]> code.delx.au - gnu-emacs/blob - src/lisp.h
Use 0 for Qnil
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2015 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
40 # define ID (some integer preprocessor expression of type TYPE)
41 DEFINE_GDB_SYMBOL_END (ID)
42
43 This hack is for the benefit of compilers that do not make macro
44 definitions or enums visible to the debugger. It's used for symbols
45 that .gdbinit needs. */
46
47 #define DECLARE_GDB_SYM(type, id) type const id EXTERNALLY_VISIBLE
48 #ifdef MAIN_PROGRAM
49 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) DECLARE_GDB_SYM (type, id)
50 # define DEFINE_GDB_SYMBOL_END(id) = id;
51 #else
52 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) extern DECLARE_GDB_SYM (type, id)
53 # define DEFINE_GDB_SYMBOL_END(val) ;
54 #endif
55
56 /* The ubiquitous max and min macros. */
57 #undef min
58 #undef max
59 #define max(a, b) ((a) > (b) ? (a) : (b))
60 #define min(a, b) ((a) < (b) ? (a) : (b))
61
62 /* Number of elements in an array. */
63 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
64
65 /* Number of bits in a Lisp_Object tag. */
66 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
67 #define GCTYPEBITS 3
68 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
69
70 /* The number of bits needed in an EMACS_INT over and above the number
71 of bits in a pointer. This is 0 on systems where:
72 1. We can specify multiple-of-8 alignment on static variables.
73 2. We know malloc returns a multiple of 8. */
74 #if (defined alignas \
75 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
76 || defined DARWIN_OS || defined __sun || defined __MINGW32__ \
77 || defined CYGWIN))
78 # define NONPOINTER_BITS 0
79 #else
80 # define NONPOINTER_BITS GCTYPEBITS
81 #endif
82
83 /* EMACS_INT - signed integer wide enough to hold an Emacs value
84 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
85 pI - printf length modifier for EMACS_INT
86 EMACS_UINT - unsigned variant of EMACS_INT */
87 #ifndef EMACS_INT_MAX
88 # if INTPTR_MAX <= 0
89 # error "INTPTR_MAX misconfigured"
90 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
91 typedef int EMACS_INT;
92 typedef unsigned int EMACS_UINT;
93 # define EMACS_INT_MAX INT_MAX
94 # define pI ""
95 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
96 typedef long int EMACS_INT;
97 typedef unsigned long EMACS_UINT;
98 # define EMACS_INT_MAX LONG_MAX
99 # define pI "l"
100 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
101 In theory this is not safe, but in practice it seems to be OK. */
102 # elif INTPTR_MAX <= LLONG_MAX
103 typedef long long int EMACS_INT;
104 typedef unsigned long long int EMACS_UINT;
105 # define EMACS_INT_MAX LLONG_MAX
106 # define pI "ll"
107 # else
108 # error "INTPTR_MAX too large"
109 # endif
110 #endif
111
112 /* Number of bits to put in each character in the internal representation
113 of bool vectors. This should not vary across implementations. */
114 enum { BOOL_VECTOR_BITS_PER_CHAR =
115 #define BOOL_VECTOR_BITS_PER_CHAR 8
116 BOOL_VECTOR_BITS_PER_CHAR
117 };
118
119 /* An unsigned integer type representing a fixed-length bit sequence,
120 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
121 for speed, but it is unsigned char on weird platforms. */
122 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
123 typedef size_t bits_word;
124 # define BITS_WORD_MAX SIZE_MAX
125 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
126 #else
127 typedef unsigned char bits_word;
128 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
129 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
130 #endif
131 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
132
133 /* Number of bits in some machine integer types. */
134 enum
135 {
136 BITS_PER_CHAR = CHAR_BIT,
137 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
138 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
139 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
140 };
141
142 /* printmax_t and uprintmax_t are types for printing large integers.
143 These are the widest integers that are supported for printing.
144 pMd etc. are conversions for printing them.
145 On C99 hosts, there's no problem, as even the widest integers work.
146 Fall back on EMACS_INT on pre-C99 hosts. */
147 #ifdef PRIdMAX
148 typedef intmax_t printmax_t;
149 typedef uintmax_t uprintmax_t;
150 # define pMd PRIdMAX
151 # define pMu PRIuMAX
152 #else
153 typedef EMACS_INT printmax_t;
154 typedef EMACS_UINT uprintmax_t;
155 # define pMd pI"d"
156 # define pMu pI"u"
157 #endif
158
159 /* Use pD to format ptrdiff_t values, which suffice for indexes into
160 buffers and strings. Emacs never allocates objects larger than
161 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
162 In C99, pD can always be "t"; configure it here for the sake of
163 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
164 #if PTRDIFF_MAX == INT_MAX
165 # define pD ""
166 #elif PTRDIFF_MAX == LONG_MAX
167 # define pD "l"
168 #elif PTRDIFF_MAX == LLONG_MAX
169 # define pD "ll"
170 #else
171 # define pD "t"
172 #endif
173
174 /* Extra internal type checking? */
175
176 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
177 'assume (COND)'. COND should be free of side effects, as it may or
178 may not be evaluated.
179
180 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
181 defined and suppress_checking is false, and does nothing otherwise.
182 Emacs dies if COND is checked and is false. The suppress_checking
183 variable is initialized to 0 in alloc.c. Set it to 1 using a
184 debugger to temporarily disable aborting on detected internal
185 inconsistencies or error conditions.
186
187 In some cases, a good compiler may be able to optimize away the
188 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
189 uses eassert to test STRINGP (x), but a particular use of XSTRING
190 is invoked only after testing that STRINGP (x) is true, making the
191 test redundant.
192
193 eassume is like eassert except that it also causes the compiler to
194 assume that COND is true afterwards, regardless of whether runtime
195 checking is enabled. This can improve performance in some cases,
196 though it can degrade performance in others. It's often suboptimal
197 for COND to call external functions or access volatile storage. */
198
199 #ifndef ENABLE_CHECKING
200 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
201 # define eassume(cond) assume (cond)
202 #else /* ENABLE_CHECKING */
203
204 extern _Noreturn void die (const char *, const char *, int);
205
206 extern bool suppress_checking EXTERNALLY_VISIBLE;
207
208 # define eassert(cond) \
209 (suppress_checking || (cond) \
210 ? (void) 0 \
211 : die (# cond, __FILE__, __LINE__))
212 # define eassume(cond) \
213 (suppress_checking \
214 ? assume (cond) \
215 : (cond) \
216 ? (void) 0 \
217 : die (# cond, __FILE__, __LINE__))
218 #endif /* ENABLE_CHECKING */
219
220 \f
221 /* Use the configure flag --enable-check-lisp-object-type to make
222 Lisp_Object use a struct type instead of the default int. The flag
223 causes CHECK_LISP_OBJECT_TYPE to be defined. */
224
225 /***** Select the tagging scheme. *****/
226 /* The following option controls the tagging scheme:
227 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
228 always 0, and we can thus use them to hold tag bits, without
229 restricting our addressing space.
230
231 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
232 restricting our possible address range.
233
234 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
235 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
236 on the few static Lisp_Objects used: all the defsubr as well
237 as the two special buffers buffer_defaults and buffer_local_symbols. */
238
239 enum Lisp_Bits
240 {
241 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
242 integer constant, for MSVC. */
243 #define GCALIGNMENT 8
244
245 /* Number of bits in a Lisp_Object value, not counting the tag. */
246 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
247
248 /* Number of bits in a Lisp fixnum tag. */
249 INTTYPEBITS = GCTYPEBITS - 1,
250
251 /* Number of bits in a Lisp fixnum value, not counting the tag. */
252 FIXNUM_BITS = VALBITS + 1
253 };
254
255 #if GCALIGNMENT != 1 << GCTYPEBITS
256 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
257 #endif
258
259 /* The maximum value that can be stored in a EMACS_INT, assuming all
260 bits other than the type bits contribute to a nonnegative signed value.
261 This can be used in #if, e.g., '#if USB_TAG' below expands to an
262 expression involving VAL_MAX. */
263 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
264
265 /* Whether the least-significant bits of an EMACS_INT contain the tag.
266 On hosts where pointers-as-ints do not exceed VAL_MAX / 2, USE_LSB_TAG is:
267 a. unnecessary, because the top bits of an EMACS_INT are unused, and
268 b. slower, because it typically requires extra masking.
269 So, USE_LSB_TAG is true only on hosts where it might be useful. */
270 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
271 #define USE_LSB_TAG (VAL_MAX / 2 < INTPTR_MAX)
272 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
273
274 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
275 # error "USE_LSB_TAG not supported on this platform; please report this." \
276 "Try 'configure --with-wide-int' to work around the problem."
277 error !;
278 #endif
279
280 #ifndef alignas
281 # define alignas(alignment) /* empty */
282 # if USE_LSB_TAG
283 # error "USE_LSB_TAG requires alignas"
284 # endif
285 #endif
286
287 #ifdef HAVE_STRUCT_ATTRIBUTE_ALIGNED
288 # define GCALIGNED __attribute__ ((aligned (GCALIGNMENT)))
289 #else
290 # define GCALIGNED /* empty */
291 #endif
292
293 /* Some operations are so commonly executed that they are implemented
294 as macros, not functions, because otherwise runtime performance would
295 suffer too much when compiling with GCC without optimization.
296 There's no need to inline everything, just the operations that
297 would otherwise cause a serious performance problem.
298
299 For each such operation OP, define a macro lisp_h_OP that contains
300 the operation's implementation. That way, OP can be implemented
301 via a macro definition like this:
302
303 #define OP(x) lisp_h_OP (x)
304
305 and/or via a function definition like this:
306
307 LISP_MACRO_DEFUN (OP, Lisp_Object, (Lisp_Object x), (x))
308
309 which macro-expands to this:
310
311 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
312
313 without worrying about the implementations diverging, since
314 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
315 are intended to be private to this include file, and should not be
316 used elsewhere.
317
318 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
319 functions, once most developers have access to GCC 4.8 or later and
320 can use "gcc -Og" to debug. Maybe in the year 2016. See
321 Bug#11935.
322
323 Commentary for these macros can be found near their corresponding
324 functions, below. */
325
326 #if CHECK_LISP_OBJECT_TYPE
327 # define lisp_h_XLI(o) ((o).i)
328 # define lisp_h_XIL(i) ((Lisp_Object) { i })
329 #else
330 # define lisp_h_XLI(o) (o)
331 # define lisp_h_XIL(i) (i)
332 #endif
333 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
334 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
335 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
336 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
337 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
338 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
339 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
340 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
341 #define lisp_h_INTEGERP(x) ((XTYPE (x) & (Lisp_Int0 | ~Lisp_Int1)) == Lisp_Int0)
342 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
343 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
344 #define lisp_h_NILP(x) EQ (x, Qnil)
345 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
346 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
347 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
348 #define lisp_h_SYMBOL_VAL(sym) \
349 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
350 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
351 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
352 #define lisp_h_XCAR(c) XCONS (c)->car
353 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
354 #define lisp_h_XCONS(a) \
355 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
356 #define lisp_h_XHASH(a) XUINT (a)
357 #define lisp_h_XPNTR(a) \
358 (SYMBOLP (a) ? XSYMBOL (a) : (void *) ((intptr_t) (XLI (a) & VALMASK)))
359 #define lisp_h_XSYMBOL(a) \
360 (eassert (SYMBOLP (a)), \
361 (struct Lisp_Symbol *) XUNTAGBASE (a, Lisp_Symbol, lispsym))
362 #ifndef GC_CHECK_CONS_LIST
363 # define lisp_h_check_cons_list() ((void) 0)
364 #endif
365 #if USE_LSB_TAG
366 # define lisp_h_make_number(n) \
367 XIL ((EMACS_INT) (((EMACS_UINT) (n) << INTTYPEBITS) + Lisp_Int0))
368 # define lisp_h_XFASTINT(a) XINT (a)
369 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
370 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
371 # define lisp_h_XUNTAG(a, type) XUNTAGBASE (a, type, 0)
372 # define lisp_h_XUNTAGBASE(a, type, base) \
373 ((void *) ((char *) (base) - (type) + (intptr_t) XLI (a)))
374 #endif
375
376 /* When compiling via gcc -O0, define the key operations as macros, as
377 Emacs is too slow otherwise. To disable this optimization, compile
378 with -DINLINING=false. */
379 #if (defined __NO_INLINE__ \
380 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
381 && ! (defined INLINING && ! INLINING))
382 # define XLI(o) lisp_h_XLI (o)
383 # define XIL(i) lisp_h_XIL (i)
384 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
385 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
386 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
387 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
388 # define CONSP(x) lisp_h_CONSP (x)
389 # define EQ(x, y) lisp_h_EQ (x, y)
390 # define FLOATP(x) lisp_h_FLOATP (x)
391 # define INTEGERP(x) lisp_h_INTEGERP (x)
392 # define MARKERP(x) lisp_h_MARKERP (x)
393 # define MISCP(x) lisp_h_MISCP (x)
394 # define NILP(x) lisp_h_NILP (x)
395 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
396 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
397 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
398 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
399 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
400 # define XCAR(c) lisp_h_XCAR (c)
401 # define XCDR(c) lisp_h_XCDR (c)
402 # define XCONS(a) lisp_h_XCONS (a)
403 # define XHASH(a) lisp_h_XHASH (a)
404 # define XPNTR(a) lisp_h_XPNTR (a)
405 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
406 # ifndef GC_CHECK_CONS_LIST
407 # define check_cons_list() lisp_h_check_cons_list ()
408 # endif
409 # if USE_LSB_TAG
410 # define make_number(n) lisp_h_make_number (n)
411 # define XFASTINT(a) lisp_h_XFASTINT (a)
412 # define XINT(a) lisp_h_XINT (a)
413 # define XTYPE(a) lisp_h_XTYPE (a)
414 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
415 # define XUNTAGBASE(a, type, base) lisp_h_XUNTAGBASE (a, type, base)
416 # endif
417 #endif
418
419 /* Define NAME as a lisp.h inline function that returns TYPE and has
420 arguments declared as ARGDECLS and passed as ARGS. ARGDECLS and
421 ARGS should be parenthesized. Implement the function by calling
422 lisp_h_NAME ARGS. */
423 #define LISP_MACRO_DEFUN(name, type, argdecls, args) \
424 INLINE type (name) argdecls { return lisp_h_##name args; }
425
426 /* like LISP_MACRO_DEFUN, except NAME returns void. */
427 #define LISP_MACRO_DEFUN_VOID(name, argdecls, args) \
428 INLINE void (name) argdecls { lisp_h_##name args; }
429
430
431 /* Define the fundamental Lisp data structures. */
432
433 /* This is the set of Lisp data types. If you want to define a new
434 data type, read the comments after Lisp_Fwd_Type definition
435 below. */
436
437 /* Lisp integers use 2 tags, to give them one extra bit, thus
438 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
439 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
440 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
441
442 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
443 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
444 vociferously about them. */
445 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
446 || (defined __SUNPRO_C && __STDC__))
447 #define ENUM_BF(TYPE) unsigned int
448 #else
449 #define ENUM_BF(TYPE) enum TYPE
450 #endif
451
452
453 enum Lisp_Type
454 {
455 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
456 Lisp_Symbol = 0,
457
458 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
459 whose first member indicates the subtype. */
460 Lisp_Misc = 1,
461
462 /* Integer. XINT (obj) is the integer value. */
463 Lisp_Int0 = 2,
464 Lisp_Int1 = USE_LSB_TAG ? 6 : 3,
465
466 /* String. XSTRING (object) points to a struct Lisp_String.
467 The length of the string, and its contents, are stored therein. */
468 Lisp_String = 4,
469
470 /* Vector of Lisp objects, or something resembling it.
471 XVECTOR (object) points to a struct Lisp_Vector, which contains
472 the size and contents. The size field also contains the type
473 information, if it's not a real vector object. */
474 Lisp_Vectorlike = 5,
475
476 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
477 Lisp_Cons = USE_LSB_TAG ? 3 : 6,
478
479 Lisp_Float = 7
480 };
481
482 /* This is the set of data types that share a common structure.
483 The first member of the structure is a type code from this set.
484 The enum values are arbitrary, but we'll use large numbers to make it
485 more likely that we'll spot the error if a random word in memory is
486 mistakenly interpreted as a Lisp_Misc. */
487 enum Lisp_Misc_Type
488 {
489 Lisp_Misc_Free = 0x5eab,
490 Lisp_Misc_Marker,
491 Lisp_Misc_Overlay,
492 Lisp_Misc_Save_Value,
493 /* Currently floats are not a misc type,
494 but let's define this in case we want to change that. */
495 Lisp_Misc_Float,
496 /* This is not a type code. It is for range checking. */
497 Lisp_Misc_Limit
498 };
499
500 /* These are the types of forwarding objects used in the value slot
501 of symbols for special built-in variables whose value is stored in
502 C variables. */
503 enum Lisp_Fwd_Type
504 {
505 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
506 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
507 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
508 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
509 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
510 };
511
512 /* If you want to define a new Lisp data type, here are some
513 instructions. See the thread at
514 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
515 for more info.
516
517 First, there are already a couple of Lisp types that can be used if
518 your new type does not need to be exposed to Lisp programs nor
519 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
520 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
521 is suitable for temporarily stashing away pointers and integers in
522 a Lisp object. The latter is useful for vector-like Lisp objects
523 that need to be used as part of other objects, but which are never
524 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
525 an example).
526
527 These two types don't look pretty when printed, so they are
528 unsuitable for Lisp objects that can be exposed to users.
529
530 To define a new data type, add one more Lisp_Misc subtype or one
531 more pseudovector subtype. Pseudovectors are more suitable for
532 objects with several slots that need to support fast random access,
533 while Lisp_Misc types are for everything else. A pseudovector object
534 provides one or more slots for Lisp objects, followed by struct
535 members that are accessible only from C. A Lisp_Misc object is a
536 wrapper for a C struct that can contain anything you like.
537
538 Explicit freeing is discouraged for Lisp objects in general. But if
539 you really need to exploit this, use Lisp_Misc (check free_misc in
540 alloc.c to see why). There is no way to free a vectorlike object.
541
542 To add a new pseudovector type, extend the pvec_type enumeration;
543 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
544
545 For a Lisp_Misc, you will also need to add your entry to union
546 Lisp_Misc (but make sure the first word has the same structure as
547 the others, starting with a 16-bit member of the Lisp_Misc_Type
548 enumeration and a 1-bit GC markbit) and make sure the overall size
549 of the union is not increased by your addition.
550
551 For a new pseudovector, it's highly desirable to limit the size
552 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
553 Otherwise you will need to change sweep_vectors (also in alloc.c).
554
555 Then you will need to add switch branches in print.c (in
556 print_object, to print your object, and possibly also in
557 print_preprocess) and to alloc.c, to mark your object (in
558 mark_object) and to free it (in gc_sweep). The latter is also the
559 right place to call any code specific to your data type that needs
560 to run when the object is recycled -- e.g., free any additional
561 resources allocated for it that are not Lisp objects. You can even
562 make a pointer to the function that frees the resources a slot in
563 your object -- this way, the same object could be used to represent
564 several disparate C structures. */
565
566 #ifdef CHECK_LISP_OBJECT_TYPE
567
568 typedef struct { EMACS_INT i; } Lisp_Object;
569
570 #define LISP_INITIALLY(i) {i}
571
572 #undef CHECK_LISP_OBJECT_TYPE
573 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
574 #else /* CHECK_LISP_OBJECT_TYPE */
575
576 /* If a struct type is not wanted, define Lisp_Object as just a number. */
577
578 typedef EMACS_INT Lisp_Object;
579 #define LISP_INITIALLY(i) (i)
580 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
581 #endif /* CHECK_LISP_OBJECT_TYPE */
582
583 #define LISP_INITIALLY_ZERO LISP_INITIALLY (0)
584 \f
585 /* Forward declarations. */
586
587 /* Defined in this file. */
588 union Lisp_Fwd;
589 INLINE bool BOOL_VECTOR_P (Lisp_Object);
590 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
591 INLINE bool BUFFERP (Lisp_Object);
592 INLINE bool CHAR_TABLE_P (Lisp_Object);
593 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
594 INLINE bool (CONSP) (Lisp_Object);
595 INLINE bool (FLOATP) (Lisp_Object);
596 INLINE bool functionp (Lisp_Object);
597 INLINE bool (INTEGERP) (Lisp_Object);
598 INLINE bool (MARKERP) (Lisp_Object);
599 INLINE bool (MISCP) (Lisp_Object);
600 INLINE bool (NILP) (Lisp_Object);
601 INLINE bool OVERLAYP (Lisp_Object);
602 INLINE bool PROCESSP (Lisp_Object);
603 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
604 INLINE bool SAVE_VALUEP (Lisp_Object);
605 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
606 Lisp_Object);
607 INLINE bool STRINGP (Lisp_Object);
608 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
609 INLINE bool SUBRP (Lisp_Object);
610 INLINE bool (SYMBOLP) (Lisp_Object);
611 INLINE bool (VECTORLIKEP) (Lisp_Object);
612 INLINE struct Lisp_Symbol *XSYMBOL (Lisp_Object);
613 INLINE void *(XUNTAGBASE) (Lisp_Object, int, void *);
614 INLINE bool WINDOWP (Lisp_Object);
615 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
616
617 /* Defined in chartab.c. */
618 extern Lisp_Object char_table_ref (Lisp_Object, int);
619 extern void char_table_set (Lisp_Object, int, Lisp_Object);
620
621 /* Defined in data.c. */
622 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
623 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
624
625 /* Defined in emacs.c. */
626 extern bool might_dump;
627 /* True means Emacs has already been initialized.
628 Used during startup to detect startup of dumped Emacs. */
629 extern bool initialized;
630
631 /* Defined in floatfns.c. */
632 extern double extract_float (Lisp_Object);
633
634 \f
635 /* Interned state of a symbol. */
636
637 enum symbol_interned
638 {
639 SYMBOL_UNINTERNED = 0,
640 SYMBOL_INTERNED = 1,
641 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
642 };
643
644 enum symbol_redirect
645 {
646 SYMBOL_PLAINVAL = 4,
647 SYMBOL_VARALIAS = 1,
648 SYMBOL_LOCALIZED = 2,
649 SYMBOL_FORWARDED = 3
650 };
651
652 struct Lisp_Symbol
653 {
654 bool_bf gcmarkbit : 1;
655
656 /* Indicates where the value can be found:
657 0 : it's a plain var, the value is in the `value' field.
658 1 : it's a varalias, the value is really in the `alias' symbol.
659 2 : it's a localized var, the value is in the `blv' object.
660 3 : it's a forwarding variable, the value is in `forward'. */
661 ENUM_BF (symbol_redirect) redirect : 3;
662
663 /* Non-zero means symbol is constant, i.e. changing its value
664 should signal an error. If the value is 3, then the var
665 can be changed, but only by `defconst'. */
666 unsigned constant : 2;
667
668 /* Interned state of the symbol. This is an enumerator from
669 enum symbol_interned. */
670 unsigned interned : 2;
671
672 /* True means that this variable has been explicitly declared
673 special (with `defvar' etc), and shouldn't be lexically bound. */
674 bool_bf declared_special : 1;
675
676 /* True if pointed to from purespace and hence can't be GC'd. */
677 bool_bf pinned : 1;
678
679 /* The symbol's name, as a Lisp string. */
680 Lisp_Object name;
681
682 /* Value of the symbol or Qunbound if unbound. Which alternative of the
683 union is used depends on the `redirect' field above. */
684 union {
685 Lisp_Object value;
686 struct Lisp_Symbol *alias;
687 struct Lisp_Buffer_Local_Value *blv;
688 union Lisp_Fwd *fwd;
689 } val;
690
691 /* Function value of the symbol or Qnil if not fboundp. */
692 Lisp_Object function;
693
694 /* The symbol's property list. */
695 Lisp_Object plist;
696
697 /* Next symbol in obarray bucket, if the symbol is interned. */
698 struct Lisp_Symbol *next;
699 };
700
701 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
702 meaning as in the DEFUN macro, and is used to construct a prototype. */
703 /* We can use the same trick as in the DEFUN macro to generate the
704 appropriate prototype. */
705 #define EXFUN(fnname, maxargs) \
706 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
707
708 /* Note that the weird token-substitution semantics of ANSI C makes
709 this work for MANY and UNEVALLED. */
710 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
711 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
712 #define DEFUN_ARGS_0 (void)
713 #define DEFUN_ARGS_1 (Lisp_Object)
714 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
715 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
716 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
717 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
718 Lisp_Object)
719 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
720 Lisp_Object, Lisp_Object)
721 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
722 Lisp_Object, Lisp_Object, Lisp_Object)
723 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
724 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
725
726 /* Yield an integer that contains TAG along with PTR. */
727 #define TAG_PTR(tag, ptr) \
728 ((USE_LSB_TAG ? (tag) : (EMACS_UINT) (tag) << VALBITS) + (uintptr_t) (ptr))
729
730 /* Yield an integer that tags PTR as a symbol. */
731 #define TAG_SYMPTR(ptr) \
732 TAG_PTR (Lisp_Symbol, (char *) (ptr) - (char *) (USE_LSB_TAG ? lispsym : 0))
733
734 /* Declare extern constants for Lisp symbols. These can be helpful
735 when using a debugger like GDB, on older platforms where the debug
736 format does not represent C macros. Athough these symbols are
737 useless on modern platforms, they don't hurt performance all that much. */
738 #define DEFINE_LISP_SYMBOL_BEGIN(name) \
739 DEFINE_GDB_SYMBOL_BEGIN (Lisp_Object, name)
740 #define DEFINE_LISP_SYMBOL_END(name) \
741 DEFINE_GDB_SYMBOL_END (LISP_INITIALLY (TAG_SYMPTR (name)))
742
743 #include "globals.h"
744
745 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
746 At the machine level, these operations are no-ops. */
747 LISP_MACRO_DEFUN (XLI, EMACS_INT, (Lisp_Object o), (o))
748 LISP_MACRO_DEFUN (XIL, Lisp_Object, (EMACS_INT i), (i))
749
750 /* In the size word of a vector, this bit means the vector has been marked. */
751
752 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
753 # define ARRAY_MARK_FLAG PTRDIFF_MIN
754 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
755
756 /* In the size word of a struct Lisp_Vector, this bit means it's really
757 some other vector-like object. */
758 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
759 # define PSEUDOVECTOR_FLAG (PTRDIFF_MAX - PTRDIFF_MAX / 2)
760 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
761
762 /* In a pseudovector, the size field actually contains a word with one
763 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
764 with PVEC_TYPE_MASK to indicate the actual type. */
765 enum pvec_type
766 {
767 PVEC_NORMAL_VECTOR,
768 PVEC_FREE,
769 PVEC_PROCESS,
770 PVEC_FRAME,
771 PVEC_WINDOW,
772 PVEC_BOOL_VECTOR,
773 PVEC_BUFFER,
774 PVEC_HASH_TABLE,
775 PVEC_TERMINAL,
776 PVEC_WINDOW_CONFIGURATION,
777 PVEC_SUBR,
778 PVEC_OTHER,
779 /* These should be last, check internal_equal to see why. */
780 PVEC_COMPILED,
781 PVEC_CHAR_TABLE,
782 PVEC_SUB_CHAR_TABLE,
783 PVEC_FONT /* Should be last because it's used for range checking. */
784 };
785
786 enum More_Lisp_Bits
787 {
788 /* For convenience, we also store the number of elements in these bits.
789 Note that this size is not necessarily the memory-footprint size, but
790 only the number of Lisp_Object fields (that need to be traced by GC).
791 The distinction is used, e.g., by Lisp_Process, which places extra
792 non-Lisp_Object fields at the end of the structure. */
793 PSEUDOVECTOR_SIZE_BITS = 12,
794 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
795
796 /* To calculate the memory footprint of the pseudovector, it's useful
797 to store the size of non-Lisp area in word_size units here. */
798 PSEUDOVECTOR_REST_BITS = 12,
799 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
800 << PSEUDOVECTOR_SIZE_BITS),
801
802 /* Used to extract pseudovector subtype information. */
803 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
804 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
805 };
806 \f
807 /* These functions extract various sorts of values from a Lisp_Object.
808 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
809 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
810 that cons. */
811
812 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
813 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
814 # define VALMASK (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
815 DEFINE_GDB_SYMBOL_END (VALMASK)
816
817 /* Largest and smallest representable fixnum values. These are the C
818 values. They are macros for use in static initializers. */
819 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
820 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
821
822 /* Extract the pointer hidden within A. */
823 LISP_MACRO_DEFUN (XPNTR, void *, (Lisp_Object a), (a))
824
825 #if USE_LSB_TAG
826
827 LISP_MACRO_DEFUN (make_number, Lisp_Object, (EMACS_INT n), (n))
828 LISP_MACRO_DEFUN (XINT, EMACS_INT, (Lisp_Object a), (a))
829 LISP_MACRO_DEFUN (XFASTINT, EMACS_INT, (Lisp_Object a), (a))
830 LISP_MACRO_DEFUN (XTYPE, enum Lisp_Type, (Lisp_Object a), (a))
831 LISP_MACRO_DEFUN (XUNTAG, void *, (Lisp_Object a, int type), (a, type))
832 LISP_MACRO_DEFUN (XUNTAGBASE, void *, (Lisp_Object a, int type, void *base),
833 (a, type, base))
834
835 #else /* ! USE_LSB_TAG */
836
837 /* Although compiled only if ! USE_LSB_TAG, the following functions
838 also work when USE_LSB_TAG; this is to aid future maintenance when
839 the lisp_h_* macros are eventually removed. */
840
841 /* Make a Lisp integer representing the value of the low order
842 bits of N. */
843 INLINE Lisp_Object
844 make_number (EMACS_INT n)
845 {
846 EMACS_INT int0 = Lisp_Int0;
847 if (USE_LSB_TAG)
848 {
849 EMACS_UINT u = n;
850 n = u << INTTYPEBITS;
851 n += int0;
852 }
853 else
854 {
855 n &= INTMASK;
856 n += (int0 << VALBITS);
857 }
858 return XIL (n);
859 }
860
861 /* Extract A's value as a signed integer. */
862 INLINE EMACS_INT
863 XINT (Lisp_Object a)
864 {
865 EMACS_INT i = XLI (a);
866 if (! USE_LSB_TAG)
867 {
868 EMACS_UINT u = i;
869 i = u << INTTYPEBITS;
870 }
871 return i >> INTTYPEBITS;
872 }
873
874 /* Like XINT (A), but may be faster. A must be nonnegative.
875 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
876 integers have zero-bits in their tags. */
877 INLINE EMACS_INT
878 XFASTINT (Lisp_Object a)
879 {
880 EMACS_INT int0 = Lisp_Int0;
881 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a) - (int0 << VALBITS);
882 eassert (0 <= n);
883 return n;
884 }
885
886 /* Extract A's type. */
887 INLINE enum Lisp_Type
888 XTYPE (Lisp_Object a)
889 {
890 EMACS_UINT i = XLI (a);
891 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
892 }
893
894 /* Extract A's pointer value, assuming A's type is TYPE.
895 If USE_LSB_TAG, add BASE to A's pointer value while extracting. */
896 INLINE void *
897 XUNTAGBASE (Lisp_Object a, int type, void *base)
898 {
899 char *b = USE_LSB_TAG ? base : 0;
900 intptr_t i = USE_LSB_TAG ? XLI (a) - type : XLI (a) & VALMASK;
901 return b + i;
902 }
903
904 /* Extract A's pointer value, assuming A's type is TYPE. */
905 INLINE void *
906 XUNTAG (Lisp_Object a, int type)
907 {
908 return XUNTAGBASE (a, type, 0);
909 }
910
911 #endif /* ! USE_LSB_TAG */
912
913 /* Extract A's value as an unsigned integer. */
914 INLINE EMACS_UINT
915 XUINT (Lisp_Object a)
916 {
917 EMACS_UINT i = XLI (a);
918 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
919 }
920
921 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
922 right now, but XUINT should only be applied to objects we know are
923 integers. */
924 LISP_MACRO_DEFUN (XHASH, EMACS_INT, (Lisp_Object a), (a))
925
926 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
927 INLINE Lisp_Object
928 make_natnum (EMACS_INT n)
929 {
930 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
931 EMACS_INT int0 = Lisp_Int0;
932 return USE_LSB_TAG ? make_number (n) : XIL (n + (int0 << VALBITS));
933 }
934
935 /* Return true if X and Y are the same object. */
936 LISP_MACRO_DEFUN (EQ, bool, (Lisp_Object x, Lisp_Object y), (x, y))
937
938 /* Value is true if I doesn't fit into a Lisp fixnum. It is
939 written this way so that it also works if I is of unsigned
940 type or if I is a NaN. */
941
942 #define FIXNUM_OVERFLOW_P(i) \
943 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
944
945 INLINE ptrdiff_t
946 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
947 {
948 return num < lower ? lower : num <= upper ? num : upper;
949 }
950 \f
951
952 /* Extract a value or address from a Lisp_Object. */
953
954 LISP_MACRO_DEFUN (XCONS, struct Lisp_Cons *, (Lisp_Object a), (a))
955
956 INLINE struct Lisp_Vector *
957 XVECTOR (Lisp_Object a)
958 {
959 eassert (VECTORLIKEP (a));
960 return XUNTAG (a, Lisp_Vectorlike);
961 }
962
963 INLINE struct Lisp_String *
964 XSTRING (Lisp_Object a)
965 {
966 eassert (STRINGP (a));
967 return XUNTAG (a, Lisp_String);
968 }
969
970 LISP_MACRO_DEFUN (XSYMBOL, struct Lisp_Symbol *, (Lisp_Object a), (a))
971
972 /* XSYMBOL_INIT (Qfoo) is like XSYMBOL (Qfoo), except it is valid in
973 static initializers, and SYM must be a C-defined symbol. */
974 #define XSYMBOL_INIT(sym) a##sym
975
976 INLINE struct Lisp_Float *
977 XFLOAT (Lisp_Object a)
978 {
979 eassert (FLOATP (a));
980 return XUNTAG (a, Lisp_Float);
981 }
982
983 /* Pseudovector types. */
984
985 INLINE struct Lisp_Process *
986 XPROCESS (Lisp_Object a)
987 {
988 eassert (PROCESSP (a));
989 return XUNTAG (a, Lisp_Vectorlike);
990 }
991
992 INLINE struct window *
993 XWINDOW (Lisp_Object a)
994 {
995 eassert (WINDOWP (a));
996 return XUNTAG (a, Lisp_Vectorlike);
997 }
998
999 INLINE struct terminal *
1000 XTERMINAL (Lisp_Object a)
1001 {
1002 return XUNTAG (a, Lisp_Vectorlike);
1003 }
1004
1005 INLINE struct Lisp_Subr *
1006 XSUBR (Lisp_Object a)
1007 {
1008 eassert (SUBRP (a));
1009 return XUNTAG (a, Lisp_Vectorlike);
1010 }
1011
1012 INLINE struct buffer *
1013 XBUFFER (Lisp_Object a)
1014 {
1015 eassert (BUFFERP (a));
1016 return XUNTAG (a, Lisp_Vectorlike);
1017 }
1018
1019 INLINE struct Lisp_Char_Table *
1020 XCHAR_TABLE (Lisp_Object a)
1021 {
1022 eassert (CHAR_TABLE_P (a));
1023 return XUNTAG (a, Lisp_Vectorlike);
1024 }
1025
1026 INLINE struct Lisp_Sub_Char_Table *
1027 XSUB_CHAR_TABLE (Lisp_Object a)
1028 {
1029 eassert (SUB_CHAR_TABLE_P (a));
1030 return XUNTAG (a, Lisp_Vectorlike);
1031 }
1032
1033 INLINE struct Lisp_Bool_Vector *
1034 XBOOL_VECTOR (Lisp_Object a)
1035 {
1036 eassert (BOOL_VECTOR_P (a));
1037 return XUNTAG (a, Lisp_Vectorlike);
1038 }
1039
1040 /* Construct a Lisp_Object from a value or address. */
1041
1042 INLINE Lisp_Object
1043 make_lisp_ptr (void *ptr, enum Lisp_Type type)
1044 {
1045 Lisp_Object a = XIL (TAG_PTR (type, ptr));
1046 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
1047 return a;
1048 }
1049
1050 INLINE Lisp_Object
1051 make_lisp_symbol (struct Lisp_Symbol *sym)
1052 {
1053 Lisp_Object a = XIL (TAG_SYMPTR (sym));
1054 eassert (XTYPE (a) == Lisp_Symbol
1055 && XUNTAGBASE (a, Lisp_Symbol, lispsym) == sym);
1056 return a;
1057 }
1058
1059 INLINE Lisp_Object
1060 make_lisp_proc (struct Lisp_Process *p)
1061 {
1062 return make_lisp_ptr (p, Lisp_Vectorlike);
1063 }
1064
1065 #define XSETINT(a, b) ((a) = make_number (b))
1066 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
1067 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
1068 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
1069 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
1070 #define XSETSYMBOL(a, b) ((a) = make_lisp_symbol (b))
1071 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
1072 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
1073
1074 /* Pseudovector types. */
1075
1076 #define XSETPVECTYPE(v, code) \
1077 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
1078 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
1079 ((v)->header.size = (PSEUDOVECTOR_FLAG \
1080 | ((code) << PSEUDOVECTOR_AREA_BITS) \
1081 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
1082 | (lispsize)))
1083
1084 /* The cast to struct vectorlike_header * avoids aliasing issues. */
1085 #define XSETPSEUDOVECTOR(a, b, code) \
1086 XSETTYPED_PSEUDOVECTOR (a, b, \
1087 (((struct vectorlike_header *) \
1088 XUNTAG (a, Lisp_Vectorlike)) \
1089 ->size), \
1090 code)
1091 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
1092 (XSETVECTOR (a, b), \
1093 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
1094 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
1095
1096 #define XSETWINDOW_CONFIGURATION(a, b) \
1097 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
1098 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
1099 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
1100 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
1101 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
1102 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
1103 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
1104 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
1105 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
1106 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
1107
1108 /* Type checking. */
1109
1110 LISP_MACRO_DEFUN_VOID (CHECK_TYPE,
1111 (int ok, Lisp_Object predicate, Lisp_Object x),
1112 (ok, predicate, x))
1113
1114 /* Deprecated and will be removed soon. */
1115
1116 #define INTERNAL_FIELD(field) field ## _
1117
1118 /* See the macros in intervals.h. */
1119
1120 typedef struct interval *INTERVAL;
1121
1122 struct GCALIGNED Lisp_Cons
1123 {
1124 /* Car of this cons cell. */
1125 Lisp_Object car;
1126
1127 union
1128 {
1129 /* Cdr of this cons cell. */
1130 Lisp_Object cdr;
1131
1132 /* Used to chain conses on a free list. */
1133 struct Lisp_Cons *chain;
1134 } u;
1135 };
1136
1137 /* Take the car or cdr of something known to be a cons cell. */
1138 /* The _addr functions shouldn't be used outside of the minimal set
1139 of code that has to know what a cons cell looks like. Other code not
1140 part of the basic lisp implementation should assume that the car and cdr
1141 fields are not accessible. (What if we want to switch to
1142 a copying collector someday? Cached cons cell field addresses may be
1143 invalidated at arbitrary points.) */
1144 INLINE Lisp_Object *
1145 xcar_addr (Lisp_Object c)
1146 {
1147 return &XCONS (c)->car;
1148 }
1149 INLINE Lisp_Object *
1150 xcdr_addr (Lisp_Object c)
1151 {
1152 return &XCONS (c)->u.cdr;
1153 }
1154
1155 /* Use these from normal code. */
1156 LISP_MACRO_DEFUN (XCAR, Lisp_Object, (Lisp_Object c), (c))
1157 LISP_MACRO_DEFUN (XCDR, Lisp_Object, (Lisp_Object c), (c))
1158
1159 /* Use these to set the fields of a cons cell.
1160
1161 Note that both arguments may refer to the same object, so 'n'
1162 should not be read after 'c' is first modified. */
1163 INLINE void
1164 XSETCAR (Lisp_Object c, Lisp_Object n)
1165 {
1166 *xcar_addr (c) = n;
1167 }
1168 INLINE void
1169 XSETCDR (Lisp_Object c, Lisp_Object n)
1170 {
1171 *xcdr_addr (c) = n;
1172 }
1173
1174 /* Take the car or cdr of something whose type is not known. */
1175 INLINE Lisp_Object
1176 CAR (Lisp_Object c)
1177 {
1178 return (CONSP (c) ? XCAR (c)
1179 : NILP (c) ? Qnil
1180 : wrong_type_argument (Qlistp, c));
1181 }
1182 INLINE Lisp_Object
1183 CDR (Lisp_Object c)
1184 {
1185 return (CONSP (c) ? XCDR (c)
1186 : NILP (c) ? Qnil
1187 : wrong_type_argument (Qlistp, c));
1188 }
1189
1190 /* Take the car or cdr of something whose type is not known. */
1191 INLINE Lisp_Object
1192 CAR_SAFE (Lisp_Object c)
1193 {
1194 return CONSP (c) ? XCAR (c) : Qnil;
1195 }
1196 INLINE Lisp_Object
1197 CDR_SAFE (Lisp_Object c)
1198 {
1199 return CONSP (c) ? XCDR (c) : Qnil;
1200 }
1201
1202 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1203
1204 struct GCALIGNED Lisp_String
1205 {
1206 ptrdiff_t size;
1207 ptrdiff_t size_byte;
1208 INTERVAL intervals; /* Text properties in this string. */
1209 unsigned char *data;
1210 };
1211
1212 /* True if STR is a multibyte string. */
1213 INLINE bool
1214 STRING_MULTIBYTE (Lisp_Object str)
1215 {
1216 return 0 <= XSTRING (str)->size_byte;
1217 }
1218
1219 /* An upper bound on the number of bytes in a Lisp string, not
1220 counting the terminating null. This a tight enough bound to
1221 prevent integer overflow errors that would otherwise occur during
1222 string size calculations. A string cannot contain more bytes than
1223 a fixnum can represent, nor can it be so long that C pointer
1224 arithmetic stops working on the string plus its terminating null.
1225 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1226 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1227 would expose alloc.c internal details that we'd rather keep
1228 private.
1229
1230 This is a macro for use in static initializers. The cast to
1231 ptrdiff_t ensures that the macro is signed. */
1232 #define STRING_BYTES_BOUND \
1233 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1234
1235 /* Mark STR as a unibyte string. */
1236 #define STRING_SET_UNIBYTE(STR) \
1237 do { \
1238 if (EQ (STR, empty_multibyte_string)) \
1239 (STR) = empty_unibyte_string; \
1240 else \
1241 XSTRING (STR)->size_byte = -1; \
1242 } while (false)
1243
1244 /* Mark STR as a multibyte string. Assure that STR contains only
1245 ASCII characters in advance. */
1246 #define STRING_SET_MULTIBYTE(STR) \
1247 do { \
1248 if (EQ (STR, empty_unibyte_string)) \
1249 (STR) = empty_multibyte_string; \
1250 else \
1251 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1252 } while (false)
1253
1254 /* Convenience functions for dealing with Lisp strings. */
1255
1256 INLINE unsigned char *
1257 SDATA (Lisp_Object string)
1258 {
1259 return XSTRING (string)->data;
1260 }
1261 INLINE char *
1262 SSDATA (Lisp_Object string)
1263 {
1264 /* Avoid "differ in sign" warnings. */
1265 return (char *) SDATA (string);
1266 }
1267 INLINE unsigned char
1268 SREF (Lisp_Object string, ptrdiff_t index)
1269 {
1270 return SDATA (string)[index];
1271 }
1272 INLINE void
1273 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1274 {
1275 SDATA (string)[index] = new;
1276 }
1277 INLINE ptrdiff_t
1278 SCHARS (Lisp_Object string)
1279 {
1280 return XSTRING (string)->size;
1281 }
1282
1283 #ifdef GC_CHECK_STRING_BYTES
1284 extern ptrdiff_t string_bytes (struct Lisp_String *);
1285 #endif
1286 INLINE ptrdiff_t
1287 STRING_BYTES (struct Lisp_String *s)
1288 {
1289 #ifdef GC_CHECK_STRING_BYTES
1290 return string_bytes (s);
1291 #else
1292 return s->size_byte < 0 ? s->size : s->size_byte;
1293 #endif
1294 }
1295
1296 INLINE ptrdiff_t
1297 SBYTES (Lisp_Object string)
1298 {
1299 return STRING_BYTES (XSTRING (string));
1300 }
1301 INLINE void
1302 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1303 {
1304 XSTRING (string)->size = newsize;
1305 }
1306
1307 /* Header of vector-like objects. This documents the layout constraints on
1308 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1309 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1310 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1311 because when two such pointers potentially alias, a compiler won't
1312 incorrectly reorder loads and stores to their size fields. See
1313 Bug#8546. */
1314 struct vectorlike_header
1315 {
1316 /* The only field contains various pieces of information:
1317 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1318 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1319 vector (0) or a pseudovector (1).
1320 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1321 of slots) of the vector.
1322 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1323 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1324 - b) number of Lisp_Objects slots at the beginning of the object
1325 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1326 traced by the GC;
1327 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1328 measured in word_size units. Rest fields may also include
1329 Lisp_Objects, but these objects usually needs some special treatment
1330 during GC.
1331 There are some exceptions. For PVEC_FREE, b) is always zero. For
1332 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1333 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1334 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1335 ptrdiff_t size;
1336 };
1337
1338 /* A regular vector is just a header plus an array of Lisp_Objects. */
1339
1340 struct Lisp_Vector
1341 {
1342 struct vectorlike_header header;
1343 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1344 };
1345
1346 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1347 enum
1348 {
1349 ALIGNOF_STRUCT_LISP_VECTOR
1350 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1351 };
1352
1353 /* A boolvector is a kind of vectorlike, with contents like a string. */
1354
1355 struct Lisp_Bool_Vector
1356 {
1357 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1358 just the subtype information. */
1359 struct vectorlike_header header;
1360 /* This is the size in bits. */
1361 EMACS_INT size;
1362 /* The actual bits, packed into bytes.
1363 Zeros fill out the last word if needed.
1364 The bits are in little-endian order in the bytes, and
1365 the bytes are in little-endian order in the words. */
1366 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1367 };
1368
1369 INLINE EMACS_INT
1370 bool_vector_size (Lisp_Object a)
1371 {
1372 EMACS_INT size = XBOOL_VECTOR (a)->size;
1373 eassume (0 <= size);
1374 return size;
1375 }
1376
1377 INLINE bits_word *
1378 bool_vector_data (Lisp_Object a)
1379 {
1380 return XBOOL_VECTOR (a)->data;
1381 }
1382
1383 INLINE unsigned char *
1384 bool_vector_uchar_data (Lisp_Object a)
1385 {
1386 return (unsigned char *) bool_vector_data (a);
1387 }
1388
1389 /* The number of data words and bytes in a bool vector with SIZE bits. */
1390
1391 INLINE EMACS_INT
1392 bool_vector_words (EMACS_INT size)
1393 {
1394 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1395 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1396 }
1397
1398 INLINE EMACS_INT
1399 bool_vector_bytes (EMACS_INT size)
1400 {
1401 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1402 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1403 }
1404
1405 /* True if A's Ith bit is set. */
1406
1407 INLINE bool
1408 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1409 {
1410 eassume (0 <= i && i < bool_vector_size (a));
1411 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1412 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1413 }
1414
1415 INLINE Lisp_Object
1416 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1417 {
1418 return bool_vector_bitref (a, i) ? Qt : Qnil;
1419 }
1420
1421 /* Set A's Ith bit to B. */
1422
1423 INLINE void
1424 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1425 {
1426 unsigned char *addr;
1427
1428 eassume (0 <= i && i < bool_vector_size (a));
1429 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1430
1431 if (b)
1432 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1433 else
1434 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1435 }
1436
1437 /* Some handy constants for calculating sizes
1438 and offsets, mostly of vectorlike objects. */
1439
1440 enum
1441 {
1442 header_size = offsetof (struct Lisp_Vector, contents),
1443 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1444 word_size = sizeof (Lisp_Object)
1445 };
1446
1447 /* Conveniences for dealing with Lisp arrays. */
1448
1449 INLINE Lisp_Object
1450 AREF (Lisp_Object array, ptrdiff_t idx)
1451 {
1452 return XVECTOR (array)->contents[idx];
1453 }
1454
1455 INLINE Lisp_Object *
1456 aref_addr (Lisp_Object array, ptrdiff_t idx)
1457 {
1458 return & XVECTOR (array)->contents[idx];
1459 }
1460
1461 INLINE ptrdiff_t
1462 ASIZE (Lisp_Object array)
1463 {
1464 return XVECTOR (array)->header.size;
1465 }
1466
1467 INLINE void
1468 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1469 {
1470 eassert (0 <= idx && idx < ASIZE (array));
1471 XVECTOR (array)->contents[idx] = val;
1472 }
1473
1474 INLINE void
1475 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1476 {
1477 /* Like ASET, but also can be used in the garbage collector:
1478 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1479 eassert (0 <= idx && idx < (ASIZE (array) & ~ARRAY_MARK_FLAG));
1480 XVECTOR (array)->contents[idx] = val;
1481 }
1482
1483 /* If a struct is made to look like a vector, this macro returns the length
1484 of the shortest vector that would hold that struct. */
1485
1486 #define VECSIZE(type) \
1487 ((sizeof (type) - header_size + word_size - 1) / word_size)
1488
1489 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1490 at the end and we need to compute the number of Lisp_Object fields (the
1491 ones that the GC needs to trace). */
1492
1493 #define PSEUDOVECSIZE(type, nonlispfield) \
1494 ((offsetof (type, nonlispfield) - header_size) / word_size)
1495
1496 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1497 should be integer expressions. This is not the same as
1498 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1499 returns true. For efficiency, prefer plain unsigned comparison if A
1500 and B's sizes both fit (after integer promotion). */
1501 #define UNSIGNED_CMP(a, op, b) \
1502 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1503 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1504 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1505
1506 /* True iff C is an ASCII character. */
1507 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1508
1509 /* A char-table is a kind of vectorlike, with contents are like a
1510 vector but with a few other slots. For some purposes, it makes
1511 sense to handle a char-table with type struct Lisp_Vector. An
1512 element of a char table can be any Lisp objects, but if it is a sub
1513 char-table, we treat it a table that contains information of a
1514 specific range of characters. A sub char-table is like a vector but
1515 with two integer fields between the header and Lisp data, which means
1516 that it has to be marked with some precautions (see mark_char_table
1517 in alloc.c). A sub char-table appears only in an element of a char-table,
1518 and there's no way to access it directly from Emacs Lisp program. */
1519
1520 enum CHARTAB_SIZE_BITS
1521 {
1522 CHARTAB_SIZE_BITS_0 = 6,
1523 CHARTAB_SIZE_BITS_1 = 4,
1524 CHARTAB_SIZE_BITS_2 = 5,
1525 CHARTAB_SIZE_BITS_3 = 7
1526 };
1527
1528 extern const int chartab_size[4];
1529
1530 struct Lisp_Char_Table
1531 {
1532 /* HEADER.SIZE is the vector's size field, which also holds the
1533 pseudovector type information. It holds the size, too.
1534 The size counts the defalt, parent, purpose, ascii,
1535 contents, and extras slots. */
1536 struct vectorlike_header header;
1537
1538 /* This holds a default value,
1539 which is used whenever the value for a specific character is nil. */
1540 Lisp_Object defalt;
1541
1542 /* This points to another char table, which we inherit from when the
1543 value for a specific character is nil. The `defalt' slot takes
1544 precedence over this. */
1545 Lisp_Object parent;
1546
1547 /* This is a symbol which says what kind of use this char-table is
1548 meant for. */
1549 Lisp_Object purpose;
1550
1551 /* The bottom sub char-table for characters of the range 0..127. It
1552 is nil if none of ASCII character has a specific value. */
1553 Lisp_Object ascii;
1554
1555 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1556
1557 /* These hold additional data. It is a vector. */
1558 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1559 };
1560
1561 struct Lisp_Sub_Char_Table
1562 {
1563 /* HEADER.SIZE is the vector's size field, which also holds the
1564 pseudovector type information. It holds the size, too. */
1565 struct vectorlike_header header;
1566
1567 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1568 char-table of depth 1 contains 16 elements, and each element
1569 covers 4096 (128*32) characters. A sub char-table of depth 2
1570 contains 32 elements, and each element covers 128 characters. A
1571 sub char-table of depth 3 contains 128 elements, and each element
1572 is for one character. */
1573 int depth;
1574
1575 /* Minimum character covered by the sub char-table. */
1576 int min_char;
1577
1578 /* Use set_sub_char_table_contents to set this. */
1579 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1580 };
1581
1582 INLINE Lisp_Object
1583 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1584 {
1585 struct Lisp_Char_Table *tbl = NULL;
1586 Lisp_Object val;
1587 do
1588 {
1589 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1590 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1591 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1592 if (NILP (val))
1593 val = tbl->defalt;
1594 }
1595 while (NILP (val) && ! NILP (tbl->parent));
1596
1597 return val;
1598 }
1599
1600 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1601 characters. Do not check validity of CT. */
1602 INLINE Lisp_Object
1603 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1604 {
1605 return (ASCII_CHAR_P (idx)
1606 ? CHAR_TABLE_REF_ASCII (ct, idx)
1607 : char_table_ref (ct, idx));
1608 }
1609
1610 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1611 8-bit European characters. Do not check validity of CT. */
1612 INLINE void
1613 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1614 {
1615 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1616 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1617 else
1618 char_table_set (ct, idx, val);
1619 }
1620
1621 /* This structure describes a built-in function.
1622 It is generated by the DEFUN macro only.
1623 defsubr makes it into a Lisp object. */
1624
1625 struct Lisp_Subr
1626 {
1627 struct vectorlike_header header;
1628 union {
1629 Lisp_Object (*a0) (void);
1630 Lisp_Object (*a1) (Lisp_Object);
1631 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1632 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1633 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1634 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1635 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1636 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1637 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1638 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1639 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1640 } function;
1641 short min_args, max_args;
1642 const char *symbol_name;
1643 const char *intspec;
1644 const char *doc;
1645 };
1646
1647 enum char_table_specials
1648 {
1649 /* This is the number of slots that every char table must have. This
1650 counts the ordinary slots and the top, defalt, parent, and purpose
1651 slots. */
1652 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1653
1654 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1655 when the latter is treated as an ordinary Lisp_Vector. */
1656 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1657 };
1658
1659 /* Return the number of "extra" slots in the char table CT. */
1660
1661 INLINE int
1662 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1663 {
1664 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1665 - CHAR_TABLE_STANDARD_SLOTS);
1666 }
1667
1668 /* Make sure that sub char-table contents slot
1669 is aligned on a multiple of Lisp_Objects. */
1670 verify ((offsetof (struct Lisp_Sub_Char_Table, contents)
1671 - offsetof (struct Lisp_Sub_Char_Table, depth)) % word_size == 0);
1672
1673 /***********************************************************************
1674 Symbols
1675 ***********************************************************************/
1676
1677 /* Value is name of symbol. */
1678
1679 LISP_MACRO_DEFUN (SYMBOL_VAL, Lisp_Object, (struct Lisp_Symbol *sym), (sym))
1680
1681 INLINE struct Lisp_Symbol *
1682 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1683 {
1684 eassert (sym->redirect == SYMBOL_VARALIAS);
1685 return sym->val.alias;
1686 }
1687 INLINE struct Lisp_Buffer_Local_Value *
1688 SYMBOL_BLV (struct Lisp_Symbol *sym)
1689 {
1690 eassert (sym->redirect == SYMBOL_LOCALIZED);
1691 return sym->val.blv;
1692 }
1693 INLINE union Lisp_Fwd *
1694 SYMBOL_FWD (struct Lisp_Symbol *sym)
1695 {
1696 eassert (sym->redirect == SYMBOL_FORWARDED);
1697 return sym->val.fwd;
1698 }
1699
1700 LISP_MACRO_DEFUN_VOID (SET_SYMBOL_VAL,
1701 (struct Lisp_Symbol *sym, Lisp_Object v), (sym, v))
1702
1703 INLINE void
1704 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1705 {
1706 eassert (sym->redirect == SYMBOL_VARALIAS);
1707 sym->val.alias = v;
1708 }
1709 INLINE void
1710 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1711 {
1712 eassert (sym->redirect == SYMBOL_LOCALIZED);
1713 sym->val.blv = v;
1714 }
1715 INLINE void
1716 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1717 {
1718 eassert (sym->redirect == SYMBOL_FORWARDED);
1719 sym->val.fwd = v;
1720 }
1721
1722 INLINE Lisp_Object
1723 SYMBOL_NAME (Lisp_Object sym)
1724 {
1725 return XSYMBOL (sym)->name;
1726 }
1727
1728 /* Value is true if SYM is an interned symbol. */
1729
1730 INLINE bool
1731 SYMBOL_INTERNED_P (Lisp_Object sym)
1732 {
1733 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1734 }
1735
1736 /* Value is true if SYM is interned in initial_obarray. */
1737
1738 INLINE bool
1739 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1740 {
1741 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1742 }
1743
1744 /* Value is non-zero if symbol is considered a constant, i.e. its
1745 value cannot be changed (there is an exception for keyword symbols,
1746 whose value can be set to the keyword symbol itself). */
1747
1748 LISP_MACRO_DEFUN (SYMBOL_CONSTANT_P, int, (Lisp_Object sym), (sym))
1749
1750 /* Placeholder for make-docfile to process. The actual symbol
1751 definition is done by lread.c's defsym. */
1752 #define DEFSYM(sym, name) /* empty */
1753
1754 \f
1755 /***********************************************************************
1756 Hash Tables
1757 ***********************************************************************/
1758
1759 /* The structure of a Lisp hash table. */
1760
1761 struct hash_table_test
1762 {
1763 /* Name of the function used to compare keys. */
1764 Lisp_Object name;
1765
1766 /* User-supplied hash function, or nil. */
1767 Lisp_Object user_hash_function;
1768
1769 /* User-supplied key comparison function, or nil. */
1770 Lisp_Object user_cmp_function;
1771
1772 /* C function to compare two keys. */
1773 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1774
1775 /* C function to compute hash code. */
1776 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1777 };
1778
1779 struct Lisp_Hash_Table
1780 {
1781 /* This is for Lisp; the hash table code does not refer to it. */
1782 struct vectorlike_header header;
1783
1784 /* Nil if table is non-weak. Otherwise a symbol describing the
1785 weakness of the table. */
1786 Lisp_Object weak;
1787
1788 /* When the table is resized, and this is an integer, compute the
1789 new size by adding this to the old size. If a float, compute the
1790 new size by multiplying the old size with this factor. */
1791 Lisp_Object rehash_size;
1792
1793 /* Resize hash table when number of entries/ table size is >= this
1794 ratio, a float. */
1795 Lisp_Object rehash_threshold;
1796
1797 /* Vector of hash codes. If hash[I] is nil, this means that the
1798 I-th entry is unused. */
1799 Lisp_Object hash;
1800
1801 /* Vector used to chain entries. If entry I is free, next[I] is the
1802 entry number of the next free item. If entry I is non-free,
1803 next[I] is the index of the next entry in the collision chain. */
1804 Lisp_Object next;
1805
1806 /* Index of first free entry in free list. */
1807 Lisp_Object next_free;
1808
1809 /* Bucket vector. A non-nil entry is the index of the first item in
1810 a collision chain. This vector's size can be larger than the
1811 hash table size to reduce collisions. */
1812 Lisp_Object index;
1813
1814 /* Only the fields above are traced normally by the GC. The ones below
1815 `count' are special and are either ignored by the GC or traced in
1816 a special way (e.g. because of weakness). */
1817
1818 /* Number of key/value entries in the table. */
1819 ptrdiff_t count;
1820
1821 /* Vector of keys and values. The key of item I is found at index
1822 2 * I, the value is found at index 2 * I + 1.
1823 This is gc_marked specially if the table is weak. */
1824 Lisp_Object key_and_value;
1825
1826 /* The comparison and hash functions. */
1827 struct hash_table_test test;
1828
1829 /* Next weak hash table if this is a weak hash table. The head
1830 of the list is in weak_hash_tables. */
1831 struct Lisp_Hash_Table *next_weak;
1832 };
1833
1834
1835 INLINE struct Lisp_Hash_Table *
1836 XHASH_TABLE (Lisp_Object a)
1837 {
1838 return XUNTAG (a, Lisp_Vectorlike);
1839 }
1840
1841 #define XSET_HASH_TABLE(VAR, PTR) \
1842 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1843
1844 INLINE bool
1845 HASH_TABLE_P (Lisp_Object a)
1846 {
1847 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1848 }
1849
1850 /* Value is the key part of entry IDX in hash table H. */
1851 INLINE Lisp_Object
1852 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1853 {
1854 return AREF (h->key_and_value, 2 * idx);
1855 }
1856
1857 /* Value is the value part of entry IDX in hash table H. */
1858 INLINE Lisp_Object
1859 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1860 {
1861 return AREF (h->key_and_value, 2 * idx + 1);
1862 }
1863
1864 /* Value is the index of the next entry following the one at IDX
1865 in hash table H. */
1866 INLINE Lisp_Object
1867 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1868 {
1869 return AREF (h->next, idx);
1870 }
1871
1872 /* Value is the hash code computed for entry IDX in hash table H. */
1873 INLINE Lisp_Object
1874 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1875 {
1876 return AREF (h->hash, idx);
1877 }
1878
1879 /* Value is the index of the element in hash table H that is the
1880 start of the collision list at index IDX in the index vector of H. */
1881 INLINE Lisp_Object
1882 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1883 {
1884 return AREF (h->index, idx);
1885 }
1886
1887 /* Value is the size of hash table H. */
1888 INLINE ptrdiff_t
1889 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
1890 {
1891 return ASIZE (h->next);
1892 }
1893
1894 /* Default size for hash tables if not specified. */
1895
1896 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
1897
1898 /* Default threshold specifying when to resize a hash table. The
1899 value gives the ratio of current entries in the hash table and the
1900 size of the hash table. */
1901
1902 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
1903
1904 /* Default factor by which to increase the size of a hash table. */
1905
1906 static double const DEFAULT_REHASH_SIZE = 1.5;
1907
1908 /* Combine two integers X and Y for hashing. The result might not fit
1909 into a Lisp integer. */
1910
1911 INLINE EMACS_UINT
1912 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
1913 {
1914 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
1915 }
1916
1917 /* Hash X, returning a value that fits into a fixnum. */
1918
1919 INLINE EMACS_UINT
1920 SXHASH_REDUCE (EMACS_UINT x)
1921 {
1922 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
1923 }
1924
1925 /* These structures are used for various misc types. */
1926
1927 struct Lisp_Misc_Any /* Supertype of all Misc types. */
1928 {
1929 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
1930 bool_bf gcmarkbit : 1;
1931 unsigned spacer : 15;
1932 };
1933
1934 struct Lisp_Marker
1935 {
1936 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
1937 bool_bf gcmarkbit : 1;
1938 unsigned spacer : 13;
1939 /* This flag is temporarily used in the functions
1940 decode/encode_coding_object to record that the marker position
1941 must be adjusted after the conversion. */
1942 bool_bf need_adjustment : 1;
1943 /* True means normal insertion at the marker's position
1944 leaves the marker after the inserted text. */
1945 bool_bf insertion_type : 1;
1946 /* This is the buffer that the marker points into, or 0 if it points nowhere.
1947 Note: a chain of markers can contain markers pointing into different
1948 buffers (the chain is per buffer_text rather than per buffer, so it's
1949 shared between indirect buffers). */
1950 /* This is used for (other than NULL-checking):
1951 - Fmarker_buffer
1952 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
1953 - unchain_marker: to find the list from which to unchain.
1954 - Fkill_buffer: to only unchain the markers of current indirect buffer.
1955 */
1956 struct buffer *buffer;
1957
1958 /* The remaining fields are meaningless in a marker that
1959 does not point anywhere. */
1960
1961 /* For markers that point somewhere,
1962 this is used to chain of all the markers in a given buffer. */
1963 /* We could remove it and use an array in buffer_text instead.
1964 That would also allow to preserve it ordered. */
1965 struct Lisp_Marker *next;
1966 /* This is the char position where the marker points. */
1967 ptrdiff_t charpos;
1968 /* This is the byte position.
1969 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
1970 used to implement the functionality of markers, but rather to (ab)use
1971 markers as a cache for char<->byte mappings). */
1972 ptrdiff_t bytepos;
1973 };
1974
1975 /* START and END are markers in the overlay's buffer, and
1976 PLIST is the overlay's property list. */
1977 struct Lisp_Overlay
1978 /* An overlay's real data content is:
1979 - plist
1980 - buffer (really there are two buffer pointers, one per marker,
1981 and both points to the same buffer)
1982 - insertion type of both ends (per-marker fields)
1983 - start & start byte (of start marker)
1984 - end & end byte (of end marker)
1985 - next (singly linked list of overlays)
1986 - next fields of start and end markers (singly linked list of markers).
1987 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
1988 */
1989 {
1990 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
1991 bool_bf gcmarkbit : 1;
1992 unsigned spacer : 15;
1993 struct Lisp_Overlay *next;
1994 Lisp_Object start;
1995 Lisp_Object end;
1996 Lisp_Object plist;
1997 };
1998
1999 /* Types of data which may be saved in a Lisp_Save_Value. */
2000
2001 enum
2002 {
2003 SAVE_UNUSED,
2004 SAVE_INTEGER,
2005 SAVE_FUNCPOINTER,
2006 SAVE_POINTER,
2007 SAVE_OBJECT
2008 };
2009
2010 /* Number of bits needed to store one of the above values. */
2011 enum { SAVE_SLOT_BITS = 3 };
2012
2013 /* Number of slots in a save value where save_type is nonzero. */
2014 enum { SAVE_VALUE_SLOTS = 4 };
2015
2016 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
2017
2018 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
2019
2020 enum Lisp_Save_Type
2021 {
2022 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2023 SAVE_TYPE_INT_INT_INT
2024 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
2025 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
2026 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
2027 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
2028 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
2029 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2030 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
2031 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
2032 SAVE_TYPE_FUNCPTR_PTR_OBJ
2033 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
2034
2035 /* This has an extra bit indicating it's raw memory. */
2036 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
2037 };
2038
2039 /* Special object used to hold a different values for later use.
2040
2041 This is mostly used to package C integers and pointers to call
2042 record_unwind_protect when two or more values need to be saved.
2043 For example:
2044
2045 ...
2046 struct my_data *md = get_my_data ();
2047 ptrdiff_t mi = get_my_integer ();
2048 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2049 ...
2050
2051 Lisp_Object my_unwind (Lisp_Object arg)
2052 {
2053 struct my_data *md = XSAVE_POINTER (arg, 0);
2054 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2055 ...
2056 }
2057
2058 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2059 saved objects and raise eassert if type of the saved object doesn't match
2060 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2061 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2062 slot 0 is a pointer. */
2063
2064 typedef void (*voidfuncptr) (void);
2065
2066 struct Lisp_Save_Value
2067 {
2068 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2069 bool_bf gcmarkbit : 1;
2070 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2071
2072 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2073 V's data entries are determined by V->save_type. E.g., if
2074 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2075 V->data[1] is an integer, and V's other data entries are unused.
2076
2077 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2078 a memory area containing V->data[1].integer potential Lisp_Objects. */
2079 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2080 union {
2081 void *pointer;
2082 voidfuncptr funcpointer;
2083 ptrdiff_t integer;
2084 Lisp_Object object;
2085 } data[SAVE_VALUE_SLOTS];
2086 };
2087
2088 /* Return the type of V's Nth saved value. */
2089 INLINE int
2090 save_type (struct Lisp_Save_Value *v, int n)
2091 {
2092 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2093 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2094 }
2095
2096 /* Get and set the Nth saved pointer. */
2097
2098 INLINE void *
2099 XSAVE_POINTER (Lisp_Object obj, int n)
2100 {
2101 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2102 return XSAVE_VALUE (obj)->data[n].pointer;
2103 }
2104 INLINE void
2105 set_save_pointer (Lisp_Object obj, int n, void *val)
2106 {
2107 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2108 XSAVE_VALUE (obj)->data[n].pointer = val;
2109 }
2110 INLINE voidfuncptr
2111 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2112 {
2113 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2114 return XSAVE_VALUE (obj)->data[n].funcpointer;
2115 }
2116
2117 /* Likewise for the saved integer. */
2118
2119 INLINE ptrdiff_t
2120 XSAVE_INTEGER (Lisp_Object obj, int n)
2121 {
2122 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2123 return XSAVE_VALUE (obj)->data[n].integer;
2124 }
2125 INLINE void
2126 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2127 {
2128 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2129 XSAVE_VALUE (obj)->data[n].integer = val;
2130 }
2131
2132 /* Extract Nth saved object. */
2133
2134 INLINE Lisp_Object
2135 XSAVE_OBJECT (Lisp_Object obj, int n)
2136 {
2137 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2138 return XSAVE_VALUE (obj)->data[n].object;
2139 }
2140
2141 /* A miscellaneous object, when it's on the free list. */
2142 struct Lisp_Free
2143 {
2144 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2145 bool_bf gcmarkbit : 1;
2146 unsigned spacer : 15;
2147 union Lisp_Misc *chain;
2148 };
2149
2150 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2151 It uses one of these struct subtypes to get the type field. */
2152
2153 union Lisp_Misc
2154 {
2155 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2156 struct Lisp_Free u_free;
2157 struct Lisp_Marker u_marker;
2158 struct Lisp_Overlay u_overlay;
2159 struct Lisp_Save_Value u_save_value;
2160 };
2161
2162 INLINE union Lisp_Misc *
2163 XMISC (Lisp_Object a)
2164 {
2165 return XUNTAG (a, Lisp_Misc);
2166 }
2167
2168 INLINE struct Lisp_Misc_Any *
2169 XMISCANY (Lisp_Object a)
2170 {
2171 eassert (MISCP (a));
2172 return & XMISC (a)->u_any;
2173 }
2174
2175 INLINE enum Lisp_Misc_Type
2176 XMISCTYPE (Lisp_Object a)
2177 {
2178 return XMISCANY (a)->type;
2179 }
2180
2181 INLINE struct Lisp_Marker *
2182 XMARKER (Lisp_Object a)
2183 {
2184 eassert (MARKERP (a));
2185 return & XMISC (a)->u_marker;
2186 }
2187
2188 INLINE struct Lisp_Overlay *
2189 XOVERLAY (Lisp_Object a)
2190 {
2191 eassert (OVERLAYP (a));
2192 return & XMISC (a)->u_overlay;
2193 }
2194
2195 INLINE struct Lisp_Save_Value *
2196 XSAVE_VALUE (Lisp_Object a)
2197 {
2198 eassert (SAVE_VALUEP (a));
2199 return & XMISC (a)->u_save_value;
2200 }
2201 \f
2202 /* Forwarding pointer to an int variable.
2203 This is allowed only in the value cell of a symbol,
2204 and it means that the symbol's value really lives in the
2205 specified int variable. */
2206 struct Lisp_Intfwd
2207 {
2208 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2209 EMACS_INT *intvar;
2210 };
2211
2212 /* Boolean forwarding pointer to an int variable.
2213 This is like Lisp_Intfwd except that the ostensible
2214 "value" of the symbol is t if the bool variable is true,
2215 nil if it is false. */
2216 struct Lisp_Boolfwd
2217 {
2218 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2219 bool *boolvar;
2220 };
2221
2222 /* Forwarding pointer to a Lisp_Object variable.
2223 This is allowed only in the value cell of a symbol,
2224 and it means that the symbol's value really lives in the
2225 specified variable. */
2226 struct Lisp_Objfwd
2227 {
2228 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2229 Lisp_Object *objvar;
2230 };
2231
2232 /* Like Lisp_Objfwd except that value lives in a slot in the
2233 current buffer. Value is byte index of slot within buffer. */
2234 struct Lisp_Buffer_Objfwd
2235 {
2236 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2237 int offset;
2238 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2239 Lisp_Object predicate;
2240 };
2241
2242 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2243 the symbol has buffer-local or frame-local bindings. (Exception:
2244 some buffer-local variables are built-in, with their values stored
2245 in the buffer structure itself. They are handled differently,
2246 using struct Lisp_Buffer_Objfwd.)
2247
2248 The `realvalue' slot holds the variable's current value, or a
2249 forwarding pointer to where that value is kept. This value is the
2250 one that corresponds to the loaded binding. To read or set the
2251 variable, you must first make sure the right binding is loaded;
2252 then you can access the value in (or through) `realvalue'.
2253
2254 `buffer' and `frame' are the buffer and frame for which the loaded
2255 binding was found. If those have changed, to make sure the right
2256 binding is loaded it is necessary to find which binding goes with
2257 the current buffer and selected frame, then load it. To load it,
2258 first unload the previous binding, then copy the value of the new
2259 binding into `realvalue' (or through it). Also update
2260 LOADED-BINDING to point to the newly loaded binding.
2261
2262 `local_if_set' indicates that merely setting the variable creates a
2263 local binding for the current buffer. Otherwise the latter, setting
2264 the variable does not do that; only make-local-variable does that. */
2265
2266 struct Lisp_Buffer_Local_Value
2267 {
2268 /* True means that merely setting the variable creates a local
2269 binding for the current buffer. */
2270 bool_bf local_if_set : 1;
2271 /* True means this variable can have frame-local bindings, otherwise, it is
2272 can have buffer-local bindings. The two cannot be combined. */
2273 bool_bf frame_local : 1;
2274 /* True means that the binding now loaded was found.
2275 Presumably equivalent to (defcell!=valcell). */
2276 bool_bf found : 1;
2277 /* If non-NULL, a forwarding to the C var where it should also be set. */
2278 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2279 /* The buffer or frame for which the loaded binding was found. */
2280 Lisp_Object where;
2281 /* A cons cell that holds the default value. It has the form
2282 (SYMBOL . DEFAULT-VALUE). */
2283 Lisp_Object defcell;
2284 /* The cons cell from `where's parameter alist.
2285 It always has the form (SYMBOL . VALUE)
2286 Note that if `forward' is non-nil, VALUE may be out of date.
2287 Also if the currently loaded binding is the default binding, then
2288 this is `eq'ual to defcell. */
2289 Lisp_Object valcell;
2290 };
2291
2292 /* Like Lisp_Objfwd except that value lives in a slot in the
2293 current kboard. */
2294 struct Lisp_Kboard_Objfwd
2295 {
2296 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2297 int offset;
2298 };
2299
2300 union Lisp_Fwd
2301 {
2302 struct Lisp_Intfwd u_intfwd;
2303 struct Lisp_Boolfwd u_boolfwd;
2304 struct Lisp_Objfwd u_objfwd;
2305 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2306 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2307 };
2308
2309 INLINE enum Lisp_Fwd_Type
2310 XFWDTYPE (union Lisp_Fwd *a)
2311 {
2312 return a->u_intfwd.type;
2313 }
2314
2315 INLINE struct Lisp_Buffer_Objfwd *
2316 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2317 {
2318 eassert (BUFFER_OBJFWDP (a));
2319 return &a->u_buffer_objfwd;
2320 }
2321 \f
2322 /* Lisp floating point type. */
2323 struct Lisp_Float
2324 {
2325 union
2326 {
2327 double data;
2328 struct Lisp_Float *chain;
2329 } u;
2330 };
2331
2332 INLINE double
2333 XFLOAT_DATA (Lisp_Object f)
2334 {
2335 return XFLOAT (f)->u.data;
2336 }
2337
2338 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2339 representations, have infinities and NaNs, and do not trap on
2340 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2341 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2342 wanted here, but is not quite right because Emacs does not require
2343 all the features of C11 Annex F (and does not require C11 at all,
2344 for that matter). */
2345 enum
2346 {
2347 IEEE_FLOATING_POINT
2348 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2349 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2350 };
2351
2352 /* A character, declared with the following typedef, is a member
2353 of some character set associated with the current buffer. */
2354 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2355 #define _UCHAR_T
2356 typedef unsigned char UCHAR;
2357 #endif
2358
2359 /* Meanings of slots in a Lisp_Compiled: */
2360
2361 enum Lisp_Compiled
2362 {
2363 COMPILED_ARGLIST = 0,
2364 COMPILED_BYTECODE = 1,
2365 COMPILED_CONSTANTS = 2,
2366 COMPILED_STACK_DEPTH = 3,
2367 COMPILED_DOC_STRING = 4,
2368 COMPILED_INTERACTIVE = 5
2369 };
2370
2371 /* Flag bits in a character. These also get used in termhooks.h.
2372 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2373 (MUlti-Lingual Emacs) might need 22 bits for the character value
2374 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2375 enum char_bits
2376 {
2377 CHAR_ALT = 0x0400000,
2378 CHAR_SUPER = 0x0800000,
2379 CHAR_HYPER = 0x1000000,
2380 CHAR_SHIFT = 0x2000000,
2381 CHAR_CTL = 0x4000000,
2382 CHAR_META = 0x8000000,
2383
2384 CHAR_MODIFIER_MASK =
2385 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2386
2387 /* Actually, the current Emacs uses 22 bits for the character value
2388 itself. */
2389 CHARACTERBITS = 22
2390 };
2391 \f
2392 /* Data type checking. */
2393
2394 LISP_MACRO_DEFUN (NILP, bool, (Lisp_Object x), (x))
2395
2396 INLINE bool
2397 NUMBERP (Lisp_Object x)
2398 {
2399 return INTEGERP (x) || FLOATP (x);
2400 }
2401 INLINE bool
2402 NATNUMP (Lisp_Object x)
2403 {
2404 return INTEGERP (x) && 0 <= XINT (x);
2405 }
2406
2407 INLINE bool
2408 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2409 {
2410 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2411 }
2412
2413 #define TYPE_RANGED_INTEGERP(type, x) \
2414 (INTEGERP (x) \
2415 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2416 && XINT (x) <= TYPE_MAXIMUM (type))
2417
2418 LISP_MACRO_DEFUN (CONSP, bool, (Lisp_Object x), (x))
2419 LISP_MACRO_DEFUN (FLOATP, bool, (Lisp_Object x), (x))
2420 LISP_MACRO_DEFUN (MISCP, bool, (Lisp_Object x), (x))
2421 LISP_MACRO_DEFUN (SYMBOLP, bool, (Lisp_Object x), (x))
2422 LISP_MACRO_DEFUN (INTEGERP, bool, (Lisp_Object x), (x))
2423 LISP_MACRO_DEFUN (VECTORLIKEP, bool, (Lisp_Object x), (x))
2424 LISP_MACRO_DEFUN (MARKERP, bool, (Lisp_Object x), (x))
2425
2426 INLINE bool
2427 STRINGP (Lisp_Object x)
2428 {
2429 return XTYPE (x) == Lisp_String;
2430 }
2431 INLINE bool
2432 VECTORP (Lisp_Object x)
2433 {
2434 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2435 }
2436 INLINE bool
2437 OVERLAYP (Lisp_Object x)
2438 {
2439 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2440 }
2441 INLINE bool
2442 SAVE_VALUEP (Lisp_Object x)
2443 {
2444 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2445 }
2446
2447 INLINE bool
2448 AUTOLOADP (Lisp_Object x)
2449 {
2450 return CONSP (x) && EQ (Qautoload, XCAR (x));
2451 }
2452
2453 INLINE bool
2454 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2455 {
2456 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2457 }
2458
2459 INLINE bool
2460 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2461 {
2462 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2463 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2464 }
2465
2466 /* True if A is a pseudovector whose code is CODE. */
2467 INLINE bool
2468 PSEUDOVECTORP (Lisp_Object a, int code)
2469 {
2470 if (! VECTORLIKEP (a))
2471 return false;
2472 else
2473 {
2474 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2475 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2476 return PSEUDOVECTOR_TYPEP (h, code);
2477 }
2478 }
2479
2480
2481 /* Test for specific pseudovector types. */
2482
2483 INLINE bool
2484 WINDOW_CONFIGURATIONP (Lisp_Object a)
2485 {
2486 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2487 }
2488
2489 INLINE bool
2490 PROCESSP (Lisp_Object a)
2491 {
2492 return PSEUDOVECTORP (a, PVEC_PROCESS);
2493 }
2494
2495 INLINE bool
2496 WINDOWP (Lisp_Object a)
2497 {
2498 return PSEUDOVECTORP (a, PVEC_WINDOW);
2499 }
2500
2501 INLINE bool
2502 TERMINALP (Lisp_Object a)
2503 {
2504 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2505 }
2506
2507 INLINE bool
2508 SUBRP (Lisp_Object a)
2509 {
2510 return PSEUDOVECTORP (a, PVEC_SUBR);
2511 }
2512
2513 INLINE bool
2514 COMPILEDP (Lisp_Object a)
2515 {
2516 return PSEUDOVECTORP (a, PVEC_COMPILED);
2517 }
2518
2519 INLINE bool
2520 BUFFERP (Lisp_Object a)
2521 {
2522 return PSEUDOVECTORP (a, PVEC_BUFFER);
2523 }
2524
2525 INLINE bool
2526 CHAR_TABLE_P (Lisp_Object a)
2527 {
2528 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2529 }
2530
2531 INLINE bool
2532 SUB_CHAR_TABLE_P (Lisp_Object a)
2533 {
2534 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2535 }
2536
2537 INLINE bool
2538 BOOL_VECTOR_P (Lisp_Object a)
2539 {
2540 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2541 }
2542
2543 INLINE bool
2544 FRAMEP (Lisp_Object a)
2545 {
2546 return PSEUDOVECTORP (a, PVEC_FRAME);
2547 }
2548
2549 /* Test for image (image . spec) */
2550 INLINE bool
2551 IMAGEP (Lisp_Object x)
2552 {
2553 return CONSP (x) && EQ (XCAR (x), Qimage);
2554 }
2555
2556 /* Array types. */
2557 INLINE bool
2558 ARRAYP (Lisp_Object x)
2559 {
2560 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2561 }
2562 \f
2563 INLINE void
2564 CHECK_LIST (Lisp_Object x)
2565 {
2566 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2567 }
2568
2569 LISP_MACRO_DEFUN_VOID (CHECK_LIST_CONS, (Lisp_Object x, Lisp_Object y), (x, y))
2570 LISP_MACRO_DEFUN_VOID (CHECK_SYMBOL, (Lisp_Object x), (x))
2571 LISP_MACRO_DEFUN_VOID (CHECK_NUMBER, (Lisp_Object x), (x))
2572
2573 INLINE void
2574 CHECK_STRING (Lisp_Object x)
2575 {
2576 CHECK_TYPE (STRINGP (x), Qstringp, x);
2577 }
2578 INLINE void
2579 CHECK_STRING_CAR (Lisp_Object x)
2580 {
2581 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2582 }
2583 INLINE void
2584 CHECK_CONS (Lisp_Object x)
2585 {
2586 CHECK_TYPE (CONSP (x), Qconsp, x);
2587 }
2588 INLINE void
2589 CHECK_VECTOR (Lisp_Object x)
2590 {
2591 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2592 }
2593 INLINE void
2594 CHECK_BOOL_VECTOR (Lisp_Object x)
2595 {
2596 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2597 }
2598 /* This is a bit special because we always need size afterwards. */
2599 INLINE ptrdiff_t
2600 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2601 {
2602 if (VECTORP (x))
2603 return ASIZE (x);
2604 if (STRINGP (x))
2605 return SCHARS (x);
2606 wrong_type_argument (Qarrayp, x);
2607 }
2608 INLINE void
2609 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2610 {
2611 CHECK_TYPE (ARRAYP (x), predicate, x);
2612 }
2613 INLINE void
2614 CHECK_BUFFER (Lisp_Object x)
2615 {
2616 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2617 }
2618 INLINE void
2619 CHECK_WINDOW (Lisp_Object x)
2620 {
2621 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2622 }
2623 #ifdef subprocesses
2624 INLINE void
2625 CHECK_PROCESS (Lisp_Object x)
2626 {
2627 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2628 }
2629 #endif
2630 INLINE void
2631 CHECK_NATNUM (Lisp_Object x)
2632 {
2633 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2634 }
2635
2636 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2637 do { \
2638 CHECK_NUMBER (x); \
2639 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2640 args_out_of_range_3 \
2641 (x, \
2642 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2643 ? MOST_NEGATIVE_FIXNUM \
2644 : (lo)), \
2645 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2646 } while (false)
2647 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2648 do { \
2649 if (TYPE_SIGNED (type)) \
2650 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2651 else \
2652 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2653 } while (false)
2654
2655 #define CHECK_NUMBER_COERCE_MARKER(x) \
2656 do { \
2657 if (MARKERP ((x))) \
2658 XSETFASTINT (x, marker_position (x)); \
2659 else \
2660 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2661 } while (false)
2662
2663 INLINE double
2664 XFLOATINT (Lisp_Object n)
2665 {
2666 return extract_float (n);
2667 }
2668
2669 INLINE void
2670 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2671 {
2672 CHECK_TYPE (FLOATP (x) || INTEGERP (x), Qnumberp, x);
2673 }
2674
2675 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2676 do { \
2677 if (MARKERP (x)) \
2678 XSETFASTINT (x, marker_position (x)); \
2679 else \
2680 CHECK_TYPE (INTEGERP (x) || FLOATP (x), Qnumber_or_marker_p, x); \
2681 } while (false)
2682
2683 /* Since we can't assign directly to the CAR or CDR fields of a cons
2684 cell, use these when checking that those fields contain numbers. */
2685 INLINE void
2686 CHECK_NUMBER_CAR (Lisp_Object x)
2687 {
2688 Lisp_Object tmp = XCAR (x);
2689 CHECK_NUMBER (tmp);
2690 XSETCAR (x, tmp);
2691 }
2692
2693 INLINE void
2694 CHECK_NUMBER_CDR (Lisp_Object x)
2695 {
2696 Lisp_Object tmp = XCDR (x);
2697 CHECK_NUMBER (tmp);
2698 XSETCDR (x, tmp);
2699 }
2700 \f
2701 /* Define a built-in function for calling from Lisp.
2702 `lname' should be the name to give the function in Lisp,
2703 as a null-terminated C string.
2704 `fnname' should be the name of the function in C.
2705 By convention, it starts with F.
2706 `sname' should be the name for the C constant structure
2707 that records information on this function for internal use.
2708 By convention, it should be the same as `fnname' but with S instead of F.
2709 It's too bad that C macros can't compute this from `fnname'.
2710 `minargs' should be a number, the minimum number of arguments allowed.
2711 `maxargs' should be a number, the maximum number of arguments allowed,
2712 or else MANY or UNEVALLED.
2713 MANY means pass a vector of evaluated arguments,
2714 in the form of an integer number-of-arguments
2715 followed by the address of a vector of Lisp_Objects
2716 which contains the argument values.
2717 UNEVALLED means pass the list of unevaluated arguments
2718 `intspec' says how interactive arguments are to be fetched.
2719 If the string starts with a `(', `intspec' is evaluated and the resulting
2720 list is the list of arguments.
2721 If it's a string that doesn't start with `(', the value should follow
2722 the one of the doc string for `interactive'.
2723 A null string means call interactively with no arguments.
2724 `doc' is documentation for the user. */
2725
2726 /* This version of DEFUN declares a function prototype with the right
2727 arguments, so we can catch errors with maxargs at compile-time. */
2728 #ifdef _MSC_VER
2729 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2730 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2731 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2732 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2733 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2734 { (Lisp_Object (__cdecl *)(void))fnname }, \
2735 minargs, maxargs, lname, intspec, 0}; \
2736 Lisp_Object fnname
2737 #else /* not _MSC_VER */
2738 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2739 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2740 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2741 { .a ## maxargs = fnname }, \
2742 minargs, maxargs, lname, intspec, 0}; \
2743 Lisp_Object fnname
2744 #endif
2745
2746 /* True if OBJ is a Lisp function. */
2747 INLINE bool
2748 FUNCTIONP (Lisp_Object obj)
2749 {
2750 return functionp (obj);
2751 }
2752
2753 /* defsubr (Sname);
2754 is how we define the symbol for function `name' at start-up time. */
2755 extern void defsubr (struct Lisp_Subr *);
2756
2757 enum maxargs
2758 {
2759 MANY = -2,
2760 UNEVALLED = -1
2761 };
2762
2763 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2764 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2765 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
2766 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
2767 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
2768
2769 /* Macros we use to define forwarded Lisp variables.
2770 These are used in the syms_of_FILENAME functions.
2771
2772 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
2773 lisp variable is actually a field in `struct emacs_globals'. The
2774 field's name begins with "f_", which is a convention enforced by
2775 these macros. Each such global has a corresponding #define in
2776 globals.h; the plain name should be used in the code.
2777
2778 E.g., the global "cons_cells_consed" is declared as "int
2779 f_cons_cells_consed" in globals.h, but there is a define:
2780
2781 #define cons_cells_consed globals.f_cons_cells_consed
2782
2783 All C code uses the `cons_cells_consed' name. This is all done
2784 this way to support indirection for multi-threaded Emacs. */
2785
2786 #define DEFVAR_LISP(lname, vname, doc) \
2787 do { \
2788 static struct Lisp_Objfwd o_fwd; \
2789 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
2790 } while (false)
2791 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
2792 do { \
2793 static struct Lisp_Objfwd o_fwd; \
2794 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
2795 } while (false)
2796 #define DEFVAR_BOOL(lname, vname, doc) \
2797 do { \
2798 static struct Lisp_Boolfwd b_fwd; \
2799 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
2800 } while (false)
2801 #define DEFVAR_INT(lname, vname, doc) \
2802 do { \
2803 static struct Lisp_Intfwd i_fwd; \
2804 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
2805 } while (false)
2806
2807 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
2808 do { \
2809 static struct Lisp_Objfwd o_fwd; \
2810 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
2811 } while (false)
2812
2813 #define DEFVAR_KBOARD(lname, vname, doc) \
2814 do { \
2815 static struct Lisp_Kboard_Objfwd ko_fwd; \
2816 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
2817 } while (false)
2818 \f
2819 /* Save and restore the instruction and environment pointers,
2820 without affecting the signal mask. */
2821
2822 #ifdef HAVE__SETJMP
2823 typedef jmp_buf sys_jmp_buf;
2824 # define sys_setjmp(j) _setjmp (j)
2825 # define sys_longjmp(j, v) _longjmp (j, v)
2826 #elif defined HAVE_SIGSETJMP
2827 typedef sigjmp_buf sys_jmp_buf;
2828 # define sys_setjmp(j) sigsetjmp (j, 0)
2829 # define sys_longjmp(j, v) siglongjmp (j, v)
2830 #else
2831 /* A platform that uses neither _longjmp nor siglongjmp; assume
2832 longjmp does not affect the sigmask. */
2833 typedef jmp_buf sys_jmp_buf;
2834 # define sys_setjmp(j) setjmp (j)
2835 # define sys_longjmp(j, v) longjmp (j, v)
2836 #endif
2837
2838 \f
2839 /* Elisp uses several stacks:
2840 - the C stack.
2841 - the bytecode stack: used internally by the bytecode interpreter.
2842 Allocated from the C stack.
2843 - The specpdl stack: keeps track of active unwind-protect and
2844 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
2845 managed stack.
2846 - The handler stack: keeps track of active catch tags and condition-case
2847 handlers. Allocated in a manually managed stack implemented by a
2848 doubly-linked list allocated via xmalloc and never freed. */
2849
2850 /* Structure for recording Lisp call stack for backtrace purposes. */
2851
2852 /* The special binding stack holds the outer values of variables while
2853 they are bound by a function application or a let form, stores the
2854 code to be executed for unwind-protect forms.
2855
2856 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
2857 used all over the place, needs to be fast, and needs to know the size of
2858 union specbinding. But only eval.c should access it. */
2859
2860 enum specbind_tag {
2861 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
2862 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
2863 SPECPDL_UNWIND_INT, /* Likewise, on int. */
2864 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
2865 SPECPDL_BACKTRACE, /* An element of the backtrace. */
2866 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
2867 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
2868 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
2869 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
2870 };
2871
2872 union specbinding
2873 {
2874 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2875 struct {
2876 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2877 void (*func) (Lisp_Object);
2878 Lisp_Object arg;
2879 } unwind;
2880 struct {
2881 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2882 void (*func) (void *);
2883 void *arg;
2884 } unwind_ptr;
2885 struct {
2886 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2887 void (*func) (int);
2888 int arg;
2889 } unwind_int;
2890 struct {
2891 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2892 void (*func) (void);
2893 } unwind_void;
2894 struct {
2895 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2896 /* `where' is not used in the case of SPECPDL_LET. */
2897 Lisp_Object symbol, old_value, where;
2898 } let;
2899 struct {
2900 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2901 bool_bf debug_on_exit : 1;
2902 Lisp_Object function;
2903 Lisp_Object *args;
2904 ptrdiff_t nargs;
2905 } bt;
2906 };
2907
2908 extern union specbinding *specpdl;
2909 extern union specbinding *specpdl_ptr;
2910 extern ptrdiff_t specpdl_size;
2911
2912 INLINE ptrdiff_t
2913 SPECPDL_INDEX (void)
2914 {
2915 return specpdl_ptr - specpdl;
2916 }
2917
2918 /* This structure helps implement the `catch/throw' and `condition-case/signal'
2919 control structures. A struct handler contains all the information needed to
2920 restore the state of the interpreter after a non-local jump.
2921
2922 handler structures are chained together in a doubly linked list; the `next'
2923 member points to the next outer catchtag and the `nextfree' member points in
2924 the other direction to the next inner element (which is typically the next
2925 free element since we mostly use it on the deepest handler).
2926
2927 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
2928 member is TAG, and then unbinds to it. The `val' member is used to
2929 hold VAL while the stack is unwound; `val' is returned as the value
2930 of the catch form.
2931
2932 All the other members are concerned with restoring the interpreter
2933 state.
2934
2935 Members are volatile if their values need to survive _longjmp when
2936 a 'struct handler' is a local variable. */
2937
2938 enum handlertype { CATCHER, CONDITION_CASE };
2939
2940 struct handler
2941 {
2942 enum handlertype type;
2943 Lisp_Object tag_or_ch;
2944 Lisp_Object val;
2945 struct handler *next;
2946 struct handler *nextfree;
2947
2948 /* The bytecode interpreter can have several handlers active at the same
2949 time, so when we longjmp to one of them, it needs to know which handler
2950 this was and what was the corresponding internal state. This is stored
2951 here, and when we longjmp we make sure that handlerlist points to the
2952 proper handler. */
2953 Lisp_Object *bytecode_top;
2954 int bytecode_dest;
2955
2956 /* Most global vars are reset to their value via the specpdl mechanism,
2957 but a few others are handled by storing their value here. */
2958 #if true /* GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS, but defined later. */
2959 struct gcpro *gcpro;
2960 #endif
2961 sys_jmp_buf jmp;
2962 EMACS_INT lisp_eval_depth;
2963 ptrdiff_t pdlcount;
2964 int poll_suppress_count;
2965 int interrupt_input_blocked;
2966 struct byte_stack *byte_stack;
2967 };
2968
2969 /* Fill in the components of c, and put it on the list. */
2970 #define PUSH_HANDLER(c, tag_ch_val, handlertype) \
2971 if (handlerlist->nextfree) \
2972 (c) = handlerlist->nextfree; \
2973 else \
2974 { \
2975 (c) = xmalloc (sizeof (struct handler)); \
2976 (c)->nextfree = NULL; \
2977 handlerlist->nextfree = (c); \
2978 } \
2979 (c)->type = (handlertype); \
2980 (c)->tag_or_ch = (tag_ch_val); \
2981 (c)->val = Qnil; \
2982 (c)->next = handlerlist; \
2983 (c)->lisp_eval_depth = lisp_eval_depth; \
2984 (c)->pdlcount = SPECPDL_INDEX (); \
2985 (c)->poll_suppress_count = poll_suppress_count; \
2986 (c)->interrupt_input_blocked = interrupt_input_blocked;\
2987 (c)->gcpro = gcprolist; \
2988 (c)->byte_stack = byte_stack_list; \
2989 handlerlist = (c);
2990
2991
2992 extern Lisp_Object memory_signal_data;
2993
2994 /* An address near the bottom of the stack.
2995 Tells GC how to save a copy of the stack. */
2996 extern char *stack_bottom;
2997
2998 /* Check quit-flag and quit if it is non-nil.
2999 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
3000 So the program needs to do QUIT at times when it is safe to quit.
3001 Every loop that might run for a long time or might not exit
3002 ought to do QUIT at least once, at a safe place.
3003 Unless that is impossible, of course.
3004 But it is very desirable to avoid creating loops where QUIT is impossible.
3005
3006 Exception: if you set immediate_quit to true,
3007 then the handler that responds to the C-g does the quit itself.
3008 This is a good thing to do around a loop that has no side effects
3009 and (in particular) cannot call arbitrary Lisp code.
3010
3011 If quit-flag is set to `kill-emacs' the SIGINT handler has received
3012 a request to exit Emacs when it is safe to do. */
3013
3014 extern void process_pending_signals (void);
3015 extern bool volatile pending_signals;
3016
3017 extern void process_quit_flag (void);
3018 #define QUIT \
3019 do { \
3020 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
3021 process_quit_flag (); \
3022 else if (pending_signals) \
3023 process_pending_signals (); \
3024 } while (false)
3025
3026
3027 /* True if ought to quit now. */
3028
3029 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
3030 \f
3031 extern Lisp_Object Vascii_downcase_table;
3032 extern Lisp_Object Vascii_canon_table;
3033 \f
3034 /* Structure for recording stack slots that need marking. */
3035
3036 /* This is a chain of structures, each of which points at a Lisp_Object
3037 variable whose value should be marked in garbage collection.
3038 Normally every link of the chain is an automatic variable of a function,
3039 and its `val' points to some argument or local variable of the function.
3040 On exit to the function, the chain is set back to the value it had on entry.
3041 This way, no link remains in the chain when the stack frame containing the
3042 link disappears.
3043
3044 Every function that can call Feval must protect in this fashion all
3045 Lisp_Object variables whose contents will be used again. */
3046
3047 extern struct gcpro *gcprolist;
3048
3049 struct gcpro
3050 {
3051 struct gcpro *next;
3052
3053 /* Address of first protected variable. */
3054 volatile Lisp_Object *var;
3055
3056 /* Number of consecutive protected variables. */
3057 ptrdiff_t nvars;
3058
3059 #ifdef DEBUG_GCPRO
3060 /* File name where this record is used. */
3061 const char *name;
3062
3063 /* Line number in this file. */
3064 int lineno;
3065
3066 /* Index in the local chain of records. */
3067 int idx;
3068
3069 /* Nesting level. */
3070 int level;
3071 #endif
3072 };
3073
3074 /* Values of GC_MARK_STACK during compilation:
3075
3076 0 Use GCPRO as before
3077 1 Do the real thing, make GCPROs and UNGCPRO no-ops.
3078 2 Mark the stack, and check that everything GCPRO'd is
3079 marked.
3080 3 Mark using GCPRO's, mark stack last, and count how many
3081 dead objects are kept alive.
3082
3083 Formerly, method 0 was used. Currently, method 1 is used unless
3084 otherwise specified by hand when building, e.g.,
3085 "make CPPFLAGS='-DGC_MARK_STACK=GC_USE_GCPROS_AS_BEFORE'".
3086 Methods 2 and 3 are present mainly to debug the transition from 0 to 1. */
3087
3088 #define GC_USE_GCPROS_AS_BEFORE 0
3089 #define GC_MAKE_GCPROS_NOOPS 1
3090 #define GC_MARK_STACK_CHECK_GCPROS 2
3091 #define GC_USE_GCPROS_CHECK_ZOMBIES 3
3092
3093 #ifndef GC_MARK_STACK
3094 #define GC_MARK_STACK GC_MAKE_GCPROS_NOOPS
3095 #endif
3096
3097 /* Whether we do the stack marking manually. */
3098 #define BYTE_MARK_STACK !(GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
3099 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
3100
3101
3102 #if GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS
3103
3104 /* Do something silly with gcproN vars just so gcc shuts up. */
3105 /* You get warnings from MIPSPro... */
3106
3107 #define GCPRO1(varname) ((void) gcpro1)
3108 #define GCPRO2(varname1, varname2) ((void) gcpro2, (void) gcpro1)
3109 #define GCPRO3(varname1, varname2, varname3) \
3110 ((void) gcpro3, (void) gcpro2, (void) gcpro1)
3111 #define GCPRO4(varname1, varname2, varname3, varname4) \
3112 ((void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3113 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3114 ((void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3115 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3116 ((void) gcpro6, (void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, \
3117 (void) gcpro1)
3118 #define GCPRO7(a, b, c, d, e, f, g) (GCPRO6 (a, b, c, d, e, f), (void) gcpro7)
3119 #define UNGCPRO ((void) 0)
3120
3121 #else /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3122
3123 #ifndef DEBUG_GCPRO
3124
3125 #define GCPRO1(a) \
3126 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3127 gcprolist = &gcpro1; }
3128
3129 #define GCPRO2(a, b) \
3130 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3131 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3132 gcprolist = &gcpro2; }
3133
3134 #define GCPRO3(a, b, c) \
3135 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3136 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3137 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3138 gcprolist = &gcpro3; }
3139
3140 #define GCPRO4(a, b, c, d) \
3141 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3142 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3143 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3144 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3145 gcprolist = &gcpro4; }
3146
3147 #define GCPRO5(a, b, c, d, e) \
3148 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3149 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3150 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3151 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3152 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3153 gcprolist = &gcpro5; }
3154
3155 #define GCPRO6(a, b, c, d, e, f) \
3156 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3157 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3158 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3159 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3160 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3161 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3162 gcprolist = &gcpro6; }
3163
3164 #define GCPRO7(a, b, c, d, e, f, g) \
3165 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3166 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3167 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3168 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3169 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3170 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3171 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3172 gcprolist = &gcpro7; }
3173
3174 #define UNGCPRO (gcprolist = gcpro1.next)
3175
3176 #else /* !DEBUG_GCPRO */
3177
3178 extern int gcpro_level;
3179
3180 #define GCPRO1(a) \
3181 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3182 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3183 gcpro1.level = gcpro_level++; \
3184 gcprolist = &gcpro1; }
3185
3186 #define GCPRO2(a, b) \
3187 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3188 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3189 gcpro1.level = gcpro_level; \
3190 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3191 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3192 gcpro2.level = gcpro_level++; \
3193 gcprolist = &gcpro2; }
3194
3195 #define GCPRO3(a, b, c) \
3196 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3197 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3198 gcpro1.level = gcpro_level; \
3199 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3200 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3201 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3202 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3203 gcpro3.level = gcpro_level++; \
3204 gcprolist = &gcpro3; }
3205
3206 #define GCPRO4(a, b, c, d) \
3207 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3208 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3209 gcpro1.level = gcpro_level; \
3210 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3211 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3212 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3213 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3214 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3215 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3216 gcpro4.level = gcpro_level++; \
3217 gcprolist = &gcpro4; }
3218
3219 #define GCPRO5(a, b, c, d, e) \
3220 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3221 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3222 gcpro1.level = gcpro_level; \
3223 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3224 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3225 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3226 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3227 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3228 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3229 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3230 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3231 gcpro5.level = gcpro_level++; \
3232 gcprolist = &gcpro5; }
3233
3234 #define GCPRO6(a, b, c, d, e, f) \
3235 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3236 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3237 gcpro1.level = gcpro_level; \
3238 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3239 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3240 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3241 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3242 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3243 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3244 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3245 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3246 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3247 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3248 gcpro6.level = gcpro_level++; \
3249 gcprolist = &gcpro6; }
3250
3251 #define GCPRO7(a, b, c, d, e, f, g) \
3252 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3253 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3254 gcpro1.level = gcpro_level; \
3255 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3256 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3257 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3258 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3259 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3260 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3261 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3262 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3263 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3264 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3265 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3266 gcpro7.name = __FILE__; gcpro7.lineno = __LINE__; gcpro7.idx = 7; \
3267 gcpro7.level = gcpro_level++; \
3268 gcprolist = &gcpro7; }
3269
3270 #define UNGCPRO \
3271 (--gcpro_level != gcpro1.level \
3272 ? emacs_abort () \
3273 : (void) (gcprolist = gcpro1.next))
3274
3275 #endif /* DEBUG_GCPRO */
3276 #endif /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3277
3278
3279 /* Evaluate expr, UNGCPRO, and then return the value of expr. */
3280 #define RETURN_UNGCPRO(expr) \
3281 do \
3282 { \
3283 Lisp_Object ret_ungc_val; \
3284 ret_ungc_val = (expr); \
3285 UNGCPRO; \
3286 return ret_ungc_val; \
3287 } \
3288 while (false)
3289
3290 /* Call staticpro (&var) to protect static variable `var'. */
3291
3292 void staticpro (Lisp_Object *);
3293 \f
3294 /* Forward declarations for prototypes. */
3295 struct window;
3296 struct frame;
3297
3298 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3299
3300 INLINE void
3301 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3302 {
3303 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3304 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3305 }
3306
3307 /* Functions to modify hash tables. */
3308
3309 INLINE void
3310 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3311 {
3312 gc_aset (h->key_and_value, 2 * idx, val);
3313 }
3314
3315 INLINE void
3316 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3317 {
3318 gc_aset (h->key_and_value, 2 * idx + 1, val);
3319 }
3320
3321 /* Use these functions to set Lisp_Object
3322 or pointer slots of struct Lisp_Symbol. */
3323
3324 INLINE void
3325 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3326 {
3327 XSYMBOL (sym)->function = function;
3328 }
3329
3330 INLINE void
3331 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3332 {
3333 XSYMBOL (sym)->plist = plist;
3334 }
3335
3336 INLINE void
3337 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3338 {
3339 XSYMBOL (sym)->next = next;
3340 }
3341
3342 /* Buffer-local (also frame-local) variable access functions. */
3343
3344 INLINE int
3345 blv_found (struct Lisp_Buffer_Local_Value *blv)
3346 {
3347 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3348 return blv->found;
3349 }
3350
3351 /* Set overlay's property list. */
3352
3353 INLINE void
3354 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3355 {
3356 XOVERLAY (overlay)->plist = plist;
3357 }
3358
3359 /* Get text properties of S. */
3360
3361 INLINE INTERVAL
3362 string_intervals (Lisp_Object s)
3363 {
3364 return XSTRING (s)->intervals;
3365 }
3366
3367 /* Set text properties of S to I. */
3368
3369 INLINE void
3370 set_string_intervals (Lisp_Object s, INTERVAL i)
3371 {
3372 XSTRING (s)->intervals = i;
3373 }
3374
3375 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3376 of setting slots directly. */
3377
3378 INLINE void
3379 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3380 {
3381 XCHAR_TABLE (table)->defalt = val;
3382 }
3383 INLINE void
3384 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3385 {
3386 XCHAR_TABLE (table)->purpose = val;
3387 }
3388
3389 /* Set different slots in (sub)character tables. */
3390
3391 INLINE void
3392 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3393 {
3394 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3395 XCHAR_TABLE (table)->extras[idx] = val;
3396 }
3397
3398 INLINE void
3399 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3400 {
3401 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3402 XCHAR_TABLE (table)->contents[idx] = val;
3403 }
3404
3405 INLINE void
3406 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3407 {
3408 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3409 }
3410
3411 /* Defined in data.c. */
3412 extern Lisp_Object indirect_function (Lisp_Object);
3413 extern Lisp_Object find_symbol_value (Lisp_Object);
3414 enum Arith_Comparison {
3415 ARITH_EQUAL,
3416 ARITH_NOTEQUAL,
3417 ARITH_LESS,
3418 ARITH_GRTR,
3419 ARITH_LESS_OR_EQUAL,
3420 ARITH_GRTR_OR_EQUAL
3421 };
3422 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3423 enum Arith_Comparison comparison);
3424
3425 /* Convert the integer I to an Emacs representation, either the integer
3426 itself, or a cons of two or three integers, or if all else fails a float.
3427 I should not have side effects. */
3428 #define INTEGER_TO_CONS(i) \
3429 (! FIXNUM_OVERFLOW_P (i) \
3430 ? make_number (i) \
3431 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16) \
3432 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16)) \
3433 && FIXNUM_OVERFLOW_P ((i) >> 16)) \
3434 ? Fcons (make_number ((i) >> 16), make_number ((i) & 0xffff)) \
3435 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16 >> 24) \
3436 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16 >> 24)) \
3437 && FIXNUM_OVERFLOW_P ((i) >> 16 >> 24)) \
3438 ? Fcons (make_number ((i) >> 16 >> 24), \
3439 Fcons (make_number ((i) >> 16 & 0xffffff), \
3440 make_number ((i) & 0xffff))) \
3441 : make_float (i))
3442
3443 /* Convert the Emacs representation CONS back to an integer of type
3444 TYPE, storing the result the variable VAR. Signal an error if CONS
3445 is not a valid representation or is out of range for TYPE. */
3446 #define CONS_TO_INTEGER(cons, type, var) \
3447 (TYPE_SIGNED (type) \
3448 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3449 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3450 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3451 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3452
3453 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3454 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3455 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3456 Lisp_Object);
3457 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3458 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3459 extern void syms_of_data (void);
3460 extern void swap_in_global_binding (struct Lisp_Symbol *);
3461
3462 /* Defined in cmds.c */
3463 extern void syms_of_cmds (void);
3464 extern void keys_of_cmds (void);
3465
3466 /* Defined in coding.c. */
3467 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3468 ptrdiff_t, bool, bool, Lisp_Object);
3469 extern void init_coding (void);
3470 extern void init_coding_once (void);
3471 extern void syms_of_coding (void);
3472
3473 /* Defined in character.c. */
3474 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3475 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3476 extern void syms_of_character (void);
3477
3478 /* Defined in charset.c. */
3479 extern void init_charset (void);
3480 extern void init_charset_once (void);
3481 extern void syms_of_charset (void);
3482 /* Structure forward declarations. */
3483 struct charset;
3484
3485 /* Defined in syntax.c. */
3486 extern void init_syntax_once (void);
3487 extern void syms_of_syntax (void);
3488
3489 /* Defined in fns.c. */
3490 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3491 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3492 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3493 extern void sweep_weak_hash_tables (void);
3494 EMACS_UINT hash_string (char const *, ptrdiff_t);
3495 EMACS_UINT sxhash (Lisp_Object, int);
3496 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3497 Lisp_Object, Lisp_Object);
3498 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3499 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3500 EMACS_UINT);
3501 extern struct hash_table_test hashtest_eql, hashtest_equal;
3502 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3503 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3504 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3505 ptrdiff_t, ptrdiff_t);
3506 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3507 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3508 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3509 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3510 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3511 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3512 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3513 extern void clear_string_char_byte_cache (void);
3514 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3515 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3516 extern Lisp_Object string_to_multibyte (Lisp_Object);
3517 extern Lisp_Object string_make_unibyte (Lisp_Object);
3518 extern void syms_of_fns (void);
3519
3520 /* Defined in floatfns.c. */
3521 extern void syms_of_floatfns (void);
3522 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3523
3524 /* Defined in fringe.c. */
3525 extern void syms_of_fringe (void);
3526 extern void init_fringe (void);
3527 #ifdef HAVE_WINDOW_SYSTEM
3528 extern void mark_fringe_data (void);
3529 extern void init_fringe_once (void);
3530 #endif /* HAVE_WINDOW_SYSTEM */
3531
3532 /* Defined in image.c. */
3533 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3534 extern void reset_image_types (void);
3535 extern void syms_of_image (void);
3536
3537 /* Defined in insdel.c. */
3538 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3539 extern _Noreturn void buffer_overflow (void);
3540 extern void make_gap (ptrdiff_t);
3541 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3542 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3543 ptrdiff_t, bool, bool);
3544 extern int count_combining_before (const unsigned char *,
3545 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3546 extern int count_combining_after (const unsigned char *,
3547 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3548 extern void insert (const char *, ptrdiff_t);
3549 extern void insert_and_inherit (const char *, ptrdiff_t);
3550 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3551 bool, bool, bool);
3552 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3553 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3554 ptrdiff_t, ptrdiff_t, bool);
3555 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3556 extern void insert_char (int);
3557 extern void insert_string (const char *);
3558 extern void insert_before_markers (const char *, ptrdiff_t);
3559 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3560 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3561 ptrdiff_t, ptrdiff_t,
3562 ptrdiff_t, bool);
3563 extern void del_range (ptrdiff_t, ptrdiff_t);
3564 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3565 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3566 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3567 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3568 ptrdiff_t, ptrdiff_t, bool);
3569 extern void modify_text (ptrdiff_t, ptrdiff_t);
3570 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3571 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3572 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3573 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3574 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3575 ptrdiff_t, ptrdiff_t);
3576 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3577 ptrdiff_t, ptrdiff_t);
3578 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3579 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3580 const char *, ptrdiff_t, ptrdiff_t, bool);
3581 extern void syms_of_insdel (void);
3582
3583 /* Defined in dispnew.c. */
3584 #if (defined PROFILING \
3585 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3586 _Noreturn void __executable_start (void);
3587 #endif
3588 extern Lisp_Object Vwindow_system;
3589 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3590
3591 /* Defined in xdisp.c. */
3592 extern bool noninteractive_need_newline;
3593 extern Lisp_Object echo_area_buffer[2];
3594 extern void add_to_log (const char *, Lisp_Object, Lisp_Object);
3595 extern void check_message_stack (void);
3596 extern void setup_echo_area_for_printing (int);
3597 extern bool push_message (void);
3598 extern void pop_message_unwind (void);
3599 extern Lisp_Object restore_message_unwind (Lisp_Object);
3600 extern void restore_message (void);
3601 extern Lisp_Object current_message (void);
3602 extern void clear_message (bool, bool);
3603 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3604 extern void message1 (const char *);
3605 extern void message1_nolog (const char *);
3606 extern void message3 (Lisp_Object);
3607 extern void message3_nolog (Lisp_Object);
3608 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3609 extern void message_with_string (const char *, Lisp_Object, int);
3610 extern void message_log_maybe_newline (void);
3611 extern void update_echo_area (void);
3612 extern void truncate_echo_area (ptrdiff_t);
3613 extern void redisplay (void);
3614
3615 void set_frame_cursor_types (struct frame *, Lisp_Object);
3616 extern void syms_of_xdisp (void);
3617 extern void init_xdisp (void);
3618 extern Lisp_Object safe_eval (Lisp_Object);
3619 extern int pos_visible_p (struct window *, ptrdiff_t, int *,
3620 int *, int *, int *, int *, int *);
3621
3622 /* Defined in xsettings.c. */
3623 extern void syms_of_xsettings (void);
3624
3625 /* Defined in vm-limit.c. */
3626 extern void memory_warnings (void *, void (*warnfun) (const char *));
3627
3628 /* Defined in character.c. */
3629 extern void parse_str_as_multibyte (const unsigned char *, ptrdiff_t,
3630 ptrdiff_t *, ptrdiff_t *);
3631
3632 /* Defined in alloc.c. */
3633 extern void check_pure_size (void);
3634 extern void free_misc (Lisp_Object);
3635 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3636 extern void malloc_warning (const char *);
3637 extern _Noreturn void memory_full (size_t);
3638 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3639 extern bool survives_gc_p (Lisp_Object);
3640 extern void mark_object (Lisp_Object);
3641 #if defined REL_ALLOC && !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3642 extern void refill_memory_reserve (void);
3643 #endif
3644 extern const char *pending_malloc_warning;
3645 extern Lisp_Object zero_vector;
3646 extern Lisp_Object *stack_base;
3647 extern EMACS_INT consing_since_gc;
3648 extern EMACS_INT gc_relative_threshold;
3649 extern EMACS_INT memory_full_cons_threshold;
3650 extern Lisp_Object list1 (Lisp_Object);
3651 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3652 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3653 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3654 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3655 Lisp_Object);
3656 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3657 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3658
3659 /* Build a frequently used 2/3/4-integer lists. */
3660
3661 INLINE Lisp_Object
3662 list2i (EMACS_INT x, EMACS_INT y)
3663 {
3664 return list2 (make_number (x), make_number (y));
3665 }
3666
3667 INLINE Lisp_Object
3668 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3669 {
3670 return list3 (make_number (x), make_number (y), make_number (w));
3671 }
3672
3673 INLINE Lisp_Object
3674 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3675 {
3676 return list4 (make_number (x), make_number (y),
3677 make_number (w), make_number (h));
3678 }
3679
3680 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3681 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3682 extern _Noreturn void string_overflow (void);
3683 extern Lisp_Object make_string (const char *, ptrdiff_t);
3684 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3685 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3686 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3687
3688 /* Make unibyte string from C string when the length isn't known. */
3689
3690 INLINE Lisp_Object
3691 build_unibyte_string (const char *str)
3692 {
3693 return make_unibyte_string (str, strlen (str));
3694 }
3695
3696 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3697 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3698 extern Lisp_Object make_uninit_string (EMACS_INT);
3699 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3700 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3701 extern Lisp_Object make_specified_string (const char *,
3702 ptrdiff_t, ptrdiff_t, bool);
3703 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3704 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3705
3706 /* Make a string allocated in pure space, use STR as string data. */
3707
3708 INLINE Lisp_Object
3709 build_pure_c_string (const char *str)
3710 {
3711 return make_pure_c_string (str, strlen (str));
3712 }
3713
3714 /* Make a string from the data at STR, treating it as multibyte if the
3715 data warrants. */
3716
3717 INLINE Lisp_Object
3718 build_string (const char *str)
3719 {
3720 return make_string (str, strlen (str));
3721 }
3722
3723 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3724 extern void make_byte_code (struct Lisp_Vector *);
3725 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3726
3727 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3728 be sure that GC cannot happen until the vector is completely
3729 initialized. E.g. the following code is likely to crash:
3730
3731 v = make_uninit_vector (3);
3732 ASET (v, 0, obj0);
3733 ASET (v, 1, Ffunction_can_gc ());
3734 ASET (v, 2, obj1); */
3735
3736 INLINE Lisp_Object
3737 make_uninit_vector (ptrdiff_t size)
3738 {
3739 Lisp_Object v;
3740 struct Lisp_Vector *p;
3741
3742 p = allocate_vector (size);
3743 XSETVECTOR (v, p);
3744 return v;
3745 }
3746
3747 /* Like above, but special for sub char-tables. */
3748
3749 INLINE Lisp_Object
3750 make_uninit_sub_char_table (int depth, int min_char)
3751 {
3752 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3753 Lisp_Object v = make_uninit_vector (slots);
3754
3755 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3756 XSUB_CHAR_TABLE (v)->depth = depth;
3757 XSUB_CHAR_TABLE (v)->min_char = min_char;
3758 return v;
3759 }
3760
3761 extern struct Lisp_Vector *allocate_pseudovector (int, int, enum pvec_type);
3762 #define ALLOCATE_PSEUDOVECTOR(typ,field,tag) \
3763 ((typ*) \
3764 allocate_pseudovector \
3765 (VECSIZE (typ), PSEUDOVECSIZE (typ, field), tag))
3766 extern struct Lisp_Hash_Table *allocate_hash_table (void);
3767 extern struct window *allocate_window (void);
3768 extern struct frame *allocate_frame (void);
3769 extern struct Lisp_Process *allocate_process (void);
3770 extern struct terminal *allocate_terminal (void);
3771 extern bool gc_in_progress;
3772 extern bool abort_on_gc;
3773 extern Lisp_Object make_float (double);
3774 extern void display_malloc_warning (void);
3775 extern ptrdiff_t inhibit_garbage_collection (void);
3776 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3777 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3778 Lisp_Object, Lisp_Object);
3779 extern Lisp_Object make_save_ptr (void *);
3780 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3781 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3782 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3783 Lisp_Object);
3784 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3785 extern void free_save_value (Lisp_Object);
3786 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3787 extern void free_marker (Lisp_Object);
3788 extern void free_cons (struct Lisp_Cons *);
3789 extern void init_alloc_once (void);
3790 extern void init_alloc (void);
3791 extern void syms_of_alloc (void);
3792 extern struct buffer * allocate_buffer (void);
3793 extern int valid_lisp_object_p (Lisp_Object);
3794 extern int relocatable_string_data_p (const char *);
3795 #ifdef GC_CHECK_CONS_LIST
3796 extern void check_cons_list (void);
3797 #else
3798 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3799 #endif
3800
3801 #ifdef REL_ALLOC
3802 /* Defined in ralloc.c. */
3803 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3804 extern void r_alloc_free (void **);
3805 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3806 extern void r_alloc_reset_variable (void **, void **);
3807 extern void r_alloc_inhibit_buffer_relocation (int);
3808 #endif
3809
3810 /* Defined in chartab.c. */
3811 extern Lisp_Object copy_char_table (Lisp_Object);
3812 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3813 int *, int *);
3814 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3815 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3816 Lisp_Object),
3817 Lisp_Object, Lisp_Object, Lisp_Object);
3818 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3819 Lisp_Object, Lisp_Object,
3820 Lisp_Object, struct charset *,
3821 unsigned, unsigned);
3822 extern Lisp_Object uniprop_table (Lisp_Object);
3823 extern void syms_of_chartab (void);
3824
3825 /* Defined in print.c. */
3826 extern Lisp_Object Vprin1_to_string_buffer;
3827 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3828 extern void temp_output_buffer_setup (const char *);
3829 extern int print_level;
3830 extern void write_string (const char *, int);
3831 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3832 Lisp_Object);
3833 extern Lisp_Object internal_with_output_to_temp_buffer
3834 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3835 #define FLOAT_TO_STRING_BUFSIZE 350
3836 extern int float_to_string (char *, double);
3837 extern void init_print_once (void);
3838 extern void syms_of_print (void);
3839
3840 /* Defined in doprnt.c. */
3841 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3842 va_list);
3843 extern ptrdiff_t esprintf (char *, char const *, ...)
3844 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3845 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3846 char const *, ...)
3847 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3848 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3849 char const *, va_list)
3850 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3851
3852 /* Defined in lread.c. */
3853 extern Lisp_Object check_obarray (Lisp_Object);
3854 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3855 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3856 extern Lisp_Object intern_driver (Lisp_Object, Lisp_Object, Lisp_Object);
3857 extern void init_symbol (Lisp_Object, Lisp_Object);
3858 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3859 INLINE void
3860 LOADHIST_ATTACH (Lisp_Object x)
3861 {
3862 if (initialized)
3863 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3864 }
3865 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3866 Lisp_Object *, Lisp_Object, bool);
3867 extern Lisp_Object string_to_number (char const *, int, bool);
3868 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3869 Lisp_Object);
3870 extern void dir_warning (const char *, Lisp_Object);
3871 extern void init_obarray (void);
3872 extern void init_lread (void);
3873 extern void syms_of_lread (void);
3874
3875 INLINE Lisp_Object
3876 intern (const char *str)
3877 {
3878 return intern_1 (str, strlen (str));
3879 }
3880
3881 INLINE Lisp_Object
3882 intern_c_string (const char *str)
3883 {
3884 return intern_c_string_1 (str, strlen (str));
3885 }
3886
3887 /* Defined in eval.c. */
3888 extern EMACS_INT lisp_eval_depth;
3889 extern Lisp_Object Vautoload_queue;
3890 extern Lisp_Object Vrun_hooks;
3891 extern Lisp_Object Vsignaling_function;
3892 extern Lisp_Object inhibit_lisp_code;
3893 extern struct handler *handlerlist;
3894
3895 /* To run a normal hook, use the appropriate function from the list below.
3896 The calling convention:
3897
3898 if (!NILP (Vrun_hooks))
3899 call1 (Vrun_hooks, Qmy_funny_hook);
3900
3901 should no longer be used. */
3902 extern void run_hook (Lisp_Object);
3903 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3904 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3905 Lisp_Object (*funcall)
3906 (ptrdiff_t nargs, Lisp_Object *args));
3907 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3908 extern _Noreturn void xsignal0 (Lisp_Object);
3909 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3910 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3911 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3912 Lisp_Object);
3913 extern _Noreturn void signal_error (const char *, Lisp_Object);
3914 extern Lisp_Object eval_sub (Lisp_Object form);
3915 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3916 extern Lisp_Object call0 (Lisp_Object);
3917 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3918 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3919 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3920 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3921 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3922 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3923 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3924 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3925 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3926 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3927 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3928 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3929 extern Lisp_Object internal_condition_case_n
3930 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3931 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3932 extern void specbind (Lisp_Object, Lisp_Object);
3933 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3934 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3935 extern void record_unwind_protect_int (void (*) (int), int);
3936 extern void record_unwind_protect_void (void (*) (void));
3937 extern void record_unwind_protect_nothing (void);
3938 extern void clear_unwind_protect (ptrdiff_t);
3939 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3940 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3941 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3942 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3943 extern _Noreturn void verror (const char *, va_list)
3944 ATTRIBUTE_FORMAT_PRINTF (1, 0);
3945 extern void un_autoload (Lisp_Object);
3946 extern Lisp_Object call_debugger (Lisp_Object arg);
3947 extern void init_eval_once (void);
3948 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
3949 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
3950 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3951 extern void init_eval (void);
3952 extern void syms_of_eval (void);
3953 extern void unwind_body (Lisp_Object);
3954 extern ptrdiff_t record_in_backtrace (Lisp_Object, Lisp_Object *, ptrdiff_t);
3955 extern void mark_specpdl (void);
3956 extern void get_backtrace (Lisp_Object array);
3957 Lisp_Object backtrace_top_function (void);
3958 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
3959 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
3960
3961
3962 /* Defined in editfns.c. */
3963 extern void insert1 (Lisp_Object);
3964 extern Lisp_Object format2 (const char *, Lisp_Object, Lisp_Object);
3965 extern Lisp_Object save_excursion_save (void);
3966 extern Lisp_Object save_restriction_save (void);
3967 extern void save_excursion_restore (Lisp_Object);
3968 extern void save_restriction_restore (Lisp_Object);
3969 extern _Noreturn void time_overflow (void);
3970 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
3971 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3972 ptrdiff_t, bool);
3973 extern void init_editfns (void);
3974 extern void syms_of_editfns (void);
3975
3976 /* Defined in buffer.c. */
3977 extern bool mouse_face_overlay_overlaps (Lisp_Object);
3978 extern _Noreturn void nsberror (Lisp_Object);
3979 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
3980 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
3981 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
3982 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
3983 Lisp_Object, Lisp_Object, Lisp_Object);
3984 extern bool overlay_touches_p (ptrdiff_t);
3985 extern Lisp_Object other_buffer_safely (Lisp_Object);
3986 extern Lisp_Object get_truename_buffer (Lisp_Object);
3987 extern void init_buffer_once (void);
3988 extern void init_buffer (int);
3989 extern void syms_of_buffer (void);
3990 extern void keys_of_buffer (void);
3991
3992 /* Defined in marker.c. */
3993
3994 extern ptrdiff_t marker_position (Lisp_Object);
3995 extern ptrdiff_t marker_byte_position (Lisp_Object);
3996 extern void clear_charpos_cache (struct buffer *);
3997 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
3998 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
3999 extern void unchain_marker (struct Lisp_Marker *marker);
4000 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
4001 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
4002 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
4003 ptrdiff_t, ptrdiff_t);
4004 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
4005 extern void syms_of_marker (void);
4006
4007 /* Defined in fileio.c. */
4008
4009 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
4010 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
4011 Lisp_Object, Lisp_Object, Lisp_Object,
4012 Lisp_Object, int);
4013 extern void close_file_unwind (int);
4014 extern void fclose_unwind (void *);
4015 extern void restore_point_unwind (Lisp_Object);
4016 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
4017 extern _Noreturn void report_file_error (const char *, Lisp_Object);
4018 extern bool internal_delete_file (Lisp_Object);
4019 extern Lisp_Object emacs_readlinkat (int, const char *);
4020 extern bool file_directory_p (const char *);
4021 extern bool file_accessible_directory_p (Lisp_Object);
4022 extern void init_fileio (void);
4023 extern void syms_of_fileio (void);
4024 extern Lisp_Object make_temp_name (Lisp_Object, bool);
4025
4026 /* Defined in search.c. */
4027 extern void shrink_regexp_cache (void);
4028 extern void restore_search_regs (void);
4029 extern void record_unwind_save_match_data (void);
4030 struct re_registers;
4031 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
4032 struct re_registers *,
4033 Lisp_Object, bool, bool);
4034 extern ptrdiff_t fast_string_match (Lisp_Object, Lisp_Object);
4035 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4036 ptrdiff_t);
4037 extern ptrdiff_t fast_string_match_ignore_case (Lisp_Object, Lisp_Object);
4038 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4039 ptrdiff_t, ptrdiff_t, Lisp_Object);
4040 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4041 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4042 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4043 ptrdiff_t, bool);
4044 extern ptrdiff_t scan_newline_from_point (ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
4045 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4046 ptrdiff_t, ptrdiff_t *);
4047 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4048 ptrdiff_t, ptrdiff_t *);
4049 extern void syms_of_search (void);
4050 extern void clear_regexp_cache (void);
4051
4052 /* Defined in minibuf.c. */
4053
4054 extern Lisp_Object Vminibuffer_list;
4055 extern Lisp_Object last_minibuf_string;
4056 extern Lisp_Object get_minibuffer (EMACS_INT);
4057 extern void init_minibuf_once (void);
4058 extern void syms_of_minibuf (void);
4059
4060 /* Defined in callint.c. */
4061
4062 extern void syms_of_callint (void);
4063
4064 /* Defined in casefiddle.c. */
4065
4066 extern void syms_of_casefiddle (void);
4067 extern void keys_of_casefiddle (void);
4068
4069 /* Defined in casetab.c. */
4070
4071 extern void init_casetab_once (void);
4072 extern void syms_of_casetab (void);
4073
4074 /* Defined in keyboard.c. */
4075
4076 extern Lisp_Object echo_message_buffer;
4077 extern struct kboard *echo_kboard;
4078 extern void cancel_echoing (void);
4079 extern Lisp_Object last_undo_boundary;
4080 extern bool input_pending;
4081 #ifdef HAVE_STACK_OVERFLOW_HANDLING
4082 extern sigjmp_buf return_to_command_loop;
4083 #endif
4084 extern Lisp_Object menu_bar_items (Lisp_Object);
4085 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4086 extern void discard_mouse_events (void);
4087 #ifdef USABLE_SIGIO
4088 void handle_input_available_signal (int);
4089 #endif
4090 extern Lisp_Object pending_funcalls;
4091 extern bool detect_input_pending (void);
4092 extern bool detect_input_pending_ignore_squeezables (void);
4093 extern bool detect_input_pending_run_timers (bool);
4094 extern void safe_run_hooks (Lisp_Object);
4095 extern void cmd_error_internal (Lisp_Object, const char *);
4096 extern Lisp_Object command_loop_1 (void);
4097 extern Lisp_Object read_menu_command (void);
4098 extern Lisp_Object recursive_edit_1 (void);
4099 extern void record_auto_save (void);
4100 extern void force_auto_save_soon (void);
4101 extern void init_keyboard (void);
4102 extern void syms_of_keyboard (void);
4103 extern void keys_of_keyboard (void);
4104
4105 /* Defined in indent.c. */
4106 extern ptrdiff_t current_column (void);
4107 extern void invalidate_current_column (void);
4108 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4109 extern void syms_of_indent (void);
4110
4111 /* Defined in frame.c. */
4112 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4113 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4114 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4115 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4116 extern void frames_discard_buffer (Lisp_Object);
4117 extern void syms_of_frame (void);
4118
4119 /* Defined in emacs.c. */
4120 extern char **initial_argv;
4121 extern int initial_argc;
4122 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4123 extern bool display_arg;
4124 #endif
4125 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4126 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4127 extern _Noreturn void terminate_due_to_signal (int, int);
4128 #ifdef WINDOWSNT
4129 extern Lisp_Object Vlibrary_cache;
4130 #endif
4131 #if HAVE_SETLOCALE
4132 void fixup_locale (void);
4133 void synchronize_system_messages_locale (void);
4134 void synchronize_system_time_locale (void);
4135 #else
4136 INLINE void fixup_locale (void) {}
4137 INLINE void synchronize_system_messages_locale (void) {}
4138 INLINE void synchronize_system_time_locale (void) {}
4139 #endif
4140 extern void shut_down_emacs (int, Lisp_Object);
4141
4142 /* True means don't do interactive redisplay and don't change tty modes. */
4143 extern bool noninteractive;
4144
4145 /* True means remove site-lisp directories from load-path. */
4146 extern bool no_site_lisp;
4147
4148 /* Pipe used to send exit notification to the daemon parent at
4149 startup. */
4150 extern int daemon_pipe[2];
4151 #define IS_DAEMON (daemon_pipe[1] != 0)
4152
4153 /* True if handling a fatal error already. */
4154 extern bool fatal_error_in_progress;
4155
4156 /* True means don't do use window-system-specific display code. */
4157 extern bool inhibit_window_system;
4158 /* True means that a filter or a sentinel is running. */
4159 extern bool running_asynch_code;
4160
4161 /* Defined in process.c. */
4162 extern void kill_buffer_processes (Lisp_Object);
4163 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4164 struct Lisp_Process *, int);
4165 /* Max value for the first argument of wait_reading_process_output. */
4166 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4167 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4168 The bug merely causes a bogus warning, but the warning is annoying. */
4169 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4170 #else
4171 # define WAIT_READING_MAX INTMAX_MAX
4172 #endif
4173 #ifdef HAVE_TIMERFD
4174 extern void add_timer_wait_descriptor (int);
4175 #endif
4176 extern void add_keyboard_wait_descriptor (int);
4177 extern void delete_keyboard_wait_descriptor (int);
4178 #ifdef HAVE_GPM
4179 extern void add_gpm_wait_descriptor (int);
4180 extern void delete_gpm_wait_descriptor (int);
4181 #endif
4182 extern void init_process_emacs (void);
4183 extern void syms_of_process (void);
4184 extern void setup_process_coding_systems (Lisp_Object);
4185
4186 /* Defined in callproc.c. */
4187 #ifndef DOS_NT
4188 _Noreturn
4189 #endif
4190 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4191 extern void init_callproc_1 (void);
4192 extern void init_callproc (void);
4193 extern void set_initial_environment (void);
4194 extern void syms_of_callproc (void);
4195
4196 /* Defined in doc.c. */
4197 extern Lisp_Object read_doc_string (Lisp_Object);
4198 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4199 extern void syms_of_doc (void);
4200 extern int read_bytecode_char (bool);
4201
4202 /* Defined in bytecode.c. */
4203 extern void syms_of_bytecode (void);
4204 extern struct byte_stack *byte_stack_list;
4205 #if BYTE_MARK_STACK
4206 extern void mark_byte_stack (void);
4207 #endif
4208 extern void unmark_byte_stack (void);
4209 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4210 Lisp_Object, ptrdiff_t, Lisp_Object *);
4211
4212 /* Defined in macros.c. */
4213 extern void init_macros (void);
4214 extern void syms_of_macros (void);
4215
4216 /* Defined in undo.c. */
4217 extern void truncate_undo_list (struct buffer *);
4218 extern void record_insert (ptrdiff_t, ptrdiff_t);
4219 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4220 extern void record_first_change (void);
4221 extern void record_change (ptrdiff_t, ptrdiff_t);
4222 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4223 Lisp_Object, Lisp_Object,
4224 Lisp_Object);
4225 extern void syms_of_undo (void);
4226
4227 /* Defined in textprop.c. */
4228 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4229
4230 /* Defined in menu.c. */
4231 extern void syms_of_menu (void);
4232
4233 /* Defined in xmenu.c. */
4234 extern void syms_of_xmenu (void);
4235
4236 /* Defined in termchar.h. */
4237 struct tty_display_info;
4238
4239 /* Defined in termhooks.h. */
4240 struct terminal;
4241
4242 /* Defined in sysdep.c. */
4243 #ifndef HAVE_GET_CURRENT_DIR_NAME
4244 extern char *get_current_dir_name (void);
4245 #endif
4246 extern void stuff_char (char c);
4247 extern void init_foreground_group (void);
4248 extern void sys_subshell (void);
4249 extern void sys_suspend (void);
4250 extern void discard_tty_input (void);
4251 extern void init_sys_modes (struct tty_display_info *);
4252 extern void reset_sys_modes (struct tty_display_info *);
4253 extern void init_all_sys_modes (void);
4254 extern void reset_all_sys_modes (void);
4255 extern void child_setup_tty (int);
4256 extern void setup_pty (int);
4257 extern int set_window_size (int, int, int);
4258 extern EMACS_INT get_random (void);
4259 extern void seed_random (void *, ptrdiff_t);
4260 extern void init_random (void);
4261 extern void emacs_backtrace (int);
4262 extern _Noreturn void emacs_abort (void) NO_INLINE;
4263 extern int emacs_open (const char *, int, int);
4264 extern int emacs_pipe (int[2]);
4265 extern int emacs_close (int);
4266 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4267 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4268 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4269 extern void emacs_perror (char const *);
4270
4271 extern void unlock_all_files (void);
4272 extern void lock_file (Lisp_Object);
4273 extern void unlock_file (Lisp_Object);
4274 extern void unlock_buffer (struct buffer *);
4275 extern void syms_of_filelock (void);
4276 extern int str_collate (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4277
4278 /* Defined in sound.c. */
4279 extern void syms_of_sound (void);
4280
4281 /* Defined in category.c. */
4282 extern void init_category_once (void);
4283 extern Lisp_Object char_category_set (int);
4284 extern void syms_of_category (void);
4285
4286 /* Defined in ccl.c. */
4287 extern void syms_of_ccl (void);
4288
4289 /* Defined in dired.c. */
4290 extern void syms_of_dired (void);
4291 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4292 Lisp_Object, Lisp_Object,
4293 bool, Lisp_Object);
4294
4295 /* Defined in term.c. */
4296 extern int *char_ins_del_vector;
4297 extern void syms_of_term (void);
4298 extern _Noreturn void fatal (const char *msgid, ...)
4299 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4300
4301 /* Defined in terminal.c. */
4302 extern void syms_of_terminal (void);
4303
4304 /* Defined in font.c. */
4305 extern void syms_of_font (void);
4306 extern void init_font (void);
4307
4308 #ifdef HAVE_WINDOW_SYSTEM
4309 /* Defined in fontset.c. */
4310 extern void syms_of_fontset (void);
4311 #endif
4312
4313 /* Defined in gfilenotify.c */
4314 #ifdef HAVE_GFILENOTIFY
4315 extern void globals_of_gfilenotify (void);
4316 extern void syms_of_gfilenotify (void);
4317 #endif
4318
4319 /* Defined in inotify.c */
4320 #ifdef HAVE_INOTIFY
4321 extern void syms_of_inotify (void);
4322 #endif
4323
4324 #ifdef HAVE_W32NOTIFY
4325 /* Defined on w32notify.c. */
4326 extern void syms_of_w32notify (void);
4327 #endif
4328
4329 /* Defined in xfaces.c. */
4330 extern Lisp_Object Vface_alternative_font_family_alist;
4331 extern Lisp_Object Vface_alternative_font_registry_alist;
4332 extern void syms_of_xfaces (void);
4333
4334 #ifdef HAVE_X_WINDOWS
4335 /* Defined in xfns.c. */
4336 extern void syms_of_xfns (void);
4337
4338 /* Defined in xsmfns.c. */
4339 extern void syms_of_xsmfns (void);
4340
4341 /* Defined in xselect.c. */
4342 extern void syms_of_xselect (void);
4343
4344 /* Defined in xterm.c. */
4345 extern void init_xterm (void);
4346 extern void syms_of_xterm (void);
4347 #endif /* HAVE_X_WINDOWS */
4348
4349 #ifdef HAVE_WINDOW_SYSTEM
4350 /* Defined in xterm.c, nsterm.m, w32term.c. */
4351 extern char *x_get_keysym_name (int);
4352 #endif /* HAVE_WINDOW_SYSTEM */
4353
4354 #ifdef HAVE_LIBXML2
4355 /* Defined in xml.c. */
4356 extern void syms_of_xml (void);
4357 extern void xml_cleanup_parser (void);
4358 #endif
4359
4360 #ifdef HAVE_ZLIB
4361 /* Defined in decompress.c. */
4362 extern void syms_of_decompress (void);
4363 #endif
4364
4365 #ifdef HAVE_DBUS
4366 /* Defined in dbusbind.c. */
4367 void init_dbusbind (void);
4368 void syms_of_dbusbind (void);
4369 #endif
4370
4371
4372 /* Defined in profiler.c. */
4373 extern bool profiler_memory_running;
4374 extern void malloc_probe (size_t);
4375 extern void syms_of_profiler (void);
4376
4377
4378 #ifdef DOS_NT
4379 /* Defined in msdos.c, w32.c. */
4380 extern char *emacs_root_dir (void);
4381 #endif /* DOS_NT */
4382
4383 /* Defined in lastfile.c. */
4384 extern char my_edata[];
4385 extern char my_endbss[];
4386 extern char *my_endbss_static;
4387
4388 /* True means ^G can quit instantly. */
4389 extern bool immediate_quit;
4390
4391 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4392 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4393 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4394 extern void xfree (void *);
4395 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4396 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4397 ATTRIBUTE_ALLOC_SIZE ((2,3));
4398 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4399
4400 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4401 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4402 extern void dupstring (char **, char const *);
4403
4404 /* Make DEST a copy of STRING's data. Return a pointer to DEST's terminating
4405 null byte. This is like stpcpy, except the source is a Lisp string. */
4406
4407 INLINE char *
4408 lispstpcpy (char *dest, Lisp_Object string)
4409 {
4410 ptrdiff_t len = SBYTES (string);
4411 memcpy (dest, SDATA (string), len + 1);
4412 return dest + len;
4413 }
4414
4415 extern void xputenv (const char *);
4416
4417 extern char *egetenv_internal (const char *, ptrdiff_t);
4418
4419 INLINE char *
4420 egetenv (const char *var)
4421 {
4422 /* When VAR is a string literal, strlen can be optimized away. */
4423 return egetenv_internal (var, strlen (var));
4424 }
4425
4426 /* Set up the name of the machine we're running on. */
4427 extern void init_system_name (void);
4428
4429 /* Return the absolute value of X. X should be a signed integer
4430 expression without side effects, and X's absolute value should not
4431 exceed the maximum for its promoted type. This is called 'eabs'
4432 because 'abs' is reserved by the C standard. */
4433 #define eabs(x) ((x) < 0 ? -(x) : (x))
4434
4435 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4436 fixnum. */
4437
4438 #define make_fixnum_or_float(val) \
4439 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4440
4441 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4442 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4443
4444 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4445
4446 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4447
4448 #define USE_SAFE_ALLOCA \
4449 ptrdiff_t sa_avail = MAX_ALLOCA; \
4450 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4451
4452 #define AVAIL_ALLOCA(size) (sa_avail -= (size), alloca (size))
4453
4454 /* SAFE_ALLOCA allocates a simple buffer. */
4455
4456 #define SAFE_ALLOCA(size) ((size) <= sa_avail \
4457 ? AVAIL_ALLOCA (size) \
4458 : (sa_must_free = true, record_xmalloc (size)))
4459
4460 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4461 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4462 positive. The code is tuned for MULTIPLIER being a constant. */
4463
4464 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4465 do { \
4466 if ((nitems) <= sa_avail / sizeof *(buf) / (multiplier)) \
4467 (buf) = AVAIL_ALLOCA (sizeof *(buf) * (multiplier) * (nitems)); \
4468 else \
4469 { \
4470 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4471 sa_must_free = true; \
4472 record_unwind_protect_ptr (xfree, buf); \
4473 } \
4474 } while (false)
4475
4476 /* SAFE_ALLOCA_STRING allocates a C copy of a Lisp string. */
4477
4478 #define SAFE_ALLOCA_STRING(ptr, string) \
4479 do { \
4480 (ptr) = SAFE_ALLOCA (SBYTES (string) + 1); \
4481 memcpy (ptr, SDATA (string), SBYTES (string) + 1); \
4482 } while (false)
4483
4484 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4485
4486 #define SAFE_FREE() \
4487 do { \
4488 if (sa_must_free) { \
4489 sa_must_free = false; \
4490 unbind_to (sa_count, Qnil); \
4491 } \
4492 } while (false)
4493
4494
4495 /* Return floor (NBYTES / WORD_SIZE). */
4496
4497 INLINE ptrdiff_t
4498 lisp_word_count (ptrdiff_t nbytes)
4499 {
4500 if (-1 >> 1 == -1)
4501 switch (word_size)
4502 {
4503 case 2: return nbytes >> 1;
4504 case 4: return nbytes >> 2;
4505 case 8: return nbytes >> 3;
4506 case 16: return nbytes >> 4;
4507 }
4508 return nbytes / word_size - (nbytes % word_size < 0);
4509 }
4510
4511 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4512
4513 #define SAFE_ALLOCA_LISP(buf, nelt) \
4514 do { \
4515 if ((nelt) <= lisp_word_count (sa_avail)) \
4516 (buf) = AVAIL_ALLOCA ((nelt) * word_size); \
4517 else if ((nelt) <= min (PTRDIFF_MAX, SIZE_MAX) / word_size) \
4518 { \
4519 Lisp_Object arg_; \
4520 (buf) = xmalloc ((nelt) * word_size); \
4521 arg_ = make_save_memory (buf, nelt); \
4522 sa_must_free = true; \
4523 record_unwind_protect (free_save_value, arg_); \
4524 } \
4525 else \
4526 memory_full (SIZE_MAX); \
4527 } while (false)
4528
4529
4530 /* If USE_STACK_LISP_OBJECTS, define macros that and functions that allocate
4531 block-scoped conses and strings. These objects are not
4532 managed by the garbage collector, so they are dangerous: passing them
4533 out of their scope (e.g., to user code) results in undefined behavior.
4534 Conversely, they have better performance because GC is not involved.
4535
4536 This feature is experimental and requires careful debugging.
4537 Build with CPPFLAGS='-DUSE_STACK_LISP_OBJECTS=0' to disable it. */
4538
4539 #ifndef USE_STACK_LISP_OBJECTS
4540 # define USE_STACK_LISP_OBJECTS true
4541 #endif
4542
4543 /* USE_STACK_LISP_OBJECTS requires GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS. */
4544
4545 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
4546 # undef USE_STACK_LISP_OBJECTS
4547 # define USE_STACK_LISP_OBJECTS false
4548 #endif
4549
4550 #ifdef GC_CHECK_STRING_BYTES
4551 enum { defined_GC_CHECK_STRING_BYTES = true };
4552 #else
4553 enum { defined_GC_CHECK_STRING_BYTES = false };
4554 #endif
4555
4556 /* Struct inside unions that are typically no larger and aligned enough. */
4557
4558 union Aligned_Cons
4559 {
4560 struct Lisp_Cons s;
4561 double d; intmax_t i; void *p;
4562 };
4563
4564 union Aligned_String
4565 {
4566 struct Lisp_String s;
4567 double d; intmax_t i; void *p;
4568 };
4569
4570 /* True for stack-based cons and string implementations, respectively.
4571 Use stack-based strings only if stack-based cons also works.
4572 Otherwise, STACK_CONS would create heap-based cons cells that
4573 could point to stack-based strings, which is a no-no. */
4574
4575 enum
4576 {
4577 USE_STACK_CONS = (USE_STACK_LISP_OBJECTS
4578 && alignof (union Aligned_Cons) % GCALIGNMENT == 0),
4579 USE_STACK_STRING = (USE_STACK_CONS
4580 && !defined_GC_CHECK_STRING_BYTES
4581 && alignof (union Aligned_String) % GCALIGNMENT == 0)
4582 };
4583
4584 /* Auxiliary macros used for auto allocation of Lisp objects. Please
4585 use these only in macros like AUTO_CONS that declare a local
4586 variable whose lifetime will be clear to the programmer. */
4587 #define STACK_CONS(a, b) \
4588 make_lisp_ptr (&(union Aligned_Cons) { { a, { b } } }.s, Lisp_Cons)
4589 #define AUTO_CONS_EXPR(a, b) \
4590 (USE_STACK_CONS ? STACK_CONS (a, b) : Fcons (a, b))
4591
4592 /* Declare NAME as an auto Lisp cons or short list if possible, a
4593 GC-based one otherwise. This is in the sense of the C keyword
4594 'auto'; i.e., the object has the lifetime of the containing block.
4595 The resulting object should not be made visible to user Lisp code. */
4596
4597 #define AUTO_CONS(name, a, b) Lisp_Object name = AUTO_CONS_EXPR (a, b)
4598 #define AUTO_LIST1(name, a) \
4599 Lisp_Object name = (USE_STACK_CONS ? STACK_CONS (a, Qnil) : list1 (a))
4600 #define AUTO_LIST2(name, a, b) \
4601 Lisp_Object name = (USE_STACK_CONS \
4602 ? STACK_CONS (a, STACK_CONS (b, Qnil)) \
4603 : list2 (a, b))
4604 #define AUTO_LIST3(name, a, b, c) \
4605 Lisp_Object name = (USE_STACK_CONS \
4606 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, Qnil))) \
4607 : list3 (a, b, c))
4608 #define AUTO_LIST4(name, a, b, c, d) \
4609 Lisp_Object name \
4610 = (USE_STACK_CONS \
4611 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, \
4612 STACK_CONS (d, Qnil)))) \
4613 : list4 (a, b, c, d))
4614
4615 /* Check whether stack-allocated strings are ASCII-only. */
4616
4617 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
4618 extern const char *verify_ascii (const char *);
4619 #else
4620 # define verify_ascii(str) (str)
4621 #endif
4622
4623 /* Declare NAME as an auto Lisp string if possible, a GC-based one if not.
4624 Take its value from STR. STR is not necessarily copied and should
4625 contain only ASCII characters. The resulting Lisp string should
4626 not be modified or made visible to user code. */
4627
4628 #define AUTO_STRING(name, str) \
4629 Lisp_Object name = \
4630 (USE_STACK_STRING \
4631 ? (make_lisp_ptr \
4632 ((&(union Aligned_String) \
4633 {{strlen (str), -1, 0, (unsigned char *) verify_ascii (str)}}.s), \
4634 Lisp_String)) \
4635 : build_string (verify_ascii (str)))
4636
4637 /* Loop over all tails of a list, checking for cycles.
4638 FIXME: Make tortoise and n internal declarations.
4639 FIXME: Unroll the loop body so we don't need `n'. */
4640 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4641 for ((tortoise) = (hare) = (list), (n) = true; \
4642 CONSP (hare); \
4643 (hare = XCDR (hare), (n) = !(n), \
4644 ((n) \
4645 ? (EQ (hare, tortoise) \
4646 ? xsignal1 (Qcircular_list, list) \
4647 : (void) 0) \
4648 /* Move tortoise before the next iteration, in case */ \
4649 /* the next iteration does an Fsetcdr. */ \
4650 : (void) ((tortoise) = XCDR (tortoise)))))
4651
4652 /* Do a `for' loop over alist values. */
4653
4654 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4655 for ((list_var) = (head_var); \
4656 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4657 (list_var) = XCDR (list_var))
4658
4659 /* Check whether it's time for GC, and run it if so. */
4660
4661 INLINE void
4662 maybe_gc (void)
4663 {
4664 if ((consing_since_gc > gc_cons_threshold
4665 && consing_since_gc > gc_relative_threshold)
4666 || (!NILP (Vmemory_full)
4667 && consing_since_gc > memory_full_cons_threshold))
4668 Fgarbage_collect ();
4669 }
4670
4671 INLINE bool
4672 functionp (Lisp_Object object)
4673 {
4674 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4675 {
4676 object = Findirect_function (object, Qt);
4677
4678 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4679 {
4680 /* Autoloaded symbols are functions, except if they load
4681 macros or keymaps. */
4682 int i;
4683 for (i = 0; i < 4 && CONSP (object); i++)
4684 object = XCDR (object);
4685
4686 return ! (CONSP (object) && !NILP (XCAR (object)));
4687 }
4688 }
4689
4690 if (SUBRP (object))
4691 return XSUBR (object)->max_args != UNEVALLED;
4692 else if (COMPILEDP (object))
4693 return true;
4694 else if (CONSP (object))
4695 {
4696 Lisp_Object car = XCAR (object);
4697 return EQ (car, Qlambda) || EQ (car, Qclosure);
4698 }
4699 else
4700 return false;
4701 }
4702
4703 INLINE_HEADER_END
4704
4705 #endif /* EMACS_LISP_H */