]> code.delx.au - gnu-emacs/blob - src/alloc.c
Merge from emacs-24; up to 2014-07-08T06:24:07Z!eggert@cs.ucla.edu
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2014 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
29
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
33
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45 #ifdef HAVE_WINDOW_SYSTEM
46 #include TERM_HEADER
47 #endif /* HAVE_WINDOW_SYSTEM */
48
49 #include <verify.h>
50 #include <execinfo.h> /* For backtrace. */
51
52 #ifdef HAVE_LINUX_SYSINFO
53 #include <sys/sysinfo.h>
54 #endif
55
56 #ifdef MSDOS
57 #include "dosfns.h" /* For dos_memory_info. */
58 #endif
59
60 #if (defined ENABLE_CHECKING \
61 && defined HAVE_VALGRIND_VALGRIND_H \
62 && !defined USE_VALGRIND)
63 # define USE_VALGRIND 1
64 #endif
65
66 #if USE_VALGRIND
67 #include <valgrind/valgrind.h>
68 #include <valgrind/memcheck.h>
69 static bool valgrind_p;
70 #endif
71
72 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
73 Doable only if GC_MARK_STACK. */
74 #if ! GC_MARK_STACK
75 # undef GC_CHECK_MARKED_OBJECTS
76 #endif
77
78 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
79 memory. Can do this only if using gmalloc.c and if not checking
80 marked objects. */
81
82 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
83 || defined HYBRID_MALLOC || defined GC_CHECK_MARKED_OBJECTS)
84 #undef GC_MALLOC_CHECK
85 #endif
86
87 #include <unistd.h>
88 #include <fcntl.h>
89
90 #ifdef USE_GTK
91 # include "gtkutil.h"
92 #endif
93 #ifdef WINDOWSNT
94 #include "w32.h"
95 #include "w32heap.h" /* for sbrk */
96 #endif
97
98 #ifdef DOUG_LEA_MALLOC
99
100 #include <malloc.h>
101
102 /* Specify maximum number of areas to mmap. It would be nice to use a
103 value that explicitly means "no limit". */
104
105 #define MMAP_MAX_AREAS 100000000
106
107 #endif /* not DOUG_LEA_MALLOC */
108
109 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
110 to a struct Lisp_String. */
111
112 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
113 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
114 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
115
116 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
117 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
118 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
119
120 /* Default value of gc_cons_threshold (see below). */
121
122 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
123
124 /* Global variables. */
125 struct emacs_globals globals;
126
127 /* Number of bytes of consing done since the last gc. */
128
129 EMACS_INT consing_since_gc;
130
131 /* Similar minimum, computed from Vgc_cons_percentage. */
132
133 EMACS_INT gc_relative_threshold;
134
135 /* Minimum number of bytes of consing since GC before next GC,
136 when memory is full. */
137
138 EMACS_INT memory_full_cons_threshold;
139
140 /* True during GC. */
141
142 bool gc_in_progress;
143
144 /* True means abort if try to GC.
145 This is for code which is written on the assumption that
146 no GC will happen, so as to verify that assumption. */
147
148 bool abort_on_gc;
149
150 /* Number of live and free conses etc. */
151
152 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
153 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
154 static EMACS_INT total_free_floats, total_floats;
155
156 /* Points to memory space allocated as "spare", to be freed if we run
157 out of memory. We keep one large block, four cons-blocks, and
158 two string blocks. */
159
160 static char *spare_memory[7];
161
162 /* Amount of spare memory to keep in large reserve block, or to see
163 whether this much is available when malloc fails on a larger request. */
164
165 #define SPARE_MEMORY (1 << 14)
166
167 /* Initialize it to a nonzero value to force it into data space
168 (rather than bss space). That way unexec will remap it into text
169 space (pure), on some systems. We have not implemented the
170 remapping on more recent systems because this is less important
171 nowadays than in the days of small memories and timesharing. */
172
173 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
174 #define PUREBEG (char *) pure
175
176 /* Pointer to the pure area, and its size. */
177
178 static char *purebeg;
179 static ptrdiff_t pure_size;
180
181 /* Number of bytes of pure storage used before pure storage overflowed.
182 If this is non-zero, this implies that an overflow occurred. */
183
184 static ptrdiff_t pure_bytes_used_before_overflow;
185
186 /* True if P points into pure space. */
187
188 #define PURE_POINTER_P(P) \
189 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
190
191 /* Index in pure at which next pure Lisp object will be allocated.. */
192
193 static ptrdiff_t pure_bytes_used_lisp;
194
195 /* Number of bytes allocated for non-Lisp objects in pure storage. */
196
197 static ptrdiff_t pure_bytes_used_non_lisp;
198
199 /* If nonzero, this is a warning delivered by malloc and not yet
200 displayed. */
201
202 const char *pending_malloc_warning;
203
204 #if 0 /* Normally, pointer sanity only on request... */
205 #ifdef ENABLE_CHECKING
206 #define SUSPICIOUS_OBJECT_CHECKING 1
207 #endif
208 #endif
209
210 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
211 bug is unresolved. */
212 #define SUSPICIOUS_OBJECT_CHECKING 1
213
214 #ifdef SUSPICIOUS_OBJECT_CHECKING
215 struct suspicious_free_record
216 {
217 void *suspicious_object;
218 void *backtrace[128];
219 };
220 static void *suspicious_objects[32];
221 static int suspicious_object_index;
222 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
223 static int suspicious_free_history_index;
224 /* Find the first currently-monitored suspicious pointer in range
225 [begin,end) or NULL if no such pointer exists. */
226 static void *find_suspicious_object_in_range (void *begin, void *end);
227 static void detect_suspicious_free (void *ptr);
228 #else
229 # define find_suspicious_object_in_range(begin, end) NULL
230 # define detect_suspicious_free(ptr) (void)
231 #endif
232
233 /* Maximum amount of C stack to save when a GC happens. */
234
235 #ifndef MAX_SAVE_STACK
236 #define MAX_SAVE_STACK 16000
237 #endif
238
239 /* Buffer in which we save a copy of the C stack at each GC. */
240
241 #if MAX_SAVE_STACK > 0
242 static char *stack_copy;
243 static ptrdiff_t stack_copy_size;
244
245 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
246 avoiding any address sanitization. */
247
248 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
249 no_sanitize_memcpy (void *dest, void const *src, size_t size)
250 {
251 if (! ADDRESS_SANITIZER)
252 return memcpy (dest, src, size);
253 else
254 {
255 size_t i;
256 char *d = dest;
257 char const *s = src;
258 for (i = 0; i < size; i++)
259 d[i] = s[i];
260 return dest;
261 }
262 }
263
264 #endif /* MAX_SAVE_STACK > 0 */
265
266 static Lisp_Object Qconses;
267 static Lisp_Object Qsymbols;
268 static Lisp_Object Qmiscs;
269 static Lisp_Object Qstrings;
270 static Lisp_Object Qvectors;
271 static Lisp_Object Qfloats;
272 static Lisp_Object Qintervals;
273 static Lisp_Object Qbuffers;
274 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
275 static Lisp_Object Qgc_cons_threshold;
276 Lisp_Object Qautomatic_gc;
277 Lisp_Object Qchar_table_extra_slots;
278
279 /* Hook run after GC has finished. */
280
281 static Lisp_Object Qpost_gc_hook;
282
283 static void mark_terminals (void);
284 static void gc_sweep (void);
285 static Lisp_Object make_pure_vector (ptrdiff_t);
286 static void mark_buffer (struct buffer *);
287
288 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
289 static void refill_memory_reserve (void);
290 #endif
291 static void compact_small_strings (void);
292 static void free_large_strings (void);
293 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
294
295 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
296 what memory allocated via lisp_malloc and lisp_align_malloc is intended
297 for what purpose. This enumeration specifies the type of memory. */
298
299 enum mem_type
300 {
301 MEM_TYPE_NON_LISP,
302 MEM_TYPE_BUFFER,
303 MEM_TYPE_CONS,
304 MEM_TYPE_STRING,
305 MEM_TYPE_MISC,
306 MEM_TYPE_SYMBOL,
307 MEM_TYPE_FLOAT,
308 /* Since all non-bool pseudovectors are small enough to be
309 allocated from vector blocks, this memory type denotes
310 large regular vectors and large bool pseudovectors. */
311 MEM_TYPE_VECTORLIKE,
312 /* Special type to denote vector blocks. */
313 MEM_TYPE_VECTOR_BLOCK,
314 /* Special type to denote reserved memory. */
315 MEM_TYPE_SPARE
316 };
317
318 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
319
320 /* A unique object in pure space used to make some Lisp objects
321 on free lists recognizable in O(1). */
322
323 static Lisp_Object Vdead;
324 #define DEADP(x) EQ (x, Vdead)
325
326 #ifdef GC_MALLOC_CHECK
327
328 enum mem_type allocated_mem_type;
329
330 #endif /* GC_MALLOC_CHECK */
331
332 /* A node in the red-black tree describing allocated memory containing
333 Lisp data. Each such block is recorded with its start and end
334 address when it is allocated, and removed from the tree when it
335 is freed.
336
337 A red-black tree is a balanced binary tree with the following
338 properties:
339
340 1. Every node is either red or black.
341 2. Every leaf is black.
342 3. If a node is red, then both of its children are black.
343 4. Every simple path from a node to a descendant leaf contains
344 the same number of black nodes.
345 5. The root is always black.
346
347 When nodes are inserted into the tree, or deleted from the tree,
348 the tree is "fixed" so that these properties are always true.
349
350 A red-black tree with N internal nodes has height at most 2
351 log(N+1). Searches, insertions and deletions are done in O(log N).
352 Please see a text book about data structures for a detailed
353 description of red-black trees. Any book worth its salt should
354 describe them. */
355
356 struct mem_node
357 {
358 /* Children of this node. These pointers are never NULL. When there
359 is no child, the value is MEM_NIL, which points to a dummy node. */
360 struct mem_node *left, *right;
361
362 /* The parent of this node. In the root node, this is NULL. */
363 struct mem_node *parent;
364
365 /* Start and end of allocated region. */
366 void *start, *end;
367
368 /* Node color. */
369 enum {MEM_BLACK, MEM_RED} color;
370
371 /* Memory type. */
372 enum mem_type type;
373 };
374
375 /* Base address of stack. Set in main. */
376
377 Lisp_Object *stack_base;
378
379 /* Root of the tree describing allocated Lisp memory. */
380
381 static struct mem_node *mem_root;
382
383 /* Lowest and highest known address in the heap. */
384
385 static void *min_heap_address, *max_heap_address;
386
387 /* Sentinel node of the tree. */
388
389 static struct mem_node mem_z;
390 #define MEM_NIL &mem_z
391
392 static struct mem_node *mem_insert (void *, void *, enum mem_type);
393 static void mem_insert_fixup (struct mem_node *);
394 static void mem_rotate_left (struct mem_node *);
395 static void mem_rotate_right (struct mem_node *);
396 static void mem_delete (struct mem_node *);
397 static void mem_delete_fixup (struct mem_node *);
398 static struct mem_node *mem_find (void *);
399
400 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
401
402 #ifndef DEADP
403 # define DEADP(x) 0
404 #endif
405
406 /* Recording what needs to be marked for gc. */
407
408 struct gcpro *gcprolist;
409
410 /* Addresses of staticpro'd variables. Initialize it to a nonzero
411 value; otherwise some compilers put it into BSS. */
412
413 enum { NSTATICS = 2048 };
414 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
415
416 /* Index of next unused slot in staticvec. */
417
418 static int staticidx;
419
420 static void *pure_alloc (size_t, int);
421
422 /* Return X rounded to the next multiple of Y. Arguments should not
423 have side effects, as they are evaluated more than once. Assume X
424 + Y - 1 does not overflow. Tune for Y being a power of 2. */
425
426 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
427 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
428 : ((x) + (y) - 1) & ~ ((y) - 1))
429
430 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
431
432 static void *
433 ALIGN (void *ptr, int alignment)
434 {
435 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
436 }
437
438 static void
439 XFLOAT_INIT (Lisp_Object f, double n)
440 {
441 XFLOAT (f)->u.data = n;
442 }
443
444 static bool
445 pointers_fit_in_lispobj_p (void)
446 {
447 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
448 }
449
450 static bool
451 mmap_lisp_allowed_p (void)
452 {
453 /* If we can't store all memory addresses in our lisp objects, it's
454 risky to let the heap use mmap and give us addresses from all
455 over our address space. We also can't use mmap for lisp objects
456 if we might dump: unexec doesn't preserve the contents of mmaped
457 regions. */
458 return pointers_fit_in_lispobj_p () && !might_dump;
459 }
460
461 \f
462 /************************************************************************
463 Malloc
464 ************************************************************************/
465
466 /* Function malloc calls this if it finds we are near exhausting storage. */
467
468 void
469 malloc_warning (const char *str)
470 {
471 pending_malloc_warning = str;
472 }
473
474
475 /* Display an already-pending malloc warning. */
476
477 void
478 display_malloc_warning (void)
479 {
480 call3 (intern ("display-warning"),
481 intern ("alloc"),
482 build_string (pending_malloc_warning),
483 intern ("emergency"));
484 pending_malloc_warning = 0;
485 }
486 \f
487 /* Called if we can't allocate relocatable space for a buffer. */
488
489 void
490 buffer_memory_full (ptrdiff_t nbytes)
491 {
492 /* If buffers use the relocating allocator, no need to free
493 spare_memory, because we may have plenty of malloc space left
494 that we could get, and if we don't, the malloc that fails will
495 itself cause spare_memory to be freed. If buffers don't use the
496 relocating allocator, treat this like any other failing
497 malloc. */
498
499 #ifndef REL_ALLOC
500 memory_full (nbytes);
501 #else
502 /* This used to call error, but if we've run out of memory, we could
503 get infinite recursion trying to build the string. */
504 xsignal (Qnil, Vmemory_signal_data);
505 #endif
506 }
507
508 /* A common multiple of the positive integers A and B. Ideally this
509 would be the least common multiple, but there's no way to do that
510 as a constant expression in C, so do the best that we can easily do. */
511 #define COMMON_MULTIPLE(a, b) \
512 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
513
514 #ifndef XMALLOC_OVERRUN_CHECK
515 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
516 #else
517
518 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
519 around each block.
520
521 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
522 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
523 block size in little-endian order. The trailer consists of
524 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
525
526 The header is used to detect whether this block has been allocated
527 through these functions, as some low-level libc functions may
528 bypass the malloc hooks. */
529
530 #define XMALLOC_OVERRUN_CHECK_SIZE 16
531 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
532 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
533
534 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
535 hold a size_t value and (2) the header size is a multiple of the
536 alignment that Emacs needs for C types and for USE_LSB_TAG. */
537 #define XMALLOC_BASE_ALIGNMENT \
538 alignof (union { long double d; intmax_t i; void *p; })
539
540 #if USE_LSB_TAG
541 # define XMALLOC_HEADER_ALIGNMENT \
542 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
543 #else
544 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
545 #endif
546 #define XMALLOC_OVERRUN_SIZE_SIZE \
547 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
548 + XMALLOC_HEADER_ALIGNMENT - 1) \
549 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
550 - XMALLOC_OVERRUN_CHECK_SIZE)
551
552 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
553 { '\x9a', '\x9b', '\xae', '\xaf',
554 '\xbf', '\xbe', '\xce', '\xcf',
555 '\xea', '\xeb', '\xec', '\xed',
556 '\xdf', '\xde', '\x9c', '\x9d' };
557
558 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
559 { '\xaa', '\xab', '\xac', '\xad',
560 '\xba', '\xbb', '\xbc', '\xbd',
561 '\xca', '\xcb', '\xcc', '\xcd',
562 '\xda', '\xdb', '\xdc', '\xdd' };
563
564 /* Insert and extract the block size in the header. */
565
566 static void
567 xmalloc_put_size (unsigned char *ptr, size_t size)
568 {
569 int i;
570 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
571 {
572 *--ptr = size & ((1 << CHAR_BIT) - 1);
573 size >>= CHAR_BIT;
574 }
575 }
576
577 static size_t
578 xmalloc_get_size (unsigned char *ptr)
579 {
580 size_t size = 0;
581 int i;
582 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
583 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
584 {
585 size <<= CHAR_BIT;
586 size += *ptr++;
587 }
588 return size;
589 }
590
591
592 /* Like malloc, but wraps allocated block with header and trailer. */
593
594 static void *
595 overrun_check_malloc (size_t size)
596 {
597 register unsigned char *val;
598 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
599 emacs_abort ();
600
601 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
602 if (val)
603 {
604 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
605 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
606 xmalloc_put_size (val, size);
607 memcpy (val + size, xmalloc_overrun_check_trailer,
608 XMALLOC_OVERRUN_CHECK_SIZE);
609 }
610 return val;
611 }
612
613
614 /* Like realloc, but checks old block for overrun, and wraps new block
615 with header and trailer. */
616
617 static void *
618 overrun_check_realloc (void *block, size_t size)
619 {
620 register unsigned char *val = (unsigned char *) block;
621 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
622 emacs_abort ();
623
624 if (val
625 && memcmp (xmalloc_overrun_check_header,
626 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
627 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
628 {
629 size_t osize = xmalloc_get_size (val);
630 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
631 XMALLOC_OVERRUN_CHECK_SIZE))
632 emacs_abort ();
633 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
634 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
635 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
636 }
637
638 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
639
640 if (val)
641 {
642 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
643 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
644 xmalloc_put_size (val, size);
645 memcpy (val + size, xmalloc_overrun_check_trailer,
646 XMALLOC_OVERRUN_CHECK_SIZE);
647 }
648 return val;
649 }
650
651 /* Like free, but checks block for overrun. */
652
653 static void
654 overrun_check_free (void *block)
655 {
656 unsigned char *val = (unsigned char *) block;
657
658 if (val
659 && memcmp (xmalloc_overrun_check_header,
660 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
661 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
662 {
663 size_t osize = xmalloc_get_size (val);
664 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
665 XMALLOC_OVERRUN_CHECK_SIZE))
666 emacs_abort ();
667 #ifdef XMALLOC_CLEAR_FREE_MEMORY
668 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
669 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
670 #else
671 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
672 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
673 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
674 #endif
675 }
676
677 free (val);
678 }
679
680 #undef malloc
681 #undef realloc
682 #undef free
683 #define malloc overrun_check_malloc
684 #define realloc overrun_check_realloc
685 #define free overrun_check_free
686 #endif
687
688 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
689 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
690 If that variable is set, block input while in one of Emacs's memory
691 allocation functions. There should be no need for this debugging
692 option, since signal handlers do not allocate memory, but Emacs
693 formerly allocated memory in signal handlers and this compile-time
694 option remains as a way to help debug the issue should it rear its
695 ugly head again. */
696 #ifdef XMALLOC_BLOCK_INPUT_CHECK
697 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
698 static void
699 malloc_block_input (void)
700 {
701 if (block_input_in_memory_allocators)
702 block_input ();
703 }
704 static void
705 malloc_unblock_input (void)
706 {
707 if (block_input_in_memory_allocators)
708 unblock_input ();
709 }
710 # define MALLOC_BLOCK_INPUT malloc_block_input ()
711 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
712 #else
713 # define MALLOC_BLOCK_INPUT ((void) 0)
714 # define MALLOC_UNBLOCK_INPUT ((void) 0)
715 #endif
716
717 #define MALLOC_PROBE(size) \
718 do { \
719 if (profiler_memory_running) \
720 malloc_probe (size); \
721 } while (0)
722
723
724 /* Like malloc but check for no memory and block interrupt input.. */
725
726 void *
727 xmalloc (size_t size)
728 {
729 void *val;
730
731 MALLOC_BLOCK_INPUT;
732 val = malloc (size);
733 MALLOC_UNBLOCK_INPUT;
734
735 if (!val && size)
736 memory_full (size);
737 MALLOC_PROBE (size);
738 return val;
739 }
740
741 /* Like the above, but zeroes out the memory just allocated. */
742
743 void *
744 xzalloc (size_t size)
745 {
746 void *val;
747
748 MALLOC_BLOCK_INPUT;
749 val = malloc (size);
750 MALLOC_UNBLOCK_INPUT;
751
752 if (!val && size)
753 memory_full (size);
754 memset (val, 0, size);
755 MALLOC_PROBE (size);
756 return val;
757 }
758
759 /* Like realloc but check for no memory and block interrupt input.. */
760
761 void *
762 xrealloc (void *block, size_t size)
763 {
764 void *val;
765
766 MALLOC_BLOCK_INPUT;
767 /* We must call malloc explicitly when BLOCK is 0, since some
768 reallocs don't do this. */
769 if (! block)
770 val = malloc (size);
771 else
772 val = realloc (block, size);
773 MALLOC_UNBLOCK_INPUT;
774
775 if (!val && size)
776 memory_full (size);
777 MALLOC_PROBE (size);
778 return val;
779 }
780
781
782 /* Like free but block interrupt input. */
783
784 void
785 xfree (void *block)
786 {
787 if (!block)
788 return;
789 MALLOC_BLOCK_INPUT;
790 free (block);
791 MALLOC_UNBLOCK_INPUT;
792 /* We don't call refill_memory_reserve here
793 because in practice the call in r_alloc_free seems to suffice. */
794 }
795
796
797 /* Other parts of Emacs pass large int values to allocator functions
798 expecting ptrdiff_t. This is portable in practice, but check it to
799 be safe. */
800 verify (INT_MAX <= PTRDIFF_MAX);
801
802
803 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
804 Signal an error on memory exhaustion, and block interrupt input. */
805
806 void *
807 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
808 {
809 eassert (0 <= nitems && 0 < item_size);
810 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
811 memory_full (SIZE_MAX);
812 return xmalloc (nitems * item_size);
813 }
814
815
816 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
817 Signal an error on memory exhaustion, and block interrupt input. */
818
819 void *
820 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
821 {
822 eassert (0 <= nitems && 0 < item_size);
823 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
824 memory_full (SIZE_MAX);
825 return xrealloc (pa, nitems * item_size);
826 }
827
828
829 /* Grow PA, which points to an array of *NITEMS items, and return the
830 location of the reallocated array, updating *NITEMS to reflect its
831 new size. The new array will contain at least NITEMS_INCR_MIN more
832 items, but will not contain more than NITEMS_MAX items total.
833 ITEM_SIZE is the size of each item, in bytes.
834
835 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
836 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
837 infinity.
838
839 If PA is null, then allocate a new array instead of reallocating
840 the old one.
841
842 Block interrupt input as needed. If memory exhaustion occurs, set
843 *NITEMS to zero if PA is null, and signal an error (i.e., do not
844 return).
845
846 Thus, to grow an array A without saving its old contents, do
847 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
848 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
849 and signals an error, and later this code is reexecuted and
850 attempts to free A. */
851
852 void *
853 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
854 ptrdiff_t nitems_max, ptrdiff_t item_size)
855 {
856 /* The approximate size to use for initial small allocation
857 requests. This is the largest "small" request for the GNU C
858 library malloc. */
859 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
860
861 /* If the array is tiny, grow it to about (but no greater than)
862 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
863 ptrdiff_t n = *nitems;
864 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
865 ptrdiff_t half_again = n >> 1;
866 ptrdiff_t incr_estimate = max (tiny_max, half_again);
867
868 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
869 NITEMS_MAX, and what the C language can represent safely. */
870 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
871 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
872 ? nitems_max : C_language_max);
873 ptrdiff_t nitems_incr_max = n_max - n;
874 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
875
876 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
877 if (! pa)
878 *nitems = 0;
879 if (nitems_incr_max < incr)
880 memory_full (SIZE_MAX);
881 n += incr;
882 pa = xrealloc (pa, n * item_size);
883 *nitems = n;
884 return pa;
885 }
886
887
888 /* Like strdup, but uses xmalloc. */
889
890 char *
891 xstrdup (const char *s)
892 {
893 ptrdiff_t size;
894 eassert (s);
895 size = strlen (s) + 1;
896 return memcpy (xmalloc (size), s, size);
897 }
898
899 /* Like above, but duplicates Lisp string to C string. */
900
901 char *
902 xlispstrdup (Lisp_Object string)
903 {
904 ptrdiff_t size = SBYTES (string) + 1;
905 return memcpy (xmalloc (size), SSDATA (string), size);
906 }
907
908 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
909 pointed to. If STRING is null, assign it without copying anything.
910 Allocate before freeing, to avoid a dangling pointer if allocation
911 fails. */
912
913 void
914 dupstring (char **ptr, char const *string)
915 {
916 char *old = *ptr;
917 *ptr = string ? xstrdup (string) : 0;
918 xfree (old);
919 }
920
921
922 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
923 argument is a const pointer. */
924
925 void
926 xputenv (char const *string)
927 {
928 if (putenv ((char *) string) != 0)
929 memory_full (0);
930 }
931
932 /* Return a newly allocated memory block of SIZE bytes, remembering
933 to free it when unwinding. */
934 void *
935 record_xmalloc (size_t size)
936 {
937 void *p = xmalloc (size);
938 record_unwind_protect_ptr (xfree, p);
939 return p;
940 }
941
942
943 /* Like malloc but used for allocating Lisp data. NBYTES is the
944 number of bytes to allocate, TYPE describes the intended use of the
945 allocated memory block (for strings, for conses, ...). */
946
947 #if ! USE_LSB_TAG
948 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
949 #endif
950
951 static void *
952 lisp_malloc (size_t nbytes, enum mem_type type)
953 {
954 register void *val;
955
956 MALLOC_BLOCK_INPUT;
957
958 #ifdef GC_MALLOC_CHECK
959 allocated_mem_type = type;
960 #endif
961
962 val = malloc (nbytes);
963
964 #if ! USE_LSB_TAG
965 /* If the memory just allocated cannot be addressed thru a Lisp
966 object's pointer, and it needs to be,
967 that's equivalent to running out of memory. */
968 if (val && type != MEM_TYPE_NON_LISP)
969 {
970 Lisp_Object tem;
971 XSETCONS (tem, (char *) val + nbytes - 1);
972 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
973 {
974 lisp_malloc_loser = val;
975 free (val);
976 val = 0;
977 }
978 }
979 #endif
980
981 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
982 if (val && type != MEM_TYPE_NON_LISP)
983 mem_insert (val, (char *) val + nbytes, type);
984 #endif
985
986 MALLOC_UNBLOCK_INPUT;
987 if (!val && nbytes)
988 memory_full (nbytes);
989 MALLOC_PROBE (nbytes);
990 return val;
991 }
992
993 /* Free BLOCK. This must be called to free memory allocated with a
994 call to lisp_malloc. */
995
996 static void
997 lisp_free (void *block)
998 {
999 MALLOC_BLOCK_INPUT;
1000 free (block);
1001 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1002 mem_delete (mem_find (block));
1003 #endif
1004 MALLOC_UNBLOCK_INPUT;
1005 }
1006
1007 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1008
1009 /* The entry point is lisp_align_malloc which returns blocks of at most
1010 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1011
1012 /* Use aligned_alloc if it or a simple substitute is available.
1013 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1014 clang 3.3 anyway. */
1015
1016 #if ! ADDRESS_SANITIZER
1017 # if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC && !defined HYBRID_MALLOC
1018 # define USE_ALIGNED_ALLOC 1
1019 /* Defined in gmalloc.c. */
1020 void *aligned_alloc (size_t, size_t);
1021 # elif defined HYBRID_MALLOC
1022 # if defined ALIGNED_ALLOC || defined HAVE_POSIX_MEMALIGN
1023 # define USE_ALIGNED_ALLOC 1
1024 # define aligned_alloc hybrid_aligned_alloc
1025 /* Defined in gmalloc.c. */
1026 void *aligned_alloc (size_t, size_t);
1027 # endif
1028 # elif defined HAVE_ALIGNED_ALLOC
1029 # define USE_ALIGNED_ALLOC 1
1030 # elif defined HAVE_POSIX_MEMALIGN
1031 # define USE_ALIGNED_ALLOC 1
1032 static void *
1033 aligned_alloc (size_t alignment, size_t size)
1034 {
1035 void *p;
1036 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1037 }
1038 # endif
1039 #endif
1040
1041 /* BLOCK_ALIGN has to be a power of 2. */
1042 #define BLOCK_ALIGN (1 << 10)
1043
1044 /* Padding to leave at the end of a malloc'd block. This is to give
1045 malloc a chance to minimize the amount of memory wasted to alignment.
1046 It should be tuned to the particular malloc library used.
1047 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1048 aligned_alloc on the other hand would ideally prefer a value of 4
1049 because otherwise, there's 1020 bytes wasted between each ablocks.
1050 In Emacs, testing shows that those 1020 can most of the time be
1051 efficiently used by malloc to place other objects, so a value of 0 can
1052 still preferable unless you have a lot of aligned blocks and virtually
1053 nothing else. */
1054 #define BLOCK_PADDING 0
1055 #define BLOCK_BYTES \
1056 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1057
1058 /* Internal data structures and constants. */
1059
1060 #define ABLOCKS_SIZE 16
1061
1062 /* An aligned block of memory. */
1063 struct ablock
1064 {
1065 union
1066 {
1067 char payload[BLOCK_BYTES];
1068 struct ablock *next_free;
1069 } x;
1070 /* `abase' is the aligned base of the ablocks. */
1071 /* It is overloaded to hold the virtual `busy' field that counts
1072 the number of used ablock in the parent ablocks.
1073 The first ablock has the `busy' field, the others have the `abase'
1074 field. To tell the difference, we assume that pointers will have
1075 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1076 is used to tell whether the real base of the parent ablocks is `abase'
1077 (if not, the word before the first ablock holds a pointer to the
1078 real base). */
1079 struct ablocks *abase;
1080 /* The padding of all but the last ablock is unused. The padding of
1081 the last ablock in an ablocks is not allocated. */
1082 #if BLOCK_PADDING
1083 char padding[BLOCK_PADDING];
1084 #endif
1085 };
1086
1087 /* A bunch of consecutive aligned blocks. */
1088 struct ablocks
1089 {
1090 struct ablock blocks[ABLOCKS_SIZE];
1091 };
1092
1093 /* Size of the block requested from malloc or aligned_alloc. */
1094 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1095
1096 #define ABLOCK_ABASE(block) \
1097 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1098 ? (struct ablocks *)(block) \
1099 : (block)->abase)
1100
1101 /* Virtual `busy' field. */
1102 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1103
1104 /* Pointer to the (not necessarily aligned) malloc block. */
1105 #ifdef USE_ALIGNED_ALLOC
1106 #define ABLOCKS_BASE(abase) (abase)
1107 #else
1108 #define ABLOCKS_BASE(abase) \
1109 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1110 #endif
1111
1112 /* The list of free ablock. */
1113 static struct ablock *free_ablock;
1114
1115 /* Allocate an aligned block of nbytes.
1116 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1117 smaller or equal to BLOCK_BYTES. */
1118 static void *
1119 lisp_align_malloc (size_t nbytes, enum mem_type type)
1120 {
1121 void *base, *val;
1122 struct ablocks *abase;
1123
1124 eassert (nbytes <= BLOCK_BYTES);
1125
1126 MALLOC_BLOCK_INPUT;
1127
1128 #ifdef GC_MALLOC_CHECK
1129 allocated_mem_type = type;
1130 #endif
1131
1132 if (!free_ablock)
1133 {
1134 int i;
1135 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1136
1137 #ifdef DOUG_LEA_MALLOC
1138 if (!mmap_lisp_allowed_p ())
1139 mallopt (M_MMAP_MAX, 0);
1140 #endif
1141
1142 #ifdef USE_ALIGNED_ALLOC
1143 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1144 #else
1145 base = malloc (ABLOCKS_BYTES);
1146 abase = ALIGN (base, BLOCK_ALIGN);
1147 #endif
1148
1149 if (base == 0)
1150 {
1151 MALLOC_UNBLOCK_INPUT;
1152 memory_full (ABLOCKS_BYTES);
1153 }
1154
1155 aligned = (base == abase);
1156 if (!aligned)
1157 ((void **) abase)[-1] = base;
1158
1159 #ifdef DOUG_LEA_MALLOC
1160 if (!mmap_lisp_allowed_p ())
1161 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1162 #endif
1163
1164 #if ! USE_LSB_TAG
1165 /* If the memory just allocated cannot be addressed thru a Lisp
1166 object's pointer, and it needs to be, that's equivalent to
1167 running out of memory. */
1168 if (type != MEM_TYPE_NON_LISP)
1169 {
1170 Lisp_Object tem;
1171 char *end = (char *) base + ABLOCKS_BYTES - 1;
1172 XSETCONS (tem, end);
1173 if ((char *) XCONS (tem) != end)
1174 {
1175 lisp_malloc_loser = base;
1176 free (base);
1177 MALLOC_UNBLOCK_INPUT;
1178 memory_full (SIZE_MAX);
1179 }
1180 }
1181 #endif
1182
1183 /* Initialize the blocks and put them on the free list.
1184 If `base' was not properly aligned, we can't use the last block. */
1185 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1186 {
1187 abase->blocks[i].abase = abase;
1188 abase->blocks[i].x.next_free = free_ablock;
1189 free_ablock = &abase->blocks[i];
1190 }
1191 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1192
1193 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1194 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1195 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1196 eassert (ABLOCKS_BASE (abase) == base);
1197 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1198 }
1199
1200 abase = ABLOCK_ABASE (free_ablock);
1201 ABLOCKS_BUSY (abase)
1202 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1203 val = free_ablock;
1204 free_ablock = free_ablock->x.next_free;
1205
1206 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1207 if (type != MEM_TYPE_NON_LISP)
1208 mem_insert (val, (char *) val + nbytes, type);
1209 #endif
1210
1211 MALLOC_UNBLOCK_INPUT;
1212
1213 MALLOC_PROBE (nbytes);
1214
1215 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1216 return val;
1217 }
1218
1219 static void
1220 lisp_align_free (void *block)
1221 {
1222 struct ablock *ablock = block;
1223 struct ablocks *abase = ABLOCK_ABASE (ablock);
1224
1225 MALLOC_BLOCK_INPUT;
1226 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1227 mem_delete (mem_find (block));
1228 #endif
1229 /* Put on free list. */
1230 ablock->x.next_free = free_ablock;
1231 free_ablock = ablock;
1232 /* Update busy count. */
1233 ABLOCKS_BUSY (abase)
1234 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1235
1236 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1237 { /* All the blocks are free. */
1238 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1239 struct ablock **tem = &free_ablock;
1240 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1241
1242 while (*tem)
1243 {
1244 if (*tem >= (struct ablock *) abase && *tem < atop)
1245 {
1246 i++;
1247 *tem = (*tem)->x.next_free;
1248 }
1249 else
1250 tem = &(*tem)->x.next_free;
1251 }
1252 eassert ((aligned & 1) == aligned);
1253 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1254 #ifdef USE_POSIX_MEMALIGN
1255 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1256 #endif
1257 free (ABLOCKS_BASE (abase));
1258 }
1259 MALLOC_UNBLOCK_INPUT;
1260 }
1261
1262 \f
1263 /***********************************************************************
1264 Interval Allocation
1265 ***********************************************************************/
1266
1267 /* Number of intervals allocated in an interval_block structure.
1268 The 1020 is 1024 minus malloc overhead. */
1269
1270 #define INTERVAL_BLOCK_SIZE \
1271 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1272
1273 /* Intervals are allocated in chunks in the form of an interval_block
1274 structure. */
1275
1276 struct interval_block
1277 {
1278 /* Place `intervals' first, to preserve alignment. */
1279 struct interval intervals[INTERVAL_BLOCK_SIZE];
1280 struct interval_block *next;
1281 };
1282
1283 /* Current interval block. Its `next' pointer points to older
1284 blocks. */
1285
1286 static struct interval_block *interval_block;
1287
1288 /* Index in interval_block above of the next unused interval
1289 structure. */
1290
1291 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1292
1293 /* Number of free and live intervals. */
1294
1295 static EMACS_INT total_free_intervals, total_intervals;
1296
1297 /* List of free intervals. */
1298
1299 static INTERVAL interval_free_list;
1300
1301 /* Return a new interval. */
1302
1303 INTERVAL
1304 make_interval (void)
1305 {
1306 INTERVAL val;
1307
1308 MALLOC_BLOCK_INPUT;
1309
1310 if (interval_free_list)
1311 {
1312 val = interval_free_list;
1313 interval_free_list = INTERVAL_PARENT (interval_free_list);
1314 }
1315 else
1316 {
1317 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1318 {
1319 struct interval_block *newi
1320 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1321
1322 newi->next = interval_block;
1323 interval_block = newi;
1324 interval_block_index = 0;
1325 total_free_intervals += INTERVAL_BLOCK_SIZE;
1326 }
1327 val = &interval_block->intervals[interval_block_index++];
1328 }
1329
1330 MALLOC_UNBLOCK_INPUT;
1331
1332 consing_since_gc += sizeof (struct interval);
1333 intervals_consed++;
1334 total_free_intervals--;
1335 RESET_INTERVAL (val);
1336 val->gcmarkbit = 0;
1337 return val;
1338 }
1339
1340
1341 /* Mark Lisp objects in interval I. */
1342
1343 static void
1344 mark_interval (register INTERVAL i, Lisp_Object dummy)
1345 {
1346 /* Intervals should never be shared. So, if extra internal checking is
1347 enabled, GC aborts if it seems to have visited an interval twice. */
1348 eassert (!i->gcmarkbit);
1349 i->gcmarkbit = 1;
1350 mark_object (i->plist);
1351 }
1352
1353 /* Mark the interval tree rooted in I. */
1354
1355 #define MARK_INTERVAL_TREE(i) \
1356 do { \
1357 if (i && !i->gcmarkbit) \
1358 traverse_intervals_noorder (i, mark_interval, Qnil); \
1359 } while (0)
1360
1361 /***********************************************************************
1362 String Allocation
1363 ***********************************************************************/
1364
1365 /* Lisp_Strings are allocated in string_block structures. When a new
1366 string_block is allocated, all the Lisp_Strings it contains are
1367 added to a free-list string_free_list. When a new Lisp_String is
1368 needed, it is taken from that list. During the sweep phase of GC,
1369 string_blocks that are entirely free are freed, except two which
1370 we keep.
1371
1372 String data is allocated from sblock structures. Strings larger
1373 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1374 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1375
1376 Sblocks consist internally of sdata structures, one for each
1377 Lisp_String. The sdata structure points to the Lisp_String it
1378 belongs to. The Lisp_String points back to the `u.data' member of
1379 its sdata structure.
1380
1381 When a Lisp_String is freed during GC, it is put back on
1382 string_free_list, and its `data' member and its sdata's `string'
1383 pointer is set to null. The size of the string is recorded in the
1384 `n.nbytes' member of the sdata. So, sdata structures that are no
1385 longer used, can be easily recognized, and it's easy to compact the
1386 sblocks of small strings which we do in compact_small_strings. */
1387
1388 /* Size in bytes of an sblock structure used for small strings. This
1389 is 8192 minus malloc overhead. */
1390
1391 #define SBLOCK_SIZE 8188
1392
1393 /* Strings larger than this are considered large strings. String data
1394 for large strings is allocated from individual sblocks. */
1395
1396 #define LARGE_STRING_BYTES 1024
1397
1398 /* The SDATA typedef is a struct or union describing string memory
1399 sub-allocated from an sblock. This is where the contents of Lisp
1400 strings are stored. */
1401
1402 struct sdata
1403 {
1404 /* Back-pointer to the string this sdata belongs to. If null, this
1405 structure is free, and NBYTES (in this structure or in the union below)
1406 contains the string's byte size (the same value that STRING_BYTES
1407 would return if STRING were non-null). If non-null, STRING_BYTES
1408 (STRING) is the size of the data, and DATA contains the string's
1409 contents. */
1410 struct Lisp_String *string;
1411
1412 #ifdef GC_CHECK_STRING_BYTES
1413 ptrdiff_t nbytes;
1414 #endif
1415
1416 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1417 };
1418
1419 #ifdef GC_CHECK_STRING_BYTES
1420
1421 typedef struct sdata sdata;
1422 #define SDATA_NBYTES(S) (S)->nbytes
1423 #define SDATA_DATA(S) (S)->data
1424
1425 #else
1426
1427 typedef union
1428 {
1429 struct Lisp_String *string;
1430
1431 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1432 which has a flexible array member. However, if implemented by
1433 giving this union a member of type 'struct sdata', the union
1434 could not be the last (flexible) member of 'struct sblock',
1435 because C99 prohibits a flexible array member from having a type
1436 that is itself a flexible array. So, comment this member out here,
1437 but remember that the option's there when using this union. */
1438 #if 0
1439 struct sdata u;
1440 #endif
1441
1442 /* When STRING is null. */
1443 struct
1444 {
1445 struct Lisp_String *string;
1446 ptrdiff_t nbytes;
1447 } n;
1448 } sdata;
1449
1450 #define SDATA_NBYTES(S) (S)->n.nbytes
1451 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1452
1453 #endif /* not GC_CHECK_STRING_BYTES */
1454
1455 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1456
1457 /* Structure describing a block of memory which is sub-allocated to
1458 obtain string data memory for strings. Blocks for small strings
1459 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1460 as large as needed. */
1461
1462 struct sblock
1463 {
1464 /* Next in list. */
1465 struct sblock *next;
1466
1467 /* Pointer to the next free sdata block. This points past the end
1468 of the sblock if there isn't any space left in this block. */
1469 sdata *next_free;
1470
1471 /* String data. */
1472 sdata data[FLEXIBLE_ARRAY_MEMBER];
1473 };
1474
1475 /* Number of Lisp strings in a string_block structure. The 1020 is
1476 1024 minus malloc overhead. */
1477
1478 #define STRING_BLOCK_SIZE \
1479 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1480
1481 /* Structure describing a block from which Lisp_String structures
1482 are allocated. */
1483
1484 struct string_block
1485 {
1486 /* Place `strings' first, to preserve alignment. */
1487 struct Lisp_String strings[STRING_BLOCK_SIZE];
1488 struct string_block *next;
1489 };
1490
1491 /* Head and tail of the list of sblock structures holding Lisp string
1492 data. We always allocate from current_sblock. The NEXT pointers
1493 in the sblock structures go from oldest_sblock to current_sblock. */
1494
1495 static struct sblock *oldest_sblock, *current_sblock;
1496
1497 /* List of sblocks for large strings. */
1498
1499 static struct sblock *large_sblocks;
1500
1501 /* List of string_block structures. */
1502
1503 static struct string_block *string_blocks;
1504
1505 /* Free-list of Lisp_Strings. */
1506
1507 static struct Lisp_String *string_free_list;
1508
1509 /* Number of live and free Lisp_Strings. */
1510
1511 static EMACS_INT total_strings, total_free_strings;
1512
1513 /* Number of bytes used by live strings. */
1514
1515 static EMACS_INT total_string_bytes;
1516
1517 /* Given a pointer to a Lisp_String S which is on the free-list
1518 string_free_list, return a pointer to its successor in the
1519 free-list. */
1520
1521 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1522
1523 /* Return a pointer to the sdata structure belonging to Lisp string S.
1524 S must be live, i.e. S->data must not be null. S->data is actually
1525 a pointer to the `u.data' member of its sdata structure; the
1526 structure starts at a constant offset in front of that. */
1527
1528 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1529
1530
1531 #ifdef GC_CHECK_STRING_OVERRUN
1532
1533 /* We check for overrun in string data blocks by appending a small
1534 "cookie" after each allocated string data block, and check for the
1535 presence of this cookie during GC. */
1536
1537 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1538 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1539 { '\xde', '\xad', '\xbe', '\xef' };
1540
1541 #else
1542 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1543 #endif
1544
1545 /* Value is the size of an sdata structure large enough to hold NBYTES
1546 bytes of string data. The value returned includes a terminating
1547 NUL byte, the size of the sdata structure, and padding. */
1548
1549 #ifdef GC_CHECK_STRING_BYTES
1550
1551 #define SDATA_SIZE(NBYTES) \
1552 ((SDATA_DATA_OFFSET \
1553 + (NBYTES) + 1 \
1554 + sizeof (ptrdiff_t) - 1) \
1555 & ~(sizeof (ptrdiff_t) - 1))
1556
1557 #else /* not GC_CHECK_STRING_BYTES */
1558
1559 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1560 less than the size of that member. The 'max' is not needed when
1561 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1562 alignment code reserves enough space. */
1563
1564 #define SDATA_SIZE(NBYTES) \
1565 ((SDATA_DATA_OFFSET \
1566 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1567 ? NBYTES \
1568 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1569 + 1 \
1570 + sizeof (ptrdiff_t) - 1) \
1571 & ~(sizeof (ptrdiff_t) - 1))
1572
1573 #endif /* not GC_CHECK_STRING_BYTES */
1574
1575 /* Extra bytes to allocate for each string. */
1576
1577 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1578
1579 /* Exact bound on the number of bytes in a string, not counting the
1580 terminating null. A string cannot contain more bytes than
1581 STRING_BYTES_BOUND, nor can it be so long that the size_t
1582 arithmetic in allocate_string_data would overflow while it is
1583 calculating a value to be passed to malloc. */
1584 static ptrdiff_t const STRING_BYTES_MAX =
1585 min (STRING_BYTES_BOUND,
1586 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1587 - GC_STRING_EXTRA
1588 - offsetof (struct sblock, data)
1589 - SDATA_DATA_OFFSET)
1590 & ~(sizeof (EMACS_INT) - 1)));
1591
1592 /* Initialize string allocation. Called from init_alloc_once. */
1593
1594 static void
1595 init_strings (void)
1596 {
1597 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1598 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1599 }
1600
1601
1602 #ifdef GC_CHECK_STRING_BYTES
1603
1604 static int check_string_bytes_count;
1605
1606 /* Like STRING_BYTES, but with debugging check. Can be
1607 called during GC, so pay attention to the mark bit. */
1608
1609 ptrdiff_t
1610 string_bytes (struct Lisp_String *s)
1611 {
1612 ptrdiff_t nbytes =
1613 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1614
1615 if (!PURE_POINTER_P (s)
1616 && s->data
1617 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1618 emacs_abort ();
1619 return nbytes;
1620 }
1621
1622 /* Check validity of Lisp strings' string_bytes member in B. */
1623
1624 static void
1625 check_sblock (struct sblock *b)
1626 {
1627 sdata *from, *end, *from_end;
1628
1629 end = b->next_free;
1630
1631 for (from = b->data; from < end; from = from_end)
1632 {
1633 /* Compute the next FROM here because copying below may
1634 overwrite data we need to compute it. */
1635 ptrdiff_t nbytes;
1636
1637 /* Check that the string size recorded in the string is the
1638 same as the one recorded in the sdata structure. */
1639 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1640 : SDATA_NBYTES (from));
1641 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1642 }
1643 }
1644
1645
1646 /* Check validity of Lisp strings' string_bytes member. ALL_P
1647 means check all strings, otherwise check only most
1648 recently allocated strings. Used for hunting a bug. */
1649
1650 static void
1651 check_string_bytes (bool all_p)
1652 {
1653 if (all_p)
1654 {
1655 struct sblock *b;
1656
1657 for (b = large_sblocks; b; b = b->next)
1658 {
1659 struct Lisp_String *s = b->data[0].string;
1660 if (s)
1661 string_bytes (s);
1662 }
1663
1664 for (b = oldest_sblock; b; b = b->next)
1665 check_sblock (b);
1666 }
1667 else if (current_sblock)
1668 check_sblock (current_sblock);
1669 }
1670
1671 #else /* not GC_CHECK_STRING_BYTES */
1672
1673 #define check_string_bytes(all) ((void) 0)
1674
1675 #endif /* GC_CHECK_STRING_BYTES */
1676
1677 #ifdef GC_CHECK_STRING_FREE_LIST
1678
1679 /* Walk through the string free list looking for bogus next pointers.
1680 This may catch buffer overrun from a previous string. */
1681
1682 static void
1683 check_string_free_list (void)
1684 {
1685 struct Lisp_String *s;
1686
1687 /* Pop a Lisp_String off the free-list. */
1688 s = string_free_list;
1689 while (s != NULL)
1690 {
1691 if ((uintptr_t) s < 1024)
1692 emacs_abort ();
1693 s = NEXT_FREE_LISP_STRING (s);
1694 }
1695 }
1696 #else
1697 #define check_string_free_list()
1698 #endif
1699
1700 /* Return a new Lisp_String. */
1701
1702 static struct Lisp_String *
1703 allocate_string (void)
1704 {
1705 struct Lisp_String *s;
1706
1707 MALLOC_BLOCK_INPUT;
1708
1709 /* If the free-list is empty, allocate a new string_block, and
1710 add all the Lisp_Strings in it to the free-list. */
1711 if (string_free_list == NULL)
1712 {
1713 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1714 int i;
1715
1716 b->next = string_blocks;
1717 string_blocks = b;
1718
1719 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1720 {
1721 s = b->strings + i;
1722 /* Every string on a free list should have NULL data pointer. */
1723 s->data = NULL;
1724 NEXT_FREE_LISP_STRING (s) = string_free_list;
1725 string_free_list = s;
1726 }
1727
1728 total_free_strings += STRING_BLOCK_SIZE;
1729 }
1730
1731 check_string_free_list ();
1732
1733 /* Pop a Lisp_String off the free-list. */
1734 s = string_free_list;
1735 string_free_list = NEXT_FREE_LISP_STRING (s);
1736
1737 MALLOC_UNBLOCK_INPUT;
1738
1739 --total_free_strings;
1740 ++total_strings;
1741 ++strings_consed;
1742 consing_since_gc += sizeof *s;
1743
1744 #ifdef GC_CHECK_STRING_BYTES
1745 if (!noninteractive)
1746 {
1747 if (++check_string_bytes_count == 200)
1748 {
1749 check_string_bytes_count = 0;
1750 check_string_bytes (1);
1751 }
1752 else
1753 check_string_bytes (0);
1754 }
1755 #endif /* GC_CHECK_STRING_BYTES */
1756
1757 return s;
1758 }
1759
1760
1761 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1762 plus a NUL byte at the end. Allocate an sdata structure for S, and
1763 set S->data to its `u.data' member. Store a NUL byte at the end of
1764 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1765 S->data if it was initially non-null. */
1766
1767 void
1768 allocate_string_data (struct Lisp_String *s,
1769 EMACS_INT nchars, EMACS_INT nbytes)
1770 {
1771 sdata *data, *old_data;
1772 struct sblock *b;
1773 ptrdiff_t needed, old_nbytes;
1774
1775 if (STRING_BYTES_MAX < nbytes)
1776 string_overflow ();
1777
1778 /* Determine the number of bytes needed to store NBYTES bytes
1779 of string data. */
1780 needed = SDATA_SIZE (nbytes);
1781 if (s->data)
1782 {
1783 old_data = SDATA_OF_STRING (s);
1784 old_nbytes = STRING_BYTES (s);
1785 }
1786 else
1787 old_data = NULL;
1788
1789 MALLOC_BLOCK_INPUT;
1790
1791 if (nbytes > LARGE_STRING_BYTES)
1792 {
1793 size_t size = offsetof (struct sblock, data) + needed;
1794
1795 #ifdef DOUG_LEA_MALLOC
1796 if (!mmap_lisp_allowed_p ())
1797 mallopt (M_MMAP_MAX, 0);
1798 #endif
1799
1800 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1801
1802 #ifdef DOUG_LEA_MALLOC
1803 if (!mmap_lisp_allowed_p ())
1804 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1805 #endif
1806
1807 b->next_free = b->data;
1808 b->data[0].string = NULL;
1809 b->next = large_sblocks;
1810 large_sblocks = b;
1811 }
1812 else if (current_sblock == NULL
1813 || (((char *) current_sblock + SBLOCK_SIZE
1814 - (char *) current_sblock->next_free)
1815 < (needed + GC_STRING_EXTRA)))
1816 {
1817 /* Not enough room in the current sblock. */
1818 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1819 b->next_free = b->data;
1820 b->data[0].string = NULL;
1821 b->next = NULL;
1822
1823 if (current_sblock)
1824 current_sblock->next = b;
1825 else
1826 oldest_sblock = b;
1827 current_sblock = b;
1828 }
1829 else
1830 b = current_sblock;
1831
1832 data = b->next_free;
1833 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1834
1835 MALLOC_UNBLOCK_INPUT;
1836
1837 data->string = s;
1838 s->data = SDATA_DATA (data);
1839 #ifdef GC_CHECK_STRING_BYTES
1840 SDATA_NBYTES (data) = nbytes;
1841 #endif
1842 s->size = nchars;
1843 s->size_byte = nbytes;
1844 s->data[nbytes] = '\0';
1845 #ifdef GC_CHECK_STRING_OVERRUN
1846 memcpy ((char *) data + needed, string_overrun_cookie,
1847 GC_STRING_OVERRUN_COOKIE_SIZE);
1848 #endif
1849
1850 /* Note that Faset may call to this function when S has already data
1851 assigned. In this case, mark data as free by setting it's string
1852 back-pointer to null, and record the size of the data in it. */
1853 if (old_data)
1854 {
1855 SDATA_NBYTES (old_data) = old_nbytes;
1856 old_data->string = NULL;
1857 }
1858
1859 consing_since_gc += needed;
1860 }
1861
1862
1863 /* Sweep and compact strings. */
1864
1865 NO_INLINE /* For better stack traces */
1866 static void
1867 sweep_strings (void)
1868 {
1869 struct string_block *b, *next;
1870 struct string_block *live_blocks = NULL;
1871
1872 string_free_list = NULL;
1873 total_strings = total_free_strings = 0;
1874 total_string_bytes = 0;
1875
1876 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1877 for (b = string_blocks; b; b = next)
1878 {
1879 int i, nfree = 0;
1880 struct Lisp_String *free_list_before = string_free_list;
1881
1882 next = b->next;
1883
1884 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1885 {
1886 struct Lisp_String *s = b->strings + i;
1887
1888 if (s->data)
1889 {
1890 /* String was not on free-list before. */
1891 if (STRING_MARKED_P (s))
1892 {
1893 /* String is live; unmark it and its intervals. */
1894 UNMARK_STRING (s);
1895
1896 /* Do not use string_(set|get)_intervals here. */
1897 s->intervals = balance_intervals (s->intervals);
1898
1899 ++total_strings;
1900 total_string_bytes += STRING_BYTES (s);
1901 }
1902 else
1903 {
1904 /* String is dead. Put it on the free-list. */
1905 sdata *data = SDATA_OF_STRING (s);
1906
1907 /* Save the size of S in its sdata so that we know
1908 how large that is. Reset the sdata's string
1909 back-pointer so that we know it's free. */
1910 #ifdef GC_CHECK_STRING_BYTES
1911 if (string_bytes (s) != SDATA_NBYTES (data))
1912 emacs_abort ();
1913 #else
1914 data->n.nbytes = STRING_BYTES (s);
1915 #endif
1916 data->string = NULL;
1917
1918 /* Reset the strings's `data' member so that we
1919 know it's free. */
1920 s->data = NULL;
1921
1922 /* Put the string on the free-list. */
1923 NEXT_FREE_LISP_STRING (s) = string_free_list;
1924 string_free_list = s;
1925 ++nfree;
1926 }
1927 }
1928 else
1929 {
1930 /* S was on the free-list before. Put it there again. */
1931 NEXT_FREE_LISP_STRING (s) = string_free_list;
1932 string_free_list = s;
1933 ++nfree;
1934 }
1935 }
1936
1937 /* Free blocks that contain free Lisp_Strings only, except
1938 the first two of them. */
1939 if (nfree == STRING_BLOCK_SIZE
1940 && total_free_strings > STRING_BLOCK_SIZE)
1941 {
1942 lisp_free (b);
1943 string_free_list = free_list_before;
1944 }
1945 else
1946 {
1947 total_free_strings += nfree;
1948 b->next = live_blocks;
1949 live_blocks = b;
1950 }
1951 }
1952
1953 check_string_free_list ();
1954
1955 string_blocks = live_blocks;
1956 free_large_strings ();
1957 compact_small_strings ();
1958
1959 check_string_free_list ();
1960 }
1961
1962
1963 /* Free dead large strings. */
1964
1965 static void
1966 free_large_strings (void)
1967 {
1968 struct sblock *b, *next;
1969 struct sblock *live_blocks = NULL;
1970
1971 for (b = large_sblocks; b; b = next)
1972 {
1973 next = b->next;
1974
1975 if (b->data[0].string == NULL)
1976 lisp_free (b);
1977 else
1978 {
1979 b->next = live_blocks;
1980 live_blocks = b;
1981 }
1982 }
1983
1984 large_sblocks = live_blocks;
1985 }
1986
1987
1988 /* Compact data of small strings. Free sblocks that don't contain
1989 data of live strings after compaction. */
1990
1991 static void
1992 compact_small_strings (void)
1993 {
1994 struct sblock *b, *tb, *next;
1995 sdata *from, *to, *end, *tb_end;
1996 sdata *to_end, *from_end;
1997
1998 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1999 to, and TB_END is the end of TB. */
2000 tb = oldest_sblock;
2001 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2002 to = tb->data;
2003
2004 /* Step through the blocks from the oldest to the youngest. We
2005 expect that old blocks will stabilize over time, so that less
2006 copying will happen this way. */
2007 for (b = oldest_sblock; b; b = b->next)
2008 {
2009 end = b->next_free;
2010 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2011
2012 for (from = b->data; from < end; from = from_end)
2013 {
2014 /* Compute the next FROM here because copying below may
2015 overwrite data we need to compute it. */
2016 ptrdiff_t nbytes;
2017 struct Lisp_String *s = from->string;
2018
2019 #ifdef GC_CHECK_STRING_BYTES
2020 /* Check that the string size recorded in the string is the
2021 same as the one recorded in the sdata structure. */
2022 if (s && string_bytes (s) != SDATA_NBYTES (from))
2023 emacs_abort ();
2024 #endif /* GC_CHECK_STRING_BYTES */
2025
2026 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2027 eassert (nbytes <= LARGE_STRING_BYTES);
2028
2029 nbytes = SDATA_SIZE (nbytes);
2030 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2031
2032 #ifdef GC_CHECK_STRING_OVERRUN
2033 if (memcmp (string_overrun_cookie,
2034 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2035 GC_STRING_OVERRUN_COOKIE_SIZE))
2036 emacs_abort ();
2037 #endif
2038
2039 /* Non-NULL S means it's alive. Copy its data. */
2040 if (s)
2041 {
2042 /* If TB is full, proceed with the next sblock. */
2043 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2044 if (to_end > tb_end)
2045 {
2046 tb->next_free = to;
2047 tb = tb->next;
2048 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2049 to = tb->data;
2050 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2051 }
2052
2053 /* Copy, and update the string's `data' pointer. */
2054 if (from != to)
2055 {
2056 eassert (tb != b || to < from);
2057 memmove (to, from, nbytes + GC_STRING_EXTRA);
2058 to->string->data = SDATA_DATA (to);
2059 }
2060
2061 /* Advance past the sdata we copied to. */
2062 to = to_end;
2063 }
2064 }
2065 }
2066
2067 /* The rest of the sblocks following TB don't contain live data, so
2068 we can free them. */
2069 for (b = tb->next; b; b = next)
2070 {
2071 next = b->next;
2072 lisp_free (b);
2073 }
2074
2075 tb->next_free = to;
2076 tb->next = NULL;
2077 current_sblock = tb;
2078 }
2079
2080 void
2081 string_overflow (void)
2082 {
2083 error ("Maximum string size exceeded");
2084 }
2085
2086 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2087 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2088 LENGTH must be an integer.
2089 INIT must be an integer that represents a character. */)
2090 (Lisp_Object length, Lisp_Object init)
2091 {
2092 register Lisp_Object val;
2093 int c;
2094 EMACS_INT nbytes;
2095
2096 CHECK_NATNUM (length);
2097 CHECK_CHARACTER (init);
2098
2099 c = XFASTINT (init);
2100 if (ASCII_CHAR_P (c))
2101 {
2102 nbytes = XINT (length);
2103 val = make_uninit_string (nbytes);
2104 memset (SDATA (val), c, nbytes);
2105 SDATA (val)[nbytes] = 0;
2106 }
2107 else
2108 {
2109 unsigned char str[MAX_MULTIBYTE_LENGTH];
2110 ptrdiff_t len = CHAR_STRING (c, str);
2111 EMACS_INT string_len = XINT (length);
2112 unsigned char *p, *beg, *end;
2113
2114 if (string_len > STRING_BYTES_MAX / len)
2115 string_overflow ();
2116 nbytes = len * string_len;
2117 val = make_uninit_multibyte_string (string_len, nbytes);
2118 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2119 {
2120 /* First time we just copy `str' to the data of `val'. */
2121 if (p == beg)
2122 memcpy (p, str, len);
2123 else
2124 {
2125 /* Next time we copy largest possible chunk from
2126 initialized to uninitialized part of `val'. */
2127 len = min (p - beg, end - p);
2128 memcpy (p, beg, len);
2129 }
2130 }
2131 *p = 0;
2132 }
2133
2134 return val;
2135 }
2136
2137 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2138 Return A. */
2139
2140 Lisp_Object
2141 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2142 {
2143 EMACS_INT nbits = bool_vector_size (a);
2144 if (0 < nbits)
2145 {
2146 unsigned char *data = bool_vector_uchar_data (a);
2147 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2148 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2149 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2150 memset (data, pattern, nbytes - 1);
2151 data[nbytes - 1] = pattern & last_mask;
2152 }
2153 return a;
2154 }
2155
2156 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2157
2158 Lisp_Object
2159 make_uninit_bool_vector (EMACS_INT nbits)
2160 {
2161 Lisp_Object val;
2162 EMACS_INT words = bool_vector_words (nbits);
2163 EMACS_INT word_bytes = words * sizeof (bits_word);
2164 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2165 + word_size - 1)
2166 / word_size);
2167 struct Lisp_Bool_Vector *p
2168 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2169 XSETVECTOR (val, p);
2170 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2171 p->size = nbits;
2172
2173 /* Clear padding at the end. */
2174 if (words)
2175 p->data[words - 1] = 0;
2176
2177 return val;
2178 }
2179
2180 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2181 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2182 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2183 (Lisp_Object length, Lisp_Object init)
2184 {
2185 Lisp_Object val;
2186
2187 CHECK_NATNUM (length);
2188 val = make_uninit_bool_vector (XFASTINT (length));
2189 return bool_vector_fill (val, init);
2190 }
2191
2192 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2193 doc: /* Return a new bool-vector with specified arguments as elements.
2194 Any number of arguments, even zero arguments, are allowed.
2195 usage: (bool-vector &rest OBJECTS) */)
2196 (ptrdiff_t nargs, Lisp_Object *args)
2197 {
2198 ptrdiff_t i;
2199 Lisp_Object vector;
2200
2201 vector = make_uninit_bool_vector (nargs);
2202 for (i = 0; i < nargs; i++)
2203 bool_vector_set (vector, i, !NILP (args[i]));
2204
2205 return vector;
2206 }
2207
2208 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2209 of characters from the contents. This string may be unibyte or
2210 multibyte, depending on the contents. */
2211
2212 Lisp_Object
2213 make_string (const char *contents, ptrdiff_t nbytes)
2214 {
2215 register Lisp_Object val;
2216 ptrdiff_t nchars, multibyte_nbytes;
2217
2218 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2219 &nchars, &multibyte_nbytes);
2220 if (nbytes == nchars || nbytes != multibyte_nbytes)
2221 /* CONTENTS contains no multibyte sequences or contains an invalid
2222 multibyte sequence. We must make unibyte string. */
2223 val = make_unibyte_string (contents, nbytes);
2224 else
2225 val = make_multibyte_string (contents, nchars, nbytes);
2226 return val;
2227 }
2228
2229
2230 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2231
2232 Lisp_Object
2233 make_unibyte_string (const char *contents, ptrdiff_t length)
2234 {
2235 register Lisp_Object val;
2236 val = make_uninit_string (length);
2237 memcpy (SDATA (val), contents, length);
2238 return val;
2239 }
2240
2241
2242 /* Make a multibyte string from NCHARS characters occupying NBYTES
2243 bytes at CONTENTS. */
2244
2245 Lisp_Object
2246 make_multibyte_string (const char *contents,
2247 ptrdiff_t nchars, ptrdiff_t nbytes)
2248 {
2249 register Lisp_Object val;
2250 val = make_uninit_multibyte_string (nchars, nbytes);
2251 memcpy (SDATA (val), contents, nbytes);
2252 return val;
2253 }
2254
2255
2256 /* Make a string from NCHARS characters occupying NBYTES bytes at
2257 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2258
2259 Lisp_Object
2260 make_string_from_bytes (const char *contents,
2261 ptrdiff_t nchars, ptrdiff_t nbytes)
2262 {
2263 register Lisp_Object val;
2264 val = make_uninit_multibyte_string (nchars, nbytes);
2265 memcpy (SDATA (val), contents, nbytes);
2266 if (SBYTES (val) == SCHARS (val))
2267 STRING_SET_UNIBYTE (val);
2268 return val;
2269 }
2270
2271
2272 /* Make a string from NCHARS characters occupying NBYTES bytes at
2273 CONTENTS. The argument MULTIBYTE controls whether to label the
2274 string as multibyte. If NCHARS is negative, it counts the number of
2275 characters by itself. */
2276
2277 Lisp_Object
2278 make_specified_string (const char *contents,
2279 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2280 {
2281 Lisp_Object val;
2282
2283 if (nchars < 0)
2284 {
2285 if (multibyte)
2286 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2287 nbytes);
2288 else
2289 nchars = nbytes;
2290 }
2291 val = make_uninit_multibyte_string (nchars, nbytes);
2292 memcpy (SDATA (val), contents, nbytes);
2293 if (!multibyte)
2294 STRING_SET_UNIBYTE (val);
2295 return val;
2296 }
2297
2298
2299 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2300 occupying LENGTH bytes. */
2301
2302 Lisp_Object
2303 make_uninit_string (EMACS_INT length)
2304 {
2305 Lisp_Object val;
2306
2307 if (!length)
2308 return empty_unibyte_string;
2309 val = make_uninit_multibyte_string (length, length);
2310 STRING_SET_UNIBYTE (val);
2311 return val;
2312 }
2313
2314
2315 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2316 which occupy NBYTES bytes. */
2317
2318 Lisp_Object
2319 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2320 {
2321 Lisp_Object string;
2322 struct Lisp_String *s;
2323
2324 if (nchars < 0)
2325 emacs_abort ();
2326 if (!nbytes)
2327 return empty_multibyte_string;
2328
2329 s = allocate_string ();
2330 s->intervals = NULL;
2331 allocate_string_data (s, nchars, nbytes);
2332 XSETSTRING (string, s);
2333 string_chars_consed += nbytes;
2334 return string;
2335 }
2336
2337 /* Print arguments to BUF according to a FORMAT, then return
2338 a Lisp_String initialized with the data from BUF. */
2339
2340 Lisp_Object
2341 make_formatted_string (char *buf, const char *format, ...)
2342 {
2343 va_list ap;
2344 int length;
2345
2346 va_start (ap, format);
2347 length = vsprintf (buf, format, ap);
2348 va_end (ap);
2349 return make_string (buf, length);
2350 }
2351
2352 \f
2353 /***********************************************************************
2354 Float Allocation
2355 ***********************************************************************/
2356
2357 /* We store float cells inside of float_blocks, allocating a new
2358 float_block with malloc whenever necessary. Float cells reclaimed
2359 by GC are put on a free list to be reallocated before allocating
2360 any new float cells from the latest float_block. */
2361
2362 #define FLOAT_BLOCK_SIZE \
2363 (((BLOCK_BYTES - sizeof (struct float_block *) \
2364 /* The compiler might add padding at the end. */ \
2365 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2366 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2367
2368 #define GETMARKBIT(block,n) \
2369 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2370 >> ((n) % BITS_PER_BITS_WORD)) \
2371 & 1)
2372
2373 #define SETMARKBIT(block,n) \
2374 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2375 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2376
2377 #define UNSETMARKBIT(block,n) \
2378 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2379 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2380
2381 #define FLOAT_BLOCK(fptr) \
2382 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2383
2384 #define FLOAT_INDEX(fptr) \
2385 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2386
2387 struct float_block
2388 {
2389 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2390 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2391 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2392 struct float_block *next;
2393 };
2394
2395 #define FLOAT_MARKED_P(fptr) \
2396 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2397
2398 #define FLOAT_MARK(fptr) \
2399 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2400
2401 #define FLOAT_UNMARK(fptr) \
2402 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2403
2404 /* Current float_block. */
2405
2406 static struct float_block *float_block;
2407
2408 /* Index of first unused Lisp_Float in the current float_block. */
2409
2410 static int float_block_index = FLOAT_BLOCK_SIZE;
2411
2412 /* Free-list of Lisp_Floats. */
2413
2414 static struct Lisp_Float *float_free_list;
2415
2416 /* Return a new float object with value FLOAT_VALUE. */
2417
2418 Lisp_Object
2419 make_float (double float_value)
2420 {
2421 register Lisp_Object val;
2422
2423 MALLOC_BLOCK_INPUT;
2424
2425 if (float_free_list)
2426 {
2427 /* We use the data field for chaining the free list
2428 so that we won't use the same field that has the mark bit. */
2429 XSETFLOAT (val, float_free_list);
2430 float_free_list = float_free_list->u.chain;
2431 }
2432 else
2433 {
2434 if (float_block_index == FLOAT_BLOCK_SIZE)
2435 {
2436 struct float_block *new
2437 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2438 new->next = float_block;
2439 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2440 float_block = new;
2441 float_block_index = 0;
2442 total_free_floats += FLOAT_BLOCK_SIZE;
2443 }
2444 XSETFLOAT (val, &float_block->floats[float_block_index]);
2445 float_block_index++;
2446 }
2447
2448 MALLOC_UNBLOCK_INPUT;
2449
2450 XFLOAT_INIT (val, float_value);
2451 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2452 consing_since_gc += sizeof (struct Lisp_Float);
2453 floats_consed++;
2454 total_free_floats--;
2455 return val;
2456 }
2457
2458
2459 \f
2460 /***********************************************************************
2461 Cons Allocation
2462 ***********************************************************************/
2463
2464 /* We store cons cells inside of cons_blocks, allocating a new
2465 cons_block with malloc whenever necessary. Cons cells reclaimed by
2466 GC are put on a free list to be reallocated before allocating
2467 any new cons cells from the latest cons_block. */
2468
2469 #define CONS_BLOCK_SIZE \
2470 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2471 /* The compiler might add padding at the end. */ \
2472 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2473 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2474
2475 #define CONS_BLOCK(fptr) \
2476 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2477
2478 #define CONS_INDEX(fptr) \
2479 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2480
2481 struct cons_block
2482 {
2483 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2484 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2485 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2486 struct cons_block *next;
2487 };
2488
2489 #define CONS_MARKED_P(fptr) \
2490 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2491
2492 #define CONS_MARK(fptr) \
2493 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2494
2495 #define CONS_UNMARK(fptr) \
2496 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2497
2498 /* Current cons_block. */
2499
2500 static struct cons_block *cons_block;
2501
2502 /* Index of first unused Lisp_Cons in the current block. */
2503
2504 static int cons_block_index = CONS_BLOCK_SIZE;
2505
2506 /* Free-list of Lisp_Cons structures. */
2507
2508 static struct Lisp_Cons *cons_free_list;
2509
2510 /* Explicitly free a cons cell by putting it on the free-list. */
2511
2512 void
2513 free_cons (struct Lisp_Cons *ptr)
2514 {
2515 ptr->u.chain = cons_free_list;
2516 #if GC_MARK_STACK
2517 ptr->car = Vdead;
2518 #endif
2519 cons_free_list = ptr;
2520 consing_since_gc -= sizeof *ptr;
2521 total_free_conses++;
2522 }
2523
2524 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2525 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2526 (Lisp_Object car, Lisp_Object cdr)
2527 {
2528 register Lisp_Object val;
2529
2530 MALLOC_BLOCK_INPUT;
2531
2532 if (cons_free_list)
2533 {
2534 /* We use the cdr for chaining the free list
2535 so that we won't use the same field that has the mark bit. */
2536 XSETCONS (val, cons_free_list);
2537 cons_free_list = cons_free_list->u.chain;
2538 }
2539 else
2540 {
2541 if (cons_block_index == CONS_BLOCK_SIZE)
2542 {
2543 struct cons_block *new
2544 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2545 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2546 new->next = cons_block;
2547 cons_block = new;
2548 cons_block_index = 0;
2549 total_free_conses += CONS_BLOCK_SIZE;
2550 }
2551 XSETCONS (val, &cons_block->conses[cons_block_index]);
2552 cons_block_index++;
2553 }
2554
2555 MALLOC_UNBLOCK_INPUT;
2556
2557 XSETCAR (val, car);
2558 XSETCDR (val, cdr);
2559 eassert (!CONS_MARKED_P (XCONS (val)));
2560 consing_since_gc += sizeof (struct Lisp_Cons);
2561 total_free_conses--;
2562 cons_cells_consed++;
2563 return val;
2564 }
2565
2566 #ifdef GC_CHECK_CONS_LIST
2567 /* Get an error now if there's any junk in the cons free list. */
2568 void
2569 check_cons_list (void)
2570 {
2571 struct Lisp_Cons *tail = cons_free_list;
2572
2573 while (tail)
2574 tail = tail->u.chain;
2575 }
2576 #endif
2577
2578 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2579
2580 Lisp_Object
2581 list1 (Lisp_Object arg1)
2582 {
2583 return Fcons (arg1, Qnil);
2584 }
2585
2586 Lisp_Object
2587 list2 (Lisp_Object arg1, Lisp_Object arg2)
2588 {
2589 return Fcons (arg1, Fcons (arg2, Qnil));
2590 }
2591
2592
2593 Lisp_Object
2594 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2595 {
2596 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2597 }
2598
2599
2600 Lisp_Object
2601 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2602 {
2603 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2604 }
2605
2606
2607 Lisp_Object
2608 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2609 {
2610 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2611 Fcons (arg5, Qnil)))));
2612 }
2613
2614 /* Make a list of COUNT Lisp_Objects, where ARG is the
2615 first one. Allocate conses from pure space if TYPE
2616 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2617
2618 Lisp_Object
2619 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2620 {
2621 Lisp_Object (*cons) (Lisp_Object, Lisp_Object);
2622 switch (type)
2623 {
2624 case CONSTYPE_PURE: cons = pure_cons; break;
2625 case CONSTYPE_HEAP: cons = Fcons; break;
2626 default: emacs_abort ();
2627 }
2628
2629 eassume (0 < count);
2630 Lisp_Object val = cons (arg, Qnil);
2631 Lisp_Object tail = val;
2632
2633 va_list ap;
2634 va_start (ap, arg);
2635 for (ptrdiff_t i = 1; i < count; i++)
2636 {
2637 Lisp_Object elem = cons (va_arg (ap, Lisp_Object), Qnil);
2638 XSETCDR (tail, elem);
2639 tail = elem;
2640 }
2641 va_end (ap);
2642
2643 return val;
2644 }
2645
2646 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2647 doc: /* Return a newly created list with specified arguments as elements.
2648 Any number of arguments, even zero arguments, are allowed.
2649 usage: (list &rest OBJECTS) */)
2650 (ptrdiff_t nargs, Lisp_Object *args)
2651 {
2652 register Lisp_Object val;
2653 val = Qnil;
2654
2655 while (nargs > 0)
2656 {
2657 nargs--;
2658 val = Fcons (args[nargs], val);
2659 }
2660 return val;
2661 }
2662
2663
2664 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2665 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2666 (register Lisp_Object length, Lisp_Object init)
2667 {
2668 register Lisp_Object val;
2669 register EMACS_INT size;
2670
2671 CHECK_NATNUM (length);
2672 size = XFASTINT (length);
2673
2674 val = Qnil;
2675 while (size > 0)
2676 {
2677 val = Fcons (init, val);
2678 --size;
2679
2680 if (size > 0)
2681 {
2682 val = Fcons (init, val);
2683 --size;
2684
2685 if (size > 0)
2686 {
2687 val = Fcons (init, val);
2688 --size;
2689
2690 if (size > 0)
2691 {
2692 val = Fcons (init, val);
2693 --size;
2694
2695 if (size > 0)
2696 {
2697 val = Fcons (init, val);
2698 --size;
2699 }
2700 }
2701 }
2702 }
2703
2704 QUIT;
2705 }
2706
2707 return val;
2708 }
2709
2710
2711 \f
2712 /***********************************************************************
2713 Vector Allocation
2714 ***********************************************************************/
2715
2716 /* Sometimes a vector's contents are merely a pointer internally used
2717 in vector allocation code. On the rare platforms where a null
2718 pointer cannot be tagged, represent it with a Lisp 0.
2719 Usually you don't want to touch this. */
2720
2721 static struct Lisp_Vector *
2722 next_vector (struct Lisp_Vector *v)
2723 {
2724 return XUNTAG (v->contents[0], 0);
2725 }
2726
2727 static void
2728 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2729 {
2730 v->contents[0] = make_lisp_ptr (p, 0);
2731 }
2732
2733 /* This value is balanced well enough to avoid too much internal overhead
2734 for the most common cases; it's not required to be a power of two, but
2735 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2736
2737 #define VECTOR_BLOCK_SIZE 4096
2738
2739 enum
2740 {
2741 /* Alignment of struct Lisp_Vector objects. */
2742 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2743 USE_LSB_TAG ? GCALIGNMENT : 1),
2744
2745 /* Vector size requests are a multiple of this. */
2746 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2747 };
2748
2749 /* Verify assumptions described above. */
2750 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2751 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2752
2753 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2754 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2755 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2756 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2757
2758 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2759
2760 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2761
2762 /* Size of the minimal vector allocated from block. */
2763
2764 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2765
2766 /* Size of the largest vector allocated from block. */
2767
2768 #define VBLOCK_BYTES_MAX \
2769 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2770
2771 /* We maintain one free list for each possible block-allocated
2772 vector size, and this is the number of free lists we have. */
2773
2774 #define VECTOR_MAX_FREE_LIST_INDEX \
2775 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2776
2777 /* Common shortcut to advance vector pointer over a block data. */
2778
2779 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2780
2781 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2782
2783 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2784
2785 /* Common shortcut to setup vector on a free list. */
2786
2787 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2788 do { \
2789 (tmp) = ((nbytes - header_size) / word_size); \
2790 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2791 eassert ((nbytes) % roundup_size == 0); \
2792 (tmp) = VINDEX (nbytes); \
2793 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2794 set_next_vector (v, vector_free_lists[tmp]); \
2795 vector_free_lists[tmp] = (v); \
2796 total_free_vector_slots += (nbytes) / word_size; \
2797 } while (0)
2798
2799 /* This internal type is used to maintain the list of large vectors
2800 which are allocated at their own, e.g. outside of vector blocks.
2801
2802 struct large_vector itself cannot contain a struct Lisp_Vector, as
2803 the latter contains a flexible array member and C99 does not allow
2804 such structs to be nested. Instead, each struct large_vector
2805 object LV is followed by a struct Lisp_Vector, which is at offset
2806 large_vector_offset from LV, and whose address is therefore
2807 large_vector_vec (&LV). */
2808
2809 struct large_vector
2810 {
2811 struct large_vector *next;
2812 };
2813
2814 enum
2815 {
2816 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2817 };
2818
2819 static struct Lisp_Vector *
2820 large_vector_vec (struct large_vector *p)
2821 {
2822 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2823 }
2824
2825 /* This internal type is used to maintain an underlying storage
2826 for small vectors. */
2827
2828 struct vector_block
2829 {
2830 char data[VECTOR_BLOCK_BYTES];
2831 struct vector_block *next;
2832 };
2833
2834 /* Chain of vector blocks. */
2835
2836 static struct vector_block *vector_blocks;
2837
2838 /* Vector free lists, where NTH item points to a chain of free
2839 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2840
2841 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2842
2843 /* Singly-linked list of large vectors. */
2844
2845 static struct large_vector *large_vectors;
2846
2847 /* The only vector with 0 slots, allocated from pure space. */
2848
2849 Lisp_Object zero_vector;
2850
2851 /* Number of live vectors. */
2852
2853 static EMACS_INT total_vectors;
2854
2855 /* Total size of live and free vectors, in Lisp_Object units. */
2856
2857 static EMACS_INT total_vector_slots, total_free_vector_slots;
2858
2859 /* Get a new vector block. */
2860
2861 static struct vector_block *
2862 allocate_vector_block (void)
2863 {
2864 struct vector_block *block = xmalloc (sizeof *block);
2865
2866 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2867 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2868 MEM_TYPE_VECTOR_BLOCK);
2869 #endif
2870
2871 block->next = vector_blocks;
2872 vector_blocks = block;
2873 return block;
2874 }
2875
2876 /* Called once to initialize vector allocation. */
2877
2878 static void
2879 init_vectors (void)
2880 {
2881 zero_vector = make_pure_vector (0);
2882 }
2883
2884 /* Allocate vector from a vector block. */
2885
2886 static struct Lisp_Vector *
2887 allocate_vector_from_block (size_t nbytes)
2888 {
2889 struct Lisp_Vector *vector;
2890 struct vector_block *block;
2891 size_t index, restbytes;
2892
2893 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2894 eassert (nbytes % roundup_size == 0);
2895
2896 /* First, try to allocate from a free list
2897 containing vectors of the requested size. */
2898 index = VINDEX (nbytes);
2899 if (vector_free_lists[index])
2900 {
2901 vector = vector_free_lists[index];
2902 vector_free_lists[index] = next_vector (vector);
2903 total_free_vector_slots -= nbytes / word_size;
2904 return vector;
2905 }
2906
2907 /* Next, check free lists containing larger vectors. Since
2908 we will split the result, we should have remaining space
2909 large enough to use for one-slot vector at least. */
2910 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2911 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2912 if (vector_free_lists[index])
2913 {
2914 /* This vector is larger than requested. */
2915 vector = vector_free_lists[index];
2916 vector_free_lists[index] = next_vector (vector);
2917 total_free_vector_slots -= nbytes / word_size;
2918
2919 /* Excess bytes are used for the smaller vector,
2920 which should be set on an appropriate free list. */
2921 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2922 eassert (restbytes % roundup_size == 0);
2923 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2924 return vector;
2925 }
2926
2927 /* Finally, need a new vector block. */
2928 block = allocate_vector_block ();
2929
2930 /* New vector will be at the beginning of this block. */
2931 vector = (struct Lisp_Vector *) block->data;
2932
2933 /* If the rest of space from this block is large enough
2934 for one-slot vector at least, set up it on a free list. */
2935 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2936 if (restbytes >= VBLOCK_BYTES_MIN)
2937 {
2938 eassert (restbytes % roundup_size == 0);
2939 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2940 }
2941 return vector;
2942 }
2943
2944 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2945
2946 #define VECTOR_IN_BLOCK(vector, block) \
2947 ((char *) (vector) <= (block)->data \
2948 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2949
2950 /* Return the memory footprint of V in bytes. */
2951
2952 static ptrdiff_t
2953 vector_nbytes (struct Lisp_Vector *v)
2954 {
2955 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2956 ptrdiff_t nwords;
2957
2958 if (size & PSEUDOVECTOR_FLAG)
2959 {
2960 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2961 {
2962 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2963 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
2964 * sizeof (bits_word));
2965 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
2966 verify (header_size <= bool_header_size);
2967 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
2968 }
2969 else
2970 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
2971 + ((size & PSEUDOVECTOR_REST_MASK)
2972 >> PSEUDOVECTOR_SIZE_BITS));
2973 }
2974 else
2975 nwords = size;
2976 return vroundup (header_size + word_size * nwords);
2977 }
2978
2979 /* Release extra resources still in use by VECTOR, which may be any
2980 vector-like object. For now, this is used just to free data in
2981 font objects. */
2982
2983 static void
2984 cleanup_vector (struct Lisp_Vector *vector)
2985 {
2986 detect_suspicious_free (vector);
2987 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
2988 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
2989 == FONT_OBJECT_MAX))
2990 {
2991 struct font_driver *drv = ((struct font *) vector)->driver;
2992
2993 /* The font driver might sometimes be NULL, e.g. if Emacs was
2994 interrupted before it had time to set it up. */
2995 if (drv)
2996 {
2997 /* Attempt to catch subtle bugs like Bug#16140. */
2998 eassert (valid_font_driver (drv));
2999 drv->close ((struct font *) vector);
3000 }
3001 }
3002 }
3003
3004 /* Reclaim space used by unmarked vectors. */
3005
3006 NO_INLINE /* For better stack traces */
3007 static void
3008 sweep_vectors (void)
3009 {
3010 struct vector_block *block, **bprev = &vector_blocks;
3011 struct large_vector *lv, **lvprev = &large_vectors;
3012 struct Lisp_Vector *vector, *next;
3013
3014 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3015 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3016
3017 /* Looking through vector blocks. */
3018
3019 for (block = vector_blocks; block; block = *bprev)
3020 {
3021 bool free_this_block = 0;
3022 ptrdiff_t nbytes;
3023
3024 for (vector = (struct Lisp_Vector *) block->data;
3025 VECTOR_IN_BLOCK (vector, block); vector = next)
3026 {
3027 if (VECTOR_MARKED_P (vector))
3028 {
3029 VECTOR_UNMARK (vector);
3030 total_vectors++;
3031 nbytes = vector_nbytes (vector);
3032 total_vector_slots += nbytes / word_size;
3033 next = ADVANCE (vector, nbytes);
3034 }
3035 else
3036 {
3037 ptrdiff_t total_bytes;
3038
3039 cleanup_vector (vector);
3040 nbytes = vector_nbytes (vector);
3041 total_bytes = nbytes;
3042 next = ADVANCE (vector, nbytes);
3043
3044 /* While NEXT is not marked, try to coalesce with VECTOR,
3045 thus making VECTOR of the largest possible size. */
3046
3047 while (VECTOR_IN_BLOCK (next, block))
3048 {
3049 if (VECTOR_MARKED_P (next))
3050 break;
3051 cleanup_vector (next);
3052 nbytes = vector_nbytes (next);
3053 total_bytes += nbytes;
3054 next = ADVANCE (next, nbytes);
3055 }
3056
3057 eassert (total_bytes % roundup_size == 0);
3058
3059 if (vector == (struct Lisp_Vector *) block->data
3060 && !VECTOR_IN_BLOCK (next, block))
3061 /* This block should be freed because all of its
3062 space was coalesced into the only free vector. */
3063 free_this_block = 1;
3064 else
3065 {
3066 size_t tmp;
3067 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3068 }
3069 }
3070 }
3071
3072 if (free_this_block)
3073 {
3074 *bprev = block->next;
3075 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3076 mem_delete (mem_find (block->data));
3077 #endif
3078 xfree (block);
3079 }
3080 else
3081 bprev = &block->next;
3082 }
3083
3084 /* Sweep large vectors. */
3085
3086 for (lv = large_vectors; lv; lv = *lvprev)
3087 {
3088 vector = large_vector_vec (lv);
3089 if (VECTOR_MARKED_P (vector))
3090 {
3091 VECTOR_UNMARK (vector);
3092 total_vectors++;
3093 if (vector->header.size & PSEUDOVECTOR_FLAG)
3094 {
3095 /* All non-bool pseudovectors are small enough to be allocated
3096 from vector blocks. This code should be redesigned if some
3097 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3098 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3099 total_vector_slots += vector_nbytes (vector) / word_size;
3100 }
3101 else
3102 total_vector_slots
3103 += header_size / word_size + vector->header.size;
3104 lvprev = &lv->next;
3105 }
3106 else
3107 {
3108 *lvprev = lv->next;
3109 lisp_free (lv);
3110 }
3111 }
3112 }
3113
3114 /* Value is a pointer to a newly allocated Lisp_Vector structure
3115 with room for LEN Lisp_Objects. */
3116
3117 static struct Lisp_Vector *
3118 allocate_vectorlike (ptrdiff_t len)
3119 {
3120 struct Lisp_Vector *p;
3121
3122 MALLOC_BLOCK_INPUT;
3123
3124 if (len == 0)
3125 p = XVECTOR (zero_vector);
3126 else
3127 {
3128 size_t nbytes = header_size + len * word_size;
3129
3130 #ifdef DOUG_LEA_MALLOC
3131 if (!mmap_lisp_allowed_p ())
3132 mallopt (M_MMAP_MAX, 0);
3133 #endif
3134
3135 if (nbytes <= VBLOCK_BYTES_MAX)
3136 p = allocate_vector_from_block (vroundup (nbytes));
3137 else
3138 {
3139 struct large_vector *lv
3140 = lisp_malloc ((large_vector_offset + header_size
3141 + len * word_size),
3142 MEM_TYPE_VECTORLIKE);
3143 lv->next = large_vectors;
3144 large_vectors = lv;
3145 p = large_vector_vec (lv);
3146 }
3147
3148 #ifdef DOUG_LEA_MALLOC
3149 if (!mmap_lisp_allowed_p ())
3150 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3151 #endif
3152
3153 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3154 emacs_abort ();
3155
3156 consing_since_gc += nbytes;
3157 vector_cells_consed += len;
3158 }
3159
3160 MALLOC_UNBLOCK_INPUT;
3161
3162 return p;
3163 }
3164
3165
3166 /* Allocate a vector with LEN slots. */
3167
3168 struct Lisp_Vector *
3169 allocate_vector (EMACS_INT len)
3170 {
3171 struct Lisp_Vector *v;
3172 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3173
3174 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3175 memory_full (SIZE_MAX);
3176 v = allocate_vectorlike (len);
3177 v->header.size = len;
3178 return v;
3179 }
3180
3181
3182 /* Allocate other vector-like structures. */
3183
3184 struct Lisp_Vector *
3185 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
3186 {
3187 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3188 int i;
3189
3190 /* Catch bogus values. */
3191 eassert (tag <= PVEC_FONT);
3192 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3193 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3194
3195 /* Only the first lisplen slots will be traced normally by the GC. */
3196 for (i = 0; i < lisplen; ++i)
3197 v->contents[i] = Qnil;
3198
3199 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3200 return v;
3201 }
3202
3203 struct buffer *
3204 allocate_buffer (void)
3205 {
3206 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3207
3208 BUFFER_PVEC_INIT (b);
3209 /* Put B on the chain of all buffers including killed ones. */
3210 b->next = all_buffers;
3211 all_buffers = b;
3212 /* Note that the rest fields of B are not initialized. */
3213 return b;
3214 }
3215
3216 struct Lisp_Hash_Table *
3217 allocate_hash_table (void)
3218 {
3219 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3220 }
3221
3222 struct window *
3223 allocate_window (void)
3224 {
3225 struct window *w;
3226
3227 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3228 /* Users assumes that non-Lisp data is zeroed. */
3229 memset (&w->current_matrix, 0,
3230 sizeof (*w) - offsetof (struct window, current_matrix));
3231 return w;
3232 }
3233
3234 struct terminal *
3235 allocate_terminal (void)
3236 {
3237 struct terminal *t;
3238
3239 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3240 /* Users assumes that non-Lisp data is zeroed. */
3241 memset (&t->next_terminal, 0,
3242 sizeof (*t) - offsetof (struct terminal, next_terminal));
3243 return t;
3244 }
3245
3246 struct frame *
3247 allocate_frame (void)
3248 {
3249 struct frame *f;
3250
3251 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3252 /* Users assumes that non-Lisp data is zeroed. */
3253 memset (&f->face_cache, 0,
3254 sizeof (*f) - offsetof (struct frame, face_cache));
3255 return f;
3256 }
3257
3258 struct Lisp_Process *
3259 allocate_process (void)
3260 {
3261 struct Lisp_Process *p;
3262
3263 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3264 /* Users assumes that non-Lisp data is zeroed. */
3265 memset (&p->pid, 0,
3266 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3267 return p;
3268 }
3269
3270 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3271 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3272 See also the function `vector'. */)
3273 (register Lisp_Object length, Lisp_Object init)
3274 {
3275 Lisp_Object vector;
3276 register ptrdiff_t sizei;
3277 register ptrdiff_t i;
3278 register struct Lisp_Vector *p;
3279
3280 CHECK_NATNUM (length);
3281
3282 p = allocate_vector (XFASTINT (length));
3283 sizei = XFASTINT (length);
3284 for (i = 0; i < sizei; i++)
3285 p->contents[i] = init;
3286
3287 XSETVECTOR (vector, p);
3288 return vector;
3289 }
3290
3291
3292 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3293 doc: /* Return a newly created vector with specified arguments as elements.
3294 Any number of arguments, even zero arguments, are allowed.
3295 usage: (vector &rest OBJECTS) */)
3296 (ptrdiff_t nargs, Lisp_Object *args)
3297 {
3298 ptrdiff_t i;
3299 register Lisp_Object val = make_uninit_vector (nargs);
3300 register struct Lisp_Vector *p = XVECTOR (val);
3301
3302 for (i = 0; i < nargs; i++)
3303 p->contents[i] = args[i];
3304 return val;
3305 }
3306
3307 void
3308 make_byte_code (struct Lisp_Vector *v)
3309 {
3310 /* Don't allow the global zero_vector to become a byte code object. */
3311 eassert (0 < v->header.size);
3312
3313 if (v->header.size > 1 && STRINGP (v->contents[1])
3314 && STRING_MULTIBYTE (v->contents[1]))
3315 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3316 earlier because they produced a raw 8-bit string for byte-code
3317 and now such a byte-code string is loaded as multibyte while
3318 raw 8-bit characters converted to multibyte form. Thus, now we
3319 must convert them back to the original unibyte form. */
3320 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3321 XSETPVECTYPE (v, PVEC_COMPILED);
3322 }
3323
3324 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3325 doc: /* Create a byte-code object with specified arguments as elements.
3326 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3327 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3328 and (optional) INTERACTIVE-SPEC.
3329 The first four arguments are required; at most six have any
3330 significance.
3331 The ARGLIST can be either like the one of `lambda', in which case the arguments
3332 will be dynamically bound before executing the byte code, or it can be an
3333 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3334 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3335 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3336 argument to catch the left-over arguments. If such an integer is used, the
3337 arguments will not be dynamically bound but will be instead pushed on the
3338 stack before executing the byte-code.
3339 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3340 (ptrdiff_t nargs, Lisp_Object *args)
3341 {
3342 ptrdiff_t i;
3343 register Lisp_Object val = make_uninit_vector (nargs);
3344 register struct Lisp_Vector *p = XVECTOR (val);
3345
3346 /* We used to purecopy everything here, if purify-flag was set. This worked
3347 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3348 dangerous, since make-byte-code is used during execution to build
3349 closures, so any closure built during the preload phase would end up
3350 copied into pure space, including its free variables, which is sometimes
3351 just wasteful and other times plainly wrong (e.g. those free vars may want
3352 to be setcar'd). */
3353
3354 for (i = 0; i < nargs; i++)
3355 p->contents[i] = args[i];
3356 make_byte_code (p);
3357 XSETCOMPILED (val, p);
3358 return val;
3359 }
3360
3361
3362 \f
3363 /***********************************************************************
3364 Symbol Allocation
3365 ***********************************************************************/
3366
3367 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3368 of the required alignment if LSB tags are used. */
3369
3370 union aligned_Lisp_Symbol
3371 {
3372 struct Lisp_Symbol s;
3373 #if USE_LSB_TAG
3374 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3375 & -GCALIGNMENT];
3376 #endif
3377 };
3378
3379 /* Each symbol_block is just under 1020 bytes long, since malloc
3380 really allocates in units of powers of two and uses 4 bytes for its
3381 own overhead. */
3382
3383 #define SYMBOL_BLOCK_SIZE \
3384 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3385
3386 struct symbol_block
3387 {
3388 /* Place `symbols' first, to preserve alignment. */
3389 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3390 struct symbol_block *next;
3391 };
3392
3393 /* Current symbol block and index of first unused Lisp_Symbol
3394 structure in it. */
3395
3396 static struct symbol_block *symbol_block;
3397 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3398 /* Pointer to the first symbol_block that contains pinned symbols.
3399 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3400 10K of which are pinned (and all but 250 of them are interned in obarray),
3401 whereas a "typical session" has in the order of 30K symbols.
3402 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3403 than 30K to find the 10K symbols we need to mark. */
3404 static struct symbol_block *symbol_block_pinned;
3405
3406 /* List of free symbols. */
3407
3408 static struct Lisp_Symbol *symbol_free_list;
3409
3410 static void
3411 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3412 {
3413 XSYMBOL (sym)->name = name;
3414 }
3415
3416 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3417 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3418 Its value is void, and its function definition and property list are nil. */)
3419 (Lisp_Object name)
3420 {
3421 register Lisp_Object val;
3422 register struct Lisp_Symbol *p;
3423
3424 CHECK_STRING (name);
3425
3426 MALLOC_BLOCK_INPUT;
3427
3428 if (symbol_free_list)
3429 {
3430 XSETSYMBOL (val, symbol_free_list);
3431 symbol_free_list = symbol_free_list->next;
3432 }
3433 else
3434 {
3435 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3436 {
3437 struct symbol_block *new
3438 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3439 new->next = symbol_block;
3440 symbol_block = new;
3441 symbol_block_index = 0;
3442 total_free_symbols += SYMBOL_BLOCK_SIZE;
3443 }
3444 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3445 symbol_block_index++;
3446 }
3447
3448 MALLOC_UNBLOCK_INPUT;
3449
3450 p = XSYMBOL (val);
3451 set_symbol_name (val, name);
3452 set_symbol_plist (val, Qnil);
3453 p->redirect = SYMBOL_PLAINVAL;
3454 SET_SYMBOL_VAL (p, Qunbound);
3455 set_symbol_function (val, Qnil);
3456 set_symbol_next (val, NULL);
3457 p->gcmarkbit = false;
3458 p->interned = SYMBOL_UNINTERNED;
3459 p->constant = 0;
3460 p->declared_special = false;
3461 p->pinned = false;
3462 consing_since_gc += sizeof (struct Lisp_Symbol);
3463 symbols_consed++;
3464 total_free_symbols--;
3465 return val;
3466 }
3467
3468
3469 \f
3470 /***********************************************************************
3471 Marker (Misc) Allocation
3472 ***********************************************************************/
3473
3474 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3475 the required alignment when LSB tags are used. */
3476
3477 union aligned_Lisp_Misc
3478 {
3479 union Lisp_Misc m;
3480 #if USE_LSB_TAG
3481 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3482 & -GCALIGNMENT];
3483 #endif
3484 };
3485
3486 /* Allocation of markers and other objects that share that structure.
3487 Works like allocation of conses. */
3488
3489 #define MARKER_BLOCK_SIZE \
3490 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3491
3492 struct marker_block
3493 {
3494 /* Place `markers' first, to preserve alignment. */
3495 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3496 struct marker_block *next;
3497 };
3498
3499 static struct marker_block *marker_block;
3500 static int marker_block_index = MARKER_BLOCK_SIZE;
3501
3502 static union Lisp_Misc *marker_free_list;
3503
3504 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3505
3506 static Lisp_Object
3507 allocate_misc (enum Lisp_Misc_Type type)
3508 {
3509 Lisp_Object val;
3510
3511 MALLOC_BLOCK_INPUT;
3512
3513 if (marker_free_list)
3514 {
3515 XSETMISC (val, marker_free_list);
3516 marker_free_list = marker_free_list->u_free.chain;
3517 }
3518 else
3519 {
3520 if (marker_block_index == MARKER_BLOCK_SIZE)
3521 {
3522 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3523 new->next = marker_block;
3524 marker_block = new;
3525 marker_block_index = 0;
3526 total_free_markers += MARKER_BLOCK_SIZE;
3527 }
3528 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3529 marker_block_index++;
3530 }
3531
3532 MALLOC_UNBLOCK_INPUT;
3533
3534 --total_free_markers;
3535 consing_since_gc += sizeof (union Lisp_Misc);
3536 misc_objects_consed++;
3537 XMISCANY (val)->type = type;
3538 XMISCANY (val)->gcmarkbit = 0;
3539 return val;
3540 }
3541
3542 /* Free a Lisp_Misc object. */
3543
3544 void
3545 free_misc (Lisp_Object misc)
3546 {
3547 XMISCANY (misc)->type = Lisp_Misc_Free;
3548 XMISC (misc)->u_free.chain = marker_free_list;
3549 marker_free_list = XMISC (misc);
3550 consing_since_gc -= sizeof (union Lisp_Misc);
3551 total_free_markers++;
3552 }
3553
3554 /* Verify properties of Lisp_Save_Value's representation
3555 that are assumed here and elsewhere. */
3556
3557 verify (SAVE_UNUSED == 0);
3558 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3559 >> SAVE_SLOT_BITS)
3560 == 0);
3561
3562 /* Return Lisp_Save_Value objects for the various combinations
3563 that callers need. */
3564
3565 Lisp_Object
3566 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3567 {
3568 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3569 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3570 p->save_type = SAVE_TYPE_INT_INT_INT;
3571 p->data[0].integer = a;
3572 p->data[1].integer = b;
3573 p->data[2].integer = c;
3574 return val;
3575 }
3576
3577 Lisp_Object
3578 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3579 Lisp_Object d)
3580 {
3581 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3582 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3583 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3584 p->data[0].object = a;
3585 p->data[1].object = b;
3586 p->data[2].object = c;
3587 p->data[3].object = d;
3588 return val;
3589 }
3590
3591 Lisp_Object
3592 make_save_ptr (void *a)
3593 {
3594 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3595 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3596 p->save_type = SAVE_POINTER;
3597 p->data[0].pointer = a;
3598 return val;
3599 }
3600
3601 Lisp_Object
3602 make_save_ptr_int (void *a, ptrdiff_t b)
3603 {
3604 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3605 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3606 p->save_type = SAVE_TYPE_PTR_INT;
3607 p->data[0].pointer = a;
3608 p->data[1].integer = b;
3609 return val;
3610 }
3611
3612 Lisp_Object
3613 make_save_int_obj (ptrdiff_t a, Lisp_Object b)
3614 {
3615 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3616 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3617 p->save_type = SAVE_TYPE_INT_OBJ;
3618 p->data[0].integer = a;
3619 p->data[1].object = b;
3620 return val;
3621 }
3622
3623 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3624 Lisp_Object
3625 make_save_ptr_ptr (void *a, void *b)
3626 {
3627 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3628 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3629 p->save_type = SAVE_TYPE_PTR_PTR;
3630 p->data[0].pointer = a;
3631 p->data[1].pointer = b;
3632 return val;
3633 }
3634 #endif
3635
3636 Lisp_Object
3637 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3638 {
3639 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3640 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3641 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3642 p->data[0].funcpointer = a;
3643 p->data[1].pointer = b;
3644 p->data[2].object = c;
3645 return val;
3646 }
3647
3648 /* Return a Lisp_Save_Value object that represents an array A
3649 of N Lisp objects. */
3650
3651 Lisp_Object
3652 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3653 {
3654 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3655 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3656 p->save_type = SAVE_TYPE_MEMORY;
3657 p->data[0].pointer = a;
3658 p->data[1].integer = n;
3659 return val;
3660 }
3661
3662 /* Free a Lisp_Save_Value object. Do not use this function
3663 if SAVE contains pointer other than returned by xmalloc. */
3664
3665 void
3666 free_save_value (Lisp_Object save)
3667 {
3668 xfree (XSAVE_POINTER (save, 0));
3669 free_misc (save);
3670 }
3671
3672 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3673
3674 Lisp_Object
3675 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3676 {
3677 register Lisp_Object overlay;
3678
3679 overlay = allocate_misc (Lisp_Misc_Overlay);
3680 OVERLAY_START (overlay) = start;
3681 OVERLAY_END (overlay) = end;
3682 set_overlay_plist (overlay, plist);
3683 XOVERLAY (overlay)->next = NULL;
3684 return overlay;
3685 }
3686
3687 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3688 doc: /* Return a newly allocated marker which does not point at any place. */)
3689 (void)
3690 {
3691 register Lisp_Object val;
3692 register struct Lisp_Marker *p;
3693
3694 val = allocate_misc (Lisp_Misc_Marker);
3695 p = XMARKER (val);
3696 p->buffer = 0;
3697 p->bytepos = 0;
3698 p->charpos = 0;
3699 p->next = NULL;
3700 p->insertion_type = 0;
3701 p->need_adjustment = 0;
3702 return val;
3703 }
3704
3705 /* Return a newly allocated marker which points into BUF
3706 at character position CHARPOS and byte position BYTEPOS. */
3707
3708 Lisp_Object
3709 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3710 {
3711 Lisp_Object obj;
3712 struct Lisp_Marker *m;
3713
3714 /* No dead buffers here. */
3715 eassert (BUFFER_LIVE_P (buf));
3716
3717 /* Every character is at least one byte. */
3718 eassert (charpos <= bytepos);
3719
3720 obj = allocate_misc (Lisp_Misc_Marker);
3721 m = XMARKER (obj);
3722 m->buffer = buf;
3723 m->charpos = charpos;
3724 m->bytepos = bytepos;
3725 m->insertion_type = 0;
3726 m->need_adjustment = 0;
3727 m->next = BUF_MARKERS (buf);
3728 BUF_MARKERS (buf) = m;
3729 return obj;
3730 }
3731
3732 /* Put MARKER back on the free list after using it temporarily. */
3733
3734 void
3735 free_marker (Lisp_Object marker)
3736 {
3737 unchain_marker (XMARKER (marker));
3738 free_misc (marker);
3739 }
3740
3741 \f
3742 /* Return a newly created vector or string with specified arguments as
3743 elements. If all the arguments are characters that can fit
3744 in a string of events, make a string; otherwise, make a vector.
3745
3746 Any number of arguments, even zero arguments, are allowed. */
3747
3748 Lisp_Object
3749 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3750 {
3751 ptrdiff_t i;
3752
3753 for (i = 0; i < nargs; i++)
3754 /* The things that fit in a string
3755 are characters that are in 0...127,
3756 after discarding the meta bit and all the bits above it. */
3757 if (!INTEGERP (args[i])
3758 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3759 return Fvector (nargs, args);
3760
3761 /* Since the loop exited, we know that all the things in it are
3762 characters, so we can make a string. */
3763 {
3764 Lisp_Object result;
3765
3766 result = Fmake_string (make_number (nargs), make_number (0));
3767 for (i = 0; i < nargs; i++)
3768 {
3769 SSET (result, i, XINT (args[i]));
3770 /* Move the meta bit to the right place for a string char. */
3771 if (XINT (args[i]) & CHAR_META)
3772 SSET (result, i, SREF (result, i) | 0x80);
3773 }
3774
3775 return result;
3776 }
3777 }
3778
3779
3780 \f
3781 /************************************************************************
3782 Memory Full Handling
3783 ************************************************************************/
3784
3785
3786 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3787 there may have been size_t overflow so that malloc was never
3788 called, or perhaps malloc was invoked successfully but the
3789 resulting pointer had problems fitting into a tagged EMACS_INT. In
3790 either case this counts as memory being full even though malloc did
3791 not fail. */
3792
3793 void
3794 memory_full (size_t nbytes)
3795 {
3796 /* Do not go into hysterics merely because a large request failed. */
3797 bool enough_free_memory = 0;
3798 if (SPARE_MEMORY < nbytes)
3799 {
3800 void *p;
3801
3802 MALLOC_BLOCK_INPUT;
3803 p = malloc (SPARE_MEMORY);
3804 if (p)
3805 {
3806 free (p);
3807 enough_free_memory = 1;
3808 }
3809 MALLOC_UNBLOCK_INPUT;
3810 }
3811
3812 if (! enough_free_memory)
3813 {
3814 int i;
3815
3816 Vmemory_full = Qt;
3817
3818 memory_full_cons_threshold = sizeof (struct cons_block);
3819
3820 /* The first time we get here, free the spare memory. */
3821 for (i = 0; i < ARRAYELTS (spare_memory); i++)
3822 if (spare_memory[i])
3823 {
3824 if (i == 0)
3825 free (spare_memory[i]);
3826 else if (i >= 1 && i <= 4)
3827 lisp_align_free (spare_memory[i]);
3828 else
3829 lisp_free (spare_memory[i]);
3830 spare_memory[i] = 0;
3831 }
3832 }
3833
3834 /* This used to call error, but if we've run out of memory, we could
3835 get infinite recursion trying to build the string. */
3836 xsignal (Qnil, Vmemory_signal_data);
3837 }
3838
3839 /* If we released our reserve (due to running out of memory),
3840 and we have a fair amount free once again,
3841 try to set aside another reserve in case we run out once more.
3842
3843 This is called when a relocatable block is freed in ralloc.c,
3844 and also directly from this file, in case we're not using ralloc.c. */
3845
3846 void
3847 refill_memory_reserve (void)
3848 {
3849 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3850 if (spare_memory[0] == 0)
3851 spare_memory[0] = malloc (SPARE_MEMORY);
3852 if (spare_memory[1] == 0)
3853 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3854 MEM_TYPE_SPARE);
3855 if (spare_memory[2] == 0)
3856 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3857 MEM_TYPE_SPARE);
3858 if (spare_memory[3] == 0)
3859 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3860 MEM_TYPE_SPARE);
3861 if (spare_memory[4] == 0)
3862 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3863 MEM_TYPE_SPARE);
3864 if (spare_memory[5] == 0)
3865 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3866 MEM_TYPE_SPARE);
3867 if (spare_memory[6] == 0)
3868 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3869 MEM_TYPE_SPARE);
3870 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3871 Vmemory_full = Qnil;
3872 #endif
3873 }
3874 \f
3875 /************************************************************************
3876 C Stack Marking
3877 ************************************************************************/
3878
3879 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3880
3881 /* Conservative C stack marking requires a method to identify possibly
3882 live Lisp objects given a pointer value. We do this by keeping
3883 track of blocks of Lisp data that are allocated in a red-black tree
3884 (see also the comment of mem_node which is the type of nodes in
3885 that tree). Function lisp_malloc adds information for an allocated
3886 block to the red-black tree with calls to mem_insert, and function
3887 lisp_free removes it with mem_delete. Functions live_string_p etc
3888 call mem_find to lookup information about a given pointer in the
3889 tree, and use that to determine if the pointer points to a Lisp
3890 object or not. */
3891
3892 /* Initialize this part of alloc.c. */
3893
3894 static void
3895 mem_init (void)
3896 {
3897 mem_z.left = mem_z.right = MEM_NIL;
3898 mem_z.parent = NULL;
3899 mem_z.color = MEM_BLACK;
3900 mem_z.start = mem_z.end = NULL;
3901 mem_root = MEM_NIL;
3902 }
3903
3904
3905 /* Value is a pointer to the mem_node containing START. Value is
3906 MEM_NIL if there is no node in the tree containing START. */
3907
3908 static struct mem_node *
3909 mem_find (void *start)
3910 {
3911 struct mem_node *p;
3912
3913 if (start < min_heap_address || start > max_heap_address)
3914 return MEM_NIL;
3915
3916 /* Make the search always successful to speed up the loop below. */
3917 mem_z.start = start;
3918 mem_z.end = (char *) start + 1;
3919
3920 p = mem_root;
3921 while (start < p->start || start >= p->end)
3922 p = start < p->start ? p->left : p->right;
3923 return p;
3924 }
3925
3926
3927 /* Insert a new node into the tree for a block of memory with start
3928 address START, end address END, and type TYPE. Value is a
3929 pointer to the node that was inserted. */
3930
3931 static struct mem_node *
3932 mem_insert (void *start, void *end, enum mem_type type)
3933 {
3934 struct mem_node *c, *parent, *x;
3935
3936 if (min_heap_address == NULL || start < min_heap_address)
3937 min_heap_address = start;
3938 if (max_heap_address == NULL || end > max_heap_address)
3939 max_heap_address = end;
3940
3941 /* See where in the tree a node for START belongs. In this
3942 particular application, it shouldn't happen that a node is already
3943 present. For debugging purposes, let's check that. */
3944 c = mem_root;
3945 parent = NULL;
3946
3947 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3948
3949 while (c != MEM_NIL)
3950 {
3951 if (start >= c->start && start < c->end)
3952 emacs_abort ();
3953 parent = c;
3954 c = start < c->start ? c->left : c->right;
3955 }
3956
3957 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3958
3959 while (c != MEM_NIL)
3960 {
3961 parent = c;
3962 c = start < c->start ? c->left : c->right;
3963 }
3964
3965 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3966
3967 /* Create a new node. */
3968 #ifdef GC_MALLOC_CHECK
3969 x = malloc (sizeof *x);
3970 if (x == NULL)
3971 emacs_abort ();
3972 #else
3973 x = xmalloc (sizeof *x);
3974 #endif
3975 x->start = start;
3976 x->end = end;
3977 x->type = type;
3978 x->parent = parent;
3979 x->left = x->right = MEM_NIL;
3980 x->color = MEM_RED;
3981
3982 /* Insert it as child of PARENT or install it as root. */
3983 if (parent)
3984 {
3985 if (start < parent->start)
3986 parent->left = x;
3987 else
3988 parent->right = x;
3989 }
3990 else
3991 mem_root = x;
3992
3993 /* Re-establish red-black tree properties. */
3994 mem_insert_fixup (x);
3995
3996 return x;
3997 }
3998
3999
4000 /* Re-establish the red-black properties of the tree, and thereby
4001 balance the tree, after node X has been inserted; X is always red. */
4002
4003 static void
4004 mem_insert_fixup (struct mem_node *x)
4005 {
4006 while (x != mem_root && x->parent->color == MEM_RED)
4007 {
4008 /* X is red and its parent is red. This is a violation of
4009 red-black tree property #3. */
4010
4011 if (x->parent == x->parent->parent->left)
4012 {
4013 /* We're on the left side of our grandparent, and Y is our
4014 "uncle". */
4015 struct mem_node *y = x->parent->parent->right;
4016
4017 if (y->color == MEM_RED)
4018 {
4019 /* Uncle and parent are red but should be black because
4020 X is red. Change the colors accordingly and proceed
4021 with the grandparent. */
4022 x->parent->color = MEM_BLACK;
4023 y->color = MEM_BLACK;
4024 x->parent->parent->color = MEM_RED;
4025 x = x->parent->parent;
4026 }
4027 else
4028 {
4029 /* Parent and uncle have different colors; parent is
4030 red, uncle is black. */
4031 if (x == x->parent->right)
4032 {
4033 x = x->parent;
4034 mem_rotate_left (x);
4035 }
4036
4037 x->parent->color = MEM_BLACK;
4038 x->parent->parent->color = MEM_RED;
4039 mem_rotate_right (x->parent->parent);
4040 }
4041 }
4042 else
4043 {
4044 /* This is the symmetrical case of above. */
4045 struct mem_node *y = x->parent->parent->left;
4046
4047 if (y->color == MEM_RED)
4048 {
4049 x->parent->color = MEM_BLACK;
4050 y->color = MEM_BLACK;
4051 x->parent->parent->color = MEM_RED;
4052 x = x->parent->parent;
4053 }
4054 else
4055 {
4056 if (x == x->parent->left)
4057 {
4058 x = x->parent;
4059 mem_rotate_right (x);
4060 }
4061
4062 x->parent->color = MEM_BLACK;
4063 x->parent->parent->color = MEM_RED;
4064 mem_rotate_left (x->parent->parent);
4065 }
4066 }
4067 }
4068
4069 /* The root may have been changed to red due to the algorithm. Set
4070 it to black so that property #5 is satisfied. */
4071 mem_root->color = MEM_BLACK;
4072 }
4073
4074
4075 /* (x) (y)
4076 / \ / \
4077 a (y) ===> (x) c
4078 / \ / \
4079 b c a b */
4080
4081 static void
4082 mem_rotate_left (struct mem_node *x)
4083 {
4084 struct mem_node *y;
4085
4086 /* Turn y's left sub-tree into x's right sub-tree. */
4087 y = x->right;
4088 x->right = y->left;
4089 if (y->left != MEM_NIL)
4090 y->left->parent = x;
4091
4092 /* Y's parent was x's parent. */
4093 if (y != MEM_NIL)
4094 y->parent = x->parent;
4095
4096 /* Get the parent to point to y instead of x. */
4097 if (x->parent)
4098 {
4099 if (x == x->parent->left)
4100 x->parent->left = y;
4101 else
4102 x->parent->right = y;
4103 }
4104 else
4105 mem_root = y;
4106
4107 /* Put x on y's left. */
4108 y->left = x;
4109 if (x != MEM_NIL)
4110 x->parent = y;
4111 }
4112
4113
4114 /* (x) (Y)
4115 / \ / \
4116 (y) c ===> a (x)
4117 / \ / \
4118 a b b c */
4119
4120 static void
4121 mem_rotate_right (struct mem_node *x)
4122 {
4123 struct mem_node *y = x->left;
4124
4125 x->left = y->right;
4126 if (y->right != MEM_NIL)
4127 y->right->parent = x;
4128
4129 if (y != MEM_NIL)
4130 y->parent = x->parent;
4131 if (x->parent)
4132 {
4133 if (x == x->parent->right)
4134 x->parent->right = y;
4135 else
4136 x->parent->left = y;
4137 }
4138 else
4139 mem_root = y;
4140
4141 y->right = x;
4142 if (x != MEM_NIL)
4143 x->parent = y;
4144 }
4145
4146
4147 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4148
4149 static void
4150 mem_delete (struct mem_node *z)
4151 {
4152 struct mem_node *x, *y;
4153
4154 if (!z || z == MEM_NIL)
4155 return;
4156
4157 if (z->left == MEM_NIL || z->right == MEM_NIL)
4158 y = z;
4159 else
4160 {
4161 y = z->right;
4162 while (y->left != MEM_NIL)
4163 y = y->left;
4164 }
4165
4166 if (y->left != MEM_NIL)
4167 x = y->left;
4168 else
4169 x = y->right;
4170
4171 x->parent = y->parent;
4172 if (y->parent)
4173 {
4174 if (y == y->parent->left)
4175 y->parent->left = x;
4176 else
4177 y->parent->right = x;
4178 }
4179 else
4180 mem_root = x;
4181
4182 if (y != z)
4183 {
4184 z->start = y->start;
4185 z->end = y->end;
4186 z->type = y->type;
4187 }
4188
4189 if (y->color == MEM_BLACK)
4190 mem_delete_fixup (x);
4191
4192 #ifdef GC_MALLOC_CHECK
4193 free (y);
4194 #else
4195 xfree (y);
4196 #endif
4197 }
4198
4199
4200 /* Re-establish the red-black properties of the tree, after a
4201 deletion. */
4202
4203 static void
4204 mem_delete_fixup (struct mem_node *x)
4205 {
4206 while (x != mem_root && x->color == MEM_BLACK)
4207 {
4208 if (x == x->parent->left)
4209 {
4210 struct mem_node *w = x->parent->right;
4211
4212 if (w->color == MEM_RED)
4213 {
4214 w->color = MEM_BLACK;
4215 x->parent->color = MEM_RED;
4216 mem_rotate_left (x->parent);
4217 w = x->parent->right;
4218 }
4219
4220 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4221 {
4222 w->color = MEM_RED;
4223 x = x->parent;
4224 }
4225 else
4226 {
4227 if (w->right->color == MEM_BLACK)
4228 {
4229 w->left->color = MEM_BLACK;
4230 w->color = MEM_RED;
4231 mem_rotate_right (w);
4232 w = x->parent->right;
4233 }
4234 w->color = x->parent->color;
4235 x->parent->color = MEM_BLACK;
4236 w->right->color = MEM_BLACK;
4237 mem_rotate_left (x->parent);
4238 x = mem_root;
4239 }
4240 }
4241 else
4242 {
4243 struct mem_node *w = x->parent->left;
4244
4245 if (w->color == MEM_RED)
4246 {
4247 w->color = MEM_BLACK;
4248 x->parent->color = MEM_RED;
4249 mem_rotate_right (x->parent);
4250 w = x->parent->left;
4251 }
4252
4253 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4254 {
4255 w->color = MEM_RED;
4256 x = x->parent;
4257 }
4258 else
4259 {
4260 if (w->left->color == MEM_BLACK)
4261 {
4262 w->right->color = MEM_BLACK;
4263 w->color = MEM_RED;
4264 mem_rotate_left (w);
4265 w = x->parent->left;
4266 }
4267
4268 w->color = x->parent->color;
4269 x->parent->color = MEM_BLACK;
4270 w->left->color = MEM_BLACK;
4271 mem_rotate_right (x->parent);
4272 x = mem_root;
4273 }
4274 }
4275 }
4276
4277 x->color = MEM_BLACK;
4278 }
4279
4280
4281 /* Value is non-zero if P is a pointer to a live Lisp string on
4282 the heap. M is a pointer to the mem_block for P. */
4283
4284 static bool
4285 live_string_p (struct mem_node *m, void *p)
4286 {
4287 if (m->type == MEM_TYPE_STRING)
4288 {
4289 struct string_block *b = m->start;
4290 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4291
4292 /* P must point to the start of a Lisp_String structure, and it
4293 must not be on the free-list. */
4294 return (offset >= 0
4295 && offset % sizeof b->strings[0] == 0
4296 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4297 && ((struct Lisp_String *) p)->data != NULL);
4298 }
4299 else
4300 return 0;
4301 }
4302
4303
4304 /* Value is non-zero if P is a pointer to a live Lisp cons on
4305 the heap. M is a pointer to the mem_block for P. */
4306
4307 static bool
4308 live_cons_p (struct mem_node *m, void *p)
4309 {
4310 if (m->type == MEM_TYPE_CONS)
4311 {
4312 struct cons_block *b = m->start;
4313 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4314
4315 /* P must point to the start of a Lisp_Cons, not be
4316 one of the unused cells in the current cons block,
4317 and not be on the free-list. */
4318 return (offset >= 0
4319 && offset % sizeof b->conses[0] == 0
4320 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4321 && (b != cons_block
4322 || offset / sizeof b->conses[0] < cons_block_index)
4323 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4324 }
4325 else
4326 return 0;
4327 }
4328
4329
4330 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4331 the heap. M is a pointer to the mem_block for P. */
4332
4333 static bool
4334 live_symbol_p (struct mem_node *m, void *p)
4335 {
4336 if (m->type == MEM_TYPE_SYMBOL)
4337 {
4338 struct symbol_block *b = m->start;
4339 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4340
4341 /* P must point to the start of a Lisp_Symbol, not be
4342 one of the unused cells in the current symbol block,
4343 and not be on the free-list. */
4344 return (offset >= 0
4345 && offset % sizeof b->symbols[0] == 0
4346 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4347 && (b != symbol_block
4348 || offset / sizeof b->symbols[0] < symbol_block_index)
4349 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4350 }
4351 else
4352 return 0;
4353 }
4354
4355
4356 /* Value is non-zero if P is a pointer to a live Lisp float on
4357 the heap. M is a pointer to the mem_block for P. */
4358
4359 static bool
4360 live_float_p (struct mem_node *m, void *p)
4361 {
4362 if (m->type == MEM_TYPE_FLOAT)
4363 {
4364 struct float_block *b = m->start;
4365 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4366
4367 /* P must point to the start of a Lisp_Float and not be
4368 one of the unused cells in the current float block. */
4369 return (offset >= 0
4370 && offset % sizeof b->floats[0] == 0
4371 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4372 && (b != float_block
4373 || offset / sizeof b->floats[0] < float_block_index));
4374 }
4375 else
4376 return 0;
4377 }
4378
4379
4380 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4381 the heap. M is a pointer to the mem_block for P. */
4382
4383 static bool
4384 live_misc_p (struct mem_node *m, void *p)
4385 {
4386 if (m->type == MEM_TYPE_MISC)
4387 {
4388 struct marker_block *b = m->start;
4389 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4390
4391 /* P must point to the start of a Lisp_Misc, not be
4392 one of the unused cells in the current misc block,
4393 and not be on the free-list. */
4394 return (offset >= 0
4395 && offset % sizeof b->markers[0] == 0
4396 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4397 && (b != marker_block
4398 || offset / sizeof b->markers[0] < marker_block_index)
4399 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4400 }
4401 else
4402 return 0;
4403 }
4404
4405
4406 /* Value is non-zero if P is a pointer to a live vector-like object.
4407 M is a pointer to the mem_block for P. */
4408
4409 static bool
4410 live_vector_p (struct mem_node *m, void *p)
4411 {
4412 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4413 {
4414 /* This memory node corresponds to a vector block. */
4415 struct vector_block *block = m->start;
4416 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4417
4418 /* P is in the block's allocation range. Scan the block
4419 up to P and see whether P points to the start of some
4420 vector which is not on a free list. FIXME: check whether
4421 some allocation patterns (probably a lot of short vectors)
4422 may cause a substantial overhead of this loop. */
4423 while (VECTOR_IN_BLOCK (vector, block)
4424 && vector <= (struct Lisp_Vector *) p)
4425 {
4426 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4427 return 1;
4428 else
4429 vector = ADVANCE (vector, vector_nbytes (vector));
4430 }
4431 }
4432 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4433 /* This memory node corresponds to a large vector. */
4434 return 1;
4435 return 0;
4436 }
4437
4438
4439 /* Value is non-zero if P is a pointer to a live buffer. M is a
4440 pointer to the mem_block for P. */
4441
4442 static bool
4443 live_buffer_p (struct mem_node *m, void *p)
4444 {
4445 /* P must point to the start of the block, and the buffer
4446 must not have been killed. */
4447 return (m->type == MEM_TYPE_BUFFER
4448 && p == m->start
4449 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4450 }
4451
4452 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4453
4454 #if GC_MARK_STACK
4455
4456 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4457
4458 /* Currently not used, but may be called from gdb. */
4459
4460 void dump_zombies (void) EXTERNALLY_VISIBLE;
4461
4462 /* Array of objects that are kept alive because the C stack contains
4463 a pattern that looks like a reference to them. */
4464
4465 #define MAX_ZOMBIES 10
4466 static Lisp_Object zombies[MAX_ZOMBIES];
4467
4468 /* Number of zombie objects. */
4469
4470 static EMACS_INT nzombies;
4471
4472 /* Number of garbage collections. */
4473
4474 static EMACS_INT ngcs;
4475
4476 /* Average percentage of zombies per collection. */
4477
4478 static double avg_zombies;
4479
4480 /* Max. number of live and zombie objects. */
4481
4482 static EMACS_INT max_live, max_zombies;
4483
4484 /* Average number of live objects per GC. */
4485
4486 static double avg_live;
4487
4488 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4489 doc: /* Show information about live and zombie objects. */)
4490 (void)
4491 {
4492 Lisp_Object args[8], zombie_list = Qnil;
4493 EMACS_INT i;
4494 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4495 zombie_list = Fcons (zombies[i], zombie_list);
4496 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4497 args[1] = make_number (ngcs);
4498 args[2] = make_float (avg_live);
4499 args[3] = make_float (avg_zombies);
4500 args[4] = make_float (avg_zombies / avg_live / 100);
4501 args[5] = make_number (max_live);
4502 args[6] = make_number (max_zombies);
4503 args[7] = zombie_list;
4504 return Fmessage (8, args);
4505 }
4506
4507 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4508
4509
4510 /* Mark OBJ if we can prove it's a Lisp_Object. */
4511
4512 static void
4513 mark_maybe_object (Lisp_Object obj)
4514 {
4515 void *po;
4516 struct mem_node *m;
4517
4518 #if USE_VALGRIND
4519 if (valgrind_p)
4520 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4521 #endif
4522
4523 if (INTEGERP (obj))
4524 return;
4525
4526 po = (void *) XPNTR (obj);
4527 m = mem_find (po);
4528
4529 if (m != MEM_NIL)
4530 {
4531 bool mark_p = 0;
4532
4533 switch (XTYPE (obj))
4534 {
4535 case Lisp_String:
4536 mark_p = (live_string_p (m, po)
4537 && !STRING_MARKED_P ((struct Lisp_String *) po));
4538 break;
4539
4540 case Lisp_Cons:
4541 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4542 break;
4543
4544 case Lisp_Symbol:
4545 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4546 break;
4547
4548 case Lisp_Float:
4549 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4550 break;
4551
4552 case Lisp_Vectorlike:
4553 /* Note: can't check BUFFERP before we know it's a
4554 buffer because checking that dereferences the pointer
4555 PO which might point anywhere. */
4556 if (live_vector_p (m, po))
4557 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4558 else if (live_buffer_p (m, po))
4559 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4560 break;
4561
4562 case Lisp_Misc:
4563 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4564 break;
4565
4566 default:
4567 break;
4568 }
4569
4570 if (mark_p)
4571 {
4572 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4573 if (nzombies < MAX_ZOMBIES)
4574 zombies[nzombies] = obj;
4575 ++nzombies;
4576 #endif
4577 mark_object (obj);
4578 }
4579 }
4580 }
4581
4582 /* Return true if P can point to Lisp data, and false otherwise.
4583 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4584 Otherwise, assume that Lisp data is aligned on even addresses. */
4585
4586 static bool
4587 maybe_lisp_pointer (void *p)
4588 {
4589 return !((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2));
4590 }
4591
4592 /* If P points to Lisp data, mark that as live if it isn't already
4593 marked. */
4594
4595 static void
4596 mark_maybe_pointer (void *p)
4597 {
4598 struct mem_node *m;
4599
4600 #if USE_VALGRIND
4601 if (valgrind_p)
4602 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4603 #endif
4604
4605 if (!maybe_lisp_pointer (p))
4606 return;
4607
4608 m = mem_find (p);
4609 if (m != MEM_NIL)
4610 {
4611 Lisp_Object obj = Qnil;
4612
4613 switch (m->type)
4614 {
4615 case MEM_TYPE_NON_LISP:
4616 case MEM_TYPE_SPARE:
4617 /* Nothing to do; not a pointer to Lisp memory. */
4618 break;
4619
4620 case MEM_TYPE_BUFFER:
4621 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4622 XSETVECTOR (obj, p);
4623 break;
4624
4625 case MEM_TYPE_CONS:
4626 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4627 XSETCONS (obj, p);
4628 break;
4629
4630 case MEM_TYPE_STRING:
4631 if (live_string_p (m, p)
4632 && !STRING_MARKED_P ((struct Lisp_String *) p))
4633 XSETSTRING (obj, p);
4634 break;
4635
4636 case MEM_TYPE_MISC:
4637 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4638 XSETMISC (obj, p);
4639 break;
4640
4641 case MEM_TYPE_SYMBOL:
4642 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4643 XSETSYMBOL (obj, p);
4644 break;
4645
4646 case MEM_TYPE_FLOAT:
4647 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4648 XSETFLOAT (obj, p);
4649 break;
4650
4651 case MEM_TYPE_VECTORLIKE:
4652 case MEM_TYPE_VECTOR_BLOCK:
4653 if (live_vector_p (m, p))
4654 {
4655 Lisp_Object tem;
4656 XSETVECTOR (tem, p);
4657 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4658 obj = tem;
4659 }
4660 break;
4661
4662 default:
4663 emacs_abort ();
4664 }
4665
4666 if (!NILP (obj))
4667 mark_object (obj);
4668 }
4669 }
4670
4671
4672 /* Alignment of pointer values. Use alignof, as it sometimes returns
4673 a smaller alignment than GCC's __alignof__ and mark_memory might
4674 miss objects if __alignof__ were used. */
4675 #define GC_POINTER_ALIGNMENT alignof (void *)
4676
4677 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4678 not suffice, which is the typical case. A host where a Lisp_Object is
4679 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4680 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4681 suffice to widen it to to a Lisp_Object and check it that way. */
4682 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4683 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4684 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4685 nor mark_maybe_object can follow the pointers. This should not occur on
4686 any practical porting target. */
4687 # error "MSB type bits straddle pointer-word boundaries"
4688 # endif
4689 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4690 pointer words that hold pointers ORed with type bits. */
4691 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4692 #else
4693 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4694 words that hold unmodified pointers. */
4695 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4696 #endif
4697
4698 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4699 or END+OFFSET..START. */
4700
4701 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4702 mark_memory (void *start, void *end)
4703 {
4704 void **pp;
4705 int i;
4706
4707 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4708 nzombies = 0;
4709 #endif
4710
4711 /* Make START the pointer to the start of the memory region,
4712 if it isn't already. */
4713 if (end < start)
4714 {
4715 void *tem = start;
4716 start = end;
4717 end = tem;
4718 }
4719
4720 /* Mark Lisp data pointed to. This is necessary because, in some
4721 situations, the C compiler optimizes Lisp objects away, so that
4722 only a pointer to them remains. Example:
4723
4724 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4725 ()
4726 {
4727 Lisp_Object obj = build_string ("test");
4728 struct Lisp_String *s = XSTRING (obj);
4729 Fgarbage_collect ();
4730 fprintf (stderr, "test `%s'\n", s->data);
4731 return Qnil;
4732 }
4733
4734 Here, `obj' isn't really used, and the compiler optimizes it
4735 away. The only reference to the life string is through the
4736 pointer `s'. */
4737
4738 for (pp = start; (void *) pp < end; pp++)
4739 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4740 {
4741 void *p = *(void **) ((char *) pp + i);
4742 mark_maybe_pointer (p);
4743 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4744 mark_maybe_object (XIL ((intptr_t) p));
4745 }
4746 }
4747
4748 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4749
4750 static bool setjmp_tested_p;
4751 static int longjmps_done;
4752
4753 #define SETJMP_WILL_LIKELY_WORK "\
4754 \n\
4755 Emacs garbage collector has been changed to use conservative stack\n\
4756 marking. Emacs has determined that the method it uses to do the\n\
4757 marking will likely work on your system, but this isn't sure.\n\
4758 \n\
4759 If you are a system-programmer, or can get the help of a local wizard\n\
4760 who is, please take a look at the function mark_stack in alloc.c, and\n\
4761 verify that the methods used are appropriate for your system.\n\
4762 \n\
4763 Please mail the result to <emacs-devel@gnu.org>.\n\
4764 "
4765
4766 #define SETJMP_WILL_NOT_WORK "\
4767 \n\
4768 Emacs garbage collector has been changed to use conservative stack\n\
4769 marking. Emacs has determined that the default method it uses to do the\n\
4770 marking will not work on your system. We will need a system-dependent\n\
4771 solution for your system.\n\
4772 \n\
4773 Please take a look at the function mark_stack in alloc.c, and\n\
4774 try to find a way to make it work on your system.\n\
4775 \n\
4776 Note that you may get false negatives, depending on the compiler.\n\
4777 In particular, you need to use -O with GCC for this test.\n\
4778 \n\
4779 Please mail the result to <emacs-devel@gnu.org>.\n\
4780 "
4781
4782
4783 /* Perform a quick check if it looks like setjmp saves registers in a
4784 jmp_buf. Print a message to stderr saying so. When this test
4785 succeeds, this is _not_ a proof that setjmp is sufficient for
4786 conservative stack marking. Only the sources or a disassembly
4787 can prove that. */
4788
4789 static void
4790 test_setjmp (void)
4791 {
4792 char buf[10];
4793 register int x;
4794 sys_jmp_buf jbuf;
4795
4796 /* Arrange for X to be put in a register. */
4797 sprintf (buf, "1");
4798 x = strlen (buf);
4799 x = 2 * x - 1;
4800
4801 sys_setjmp (jbuf);
4802 if (longjmps_done == 1)
4803 {
4804 /* Came here after the longjmp at the end of the function.
4805
4806 If x == 1, the longjmp has restored the register to its
4807 value before the setjmp, and we can hope that setjmp
4808 saves all such registers in the jmp_buf, although that
4809 isn't sure.
4810
4811 For other values of X, either something really strange is
4812 taking place, or the setjmp just didn't save the register. */
4813
4814 if (x == 1)
4815 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4816 else
4817 {
4818 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4819 exit (1);
4820 }
4821 }
4822
4823 ++longjmps_done;
4824 x = 2;
4825 if (longjmps_done == 1)
4826 sys_longjmp (jbuf, 1);
4827 }
4828
4829 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4830
4831
4832 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4833
4834 /* Abort if anything GCPRO'd doesn't survive the GC. */
4835
4836 static void
4837 check_gcpros (void)
4838 {
4839 struct gcpro *p;
4840 ptrdiff_t i;
4841
4842 for (p = gcprolist; p; p = p->next)
4843 for (i = 0; i < p->nvars; ++i)
4844 if (!survives_gc_p (p->var[i]))
4845 /* FIXME: It's not necessarily a bug. It might just be that the
4846 GCPRO is unnecessary or should release the object sooner. */
4847 emacs_abort ();
4848 }
4849
4850 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4851
4852 void
4853 dump_zombies (void)
4854 {
4855 int i;
4856
4857 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4858 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4859 {
4860 fprintf (stderr, " %d = ", i);
4861 debug_print (zombies[i]);
4862 }
4863 }
4864
4865 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4866
4867
4868 /* Mark live Lisp objects on the C stack.
4869
4870 There are several system-dependent problems to consider when
4871 porting this to new architectures:
4872
4873 Processor Registers
4874
4875 We have to mark Lisp objects in CPU registers that can hold local
4876 variables or are used to pass parameters.
4877
4878 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4879 something that either saves relevant registers on the stack, or
4880 calls mark_maybe_object passing it each register's contents.
4881
4882 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4883 implementation assumes that calling setjmp saves registers we need
4884 to see in a jmp_buf which itself lies on the stack. This doesn't
4885 have to be true! It must be verified for each system, possibly
4886 by taking a look at the source code of setjmp.
4887
4888 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4889 can use it as a machine independent method to store all registers
4890 to the stack. In this case the macros described in the previous
4891 two paragraphs are not used.
4892
4893 Stack Layout
4894
4895 Architectures differ in the way their processor stack is organized.
4896 For example, the stack might look like this
4897
4898 +----------------+
4899 | Lisp_Object | size = 4
4900 +----------------+
4901 | something else | size = 2
4902 +----------------+
4903 | Lisp_Object | size = 4
4904 +----------------+
4905 | ... |
4906
4907 In such a case, not every Lisp_Object will be aligned equally. To
4908 find all Lisp_Object on the stack it won't be sufficient to walk
4909 the stack in steps of 4 bytes. Instead, two passes will be
4910 necessary, one starting at the start of the stack, and a second
4911 pass starting at the start of the stack + 2. Likewise, if the
4912 minimal alignment of Lisp_Objects on the stack is 1, four passes
4913 would be necessary, each one starting with one byte more offset
4914 from the stack start. */
4915
4916 static void
4917 mark_stack (void *end)
4918 {
4919
4920 /* This assumes that the stack is a contiguous region in memory. If
4921 that's not the case, something has to be done here to iterate
4922 over the stack segments. */
4923 mark_memory (stack_base, end);
4924
4925 /* Allow for marking a secondary stack, like the register stack on the
4926 ia64. */
4927 #ifdef GC_MARK_SECONDARY_STACK
4928 GC_MARK_SECONDARY_STACK ();
4929 #endif
4930
4931 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4932 check_gcpros ();
4933 #endif
4934 }
4935
4936 #else /* GC_MARK_STACK == 0 */
4937
4938 #define mark_maybe_object(obj) emacs_abort ()
4939
4940 #endif /* GC_MARK_STACK != 0 */
4941
4942
4943 /* Determine whether it is safe to access memory at address P. */
4944 static int
4945 valid_pointer_p (void *p)
4946 {
4947 #ifdef WINDOWSNT
4948 return w32_valid_pointer_p (p, 16);
4949 #else
4950 int fd[2];
4951
4952 /* Obviously, we cannot just access it (we would SEGV trying), so we
4953 trick the o/s to tell us whether p is a valid pointer.
4954 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4955 not validate p in that case. */
4956
4957 if (emacs_pipe (fd) == 0)
4958 {
4959 bool valid = emacs_write (fd[1], p, 16) == 16;
4960 emacs_close (fd[1]);
4961 emacs_close (fd[0]);
4962 return valid;
4963 }
4964
4965 return -1;
4966 #endif
4967 }
4968
4969 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4970 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4971 cannot validate OBJ. This function can be quite slow, so its primary
4972 use is the manual debugging. The only exception is print_object, where
4973 we use it to check whether the memory referenced by the pointer of
4974 Lisp_Save_Value object contains valid objects. */
4975
4976 int
4977 valid_lisp_object_p (Lisp_Object obj)
4978 {
4979 void *p;
4980 #if GC_MARK_STACK
4981 struct mem_node *m;
4982 #endif
4983
4984 if (INTEGERP (obj))
4985 return 1;
4986
4987 p = (void *) XPNTR (obj);
4988 if (PURE_POINTER_P (p))
4989 return 1;
4990
4991 if (p == &buffer_defaults || p == &buffer_local_symbols)
4992 return 2;
4993
4994 #if !GC_MARK_STACK
4995 return valid_pointer_p (p);
4996 #else
4997
4998 m = mem_find (p);
4999
5000 if (m == MEM_NIL)
5001 {
5002 int valid = valid_pointer_p (p);
5003 if (valid <= 0)
5004 return valid;
5005
5006 if (SUBRP (obj))
5007 return 1;
5008
5009 return 0;
5010 }
5011
5012 switch (m->type)
5013 {
5014 case MEM_TYPE_NON_LISP:
5015 case MEM_TYPE_SPARE:
5016 return 0;
5017
5018 case MEM_TYPE_BUFFER:
5019 return live_buffer_p (m, p) ? 1 : 2;
5020
5021 case MEM_TYPE_CONS:
5022 return live_cons_p (m, p);
5023
5024 case MEM_TYPE_STRING:
5025 return live_string_p (m, p);
5026
5027 case MEM_TYPE_MISC:
5028 return live_misc_p (m, p);
5029
5030 case MEM_TYPE_SYMBOL:
5031 return live_symbol_p (m, p);
5032
5033 case MEM_TYPE_FLOAT:
5034 return live_float_p (m, p);
5035
5036 case MEM_TYPE_VECTORLIKE:
5037 case MEM_TYPE_VECTOR_BLOCK:
5038 return live_vector_p (m, p);
5039
5040 default:
5041 break;
5042 }
5043
5044 return 0;
5045 #endif
5046 }
5047
5048 /* If GC_MARK_STACK, return 1 if STR is a relocatable data of Lisp_String
5049 (i.e. there is a non-pure Lisp_Object X so that SDATA (X) == STR) and 0
5050 if not. Otherwise we can't rely on valid_lisp_object_p and return -1.
5051 This function is slow and should be used for debugging purposes. */
5052
5053 int
5054 relocatable_string_data_p (const char *str)
5055 {
5056 if (PURE_POINTER_P (str))
5057 return 0;
5058 #if GC_MARK_STACK
5059 if (str)
5060 {
5061 struct sdata *sdata
5062 = (struct sdata *) (str - offsetof (struct sdata, data));
5063
5064 if (valid_pointer_p (sdata)
5065 && valid_pointer_p (sdata->string)
5066 && maybe_lisp_pointer (sdata->string))
5067 return (valid_lisp_object_p
5068 (make_lisp_ptr (sdata->string, Lisp_String))
5069 && (const char *) sdata->string->data == str);
5070 }
5071 return 0;
5072 #endif /* GC_MARK_STACK */
5073 return -1;
5074 }
5075
5076 /***********************************************************************
5077 Pure Storage Management
5078 ***********************************************************************/
5079
5080 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5081 pointer to it. TYPE is the Lisp type for which the memory is
5082 allocated. TYPE < 0 means it's not used for a Lisp object. */
5083
5084 static void *
5085 pure_alloc (size_t size, int type)
5086 {
5087 void *result;
5088 #if USE_LSB_TAG
5089 size_t alignment = GCALIGNMENT;
5090 #else
5091 size_t alignment = alignof (EMACS_INT);
5092
5093 /* Give Lisp_Floats an extra alignment. */
5094 if (type == Lisp_Float)
5095 alignment = alignof (struct Lisp_Float);
5096 #endif
5097
5098 again:
5099 if (type >= 0)
5100 {
5101 /* Allocate space for a Lisp object from the beginning of the free
5102 space with taking account of alignment. */
5103 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5104 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5105 }
5106 else
5107 {
5108 /* Allocate space for a non-Lisp object from the end of the free
5109 space. */
5110 pure_bytes_used_non_lisp += size;
5111 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5112 }
5113 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5114
5115 if (pure_bytes_used <= pure_size)
5116 return result;
5117
5118 /* Don't allocate a large amount here,
5119 because it might get mmap'd and then its address
5120 might not be usable. */
5121 purebeg = xmalloc (10000);
5122 pure_size = 10000;
5123 pure_bytes_used_before_overflow += pure_bytes_used - size;
5124 pure_bytes_used = 0;
5125 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5126 goto again;
5127 }
5128
5129
5130 /* Print a warning if PURESIZE is too small. */
5131
5132 void
5133 check_pure_size (void)
5134 {
5135 if (pure_bytes_used_before_overflow)
5136 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5137 " bytes needed)"),
5138 pure_bytes_used + pure_bytes_used_before_overflow);
5139 }
5140
5141
5142 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5143 the non-Lisp data pool of the pure storage, and return its start
5144 address. Return NULL if not found. */
5145
5146 static char *
5147 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5148 {
5149 int i;
5150 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5151 const unsigned char *p;
5152 char *non_lisp_beg;
5153
5154 if (pure_bytes_used_non_lisp <= nbytes)
5155 return NULL;
5156
5157 /* Set up the Boyer-Moore table. */
5158 skip = nbytes + 1;
5159 for (i = 0; i < 256; i++)
5160 bm_skip[i] = skip;
5161
5162 p = (const unsigned char *) data;
5163 while (--skip > 0)
5164 bm_skip[*p++] = skip;
5165
5166 last_char_skip = bm_skip['\0'];
5167
5168 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5169 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5170
5171 /* See the comments in the function `boyer_moore' (search.c) for the
5172 use of `infinity'. */
5173 infinity = pure_bytes_used_non_lisp + 1;
5174 bm_skip['\0'] = infinity;
5175
5176 p = (const unsigned char *) non_lisp_beg + nbytes;
5177 start = 0;
5178 do
5179 {
5180 /* Check the last character (== '\0'). */
5181 do
5182 {
5183 start += bm_skip[*(p + start)];
5184 }
5185 while (start <= start_max);
5186
5187 if (start < infinity)
5188 /* Couldn't find the last character. */
5189 return NULL;
5190
5191 /* No less than `infinity' means we could find the last
5192 character at `p[start - infinity]'. */
5193 start -= infinity;
5194
5195 /* Check the remaining characters. */
5196 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5197 /* Found. */
5198 return non_lisp_beg + start;
5199
5200 start += last_char_skip;
5201 }
5202 while (start <= start_max);
5203
5204 return NULL;
5205 }
5206
5207
5208 /* Return a string allocated in pure space. DATA is a buffer holding
5209 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5210 means make the result string multibyte.
5211
5212 Must get an error if pure storage is full, since if it cannot hold
5213 a large string it may be able to hold conses that point to that
5214 string; then the string is not protected from gc. */
5215
5216 Lisp_Object
5217 make_pure_string (const char *data,
5218 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5219 {
5220 Lisp_Object string;
5221 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5222 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5223 if (s->data == NULL)
5224 {
5225 s->data = pure_alloc (nbytes + 1, -1);
5226 memcpy (s->data, data, nbytes);
5227 s->data[nbytes] = '\0';
5228 }
5229 s->size = nchars;
5230 s->size_byte = multibyte ? nbytes : -1;
5231 s->intervals = NULL;
5232 XSETSTRING (string, s);
5233 return string;
5234 }
5235
5236 /* Return a string allocated in pure space. Do not
5237 allocate the string data, just point to DATA. */
5238
5239 Lisp_Object
5240 make_pure_c_string (const char *data, ptrdiff_t nchars)
5241 {
5242 Lisp_Object string;
5243 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5244 s->size = nchars;
5245 s->size_byte = -1;
5246 s->data = (unsigned char *) data;
5247 s->intervals = NULL;
5248 XSETSTRING (string, s);
5249 return string;
5250 }
5251
5252 static Lisp_Object purecopy (Lisp_Object obj);
5253
5254 /* Return a cons allocated from pure space. Give it pure copies
5255 of CAR as car and CDR as cdr. */
5256
5257 Lisp_Object
5258 pure_cons (Lisp_Object car, Lisp_Object cdr)
5259 {
5260 Lisp_Object new;
5261 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5262 XSETCONS (new, p);
5263 XSETCAR (new, purecopy (car));
5264 XSETCDR (new, purecopy (cdr));
5265 return new;
5266 }
5267
5268
5269 /* Value is a float object with value NUM allocated from pure space. */
5270
5271 static Lisp_Object
5272 make_pure_float (double num)
5273 {
5274 Lisp_Object new;
5275 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5276 XSETFLOAT (new, p);
5277 XFLOAT_INIT (new, num);
5278 return new;
5279 }
5280
5281
5282 /* Return a vector with room for LEN Lisp_Objects allocated from
5283 pure space. */
5284
5285 static Lisp_Object
5286 make_pure_vector (ptrdiff_t len)
5287 {
5288 Lisp_Object new;
5289 size_t size = header_size + len * word_size;
5290 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5291 XSETVECTOR (new, p);
5292 XVECTOR (new)->header.size = len;
5293 return new;
5294 }
5295
5296
5297 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5298 doc: /* Make a copy of object OBJ in pure storage.
5299 Recursively copies contents of vectors and cons cells.
5300 Does not copy symbols. Copies strings without text properties. */)
5301 (register Lisp_Object obj)
5302 {
5303 if (NILP (Vpurify_flag))
5304 return obj;
5305 else if (MARKERP (obj) || OVERLAYP (obj)
5306 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5307 /* Can't purify those. */
5308 return obj;
5309 else
5310 return purecopy (obj);
5311 }
5312
5313 static Lisp_Object
5314 purecopy (Lisp_Object obj)
5315 {
5316 if (PURE_POINTER_P (XPNTR (obj)) || INTEGERP (obj) || SUBRP (obj))
5317 return obj; /* Already pure. */
5318
5319 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5320 {
5321 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5322 if (!NILP (tmp))
5323 return tmp;
5324 }
5325
5326 if (CONSP (obj))
5327 obj = pure_cons (XCAR (obj), XCDR (obj));
5328 else if (FLOATP (obj))
5329 obj = make_pure_float (XFLOAT_DATA (obj));
5330 else if (STRINGP (obj))
5331 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5332 SBYTES (obj),
5333 STRING_MULTIBYTE (obj));
5334 else if (COMPILEDP (obj) || VECTORP (obj))
5335 {
5336 register struct Lisp_Vector *vec;
5337 register ptrdiff_t i;
5338 ptrdiff_t size;
5339
5340 size = ASIZE (obj);
5341 if (size & PSEUDOVECTOR_FLAG)
5342 size &= PSEUDOVECTOR_SIZE_MASK;
5343 vec = XVECTOR (make_pure_vector (size));
5344 for (i = 0; i < size; i++)
5345 vec->contents[i] = purecopy (AREF (obj, i));
5346 if (COMPILEDP (obj))
5347 {
5348 XSETPVECTYPE (vec, PVEC_COMPILED);
5349 XSETCOMPILED (obj, vec);
5350 }
5351 else
5352 XSETVECTOR (obj, vec);
5353 }
5354 else if (SYMBOLP (obj))
5355 {
5356 if (!XSYMBOL (obj)->pinned)
5357 { /* We can't purify them, but they appear in many pure objects.
5358 Mark them as `pinned' so we know to mark them at every GC cycle. */
5359 XSYMBOL (obj)->pinned = true;
5360 symbol_block_pinned = symbol_block;
5361 }
5362 return obj;
5363 }
5364 else
5365 {
5366 Lisp_Object args[2];
5367 args[0] = build_pure_c_string ("Don't know how to purify: %S");
5368 args[1] = obj;
5369 Fsignal (Qerror, (Fcons (Fformat (2, args), Qnil)));
5370 }
5371
5372 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5373 Fputhash (obj, obj, Vpurify_flag);
5374
5375 return obj;
5376 }
5377
5378
5379 \f
5380 /***********************************************************************
5381 Protection from GC
5382 ***********************************************************************/
5383
5384 /* Put an entry in staticvec, pointing at the variable with address
5385 VARADDRESS. */
5386
5387 void
5388 staticpro (Lisp_Object *varaddress)
5389 {
5390 if (staticidx >= NSTATICS)
5391 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5392 staticvec[staticidx++] = varaddress;
5393 }
5394
5395 \f
5396 /***********************************************************************
5397 Protection from GC
5398 ***********************************************************************/
5399
5400 /* Temporarily prevent garbage collection. */
5401
5402 ptrdiff_t
5403 inhibit_garbage_collection (void)
5404 {
5405 ptrdiff_t count = SPECPDL_INDEX ();
5406
5407 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5408 return count;
5409 }
5410
5411 /* Used to avoid possible overflows when
5412 converting from C to Lisp integers. */
5413
5414 static Lisp_Object
5415 bounded_number (EMACS_INT number)
5416 {
5417 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5418 }
5419
5420 /* Calculate total bytes of live objects. */
5421
5422 static size_t
5423 total_bytes_of_live_objects (void)
5424 {
5425 size_t tot = 0;
5426 tot += total_conses * sizeof (struct Lisp_Cons);
5427 tot += total_symbols * sizeof (struct Lisp_Symbol);
5428 tot += total_markers * sizeof (union Lisp_Misc);
5429 tot += total_string_bytes;
5430 tot += total_vector_slots * word_size;
5431 tot += total_floats * sizeof (struct Lisp_Float);
5432 tot += total_intervals * sizeof (struct interval);
5433 tot += total_strings * sizeof (struct Lisp_String);
5434 return tot;
5435 }
5436
5437 #ifdef HAVE_WINDOW_SYSTEM
5438
5439 /* This code has a few issues on MS-Windows, see Bug#15876 and Bug#16140. */
5440
5441 #if !defined (HAVE_NTGUI)
5442
5443 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5444 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5445
5446 static Lisp_Object
5447 compact_font_cache_entry (Lisp_Object entry)
5448 {
5449 Lisp_Object tail, *prev = &entry;
5450
5451 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5452 {
5453 bool drop = 0;
5454 Lisp_Object obj = XCAR (tail);
5455
5456 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5457 if (CONSP (obj) && FONT_SPEC_P (XCAR (obj))
5458 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj)))
5459 && VECTORP (XCDR (obj)))
5460 {
5461 ptrdiff_t i, size = ASIZE (XCDR (obj)) & ~ARRAY_MARK_FLAG;
5462
5463 /* If font-spec is not marked, most likely all font-entities
5464 are not marked too. But we must be sure that nothing is
5465 marked within OBJ before we really drop it. */
5466 for (i = 0; i < size; i++)
5467 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj), i))))
5468 break;
5469
5470 if (i == size)
5471 drop = 1;
5472 }
5473 if (drop)
5474 *prev = XCDR (tail);
5475 else
5476 prev = xcdr_addr (tail);
5477 }
5478 return entry;
5479 }
5480
5481 #endif /* not HAVE_NTGUI */
5482
5483 /* Compact font caches on all terminals and mark
5484 everything which is still here after compaction. */
5485
5486 static void
5487 compact_font_caches (void)
5488 {
5489 struct terminal *t;
5490
5491 for (t = terminal_list; t; t = t->next_terminal)
5492 {
5493 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5494 #if !defined (HAVE_NTGUI)
5495 if (CONSP (cache))
5496 {
5497 Lisp_Object entry;
5498
5499 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5500 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5501 }
5502 #endif /* not HAVE_NTGUI */
5503 mark_object (cache);
5504 }
5505 }
5506
5507 #else /* not HAVE_WINDOW_SYSTEM */
5508
5509 #define compact_font_caches() (void)(0)
5510
5511 #endif /* HAVE_WINDOW_SYSTEM */
5512
5513 /* Remove (MARKER . DATA) entries with unmarked MARKER
5514 from buffer undo LIST and return changed list. */
5515
5516 static Lisp_Object
5517 compact_undo_list (Lisp_Object list)
5518 {
5519 Lisp_Object tail, *prev = &list;
5520
5521 for (tail = list; CONSP (tail); tail = XCDR (tail))
5522 {
5523 if (CONSP (XCAR (tail))
5524 && MARKERP (XCAR (XCAR (tail)))
5525 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5526 *prev = XCDR (tail);
5527 else
5528 prev = xcdr_addr (tail);
5529 }
5530 return list;
5531 }
5532
5533 static void
5534 mark_pinned_symbols (void)
5535 {
5536 struct symbol_block *sblk;
5537 int lim = (symbol_block_pinned == symbol_block
5538 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5539
5540 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5541 {
5542 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5543 for (; sym < end; ++sym)
5544 if (sym->s.pinned)
5545 mark_object (make_lisp_ptr (&sym->s, Lisp_Symbol));
5546
5547 lim = SYMBOL_BLOCK_SIZE;
5548 }
5549 }
5550
5551 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5552 separate function so that we could limit mark_stack in searching
5553 the stack frames below this function, thus avoiding the rare cases
5554 where mark_stack finds values that look like live Lisp objects on
5555 portions of stack that couldn't possibly contain such live objects.
5556 For more details of this, see the discussion at
5557 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5558 static Lisp_Object
5559 garbage_collect_1 (void *end)
5560 {
5561 struct buffer *nextb;
5562 char stack_top_variable;
5563 ptrdiff_t i;
5564 bool message_p;
5565 ptrdiff_t count = SPECPDL_INDEX ();
5566 struct timespec start;
5567 Lisp_Object retval = Qnil;
5568 size_t tot_before = 0;
5569
5570 if (abort_on_gc)
5571 emacs_abort ();
5572
5573 /* Can't GC if pure storage overflowed because we can't determine
5574 if something is a pure object or not. */
5575 if (pure_bytes_used_before_overflow)
5576 return Qnil;
5577
5578 /* Record this function, so it appears on the profiler's backtraces. */
5579 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5580
5581 check_cons_list ();
5582
5583 /* Don't keep undo information around forever.
5584 Do this early on, so it is no problem if the user quits. */
5585 FOR_EACH_BUFFER (nextb)
5586 compact_buffer (nextb);
5587
5588 if (profiler_memory_running)
5589 tot_before = total_bytes_of_live_objects ();
5590
5591 start = current_timespec ();
5592
5593 /* In case user calls debug_print during GC,
5594 don't let that cause a recursive GC. */
5595 consing_since_gc = 0;
5596
5597 /* Save what's currently displayed in the echo area. */
5598 message_p = push_message ();
5599 record_unwind_protect_void (pop_message_unwind);
5600
5601 /* Save a copy of the contents of the stack, for debugging. */
5602 #if MAX_SAVE_STACK > 0
5603 if (NILP (Vpurify_flag))
5604 {
5605 char *stack;
5606 ptrdiff_t stack_size;
5607 if (&stack_top_variable < stack_bottom)
5608 {
5609 stack = &stack_top_variable;
5610 stack_size = stack_bottom - &stack_top_variable;
5611 }
5612 else
5613 {
5614 stack = stack_bottom;
5615 stack_size = &stack_top_variable - stack_bottom;
5616 }
5617 if (stack_size <= MAX_SAVE_STACK)
5618 {
5619 if (stack_copy_size < stack_size)
5620 {
5621 stack_copy = xrealloc (stack_copy, stack_size);
5622 stack_copy_size = stack_size;
5623 }
5624 no_sanitize_memcpy (stack_copy, stack, stack_size);
5625 }
5626 }
5627 #endif /* MAX_SAVE_STACK > 0 */
5628
5629 if (garbage_collection_messages)
5630 message1_nolog ("Garbage collecting...");
5631
5632 block_input ();
5633
5634 shrink_regexp_cache ();
5635
5636 gc_in_progress = 1;
5637
5638 /* Mark all the special slots that serve as the roots of accessibility. */
5639
5640 mark_buffer (&buffer_defaults);
5641 mark_buffer (&buffer_local_symbols);
5642
5643 for (i = 0; i < staticidx; i++)
5644 mark_object (*staticvec[i]);
5645
5646 mark_pinned_symbols ();
5647 mark_specpdl ();
5648 mark_terminals ();
5649 mark_kboards ();
5650
5651 #ifdef USE_GTK
5652 xg_mark_data ();
5653 #endif
5654
5655 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5656 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5657 mark_stack (end);
5658 #else
5659 {
5660 register struct gcpro *tail;
5661 for (tail = gcprolist; tail; tail = tail->next)
5662 for (i = 0; i < tail->nvars; i++)
5663 mark_object (tail->var[i]);
5664 }
5665 mark_byte_stack ();
5666 #endif
5667 {
5668 struct handler *handler;
5669 for (handler = handlerlist; handler; handler = handler->next)
5670 {
5671 mark_object (handler->tag_or_ch);
5672 mark_object (handler->val);
5673 }
5674 }
5675 #ifdef HAVE_WINDOW_SYSTEM
5676 mark_fringe_data ();
5677 #endif
5678
5679 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5680 mark_stack (end);
5681 #endif
5682
5683 /* Everything is now marked, except for the data in font caches
5684 and undo lists. They're compacted by removing an items which
5685 aren't reachable otherwise. */
5686
5687 compact_font_caches ();
5688
5689 FOR_EACH_BUFFER (nextb)
5690 {
5691 if (!EQ (BVAR (nextb, undo_list), Qt))
5692 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5693 /* Now that we have stripped the elements that need not be
5694 in the undo_list any more, we can finally mark the list. */
5695 mark_object (BVAR (nextb, undo_list));
5696 }
5697
5698 gc_sweep ();
5699
5700 /* Clear the mark bits that we set in certain root slots. */
5701
5702 unmark_byte_stack ();
5703 VECTOR_UNMARK (&buffer_defaults);
5704 VECTOR_UNMARK (&buffer_local_symbols);
5705
5706 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5707 dump_zombies ();
5708 #endif
5709
5710 check_cons_list ();
5711
5712 gc_in_progress = 0;
5713
5714 unblock_input ();
5715
5716 consing_since_gc = 0;
5717 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5718 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5719
5720 gc_relative_threshold = 0;
5721 if (FLOATP (Vgc_cons_percentage))
5722 { /* Set gc_cons_combined_threshold. */
5723 double tot = total_bytes_of_live_objects ();
5724
5725 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5726 if (0 < tot)
5727 {
5728 if (tot < TYPE_MAXIMUM (EMACS_INT))
5729 gc_relative_threshold = tot;
5730 else
5731 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5732 }
5733 }
5734
5735 if (garbage_collection_messages)
5736 {
5737 if (message_p || minibuf_level > 0)
5738 restore_message ();
5739 else
5740 message1_nolog ("Garbage collecting...done");
5741 }
5742
5743 unbind_to (count, Qnil);
5744 {
5745 Lisp_Object total[11];
5746 int total_size = 10;
5747
5748 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5749 bounded_number (total_conses),
5750 bounded_number (total_free_conses));
5751
5752 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5753 bounded_number (total_symbols),
5754 bounded_number (total_free_symbols));
5755
5756 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5757 bounded_number (total_markers),
5758 bounded_number (total_free_markers));
5759
5760 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5761 bounded_number (total_strings),
5762 bounded_number (total_free_strings));
5763
5764 total[4] = list3 (Qstring_bytes, make_number (1),
5765 bounded_number (total_string_bytes));
5766
5767 total[5] = list3 (Qvectors,
5768 make_number (header_size + sizeof (Lisp_Object)),
5769 bounded_number (total_vectors));
5770
5771 total[6] = list4 (Qvector_slots, make_number (word_size),
5772 bounded_number (total_vector_slots),
5773 bounded_number (total_free_vector_slots));
5774
5775 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5776 bounded_number (total_floats),
5777 bounded_number (total_free_floats));
5778
5779 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5780 bounded_number (total_intervals),
5781 bounded_number (total_free_intervals));
5782
5783 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5784 bounded_number (total_buffers));
5785
5786 #ifdef DOUG_LEA_MALLOC
5787 total_size++;
5788 total[10] = list4 (Qheap, make_number (1024),
5789 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5790 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5791 #endif
5792 retval = Flist (total_size, total);
5793 }
5794
5795 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5796 {
5797 /* Compute average percentage of zombies. */
5798 double nlive
5799 = (total_conses + total_symbols + total_markers + total_strings
5800 + total_vectors + total_floats + total_intervals + total_buffers);
5801
5802 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5803 max_live = max (nlive, max_live);
5804 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5805 max_zombies = max (nzombies, max_zombies);
5806 ++ngcs;
5807 }
5808 #endif
5809
5810 if (!NILP (Vpost_gc_hook))
5811 {
5812 ptrdiff_t gc_count = inhibit_garbage_collection ();
5813 safe_run_hooks (Qpost_gc_hook);
5814 unbind_to (gc_count, Qnil);
5815 }
5816
5817 /* Accumulate statistics. */
5818 if (FLOATP (Vgc_elapsed))
5819 {
5820 struct timespec since_start = timespec_sub (current_timespec (), start);
5821 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5822 + timespectod (since_start));
5823 }
5824
5825 gcs_done++;
5826
5827 /* Collect profiling data. */
5828 if (profiler_memory_running)
5829 {
5830 size_t swept = 0;
5831 size_t tot_after = total_bytes_of_live_objects ();
5832 if (tot_before > tot_after)
5833 swept = tot_before - tot_after;
5834 malloc_probe (swept);
5835 }
5836
5837 return retval;
5838 }
5839
5840 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5841 doc: /* Reclaim storage for Lisp objects no longer needed.
5842 Garbage collection happens automatically if you cons more than
5843 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5844 `garbage-collect' normally returns a list with info on amount of space in use,
5845 where each entry has the form (NAME SIZE USED FREE), where:
5846 - NAME is a symbol describing the kind of objects this entry represents,
5847 - SIZE is the number of bytes used by each one,
5848 - USED is the number of those objects that were found live in the heap,
5849 - FREE is the number of those objects that are not live but that Emacs
5850 keeps around for future allocations (maybe because it does not know how
5851 to return them to the OS).
5852 However, if there was overflow in pure space, `garbage-collect'
5853 returns nil, because real GC can't be done.
5854 See Info node `(elisp)Garbage Collection'. */)
5855 (void)
5856 {
5857 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5858 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS \
5859 || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
5860 void *end;
5861
5862 #ifdef HAVE___BUILTIN_UNWIND_INIT
5863 /* Force callee-saved registers and register windows onto the stack.
5864 This is the preferred method if available, obviating the need for
5865 machine dependent methods. */
5866 __builtin_unwind_init ();
5867 end = &end;
5868 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5869 #ifndef GC_SAVE_REGISTERS_ON_STACK
5870 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5871 union aligned_jmpbuf {
5872 Lisp_Object o;
5873 sys_jmp_buf j;
5874 } j;
5875 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
5876 #endif
5877 /* This trick flushes the register windows so that all the state of
5878 the process is contained in the stack. */
5879 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5880 needed on ia64 too. See mach_dep.c, where it also says inline
5881 assembler doesn't work with relevant proprietary compilers. */
5882 #ifdef __sparc__
5883 #if defined (__sparc64__) && defined (__FreeBSD__)
5884 /* FreeBSD does not have a ta 3 handler. */
5885 asm ("flushw");
5886 #else
5887 asm ("ta 3");
5888 #endif
5889 #endif
5890
5891 /* Save registers that we need to see on the stack. We need to see
5892 registers used to hold register variables and registers used to
5893 pass parameters. */
5894 #ifdef GC_SAVE_REGISTERS_ON_STACK
5895 GC_SAVE_REGISTERS_ON_STACK (end);
5896 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5897
5898 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5899 setjmp will definitely work, test it
5900 and print a message with the result
5901 of the test. */
5902 if (!setjmp_tested_p)
5903 {
5904 setjmp_tested_p = 1;
5905 test_setjmp ();
5906 }
5907 #endif /* GC_SETJMP_WORKS */
5908
5909 sys_setjmp (j.j);
5910 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
5911 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5912 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5913 return garbage_collect_1 (end);
5914 #elif (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE)
5915 /* Old GCPROs-based method without stack marking. */
5916 return garbage_collect_1 (NULL);
5917 #else
5918 emacs_abort ();
5919 #endif /* GC_MARK_STACK */
5920 }
5921
5922 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5923 only interesting objects referenced from glyphs are strings. */
5924
5925 static void
5926 mark_glyph_matrix (struct glyph_matrix *matrix)
5927 {
5928 struct glyph_row *row = matrix->rows;
5929 struct glyph_row *end = row + matrix->nrows;
5930
5931 for (; row < end; ++row)
5932 if (row->enabled_p)
5933 {
5934 int area;
5935 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5936 {
5937 struct glyph *glyph = row->glyphs[area];
5938 struct glyph *end_glyph = glyph + row->used[area];
5939
5940 for (; glyph < end_glyph; ++glyph)
5941 if (STRINGP (glyph->object)
5942 && !STRING_MARKED_P (XSTRING (glyph->object)))
5943 mark_object (glyph->object);
5944 }
5945 }
5946 }
5947
5948 /* Mark reference to a Lisp_Object.
5949 If the object referred to has not been seen yet, recursively mark
5950 all the references contained in it. */
5951
5952 #define LAST_MARKED_SIZE 500
5953 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5954 static int last_marked_index;
5955
5956 /* For debugging--call abort when we cdr down this many
5957 links of a list, in mark_object. In debugging,
5958 the call to abort will hit a breakpoint.
5959 Normally this is zero and the check never goes off. */
5960 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5961
5962 static void
5963 mark_vectorlike (struct Lisp_Vector *ptr)
5964 {
5965 ptrdiff_t size = ptr->header.size;
5966 ptrdiff_t i;
5967
5968 eassert (!VECTOR_MARKED_P (ptr));
5969 VECTOR_MARK (ptr); /* Else mark it. */
5970 if (size & PSEUDOVECTOR_FLAG)
5971 size &= PSEUDOVECTOR_SIZE_MASK;
5972
5973 /* Note that this size is not the memory-footprint size, but only
5974 the number of Lisp_Object fields that we should trace.
5975 The distinction is used e.g. by Lisp_Process which places extra
5976 non-Lisp_Object fields at the end of the structure... */
5977 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5978 mark_object (ptr->contents[i]);
5979 }
5980
5981 /* Like mark_vectorlike but optimized for char-tables (and
5982 sub-char-tables) assuming that the contents are mostly integers or
5983 symbols. */
5984
5985 static void
5986 mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
5987 {
5988 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5989 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
5990 int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);
5991
5992 eassert (!VECTOR_MARKED_P (ptr));
5993 VECTOR_MARK (ptr);
5994 for (i = idx; i < size; i++)
5995 {
5996 Lisp_Object val = ptr->contents[i];
5997
5998 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5999 continue;
6000 if (SUB_CHAR_TABLE_P (val))
6001 {
6002 if (! VECTOR_MARKED_P (XVECTOR (val)))
6003 mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
6004 }
6005 else
6006 mark_object (val);
6007 }
6008 }
6009
6010 NO_INLINE /* To reduce stack depth in mark_object. */
6011 static Lisp_Object
6012 mark_compiled (struct Lisp_Vector *ptr)
6013 {
6014 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6015
6016 VECTOR_MARK (ptr);
6017 for (i = 0; i < size; i++)
6018 if (i != COMPILED_CONSTANTS)
6019 mark_object (ptr->contents[i]);
6020 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
6021 }
6022
6023 /* Mark the chain of overlays starting at PTR. */
6024
6025 static void
6026 mark_overlay (struct Lisp_Overlay *ptr)
6027 {
6028 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
6029 {
6030 ptr->gcmarkbit = 1;
6031 mark_object (ptr->start);
6032 mark_object (ptr->end);
6033 mark_object (ptr->plist);
6034 }
6035 }
6036
6037 /* Mark Lisp_Objects and special pointers in BUFFER. */
6038
6039 static void
6040 mark_buffer (struct buffer *buffer)
6041 {
6042 /* This is handled much like other pseudovectors... */
6043 mark_vectorlike ((struct Lisp_Vector *) buffer);
6044
6045 /* ...but there are some buffer-specific things. */
6046
6047 MARK_INTERVAL_TREE (buffer_intervals (buffer));
6048
6049 /* For now, we just don't mark the undo_list. It's done later in
6050 a special way just before the sweep phase, and after stripping
6051 some of its elements that are not needed any more. */
6052
6053 mark_overlay (buffer->overlays_before);
6054 mark_overlay (buffer->overlays_after);
6055
6056 /* If this is an indirect buffer, mark its base buffer. */
6057 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6058 mark_buffer (buffer->base_buffer);
6059 }
6060
6061 /* Mark Lisp faces in the face cache C. */
6062
6063 NO_INLINE /* To reduce stack depth in mark_object. */
6064 static void
6065 mark_face_cache (struct face_cache *c)
6066 {
6067 if (c)
6068 {
6069 int i, j;
6070 for (i = 0; i < c->used; ++i)
6071 {
6072 struct face *face = FACE_FROM_ID (c->f, i);
6073
6074 if (face)
6075 {
6076 if (face->font && !VECTOR_MARKED_P (face->font))
6077 mark_vectorlike ((struct Lisp_Vector *) face->font);
6078
6079 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
6080 mark_object (face->lface[j]);
6081 }
6082 }
6083 }
6084 }
6085
6086 NO_INLINE /* To reduce stack depth in mark_object. */
6087 static void
6088 mark_localized_symbol (struct Lisp_Symbol *ptr)
6089 {
6090 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6091 Lisp_Object where = blv->where;
6092 /* If the value is set up for a killed buffer or deleted
6093 frame, restore its global binding. If the value is
6094 forwarded to a C variable, either it's not a Lisp_Object
6095 var, or it's staticpro'd already. */
6096 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6097 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6098 swap_in_global_binding (ptr);
6099 mark_object (blv->where);
6100 mark_object (blv->valcell);
6101 mark_object (blv->defcell);
6102 }
6103
6104 NO_INLINE /* To reduce stack depth in mark_object. */
6105 static void
6106 mark_save_value (struct Lisp_Save_Value *ptr)
6107 {
6108 /* If `save_type' is zero, `data[0].pointer' is the address
6109 of a memory area containing `data[1].integer' potential
6110 Lisp_Objects. */
6111 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6112 {
6113 Lisp_Object *p = ptr->data[0].pointer;
6114 ptrdiff_t nelt;
6115 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6116 mark_maybe_object (*p);
6117 }
6118 else
6119 {
6120 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6121 int i;
6122 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6123 if (save_type (ptr, i) == SAVE_OBJECT)
6124 mark_object (ptr->data[i].object);
6125 }
6126 }
6127
6128 /* Remove killed buffers or items whose car is a killed buffer from
6129 LIST, and mark other items. Return changed LIST, which is marked. */
6130
6131 static Lisp_Object
6132 mark_discard_killed_buffers (Lisp_Object list)
6133 {
6134 Lisp_Object tail, *prev = &list;
6135
6136 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6137 tail = XCDR (tail))
6138 {
6139 Lisp_Object tem = XCAR (tail);
6140 if (CONSP (tem))
6141 tem = XCAR (tem);
6142 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6143 *prev = XCDR (tail);
6144 else
6145 {
6146 CONS_MARK (XCONS (tail));
6147 mark_object (XCAR (tail));
6148 prev = xcdr_addr (tail);
6149 }
6150 }
6151 mark_object (tail);
6152 return list;
6153 }
6154
6155 /* Determine type of generic Lisp_Object and mark it accordingly.
6156
6157 This function implements a straightforward depth-first marking
6158 algorithm and so the recursion depth may be very high (a few
6159 tens of thousands is not uncommon). To minimize stack usage,
6160 a few cold paths are moved out to NO_INLINE functions above.
6161 In general, inlining them doesn't help you to gain more speed. */
6162
6163 void
6164 mark_object (Lisp_Object arg)
6165 {
6166 register Lisp_Object obj = arg;
6167 #ifdef GC_CHECK_MARKED_OBJECTS
6168 void *po;
6169 struct mem_node *m;
6170 #endif
6171 ptrdiff_t cdr_count = 0;
6172
6173 loop:
6174
6175 if (PURE_POINTER_P (XPNTR (obj)))
6176 return;
6177
6178 last_marked[last_marked_index++] = obj;
6179 if (last_marked_index == LAST_MARKED_SIZE)
6180 last_marked_index = 0;
6181
6182 /* Perform some sanity checks on the objects marked here. Abort if
6183 we encounter an object we know is bogus. This increases GC time
6184 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
6185 #ifdef GC_CHECK_MARKED_OBJECTS
6186
6187 po = (void *) XPNTR (obj);
6188
6189 /* Check that the object pointed to by PO is known to be a Lisp
6190 structure allocated from the heap. */
6191 #define CHECK_ALLOCATED() \
6192 do { \
6193 m = mem_find (po); \
6194 if (m == MEM_NIL) \
6195 emacs_abort (); \
6196 } while (0)
6197
6198 /* Check that the object pointed to by PO is live, using predicate
6199 function LIVEP. */
6200 #define CHECK_LIVE(LIVEP) \
6201 do { \
6202 if (!LIVEP (m, po)) \
6203 emacs_abort (); \
6204 } while (0)
6205
6206 /* Check both of the above conditions. */
6207 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6208 do { \
6209 CHECK_ALLOCATED (); \
6210 CHECK_LIVE (LIVEP); \
6211 } while (0) \
6212
6213 #else /* not GC_CHECK_MARKED_OBJECTS */
6214
6215 #define CHECK_LIVE(LIVEP) (void) 0
6216 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
6217
6218 #endif /* not GC_CHECK_MARKED_OBJECTS */
6219
6220 switch (XTYPE (obj))
6221 {
6222 case Lisp_String:
6223 {
6224 register struct Lisp_String *ptr = XSTRING (obj);
6225 if (STRING_MARKED_P (ptr))
6226 break;
6227 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6228 MARK_STRING (ptr);
6229 MARK_INTERVAL_TREE (ptr->intervals);
6230 #ifdef GC_CHECK_STRING_BYTES
6231 /* Check that the string size recorded in the string is the
6232 same as the one recorded in the sdata structure. */
6233 string_bytes (ptr);
6234 #endif /* GC_CHECK_STRING_BYTES */
6235 }
6236 break;
6237
6238 case Lisp_Vectorlike:
6239 {
6240 register struct Lisp_Vector *ptr = XVECTOR (obj);
6241 register ptrdiff_t pvectype;
6242
6243 if (VECTOR_MARKED_P (ptr))
6244 break;
6245
6246 #ifdef GC_CHECK_MARKED_OBJECTS
6247 m = mem_find (po);
6248 if (m == MEM_NIL && !SUBRP (obj))
6249 emacs_abort ();
6250 #endif /* GC_CHECK_MARKED_OBJECTS */
6251
6252 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6253 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6254 >> PSEUDOVECTOR_AREA_BITS);
6255 else
6256 pvectype = PVEC_NORMAL_VECTOR;
6257
6258 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6259 CHECK_LIVE (live_vector_p);
6260
6261 switch (pvectype)
6262 {
6263 case PVEC_BUFFER:
6264 #ifdef GC_CHECK_MARKED_OBJECTS
6265 {
6266 struct buffer *b;
6267 FOR_EACH_BUFFER (b)
6268 if (b == po)
6269 break;
6270 if (b == NULL)
6271 emacs_abort ();
6272 }
6273 #endif /* GC_CHECK_MARKED_OBJECTS */
6274 mark_buffer ((struct buffer *) ptr);
6275 break;
6276
6277 case PVEC_COMPILED:
6278 /* Although we could treat this just like a vector, mark_compiled
6279 returns the COMPILED_CONSTANTS element, which is marked at the
6280 next iteration of goto-loop here. This is done to avoid a few
6281 recursive calls to mark_object. */
6282 obj = mark_compiled (ptr);
6283 if (!NILP (obj))
6284 goto loop;
6285 break;
6286
6287 case PVEC_FRAME:
6288 {
6289 struct frame *f = (struct frame *) ptr;
6290
6291 mark_vectorlike (ptr);
6292 mark_face_cache (f->face_cache);
6293 #ifdef HAVE_WINDOW_SYSTEM
6294 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6295 {
6296 struct font *font = FRAME_FONT (f);
6297
6298 if (font && !VECTOR_MARKED_P (font))
6299 mark_vectorlike ((struct Lisp_Vector *) font);
6300 }
6301 #endif
6302 }
6303 break;
6304
6305 case PVEC_WINDOW:
6306 {
6307 struct window *w = (struct window *) ptr;
6308
6309 mark_vectorlike (ptr);
6310
6311 /* Mark glyph matrices, if any. Marking window
6312 matrices is sufficient because frame matrices
6313 use the same glyph memory. */
6314 if (w->current_matrix)
6315 {
6316 mark_glyph_matrix (w->current_matrix);
6317 mark_glyph_matrix (w->desired_matrix);
6318 }
6319
6320 /* Filter out killed buffers from both buffer lists
6321 in attempt to help GC to reclaim killed buffers faster.
6322 We can do it elsewhere for live windows, but this is the
6323 best place to do it for dead windows. */
6324 wset_prev_buffers
6325 (w, mark_discard_killed_buffers (w->prev_buffers));
6326 wset_next_buffers
6327 (w, mark_discard_killed_buffers (w->next_buffers));
6328 }
6329 break;
6330
6331 case PVEC_HASH_TABLE:
6332 {
6333 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6334
6335 mark_vectorlike (ptr);
6336 mark_object (h->test.name);
6337 mark_object (h->test.user_hash_function);
6338 mark_object (h->test.user_cmp_function);
6339 /* If hash table is not weak, mark all keys and values.
6340 For weak tables, mark only the vector. */
6341 if (NILP (h->weak))
6342 mark_object (h->key_and_value);
6343 else
6344 VECTOR_MARK (XVECTOR (h->key_and_value));
6345 }
6346 break;
6347
6348 case PVEC_CHAR_TABLE:
6349 case PVEC_SUB_CHAR_TABLE:
6350 mark_char_table (ptr, (enum pvec_type) pvectype);
6351 break;
6352
6353 case PVEC_BOOL_VECTOR:
6354 /* No Lisp_Objects to mark in a bool vector. */
6355 VECTOR_MARK (ptr);
6356 break;
6357
6358 case PVEC_SUBR:
6359 break;
6360
6361 case PVEC_FREE:
6362 emacs_abort ();
6363
6364 default:
6365 mark_vectorlike (ptr);
6366 }
6367 }
6368 break;
6369
6370 case Lisp_Symbol:
6371 {
6372 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6373 nextsym:
6374 if (ptr->gcmarkbit)
6375 break;
6376 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6377 ptr->gcmarkbit = 1;
6378 /* Attempt to catch bogus objects. */
6379 eassert (valid_lisp_object_p (ptr->function) >= 1);
6380 mark_object (ptr->function);
6381 mark_object (ptr->plist);
6382 switch (ptr->redirect)
6383 {
6384 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6385 case SYMBOL_VARALIAS:
6386 {
6387 Lisp_Object tem;
6388 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6389 mark_object (tem);
6390 break;
6391 }
6392 case SYMBOL_LOCALIZED:
6393 mark_localized_symbol (ptr);
6394 break;
6395 case SYMBOL_FORWARDED:
6396 /* If the value is forwarded to a buffer or keyboard field,
6397 these are marked when we see the corresponding object.
6398 And if it's forwarded to a C variable, either it's not
6399 a Lisp_Object var, or it's staticpro'd already. */
6400 break;
6401 default: emacs_abort ();
6402 }
6403 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6404 MARK_STRING (XSTRING (ptr->name));
6405 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6406 /* Inner loop to mark next symbol in this bucket, if any. */
6407 ptr = ptr->next;
6408 if (ptr)
6409 goto nextsym;
6410 }
6411 break;
6412
6413 case Lisp_Misc:
6414 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6415
6416 if (XMISCANY (obj)->gcmarkbit)
6417 break;
6418
6419 switch (XMISCTYPE (obj))
6420 {
6421 case Lisp_Misc_Marker:
6422 /* DO NOT mark thru the marker's chain.
6423 The buffer's markers chain does not preserve markers from gc;
6424 instead, markers are removed from the chain when freed by gc. */
6425 XMISCANY (obj)->gcmarkbit = 1;
6426 break;
6427
6428 case Lisp_Misc_Save_Value:
6429 XMISCANY (obj)->gcmarkbit = 1;
6430 mark_save_value (XSAVE_VALUE (obj));
6431 break;
6432
6433 case Lisp_Misc_Overlay:
6434 mark_overlay (XOVERLAY (obj));
6435 break;
6436
6437 default:
6438 emacs_abort ();
6439 }
6440 break;
6441
6442 case Lisp_Cons:
6443 {
6444 register struct Lisp_Cons *ptr = XCONS (obj);
6445 if (CONS_MARKED_P (ptr))
6446 break;
6447 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6448 CONS_MARK (ptr);
6449 /* If the cdr is nil, avoid recursion for the car. */
6450 if (EQ (ptr->u.cdr, Qnil))
6451 {
6452 obj = ptr->car;
6453 cdr_count = 0;
6454 goto loop;
6455 }
6456 mark_object (ptr->car);
6457 obj = ptr->u.cdr;
6458 cdr_count++;
6459 if (cdr_count == mark_object_loop_halt)
6460 emacs_abort ();
6461 goto loop;
6462 }
6463
6464 case Lisp_Float:
6465 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6466 FLOAT_MARK (XFLOAT (obj));
6467 break;
6468
6469 case_Lisp_Int:
6470 break;
6471
6472 default:
6473 emacs_abort ();
6474 }
6475
6476 #undef CHECK_LIVE
6477 #undef CHECK_ALLOCATED
6478 #undef CHECK_ALLOCATED_AND_LIVE
6479 }
6480 /* Mark the Lisp pointers in the terminal objects.
6481 Called by Fgarbage_collect. */
6482
6483 static void
6484 mark_terminals (void)
6485 {
6486 struct terminal *t;
6487 for (t = terminal_list; t; t = t->next_terminal)
6488 {
6489 eassert (t->name != NULL);
6490 #ifdef HAVE_WINDOW_SYSTEM
6491 /* If a terminal object is reachable from a stacpro'ed object,
6492 it might have been marked already. Make sure the image cache
6493 gets marked. */
6494 mark_image_cache (t->image_cache);
6495 #endif /* HAVE_WINDOW_SYSTEM */
6496 if (!VECTOR_MARKED_P (t))
6497 mark_vectorlike ((struct Lisp_Vector *)t);
6498 }
6499 }
6500
6501
6502
6503 /* Value is non-zero if OBJ will survive the current GC because it's
6504 either marked or does not need to be marked to survive. */
6505
6506 bool
6507 survives_gc_p (Lisp_Object obj)
6508 {
6509 bool survives_p;
6510
6511 switch (XTYPE (obj))
6512 {
6513 case_Lisp_Int:
6514 survives_p = 1;
6515 break;
6516
6517 case Lisp_Symbol:
6518 survives_p = XSYMBOL (obj)->gcmarkbit;
6519 break;
6520
6521 case Lisp_Misc:
6522 survives_p = XMISCANY (obj)->gcmarkbit;
6523 break;
6524
6525 case Lisp_String:
6526 survives_p = STRING_MARKED_P (XSTRING (obj));
6527 break;
6528
6529 case Lisp_Vectorlike:
6530 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6531 break;
6532
6533 case Lisp_Cons:
6534 survives_p = CONS_MARKED_P (XCONS (obj));
6535 break;
6536
6537 case Lisp_Float:
6538 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6539 break;
6540
6541 default:
6542 emacs_abort ();
6543 }
6544
6545 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6546 }
6547
6548
6549 \f
6550
6551 NO_INLINE /* For better stack traces */
6552 static void
6553 sweep_conses (void)
6554 {
6555 struct cons_block *cblk;
6556 struct cons_block **cprev = &cons_block;
6557 int lim = cons_block_index;
6558 EMACS_INT num_free = 0, num_used = 0;
6559
6560 cons_free_list = 0;
6561
6562 for (cblk = cons_block; cblk; cblk = *cprev)
6563 {
6564 int i = 0;
6565 int this_free = 0;
6566 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6567
6568 /* Scan the mark bits an int at a time. */
6569 for (i = 0; i < ilim; i++)
6570 {
6571 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6572 {
6573 /* Fast path - all cons cells for this int are marked. */
6574 cblk->gcmarkbits[i] = 0;
6575 num_used += BITS_PER_BITS_WORD;
6576 }
6577 else
6578 {
6579 /* Some cons cells for this int are not marked.
6580 Find which ones, and free them. */
6581 int start, pos, stop;
6582
6583 start = i * BITS_PER_BITS_WORD;
6584 stop = lim - start;
6585 if (stop > BITS_PER_BITS_WORD)
6586 stop = BITS_PER_BITS_WORD;
6587 stop += start;
6588
6589 for (pos = start; pos < stop; pos++)
6590 {
6591 if (!CONS_MARKED_P (&cblk->conses[pos]))
6592 {
6593 this_free++;
6594 cblk->conses[pos].u.chain = cons_free_list;
6595 cons_free_list = &cblk->conses[pos];
6596 #if GC_MARK_STACK
6597 cons_free_list->car = Vdead;
6598 #endif
6599 }
6600 else
6601 {
6602 num_used++;
6603 CONS_UNMARK (&cblk->conses[pos]);
6604 }
6605 }
6606 }
6607 }
6608
6609 lim = CONS_BLOCK_SIZE;
6610 /* If this block contains only free conses and we have already
6611 seen more than two blocks worth of free conses then deallocate
6612 this block. */
6613 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6614 {
6615 *cprev = cblk->next;
6616 /* Unhook from the free list. */
6617 cons_free_list = cblk->conses[0].u.chain;
6618 lisp_align_free (cblk);
6619 }
6620 else
6621 {
6622 num_free += this_free;
6623 cprev = &cblk->next;
6624 }
6625 }
6626 total_conses = num_used;
6627 total_free_conses = num_free;
6628 }
6629
6630 NO_INLINE /* For better stack traces */
6631 static void
6632 sweep_floats (void)
6633 {
6634 register struct float_block *fblk;
6635 struct float_block **fprev = &float_block;
6636 register int lim = float_block_index;
6637 EMACS_INT num_free = 0, num_used = 0;
6638
6639 float_free_list = 0;
6640
6641 for (fblk = float_block; fblk; fblk = *fprev)
6642 {
6643 register int i;
6644 int this_free = 0;
6645 for (i = 0; i < lim; i++)
6646 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6647 {
6648 this_free++;
6649 fblk->floats[i].u.chain = float_free_list;
6650 float_free_list = &fblk->floats[i];
6651 }
6652 else
6653 {
6654 num_used++;
6655 FLOAT_UNMARK (&fblk->floats[i]);
6656 }
6657 lim = FLOAT_BLOCK_SIZE;
6658 /* If this block contains only free floats and we have already
6659 seen more than two blocks worth of free floats then deallocate
6660 this block. */
6661 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6662 {
6663 *fprev = fblk->next;
6664 /* Unhook from the free list. */
6665 float_free_list = fblk->floats[0].u.chain;
6666 lisp_align_free (fblk);
6667 }
6668 else
6669 {
6670 num_free += this_free;
6671 fprev = &fblk->next;
6672 }
6673 }
6674 total_floats = num_used;
6675 total_free_floats = num_free;
6676 }
6677
6678 NO_INLINE /* For better stack traces */
6679 static void
6680 sweep_intervals (void)
6681 {
6682 register struct interval_block *iblk;
6683 struct interval_block **iprev = &interval_block;
6684 register int lim = interval_block_index;
6685 EMACS_INT num_free = 0, num_used = 0;
6686
6687 interval_free_list = 0;
6688
6689 for (iblk = interval_block; iblk; iblk = *iprev)
6690 {
6691 register int i;
6692 int this_free = 0;
6693
6694 for (i = 0; i < lim; i++)
6695 {
6696 if (!iblk->intervals[i].gcmarkbit)
6697 {
6698 set_interval_parent (&iblk->intervals[i], interval_free_list);
6699 interval_free_list = &iblk->intervals[i];
6700 this_free++;
6701 }
6702 else
6703 {
6704 num_used++;
6705 iblk->intervals[i].gcmarkbit = 0;
6706 }
6707 }
6708 lim = INTERVAL_BLOCK_SIZE;
6709 /* If this block contains only free intervals and we have already
6710 seen more than two blocks worth of free intervals then
6711 deallocate this block. */
6712 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6713 {
6714 *iprev = iblk->next;
6715 /* Unhook from the free list. */
6716 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6717 lisp_free (iblk);
6718 }
6719 else
6720 {
6721 num_free += this_free;
6722 iprev = &iblk->next;
6723 }
6724 }
6725 total_intervals = num_used;
6726 total_free_intervals = num_free;
6727 }
6728
6729 NO_INLINE /* For better stack traces */
6730 static void
6731 sweep_symbols (void)
6732 {
6733 register struct symbol_block *sblk;
6734 struct symbol_block **sprev = &symbol_block;
6735 register int lim = symbol_block_index;
6736 EMACS_INT num_free = 0, num_used = 0;
6737
6738 symbol_free_list = NULL;
6739
6740 for (sblk = symbol_block; sblk; sblk = *sprev)
6741 {
6742 int this_free = 0;
6743 union aligned_Lisp_Symbol *sym = sblk->symbols;
6744 union aligned_Lisp_Symbol *end = sym + lim;
6745
6746 for (; sym < end; ++sym)
6747 {
6748 if (!sym->s.gcmarkbit)
6749 {
6750 if (sym->s.redirect == SYMBOL_LOCALIZED)
6751 xfree (SYMBOL_BLV (&sym->s));
6752 sym->s.next = symbol_free_list;
6753 symbol_free_list = &sym->s;
6754 #if GC_MARK_STACK
6755 symbol_free_list->function = Vdead;
6756 #endif
6757 ++this_free;
6758 }
6759 else
6760 {
6761 ++num_used;
6762 sym->s.gcmarkbit = 0;
6763 /* Attempt to catch bogus objects. */
6764 eassert (valid_lisp_object_p (sym->s.function) >= 1);
6765 }
6766 }
6767
6768 lim = SYMBOL_BLOCK_SIZE;
6769 /* If this block contains only free symbols and we have already
6770 seen more than two blocks worth of free symbols then deallocate
6771 this block. */
6772 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6773 {
6774 *sprev = sblk->next;
6775 /* Unhook from the free list. */
6776 symbol_free_list = sblk->symbols[0].s.next;
6777 lisp_free (sblk);
6778 }
6779 else
6780 {
6781 num_free += this_free;
6782 sprev = &sblk->next;
6783 }
6784 }
6785 total_symbols = num_used;
6786 total_free_symbols = num_free;
6787 }
6788
6789 NO_INLINE /* For better stack traces */
6790 static void
6791 sweep_misc (void)
6792 {
6793 register struct marker_block *mblk;
6794 struct marker_block **mprev = &marker_block;
6795 register int lim = marker_block_index;
6796 EMACS_INT num_free = 0, num_used = 0;
6797
6798 /* Put all unmarked misc's on free list. For a marker, first
6799 unchain it from the buffer it points into. */
6800
6801 marker_free_list = 0;
6802
6803 for (mblk = marker_block; mblk; mblk = *mprev)
6804 {
6805 register int i;
6806 int this_free = 0;
6807
6808 for (i = 0; i < lim; i++)
6809 {
6810 if (!mblk->markers[i].m.u_any.gcmarkbit)
6811 {
6812 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6813 unchain_marker (&mblk->markers[i].m.u_marker);
6814 /* Set the type of the freed object to Lisp_Misc_Free.
6815 We could leave the type alone, since nobody checks it,
6816 but this might catch bugs faster. */
6817 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6818 mblk->markers[i].m.u_free.chain = marker_free_list;
6819 marker_free_list = &mblk->markers[i].m;
6820 this_free++;
6821 }
6822 else
6823 {
6824 num_used++;
6825 mblk->markers[i].m.u_any.gcmarkbit = 0;
6826 }
6827 }
6828 lim = MARKER_BLOCK_SIZE;
6829 /* If this block contains only free markers and we have already
6830 seen more than two blocks worth of free markers then deallocate
6831 this block. */
6832 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6833 {
6834 *mprev = mblk->next;
6835 /* Unhook from the free list. */
6836 marker_free_list = mblk->markers[0].m.u_free.chain;
6837 lisp_free (mblk);
6838 }
6839 else
6840 {
6841 num_free += this_free;
6842 mprev = &mblk->next;
6843 }
6844 }
6845
6846 total_markers = num_used;
6847 total_free_markers = num_free;
6848 }
6849
6850 NO_INLINE /* For better stack traces */
6851 static void
6852 sweep_buffers (void)
6853 {
6854 register struct buffer *buffer, **bprev = &all_buffers;
6855
6856 total_buffers = 0;
6857 for (buffer = all_buffers; buffer; buffer = *bprev)
6858 if (!VECTOR_MARKED_P (buffer))
6859 {
6860 *bprev = buffer->next;
6861 lisp_free (buffer);
6862 }
6863 else
6864 {
6865 VECTOR_UNMARK (buffer);
6866 /* Do not use buffer_(set|get)_intervals here. */
6867 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6868 total_buffers++;
6869 bprev = &buffer->next;
6870 }
6871 }
6872
6873 /* Sweep: find all structures not marked, and free them. */
6874 static void
6875 gc_sweep (void)
6876 {
6877 /* Remove or mark entries in weak hash tables.
6878 This must be done before any object is unmarked. */
6879 sweep_weak_hash_tables ();
6880
6881 sweep_strings ();
6882 check_string_bytes (!noninteractive);
6883 sweep_conses ();
6884 sweep_floats ();
6885 sweep_intervals ();
6886 sweep_symbols ();
6887 sweep_misc ();
6888 sweep_buffers ();
6889 sweep_vectors ();
6890 check_string_bytes (!noninteractive);
6891 }
6892
6893 DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
6894 doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
6895 All values are in Kbytes. If there is no swap space,
6896 last two values are zero. If the system is not supported
6897 or memory information can't be obtained, return nil. */)
6898 (void)
6899 {
6900 #if defined HAVE_LINUX_SYSINFO
6901 struct sysinfo si;
6902 uintmax_t units;
6903
6904 if (sysinfo (&si))
6905 return Qnil;
6906 #ifdef LINUX_SYSINFO_UNIT
6907 units = si.mem_unit;
6908 #else
6909 units = 1;
6910 #endif
6911 return list4i ((uintmax_t) si.totalram * units / 1024,
6912 (uintmax_t) si.freeram * units / 1024,
6913 (uintmax_t) si.totalswap * units / 1024,
6914 (uintmax_t) si.freeswap * units / 1024);
6915 #elif defined WINDOWSNT
6916 unsigned long long totalram, freeram, totalswap, freeswap;
6917
6918 if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6919 return list4i ((uintmax_t) totalram / 1024,
6920 (uintmax_t) freeram / 1024,
6921 (uintmax_t) totalswap / 1024,
6922 (uintmax_t) freeswap / 1024);
6923 else
6924 return Qnil;
6925 #elif defined MSDOS
6926 unsigned long totalram, freeram, totalswap, freeswap;
6927
6928 if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6929 return list4i ((uintmax_t) totalram / 1024,
6930 (uintmax_t) freeram / 1024,
6931 (uintmax_t) totalswap / 1024,
6932 (uintmax_t) freeswap / 1024);
6933 else
6934 return Qnil;
6935 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6936 /* FIXME: add more systems. */
6937 return Qnil;
6938 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6939 }
6940
6941 /* Debugging aids. */
6942
6943 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6944 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6945 This may be helpful in debugging Emacs's memory usage.
6946 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6947 (void)
6948 {
6949 Lisp_Object end;
6950
6951 #ifdef HAVE_NS
6952 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
6953 XSETINT (end, 0);
6954 #else
6955 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6956 #endif
6957
6958 return end;
6959 }
6960
6961 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6962 doc: /* Return a list of counters that measure how much consing there has been.
6963 Each of these counters increments for a certain kind of object.
6964 The counters wrap around from the largest positive integer to zero.
6965 Garbage collection does not decrease them.
6966 The elements of the value are as follows:
6967 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6968 All are in units of 1 = one object consed
6969 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6970 objects consed.
6971 MISCS include overlays, markers, and some internal types.
6972 Frames, windows, buffers, and subprocesses count as vectors
6973 (but the contents of a buffer's text do not count here). */)
6974 (void)
6975 {
6976 return listn (CONSTYPE_HEAP, 8,
6977 bounded_number (cons_cells_consed),
6978 bounded_number (floats_consed),
6979 bounded_number (vector_cells_consed),
6980 bounded_number (symbols_consed),
6981 bounded_number (string_chars_consed),
6982 bounded_number (misc_objects_consed),
6983 bounded_number (intervals_consed),
6984 bounded_number (strings_consed));
6985 }
6986
6987 /* Find at most FIND_MAX symbols which have OBJ as their value or
6988 function. This is used in gdbinit's `xwhichsymbols' command. */
6989
6990 Lisp_Object
6991 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6992 {
6993 struct symbol_block *sblk;
6994 ptrdiff_t gc_count = inhibit_garbage_collection ();
6995 Lisp_Object found = Qnil;
6996
6997 if (! DEADP (obj))
6998 {
6999 for (sblk = symbol_block; sblk; sblk = sblk->next)
7000 {
7001 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
7002 int bn;
7003
7004 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
7005 {
7006 struct Lisp_Symbol *sym = &aligned_sym->s;
7007 Lisp_Object val;
7008 Lisp_Object tem;
7009
7010 if (sblk == symbol_block && bn >= symbol_block_index)
7011 break;
7012
7013 XSETSYMBOL (tem, sym);
7014 val = find_symbol_value (tem);
7015 if (EQ (val, obj)
7016 || EQ (sym->function, obj)
7017 || (!NILP (sym->function)
7018 && COMPILEDP (sym->function)
7019 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
7020 || (!NILP (val)
7021 && COMPILEDP (val)
7022 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
7023 {
7024 found = Fcons (tem, found);
7025 if (--find_max == 0)
7026 goto out;
7027 }
7028 }
7029 }
7030 }
7031
7032 out:
7033 unbind_to (gc_count, Qnil);
7034 return found;
7035 }
7036
7037 #ifdef SUSPICIOUS_OBJECT_CHECKING
7038
7039 static void *
7040 find_suspicious_object_in_range (void *begin, void *end)
7041 {
7042 char *begin_a = begin;
7043 char *end_a = end;
7044 int i;
7045
7046 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7047 {
7048 char *suspicious_object = suspicious_objects[i];
7049 if (begin_a <= suspicious_object && suspicious_object < end_a)
7050 return suspicious_object;
7051 }
7052
7053 return NULL;
7054 }
7055
7056 static void
7057 note_suspicious_free (void* ptr)
7058 {
7059 struct suspicious_free_record* rec;
7060
7061 rec = &suspicious_free_history[suspicious_free_history_index++];
7062 if (suspicious_free_history_index ==
7063 ARRAYELTS (suspicious_free_history))
7064 {
7065 suspicious_free_history_index = 0;
7066 }
7067
7068 memset (rec, 0, sizeof (*rec));
7069 rec->suspicious_object = ptr;
7070 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
7071 }
7072
7073 static void
7074 detect_suspicious_free (void* ptr)
7075 {
7076 int i;
7077
7078 eassert (ptr != NULL);
7079
7080 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7081 if (suspicious_objects[i] == ptr)
7082 {
7083 note_suspicious_free (ptr);
7084 suspicious_objects[i] = NULL;
7085 }
7086 }
7087
7088 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7089
7090 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7091 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7092 If Emacs is compiled with suspicous object checking, capture
7093 a stack trace when OBJ is freed in order to help track down
7094 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7095 (Lisp_Object obj)
7096 {
7097 #ifdef SUSPICIOUS_OBJECT_CHECKING
7098 /* Right now, we care only about vectors. */
7099 if (VECTORLIKEP (obj))
7100 {
7101 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7102 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7103 suspicious_object_index = 0;
7104 }
7105 #endif
7106 return obj;
7107 }
7108
7109 #ifdef ENABLE_CHECKING
7110
7111 bool suppress_checking;
7112
7113 void
7114 die (const char *msg, const char *file, int line)
7115 {
7116 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7117 file, line, msg);
7118 terminate_due_to_signal (SIGABRT, INT_MAX);
7119 }
7120 #endif
7121 \f
7122 /* Initialization. */
7123
7124 void
7125 init_alloc_once (void)
7126 {
7127 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
7128 purebeg = PUREBEG;
7129 pure_size = PURESIZE;
7130
7131 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
7132 mem_init ();
7133 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7134 #endif
7135
7136 #ifdef DOUG_LEA_MALLOC
7137 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7138 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7139 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7140 #endif
7141 init_strings ();
7142 init_vectors ();
7143
7144 refill_memory_reserve ();
7145 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7146 }
7147
7148 void
7149 init_alloc (void)
7150 {
7151 gcprolist = 0;
7152 byte_stack_list = 0;
7153 #if GC_MARK_STACK
7154 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
7155 setjmp_tested_p = longjmps_done = 0;
7156 #endif
7157 #endif
7158 Vgc_elapsed = make_float (0.0);
7159 gcs_done = 0;
7160
7161 #if USE_VALGRIND
7162 valgrind_p = RUNNING_ON_VALGRIND != 0;
7163 #endif
7164 }
7165
7166 void
7167 syms_of_alloc (void)
7168 {
7169 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7170 doc: /* Number of bytes of consing between garbage collections.
7171 Garbage collection can happen automatically once this many bytes have been
7172 allocated since the last garbage collection. All data types count.
7173
7174 Garbage collection happens automatically only when `eval' is called.
7175
7176 By binding this temporarily to a large number, you can effectively
7177 prevent garbage collection during a part of the program.
7178 See also `gc-cons-percentage'. */);
7179
7180 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7181 doc: /* Portion of the heap used for allocation.
7182 Garbage collection can happen automatically once this portion of the heap
7183 has been allocated since the last garbage collection.
7184 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7185 Vgc_cons_percentage = make_float (0.1);
7186
7187 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7188 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7189
7190 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7191 doc: /* Number of cons cells that have been consed so far. */);
7192
7193 DEFVAR_INT ("floats-consed", floats_consed,
7194 doc: /* Number of floats that have been consed so far. */);
7195
7196 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7197 doc: /* Number of vector cells that have been consed so far. */);
7198
7199 DEFVAR_INT ("symbols-consed", symbols_consed,
7200 doc: /* Number of symbols that have been consed so far. */);
7201
7202 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7203 doc: /* Number of string characters that have been consed so far. */);
7204
7205 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7206 doc: /* Number of miscellaneous objects that have been consed so far.
7207 These include markers and overlays, plus certain objects not visible
7208 to users. */);
7209
7210 DEFVAR_INT ("intervals-consed", intervals_consed,
7211 doc: /* Number of intervals that have been consed so far. */);
7212
7213 DEFVAR_INT ("strings-consed", strings_consed,
7214 doc: /* Number of strings that have been consed so far. */);
7215
7216 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7217 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7218 This means that certain objects should be allocated in shared (pure) space.
7219 It can also be set to a hash-table, in which case this table is used to
7220 do hash-consing of the objects allocated to pure space. */);
7221
7222 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7223 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7224 garbage_collection_messages = 0;
7225
7226 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7227 doc: /* Hook run after garbage collection has finished. */);
7228 Vpost_gc_hook = Qnil;
7229 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7230
7231 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7232 doc: /* Precomputed `signal' argument for memory-full error. */);
7233 /* We build this in advance because if we wait until we need it, we might
7234 not be able to allocate the memory to hold it. */
7235 Vmemory_signal_data
7236 = listn (CONSTYPE_PURE, 2, Qerror,
7237 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7238
7239 DEFVAR_LISP ("memory-full", Vmemory_full,
7240 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7241 Vmemory_full = Qnil;
7242
7243 DEFSYM (Qconses, "conses");
7244 DEFSYM (Qsymbols, "symbols");
7245 DEFSYM (Qmiscs, "miscs");
7246 DEFSYM (Qstrings, "strings");
7247 DEFSYM (Qvectors, "vectors");
7248 DEFSYM (Qfloats, "floats");
7249 DEFSYM (Qintervals, "intervals");
7250 DEFSYM (Qbuffers, "buffers");
7251 DEFSYM (Qstring_bytes, "string-bytes");
7252 DEFSYM (Qvector_slots, "vector-slots");
7253 DEFSYM (Qheap, "heap");
7254 DEFSYM (Qautomatic_gc, "Automatic GC");
7255
7256 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7257 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7258
7259 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7260 doc: /* Accumulated time elapsed in garbage collections.
7261 The time is in seconds as a floating point value. */);
7262 DEFVAR_INT ("gcs-done", gcs_done,
7263 doc: /* Accumulated number of garbage collections done. */);
7264
7265 defsubr (&Scons);
7266 defsubr (&Slist);
7267 defsubr (&Svector);
7268 defsubr (&Sbool_vector);
7269 defsubr (&Smake_byte_code);
7270 defsubr (&Smake_list);
7271 defsubr (&Smake_vector);
7272 defsubr (&Smake_string);
7273 defsubr (&Smake_bool_vector);
7274 defsubr (&Smake_symbol);
7275 defsubr (&Smake_marker);
7276 defsubr (&Spurecopy);
7277 defsubr (&Sgarbage_collect);
7278 defsubr (&Smemory_limit);
7279 defsubr (&Smemory_info);
7280 defsubr (&Smemory_use_counts);
7281 defsubr (&Ssuspicious_object);
7282
7283 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7284 defsubr (&Sgc_status);
7285 #endif
7286 }
7287
7288 /* When compiled with GCC, GDB might say "No enum type named
7289 pvec_type" if we don't have at least one symbol with that type, and
7290 then xbacktrace could fail. Similarly for the other enums and
7291 their values. Some non-GCC compilers don't like these constructs. */
7292 #ifdef __GNUC__
7293 union
7294 {
7295 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7296 enum char_table_specials char_table_specials;
7297 enum char_bits char_bits;
7298 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7299 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7300 enum Lisp_Bits Lisp_Bits;
7301 enum Lisp_Compiled Lisp_Compiled;
7302 enum maxargs maxargs;
7303 enum MAX_ALLOCA MAX_ALLOCA;
7304 enum More_Lisp_Bits More_Lisp_Bits;
7305 enum pvec_type pvec_type;
7306 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7307 #endif /* __GNUC__ */