] == notsyntaxspec;
3990 k = *p++;
3991 for (j = 0; j < (1 << BYTEWIDTH); j++)
3992 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
3993 fastmap[j] = 1;
3994 break;
3995 #else /* emacs */
3996 /* This match depends on text properties. These end with
3997 aborting optimizations. */
3998 return -1;
3999
4000 case categoryspec:
4001 case notcategoryspec:
4002 if (!fastmap) break;
4003 not = (re_opcode_t)p[-1] == notcategoryspec;
4004 k = *p++;
4005 for (j = 0; j < (1 << BYTEWIDTH); j++)
4006 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
4007 fastmap[j] = 1;
4008
4009 if (multibyte)
4010 /* Any character set can possibly contain a character
4011 whose category is K (or not). */
4012 goto set_fastmap_for_multibyte_characters;
4013 break;
4014
4015 /* All cases after this match the empty string. These end with
4016 `continue'. */
4017
4018 case before_dot:
4019 case at_dot:
4020 case after_dot:
4021 #endif /* !emacs */
4022 case no_op:
4023 case begline:
4024 case endline:
4025 case begbuf:
4026 case endbuf:
4027 case wordbound:
4028 case notwordbound:
4029 case wordbeg:
4030 case wordend:
4031 case symbeg:
4032 case symend:
4033 continue;
4034
4035
4036 case jump:
4037 EXTRACT_NUMBER_AND_INCR (j, p);
4038 if (j < 0)
4039 /* Backward jumps can only go back to code that we've already
4040 visited. `re_compile' should make sure this is true. */
4041 break;
4042 p += j;
4043 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4044 {
4045 case on_failure_jump:
4046 case on_failure_keep_string_jump:
4047 case on_failure_jump_loop:
4048 case on_failure_jump_nastyloop:
4049 case on_failure_jump_smart:
4050 p++;
4051 break;
4052 default:
4053 continue;
4054 };
4055 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4056 to jump back to "just after here". */
4057 /* Fallthrough */
4058
4059 case on_failure_jump:
4060 case on_failure_keep_string_jump:
4061 case on_failure_jump_nastyloop:
4062 case on_failure_jump_loop:
4063 case on_failure_jump_smart:
4064 EXTRACT_NUMBER_AND_INCR (j, p);
4065 if (p + j <= p1)
4066 ; /* Backward jump to be ignored. */
4067 else
4068 { /* We have to look down both arms.
4069 We first go down the "straight" path so as to minimize
4070 stack usage when going through alternatives. */
4071 int r = analyse_first (p, pend, fastmap, multibyte);
4072 if (r) return r;
4073 p += j;
4074 }
4075 continue;
4076
4077
4078 case jump_n:
4079 /* This code simply does not properly handle forward jump_n. */
4080 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
4081 p += 4;
4082 /* jump_n can either jump or fall through. The (backward) jump
4083 case has already been handled, so we only need to look at the
4084 fallthrough case. */
4085 continue;
4086
4087 case succeed_n:
4088 /* If N == 0, it should be an on_failure_jump_loop instead. */
4089 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
4090 p += 4;
4091 /* We only care about one iteration of the loop, so we don't
4092 need to consider the case where this behaves like an
4093 on_failure_jump. */
4094 continue;
4095
4096
4097 case set_number_at:
4098 p += 4;
4099 continue;
4100
4101
4102 case start_memory:
4103 case stop_memory:
4104 p += 1;
4105 continue;
4106
4107
4108 default:
4109 abort (); /* We have listed all the cases. */
4110 } /* switch *p++ */
4111
4112 /* Getting here means we have found the possible starting
4113 characters for one path of the pattern -- and that the empty
4114 string does not match. We need not follow this path further. */
4115 return 0;
4116 } /* while p */
4117
4118 /* We reached the end without matching anything. */
4119 return 1;
4120
4121 } /* analyse_first */
4122 \f
4123 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4124 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4125 characters can start a string that matches the pattern. This fastmap
4126 is used by re_search to skip quickly over impossible starting points.
4127
4128 Character codes above (1 << BYTEWIDTH) are not represented in the
4129 fastmap, but the leading codes are represented. Thus, the fastmap
4130 indicates which character sets could start a match.
4131
4132 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4133 area as BUFP->fastmap.
4134
4135 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4136 the pattern buffer.
4137
4138 Returns 0 if we succeed, -2 if an internal error. */
4139
4140 int
4141 re_compile_fastmap (bufp)
4142 struct re_pattern_buffer *bufp;
4143 {
4144 char *fastmap = bufp->fastmap;
4145 int analysis;
4146
4147 assert (fastmap && bufp->buffer);
4148
4149 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4150 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4151
4152 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
4153 fastmap, RE_MULTIBYTE_P (bufp));
4154 bufp->can_be_null = (analysis != 0);
4155 return 0;
4156 } /* re_compile_fastmap */
4157 \f
4158 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4159 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4160 this memory for recording register information. STARTS and ENDS
4161 must be allocated using the malloc library routine, and must each
4162 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4163
4164 If NUM_REGS == 0, then subsequent matches should allocate their own
4165 register data.
4166
4167 Unless this function is called, the first search or match using
4168 PATTERN_BUFFER will allocate its own register data, without
4169 freeing the old data. */
4170
4171 void
4172 re_set_registers (bufp, regs, num_regs, starts, ends)
4173 struct re_pattern_buffer *bufp;
4174 struct re_registers *regs;
4175 unsigned num_regs;
4176 regoff_t *starts, *ends;
4177 {
4178 if (num_regs)
4179 {
4180 bufp->regs_allocated = REGS_REALLOCATE;
4181 regs->num_regs = num_regs;
4182 regs->start = starts;
4183 regs->end = ends;
4184 }
4185 else
4186 {
4187 bufp->regs_allocated = REGS_UNALLOCATED;
4188 regs->num_regs = 0;
4189 regs->start = regs->end = (regoff_t *) 0;
4190 }
4191 }
4192 WEAK_ALIAS (__re_set_registers, re_set_registers)
4193 \f
4194 /* Searching routines. */
4195
4196 /* Like re_search_2, below, but only one string is specified, and
4197 doesn't let you say where to stop matching. */
4198
4199 int
4200 re_search (bufp, string, size, startpos, range, regs)
4201 struct re_pattern_buffer *bufp;
4202 const char *string;
4203 int size, startpos, range;
4204 struct re_registers *regs;
4205 {
4206 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4207 regs, size);
4208 }
4209 WEAK_ALIAS (__re_search, re_search)
4210
4211 /* Head address of virtual concatenation of string. */
4212 #define HEAD_ADDR_VSTRING(P) \
4213 (((P) >= size1 ? string2 : string1))
4214
4215 /* End address of virtual concatenation of string. */
4216 #define STOP_ADDR_VSTRING(P) \
4217 (((P) >= size1 ? string2 + size2 : string1 + size1))
4218
4219 /* Address of POS in the concatenation of virtual string. */
4220 #define POS_ADDR_VSTRING(POS) \
4221 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4222
4223 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4224 virtual concatenation of STRING1 and STRING2, starting first at index
4225 STARTPOS, then at STARTPOS + 1, and so on.
4226
4227 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4228
4229 RANGE is how far to scan while trying to match. RANGE = 0 means try
4230 only at STARTPOS; in general, the last start tried is STARTPOS +
4231 RANGE.
4232
4233 In REGS, return the indices of the virtual concatenation of STRING1
4234 and STRING2 that matched the entire BUFP->buffer and its contained
4235 subexpressions.
4236
4237 Do not consider matching one past the index STOP in the virtual
4238 concatenation of STRING1 and STRING2.
4239
4240 We return either the position in the strings at which the match was
4241 found, -1 if no match, or -2 if error (such as failure
4242 stack overflow). */
4243
4244 int
4245 re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
4246 struct re_pattern_buffer *bufp;
4247 const char *str1, *str2;
4248 int size1, size2;
4249 int startpos;
4250 int range;
4251 struct re_registers *regs;
4252 int stop;
4253 {
4254 int val;
4255 re_char *string1 = (re_char*) str1;
4256 re_char *string2 = (re_char*) str2;
4257 register char *fastmap = bufp->fastmap;
4258 register RE_TRANSLATE_TYPE translate = bufp->translate;
4259 int total_size = size1 + size2;
4260 int endpos = startpos + range;
4261 boolean anchored_start;
4262
4263 /* Nonzero if we have to concern multibyte character. */
4264 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4265
4266 /* Check for out-of-range STARTPOS. */
4267 if (startpos < 0 || startpos > total_size)
4268 return -1;
4269
4270 /* Fix up RANGE if it might eventually take us outside
4271 the virtual concatenation of STRING1 and STRING2.
4272 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4273 if (endpos < 0)
4274 range = 0 - startpos;
4275 else if (endpos > total_size)
4276 range = total_size - startpos;
4277
4278 /* If the search isn't to be a backwards one, don't waste time in a
4279 search for a pattern anchored at beginning of buffer. */
4280 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4281 {
4282 if (startpos > 0)
4283 return -1;
4284 else
4285 range = 0;
4286 }
4287
4288 #ifdef emacs
4289 /* In a forward search for something that starts with \=.
4290 don't keep searching past point. */
4291 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4292 {
4293 range = PT_BYTE - BEGV_BYTE - startpos;
4294 if (range < 0)
4295 return -1;
4296 }
4297 #endif /* emacs */
4298
4299 /* Update the fastmap now if not correct already. */
4300 if (fastmap && !bufp->fastmap_accurate)
4301 re_compile_fastmap (bufp);
4302
4303 /* See whether the pattern is anchored. */
4304 anchored_start = (bufp->buffer[0] == begline);
4305
4306 #ifdef emacs
4307 gl_state.object = re_match_object;
4308 {
4309 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
4310
4311 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4312 }
4313 #endif
4314
4315 /* Loop through the string, looking for a place to start matching. */
4316 for (;;)
4317 {
4318 /* If the pattern is anchored,
4319 skip quickly past places we cannot match.
4320 We don't bother to treat startpos == 0 specially
4321 because that case doesn't repeat. */
4322 if (anchored_start && startpos > 0)
4323 {
4324 if (! ((startpos <= size1 ? string1[startpos - 1]
4325 : string2[startpos - size1 - 1])
4326 == '\n'))
4327 goto advance;
4328 }
4329
4330 /* If a fastmap is supplied, skip quickly over characters that
4331 cannot be the start of a match. If the pattern can match the
4332 null string, however, we don't need to skip characters; we want
4333 the first null string. */
4334 if (fastmap && startpos < total_size && !bufp->can_be_null)
4335 {
4336 register re_char *d;
4337 register re_wchar_t buf_ch;
4338
4339 d = POS_ADDR_VSTRING (startpos);
4340
4341 if (range > 0) /* Searching forwards. */
4342 {
4343 register int lim = 0;
4344 int irange = range;
4345
4346 if (startpos < size1 && startpos + range >= size1)
4347 lim = range - (size1 - startpos);
4348
4349 /* Written out as an if-else to avoid testing `translate'
4350 inside the loop. */
4351 if (RE_TRANSLATE_P (translate))
4352 {
4353 if (multibyte)
4354 while (range > lim)
4355 {
4356 int buf_charlen;
4357
4358 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4359 buf_charlen);
4360
4361 buf_ch = RE_TRANSLATE (translate, buf_ch);
4362 if (buf_ch >= 0400
4363 || fastmap[buf_ch])
4364 break;
4365
4366 range -= buf_charlen;
4367 d += buf_charlen;
4368 }
4369 else
4370 {
4371 /* Convert *d to integer to shut up GCC's
4372 whining about comparison that is always
4373 true. */
4374 int di = *d;
4375
4376 while (range > lim
4377 && !fastmap[RE_TRANSLATE (translate, di)])
4378 {
4379 di = *(++d);
4380 range--;
4381 }
4382 }
4383 }
4384 else
4385 do
4386 {
4387 re_char *d_start = d;
4388 while (range > lim && !fastmap[*d])
4389 {
4390 d++;
4391 range--;
4392 }
4393 #ifdef emacs
4394 if (multibyte && range > lim)
4395 {
4396 /* Check that we are at the beginning of a char. */
4397 int at_boundary;
4398 AT_CHAR_BOUNDARY_P (at_boundary, d, d_start);
4399 if (at_boundary)
4400 break;
4401 else
4402 { /* We have matched an internal byte of a char
4403 rather than the leading byte, so it's a false
4404 positive: we should keep scanning. */
4405 d++; range--;
4406 }
4407 }
4408 else
4409 #endif
4410 break;
4411 } while (1);
4412
4413 startpos += irange - range;
4414 }
4415 else /* Searching backwards. */
4416 {
4417 int room = (startpos >= size1
4418 ? size2 + size1 - startpos
4419 : size1 - startpos);
4420 buf_ch = RE_STRING_CHAR (d, room);
4421 buf_ch = TRANSLATE (buf_ch);
4422
4423 if (! (buf_ch >= 0400
4424 || fastmap[buf_ch]))
4425 goto advance;
4426 }
4427 }
4428
4429 /* If can't match the null string, and that's all we have left, fail. */
4430 if (range >= 0 && startpos == total_size && fastmap
4431 && !bufp->can_be_null)
4432 return -1;
4433
4434 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4435 startpos, regs, stop);
4436 #ifndef REGEX_MALLOC
4437 # ifdef C_ALLOCA
4438 alloca (0);
4439 # endif
4440 #endif
4441
4442 if (val >= 0)
4443 return startpos;
4444
4445 if (val == -2)
4446 return -2;
4447
4448 advance:
4449 if (!range)
4450 break;
4451 else if (range > 0)
4452 {
4453 /* Update STARTPOS to the next character boundary. */
4454 if (multibyte)
4455 {
4456 re_char *p = POS_ADDR_VSTRING (startpos);
4457 re_char *pend = STOP_ADDR_VSTRING (startpos);
4458 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4459
4460 range -= len;
4461 if (range < 0)
4462 break;
4463 startpos += len;
4464 }
4465 else
4466 {
4467 range--;
4468 startpos++;
4469 }
4470 }
4471 else
4472 {
4473 range++;
4474 startpos--;
4475
4476 /* Update STARTPOS to the previous character boundary. */
4477 if (multibyte)
4478 {
4479 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4480 re_char *p0 = p;
4481 re_char *phead = HEAD_ADDR_VSTRING (startpos);
4482
4483 /* Find the head of multibyte form. */
4484 PREV_CHAR_BOUNDARY (p, phead);
4485 range += p0 - 1 - p;
4486 if (range > 0)
4487 break;
4488
4489 startpos -= p0 - 1 - p;
4490 }
4491 }
4492 }
4493 return -1;
4494 } /* re_search_2 */
4495 WEAK_ALIAS (__re_search_2, re_search_2)
4496 \f
4497 /* Declarations and macros for re_match_2. */
4498
4499 static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4500 register int len,
4501 RE_TRANSLATE_TYPE translate,
4502 const int multibyte));
4503
4504 /* This converts PTR, a pointer into one of the search strings `string1'
4505 and `string2' into an offset from the beginning of that string. */
4506 #define POINTER_TO_OFFSET(ptr) \
4507 (FIRST_STRING_P (ptr) \
4508 ? ((regoff_t) ((ptr) - string1)) \
4509 : ((regoff_t) ((ptr) - string2 + size1)))
4510
4511 /* Call before fetching a character with *d. This switches over to
4512 string2 if necessary.
4513 Check re_match_2_internal for a discussion of why end_match_2 might
4514 not be within string2 (but be equal to end_match_1 instead). */
4515 #define PREFETCH() \
4516 while (d == dend) \
4517 { \
4518 /* End of string2 => fail. */ \
4519 if (dend == end_match_2) \
4520 goto fail; \
4521 /* End of string1 => advance to string2. */ \
4522 d = string2; \
4523 dend = end_match_2; \
4524 }
4525
4526 /* Call before fetching a char with *d if you already checked other limits.
4527 This is meant for use in lookahead operations like wordend, etc..
4528 where we might need to look at parts of the string that might be
4529 outside of the LIMITs (i.e past `stop'). */
4530 #define PREFETCH_NOLIMIT() \
4531 if (d == end1) \
4532 { \
4533 d = string2; \
4534 dend = end_match_2; \
4535 } \
4536
4537 /* Test if at very beginning or at very end of the virtual concatenation
4538 of `string1' and `string2'. If only one string, it's `string2'. */
4539 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4540 #define AT_STRINGS_END(d) ((d) == end2)
4541
4542
4543 /* Test if D points to a character which is word-constituent. We have
4544 two special cases to check for: if past the end of string1, look at
4545 the first character in string2; and if before the beginning of
4546 string2, look at the last character in string1. */
4547 #define WORDCHAR_P(d) \
4548 (SYNTAX ((d) == end1 ? *string2 \
4549 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4550 == Sword)
4551
4552 /* Disabled due to a compiler bug -- see comment at case wordbound */
4553
4554 /* The comment at case wordbound is following one, but we don't use
4555 AT_WORD_BOUNDARY anymore to support multibyte form.
4556
4557 The DEC Alpha C compiler 3.x generates incorrect code for the
4558 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4559 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4560 macro and introducing temporary variables works around the bug. */
4561
4562 #if 0
4563 /* Test if the character before D and the one at D differ with respect
4564 to being word-constituent. */
4565 #define AT_WORD_BOUNDARY(d) \
4566 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4567 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4568 #endif
4569
4570 /* Free everything we malloc. */
4571 #ifdef MATCH_MAY_ALLOCATE
4572 # define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4573 # define FREE_VARIABLES() \
4574 do { \
4575 REGEX_FREE_STACK (fail_stack.stack); \
4576 FREE_VAR (regstart); \
4577 FREE_VAR (regend); \
4578 FREE_VAR (best_regstart); \
4579 FREE_VAR (best_regend); \
4580 } while (0)
4581 #else
4582 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4583 #endif /* not MATCH_MAY_ALLOCATE */
4584
4585 \f
4586 /* Optimization routines. */
4587
4588 /* If the operation is a match against one or more chars,
4589 return a pointer to the next operation, else return NULL. */
4590 static re_char *
4591 skip_one_char (p)
4592 re_char *p;
4593 {
4594 switch (SWITCH_ENUM_CAST (*p++))
4595 {
4596 case anychar:
4597 break;
4598
4599 case exactn:
4600 p += *p + 1;
4601 break;
4602
4603 case charset_not:
4604 case charset:
4605 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4606 {
4607 int mcnt;
4608 p = CHARSET_RANGE_TABLE (p - 1);
4609 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4610 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4611 }
4612 else
4613 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4614 break;
4615
4616 case syntaxspec:
4617 case notsyntaxspec:
4618 #ifdef emacs
4619 case categoryspec:
4620 case notcategoryspec:
4621 #endif /* emacs */
4622 p++;
4623 break;
4624
4625 default:
4626 p = NULL;
4627 }
4628 return p;
4629 }
4630
4631
4632 /* Jump over non-matching operations. */
4633 static re_char *
4634 skip_noops (p, pend)
4635 re_char *p, *pend;
4636 {
4637 int mcnt;
4638 while (p < pend)
4639 {
4640 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4641 {
4642 case start_memory:
4643 case stop_memory:
4644 p += 2; break;
4645 case no_op:
4646 p += 1; break;
4647 case jump:
4648 p += 1;
4649 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4650 p += mcnt;
4651 break;
4652 default:
4653 return p;
4654 }
4655 }
4656 assert (p == pend);
4657 return p;
4658 }
4659
4660 /* Non-zero if "p1 matches something" implies "p2 fails". */
4661 static int
4662 mutually_exclusive_p (bufp, p1, p2)
4663 struct re_pattern_buffer *bufp;
4664 re_char *p1, *p2;
4665 {
4666 re_opcode_t op2;
4667 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4668 unsigned char *pend = bufp->buffer + bufp->used;
4669
4670 assert (p1 >= bufp->buffer && p1 < pend
4671 && p2 >= bufp->buffer && p2 <= pend);
4672
4673 /* Skip over open/close-group commands.
4674 If what follows this loop is a ...+ construct,
4675 look at what begins its body, since we will have to
4676 match at least one of that. */
4677 p2 = skip_noops (p2, pend);
4678 /* The same skip can be done for p1, except that this function
4679 is only used in the case where p1 is a simple match operator. */
4680 /* p1 = skip_noops (p1, pend); */
4681
4682 assert (p1 >= bufp->buffer && p1 < pend
4683 && p2 >= bufp->buffer && p2 <= pend);
4684
4685 op2 = p2 == pend ? succeed : *p2;
4686
4687 switch (SWITCH_ENUM_CAST (op2))
4688 {
4689 case succeed:
4690 case endbuf:
4691 /* If we're at the end of the pattern, we can change. */
4692 if (skip_one_char (p1))
4693 {
4694 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4695 return 1;
4696 }
4697 break;
4698
4699 case endline:
4700 case exactn:
4701 {
4702 register re_wchar_t c
4703 = (re_opcode_t) *p2 == endline ? '\n'
4704 : RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
4705
4706 if ((re_opcode_t) *p1 == exactn)
4707 {
4708 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
4709 {
4710 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4711 return 1;
4712 }
4713 }
4714
4715 else if ((re_opcode_t) *p1 == charset
4716 || (re_opcode_t) *p1 == charset_not)
4717 {
4718 int not = (re_opcode_t) *p1 == charset_not;
4719
4720 /* Test if C is listed in charset (or charset_not)
4721 at `p1'. */
4722 if (SINGLE_BYTE_CHAR_P (c))
4723 {
4724 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4725 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4726 not = !not;
4727 }
4728 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4729 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
4730
4731 /* `not' is equal to 1 if c would match, which means
4732 that we can't change to pop_failure_jump. */
4733 if (!not)
4734 {
4735 DEBUG_PRINT1 (" No match => fast loop.\n");
4736 return 1;
4737 }
4738 }
4739 else if ((re_opcode_t) *p1 == anychar
4740 && c == '\n')
4741 {
4742 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4743 return 1;
4744 }
4745 }
4746 break;
4747
4748 case charset:
4749 {
4750 if ((re_opcode_t) *p1 == exactn)
4751 /* Reuse the code above. */
4752 return mutually_exclusive_p (bufp, p2, p1);
4753
4754 /* It is hard to list up all the character in charset
4755 P2 if it includes multibyte character. Give up in
4756 such case. */
4757 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4758 {
4759 /* Now, we are sure that P2 has no range table.
4760 So, for the size of bitmap in P2, `p2[1]' is
4761 enough. But P1 may have range table, so the
4762 size of bitmap table of P1 is extracted by
4763 using macro `CHARSET_BITMAP_SIZE'.
4764
4765 Since we know that all the character listed in
4766 P2 is ASCII, it is enough to test only bitmap
4767 table of P1. */
4768
4769 if ((re_opcode_t) *p1 == charset)
4770 {
4771 int idx;
4772 /* We win if the charset inside the loop
4773 has no overlap with the one after the loop. */
4774 for (idx = 0;
4775 (idx < (int) p2[1]
4776 && idx < CHARSET_BITMAP_SIZE (p1));
4777 idx++)
4778 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4779 break;
4780
4781 if (idx == p2[1]
4782 || idx == CHARSET_BITMAP_SIZE (p1))
4783 {
4784 DEBUG_PRINT1 (" No match => fast loop.\n");
4785 return 1;
4786 }
4787 }
4788 else if ((re_opcode_t) *p1 == charset_not)
4789 {
4790 int idx;
4791 /* We win if the charset_not inside the loop lists
4792 every character listed in the charset after. */
4793 for (idx = 0; idx < (int) p2[1]; idx++)
4794 if (! (p2[2 + idx] == 0
4795 || (idx < CHARSET_BITMAP_SIZE (p1)
4796 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4797 break;
4798
4799 if (idx == p2[1])
4800 {
4801 DEBUG_PRINT1 (" No match => fast loop.\n");
4802 return 1;
4803 }
4804 }
4805 }
4806 }
4807 break;
4808
4809 case charset_not:
4810 switch (SWITCH_ENUM_CAST (*p1))
4811 {
4812 case exactn:
4813 case charset:
4814 /* Reuse the code above. */
4815 return mutually_exclusive_p (bufp, p2, p1);
4816 case charset_not:
4817 /* When we have two charset_not, it's very unlikely that
4818 they don't overlap. The union of the two sets of excluded
4819 chars should cover all possible chars, which, as a matter of
4820 fact, is virtually impossible in multibyte buffers. */
4821 break;
4822 }
4823 break;
4824
4825 case wordend:
4826 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
4827 case symend:
4828 return ((re_opcode_t) *p1 == syntaxspec
4829 && (p1[1] == Ssymbol || p1[1] == Sword));
4830 case notsyntaxspec:
4831 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4832
4833 case wordbeg:
4834 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
4835 case symbeg:
4836 return ((re_opcode_t) *p1 == notsyntaxspec
4837 && (p1[1] == Ssymbol || p1[1] == Sword));
4838 case syntaxspec:
4839 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4840
4841 case wordbound:
4842 return (((re_opcode_t) *p1 == notsyntaxspec
4843 || (re_opcode_t) *p1 == syntaxspec)
4844 && p1[1] == Sword);
4845
4846 #ifdef emacs
4847 case categoryspec:
4848 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4849 case notcategoryspec:
4850 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4851 #endif /* emacs */
4852
4853 default:
4854 ;
4855 }
4856
4857 /* Safe default. */
4858 return 0;
4859 }
4860
4861 \f
4862 /* Matching routines. */
4863
4864 #ifndef emacs /* Emacs never uses this. */
4865 /* re_match is like re_match_2 except it takes only a single string. */
4866
4867 int
4868 re_match (bufp, string, size, pos, regs)
4869 struct re_pattern_buffer *bufp;
4870 const char *string;
4871 int size, pos;
4872 struct re_registers *regs;
4873 {
4874 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
4875 pos, regs, size);
4876 # if defined C_ALLOCA && !defined REGEX_MALLOC
4877 alloca (0);
4878 # endif
4879 return result;
4880 }
4881 WEAK_ALIAS (__re_match, re_match)
4882 #endif /* not emacs */
4883
4884 #ifdef emacs
4885 /* In Emacs, this is the string or buffer in which we
4886 are matching. It is used for looking up syntax properties. */
4887 Lisp_Object re_match_object;
4888 #endif
4889
4890 /* re_match_2 matches the compiled pattern in BUFP against the
4891 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4892 and SIZE2, respectively). We start matching at POS, and stop
4893 matching at STOP.
4894
4895 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4896 store offsets for the substring each group matched in REGS. See the
4897 documentation for exactly how many groups we fill.
4898
4899 We return -1 if no match, -2 if an internal error (such as the
4900 failure stack overflowing). Otherwise, we return the length of the
4901 matched substring. */
4902
4903 int
4904 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4905 struct re_pattern_buffer *bufp;
4906 const char *string1, *string2;
4907 int size1, size2;
4908 int pos;
4909 struct re_registers *regs;
4910 int stop;
4911 {
4912 int result;
4913
4914 #ifdef emacs
4915 int charpos;
4916 gl_state.object = re_match_object;
4917 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
4918 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4919 #endif
4920
4921 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4922 (re_char*) string2, size2,
4923 pos, regs, stop);
4924 #if defined C_ALLOCA && !defined REGEX_MALLOC
4925 alloca (0);
4926 #endif
4927 return result;
4928 }
4929 WEAK_ALIAS (__re_match_2, re_match_2)
4930
4931 /* This is a separate function so that we can force an alloca cleanup
4932 afterwards. */
4933 static int
4934 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4935 struct re_pattern_buffer *bufp;
4936 re_char *string1, *string2;
4937 int size1, size2;
4938 int pos;
4939 struct re_registers *regs;
4940 int stop;
4941 {
4942 /* General temporaries. */
4943 int mcnt;
4944 size_t reg;
4945 boolean not;
4946
4947 /* Just past the end of the corresponding string. */
4948 re_char *end1, *end2;
4949
4950 /* Pointers into string1 and string2, just past the last characters in
4951 each to consider matching. */
4952 re_char *end_match_1, *end_match_2;
4953
4954 /* Where we are in the data, and the end of the current string. */
4955 re_char *d, *dend;
4956
4957 /* Used sometimes to remember where we were before starting matching
4958 an operator so that we can go back in case of failure. This "atomic"
4959 behavior of matching opcodes is indispensable to the correctness
4960 of the on_failure_keep_string_jump optimization. */
4961 re_char *dfail;
4962
4963 /* Where we are in the pattern, and the end of the pattern. */
4964 re_char *p = bufp->buffer;
4965 re_char *pend = p + bufp->used;
4966
4967 /* We use this to map every character in the string. */
4968 RE_TRANSLATE_TYPE translate = bufp->translate;
4969
4970 /* Nonzero if we have to concern multibyte character. */
4971 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4972
4973 /* Failure point stack. Each place that can handle a failure further
4974 down the line pushes a failure point on this stack. It consists of
4975 regstart, and regend for all registers corresponding to
4976 the subexpressions we're currently inside, plus the number of such
4977 registers, and, finally, two char *'s. The first char * is where
4978 to resume scanning the pattern; the second one is where to resume
4979 scanning the strings. */
4980 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4981 fail_stack_type fail_stack;
4982 #endif
4983 #ifdef DEBUG
4984 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4985 #endif
4986
4987 #if defined REL_ALLOC && defined REGEX_MALLOC
4988 /* This holds the pointer to the failure stack, when
4989 it is allocated relocatably. */
4990 fail_stack_elt_t *failure_stack_ptr;
4991 #endif
4992
4993 /* We fill all the registers internally, independent of what we
4994 return, for use in backreferences. The number here includes
4995 an element for register zero. */
4996 size_t num_regs = bufp->re_nsub + 1;
4997
4998 /* Information on the contents of registers. These are pointers into
4999 the input strings; they record just what was matched (on this
5000 attempt) by a subexpression part of the pattern, that is, the
5001 regnum-th regstart pointer points to where in the pattern we began
5002 matching and the regnum-th regend points to right after where we
5003 stopped matching the regnum-th subexpression. (The zeroth register
5004 keeps track of what the whole pattern matches.) */
5005 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5006 re_char **regstart, **regend;
5007 #endif
5008
5009 /* The following record the register info as found in the above
5010 variables when we find a match better than any we've seen before.
5011 This happens as we backtrack through the failure points, which in
5012 turn happens only if we have not yet matched the entire string. */
5013 unsigned best_regs_set = false;
5014 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5015 re_char **best_regstart, **best_regend;
5016 #endif
5017
5018 /* Logically, this is `best_regend[0]'. But we don't want to have to
5019 allocate space for that if we're not allocating space for anything
5020 else (see below). Also, we never need info about register 0 for
5021 any of the other register vectors, and it seems rather a kludge to
5022 treat `best_regend' differently than the rest. So we keep track of
5023 the end of the best match so far in a separate variable. We
5024 initialize this to NULL so that when we backtrack the first time
5025 and need to test it, it's not garbage. */
5026 re_char *match_end = NULL;
5027
5028 #ifdef DEBUG
5029 /* Counts the total number of registers pushed. */
5030 unsigned num_regs_pushed = 0;
5031 #endif
5032
5033 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5034
5035 INIT_FAIL_STACK ();
5036
5037 #ifdef MATCH_MAY_ALLOCATE
5038 /* Do not bother to initialize all the register variables if there are
5039 no groups in the pattern, as it takes a fair amount of time. If
5040 there are groups, we include space for register 0 (the whole
5041 pattern), even though we never use it, since it simplifies the
5042 array indexing. We should fix this. */
5043 if (bufp->re_nsub)
5044 {
5045 regstart = REGEX_TALLOC (num_regs, re_char *);
5046 regend = REGEX_TALLOC (num_regs, re_char *);
5047 best_regstart = REGEX_TALLOC (num_regs, re_char *);
5048 best_regend = REGEX_TALLOC (num_regs, re_char *);
5049
5050 if (!(regstart && regend && best_regstart && best_regend))
5051 {
5052 FREE_VARIABLES ();
5053 return -2;
5054 }
5055 }
5056 else
5057 {
5058 /* We must initialize all our variables to NULL, so that
5059 `FREE_VARIABLES' doesn't try to free them. */
5060 regstart = regend = best_regstart = best_regend = NULL;
5061 }
5062 #endif /* MATCH_MAY_ALLOCATE */
5063
5064 /* The starting position is bogus. */
5065 if (pos < 0 || pos > size1 + size2)
5066 {
5067 FREE_VARIABLES ();
5068 return -1;
5069 }
5070
5071 /* Initialize subexpression text positions to -1 to mark ones that no
5072 start_memory/stop_memory has been seen for. Also initialize the
5073 register information struct. */
5074 for (reg = 1; reg < num_regs; reg++)
5075 regstart[reg] = regend[reg] = NULL;
5076
5077 /* We move `string1' into `string2' if the latter's empty -- but not if
5078 `string1' is null. */
5079 if (size2 == 0 && string1 != NULL)
5080 {
5081 string2 = string1;
5082 size2 = size1;
5083 string1 = 0;
5084 size1 = 0;
5085 }
5086 end1 = string1 + size1;
5087 end2 = string2 + size2;
5088
5089 /* `p' scans through the pattern as `d' scans through the data.
5090 `dend' is the end of the input string that `d' points within. `d'
5091 is advanced into the following input string whenever necessary, but
5092 this happens before fetching; therefore, at the beginning of the
5093 loop, `d' can be pointing at the end of a string, but it cannot
5094 equal `string2'. */
5095 if (pos >= size1)
5096 {
5097 /* Only match within string2. */
5098 d = string2 + pos - size1;
5099 dend = end_match_2 = string2 + stop - size1;
5100 end_match_1 = end1; /* Just to give it a value. */
5101 }
5102 else
5103 {
5104 if (stop < size1)
5105 {
5106 /* Only match within string1. */
5107 end_match_1 = string1 + stop;
5108 /* BEWARE!
5109 When we reach end_match_1, PREFETCH normally switches to string2.
5110 But in the present case, this means that just doing a PREFETCH
5111 makes us jump from `stop' to `gap' within the string.
5112 What we really want here is for the search to stop as
5113 soon as we hit end_match_1. That's why we set end_match_2
5114 to end_match_1 (since PREFETCH fails as soon as we hit
5115 end_match_2). */
5116 end_match_2 = end_match_1;
5117 }
5118 else
5119 { /* It's important to use this code when stop == size so that
5120 moving `d' from end1 to string2 will not prevent the d == dend
5121 check from catching the end of string. */
5122 end_match_1 = end1;
5123 end_match_2 = string2 + stop - size1;
5124 }
5125 d = string1 + pos;
5126 dend = end_match_1;
5127 }
5128
5129 DEBUG_PRINT1 ("The compiled pattern is: ");
5130 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5131 DEBUG_PRINT1 ("The string to match is: `");
5132 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5133 DEBUG_PRINT1 ("'\n");
5134
5135 /* This loops over pattern commands. It exits by returning from the
5136 function if the match is complete, or it drops through if the match
5137 fails at this starting point in the input data. */
5138 for (;;)
5139 {
5140 DEBUG_PRINT2 ("\n%p: ", p);
5141
5142 if (p == pend)
5143 { /* End of pattern means we might have succeeded. */
5144 DEBUG_PRINT1 ("end of pattern ... ");
5145
5146 /* If we haven't matched the entire string, and we want the
5147 longest match, try backtracking. */
5148 if (d != end_match_2)
5149 {
5150 /* 1 if this match ends in the same string (string1 or string2)
5151 as the best previous match. */
5152 boolean same_str_p = (FIRST_STRING_P (match_end)
5153 == FIRST_STRING_P (d));
5154 /* 1 if this match is the best seen so far. */
5155 boolean best_match_p;
5156
5157 /* AIX compiler got confused when this was combined
5158 with the previous declaration. */
5159 if (same_str_p)
5160 best_match_p = d > match_end;
5161 else
5162 best_match_p = !FIRST_STRING_P (d);
5163
5164 DEBUG_PRINT1 ("backtracking.\n");
5165
5166 if (!FAIL_STACK_EMPTY ())
5167 { /* More failure points to try. */
5168
5169 /* If exceeds best match so far, save it. */
5170 if (!best_regs_set || best_match_p)
5171 {
5172 best_regs_set = true;
5173 match_end = d;
5174
5175 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5176
5177 for (reg = 1; reg < num_regs; reg++)
5178 {
5179 best_regstart[reg] = regstart[reg];
5180 best_regend[reg] = regend[reg];
5181 }
5182 }
5183 goto fail;
5184 }
5185
5186 /* If no failure points, don't restore garbage. And if
5187 last match is real best match, don't restore second
5188 best one. */
5189 else if (best_regs_set && !best_match_p)
5190 {
5191 restore_best_regs:
5192 /* Restore best match. It may happen that `dend ==
5193 end_match_1' while the restored d is in string2.
5194 For example, the pattern `x.*y.*z' against the
5195 strings `x-' and `y-z-', if the two strings are
5196 not consecutive in memory. */
5197 DEBUG_PRINT1 ("Restoring best registers.\n");
5198
5199 d = match_end;
5200 dend = ((d >= string1 && d <= end1)
5201 ? end_match_1 : end_match_2);
5202
5203 for (reg = 1; reg < num_regs; reg++)
5204 {
5205 regstart[reg] = best_regstart[reg];
5206 regend[reg] = best_regend[reg];
5207 }
5208 }
5209 } /* d != end_match_2 */
5210
5211 succeed_label:
5212 DEBUG_PRINT1 ("Accepting match.\n");
5213
5214 /* If caller wants register contents data back, do it. */
5215 if (regs && !bufp->no_sub)
5216 {
5217 /* Have the register data arrays been allocated? */
5218 if (bufp->regs_allocated == REGS_UNALLOCATED)
5219 { /* No. So allocate them with malloc. We need one
5220 extra element beyond `num_regs' for the `-1' marker
5221 GNU code uses. */
5222 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5223 regs->start = TALLOC (regs->num_regs, regoff_t);
5224 regs->end = TALLOC (regs->num_regs, regoff_t);
5225 if (regs->start == NULL || regs->end == NULL)
5226 {
5227 FREE_VARIABLES ();
5228 return -2;
5229 }
5230 bufp->regs_allocated = REGS_REALLOCATE;
5231 }
5232 else if (bufp->regs_allocated == REGS_REALLOCATE)
5233 { /* Yes. If we need more elements than were already
5234 allocated, reallocate them. If we need fewer, just
5235 leave it alone. */
5236 if (regs->num_regs < num_regs + 1)
5237 {
5238 regs->num_regs = num_regs + 1;
5239 RETALLOC (regs->start, regs->num_regs, regoff_t);
5240 RETALLOC (regs->end, regs->num_regs, regoff_t);
5241 if (regs->start == NULL || regs->end == NULL)
5242 {
5243 FREE_VARIABLES ();
5244 return -2;
5245 }
5246 }
5247 }
5248 else
5249 {
5250 /* These braces fend off a "empty body in an else-statement"
5251 warning under GCC when assert expands to nothing. */
5252 assert (bufp->regs_allocated == REGS_FIXED);
5253 }
5254
5255 /* Convert the pointer data in `regstart' and `regend' to
5256 indices. Register zero has to be set differently,
5257 since we haven't kept track of any info for it. */
5258 if (regs->num_regs > 0)
5259 {
5260 regs->start[0] = pos;
5261 regs->end[0] = POINTER_TO_OFFSET (d);
5262 }
5263
5264 /* Go through the first `min (num_regs, regs->num_regs)'
5265 registers, since that is all we initialized. */
5266 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
5267 {
5268 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5269 regs->start[reg] = regs->end[reg] = -1;
5270 else
5271 {
5272 regs->start[reg]
5273 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5274 regs->end[reg]
5275 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
5276 }
5277 }
5278
5279 /* If the regs structure we return has more elements than
5280 were in the pattern, set the extra elements to -1. If
5281 we (re)allocated the registers, this is the case,
5282 because we always allocate enough to have at least one
5283 -1 at the end. */
5284 for (reg = num_regs; reg < regs->num_regs; reg++)
5285 regs->start[reg] = regs->end[reg] = -1;
5286 } /* regs && !bufp->no_sub */
5287
5288 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5289 nfailure_points_pushed, nfailure_points_popped,
5290 nfailure_points_pushed - nfailure_points_popped);
5291 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
5292
5293 mcnt = POINTER_TO_OFFSET (d) - pos;
5294
5295 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
5296
5297 FREE_VARIABLES ();
5298 return mcnt;
5299 }
5300
5301 /* Otherwise match next pattern command. */
5302 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5303 {
5304 /* Ignore these. Used to ignore the n of succeed_n's which
5305 currently have n == 0. */
5306 case no_op:
5307 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5308 break;
5309
5310 case succeed:
5311 DEBUG_PRINT1 ("EXECUTING succeed.\n");
5312 goto succeed_label;
5313
5314 /* Match the next n pattern characters exactly. The following
5315 byte in the pattern defines n, and the n bytes after that
5316 are the characters to match. */
5317 case exactn:
5318 mcnt = *p++;
5319 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
5320
5321 /* Remember the start point to rollback upon failure. */
5322 dfail = d;
5323
5324 /* This is written out as an if-else so we don't waste time
5325 testing `translate' inside the loop. */
5326 if (RE_TRANSLATE_P (translate))
5327 {
5328 if (multibyte)
5329 do
5330 {
5331 int pat_charlen, buf_charlen;
5332 unsigned int pat_ch, buf_ch;
5333
5334 PREFETCH ();
5335 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
5336 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5337
5338 if (RE_TRANSLATE (translate, buf_ch)
5339 != pat_ch)
5340 {
5341 d = dfail;
5342 goto fail;
5343 }
5344
5345 p += pat_charlen;
5346 d += buf_charlen;
5347 mcnt -= pat_charlen;
5348 }
5349 while (mcnt > 0);
5350 else
5351 do
5352 {
5353 /* Avoid compiler whining about comparison being
5354 always true. */
5355 int di;
5356
5357 PREFETCH ();
5358 di = *d;
5359 if (RE_TRANSLATE (translate, di) != *p++)
5360 {
5361 d = dfail;
5362 goto fail;
5363 }
5364 d++;
5365 }
5366 while (--mcnt);
5367 }
5368 else
5369 {
5370 do
5371 {
5372 PREFETCH ();
5373 if (*d++ != *p++)
5374 {
5375 d = dfail;
5376 goto fail;
5377 }
5378 }
5379 while (--mcnt);
5380 }
5381 break;
5382
5383
5384 /* Match any character except possibly a newline or a null. */
5385 case anychar:
5386 {
5387 int buf_charlen;
5388 re_wchar_t buf_ch;
5389
5390 DEBUG_PRINT1 ("EXECUTING anychar.\n");
5391
5392 PREFETCH ();
5393 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5394 buf_ch = TRANSLATE (buf_ch);
5395
5396 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5397 && buf_ch == '\n')
5398 || ((bufp->syntax & RE_DOT_NOT_NULL)
5399 && buf_ch == '\000'))
5400 goto fail;
5401
5402 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5403 d += buf_charlen;
5404 }
5405 break;
5406
5407
5408 case charset:
5409 case charset_not:
5410 {
5411 register unsigned int c;
5412 boolean not = (re_opcode_t) *(p - 1) == charset_not;
5413 int len;
5414
5415 /* Start of actual range_table, or end of bitmap if there is no
5416 range table. */
5417 re_char *range_table;
5418
5419 /* Nonzero if there is a range table. */
5420 int range_table_exists;
5421
5422 /* Number of ranges of range table. This is not included
5423 in the initial byte-length of the command. */
5424 int count = 0;
5425
5426 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5427
5428 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
5429
5430 if (range_table_exists)
5431 {
5432 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5433 EXTRACT_NUMBER_AND_INCR (count, range_table);
5434 }
5435
5436 PREFETCH ();
5437 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5438 c = TRANSLATE (c); /* The character to match. */
5439
5440 if (SINGLE_BYTE_CHAR_P (c))
5441 { /* Lookup bitmap. */
5442 /* Cast to `unsigned' instead of `unsigned char' in
5443 case the bit list is a full 32 bytes long. */
5444 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
5445 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5446 not = !not;
5447 }
5448 #ifdef emacs
5449 else if (range_table_exists)
5450 {
5451 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5452
5453 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5454 | (class_bits & BIT_MULTIBYTE)
5455 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5456 | (class_bits & BIT_SPACE && ISSPACE (c))
5457 | (class_bits & BIT_UPPER && ISUPPER (c))
5458 | (class_bits & BIT_WORD && ISWORD (c)))
5459 not = !not;
5460 else
5461 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5462 }
5463 #endif /* emacs */
5464
5465 if (range_table_exists)
5466 p = CHARSET_RANGE_TABLE_END (range_table, count);
5467 else
5468 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
5469
5470 if (!not) goto fail;
5471
5472 d += len;
5473 break;
5474 }
5475
5476
5477 /* The beginning of a group is represented by start_memory.
5478 The argument is the register number. The text
5479 matched within the group is recorded (in the internal
5480 registers data structure) under the register number. */
5481 case start_memory:
5482 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5483
5484 /* In case we need to undo this operation (via backtracking). */
5485 PUSH_FAILURE_REG ((unsigned int)*p);
5486
5487 regstart[*p] = d;
5488 regend[*p] = NULL; /* probably unnecessary. -sm */
5489 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5490
5491 /* Move past the register number and inner group count. */
5492 p += 1;
5493 break;
5494
5495
5496 /* The stop_memory opcode represents the end of a group. Its
5497 argument is the same as start_memory's: the register number. */
5498 case stop_memory:
5499 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5500
5501 assert (!REG_UNSET (regstart[*p]));
5502 /* Strictly speaking, there should be code such as:
5503
5504 assert (REG_UNSET (regend[*p]));
5505 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5506
5507 But the only info to be pushed is regend[*p] and it is known to
5508 be UNSET, so there really isn't anything to push.
5509 Not pushing anything, on the other hand deprives us from the
5510 guarantee that regend[*p] is UNSET since undoing this operation
5511 will not reset its value properly. This is not important since
5512 the value will only be read on the next start_memory or at
5513 the very end and both events can only happen if this stop_memory
5514 is *not* undone. */
5515
5516 regend[*p] = d;
5517 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5518
5519 /* Move past the register number and the inner group count. */
5520 p += 1;
5521 break;
5522
5523
5524 /* \<digit> has been turned into a `duplicate' command which is
5525 followed by the numeric value of <digit> as the register number. */
5526 case duplicate:
5527 {
5528 register re_char *d2, *dend2;
5529 int regno = *p++; /* Get which register to match against. */
5530 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5531
5532 /* Can't back reference a group which we've never matched. */
5533 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5534 goto fail;
5535
5536 /* Where in input to try to start matching. */
5537 d2 = regstart[regno];
5538
5539 /* Remember the start point to rollback upon failure. */
5540 dfail = d;
5541
5542 /* Where to stop matching; if both the place to start and
5543 the place to stop matching are in the same string, then
5544 set to the place to stop, otherwise, for now have to use
5545 the end of the first string. */
5546
5547 dend2 = ((FIRST_STRING_P (regstart[regno])
5548 == FIRST_STRING_P (regend[regno]))
5549 ? regend[regno] : end_match_1);
5550 for (;;)
5551 {
5552 /* If necessary, advance to next segment in register
5553 contents. */
5554 while (d2 == dend2)
5555 {
5556 if (dend2 == end_match_2) break;
5557 if (dend2 == regend[regno]) break;
5558
5559 /* End of string1 => advance to string2. */
5560 d2 = string2;
5561 dend2 = regend[regno];
5562 }
5563 /* At end of register contents => success */
5564 if (d2 == dend2) break;
5565
5566 /* If necessary, advance to next segment in data. */
5567 PREFETCH ();
5568
5569 /* How many characters left in this segment to match. */
5570 mcnt = dend - d;
5571
5572 /* Want how many consecutive characters we can match in
5573 one shot, so, if necessary, adjust the count. */
5574 if (mcnt > dend2 - d2)
5575 mcnt = dend2 - d2;
5576
5577 /* Compare that many; failure if mismatch, else move
5578 past them. */
5579 if (RE_TRANSLATE_P (translate)
5580 ? bcmp_translate (d, d2, mcnt, translate, multibyte)
5581 : memcmp (d, d2, mcnt))
5582 {
5583 d = dfail;
5584 goto fail;
5585 }
5586 d += mcnt, d2 += mcnt;
5587 }
5588 }
5589 break;
5590
5591
5592 /* begline matches the empty string at the beginning of the string
5593 (unless `not_bol' is set in `bufp'), and after newlines. */
5594 case begline:
5595 DEBUG_PRINT1 ("EXECUTING begline.\n");
5596
5597 if (AT_STRINGS_BEG (d))
5598 {
5599 if (!bufp->not_bol) break;
5600 }
5601 else
5602 {
5603 unsigned char c;
5604 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
5605 if (c == '\n')
5606 break;
5607 }
5608 /* In all other cases, we fail. */
5609 goto fail;
5610
5611
5612 /* endline is the dual of begline. */
5613 case endline:
5614 DEBUG_PRINT1 ("EXECUTING endline.\n");
5615
5616 if (AT_STRINGS_END (d))
5617 {
5618 if (!bufp->not_eol) break;
5619 }
5620 else
5621 {
5622 PREFETCH_NOLIMIT ();
5623 if (*d == '\n')
5624 break;
5625 }
5626 goto fail;
5627
5628
5629 /* Match at the very beginning of the data. */
5630 case begbuf:
5631 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5632 if (AT_STRINGS_BEG (d))
5633 break;
5634 goto fail;
5635
5636
5637 /* Match at the very end of the data. */
5638 case endbuf:
5639 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5640 if (AT_STRINGS_END (d))
5641 break;
5642 goto fail;
5643
5644
5645 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5646 pushes NULL as the value for the string on the stack. Then
5647 `POP_FAILURE_POINT' will keep the current value for the
5648 string, instead of restoring it. To see why, consider
5649 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5650 then the . fails against the \n. But the next thing we want
5651 to do is match the \n against the \n; if we restored the
5652 string value, we would be back at the foo.
5653
5654 Because this is used only in specific cases, we don't need to
5655 check all the things that `on_failure_jump' does, to make
5656 sure the right things get saved on the stack. Hence we don't
5657 share its code. The only reason to push anything on the
5658 stack at all is that otherwise we would have to change
5659 `anychar's code to do something besides goto fail in this
5660 case; that seems worse than this. */
5661 case on_failure_keep_string_jump:
5662 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5663 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5664 mcnt, p + mcnt);
5665
5666 PUSH_FAILURE_POINT (p - 3, NULL);
5667 break;
5668
5669 /* A nasty loop is introduced by the non-greedy *? and +?.
5670 With such loops, the stack only ever contains one failure point
5671 at a time, so that a plain on_failure_jump_loop kind of
5672 cycle detection cannot work. Worse yet, such a detection
5673 can not only fail to detect a cycle, but it can also wrongly
5674 detect a cycle (between different instantiations of the same
5675 loop).
5676 So the method used for those nasty loops is a little different:
5677 We use a special cycle-detection-stack-frame which is pushed
5678 when the on_failure_jump_nastyloop failure-point is *popped*.
5679 This special frame thus marks the beginning of one iteration
5680 through the loop and we can hence easily check right here
5681 whether something matched between the beginning and the end of
5682 the loop. */
5683 case on_failure_jump_nastyloop:
5684 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5685 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5686 mcnt, p + mcnt);
5687
5688 assert ((re_opcode_t)p[-4] == no_op);
5689 {
5690 int cycle = 0;
5691 CHECK_INFINITE_LOOP (p - 4, d);
5692 if (!cycle)
5693 /* If there's a cycle, just continue without pushing
5694 this failure point. The failure point is the "try again"
5695 option, which shouldn't be tried.
5696 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5697 PUSH_FAILURE_POINT (p - 3, d);
5698 }
5699 break;
5700
5701 /* Simple loop detecting on_failure_jump: just check on the
5702 failure stack if the same spot was already hit earlier. */
5703 case on_failure_jump_loop:
5704 on_failure:
5705 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5706 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5707 mcnt, p + mcnt);
5708 {
5709 int cycle = 0;
5710 CHECK_INFINITE_LOOP (p - 3, d);
5711 if (cycle)
5712 /* If there's a cycle, get out of the loop, as if the matching
5713 had failed. We used to just `goto fail' here, but that was
5714 aborting the search a bit too early: we want to keep the
5715 empty-loop-match and keep matching after the loop.
5716 We want (x?)*y\1z to match both xxyz and xxyxz. */
5717 p += mcnt;
5718 else
5719 PUSH_FAILURE_POINT (p - 3, d);
5720 }
5721 break;
5722
5723
5724 /* Uses of on_failure_jump:
5725
5726 Each alternative starts with an on_failure_jump that points
5727 to the beginning of the next alternative. Each alternative
5728 except the last ends with a jump that in effect jumps past
5729 the rest of the alternatives. (They really jump to the
5730 ending jump of the following alternative, because tensioning
5731 these jumps is a hassle.)
5732
5733 Repeats start with an on_failure_jump that points past both
5734 the repetition text and either the following jump or
5735 pop_failure_jump back to this on_failure_jump. */
5736 case on_failure_jump:
5737 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5738 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5739 mcnt, p + mcnt);
5740
5741 PUSH_FAILURE_POINT (p -3, d);
5742 break;
5743
5744 /* This operation is used for greedy *.
5745 Compare the beginning of the repeat with what in the
5746 pattern follows its end. If we can establish that there
5747 is nothing that they would both match, i.e., that we
5748 would have to backtrack because of (as in, e.g., `a*a')
5749 then we can use a non-backtracking loop based on
5750 on_failure_keep_string_jump instead of on_failure_jump. */
5751 case on_failure_jump_smart:
5752 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5753 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5754 mcnt, p + mcnt);
5755 {
5756 re_char *p1 = p; /* Next operation. */
5757 /* Here, we discard `const', making re_match non-reentrant. */
5758 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5759 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
5760
5761 p -= 3; /* Reset so that we will re-execute the
5762 instruction once it's been changed. */
5763
5764 EXTRACT_NUMBER (mcnt, p2 - 2);
5765
5766 /* Ensure this is a indeed the trivial kind of loop
5767 we are expecting. */
5768 assert (skip_one_char (p1) == p2 - 3);
5769 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
5770 DEBUG_STATEMENT (debug += 2);
5771 if (mutually_exclusive_p (bufp, p1, p2))
5772 {
5773 /* Use a fast `on_failure_keep_string_jump' loop. */
5774 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
5775 *p3 = (unsigned char) on_failure_keep_string_jump;
5776 STORE_NUMBER (p2 - 2, mcnt + 3);
5777 }
5778 else
5779 {
5780 /* Default to a safe `on_failure_jump' loop. */
5781 DEBUG_PRINT1 (" smart default => slow loop.\n");
5782 *p3 = (unsigned char) on_failure_jump;
5783 }
5784 DEBUG_STATEMENT (debug -= 2);
5785 }
5786 break;
5787
5788 /* Unconditionally jump (without popping any failure points). */
5789 case jump:
5790 unconditional_jump:
5791 IMMEDIATE_QUIT_CHECK;
5792 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
5793 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5794 p += mcnt; /* Do the jump. */
5795 DEBUG_PRINT2 ("(to %p).\n", p);
5796 break;
5797
5798
5799 /* Have to succeed matching what follows at least n times.
5800 After that, handle like `on_failure_jump'. */
5801 case succeed_n:
5802 /* Signedness doesn't matter since we only compare MCNT to 0. */
5803 EXTRACT_NUMBER (mcnt, p + 2);
5804 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5805
5806 /* Originally, mcnt is how many times we HAVE to succeed. */
5807 if (mcnt != 0)
5808 {
5809 /* Here, we discard `const', making re_match non-reentrant. */
5810 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5811 mcnt--;
5812 p += 4;
5813 PUSH_NUMBER (p2, mcnt);
5814 }
5815 else
5816 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5817 goto on_failure;
5818 break;
5819
5820 case jump_n:
5821 /* Signedness doesn't matter since we only compare MCNT to 0. */
5822 EXTRACT_NUMBER (mcnt, p + 2);
5823 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5824
5825 /* Originally, this is how many times we CAN jump. */
5826 if (mcnt != 0)
5827 {
5828 /* Here, we discard `const', making re_match non-reentrant. */
5829 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5830 mcnt--;
5831 PUSH_NUMBER (p2, mcnt);
5832 goto unconditional_jump;
5833 }
5834 /* If don't have to jump any more, skip over the rest of command. */
5835 else
5836 p += 4;
5837 break;
5838
5839 case set_number_at:
5840 {
5841 unsigned char *p2; /* Location of the counter. */
5842 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5843
5844 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5845 /* Here, we discard `const', making re_match non-reentrant. */
5846 p2 = (unsigned char*) p + mcnt;
5847 /* Signedness doesn't matter since we only copy MCNT's bits . */
5848 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5849 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5850 PUSH_NUMBER (p2, mcnt);
5851 break;
5852 }
5853
5854 case wordbound:
5855 case notwordbound:
5856 not = (re_opcode_t) *(p - 1) == notwordbound;
5857 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
5858
5859 /* We SUCCEED (or FAIL) in one of the following cases: */
5860
5861 /* Case 1: D is at the beginning or the end of string. */
5862 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5863 not = !not;
5864 else
5865 {
5866 /* C1 is the character before D, S1 is the syntax of C1, C2
5867 is the character at D, and S2 is the syntax of C2. */
5868 re_wchar_t c1, c2;
5869 int s1, s2;
5870 #ifdef emacs
5871 int offset = PTR_TO_OFFSET (d - 1);
5872 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5873 UPDATE_SYNTAX_TABLE (charpos);
5874 #endif
5875 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5876 s1 = SYNTAX (c1);
5877 #ifdef emacs
5878 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5879 #endif
5880 PREFETCH_NOLIMIT ();
5881 c2 = RE_STRING_CHAR (d, dend - d);
5882 s2 = SYNTAX (c2);
5883
5884 if (/* Case 2: Only one of S1 and S2 is Sword. */
5885 ((s1 == Sword) != (s2 == Sword))
5886 /* Case 3: Both of S1 and S2 are Sword, and macro
5887 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5888 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5889 not = !not;
5890 }
5891 if (not)
5892 break;
5893 else
5894 goto fail;
5895
5896 case wordbeg:
5897 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5898
5899 /* We FAIL in one of the following cases: */
5900
5901 /* Case 1: D is at the end of string. */
5902 if (AT_STRINGS_END (d))
5903 goto fail;
5904 else
5905 {
5906 /* C1 is the character before D, S1 is the syntax of C1, C2
5907 is the character at D, and S2 is the syntax of C2. */
5908 re_wchar_t c1, c2;
5909 int s1, s2;
5910 #ifdef emacs
5911 int offset = PTR_TO_OFFSET (d);
5912 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5913 UPDATE_SYNTAX_TABLE (charpos);
5914 #endif
5915 PREFETCH ();
5916 c2 = RE_STRING_CHAR (d, dend - d);
5917 s2 = SYNTAX (c2);
5918
5919 /* Case 2: S2 is not Sword. */
5920 if (s2 != Sword)
5921 goto fail;
5922
5923 /* Case 3: D is not at the beginning of string ... */
5924 if (!AT_STRINGS_BEG (d))
5925 {
5926 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5927 #ifdef emacs
5928 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5929 #endif
5930 s1 = SYNTAX (c1);
5931
5932 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5933 returns 0. */
5934 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5935 goto fail;
5936 }
5937 }
5938 break;
5939
5940 case wordend:
5941 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5942
5943 /* We FAIL in one of the following cases: */
5944
5945 /* Case 1: D is at the beginning of string. */
5946 if (AT_STRINGS_BEG (d))
5947 goto fail;
5948 else
5949 {
5950 /* C1 is the character before D, S1 is the syntax of C1, C2
5951 is the character at D, and S2 is the syntax of C2. */
5952 re_wchar_t c1, c2;
5953 int s1, s2;
5954 #ifdef emacs
5955 int offset = PTR_TO_OFFSET (d) - 1;
5956 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5957 UPDATE_SYNTAX_TABLE (charpos);
5958 #endif
5959 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5960 s1 = SYNTAX (c1);
5961
5962 /* Case 2: S1 is not Sword. */
5963 if (s1 != Sword)
5964 goto fail;
5965
5966 /* Case 3: D is not at the end of string ... */
5967 if (!AT_STRINGS_END (d))
5968 {
5969 PREFETCH_NOLIMIT ();
5970 c2 = RE_STRING_CHAR (d, dend - d);
5971 #ifdef emacs
5972 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5973 #endif
5974 s2 = SYNTAX (c2);
5975
5976 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
5977 returns 0. */
5978 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5979 goto fail;
5980 }
5981 }
5982 break;
5983
5984 case symbeg:
5985 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
5986
5987 /* We FAIL in one of the following cases: */
5988
5989 /* Case 1: D is at the end of string. */
5990 if (AT_STRINGS_END (d))
5991 goto fail;
5992 else
5993 {
5994 /* C1 is the character before D, S1 is the syntax of C1, C2
5995 is the character at D, and S2 is the syntax of C2. */
5996 re_wchar_t c1, c2;
5997 int s1, s2;
5998 #ifdef emacs
5999 int offset = PTR_TO_OFFSET (d);
6000 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6001 UPDATE_SYNTAX_TABLE (charpos);
6002 #endif
6003 PREFETCH ();
6004 c2 = RE_STRING_CHAR (d, dend - d);
6005 s2 = SYNTAX (c2);
6006
6007 /* Case 2: S2 is neither Sword nor Ssymbol. */
6008 if (s2 != Sword && s2 != Ssymbol)
6009 goto fail;
6010
6011 /* Case 3: D is not at the beginning of string ... */
6012 if (!AT_STRINGS_BEG (d))
6013 {
6014 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6015 #ifdef emacs
6016 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
6017 #endif
6018 s1 = SYNTAX (c1);
6019
6020 /* ... and S1 is Sword or Ssymbol. */
6021 if (s1 == Sword || s1 == Ssymbol)
6022 goto fail;
6023 }
6024 }
6025 break;
6026
6027 case symend:
6028 DEBUG_PRINT1 ("EXECUTING symend.\n");
6029
6030 /* We FAIL in one of the following cases: */
6031
6032 /* Case 1: D is at the beginning of string. */
6033 if (AT_STRINGS_BEG (d))
6034 goto fail;
6035 else
6036 {
6037 /* C1 is the character before D, S1 is the syntax of C1, C2
6038 is the character at D, and S2 is the syntax of C2. */
6039 re_wchar_t c1, c2;
6040 int s1, s2;
6041 #ifdef emacs
6042 int offset = PTR_TO_OFFSET (d) - 1;
6043 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6044 UPDATE_SYNTAX_TABLE (charpos);
6045 #endif
6046 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6047 s1 = SYNTAX (c1);
6048
6049 /* Case 2: S1 is neither Ssymbol nor Sword. */
6050 if (s1 != Sword && s1 != Ssymbol)
6051 goto fail;
6052
6053 /* Case 3: D is not at the end of string ... */
6054 if (!AT_STRINGS_END (d))
6055 {
6056 PREFETCH_NOLIMIT ();
6057 c2 = RE_STRING_CHAR (d, dend - d);
6058 #ifdef emacs
6059 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
6060 #endif
6061 s2 = SYNTAX (c2);
6062
6063 /* ... and S2 is Sword or Ssymbol. */
6064 if (s2 == Sword || s2 == Ssymbol)
6065 goto fail;
6066 }
6067 }
6068 break;
6069
6070 case syntaxspec:
6071 case notsyntaxspec:
6072 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
6073 mcnt = *p++;
6074 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
6075 PREFETCH ();
6076 #ifdef emacs
6077 {
6078 int offset = PTR_TO_OFFSET (d);
6079 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6080 UPDATE_SYNTAX_TABLE (pos1);
6081 }
6082 #endif
6083 {
6084 int len;
6085 re_wchar_t c;
6086
6087 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
6088
6089 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
6090 goto fail;
6091 d += len;
6092 }
6093 break;
6094
6095 #ifdef emacs
6096 case before_dot:
6097 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
6098 if (PTR_BYTE_POS (d) >= PT_BYTE)
6099 goto fail;
6100 break;
6101
6102 case at_dot:
6103 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
6104 if (PTR_BYTE_POS (d) != PT_BYTE)
6105 goto fail;
6106 break;
6107
6108 case after_dot:
6109 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6110 if (PTR_BYTE_POS (d) <= PT_BYTE)
6111 goto fail;
6112 break;
6113
6114 case categoryspec:
6115 case notcategoryspec:
6116 not = (re_opcode_t) *(p - 1) == notcategoryspec;
6117 mcnt = *p++;
6118 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
6119 PREFETCH ();
6120 {
6121 int len;
6122 re_wchar_t c;
6123
6124 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
6125
6126 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
6127 goto fail;
6128 d += len;
6129 }
6130 break;
6131
6132 #endif /* emacs */
6133
6134 default:
6135 abort ();
6136 }
6137 continue; /* Successfully executed one pattern command; keep going. */
6138
6139
6140 /* We goto here if a matching operation fails. */
6141 fail:
6142 IMMEDIATE_QUIT_CHECK;
6143 if (!FAIL_STACK_EMPTY ())
6144 {
6145 re_char *str, *pat;
6146 /* A restart point is known. Restore to that state. */
6147 DEBUG_PRINT1 ("\nFAIL:\n");
6148 POP_FAILURE_POINT (str, pat);
6149 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
6150 {
6151 case on_failure_keep_string_jump:
6152 assert (str == NULL);
6153 goto continue_failure_jump;
6154
6155 case on_failure_jump_nastyloop:
6156 assert ((re_opcode_t)pat[-2] == no_op);
6157 PUSH_FAILURE_POINT (pat - 2, str);
6158 /* Fallthrough */
6159
6160 case on_failure_jump_loop:
6161 case on_failure_jump:
6162 case succeed_n:
6163 d = str;
6164 continue_failure_jump:
6165 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
6166 p = pat + mcnt;
6167 break;
6168
6169 case no_op:
6170 /* A special frame used for nastyloops. */
6171 goto fail;
6172
6173 default:
6174 abort();
6175 }
6176
6177 assert (p >= bufp->buffer && p <= pend);
6178
6179 if (d >= string1 && d <= end1)
6180 dend = end_match_1;
6181 }
6182 else
6183 break; /* Matching at this starting point really fails. */
6184 } /* for (;;) */
6185
6186 if (best_regs_set)
6187 goto restore_best_regs;
6188
6189 FREE_VARIABLES ();
6190
6191 return -1; /* Failure to match. */
6192 } /* re_match_2 */
6193 \f
6194 /* Subroutine definitions for re_match_2. */
6195
6196 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6197 bytes; nonzero otherwise. */
6198
6199 static int
6200 bcmp_translate (s1, s2, len, translate, multibyte)
6201 re_char *s1, *s2;
6202 register int len;
6203 RE_TRANSLATE_TYPE translate;
6204 const int multibyte;
6205 {
6206 register re_char *p1 = s1, *p2 = s2;
6207 re_char *p1_end = s1 + len;
6208 re_char *p2_end = s2 + len;
6209
6210 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6211 different lengths, but relying on a single `len' would break this. -sm */
6212 while (p1 < p1_end && p2 < p2_end)
6213 {
6214 int p1_charlen, p2_charlen;
6215 re_wchar_t p1_ch, p2_ch;
6216
6217 p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
6218 p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
6219
6220 if (RE_TRANSLATE (translate, p1_ch)
6221 != RE_TRANSLATE (translate, p2_ch))
6222 return 1;
6223
6224 p1 += p1_charlen, p2 += p2_charlen;
6225 }
6226
6227 if (p1 != p1_end || p2 != p2_end)
6228 return 1;
6229
6230 return 0;
6231 }
6232 \f
6233 /* Entry points for GNU code. */
6234
6235 /* re_compile_pattern is the GNU regular expression compiler: it
6236 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6237 Returns 0 if the pattern was valid, otherwise an error string.
6238
6239 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6240 are set in BUFP on entry.
6241
6242 We call regex_compile to do the actual compilation. */
6243
6244 const char *
6245 re_compile_pattern (pattern, length, bufp)
6246 const char *pattern;
6247 size_t length;
6248 struct re_pattern_buffer *bufp;
6249 {
6250 reg_errcode_t ret;
6251
6252 #ifdef emacs
6253 gl_state.current_syntax_table = current_buffer->syntax_table;
6254 #endif
6255
6256 /* GNU code is written to assume at least RE_NREGS registers will be set
6257 (and at least one extra will be -1). */
6258 bufp->regs_allocated = REGS_UNALLOCATED;
6259
6260 /* And GNU code determines whether or not to get register information
6261 by passing null for the REGS argument to re_match, etc., not by
6262 setting no_sub. */
6263 bufp->no_sub = 0;
6264
6265 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
6266
6267 if (!ret)
6268 return NULL;
6269 return gettext (re_error_msgid[(int) ret]);
6270 }
6271 WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
6272 \f
6273 /* Entry points compatible with 4.2 BSD regex library. We don't define
6274 them unless specifically requested. */
6275
6276 #if defined _REGEX_RE_COMP || defined _LIBC
6277
6278 /* BSD has one and only one pattern buffer. */
6279 static struct re_pattern_buffer re_comp_buf;
6280
6281 char *
6282 # ifdef _LIBC
6283 /* Make these definitions weak in libc, so POSIX programs can redefine
6284 these names if they don't use our functions, and still use
6285 regcomp/regexec below without link errors. */
6286 weak_function
6287 # endif
6288 re_comp (s)
6289 const char *s;
6290 {
6291 reg_errcode_t ret;
6292
6293 if (!s)
6294 {
6295 if (!re_comp_buf.buffer)
6296 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6297 return (char *) gettext ("No previous regular expression");
6298 return 0;
6299 }
6300
6301 if (!re_comp_buf.buffer)
6302 {
6303 re_comp_buf.buffer = (unsigned char *) malloc (200);
6304 if (re_comp_buf.buffer == NULL)
6305 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6306 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6307 re_comp_buf.allocated = 200;
6308
6309 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6310 if (re_comp_buf.fastmap == NULL)
6311 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6312 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6313 }
6314
6315 /* Since `re_exec' always passes NULL for the `regs' argument, we
6316 don't need to initialize the pattern buffer fields which affect it. */
6317
6318 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
6319
6320 if (!ret)
6321 return NULL;
6322
6323 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6324 return (char *) gettext (re_error_msgid[(int) ret]);
6325 }
6326
6327
6328 int
6329 # ifdef _LIBC
6330 weak_function
6331 # endif
6332 re_exec (s)
6333 const char *s;
6334 {
6335 const int len = strlen (s);
6336 return
6337 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6338 }
6339 #endif /* _REGEX_RE_COMP */
6340 \f
6341 /* POSIX.2 functions. Don't define these for Emacs. */
6342
6343 #ifndef emacs
6344
6345 /* regcomp takes a regular expression as a string and compiles it.
6346
6347 PREG is a regex_t *. We do not expect any fields to be initialized,
6348 since POSIX says we shouldn't. Thus, we set
6349
6350 `buffer' to the compiled pattern;
6351 `used' to the length of the compiled pattern;
6352 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6353 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6354 RE_SYNTAX_POSIX_BASIC;
6355 `fastmap' to an allocated space for the fastmap;
6356 `fastmap_accurate' to zero;
6357 `re_nsub' to the number of subexpressions in PATTERN.
6358
6359 PATTERN is the address of the pattern string.
6360
6361 CFLAGS is a series of bits which affect compilation.
6362
6363 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6364 use POSIX basic syntax.
6365
6366 If REG_NEWLINE is set, then . and [^...] don't match newline.
6367 Also, regexec will try a match beginning after every newline.
6368
6369 If REG_ICASE is set, then we considers upper- and lowercase
6370 versions of letters to be equivalent when matching.
6371
6372 If REG_NOSUB is set, then when PREG is passed to regexec, that
6373 routine will report only success or failure, and nothing about the
6374 registers.
6375
6376 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6377 the return codes and their meanings.) */
6378
6379 int
6380 regcomp (preg, pattern, cflags)
6381 regex_t *__restrict preg;
6382 const char *__restrict pattern;
6383 int cflags;
6384 {
6385 reg_errcode_t ret;
6386 reg_syntax_t syntax
6387 = (cflags & REG_EXTENDED) ?
6388 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6389
6390 /* regex_compile will allocate the space for the compiled pattern. */
6391 preg->buffer = 0;
6392 preg->allocated = 0;
6393 preg->used = 0;
6394
6395 /* Try to allocate space for the fastmap. */
6396 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
6397
6398 if (cflags & REG_ICASE)
6399 {
6400 unsigned i;
6401
6402 preg->translate
6403 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6404 * sizeof (*(RE_TRANSLATE_TYPE)0));
6405 if (preg->translate == NULL)
6406 return (int) REG_ESPACE;
6407
6408 /* Map uppercase characters to corresponding lowercase ones. */
6409 for (i = 0; i < CHAR_SET_SIZE; i++)
6410 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
6411 }
6412 else
6413 preg->translate = NULL;
6414
6415 /* If REG_NEWLINE is set, newlines are treated differently. */
6416 if (cflags & REG_NEWLINE)
6417 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6418 syntax &= ~RE_DOT_NEWLINE;
6419 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
6420 }
6421 else
6422 syntax |= RE_NO_NEWLINE_ANCHOR;
6423
6424 preg->no_sub = !!(cflags & REG_NOSUB);
6425
6426 /* POSIX says a null character in the pattern terminates it, so we
6427 can use strlen here in compiling the pattern. */
6428 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
6429
6430 /* POSIX doesn't distinguish between an unmatched open-group and an
6431 unmatched close-group: both are REG_EPAREN. */
6432 if (ret == REG_ERPAREN)
6433 ret = REG_EPAREN;
6434
6435 if (ret == REG_NOERROR && preg->fastmap)
6436 { /* Compute the fastmap now, since regexec cannot modify the pattern
6437 buffer. */
6438 re_compile_fastmap (preg);
6439 if (preg->can_be_null)
6440 { /* The fastmap can't be used anyway. */
6441 free (preg->fastmap);
6442 preg->fastmap = NULL;
6443 }
6444 }
6445 return (int) ret;
6446 }
6447 WEAK_ALIAS (__regcomp, regcomp)
6448
6449
6450 /* regexec searches for a given pattern, specified by PREG, in the
6451 string STRING.
6452
6453 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6454 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6455 least NMATCH elements, and we set them to the offsets of the
6456 corresponding matched substrings.
6457
6458 EFLAGS specifies `execution flags' which affect matching: if
6459 REG_NOTBOL is set, then ^ does not match at the beginning of the
6460 string; if REG_NOTEOL is set, then $ does not match at the end.
6461
6462 We return 0 if we find a match and REG_NOMATCH if not. */
6463
6464 int
6465 regexec (preg, string, nmatch, pmatch, eflags)
6466 const regex_t *__restrict preg;
6467 const char *__restrict string;
6468 size_t nmatch;
6469 regmatch_t pmatch[__restrict_arr];
6470 int eflags;
6471 {
6472 int ret;
6473 struct re_registers regs;
6474 regex_t private_preg;
6475 int len = strlen (string);
6476 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
6477
6478 private_preg = *preg;
6479
6480 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6481 private_preg.not_eol = !!(eflags & REG_NOTEOL);
6482
6483 /* The user has told us exactly how many registers to return
6484 information about, via `nmatch'. We have to pass that on to the
6485 matching routines. */
6486 private_preg.regs_allocated = REGS_FIXED;
6487
6488 if (want_reg_info)
6489 {
6490 regs.num_regs = nmatch;
6491 regs.start = TALLOC (nmatch * 2, regoff_t);
6492 if (regs.start == NULL)
6493 return (int) REG_NOMATCH;
6494 regs.end = regs.start + nmatch;
6495 }
6496
6497 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6498 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6499 was a little bit longer but still only matching the real part.
6500 This works because the `endline' will check for a '\n' and will find a
6501 '\0', correctly deciding that this is not the end of a line.
6502 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6503 a convenient '\0' there. For all we know, the string could be preceded
6504 by '\n' which would throw things off. */
6505
6506 /* Perform the searching operation. */
6507 ret = re_search (&private_preg, string, len,
6508 /* start: */ 0, /* range: */ len,
6509 want_reg_info ? &regs : (struct re_registers *) 0);
6510
6511 /* Copy the register information to the POSIX structure. */
6512 if (want_reg_info)
6513 {
6514 if (ret >= 0)
6515 {
6516 unsigned r;
6517
6518 for (r = 0; r < nmatch; r++)
6519 {
6520 pmatch[r].rm_so = regs.start[r];
6521 pmatch[r].rm_eo = regs.end[r];
6522 }
6523 }
6524
6525 /* If we needed the temporary register info, free the space now. */
6526 free (regs.start);
6527 }
6528
6529 /* We want zero return to mean success, unlike `re_search'. */
6530 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6531 }
6532 WEAK_ALIAS (__regexec, regexec)
6533
6534
6535 /* Returns a message corresponding to an error code, ERR_CODE, returned
6536 from either regcomp or regexec. We don't use PREG here.
6537
6538 ERR_CODE was previously called ERRCODE, but that name causes an
6539 error with msvc8 compiler. */
6540
6541 size_t
6542 regerror (err_code, preg, errbuf, errbuf_size)
6543 int err_code;
6544 const regex_t *preg;
6545 char *errbuf;
6546 size_t errbuf_size;
6547 {
6548 const char *msg;
6549 size_t msg_size;
6550
6551 if (err_code < 0
6552 || err_code >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
6553 /* Only error codes returned by the rest of the code should be passed
6554 to this routine. If we are given anything else, or if other regex
6555 code generates an invalid error code, then the program has a bug.
6556 Dump core so we can fix it. */
6557 abort ();
6558
6559 msg = gettext (re_error_msgid[err_code]);
6560
6561 msg_size = strlen (msg) + 1; /* Includes the null. */
6562
6563 if (errbuf_size != 0)
6564 {
6565 if (msg_size > errbuf_size)
6566 {
6567 strncpy (errbuf, msg, errbuf_size - 1);
6568 errbuf[errbuf_size - 1] = 0;
6569 }
6570 else
6571 strcpy (errbuf, msg);
6572 }
6573
6574 return msg_size;
6575 }
6576 WEAK_ALIAS (__regerror, regerror)
6577
6578
6579 /* Free dynamically allocated space used by PREG. */
6580
6581 void
6582 regfree (preg)
6583 regex_t *preg;
6584 {
6585 if (preg->buffer != NULL)
6586 free (preg->buffer);
6587 preg->buffer = NULL;
6588
6589 preg->allocated = 0;
6590 preg->used = 0;
6591
6592 if (preg->fastmap != NULL)
6593 free (preg->fastmap);
6594 preg->fastmap = NULL;
6595 preg->fastmap_accurate = 0;
6596
6597 if (preg->translate != NULL)
6598 free (preg->translate);
6599 preg->translate = NULL;
6600 }
6601 WEAK_ALIAS (__regfree, regfree)
6602
6603 #endif /* not emacs */
6604
6605 /* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6606 (do not change this comment) */