]> code.delx.au - gnu-emacs/blob - src/intervals.c
Support Chinese diary entries in calendar and diary
[gnu-emacs] / src / intervals.c
1 /* Code for doing intervals.
2 Copyright (C) 1993-1995, 1997-1998, 2001-2014 Free Software
3 Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 /* NOTES:
22
23 Have to ensure that we can't put symbol nil on a plist, or some
24 functions may work incorrectly.
25
26 An idea: Have the owner of the tree keep count of splits and/or
27 insertion lengths (in intervals), and balance after every N.
28
29 Need to call *_left_hook when buffer is killed.
30
31 Scan for zero-length, or 0-length to see notes about handling
32 zero length interval-markers.
33
34 There are comments around about freeing intervals. It might be
35 faster to explicitly free them (put them on the free list) than
36 to GC them.
37
38 */
39
40
41 #include <config.h>
42
43 #include <intprops.h>
44 #include "lisp.h"
45 #include "intervals.h"
46 #include "character.h"
47 #include "buffer.h"
48 #include "puresize.h"
49 #include "keyboard.h"
50 #include "keymap.h"
51
52 /* Test for membership, allowing for t (actually any non-cons) to mean the
53 universal set. */
54
55 #define TMEM(sym, set) (CONSP (set) ? ! NILP (Fmemq (sym, set)) : ! NILP (set))
56
57 static Lisp_Object merge_properties_sticky (Lisp_Object, Lisp_Object);
58 static INTERVAL merge_interval_right (INTERVAL);
59 static INTERVAL reproduce_tree (INTERVAL, INTERVAL);
60 \f
61 /* Utility functions for intervals. */
62
63 /* Use these functions to set pointer slots of struct interval. */
64
65 static void
66 set_interval_left (INTERVAL i, INTERVAL left)
67 {
68 i->left = left;
69 }
70
71 static void
72 set_interval_right (INTERVAL i, INTERVAL right)
73 {
74 i->right = right;
75 }
76
77 /* Make the parent of D be whatever the parent of S is, regardless
78 of the type. This is used when balancing an interval tree. */
79
80 static void
81 copy_interval_parent (INTERVAL d, INTERVAL s)
82 {
83 d->up = s->up;
84 d->up_obj = s->up_obj;
85 }
86
87 /* Create the root interval of some object, a buffer or string. */
88
89 INTERVAL
90 create_root_interval (Lisp_Object parent)
91 {
92 INTERVAL new;
93
94 CHECK_IMPURE (parent);
95
96 new = make_interval ();
97
98 if (BUFFERP (parent))
99 {
100 new->total_length = (BUF_Z (XBUFFER (parent))
101 - BUF_BEG (XBUFFER (parent)));
102 eassert (TOTAL_LENGTH (new) >= 0);
103 set_buffer_intervals (XBUFFER (parent), new);
104 new->position = BEG;
105 }
106 else if (STRINGP (parent))
107 {
108 new->total_length = SCHARS (parent);
109 eassert (TOTAL_LENGTH (new) >= 0);
110 set_string_intervals (parent, new);
111 new->position = 0;
112 }
113
114 set_interval_object (new, parent);
115
116 return new;
117 }
118
119 /* Make the interval TARGET have exactly the properties of SOURCE */
120
121 void
122 copy_properties (register INTERVAL source, register INTERVAL target)
123 {
124 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
125 return;
126
127 COPY_INTERVAL_CACHE (source, target);
128 set_interval_plist (target, Fcopy_sequence (source->plist));
129 }
130
131 /* Merge the properties of interval SOURCE into the properties
132 of interval TARGET. That is to say, each property in SOURCE
133 is added to TARGET if TARGET has no such property as yet. */
134
135 static void
136 merge_properties (register INTERVAL source, register INTERVAL target)
137 {
138 register Lisp_Object o, sym, val;
139
140 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
141 return;
142
143 MERGE_INTERVAL_CACHE (source, target);
144
145 o = source->plist;
146 while (CONSP (o))
147 {
148 sym = XCAR (o);
149 o = XCDR (o);
150 CHECK_CONS (o);
151
152 val = target->plist;
153 while (CONSP (val) && !EQ (XCAR (val), sym))
154 {
155 val = XCDR (val);
156 if (!CONSP (val))
157 break;
158 val = XCDR (val);
159 }
160
161 if (NILP (val))
162 {
163 val = XCAR (o);
164 set_interval_plist (target, Fcons (sym, Fcons (val, target->plist)));
165 }
166 o = XCDR (o);
167 }
168 }
169
170 /* Return true if the two intervals have the same properties. */
171
172 bool
173 intervals_equal (INTERVAL i0, INTERVAL i1)
174 {
175 Lisp_Object i0_cdr, i0_sym;
176 Lisp_Object i1_cdr, i1_val;
177
178 if (DEFAULT_INTERVAL_P (i0) && DEFAULT_INTERVAL_P (i1))
179 return 1;
180
181 if (DEFAULT_INTERVAL_P (i0) || DEFAULT_INTERVAL_P (i1))
182 return 0;
183
184 i0_cdr = i0->plist;
185 i1_cdr = i1->plist;
186 while (CONSP (i0_cdr) && CONSP (i1_cdr))
187 {
188 i0_sym = XCAR (i0_cdr);
189 i0_cdr = XCDR (i0_cdr);
190 if (!CONSP (i0_cdr))
191 return 0;
192 i1_val = i1->plist;
193 while (CONSP (i1_val) && !EQ (XCAR (i1_val), i0_sym))
194 {
195 i1_val = XCDR (i1_val);
196 if (!CONSP (i1_val))
197 return 0;
198 i1_val = XCDR (i1_val);
199 }
200
201 /* i0 has something i1 doesn't. */
202 if (EQ (i1_val, Qnil))
203 return 0;
204
205 /* i0 and i1 both have sym, but it has different values in each. */
206 if (!CONSP (i1_val)
207 || (i1_val = XCDR (i1_val), !CONSP (i1_val))
208 || !EQ (XCAR (i1_val), XCAR (i0_cdr)))
209 return 0;
210
211 i0_cdr = XCDR (i0_cdr);
212
213 i1_cdr = XCDR (i1_cdr);
214 if (!CONSP (i1_cdr))
215 return 0;
216 i1_cdr = XCDR (i1_cdr);
217 }
218
219 /* Lengths of the two plists were equal. */
220 return (NILP (i0_cdr) && NILP (i1_cdr));
221 }
222 \f
223
224 /* Traverse an interval tree TREE, performing FUNCTION on each node.
225 No guarantee is made about the order of traversal.
226 Pass FUNCTION two args: an interval, and ARG. */
227
228 void
229 traverse_intervals_noorder (INTERVAL tree, void (*function) (INTERVAL, Lisp_Object), Lisp_Object arg)
230 {
231 /* Minimize stack usage. */
232 while (tree)
233 {
234 (*function) (tree, arg);
235 if (!tree->right)
236 tree = tree->left;
237 else
238 {
239 traverse_intervals_noorder (tree->left, function, arg);
240 tree = tree->right;
241 }
242 }
243 }
244
245 /* Traverse an interval tree TREE, performing FUNCTION on each node.
246 Pass FUNCTION two args: an interval, and ARG. */
247
248 void
249 traverse_intervals (INTERVAL tree, ptrdiff_t position,
250 void (*function) (INTERVAL, Lisp_Object), Lisp_Object arg)
251 {
252 while (tree)
253 {
254 traverse_intervals (tree->left, position, function, arg);
255 position += LEFT_TOTAL_LENGTH (tree);
256 tree->position = position;
257 (*function) (tree, arg);
258 position += LENGTH (tree); tree = tree->right;
259 }
260 }
261 \f
262 #if 0
263
264 static int icount;
265 static int idepth;
266 static int zero_length;
267
268 /* These functions are temporary, for debugging purposes only. */
269
270 INTERVAL search_interval, found_interval;
271
272 void
273 check_for_interval (INTERVAL i)
274 {
275 if (i == search_interval)
276 {
277 found_interval = i;
278 icount++;
279 }
280 }
281
282 INTERVAL
283 search_for_interval (INTERVAL i, INTERVAL tree)
284 {
285 icount = 0;
286 search_interval = i;
287 found_interval = NULL;
288 traverse_intervals_noorder (tree, &check_for_interval, Qnil);
289 return found_interval;
290 }
291
292 static void
293 inc_interval_count (INTERVAL i)
294 {
295 icount++;
296 if (LENGTH (i) == 0)
297 zero_length++;
298 if (depth > idepth)
299 idepth = depth;
300 }
301
302 int
303 count_intervals (INTERVAL i)
304 {
305 icount = 0;
306 idepth = 0;
307 zero_length = 0;
308 traverse_intervals_noorder (i, &inc_interval_count, Qnil);
309
310 return icount;
311 }
312
313 static INTERVAL
314 root_interval (INTERVAL interval)
315 {
316 register INTERVAL i = interval;
317
318 while (! ROOT_INTERVAL_P (i))
319 i = INTERVAL_PARENT (i);
320
321 return i;
322 }
323 #endif
324 \f
325 /* Assuming that a left child exists, perform the following operation:
326
327 A B
328 / \ / \
329 B => A
330 / \ / \
331 c c
332 */
333
334 static INTERVAL
335 rotate_right (INTERVAL A)
336 {
337 INTERVAL B = A->left;
338 INTERVAL c = B->right;
339 ptrdiff_t old_total = A->total_length;
340
341 eassert (old_total > 0);
342 eassert (old_total
343 > TOTAL_LENGTH (B) + TOTAL_LENGTH (A->right));
344 eassert (TOTAL_LENGTH (B)
345 > TOTAL_LENGTH (B->left) + TOTAL_LENGTH (c));
346
347 /* Deal with any Parent of A; make it point to B. */
348 if (! ROOT_INTERVAL_P (A))
349 {
350 if (AM_LEFT_CHILD (A))
351 set_interval_left (INTERVAL_PARENT (A), B);
352 else
353 set_interval_right (INTERVAL_PARENT (A), B);
354 }
355 copy_interval_parent (B, A);
356
357 /* Make B the parent of A. */
358 set_interval_right (B, A);
359 set_interval_parent (A, B);
360
361 /* Make A point to c. */
362 set_interval_left (A, c);
363 if (c)
364 set_interval_parent (c, A);
365
366 /* A's total length is decreased by the length of B and its left child. */
367 A->total_length -= B->total_length - TOTAL_LENGTH (c);
368 eassert (TOTAL_LENGTH (A) > 0);
369
370 /* B must have the same total length of A. */
371 B->total_length = old_total;
372
373 return B;
374 }
375
376 /* Assuming that a right child exists, perform the following operation:
377
378 A B
379 / \ / \
380 B => A
381 / \ / \
382 c c
383 */
384
385 static INTERVAL
386 rotate_left (INTERVAL A)
387 {
388 INTERVAL B = A->right;
389 INTERVAL c = B->left;
390 ptrdiff_t old_total = A->total_length;
391
392 eassert (old_total > 0);
393 eassert (old_total
394 > TOTAL_LENGTH (B) + TOTAL_LENGTH (A->left));
395 eassert (TOTAL_LENGTH (B)
396 > TOTAL_LENGTH (B->right) + TOTAL_LENGTH (c));
397
398 /* Deal with any parent of A; make it point to B. */
399 if (! ROOT_INTERVAL_P (A))
400 {
401 if (AM_LEFT_CHILD (A))
402 set_interval_left (INTERVAL_PARENT (A), B);
403 else
404 set_interval_right (INTERVAL_PARENT (A), B);
405 }
406 copy_interval_parent (B, A);
407
408 /* Make B the parent of A. */
409 set_interval_left (B, A);
410 set_interval_parent (A, B);
411
412 /* Make A point to c. */
413 set_interval_right (A, c);
414 if (c)
415 set_interval_parent (c, A);
416
417 /* A's total length is decreased by the length of B and its right child. */
418 A->total_length -= B->total_length - TOTAL_LENGTH (c);
419 eassert (TOTAL_LENGTH (A) > 0);
420
421 /* B must have the same total length of A. */
422 B->total_length = old_total;
423
424 return B;
425 }
426 \f
427 /* Balance an interval tree with the assumption that the subtrees
428 themselves are already balanced. */
429
430 static INTERVAL
431 balance_an_interval (INTERVAL i)
432 {
433 register ptrdiff_t old_diff, new_diff;
434
435 while (1)
436 {
437 old_diff = LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i);
438 if (old_diff > 0)
439 {
440 /* Since the left child is longer, there must be one. */
441 new_diff = i->total_length - i->left->total_length
442 + RIGHT_TOTAL_LENGTH (i->left) - LEFT_TOTAL_LENGTH (i->left);
443 if (eabs (new_diff) >= old_diff)
444 break;
445 i = rotate_right (i);
446 balance_an_interval (i->right);
447 }
448 else if (old_diff < 0)
449 {
450 /* Since the right child is longer, there must be one. */
451 new_diff = i->total_length - i->right->total_length
452 + LEFT_TOTAL_LENGTH (i->right) - RIGHT_TOTAL_LENGTH (i->right);
453 if (eabs (new_diff) >= -old_diff)
454 break;
455 i = rotate_left (i);
456 balance_an_interval (i->left);
457 }
458 else
459 break;
460 }
461 return i;
462 }
463
464 /* Balance INTERVAL, potentially stuffing it back into its parent
465 Lisp Object. */
466
467 static INTERVAL
468 balance_possible_root_interval (INTERVAL interval)
469 {
470 Lisp_Object parent;
471 bool have_parent = 0;
472
473 if (!INTERVAL_HAS_OBJECT (interval) && !INTERVAL_HAS_PARENT (interval))
474 return interval;
475
476 if (INTERVAL_HAS_OBJECT (interval))
477 {
478 have_parent = 1;
479 GET_INTERVAL_OBJECT (parent, interval);
480 }
481 interval = balance_an_interval (interval);
482
483 if (have_parent)
484 {
485 if (BUFFERP (parent))
486 set_buffer_intervals (XBUFFER (parent), interval);
487 else if (STRINGP (parent))
488 set_string_intervals (parent, interval);
489 }
490
491 return interval;
492 }
493
494 /* Balance the interval tree TREE. Balancing is by weight
495 (the amount of text). */
496
497 static INTERVAL
498 balance_intervals_internal (register INTERVAL tree)
499 {
500 /* Balance within each side. */
501 if (tree->left)
502 balance_intervals_internal (tree->left);
503 if (tree->right)
504 balance_intervals_internal (tree->right);
505 return balance_an_interval (tree);
506 }
507
508 /* Advertised interface to balance intervals. */
509
510 INTERVAL
511 balance_intervals (INTERVAL tree)
512 {
513 return tree ? balance_intervals_internal (tree) : NULL;
514 }
515
516 /* Rebalance text properties of B. */
517
518 static void
519 buffer_balance_intervals (struct buffer *b)
520 {
521 INTERVAL i;
522
523 eassert (b != NULL);
524 i = buffer_intervals (b);
525 if (i)
526 set_buffer_intervals (b, balance_an_interval (i));
527 }
528
529 /* Split INTERVAL into two pieces, starting the second piece at
530 character position OFFSET (counting from 0), relative to INTERVAL.
531 INTERVAL becomes the left-hand piece, and the right-hand piece
532 (second, lexicographically) is returned.
533
534 The size and position fields of the two intervals are set based upon
535 those of the original interval. The property list of the new interval
536 is reset, thus it is up to the caller to do the right thing with the
537 result.
538
539 Note that this does not change the position of INTERVAL; if it is a root,
540 it is still a root after this operation. */
541
542 INTERVAL
543 split_interval_right (INTERVAL interval, ptrdiff_t offset)
544 {
545 INTERVAL new = make_interval ();
546 ptrdiff_t position = interval->position;
547 ptrdiff_t new_length = LENGTH (interval) - offset;
548
549 new->position = position + offset;
550 set_interval_parent (new, interval);
551
552 if (NULL_RIGHT_CHILD (interval))
553 {
554 set_interval_right (interval, new);
555 new->total_length = new_length;
556 eassert (TOTAL_LENGTH (new) >= 0);
557 }
558 else
559 {
560 /* Insert the new node between INTERVAL and its right child. */
561 set_interval_right (new, interval->right);
562 set_interval_parent (interval->right, new);
563 set_interval_right (interval, new);
564 new->total_length = new_length + new->right->total_length;
565 eassert (TOTAL_LENGTH (new) >= 0);
566 balance_an_interval (new);
567 }
568
569 balance_possible_root_interval (interval);
570
571 return new;
572 }
573
574 /* Split INTERVAL into two pieces, starting the second piece at
575 character position OFFSET (counting from 0), relative to INTERVAL.
576 INTERVAL becomes the right-hand piece, and the left-hand piece
577 (first, lexicographically) is returned.
578
579 The size and position fields of the two intervals are set based upon
580 those of the original interval. The property list of the new interval
581 is reset, thus it is up to the caller to do the right thing with the
582 result.
583
584 Note that this does not change the position of INTERVAL; if it is a root,
585 it is still a root after this operation. */
586
587 INTERVAL
588 split_interval_left (INTERVAL interval, ptrdiff_t offset)
589 {
590 INTERVAL new = make_interval ();
591 ptrdiff_t new_length = offset;
592
593 new->position = interval->position;
594 interval->position = interval->position + offset;
595 set_interval_parent (new, interval);
596
597 if (NULL_LEFT_CHILD (interval))
598 {
599 set_interval_left (interval, new);
600 new->total_length = new_length;
601 eassert (TOTAL_LENGTH (new) >= 0);
602 }
603 else
604 {
605 /* Insert the new node between INTERVAL and its left child. */
606 set_interval_left (new, interval->left);
607 set_interval_parent (new->left, new);
608 set_interval_left (interval, new);
609 new->total_length = new_length + new->left->total_length;
610 eassert (TOTAL_LENGTH (new) >= 0);
611 balance_an_interval (new);
612 }
613
614 balance_possible_root_interval (interval);
615
616 return new;
617 }
618 \f
619 /* Return the proper position for the first character
620 described by the interval tree SOURCE.
621 This is 1 if the parent is a buffer,
622 0 if the parent is a string or if there is no parent.
623
624 Don't use this function on an interval which is the child
625 of another interval! */
626
627 static int
628 interval_start_pos (INTERVAL source)
629 {
630 Lisp_Object parent;
631
632 if (!source)
633 return 0;
634
635 if (! INTERVAL_HAS_OBJECT (source))
636 return 0;
637 GET_INTERVAL_OBJECT (parent, source);
638 if (BUFFERP (parent))
639 return BUF_BEG (XBUFFER (parent));
640 return 0;
641 }
642
643 /* Find the interval containing text position POSITION in the text
644 represented by the interval tree TREE. POSITION is a buffer
645 position (starting from 1) or a string index (starting from 0).
646 If POSITION is at the end of the buffer or string,
647 return the interval containing the last character.
648
649 The `position' field, which is a cache of an interval's position,
650 is updated in the interval found. Other functions (e.g., next_interval)
651 will update this cache based on the result of find_interval. */
652
653 INTERVAL
654 find_interval (register INTERVAL tree, register ptrdiff_t position)
655 {
656 /* The distance from the left edge of the subtree at TREE
657 to POSITION. */
658 register ptrdiff_t relative_position;
659
660 if (!tree)
661 return NULL;
662
663 relative_position = position;
664 if (INTERVAL_HAS_OBJECT (tree))
665 {
666 Lisp_Object parent;
667 GET_INTERVAL_OBJECT (parent, tree);
668 if (BUFFERP (parent))
669 relative_position -= BUF_BEG (XBUFFER (parent));
670 }
671
672 eassert (relative_position <= TOTAL_LENGTH (tree));
673
674 tree = balance_possible_root_interval (tree);
675
676 while (1)
677 {
678 eassert (tree);
679 if (relative_position < LEFT_TOTAL_LENGTH (tree))
680 {
681 tree = tree->left;
682 }
683 else if (! NULL_RIGHT_CHILD (tree)
684 && relative_position >= (TOTAL_LENGTH (tree)
685 - RIGHT_TOTAL_LENGTH (tree)))
686 {
687 relative_position -= (TOTAL_LENGTH (tree)
688 - RIGHT_TOTAL_LENGTH (tree));
689 tree = tree->right;
690 }
691 else
692 {
693 tree->position
694 = (position - relative_position /* left edge of *tree. */
695 + LEFT_TOTAL_LENGTH (tree)); /* left edge of this interval. */
696
697 return tree;
698 }
699 }
700 }
701 \f
702 /* Find the succeeding interval (lexicographically) to INTERVAL.
703 Sets the `position' field based on that of INTERVAL (see
704 find_interval). */
705
706 INTERVAL
707 next_interval (register INTERVAL interval)
708 {
709 register INTERVAL i = interval;
710 register ptrdiff_t next_position;
711
712 if (!i)
713 return NULL;
714 next_position = interval->position + LENGTH (interval);
715
716 if (! NULL_RIGHT_CHILD (i))
717 {
718 i = i->right;
719 while (! NULL_LEFT_CHILD (i))
720 i = i->left;
721
722 i->position = next_position;
723 return i;
724 }
725
726 while (! NULL_PARENT (i))
727 {
728 if (AM_LEFT_CHILD (i))
729 {
730 i = INTERVAL_PARENT (i);
731 i->position = next_position;
732 return i;
733 }
734
735 i = INTERVAL_PARENT (i);
736 }
737
738 return NULL;
739 }
740
741 /* Find the preceding interval (lexicographically) to INTERVAL.
742 Sets the `position' field based on that of INTERVAL (see
743 find_interval). */
744
745 INTERVAL
746 previous_interval (register INTERVAL interval)
747 {
748 register INTERVAL i;
749
750 if (!interval)
751 return NULL;
752
753 if (! NULL_LEFT_CHILD (interval))
754 {
755 i = interval->left;
756 while (! NULL_RIGHT_CHILD (i))
757 i = i->right;
758
759 i->position = interval->position - LENGTH (i);
760 return i;
761 }
762
763 i = interval;
764 while (! NULL_PARENT (i))
765 {
766 if (AM_RIGHT_CHILD (i))
767 {
768 i = INTERVAL_PARENT (i);
769
770 i->position = interval->position - LENGTH (i);
771 return i;
772 }
773 i = INTERVAL_PARENT (i);
774 }
775
776 return NULL;
777 }
778
779 /* Find the interval containing POS given some non-NULL INTERVAL
780 in the same tree. Note that we need to update interval->position
781 if we go down the tree.
782 To speed up the process, we assume that the ->position of
783 I and all its parents is already uptodate. */
784 INTERVAL
785 update_interval (register INTERVAL i, ptrdiff_t pos)
786 {
787 if (!i)
788 return NULL;
789
790 while (1)
791 {
792 if (pos < i->position)
793 {
794 /* Move left. */
795 if (pos >= i->position - TOTAL_LENGTH (i->left))
796 {
797 i->left->position = i->position - TOTAL_LENGTH (i->left)
798 + LEFT_TOTAL_LENGTH (i->left);
799 i = i->left; /* Move to the left child */
800 }
801 else if (NULL_PARENT (i))
802 error ("Point before start of properties");
803 else
804 i = INTERVAL_PARENT (i);
805 continue;
806 }
807 else if (pos >= INTERVAL_LAST_POS (i))
808 {
809 /* Move right. */
810 if (pos < INTERVAL_LAST_POS (i) + TOTAL_LENGTH (i->right))
811 {
812 i->right->position = INTERVAL_LAST_POS (i)
813 + LEFT_TOTAL_LENGTH (i->right);
814 i = i->right; /* Move to the right child */
815 }
816 else if (NULL_PARENT (i))
817 error ("Point %"pD"d after end of properties", pos);
818 else
819 i = INTERVAL_PARENT (i);
820 continue;
821 }
822 else
823 return i;
824 }
825 }
826
827 /* Effect an adjustment corresponding to the addition of LENGTH characters
828 of text. Do this by finding the interval containing POSITION in the
829 interval tree TREE, and then adjusting all of its ancestors by adding
830 LENGTH to them.
831
832 If POSITION is the first character of an interval, meaning that point
833 is actually between the two intervals, make the new text belong to
834 the interval which is "sticky".
835
836 If both intervals are "sticky", then make them belong to the left-most
837 interval. Another possibility would be to create a new interval for
838 this text, and make it have the merged properties of both ends. */
839
840 static INTERVAL
841 adjust_intervals_for_insertion (INTERVAL tree,
842 ptrdiff_t position, ptrdiff_t length)
843 {
844 INTERVAL i;
845 INTERVAL temp;
846 bool eobp = 0;
847 Lisp_Object parent;
848 ptrdiff_t offset;
849
850 eassert (TOTAL_LENGTH (tree) > 0);
851
852 GET_INTERVAL_OBJECT (parent, tree);
853 offset = (BUFFERP (parent) ? BUF_BEG (XBUFFER (parent)) : 0);
854
855 /* If inserting at point-max of a buffer, that position will be out
856 of range. Remember that buffer positions are 1-based. */
857 if (position >= TOTAL_LENGTH (tree) + offset)
858 {
859 position = TOTAL_LENGTH (tree) + offset;
860 eobp = 1;
861 }
862
863 i = find_interval (tree, position);
864
865 /* If in middle of an interval which is not sticky either way,
866 we must not just give its properties to the insertion.
867 So split this interval at the insertion point.
868
869 Originally, the if condition here was this:
870 (! (position == i->position || eobp)
871 && END_NONSTICKY_P (i)
872 && FRONT_NONSTICKY_P (i))
873 But, these macros are now unreliable because of introduction of
874 Vtext_property_default_nonsticky. So, we always check properties
875 one by one if POSITION is in middle of an interval. */
876 if (! (position == i->position || eobp))
877 {
878 Lisp_Object tail;
879 Lisp_Object front, rear;
880
881 tail = i->plist;
882
883 /* Properties font-sticky and rear-nonsticky override
884 Vtext_property_default_nonsticky. So, if they are t, we can
885 skip one by one checking of properties. */
886 rear = textget (i->plist, Qrear_nonsticky);
887 if (! CONSP (rear) && ! NILP (rear))
888 {
889 /* All properties are nonsticky. We split the interval. */
890 goto check_done;
891 }
892 front = textget (i->plist, Qfront_sticky);
893 if (! CONSP (front) && ! NILP (front))
894 {
895 /* All properties are sticky. We don't split the interval. */
896 tail = Qnil;
897 goto check_done;
898 }
899
900 /* Does any actual property pose an actual problem? We break
901 the loop if we find a nonsticky property. */
902 for (; CONSP (tail); tail = Fcdr (XCDR (tail)))
903 {
904 Lisp_Object prop, tmp;
905 prop = XCAR (tail);
906
907 /* Is this particular property front-sticky? */
908 if (CONSP (front) && ! NILP (Fmemq (prop, front)))
909 continue;
910
911 /* Is this particular property rear-nonsticky? */
912 if (CONSP (rear) && ! NILP (Fmemq (prop, rear)))
913 break;
914
915 /* Is this particular property recorded as sticky or
916 nonsticky in Vtext_property_default_nonsticky? */
917 tmp = Fassq (prop, Vtext_property_default_nonsticky);
918 if (CONSP (tmp))
919 {
920 if (NILP (tmp))
921 continue;
922 break;
923 }
924
925 /* By default, a text property is rear-sticky, thus we
926 continue the loop. */
927 }
928
929 check_done:
930 /* If any property is a real problem, split the interval. */
931 if (! NILP (tail))
932 {
933 temp = split_interval_right (i, position - i->position);
934 copy_properties (i, temp);
935 i = temp;
936 }
937 }
938
939 /* If we are positioned between intervals, check the stickiness of
940 both of them. We have to do this too, if we are at BEG or Z. */
941 if (position == i->position || eobp)
942 {
943 register INTERVAL prev;
944
945 if (position == BEG)
946 prev = 0;
947 else if (eobp)
948 {
949 prev = i;
950 i = 0;
951 }
952 else
953 prev = previous_interval (i);
954
955 /* Even if we are positioned between intervals, we default
956 to the left one if it exists. We extend it now and split
957 off a part later, if stickiness demands it. */
958 for (temp = prev ? prev : i; temp; temp = INTERVAL_PARENT_OR_NULL (temp))
959 {
960 temp->total_length += length;
961 eassert (TOTAL_LENGTH (temp) >= 0);
962 temp = balance_possible_root_interval (temp);
963 }
964
965 /* If at least one interval has sticky properties,
966 we check the stickiness property by property.
967
968 Originally, the if condition here was this:
969 (END_NONSTICKY_P (prev) || FRONT_STICKY_P (i))
970 But, these macros are now unreliable because of introduction
971 of Vtext_property_default_nonsticky. So, we always have to
972 check stickiness of properties one by one. If cache of
973 stickiness is implemented in the future, we may be able to
974 use those macros again. */
975 if (1)
976 {
977 Lisp_Object pleft, pright;
978 struct interval newi;
979
980 RESET_INTERVAL (&newi);
981 pleft = prev ? prev->plist : Qnil;
982 pright = i ? i->plist : Qnil;
983 set_interval_plist (&newi, merge_properties_sticky (pleft, pright));
984
985 if (! prev) /* i.e. position == BEG */
986 {
987 if (! intervals_equal (i, &newi))
988 {
989 i = split_interval_left (i, length);
990 set_interval_plist (i, newi.plist);
991 }
992 }
993 else if (! intervals_equal (prev, &newi))
994 {
995 prev = split_interval_right (prev, position - prev->position);
996 set_interval_plist (prev, newi.plist);
997 if (i && intervals_equal (prev, i))
998 merge_interval_right (prev);
999 }
1000
1001 /* We will need to update the cache here later. */
1002 }
1003 else if (! prev && ! NILP (i->plist))
1004 {
1005 /* Just split off a new interval at the left.
1006 Since I wasn't front-sticky, the empty plist is ok. */
1007 i = split_interval_left (i, length);
1008 }
1009 }
1010
1011 /* Otherwise just extend the interval. */
1012 else
1013 {
1014 for (temp = i; temp; temp = INTERVAL_PARENT_OR_NULL (temp))
1015 {
1016 temp->total_length += length;
1017 eassert (TOTAL_LENGTH (temp) >= 0);
1018 temp = balance_possible_root_interval (temp);
1019 }
1020 }
1021
1022 return tree;
1023 }
1024
1025 /* Any property might be front-sticky on the left, rear-sticky on the left,
1026 front-sticky on the right, or rear-sticky on the right; the 16 combinations
1027 can be arranged in a matrix with rows denoting the left conditions and
1028 columns denoting the right conditions:
1029 _ __ _
1030 _ FR FR FR FR
1031 FR__ 0 1 2 3
1032 _FR 4 5 6 7
1033 FR 8 9 A B
1034 FR C D E F
1035
1036 left-props = '(front-sticky (p8 p9 pa pb pc pd pe pf)
1037 rear-nonsticky (p4 p5 p6 p7 p8 p9 pa pb)
1038 p0 L p1 L p2 L p3 L p4 L p5 L p6 L p7 L
1039 p8 L p9 L pa L pb L pc L pd L pe L pf L)
1040 right-props = '(front-sticky (p2 p3 p6 p7 pa pb pe pf)
1041 rear-nonsticky (p1 p2 p5 p6 p9 pa pd pe)
1042 p0 R p1 R p2 R p3 R p4 R p5 R p6 R p7 R
1043 p8 R p9 R pa R pb R pc R pd R pe R pf R)
1044
1045 We inherit from whoever has a sticky side facing us. If both sides
1046 do (cases 2, 3, E, and F), then we inherit from whichever side has a
1047 non-nil value for the current property. If both sides do, then we take
1048 from the left.
1049
1050 When we inherit a property, we get its stickiness as well as its value.
1051 So, when we merge the above two lists, we expect to get this:
1052
1053 result = '(front-sticky (p6 p7 pa pb pc pd pe pf)
1054 rear-nonsticky (p6 pa)
1055 p0 L p1 L p2 L p3 L p6 R p7 R
1056 pa R pb R pc L pd L pe L pf L)
1057
1058 The optimizable special cases are:
1059 left rear-nonsticky = nil, right front-sticky = nil (inherit left)
1060 left rear-nonsticky = t, right front-sticky = t (inherit right)
1061 left rear-nonsticky = t, right front-sticky = nil (inherit none)
1062 */
1063
1064 static Lisp_Object
1065 merge_properties_sticky (Lisp_Object pleft, Lisp_Object pright)
1066 {
1067 Lisp_Object props, front, rear;
1068 Lisp_Object lfront, lrear, rfront, rrear;
1069 Lisp_Object tail1, tail2, sym, lval, rval, cat;
1070 bool use_left, use_right, lpresent;
1071
1072 props = Qnil;
1073 front = Qnil;
1074 rear = Qnil;
1075 lfront = textget (pleft, Qfront_sticky);
1076 lrear = textget (pleft, Qrear_nonsticky);
1077 rfront = textget (pright, Qfront_sticky);
1078 rrear = textget (pright, Qrear_nonsticky);
1079
1080 /* Go through each element of PRIGHT. */
1081 for (tail1 = pright; CONSP (tail1); tail1 = Fcdr (XCDR (tail1)))
1082 {
1083 Lisp_Object tmp;
1084
1085 sym = XCAR (tail1);
1086
1087 /* Sticky properties get special treatment. */
1088 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1089 continue;
1090
1091 rval = Fcar (XCDR (tail1));
1092 for (tail2 = pleft; CONSP (tail2); tail2 = Fcdr (XCDR (tail2)))
1093 if (EQ (sym, XCAR (tail2)))
1094 break;
1095
1096 /* Indicate whether the property is explicitly defined on the left.
1097 (We know it is defined explicitly on the right
1098 because otherwise we don't get here.) */
1099 lpresent = ! NILP (tail2);
1100 lval = (NILP (tail2) ? Qnil : Fcar (Fcdr (tail2)));
1101
1102 /* Even if lrear or rfront say nothing about the stickiness of
1103 SYM, Vtext_property_default_nonsticky may give default
1104 stickiness to SYM. */
1105 tmp = Fassq (sym, Vtext_property_default_nonsticky);
1106 use_left = (lpresent
1107 && ! (TMEM (sym, lrear)
1108 || (CONSP (tmp) && ! NILP (XCDR (tmp)))));
1109 use_right = (TMEM (sym, rfront)
1110 || (CONSP (tmp) && NILP (XCDR (tmp))));
1111 if (use_left && use_right)
1112 {
1113 if (NILP (lval))
1114 use_left = 0;
1115 else if (NILP (rval))
1116 use_right = 0;
1117 }
1118 if (use_left)
1119 {
1120 /* We build props as (value sym ...) rather than (sym value ...)
1121 because we plan to nreverse it when we're done. */
1122 props = Fcons (lval, Fcons (sym, props));
1123 if (TMEM (sym, lfront))
1124 front = Fcons (sym, front);
1125 if (TMEM (sym, lrear))
1126 rear = Fcons (sym, rear);
1127 }
1128 else if (use_right)
1129 {
1130 props = Fcons (rval, Fcons (sym, props));
1131 if (TMEM (sym, rfront))
1132 front = Fcons (sym, front);
1133 if (TMEM (sym, rrear))
1134 rear = Fcons (sym, rear);
1135 }
1136 }
1137
1138 /* Now go through each element of PLEFT. */
1139 for (tail2 = pleft; CONSP (tail2); tail2 = Fcdr (XCDR (tail2)))
1140 {
1141 Lisp_Object tmp;
1142
1143 sym = XCAR (tail2);
1144
1145 /* Sticky properties get special treatment. */
1146 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1147 continue;
1148
1149 /* If sym is in PRIGHT, we've already considered it. */
1150 for (tail1 = pright; CONSP (tail1); tail1 = Fcdr (XCDR (tail1)))
1151 if (EQ (sym, XCAR (tail1)))
1152 break;
1153 if (! NILP (tail1))
1154 continue;
1155
1156 lval = Fcar (XCDR (tail2));
1157
1158 /* Even if lrear or rfront say nothing about the stickiness of
1159 SYM, Vtext_property_default_nonsticky may give default
1160 stickiness to SYM. */
1161 tmp = Fassq (sym, Vtext_property_default_nonsticky);
1162
1163 /* Since rval is known to be nil in this loop, the test simplifies. */
1164 if (! (TMEM (sym, lrear) || (CONSP (tmp) && ! NILP (XCDR (tmp)))))
1165 {
1166 props = Fcons (lval, Fcons (sym, props));
1167 if (TMEM (sym, lfront))
1168 front = Fcons (sym, front);
1169 }
1170 else if (TMEM (sym, rfront) || (CONSP (tmp) && NILP (XCDR (tmp))))
1171 {
1172 /* The value is nil, but we still inherit the stickiness
1173 from the right. */
1174 front = Fcons (sym, front);
1175 if (TMEM (sym, rrear))
1176 rear = Fcons (sym, rear);
1177 }
1178 }
1179 props = Fnreverse (props);
1180 if (! NILP (rear))
1181 props = Fcons (Qrear_nonsticky, Fcons (Fnreverse (rear), props));
1182
1183 cat = textget (props, Qcategory);
1184 if (! NILP (front)
1185 &&
1186 /* If we have inherited a front-stick category property that is t,
1187 we don't need to set up a detailed one. */
1188 ! (! NILP (cat) && SYMBOLP (cat)
1189 && EQ (Fget (cat, Qfront_sticky), Qt)))
1190 props = Fcons (Qfront_sticky, Fcons (Fnreverse (front), props));
1191 return props;
1192 }
1193
1194 \f
1195 /* Delete a node I from its interval tree by merging its subtrees
1196 into one subtree which is then returned. Caller is responsible for
1197 storing the resulting subtree into its parent. */
1198
1199 static INTERVAL
1200 delete_node (register INTERVAL i)
1201 {
1202 register INTERVAL migrate, this;
1203 register ptrdiff_t migrate_amt;
1204
1205 if (!i->left)
1206 return i->right;
1207 if (!i->right)
1208 return i->left;
1209
1210 migrate = i->left;
1211 migrate_amt = i->left->total_length;
1212 this = i->right;
1213 this->total_length += migrate_amt;
1214 while (this->left)
1215 {
1216 this = this->left;
1217 this->total_length += migrate_amt;
1218 }
1219 eassert (TOTAL_LENGTH (this) >= 0);
1220 set_interval_left (this, migrate);
1221 set_interval_parent (migrate, this);
1222
1223 return i->right;
1224 }
1225
1226 /* Delete interval I from its tree by calling `delete_node'
1227 and properly connecting the resultant subtree.
1228
1229 I is presumed to be empty; that is, no adjustments are made
1230 for the length of I. */
1231
1232 static void
1233 delete_interval (register INTERVAL i)
1234 {
1235 register INTERVAL parent;
1236 ptrdiff_t amt = LENGTH (i);
1237
1238 eassert (amt == 0); /* Only used on zero-length intervals now. */
1239
1240 if (ROOT_INTERVAL_P (i))
1241 {
1242 Lisp_Object owner;
1243 GET_INTERVAL_OBJECT (owner, i);
1244 parent = delete_node (i);
1245 if (parent)
1246 set_interval_object (parent, owner);
1247
1248 if (BUFFERP (owner))
1249 set_buffer_intervals (XBUFFER (owner), parent);
1250 else if (STRINGP (owner))
1251 set_string_intervals (owner, parent);
1252 else
1253 emacs_abort ();
1254
1255 return;
1256 }
1257
1258 parent = INTERVAL_PARENT (i);
1259 if (AM_LEFT_CHILD (i))
1260 {
1261 set_interval_left (parent, delete_node (i));
1262 if (parent->left)
1263 set_interval_parent (parent->left, parent);
1264 }
1265 else
1266 {
1267 set_interval_right (parent, delete_node (i));
1268 if (parent->right)
1269 set_interval_parent (parent->right, parent);
1270 }
1271 }
1272 \f
1273 /* Find the interval in TREE corresponding to the relative position
1274 FROM and delete as much as possible of AMOUNT from that interval.
1275 Return the amount actually deleted, and if the interval was
1276 zeroed-out, delete that interval node from the tree.
1277
1278 Note that FROM is actually origin zero, aka relative to the
1279 leftmost edge of tree. This is appropriate since we call ourselves
1280 recursively on subtrees.
1281
1282 Do this by recursing down TREE to the interval in question, and
1283 deleting the appropriate amount of text. */
1284
1285 static ptrdiff_t
1286 interval_deletion_adjustment (register INTERVAL tree, register ptrdiff_t from,
1287 register ptrdiff_t amount)
1288 {
1289 register ptrdiff_t relative_position = from;
1290
1291 if (!tree)
1292 return 0;
1293
1294 /* Left branch. */
1295 if (relative_position < LEFT_TOTAL_LENGTH (tree))
1296 {
1297 ptrdiff_t subtract = interval_deletion_adjustment (tree->left,
1298 relative_position,
1299 amount);
1300 tree->total_length -= subtract;
1301 eassert (TOTAL_LENGTH (tree) >= 0);
1302 return subtract;
1303 }
1304 /* Right branch. */
1305 else if (relative_position >= (TOTAL_LENGTH (tree)
1306 - RIGHT_TOTAL_LENGTH (tree)))
1307 {
1308 ptrdiff_t subtract;
1309
1310 relative_position -= (tree->total_length
1311 - RIGHT_TOTAL_LENGTH (tree));
1312 subtract = interval_deletion_adjustment (tree->right,
1313 relative_position,
1314 amount);
1315 tree->total_length -= subtract;
1316 eassert (TOTAL_LENGTH (tree) >= 0);
1317 return subtract;
1318 }
1319 /* Here -- this node. */
1320 else
1321 {
1322 /* How much can we delete from this interval? */
1323 ptrdiff_t my_amount = ((tree->total_length
1324 - RIGHT_TOTAL_LENGTH (tree))
1325 - relative_position);
1326
1327 if (amount > my_amount)
1328 amount = my_amount;
1329
1330 tree->total_length -= amount;
1331 eassert (TOTAL_LENGTH (tree) >= 0);
1332 if (LENGTH (tree) == 0)
1333 delete_interval (tree);
1334
1335 return amount;
1336 }
1337
1338 /* Never reach here. */
1339 }
1340
1341 /* Effect the adjustments necessary to the interval tree of BUFFER to
1342 correspond to the deletion of LENGTH characters from that buffer
1343 text. The deletion is effected at position START (which is a
1344 buffer position, i.e. origin 1). */
1345
1346 static void
1347 adjust_intervals_for_deletion (struct buffer *buffer,
1348 ptrdiff_t start, ptrdiff_t length)
1349 {
1350 ptrdiff_t left_to_delete = length;
1351 INTERVAL tree = buffer_intervals (buffer);
1352 Lisp_Object parent;
1353 ptrdiff_t offset;
1354
1355 GET_INTERVAL_OBJECT (parent, tree);
1356 offset = (BUFFERP (parent) ? BUF_BEG (XBUFFER (parent)) : 0);
1357
1358 if (!tree)
1359 return;
1360
1361 eassert (start <= offset + TOTAL_LENGTH (tree)
1362 && start + length <= offset + TOTAL_LENGTH (tree));
1363
1364 if (length == TOTAL_LENGTH (tree))
1365 {
1366 set_buffer_intervals (buffer, NULL);
1367 return;
1368 }
1369
1370 if (ONLY_INTERVAL_P (tree))
1371 {
1372 tree->total_length -= length;
1373 eassert (TOTAL_LENGTH (tree) >= 0);
1374 return;
1375 }
1376
1377 if (start > offset + TOTAL_LENGTH (tree))
1378 start = offset + TOTAL_LENGTH (tree);
1379 while (left_to_delete > 0)
1380 {
1381 left_to_delete -= interval_deletion_adjustment (tree, start - offset,
1382 left_to_delete);
1383 tree = buffer_intervals (buffer);
1384 if (left_to_delete == tree->total_length)
1385 {
1386 set_buffer_intervals (buffer, NULL);
1387 return;
1388 }
1389 }
1390 }
1391 \f
1392 /* Make the adjustments necessary to the interval tree of BUFFER to
1393 represent an addition or deletion of LENGTH characters starting
1394 at position START. Addition or deletion is indicated by the sign
1395 of LENGTH. */
1396
1397 void
1398 offset_intervals (struct buffer *buffer, ptrdiff_t start, ptrdiff_t length)
1399 {
1400 if (!buffer_intervals (buffer) || length == 0)
1401 return;
1402
1403 if (length > 0)
1404 adjust_intervals_for_insertion (buffer_intervals (buffer),
1405 start, length);
1406 else
1407 adjust_intervals_for_deletion (buffer, start, -length);
1408 }
1409 \f
1410 /* Merge interval I with its lexicographic successor. The resulting
1411 interval is returned, and has the properties of the original
1412 successor. The properties of I are lost. I is removed from the
1413 interval tree.
1414
1415 IMPORTANT:
1416 The caller must verify that this is not the last (rightmost)
1417 interval. */
1418
1419 static INTERVAL
1420 merge_interval_right (register INTERVAL i)
1421 {
1422 register ptrdiff_t absorb = LENGTH (i);
1423 register INTERVAL successor;
1424
1425 /* Find the succeeding interval. */
1426 if (! NULL_RIGHT_CHILD (i)) /* It's below us. Add absorb
1427 as we descend. */
1428 {
1429 successor = i->right;
1430 while (! NULL_LEFT_CHILD (successor))
1431 {
1432 successor->total_length += absorb;
1433 eassert (TOTAL_LENGTH (successor) >= 0);
1434 successor = successor->left;
1435 }
1436
1437 successor->total_length += absorb;
1438 eassert (TOTAL_LENGTH (successor) >= 0);
1439 delete_interval (i);
1440 return successor;
1441 }
1442
1443 /* Zero out this interval. */
1444 i->total_length -= absorb;
1445 eassert (TOTAL_LENGTH (i) >= 0);
1446
1447 successor = i;
1448 while (! NULL_PARENT (successor)) /* It's above us. Subtract as
1449 we ascend. */
1450 {
1451 if (AM_LEFT_CHILD (successor))
1452 {
1453 successor = INTERVAL_PARENT (successor);
1454 delete_interval (i);
1455 return successor;
1456 }
1457
1458 successor = INTERVAL_PARENT (successor);
1459 successor->total_length -= absorb;
1460 eassert (TOTAL_LENGTH (successor) >= 0);
1461 }
1462
1463 /* This must be the rightmost or last interval and cannot
1464 be merged right. The caller should have known. */
1465 emacs_abort ();
1466 }
1467 \f
1468 /* Merge interval I with its lexicographic predecessor. The resulting
1469 interval is returned, and has the properties of the original predecessor.
1470 The properties of I are lost. Interval node I is removed from the tree.
1471
1472 IMPORTANT:
1473 The caller must verify that this is not the first (leftmost) interval. */
1474
1475 INTERVAL
1476 merge_interval_left (register INTERVAL i)
1477 {
1478 register ptrdiff_t absorb = LENGTH (i);
1479 register INTERVAL predecessor;
1480
1481 /* Find the preceding interval. */
1482 if (! NULL_LEFT_CHILD (i)) /* It's below us. Go down,
1483 adding ABSORB as we go. */
1484 {
1485 predecessor = i->left;
1486 while (! NULL_RIGHT_CHILD (predecessor))
1487 {
1488 predecessor->total_length += absorb;
1489 eassert (TOTAL_LENGTH (predecessor) >= 0);
1490 predecessor = predecessor->right;
1491 }
1492
1493 predecessor->total_length += absorb;
1494 eassert (TOTAL_LENGTH (predecessor) >= 0);
1495 delete_interval (i);
1496 return predecessor;
1497 }
1498
1499 /* Zero out this interval. */
1500 i->total_length -= absorb;
1501 eassert (TOTAL_LENGTH (i) >= 0);
1502
1503 predecessor = i;
1504 while (! NULL_PARENT (predecessor)) /* It's above us. Go up,
1505 subtracting ABSORB. */
1506 {
1507 if (AM_RIGHT_CHILD (predecessor))
1508 {
1509 predecessor = INTERVAL_PARENT (predecessor);
1510 delete_interval (i);
1511 return predecessor;
1512 }
1513
1514 predecessor = INTERVAL_PARENT (predecessor);
1515 predecessor->total_length -= absorb;
1516 eassert (TOTAL_LENGTH (predecessor) >= 0);
1517 }
1518
1519 /* This must be the leftmost or first interval and cannot
1520 be merged left. The caller should have known. */
1521 emacs_abort ();
1522 }
1523 \f
1524 /* Create a copy of SOURCE but with the default value of UP. */
1525
1526 static INTERVAL
1527 reproduce_interval (INTERVAL source)
1528 {
1529 register INTERVAL target = make_interval ();
1530
1531 target->total_length = source->total_length;
1532 target->position = source->position;
1533
1534 copy_properties (source, target);
1535
1536 if (! NULL_LEFT_CHILD (source))
1537 set_interval_left (target, reproduce_tree (source->left, target));
1538 if (! NULL_RIGHT_CHILD (source))
1539 set_interval_right (target, reproduce_tree (source->right, target));
1540
1541 return target;
1542 }
1543
1544 /* Make an exact copy of interval tree SOURCE which descends from
1545 PARENT. This is done by recursing through SOURCE, copying
1546 the current interval and its properties, and then adjusting
1547 the pointers of the copy. */
1548
1549 static INTERVAL
1550 reproduce_tree (INTERVAL source, INTERVAL parent)
1551 {
1552 INTERVAL target = reproduce_interval (source);
1553 set_interval_parent (target, parent);
1554 return target;
1555 }
1556
1557 static INTERVAL
1558 reproduce_tree_obj (INTERVAL source, Lisp_Object parent)
1559 {
1560 INTERVAL target = reproduce_interval (source);
1561 set_interval_object (target, parent);
1562 return target;
1563 }
1564 \f
1565 /* Insert the intervals of SOURCE into BUFFER at POSITION.
1566 LENGTH is the length of the text in SOURCE.
1567
1568 The `position' field of the SOURCE intervals is assumed to be
1569 consistent with its parent; therefore, SOURCE must be an
1570 interval tree made with copy_interval or must be the whole
1571 tree of a buffer or a string.
1572
1573 This is used in insdel.c when inserting Lisp_Strings into the
1574 buffer. The text corresponding to SOURCE is already in the buffer
1575 when this is called. The intervals of new tree are a copy of those
1576 belonging to the string being inserted; intervals are never
1577 shared.
1578
1579 If the inserted text had no intervals associated, and we don't
1580 want to inherit the surrounding text's properties, this function
1581 simply returns -- offset_intervals should handle placing the
1582 text in the correct interval, depending on the sticky bits.
1583
1584 If the inserted text had properties (intervals), then there are two
1585 cases -- either insertion happened in the middle of some interval,
1586 or between two intervals.
1587
1588 If the text goes into the middle of an interval, then new intervals
1589 are created in the middle, and new text has the union of its properties
1590 and those of the text into which it was inserted.
1591
1592 If the text goes between two intervals, then if neither interval
1593 had its appropriate sticky property set (front_sticky, rear_sticky),
1594 the new text has only its properties. If one of the sticky properties
1595 is set, then the new text "sticks" to that region and its properties
1596 depend on merging as above. If both the preceding and succeeding
1597 intervals to the new text are "sticky", then the new text retains
1598 only its properties, as if neither sticky property were set. Perhaps
1599 we should consider merging all three sets of properties onto the new
1600 text... */
1601
1602 void
1603 graft_intervals_into_buffer (INTERVAL source, ptrdiff_t position,
1604 ptrdiff_t length, struct buffer *buffer,
1605 bool inherit)
1606 {
1607 INTERVAL tree = buffer_intervals (buffer);
1608 INTERVAL under, over, this;
1609 ptrdiff_t over_used;
1610
1611 /* If the new text has no properties, then with inheritance it
1612 becomes part of whatever interval it was inserted into.
1613 To prevent inheritance, we must clear out the properties
1614 of the newly inserted text. */
1615 if (!source)
1616 {
1617 Lisp_Object buf;
1618 if (!inherit && tree && length > 0)
1619 {
1620 XSETBUFFER (buf, buffer);
1621 set_text_properties_1 (make_number (position),
1622 make_number (position + length),
1623 Qnil, buf,
1624 find_interval (tree, position));
1625 }
1626 /* Shouldn't be necessary. --Stef */
1627 buffer_balance_intervals (buffer);
1628 return;
1629 }
1630
1631 eassert (length == TOTAL_LENGTH (source));
1632
1633 if ((BUF_Z (buffer) - BUF_BEG (buffer)) == length)
1634 {
1635 /* The inserted text constitutes the whole buffer, so
1636 simply copy over the interval structure. */
1637 Lisp_Object buf;
1638
1639 XSETBUFFER (buf, buffer);
1640 set_buffer_intervals (buffer, reproduce_tree_obj (source, buf));
1641 buffer_intervals (buffer)->position = BUF_BEG (buffer);
1642 eassert (buffer_intervals (buffer)->up_obj == 1);
1643 return;
1644 }
1645 else if (!tree)
1646 {
1647 /* Create an interval tree in which to place a copy
1648 of the intervals of the inserted string. */
1649 Lisp_Object buf;
1650
1651 XSETBUFFER (buf, buffer);
1652 tree = create_root_interval (buf);
1653 }
1654 /* Paranoia -- the text has already been added, so
1655 this buffer should be of non-zero length. */
1656 eassert (TOTAL_LENGTH (tree) > 0);
1657
1658 this = under = find_interval (tree, position);
1659 eassert (under);
1660 over = find_interval (source, interval_start_pos (source));
1661
1662 /* Here for insertion in the middle of an interval.
1663 Split off an equivalent interval to the right,
1664 then don't bother with it any more. */
1665
1666 if (position > under->position)
1667 {
1668 INTERVAL end_unchanged
1669 = split_interval_left (this, position - under->position);
1670 copy_properties (under, end_unchanged);
1671 under->position = position;
1672 }
1673 else
1674 {
1675 /* This call may have some effect because previous_interval may
1676 update `position' fields of intervals. Thus, don't ignore it
1677 for the moment. Someone please tell me the truth (K.Handa). */
1678 INTERVAL prev = previous_interval (under);
1679 (void) prev;
1680 #if 0
1681 /* But, this code surely has no effect. And, anyway,
1682 END_NONSTICKY_P is unreliable now. */
1683 if (prev && !END_NONSTICKY_P (prev))
1684 prev = 0;
1685 #endif /* 0 */
1686 }
1687
1688 /* Insertion is now at beginning of UNDER. */
1689
1690 /* The inserted text "sticks" to the interval `under',
1691 which means it gets those properties.
1692 The properties of under are the result of
1693 adjust_intervals_for_insertion, so stickiness has
1694 already been taken care of. */
1695
1696 /* OVER is the interval we are copying from next.
1697 OVER_USED says how many characters' worth of OVER
1698 have already been copied into target intervals.
1699 UNDER is the next interval in the target. */
1700 over_used = 0;
1701 while (over)
1702 {
1703 /* If UNDER is longer than OVER, split it. */
1704 if (LENGTH (over) - over_used < LENGTH (under))
1705 {
1706 this = split_interval_left (under, LENGTH (over) - over_used);
1707 copy_properties (under, this);
1708 }
1709 else
1710 this = under;
1711
1712 /* THIS is now the interval to copy or merge into.
1713 OVER covers all of it. */
1714 if (inherit)
1715 merge_properties (over, this);
1716 else
1717 copy_properties (over, this);
1718
1719 /* If THIS and OVER end at the same place,
1720 advance OVER to a new source interval. */
1721 if (LENGTH (this) == LENGTH (over) - over_used)
1722 {
1723 over = next_interval (over);
1724 over_used = 0;
1725 }
1726 else
1727 /* Otherwise just record that more of OVER has been used. */
1728 over_used += LENGTH (this);
1729
1730 /* Always advance to a new target interval. */
1731 under = next_interval (this);
1732 }
1733
1734 buffer_balance_intervals (buffer);
1735 }
1736
1737 /* Get the value of property PROP from PLIST,
1738 which is the plist of an interval.
1739 We check for direct properties, for categories with property PROP,
1740 and for PROP appearing on the default-text-properties list. */
1741
1742 Lisp_Object
1743 textget (Lisp_Object plist, register Lisp_Object prop)
1744 {
1745 return lookup_char_property (plist, prop, 1);
1746 }
1747
1748 Lisp_Object
1749 lookup_char_property (Lisp_Object plist, Lisp_Object prop, bool textprop)
1750 {
1751 Lisp_Object tail, fallback = Qnil;
1752
1753 for (tail = plist; CONSP (tail); tail = Fcdr (XCDR (tail)))
1754 {
1755 register Lisp_Object tem;
1756 tem = XCAR (tail);
1757 if (EQ (prop, tem))
1758 return Fcar (XCDR (tail));
1759 if (EQ (tem, Qcategory))
1760 {
1761 tem = Fcar (XCDR (tail));
1762 if (SYMBOLP (tem))
1763 fallback = Fget (tem, prop);
1764 }
1765 }
1766
1767 if (! NILP (fallback))
1768 return fallback;
1769 /* Check for alternative properties */
1770 tail = Fassq (prop, Vchar_property_alias_alist);
1771 if (! NILP (tail))
1772 {
1773 tail = XCDR (tail);
1774 for (; NILP (fallback) && CONSP (tail); tail = XCDR (tail))
1775 fallback = Fplist_get (plist, XCAR (tail));
1776 }
1777
1778 if (textprop && NILP (fallback) && CONSP (Vdefault_text_properties))
1779 fallback = Fplist_get (Vdefault_text_properties, prop);
1780 return fallback;
1781 }
1782
1783 \f
1784 /* Set point in BUFFER "temporarily" to CHARPOS, which corresponds to
1785 byte position BYTEPOS. */
1786
1787 void
1788 temp_set_point_both (struct buffer *buffer,
1789 ptrdiff_t charpos, ptrdiff_t bytepos)
1790 {
1791 /* In a single-byte buffer, the two positions must be equal. */
1792 eassert (BUF_ZV (buffer) != BUF_ZV_BYTE (buffer) || charpos == bytepos);
1793
1794 eassert (charpos <= bytepos);
1795 eassert (charpos <= BUF_ZV (buffer) || BUF_BEGV (buffer) <= charpos);
1796
1797 SET_BUF_PT_BOTH (buffer, charpos, bytepos);
1798 }
1799
1800 /* Set point "temporarily", without checking any text properties. */
1801
1802 void
1803 temp_set_point (struct buffer *buffer, ptrdiff_t charpos)
1804 {
1805 temp_set_point_both (buffer, charpos,
1806 buf_charpos_to_bytepos (buffer, charpos));
1807 }
1808
1809 /* Set point in BUFFER to CHARPOS. If the target position is
1810 before an intangible character, move to an ok place. */
1811
1812 void
1813 set_point (ptrdiff_t charpos)
1814 {
1815 set_point_both (charpos, buf_charpos_to_bytepos (current_buffer, charpos));
1816 }
1817
1818 /* Set PT from MARKER's clipped position. */
1819
1820 void
1821 set_point_from_marker (Lisp_Object marker)
1822 {
1823 if (XMARKER (marker)->buffer != current_buffer)
1824 signal_error ("Marker points into wrong buffer", marker);
1825 set_point_both
1826 (clip_to_bounds (BEGV, marker_position (marker), ZV),
1827 clip_to_bounds (BEGV_BYTE, marker_byte_position (marker), ZV_BYTE));
1828 }
1829
1830 /* If there's an invisible character at position POS + TEST_OFFS in the
1831 current buffer, and the invisible property has a `stickiness' such that
1832 inserting a character at position POS would inherit the property it,
1833 return POS + ADJ, otherwise return POS. If TEST_INTANG, intangibility
1834 is required as well as invisibility.
1835
1836 TEST_OFFS should be either 0 or -1, and ADJ should be either 1 or -1.
1837
1838 Note that `stickiness' is determined by overlay marker insertion types,
1839 if the invisible property comes from an overlay. */
1840
1841 static ptrdiff_t
1842 adjust_for_invis_intang (ptrdiff_t pos, ptrdiff_t test_offs, ptrdiff_t adj,
1843 bool test_intang)
1844 {
1845 Lisp_Object invis_propval, invis_overlay;
1846 Lisp_Object test_pos;
1847
1848 if ((adj < 0 && pos + adj < BEGV) || (adj > 0 && pos + adj > ZV))
1849 /* POS + ADJ would be beyond the buffer bounds, so do no adjustment. */
1850 return pos;
1851
1852 test_pos = make_number (pos + test_offs);
1853
1854 invis_propval
1855 = get_char_property_and_overlay (test_pos, Qinvisible, Qnil,
1856 &invis_overlay);
1857
1858 if ((!test_intang
1859 || ! NILP (Fget_char_property (test_pos, Qintangible, Qnil)))
1860 && TEXT_PROP_MEANS_INVISIBLE (invis_propval)
1861 /* This next test is true if the invisible property has a stickiness
1862 such that an insertion at POS would inherit it. */
1863 && (NILP (invis_overlay)
1864 /* Invisible property is from a text-property. */
1865 ? (text_property_stickiness (Qinvisible, make_number (pos), Qnil)
1866 == (test_offs == 0 ? 1 : -1))
1867 /* Invisible property is from an overlay. */
1868 : (test_offs == 0
1869 ? XMARKER (OVERLAY_START (invis_overlay))->insertion_type == 0
1870 : XMARKER (OVERLAY_END (invis_overlay))->insertion_type == 1)))
1871 pos += adj;
1872
1873 return pos;
1874 }
1875
1876 /* Set point in BUFFER to CHARPOS, which corresponds to byte
1877 position BYTEPOS. If the target position is
1878 before an intangible character, move to an ok place. */
1879
1880 void
1881 set_point_both (ptrdiff_t charpos, ptrdiff_t bytepos)
1882 {
1883 register INTERVAL to, from, toprev, fromprev;
1884 ptrdiff_t buffer_point;
1885 ptrdiff_t old_position = PT;
1886 /* This ensures that we move forward past intangible text when the
1887 initial position is the same as the destination, in the rare
1888 instances where this is important, e.g. in line-move-finish
1889 (simple.el). */
1890 bool backwards = charpos < old_position;
1891 bool have_overlays;
1892 ptrdiff_t original_position;
1893
1894 bset_point_before_scroll (current_buffer, Qnil);
1895
1896 if (charpos == PT)
1897 return;
1898
1899 /* In a single-byte buffer, the two positions must be equal. */
1900 eassert (ZV != ZV_BYTE || charpos == bytepos);
1901
1902 /* Check this now, before checking if the buffer has any intervals.
1903 That way, we can catch conditions which break this sanity check
1904 whether or not there are intervals in the buffer. */
1905 eassert (charpos <= ZV && charpos >= BEGV);
1906
1907 have_overlays = buffer_has_overlays ();
1908
1909 /* If we have no text properties and overlays,
1910 then we can do it quickly. */
1911 if (!buffer_intervals (current_buffer) && ! have_overlays)
1912 {
1913 temp_set_point_both (current_buffer, charpos, bytepos);
1914 return;
1915 }
1916
1917 /* Set TO to the interval containing the char after CHARPOS,
1918 and TOPREV to the interval containing the char before CHARPOS.
1919 Either one may be null. They may be equal. */
1920 to = find_interval (buffer_intervals (current_buffer), charpos);
1921 if (charpos == BEGV)
1922 toprev = 0;
1923 else if (to && to->position == charpos)
1924 toprev = previous_interval (to);
1925 else
1926 toprev = to;
1927
1928 buffer_point = (PT == ZV ? ZV - 1 : PT);
1929
1930 /* Set FROM to the interval containing the char after PT,
1931 and FROMPREV to the interval containing the char before PT.
1932 Either one may be null. They may be equal. */
1933 /* We could cache this and save time. */
1934 from = find_interval (buffer_intervals (current_buffer), buffer_point);
1935 if (buffer_point == BEGV)
1936 fromprev = 0;
1937 else if (from && from->position == PT)
1938 fromprev = previous_interval (from);
1939 else if (buffer_point != PT)
1940 fromprev = from, from = 0;
1941 else
1942 fromprev = from;
1943
1944 /* Moving within an interval. */
1945 if (to == from && toprev == fromprev && INTERVAL_VISIBLE_P (to)
1946 && ! have_overlays)
1947 {
1948 temp_set_point_both (current_buffer, charpos, bytepos);
1949 return;
1950 }
1951
1952 original_position = charpos;
1953
1954 /* If the new position is between two intangible characters
1955 with the same intangible property value,
1956 move forward or backward until a change in that property. */
1957 if (NILP (Vinhibit_point_motion_hooks)
1958 && ((to && toprev)
1959 || have_overlays)
1960 /* Intangibility never stops us from positioning at the beginning
1961 or end of the buffer, so don't bother checking in that case. */
1962 && charpos != BEGV && charpos != ZV)
1963 {
1964 Lisp_Object pos;
1965 Lisp_Object intangible_propval;
1966
1967 if (backwards)
1968 {
1969 /* If the preceding character is both intangible and invisible,
1970 and the invisible property is `rear-sticky', perturb it so
1971 that the search starts one character earlier -- this ensures
1972 that point can never move to the end of an invisible/
1973 intangible/rear-sticky region. */
1974 charpos = adjust_for_invis_intang (charpos, -1, -1, 1);
1975
1976 XSETINT (pos, charpos);
1977
1978 /* If following char is intangible,
1979 skip back over all chars with matching intangible property. */
1980
1981 intangible_propval = Fget_char_property (pos, Qintangible, Qnil);
1982
1983 if (! NILP (intangible_propval))
1984 {
1985 while (XINT (pos) > BEGV
1986 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
1987 Qintangible, Qnil),
1988 intangible_propval))
1989 pos = Fprevious_char_property_change (pos, Qnil);
1990
1991 /* Set CHARPOS from POS, and if the final intangible character
1992 that we skipped over is also invisible, and the invisible
1993 property is `front-sticky', perturb it to be one character
1994 earlier -- this ensures that point can never move to the
1995 beginning of an invisible/intangible/front-sticky region. */
1996 charpos = adjust_for_invis_intang (XINT (pos), 0, -1, 0);
1997 }
1998 }
1999 else
2000 {
2001 /* If the following character is both intangible and invisible,
2002 and the invisible property is `front-sticky', perturb it so
2003 that the search starts one character later -- this ensures
2004 that point can never move to the beginning of an
2005 invisible/intangible/front-sticky region. */
2006 charpos = adjust_for_invis_intang (charpos, 0, 1, 1);
2007
2008 XSETINT (pos, charpos);
2009
2010 /* If preceding char is intangible,
2011 skip forward over all chars with matching intangible property. */
2012
2013 intangible_propval = Fget_char_property (make_number (charpos - 1),
2014 Qintangible, Qnil);
2015
2016 if (! NILP (intangible_propval))
2017 {
2018 while (XINT (pos) < ZV
2019 && EQ (Fget_char_property (pos, Qintangible, Qnil),
2020 intangible_propval))
2021 pos = Fnext_char_property_change (pos, Qnil);
2022
2023 /* Set CHARPOS from POS, and if the final intangible character
2024 that we skipped over is also invisible, and the invisible
2025 property is `rear-sticky', perturb it to be one character
2026 later -- this ensures that point can never move to the
2027 end of an invisible/intangible/rear-sticky region. */
2028 charpos = adjust_for_invis_intang (XINT (pos), -1, 1, 0);
2029 }
2030 }
2031
2032 bytepos = buf_charpos_to_bytepos (current_buffer, charpos);
2033 }
2034
2035 if (charpos != original_position)
2036 {
2037 /* Set TO to the interval containing the char after CHARPOS,
2038 and TOPREV to the interval containing the char before CHARPOS.
2039 Either one may be null. They may be equal. */
2040 to = find_interval (buffer_intervals (current_buffer), charpos);
2041 if (charpos == BEGV)
2042 toprev = 0;
2043 else if (to && to->position == charpos)
2044 toprev = previous_interval (to);
2045 else
2046 toprev = to;
2047 }
2048
2049 /* Here TO is the interval after the stopping point
2050 and TOPREV is the interval before the stopping point.
2051 One or the other may be null. */
2052
2053 temp_set_point_both (current_buffer, charpos, bytepos);
2054
2055 /* We run point-left and point-entered hooks here, if the
2056 two intervals are not equivalent. These hooks take
2057 (old_point, new_point) as arguments. */
2058 if (NILP (Vinhibit_point_motion_hooks)
2059 && (! intervals_equal (from, to)
2060 || ! intervals_equal (fromprev, toprev)))
2061 {
2062 Lisp_Object leave_after, leave_before, enter_after, enter_before;
2063
2064 if (fromprev)
2065 leave_before = textget (fromprev->plist, Qpoint_left);
2066 else
2067 leave_before = Qnil;
2068
2069 if (from)
2070 leave_after = textget (from->plist, Qpoint_left);
2071 else
2072 leave_after = Qnil;
2073
2074 if (toprev)
2075 enter_before = textget (toprev->plist, Qpoint_entered);
2076 else
2077 enter_before = Qnil;
2078
2079 if (to)
2080 enter_after = textget (to->plist, Qpoint_entered);
2081 else
2082 enter_after = Qnil;
2083
2084 if (! EQ (leave_before, enter_before) && !NILP (leave_before))
2085 call2 (leave_before, make_number (old_position),
2086 make_number (charpos));
2087 if (! EQ (leave_after, enter_after) && !NILP (leave_after))
2088 call2 (leave_after, make_number (old_position),
2089 make_number (charpos));
2090
2091 if (! EQ (enter_before, leave_before) && !NILP (enter_before))
2092 call2 (enter_before, make_number (old_position),
2093 make_number (charpos));
2094 if (! EQ (enter_after, leave_after) && !NILP (enter_after))
2095 call2 (enter_after, make_number (old_position),
2096 make_number (charpos));
2097 }
2098 }
2099 \f
2100 /* Move point to POSITION, unless POSITION is inside an intangible
2101 segment that reaches all the way to point. */
2102
2103 void
2104 move_if_not_intangible (ptrdiff_t position)
2105 {
2106 Lisp_Object pos;
2107 Lisp_Object intangible_propval;
2108
2109 XSETINT (pos, position);
2110
2111 if (! NILP (Vinhibit_point_motion_hooks))
2112 /* If intangible is inhibited, always move point to POSITION. */
2113 ;
2114 else if (PT < position && XINT (pos) < ZV)
2115 {
2116 /* We want to move forward, so check the text before POSITION. */
2117
2118 intangible_propval = Fget_char_property (pos,
2119 Qintangible, Qnil);
2120
2121 /* If following char is intangible,
2122 skip back over all chars with matching intangible property. */
2123 if (! NILP (intangible_propval))
2124 while (XINT (pos) > BEGV
2125 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
2126 Qintangible, Qnil),
2127 intangible_propval))
2128 pos = Fprevious_char_property_change (pos, Qnil);
2129 }
2130 else if (XINT (pos) > BEGV)
2131 {
2132 /* We want to move backward, so check the text after POSITION. */
2133
2134 intangible_propval = Fget_char_property (make_number (XINT (pos) - 1),
2135 Qintangible, Qnil);
2136
2137 /* If following char is intangible,
2138 skip forward over all chars with matching intangible property. */
2139 if (! NILP (intangible_propval))
2140 while (XINT (pos) < ZV
2141 && EQ (Fget_char_property (pos, Qintangible, Qnil),
2142 intangible_propval))
2143 pos = Fnext_char_property_change (pos, Qnil);
2144
2145 }
2146 else if (position < BEGV)
2147 position = BEGV;
2148 else if (position > ZV)
2149 position = ZV;
2150
2151 /* If the whole stretch between PT and POSITION isn't intangible,
2152 try moving to POSITION (which means we actually move farther
2153 if POSITION is inside of intangible text). */
2154
2155 if (XINT (pos) != PT)
2156 SET_PT (position);
2157 }
2158 \f
2159 /* If text at position POS has property PROP, set *VAL to the property
2160 value, *START and *END to the beginning and end of a region that
2161 has the same property, and return true. Otherwise return false.
2162
2163 OBJECT is the string or buffer to look for the property in;
2164 nil means the current buffer. */
2165
2166 bool
2167 get_property_and_range (ptrdiff_t pos, Lisp_Object prop, Lisp_Object *val,
2168 ptrdiff_t *start, ptrdiff_t *end, Lisp_Object object)
2169 {
2170 INTERVAL i, prev, next;
2171
2172 if (NILP (object))
2173 i = find_interval (buffer_intervals (current_buffer), pos);
2174 else if (BUFFERP (object))
2175 i = find_interval (buffer_intervals (XBUFFER (object)), pos);
2176 else if (STRINGP (object))
2177 i = find_interval (string_intervals (object), pos);
2178 else
2179 emacs_abort ();
2180
2181 if (!i || (i->position + LENGTH (i) <= pos))
2182 return 0;
2183 *val = textget (i->plist, prop);
2184 if (NILP (*val))
2185 return 0;
2186
2187 next = i; /* remember it in advance */
2188 prev = previous_interval (i);
2189 while (prev
2190 && EQ (*val, textget (prev->plist, prop)))
2191 i = prev, prev = previous_interval (prev);
2192 *start = i->position;
2193
2194 next = next_interval (i);
2195 while (next && EQ (*val, textget (next->plist, prop)))
2196 i = next, next = next_interval (next);
2197 *end = i->position + LENGTH (i);
2198
2199 return 1;
2200 }
2201 \f
2202 /* Return the proper local keymap TYPE for position POSITION in
2203 BUFFER; TYPE should be one of `keymap' or `local-map'. Use the map
2204 specified by the PROP property, if any. Otherwise, if TYPE is
2205 `local-map' use BUFFER's local map. */
2206
2207 Lisp_Object
2208 get_local_map (ptrdiff_t position, struct buffer *buffer, Lisp_Object type)
2209 {
2210 Lisp_Object prop, lispy_position, lispy_buffer;
2211 ptrdiff_t old_begv, old_zv, old_begv_byte, old_zv_byte;
2212
2213 position = clip_to_bounds (BUF_BEGV (buffer), position, BUF_ZV (buffer));
2214
2215 /* Ignore narrowing, so that a local map continues to be valid even if
2216 the visible region contains no characters and hence no properties. */
2217 old_begv = BUF_BEGV (buffer);
2218 old_zv = BUF_ZV (buffer);
2219 old_begv_byte = BUF_BEGV_BYTE (buffer);
2220 old_zv_byte = BUF_ZV_BYTE (buffer);
2221
2222 SET_BUF_BEGV_BOTH (buffer, BUF_BEG (buffer), BUF_BEG_BYTE (buffer));
2223 SET_BUF_ZV_BOTH (buffer, BUF_Z (buffer), BUF_Z_BYTE (buffer));
2224
2225 XSETFASTINT (lispy_position, position);
2226 XSETBUFFER (lispy_buffer, buffer);
2227 /* First check if the CHAR has any property. This is because when
2228 we click with the mouse, the mouse pointer is really pointing
2229 to the CHAR after POS. */
2230 prop = Fget_char_property (lispy_position, type, lispy_buffer);
2231 /* If not, look at the POS's properties. This is necessary because when
2232 editing a field with a `local-map' property, we want insertion at the end
2233 to obey the `local-map' property. */
2234 if (NILP (prop))
2235 prop = Fget_pos_property (lispy_position, type, lispy_buffer);
2236
2237 SET_BUF_BEGV_BOTH (buffer, old_begv, old_begv_byte);
2238 SET_BUF_ZV_BOTH (buffer, old_zv, old_zv_byte);
2239
2240 /* Use the local map only if it is valid. */
2241 prop = get_keymap (prop, 0, 0);
2242 if (CONSP (prop))
2243 return prop;
2244
2245 if (EQ (type, Qkeymap))
2246 return Qnil;
2247 else
2248 return BVAR (buffer, keymap);
2249 }
2250 \f
2251 /* Produce an interval tree reflecting the intervals in
2252 TREE from START to START + LENGTH.
2253 The new interval tree has no parent and has a starting-position of 0. */
2254
2255 INTERVAL
2256 copy_intervals (INTERVAL tree, ptrdiff_t start, ptrdiff_t length)
2257 {
2258 register INTERVAL i, new, t;
2259 register ptrdiff_t got, prevlen;
2260
2261 if (!tree || length <= 0)
2262 return NULL;
2263
2264 i = find_interval (tree, start);
2265 eassert (i && LENGTH (i) > 0);
2266
2267 /* If there is only one interval and it's the default, return nil. */
2268 if ((start - i->position + 1 + length) < LENGTH (i)
2269 && DEFAULT_INTERVAL_P (i))
2270 return NULL;
2271
2272 new = make_interval ();
2273 new->position = 0;
2274 got = (LENGTH (i) - (start - i->position));
2275 new->total_length = length;
2276 eassert (TOTAL_LENGTH (new) >= 0);
2277 copy_properties (i, new);
2278
2279 t = new;
2280 prevlen = got;
2281 while (got < length)
2282 {
2283 i = next_interval (i);
2284 t = split_interval_right (t, prevlen);
2285 copy_properties (i, t);
2286 prevlen = LENGTH (i);
2287 got += prevlen;
2288 }
2289
2290 return balance_an_interval (new);
2291 }
2292
2293 /* Give STRING the properties of BUFFER from POSITION to LENGTH. */
2294
2295 void
2296 copy_intervals_to_string (Lisp_Object string, struct buffer *buffer,
2297 ptrdiff_t position, ptrdiff_t length)
2298 {
2299 INTERVAL interval_copy = copy_intervals (buffer_intervals (buffer),
2300 position, length);
2301 if (!interval_copy)
2302 return;
2303
2304 set_interval_object (interval_copy, string);
2305 set_string_intervals (string, interval_copy);
2306 }
2307 \f
2308 /* Return true if strings S1 and S2 have identical properties.
2309 Assume they have identical characters. */
2310
2311 bool
2312 compare_string_intervals (Lisp_Object s1, Lisp_Object s2)
2313 {
2314 INTERVAL i1, i2;
2315 ptrdiff_t pos = 0;
2316 ptrdiff_t end = SCHARS (s1);
2317
2318 i1 = find_interval (string_intervals (s1), 0);
2319 i2 = find_interval (string_intervals (s2), 0);
2320
2321 while (pos < end)
2322 {
2323 /* Determine how far we can go before we reach the end of I1 or I2. */
2324 ptrdiff_t len1 = (i1 != 0 ? INTERVAL_LAST_POS (i1) : end) - pos;
2325 ptrdiff_t len2 = (i2 != 0 ? INTERVAL_LAST_POS (i2) : end) - pos;
2326 ptrdiff_t distance = min (len1, len2);
2327
2328 /* If we ever find a mismatch between the strings,
2329 they differ. */
2330 if (! intervals_equal (i1, i2))
2331 return 0;
2332
2333 /* Advance POS till the end of the shorter interval,
2334 and advance one or both interval pointers for the new position. */
2335 pos += distance;
2336 if (len1 == distance)
2337 i1 = next_interval (i1);
2338 if (len2 == distance)
2339 i2 = next_interval (i2);
2340 }
2341 return 1;
2342 }
2343 \f
2344 /* Recursively adjust interval I in the current buffer
2345 for setting enable_multibyte_characters to MULTI_FLAG.
2346 The range of interval I is START ... END in characters,
2347 START_BYTE ... END_BYTE in bytes. */
2348
2349 static void
2350 set_intervals_multibyte_1 (INTERVAL i, bool multi_flag,
2351 ptrdiff_t start, ptrdiff_t start_byte,
2352 ptrdiff_t end, ptrdiff_t end_byte)
2353 {
2354 /* Fix the length of this interval. */
2355 if (multi_flag)
2356 i->total_length = end - start;
2357 else
2358 i->total_length = end_byte - start_byte;
2359 eassert (TOTAL_LENGTH (i) >= 0);
2360
2361 if (TOTAL_LENGTH (i) == 0)
2362 {
2363 delete_interval (i);
2364 return;
2365 }
2366
2367 /* Recursively fix the length of the subintervals. */
2368 if (i->left)
2369 {
2370 ptrdiff_t left_end, left_end_byte;
2371
2372 if (multi_flag)
2373 {
2374 ptrdiff_t temp;
2375 left_end_byte = start_byte + LEFT_TOTAL_LENGTH (i);
2376 left_end = BYTE_TO_CHAR (left_end_byte);
2377
2378 temp = CHAR_TO_BYTE (left_end);
2379
2380 /* If LEFT_END_BYTE is in the middle of a character,
2381 adjust it and LEFT_END to a char boundary. */
2382 if (left_end_byte > temp)
2383 {
2384 left_end_byte = temp;
2385 }
2386 if (left_end_byte < temp)
2387 {
2388 left_end--;
2389 left_end_byte = CHAR_TO_BYTE (left_end);
2390 }
2391 }
2392 else
2393 {
2394 left_end = start + LEFT_TOTAL_LENGTH (i);
2395 left_end_byte = CHAR_TO_BYTE (left_end);
2396 }
2397
2398 set_intervals_multibyte_1 (i->left, multi_flag, start, start_byte,
2399 left_end, left_end_byte);
2400 }
2401 if (i->right)
2402 {
2403 ptrdiff_t right_start_byte, right_start;
2404
2405 if (multi_flag)
2406 {
2407 ptrdiff_t temp;
2408
2409 right_start_byte = end_byte - RIGHT_TOTAL_LENGTH (i);
2410 right_start = BYTE_TO_CHAR (right_start_byte);
2411
2412 /* If RIGHT_START_BYTE is in the middle of a character,
2413 adjust it and RIGHT_START to a char boundary. */
2414 temp = CHAR_TO_BYTE (right_start);
2415
2416 if (right_start_byte < temp)
2417 {
2418 right_start_byte = temp;
2419 }
2420 if (right_start_byte > temp)
2421 {
2422 right_start++;
2423 right_start_byte = CHAR_TO_BYTE (right_start);
2424 }
2425 }
2426 else
2427 {
2428 right_start = end - RIGHT_TOTAL_LENGTH (i);
2429 right_start_byte = CHAR_TO_BYTE (right_start);
2430 }
2431
2432 set_intervals_multibyte_1 (i->right, multi_flag,
2433 right_start, right_start_byte,
2434 end, end_byte);
2435 }
2436
2437 /* Rounding to char boundaries can theoretically ake this interval
2438 spurious. If so, delete one child, and copy its property list
2439 to this interval. */
2440 if (LEFT_TOTAL_LENGTH (i) + RIGHT_TOTAL_LENGTH (i) >= TOTAL_LENGTH (i))
2441 {
2442 if ((i)->left)
2443 {
2444 set_interval_plist (i, i->left->plist);
2445 (i)->left->total_length = 0;
2446 delete_interval ((i)->left);
2447 }
2448 else
2449 {
2450 set_interval_plist (i, i->right->plist);
2451 (i)->right->total_length = 0;
2452 delete_interval ((i)->right);
2453 }
2454 }
2455 }
2456
2457 /* Update the intervals of the current buffer
2458 to fit the contents as multibyte (if MULTI_FLAG)
2459 or to fit them as non-multibyte (if not MULTI_FLAG). */
2460
2461 void
2462 set_intervals_multibyte (bool multi_flag)
2463 {
2464 INTERVAL i = buffer_intervals (current_buffer);
2465
2466 if (i)
2467 set_intervals_multibyte_1 (i, multi_flag, BEG, BEG_BYTE, Z, Z_BYTE);
2468 }