]> code.delx.au - gnu-emacs/blob - src/alloc.c
Fix MS-DOS configury.
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
25
26 #ifdef STDC_HEADERS
27 #include <stddef.h> /* For offsetof, used by PSEUDOVECSIZE. */
28 #endif
29
30 #ifdef ALLOC_DEBUG
31 #undef INLINE
32 #endif
33
34 #include <signal.h>
35
36 #ifdef HAVE_GTK_AND_PTHREAD
37 #include <pthread.h>
38 #endif
39
40 /* This file is part of the core Lisp implementation, and thus must
41 deal with the real data structures. If the Lisp implementation is
42 replaced, this file likely will not be used. */
43
44 #undef HIDE_LISP_IMPLEMENTATION
45 #include "lisp.h"
46 #include "process.h"
47 #include "intervals.h"
48 #include "puresize.h"
49 #include "buffer.h"
50 #include "window.h"
51 #include "keyboard.h"
52 #include "frame.h"
53 #include "blockinput.h"
54 #include "character.h"
55 #include "syssignal.h"
56 #include "termhooks.h" /* For struct terminal. */
57 #include <setjmp.h>
58
59 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
60 memory. Can do this only if using gmalloc.c. */
61
62 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
63 #undef GC_MALLOC_CHECK
64 #endif
65
66 #ifdef HAVE_UNISTD_H
67 #include <unistd.h>
68 #else
69 extern POINTER_TYPE *sbrk ();
70 #endif
71
72 #ifdef HAVE_FCNTL_H
73 #include <fcntl.h>
74 #endif
75 #ifndef O_WRONLY
76 #define O_WRONLY 1
77 #endif
78
79 #ifdef WINDOWSNT
80 #include <fcntl.h>
81 #include "w32.h"
82 #endif
83
84 #ifdef DOUG_LEA_MALLOC
85
86 #include <malloc.h>
87 /* malloc.h #defines this as size_t, at least in glibc2. */
88 #ifndef __malloc_size_t
89 #define __malloc_size_t int
90 #endif
91
92 /* Specify maximum number of areas to mmap. It would be nice to use a
93 value that explicitly means "no limit". */
94
95 #define MMAP_MAX_AREAS 100000000
96
97 #else /* not DOUG_LEA_MALLOC */
98
99 /* The following come from gmalloc.c. */
100
101 #define __malloc_size_t size_t
102 extern __malloc_size_t _bytes_used;
103 extern __malloc_size_t __malloc_extra_blocks;
104
105 #endif /* not DOUG_LEA_MALLOC */
106
107 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
108
109 /* When GTK uses the file chooser dialog, different backends can be loaded
110 dynamically. One such a backend is the Gnome VFS backend that gets loaded
111 if you run Gnome. That backend creates several threads and also allocates
112 memory with malloc.
113
114 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
115 functions below are called from malloc, there is a chance that one
116 of these threads preempts the Emacs main thread and the hook variables
117 end up in an inconsistent state. So we have a mutex to prevent that (note
118 that the backend handles concurrent access to malloc within its own threads
119 but Emacs code running in the main thread is not included in that control).
120
121 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
122 happens in one of the backend threads we will have two threads that tries
123 to run Emacs code at once, and the code is not prepared for that.
124 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
125
126 static pthread_mutex_t alloc_mutex;
127
128 #define BLOCK_INPUT_ALLOC \
129 do \
130 { \
131 if (pthread_equal (pthread_self (), main_thread)) \
132 BLOCK_INPUT; \
133 pthread_mutex_lock (&alloc_mutex); \
134 } \
135 while (0)
136 #define UNBLOCK_INPUT_ALLOC \
137 do \
138 { \
139 pthread_mutex_unlock (&alloc_mutex); \
140 if (pthread_equal (pthread_self (), main_thread)) \
141 UNBLOCK_INPUT; \
142 } \
143 while (0)
144
145 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
146
147 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
148 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
149
150 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
151
152 /* Value of _bytes_used, when spare_memory was freed. */
153
154 static __malloc_size_t bytes_used_when_full;
155
156 static __malloc_size_t bytes_used_when_reconsidered;
157
158 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
159 to a struct Lisp_String. */
160
161 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
162 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
163 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
164
165 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
166 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
167 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
168
169 /* Value is the number of bytes/chars of S, a pointer to a struct
170 Lisp_String. This must be used instead of STRING_BYTES (S) or
171 S->size during GC, because S->size contains the mark bit for
172 strings. */
173
174 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
175 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
176
177 /* Number of bytes of consing done since the last gc. */
178
179 int consing_since_gc;
180
181 /* Count the amount of consing of various sorts of space. */
182
183 EMACS_INT cons_cells_consed;
184 EMACS_INT floats_consed;
185 EMACS_INT vector_cells_consed;
186 EMACS_INT symbols_consed;
187 EMACS_INT string_chars_consed;
188 EMACS_INT misc_objects_consed;
189 EMACS_INT intervals_consed;
190 EMACS_INT strings_consed;
191
192 /* Minimum number of bytes of consing since GC before next GC. */
193
194 EMACS_INT gc_cons_threshold;
195
196 /* Similar minimum, computed from Vgc_cons_percentage. */
197
198 EMACS_INT gc_relative_threshold;
199
200 static Lisp_Object Vgc_cons_percentage;
201
202 /* Minimum number of bytes of consing since GC before next GC,
203 when memory is full. */
204
205 EMACS_INT memory_full_cons_threshold;
206
207 /* Nonzero during GC. */
208
209 int gc_in_progress;
210
211 /* Nonzero means abort if try to GC.
212 This is for code which is written on the assumption that
213 no GC will happen, so as to verify that assumption. */
214
215 int abort_on_gc;
216
217 /* Nonzero means display messages at beginning and end of GC. */
218
219 int garbage_collection_messages;
220
221 #ifndef VIRT_ADDR_VARIES
222 extern
223 #endif /* VIRT_ADDR_VARIES */
224 int malloc_sbrk_used;
225
226 #ifndef VIRT_ADDR_VARIES
227 extern
228 #endif /* VIRT_ADDR_VARIES */
229 int malloc_sbrk_unused;
230
231 /* Number of live and free conses etc. */
232
233 static int total_conses, total_markers, total_symbols, total_vector_size;
234 static int total_free_conses, total_free_markers, total_free_symbols;
235 static int total_free_floats, total_floats;
236
237 /* Points to memory space allocated as "spare", to be freed if we run
238 out of memory. We keep one large block, four cons-blocks, and
239 two string blocks. */
240
241 static char *spare_memory[7];
242
243 /* Amount of spare memory to keep in large reserve block. */
244
245 #define SPARE_MEMORY (1 << 14)
246
247 /* Number of extra blocks malloc should get when it needs more core. */
248
249 static int malloc_hysteresis;
250
251 /* Non-nil means defun should do purecopy on the function definition. */
252
253 Lisp_Object Vpurify_flag;
254
255 /* Non-nil means we are handling a memory-full error. */
256
257 Lisp_Object Vmemory_full;
258
259 /* Initialize it to a nonzero value to force it into data space
260 (rather than bss space). That way unexec will remap it into text
261 space (pure), on some systems. We have not implemented the
262 remapping on more recent systems because this is less important
263 nowadays than in the days of small memories and timesharing. */
264
265 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
266 #define PUREBEG (char *) pure
267
268 /* Pointer to the pure area, and its size. */
269
270 static char *purebeg;
271 static size_t pure_size;
272
273 /* Number of bytes of pure storage used before pure storage overflowed.
274 If this is non-zero, this implies that an overflow occurred. */
275
276 static size_t pure_bytes_used_before_overflow;
277
278 /* Value is non-zero if P points into pure space. */
279
280 #define PURE_POINTER_P(P) \
281 (((PNTR_COMPARISON_TYPE) (P) \
282 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
283 && ((PNTR_COMPARISON_TYPE) (P) \
284 >= (PNTR_COMPARISON_TYPE) purebeg))
285
286 /* Total number of bytes allocated in pure storage. */
287
288 EMACS_INT pure_bytes_used;
289
290 /* Index in pure at which next pure Lisp object will be allocated.. */
291
292 static EMACS_INT pure_bytes_used_lisp;
293
294 /* Number of bytes allocated for non-Lisp objects in pure storage. */
295
296 static EMACS_INT pure_bytes_used_non_lisp;
297
298 /* If nonzero, this is a warning delivered by malloc and not yet
299 displayed. */
300
301 char *pending_malloc_warning;
302
303 /* Pre-computed signal argument for use when memory is exhausted. */
304
305 Lisp_Object Vmemory_signal_data;
306
307 /* Maximum amount of C stack to save when a GC happens. */
308
309 #ifndef MAX_SAVE_STACK
310 #define MAX_SAVE_STACK 16000
311 #endif
312
313 /* Buffer in which we save a copy of the C stack at each GC. */
314
315 static char *stack_copy;
316 static int stack_copy_size;
317
318 /* Non-zero means ignore malloc warnings. Set during initialization.
319 Currently not used. */
320
321 static int ignore_warnings;
322
323 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
324
325 /* Hook run after GC has finished. */
326
327 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
328
329 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
330 EMACS_INT gcs_done; /* accumulated GCs */
331
332 static void mark_buffer (Lisp_Object);
333 static void mark_terminals (void);
334 extern void mark_kboards (void);
335 extern void mark_ttys (void);
336 extern void mark_backtrace (void);
337 static void gc_sweep (void);
338 static void mark_glyph_matrix (struct glyph_matrix *);
339 static void mark_face_cache (struct face_cache *);
340
341 #ifdef HAVE_WINDOW_SYSTEM
342 extern void mark_fringe_data (void);
343 #endif /* HAVE_WINDOW_SYSTEM */
344
345 static struct Lisp_String *allocate_string (void);
346 static void compact_small_strings (void);
347 static void free_large_strings (void);
348 static void sweep_strings (void);
349
350 extern int message_enable_multibyte;
351
352 /* When scanning the C stack for live Lisp objects, Emacs keeps track
353 of what memory allocated via lisp_malloc is intended for what
354 purpose. This enumeration specifies the type of memory. */
355
356 enum mem_type
357 {
358 MEM_TYPE_NON_LISP,
359 MEM_TYPE_BUFFER,
360 MEM_TYPE_CONS,
361 MEM_TYPE_STRING,
362 MEM_TYPE_MISC,
363 MEM_TYPE_SYMBOL,
364 MEM_TYPE_FLOAT,
365 /* We used to keep separate mem_types for subtypes of vectors such as
366 process, hash_table, frame, terminal, and window, but we never made
367 use of the distinction, so it only caused source-code complexity
368 and runtime slowdown. Minor but pointless. */
369 MEM_TYPE_VECTORLIKE
370 };
371
372 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
373 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
374 void refill_memory_reserve ();
375
376
377 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
378
379 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
380 #include <stdio.h> /* For fprintf. */
381 #endif
382
383 /* A unique object in pure space used to make some Lisp objects
384 on free lists recognizable in O(1). */
385
386 static Lisp_Object Vdead;
387
388 #ifdef GC_MALLOC_CHECK
389
390 enum mem_type allocated_mem_type;
391 static int dont_register_blocks;
392
393 #endif /* GC_MALLOC_CHECK */
394
395 /* A node in the red-black tree describing allocated memory containing
396 Lisp data. Each such block is recorded with its start and end
397 address when it is allocated, and removed from the tree when it
398 is freed.
399
400 A red-black tree is a balanced binary tree with the following
401 properties:
402
403 1. Every node is either red or black.
404 2. Every leaf is black.
405 3. If a node is red, then both of its children are black.
406 4. Every simple path from a node to a descendant leaf contains
407 the same number of black nodes.
408 5. The root is always black.
409
410 When nodes are inserted into the tree, or deleted from the tree,
411 the tree is "fixed" so that these properties are always true.
412
413 A red-black tree with N internal nodes has height at most 2
414 log(N+1). Searches, insertions and deletions are done in O(log N).
415 Please see a text book about data structures for a detailed
416 description of red-black trees. Any book worth its salt should
417 describe them. */
418
419 struct mem_node
420 {
421 /* Children of this node. These pointers are never NULL. When there
422 is no child, the value is MEM_NIL, which points to a dummy node. */
423 struct mem_node *left, *right;
424
425 /* The parent of this node. In the root node, this is NULL. */
426 struct mem_node *parent;
427
428 /* Start and end of allocated region. */
429 void *start, *end;
430
431 /* Node color. */
432 enum {MEM_BLACK, MEM_RED} color;
433
434 /* Memory type. */
435 enum mem_type type;
436 };
437
438 /* Base address of stack. Set in main. */
439
440 Lisp_Object *stack_base;
441
442 /* Root of the tree describing allocated Lisp memory. */
443
444 static struct mem_node *mem_root;
445
446 /* Lowest and highest known address in the heap. */
447
448 static void *min_heap_address, *max_heap_address;
449
450 /* Sentinel node of the tree. */
451
452 static struct mem_node mem_z;
453 #define MEM_NIL &mem_z
454
455 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
456 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
457 static void lisp_free (POINTER_TYPE *);
458 static void mark_stack (void);
459 static int live_vector_p (struct mem_node *, void *);
460 static int live_buffer_p (struct mem_node *, void *);
461 static int live_string_p (struct mem_node *, void *);
462 static int live_cons_p (struct mem_node *, void *);
463 static int live_symbol_p (struct mem_node *, void *);
464 static int live_float_p (struct mem_node *, void *);
465 static int live_misc_p (struct mem_node *, void *);
466 static void mark_maybe_object (Lisp_Object);
467 static void mark_memory (void *, void *, int);
468 static void mem_init (void);
469 static struct mem_node *mem_insert (void *, void *, enum mem_type);
470 static void mem_insert_fixup (struct mem_node *);
471 static void mem_rotate_left (struct mem_node *);
472 static void mem_rotate_right (struct mem_node *);
473 static void mem_delete (struct mem_node *);
474 static void mem_delete_fixup (struct mem_node *);
475 static INLINE struct mem_node *mem_find (void *);
476
477
478 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
479 static void check_gcpros (void);
480 #endif
481
482 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
483
484 /* Recording what needs to be marked for gc. */
485
486 struct gcpro *gcprolist;
487
488 /* Addresses of staticpro'd variables. Initialize it to a nonzero
489 value; otherwise some compilers put it into BSS. */
490
491 #define NSTATICS 0x640
492 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
493
494 /* Index of next unused slot in staticvec. */
495
496 static int staticidx = 0;
497
498 static POINTER_TYPE *pure_alloc (size_t, int);
499
500
501 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
502 ALIGNMENT must be a power of 2. */
503
504 #define ALIGN(ptr, ALIGNMENT) \
505 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
506 & ~((ALIGNMENT) - 1)))
507
508
509 \f
510 /************************************************************************
511 Malloc
512 ************************************************************************/
513
514 /* Function malloc calls this if it finds we are near exhausting storage. */
515
516 void
517 malloc_warning (str)
518 char *str;
519 {
520 pending_malloc_warning = str;
521 }
522
523
524 /* Display an already-pending malloc warning. */
525
526 void
527 display_malloc_warning ()
528 {
529 call3 (intern ("display-warning"),
530 intern ("alloc"),
531 build_string (pending_malloc_warning),
532 intern ("emergency"));
533 pending_malloc_warning = 0;
534 }
535
536
537 #ifdef DOUG_LEA_MALLOC
538 # define BYTES_USED (mallinfo ().uordblks)
539 #else
540 # define BYTES_USED _bytes_used
541 #endif
542 \f
543 /* Called if we can't allocate relocatable space for a buffer. */
544
545 void
546 buffer_memory_full ()
547 {
548 /* If buffers use the relocating allocator, no need to free
549 spare_memory, because we may have plenty of malloc space left
550 that we could get, and if we don't, the malloc that fails will
551 itself cause spare_memory to be freed. If buffers don't use the
552 relocating allocator, treat this like any other failing
553 malloc. */
554
555 #ifndef REL_ALLOC
556 memory_full ();
557 #endif
558
559 /* This used to call error, but if we've run out of memory, we could
560 get infinite recursion trying to build the string. */
561 xsignal (Qnil, Vmemory_signal_data);
562 }
563
564
565 #ifdef XMALLOC_OVERRUN_CHECK
566
567 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
568 and a 16 byte trailer around each block.
569
570 The header consists of 12 fixed bytes + a 4 byte integer contaning the
571 original block size, while the trailer consists of 16 fixed bytes.
572
573 The header is used to detect whether this block has been allocated
574 through these functions -- as it seems that some low-level libc
575 functions may bypass the malloc hooks.
576 */
577
578
579 #define XMALLOC_OVERRUN_CHECK_SIZE 16
580
581 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
582 { 0x9a, 0x9b, 0xae, 0xaf,
583 0xbf, 0xbe, 0xce, 0xcf,
584 0xea, 0xeb, 0xec, 0xed };
585
586 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
587 { 0xaa, 0xab, 0xac, 0xad,
588 0xba, 0xbb, 0xbc, 0xbd,
589 0xca, 0xcb, 0xcc, 0xcd,
590 0xda, 0xdb, 0xdc, 0xdd };
591
592 /* Macros to insert and extract the block size in the header. */
593
594 #define XMALLOC_PUT_SIZE(ptr, size) \
595 (ptr[-1] = (size & 0xff), \
596 ptr[-2] = ((size >> 8) & 0xff), \
597 ptr[-3] = ((size >> 16) & 0xff), \
598 ptr[-4] = ((size >> 24) & 0xff))
599
600 #define XMALLOC_GET_SIZE(ptr) \
601 (size_t)((unsigned)(ptr[-1]) | \
602 ((unsigned)(ptr[-2]) << 8) | \
603 ((unsigned)(ptr[-3]) << 16) | \
604 ((unsigned)(ptr[-4]) << 24))
605
606
607 /* The call depth in overrun_check functions. For example, this might happen:
608 xmalloc()
609 overrun_check_malloc()
610 -> malloc -> (via hook)_-> emacs_blocked_malloc
611 -> overrun_check_malloc
612 call malloc (hooks are NULL, so real malloc is called).
613 malloc returns 10000.
614 add overhead, return 10016.
615 <- (back in overrun_check_malloc)
616 add overhead again, return 10032
617 xmalloc returns 10032.
618
619 (time passes).
620
621 xfree(10032)
622 overrun_check_free(10032)
623 decrease overhed
624 free(10016) <- crash, because 10000 is the original pointer. */
625
626 static int check_depth;
627
628 /* Like malloc, but wraps allocated block with header and trailer. */
629
630 POINTER_TYPE *
631 overrun_check_malloc (size)
632 size_t size;
633 {
634 register unsigned char *val;
635 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
636
637 val = (unsigned char *) malloc (size + overhead);
638 if (val && check_depth == 1)
639 {
640 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
641 val += XMALLOC_OVERRUN_CHECK_SIZE;
642 XMALLOC_PUT_SIZE(val, size);
643 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
644 }
645 --check_depth;
646 return (POINTER_TYPE *)val;
647 }
648
649
650 /* Like realloc, but checks old block for overrun, and wraps new block
651 with header and trailer. */
652
653 POINTER_TYPE *
654 overrun_check_realloc (block, size)
655 POINTER_TYPE *block;
656 size_t size;
657 {
658 register unsigned char *val = (unsigned char *)block;
659 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
660
661 if (val
662 && check_depth == 1
663 && bcmp (xmalloc_overrun_check_header,
664 val - XMALLOC_OVERRUN_CHECK_SIZE,
665 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
666 {
667 size_t osize = XMALLOC_GET_SIZE (val);
668 if (bcmp (xmalloc_overrun_check_trailer,
669 val + osize,
670 XMALLOC_OVERRUN_CHECK_SIZE))
671 abort ();
672 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
673 val -= XMALLOC_OVERRUN_CHECK_SIZE;
674 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
675 }
676
677 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
678
679 if (val && check_depth == 1)
680 {
681 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
682 val += XMALLOC_OVERRUN_CHECK_SIZE;
683 XMALLOC_PUT_SIZE(val, size);
684 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
685 }
686 --check_depth;
687 return (POINTER_TYPE *)val;
688 }
689
690 /* Like free, but checks block for overrun. */
691
692 void
693 overrun_check_free (block)
694 POINTER_TYPE *block;
695 {
696 unsigned char *val = (unsigned char *)block;
697
698 ++check_depth;
699 if (val
700 && check_depth == 1
701 && bcmp (xmalloc_overrun_check_header,
702 val - XMALLOC_OVERRUN_CHECK_SIZE,
703 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
704 {
705 size_t osize = XMALLOC_GET_SIZE (val);
706 if (bcmp (xmalloc_overrun_check_trailer,
707 val + osize,
708 XMALLOC_OVERRUN_CHECK_SIZE))
709 abort ();
710 #ifdef XMALLOC_CLEAR_FREE_MEMORY
711 val -= XMALLOC_OVERRUN_CHECK_SIZE;
712 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
713 #else
714 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
715 val -= XMALLOC_OVERRUN_CHECK_SIZE;
716 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
717 #endif
718 }
719
720 free (val);
721 --check_depth;
722 }
723
724 #undef malloc
725 #undef realloc
726 #undef free
727 #define malloc overrun_check_malloc
728 #define realloc overrun_check_realloc
729 #define free overrun_check_free
730 #endif
731
732 #ifdef SYNC_INPUT
733 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
734 there's no need to block input around malloc. */
735 #define MALLOC_BLOCK_INPUT ((void)0)
736 #define MALLOC_UNBLOCK_INPUT ((void)0)
737 #else
738 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
739 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
740 #endif
741
742 /* Like malloc but check for no memory and block interrupt input.. */
743
744 POINTER_TYPE *
745 xmalloc (size)
746 size_t size;
747 {
748 register POINTER_TYPE *val;
749
750 MALLOC_BLOCK_INPUT;
751 val = (POINTER_TYPE *) malloc (size);
752 MALLOC_UNBLOCK_INPUT;
753
754 if (!val && size)
755 memory_full ();
756 return val;
757 }
758
759
760 /* Like realloc but check for no memory and block interrupt input.. */
761
762 POINTER_TYPE *
763 xrealloc (block, size)
764 POINTER_TYPE *block;
765 size_t size;
766 {
767 register POINTER_TYPE *val;
768
769 MALLOC_BLOCK_INPUT;
770 /* We must call malloc explicitly when BLOCK is 0, since some
771 reallocs don't do this. */
772 if (! block)
773 val = (POINTER_TYPE *) malloc (size);
774 else
775 val = (POINTER_TYPE *) realloc (block, size);
776 MALLOC_UNBLOCK_INPUT;
777
778 if (!val && size) memory_full ();
779 return val;
780 }
781
782
783 /* Like free but block interrupt input. */
784
785 void
786 xfree (block)
787 POINTER_TYPE *block;
788 {
789 if (!block)
790 return;
791 MALLOC_BLOCK_INPUT;
792 free (block);
793 MALLOC_UNBLOCK_INPUT;
794 /* We don't call refill_memory_reserve here
795 because that duplicates doing so in emacs_blocked_free
796 and the criterion should go there. */
797 }
798
799
800 /* Like strdup, but uses xmalloc. */
801
802 char *
803 xstrdup (s)
804 const char *s;
805 {
806 size_t len = strlen (s) + 1;
807 char *p = (char *) xmalloc (len);
808 bcopy (s, p, len);
809 return p;
810 }
811
812
813 /* Unwind for SAFE_ALLOCA */
814
815 Lisp_Object
816 safe_alloca_unwind (arg)
817 Lisp_Object arg;
818 {
819 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
820
821 p->dogc = 0;
822 xfree (p->pointer);
823 p->pointer = 0;
824 free_misc (arg);
825 return Qnil;
826 }
827
828
829 /* Like malloc but used for allocating Lisp data. NBYTES is the
830 number of bytes to allocate, TYPE describes the intended use of the
831 allcated memory block (for strings, for conses, ...). */
832
833 #ifndef USE_LSB_TAG
834 static void *lisp_malloc_loser;
835 #endif
836
837 static POINTER_TYPE *
838 lisp_malloc (nbytes, type)
839 size_t nbytes;
840 enum mem_type type;
841 {
842 register void *val;
843
844 MALLOC_BLOCK_INPUT;
845
846 #ifdef GC_MALLOC_CHECK
847 allocated_mem_type = type;
848 #endif
849
850 val = (void *) malloc (nbytes);
851
852 #ifndef USE_LSB_TAG
853 /* If the memory just allocated cannot be addressed thru a Lisp
854 object's pointer, and it needs to be,
855 that's equivalent to running out of memory. */
856 if (val && type != MEM_TYPE_NON_LISP)
857 {
858 Lisp_Object tem;
859 XSETCONS (tem, (char *) val + nbytes - 1);
860 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
861 {
862 lisp_malloc_loser = val;
863 free (val);
864 val = 0;
865 }
866 }
867 #endif
868
869 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
870 if (val && type != MEM_TYPE_NON_LISP)
871 mem_insert (val, (char *) val + nbytes, type);
872 #endif
873
874 MALLOC_UNBLOCK_INPUT;
875 if (!val && nbytes)
876 memory_full ();
877 return val;
878 }
879
880 /* Free BLOCK. This must be called to free memory allocated with a
881 call to lisp_malloc. */
882
883 static void
884 lisp_free (block)
885 POINTER_TYPE *block;
886 {
887 MALLOC_BLOCK_INPUT;
888 free (block);
889 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
890 mem_delete (mem_find (block));
891 #endif
892 MALLOC_UNBLOCK_INPUT;
893 }
894
895 /* Allocation of aligned blocks of memory to store Lisp data. */
896 /* The entry point is lisp_align_malloc which returns blocks of at most */
897 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
898
899 /* Use posix_memalloc if the system has it and we're using the system's
900 malloc (because our gmalloc.c routines don't have posix_memalign although
901 its memalloc could be used). */
902 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
903 #define USE_POSIX_MEMALIGN 1
904 #endif
905
906 /* BLOCK_ALIGN has to be a power of 2. */
907 #define BLOCK_ALIGN (1 << 10)
908
909 /* Padding to leave at the end of a malloc'd block. This is to give
910 malloc a chance to minimize the amount of memory wasted to alignment.
911 It should be tuned to the particular malloc library used.
912 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
913 posix_memalign on the other hand would ideally prefer a value of 4
914 because otherwise, there's 1020 bytes wasted between each ablocks.
915 In Emacs, testing shows that those 1020 can most of the time be
916 efficiently used by malloc to place other objects, so a value of 0 can
917 still preferable unless you have a lot of aligned blocks and virtually
918 nothing else. */
919 #define BLOCK_PADDING 0
920 #define BLOCK_BYTES \
921 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
922
923 /* Internal data structures and constants. */
924
925 #define ABLOCKS_SIZE 16
926
927 /* An aligned block of memory. */
928 struct ablock
929 {
930 union
931 {
932 char payload[BLOCK_BYTES];
933 struct ablock *next_free;
934 } x;
935 /* `abase' is the aligned base of the ablocks. */
936 /* It is overloaded to hold the virtual `busy' field that counts
937 the number of used ablock in the parent ablocks.
938 The first ablock has the `busy' field, the others have the `abase'
939 field. To tell the difference, we assume that pointers will have
940 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
941 is used to tell whether the real base of the parent ablocks is `abase'
942 (if not, the word before the first ablock holds a pointer to the
943 real base). */
944 struct ablocks *abase;
945 /* The padding of all but the last ablock is unused. The padding of
946 the last ablock in an ablocks is not allocated. */
947 #if BLOCK_PADDING
948 char padding[BLOCK_PADDING];
949 #endif
950 };
951
952 /* A bunch of consecutive aligned blocks. */
953 struct ablocks
954 {
955 struct ablock blocks[ABLOCKS_SIZE];
956 };
957
958 /* Size of the block requested from malloc or memalign. */
959 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
960
961 #define ABLOCK_ABASE(block) \
962 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
963 ? (struct ablocks *)(block) \
964 : (block)->abase)
965
966 /* Virtual `busy' field. */
967 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
968
969 /* Pointer to the (not necessarily aligned) malloc block. */
970 #ifdef USE_POSIX_MEMALIGN
971 #define ABLOCKS_BASE(abase) (abase)
972 #else
973 #define ABLOCKS_BASE(abase) \
974 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
975 #endif
976
977 /* The list of free ablock. */
978 static struct ablock *free_ablock;
979
980 /* Allocate an aligned block of nbytes.
981 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
982 smaller or equal to BLOCK_BYTES. */
983 static POINTER_TYPE *
984 lisp_align_malloc (nbytes, type)
985 size_t nbytes;
986 enum mem_type type;
987 {
988 void *base, *val;
989 struct ablocks *abase;
990
991 eassert (nbytes <= BLOCK_BYTES);
992
993 MALLOC_BLOCK_INPUT;
994
995 #ifdef GC_MALLOC_CHECK
996 allocated_mem_type = type;
997 #endif
998
999 if (!free_ablock)
1000 {
1001 int i;
1002 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
1003
1004 #ifdef DOUG_LEA_MALLOC
1005 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1006 because mapped region contents are not preserved in
1007 a dumped Emacs. */
1008 mallopt (M_MMAP_MAX, 0);
1009 #endif
1010
1011 #ifdef USE_POSIX_MEMALIGN
1012 {
1013 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1014 if (err)
1015 base = NULL;
1016 abase = base;
1017 }
1018 #else
1019 base = malloc (ABLOCKS_BYTES);
1020 abase = ALIGN (base, BLOCK_ALIGN);
1021 #endif
1022
1023 if (base == 0)
1024 {
1025 MALLOC_UNBLOCK_INPUT;
1026 memory_full ();
1027 }
1028
1029 aligned = (base == abase);
1030 if (!aligned)
1031 ((void**)abase)[-1] = base;
1032
1033 #ifdef DOUG_LEA_MALLOC
1034 /* Back to a reasonable maximum of mmap'ed areas. */
1035 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1036 #endif
1037
1038 #ifndef USE_LSB_TAG
1039 /* If the memory just allocated cannot be addressed thru a Lisp
1040 object's pointer, and it needs to be, that's equivalent to
1041 running out of memory. */
1042 if (type != MEM_TYPE_NON_LISP)
1043 {
1044 Lisp_Object tem;
1045 char *end = (char *) base + ABLOCKS_BYTES - 1;
1046 XSETCONS (tem, end);
1047 if ((char *) XCONS (tem) != end)
1048 {
1049 lisp_malloc_loser = base;
1050 free (base);
1051 MALLOC_UNBLOCK_INPUT;
1052 memory_full ();
1053 }
1054 }
1055 #endif
1056
1057 /* Initialize the blocks and put them on the free list.
1058 Is `base' was not properly aligned, we can't use the last block. */
1059 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1060 {
1061 abase->blocks[i].abase = abase;
1062 abase->blocks[i].x.next_free = free_ablock;
1063 free_ablock = &abase->blocks[i];
1064 }
1065 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1066
1067 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1068 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1069 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1070 eassert (ABLOCKS_BASE (abase) == base);
1071 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1072 }
1073
1074 abase = ABLOCK_ABASE (free_ablock);
1075 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1076 val = free_ablock;
1077 free_ablock = free_ablock->x.next_free;
1078
1079 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1080 if (val && type != MEM_TYPE_NON_LISP)
1081 mem_insert (val, (char *) val + nbytes, type);
1082 #endif
1083
1084 MALLOC_UNBLOCK_INPUT;
1085 if (!val && nbytes)
1086 memory_full ();
1087
1088 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1089 return val;
1090 }
1091
1092 static void
1093 lisp_align_free (block)
1094 POINTER_TYPE *block;
1095 {
1096 struct ablock *ablock = block;
1097 struct ablocks *abase = ABLOCK_ABASE (ablock);
1098
1099 MALLOC_BLOCK_INPUT;
1100 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1101 mem_delete (mem_find (block));
1102 #endif
1103 /* Put on free list. */
1104 ablock->x.next_free = free_ablock;
1105 free_ablock = ablock;
1106 /* Update busy count. */
1107 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1108
1109 if (2 > (long) ABLOCKS_BUSY (abase))
1110 { /* All the blocks are free. */
1111 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1112 struct ablock **tem = &free_ablock;
1113 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1114
1115 while (*tem)
1116 {
1117 if (*tem >= (struct ablock *) abase && *tem < atop)
1118 {
1119 i++;
1120 *tem = (*tem)->x.next_free;
1121 }
1122 else
1123 tem = &(*tem)->x.next_free;
1124 }
1125 eassert ((aligned & 1) == aligned);
1126 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1127 #ifdef USE_POSIX_MEMALIGN
1128 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1129 #endif
1130 free (ABLOCKS_BASE (abase));
1131 }
1132 MALLOC_UNBLOCK_INPUT;
1133 }
1134
1135 /* Return a new buffer structure allocated from the heap with
1136 a call to lisp_malloc. */
1137
1138 struct buffer *
1139 allocate_buffer ()
1140 {
1141 struct buffer *b
1142 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1143 MEM_TYPE_BUFFER);
1144 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1145 XSETPVECTYPE (b, PVEC_BUFFER);
1146 return b;
1147 }
1148
1149 \f
1150 #ifndef SYSTEM_MALLOC
1151
1152 /* Arranging to disable input signals while we're in malloc.
1153
1154 This only works with GNU malloc. To help out systems which can't
1155 use GNU malloc, all the calls to malloc, realloc, and free
1156 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1157 pair; unfortunately, we have no idea what C library functions
1158 might call malloc, so we can't really protect them unless you're
1159 using GNU malloc. Fortunately, most of the major operating systems
1160 can use GNU malloc. */
1161
1162 #ifndef SYNC_INPUT
1163 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1164 there's no need to block input around malloc. */
1165
1166 #ifndef DOUG_LEA_MALLOC
1167 extern void * (*__malloc_hook) (size_t, const void *);
1168 extern void * (*__realloc_hook) (void *, size_t, const void *);
1169 extern void (*__free_hook) (void *, const void *);
1170 /* Else declared in malloc.h, perhaps with an extra arg. */
1171 #endif /* DOUG_LEA_MALLOC */
1172 static void * (*old_malloc_hook) (size_t, const void *);
1173 static void * (*old_realloc_hook) (void *, size_t, const void*);
1174 static void (*old_free_hook) (void*, const void*);
1175
1176 /* This function is used as the hook for free to call. */
1177
1178 static void
1179 emacs_blocked_free (ptr, ptr2)
1180 void *ptr;
1181 const void *ptr2;
1182 {
1183 BLOCK_INPUT_ALLOC;
1184
1185 #ifdef GC_MALLOC_CHECK
1186 if (ptr)
1187 {
1188 struct mem_node *m;
1189
1190 m = mem_find (ptr);
1191 if (m == MEM_NIL || m->start != ptr)
1192 {
1193 fprintf (stderr,
1194 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1195 abort ();
1196 }
1197 else
1198 {
1199 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1200 mem_delete (m);
1201 }
1202 }
1203 #endif /* GC_MALLOC_CHECK */
1204
1205 __free_hook = old_free_hook;
1206 free (ptr);
1207
1208 /* If we released our reserve (due to running out of memory),
1209 and we have a fair amount free once again,
1210 try to set aside another reserve in case we run out once more. */
1211 if (! NILP (Vmemory_full)
1212 /* Verify there is enough space that even with the malloc
1213 hysteresis this call won't run out again.
1214 The code here is correct as long as SPARE_MEMORY
1215 is substantially larger than the block size malloc uses. */
1216 && (bytes_used_when_full
1217 > ((bytes_used_when_reconsidered = BYTES_USED)
1218 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1219 refill_memory_reserve ();
1220
1221 __free_hook = emacs_blocked_free;
1222 UNBLOCK_INPUT_ALLOC;
1223 }
1224
1225
1226 /* This function is the malloc hook that Emacs uses. */
1227
1228 static void *
1229 emacs_blocked_malloc (size, ptr)
1230 size_t size;
1231 const void *ptr;
1232 {
1233 void *value;
1234
1235 BLOCK_INPUT_ALLOC;
1236 __malloc_hook = old_malloc_hook;
1237 #ifdef DOUG_LEA_MALLOC
1238 /* Segfaults on my system. --lorentey */
1239 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1240 #else
1241 __malloc_extra_blocks = malloc_hysteresis;
1242 #endif
1243
1244 value = (void *) malloc (size);
1245
1246 #ifdef GC_MALLOC_CHECK
1247 {
1248 struct mem_node *m = mem_find (value);
1249 if (m != MEM_NIL)
1250 {
1251 fprintf (stderr, "Malloc returned %p which is already in use\n",
1252 value);
1253 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1254 m->start, m->end, (char *) m->end - (char *) m->start,
1255 m->type);
1256 abort ();
1257 }
1258
1259 if (!dont_register_blocks)
1260 {
1261 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1262 allocated_mem_type = MEM_TYPE_NON_LISP;
1263 }
1264 }
1265 #endif /* GC_MALLOC_CHECK */
1266
1267 __malloc_hook = emacs_blocked_malloc;
1268 UNBLOCK_INPUT_ALLOC;
1269
1270 /* fprintf (stderr, "%p malloc\n", value); */
1271 return value;
1272 }
1273
1274
1275 /* This function is the realloc hook that Emacs uses. */
1276
1277 static void *
1278 emacs_blocked_realloc (ptr, size, ptr2)
1279 void *ptr;
1280 size_t size;
1281 const void *ptr2;
1282 {
1283 void *value;
1284
1285 BLOCK_INPUT_ALLOC;
1286 __realloc_hook = old_realloc_hook;
1287
1288 #ifdef GC_MALLOC_CHECK
1289 if (ptr)
1290 {
1291 struct mem_node *m = mem_find (ptr);
1292 if (m == MEM_NIL || m->start != ptr)
1293 {
1294 fprintf (stderr,
1295 "Realloc of %p which wasn't allocated with malloc\n",
1296 ptr);
1297 abort ();
1298 }
1299
1300 mem_delete (m);
1301 }
1302
1303 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1304
1305 /* Prevent malloc from registering blocks. */
1306 dont_register_blocks = 1;
1307 #endif /* GC_MALLOC_CHECK */
1308
1309 value = (void *) realloc (ptr, size);
1310
1311 #ifdef GC_MALLOC_CHECK
1312 dont_register_blocks = 0;
1313
1314 {
1315 struct mem_node *m = mem_find (value);
1316 if (m != MEM_NIL)
1317 {
1318 fprintf (stderr, "Realloc returns memory that is already in use\n");
1319 abort ();
1320 }
1321
1322 /* Can't handle zero size regions in the red-black tree. */
1323 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1324 }
1325
1326 /* fprintf (stderr, "%p <- realloc\n", value); */
1327 #endif /* GC_MALLOC_CHECK */
1328
1329 __realloc_hook = emacs_blocked_realloc;
1330 UNBLOCK_INPUT_ALLOC;
1331
1332 return value;
1333 }
1334
1335
1336 #ifdef HAVE_GTK_AND_PTHREAD
1337 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1338 normal malloc. Some thread implementations need this as they call
1339 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1340 calls malloc because it is the first call, and we have an endless loop. */
1341
1342 void
1343 reset_malloc_hooks ()
1344 {
1345 __free_hook = old_free_hook;
1346 __malloc_hook = old_malloc_hook;
1347 __realloc_hook = old_realloc_hook;
1348 }
1349 #endif /* HAVE_GTK_AND_PTHREAD */
1350
1351
1352 /* Called from main to set up malloc to use our hooks. */
1353
1354 void
1355 uninterrupt_malloc ()
1356 {
1357 #ifdef HAVE_GTK_AND_PTHREAD
1358 #ifdef DOUG_LEA_MALLOC
1359 pthread_mutexattr_t attr;
1360
1361 /* GLIBC has a faster way to do this, but lets keep it portable.
1362 This is according to the Single UNIX Specification. */
1363 pthread_mutexattr_init (&attr);
1364 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1365 pthread_mutex_init (&alloc_mutex, &attr);
1366 #else /* !DOUG_LEA_MALLOC */
1367 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1368 and the bundled gmalloc.c doesn't require it. */
1369 pthread_mutex_init (&alloc_mutex, NULL);
1370 #endif /* !DOUG_LEA_MALLOC */
1371 #endif /* HAVE_GTK_AND_PTHREAD */
1372
1373 if (__free_hook != emacs_blocked_free)
1374 old_free_hook = __free_hook;
1375 __free_hook = emacs_blocked_free;
1376
1377 if (__malloc_hook != emacs_blocked_malloc)
1378 old_malloc_hook = __malloc_hook;
1379 __malloc_hook = emacs_blocked_malloc;
1380
1381 if (__realloc_hook != emacs_blocked_realloc)
1382 old_realloc_hook = __realloc_hook;
1383 __realloc_hook = emacs_blocked_realloc;
1384 }
1385
1386 #endif /* not SYNC_INPUT */
1387 #endif /* not SYSTEM_MALLOC */
1388
1389
1390 \f
1391 /***********************************************************************
1392 Interval Allocation
1393 ***********************************************************************/
1394
1395 /* Number of intervals allocated in an interval_block structure.
1396 The 1020 is 1024 minus malloc overhead. */
1397
1398 #define INTERVAL_BLOCK_SIZE \
1399 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1400
1401 /* Intervals are allocated in chunks in form of an interval_block
1402 structure. */
1403
1404 struct interval_block
1405 {
1406 /* Place `intervals' first, to preserve alignment. */
1407 struct interval intervals[INTERVAL_BLOCK_SIZE];
1408 struct interval_block *next;
1409 };
1410
1411 /* Current interval block. Its `next' pointer points to older
1412 blocks. */
1413
1414 static struct interval_block *interval_block;
1415
1416 /* Index in interval_block above of the next unused interval
1417 structure. */
1418
1419 static int interval_block_index;
1420
1421 /* Number of free and live intervals. */
1422
1423 static int total_free_intervals, total_intervals;
1424
1425 /* List of free intervals. */
1426
1427 INTERVAL interval_free_list;
1428
1429 /* Total number of interval blocks now in use. */
1430
1431 static int n_interval_blocks;
1432
1433
1434 /* Initialize interval allocation. */
1435
1436 static void
1437 init_intervals ()
1438 {
1439 interval_block = NULL;
1440 interval_block_index = INTERVAL_BLOCK_SIZE;
1441 interval_free_list = 0;
1442 n_interval_blocks = 0;
1443 }
1444
1445
1446 /* Return a new interval. */
1447
1448 INTERVAL
1449 make_interval ()
1450 {
1451 INTERVAL val;
1452
1453 /* eassert (!handling_signal); */
1454
1455 MALLOC_BLOCK_INPUT;
1456
1457 if (interval_free_list)
1458 {
1459 val = interval_free_list;
1460 interval_free_list = INTERVAL_PARENT (interval_free_list);
1461 }
1462 else
1463 {
1464 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1465 {
1466 register struct interval_block *newi;
1467
1468 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1469 MEM_TYPE_NON_LISP);
1470
1471 newi->next = interval_block;
1472 interval_block = newi;
1473 interval_block_index = 0;
1474 n_interval_blocks++;
1475 }
1476 val = &interval_block->intervals[interval_block_index++];
1477 }
1478
1479 MALLOC_UNBLOCK_INPUT;
1480
1481 consing_since_gc += sizeof (struct interval);
1482 intervals_consed++;
1483 RESET_INTERVAL (val);
1484 val->gcmarkbit = 0;
1485 return val;
1486 }
1487
1488
1489 /* Mark Lisp objects in interval I. */
1490
1491 static void
1492 mark_interval (i, dummy)
1493 register INTERVAL i;
1494 Lisp_Object dummy;
1495 {
1496 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1497 i->gcmarkbit = 1;
1498 mark_object (i->plist);
1499 }
1500
1501
1502 /* Mark the interval tree rooted in TREE. Don't call this directly;
1503 use the macro MARK_INTERVAL_TREE instead. */
1504
1505 static void
1506 mark_interval_tree (tree)
1507 register INTERVAL tree;
1508 {
1509 /* No need to test if this tree has been marked already; this
1510 function is always called through the MARK_INTERVAL_TREE macro,
1511 which takes care of that. */
1512
1513 traverse_intervals_noorder (tree, mark_interval, Qnil);
1514 }
1515
1516
1517 /* Mark the interval tree rooted in I. */
1518
1519 #define MARK_INTERVAL_TREE(i) \
1520 do { \
1521 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1522 mark_interval_tree (i); \
1523 } while (0)
1524
1525
1526 #define UNMARK_BALANCE_INTERVALS(i) \
1527 do { \
1528 if (! NULL_INTERVAL_P (i)) \
1529 (i) = balance_intervals (i); \
1530 } while (0)
1531
1532 \f
1533 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1534 can't create number objects in macros. */
1535 #ifndef make_number
1536 Lisp_Object
1537 make_number (n)
1538 EMACS_INT n;
1539 {
1540 Lisp_Object obj;
1541 obj.s.val = n;
1542 obj.s.type = Lisp_Int;
1543 return obj;
1544 }
1545 #endif
1546 \f
1547 /***********************************************************************
1548 String Allocation
1549 ***********************************************************************/
1550
1551 /* Lisp_Strings are allocated in string_block structures. When a new
1552 string_block is allocated, all the Lisp_Strings it contains are
1553 added to a free-list string_free_list. When a new Lisp_String is
1554 needed, it is taken from that list. During the sweep phase of GC,
1555 string_blocks that are entirely free are freed, except two which
1556 we keep.
1557
1558 String data is allocated from sblock structures. Strings larger
1559 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1560 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1561
1562 Sblocks consist internally of sdata structures, one for each
1563 Lisp_String. The sdata structure points to the Lisp_String it
1564 belongs to. The Lisp_String points back to the `u.data' member of
1565 its sdata structure.
1566
1567 When a Lisp_String is freed during GC, it is put back on
1568 string_free_list, and its `data' member and its sdata's `string'
1569 pointer is set to null. The size of the string is recorded in the
1570 `u.nbytes' member of the sdata. So, sdata structures that are no
1571 longer used, can be easily recognized, and it's easy to compact the
1572 sblocks of small strings which we do in compact_small_strings. */
1573
1574 /* Size in bytes of an sblock structure used for small strings. This
1575 is 8192 minus malloc overhead. */
1576
1577 #define SBLOCK_SIZE 8188
1578
1579 /* Strings larger than this are considered large strings. String data
1580 for large strings is allocated from individual sblocks. */
1581
1582 #define LARGE_STRING_BYTES 1024
1583
1584 /* Structure describing string memory sub-allocated from an sblock.
1585 This is where the contents of Lisp strings are stored. */
1586
1587 struct sdata
1588 {
1589 /* Back-pointer to the string this sdata belongs to. If null, this
1590 structure is free, and the NBYTES member of the union below
1591 contains the string's byte size (the same value that STRING_BYTES
1592 would return if STRING were non-null). If non-null, STRING_BYTES
1593 (STRING) is the size of the data, and DATA contains the string's
1594 contents. */
1595 struct Lisp_String *string;
1596
1597 #ifdef GC_CHECK_STRING_BYTES
1598
1599 EMACS_INT nbytes;
1600 unsigned char data[1];
1601
1602 #define SDATA_NBYTES(S) (S)->nbytes
1603 #define SDATA_DATA(S) (S)->data
1604
1605 #else /* not GC_CHECK_STRING_BYTES */
1606
1607 union
1608 {
1609 /* When STRING in non-null. */
1610 unsigned char data[1];
1611
1612 /* When STRING is null. */
1613 EMACS_INT nbytes;
1614 } u;
1615
1616
1617 #define SDATA_NBYTES(S) (S)->u.nbytes
1618 #define SDATA_DATA(S) (S)->u.data
1619
1620 #endif /* not GC_CHECK_STRING_BYTES */
1621 };
1622
1623
1624 /* Structure describing a block of memory which is sub-allocated to
1625 obtain string data memory for strings. Blocks for small strings
1626 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1627 as large as needed. */
1628
1629 struct sblock
1630 {
1631 /* Next in list. */
1632 struct sblock *next;
1633
1634 /* Pointer to the next free sdata block. This points past the end
1635 of the sblock if there isn't any space left in this block. */
1636 struct sdata *next_free;
1637
1638 /* Start of data. */
1639 struct sdata first_data;
1640 };
1641
1642 /* Number of Lisp strings in a string_block structure. The 1020 is
1643 1024 minus malloc overhead. */
1644
1645 #define STRING_BLOCK_SIZE \
1646 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1647
1648 /* Structure describing a block from which Lisp_String structures
1649 are allocated. */
1650
1651 struct string_block
1652 {
1653 /* Place `strings' first, to preserve alignment. */
1654 struct Lisp_String strings[STRING_BLOCK_SIZE];
1655 struct string_block *next;
1656 };
1657
1658 /* Head and tail of the list of sblock structures holding Lisp string
1659 data. We always allocate from current_sblock. The NEXT pointers
1660 in the sblock structures go from oldest_sblock to current_sblock. */
1661
1662 static struct sblock *oldest_sblock, *current_sblock;
1663
1664 /* List of sblocks for large strings. */
1665
1666 static struct sblock *large_sblocks;
1667
1668 /* List of string_block structures, and how many there are. */
1669
1670 static struct string_block *string_blocks;
1671 static int n_string_blocks;
1672
1673 /* Free-list of Lisp_Strings. */
1674
1675 static struct Lisp_String *string_free_list;
1676
1677 /* Number of live and free Lisp_Strings. */
1678
1679 static int total_strings, total_free_strings;
1680
1681 /* Number of bytes used by live strings. */
1682
1683 static int total_string_size;
1684
1685 /* Given a pointer to a Lisp_String S which is on the free-list
1686 string_free_list, return a pointer to its successor in the
1687 free-list. */
1688
1689 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1690
1691 /* Return a pointer to the sdata structure belonging to Lisp string S.
1692 S must be live, i.e. S->data must not be null. S->data is actually
1693 a pointer to the `u.data' member of its sdata structure; the
1694 structure starts at a constant offset in front of that. */
1695
1696 #ifdef GC_CHECK_STRING_BYTES
1697
1698 #define SDATA_OF_STRING(S) \
1699 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1700 - sizeof (EMACS_INT)))
1701
1702 #else /* not GC_CHECK_STRING_BYTES */
1703
1704 #define SDATA_OF_STRING(S) \
1705 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1706
1707 #endif /* not GC_CHECK_STRING_BYTES */
1708
1709
1710 #ifdef GC_CHECK_STRING_OVERRUN
1711
1712 /* We check for overrun in string data blocks by appending a small
1713 "cookie" after each allocated string data block, and check for the
1714 presence of this cookie during GC. */
1715
1716 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1717 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1718 { 0xde, 0xad, 0xbe, 0xef };
1719
1720 #else
1721 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1722 #endif
1723
1724 /* Value is the size of an sdata structure large enough to hold NBYTES
1725 bytes of string data. The value returned includes a terminating
1726 NUL byte, the size of the sdata structure, and padding. */
1727
1728 #ifdef GC_CHECK_STRING_BYTES
1729
1730 #define SDATA_SIZE(NBYTES) \
1731 ((sizeof (struct Lisp_String *) \
1732 + (NBYTES) + 1 \
1733 + sizeof (EMACS_INT) \
1734 + sizeof (EMACS_INT) - 1) \
1735 & ~(sizeof (EMACS_INT) - 1))
1736
1737 #else /* not GC_CHECK_STRING_BYTES */
1738
1739 #define SDATA_SIZE(NBYTES) \
1740 ((sizeof (struct Lisp_String *) \
1741 + (NBYTES) + 1 \
1742 + sizeof (EMACS_INT) - 1) \
1743 & ~(sizeof (EMACS_INT) - 1))
1744
1745 #endif /* not GC_CHECK_STRING_BYTES */
1746
1747 /* Extra bytes to allocate for each string. */
1748
1749 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1750
1751 /* Initialize string allocation. Called from init_alloc_once. */
1752
1753 static void
1754 init_strings ()
1755 {
1756 total_strings = total_free_strings = total_string_size = 0;
1757 oldest_sblock = current_sblock = large_sblocks = NULL;
1758 string_blocks = NULL;
1759 n_string_blocks = 0;
1760 string_free_list = NULL;
1761 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1762 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1763 }
1764
1765
1766 #ifdef GC_CHECK_STRING_BYTES
1767
1768 static int check_string_bytes_count;
1769
1770 static void check_string_bytes (int);
1771 static void check_sblock (struct sblock *);
1772
1773 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1774
1775
1776 /* Like GC_STRING_BYTES, but with debugging check. */
1777
1778 int
1779 string_bytes (s)
1780 struct Lisp_String *s;
1781 {
1782 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1783 if (!PURE_POINTER_P (s)
1784 && s->data
1785 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1786 abort ();
1787 return nbytes;
1788 }
1789
1790 /* Check validity of Lisp strings' string_bytes member in B. */
1791
1792 static void
1793 check_sblock (b)
1794 struct sblock *b;
1795 {
1796 struct sdata *from, *end, *from_end;
1797
1798 end = b->next_free;
1799
1800 for (from = &b->first_data; from < end; from = from_end)
1801 {
1802 /* Compute the next FROM here because copying below may
1803 overwrite data we need to compute it. */
1804 int nbytes;
1805
1806 /* Check that the string size recorded in the string is the
1807 same as the one recorded in the sdata structure. */
1808 if (from->string)
1809 CHECK_STRING_BYTES (from->string);
1810
1811 if (from->string)
1812 nbytes = GC_STRING_BYTES (from->string);
1813 else
1814 nbytes = SDATA_NBYTES (from);
1815
1816 nbytes = SDATA_SIZE (nbytes);
1817 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1818 }
1819 }
1820
1821
1822 /* Check validity of Lisp strings' string_bytes member. ALL_P
1823 non-zero means check all strings, otherwise check only most
1824 recently allocated strings. Used for hunting a bug. */
1825
1826 static void
1827 check_string_bytes (all_p)
1828 int all_p;
1829 {
1830 if (all_p)
1831 {
1832 struct sblock *b;
1833
1834 for (b = large_sblocks; b; b = b->next)
1835 {
1836 struct Lisp_String *s = b->first_data.string;
1837 if (s)
1838 CHECK_STRING_BYTES (s);
1839 }
1840
1841 for (b = oldest_sblock; b; b = b->next)
1842 check_sblock (b);
1843 }
1844 else
1845 check_sblock (current_sblock);
1846 }
1847
1848 #endif /* GC_CHECK_STRING_BYTES */
1849
1850 #ifdef GC_CHECK_STRING_FREE_LIST
1851
1852 /* Walk through the string free list looking for bogus next pointers.
1853 This may catch buffer overrun from a previous string. */
1854
1855 static void
1856 check_string_free_list ()
1857 {
1858 struct Lisp_String *s;
1859
1860 /* Pop a Lisp_String off the free-list. */
1861 s = string_free_list;
1862 while (s != NULL)
1863 {
1864 if ((unsigned)s < 1024)
1865 abort();
1866 s = NEXT_FREE_LISP_STRING (s);
1867 }
1868 }
1869 #else
1870 #define check_string_free_list()
1871 #endif
1872
1873 /* Return a new Lisp_String. */
1874
1875 static struct Lisp_String *
1876 allocate_string ()
1877 {
1878 struct Lisp_String *s;
1879
1880 /* eassert (!handling_signal); */
1881
1882 MALLOC_BLOCK_INPUT;
1883
1884 /* If the free-list is empty, allocate a new string_block, and
1885 add all the Lisp_Strings in it to the free-list. */
1886 if (string_free_list == NULL)
1887 {
1888 struct string_block *b;
1889 int i;
1890
1891 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1892 bzero (b, sizeof *b);
1893 b->next = string_blocks;
1894 string_blocks = b;
1895 ++n_string_blocks;
1896
1897 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1898 {
1899 s = b->strings + i;
1900 NEXT_FREE_LISP_STRING (s) = string_free_list;
1901 string_free_list = s;
1902 }
1903
1904 total_free_strings += STRING_BLOCK_SIZE;
1905 }
1906
1907 check_string_free_list ();
1908
1909 /* Pop a Lisp_String off the free-list. */
1910 s = string_free_list;
1911 string_free_list = NEXT_FREE_LISP_STRING (s);
1912
1913 MALLOC_UNBLOCK_INPUT;
1914
1915 /* Probably not strictly necessary, but play it safe. */
1916 bzero (s, sizeof *s);
1917
1918 --total_free_strings;
1919 ++total_strings;
1920 ++strings_consed;
1921 consing_since_gc += sizeof *s;
1922
1923 #ifdef GC_CHECK_STRING_BYTES
1924 if (!noninteractive)
1925 {
1926 if (++check_string_bytes_count == 200)
1927 {
1928 check_string_bytes_count = 0;
1929 check_string_bytes (1);
1930 }
1931 else
1932 check_string_bytes (0);
1933 }
1934 #endif /* GC_CHECK_STRING_BYTES */
1935
1936 return s;
1937 }
1938
1939
1940 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1941 plus a NUL byte at the end. Allocate an sdata structure for S, and
1942 set S->data to its `u.data' member. Store a NUL byte at the end of
1943 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1944 S->data if it was initially non-null. */
1945
1946 void
1947 allocate_string_data (s, nchars, nbytes)
1948 struct Lisp_String *s;
1949 int nchars, nbytes;
1950 {
1951 struct sdata *data, *old_data;
1952 struct sblock *b;
1953 int needed, old_nbytes;
1954
1955 /* Determine the number of bytes needed to store NBYTES bytes
1956 of string data. */
1957 needed = SDATA_SIZE (nbytes);
1958 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1959 old_nbytes = GC_STRING_BYTES (s);
1960
1961 MALLOC_BLOCK_INPUT;
1962
1963 if (nbytes > LARGE_STRING_BYTES)
1964 {
1965 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1966
1967 #ifdef DOUG_LEA_MALLOC
1968 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1969 because mapped region contents are not preserved in
1970 a dumped Emacs.
1971
1972 In case you think of allowing it in a dumped Emacs at the
1973 cost of not being able to re-dump, there's another reason:
1974 mmap'ed data typically have an address towards the top of the
1975 address space, which won't fit into an EMACS_INT (at least on
1976 32-bit systems with the current tagging scheme). --fx */
1977 mallopt (M_MMAP_MAX, 0);
1978 #endif
1979
1980 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1981
1982 #ifdef DOUG_LEA_MALLOC
1983 /* Back to a reasonable maximum of mmap'ed areas. */
1984 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1985 #endif
1986
1987 b->next_free = &b->first_data;
1988 b->first_data.string = NULL;
1989 b->next = large_sblocks;
1990 large_sblocks = b;
1991 }
1992 else if (current_sblock == NULL
1993 || (((char *) current_sblock + SBLOCK_SIZE
1994 - (char *) current_sblock->next_free)
1995 < (needed + GC_STRING_EXTRA)))
1996 {
1997 /* Not enough room in the current sblock. */
1998 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1999 b->next_free = &b->first_data;
2000 b->first_data.string = NULL;
2001 b->next = NULL;
2002
2003 if (current_sblock)
2004 current_sblock->next = b;
2005 else
2006 oldest_sblock = b;
2007 current_sblock = b;
2008 }
2009 else
2010 b = current_sblock;
2011
2012 data = b->next_free;
2013 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2014
2015 MALLOC_UNBLOCK_INPUT;
2016
2017 data->string = s;
2018 s->data = SDATA_DATA (data);
2019 #ifdef GC_CHECK_STRING_BYTES
2020 SDATA_NBYTES (data) = nbytes;
2021 #endif
2022 s->size = nchars;
2023 s->size_byte = nbytes;
2024 s->data[nbytes] = '\0';
2025 #ifdef GC_CHECK_STRING_OVERRUN
2026 bcopy (string_overrun_cookie, (char *) data + needed,
2027 GC_STRING_OVERRUN_COOKIE_SIZE);
2028 #endif
2029
2030 /* If S had already data assigned, mark that as free by setting its
2031 string back-pointer to null, and recording the size of the data
2032 in it. */
2033 if (old_data)
2034 {
2035 SDATA_NBYTES (old_data) = old_nbytes;
2036 old_data->string = NULL;
2037 }
2038
2039 consing_since_gc += needed;
2040 }
2041
2042
2043 /* Sweep and compact strings. */
2044
2045 static void
2046 sweep_strings ()
2047 {
2048 struct string_block *b, *next;
2049 struct string_block *live_blocks = NULL;
2050
2051 string_free_list = NULL;
2052 total_strings = total_free_strings = 0;
2053 total_string_size = 0;
2054
2055 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2056 for (b = string_blocks; b; b = next)
2057 {
2058 int i, nfree = 0;
2059 struct Lisp_String *free_list_before = string_free_list;
2060
2061 next = b->next;
2062
2063 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2064 {
2065 struct Lisp_String *s = b->strings + i;
2066
2067 if (s->data)
2068 {
2069 /* String was not on free-list before. */
2070 if (STRING_MARKED_P (s))
2071 {
2072 /* String is live; unmark it and its intervals. */
2073 UNMARK_STRING (s);
2074
2075 if (!NULL_INTERVAL_P (s->intervals))
2076 UNMARK_BALANCE_INTERVALS (s->intervals);
2077
2078 ++total_strings;
2079 total_string_size += STRING_BYTES (s);
2080 }
2081 else
2082 {
2083 /* String is dead. Put it on the free-list. */
2084 struct sdata *data = SDATA_OF_STRING (s);
2085
2086 /* Save the size of S in its sdata so that we know
2087 how large that is. Reset the sdata's string
2088 back-pointer so that we know it's free. */
2089 #ifdef GC_CHECK_STRING_BYTES
2090 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2091 abort ();
2092 #else
2093 data->u.nbytes = GC_STRING_BYTES (s);
2094 #endif
2095 data->string = NULL;
2096
2097 /* Reset the strings's `data' member so that we
2098 know it's free. */
2099 s->data = NULL;
2100
2101 /* Put the string on the free-list. */
2102 NEXT_FREE_LISP_STRING (s) = string_free_list;
2103 string_free_list = s;
2104 ++nfree;
2105 }
2106 }
2107 else
2108 {
2109 /* S was on the free-list before. Put it there again. */
2110 NEXT_FREE_LISP_STRING (s) = string_free_list;
2111 string_free_list = s;
2112 ++nfree;
2113 }
2114 }
2115
2116 /* Free blocks that contain free Lisp_Strings only, except
2117 the first two of them. */
2118 if (nfree == STRING_BLOCK_SIZE
2119 && total_free_strings > STRING_BLOCK_SIZE)
2120 {
2121 lisp_free (b);
2122 --n_string_blocks;
2123 string_free_list = free_list_before;
2124 }
2125 else
2126 {
2127 total_free_strings += nfree;
2128 b->next = live_blocks;
2129 live_blocks = b;
2130 }
2131 }
2132
2133 check_string_free_list ();
2134
2135 string_blocks = live_blocks;
2136 free_large_strings ();
2137 compact_small_strings ();
2138
2139 check_string_free_list ();
2140 }
2141
2142
2143 /* Free dead large strings. */
2144
2145 static void
2146 free_large_strings ()
2147 {
2148 struct sblock *b, *next;
2149 struct sblock *live_blocks = NULL;
2150
2151 for (b = large_sblocks; b; b = next)
2152 {
2153 next = b->next;
2154
2155 if (b->first_data.string == NULL)
2156 lisp_free (b);
2157 else
2158 {
2159 b->next = live_blocks;
2160 live_blocks = b;
2161 }
2162 }
2163
2164 large_sblocks = live_blocks;
2165 }
2166
2167
2168 /* Compact data of small strings. Free sblocks that don't contain
2169 data of live strings after compaction. */
2170
2171 static void
2172 compact_small_strings ()
2173 {
2174 struct sblock *b, *tb, *next;
2175 struct sdata *from, *to, *end, *tb_end;
2176 struct sdata *to_end, *from_end;
2177
2178 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2179 to, and TB_END is the end of TB. */
2180 tb = oldest_sblock;
2181 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2182 to = &tb->first_data;
2183
2184 /* Step through the blocks from the oldest to the youngest. We
2185 expect that old blocks will stabilize over time, so that less
2186 copying will happen this way. */
2187 for (b = oldest_sblock; b; b = b->next)
2188 {
2189 end = b->next_free;
2190 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2191
2192 for (from = &b->first_data; from < end; from = from_end)
2193 {
2194 /* Compute the next FROM here because copying below may
2195 overwrite data we need to compute it. */
2196 int nbytes;
2197
2198 #ifdef GC_CHECK_STRING_BYTES
2199 /* Check that the string size recorded in the string is the
2200 same as the one recorded in the sdata structure. */
2201 if (from->string
2202 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2203 abort ();
2204 #endif /* GC_CHECK_STRING_BYTES */
2205
2206 if (from->string)
2207 nbytes = GC_STRING_BYTES (from->string);
2208 else
2209 nbytes = SDATA_NBYTES (from);
2210
2211 if (nbytes > LARGE_STRING_BYTES)
2212 abort ();
2213
2214 nbytes = SDATA_SIZE (nbytes);
2215 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2216
2217 #ifdef GC_CHECK_STRING_OVERRUN
2218 if (bcmp (string_overrun_cookie,
2219 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2220 GC_STRING_OVERRUN_COOKIE_SIZE))
2221 abort ();
2222 #endif
2223
2224 /* FROM->string non-null means it's alive. Copy its data. */
2225 if (from->string)
2226 {
2227 /* If TB is full, proceed with the next sblock. */
2228 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2229 if (to_end > tb_end)
2230 {
2231 tb->next_free = to;
2232 tb = tb->next;
2233 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2234 to = &tb->first_data;
2235 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2236 }
2237
2238 /* Copy, and update the string's `data' pointer. */
2239 if (from != to)
2240 {
2241 xassert (tb != b || to <= from);
2242 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2243 to->string->data = SDATA_DATA (to);
2244 }
2245
2246 /* Advance past the sdata we copied to. */
2247 to = to_end;
2248 }
2249 }
2250 }
2251
2252 /* The rest of the sblocks following TB don't contain live data, so
2253 we can free them. */
2254 for (b = tb->next; b; b = next)
2255 {
2256 next = b->next;
2257 lisp_free (b);
2258 }
2259
2260 tb->next_free = to;
2261 tb->next = NULL;
2262 current_sblock = tb;
2263 }
2264
2265
2266 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2267 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2268 LENGTH must be an integer.
2269 INIT must be an integer that represents a character. */)
2270 (length, init)
2271 Lisp_Object length, init;
2272 {
2273 register Lisp_Object val;
2274 register unsigned char *p, *end;
2275 int c, nbytes;
2276
2277 CHECK_NATNUM (length);
2278 CHECK_NUMBER (init);
2279
2280 c = XINT (init);
2281 if (ASCII_CHAR_P (c))
2282 {
2283 nbytes = XINT (length);
2284 val = make_uninit_string (nbytes);
2285 p = SDATA (val);
2286 end = p + SCHARS (val);
2287 while (p != end)
2288 *p++ = c;
2289 }
2290 else
2291 {
2292 unsigned char str[MAX_MULTIBYTE_LENGTH];
2293 int len = CHAR_STRING (c, str);
2294
2295 nbytes = len * XINT (length);
2296 val = make_uninit_multibyte_string (XINT (length), nbytes);
2297 p = SDATA (val);
2298 end = p + nbytes;
2299 while (p != end)
2300 {
2301 bcopy (str, p, len);
2302 p += len;
2303 }
2304 }
2305
2306 *p = 0;
2307 return val;
2308 }
2309
2310
2311 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2312 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2313 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2314 (length, init)
2315 Lisp_Object length, init;
2316 {
2317 register Lisp_Object val;
2318 struct Lisp_Bool_Vector *p;
2319 int real_init, i;
2320 int length_in_chars, length_in_elts, bits_per_value;
2321
2322 CHECK_NATNUM (length);
2323
2324 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2325
2326 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2327 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2328 / BOOL_VECTOR_BITS_PER_CHAR);
2329
2330 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2331 slot `size' of the struct Lisp_Bool_Vector. */
2332 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2333
2334 /* Get rid of any bits that would cause confusion. */
2335 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2336 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2337 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2338
2339 p = XBOOL_VECTOR (val);
2340 p->size = XFASTINT (length);
2341
2342 real_init = (NILP (init) ? 0 : -1);
2343 for (i = 0; i < length_in_chars ; i++)
2344 p->data[i] = real_init;
2345
2346 /* Clear the extraneous bits in the last byte. */
2347 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2348 p->data[length_in_chars - 1]
2349 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2350
2351 return val;
2352 }
2353
2354
2355 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2356 of characters from the contents. This string may be unibyte or
2357 multibyte, depending on the contents. */
2358
2359 Lisp_Object
2360 make_string (contents, nbytes)
2361 const char *contents;
2362 int nbytes;
2363 {
2364 register Lisp_Object val;
2365 int nchars, multibyte_nbytes;
2366
2367 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2368 if (nbytes == nchars || nbytes != multibyte_nbytes)
2369 /* CONTENTS contains no multibyte sequences or contains an invalid
2370 multibyte sequence. We must make unibyte string. */
2371 val = make_unibyte_string (contents, nbytes);
2372 else
2373 val = make_multibyte_string (contents, nchars, nbytes);
2374 return val;
2375 }
2376
2377
2378 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2379
2380 Lisp_Object
2381 make_unibyte_string (contents, length)
2382 const char *contents;
2383 int length;
2384 {
2385 register Lisp_Object val;
2386 val = make_uninit_string (length);
2387 bcopy (contents, SDATA (val), length);
2388 STRING_SET_UNIBYTE (val);
2389 return val;
2390 }
2391
2392
2393 /* Make a multibyte string from NCHARS characters occupying NBYTES
2394 bytes at CONTENTS. */
2395
2396 Lisp_Object
2397 make_multibyte_string (contents, nchars, nbytes)
2398 const char *contents;
2399 int nchars, nbytes;
2400 {
2401 register Lisp_Object val;
2402 val = make_uninit_multibyte_string (nchars, nbytes);
2403 bcopy (contents, SDATA (val), nbytes);
2404 return val;
2405 }
2406
2407
2408 /* Make a string from NCHARS characters occupying NBYTES bytes at
2409 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2410
2411 Lisp_Object
2412 make_string_from_bytes (contents, nchars, nbytes)
2413 const char *contents;
2414 int nchars, nbytes;
2415 {
2416 register Lisp_Object val;
2417 val = make_uninit_multibyte_string (nchars, nbytes);
2418 bcopy (contents, SDATA (val), nbytes);
2419 if (SBYTES (val) == SCHARS (val))
2420 STRING_SET_UNIBYTE (val);
2421 return val;
2422 }
2423
2424
2425 /* Make a string from NCHARS characters occupying NBYTES bytes at
2426 CONTENTS. The argument MULTIBYTE controls whether to label the
2427 string as multibyte. If NCHARS is negative, it counts the number of
2428 characters by itself. */
2429
2430 Lisp_Object
2431 make_specified_string (contents, nchars, nbytes, multibyte)
2432 const char *contents;
2433 int nchars, nbytes;
2434 int multibyte;
2435 {
2436 register Lisp_Object val;
2437
2438 if (nchars < 0)
2439 {
2440 if (multibyte)
2441 nchars = multibyte_chars_in_text (contents, nbytes);
2442 else
2443 nchars = nbytes;
2444 }
2445 val = make_uninit_multibyte_string (nchars, nbytes);
2446 bcopy (contents, SDATA (val), nbytes);
2447 if (!multibyte)
2448 STRING_SET_UNIBYTE (val);
2449 return val;
2450 }
2451
2452
2453 /* Make a string from the data at STR, treating it as multibyte if the
2454 data warrants. */
2455
2456 Lisp_Object
2457 build_string (str)
2458 const char *str;
2459 {
2460 return make_string (str, strlen (str));
2461 }
2462
2463
2464 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2465 occupying LENGTH bytes. */
2466
2467 Lisp_Object
2468 make_uninit_string (length)
2469 int length;
2470 {
2471 Lisp_Object val;
2472
2473 if (!length)
2474 return empty_unibyte_string;
2475 val = make_uninit_multibyte_string (length, length);
2476 STRING_SET_UNIBYTE (val);
2477 return val;
2478 }
2479
2480
2481 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2482 which occupy NBYTES bytes. */
2483
2484 Lisp_Object
2485 make_uninit_multibyte_string (nchars, nbytes)
2486 int nchars, nbytes;
2487 {
2488 Lisp_Object string;
2489 struct Lisp_String *s;
2490
2491 if (nchars < 0)
2492 abort ();
2493 if (!nbytes)
2494 return empty_multibyte_string;
2495
2496 s = allocate_string ();
2497 allocate_string_data (s, nchars, nbytes);
2498 XSETSTRING (string, s);
2499 string_chars_consed += nbytes;
2500 return string;
2501 }
2502
2503
2504 \f
2505 /***********************************************************************
2506 Float Allocation
2507 ***********************************************************************/
2508
2509 /* We store float cells inside of float_blocks, allocating a new
2510 float_block with malloc whenever necessary. Float cells reclaimed
2511 by GC are put on a free list to be reallocated before allocating
2512 any new float cells from the latest float_block. */
2513
2514 #define FLOAT_BLOCK_SIZE \
2515 (((BLOCK_BYTES - sizeof (struct float_block *) \
2516 /* The compiler might add padding at the end. */ \
2517 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2518 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2519
2520 #define GETMARKBIT(block,n) \
2521 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2522 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2523 & 1)
2524
2525 #define SETMARKBIT(block,n) \
2526 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2527 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2528
2529 #define UNSETMARKBIT(block,n) \
2530 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2531 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2532
2533 #define FLOAT_BLOCK(fptr) \
2534 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2535
2536 #define FLOAT_INDEX(fptr) \
2537 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2538
2539 struct float_block
2540 {
2541 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2542 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2543 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2544 struct float_block *next;
2545 };
2546
2547 #define FLOAT_MARKED_P(fptr) \
2548 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2549
2550 #define FLOAT_MARK(fptr) \
2551 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2552
2553 #define FLOAT_UNMARK(fptr) \
2554 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2555
2556 /* Current float_block. */
2557
2558 struct float_block *float_block;
2559
2560 /* Index of first unused Lisp_Float in the current float_block. */
2561
2562 int float_block_index;
2563
2564 /* Total number of float blocks now in use. */
2565
2566 int n_float_blocks;
2567
2568 /* Free-list of Lisp_Floats. */
2569
2570 struct Lisp_Float *float_free_list;
2571
2572
2573 /* Initialize float allocation. */
2574
2575 static void
2576 init_float ()
2577 {
2578 float_block = NULL;
2579 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2580 float_free_list = 0;
2581 n_float_blocks = 0;
2582 }
2583
2584
2585 /* Explicitly free a float cell by putting it on the free-list. */
2586
2587 static void
2588 free_float (ptr)
2589 struct Lisp_Float *ptr;
2590 {
2591 ptr->u.chain = float_free_list;
2592 float_free_list = ptr;
2593 }
2594
2595
2596 /* Return a new float object with value FLOAT_VALUE. */
2597
2598 Lisp_Object
2599 make_float (float_value)
2600 double float_value;
2601 {
2602 register Lisp_Object val;
2603
2604 /* eassert (!handling_signal); */
2605
2606 MALLOC_BLOCK_INPUT;
2607
2608 if (float_free_list)
2609 {
2610 /* We use the data field for chaining the free list
2611 so that we won't use the same field that has the mark bit. */
2612 XSETFLOAT (val, float_free_list);
2613 float_free_list = float_free_list->u.chain;
2614 }
2615 else
2616 {
2617 if (float_block_index == FLOAT_BLOCK_SIZE)
2618 {
2619 register struct float_block *new;
2620
2621 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2622 MEM_TYPE_FLOAT);
2623 new->next = float_block;
2624 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2625 float_block = new;
2626 float_block_index = 0;
2627 n_float_blocks++;
2628 }
2629 XSETFLOAT (val, &float_block->floats[float_block_index]);
2630 float_block_index++;
2631 }
2632
2633 MALLOC_UNBLOCK_INPUT;
2634
2635 XFLOAT_INIT (val, float_value);
2636 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2637 consing_since_gc += sizeof (struct Lisp_Float);
2638 floats_consed++;
2639 return val;
2640 }
2641
2642
2643 \f
2644 /***********************************************************************
2645 Cons Allocation
2646 ***********************************************************************/
2647
2648 /* We store cons cells inside of cons_blocks, allocating a new
2649 cons_block with malloc whenever necessary. Cons cells reclaimed by
2650 GC are put on a free list to be reallocated before allocating
2651 any new cons cells from the latest cons_block. */
2652
2653 #define CONS_BLOCK_SIZE \
2654 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2655 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2656
2657 #define CONS_BLOCK(fptr) \
2658 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2659
2660 #define CONS_INDEX(fptr) \
2661 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2662
2663 struct cons_block
2664 {
2665 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2666 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2667 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2668 struct cons_block *next;
2669 };
2670
2671 #define CONS_MARKED_P(fptr) \
2672 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2673
2674 #define CONS_MARK(fptr) \
2675 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2676
2677 #define CONS_UNMARK(fptr) \
2678 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2679
2680 /* Current cons_block. */
2681
2682 struct cons_block *cons_block;
2683
2684 /* Index of first unused Lisp_Cons in the current block. */
2685
2686 int cons_block_index;
2687
2688 /* Free-list of Lisp_Cons structures. */
2689
2690 struct Lisp_Cons *cons_free_list;
2691
2692 /* Total number of cons blocks now in use. */
2693
2694 static int n_cons_blocks;
2695
2696
2697 /* Initialize cons allocation. */
2698
2699 static void
2700 init_cons ()
2701 {
2702 cons_block = NULL;
2703 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2704 cons_free_list = 0;
2705 n_cons_blocks = 0;
2706 }
2707
2708
2709 /* Explicitly free a cons cell by putting it on the free-list. */
2710
2711 void
2712 free_cons (ptr)
2713 struct Lisp_Cons *ptr;
2714 {
2715 ptr->u.chain = cons_free_list;
2716 #if GC_MARK_STACK
2717 ptr->car = Vdead;
2718 #endif
2719 cons_free_list = ptr;
2720 }
2721
2722 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2723 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2724 (car, cdr)
2725 Lisp_Object car, cdr;
2726 {
2727 register Lisp_Object val;
2728
2729 /* eassert (!handling_signal); */
2730
2731 MALLOC_BLOCK_INPUT;
2732
2733 if (cons_free_list)
2734 {
2735 /* We use the cdr for chaining the free list
2736 so that we won't use the same field that has the mark bit. */
2737 XSETCONS (val, cons_free_list);
2738 cons_free_list = cons_free_list->u.chain;
2739 }
2740 else
2741 {
2742 if (cons_block_index == CONS_BLOCK_SIZE)
2743 {
2744 register struct cons_block *new;
2745 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2746 MEM_TYPE_CONS);
2747 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2748 new->next = cons_block;
2749 cons_block = new;
2750 cons_block_index = 0;
2751 n_cons_blocks++;
2752 }
2753 XSETCONS (val, &cons_block->conses[cons_block_index]);
2754 cons_block_index++;
2755 }
2756
2757 MALLOC_UNBLOCK_INPUT;
2758
2759 XSETCAR (val, car);
2760 XSETCDR (val, cdr);
2761 eassert (!CONS_MARKED_P (XCONS (val)));
2762 consing_since_gc += sizeof (struct Lisp_Cons);
2763 cons_cells_consed++;
2764 return val;
2765 }
2766
2767 /* Get an error now if there's any junk in the cons free list. */
2768 void
2769 check_cons_list ()
2770 {
2771 #ifdef GC_CHECK_CONS_LIST
2772 struct Lisp_Cons *tail = cons_free_list;
2773
2774 while (tail)
2775 tail = tail->u.chain;
2776 #endif
2777 }
2778
2779 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2780
2781 Lisp_Object
2782 list1 (arg1)
2783 Lisp_Object arg1;
2784 {
2785 return Fcons (arg1, Qnil);
2786 }
2787
2788 Lisp_Object
2789 list2 (arg1, arg2)
2790 Lisp_Object arg1, arg2;
2791 {
2792 return Fcons (arg1, Fcons (arg2, Qnil));
2793 }
2794
2795
2796 Lisp_Object
2797 list3 (arg1, arg2, arg3)
2798 Lisp_Object arg1, arg2, arg3;
2799 {
2800 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2801 }
2802
2803
2804 Lisp_Object
2805 list4 (arg1, arg2, arg3, arg4)
2806 Lisp_Object arg1, arg2, arg3, arg4;
2807 {
2808 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2809 }
2810
2811
2812 Lisp_Object
2813 list5 (arg1, arg2, arg3, arg4, arg5)
2814 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2815 {
2816 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2817 Fcons (arg5, Qnil)))));
2818 }
2819
2820
2821 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2822 doc: /* Return a newly created list with specified arguments as elements.
2823 Any number of arguments, even zero arguments, are allowed.
2824 usage: (list &rest OBJECTS) */)
2825 (nargs, args)
2826 int nargs;
2827 register Lisp_Object *args;
2828 {
2829 register Lisp_Object val;
2830 val = Qnil;
2831
2832 while (nargs > 0)
2833 {
2834 nargs--;
2835 val = Fcons (args[nargs], val);
2836 }
2837 return val;
2838 }
2839
2840
2841 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2842 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2843 (length, init)
2844 register Lisp_Object length, init;
2845 {
2846 register Lisp_Object val;
2847 register int size;
2848
2849 CHECK_NATNUM (length);
2850 size = XFASTINT (length);
2851
2852 val = Qnil;
2853 while (size > 0)
2854 {
2855 val = Fcons (init, val);
2856 --size;
2857
2858 if (size > 0)
2859 {
2860 val = Fcons (init, val);
2861 --size;
2862
2863 if (size > 0)
2864 {
2865 val = Fcons (init, val);
2866 --size;
2867
2868 if (size > 0)
2869 {
2870 val = Fcons (init, val);
2871 --size;
2872
2873 if (size > 0)
2874 {
2875 val = Fcons (init, val);
2876 --size;
2877 }
2878 }
2879 }
2880 }
2881
2882 QUIT;
2883 }
2884
2885 return val;
2886 }
2887
2888
2889 \f
2890 /***********************************************************************
2891 Vector Allocation
2892 ***********************************************************************/
2893
2894 /* Singly-linked list of all vectors. */
2895
2896 static struct Lisp_Vector *all_vectors;
2897
2898 /* Total number of vector-like objects now in use. */
2899
2900 static int n_vectors;
2901
2902
2903 /* Value is a pointer to a newly allocated Lisp_Vector structure
2904 with room for LEN Lisp_Objects. */
2905
2906 static struct Lisp_Vector *
2907 allocate_vectorlike (len)
2908 EMACS_INT len;
2909 {
2910 struct Lisp_Vector *p;
2911 size_t nbytes;
2912
2913 MALLOC_BLOCK_INPUT;
2914
2915 #ifdef DOUG_LEA_MALLOC
2916 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2917 because mapped region contents are not preserved in
2918 a dumped Emacs. */
2919 mallopt (M_MMAP_MAX, 0);
2920 #endif
2921
2922 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2923 /* eassert (!handling_signal); */
2924
2925 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2926 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2927
2928 #ifdef DOUG_LEA_MALLOC
2929 /* Back to a reasonable maximum of mmap'ed areas. */
2930 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2931 #endif
2932
2933 consing_since_gc += nbytes;
2934 vector_cells_consed += len;
2935
2936 p->next = all_vectors;
2937 all_vectors = p;
2938
2939 MALLOC_UNBLOCK_INPUT;
2940
2941 ++n_vectors;
2942 return p;
2943 }
2944
2945
2946 /* Allocate a vector with NSLOTS slots. */
2947
2948 struct Lisp_Vector *
2949 allocate_vector (nslots)
2950 EMACS_INT nslots;
2951 {
2952 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2953 v->size = nslots;
2954 return v;
2955 }
2956
2957
2958 /* Allocate other vector-like structures. */
2959
2960 struct Lisp_Vector *
2961 allocate_pseudovector (memlen, lisplen, tag)
2962 int memlen, lisplen;
2963 EMACS_INT tag;
2964 {
2965 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2966 EMACS_INT i;
2967
2968 /* Only the first lisplen slots will be traced normally by the GC. */
2969 v->size = lisplen;
2970 for (i = 0; i < lisplen; ++i)
2971 v->contents[i] = Qnil;
2972
2973 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2974 return v;
2975 }
2976
2977 struct Lisp_Hash_Table *
2978 allocate_hash_table (void)
2979 {
2980 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2981 }
2982
2983
2984 struct window *
2985 allocate_window ()
2986 {
2987 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2988 }
2989
2990
2991 struct terminal *
2992 allocate_terminal ()
2993 {
2994 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2995 next_terminal, PVEC_TERMINAL);
2996 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2997 bzero (&(t->next_terminal),
2998 ((char*)(t+1)) - ((char*)&(t->next_terminal)));
2999
3000 return t;
3001 }
3002
3003 struct frame *
3004 allocate_frame ()
3005 {
3006 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3007 face_cache, PVEC_FRAME);
3008 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3009 bzero (&(f->face_cache),
3010 ((char*)(f+1)) - ((char*)&(f->face_cache)));
3011 return f;
3012 }
3013
3014
3015 struct Lisp_Process *
3016 allocate_process ()
3017 {
3018 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3019 }
3020
3021
3022 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3023 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3024 See also the function `vector'. */)
3025 (length, init)
3026 register Lisp_Object length, init;
3027 {
3028 Lisp_Object vector;
3029 register EMACS_INT sizei;
3030 register int index;
3031 register struct Lisp_Vector *p;
3032
3033 CHECK_NATNUM (length);
3034 sizei = XFASTINT (length);
3035
3036 p = allocate_vector (sizei);
3037 for (index = 0; index < sizei; index++)
3038 p->contents[index] = init;
3039
3040 XSETVECTOR (vector, p);
3041 return vector;
3042 }
3043
3044
3045 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3046 doc: /* Return a newly created vector with specified arguments as elements.
3047 Any number of arguments, even zero arguments, are allowed.
3048 usage: (vector &rest OBJECTS) */)
3049 (nargs, args)
3050 register int nargs;
3051 Lisp_Object *args;
3052 {
3053 register Lisp_Object len, val;
3054 register int index;
3055 register struct Lisp_Vector *p;
3056
3057 XSETFASTINT (len, nargs);
3058 val = Fmake_vector (len, Qnil);
3059 p = XVECTOR (val);
3060 for (index = 0; index < nargs; index++)
3061 p->contents[index] = args[index];
3062 return val;
3063 }
3064
3065
3066 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3067 doc: /* Create a byte-code object with specified arguments as elements.
3068 The arguments should be the arglist, bytecode-string, constant vector,
3069 stack size, (optional) doc string, and (optional) interactive spec.
3070 The first four arguments are required; at most six have any
3071 significance.
3072 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3073 (nargs, args)
3074 register int nargs;
3075 Lisp_Object *args;
3076 {
3077 register Lisp_Object len, val;
3078 register int index;
3079 register struct Lisp_Vector *p;
3080
3081 XSETFASTINT (len, nargs);
3082 if (!NILP (Vpurify_flag))
3083 val = make_pure_vector ((EMACS_INT) nargs);
3084 else
3085 val = Fmake_vector (len, Qnil);
3086
3087 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3088 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3089 earlier because they produced a raw 8-bit string for byte-code
3090 and now such a byte-code string is loaded as multibyte while
3091 raw 8-bit characters converted to multibyte form. Thus, now we
3092 must convert them back to the original unibyte form. */
3093 args[1] = Fstring_as_unibyte (args[1]);
3094
3095 p = XVECTOR (val);
3096 for (index = 0; index < nargs; index++)
3097 {
3098 if (!NILP (Vpurify_flag))
3099 args[index] = Fpurecopy (args[index]);
3100 p->contents[index] = args[index];
3101 }
3102 XSETPVECTYPE (p, PVEC_COMPILED);
3103 XSETCOMPILED (val, p);
3104 return val;
3105 }
3106
3107
3108 \f
3109 /***********************************************************************
3110 Symbol Allocation
3111 ***********************************************************************/
3112
3113 /* Each symbol_block is just under 1020 bytes long, since malloc
3114 really allocates in units of powers of two and uses 4 bytes for its
3115 own overhead. */
3116
3117 #define SYMBOL_BLOCK_SIZE \
3118 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3119
3120 struct symbol_block
3121 {
3122 /* Place `symbols' first, to preserve alignment. */
3123 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3124 struct symbol_block *next;
3125 };
3126
3127 /* Current symbol block and index of first unused Lisp_Symbol
3128 structure in it. */
3129
3130 static struct symbol_block *symbol_block;
3131 static int symbol_block_index;
3132
3133 /* List of free symbols. */
3134
3135 static struct Lisp_Symbol *symbol_free_list;
3136
3137 /* Total number of symbol blocks now in use. */
3138
3139 static int n_symbol_blocks;
3140
3141
3142 /* Initialize symbol allocation. */
3143
3144 static void
3145 init_symbol ()
3146 {
3147 symbol_block = NULL;
3148 symbol_block_index = SYMBOL_BLOCK_SIZE;
3149 symbol_free_list = 0;
3150 n_symbol_blocks = 0;
3151 }
3152
3153
3154 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3155 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3156 Its value and function definition are void, and its property list is nil. */)
3157 (name)
3158 Lisp_Object name;
3159 {
3160 register Lisp_Object val;
3161 register struct Lisp_Symbol *p;
3162
3163 CHECK_STRING (name);
3164
3165 /* eassert (!handling_signal); */
3166
3167 MALLOC_BLOCK_INPUT;
3168
3169 if (symbol_free_list)
3170 {
3171 XSETSYMBOL (val, symbol_free_list);
3172 symbol_free_list = symbol_free_list->next;
3173 }
3174 else
3175 {
3176 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3177 {
3178 struct symbol_block *new;
3179 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3180 MEM_TYPE_SYMBOL);
3181 new->next = symbol_block;
3182 symbol_block = new;
3183 symbol_block_index = 0;
3184 n_symbol_blocks++;
3185 }
3186 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3187 symbol_block_index++;
3188 }
3189
3190 MALLOC_UNBLOCK_INPUT;
3191
3192 p = XSYMBOL (val);
3193 p->xname = name;
3194 p->plist = Qnil;
3195 p->redirect = SYMBOL_PLAINVAL;
3196 SET_SYMBOL_VAL (p, Qunbound);
3197 p->function = Qunbound;
3198 p->next = NULL;
3199 p->gcmarkbit = 0;
3200 p->interned = SYMBOL_UNINTERNED;
3201 p->constant = 0;
3202 consing_since_gc += sizeof (struct Lisp_Symbol);
3203 symbols_consed++;
3204 return val;
3205 }
3206
3207
3208 \f
3209 /***********************************************************************
3210 Marker (Misc) Allocation
3211 ***********************************************************************/
3212
3213 /* Allocation of markers and other objects that share that structure.
3214 Works like allocation of conses. */
3215
3216 #define MARKER_BLOCK_SIZE \
3217 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3218
3219 struct marker_block
3220 {
3221 /* Place `markers' first, to preserve alignment. */
3222 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3223 struct marker_block *next;
3224 };
3225
3226 static struct marker_block *marker_block;
3227 static int marker_block_index;
3228
3229 static union Lisp_Misc *marker_free_list;
3230
3231 /* Total number of marker blocks now in use. */
3232
3233 static int n_marker_blocks;
3234
3235 static void
3236 init_marker ()
3237 {
3238 marker_block = NULL;
3239 marker_block_index = MARKER_BLOCK_SIZE;
3240 marker_free_list = 0;
3241 n_marker_blocks = 0;
3242 }
3243
3244 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3245
3246 Lisp_Object
3247 allocate_misc ()
3248 {
3249 Lisp_Object val;
3250
3251 /* eassert (!handling_signal); */
3252
3253 MALLOC_BLOCK_INPUT;
3254
3255 if (marker_free_list)
3256 {
3257 XSETMISC (val, marker_free_list);
3258 marker_free_list = marker_free_list->u_free.chain;
3259 }
3260 else
3261 {
3262 if (marker_block_index == MARKER_BLOCK_SIZE)
3263 {
3264 struct marker_block *new;
3265 new = (struct marker_block *) lisp_malloc (sizeof *new,
3266 MEM_TYPE_MISC);
3267 new->next = marker_block;
3268 marker_block = new;
3269 marker_block_index = 0;
3270 n_marker_blocks++;
3271 total_free_markers += MARKER_BLOCK_SIZE;
3272 }
3273 XSETMISC (val, &marker_block->markers[marker_block_index]);
3274 marker_block_index++;
3275 }
3276
3277 MALLOC_UNBLOCK_INPUT;
3278
3279 --total_free_markers;
3280 consing_since_gc += sizeof (union Lisp_Misc);
3281 misc_objects_consed++;
3282 XMISCANY (val)->gcmarkbit = 0;
3283 return val;
3284 }
3285
3286 /* Free a Lisp_Misc object */
3287
3288 void
3289 free_misc (misc)
3290 Lisp_Object misc;
3291 {
3292 XMISCTYPE (misc) = Lisp_Misc_Free;
3293 XMISC (misc)->u_free.chain = marker_free_list;
3294 marker_free_list = XMISC (misc);
3295
3296 total_free_markers++;
3297 }
3298
3299 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3300 INTEGER. This is used to package C values to call record_unwind_protect.
3301 The unwind function can get the C values back using XSAVE_VALUE. */
3302
3303 Lisp_Object
3304 make_save_value (pointer, integer)
3305 void *pointer;
3306 int integer;
3307 {
3308 register Lisp_Object val;
3309 register struct Lisp_Save_Value *p;
3310
3311 val = allocate_misc ();
3312 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3313 p = XSAVE_VALUE (val);
3314 p->pointer = pointer;
3315 p->integer = integer;
3316 p->dogc = 0;
3317 return val;
3318 }
3319
3320 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3321 doc: /* Return a newly allocated marker which does not point at any place. */)
3322 ()
3323 {
3324 register Lisp_Object val;
3325 register struct Lisp_Marker *p;
3326
3327 val = allocate_misc ();
3328 XMISCTYPE (val) = Lisp_Misc_Marker;
3329 p = XMARKER (val);
3330 p->buffer = 0;
3331 p->bytepos = 0;
3332 p->charpos = 0;
3333 p->next = NULL;
3334 p->insertion_type = 0;
3335 return val;
3336 }
3337
3338 /* Put MARKER back on the free list after using it temporarily. */
3339
3340 void
3341 free_marker (marker)
3342 Lisp_Object marker;
3343 {
3344 unchain_marker (XMARKER (marker));
3345 free_misc (marker);
3346 }
3347
3348 \f
3349 /* Return a newly created vector or string with specified arguments as
3350 elements. If all the arguments are characters that can fit
3351 in a string of events, make a string; otherwise, make a vector.
3352
3353 Any number of arguments, even zero arguments, are allowed. */
3354
3355 Lisp_Object
3356 make_event_array (nargs, args)
3357 register int nargs;
3358 Lisp_Object *args;
3359 {
3360 int i;
3361
3362 for (i = 0; i < nargs; i++)
3363 /* The things that fit in a string
3364 are characters that are in 0...127,
3365 after discarding the meta bit and all the bits above it. */
3366 if (!INTEGERP (args[i])
3367 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3368 return Fvector (nargs, args);
3369
3370 /* Since the loop exited, we know that all the things in it are
3371 characters, so we can make a string. */
3372 {
3373 Lisp_Object result;
3374
3375 result = Fmake_string (make_number (nargs), make_number (0));
3376 for (i = 0; i < nargs; i++)
3377 {
3378 SSET (result, i, XINT (args[i]));
3379 /* Move the meta bit to the right place for a string char. */
3380 if (XINT (args[i]) & CHAR_META)
3381 SSET (result, i, SREF (result, i) | 0x80);
3382 }
3383
3384 return result;
3385 }
3386 }
3387
3388
3389 \f
3390 /************************************************************************
3391 Memory Full Handling
3392 ************************************************************************/
3393
3394
3395 /* Called if malloc returns zero. */
3396
3397 void
3398 memory_full ()
3399 {
3400 int i;
3401
3402 Vmemory_full = Qt;
3403
3404 memory_full_cons_threshold = sizeof (struct cons_block);
3405
3406 /* The first time we get here, free the spare memory. */
3407 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3408 if (spare_memory[i])
3409 {
3410 if (i == 0)
3411 free (spare_memory[i]);
3412 else if (i >= 1 && i <= 4)
3413 lisp_align_free (spare_memory[i]);
3414 else
3415 lisp_free (spare_memory[i]);
3416 spare_memory[i] = 0;
3417 }
3418
3419 /* Record the space now used. When it decreases substantially,
3420 we can refill the memory reserve. */
3421 #ifndef SYSTEM_MALLOC
3422 bytes_used_when_full = BYTES_USED;
3423 #endif
3424
3425 /* This used to call error, but if we've run out of memory, we could
3426 get infinite recursion trying to build the string. */
3427 xsignal (Qnil, Vmemory_signal_data);
3428 }
3429
3430 /* If we released our reserve (due to running out of memory),
3431 and we have a fair amount free once again,
3432 try to set aside another reserve in case we run out once more.
3433
3434 This is called when a relocatable block is freed in ralloc.c,
3435 and also directly from this file, in case we're not using ralloc.c. */
3436
3437 void
3438 refill_memory_reserve ()
3439 {
3440 #ifndef SYSTEM_MALLOC
3441 if (spare_memory[0] == 0)
3442 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3443 if (spare_memory[1] == 0)
3444 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3445 MEM_TYPE_CONS);
3446 if (spare_memory[2] == 0)
3447 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3448 MEM_TYPE_CONS);
3449 if (spare_memory[3] == 0)
3450 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3451 MEM_TYPE_CONS);
3452 if (spare_memory[4] == 0)
3453 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3454 MEM_TYPE_CONS);
3455 if (spare_memory[5] == 0)
3456 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3457 MEM_TYPE_STRING);
3458 if (spare_memory[6] == 0)
3459 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3460 MEM_TYPE_STRING);
3461 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3462 Vmemory_full = Qnil;
3463 #endif
3464 }
3465 \f
3466 /************************************************************************
3467 C Stack Marking
3468 ************************************************************************/
3469
3470 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3471
3472 /* Conservative C stack marking requires a method to identify possibly
3473 live Lisp objects given a pointer value. We do this by keeping
3474 track of blocks of Lisp data that are allocated in a red-black tree
3475 (see also the comment of mem_node which is the type of nodes in
3476 that tree). Function lisp_malloc adds information for an allocated
3477 block to the red-black tree with calls to mem_insert, and function
3478 lisp_free removes it with mem_delete. Functions live_string_p etc
3479 call mem_find to lookup information about a given pointer in the
3480 tree, and use that to determine if the pointer points to a Lisp
3481 object or not. */
3482
3483 /* Initialize this part of alloc.c. */
3484
3485 static void
3486 mem_init ()
3487 {
3488 mem_z.left = mem_z.right = MEM_NIL;
3489 mem_z.parent = NULL;
3490 mem_z.color = MEM_BLACK;
3491 mem_z.start = mem_z.end = NULL;
3492 mem_root = MEM_NIL;
3493 }
3494
3495
3496 /* Value is a pointer to the mem_node containing START. Value is
3497 MEM_NIL if there is no node in the tree containing START. */
3498
3499 static INLINE struct mem_node *
3500 mem_find (start)
3501 void *start;
3502 {
3503 struct mem_node *p;
3504
3505 if (start < min_heap_address || start > max_heap_address)
3506 return MEM_NIL;
3507
3508 /* Make the search always successful to speed up the loop below. */
3509 mem_z.start = start;
3510 mem_z.end = (char *) start + 1;
3511
3512 p = mem_root;
3513 while (start < p->start || start >= p->end)
3514 p = start < p->start ? p->left : p->right;
3515 return p;
3516 }
3517
3518
3519 /* Insert a new node into the tree for a block of memory with start
3520 address START, end address END, and type TYPE. Value is a
3521 pointer to the node that was inserted. */
3522
3523 static struct mem_node *
3524 mem_insert (start, end, type)
3525 void *start, *end;
3526 enum mem_type type;
3527 {
3528 struct mem_node *c, *parent, *x;
3529
3530 if (min_heap_address == NULL || start < min_heap_address)
3531 min_heap_address = start;
3532 if (max_heap_address == NULL || end > max_heap_address)
3533 max_heap_address = end;
3534
3535 /* See where in the tree a node for START belongs. In this
3536 particular application, it shouldn't happen that a node is already
3537 present. For debugging purposes, let's check that. */
3538 c = mem_root;
3539 parent = NULL;
3540
3541 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3542
3543 while (c != MEM_NIL)
3544 {
3545 if (start >= c->start && start < c->end)
3546 abort ();
3547 parent = c;
3548 c = start < c->start ? c->left : c->right;
3549 }
3550
3551 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3552
3553 while (c != MEM_NIL)
3554 {
3555 parent = c;
3556 c = start < c->start ? c->left : c->right;
3557 }
3558
3559 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3560
3561 /* Create a new node. */
3562 #ifdef GC_MALLOC_CHECK
3563 x = (struct mem_node *) _malloc_internal (sizeof *x);
3564 if (x == NULL)
3565 abort ();
3566 #else
3567 x = (struct mem_node *) xmalloc (sizeof *x);
3568 #endif
3569 x->start = start;
3570 x->end = end;
3571 x->type = type;
3572 x->parent = parent;
3573 x->left = x->right = MEM_NIL;
3574 x->color = MEM_RED;
3575
3576 /* Insert it as child of PARENT or install it as root. */
3577 if (parent)
3578 {
3579 if (start < parent->start)
3580 parent->left = x;
3581 else
3582 parent->right = x;
3583 }
3584 else
3585 mem_root = x;
3586
3587 /* Re-establish red-black tree properties. */
3588 mem_insert_fixup (x);
3589
3590 return x;
3591 }
3592
3593
3594 /* Re-establish the red-black properties of the tree, and thereby
3595 balance the tree, after node X has been inserted; X is always red. */
3596
3597 static void
3598 mem_insert_fixup (x)
3599 struct mem_node *x;
3600 {
3601 while (x != mem_root && x->parent->color == MEM_RED)
3602 {
3603 /* X is red and its parent is red. This is a violation of
3604 red-black tree property #3. */
3605
3606 if (x->parent == x->parent->parent->left)
3607 {
3608 /* We're on the left side of our grandparent, and Y is our
3609 "uncle". */
3610 struct mem_node *y = x->parent->parent->right;
3611
3612 if (y->color == MEM_RED)
3613 {
3614 /* Uncle and parent are red but should be black because
3615 X is red. Change the colors accordingly and proceed
3616 with the grandparent. */
3617 x->parent->color = MEM_BLACK;
3618 y->color = MEM_BLACK;
3619 x->parent->parent->color = MEM_RED;
3620 x = x->parent->parent;
3621 }
3622 else
3623 {
3624 /* Parent and uncle have different colors; parent is
3625 red, uncle is black. */
3626 if (x == x->parent->right)
3627 {
3628 x = x->parent;
3629 mem_rotate_left (x);
3630 }
3631
3632 x->parent->color = MEM_BLACK;
3633 x->parent->parent->color = MEM_RED;
3634 mem_rotate_right (x->parent->parent);
3635 }
3636 }
3637 else
3638 {
3639 /* This is the symmetrical case of above. */
3640 struct mem_node *y = x->parent->parent->left;
3641
3642 if (y->color == MEM_RED)
3643 {
3644 x->parent->color = MEM_BLACK;
3645 y->color = MEM_BLACK;
3646 x->parent->parent->color = MEM_RED;
3647 x = x->parent->parent;
3648 }
3649 else
3650 {
3651 if (x == x->parent->left)
3652 {
3653 x = x->parent;
3654 mem_rotate_right (x);
3655 }
3656
3657 x->parent->color = MEM_BLACK;
3658 x->parent->parent->color = MEM_RED;
3659 mem_rotate_left (x->parent->parent);
3660 }
3661 }
3662 }
3663
3664 /* The root may have been changed to red due to the algorithm. Set
3665 it to black so that property #5 is satisfied. */
3666 mem_root->color = MEM_BLACK;
3667 }
3668
3669
3670 /* (x) (y)
3671 / \ / \
3672 a (y) ===> (x) c
3673 / \ / \
3674 b c a b */
3675
3676 static void
3677 mem_rotate_left (x)
3678 struct mem_node *x;
3679 {
3680 struct mem_node *y;
3681
3682 /* Turn y's left sub-tree into x's right sub-tree. */
3683 y = x->right;
3684 x->right = y->left;
3685 if (y->left != MEM_NIL)
3686 y->left->parent = x;
3687
3688 /* Y's parent was x's parent. */
3689 if (y != MEM_NIL)
3690 y->parent = x->parent;
3691
3692 /* Get the parent to point to y instead of x. */
3693 if (x->parent)
3694 {
3695 if (x == x->parent->left)
3696 x->parent->left = y;
3697 else
3698 x->parent->right = y;
3699 }
3700 else
3701 mem_root = y;
3702
3703 /* Put x on y's left. */
3704 y->left = x;
3705 if (x != MEM_NIL)
3706 x->parent = y;
3707 }
3708
3709
3710 /* (x) (Y)
3711 / \ / \
3712 (y) c ===> a (x)
3713 / \ / \
3714 a b b c */
3715
3716 static void
3717 mem_rotate_right (x)
3718 struct mem_node *x;
3719 {
3720 struct mem_node *y = x->left;
3721
3722 x->left = y->right;
3723 if (y->right != MEM_NIL)
3724 y->right->parent = x;
3725
3726 if (y != MEM_NIL)
3727 y->parent = x->parent;
3728 if (x->parent)
3729 {
3730 if (x == x->parent->right)
3731 x->parent->right = y;
3732 else
3733 x->parent->left = y;
3734 }
3735 else
3736 mem_root = y;
3737
3738 y->right = x;
3739 if (x != MEM_NIL)
3740 x->parent = y;
3741 }
3742
3743
3744 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3745
3746 static void
3747 mem_delete (z)
3748 struct mem_node *z;
3749 {
3750 struct mem_node *x, *y;
3751
3752 if (!z || z == MEM_NIL)
3753 return;
3754
3755 if (z->left == MEM_NIL || z->right == MEM_NIL)
3756 y = z;
3757 else
3758 {
3759 y = z->right;
3760 while (y->left != MEM_NIL)
3761 y = y->left;
3762 }
3763
3764 if (y->left != MEM_NIL)
3765 x = y->left;
3766 else
3767 x = y->right;
3768
3769 x->parent = y->parent;
3770 if (y->parent)
3771 {
3772 if (y == y->parent->left)
3773 y->parent->left = x;
3774 else
3775 y->parent->right = x;
3776 }
3777 else
3778 mem_root = x;
3779
3780 if (y != z)
3781 {
3782 z->start = y->start;
3783 z->end = y->end;
3784 z->type = y->type;
3785 }
3786
3787 if (y->color == MEM_BLACK)
3788 mem_delete_fixup (x);
3789
3790 #ifdef GC_MALLOC_CHECK
3791 _free_internal (y);
3792 #else
3793 xfree (y);
3794 #endif
3795 }
3796
3797
3798 /* Re-establish the red-black properties of the tree, after a
3799 deletion. */
3800
3801 static void
3802 mem_delete_fixup (x)
3803 struct mem_node *x;
3804 {
3805 while (x != mem_root && x->color == MEM_BLACK)
3806 {
3807 if (x == x->parent->left)
3808 {
3809 struct mem_node *w = x->parent->right;
3810
3811 if (w->color == MEM_RED)
3812 {
3813 w->color = MEM_BLACK;
3814 x->parent->color = MEM_RED;
3815 mem_rotate_left (x->parent);
3816 w = x->parent->right;
3817 }
3818
3819 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3820 {
3821 w->color = MEM_RED;
3822 x = x->parent;
3823 }
3824 else
3825 {
3826 if (w->right->color == MEM_BLACK)
3827 {
3828 w->left->color = MEM_BLACK;
3829 w->color = MEM_RED;
3830 mem_rotate_right (w);
3831 w = x->parent->right;
3832 }
3833 w->color = x->parent->color;
3834 x->parent->color = MEM_BLACK;
3835 w->right->color = MEM_BLACK;
3836 mem_rotate_left (x->parent);
3837 x = mem_root;
3838 }
3839 }
3840 else
3841 {
3842 struct mem_node *w = x->parent->left;
3843
3844 if (w->color == MEM_RED)
3845 {
3846 w->color = MEM_BLACK;
3847 x->parent->color = MEM_RED;
3848 mem_rotate_right (x->parent);
3849 w = x->parent->left;
3850 }
3851
3852 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3853 {
3854 w->color = MEM_RED;
3855 x = x->parent;
3856 }
3857 else
3858 {
3859 if (w->left->color == MEM_BLACK)
3860 {
3861 w->right->color = MEM_BLACK;
3862 w->color = MEM_RED;
3863 mem_rotate_left (w);
3864 w = x->parent->left;
3865 }
3866
3867 w->color = x->parent->color;
3868 x->parent->color = MEM_BLACK;
3869 w->left->color = MEM_BLACK;
3870 mem_rotate_right (x->parent);
3871 x = mem_root;
3872 }
3873 }
3874 }
3875
3876 x->color = MEM_BLACK;
3877 }
3878
3879
3880 /* Value is non-zero if P is a pointer to a live Lisp string on
3881 the heap. M is a pointer to the mem_block for P. */
3882
3883 static INLINE int
3884 live_string_p (m, p)
3885 struct mem_node *m;
3886 void *p;
3887 {
3888 if (m->type == MEM_TYPE_STRING)
3889 {
3890 struct string_block *b = (struct string_block *) m->start;
3891 int offset = (char *) p - (char *) &b->strings[0];
3892
3893 /* P must point to the start of a Lisp_String structure, and it
3894 must not be on the free-list. */
3895 return (offset >= 0
3896 && offset % sizeof b->strings[0] == 0
3897 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3898 && ((struct Lisp_String *) p)->data != NULL);
3899 }
3900 else
3901 return 0;
3902 }
3903
3904
3905 /* Value is non-zero if P is a pointer to a live Lisp cons on
3906 the heap. M is a pointer to the mem_block for P. */
3907
3908 static INLINE int
3909 live_cons_p (m, p)
3910 struct mem_node *m;
3911 void *p;
3912 {
3913 if (m->type == MEM_TYPE_CONS)
3914 {
3915 struct cons_block *b = (struct cons_block *) m->start;
3916 int offset = (char *) p - (char *) &b->conses[0];
3917
3918 /* P must point to the start of a Lisp_Cons, not be
3919 one of the unused cells in the current cons block,
3920 and not be on the free-list. */
3921 return (offset >= 0
3922 && offset % sizeof b->conses[0] == 0
3923 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3924 && (b != cons_block
3925 || offset / sizeof b->conses[0] < cons_block_index)
3926 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3927 }
3928 else
3929 return 0;
3930 }
3931
3932
3933 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3934 the heap. M is a pointer to the mem_block for P. */
3935
3936 static INLINE int
3937 live_symbol_p (m, p)
3938 struct mem_node *m;
3939 void *p;
3940 {
3941 if (m->type == MEM_TYPE_SYMBOL)
3942 {
3943 struct symbol_block *b = (struct symbol_block *) m->start;
3944 int offset = (char *) p - (char *) &b->symbols[0];
3945
3946 /* P must point to the start of a Lisp_Symbol, not be
3947 one of the unused cells in the current symbol block,
3948 and not be on the free-list. */
3949 return (offset >= 0
3950 && offset % sizeof b->symbols[0] == 0
3951 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3952 && (b != symbol_block
3953 || offset / sizeof b->symbols[0] < symbol_block_index)
3954 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3955 }
3956 else
3957 return 0;
3958 }
3959
3960
3961 /* Value is non-zero if P is a pointer to a live Lisp float on
3962 the heap. M is a pointer to the mem_block for P. */
3963
3964 static INLINE int
3965 live_float_p (m, p)
3966 struct mem_node *m;
3967 void *p;
3968 {
3969 if (m->type == MEM_TYPE_FLOAT)
3970 {
3971 struct float_block *b = (struct float_block *) m->start;
3972 int offset = (char *) p - (char *) &b->floats[0];
3973
3974 /* P must point to the start of a Lisp_Float and not be
3975 one of the unused cells in the current float block. */
3976 return (offset >= 0
3977 && offset % sizeof b->floats[0] == 0
3978 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3979 && (b != float_block
3980 || offset / sizeof b->floats[0] < float_block_index));
3981 }
3982 else
3983 return 0;
3984 }
3985
3986
3987 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3988 the heap. M is a pointer to the mem_block for P. */
3989
3990 static INLINE int
3991 live_misc_p (m, p)
3992 struct mem_node *m;
3993 void *p;
3994 {
3995 if (m->type == MEM_TYPE_MISC)
3996 {
3997 struct marker_block *b = (struct marker_block *) m->start;
3998 int offset = (char *) p - (char *) &b->markers[0];
3999
4000 /* P must point to the start of a Lisp_Misc, not be
4001 one of the unused cells in the current misc block,
4002 and not be on the free-list. */
4003 return (offset >= 0
4004 && offset % sizeof b->markers[0] == 0
4005 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4006 && (b != marker_block
4007 || offset / sizeof b->markers[0] < marker_block_index)
4008 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4009 }
4010 else
4011 return 0;
4012 }
4013
4014
4015 /* Value is non-zero if P is a pointer to a live vector-like object.
4016 M is a pointer to the mem_block for P. */
4017
4018 static INLINE int
4019 live_vector_p (m, p)
4020 struct mem_node *m;
4021 void *p;
4022 {
4023 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
4024 }
4025
4026
4027 /* Value is non-zero if P is a pointer to a live buffer. M is a
4028 pointer to the mem_block for P. */
4029
4030 static INLINE int
4031 live_buffer_p (m, p)
4032 struct mem_node *m;
4033 void *p;
4034 {
4035 /* P must point to the start of the block, and the buffer
4036 must not have been killed. */
4037 return (m->type == MEM_TYPE_BUFFER
4038 && p == m->start
4039 && !NILP (((struct buffer *) p)->name));
4040 }
4041
4042 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4043
4044 #if GC_MARK_STACK
4045
4046 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4047
4048 /* Array of objects that are kept alive because the C stack contains
4049 a pattern that looks like a reference to them . */
4050
4051 #define MAX_ZOMBIES 10
4052 static Lisp_Object zombies[MAX_ZOMBIES];
4053
4054 /* Number of zombie objects. */
4055
4056 static int nzombies;
4057
4058 /* Number of garbage collections. */
4059
4060 static int ngcs;
4061
4062 /* Average percentage of zombies per collection. */
4063
4064 static double avg_zombies;
4065
4066 /* Max. number of live and zombie objects. */
4067
4068 static int max_live, max_zombies;
4069
4070 /* Average number of live objects per GC. */
4071
4072 static double avg_live;
4073
4074 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4075 doc: /* Show information about live and zombie objects. */)
4076 ()
4077 {
4078 Lisp_Object args[8], zombie_list = Qnil;
4079 int i;
4080 for (i = 0; i < nzombies; i++)
4081 zombie_list = Fcons (zombies[i], zombie_list);
4082 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4083 args[1] = make_number (ngcs);
4084 args[2] = make_float (avg_live);
4085 args[3] = make_float (avg_zombies);
4086 args[4] = make_float (avg_zombies / avg_live / 100);
4087 args[5] = make_number (max_live);
4088 args[6] = make_number (max_zombies);
4089 args[7] = zombie_list;
4090 return Fmessage (8, args);
4091 }
4092
4093 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4094
4095
4096 /* Mark OBJ if we can prove it's a Lisp_Object. */
4097
4098 static INLINE void
4099 mark_maybe_object (obj)
4100 Lisp_Object obj;
4101 {
4102 void *po = (void *) XPNTR (obj);
4103 struct mem_node *m = mem_find (po);
4104
4105 if (m != MEM_NIL)
4106 {
4107 int mark_p = 0;
4108
4109 switch (XTYPE (obj))
4110 {
4111 case Lisp_String:
4112 mark_p = (live_string_p (m, po)
4113 && !STRING_MARKED_P ((struct Lisp_String *) po));
4114 break;
4115
4116 case Lisp_Cons:
4117 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4118 break;
4119
4120 case Lisp_Symbol:
4121 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4122 break;
4123
4124 case Lisp_Float:
4125 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4126 break;
4127
4128 case Lisp_Vectorlike:
4129 /* Note: can't check BUFFERP before we know it's a
4130 buffer because checking that dereferences the pointer
4131 PO which might point anywhere. */
4132 if (live_vector_p (m, po))
4133 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4134 else if (live_buffer_p (m, po))
4135 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4136 break;
4137
4138 case Lisp_Misc:
4139 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4140 break;
4141
4142 default:
4143 break;
4144 }
4145
4146 if (mark_p)
4147 {
4148 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4149 if (nzombies < MAX_ZOMBIES)
4150 zombies[nzombies] = obj;
4151 ++nzombies;
4152 #endif
4153 mark_object (obj);
4154 }
4155 }
4156 }
4157
4158
4159 /* If P points to Lisp data, mark that as live if it isn't already
4160 marked. */
4161
4162 static INLINE void
4163 mark_maybe_pointer (p)
4164 void *p;
4165 {
4166 struct mem_node *m;
4167
4168 /* Quickly rule out some values which can't point to Lisp data. */
4169 if ((EMACS_INT) p %
4170 #ifdef USE_LSB_TAG
4171 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4172 #else
4173 2 /* We assume that Lisp data is aligned on even addresses. */
4174 #endif
4175 )
4176 return;
4177
4178 m = mem_find (p);
4179 if (m != MEM_NIL)
4180 {
4181 Lisp_Object obj = Qnil;
4182
4183 switch (m->type)
4184 {
4185 case MEM_TYPE_NON_LISP:
4186 /* Nothing to do; not a pointer to Lisp memory. */
4187 break;
4188
4189 case MEM_TYPE_BUFFER:
4190 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4191 XSETVECTOR (obj, p);
4192 break;
4193
4194 case MEM_TYPE_CONS:
4195 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4196 XSETCONS (obj, p);
4197 break;
4198
4199 case MEM_TYPE_STRING:
4200 if (live_string_p (m, p)
4201 && !STRING_MARKED_P ((struct Lisp_String *) p))
4202 XSETSTRING (obj, p);
4203 break;
4204
4205 case MEM_TYPE_MISC:
4206 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4207 XSETMISC (obj, p);
4208 break;
4209
4210 case MEM_TYPE_SYMBOL:
4211 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4212 XSETSYMBOL (obj, p);
4213 break;
4214
4215 case MEM_TYPE_FLOAT:
4216 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4217 XSETFLOAT (obj, p);
4218 break;
4219
4220 case MEM_TYPE_VECTORLIKE:
4221 if (live_vector_p (m, p))
4222 {
4223 Lisp_Object tem;
4224 XSETVECTOR (tem, p);
4225 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4226 obj = tem;
4227 }
4228 break;
4229
4230 default:
4231 abort ();
4232 }
4233
4234 if (!NILP (obj))
4235 mark_object (obj);
4236 }
4237 }
4238
4239
4240 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4241 or END+OFFSET..START. */
4242
4243 static void
4244 mark_memory (start, end, offset)
4245 void *start, *end;
4246 int offset;
4247 {
4248 Lisp_Object *p;
4249 void **pp;
4250
4251 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4252 nzombies = 0;
4253 #endif
4254
4255 /* Make START the pointer to the start of the memory region,
4256 if it isn't already. */
4257 if (end < start)
4258 {
4259 void *tem = start;
4260 start = end;
4261 end = tem;
4262 }
4263
4264 /* Mark Lisp_Objects. */
4265 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4266 mark_maybe_object (*p);
4267
4268 /* Mark Lisp data pointed to. This is necessary because, in some
4269 situations, the C compiler optimizes Lisp objects away, so that
4270 only a pointer to them remains. Example:
4271
4272 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4273 ()
4274 {
4275 Lisp_Object obj = build_string ("test");
4276 struct Lisp_String *s = XSTRING (obj);
4277 Fgarbage_collect ();
4278 fprintf (stderr, "test `%s'\n", s->data);
4279 return Qnil;
4280 }
4281
4282 Here, `obj' isn't really used, and the compiler optimizes it
4283 away. The only reference to the life string is through the
4284 pointer `s'. */
4285
4286 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4287 mark_maybe_pointer (*pp);
4288 }
4289
4290 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4291 the GCC system configuration. In gcc 3.2, the only systems for
4292 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4293 by others?) and ns32k-pc532-min. */
4294
4295 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4296
4297 static int setjmp_tested_p, longjmps_done;
4298
4299 #define SETJMP_WILL_LIKELY_WORK "\
4300 \n\
4301 Emacs garbage collector has been changed to use conservative stack\n\
4302 marking. Emacs has determined that the method it uses to do the\n\
4303 marking will likely work on your system, but this isn't sure.\n\
4304 \n\
4305 If you are a system-programmer, or can get the help of a local wizard\n\
4306 who is, please take a look at the function mark_stack in alloc.c, and\n\
4307 verify that the methods used are appropriate for your system.\n\
4308 \n\
4309 Please mail the result to <emacs-devel@gnu.org>.\n\
4310 "
4311
4312 #define SETJMP_WILL_NOT_WORK "\
4313 \n\
4314 Emacs garbage collector has been changed to use conservative stack\n\
4315 marking. Emacs has determined that the default method it uses to do the\n\
4316 marking will not work on your system. We will need a system-dependent\n\
4317 solution for your system.\n\
4318 \n\
4319 Please take a look at the function mark_stack in alloc.c, and\n\
4320 try to find a way to make it work on your system.\n\
4321 \n\
4322 Note that you may get false negatives, depending on the compiler.\n\
4323 In particular, you need to use -O with GCC for this test.\n\
4324 \n\
4325 Please mail the result to <emacs-devel@gnu.org>.\n\
4326 "
4327
4328
4329 /* Perform a quick check if it looks like setjmp saves registers in a
4330 jmp_buf. Print a message to stderr saying so. When this test
4331 succeeds, this is _not_ a proof that setjmp is sufficient for
4332 conservative stack marking. Only the sources or a disassembly
4333 can prove that. */
4334
4335 static void
4336 test_setjmp ()
4337 {
4338 char buf[10];
4339 register int x;
4340 jmp_buf jbuf;
4341 int result = 0;
4342
4343 /* Arrange for X to be put in a register. */
4344 sprintf (buf, "1");
4345 x = strlen (buf);
4346 x = 2 * x - 1;
4347
4348 setjmp (jbuf);
4349 if (longjmps_done == 1)
4350 {
4351 /* Came here after the longjmp at the end of the function.
4352
4353 If x == 1, the longjmp has restored the register to its
4354 value before the setjmp, and we can hope that setjmp
4355 saves all such registers in the jmp_buf, although that
4356 isn't sure.
4357
4358 For other values of X, either something really strange is
4359 taking place, or the setjmp just didn't save the register. */
4360
4361 if (x == 1)
4362 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4363 else
4364 {
4365 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4366 exit (1);
4367 }
4368 }
4369
4370 ++longjmps_done;
4371 x = 2;
4372 if (longjmps_done == 1)
4373 longjmp (jbuf, 1);
4374 }
4375
4376 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4377
4378
4379 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4380
4381 /* Abort if anything GCPRO'd doesn't survive the GC. */
4382
4383 static void
4384 check_gcpros ()
4385 {
4386 struct gcpro *p;
4387 int i;
4388
4389 for (p = gcprolist; p; p = p->next)
4390 for (i = 0; i < p->nvars; ++i)
4391 if (!survives_gc_p (p->var[i]))
4392 /* FIXME: It's not necessarily a bug. It might just be that the
4393 GCPRO is unnecessary or should release the object sooner. */
4394 abort ();
4395 }
4396
4397 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4398
4399 static void
4400 dump_zombies ()
4401 {
4402 int i;
4403
4404 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4405 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4406 {
4407 fprintf (stderr, " %d = ", i);
4408 debug_print (zombies[i]);
4409 }
4410 }
4411
4412 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4413
4414
4415 /* Mark live Lisp objects on the C stack.
4416
4417 There are several system-dependent problems to consider when
4418 porting this to new architectures:
4419
4420 Processor Registers
4421
4422 We have to mark Lisp objects in CPU registers that can hold local
4423 variables or are used to pass parameters.
4424
4425 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4426 something that either saves relevant registers on the stack, or
4427 calls mark_maybe_object passing it each register's contents.
4428
4429 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4430 implementation assumes that calling setjmp saves registers we need
4431 to see in a jmp_buf which itself lies on the stack. This doesn't
4432 have to be true! It must be verified for each system, possibly
4433 by taking a look at the source code of setjmp.
4434
4435 Stack Layout
4436
4437 Architectures differ in the way their processor stack is organized.
4438 For example, the stack might look like this
4439
4440 +----------------+
4441 | Lisp_Object | size = 4
4442 +----------------+
4443 | something else | size = 2
4444 +----------------+
4445 | Lisp_Object | size = 4
4446 +----------------+
4447 | ... |
4448
4449 In such a case, not every Lisp_Object will be aligned equally. To
4450 find all Lisp_Object on the stack it won't be sufficient to walk
4451 the stack in steps of 4 bytes. Instead, two passes will be
4452 necessary, one starting at the start of the stack, and a second
4453 pass starting at the start of the stack + 2. Likewise, if the
4454 minimal alignment of Lisp_Objects on the stack is 1, four passes
4455 would be necessary, each one starting with one byte more offset
4456 from the stack start.
4457
4458 The current code assumes by default that Lisp_Objects are aligned
4459 equally on the stack. */
4460
4461 static void
4462 mark_stack ()
4463 {
4464 int i;
4465 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4466 union aligned_jmpbuf {
4467 Lisp_Object o;
4468 jmp_buf j;
4469 } j;
4470 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4471 void *end;
4472
4473 /* This trick flushes the register windows so that all the state of
4474 the process is contained in the stack. */
4475 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4476 needed on ia64 too. See mach_dep.c, where it also says inline
4477 assembler doesn't work with relevant proprietary compilers. */
4478 #ifdef __sparc__
4479 #if defined (__sparc64__) && defined (__FreeBSD__)
4480 /* FreeBSD does not have a ta 3 handler. */
4481 asm ("flushw");
4482 #else
4483 asm ("ta 3");
4484 #endif
4485 #endif
4486
4487 /* Save registers that we need to see on the stack. We need to see
4488 registers used to hold register variables and registers used to
4489 pass parameters. */
4490 #ifdef GC_SAVE_REGISTERS_ON_STACK
4491 GC_SAVE_REGISTERS_ON_STACK (end);
4492 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4493
4494 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4495 setjmp will definitely work, test it
4496 and print a message with the result
4497 of the test. */
4498 if (!setjmp_tested_p)
4499 {
4500 setjmp_tested_p = 1;
4501 test_setjmp ();
4502 }
4503 #endif /* GC_SETJMP_WORKS */
4504
4505 setjmp (j.j);
4506 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4507 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4508
4509 /* This assumes that the stack is a contiguous region in memory. If
4510 that's not the case, something has to be done here to iterate
4511 over the stack segments. */
4512 #ifndef GC_LISP_OBJECT_ALIGNMENT
4513 #ifdef __GNUC__
4514 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4515 #else
4516 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4517 #endif
4518 #endif
4519 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4520 mark_memory (stack_base, end, i);
4521 /* Allow for marking a secondary stack, like the register stack on the
4522 ia64. */
4523 #ifdef GC_MARK_SECONDARY_STACK
4524 GC_MARK_SECONDARY_STACK ();
4525 #endif
4526
4527 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4528 check_gcpros ();
4529 #endif
4530 }
4531
4532 #endif /* GC_MARK_STACK != 0 */
4533
4534
4535 /* Determine whether it is safe to access memory at address P. */
4536 static int
4537 valid_pointer_p (p)
4538 void *p;
4539 {
4540 #ifdef WINDOWSNT
4541 return w32_valid_pointer_p (p, 16);
4542 #else
4543 int fd;
4544
4545 /* Obviously, we cannot just access it (we would SEGV trying), so we
4546 trick the o/s to tell us whether p is a valid pointer.
4547 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4548 not validate p in that case. */
4549
4550 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4551 {
4552 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4553 emacs_close (fd);
4554 unlink ("__Valid__Lisp__Object__");
4555 return valid;
4556 }
4557
4558 return -1;
4559 #endif
4560 }
4561
4562 /* Return 1 if OBJ is a valid lisp object.
4563 Return 0 if OBJ is NOT a valid lisp object.
4564 Return -1 if we cannot validate OBJ.
4565 This function can be quite slow,
4566 so it should only be used in code for manual debugging. */
4567
4568 int
4569 valid_lisp_object_p (obj)
4570 Lisp_Object obj;
4571 {
4572 void *p;
4573 #if GC_MARK_STACK
4574 struct mem_node *m;
4575 #endif
4576
4577 if (INTEGERP (obj))
4578 return 1;
4579
4580 p = (void *) XPNTR (obj);
4581 if (PURE_POINTER_P (p))
4582 return 1;
4583
4584 #if !GC_MARK_STACK
4585 return valid_pointer_p (p);
4586 #else
4587
4588 m = mem_find (p);
4589
4590 if (m == MEM_NIL)
4591 {
4592 int valid = valid_pointer_p (p);
4593 if (valid <= 0)
4594 return valid;
4595
4596 if (SUBRP (obj))
4597 return 1;
4598
4599 return 0;
4600 }
4601
4602 switch (m->type)
4603 {
4604 case MEM_TYPE_NON_LISP:
4605 return 0;
4606
4607 case MEM_TYPE_BUFFER:
4608 return live_buffer_p (m, p);
4609
4610 case MEM_TYPE_CONS:
4611 return live_cons_p (m, p);
4612
4613 case MEM_TYPE_STRING:
4614 return live_string_p (m, p);
4615
4616 case MEM_TYPE_MISC:
4617 return live_misc_p (m, p);
4618
4619 case MEM_TYPE_SYMBOL:
4620 return live_symbol_p (m, p);
4621
4622 case MEM_TYPE_FLOAT:
4623 return live_float_p (m, p);
4624
4625 case MEM_TYPE_VECTORLIKE:
4626 return live_vector_p (m, p);
4627
4628 default:
4629 break;
4630 }
4631
4632 return 0;
4633 #endif
4634 }
4635
4636
4637
4638 \f
4639 /***********************************************************************
4640 Pure Storage Management
4641 ***********************************************************************/
4642
4643 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4644 pointer to it. TYPE is the Lisp type for which the memory is
4645 allocated. TYPE < 0 means it's not used for a Lisp object. */
4646
4647 static POINTER_TYPE *
4648 pure_alloc (size, type)
4649 size_t size;
4650 int type;
4651 {
4652 POINTER_TYPE *result;
4653 #ifdef USE_LSB_TAG
4654 size_t alignment = (1 << GCTYPEBITS);
4655 #else
4656 size_t alignment = sizeof (EMACS_INT);
4657
4658 /* Give Lisp_Floats an extra alignment. */
4659 if (type == Lisp_Float)
4660 {
4661 #if defined __GNUC__ && __GNUC__ >= 2
4662 alignment = __alignof (struct Lisp_Float);
4663 #else
4664 alignment = sizeof (struct Lisp_Float);
4665 #endif
4666 }
4667 #endif
4668
4669 again:
4670 if (type >= 0)
4671 {
4672 /* Allocate space for a Lisp object from the beginning of the free
4673 space with taking account of alignment. */
4674 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4675 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4676 }
4677 else
4678 {
4679 /* Allocate space for a non-Lisp object from the end of the free
4680 space. */
4681 pure_bytes_used_non_lisp += size;
4682 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4683 }
4684 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4685
4686 if (pure_bytes_used <= pure_size)
4687 return result;
4688
4689 /* Don't allocate a large amount here,
4690 because it might get mmap'd and then its address
4691 might not be usable. */
4692 purebeg = (char *) xmalloc (10000);
4693 pure_size = 10000;
4694 pure_bytes_used_before_overflow += pure_bytes_used - size;
4695 pure_bytes_used = 0;
4696 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4697 goto again;
4698 }
4699
4700
4701 /* Print a warning if PURESIZE is too small. */
4702
4703 void
4704 check_pure_size ()
4705 {
4706 if (pure_bytes_used_before_overflow)
4707 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4708 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4709 }
4710
4711
4712 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4713 the non-Lisp data pool of the pure storage, and return its start
4714 address. Return NULL if not found. */
4715
4716 static char *
4717 find_string_data_in_pure (data, nbytes)
4718 const char *data;
4719 int nbytes;
4720 {
4721 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4722 const unsigned char *p;
4723 char *non_lisp_beg;
4724
4725 if (pure_bytes_used_non_lisp < nbytes + 1)
4726 return NULL;
4727
4728 /* Set up the Boyer-Moore table. */
4729 skip = nbytes + 1;
4730 for (i = 0; i < 256; i++)
4731 bm_skip[i] = skip;
4732
4733 p = (const unsigned char *) data;
4734 while (--skip > 0)
4735 bm_skip[*p++] = skip;
4736
4737 last_char_skip = bm_skip['\0'];
4738
4739 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4740 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4741
4742 /* See the comments in the function `boyer_moore' (search.c) for the
4743 use of `infinity'. */
4744 infinity = pure_bytes_used_non_lisp + 1;
4745 bm_skip['\0'] = infinity;
4746
4747 p = (const unsigned char *) non_lisp_beg + nbytes;
4748 start = 0;
4749 do
4750 {
4751 /* Check the last character (== '\0'). */
4752 do
4753 {
4754 start += bm_skip[*(p + start)];
4755 }
4756 while (start <= start_max);
4757
4758 if (start < infinity)
4759 /* Couldn't find the last character. */
4760 return NULL;
4761
4762 /* No less than `infinity' means we could find the last
4763 character at `p[start - infinity]'. */
4764 start -= infinity;
4765
4766 /* Check the remaining characters. */
4767 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4768 /* Found. */
4769 return non_lisp_beg + start;
4770
4771 start += last_char_skip;
4772 }
4773 while (start <= start_max);
4774
4775 return NULL;
4776 }
4777
4778
4779 /* Return a string allocated in pure space. DATA is a buffer holding
4780 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4781 non-zero means make the result string multibyte.
4782
4783 Must get an error if pure storage is full, since if it cannot hold
4784 a large string it may be able to hold conses that point to that
4785 string; then the string is not protected from gc. */
4786
4787 Lisp_Object
4788 make_pure_string (data, nchars, nbytes, multibyte)
4789 const char *data;
4790 int nchars, nbytes;
4791 int multibyte;
4792 {
4793 Lisp_Object string;
4794 struct Lisp_String *s;
4795
4796 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4797 s->data = find_string_data_in_pure (data, nbytes);
4798 if (s->data == NULL)
4799 {
4800 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4801 bcopy (data, s->data, nbytes);
4802 s->data[nbytes] = '\0';
4803 }
4804 s->size = nchars;
4805 s->size_byte = multibyte ? nbytes : -1;
4806 s->intervals = NULL_INTERVAL;
4807 XSETSTRING (string, s);
4808 return string;
4809 }
4810
4811 /* Return a string a string allocated in pure space. Do not allocate
4812 the string data, just point to DATA. */
4813
4814 Lisp_Object
4815 make_pure_c_string (const char *data)
4816 {
4817 Lisp_Object string;
4818 struct Lisp_String *s;
4819 int nchars = strlen (data);
4820
4821 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4822 s->size = nchars;
4823 s->size_byte = -1;
4824 s->data = (unsigned char *) data;
4825 s->intervals = NULL_INTERVAL;
4826 XSETSTRING (string, s);
4827 return string;
4828 }
4829
4830 /* Return a cons allocated from pure space. Give it pure copies
4831 of CAR as car and CDR as cdr. */
4832
4833 Lisp_Object
4834 pure_cons (car, cdr)
4835 Lisp_Object car, cdr;
4836 {
4837 register Lisp_Object new;
4838 struct Lisp_Cons *p;
4839
4840 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4841 XSETCONS (new, p);
4842 XSETCAR (new, Fpurecopy (car));
4843 XSETCDR (new, Fpurecopy (cdr));
4844 return new;
4845 }
4846
4847
4848 /* Value is a float object with value NUM allocated from pure space. */
4849
4850 static Lisp_Object
4851 make_pure_float (num)
4852 double num;
4853 {
4854 register Lisp_Object new;
4855 struct Lisp_Float *p;
4856
4857 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4858 XSETFLOAT (new, p);
4859 XFLOAT_INIT (new, num);
4860 return new;
4861 }
4862
4863
4864 /* Return a vector with room for LEN Lisp_Objects allocated from
4865 pure space. */
4866
4867 Lisp_Object
4868 make_pure_vector (len)
4869 EMACS_INT len;
4870 {
4871 Lisp_Object new;
4872 struct Lisp_Vector *p;
4873 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4874
4875 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4876 XSETVECTOR (new, p);
4877 XVECTOR (new)->size = len;
4878 return new;
4879 }
4880
4881
4882 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4883 doc: /* Make a copy of object OBJ in pure storage.
4884 Recursively copies contents of vectors and cons cells.
4885 Does not copy symbols. Copies strings without text properties. */)
4886 (obj)
4887 register Lisp_Object obj;
4888 {
4889 if (NILP (Vpurify_flag))
4890 return obj;
4891
4892 if (PURE_POINTER_P (XPNTR (obj)))
4893 return obj;
4894
4895 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4896 {
4897 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4898 if (!NILP (tmp))
4899 return tmp;
4900 }
4901
4902 if (CONSP (obj))
4903 obj = pure_cons (XCAR (obj), XCDR (obj));
4904 else if (FLOATP (obj))
4905 obj = make_pure_float (XFLOAT_DATA (obj));
4906 else if (STRINGP (obj))
4907 obj = make_pure_string (SDATA (obj), SCHARS (obj),
4908 SBYTES (obj),
4909 STRING_MULTIBYTE (obj));
4910 else if (COMPILEDP (obj) || VECTORP (obj))
4911 {
4912 register struct Lisp_Vector *vec;
4913 register int i;
4914 EMACS_INT size;
4915
4916 size = XVECTOR (obj)->size;
4917 if (size & PSEUDOVECTOR_FLAG)
4918 size &= PSEUDOVECTOR_SIZE_MASK;
4919 vec = XVECTOR (make_pure_vector (size));
4920 for (i = 0; i < size; i++)
4921 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4922 if (COMPILEDP (obj))
4923 {
4924 XSETPVECTYPE (vec, PVEC_COMPILED);
4925 XSETCOMPILED (obj, vec);
4926 }
4927 else
4928 XSETVECTOR (obj, vec);
4929 }
4930 else if (MARKERP (obj))
4931 error ("Attempt to copy a marker to pure storage");
4932 else
4933 /* Not purified, don't hash-cons. */
4934 return obj;
4935
4936 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4937 Fputhash (obj, obj, Vpurify_flag);
4938
4939 return obj;
4940 }
4941
4942
4943 \f
4944 /***********************************************************************
4945 Protection from GC
4946 ***********************************************************************/
4947
4948 /* Put an entry in staticvec, pointing at the variable with address
4949 VARADDRESS. */
4950
4951 void
4952 staticpro (varaddress)
4953 Lisp_Object *varaddress;
4954 {
4955 staticvec[staticidx++] = varaddress;
4956 if (staticidx >= NSTATICS)
4957 abort ();
4958 }
4959
4960 \f
4961 /***********************************************************************
4962 Protection from GC
4963 ***********************************************************************/
4964
4965 /* Temporarily prevent garbage collection. */
4966
4967 int
4968 inhibit_garbage_collection ()
4969 {
4970 int count = SPECPDL_INDEX ();
4971 int nbits = min (VALBITS, BITS_PER_INT);
4972
4973 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4974 return count;
4975 }
4976
4977
4978 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4979 doc: /* Reclaim storage for Lisp objects no longer needed.
4980 Garbage collection happens automatically if you cons more than
4981 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4982 `garbage-collect' normally returns a list with info on amount of space in use:
4983 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4984 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4985 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4986 (USED-STRINGS . FREE-STRINGS))
4987 However, if there was overflow in pure space, `garbage-collect'
4988 returns nil, because real GC can't be done. */)
4989 ()
4990 {
4991 register struct specbinding *bind;
4992 struct catchtag *catch;
4993 struct handler *handler;
4994 char stack_top_variable;
4995 register int i;
4996 int message_p;
4997 Lisp_Object total[8];
4998 int count = SPECPDL_INDEX ();
4999 EMACS_TIME t1, t2, t3;
5000
5001 if (abort_on_gc)
5002 abort ();
5003
5004 /* Can't GC if pure storage overflowed because we can't determine
5005 if something is a pure object or not. */
5006 if (pure_bytes_used_before_overflow)
5007 return Qnil;
5008
5009 CHECK_CONS_LIST ();
5010
5011 /* Don't keep undo information around forever.
5012 Do this early on, so it is no problem if the user quits. */
5013 {
5014 register struct buffer *nextb = all_buffers;
5015
5016 while (nextb)
5017 {
5018 /* If a buffer's undo list is Qt, that means that undo is
5019 turned off in that buffer. Calling truncate_undo_list on
5020 Qt tends to return NULL, which effectively turns undo back on.
5021 So don't call truncate_undo_list if undo_list is Qt. */
5022 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
5023 truncate_undo_list (nextb);
5024
5025 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5026 if (nextb->base_buffer == 0 && !NILP (nextb->name)
5027 && ! nextb->text->inhibit_shrinking)
5028 {
5029 /* If a buffer's gap size is more than 10% of the buffer
5030 size, or larger than 2000 bytes, then shrink it
5031 accordingly. Keep a minimum size of 20 bytes. */
5032 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5033
5034 if (nextb->text->gap_size > size)
5035 {
5036 struct buffer *save_current = current_buffer;
5037 current_buffer = nextb;
5038 make_gap (-(nextb->text->gap_size - size));
5039 current_buffer = save_current;
5040 }
5041 }
5042
5043 nextb = nextb->next;
5044 }
5045 }
5046
5047 EMACS_GET_TIME (t1);
5048
5049 /* In case user calls debug_print during GC,
5050 don't let that cause a recursive GC. */
5051 consing_since_gc = 0;
5052
5053 /* Save what's currently displayed in the echo area. */
5054 message_p = push_message ();
5055 record_unwind_protect (pop_message_unwind, Qnil);
5056
5057 /* Save a copy of the contents of the stack, for debugging. */
5058 #if MAX_SAVE_STACK > 0
5059 if (NILP (Vpurify_flag))
5060 {
5061 i = &stack_top_variable - stack_bottom;
5062 if (i < 0) i = -i;
5063 if (i < MAX_SAVE_STACK)
5064 {
5065 if (stack_copy == 0)
5066 stack_copy = (char *) xmalloc (stack_copy_size = i);
5067 else if (stack_copy_size < i)
5068 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
5069 if (stack_copy)
5070 {
5071 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
5072 bcopy (stack_bottom, stack_copy, i);
5073 else
5074 bcopy (&stack_top_variable, stack_copy, i);
5075 }
5076 }
5077 }
5078 #endif /* MAX_SAVE_STACK > 0 */
5079
5080 if (garbage_collection_messages)
5081 message1_nolog ("Garbage collecting...");
5082
5083 BLOCK_INPUT;
5084
5085 shrink_regexp_cache ();
5086
5087 gc_in_progress = 1;
5088
5089 /* clear_marks (); */
5090
5091 /* Mark all the special slots that serve as the roots of accessibility. */
5092
5093 for (i = 0; i < staticidx; i++)
5094 mark_object (*staticvec[i]);
5095
5096 for (bind = specpdl; bind != specpdl_ptr; bind++)
5097 {
5098 mark_object (bind->symbol);
5099 mark_object (bind->old_value);
5100 }
5101 mark_terminals ();
5102 mark_kboards ();
5103 mark_ttys ();
5104
5105 #ifdef USE_GTK
5106 {
5107 extern void xg_mark_data ();
5108 xg_mark_data ();
5109 }
5110 #endif
5111
5112 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5113 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5114 mark_stack ();
5115 #else
5116 {
5117 register struct gcpro *tail;
5118 for (tail = gcprolist; tail; tail = tail->next)
5119 for (i = 0; i < tail->nvars; i++)
5120 mark_object (tail->var[i]);
5121 }
5122 #endif
5123
5124 mark_byte_stack ();
5125 for (catch = catchlist; catch; catch = catch->next)
5126 {
5127 mark_object (catch->tag);
5128 mark_object (catch->val);
5129 }
5130 for (handler = handlerlist; handler; handler = handler->next)
5131 {
5132 mark_object (handler->handler);
5133 mark_object (handler->var);
5134 }
5135 mark_backtrace ();
5136
5137 #ifdef HAVE_WINDOW_SYSTEM
5138 mark_fringe_data ();
5139 #endif
5140
5141 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5142 mark_stack ();
5143 #endif
5144
5145 /* Everything is now marked, except for the things that require special
5146 finalization, i.e. the undo_list.
5147 Look thru every buffer's undo list
5148 for elements that update markers that were not marked,
5149 and delete them. */
5150 {
5151 register struct buffer *nextb = all_buffers;
5152
5153 while (nextb)
5154 {
5155 /* If a buffer's undo list is Qt, that means that undo is
5156 turned off in that buffer. Calling truncate_undo_list on
5157 Qt tends to return NULL, which effectively turns undo back on.
5158 So don't call truncate_undo_list if undo_list is Qt. */
5159 if (! EQ (nextb->undo_list, Qt))
5160 {
5161 Lisp_Object tail, prev;
5162 tail = nextb->undo_list;
5163 prev = Qnil;
5164 while (CONSP (tail))
5165 {
5166 if (CONSP (XCAR (tail))
5167 && MARKERP (XCAR (XCAR (tail)))
5168 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5169 {
5170 if (NILP (prev))
5171 nextb->undo_list = tail = XCDR (tail);
5172 else
5173 {
5174 tail = XCDR (tail);
5175 XSETCDR (prev, tail);
5176 }
5177 }
5178 else
5179 {
5180 prev = tail;
5181 tail = XCDR (tail);
5182 }
5183 }
5184 }
5185 /* Now that we have stripped the elements that need not be in the
5186 undo_list any more, we can finally mark the list. */
5187 mark_object (nextb->undo_list);
5188
5189 nextb = nextb->next;
5190 }
5191 }
5192
5193 gc_sweep ();
5194
5195 /* Clear the mark bits that we set in certain root slots. */
5196
5197 unmark_byte_stack ();
5198 VECTOR_UNMARK (&buffer_defaults);
5199 VECTOR_UNMARK (&buffer_local_symbols);
5200
5201 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5202 dump_zombies ();
5203 #endif
5204
5205 UNBLOCK_INPUT;
5206
5207 CHECK_CONS_LIST ();
5208
5209 /* clear_marks (); */
5210 gc_in_progress = 0;
5211
5212 consing_since_gc = 0;
5213 if (gc_cons_threshold < 10000)
5214 gc_cons_threshold = 10000;
5215
5216 if (FLOATP (Vgc_cons_percentage))
5217 { /* Set gc_cons_combined_threshold. */
5218 EMACS_INT total = 0;
5219
5220 total += total_conses * sizeof (struct Lisp_Cons);
5221 total += total_symbols * sizeof (struct Lisp_Symbol);
5222 total += total_markers * sizeof (union Lisp_Misc);
5223 total += total_string_size;
5224 total += total_vector_size * sizeof (Lisp_Object);
5225 total += total_floats * sizeof (struct Lisp_Float);
5226 total += total_intervals * sizeof (struct interval);
5227 total += total_strings * sizeof (struct Lisp_String);
5228
5229 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5230 }
5231 else
5232 gc_relative_threshold = 0;
5233
5234 if (garbage_collection_messages)
5235 {
5236 if (message_p || minibuf_level > 0)
5237 restore_message ();
5238 else
5239 message1_nolog ("Garbage collecting...done");
5240 }
5241
5242 unbind_to (count, Qnil);
5243
5244 total[0] = Fcons (make_number (total_conses),
5245 make_number (total_free_conses));
5246 total[1] = Fcons (make_number (total_symbols),
5247 make_number (total_free_symbols));
5248 total[2] = Fcons (make_number (total_markers),
5249 make_number (total_free_markers));
5250 total[3] = make_number (total_string_size);
5251 total[4] = make_number (total_vector_size);
5252 total[5] = Fcons (make_number (total_floats),
5253 make_number (total_free_floats));
5254 total[6] = Fcons (make_number (total_intervals),
5255 make_number (total_free_intervals));
5256 total[7] = Fcons (make_number (total_strings),
5257 make_number (total_free_strings));
5258
5259 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5260 {
5261 /* Compute average percentage of zombies. */
5262 double nlive = 0;
5263
5264 for (i = 0; i < 7; ++i)
5265 if (CONSP (total[i]))
5266 nlive += XFASTINT (XCAR (total[i]));
5267
5268 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5269 max_live = max (nlive, max_live);
5270 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5271 max_zombies = max (nzombies, max_zombies);
5272 ++ngcs;
5273 }
5274 #endif
5275
5276 if (!NILP (Vpost_gc_hook))
5277 {
5278 int count = inhibit_garbage_collection ();
5279 safe_run_hooks (Qpost_gc_hook);
5280 unbind_to (count, Qnil);
5281 }
5282
5283 /* Accumulate statistics. */
5284 EMACS_GET_TIME (t2);
5285 EMACS_SUB_TIME (t3, t2, t1);
5286 if (FLOATP (Vgc_elapsed))
5287 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5288 EMACS_SECS (t3) +
5289 EMACS_USECS (t3) * 1.0e-6);
5290 gcs_done++;
5291
5292 return Flist (sizeof total / sizeof *total, total);
5293 }
5294
5295
5296 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5297 only interesting objects referenced from glyphs are strings. */
5298
5299 static void
5300 mark_glyph_matrix (matrix)
5301 struct glyph_matrix *matrix;
5302 {
5303 struct glyph_row *row = matrix->rows;
5304 struct glyph_row *end = row + matrix->nrows;
5305
5306 for (; row < end; ++row)
5307 if (row->enabled_p)
5308 {
5309 int area;
5310 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5311 {
5312 struct glyph *glyph = row->glyphs[area];
5313 struct glyph *end_glyph = glyph + row->used[area];
5314
5315 for (; glyph < end_glyph; ++glyph)
5316 if (STRINGP (glyph->object)
5317 && !STRING_MARKED_P (XSTRING (glyph->object)))
5318 mark_object (glyph->object);
5319 }
5320 }
5321 }
5322
5323
5324 /* Mark Lisp faces in the face cache C. */
5325
5326 static void
5327 mark_face_cache (c)
5328 struct face_cache *c;
5329 {
5330 if (c)
5331 {
5332 int i, j;
5333 for (i = 0; i < c->used; ++i)
5334 {
5335 struct face *face = FACE_FROM_ID (c->f, i);
5336
5337 if (face)
5338 {
5339 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5340 mark_object (face->lface[j]);
5341 }
5342 }
5343 }
5344 }
5345
5346
5347 \f
5348 /* Mark reference to a Lisp_Object.
5349 If the object referred to has not been seen yet, recursively mark
5350 all the references contained in it. */
5351
5352 #define LAST_MARKED_SIZE 500
5353 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5354 int last_marked_index;
5355
5356 /* For debugging--call abort when we cdr down this many
5357 links of a list, in mark_object. In debugging,
5358 the call to abort will hit a breakpoint.
5359 Normally this is zero and the check never goes off. */
5360 static int mark_object_loop_halt;
5361
5362 static void
5363 mark_vectorlike (ptr)
5364 struct Lisp_Vector *ptr;
5365 {
5366 register EMACS_INT size = ptr->size;
5367 register int i;
5368
5369 eassert (!VECTOR_MARKED_P (ptr));
5370 VECTOR_MARK (ptr); /* Else mark it */
5371 if (size & PSEUDOVECTOR_FLAG)
5372 size &= PSEUDOVECTOR_SIZE_MASK;
5373
5374 /* Note that this size is not the memory-footprint size, but only
5375 the number of Lisp_Object fields that we should trace.
5376 The distinction is used e.g. by Lisp_Process which places extra
5377 non-Lisp_Object fields at the end of the structure. */
5378 for (i = 0; i < size; i++) /* and then mark its elements */
5379 mark_object (ptr->contents[i]);
5380 }
5381
5382 /* Like mark_vectorlike but optimized for char-tables (and
5383 sub-char-tables) assuming that the contents are mostly integers or
5384 symbols. */
5385
5386 static void
5387 mark_char_table (ptr)
5388 struct Lisp_Vector *ptr;
5389 {
5390 register EMACS_INT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5391 register int i;
5392
5393 eassert (!VECTOR_MARKED_P (ptr));
5394 VECTOR_MARK (ptr);
5395 for (i = 0; i < size; i++)
5396 {
5397 Lisp_Object val = ptr->contents[i];
5398
5399 if (INTEGERP (val) || SYMBOLP (val) && XSYMBOL (val)->gcmarkbit)
5400 continue;
5401 if (SUB_CHAR_TABLE_P (val))
5402 {
5403 if (! VECTOR_MARKED_P (XVECTOR (val)))
5404 mark_char_table (XVECTOR (val));
5405 }
5406 else
5407 mark_object (val);
5408 }
5409 }
5410
5411 void
5412 mark_object (arg)
5413 Lisp_Object arg;
5414 {
5415 register Lisp_Object obj = arg;
5416 #ifdef GC_CHECK_MARKED_OBJECTS
5417 void *po;
5418 struct mem_node *m;
5419 #endif
5420 int cdr_count = 0;
5421
5422 loop:
5423
5424 if (PURE_POINTER_P (XPNTR (obj)))
5425 return;
5426
5427 last_marked[last_marked_index++] = obj;
5428 if (last_marked_index == LAST_MARKED_SIZE)
5429 last_marked_index = 0;
5430
5431 /* Perform some sanity checks on the objects marked here. Abort if
5432 we encounter an object we know is bogus. This increases GC time
5433 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5434 #ifdef GC_CHECK_MARKED_OBJECTS
5435
5436 po = (void *) XPNTR (obj);
5437
5438 /* Check that the object pointed to by PO is known to be a Lisp
5439 structure allocated from the heap. */
5440 #define CHECK_ALLOCATED() \
5441 do { \
5442 m = mem_find (po); \
5443 if (m == MEM_NIL) \
5444 abort (); \
5445 } while (0)
5446
5447 /* Check that the object pointed to by PO is live, using predicate
5448 function LIVEP. */
5449 #define CHECK_LIVE(LIVEP) \
5450 do { \
5451 if (!LIVEP (m, po)) \
5452 abort (); \
5453 } while (0)
5454
5455 /* Check both of the above conditions. */
5456 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5457 do { \
5458 CHECK_ALLOCATED (); \
5459 CHECK_LIVE (LIVEP); \
5460 } while (0) \
5461
5462 #else /* not GC_CHECK_MARKED_OBJECTS */
5463
5464 #define CHECK_ALLOCATED() (void) 0
5465 #define CHECK_LIVE(LIVEP) (void) 0
5466 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5467
5468 #endif /* not GC_CHECK_MARKED_OBJECTS */
5469
5470 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5471 {
5472 case Lisp_String:
5473 {
5474 register struct Lisp_String *ptr = XSTRING (obj);
5475 if (STRING_MARKED_P (ptr))
5476 break;
5477 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5478 MARK_INTERVAL_TREE (ptr->intervals);
5479 MARK_STRING (ptr);
5480 #ifdef GC_CHECK_STRING_BYTES
5481 /* Check that the string size recorded in the string is the
5482 same as the one recorded in the sdata structure. */
5483 CHECK_STRING_BYTES (ptr);
5484 #endif /* GC_CHECK_STRING_BYTES */
5485 }
5486 break;
5487
5488 case Lisp_Vectorlike:
5489 if (VECTOR_MARKED_P (XVECTOR (obj)))
5490 break;
5491 #ifdef GC_CHECK_MARKED_OBJECTS
5492 m = mem_find (po);
5493 if (m == MEM_NIL && !SUBRP (obj)
5494 && po != &buffer_defaults
5495 && po != &buffer_local_symbols)
5496 abort ();
5497 #endif /* GC_CHECK_MARKED_OBJECTS */
5498
5499 if (BUFFERP (obj))
5500 {
5501 #ifdef GC_CHECK_MARKED_OBJECTS
5502 if (po != &buffer_defaults && po != &buffer_local_symbols)
5503 {
5504 struct buffer *b;
5505 for (b = all_buffers; b && b != po; b = b->next)
5506 ;
5507 if (b == NULL)
5508 abort ();
5509 }
5510 #endif /* GC_CHECK_MARKED_OBJECTS */
5511 mark_buffer (obj);
5512 }
5513 else if (SUBRP (obj))
5514 break;
5515 else if (COMPILEDP (obj))
5516 /* We could treat this just like a vector, but it is better to
5517 save the COMPILED_CONSTANTS element for last and avoid
5518 recursion there. */
5519 {
5520 register struct Lisp_Vector *ptr = XVECTOR (obj);
5521 register EMACS_INT size = ptr->size;
5522 register int i;
5523
5524 CHECK_LIVE (live_vector_p);
5525 VECTOR_MARK (ptr); /* Else mark it */
5526 size &= PSEUDOVECTOR_SIZE_MASK;
5527 for (i = 0; i < size; i++) /* and then mark its elements */
5528 {
5529 if (i != COMPILED_CONSTANTS)
5530 mark_object (ptr->contents[i]);
5531 }
5532 obj = ptr->contents[COMPILED_CONSTANTS];
5533 goto loop;
5534 }
5535 else if (FRAMEP (obj))
5536 {
5537 register struct frame *ptr = XFRAME (obj);
5538 mark_vectorlike (XVECTOR (obj));
5539 mark_face_cache (ptr->face_cache);
5540 }
5541 else if (WINDOWP (obj))
5542 {
5543 register struct Lisp_Vector *ptr = XVECTOR (obj);
5544 struct window *w = XWINDOW (obj);
5545 mark_vectorlike (ptr);
5546 /* Mark glyphs for leaf windows. Marking window matrices is
5547 sufficient because frame matrices use the same glyph
5548 memory. */
5549 if (NILP (w->hchild)
5550 && NILP (w->vchild)
5551 && w->current_matrix)
5552 {
5553 mark_glyph_matrix (w->current_matrix);
5554 mark_glyph_matrix (w->desired_matrix);
5555 }
5556 }
5557 else if (HASH_TABLE_P (obj))
5558 {
5559 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5560 mark_vectorlike ((struct Lisp_Vector *)h);
5561 /* If hash table is not weak, mark all keys and values.
5562 For weak tables, mark only the vector. */
5563 if (NILP (h->weak))
5564 mark_object (h->key_and_value);
5565 else
5566 VECTOR_MARK (XVECTOR (h->key_and_value));
5567 }
5568 else if (CHAR_TABLE_P (obj))
5569 mark_char_table (XVECTOR (obj));
5570 else
5571 mark_vectorlike (XVECTOR (obj));
5572 break;
5573
5574 case Lisp_Symbol:
5575 {
5576 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5577 struct Lisp_Symbol *ptrx;
5578
5579 if (ptr->gcmarkbit)
5580 break;
5581 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5582 ptr->gcmarkbit = 1;
5583 mark_object (ptr->function);
5584 mark_object (ptr->plist);
5585 switch (ptr->redirect)
5586 {
5587 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5588 case SYMBOL_VARALIAS:
5589 {
5590 Lisp_Object tem;
5591 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5592 mark_object (tem);
5593 break;
5594 }
5595 case SYMBOL_LOCALIZED:
5596 {
5597 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5598 /* If the value is forwarded to a buffer or keyboard field,
5599 these are marked when we see the corresponding object.
5600 And if it's forwarded to a C variable, either it's not
5601 a Lisp_Object var, or it's staticpro'd already. */
5602 mark_object (blv->where);
5603 mark_object (blv->valcell);
5604 mark_object (blv->defcell);
5605 break;
5606 }
5607 case SYMBOL_FORWARDED:
5608 /* If the value is forwarded to a buffer or keyboard field,
5609 these are marked when we see the corresponding object.
5610 And if it's forwarded to a C variable, either it's not
5611 a Lisp_Object var, or it's staticpro'd already. */
5612 break;
5613 default: abort ();
5614 }
5615 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5616 MARK_STRING (XSTRING (ptr->xname));
5617 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5618
5619 ptr = ptr->next;
5620 if (ptr)
5621 {
5622 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5623 XSETSYMBOL (obj, ptrx);
5624 goto loop;
5625 }
5626 }
5627 break;
5628
5629 case Lisp_Misc:
5630 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5631 if (XMISCANY (obj)->gcmarkbit)
5632 break;
5633 XMISCANY (obj)->gcmarkbit = 1;
5634
5635 switch (XMISCTYPE (obj))
5636 {
5637
5638 case Lisp_Misc_Marker:
5639 /* DO NOT mark thru the marker's chain.
5640 The buffer's markers chain does not preserve markers from gc;
5641 instead, markers are removed from the chain when freed by gc. */
5642 break;
5643
5644 case Lisp_Misc_Save_Value:
5645 #if GC_MARK_STACK
5646 {
5647 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5648 /* If DOGC is set, POINTER is the address of a memory
5649 area containing INTEGER potential Lisp_Objects. */
5650 if (ptr->dogc)
5651 {
5652 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5653 int nelt;
5654 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5655 mark_maybe_object (*p);
5656 }
5657 }
5658 #endif
5659 break;
5660
5661 case Lisp_Misc_Overlay:
5662 {
5663 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5664 mark_object (ptr->start);
5665 mark_object (ptr->end);
5666 mark_object (ptr->plist);
5667 if (ptr->next)
5668 {
5669 XSETMISC (obj, ptr->next);
5670 goto loop;
5671 }
5672 }
5673 break;
5674
5675 default:
5676 abort ();
5677 }
5678 break;
5679
5680 case Lisp_Cons:
5681 {
5682 register struct Lisp_Cons *ptr = XCONS (obj);
5683 if (CONS_MARKED_P (ptr))
5684 break;
5685 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5686 CONS_MARK (ptr);
5687 /* If the cdr is nil, avoid recursion for the car. */
5688 if (EQ (ptr->u.cdr, Qnil))
5689 {
5690 obj = ptr->car;
5691 cdr_count = 0;
5692 goto loop;
5693 }
5694 mark_object (ptr->car);
5695 obj = ptr->u.cdr;
5696 cdr_count++;
5697 if (cdr_count == mark_object_loop_halt)
5698 abort ();
5699 goto loop;
5700 }
5701
5702 case Lisp_Float:
5703 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5704 FLOAT_MARK (XFLOAT (obj));
5705 break;
5706
5707 case_Lisp_Int:
5708 break;
5709
5710 default:
5711 abort ();
5712 }
5713
5714 #undef CHECK_LIVE
5715 #undef CHECK_ALLOCATED
5716 #undef CHECK_ALLOCATED_AND_LIVE
5717 }
5718
5719 /* Mark the pointers in a buffer structure. */
5720
5721 static void
5722 mark_buffer (buf)
5723 Lisp_Object buf;
5724 {
5725 register struct buffer *buffer = XBUFFER (buf);
5726 register Lisp_Object *ptr, tmp;
5727 Lisp_Object base_buffer;
5728
5729 eassert (!VECTOR_MARKED_P (buffer));
5730 VECTOR_MARK (buffer);
5731
5732 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5733
5734 /* For now, we just don't mark the undo_list. It's done later in
5735 a special way just before the sweep phase, and after stripping
5736 some of its elements that are not needed any more. */
5737
5738 if (buffer->overlays_before)
5739 {
5740 XSETMISC (tmp, buffer->overlays_before);
5741 mark_object (tmp);
5742 }
5743 if (buffer->overlays_after)
5744 {
5745 XSETMISC (tmp, buffer->overlays_after);
5746 mark_object (tmp);
5747 }
5748
5749 /* buffer-local Lisp variables start at `undo_list',
5750 tho only the ones from `name' on are GC'd normally. */
5751 for (ptr = &buffer->name;
5752 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5753 ptr++)
5754 mark_object (*ptr);
5755
5756 /* If this is an indirect buffer, mark its base buffer. */
5757 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5758 {
5759 XSETBUFFER (base_buffer, buffer->base_buffer);
5760 mark_buffer (base_buffer);
5761 }
5762 }
5763
5764 /* Mark the Lisp pointers in the terminal objects.
5765 Called by the Fgarbage_collector. */
5766
5767 static void
5768 mark_terminals (void)
5769 {
5770 struct terminal *t;
5771 for (t = terminal_list; t; t = t->next_terminal)
5772 {
5773 eassert (t->name != NULL);
5774 if (!VECTOR_MARKED_P (t))
5775 {
5776 #ifdef HAVE_WINDOW_SYSTEM
5777 mark_image_cache (t->image_cache);
5778 #endif /* HAVE_WINDOW_SYSTEM */
5779 mark_vectorlike ((struct Lisp_Vector *)t);
5780 }
5781 }
5782 }
5783
5784
5785
5786 /* Value is non-zero if OBJ will survive the current GC because it's
5787 either marked or does not need to be marked to survive. */
5788
5789 int
5790 survives_gc_p (obj)
5791 Lisp_Object obj;
5792 {
5793 int survives_p;
5794
5795 switch (XTYPE (obj))
5796 {
5797 case_Lisp_Int:
5798 survives_p = 1;
5799 break;
5800
5801 case Lisp_Symbol:
5802 survives_p = XSYMBOL (obj)->gcmarkbit;
5803 break;
5804
5805 case Lisp_Misc:
5806 survives_p = XMISCANY (obj)->gcmarkbit;
5807 break;
5808
5809 case Lisp_String:
5810 survives_p = STRING_MARKED_P (XSTRING (obj));
5811 break;
5812
5813 case Lisp_Vectorlike:
5814 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5815 break;
5816
5817 case Lisp_Cons:
5818 survives_p = CONS_MARKED_P (XCONS (obj));
5819 break;
5820
5821 case Lisp_Float:
5822 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5823 break;
5824
5825 default:
5826 abort ();
5827 }
5828
5829 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5830 }
5831
5832
5833 \f
5834 /* Sweep: find all structures not marked, and free them. */
5835
5836 static void
5837 gc_sweep ()
5838 {
5839 /* Remove or mark entries in weak hash tables.
5840 This must be done before any object is unmarked. */
5841 sweep_weak_hash_tables ();
5842
5843 sweep_strings ();
5844 #ifdef GC_CHECK_STRING_BYTES
5845 if (!noninteractive)
5846 check_string_bytes (1);
5847 #endif
5848
5849 /* Put all unmarked conses on free list */
5850 {
5851 register struct cons_block *cblk;
5852 struct cons_block **cprev = &cons_block;
5853 register int lim = cons_block_index;
5854 register int num_free = 0, num_used = 0;
5855
5856 cons_free_list = 0;
5857
5858 for (cblk = cons_block; cblk; cblk = *cprev)
5859 {
5860 register int i = 0;
5861 int this_free = 0;
5862 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5863
5864 /* Scan the mark bits an int at a time. */
5865 for (i = 0; i <= ilim; i++)
5866 {
5867 if (cblk->gcmarkbits[i] == -1)
5868 {
5869 /* Fast path - all cons cells for this int are marked. */
5870 cblk->gcmarkbits[i] = 0;
5871 num_used += BITS_PER_INT;
5872 }
5873 else
5874 {
5875 /* Some cons cells for this int are not marked.
5876 Find which ones, and free them. */
5877 int start, pos, stop;
5878
5879 start = i * BITS_PER_INT;
5880 stop = lim - start;
5881 if (stop > BITS_PER_INT)
5882 stop = BITS_PER_INT;
5883 stop += start;
5884
5885 for (pos = start; pos < stop; pos++)
5886 {
5887 if (!CONS_MARKED_P (&cblk->conses[pos]))
5888 {
5889 this_free++;
5890 cblk->conses[pos].u.chain = cons_free_list;
5891 cons_free_list = &cblk->conses[pos];
5892 #if GC_MARK_STACK
5893 cons_free_list->car = Vdead;
5894 #endif
5895 }
5896 else
5897 {
5898 num_used++;
5899 CONS_UNMARK (&cblk->conses[pos]);
5900 }
5901 }
5902 }
5903 }
5904
5905 lim = CONS_BLOCK_SIZE;
5906 /* If this block contains only free conses and we have already
5907 seen more than two blocks worth of free conses then deallocate
5908 this block. */
5909 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5910 {
5911 *cprev = cblk->next;
5912 /* Unhook from the free list. */
5913 cons_free_list = cblk->conses[0].u.chain;
5914 lisp_align_free (cblk);
5915 n_cons_blocks--;
5916 }
5917 else
5918 {
5919 num_free += this_free;
5920 cprev = &cblk->next;
5921 }
5922 }
5923 total_conses = num_used;
5924 total_free_conses = num_free;
5925 }
5926
5927 /* Put all unmarked floats on free list */
5928 {
5929 register struct float_block *fblk;
5930 struct float_block **fprev = &float_block;
5931 register int lim = float_block_index;
5932 register int num_free = 0, num_used = 0;
5933
5934 float_free_list = 0;
5935
5936 for (fblk = float_block; fblk; fblk = *fprev)
5937 {
5938 register int i;
5939 int this_free = 0;
5940 for (i = 0; i < lim; i++)
5941 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5942 {
5943 this_free++;
5944 fblk->floats[i].u.chain = float_free_list;
5945 float_free_list = &fblk->floats[i];
5946 }
5947 else
5948 {
5949 num_used++;
5950 FLOAT_UNMARK (&fblk->floats[i]);
5951 }
5952 lim = FLOAT_BLOCK_SIZE;
5953 /* If this block contains only free floats and we have already
5954 seen more than two blocks worth of free floats then deallocate
5955 this block. */
5956 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5957 {
5958 *fprev = fblk->next;
5959 /* Unhook from the free list. */
5960 float_free_list = fblk->floats[0].u.chain;
5961 lisp_align_free (fblk);
5962 n_float_blocks--;
5963 }
5964 else
5965 {
5966 num_free += this_free;
5967 fprev = &fblk->next;
5968 }
5969 }
5970 total_floats = num_used;
5971 total_free_floats = num_free;
5972 }
5973
5974 /* Put all unmarked intervals on free list */
5975 {
5976 register struct interval_block *iblk;
5977 struct interval_block **iprev = &interval_block;
5978 register int lim = interval_block_index;
5979 register int num_free = 0, num_used = 0;
5980
5981 interval_free_list = 0;
5982
5983 for (iblk = interval_block; iblk; iblk = *iprev)
5984 {
5985 register int i;
5986 int this_free = 0;
5987
5988 for (i = 0; i < lim; i++)
5989 {
5990 if (!iblk->intervals[i].gcmarkbit)
5991 {
5992 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5993 interval_free_list = &iblk->intervals[i];
5994 this_free++;
5995 }
5996 else
5997 {
5998 num_used++;
5999 iblk->intervals[i].gcmarkbit = 0;
6000 }
6001 }
6002 lim = INTERVAL_BLOCK_SIZE;
6003 /* If this block contains only free intervals and we have already
6004 seen more than two blocks worth of free intervals then
6005 deallocate this block. */
6006 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6007 {
6008 *iprev = iblk->next;
6009 /* Unhook from the free list. */
6010 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6011 lisp_free (iblk);
6012 n_interval_blocks--;
6013 }
6014 else
6015 {
6016 num_free += this_free;
6017 iprev = &iblk->next;
6018 }
6019 }
6020 total_intervals = num_used;
6021 total_free_intervals = num_free;
6022 }
6023
6024 /* Put all unmarked symbols on free list */
6025 {
6026 register struct symbol_block *sblk;
6027 struct symbol_block **sprev = &symbol_block;
6028 register int lim = symbol_block_index;
6029 register int num_free = 0, num_used = 0;
6030
6031 symbol_free_list = NULL;
6032
6033 for (sblk = symbol_block; sblk; sblk = *sprev)
6034 {
6035 int this_free = 0;
6036 struct Lisp_Symbol *sym = sblk->symbols;
6037 struct Lisp_Symbol *end = sym + lim;
6038
6039 for (; sym < end; ++sym)
6040 {
6041 /* Check if the symbol was created during loadup. In such a case
6042 it might be pointed to by pure bytecode which we don't trace,
6043 so we conservatively assume that it is live. */
6044 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
6045
6046 if (!sym->gcmarkbit && !pure_p)
6047 {
6048 if (sym->redirect == SYMBOL_LOCALIZED)
6049 xfree (SYMBOL_BLV (sym));
6050 sym->next = symbol_free_list;
6051 symbol_free_list = sym;
6052 #if GC_MARK_STACK
6053 symbol_free_list->function = Vdead;
6054 #endif
6055 ++this_free;
6056 }
6057 else
6058 {
6059 ++num_used;
6060 if (!pure_p)
6061 UNMARK_STRING (XSTRING (sym->xname));
6062 sym->gcmarkbit = 0;
6063 }
6064 }
6065
6066 lim = SYMBOL_BLOCK_SIZE;
6067 /* If this block contains only free symbols and we have already
6068 seen more than two blocks worth of free symbols then deallocate
6069 this block. */
6070 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6071 {
6072 *sprev = sblk->next;
6073 /* Unhook from the free list. */
6074 symbol_free_list = sblk->symbols[0].next;
6075 lisp_free (sblk);
6076 n_symbol_blocks--;
6077 }
6078 else
6079 {
6080 num_free += this_free;
6081 sprev = &sblk->next;
6082 }
6083 }
6084 total_symbols = num_used;
6085 total_free_symbols = num_free;
6086 }
6087
6088 /* Put all unmarked misc's on free list.
6089 For a marker, first unchain it from the buffer it points into. */
6090 {
6091 register struct marker_block *mblk;
6092 struct marker_block **mprev = &marker_block;
6093 register int lim = marker_block_index;
6094 register int num_free = 0, num_used = 0;
6095
6096 marker_free_list = 0;
6097
6098 for (mblk = marker_block; mblk; mblk = *mprev)
6099 {
6100 register int i;
6101 int this_free = 0;
6102
6103 for (i = 0; i < lim; i++)
6104 {
6105 if (!mblk->markers[i].u_any.gcmarkbit)
6106 {
6107 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
6108 unchain_marker (&mblk->markers[i].u_marker);
6109 /* Set the type of the freed object to Lisp_Misc_Free.
6110 We could leave the type alone, since nobody checks it,
6111 but this might catch bugs faster. */
6112 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6113 mblk->markers[i].u_free.chain = marker_free_list;
6114 marker_free_list = &mblk->markers[i];
6115 this_free++;
6116 }
6117 else
6118 {
6119 num_used++;
6120 mblk->markers[i].u_any.gcmarkbit = 0;
6121 }
6122 }
6123 lim = MARKER_BLOCK_SIZE;
6124 /* If this block contains only free markers and we have already
6125 seen more than two blocks worth of free markers then deallocate
6126 this block. */
6127 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6128 {
6129 *mprev = mblk->next;
6130 /* Unhook from the free list. */
6131 marker_free_list = mblk->markers[0].u_free.chain;
6132 lisp_free (mblk);
6133 n_marker_blocks--;
6134 }
6135 else
6136 {
6137 num_free += this_free;
6138 mprev = &mblk->next;
6139 }
6140 }
6141
6142 total_markers = num_used;
6143 total_free_markers = num_free;
6144 }
6145
6146 /* Free all unmarked buffers */
6147 {
6148 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6149
6150 while (buffer)
6151 if (!VECTOR_MARKED_P (buffer))
6152 {
6153 if (prev)
6154 prev->next = buffer->next;
6155 else
6156 all_buffers = buffer->next;
6157 next = buffer->next;
6158 lisp_free (buffer);
6159 buffer = next;
6160 }
6161 else
6162 {
6163 VECTOR_UNMARK (buffer);
6164 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6165 prev = buffer, buffer = buffer->next;
6166 }
6167 }
6168
6169 /* Free all unmarked vectors */
6170 {
6171 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6172 total_vector_size = 0;
6173
6174 while (vector)
6175 if (!VECTOR_MARKED_P (vector))
6176 {
6177 if (prev)
6178 prev->next = vector->next;
6179 else
6180 all_vectors = vector->next;
6181 next = vector->next;
6182 lisp_free (vector);
6183 n_vectors--;
6184 vector = next;
6185
6186 }
6187 else
6188 {
6189 VECTOR_UNMARK (vector);
6190 if (vector->size & PSEUDOVECTOR_FLAG)
6191 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6192 else
6193 total_vector_size += vector->size;
6194 prev = vector, vector = vector->next;
6195 }
6196 }
6197
6198 #ifdef GC_CHECK_STRING_BYTES
6199 if (!noninteractive)
6200 check_string_bytes (1);
6201 #endif
6202 }
6203
6204
6205
6206 \f
6207 /* Debugging aids. */
6208
6209 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6210 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6211 This may be helpful in debugging Emacs's memory usage.
6212 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6213 ()
6214 {
6215 Lisp_Object end;
6216
6217 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6218
6219 return end;
6220 }
6221
6222 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6223 doc: /* Return a list of counters that measure how much consing there has been.
6224 Each of these counters increments for a certain kind of object.
6225 The counters wrap around from the largest positive integer to zero.
6226 Garbage collection does not decrease them.
6227 The elements of the value are as follows:
6228 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6229 All are in units of 1 = one object consed
6230 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6231 objects consed.
6232 MISCS include overlays, markers, and some internal types.
6233 Frames, windows, buffers, and subprocesses count as vectors
6234 (but the contents of a buffer's text do not count here). */)
6235 ()
6236 {
6237 Lisp_Object consed[8];
6238
6239 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6240 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6241 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6242 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6243 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6244 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6245 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6246 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6247
6248 return Flist (8, consed);
6249 }
6250
6251 int suppress_checking;
6252
6253 void
6254 die (msg, file, line)
6255 const char *msg;
6256 const char *file;
6257 int line;
6258 {
6259 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6260 file, line, msg);
6261 abort ();
6262 }
6263 \f
6264 /* Initialization */
6265
6266 void
6267 init_alloc_once ()
6268 {
6269 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6270 purebeg = PUREBEG;
6271 pure_size = PURESIZE;
6272 pure_bytes_used = 0;
6273 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6274 pure_bytes_used_before_overflow = 0;
6275
6276 /* Initialize the list of free aligned blocks. */
6277 free_ablock = NULL;
6278
6279 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6280 mem_init ();
6281 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6282 #endif
6283
6284 all_vectors = 0;
6285 ignore_warnings = 1;
6286 #ifdef DOUG_LEA_MALLOC
6287 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6288 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6289 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6290 #endif
6291 init_strings ();
6292 init_cons ();
6293 init_symbol ();
6294 init_marker ();
6295 init_float ();
6296 init_intervals ();
6297 init_weak_hash_tables ();
6298
6299 #ifdef REL_ALLOC
6300 malloc_hysteresis = 32;
6301 #else
6302 malloc_hysteresis = 0;
6303 #endif
6304
6305 refill_memory_reserve ();
6306
6307 ignore_warnings = 0;
6308 gcprolist = 0;
6309 byte_stack_list = 0;
6310 staticidx = 0;
6311 consing_since_gc = 0;
6312 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6313 gc_relative_threshold = 0;
6314
6315 #ifdef VIRT_ADDR_VARIES
6316 malloc_sbrk_unused = 1<<22; /* A large number */
6317 malloc_sbrk_used = 100000; /* as reasonable as any number */
6318 #endif /* VIRT_ADDR_VARIES */
6319 }
6320
6321 void
6322 init_alloc ()
6323 {
6324 gcprolist = 0;
6325 byte_stack_list = 0;
6326 #if GC_MARK_STACK
6327 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6328 setjmp_tested_p = longjmps_done = 0;
6329 #endif
6330 #endif
6331 Vgc_elapsed = make_float (0.0);
6332 gcs_done = 0;
6333 }
6334
6335 void
6336 syms_of_alloc ()
6337 {
6338 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6339 doc: /* *Number of bytes of consing between garbage collections.
6340 Garbage collection can happen automatically once this many bytes have been
6341 allocated since the last garbage collection. All data types count.
6342
6343 Garbage collection happens automatically only when `eval' is called.
6344
6345 By binding this temporarily to a large number, you can effectively
6346 prevent garbage collection during a part of the program.
6347 See also `gc-cons-percentage'. */);
6348
6349 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6350 doc: /* *Portion of the heap used for allocation.
6351 Garbage collection can happen automatically once this portion of the heap
6352 has been allocated since the last garbage collection.
6353 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6354 Vgc_cons_percentage = make_float (0.1);
6355
6356 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6357 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6358
6359 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6360 doc: /* Number of cons cells that have been consed so far. */);
6361
6362 DEFVAR_INT ("floats-consed", &floats_consed,
6363 doc: /* Number of floats that have been consed so far. */);
6364
6365 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6366 doc: /* Number of vector cells that have been consed so far. */);
6367
6368 DEFVAR_INT ("symbols-consed", &symbols_consed,
6369 doc: /* Number of symbols that have been consed so far. */);
6370
6371 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6372 doc: /* Number of string characters that have been consed so far. */);
6373
6374 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6375 doc: /* Number of miscellaneous objects that have been consed so far. */);
6376
6377 DEFVAR_INT ("intervals-consed", &intervals_consed,
6378 doc: /* Number of intervals that have been consed so far. */);
6379
6380 DEFVAR_INT ("strings-consed", &strings_consed,
6381 doc: /* Number of strings that have been consed so far. */);
6382
6383 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6384 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6385 This means that certain objects should be allocated in shared (pure) space.
6386 It can also be set to a hash-table, in which case this table is used to
6387 do hash-consing of the objects allocated to pure space. */);
6388
6389 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6390 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6391 garbage_collection_messages = 0;
6392
6393 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6394 doc: /* Hook run after garbage collection has finished. */);
6395 Vpost_gc_hook = Qnil;
6396 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6397 staticpro (&Qpost_gc_hook);
6398
6399 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6400 doc: /* Precomputed `signal' argument for memory-full error. */);
6401 /* We build this in advance because if we wait until we need it, we might
6402 not be able to allocate the memory to hold it. */
6403 Vmemory_signal_data
6404 = pure_cons (Qerror,
6405 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6406
6407 DEFVAR_LISP ("memory-full", &Vmemory_full,
6408 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6409 Vmemory_full = Qnil;
6410
6411 staticpro (&Qgc_cons_threshold);
6412 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6413
6414 staticpro (&Qchar_table_extra_slots);
6415 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6416
6417 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6418 doc: /* Accumulated time elapsed in garbage collections.
6419 The time is in seconds as a floating point value. */);
6420 DEFVAR_INT ("gcs-done", &gcs_done,
6421 doc: /* Accumulated number of garbage collections done. */);
6422
6423 defsubr (&Scons);
6424 defsubr (&Slist);
6425 defsubr (&Svector);
6426 defsubr (&Smake_byte_code);
6427 defsubr (&Smake_list);
6428 defsubr (&Smake_vector);
6429 defsubr (&Smake_string);
6430 defsubr (&Smake_bool_vector);
6431 defsubr (&Smake_symbol);
6432 defsubr (&Smake_marker);
6433 defsubr (&Spurecopy);
6434 defsubr (&Sgarbage_collect);
6435 defsubr (&Smemory_limit);
6436 defsubr (&Smemory_use_counts);
6437
6438 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6439 defsubr (&Sgc_status);
6440 #endif
6441 }
6442
6443 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6444 (do not change this comment) */