]> code.delx.au - gnu-emacs/blob - src/lisp.h
malloc.h hygiene
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter. -*- coding: utf-8 -*-
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2016 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
40 # define ID (some integer preprocessor expression of type TYPE)
41 DEFINE_GDB_SYMBOL_END (ID)
42
43 This hack is for the benefit of compilers that do not make macro
44 definitions or enums visible to the debugger. It's used for symbols
45 that .gdbinit needs. */
46
47 #define DECLARE_GDB_SYM(type, id) type const id EXTERNALLY_VISIBLE
48 #ifdef MAIN_PROGRAM
49 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) DECLARE_GDB_SYM (type, id)
50 # define DEFINE_GDB_SYMBOL_END(id) = id;
51 #else
52 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) extern DECLARE_GDB_SYM (type, id)
53 # define DEFINE_GDB_SYMBOL_END(val) ;
54 #endif
55
56 /* The ubiquitous max and min macros. */
57 #undef min
58 #undef max
59 #define max(a, b) ((a) > (b) ? (a) : (b))
60 #define min(a, b) ((a) < (b) ? (a) : (b))
61
62 /* Number of elements in an array. */
63 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
64
65 /* Number of bits in a Lisp_Object tag. */
66 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
67 #define GCTYPEBITS 3
68 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
69
70 /* The number of bits needed in an EMACS_INT over and above the number
71 of bits in a pointer. This is 0 on systems where:
72 1. We can specify multiple-of-8 alignment on static variables.
73 2. We know malloc returns a multiple of 8. */
74 #if (defined alignas \
75 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
76 || defined DARWIN_OS || defined __sun || defined __MINGW32__ \
77 || defined CYGWIN))
78 # define NONPOINTER_BITS 0
79 #else
80 # define NONPOINTER_BITS GCTYPEBITS
81 #endif
82
83 /* EMACS_INT - signed integer wide enough to hold an Emacs value
84 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
85 pI - printf length modifier for EMACS_INT
86 EMACS_UINT - unsigned variant of EMACS_INT */
87 #ifndef EMACS_INT_MAX
88 # if INTPTR_MAX <= 0
89 # error "INTPTR_MAX misconfigured"
90 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
91 typedef int EMACS_INT;
92 typedef unsigned int EMACS_UINT;
93 # define EMACS_INT_MAX INT_MAX
94 # define pI ""
95 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
96 typedef long int EMACS_INT;
97 typedef unsigned long EMACS_UINT;
98 # define EMACS_INT_MAX LONG_MAX
99 # define pI "l"
100 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
101 In theory this is not safe, but in practice it seems to be OK. */
102 # elif INTPTR_MAX <= LLONG_MAX
103 typedef long long int EMACS_INT;
104 typedef unsigned long long int EMACS_UINT;
105 # define EMACS_INT_MAX LLONG_MAX
106 # define pI "ll"
107 # else
108 # error "INTPTR_MAX too large"
109 # endif
110 #endif
111
112 /* Number of bits to put in each character in the internal representation
113 of bool vectors. This should not vary across implementations. */
114 enum { BOOL_VECTOR_BITS_PER_CHAR =
115 #define BOOL_VECTOR_BITS_PER_CHAR 8
116 BOOL_VECTOR_BITS_PER_CHAR
117 };
118
119 /* An unsigned integer type representing a fixed-length bit sequence,
120 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
121 for speed, but it is unsigned char on weird platforms. */
122 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
123 typedef size_t bits_word;
124 # define BITS_WORD_MAX SIZE_MAX
125 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
126 #else
127 typedef unsigned char bits_word;
128 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
129 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
130 #endif
131 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
132
133 /* Number of bits in some machine integer types. */
134 enum
135 {
136 BITS_PER_CHAR = CHAR_BIT,
137 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
138 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
139 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
140 };
141
142 /* printmax_t and uprintmax_t are types for printing large integers.
143 These are the widest integers that are supported for printing.
144 pMd etc. are conversions for printing them.
145 On C99 hosts, there's no problem, as even the widest integers work.
146 Fall back on EMACS_INT on pre-C99 hosts. */
147 #ifdef PRIdMAX
148 typedef intmax_t printmax_t;
149 typedef uintmax_t uprintmax_t;
150 # define pMd PRIdMAX
151 # define pMu PRIuMAX
152 #else
153 typedef EMACS_INT printmax_t;
154 typedef EMACS_UINT uprintmax_t;
155 # define pMd pI"d"
156 # define pMu pI"u"
157 #endif
158
159 /* Use pD to format ptrdiff_t values, which suffice for indexes into
160 buffers and strings. Emacs never allocates objects larger than
161 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
162 In C99, pD can always be "t"; configure it here for the sake of
163 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
164 #if PTRDIFF_MAX == INT_MAX
165 # define pD ""
166 #elif PTRDIFF_MAX == LONG_MAX
167 # define pD "l"
168 #elif PTRDIFF_MAX == LLONG_MAX
169 # define pD "ll"
170 #else
171 # define pD "t"
172 #endif
173
174 /* Extra internal type checking? */
175
176 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
177 'assume (COND)'. COND should be free of side effects, as it may or
178 may not be evaluated.
179
180 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
181 defined and suppress_checking is false, and does nothing otherwise.
182 Emacs dies if COND is checked and is false. The suppress_checking
183 variable is initialized to 0 in alloc.c. Set it to 1 using a
184 debugger to temporarily disable aborting on detected internal
185 inconsistencies or error conditions.
186
187 In some cases, a good compiler may be able to optimize away the
188 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
189 uses eassert to test STRINGP (x), but a particular use of XSTRING
190 is invoked only after testing that STRINGP (x) is true, making the
191 test redundant.
192
193 eassume is like eassert except that it also causes the compiler to
194 assume that COND is true afterwards, regardless of whether runtime
195 checking is enabled. This can improve performance in some cases,
196 though it can degrade performance in others. It's often suboptimal
197 for COND to call external functions or access volatile storage. */
198
199 #ifndef ENABLE_CHECKING
200 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
201 # define eassume(cond) assume (cond)
202 #else /* ENABLE_CHECKING */
203
204 extern _Noreturn void die (const char *, const char *, int);
205
206 extern bool suppress_checking EXTERNALLY_VISIBLE;
207
208 # define eassert(cond) \
209 (suppress_checking || (cond) \
210 ? (void) 0 \
211 : die (# cond, __FILE__, __LINE__))
212 # define eassume(cond) \
213 (suppress_checking \
214 ? assume (cond) \
215 : (cond) \
216 ? (void) 0 \
217 : die (# cond, __FILE__, __LINE__))
218 #endif /* ENABLE_CHECKING */
219
220 \f
221 /* Use the configure flag --enable-check-lisp-object-type to make
222 Lisp_Object use a struct type instead of the default int. The flag
223 causes CHECK_LISP_OBJECT_TYPE to be defined. */
224
225 /***** Select the tagging scheme. *****/
226 /* The following option controls the tagging scheme:
227 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
228 always 0, and we can thus use them to hold tag bits, without
229 restricting our addressing space.
230
231 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
232 restricting our possible address range.
233
234 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
235 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
236 on the few static Lisp_Objects used: lispsym, all the defsubr, and
237 the two special buffers buffer_defaults and buffer_local_symbols. */
238
239 enum Lisp_Bits
240 {
241 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
242 integer constant, for MSVC. */
243 #define GCALIGNMENT 8
244
245 /* Number of bits in a Lisp_Object value, not counting the tag. */
246 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
247
248 /* Number of bits in a Lisp fixnum tag. */
249 INTTYPEBITS = GCTYPEBITS - 1,
250
251 /* Number of bits in a Lisp fixnum value, not counting the tag. */
252 FIXNUM_BITS = VALBITS + 1
253 };
254
255 #if GCALIGNMENT != 1 << GCTYPEBITS
256 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
257 #endif
258
259 /* The maximum value that can be stored in a EMACS_INT, assuming all
260 bits other than the type bits contribute to a nonnegative signed value.
261 This can be used in #if, e.g., '#if USE_LSB_TAG' below expands to an
262 expression involving VAL_MAX. */
263 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
264
265 /* Whether the least-significant bits of an EMACS_INT contain the tag.
266 On hosts where pointers-as-ints do not exceed VAL_MAX / 2, USE_LSB_TAG is:
267 a. unnecessary, because the top bits of an EMACS_INT are unused, and
268 b. slower, because it typically requires extra masking.
269 So, USE_LSB_TAG is true only on hosts where it might be useful. */
270 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
271 #define USE_LSB_TAG (VAL_MAX / 2 < INTPTR_MAX)
272 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
273
274 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
275 # error "USE_LSB_TAG not supported on this platform; please report this." \
276 "Try 'configure --with-wide-int' to work around the problem."
277 error !;
278 #endif
279
280 #ifndef alignas
281 # error "alignas not defined"
282 #endif
283
284 #ifdef HAVE_STRUCT_ATTRIBUTE_ALIGNED
285 # define GCALIGNED __attribute__ ((aligned (GCALIGNMENT)))
286 #else
287 # define GCALIGNED /* empty */
288 #endif
289
290 /* Some operations are so commonly executed that they are implemented
291 as macros, not functions, because otherwise runtime performance would
292 suffer too much when compiling with GCC without optimization.
293 There's no need to inline everything, just the operations that
294 would otherwise cause a serious performance problem.
295
296 For each such operation OP, define a macro lisp_h_OP that contains
297 the operation's implementation. That way, OP can be implemented
298 via a macro definition like this:
299
300 #define OP(x) lisp_h_OP (x)
301
302 and/or via a function definition like this:
303
304 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
305
306 without worrying about the implementations diverging, since
307 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
308 are intended to be private to this include file, and should not be
309 used elsewhere.
310
311 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
312 functions, once most developers have access to GCC 4.8 or later and
313 can use "gcc -Og" to debug. Maybe in the year 2016. See
314 Bug#11935.
315
316 Commentary for these macros can be found near their corresponding
317 functions, below. */
318
319 #if CHECK_LISP_OBJECT_TYPE
320 # define lisp_h_XLI(o) ((o).i)
321 # define lisp_h_XIL(i) ((Lisp_Object) { i })
322 #else
323 # define lisp_h_XLI(o) (o)
324 # define lisp_h_XIL(i) (i)
325 #endif
326 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
327 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
328 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
329 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
330 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
331 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
332 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
333 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
334 #define lisp_h_INTEGERP(x) ((XTYPE (x) & (Lisp_Int0 | ~Lisp_Int1)) == Lisp_Int0)
335 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
336 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
337 #define lisp_h_NILP(x) EQ (x, Qnil)
338 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
339 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
340 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
341 #define lisp_h_SYMBOL_VAL(sym) \
342 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
343 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
344 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
345 #define lisp_h_XCAR(c) XCONS (c)->car
346 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
347 #define lisp_h_XCONS(a) \
348 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
349 #define lisp_h_XHASH(a) XUINT (a)
350 #ifndef GC_CHECK_CONS_LIST
351 # define lisp_h_check_cons_list() ((void) 0)
352 #endif
353 #if USE_LSB_TAG
354 # define lisp_h_make_number(n) \
355 XIL ((EMACS_INT) (((EMACS_UINT) (n) << INTTYPEBITS) + Lisp_Int0))
356 # define lisp_h_XFASTINT(a) XINT (a)
357 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
358 # define lisp_h_XSYMBOL(a) \
359 (eassert (SYMBOLP (a)), \
360 (struct Lisp_Symbol *) ((intptr_t) XLI (a) - Lisp_Symbol \
361 + (char *) lispsym))
362 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
363 # define lisp_h_XUNTAG(a, type) ((void *) (intptr_t) (XLI (a) - (type)))
364 #endif
365
366 /* When compiling via gcc -O0, define the key operations as macros, as
367 Emacs is too slow otherwise. To disable this optimization, compile
368 with -DINLINING=false. */
369 #if (defined __NO_INLINE__ \
370 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
371 && ! (defined INLINING && ! INLINING))
372 # define DEFINE_KEY_OPS_AS_MACROS true
373 #else
374 # define DEFINE_KEY_OPS_AS_MACROS false
375 #endif
376
377 #if DEFINE_KEY_OPS_AS_MACROS
378 # define XLI(o) lisp_h_XLI (o)
379 # define XIL(i) lisp_h_XIL (i)
380 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
381 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
382 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
383 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
384 # define CONSP(x) lisp_h_CONSP (x)
385 # define EQ(x, y) lisp_h_EQ (x, y)
386 # define FLOATP(x) lisp_h_FLOATP (x)
387 # define INTEGERP(x) lisp_h_INTEGERP (x)
388 # define MARKERP(x) lisp_h_MARKERP (x)
389 # define MISCP(x) lisp_h_MISCP (x)
390 # define NILP(x) lisp_h_NILP (x)
391 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
392 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
393 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
394 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
395 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
396 # define XCAR(c) lisp_h_XCAR (c)
397 # define XCDR(c) lisp_h_XCDR (c)
398 # define XCONS(a) lisp_h_XCONS (a)
399 # define XHASH(a) lisp_h_XHASH (a)
400 # ifndef GC_CHECK_CONS_LIST
401 # define check_cons_list() lisp_h_check_cons_list ()
402 # endif
403 # if USE_LSB_TAG
404 # define make_number(n) lisp_h_make_number (n)
405 # define XFASTINT(a) lisp_h_XFASTINT (a)
406 # define XINT(a) lisp_h_XINT (a)
407 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
408 # define XTYPE(a) lisp_h_XTYPE (a)
409 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
410 # endif
411 #endif
412
413
414 /* Define the fundamental Lisp data structures. */
415
416 /* This is the set of Lisp data types. If you want to define a new
417 data type, read the comments after Lisp_Fwd_Type definition
418 below. */
419
420 /* Lisp integers use 2 tags, to give them one extra bit, thus
421 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
422 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
423 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
424
425 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
426 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
427 vociferously about them. */
428 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
429 || (defined __SUNPRO_C && __STDC__))
430 #define ENUM_BF(TYPE) unsigned int
431 #else
432 #define ENUM_BF(TYPE) enum TYPE
433 #endif
434
435
436 enum Lisp_Type
437 {
438 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
439 Lisp_Symbol = 0,
440
441 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
442 whose first member indicates the subtype. */
443 Lisp_Misc = 1,
444
445 /* Integer. XINT (obj) is the integer value. */
446 Lisp_Int0 = 2,
447 Lisp_Int1 = USE_LSB_TAG ? 6 : 3,
448
449 /* String. XSTRING (object) points to a struct Lisp_String.
450 The length of the string, and its contents, are stored therein. */
451 Lisp_String = 4,
452
453 /* Vector of Lisp objects, or something resembling it.
454 XVECTOR (object) points to a struct Lisp_Vector, which contains
455 the size and contents. The size field also contains the type
456 information, if it's not a real vector object. */
457 Lisp_Vectorlike = 5,
458
459 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
460 Lisp_Cons = USE_LSB_TAG ? 3 : 6,
461
462 Lisp_Float = 7
463 };
464
465 /* This is the set of data types that share a common structure.
466 The first member of the structure is a type code from this set.
467 The enum values are arbitrary, but we'll use large numbers to make it
468 more likely that we'll spot the error if a random word in memory is
469 mistakenly interpreted as a Lisp_Misc. */
470 enum Lisp_Misc_Type
471 {
472 Lisp_Misc_Free = 0x5eab,
473 Lisp_Misc_Marker,
474 Lisp_Misc_Overlay,
475 Lisp_Misc_Save_Value,
476 Lisp_Misc_Finalizer,
477 #ifdef HAVE_MODULES
478 Lisp_Misc_User_Ptr,
479 #endif
480 /* Currently floats are not a misc type,
481 but let's define this in case we want to change that. */
482 Lisp_Misc_Float,
483 /* This is not a type code. It is for range checking. */
484 Lisp_Misc_Limit
485 };
486
487 /* These are the types of forwarding objects used in the value slot
488 of symbols for special built-in variables whose value is stored in
489 C variables. */
490 enum Lisp_Fwd_Type
491 {
492 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
493 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
494 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
495 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
496 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
497 };
498
499 /* If you want to define a new Lisp data type, here are some
500 instructions. See the thread at
501 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
502 for more info.
503
504 First, there are already a couple of Lisp types that can be used if
505 your new type does not need to be exposed to Lisp programs nor
506 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
507 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
508 is suitable for temporarily stashing away pointers and integers in
509 a Lisp object. The latter is useful for vector-like Lisp objects
510 that need to be used as part of other objects, but which are never
511 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
512 an example).
513
514 These two types don't look pretty when printed, so they are
515 unsuitable for Lisp objects that can be exposed to users.
516
517 To define a new data type, add one more Lisp_Misc subtype or one
518 more pseudovector subtype. Pseudovectors are more suitable for
519 objects with several slots that need to support fast random access,
520 while Lisp_Misc types are for everything else. A pseudovector object
521 provides one or more slots for Lisp objects, followed by struct
522 members that are accessible only from C. A Lisp_Misc object is a
523 wrapper for a C struct that can contain anything you like.
524
525 Explicit freeing is discouraged for Lisp objects in general. But if
526 you really need to exploit this, use Lisp_Misc (check free_misc in
527 alloc.c to see why). There is no way to free a vectorlike object.
528
529 To add a new pseudovector type, extend the pvec_type enumeration;
530 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
531
532 For a Lisp_Misc, you will also need to add your entry to union
533 Lisp_Misc (but make sure the first word has the same structure as
534 the others, starting with a 16-bit member of the Lisp_Misc_Type
535 enumeration and a 1-bit GC markbit) and make sure the overall size
536 of the union is not increased by your addition.
537
538 For a new pseudovector, it's highly desirable to limit the size
539 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
540 Otherwise you will need to change sweep_vectors (also in alloc.c).
541
542 Then you will need to add switch branches in print.c (in
543 print_object, to print your object, and possibly also in
544 print_preprocess) and to alloc.c, to mark your object (in
545 mark_object) and to free it (in gc_sweep). The latter is also the
546 right place to call any code specific to your data type that needs
547 to run when the object is recycled -- e.g., free any additional
548 resources allocated for it that are not Lisp objects. You can even
549 make a pointer to the function that frees the resources a slot in
550 your object -- this way, the same object could be used to represent
551 several disparate C structures. */
552
553 #ifdef CHECK_LISP_OBJECT_TYPE
554
555 typedef struct { EMACS_INT i; } Lisp_Object;
556
557 #define LISP_INITIALLY(i) {i}
558
559 #undef CHECK_LISP_OBJECT_TYPE
560 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
561 #else /* CHECK_LISP_OBJECT_TYPE */
562
563 /* If a struct type is not wanted, define Lisp_Object as just a number. */
564
565 typedef EMACS_INT Lisp_Object;
566 #define LISP_INITIALLY(i) (i)
567 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
568 #endif /* CHECK_LISP_OBJECT_TYPE */
569
570 #define LISP_INITIALLY_ZERO LISP_INITIALLY (0)
571 \f
572 /* Forward declarations. */
573
574 /* Defined in this file. */
575 union Lisp_Fwd;
576 INLINE bool BOOL_VECTOR_P (Lisp_Object);
577 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
578 INLINE bool BUFFERP (Lisp_Object);
579 INLINE bool CHAR_TABLE_P (Lisp_Object);
580 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
581 INLINE bool (CONSP) (Lisp_Object);
582 INLINE bool (FLOATP) (Lisp_Object);
583 INLINE bool functionp (Lisp_Object);
584 INLINE bool (INTEGERP) (Lisp_Object);
585 INLINE bool (MARKERP) (Lisp_Object);
586 INLINE bool (MISCP) (Lisp_Object);
587 INLINE bool (NILP) (Lisp_Object);
588 INLINE bool OVERLAYP (Lisp_Object);
589 INLINE bool PROCESSP (Lisp_Object);
590 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
591 INLINE bool SAVE_VALUEP (Lisp_Object);
592 INLINE bool FINALIZERP (Lisp_Object);
593
594 #ifdef HAVE_MODULES
595 INLINE bool USER_PTRP (Lisp_Object);
596 INLINE struct Lisp_User_Ptr *(XUSER_PTR) (Lisp_Object);
597 #endif
598
599 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
600 Lisp_Object);
601 INLINE bool STRINGP (Lisp_Object);
602 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
603 INLINE bool SUBRP (Lisp_Object);
604 INLINE bool (SYMBOLP) (Lisp_Object);
605 INLINE bool (VECTORLIKEP) (Lisp_Object);
606 INLINE bool WINDOWP (Lisp_Object);
607 INLINE bool TERMINALP (Lisp_Object);
608 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
609 INLINE struct Lisp_Finalizer *XFINALIZER (Lisp_Object);
610 INLINE struct Lisp_Symbol *(XSYMBOL) (Lisp_Object);
611 INLINE void *(XUNTAG) (Lisp_Object, int);
612
613 /* Defined in chartab.c. */
614 extern Lisp_Object char_table_ref (Lisp_Object, int);
615 extern void char_table_set (Lisp_Object, int, Lisp_Object);
616
617 /* Defined in data.c. */
618 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
619 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
620
621 /* Defined in emacs.c. */
622 extern bool might_dump;
623 /* True means Emacs has already been initialized.
624 Used during startup to detect startup of dumped Emacs. */
625 extern bool initialized;
626
627 /* Defined in floatfns.c. */
628 extern double extract_float (Lisp_Object);
629
630 \f
631 /* Interned state of a symbol. */
632
633 enum symbol_interned
634 {
635 SYMBOL_UNINTERNED = 0,
636 SYMBOL_INTERNED = 1,
637 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
638 };
639
640 enum symbol_redirect
641 {
642 SYMBOL_PLAINVAL = 4,
643 SYMBOL_VARALIAS = 1,
644 SYMBOL_LOCALIZED = 2,
645 SYMBOL_FORWARDED = 3
646 };
647
648 struct Lisp_Symbol
649 {
650 bool_bf gcmarkbit : 1;
651
652 /* Indicates where the value can be found:
653 0 : it's a plain var, the value is in the `value' field.
654 1 : it's a varalias, the value is really in the `alias' symbol.
655 2 : it's a localized var, the value is in the `blv' object.
656 3 : it's a forwarding variable, the value is in `forward'. */
657 ENUM_BF (symbol_redirect) redirect : 3;
658
659 /* Non-zero means symbol is constant, i.e. changing its value
660 should signal an error. If the value is 3, then the var
661 can be changed, but only by `defconst'. */
662 unsigned constant : 2;
663
664 /* Interned state of the symbol. This is an enumerator from
665 enum symbol_interned. */
666 unsigned interned : 2;
667
668 /* True means that this variable has been explicitly declared
669 special (with `defvar' etc), and shouldn't be lexically bound. */
670 bool_bf declared_special : 1;
671
672 /* True if pointed to from purespace and hence can't be GC'd. */
673 bool_bf pinned : 1;
674
675 /* The symbol's name, as a Lisp string. */
676 Lisp_Object name;
677
678 /* Value of the symbol or Qunbound if unbound. Which alternative of the
679 union is used depends on the `redirect' field above. */
680 union {
681 Lisp_Object value;
682 struct Lisp_Symbol *alias;
683 struct Lisp_Buffer_Local_Value *blv;
684 union Lisp_Fwd *fwd;
685 } val;
686
687 /* Function value of the symbol or Qnil if not fboundp. */
688 Lisp_Object function;
689
690 /* The symbol's property list. */
691 Lisp_Object plist;
692
693 /* Next symbol in obarray bucket, if the symbol is interned. */
694 struct Lisp_Symbol *next;
695 };
696
697 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
698 meaning as in the DEFUN macro, and is used to construct a prototype. */
699 /* We can use the same trick as in the DEFUN macro to generate the
700 appropriate prototype. */
701 #define EXFUN(fnname, maxargs) \
702 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
703
704 /* Note that the weird token-substitution semantics of ANSI C makes
705 this work for MANY and UNEVALLED. */
706 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
707 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
708 #define DEFUN_ARGS_0 (void)
709 #define DEFUN_ARGS_1 (Lisp_Object)
710 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
711 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
712 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
713 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
714 Lisp_Object)
715 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
716 Lisp_Object, Lisp_Object)
717 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
718 Lisp_Object, Lisp_Object, Lisp_Object)
719 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
720 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
721
722 /* Yield a signed integer that contains TAG along with PTR.
723
724 Sign-extend pointers when USE_LSB_TAG (this simplifies emacs-module.c),
725 and zero-extend otherwise (that’s a bit faster here).
726 Sign extension matters only when EMACS_INT is wider than a pointer. */
727 #define TAG_PTR(tag, ptr) \
728 (USE_LSB_TAG \
729 ? (intptr_t) (ptr) + (tag) \
730 : (EMACS_INT) (((EMACS_UINT) (tag) << VALBITS) + (uintptr_t) (ptr)))
731
732 /* Yield an integer that contains a symbol tag along with OFFSET.
733 OFFSET should be the offset in bytes from 'lispsym' to the symbol. */
734 #define TAG_SYMOFFSET(offset) TAG_PTR (Lisp_Symbol, offset)
735
736 /* XLI_BUILTIN_LISPSYM (iQwhatever) is equivalent to
737 XLI (builtin_lisp_symbol (Qwhatever)),
738 except the former expands to an integer constant expression. */
739 #define XLI_BUILTIN_LISPSYM(iname) TAG_SYMOFFSET ((iname) * sizeof *lispsym)
740
741 /* Declare extern constants for Lisp symbols. These can be helpful
742 when using a debugger like GDB, on older platforms where the debug
743 format does not represent C macros. */
744 #define DEFINE_LISP_SYMBOL(name) \
745 DEFINE_GDB_SYMBOL_BEGIN (Lisp_Object, name) \
746 DEFINE_GDB_SYMBOL_END (LISP_INITIALLY (XLI_BUILTIN_LISPSYM (i##name)))
747
748 /* By default, define macros for Qt, etc., as this leads to a bit
749 better performance in the core Emacs interpreter. A plugin can
750 define DEFINE_NON_NIL_Q_SYMBOL_MACROS to be false, to be portable to
751 other Emacs instances that assign different values to Qt, etc. */
752 #ifndef DEFINE_NON_NIL_Q_SYMBOL_MACROS
753 # define DEFINE_NON_NIL_Q_SYMBOL_MACROS true
754 #endif
755
756 #include "globals.h"
757
758 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
759 At the machine level, these operations are no-ops. */
760
761 INLINE EMACS_INT
762 (XLI) (Lisp_Object o)
763 {
764 return lisp_h_XLI (o);
765 }
766
767 INLINE Lisp_Object
768 (XIL) (EMACS_INT i)
769 {
770 return lisp_h_XIL (i);
771 }
772
773 /* In the size word of a vector, this bit means the vector has been marked. */
774
775 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
776 # define ARRAY_MARK_FLAG PTRDIFF_MIN
777 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
778
779 /* In the size word of a struct Lisp_Vector, this bit means it's really
780 some other vector-like object. */
781 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
782 # define PSEUDOVECTOR_FLAG (PTRDIFF_MAX - PTRDIFF_MAX / 2)
783 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
784
785 /* In a pseudovector, the size field actually contains a word with one
786 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
787 with PVEC_TYPE_MASK to indicate the actual type. */
788 enum pvec_type
789 {
790 PVEC_NORMAL_VECTOR,
791 PVEC_FREE,
792 PVEC_PROCESS,
793 PVEC_FRAME,
794 PVEC_WINDOW,
795 PVEC_BOOL_VECTOR,
796 PVEC_BUFFER,
797 PVEC_HASH_TABLE,
798 PVEC_TERMINAL,
799 PVEC_WINDOW_CONFIGURATION,
800 PVEC_SUBR,
801 PVEC_OTHER,
802 PVEC_XWIDGET,
803 PVEC_XWIDGET_VIEW,
804
805 /* These should be last, check internal_equal to see why. */
806 PVEC_COMPILED,
807 PVEC_CHAR_TABLE,
808 PVEC_SUB_CHAR_TABLE,
809 PVEC_FONT /* Should be last because it's used for range checking. */
810 };
811
812 enum More_Lisp_Bits
813 {
814 /* For convenience, we also store the number of elements in these bits.
815 Note that this size is not necessarily the memory-footprint size, but
816 only the number of Lisp_Object fields (that need to be traced by GC).
817 The distinction is used, e.g., by Lisp_Process, which places extra
818 non-Lisp_Object fields at the end of the structure. */
819 PSEUDOVECTOR_SIZE_BITS = 12,
820 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
821
822 /* To calculate the memory footprint of the pseudovector, it's useful
823 to store the size of non-Lisp area in word_size units here. */
824 PSEUDOVECTOR_REST_BITS = 12,
825 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
826 << PSEUDOVECTOR_SIZE_BITS),
827
828 /* Used to extract pseudovector subtype information. */
829 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
830 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
831 };
832 \f
833 /* These functions extract various sorts of values from a Lisp_Object.
834 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
835 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
836 that cons. */
837
838 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
839 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
840 # define VALMASK (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
841 DEFINE_GDB_SYMBOL_END (VALMASK)
842
843 /* Largest and smallest representable fixnum values. These are the C
844 values. They are macros for use in static initializers. */
845 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
846 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
847
848 #if USE_LSB_TAG
849
850 INLINE Lisp_Object
851 (make_number) (EMACS_INT n)
852 {
853 return lisp_h_make_number (n);
854 }
855
856 INLINE EMACS_INT
857 (XINT) (Lisp_Object a)
858 {
859 return lisp_h_XINT (a);
860 }
861
862 INLINE EMACS_INT
863 (XFASTINT) (Lisp_Object a)
864 {
865 EMACS_INT n = lisp_h_XFASTINT (a);
866 eassume (0 <= n);
867 return n;
868 }
869
870 INLINE struct Lisp_Symbol *
871 (XSYMBOL) (Lisp_Object a)
872 {
873 return lisp_h_XSYMBOL (a);
874 }
875
876 INLINE enum Lisp_Type
877 (XTYPE) (Lisp_Object a)
878 {
879 return lisp_h_XTYPE (a);
880 }
881
882 INLINE void *
883 (XUNTAG) (Lisp_Object a, int type)
884 {
885 return lisp_h_XUNTAG (a, type);
886 }
887
888 #else /* ! USE_LSB_TAG */
889
890 /* Although compiled only if ! USE_LSB_TAG, the following functions
891 also work when USE_LSB_TAG; this is to aid future maintenance when
892 the lisp_h_* macros are eventually removed. */
893
894 /* Make a Lisp integer representing the value of the low order
895 bits of N. */
896 INLINE Lisp_Object
897 make_number (EMACS_INT n)
898 {
899 EMACS_INT int0 = Lisp_Int0;
900 if (USE_LSB_TAG)
901 {
902 EMACS_UINT u = n;
903 n = u << INTTYPEBITS;
904 n += int0;
905 }
906 else
907 {
908 n &= INTMASK;
909 n += (int0 << VALBITS);
910 }
911 return XIL (n);
912 }
913
914 /* Extract A's value as a signed integer. */
915 INLINE EMACS_INT
916 XINT (Lisp_Object a)
917 {
918 EMACS_INT i = XLI (a);
919 if (! USE_LSB_TAG)
920 {
921 EMACS_UINT u = i;
922 i = u << INTTYPEBITS;
923 }
924 return i >> INTTYPEBITS;
925 }
926
927 /* Like XINT (A), but may be faster. A must be nonnegative.
928 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
929 integers have zero-bits in their tags. */
930 INLINE EMACS_INT
931 XFASTINT (Lisp_Object a)
932 {
933 EMACS_INT int0 = Lisp_Int0;
934 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a) - (int0 << VALBITS);
935 eassume (0 <= n);
936 return n;
937 }
938
939 /* Extract A's type. */
940 INLINE enum Lisp_Type
941 XTYPE (Lisp_Object a)
942 {
943 EMACS_UINT i = XLI (a);
944 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
945 }
946
947 /* Extract A's value as a symbol. */
948 INLINE struct Lisp_Symbol *
949 XSYMBOL (Lisp_Object a)
950 {
951 eassert (SYMBOLP (a));
952 intptr_t i = (intptr_t) XUNTAG (a, Lisp_Symbol);
953 void *p = (char *) lispsym + i;
954 return p;
955 }
956
957 /* Extract A's pointer value, assuming A's type is TYPE. */
958 INLINE void *
959 XUNTAG (Lisp_Object a, int type)
960 {
961 intptr_t i = USE_LSB_TAG ? XLI (a) - type : XLI (a) & VALMASK;
962 return (void *) i;
963 }
964
965 #endif /* ! USE_LSB_TAG */
966
967 /* Extract A's value as an unsigned integer. */
968 INLINE EMACS_UINT
969 XUINT (Lisp_Object a)
970 {
971 EMACS_UINT i = XLI (a);
972 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
973 }
974
975 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
976 right now, but XUINT should only be applied to objects we know are
977 integers. */
978
979 INLINE EMACS_INT
980 (XHASH) (Lisp_Object a)
981 {
982 return lisp_h_XHASH (a);
983 }
984
985 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
986 INLINE Lisp_Object
987 make_natnum (EMACS_INT n)
988 {
989 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
990 EMACS_INT int0 = Lisp_Int0;
991 return USE_LSB_TAG ? make_number (n) : XIL (n + (int0 << VALBITS));
992 }
993
994 /* Return true if X and Y are the same object. */
995
996 INLINE bool
997 (EQ) (Lisp_Object x, Lisp_Object y)
998 {
999 return lisp_h_EQ (x, y);
1000 }
1001
1002 /* Value is true if I doesn't fit into a Lisp fixnum. It is
1003 written this way so that it also works if I is of unsigned
1004 type or if I is a NaN. */
1005
1006 #define FIXNUM_OVERFLOW_P(i) \
1007 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
1008
1009 INLINE ptrdiff_t
1010 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
1011 {
1012 return num < lower ? lower : num <= upper ? num : upper;
1013 }
1014 \f
1015
1016 /* Extract a value or address from a Lisp_Object. */
1017
1018 INLINE struct Lisp_Cons *
1019 (XCONS) (Lisp_Object a)
1020 {
1021 return lisp_h_XCONS (a);
1022 }
1023
1024 INLINE struct Lisp_Vector *
1025 XVECTOR (Lisp_Object a)
1026 {
1027 eassert (VECTORLIKEP (a));
1028 return XUNTAG (a, Lisp_Vectorlike);
1029 }
1030
1031 INLINE struct Lisp_String *
1032 XSTRING (Lisp_Object a)
1033 {
1034 eassert (STRINGP (a));
1035 return XUNTAG (a, Lisp_String);
1036 }
1037
1038 /* The index of the C-defined Lisp symbol SYM.
1039 This can be used in a static initializer. */
1040 #define SYMBOL_INDEX(sym) i##sym
1041
1042 INLINE struct Lisp_Float *
1043 XFLOAT (Lisp_Object a)
1044 {
1045 eassert (FLOATP (a));
1046 return XUNTAG (a, Lisp_Float);
1047 }
1048
1049 /* Pseudovector types. */
1050
1051 INLINE struct Lisp_Process *
1052 XPROCESS (Lisp_Object a)
1053 {
1054 eassert (PROCESSP (a));
1055 return XUNTAG (a, Lisp_Vectorlike);
1056 }
1057
1058 INLINE struct window *
1059 XWINDOW (Lisp_Object a)
1060 {
1061 eassert (WINDOWP (a));
1062 return XUNTAG (a, Lisp_Vectorlike);
1063 }
1064
1065 INLINE struct terminal *
1066 XTERMINAL (Lisp_Object a)
1067 {
1068 eassert (TERMINALP (a));
1069 return XUNTAG (a, Lisp_Vectorlike);
1070 }
1071
1072 INLINE struct Lisp_Subr *
1073 XSUBR (Lisp_Object a)
1074 {
1075 eassert (SUBRP (a));
1076 return XUNTAG (a, Lisp_Vectorlike);
1077 }
1078
1079 INLINE struct buffer *
1080 XBUFFER (Lisp_Object a)
1081 {
1082 eassert (BUFFERP (a));
1083 return XUNTAG (a, Lisp_Vectorlike);
1084 }
1085
1086 INLINE struct Lisp_Char_Table *
1087 XCHAR_TABLE (Lisp_Object a)
1088 {
1089 eassert (CHAR_TABLE_P (a));
1090 return XUNTAG (a, Lisp_Vectorlike);
1091 }
1092
1093 INLINE struct Lisp_Sub_Char_Table *
1094 XSUB_CHAR_TABLE (Lisp_Object a)
1095 {
1096 eassert (SUB_CHAR_TABLE_P (a));
1097 return XUNTAG (a, Lisp_Vectorlike);
1098 }
1099
1100 INLINE struct Lisp_Bool_Vector *
1101 XBOOL_VECTOR (Lisp_Object a)
1102 {
1103 eassert (BOOL_VECTOR_P (a));
1104 return XUNTAG (a, Lisp_Vectorlike);
1105 }
1106
1107 /* Construct a Lisp_Object from a value or address. */
1108
1109 INLINE Lisp_Object
1110 make_lisp_ptr (void *ptr, enum Lisp_Type type)
1111 {
1112 Lisp_Object a = XIL (TAG_PTR (type, ptr));
1113 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
1114 return a;
1115 }
1116
1117 INLINE Lisp_Object
1118 make_lisp_symbol (struct Lisp_Symbol *sym)
1119 {
1120 Lisp_Object a = XIL (TAG_SYMOFFSET ((char *) sym - (char *) lispsym));
1121 eassert (XSYMBOL (a) == sym);
1122 return a;
1123 }
1124
1125 INLINE Lisp_Object
1126 builtin_lisp_symbol (int index)
1127 {
1128 return make_lisp_symbol (lispsym + index);
1129 }
1130
1131 #define XSETINT(a, b) ((a) = make_number (b))
1132 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
1133 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
1134 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
1135 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
1136 #define XSETSYMBOL(a, b) ((a) = make_lisp_symbol (b))
1137 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
1138 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
1139
1140 /* Pseudovector types. */
1141
1142 #define XSETPVECTYPE(v, code) \
1143 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
1144 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
1145 ((v)->header.size = (PSEUDOVECTOR_FLAG \
1146 | ((code) << PSEUDOVECTOR_AREA_BITS) \
1147 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
1148 | (lispsize)))
1149
1150 /* The cast to struct vectorlike_header * avoids aliasing issues. */
1151 #define XSETPSEUDOVECTOR(a, b, code) \
1152 XSETTYPED_PSEUDOVECTOR (a, b, \
1153 (((struct vectorlike_header *) \
1154 XUNTAG (a, Lisp_Vectorlike)) \
1155 ->size), \
1156 code)
1157 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
1158 (XSETVECTOR (a, b), \
1159 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
1160 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
1161
1162 #define XSETWINDOW_CONFIGURATION(a, b) \
1163 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
1164 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
1165 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
1166 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
1167 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
1168 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
1169 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
1170 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
1171 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
1172 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
1173
1174 /* Efficiently convert a pointer to a Lisp object and back. The
1175 pointer is represented as a Lisp integer, so the garbage collector
1176 does not know about it. The pointer should not have both Lisp_Int1
1177 bits set, which makes this conversion inherently unportable. */
1178
1179 INLINE void *
1180 XINTPTR (Lisp_Object a)
1181 {
1182 return XUNTAG (a, Lisp_Int0);
1183 }
1184
1185 INLINE Lisp_Object
1186 make_pointer_integer (void *p)
1187 {
1188 Lisp_Object a = XIL (TAG_PTR (Lisp_Int0, p));
1189 eassert (INTEGERP (a) && XINTPTR (a) == p);
1190 return a;
1191 }
1192
1193 /* Type checking. */
1194
1195 INLINE void
1196 (CHECK_TYPE) (int ok, Lisp_Object predicate, Lisp_Object x)
1197 {
1198 lisp_h_CHECK_TYPE (ok, predicate, x);
1199 }
1200
1201 /* See the macros in intervals.h. */
1202
1203 typedef struct interval *INTERVAL;
1204
1205 struct GCALIGNED Lisp_Cons
1206 {
1207 /* Car of this cons cell. */
1208 Lisp_Object car;
1209
1210 union
1211 {
1212 /* Cdr of this cons cell. */
1213 Lisp_Object cdr;
1214
1215 /* Used to chain conses on a free list. */
1216 struct Lisp_Cons *chain;
1217 } u;
1218 };
1219
1220 /* Take the car or cdr of something known to be a cons cell. */
1221 /* The _addr functions shouldn't be used outside of the minimal set
1222 of code that has to know what a cons cell looks like. Other code not
1223 part of the basic lisp implementation should assume that the car and cdr
1224 fields are not accessible. (What if we want to switch to
1225 a copying collector someday? Cached cons cell field addresses may be
1226 invalidated at arbitrary points.) */
1227 INLINE Lisp_Object *
1228 xcar_addr (Lisp_Object c)
1229 {
1230 return &XCONS (c)->car;
1231 }
1232 INLINE Lisp_Object *
1233 xcdr_addr (Lisp_Object c)
1234 {
1235 return &XCONS (c)->u.cdr;
1236 }
1237
1238 /* Use these from normal code. */
1239
1240 INLINE Lisp_Object
1241 (XCAR) (Lisp_Object c)
1242 {
1243 return lisp_h_XCAR (c);
1244 }
1245
1246 INLINE Lisp_Object
1247 (XCDR) (Lisp_Object c)
1248 {
1249 return lisp_h_XCDR (c);
1250 }
1251
1252 /* Use these to set the fields of a cons cell.
1253
1254 Note that both arguments may refer to the same object, so 'n'
1255 should not be read after 'c' is first modified. */
1256 INLINE void
1257 XSETCAR (Lisp_Object c, Lisp_Object n)
1258 {
1259 *xcar_addr (c) = n;
1260 }
1261 INLINE void
1262 XSETCDR (Lisp_Object c, Lisp_Object n)
1263 {
1264 *xcdr_addr (c) = n;
1265 }
1266
1267 /* Take the car or cdr of something whose type is not known. */
1268 INLINE Lisp_Object
1269 CAR (Lisp_Object c)
1270 {
1271 return (CONSP (c) ? XCAR (c)
1272 : NILP (c) ? Qnil
1273 : wrong_type_argument (Qlistp, c));
1274 }
1275 INLINE Lisp_Object
1276 CDR (Lisp_Object c)
1277 {
1278 return (CONSP (c) ? XCDR (c)
1279 : NILP (c) ? Qnil
1280 : wrong_type_argument (Qlistp, c));
1281 }
1282
1283 /* Take the car or cdr of something whose type is not known. */
1284 INLINE Lisp_Object
1285 CAR_SAFE (Lisp_Object c)
1286 {
1287 return CONSP (c) ? XCAR (c) : Qnil;
1288 }
1289 INLINE Lisp_Object
1290 CDR_SAFE (Lisp_Object c)
1291 {
1292 return CONSP (c) ? XCDR (c) : Qnil;
1293 }
1294
1295 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1296
1297 struct GCALIGNED Lisp_String
1298 {
1299 ptrdiff_t size;
1300 ptrdiff_t size_byte;
1301 INTERVAL intervals; /* Text properties in this string. */
1302 unsigned char *data;
1303 };
1304
1305 /* True if STR is a multibyte string. */
1306 INLINE bool
1307 STRING_MULTIBYTE (Lisp_Object str)
1308 {
1309 return 0 <= XSTRING (str)->size_byte;
1310 }
1311
1312 /* An upper bound on the number of bytes in a Lisp string, not
1313 counting the terminating null. This a tight enough bound to
1314 prevent integer overflow errors that would otherwise occur during
1315 string size calculations. A string cannot contain more bytes than
1316 a fixnum can represent, nor can it be so long that C pointer
1317 arithmetic stops working on the string plus its terminating null.
1318 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1319 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1320 would expose alloc.c internal details that we'd rather keep
1321 private.
1322
1323 This is a macro for use in static initializers. The cast to
1324 ptrdiff_t ensures that the macro is signed. */
1325 #define STRING_BYTES_BOUND \
1326 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1327
1328 /* Mark STR as a unibyte string. */
1329 #define STRING_SET_UNIBYTE(STR) \
1330 do { \
1331 if (XSTRING (STR)->size == 0) \
1332 (STR) = empty_unibyte_string; \
1333 else \
1334 XSTRING (STR)->size_byte = -1; \
1335 } while (false)
1336
1337 /* Mark STR as a multibyte string. Assure that STR contains only
1338 ASCII characters in advance. */
1339 #define STRING_SET_MULTIBYTE(STR) \
1340 do { \
1341 if (XSTRING (STR)->size == 0) \
1342 (STR) = empty_multibyte_string; \
1343 else \
1344 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1345 } while (false)
1346
1347 /* Convenience functions for dealing with Lisp strings. */
1348
1349 INLINE unsigned char *
1350 SDATA (Lisp_Object string)
1351 {
1352 return XSTRING (string)->data;
1353 }
1354 INLINE char *
1355 SSDATA (Lisp_Object string)
1356 {
1357 /* Avoid "differ in sign" warnings. */
1358 return (char *) SDATA (string);
1359 }
1360 INLINE unsigned char
1361 SREF (Lisp_Object string, ptrdiff_t index)
1362 {
1363 return SDATA (string)[index];
1364 }
1365 INLINE void
1366 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1367 {
1368 SDATA (string)[index] = new;
1369 }
1370 INLINE ptrdiff_t
1371 SCHARS (Lisp_Object string)
1372 {
1373 return XSTRING (string)->size;
1374 }
1375
1376 #ifdef GC_CHECK_STRING_BYTES
1377 extern ptrdiff_t string_bytes (struct Lisp_String *);
1378 #endif
1379 INLINE ptrdiff_t
1380 STRING_BYTES (struct Lisp_String *s)
1381 {
1382 #ifdef GC_CHECK_STRING_BYTES
1383 return string_bytes (s);
1384 #else
1385 return s->size_byte < 0 ? s->size : s->size_byte;
1386 #endif
1387 }
1388
1389 INLINE ptrdiff_t
1390 SBYTES (Lisp_Object string)
1391 {
1392 return STRING_BYTES (XSTRING (string));
1393 }
1394 INLINE void
1395 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1396 {
1397 XSTRING (string)->size = newsize;
1398 }
1399
1400 /* Header of vector-like objects. This documents the layout constraints on
1401 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1402 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1403 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1404 because when two such pointers potentially alias, a compiler won't
1405 incorrectly reorder loads and stores to their size fields. See
1406 Bug#8546. */
1407 struct vectorlike_header
1408 {
1409 /* The only field contains various pieces of information:
1410 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1411 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1412 vector (0) or a pseudovector (1).
1413 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1414 of slots) of the vector.
1415 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1416 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1417 - b) number of Lisp_Objects slots at the beginning of the object
1418 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1419 traced by the GC;
1420 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1421 measured in word_size units. Rest fields may also include
1422 Lisp_Objects, but these objects usually needs some special treatment
1423 during GC.
1424 There are some exceptions. For PVEC_FREE, b) is always zero. For
1425 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1426 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1427 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1428 ptrdiff_t size;
1429 };
1430
1431 /* A regular vector is just a header plus an array of Lisp_Objects. */
1432
1433 struct Lisp_Vector
1434 {
1435 struct vectorlike_header header;
1436 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1437 };
1438
1439 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1440 enum
1441 {
1442 ALIGNOF_STRUCT_LISP_VECTOR
1443 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1444 };
1445
1446 /* A boolvector is a kind of vectorlike, with contents like a string. */
1447
1448 struct Lisp_Bool_Vector
1449 {
1450 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1451 just the subtype information. */
1452 struct vectorlike_header header;
1453 /* This is the size in bits. */
1454 EMACS_INT size;
1455 /* The actual bits, packed into bytes.
1456 Zeros fill out the last word if needed.
1457 The bits are in little-endian order in the bytes, and
1458 the bytes are in little-endian order in the words. */
1459 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1460 };
1461
1462 INLINE EMACS_INT
1463 bool_vector_size (Lisp_Object a)
1464 {
1465 EMACS_INT size = XBOOL_VECTOR (a)->size;
1466 eassume (0 <= size);
1467 return size;
1468 }
1469
1470 INLINE bits_word *
1471 bool_vector_data (Lisp_Object a)
1472 {
1473 return XBOOL_VECTOR (a)->data;
1474 }
1475
1476 INLINE unsigned char *
1477 bool_vector_uchar_data (Lisp_Object a)
1478 {
1479 return (unsigned char *) bool_vector_data (a);
1480 }
1481
1482 /* The number of data words and bytes in a bool vector with SIZE bits. */
1483
1484 INLINE EMACS_INT
1485 bool_vector_words (EMACS_INT size)
1486 {
1487 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1488 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1489 }
1490
1491 INLINE EMACS_INT
1492 bool_vector_bytes (EMACS_INT size)
1493 {
1494 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1495 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1496 }
1497
1498 /* True if A's Ith bit is set. */
1499
1500 INLINE bool
1501 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1502 {
1503 eassume (0 <= i && i < bool_vector_size (a));
1504 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1505 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1506 }
1507
1508 INLINE Lisp_Object
1509 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1510 {
1511 return bool_vector_bitref (a, i) ? Qt : Qnil;
1512 }
1513
1514 /* Set A's Ith bit to B. */
1515
1516 INLINE void
1517 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1518 {
1519 unsigned char *addr;
1520
1521 eassume (0 <= i && i < bool_vector_size (a));
1522 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1523
1524 if (b)
1525 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1526 else
1527 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1528 }
1529
1530 /* Some handy constants for calculating sizes
1531 and offsets, mostly of vectorlike objects. */
1532
1533 enum
1534 {
1535 header_size = offsetof (struct Lisp_Vector, contents),
1536 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1537 word_size = sizeof (Lisp_Object)
1538 };
1539
1540 /* Conveniences for dealing with Lisp arrays. */
1541
1542 INLINE Lisp_Object
1543 AREF (Lisp_Object array, ptrdiff_t idx)
1544 {
1545 return XVECTOR (array)->contents[idx];
1546 }
1547
1548 INLINE Lisp_Object *
1549 aref_addr (Lisp_Object array, ptrdiff_t idx)
1550 {
1551 return & XVECTOR (array)->contents[idx];
1552 }
1553
1554 INLINE ptrdiff_t
1555 ASIZE (Lisp_Object array)
1556 {
1557 ptrdiff_t size = XVECTOR (array)->header.size;
1558 eassume (0 <= size);
1559 return size;
1560 }
1561
1562 INLINE ptrdiff_t
1563 gc_asize (Lisp_Object array)
1564 {
1565 /* Like ASIZE, but also can be used in the garbage collector. */
1566 return XVECTOR (array)->header.size & ~ARRAY_MARK_FLAG;
1567 }
1568
1569 INLINE void
1570 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1571 {
1572 eassert (0 <= idx && idx < ASIZE (array));
1573 XVECTOR (array)->contents[idx] = val;
1574 }
1575
1576 INLINE void
1577 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1578 {
1579 /* Like ASET, but also can be used in the garbage collector:
1580 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1581 eassert (0 <= idx && idx < gc_asize (array));
1582 XVECTOR (array)->contents[idx] = val;
1583 }
1584
1585 /* True, since Qnil's representation is zero. Every place in the code
1586 that assumes Qnil is zero should verify (NIL_IS_ZERO), to make it easy
1587 to find such assumptions later if we change Qnil to be nonzero. */
1588 enum { NIL_IS_ZERO = XLI_BUILTIN_LISPSYM (iQnil) == 0 };
1589
1590 /* Clear the object addressed by P, with size NBYTES, so that all its
1591 bytes are zero and all its Lisp values are nil. */
1592 INLINE void
1593 memclear (void *p, ptrdiff_t nbytes)
1594 {
1595 eassert (0 <= nbytes);
1596 verify (NIL_IS_ZERO);
1597 /* Since Qnil is zero, memset suffices. */
1598 memset (p, 0, nbytes);
1599 }
1600
1601 /* If a struct is made to look like a vector, this macro returns the length
1602 of the shortest vector that would hold that struct. */
1603
1604 #define VECSIZE(type) \
1605 ((sizeof (type) - header_size + word_size - 1) / word_size)
1606
1607 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1608 at the end and we need to compute the number of Lisp_Object fields (the
1609 ones that the GC needs to trace). */
1610
1611 #define PSEUDOVECSIZE(type, nonlispfield) \
1612 ((offsetof (type, nonlispfield) - header_size) / word_size)
1613
1614 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1615 should be integer expressions. This is not the same as
1616 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1617 returns true. For efficiency, prefer plain unsigned comparison if A
1618 and B's sizes both fit (after integer promotion). */
1619 #define UNSIGNED_CMP(a, op, b) \
1620 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1621 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1622 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1623
1624 /* True iff C is an ASCII character. */
1625 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1626
1627 /* A char-table is a kind of vectorlike, with contents are like a
1628 vector but with a few other slots. For some purposes, it makes
1629 sense to handle a char-table with type struct Lisp_Vector. An
1630 element of a char table can be any Lisp objects, but if it is a sub
1631 char-table, we treat it a table that contains information of a
1632 specific range of characters. A sub char-table is like a vector but
1633 with two integer fields between the header and Lisp data, which means
1634 that it has to be marked with some precautions (see mark_char_table
1635 in alloc.c). A sub char-table appears only in an element of a char-table,
1636 and there's no way to access it directly from Emacs Lisp program. */
1637
1638 enum CHARTAB_SIZE_BITS
1639 {
1640 CHARTAB_SIZE_BITS_0 = 6,
1641 CHARTAB_SIZE_BITS_1 = 4,
1642 CHARTAB_SIZE_BITS_2 = 5,
1643 CHARTAB_SIZE_BITS_3 = 7
1644 };
1645
1646 extern const int chartab_size[4];
1647
1648 struct Lisp_Char_Table
1649 {
1650 /* HEADER.SIZE is the vector's size field, which also holds the
1651 pseudovector type information. It holds the size, too.
1652 The size counts the defalt, parent, purpose, ascii,
1653 contents, and extras slots. */
1654 struct vectorlike_header header;
1655
1656 /* This holds a default value,
1657 which is used whenever the value for a specific character is nil. */
1658 Lisp_Object defalt;
1659
1660 /* This points to another char table, which we inherit from when the
1661 value for a specific character is nil. The `defalt' slot takes
1662 precedence over this. */
1663 Lisp_Object parent;
1664
1665 /* This is a symbol which says what kind of use this char-table is
1666 meant for. */
1667 Lisp_Object purpose;
1668
1669 /* The bottom sub char-table for characters of the range 0..127. It
1670 is nil if none of ASCII character has a specific value. */
1671 Lisp_Object ascii;
1672
1673 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1674
1675 /* These hold additional data. It is a vector. */
1676 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1677 };
1678
1679 struct Lisp_Sub_Char_Table
1680 {
1681 /* HEADER.SIZE is the vector's size field, which also holds the
1682 pseudovector type information. It holds the size, too. */
1683 struct vectorlike_header header;
1684
1685 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1686 char-table of depth 1 contains 16 elements, and each element
1687 covers 4096 (128*32) characters. A sub char-table of depth 2
1688 contains 32 elements, and each element covers 128 characters. A
1689 sub char-table of depth 3 contains 128 elements, and each element
1690 is for one character. */
1691 int depth;
1692
1693 /* Minimum character covered by the sub char-table. */
1694 int min_char;
1695
1696 /* Use set_sub_char_table_contents to set this. */
1697 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1698 };
1699
1700 INLINE Lisp_Object
1701 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1702 {
1703 struct Lisp_Char_Table *tbl = NULL;
1704 Lisp_Object val;
1705 do
1706 {
1707 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1708 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1709 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1710 if (NILP (val))
1711 val = tbl->defalt;
1712 }
1713 while (NILP (val) && ! NILP (tbl->parent));
1714
1715 return val;
1716 }
1717
1718 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1719 characters. Do not check validity of CT. */
1720 INLINE Lisp_Object
1721 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1722 {
1723 return (ASCII_CHAR_P (idx)
1724 ? CHAR_TABLE_REF_ASCII (ct, idx)
1725 : char_table_ref (ct, idx));
1726 }
1727
1728 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1729 8-bit European characters. Do not check validity of CT. */
1730 INLINE void
1731 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1732 {
1733 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1734 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1735 else
1736 char_table_set (ct, idx, val);
1737 }
1738
1739 /* This structure describes a built-in function.
1740 It is generated by the DEFUN macro only.
1741 defsubr makes it into a Lisp object. */
1742
1743 struct Lisp_Subr
1744 {
1745 struct vectorlike_header header;
1746 union {
1747 Lisp_Object (*a0) (void);
1748 Lisp_Object (*a1) (Lisp_Object);
1749 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1750 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1751 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1752 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1753 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1754 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1755 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1756 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1757 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1758 } function;
1759 short min_args, max_args;
1760 const char *symbol_name;
1761 const char *intspec;
1762 const char *doc;
1763 };
1764
1765 enum char_table_specials
1766 {
1767 /* This is the number of slots that every char table must have. This
1768 counts the ordinary slots and the top, defalt, parent, and purpose
1769 slots. */
1770 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1771
1772 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1773 when the latter is treated as an ordinary Lisp_Vector. */
1774 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1775 };
1776
1777 /* Return the number of "extra" slots in the char table CT. */
1778
1779 INLINE int
1780 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1781 {
1782 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1783 - CHAR_TABLE_STANDARD_SLOTS);
1784 }
1785
1786 /* Make sure that sub char-table contents slot is where we think it is. */
1787 verify (offsetof (struct Lisp_Sub_Char_Table, contents)
1788 == offsetof (struct Lisp_Vector, contents[SUB_CHAR_TABLE_OFFSET]));
1789
1790 /***********************************************************************
1791 Symbols
1792 ***********************************************************************/
1793
1794 /* Value is name of symbol. */
1795
1796 INLINE Lisp_Object
1797 (SYMBOL_VAL) (struct Lisp_Symbol *sym)
1798 {
1799 return lisp_h_SYMBOL_VAL (sym);
1800 }
1801
1802 INLINE struct Lisp_Symbol *
1803 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1804 {
1805 eassert (sym->redirect == SYMBOL_VARALIAS);
1806 return sym->val.alias;
1807 }
1808 INLINE struct Lisp_Buffer_Local_Value *
1809 SYMBOL_BLV (struct Lisp_Symbol *sym)
1810 {
1811 eassert (sym->redirect == SYMBOL_LOCALIZED);
1812 return sym->val.blv;
1813 }
1814 INLINE union Lisp_Fwd *
1815 SYMBOL_FWD (struct Lisp_Symbol *sym)
1816 {
1817 eassert (sym->redirect == SYMBOL_FORWARDED);
1818 return sym->val.fwd;
1819 }
1820
1821 INLINE void
1822 (SET_SYMBOL_VAL) (struct Lisp_Symbol *sym, Lisp_Object v)
1823 {
1824 lisp_h_SET_SYMBOL_VAL (sym, v);
1825 }
1826
1827 INLINE void
1828 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1829 {
1830 eassert (sym->redirect == SYMBOL_VARALIAS);
1831 sym->val.alias = v;
1832 }
1833 INLINE void
1834 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1835 {
1836 eassert (sym->redirect == SYMBOL_LOCALIZED);
1837 sym->val.blv = v;
1838 }
1839 INLINE void
1840 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1841 {
1842 eassert (sym->redirect == SYMBOL_FORWARDED);
1843 sym->val.fwd = v;
1844 }
1845
1846 INLINE Lisp_Object
1847 SYMBOL_NAME (Lisp_Object sym)
1848 {
1849 return XSYMBOL (sym)->name;
1850 }
1851
1852 /* Value is true if SYM is an interned symbol. */
1853
1854 INLINE bool
1855 SYMBOL_INTERNED_P (Lisp_Object sym)
1856 {
1857 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1858 }
1859
1860 /* Value is true if SYM is interned in initial_obarray. */
1861
1862 INLINE bool
1863 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1864 {
1865 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1866 }
1867
1868 /* Value is non-zero if symbol is considered a constant, i.e. its
1869 value cannot be changed (there is an exception for keyword symbols,
1870 whose value can be set to the keyword symbol itself). */
1871
1872 INLINE int
1873 (SYMBOL_CONSTANT_P) (Lisp_Object sym)
1874 {
1875 return lisp_h_SYMBOL_CONSTANT_P (sym);
1876 }
1877
1878 /* Placeholder for make-docfile to process. The actual symbol
1879 definition is done by lread.c's defsym. */
1880 #define DEFSYM(sym, name) /* empty */
1881
1882 \f
1883 /***********************************************************************
1884 Hash Tables
1885 ***********************************************************************/
1886
1887 /* The structure of a Lisp hash table. */
1888
1889 struct hash_table_test
1890 {
1891 /* Name of the function used to compare keys. */
1892 Lisp_Object name;
1893
1894 /* User-supplied hash function, or nil. */
1895 Lisp_Object user_hash_function;
1896
1897 /* User-supplied key comparison function, or nil. */
1898 Lisp_Object user_cmp_function;
1899
1900 /* C function to compare two keys. */
1901 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1902
1903 /* C function to compute hash code. */
1904 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1905 };
1906
1907 struct Lisp_Hash_Table
1908 {
1909 /* This is for Lisp; the hash table code does not refer to it. */
1910 struct vectorlike_header header;
1911
1912 /* Nil if table is non-weak. Otherwise a symbol describing the
1913 weakness of the table. */
1914 Lisp_Object weak;
1915
1916 /* When the table is resized, and this is an integer, compute the
1917 new size by adding this to the old size. If a float, compute the
1918 new size by multiplying the old size with this factor. */
1919 Lisp_Object rehash_size;
1920
1921 /* Resize hash table when number of entries/ table size is >= this
1922 ratio, a float. */
1923 Lisp_Object rehash_threshold;
1924
1925 /* Vector of hash codes. If hash[I] is nil, this means that the
1926 I-th entry is unused. */
1927 Lisp_Object hash;
1928
1929 /* Vector used to chain entries. If entry I is free, next[I] is the
1930 entry number of the next free item. If entry I is non-free,
1931 next[I] is the index of the next entry in the collision chain. */
1932 Lisp_Object next;
1933
1934 /* Index of first free entry in free list. */
1935 Lisp_Object next_free;
1936
1937 /* Bucket vector. A non-nil entry is the index of the first item in
1938 a collision chain. This vector's size can be larger than the
1939 hash table size to reduce collisions. */
1940 Lisp_Object index;
1941
1942 /* Only the fields above are traced normally by the GC. The ones below
1943 `count' are special and are either ignored by the GC or traced in
1944 a special way (e.g. because of weakness). */
1945
1946 /* Number of key/value entries in the table. */
1947 ptrdiff_t count;
1948
1949 /* Vector of keys and values. The key of item I is found at index
1950 2 * I, the value is found at index 2 * I + 1.
1951 This is gc_marked specially if the table is weak. */
1952 Lisp_Object key_and_value;
1953
1954 /* The comparison and hash functions. */
1955 struct hash_table_test test;
1956
1957 /* Next weak hash table if this is a weak hash table. The head
1958 of the list is in weak_hash_tables. */
1959 struct Lisp_Hash_Table *next_weak;
1960 };
1961
1962
1963 INLINE bool
1964 HASH_TABLE_P (Lisp_Object a)
1965 {
1966 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1967 }
1968
1969 INLINE struct Lisp_Hash_Table *
1970 XHASH_TABLE (Lisp_Object a)
1971 {
1972 eassert (HASH_TABLE_P (a));
1973 return XUNTAG (a, Lisp_Vectorlike);
1974 }
1975
1976 #define XSET_HASH_TABLE(VAR, PTR) \
1977 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1978
1979 /* Value is the key part of entry IDX in hash table H. */
1980 INLINE Lisp_Object
1981 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1982 {
1983 return AREF (h->key_and_value, 2 * idx);
1984 }
1985
1986 /* Value is the value part of entry IDX in hash table H. */
1987 INLINE Lisp_Object
1988 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1989 {
1990 return AREF (h->key_and_value, 2 * idx + 1);
1991 }
1992
1993 /* Value is the index of the next entry following the one at IDX
1994 in hash table H. */
1995 INLINE Lisp_Object
1996 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1997 {
1998 return AREF (h->next, idx);
1999 }
2000
2001 /* Value is the hash code computed for entry IDX in hash table H. */
2002 INLINE Lisp_Object
2003 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
2004 {
2005 return AREF (h->hash, idx);
2006 }
2007
2008 /* Value is the index of the element in hash table H that is the
2009 start of the collision list at index IDX in the index vector of H. */
2010 INLINE Lisp_Object
2011 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
2012 {
2013 return AREF (h->index, idx);
2014 }
2015
2016 /* Value is the size of hash table H. */
2017 INLINE ptrdiff_t
2018 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
2019 {
2020 return ASIZE (h->next);
2021 }
2022
2023 /* Default size for hash tables if not specified. */
2024
2025 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
2026
2027 /* Default threshold specifying when to resize a hash table. The
2028 value gives the ratio of current entries in the hash table and the
2029 size of the hash table. */
2030
2031 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
2032
2033 /* Default factor by which to increase the size of a hash table. */
2034
2035 static double const DEFAULT_REHASH_SIZE = 1.5;
2036
2037 /* Combine two integers X and Y for hashing. The result might not fit
2038 into a Lisp integer. */
2039
2040 INLINE EMACS_UINT
2041 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
2042 {
2043 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
2044 }
2045
2046 /* Hash X, returning a value that fits into a fixnum. */
2047
2048 INLINE EMACS_UINT
2049 SXHASH_REDUCE (EMACS_UINT x)
2050 {
2051 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
2052 }
2053
2054 /* These structures are used for various misc types. */
2055
2056 struct Lisp_Misc_Any /* Supertype of all Misc types. */
2057 {
2058 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
2059 bool_bf gcmarkbit : 1;
2060 unsigned spacer : 15;
2061 };
2062
2063 struct Lisp_Marker
2064 {
2065 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
2066 bool_bf gcmarkbit : 1;
2067 unsigned spacer : 13;
2068 /* This flag is temporarily used in the functions
2069 decode/encode_coding_object to record that the marker position
2070 must be adjusted after the conversion. */
2071 bool_bf need_adjustment : 1;
2072 /* True means normal insertion at the marker's position
2073 leaves the marker after the inserted text. */
2074 bool_bf insertion_type : 1;
2075 /* This is the buffer that the marker points into, or 0 if it points nowhere.
2076 Note: a chain of markers can contain markers pointing into different
2077 buffers (the chain is per buffer_text rather than per buffer, so it's
2078 shared between indirect buffers). */
2079 /* This is used for (other than NULL-checking):
2080 - Fmarker_buffer
2081 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
2082 - unchain_marker: to find the list from which to unchain.
2083 - Fkill_buffer: to only unchain the markers of current indirect buffer.
2084 */
2085 struct buffer *buffer;
2086
2087 /* The remaining fields are meaningless in a marker that
2088 does not point anywhere. */
2089
2090 /* For markers that point somewhere,
2091 this is used to chain of all the markers in a given buffer. */
2092 /* We could remove it and use an array in buffer_text instead.
2093 That would also allow us to preserve it ordered. */
2094 struct Lisp_Marker *next;
2095 /* This is the char position where the marker points. */
2096 ptrdiff_t charpos;
2097 /* This is the byte position.
2098 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
2099 used to implement the functionality of markers, but rather to (ab)use
2100 markers as a cache for char<->byte mappings). */
2101 ptrdiff_t bytepos;
2102 };
2103
2104 /* START and END are markers in the overlay's buffer, and
2105 PLIST is the overlay's property list. */
2106 struct Lisp_Overlay
2107 /* An overlay's real data content is:
2108 - plist
2109 - buffer (really there are two buffer pointers, one per marker,
2110 and both points to the same buffer)
2111 - insertion type of both ends (per-marker fields)
2112 - start & start byte (of start marker)
2113 - end & end byte (of end marker)
2114 - next (singly linked list of overlays)
2115 - next fields of start and end markers (singly linked list of markers).
2116 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
2117 */
2118 {
2119 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
2120 bool_bf gcmarkbit : 1;
2121 unsigned spacer : 15;
2122 struct Lisp_Overlay *next;
2123 Lisp_Object start;
2124 Lisp_Object end;
2125 Lisp_Object plist;
2126 };
2127
2128 /* Types of data which may be saved in a Lisp_Save_Value. */
2129
2130 enum
2131 {
2132 SAVE_UNUSED,
2133 SAVE_INTEGER,
2134 SAVE_FUNCPOINTER,
2135 SAVE_POINTER,
2136 SAVE_OBJECT
2137 };
2138
2139 /* Number of bits needed to store one of the above values. */
2140 enum { SAVE_SLOT_BITS = 3 };
2141
2142 /* Number of slots in a save value where save_type is nonzero. */
2143 enum { SAVE_VALUE_SLOTS = 4 };
2144
2145 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
2146
2147 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
2148
2149 enum Lisp_Save_Type
2150 {
2151 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2152 SAVE_TYPE_INT_INT_INT
2153 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
2154 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
2155 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
2156 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
2157 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
2158 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2159 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
2160 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
2161 SAVE_TYPE_FUNCPTR_PTR_OBJ
2162 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
2163
2164 /* This has an extra bit indicating it's raw memory. */
2165 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
2166 };
2167
2168 /* Special object used to hold a different values for later use.
2169
2170 This is mostly used to package C integers and pointers to call
2171 record_unwind_protect when two or more values need to be saved.
2172 For example:
2173
2174 ...
2175 struct my_data *md = get_my_data ();
2176 ptrdiff_t mi = get_my_integer ();
2177 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2178 ...
2179
2180 Lisp_Object my_unwind (Lisp_Object arg)
2181 {
2182 struct my_data *md = XSAVE_POINTER (arg, 0);
2183 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2184 ...
2185 }
2186
2187 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2188 saved objects and raise eassert if type of the saved object doesn't match
2189 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2190 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2191 slot 0 is a pointer. */
2192
2193 typedef void (*voidfuncptr) (void);
2194
2195 struct Lisp_Save_Value
2196 {
2197 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2198 bool_bf gcmarkbit : 1;
2199 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2200
2201 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2202 V's data entries are determined by V->save_type. E.g., if
2203 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2204 V->data[1] is an integer, and V's other data entries are unused.
2205
2206 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2207 a memory area containing V->data[1].integer potential Lisp_Objects. */
2208 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2209 union {
2210 void *pointer;
2211 voidfuncptr funcpointer;
2212 ptrdiff_t integer;
2213 Lisp_Object object;
2214 } data[SAVE_VALUE_SLOTS];
2215 };
2216
2217 /* Return the type of V's Nth saved value. */
2218 INLINE int
2219 save_type (struct Lisp_Save_Value *v, int n)
2220 {
2221 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2222 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2223 }
2224
2225 /* Get and set the Nth saved pointer. */
2226
2227 INLINE void *
2228 XSAVE_POINTER (Lisp_Object obj, int n)
2229 {
2230 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2231 return XSAVE_VALUE (obj)->data[n].pointer;
2232 }
2233 INLINE void
2234 set_save_pointer (Lisp_Object obj, int n, void *val)
2235 {
2236 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2237 XSAVE_VALUE (obj)->data[n].pointer = val;
2238 }
2239 INLINE voidfuncptr
2240 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2241 {
2242 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2243 return XSAVE_VALUE (obj)->data[n].funcpointer;
2244 }
2245
2246 /* Likewise for the saved integer. */
2247
2248 INLINE ptrdiff_t
2249 XSAVE_INTEGER (Lisp_Object obj, int n)
2250 {
2251 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2252 return XSAVE_VALUE (obj)->data[n].integer;
2253 }
2254 INLINE void
2255 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2256 {
2257 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2258 XSAVE_VALUE (obj)->data[n].integer = val;
2259 }
2260
2261 /* Extract Nth saved object. */
2262
2263 INLINE Lisp_Object
2264 XSAVE_OBJECT (Lisp_Object obj, int n)
2265 {
2266 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2267 return XSAVE_VALUE (obj)->data[n].object;
2268 }
2269
2270 #ifdef HAVE_MODULES
2271 struct Lisp_User_Ptr
2272 {
2273 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_User_Ptr */
2274 bool_bf gcmarkbit : 1;
2275 unsigned spacer : 15;
2276
2277 void (*finalizer) (void *);
2278 void *p;
2279 };
2280 #endif
2281
2282 /* A finalizer sentinel. */
2283 struct Lisp_Finalizer
2284 {
2285 struct Lisp_Misc_Any base;
2286
2287 /* Circular list of all active weak references. */
2288 struct Lisp_Finalizer *prev;
2289 struct Lisp_Finalizer *next;
2290
2291 /* Call FUNCTION when the finalizer becomes unreachable, even if
2292 FUNCTION contains a reference to the finalizer; i.e., call
2293 FUNCTION when it is reachable _only_ through finalizers. */
2294 Lisp_Object function;
2295 };
2296
2297 /* A miscellaneous object, when it's on the free list. */
2298 struct Lisp_Free
2299 {
2300 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2301 bool_bf gcmarkbit : 1;
2302 unsigned spacer : 15;
2303 union Lisp_Misc *chain;
2304 };
2305
2306 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2307 It uses one of these struct subtypes to get the type field. */
2308
2309 union Lisp_Misc
2310 {
2311 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2312 struct Lisp_Free u_free;
2313 struct Lisp_Marker u_marker;
2314 struct Lisp_Overlay u_overlay;
2315 struct Lisp_Save_Value u_save_value;
2316 struct Lisp_Finalizer u_finalizer;
2317 #ifdef HAVE_MODULES
2318 struct Lisp_User_Ptr u_user_ptr;
2319 #endif
2320 };
2321
2322 INLINE union Lisp_Misc *
2323 XMISC (Lisp_Object a)
2324 {
2325 return XUNTAG (a, Lisp_Misc);
2326 }
2327
2328 INLINE struct Lisp_Misc_Any *
2329 XMISCANY (Lisp_Object a)
2330 {
2331 eassert (MISCP (a));
2332 return & XMISC (a)->u_any;
2333 }
2334
2335 INLINE enum Lisp_Misc_Type
2336 XMISCTYPE (Lisp_Object a)
2337 {
2338 return XMISCANY (a)->type;
2339 }
2340
2341 INLINE struct Lisp_Marker *
2342 XMARKER (Lisp_Object a)
2343 {
2344 eassert (MARKERP (a));
2345 return & XMISC (a)->u_marker;
2346 }
2347
2348 INLINE struct Lisp_Overlay *
2349 XOVERLAY (Lisp_Object a)
2350 {
2351 eassert (OVERLAYP (a));
2352 return & XMISC (a)->u_overlay;
2353 }
2354
2355 INLINE struct Lisp_Save_Value *
2356 XSAVE_VALUE (Lisp_Object a)
2357 {
2358 eassert (SAVE_VALUEP (a));
2359 return & XMISC (a)->u_save_value;
2360 }
2361
2362 INLINE struct Lisp_Finalizer *
2363 XFINALIZER (Lisp_Object a)
2364 {
2365 eassert (FINALIZERP (a));
2366 return & XMISC (a)->u_finalizer;
2367 }
2368
2369 #ifdef HAVE_MODULES
2370 INLINE struct Lisp_User_Ptr *
2371 XUSER_PTR (Lisp_Object a)
2372 {
2373 eassert (USER_PTRP (a));
2374 return & XMISC (a)->u_user_ptr;
2375 }
2376 #endif
2377
2378 \f
2379 /* Forwarding pointer to an int variable.
2380 This is allowed only in the value cell of a symbol,
2381 and it means that the symbol's value really lives in the
2382 specified int variable. */
2383 struct Lisp_Intfwd
2384 {
2385 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2386 EMACS_INT *intvar;
2387 };
2388
2389 /* Boolean forwarding pointer to an int variable.
2390 This is like Lisp_Intfwd except that the ostensible
2391 "value" of the symbol is t if the bool variable is true,
2392 nil if it is false. */
2393 struct Lisp_Boolfwd
2394 {
2395 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2396 bool *boolvar;
2397 };
2398
2399 /* Forwarding pointer to a Lisp_Object variable.
2400 This is allowed only in the value cell of a symbol,
2401 and it means that the symbol's value really lives in the
2402 specified variable. */
2403 struct Lisp_Objfwd
2404 {
2405 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2406 Lisp_Object *objvar;
2407 };
2408
2409 /* Like Lisp_Objfwd except that value lives in a slot in the
2410 current buffer. Value is byte index of slot within buffer. */
2411 struct Lisp_Buffer_Objfwd
2412 {
2413 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2414 int offset;
2415 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2416 Lisp_Object predicate;
2417 };
2418
2419 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2420 the symbol has buffer-local or frame-local bindings. (Exception:
2421 some buffer-local variables are built-in, with their values stored
2422 in the buffer structure itself. They are handled differently,
2423 using struct Lisp_Buffer_Objfwd.)
2424
2425 The `realvalue' slot holds the variable's current value, or a
2426 forwarding pointer to where that value is kept. This value is the
2427 one that corresponds to the loaded binding. To read or set the
2428 variable, you must first make sure the right binding is loaded;
2429 then you can access the value in (or through) `realvalue'.
2430
2431 `buffer' and `frame' are the buffer and frame for which the loaded
2432 binding was found. If those have changed, to make sure the right
2433 binding is loaded it is necessary to find which binding goes with
2434 the current buffer and selected frame, then load it. To load it,
2435 first unload the previous binding, then copy the value of the new
2436 binding into `realvalue' (or through it). Also update
2437 LOADED-BINDING to point to the newly loaded binding.
2438
2439 `local_if_set' indicates that merely setting the variable creates a
2440 local binding for the current buffer. Otherwise the latter, setting
2441 the variable does not do that; only make-local-variable does that. */
2442
2443 struct Lisp_Buffer_Local_Value
2444 {
2445 /* True means that merely setting the variable creates a local
2446 binding for the current buffer. */
2447 bool_bf local_if_set : 1;
2448 /* True means this variable can have frame-local bindings, otherwise, it is
2449 can have buffer-local bindings. The two cannot be combined. */
2450 bool_bf frame_local : 1;
2451 /* True means that the binding now loaded was found.
2452 Presumably equivalent to (defcell!=valcell). */
2453 bool_bf found : 1;
2454 /* If non-NULL, a forwarding to the C var where it should also be set. */
2455 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2456 /* The buffer or frame for which the loaded binding was found. */
2457 Lisp_Object where;
2458 /* A cons cell that holds the default value. It has the form
2459 (SYMBOL . DEFAULT-VALUE). */
2460 Lisp_Object defcell;
2461 /* The cons cell from `where's parameter alist.
2462 It always has the form (SYMBOL . VALUE)
2463 Note that if `forward' is non-nil, VALUE may be out of date.
2464 Also if the currently loaded binding is the default binding, then
2465 this is `eq'ual to defcell. */
2466 Lisp_Object valcell;
2467 };
2468
2469 /* Like Lisp_Objfwd except that value lives in a slot in the
2470 current kboard. */
2471 struct Lisp_Kboard_Objfwd
2472 {
2473 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2474 int offset;
2475 };
2476
2477 union Lisp_Fwd
2478 {
2479 struct Lisp_Intfwd u_intfwd;
2480 struct Lisp_Boolfwd u_boolfwd;
2481 struct Lisp_Objfwd u_objfwd;
2482 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2483 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2484 };
2485
2486 INLINE enum Lisp_Fwd_Type
2487 XFWDTYPE (union Lisp_Fwd *a)
2488 {
2489 return a->u_intfwd.type;
2490 }
2491
2492 INLINE struct Lisp_Buffer_Objfwd *
2493 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2494 {
2495 eassert (BUFFER_OBJFWDP (a));
2496 return &a->u_buffer_objfwd;
2497 }
2498 \f
2499 /* Lisp floating point type. */
2500 struct Lisp_Float
2501 {
2502 union
2503 {
2504 double data;
2505 struct Lisp_Float *chain;
2506 } u;
2507 };
2508
2509 INLINE double
2510 XFLOAT_DATA (Lisp_Object f)
2511 {
2512 return XFLOAT (f)->u.data;
2513 }
2514
2515 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2516 representations, have infinities and NaNs, and do not trap on
2517 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2518 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2519 wanted here, but is not quite right because Emacs does not require
2520 all the features of C11 Annex F (and does not require C11 at all,
2521 for that matter). */
2522 enum
2523 {
2524 IEEE_FLOATING_POINT
2525 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2526 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2527 };
2528
2529 /* A character, declared with the following typedef, is a member
2530 of some character set associated with the current buffer. */
2531 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2532 #define _UCHAR_T
2533 typedef unsigned char UCHAR;
2534 #endif
2535
2536 /* Meanings of slots in a Lisp_Compiled: */
2537
2538 enum Lisp_Compiled
2539 {
2540 COMPILED_ARGLIST = 0,
2541 COMPILED_BYTECODE = 1,
2542 COMPILED_CONSTANTS = 2,
2543 COMPILED_STACK_DEPTH = 3,
2544 COMPILED_DOC_STRING = 4,
2545 COMPILED_INTERACTIVE = 5
2546 };
2547
2548 /* Flag bits in a character. These also get used in termhooks.h.
2549 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2550 (MUlti-Lingual Emacs) might need 22 bits for the character value
2551 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2552 enum char_bits
2553 {
2554 CHAR_ALT = 0x0400000,
2555 CHAR_SUPER = 0x0800000,
2556 CHAR_HYPER = 0x1000000,
2557 CHAR_SHIFT = 0x2000000,
2558 CHAR_CTL = 0x4000000,
2559 CHAR_META = 0x8000000,
2560
2561 CHAR_MODIFIER_MASK =
2562 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2563
2564 /* Actually, the current Emacs uses 22 bits for the character value
2565 itself. */
2566 CHARACTERBITS = 22
2567 };
2568 \f
2569 /* Data type checking. */
2570
2571 INLINE bool
2572 (NILP) (Lisp_Object x)
2573 {
2574 return lisp_h_NILP (x);
2575 }
2576
2577 INLINE bool
2578 NUMBERP (Lisp_Object x)
2579 {
2580 return INTEGERP (x) || FLOATP (x);
2581 }
2582 INLINE bool
2583 NATNUMP (Lisp_Object x)
2584 {
2585 return INTEGERP (x) && 0 <= XINT (x);
2586 }
2587
2588 INLINE bool
2589 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2590 {
2591 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2592 }
2593
2594 #define TYPE_RANGED_INTEGERP(type, x) \
2595 (INTEGERP (x) \
2596 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2597 && XINT (x) <= TYPE_MAXIMUM (type))
2598
2599 INLINE bool
2600 (CONSP) (Lisp_Object x)
2601 {
2602 return lisp_h_CONSP (x);
2603 }
2604 INLINE bool
2605 (FLOATP) (Lisp_Object x)
2606 {
2607 return lisp_h_FLOATP (x);
2608 }
2609 INLINE bool
2610 (MISCP) (Lisp_Object x)
2611 {
2612 return lisp_h_MISCP (x);
2613 }
2614 INLINE bool
2615 (SYMBOLP) (Lisp_Object x)
2616 {
2617 return lisp_h_SYMBOLP (x);
2618 }
2619 INLINE bool
2620 (INTEGERP) (Lisp_Object x)
2621 {
2622 return lisp_h_INTEGERP (x);
2623 }
2624 INLINE bool
2625 (VECTORLIKEP) (Lisp_Object x)
2626 {
2627 return lisp_h_VECTORLIKEP (x);
2628 }
2629 INLINE bool
2630 (MARKERP) (Lisp_Object x)
2631 {
2632 return lisp_h_MARKERP (x);
2633 }
2634
2635 INLINE bool
2636 STRINGP (Lisp_Object x)
2637 {
2638 return XTYPE (x) == Lisp_String;
2639 }
2640 INLINE bool
2641 VECTORP (Lisp_Object x)
2642 {
2643 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2644 }
2645 INLINE bool
2646 OVERLAYP (Lisp_Object x)
2647 {
2648 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2649 }
2650 INLINE bool
2651 SAVE_VALUEP (Lisp_Object x)
2652 {
2653 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2654 }
2655
2656 INLINE bool
2657 FINALIZERP (Lisp_Object x)
2658 {
2659 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Finalizer;
2660 }
2661
2662 #ifdef HAVE_MODULES
2663 INLINE bool
2664 USER_PTRP (Lisp_Object x)
2665 {
2666 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_User_Ptr;
2667 }
2668 #endif
2669
2670 INLINE bool
2671 AUTOLOADP (Lisp_Object x)
2672 {
2673 return CONSP (x) && EQ (Qautoload, XCAR (x));
2674 }
2675
2676 INLINE bool
2677 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2678 {
2679 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2680 }
2681
2682 INLINE bool
2683 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2684 {
2685 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2686 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2687 }
2688
2689 /* True if A is a pseudovector whose code is CODE. */
2690 INLINE bool
2691 PSEUDOVECTORP (Lisp_Object a, int code)
2692 {
2693 if (! VECTORLIKEP (a))
2694 return false;
2695 else
2696 {
2697 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2698 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2699 return PSEUDOVECTOR_TYPEP (h, code);
2700 }
2701 }
2702
2703
2704 /* Test for specific pseudovector types. */
2705
2706 INLINE bool
2707 WINDOW_CONFIGURATIONP (Lisp_Object a)
2708 {
2709 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2710 }
2711
2712 INLINE bool
2713 PROCESSP (Lisp_Object a)
2714 {
2715 return PSEUDOVECTORP (a, PVEC_PROCESS);
2716 }
2717
2718 INLINE bool
2719 WINDOWP (Lisp_Object a)
2720 {
2721 return PSEUDOVECTORP (a, PVEC_WINDOW);
2722 }
2723
2724 INLINE bool
2725 TERMINALP (Lisp_Object a)
2726 {
2727 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2728 }
2729
2730 INLINE bool
2731 SUBRP (Lisp_Object a)
2732 {
2733 return PSEUDOVECTORP (a, PVEC_SUBR);
2734 }
2735
2736 INLINE bool
2737 COMPILEDP (Lisp_Object a)
2738 {
2739 return PSEUDOVECTORP (a, PVEC_COMPILED);
2740 }
2741
2742 INLINE bool
2743 BUFFERP (Lisp_Object a)
2744 {
2745 return PSEUDOVECTORP (a, PVEC_BUFFER);
2746 }
2747
2748 INLINE bool
2749 CHAR_TABLE_P (Lisp_Object a)
2750 {
2751 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2752 }
2753
2754 INLINE bool
2755 SUB_CHAR_TABLE_P (Lisp_Object a)
2756 {
2757 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2758 }
2759
2760 INLINE bool
2761 BOOL_VECTOR_P (Lisp_Object a)
2762 {
2763 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2764 }
2765
2766 INLINE bool
2767 FRAMEP (Lisp_Object a)
2768 {
2769 return PSEUDOVECTORP (a, PVEC_FRAME);
2770 }
2771
2772 /* Test for image (image . spec) */
2773 INLINE bool
2774 IMAGEP (Lisp_Object x)
2775 {
2776 return CONSP (x) && EQ (XCAR (x), Qimage);
2777 }
2778
2779 /* Array types. */
2780 INLINE bool
2781 ARRAYP (Lisp_Object x)
2782 {
2783 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2784 }
2785 \f
2786 INLINE void
2787 CHECK_LIST (Lisp_Object x)
2788 {
2789 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2790 }
2791
2792 INLINE void
2793 (CHECK_LIST_CONS) (Lisp_Object x, Lisp_Object y)
2794 {
2795 lisp_h_CHECK_LIST_CONS (x, y);
2796 }
2797
2798 INLINE void
2799 (CHECK_SYMBOL) (Lisp_Object x)
2800 {
2801 lisp_h_CHECK_SYMBOL (x);
2802 }
2803
2804 INLINE void
2805 (CHECK_NUMBER) (Lisp_Object x)
2806 {
2807 lisp_h_CHECK_NUMBER (x);
2808 }
2809
2810 INLINE void
2811 CHECK_STRING (Lisp_Object x)
2812 {
2813 CHECK_TYPE (STRINGP (x), Qstringp, x);
2814 }
2815 INLINE void
2816 CHECK_STRING_CAR (Lisp_Object x)
2817 {
2818 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2819 }
2820 INLINE void
2821 CHECK_CONS (Lisp_Object x)
2822 {
2823 CHECK_TYPE (CONSP (x), Qconsp, x);
2824 }
2825 INLINE void
2826 CHECK_VECTOR (Lisp_Object x)
2827 {
2828 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2829 }
2830 INLINE void
2831 CHECK_BOOL_VECTOR (Lisp_Object x)
2832 {
2833 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2834 }
2835 /* This is a bit special because we always need size afterwards. */
2836 INLINE ptrdiff_t
2837 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2838 {
2839 if (VECTORP (x))
2840 return ASIZE (x);
2841 if (STRINGP (x))
2842 return SCHARS (x);
2843 wrong_type_argument (Qarrayp, x);
2844 }
2845 INLINE void
2846 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2847 {
2848 CHECK_TYPE (ARRAYP (x), predicate, x);
2849 }
2850 INLINE void
2851 CHECK_BUFFER (Lisp_Object x)
2852 {
2853 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2854 }
2855 INLINE void
2856 CHECK_WINDOW (Lisp_Object x)
2857 {
2858 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2859 }
2860 #ifdef subprocesses
2861 INLINE void
2862 CHECK_PROCESS (Lisp_Object x)
2863 {
2864 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2865 }
2866 #endif
2867 INLINE void
2868 CHECK_NATNUM (Lisp_Object x)
2869 {
2870 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2871 }
2872
2873 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2874 do { \
2875 CHECK_NUMBER (x); \
2876 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2877 args_out_of_range_3 \
2878 (x, \
2879 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2880 ? MOST_NEGATIVE_FIXNUM \
2881 : (lo)), \
2882 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2883 } while (false)
2884 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2885 do { \
2886 if (TYPE_SIGNED (type)) \
2887 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2888 else \
2889 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2890 } while (false)
2891
2892 #define CHECK_NUMBER_COERCE_MARKER(x) \
2893 do { \
2894 if (MARKERP ((x))) \
2895 XSETFASTINT (x, marker_position (x)); \
2896 else \
2897 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2898 } while (false)
2899
2900 INLINE double
2901 XFLOATINT (Lisp_Object n)
2902 {
2903 return extract_float (n);
2904 }
2905
2906 INLINE void
2907 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2908 {
2909 CHECK_TYPE (NUMBERP (x), Qnumberp, x);
2910 }
2911
2912 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2913 do { \
2914 if (MARKERP (x)) \
2915 XSETFASTINT (x, marker_position (x)); \
2916 else \
2917 CHECK_TYPE (NUMBERP (x), Qnumber_or_marker_p, x); \
2918 } while (false)
2919
2920 /* Since we can't assign directly to the CAR or CDR fields of a cons
2921 cell, use these when checking that those fields contain numbers. */
2922 INLINE void
2923 CHECK_NUMBER_CAR (Lisp_Object x)
2924 {
2925 Lisp_Object tmp = XCAR (x);
2926 CHECK_NUMBER (tmp);
2927 XSETCAR (x, tmp);
2928 }
2929
2930 INLINE void
2931 CHECK_NUMBER_CDR (Lisp_Object x)
2932 {
2933 Lisp_Object tmp = XCDR (x);
2934 CHECK_NUMBER (tmp);
2935 XSETCDR (x, tmp);
2936 }
2937 \f
2938 /* Define a built-in function for calling from Lisp.
2939 `lname' should be the name to give the function in Lisp,
2940 as a null-terminated C string.
2941 `fnname' should be the name of the function in C.
2942 By convention, it starts with F.
2943 `sname' should be the name for the C constant structure
2944 that records information on this function for internal use.
2945 By convention, it should be the same as `fnname' but with S instead of F.
2946 It's too bad that C macros can't compute this from `fnname'.
2947 `minargs' should be a number, the minimum number of arguments allowed.
2948 `maxargs' should be a number, the maximum number of arguments allowed,
2949 or else MANY or UNEVALLED.
2950 MANY means pass a vector of evaluated arguments,
2951 in the form of an integer number-of-arguments
2952 followed by the address of a vector of Lisp_Objects
2953 which contains the argument values.
2954 UNEVALLED means pass the list of unevaluated arguments
2955 `intspec' says how interactive arguments are to be fetched.
2956 If the string starts with a `(', `intspec' is evaluated and the resulting
2957 list is the list of arguments.
2958 If it's a string that doesn't start with `(', the value should follow
2959 the one of the doc string for `interactive'.
2960 A null string means call interactively with no arguments.
2961 `doc' is documentation for the user. */
2962
2963 /* This version of DEFUN declares a function prototype with the right
2964 arguments, so we can catch errors with maxargs at compile-time. */
2965 #ifdef _MSC_VER
2966 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2967 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2968 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2969 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2970 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2971 { (Lisp_Object (__cdecl *)(void))fnname }, \
2972 minargs, maxargs, lname, intspec, 0}; \
2973 Lisp_Object fnname
2974 #else /* not _MSC_VER */
2975 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2976 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2977 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2978 { .a ## maxargs = fnname }, \
2979 minargs, maxargs, lname, intspec, 0}; \
2980 Lisp_Object fnname
2981 #endif
2982
2983 /* True if OBJ is a Lisp function. */
2984 INLINE bool
2985 FUNCTIONP (Lisp_Object obj)
2986 {
2987 return functionp (obj);
2988 }
2989
2990 /* defsubr (Sname);
2991 is how we define the symbol for function `name' at start-up time. */
2992 extern void defsubr (struct Lisp_Subr *);
2993
2994 enum maxargs
2995 {
2996 MANY = -2,
2997 UNEVALLED = -1
2998 };
2999
3000 /* Call a function F that accepts many args, passing it ARRAY's elements. */
3001 #define CALLMANY(f, array) (f) (ARRAYELTS (array), array)
3002
3003 /* Call a function F that accepts many args, passing it the remaining args,
3004 E.g., 'return CALLN (Fformat, fmt, text);' is less error-prone than
3005 '{ Lisp_Object a[2]; a[0] = fmt; a[1] = text; return Fformat (2, a); }'.
3006 CALLN is overkill for simple usages like 'Finsert (1, &text);'. */
3007 #define CALLN(f, ...) CALLMANY (f, ((Lisp_Object []) {__VA_ARGS__}))
3008
3009 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
3010 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
3011 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
3012 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
3013 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
3014
3015 /* Macros we use to define forwarded Lisp variables.
3016 These are used in the syms_of_FILENAME functions.
3017
3018 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
3019 lisp variable is actually a field in `struct emacs_globals'. The
3020 field's name begins with "f_", which is a convention enforced by
3021 these macros. Each such global has a corresponding #define in
3022 globals.h; the plain name should be used in the code.
3023
3024 E.g., the global "cons_cells_consed" is declared as "int
3025 f_cons_cells_consed" in globals.h, but there is a define:
3026
3027 #define cons_cells_consed globals.f_cons_cells_consed
3028
3029 All C code uses the `cons_cells_consed' name. This is all done
3030 this way to support indirection for multi-threaded Emacs. */
3031
3032 #define DEFVAR_LISP(lname, vname, doc) \
3033 do { \
3034 static struct Lisp_Objfwd o_fwd; \
3035 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
3036 } while (false)
3037 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
3038 do { \
3039 static struct Lisp_Objfwd o_fwd; \
3040 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
3041 } while (false)
3042 #define DEFVAR_BOOL(lname, vname, doc) \
3043 do { \
3044 static struct Lisp_Boolfwd b_fwd; \
3045 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
3046 } while (false)
3047 #define DEFVAR_INT(lname, vname, doc) \
3048 do { \
3049 static struct Lisp_Intfwd i_fwd; \
3050 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
3051 } while (false)
3052
3053 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
3054 do { \
3055 static struct Lisp_Objfwd o_fwd; \
3056 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
3057 } while (false)
3058
3059 #define DEFVAR_KBOARD(lname, vname, doc) \
3060 do { \
3061 static struct Lisp_Kboard_Objfwd ko_fwd; \
3062 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
3063 } while (false)
3064 \f
3065 /* Save and restore the instruction and environment pointers,
3066 without affecting the signal mask. */
3067
3068 #ifdef HAVE__SETJMP
3069 typedef jmp_buf sys_jmp_buf;
3070 # define sys_setjmp(j) _setjmp (j)
3071 # define sys_longjmp(j, v) _longjmp (j, v)
3072 #elif defined HAVE_SIGSETJMP
3073 typedef sigjmp_buf sys_jmp_buf;
3074 # define sys_setjmp(j) sigsetjmp (j, 0)
3075 # define sys_longjmp(j, v) siglongjmp (j, v)
3076 #else
3077 /* A platform that uses neither _longjmp nor siglongjmp; assume
3078 longjmp does not affect the sigmask. */
3079 typedef jmp_buf sys_jmp_buf;
3080 # define sys_setjmp(j) setjmp (j)
3081 # define sys_longjmp(j, v) longjmp (j, v)
3082 #endif
3083
3084 \f
3085 /* Elisp uses several stacks:
3086 - the C stack.
3087 - the bytecode stack: used internally by the bytecode interpreter.
3088 Allocated from the C stack.
3089 - The specpdl stack: keeps track of active unwind-protect and
3090 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
3091 managed stack.
3092 - The handler stack: keeps track of active catch tags and condition-case
3093 handlers. Allocated in a manually managed stack implemented by a
3094 doubly-linked list allocated via xmalloc and never freed. */
3095
3096 /* Structure for recording Lisp call stack for backtrace purposes. */
3097
3098 /* The special binding stack holds the outer values of variables while
3099 they are bound by a function application or a let form, stores the
3100 code to be executed for unwind-protect forms.
3101
3102 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
3103 used all over the place, needs to be fast, and needs to know the size of
3104 union specbinding. But only eval.c should access it. */
3105
3106 enum specbind_tag {
3107 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
3108 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
3109 SPECPDL_UNWIND_INT, /* Likewise, on int. */
3110 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
3111 SPECPDL_BACKTRACE, /* An element of the backtrace. */
3112 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
3113 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
3114 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
3115 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
3116 };
3117
3118 union specbinding
3119 {
3120 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3121 struct {
3122 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3123 void (*func) (Lisp_Object);
3124 Lisp_Object arg;
3125 } unwind;
3126 struct {
3127 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3128 void (*func) (void *);
3129 void *arg;
3130 } unwind_ptr;
3131 struct {
3132 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3133 void (*func) (int);
3134 int arg;
3135 } unwind_int;
3136 struct {
3137 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3138 void (*func) (void);
3139 } unwind_void;
3140 struct {
3141 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3142 /* `where' is not used in the case of SPECPDL_LET. */
3143 Lisp_Object symbol, old_value, where;
3144 } let;
3145 struct {
3146 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3147 bool_bf debug_on_exit : 1;
3148 Lisp_Object function;
3149 Lisp_Object *args;
3150 ptrdiff_t nargs;
3151 } bt;
3152 };
3153
3154 extern union specbinding *specpdl;
3155 extern union specbinding *specpdl_ptr;
3156 extern ptrdiff_t specpdl_size;
3157
3158 INLINE ptrdiff_t
3159 SPECPDL_INDEX (void)
3160 {
3161 return specpdl_ptr - specpdl;
3162 }
3163
3164 /* This structure helps implement the `catch/throw' and `condition-case/signal'
3165 control structures. A struct handler contains all the information needed to
3166 restore the state of the interpreter after a non-local jump.
3167
3168 handler structures are chained together in a doubly linked list; the `next'
3169 member points to the next outer catchtag and the `nextfree' member points in
3170 the other direction to the next inner element (which is typically the next
3171 free element since we mostly use it on the deepest handler).
3172
3173 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
3174 member is TAG, and then unbinds to it. The `val' member is used to
3175 hold VAL while the stack is unwound; `val' is returned as the value
3176 of the catch form. If there is a handler of type CATCHER_ALL, it will
3177 be treated as a handler for all invocations of `throw'; in this case
3178 `val' will be set to (TAG . VAL).
3179
3180 All the other members are concerned with restoring the interpreter
3181 state.
3182
3183 Members are volatile if their values need to survive _longjmp when
3184 a 'struct handler' is a local variable. */
3185
3186 enum handlertype { CATCHER, CONDITION_CASE, CATCHER_ALL };
3187
3188 struct handler
3189 {
3190 enum handlertype type;
3191 Lisp_Object tag_or_ch;
3192 Lisp_Object val;
3193 struct handler *next;
3194 struct handler *nextfree;
3195
3196 /* The bytecode interpreter can have several handlers active at the same
3197 time, so when we longjmp to one of them, it needs to know which handler
3198 this was and what was the corresponding internal state. This is stored
3199 here, and when we longjmp we make sure that handlerlist points to the
3200 proper handler. */
3201 Lisp_Object *bytecode_top;
3202 int bytecode_dest;
3203
3204 /* Most global vars are reset to their value via the specpdl mechanism,
3205 but a few others are handled by storing their value here. */
3206 sys_jmp_buf jmp;
3207 EMACS_INT lisp_eval_depth;
3208 ptrdiff_t pdlcount;
3209 int poll_suppress_count;
3210 int interrupt_input_blocked;
3211 struct byte_stack *byte_stack;
3212 };
3213
3214 extern Lisp_Object memory_signal_data;
3215
3216 /* An address near the bottom of the stack.
3217 Tells GC how to save a copy of the stack. */
3218 extern char *stack_bottom;
3219
3220 /* Check quit-flag and quit if it is non-nil.
3221 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
3222 So the program needs to do QUIT at times when it is safe to quit.
3223 Every loop that might run for a long time or might not exit
3224 ought to do QUIT at least once, at a safe place.
3225 Unless that is impossible, of course.
3226 But it is very desirable to avoid creating loops where QUIT is impossible.
3227
3228 Exception: if you set immediate_quit to true,
3229 then the handler that responds to the C-g does the quit itself.
3230 This is a good thing to do around a loop that has no side effects
3231 and (in particular) cannot call arbitrary Lisp code.
3232
3233 If quit-flag is set to `kill-emacs' the SIGINT handler has received
3234 a request to exit Emacs when it is safe to do. */
3235
3236 extern void process_pending_signals (void);
3237 extern bool volatile pending_signals;
3238
3239 extern void process_quit_flag (void);
3240 #define QUIT \
3241 do { \
3242 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
3243 process_quit_flag (); \
3244 else if (pending_signals) \
3245 process_pending_signals (); \
3246 } while (false)
3247
3248
3249 /* True if ought to quit now. */
3250
3251 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
3252 \f
3253 extern Lisp_Object Vascii_downcase_table;
3254 extern Lisp_Object Vascii_canon_table;
3255 \f
3256 /* Call staticpro (&var) to protect static variable `var'. */
3257
3258 void staticpro (Lisp_Object *);
3259 \f
3260 /* Forward declarations for prototypes. */
3261 struct window;
3262 struct frame;
3263
3264 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3265
3266 INLINE void
3267 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3268 {
3269 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3270 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3271 }
3272
3273 /* Functions to modify hash tables. */
3274
3275 INLINE void
3276 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3277 {
3278 gc_aset (h->key_and_value, 2 * idx, val);
3279 }
3280
3281 INLINE void
3282 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3283 {
3284 gc_aset (h->key_and_value, 2 * idx + 1, val);
3285 }
3286
3287 /* Use these functions to set Lisp_Object
3288 or pointer slots of struct Lisp_Symbol. */
3289
3290 INLINE void
3291 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3292 {
3293 XSYMBOL (sym)->function = function;
3294 }
3295
3296 INLINE void
3297 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3298 {
3299 XSYMBOL (sym)->plist = plist;
3300 }
3301
3302 INLINE void
3303 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3304 {
3305 XSYMBOL (sym)->next = next;
3306 }
3307
3308 /* Buffer-local (also frame-local) variable access functions. */
3309
3310 INLINE int
3311 blv_found (struct Lisp_Buffer_Local_Value *blv)
3312 {
3313 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3314 return blv->found;
3315 }
3316
3317 /* Set overlay's property list. */
3318
3319 INLINE void
3320 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3321 {
3322 XOVERLAY (overlay)->plist = plist;
3323 }
3324
3325 /* Get text properties of S. */
3326
3327 INLINE INTERVAL
3328 string_intervals (Lisp_Object s)
3329 {
3330 return XSTRING (s)->intervals;
3331 }
3332
3333 /* Set text properties of S to I. */
3334
3335 INLINE void
3336 set_string_intervals (Lisp_Object s, INTERVAL i)
3337 {
3338 XSTRING (s)->intervals = i;
3339 }
3340
3341 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3342 of setting slots directly. */
3343
3344 INLINE void
3345 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3346 {
3347 XCHAR_TABLE (table)->defalt = val;
3348 }
3349 INLINE void
3350 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3351 {
3352 XCHAR_TABLE (table)->purpose = val;
3353 }
3354
3355 /* Set different slots in (sub)character tables. */
3356
3357 INLINE void
3358 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3359 {
3360 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3361 XCHAR_TABLE (table)->extras[idx] = val;
3362 }
3363
3364 INLINE void
3365 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3366 {
3367 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3368 XCHAR_TABLE (table)->contents[idx] = val;
3369 }
3370
3371 INLINE void
3372 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3373 {
3374 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3375 }
3376
3377 /* Defined in data.c. */
3378 extern Lisp_Object indirect_function (Lisp_Object);
3379 extern Lisp_Object find_symbol_value (Lisp_Object);
3380 enum Arith_Comparison {
3381 ARITH_EQUAL,
3382 ARITH_NOTEQUAL,
3383 ARITH_LESS,
3384 ARITH_GRTR,
3385 ARITH_LESS_OR_EQUAL,
3386 ARITH_GRTR_OR_EQUAL
3387 };
3388 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3389 enum Arith_Comparison comparison);
3390
3391 /* Convert the integer I to an Emacs representation, either the integer
3392 itself, or a cons of two or three integers, or if all else fails a float.
3393 I should not have side effects. */
3394 #define INTEGER_TO_CONS(i) \
3395 (! FIXNUM_OVERFLOW_P (i) \
3396 ? make_number (i) \
3397 : EXPR_SIGNED (i) ? intbig_to_lisp (i) : uintbig_to_lisp (i))
3398 extern Lisp_Object intbig_to_lisp (intmax_t);
3399 extern Lisp_Object uintbig_to_lisp (uintmax_t);
3400
3401 /* Convert the Emacs representation CONS back to an integer of type
3402 TYPE, storing the result the variable VAR. Signal an error if CONS
3403 is not a valid representation or is out of range for TYPE. */
3404 #define CONS_TO_INTEGER(cons, type, var) \
3405 (TYPE_SIGNED (type) \
3406 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3407 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3408 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3409 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3410
3411 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3412 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3413 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3414 Lisp_Object);
3415 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3416 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3417 extern void syms_of_data (void);
3418 extern void swap_in_global_binding (struct Lisp_Symbol *);
3419
3420 /* Defined in cmds.c */
3421 extern void syms_of_cmds (void);
3422 extern void keys_of_cmds (void);
3423
3424 /* Defined in coding.c. */
3425 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3426 ptrdiff_t, bool, bool, Lisp_Object);
3427 extern void init_coding (void);
3428 extern void init_coding_once (void);
3429 extern void syms_of_coding (void);
3430
3431 /* Defined in character.c. */
3432 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3433 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3434 extern void syms_of_character (void);
3435
3436 /* Defined in charset.c. */
3437 extern void init_charset (void);
3438 extern void init_charset_once (void);
3439 extern void syms_of_charset (void);
3440 /* Structure forward declarations. */
3441 struct charset;
3442
3443 /* Defined in syntax.c. */
3444 extern void init_syntax_once (void);
3445 extern void syms_of_syntax (void);
3446
3447 /* Defined in fns.c. */
3448 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3449 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3450 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3451 extern void sweep_weak_hash_tables (void);
3452 EMACS_UINT hash_string (char const *, ptrdiff_t);
3453 EMACS_UINT sxhash (Lisp_Object, int);
3454 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3455 Lisp_Object, Lisp_Object);
3456 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3457 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3458 EMACS_UINT);
3459 void hash_remove_from_table (struct Lisp_Hash_Table *, Lisp_Object);
3460 extern struct hash_table_test hashtest_eq, hashtest_eql, hashtest_equal;
3461 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3462 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3463 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3464 ptrdiff_t, ptrdiff_t);
3465 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3466 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3467 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3468 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3469 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3470 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3471 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3472 extern void clear_string_char_byte_cache (void);
3473 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3474 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3475 extern Lisp_Object string_to_multibyte (Lisp_Object);
3476 extern Lisp_Object string_make_unibyte (Lisp_Object);
3477 extern void syms_of_fns (void);
3478
3479 /* Defined in floatfns.c. */
3480 extern void syms_of_floatfns (void);
3481 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3482
3483 /* Defined in fringe.c. */
3484 extern void syms_of_fringe (void);
3485 extern void init_fringe (void);
3486 #ifdef HAVE_WINDOW_SYSTEM
3487 extern void mark_fringe_data (void);
3488 extern void init_fringe_once (void);
3489 #endif /* HAVE_WINDOW_SYSTEM */
3490
3491 /* Defined in image.c. */
3492 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3493 extern void reset_image_types (void);
3494 extern void syms_of_image (void);
3495
3496 /* Defined in insdel.c. */
3497 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3498 extern _Noreturn void buffer_overflow (void);
3499 extern void make_gap (ptrdiff_t);
3500 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3501 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3502 ptrdiff_t, bool, bool);
3503 extern int count_combining_before (const unsigned char *,
3504 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3505 extern int count_combining_after (const unsigned char *,
3506 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3507 extern void insert (const char *, ptrdiff_t);
3508 extern void insert_and_inherit (const char *, ptrdiff_t);
3509 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3510 bool, bool, bool);
3511 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3512 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3513 ptrdiff_t, ptrdiff_t, bool);
3514 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3515 extern void insert_char (int);
3516 extern void insert_string (const char *);
3517 extern void insert_before_markers (const char *, ptrdiff_t);
3518 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3519 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3520 ptrdiff_t, ptrdiff_t,
3521 ptrdiff_t, bool);
3522 extern void del_range (ptrdiff_t, ptrdiff_t);
3523 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3524 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3525 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3526 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3527 ptrdiff_t, ptrdiff_t, bool);
3528 extern void modify_text (ptrdiff_t, ptrdiff_t);
3529 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3530 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3531 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3532 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3533 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3534 ptrdiff_t, ptrdiff_t);
3535 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3536 ptrdiff_t, ptrdiff_t);
3537 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3538 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3539 const char *, ptrdiff_t, ptrdiff_t, bool);
3540 extern void syms_of_insdel (void);
3541
3542 /* Defined in dispnew.c. */
3543 #if (defined PROFILING \
3544 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3545 _Noreturn void __executable_start (void);
3546 #endif
3547 extern Lisp_Object Vwindow_system;
3548 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3549
3550 /* Defined in xdisp.c. */
3551 extern bool noninteractive_need_newline;
3552 extern Lisp_Object echo_area_buffer[2];
3553 extern void add_to_log (char const *, ...);
3554 extern void vadd_to_log (char const *, va_list);
3555 extern void check_message_stack (void);
3556 extern void setup_echo_area_for_printing (bool);
3557 extern bool push_message (void);
3558 extern void pop_message_unwind (void);
3559 extern Lisp_Object restore_message_unwind (Lisp_Object);
3560 extern void restore_message (void);
3561 extern Lisp_Object current_message (void);
3562 extern void clear_message (bool, bool);
3563 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3564 extern void message1 (const char *);
3565 extern void message1_nolog (const char *);
3566 extern void message3 (Lisp_Object);
3567 extern void message3_nolog (Lisp_Object);
3568 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3569 extern void message_with_string (const char *, Lisp_Object, bool);
3570 extern void message_log_maybe_newline (void);
3571 extern void update_echo_area (void);
3572 extern void truncate_echo_area (ptrdiff_t);
3573 extern void redisplay (void);
3574
3575 void set_frame_cursor_types (struct frame *, Lisp_Object);
3576 extern void syms_of_xdisp (void);
3577 extern void init_xdisp (void);
3578 extern Lisp_Object safe_eval (Lisp_Object);
3579 extern bool pos_visible_p (struct window *, ptrdiff_t, int *,
3580 int *, int *, int *, int *, int *);
3581
3582 /* Defined in xsettings.c. */
3583 extern void syms_of_xsettings (void);
3584
3585 /* Defined in vm-limit.c. */
3586 extern void memory_warnings (void *, void (*warnfun) (const char *));
3587
3588 /* Defined in character.c. */
3589 extern void parse_str_as_multibyte (const unsigned char *, ptrdiff_t,
3590 ptrdiff_t *, ptrdiff_t *);
3591
3592 /* Defined in alloc.c. */
3593 extern void *my_heap_start (void);
3594 extern void check_pure_size (void);
3595 extern void free_misc (Lisp_Object);
3596 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3597 extern void malloc_warning (const char *);
3598 extern _Noreturn void memory_full (size_t);
3599 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3600 extern bool survives_gc_p (Lisp_Object);
3601 extern void mark_object (Lisp_Object);
3602 #if defined REL_ALLOC && !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3603 extern void refill_memory_reserve (void);
3604 #endif
3605 #ifdef DOUG_LEA_MALLOC
3606 extern void alloc_unexec_pre (void);
3607 extern void alloc_unexec_post (void);
3608 #else
3609 INLINE void alloc_unexec_pre (void) {}
3610 INLINE void alloc_unexec_post (void) {}
3611 #endif
3612 extern const char *pending_malloc_warning;
3613 extern Lisp_Object zero_vector;
3614 extern Lisp_Object *stack_base;
3615 extern EMACS_INT consing_since_gc;
3616 extern EMACS_INT gc_relative_threshold;
3617 extern EMACS_INT memory_full_cons_threshold;
3618 extern Lisp_Object list1 (Lisp_Object);
3619 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3620 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3621 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3622 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3623 Lisp_Object);
3624 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3625 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3626
3627 /* Build a frequently used 2/3/4-integer lists. */
3628
3629 INLINE Lisp_Object
3630 list2i (EMACS_INT x, EMACS_INT y)
3631 {
3632 return list2 (make_number (x), make_number (y));
3633 }
3634
3635 INLINE Lisp_Object
3636 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3637 {
3638 return list3 (make_number (x), make_number (y), make_number (w));
3639 }
3640
3641 INLINE Lisp_Object
3642 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3643 {
3644 return list4 (make_number (x), make_number (y),
3645 make_number (w), make_number (h));
3646 }
3647
3648 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3649 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3650 extern _Noreturn void string_overflow (void);
3651 extern Lisp_Object make_string (const char *, ptrdiff_t);
3652 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3653 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3654 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3655
3656 /* Make unibyte string from C string when the length isn't known. */
3657
3658 INLINE Lisp_Object
3659 build_unibyte_string (const char *str)
3660 {
3661 return make_unibyte_string (str, strlen (str));
3662 }
3663
3664 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3665 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3666 extern Lisp_Object make_uninit_string (EMACS_INT);
3667 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3668 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3669 extern Lisp_Object make_specified_string (const char *,
3670 ptrdiff_t, ptrdiff_t, bool);
3671 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3672 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3673
3674 /* Make a string allocated in pure space, use STR as string data. */
3675
3676 INLINE Lisp_Object
3677 build_pure_c_string (const char *str)
3678 {
3679 return make_pure_c_string (str, strlen (str));
3680 }
3681
3682 /* Make a string from the data at STR, treating it as multibyte if the
3683 data warrants. */
3684
3685 INLINE Lisp_Object
3686 build_string (const char *str)
3687 {
3688 return make_string (str, strlen (str));
3689 }
3690
3691 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3692 extern void make_byte_code (struct Lisp_Vector *);
3693 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3694
3695 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3696 be sure that GC cannot happen until the vector is completely
3697 initialized. E.g. the following code is likely to crash:
3698
3699 v = make_uninit_vector (3);
3700 ASET (v, 0, obj0);
3701 ASET (v, 1, Ffunction_can_gc ());
3702 ASET (v, 2, obj1); */
3703
3704 INLINE Lisp_Object
3705 make_uninit_vector (ptrdiff_t size)
3706 {
3707 Lisp_Object v;
3708 struct Lisp_Vector *p;
3709
3710 p = allocate_vector (size);
3711 XSETVECTOR (v, p);
3712 return v;
3713 }
3714
3715 /* Like above, but special for sub char-tables. */
3716
3717 INLINE Lisp_Object
3718 make_uninit_sub_char_table (int depth, int min_char)
3719 {
3720 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3721 Lisp_Object v = make_uninit_vector (slots);
3722
3723 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3724 XSUB_CHAR_TABLE (v)->depth = depth;
3725 XSUB_CHAR_TABLE (v)->min_char = min_char;
3726 return v;
3727 }
3728
3729 extern struct Lisp_Vector *allocate_pseudovector (int, int, int,
3730 enum pvec_type);
3731
3732 /* Allocate partially initialized pseudovector where all Lisp_Object
3733 slots are set to Qnil but the rest (if any) is left uninitialized. */
3734
3735 #define ALLOCATE_PSEUDOVECTOR(type, field, tag) \
3736 ((type *) allocate_pseudovector (VECSIZE (type), \
3737 PSEUDOVECSIZE (type, field), \
3738 PSEUDOVECSIZE (type, field), tag))
3739
3740 /* Allocate fully initialized pseudovector where all Lisp_Object
3741 slots are set to Qnil and the rest (if any) is zeroed. */
3742
3743 #define ALLOCATE_ZEROED_PSEUDOVECTOR(type, field, tag) \
3744 ((type *) allocate_pseudovector (VECSIZE (type), \
3745 PSEUDOVECSIZE (type, field), \
3746 VECSIZE (type), tag))
3747
3748 extern bool gc_in_progress;
3749 extern bool abort_on_gc;
3750 extern Lisp_Object make_float (double);
3751 extern void display_malloc_warning (void);
3752 extern ptrdiff_t inhibit_garbage_collection (void);
3753 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3754 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3755 Lisp_Object, Lisp_Object);
3756 extern Lisp_Object make_save_ptr (void *);
3757 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3758 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3759 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3760 Lisp_Object);
3761 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3762 extern void free_save_value (Lisp_Object);
3763 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3764 extern void free_marker (Lisp_Object);
3765 extern void free_cons (struct Lisp_Cons *);
3766 extern void init_alloc_once (void);
3767 extern void init_alloc (void);
3768 extern void syms_of_alloc (void);
3769 extern struct buffer * allocate_buffer (void);
3770 extern int valid_lisp_object_p (Lisp_Object);
3771 #ifdef GC_CHECK_CONS_LIST
3772 extern void check_cons_list (void);
3773 #else
3774 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3775 #endif
3776
3777 #ifdef REL_ALLOC
3778 /* Defined in ralloc.c. */
3779 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3780 extern void r_alloc_free (void **);
3781 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3782 extern void r_alloc_reset_variable (void **, void **);
3783 extern void r_alloc_inhibit_buffer_relocation (int);
3784 #endif
3785
3786 /* Defined in chartab.c. */
3787 extern Lisp_Object copy_char_table (Lisp_Object);
3788 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3789 int *, int *);
3790 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3791 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3792 Lisp_Object),
3793 Lisp_Object, Lisp_Object, Lisp_Object);
3794 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3795 Lisp_Object, Lisp_Object,
3796 Lisp_Object, struct charset *,
3797 unsigned, unsigned);
3798 extern Lisp_Object uniprop_table (Lisp_Object);
3799 extern void syms_of_chartab (void);
3800
3801 /* Defined in print.c. */
3802 extern Lisp_Object Vprin1_to_string_buffer;
3803 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3804 extern void temp_output_buffer_setup (const char *);
3805 extern int print_level;
3806 extern void write_string (const char *);
3807 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3808 Lisp_Object);
3809 extern Lisp_Object internal_with_output_to_temp_buffer
3810 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3811 #define FLOAT_TO_STRING_BUFSIZE 350
3812 extern int float_to_string (char *, double);
3813 extern void init_print_once (void);
3814 extern void syms_of_print (void);
3815
3816 /* Defined in doprnt.c. */
3817 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3818 va_list);
3819 extern ptrdiff_t esprintf (char *, char const *, ...)
3820 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3821 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3822 char const *, ...)
3823 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3824 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3825 char const *, va_list)
3826 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3827
3828 /* Defined in lread.c. */
3829 extern Lisp_Object check_obarray (Lisp_Object);
3830 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3831 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3832 extern Lisp_Object intern_driver (Lisp_Object, Lisp_Object, Lisp_Object);
3833 extern void init_symbol (Lisp_Object, Lisp_Object);
3834 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3835 INLINE void
3836 LOADHIST_ATTACH (Lisp_Object x)
3837 {
3838 if (initialized)
3839 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3840 }
3841 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3842 Lisp_Object *, Lisp_Object, bool);
3843 extern Lisp_Object string_to_number (char const *, int, bool);
3844 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3845 Lisp_Object);
3846 extern void dir_warning (const char *, Lisp_Object);
3847 extern void init_obarray (void);
3848 extern void init_lread (void);
3849 extern void syms_of_lread (void);
3850
3851 INLINE Lisp_Object
3852 intern (const char *str)
3853 {
3854 return intern_1 (str, strlen (str));
3855 }
3856
3857 INLINE Lisp_Object
3858 intern_c_string (const char *str)
3859 {
3860 return intern_c_string_1 (str, strlen (str));
3861 }
3862
3863 /* Defined in eval.c. */
3864 extern Lisp_Object Vautoload_queue;
3865 extern Lisp_Object Vrun_hooks;
3866 extern Lisp_Object Vsignaling_function;
3867 extern Lisp_Object inhibit_lisp_code;
3868 extern struct handler *handlerlist;
3869
3870 /* To run a normal hook, use the appropriate function from the list below.
3871 The calling convention:
3872
3873 if (!NILP (Vrun_hooks))
3874 call1 (Vrun_hooks, Qmy_funny_hook);
3875
3876 should no longer be used. */
3877 extern void run_hook (Lisp_Object);
3878 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3879 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3880 Lisp_Object (*funcall)
3881 (ptrdiff_t nargs, Lisp_Object *args));
3882 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3883 extern _Noreturn void xsignal0 (Lisp_Object);
3884 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3885 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3886 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3887 Lisp_Object);
3888 extern _Noreturn void signal_error (const char *, Lisp_Object);
3889 extern Lisp_Object eval_sub (Lisp_Object form);
3890 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3891 extern Lisp_Object call0 (Lisp_Object);
3892 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3893 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3894 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3895 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3896 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3897 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3898 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3899 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3900 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3901 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3902 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3903 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3904 extern Lisp_Object internal_condition_case_n
3905 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3906 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3907 extern struct handler *push_handler (Lisp_Object, enum handlertype);
3908 extern struct handler *push_handler_nosignal (Lisp_Object, enum handlertype);
3909 extern void specbind (Lisp_Object, Lisp_Object);
3910 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3911 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3912 extern void record_unwind_protect_int (void (*) (int), int);
3913 extern void record_unwind_protect_void (void (*) (void));
3914 extern void record_unwind_protect_nothing (void);
3915 extern void clear_unwind_protect (ptrdiff_t);
3916 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3917 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3918 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3919 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3920 extern _Noreturn void verror (const char *, va_list)
3921 ATTRIBUTE_FORMAT_PRINTF (1, 0);
3922 extern void un_autoload (Lisp_Object);
3923 extern Lisp_Object call_debugger (Lisp_Object arg);
3924 extern void *near_C_stack_top (void);
3925 extern void init_eval_once (void);
3926 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
3927 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
3928 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3929 extern void init_eval (void);
3930 extern void syms_of_eval (void);
3931 extern void unwind_body (Lisp_Object);
3932 extern ptrdiff_t record_in_backtrace (Lisp_Object, Lisp_Object *, ptrdiff_t);
3933 extern void mark_specpdl (void);
3934 extern void get_backtrace (Lisp_Object array);
3935 Lisp_Object backtrace_top_function (void);
3936 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
3937 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
3938
3939 #ifdef HAVE_MODULES
3940 /* Defined in alloc.c. */
3941 extern Lisp_Object make_user_ptr (void (*finalizer) (void *), void *p);
3942
3943 /* Defined in emacs-module.c. */
3944 extern void module_init (void);
3945 extern void syms_of_module (void);
3946 #endif
3947
3948 /* Defined in editfns.c. */
3949 extern void insert1 (Lisp_Object);
3950 extern Lisp_Object save_excursion_save (void);
3951 extern Lisp_Object save_restriction_save (void);
3952 extern void save_excursion_restore (Lisp_Object);
3953 extern void save_restriction_restore (Lisp_Object);
3954 extern _Noreturn void time_overflow (void);
3955 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
3956 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3957 ptrdiff_t, bool);
3958 extern void init_editfns (bool);
3959 extern void syms_of_editfns (void);
3960
3961 /* Defined in buffer.c. */
3962 extern bool mouse_face_overlay_overlaps (Lisp_Object);
3963 extern _Noreturn void nsberror (Lisp_Object);
3964 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
3965 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
3966 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
3967 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
3968 Lisp_Object, Lisp_Object, Lisp_Object);
3969 extern bool overlay_touches_p (ptrdiff_t);
3970 extern Lisp_Object other_buffer_safely (Lisp_Object);
3971 extern Lisp_Object get_truename_buffer (Lisp_Object);
3972 extern void init_buffer_once (void);
3973 extern void init_buffer (int);
3974 extern void syms_of_buffer (void);
3975 extern void keys_of_buffer (void);
3976
3977 /* Defined in marker.c. */
3978
3979 extern ptrdiff_t marker_position (Lisp_Object);
3980 extern ptrdiff_t marker_byte_position (Lisp_Object);
3981 extern void clear_charpos_cache (struct buffer *);
3982 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
3983 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
3984 extern void unchain_marker (struct Lisp_Marker *marker);
3985 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
3986 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
3987 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
3988 ptrdiff_t, ptrdiff_t);
3989 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
3990 extern void syms_of_marker (void);
3991
3992 /* Defined in fileio.c. */
3993
3994 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
3995 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
3996 Lisp_Object, Lisp_Object, Lisp_Object,
3997 Lisp_Object, int);
3998 extern void close_file_unwind (int);
3999 extern void fclose_unwind (void *);
4000 extern void restore_point_unwind (Lisp_Object);
4001 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
4002 extern _Noreturn void report_file_error (const char *, Lisp_Object);
4003 extern _Noreturn void report_file_notify_error (const char *, Lisp_Object);
4004 extern bool internal_delete_file (Lisp_Object);
4005 extern Lisp_Object emacs_readlinkat (int, const char *);
4006 extern bool file_directory_p (const char *);
4007 extern bool file_accessible_directory_p (Lisp_Object);
4008 extern void init_fileio (void);
4009 extern void syms_of_fileio (void);
4010 extern Lisp_Object make_temp_name (Lisp_Object, bool);
4011
4012 /* Defined in search.c. */
4013 extern void shrink_regexp_cache (void);
4014 extern void restore_search_regs (void);
4015 extern void record_unwind_save_match_data (void);
4016 struct re_registers;
4017 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
4018 struct re_registers *,
4019 Lisp_Object, bool, bool);
4020 extern ptrdiff_t fast_string_match_internal (Lisp_Object, Lisp_Object,
4021 Lisp_Object);
4022
4023 INLINE ptrdiff_t
4024 fast_string_match (Lisp_Object regexp, Lisp_Object string)
4025 {
4026 return fast_string_match_internal (regexp, string, Qnil);
4027 }
4028
4029 INLINE ptrdiff_t
4030 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
4031 {
4032 return fast_string_match_internal (regexp, string, Vascii_canon_table);
4033 }
4034
4035 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4036 ptrdiff_t);
4037 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4038 ptrdiff_t, ptrdiff_t, Lisp_Object);
4039 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4040 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4041 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4042 ptrdiff_t, bool);
4043 extern ptrdiff_t scan_newline_from_point (ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
4044 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4045 ptrdiff_t, ptrdiff_t *);
4046 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4047 ptrdiff_t, ptrdiff_t *);
4048 extern void syms_of_search (void);
4049 extern void clear_regexp_cache (void);
4050
4051 /* Defined in minibuf.c. */
4052
4053 extern Lisp_Object Vminibuffer_list;
4054 extern Lisp_Object last_minibuf_string;
4055 extern Lisp_Object get_minibuffer (EMACS_INT);
4056 extern void init_minibuf_once (void);
4057 extern void syms_of_minibuf (void);
4058
4059 /* Defined in callint.c. */
4060
4061 extern void syms_of_callint (void);
4062
4063 /* Defined in casefiddle.c. */
4064
4065 extern void syms_of_casefiddle (void);
4066 extern void keys_of_casefiddle (void);
4067
4068 /* Defined in casetab.c. */
4069
4070 extern void init_casetab_once (void);
4071 extern void syms_of_casetab (void);
4072
4073 /* Defined in keyboard.c. */
4074
4075 extern Lisp_Object echo_message_buffer;
4076 extern struct kboard *echo_kboard;
4077 extern void cancel_echoing (void);
4078 extern bool input_pending;
4079 #ifdef HAVE_STACK_OVERFLOW_HANDLING
4080 extern sigjmp_buf return_to_command_loop;
4081 #endif
4082 extern Lisp_Object menu_bar_items (Lisp_Object);
4083 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4084 extern void discard_mouse_events (void);
4085 #ifdef USABLE_SIGIO
4086 void handle_input_available_signal (int);
4087 #endif
4088 extern Lisp_Object pending_funcalls;
4089 extern bool detect_input_pending (void);
4090 extern bool detect_input_pending_ignore_squeezables (void);
4091 extern bool detect_input_pending_run_timers (bool);
4092 extern void safe_run_hooks (Lisp_Object);
4093 extern void cmd_error_internal (Lisp_Object, const char *);
4094 extern Lisp_Object command_loop_1 (void);
4095 extern Lisp_Object read_menu_command (void);
4096 extern Lisp_Object recursive_edit_1 (void);
4097 extern void record_auto_save (void);
4098 extern void force_auto_save_soon (void);
4099 extern void init_keyboard (void);
4100 extern void syms_of_keyboard (void);
4101 extern void keys_of_keyboard (void);
4102
4103 /* Defined in indent.c. */
4104 extern ptrdiff_t current_column (void);
4105 extern void invalidate_current_column (void);
4106 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4107 extern void syms_of_indent (void);
4108
4109 /* Defined in frame.c. */
4110 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4111 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4112 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4113 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4114 extern void frames_discard_buffer (Lisp_Object);
4115 extern void syms_of_frame (void);
4116
4117 /* Defined in emacs.c. */
4118 extern char **initial_argv;
4119 extern int initial_argc;
4120 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4121 extern bool display_arg;
4122 #endif
4123 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4124 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4125 extern _Noreturn void terminate_due_to_signal (int, int);
4126 #ifdef WINDOWSNT
4127 extern Lisp_Object Vlibrary_cache;
4128 #endif
4129 #if HAVE_SETLOCALE
4130 void fixup_locale (void);
4131 void synchronize_system_messages_locale (void);
4132 void synchronize_system_time_locale (void);
4133 #else
4134 INLINE void fixup_locale (void) {}
4135 INLINE void synchronize_system_messages_locale (void) {}
4136 INLINE void synchronize_system_time_locale (void) {}
4137 #endif
4138 extern void shut_down_emacs (int, Lisp_Object);
4139
4140 /* True means don't do interactive redisplay and don't change tty modes. */
4141 extern bool noninteractive;
4142
4143 /* True means remove site-lisp directories from load-path. */
4144 extern bool no_site_lisp;
4145
4146 /* Pipe used to send exit notification to the daemon parent at
4147 startup. On Windows, we use a kernel event instead. */
4148 #ifndef WINDOWSNT
4149 extern int daemon_pipe[2];
4150 #define IS_DAEMON (daemon_pipe[1] != 0)
4151 #define DAEMON_RUNNING (daemon_pipe[1] >= 0)
4152 #else /* WINDOWSNT */
4153 extern void *w32_daemon_event;
4154 #define IS_DAEMON (w32_daemon_event != NULL)
4155 #define DAEMON_RUNNING (w32_daemon_event != INVALID_HANDLE_VALUE)
4156 #endif
4157
4158 /* True if handling a fatal error already. */
4159 extern bool fatal_error_in_progress;
4160
4161 /* True means don't do use window-system-specific display code. */
4162 extern bool inhibit_window_system;
4163 /* True means that a filter or a sentinel is running. */
4164 extern bool running_asynch_code;
4165
4166 /* Defined in process.c. */
4167 extern void kill_buffer_processes (Lisp_Object);
4168 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4169 struct Lisp_Process *, int);
4170 /* Max value for the first argument of wait_reading_process_output. */
4171 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4172 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4173 The bug merely causes a bogus warning, but the warning is annoying. */
4174 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4175 #else
4176 # define WAIT_READING_MAX INTMAX_MAX
4177 #endif
4178 #ifdef HAVE_TIMERFD
4179 extern void add_timer_wait_descriptor (int);
4180 #endif
4181 extern void add_keyboard_wait_descriptor (int);
4182 extern void delete_keyboard_wait_descriptor (int);
4183 #ifdef HAVE_GPM
4184 extern void add_gpm_wait_descriptor (int);
4185 extern void delete_gpm_wait_descriptor (int);
4186 #endif
4187 extern void init_process_emacs (void);
4188 extern void syms_of_process (void);
4189 extern void setup_process_coding_systems (Lisp_Object);
4190
4191 /* Defined in callproc.c. */
4192 #ifndef DOS_NT
4193 _Noreturn
4194 #endif
4195 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4196 extern void init_callproc_1 (void);
4197 extern void init_callproc (void);
4198 extern void set_initial_environment (void);
4199 extern void syms_of_callproc (void);
4200
4201 /* Defined in doc.c. */
4202 enum text_quoting_style
4203 {
4204 /* Use curved single quotes ‘like this’. */
4205 CURVE_QUOTING_STYLE,
4206
4207 /* Use grave accent and apostrophe `like this'. */
4208 GRAVE_QUOTING_STYLE,
4209
4210 /* Use apostrophes 'like this'. */
4211 STRAIGHT_QUOTING_STYLE
4212 };
4213 extern enum text_quoting_style text_quoting_style (void);
4214 extern Lisp_Object read_doc_string (Lisp_Object);
4215 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4216 extern void syms_of_doc (void);
4217 extern int read_bytecode_char (bool);
4218
4219 /* Defined in bytecode.c. */
4220 extern void syms_of_bytecode (void);
4221 extern struct byte_stack *byte_stack_list;
4222 extern void relocate_byte_stack (void);
4223 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4224 Lisp_Object, ptrdiff_t, Lisp_Object *);
4225
4226 /* Defined in macros.c. */
4227 extern void init_macros (void);
4228 extern void syms_of_macros (void);
4229
4230 /* Defined in undo.c. */
4231 extern void truncate_undo_list (struct buffer *);
4232 extern void record_insert (ptrdiff_t, ptrdiff_t);
4233 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4234 extern void record_first_change (void);
4235 extern void record_change (ptrdiff_t, ptrdiff_t);
4236 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4237 Lisp_Object, Lisp_Object,
4238 Lisp_Object);
4239 extern void syms_of_undo (void);
4240
4241 /* Defined in textprop.c. */
4242 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4243
4244 /* Defined in menu.c. */
4245 extern void syms_of_menu (void);
4246
4247 /* Defined in xmenu.c. */
4248 extern void syms_of_xmenu (void);
4249
4250 /* Defined in termchar.h. */
4251 struct tty_display_info;
4252
4253 /* Defined in termhooks.h. */
4254 struct terminal;
4255
4256 /* Defined in sysdep.c. */
4257 #ifndef HAVE_GET_CURRENT_DIR_NAME
4258 extern char *get_current_dir_name (void);
4259 #endif
4260 extern void stuff_char (char c);
4261 extern void init_foreground_group (void);
4262 extern void sys_subshell (void);
4263 extern void sys_suspend (void);
4264 extern void discard_tty_input (void);
4265 extern void init_sys_modes (struct tty_display_info *);
4266 extern void reset_sys_modes (struct tty_display_info *);
4267 extern void init_all_sys_modes (void);
4268 extern void reset_all_sys_modes (void);
4269 extern void child_setup_tty (int);
4270 extern void setup_pty (int);
4271 extern int set_window_size (int, int, int);
4272 extern EMACS_INT get_random (void);
4273 extern void seed_random (void *, ptrdiff_t);
4274 extern void init_random (void);
4275 extern void emacs_backtrace (int);
4276 extern _Noreturn void emacs_abort (void) NO_INLINE;
4277 extern int emacs_open (const char *, int, int);
4278 extern int emacs_pipe (int[2]);
4279 extern int emacs_close (int);
4280 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4281 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4282 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4283 extern void emacs_perror (char const *);
4284
4285 extern void unlock_all_files (void);
4286 extern void lock_file (Lisp_Object);
4287 extern void unlock_file (Lisp_Object);
4288 extern void unlock_buffer (struct buffer *);
4289 extern void syms_of_filelock (void);
4290 extern int str_collate (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4291
4292 /* Defined in sound.c. */
4293 extern void syms_of_sound (void);
4294
4295 /* Defined in category.c. */
4296 extern void init_category_once (void);
4297 extern Lisp_Object char_category_set (int);
4298 extern void syms_of_category (void);
4299
4300 /* Defined in ccl.c. */
4301 extern void syms_of_ccl (void);
4302
4303 /* Defined in dired.c. */
4304 extern void syms_of_dired (void);
4305 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4306 Lisp_Object, Lisp_Object,
4307 bool, Lisp_Object);
4308
4309 /* Defined in term.c. */
4310 extern int *char_ins_del_vector;
4311 extern void syms_of_term (void);
4312 extern _Noreturn void fatal (const char *msgid, ...)
4313 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4314
4315 /* Defined in terminal.c. */
4316 extern void syms_of_terminal (void);
4317
4318 /* Defined in font.c. */
4319 extern void syms_of_font (void);
4320 extern void init_font (void);
4321
4322 #ifdef HAVE_WINDOW_SYSTEM
4323 /* Defined in fontset.c. */
4324 extern void syms_of_fontset (void);
4325 #endif
4326
4327 /* Defined in inotify.c */
4328 #ifdef HAVE_INOTIFY
4329 extern void syms_of_inotify (void);
4330 #endif
4331
4332 /* Defined in kqueue.c */
4333 #ifdef HAVE_KQUEUE
4334 extern void globals_of_kqueue (void);
4335 extern void syms_of_kqueue (void);
4336 #endif
4337
4338 /* Defined in gfilenotify.c */
4339 #ifdef HAVE_GFILENOTIFY
4340 extern void globals_of_gfilenotify (void);
4341 extern void syms_of_gfilenotify (void);
4342 #endif
4343
4344 #ifdef HAVE_W32NOTIFY
4345 /* Defined on w32notify.c. */
4346 extern void syms_of_w32notify (void);
4347 #endif
4348
4349 /* Defined in xfaces.c. */
4350 extern Lisp_Object Vface_alternative_font_family_alist;
4351 extern Lisp_Object Vface_alternative_font_registry_alist;
4352 extern void syms_of_xfaces (void);
4353
4354 #ifdef HAVE_X_WINDOWS
4355 /* Defined in xfns.c. */
4356 extern void syms_of_xfns (void);
4357
4358 /* Defined in xsmfns.c. */
4359 extern void syms_of_xsmfns (void);
4360
4361 /* Defined in xselect.c. */
4362 extern void syms_of_xselect (void);
4363
4364 /* Defined in xterm.c. */
4365 extern void init_xterm (void);
4366 extern void syms_of_xterm (void);
4367 #endif /* HAVE_X_WINDOWS */
4368
4369 #ifdef HAVE_WINDOW_SYSTEM
4370 /* Defined in xterm.c, nsterm.m, w32term.c. */
4371 extern char *x_get_keysym_name (int);
4372 #endif /* HAVE_WINDOW_SYSTEM */
4373
4374 #ifdef HAVE_LIBXML2
4375 /* Defined in xml.c. */
4376 extern void syms_of_xml (void);
4377 extern void xml_cleanup_parser (void);
4378 #endif
4379
4380 #ifdef HAVE_ZLIB
4381 /* Defined in decompress.c. */
4382 extern void syms_of_decompress (void);
4383 #endif
4384
4385 #ifdef HAVE_DBUS
4386 /* Defined in dbusbind.c. */
4387 void init_dbusbind (void);
4388 void syms_of_dbusbind (void);
4389 #endif
4390
4391
4392 /* Defined in profiler.c. */
4393 extern bool profiler_memory_running;
4394 extern void malloc_probe (size_t);
4395 extern void syms_of_profiler (void);
4396
4397
4398 #ifdef DOS_NT
4399 /* Defined in msdos.c, w32.c. */
4400 extern char *emacs_root_dir (void);
4401 #endif /* DOS_NT */
4402
4403 /* Defined in lastfile.c. */
4404 extern char my_edata[];
4405 extern char my_endbss[];
4406 extern char *my_endbss_static;
4407
4408 /* True means ^G can quit instantly. */
4409 extern bool immediate_quit;
4410
4411 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4412 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4413 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4414 extern void xfree (void *);
4415 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4416 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4417 ATTRIBUTE_ALLOC_SIZE ((2,3));
4418 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4419
4420 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4421 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4422 extern void dupstring (char **, char const *);
4423
4424 /* Make DEST a copy of STRING's data. Return a pointer to DEST's terminating
4425 null byte. This is like stpcpy, except the source is a Lisp string. */
4426
4427 INLINE char *
4428 lispstpcpy (char *dest, Lisp_Object string)
4429 {
4430 ptrdiff_t len = SBYTES (string);
4431 memcpy (dest, SDATA (string), len + 1);
4432 return dest + len;
4433 }
4434
4435 extern void xputenv (const char *);
4436
4437 extern char *egetenv_internal (const char *, ptrdiff_t);
4438
4439 INLINE char *
4440 egetenv (const char *var)
4441 {
4442 /* When VAR is a string literal, strlen can be optimized away. */
4443 return egetenv_internal (var, strlen (var));
4444 }
4445
4446 /* Set up the name of the machine we're running on. */
4447 extern void init_system_name (void);
4448
4449 /* Return the absolute value of X. X should be a signed integer
4450 expression without side effects, and X's absolute value should not
4451 exceed the maximum for its promoted type. This is called 'eabs'
4452 because 'abs' is reserved by the C standard. */
4453 #define eabs(x) ((x) < 0 ? -(x) : (x))
4454
4455 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4456 fixnum. */
4457
4458 #define make_fixnum_or_float(val) \
4459 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4460
4461 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4462 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4463
4464 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4465
4466 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4467
4468 #define USE_SAFE_ALLOCA \
4469 ptrdiff_t sa_avail = MAX_ALLOCA; \
4470 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4471
4472 #define AVAIL_ALLOCA(size) (sa_avail -= (size), alloca (size))
4473
4474 /* SAFE_ALLOCA allocates a simple buffer. */
4475
4476 #define SAFE_ALLOCA(size) ((size) <= sa_avail \
4477 ? AVAIL_ALLOCA (size) \
4478 : (sa_must_free = true, record_xmalloc (size)))
4479
4480 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4481 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4482 positive. The code is tuned for MULTIPLIER being a constant. */
4483
4484 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4485 do { \
4486 if ((nitems) <= sa_avail / sizeof *(buf) / (multiplier)) \
4487 (buf) = AVAIL_ALLOCA (sizeof *(buf) * (multiplier) * (nitems)); \
4488 else \
4489 { \
4490 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4491 sa_must_free = true; \
4492 record_unwind_protect_ptr (xfree, buf); \
4493 } \
4494 } while (false)
4495
4496 /* SAFE_ALLOCA_STRING allocates a C copy of a Lisp string. */
4497
4498 #define SAFE_ALLOCA_STRING(ptr, string) \
4499 do { \
4500 (ptr) = SAFE_ALLOCA (SBYTES (string) + 1); \
4501 memcpy (ptr, SDATA (string), SBYTES (string) + 1); \
4502 } while (false)
4503
4504 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4505
4506 #define SAFE_FREE() \
4507 do { \
4508 if (sa_must_free) { \
4509 sa_must_free = false; \
4510 unbind_to (sa_count, Qnil); \
4511 } \
4512 } while (false)
4513
4514 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4515
4516 #define SAFE_ALLOCA_LISP(buf, nelt) \
4517 do { \
4518 ptrdiff_t alloca_nbytes; \
4519 if (INT_MULTIPLY_WRAPV (nelt, word_size, &alloca_nbytes) \
4520 || SIZE_MAX < alloca_nbytes) \
4521 memory_full (SIZE_MAX); \
4522 else if (alloca_nbytes <= sa_avail) \
4523 (buf) = AVAIL_ALLOCA (alloca_nbytes); \
4524 else \
4525 { \
4526 Lisp_Object arg_; \
4527 (buf) = xmalloc (alloca_nbytes); \
4528 arg_ = make_save_memory (buf, nelt); \
4529 sa_must_free = true; \
4530 record_unwind_protect (free_save_value, arg_); \
4531 } \
4532 } while (false)
4533
4534
4535 /* If USE_STACK_LISP_OBJECTS, define macros that and functions that allocate
4536 block-scoped conses and strings. These objects are not
4537 managed by the garbage collector, so they are dangerous: passing them
4538 out of their scope (e.g., to user code) results in undefined behavior.
4539 Conversely, they have better performance because GC is not involved.
4540
4541 This feature is experimental and requires careful debugging.
4542 Build with CPPFLAGS='-DUSE_STACK_LISP_OBJECTS=0' to disable it. */
4543
4544 #ifndef USE_STACK_LISP_OBJECTS
4545 # define USE_STACK_LISP_OBJECTS true
4546 #endif
4547
4548 #ifdef GC_CHECK_STRING_BYTES
4549 enum { defined_GC_CHECK_STRING_BYTES = true };
4550 #else
4551 enum { defined_GC_CHECK_STRING_BYTES = false };
4552 #endif
4553
4554 /* Struct inside unions that are typically no larger and aligned enough. */
4555
4556 union Aligned_Cons
4557 {
4558 struct Lisp_Cons s;
4559 double d; intmax_t i; void *p;
4560 };
4561
4562 union Aligned_String
4563 {
4564 struct Lisp_String s;
4565 double d; intmax_t i; void *p;
4566 };
4567
4568 /* True for stack-based cons and string implementations, respectively.
4569 Use stack-based strings only if stack-based cons also works.
4570 Otherwise, STACK_CONS would create heap-based cons cells that
4571 could point to stack-based strings, which is a no-no. */
4572
4573 enum
4574 {
4575 USE_STACK_CONS = (USE_STACK_LISP_OBJECTS
4576 && alignof (union Aligned_Cons) % GCALIGNMENT == 0),
4577 USE_STACK_STRING = (USE_STACK_CONS
4578 && !defined_GC_CHECK_STRING_BYTES
4579 && alignof (union Aligned_String) % GCALIGNMENT == 0)
4580 };
4581
4582 /* Auxiliary macros used for auto allocation of Lisp objects. Please
4583 use these only in macros like AUTO_CONS that declare a local
4584 variable whose lifetime will be clear to the programmer. */
4585 #define STACK_CONS(a, b) \
4586 make_lisp_ptr (&(union Aligned_Cons) { { a, { b } } }.s, Lisp_Cons)
4587 #define AUTO_CONS_EXPR(a, b) \
4588 (USE_STACK_CONS ? STACK_CONS (a, b) : Fcons (a, b))
4589
4590 /* Declare NAME as an auto Lisp cons or short list if possible, a
4591 GC-based one otherwise. This is in the sense of the C keyword
4592 'auto'; i.e., the object has the lifetime of the containing block.
4593 The resulting object should not be made visible to user Lisp code. */
4594
4595 #define AUTO_CONS(name, a, b) Lisp_Object name = AUTO_CONS_EXPR (a, b)
4596 #define AUTO_LIST1(name, a) \
4597 Lisp_Object name = (USE_STACK_CONS ? STACK_CONS (a, Qnil) : list1 (a))
4598 #define AUTO_LIST2(name, a, b) \
4599 Lisp_Object name = (USE_STACK_CONS \
4600 ? STACK_CONS (a, STACK_CONS (b, Qnil)) \
4601 : list2 (a, b))
4602 #define AUTO_LIST3(name, a, b, c) \
4603 Lisp_Object name = (USE_STACK_CONS \
4604 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, Qnil))) \
4605 : list3 (a, b, c))
4606 #define AUTO_LIST4(name, a, b, c, d) \
4607 Lisp_Object name \
4608 = (USE_STACK_CONS \
4609 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, \
4610 STACK_CONS (d, Qnil)))) \
4611 : list4 (a, b, c, d))
4612
4613 /* Check whether stack-allocated strings are ASCII-only. */
4614
4615 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
4616 extern const char *verify_ascii (const char *);
4617 #else
4618 # define verify_ascii(str) (str)
4619 #endif
4620
4621 /* Declare NAME as an auto Lisp string if possible, a GC-based one if not.
4622 Take its value from STR. STR is not necessarily copied and should
4623 contain only ASCII characters. The resulting Lisp string should
4624 not be modified or made visible to user code. */
4625
4626 #define AUTO_STRING(name, str) \
4627 Lisp_Object name = \
4628 (USE_STACK_STRING \
4629 ? (make_lisp_ptr \
4630 ((&(union Aligned_String) \
4631 {{strlen (str), -1, 0, (unsigned char *) verify_ascii (str)}}.s), \
4632 Lisp_String)) \
4633 : build_string (verify_ascii (str)))
4634
4635 /* Loop over all tails of a list, checking for cycles.
4636 FIXME: Make tortoise and n internal declarations.
4637 FIXME: Unroll the loop body so we don't need `n'. */
4638 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4639 for ((tortoise) = (hare) = (list), (n) = true; \
4640 CONSP (hare); \
4641 (hare = XCDR (hare), (n) = !(n), \
4642 ((n) \
4643 ? (EQ (hare, tortoise) \
4644 ? xsignal1 (Qcircular_list, list) \
4645 : (void) 0) \
4646 /* Move tortoise before the next iteration, in case */ \
4647 /* the next iteration does an Fsetcdr. */ \
4648 : (void) ((tortoise) = XCDR (tortoise)))))
4649
4650 /* Do a `for' loop over alist values. */
4651
4652 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4653 for ((list_var) = (head_var); \
4654 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4655 (list_var) = XCDR (list_var))
4656
4657 /* Check whether it's time for GC, and run it if so. */
4658
4659 INLINE void
4660 maybe_gc (void)
4661 {
4662 if ((consing_since_gc > gc_cons_threshold
4663 && consing_since_gc > gc_relative_threshold)
4664 || (!NILP (Vmemory_full)
4665 && consing_since_gc > memory_full_cons_threshold))
4666 Fgarbage_collect ();
4667 }
4668
4669 INLINE bool
4670 functionp (Lisp_Object object)
4671 {
4672 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4673 {
4674 object = Findirect_function (object, Qt);
4675
4676 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4677 {
4678 /* Autoloaded symbols are functions, except if they load
4679 macros or keymaps. */
4680 int i;
4681 for (i = 0; i < 4 && CONSP (object); i++)
4682 object = XCDR (object);
4683
4684 return ! (CONSP (object) && !NILP (XCAR (object)));
4685 }
4686 }
4687
4688 if (SUBRP (object))
4689 return XSUBR (object)->max_args != UNEVALLED;
4690 else if (COMPILEDP (object))
4691 return true;
4692 else if (CONSP (object))
4693 {
4694 Lisp_Object car = XCAR (object);
4695 return EQ (car, Qlambda) || EQ (car, Qclosure);
4696 }
4697 else
4698 return false;
4699 }
4700
4701 INLINE_HEADER_END
4702
4703 #endif /* EMACS_LISP_H */