]> code.delx.au - gnu-emacs/blob - doc/misc/cl.texi
Fix references in EIEIO documentation.
[gnu-emacs] / doc / misc / cl.texi
1 \input texinfo @c -*-texinfo-*-
2 @setfilename ../../info/cl
3 @settitle Common Lisp Extensions
4 @documentencoding UTF-8
5 @include emacsver.texi
6
7 @copying
8 This file documents the GNU Emacs Common Lisp emulation package.
9
10 Copyright @copyright{} 1993, 2001--2014 Free Software Foundation, Inc.
11
12 @quotation
13 Permission is granted to copy, distribute and/or modify this document
14 under the terms of the GNU Free Documentation License, Version 1.3 or
15 any later version published by the Free Software Foundation; with no
16 Invariant Sections, with the Front-Cover texts being ``A GNU Manual'',
17 and with the Back-Cover Texts as in (a) below. A copy of the license
18 is included in the section entitled ``GNU Free Documentation License''.
19
20 (a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
21 modify this GNU manual.''
22 @end quotation
23 @end copying
24
25 @dircategory Emacs lisp libraries
26 @direntry
27 * CL: (cl). Partial Common Lisp support for Emacs Lisp.
28 @end direntry
29
30 @finalout
31
32 @titlepage
33 @sp 6
34 @center @titlefont{Common Lisp Extensions}
35 @sp 4
36 @center For GNU Emacs Lisp
37 @sp 1
38 @center as distributed with Emacs @value{EMACSVER}
39 @sp 5
40 @center Dave Gillespie
41 @center daveg@@synaptics.com
42 @page
43 @vskip 0pt plus 1filll
44 @insertcopying
45 @end titlepage
46
47 @contents
48
49 @ifnottex
50 @node Top
51 @top GNU Emacs Common Lisp Emulation
52
53 @insertcopying
54 @end ifnottex
55
56 @menu
57 * Overview:: Basics, usage, organization, naming conventions.
58 * Program Structure:: Arglists, @code{cl-eval-when}.
59 * Predicates:: Type predicates and equality predicates.
60 * Control Structure:: Assignment, conditionals, blocks, looping.
61 * Macros:: Destructuring, compiler macros.
62 * Declarations:: @code{cl-proclaim}, @code{cl-declare}, etc.
63 * Symbols:: Property lists, creating symbols.
64 * Numbers:: Predicates, functions, random numbers.
65 * Sequences:: Mapping, functions, searching, sorting.
66 * Lists:: Functions, substitution, sets, associations.
67 * Structures:: @code{cl-defstruct}.
68 * Assertions:: Assertions and type checking.
69
70 Appendices
71 * Efficiency Concerns:: Hints and techniques.
72 * Common Lisp Compatibility:: All known differences with Steele.
73 * Porting Common Lisp:: Hints for porting Common Lisp code.
74 * Obsolete Features:: Obsolete features.
75 * GNU Free Documentation License:: The license for this documentation.
76
77 Indexes
78 * Function Index:: An entry for each documented function.
79 * Variable Index:: An entry for each documented variable.
80 @end menu
81
82 @node Overview
83 @chapter Overview
84
85 @noindent
86 This document describes a set of Emacs Lisp facilities borrowed from
87 Common Lisp. All the facilities are described here in detail. While
88 this document does not assume any prior knowledge of Common Lisp, it
89 does assume a basic familiarity with Emacs Lisp.
90
91 Common Lisp is a huge language, and Common Lisp systems tend to be
92 massive and extremely complex. Emacs Lisp, by contrast, is rather
93 minimalist in the choice of Lisp features it offers the programmer.
94 As Emacs Lisp programmers have grown in number, and the applications
95 they write have grown more ambitious, it has become clear that Emacs
96 Lisp could benefit from many of the conveniences of Common Lisp.
97
98 The @dfn{CL} package adds a number of Common Lisp functions and
99 control structures to Emacs Lisp. While not a 100% complete
100 implementation of Common Lisp, it adds enough functionality
101 to make Emacs Lisp programming significantly more convenient.
102
103 Some Common Lisp features have been omitted from this package
104 for various reasons:
105
106 @itemize @bullet
107 @item
108 Some features are too complex or bulky relative to their benefit
109 to Emacs Lisp programmers. CLOS and Common Lisp streams are fine
110 examples of this group. (The separate package EIEIO implements
111 a subset of CLOS functionality. @xref{Top, , Introduction, eieio, EIEIO}.)
112
113 @item
114 Other features cannot be implemented without modification to the
115 Emacs Lisp interpreter itself, such as multiple return values,
116 case-insensitive symbols, and complex numbers.
117 This package generally makes no attempt to emulate these features.
118
119 @end itemize
120
121 This package was originally written by Dave Gillespie,
122 @file{daveg@@synaptics.com}, as a total rewrite of an earlier 1986
123 @file{cl.el} package by Cesar Quiroz. Care has been taken to ensure
124 that each function is defined efficiently, concisely, and with minimal
125 impact on the rest of the Emacs environment. Stefan Monnier added the
126 file @file{cl-lib.el} and rationalized the namespace for Emacs 24.3.
127
128 @menu
129 * Usage:: How to use this package.
130 * Organization:: The package's component files.
131 * Naming Conventions:: Notes on function names.
132 @end menu
133
134 @node Usage
135 @section Usage
136
137 @noindent
138 This package is distributed with Emacs, so there is no need
139 to install any additional files in order to start using it. Lisp code
140 that uses features from this package should simply include at
141 the beginning:
142
143 @example
144 (require 'cl-lib)
145 @end example
146
147 @noindent
148 You may wish to add such a statement to your init file, if you
149 make frequent use of features from this package.
150
151 @node Organization
152 @section Organization
153
154 @noindent
155 The Common Lisp package is organized into four main files:
156
157 @table @file
158 @item cl-lib.el
159 This is the main file, which contains basic functions
160 and information about the package. This file is relatively compact.
161
162 @item cl-extra.el
163 This file contains the larger, more complex or unusual functions.
164 It is kept separate so that packages which only want to use Common
165 Lisp fundamentals like the @code{cl-incf} function won't need to pay
166 the overhead of loading the more advanced functions.
167
168 @item cl-seq.el
169 This file contains most of the advanced functions for operating
170 on sequences or lists, such as @code{cl-delete-if} and @code{cl-assoc}.
171
172 @item cl-macs.el
173 This file contains the features that are macros instead of functions.
174 Macros expand when the caller is compiled, not when it is run, so the
175 macros generally only need to be present when the byte-compiler is
176 running (or when the macros are used in uncompiled code). Most of the
177 macros of this package are isolated in @file{cl-macs.el} so that they
178 won't take up memory unless you are compiling.
179 @end table
180
181 The file @file{cl-lib.el} includes all necessary @code{autoload}
182 commands for the functions and macros in the other three files.
183 All you have to do is @code{(require 'cl-lib)}, and @file{cl-lib.el}
184 will take care of pulling in the other files when they are
185 needed.
186
187 There is another file, @file{cl.el}, which was the main entry point to
188 this package prior to Emacs 24.3. Nowadays, it is replaced by
189 @file{cl-lib.el}. The two provide the same features (in most cases),
190 but use different function names (in fact, @file{cl.el} mainly just
191 defines aliases to the @file{cl-lib.el} definitions). Where
192 @file{cl-lib.el} defines a function called, for example,
193 @code{cl-incf}, @file{cl.el} uses the same name but without the
194 @samp{cl-} prefix, e.g., @code{incf} in this example. There are a few
195 exceptions to this. First, functions such as @code{cl-defun} where
196 the unprefixed version was already used for a standard Emacs Lisp
197 function. In such cases, the @file{cl.el} version adds a @samp{*}
198 suffix, e.g., @code{defun*}. Second, there are some obsolete features
199 that are only implemented in @file{cl.el}, not in @file{cl-lib.el},
200 because they are replaced by other standard Emacs Lisp features.
201 Finally, in a very few cases the old @file{cl.el} versions do not
202 behave in exactly the same way as the @file{cl-lib.el} versions.
203 @xref{Obsolete Features}.
204 @c There is also cl-mapc, which was called cl-mapc even before cl-lib.el.
205 @c But not autoloaded, so maybe not much used?
206
207 Since the old @file{cl.el} does not use a clean namespace, Emacs has a
208 policy that packages distributed with Emacs must not load @code{cl} at
209 run time. (It is ok for them to load @code{cl} at @emph{compile}
210 time, with @code{eval-when-compile}, and use the macros it provides.)
211 There is no such restriction on the use of @code{cl-lib}. New code
212 should use @code{cl-lib} rather than @code{cl}.
213
214 There is one more file, @file{cl-compat.el}, which defines some
215 routines from the older Quiroz @file{cl.el} package that are not otherwise
216 present in the new package. This file is obsolete and should not be
217 used in new code.
218
219 @node Naming Conventions
220 @section Naming Conventions
221
222 @noindent
223 Except where noted, all functions defined by this package have the
224 same calling conventions as their Common Lisp counterparts, and
225 names that are those of Common Lisp plus a @samp{cl-} prefix.
226
227 Internal function and variable names in the package are prefixed
228 by @code{cl--}. Here is a complete list of functions prefixed by
229 @code{cl-} that were @emph{not} taken from Common Lisp:
230
231 @example
232 cl-callf cl-callf2 cl-defsubst
233 cl-letf cl-letf*
234 @end example
235
236 @c This is not uninteresting I suppose, but is of zero practical relevance
237 @c to the user, and seems like a hostage to changing implementation details.
238 The following simple functions and macros are defined in @file{cl-lib.el};
239 they do not cause other components like @file{cl-extra} to be loaded.
240
241 @example
242 cl-evenp cl-oddp cl-minusp
243 cl-plusp cl-endp cl-subst
244 cl-copy-list cl-list* cl-ldiff
245 cl-rest cl-decf [1] cl-incf [1]
246 cl-acons cl-adjoin [2] cl-pairlis
247 cl-pushnew [1,2] cl-declaim cl-proclaim
248 cl-caaar@dots{}cl-cddddr cl-first@dots{}cl-tenth
249 cl-mapcar [3]
250 @end example
251
252 @noindent
253 [1] Only when @var{place} is a plain variable name.
254
255 @noindent
256 [2] Only if @code{:test} is @code{eq}, @code{equal}, or unspecified,
257 and @code{:key} is not used.
258
259 @noindent
260 [3] Only for one sequence argument or two list arguments.
261
262 @node Program Structure
263 @chapter Program Structure
264
265 @noindent
266 This section describes features of this package that have to
267 do with programs as a whole: advanced argument lists for functions,
268 and the @code{cl-eval-when} construct.
269
270 @menu
271 * Argument Lists:: @code{&key}, @code{&aux}, @code{cl-defun}, @code{cl-defmacro}.
272 * Time of Evaluation:: The @code{cl-eval-when} construct.
273 @end menu
274
275 @node Argument Lists
276 @section Argument Lists
277 @cindex &key
278 @cindex &aux
279
280 @noindent
281 Emacs Lisp's notation for argument lists of functions is a subset of
282 the Common Lisp notation. As well as the familiar @code{&optional}
283 and @code{&rest} markers, Common Lisp allows you to specify default
284 values for optional arguments, and it provides the additional markers
285 @code{&key} and @code{&aux}.
286
287 Since argument parsing is built-in to Emacs, there is no way for
288 this package to implement Common Lisp argument lists seamlessly.
289 Instead, this package defines alternates for several Lisp forms
290 which you must use if you need Common Lisp argument lists.
291
292 @defmac cl-defun name arglist body@dots{}
293 This form is identical to the regular @code{defun} form, except
294 that @var{arglist} is allowed to be a full Common Lisp argument
295 list. Also, the function body is enclosed in an implicit block
296 called @var{name}; @pxref{Blocks and Exits}.
297 @end defmac
298
299 @defmac cl-defsubst name arglist body@dots{}
300 This is just like @code{cl-defun}, except that the function that
301 is defined is automatically proclaimed @code{inline}, i.e.,
302 calls to it may be expanded into in-line code by the byte compiler.
303 This is analogous to the @code{defsubst} form;
304 @code{cl-defsubst} uses a different method (compiler macros) which
305 works in all versions of Emacs, and also generates somewhat more
306 @c For some examples,
307 @c see http://lists.gnu.org/archive/html/emacs-devel/2012-11/msg00009.html
308 efficient inline expansions. In particular, @code{cl-defsubst}
309 arranges for the processing of keyword arguments, default values,
310 etc., to be done at compile-time whenever possible.
311 @end defmac
312
313 @defmac cl-defmacro name arglist body@dots{}
314 This is identical to the regular @code{defmacro} form,
315 except that @var{arglist} is allowed to be a full Common Lisp
316 argument list. The @code{&environment} keyword is supported as
317 described in Steele's book @cite{Common Lisp, the Language}.
318 The @code{&whole} keyword is supported only
319 within destructured lists (see below); top-level @code{&whole}
320 cannot be implemented with the current Emacs Lisp interpreter.
321 The macro expander body is enclosed in an implicit block called
322 @var{name}.
323 @end defmac
324
325 @defmac cl-function symbol-or-lambda
326 This is identical to the regular @code{function} form,
327 except that if the argument is a @code{lambda} form then that
328 form may use a full Common Lisp argument list.
329 @end defmac
330
331 Also, all forms (such as @code{cl-flet} and @code{cl-labels}) defined
332 in this package that include @var{arglist}s in their syntax allow
333 full Common Lisp argument lists.
334
335 Note that it is @emph{not} necessary to use @code{cl-defun} in
336 order to have access to most CL features in your function.
337 These features are always present; @code{cl-defun}'s only
338 difference from @code{defun} is its more flexible argument
339 lists and its implicit block.
340
341 The full form of a Common Lisp argument list is
342
343 @example
344 (@var{var}@dots{}
345 &optional (@var{var} @var{initform} @var{svar})@dots{}
346 &rest @var{var}
347 &key ((@var{keyword} @var{var}) @var{initform} @var{svar})@dots{}
348 &aux (@var{var} @var{initform})@dots{})
349 @end example
350
351 Each of the five argument list sections is optional. The @var{svar},
352 @var{initform}, and @var{keyword} parts are optional; if they are
353 omitted, then @samp{(@var{var})} may be written simply @samp{@var{var}}.
354
355 The first section consists of zero or more @dfn{required} arguments.
356 These arguments must always be specified in a call to the function;
357 there is no difference between Emacs Lisp and Common Lisp as far as
358 required arguments are concerned.
359
360 The second section consists of @dfn{optional} arguments. These
361 arguments may be specified in the function call; if they are not,
362 @var{initform} specifies the default value used for the argument.
363 (No @var{initform} means to use @code{nil} as the default.) The
364 @var{initform} is evaluated with the bindings for the preceding
365 arguments already established; @code{(a &optional (b (1+ a)))}
366 matches one or two arguments, with the second argument defaulting
367 to one plus the first argument. If the @var{svar} is specified,
368 it is an auxiliary variable which is bound to @code{t} if the optional
369 argument was specified, or to @code{nil} if the argument was omitted.
370 If you don't use an @var{svar}, then there will be no way for your
371 function to tell whether it was called with no argument, or with
372 the default value passed explicitly as an argument.
373
374 The third section consists of a single @dfn{rest} argument. If
375 more arguments were passed to the function than are accounted for
376 by the required and optional arguments, those extra arguments are
377 collected into a list and bound to the ``rest'' argument variable.
378 Common Lisp's @code{&rest} is equivalent to that of Emacs Lisp.
379 Common Lisp accepts @code{&body} as a synonym for @code{&rest} in
380 macro contexts; this package accepts it all the time.
381
382 The fourth section consists of @dfn{keyword} arguments. These
383 are optional arguments which are specified by name rather than
384 positionally in the argument list. For example,
385
386 @example
387 (cl-defun foo (a &optional b &key c d (e 17)))
388 @end example
389
390 @noindent
391 defines a function which may be called with one, two, or more
392 arguments. The first two arguments are bound to @code{a} and
393 @code{b} in the usual way. The remaining arguments must be
394 pairs of the form @code{:c}, @code{:d}, or @code{:e} followed
395 by the value to be bound to the corresponding argument variable.
396 (Symbols whose names begin with a colon are called @dfn{keywords},
397 and they are self-quoting in the same way as @code{nil} and
398 @code{t}.)
399
400 For example, the call @code{(foo 1 2 :d 3 :c 4)} sets the five
401 arguments to 1, 2, 4, 3, and 17, respectively. If the same keyword
402 appears more than once in the function call, the first occurrence
403 takes precedence over the later ones. Note that it is not possible
404 to specify keyword arguments without specifying the optional
405 argument @code{b} as well, since @code{(foo 1 :c 2)} would bind
406 @code{b} to the keyword @code{:c}, then signal an error because
407 @code{2} is not a valid keyword.
408
409 You can also explicitly specify the keyword argument; it need not be
410 simply the variable name prefixed with a colon. For example,
411
412 @example
413 (cl-defun bar (&key (a 1) ((baz b) 4)))
414 @end example
415
416 @noindent
417
418 specifies a keyword @code{:a} that sets the variable @code{a} with
419 default value 1, as well as a keyword @code{baz} that sets the
420 variable @code{b} with default value 4. In this case, because
421 @code{baz} is not self-quoting, you must quote it explicitly in the
422 function call, like this:
423
424 @example
425 (bar :a 10 'baz 42)
426 @end example
427
428 Ordinarily, it is an error to pass an unrecognized keyword to
429 a function, e.g., @code{(foo 1 2 :c 3 :goober 4)}. You can ask
430 Lisp to ignore unrecognized keywords, either by adding the
431 marker @code{&allow-other-keys} after the keyword section
432 of the argument list, or by specifying an @code{:allow-other-keys}
433 argument in the call whose value is non-@code{nil}. If the
434 function uses both @code{&rest} and @code{&key} at the same time,
435 the ``rest'' argument is bound to the keyword list as it appears
436 in the call. For example:
437
438 @example
439 (cl-defun find-thing (thing &rest rest &key need &allow-other-keys)
440 (or (apply 'cl-member thing thing-list :allow-other-keys t rest)
441 (if need (error "Thing not found"))))
442 @end example
443
444 @noindent
445 This function takes a @code{:need} keyword argument, but also
446 accepts other keyword arguments which are passed on to the
447 @code{cl-member} function. @code{allow-other-keys} is used to
448 keep both @code{find-thing} and @code{cl-member} from complaining
449 about each others' keywords in the arguments.
450
451 The fifth section of the argument list consists of @dfn{auxiliary
452 variables}. These are not really arguments at all, but simply
453 variables which are bound to @code{nil} or to the specified
454 @var{initforms} during execution of the function. There is no
455 difference between the following two functions, except for a
456 matter of stylistic taste:
457
458 @example
459 (cl-defun foo (a b &aux (c (+ a b)) d)
460 @var{body})
461
462 (cl-defun foo (a b)
463 (let ((c (+ a b)) d)
464 @var{body}))
465 @end example
466
467 @cindex destructuring, in argument list
468 Argument lists support @dfn{destructuring}. In Common Lisp,
469 destructuring is only allowed with @code{defmacro}; this package
470 allows it with @code{cl-defun} and other argument lists as well.
471 In destructuring, any argument variable (@var{var} in the above
472 example) can be replaced by a list of variables, or more generally,
473 a recursive argument list. The corresponding argument value must
474 be a list whose elements match this recursive argument list.
475 For example:
476
477 @example
478 (cl-defmacro dolist ((var listform &optional resultform)
479 &rest body)
480 @dots{})
481 @end example
482
483 This says that the first argument of @code{dolist} must be a list
484 of two or three items; if there are other arguments as well as this
485 list, they are stored in @code{body}. All features allowed in
486 regular argument lists are allowed in these recursive argument lists.
487 In addition, the clause @samp{&whole @var{var}} is allowed at the
488 front of a recursive argument list. It binds @var{var} to the
489 whole list being matched; thus @code{(&whole all a b)} matches
490 a list of two things, with @code{a} bound to the first thing,
491 @code{b} bound to the second thing, and @code{all} bound to the
492 list itself. (Common Lisp allows @code{&whole} in top-level
493 @code{defmacro} argument lists as well, but Emacs Lisp does not
494 support this usage.)
495
496 One last feature of destructuring is that the argument list may be
497 dotted, so that the argument list @code{(a b . c)} is functionally
498 equivalent to @code{(a b &rest c)}.
499
500 If the optimization quality @code{safety} is set to 0
501 (@pxref{Declarations}), error checking for wrong number of
502 arguments and invalid keyword arguments is disabled. By default,
503 argument lists are rigorously checked.
504
505 @node Time of Evaluation
506 @section Time of Evaluation
507
508 @noindent
509 Normally, the byte-compiler does not actually execute the forms in
510 a file it compiles. For example, if a file contains @code{(setq foo t)},
511 the act of compiling it will not actually set @code{foo} to @code{t}.
512 This is true even if the @code{setq} was a top-level form (i.e., not
513 enclosed in a @code{defun} or other form). Sometimes, though, you
514 would like to have certain top-level forms evaluated at compile-time.
515 For example, the compiler effectively evaluates @code{defmacro} forms
516 at compile-time so that later parts of the file can refer to the
517 macros that are defined.
518
519 @defmac cl-eval-when (situations@dots{}) forms@dots{}
520 This form controls when the body @var{forms} are evaluated.
521 The @var{situations} list may contain any set of the symbols
522 @code{compile}, @code{load}, and @code{eval} (or their long-winded
523 ANSI equivalents, @code{:compile-toplevel}, @code{:load-toplevel},
524 and @code{:execute}).
525
526 The @code{cl-eval-when} form is handled differently depending on
527 whether or not it is being compiled as a top-level form.
528 Specifically, it gets special treatment if it is being compiled
529 by a command such as @code{byte-compile-file} which compiles files
530 or buffers of code, and it appears either literally at the
531 top level of the file or inside a top-level @code{progn}.
532
533 For compiled top-level @code{cl-eval-when}s, the body @var{forms} are
534 executed at compile-time if @code{compile} is in the @var{situations}
535 list, and the @var{forms} are written out to the file (to be executed
536 at load-time) if @code{load} is in the @var{situations} list.
537
538 For non-compiled-top-level forms, only the @code{eval} situation is
539 relevant. (This includes forms executed by the interpreter, forms
540 compiled with @code{byte-compile} rather than @code{byte-compile-file},
541 and non-top-level forms.) The @code{cl-eval-when} acts like a
542 @code{progn} if @code{eval} is specified, and like @code{nil}
543 (ignoring the body @var{forms}) if not.
544
545 The rules become more subtle when @code{cl-eval-when}s are nested;
546 consult Steele (second edition) for the gruesome details (and
547 some gruesome examples).
548
549 Some simple examples:
550
551 @example
552 ;; Top-level forms in foo.el:
553 (cl-eval-when (compile) (setq foo1 'bar))
554 (cl-eval-when (load) (setq foo2 'bar))
555 (cl-eval-when (compile load) (setq foo3 'bar))
556 (cl-eval-when (eval) (setq foo4 'bar))
557 (cl-eval-when (eval compile) (setq foo5 'bar))
558 (cl-eval-when (eval load) (setq foo6 'bar))
559 (cl-eval-when (eval compile load) (setq foo7 'bar))
560 @end example
561
562 When @file{foo.el} is compiled, these variables will be set during
563 the compilation itself:
564
565 @example
566 foo1 foo3 foo5 foo7 ; `compile'
567 @end example
568
569 When @file{foo.elc} is loaded, these variables will be set:
570
571 @example
572 foo2 foo3 foo6 foo7 ; `load'
573 @end example
574
575 And if @file{foo.el} is loaded uncompiled, these variables will
576 be set:
577
578 @example
579 foo4 foo5 foo6 foo7 ; `eval'
580 @end example
581
582 If these seven @code{cl-eval-when}s had been, say, inside a @code{defun},
583 then the first three would have been equivalent to @code{nil} and the
584 last four would have been equivalent to the corresponding @code{setq}s.
585
586 Note that @code{(cl-eval-when (load eval) @dots{})} is equivalent
587 to @code{(progn @dots{})} in all contexts. The compiler treats
588 certain top-level forms, like @code{defmacro} (sort-of) and
589 @code{require}, as if they were wrapped in @code{(cl-eval-when
590 (compile load eval) @dots{})}.
591 @end defmac
592
593 Emacs includes two special forms related to @code{cl-eval-when}.
594 @xref{Eval During Compile,,,elisp,GNU Emacs Lisp Reference Manual}.
595 One of these, @code{eval-when-compile}, is not quite equivalent to
596 any @code{cl-eval-when} construct and is described below.
597
598 The other form, @code{(eval-and-compile @dots{})}, is exactly
599 equivalent to @samp{(cl-eval-when (compile load eval) @dots{})}.
600
601 @defmac eval-when-compile forms@dots{}
602 The @var{forms} are evaluated at compile-time; at execution time,
603 this form acts like a quoted constant of the resulting value. Used
604 at top-level, @code{eval-when-compile} is just like @samp{eval-when
605 (compile eval)}. In other contexts, @code{eval-when-compile}
606 allows code to be evaluated once at compile-time for efficiency
607 or other reasons.
608
609 This form is similar to the @samp{#.} syntax of true Common Lisp.
610 @end defmac
611
612 @defmac cl-load-time-value form
613 The @var{form} is evaluated at load-time; at execution time,
614 this form acts like a quoted constant of the resulting value.
615
616 Early Common Lisp had a @samp{#,} syntax that was similar to
617 this, but ANSI Common Lisp replaced it with @code{load-time-value}
618 and gave it more well-defined semantics.
619
620 In a compiled file, @code{cl-load-time-value} arranges for @var{form}
621 to be evaluated when the @file{.elc} file is loaded and then used
622 as if it were a quoted constant. In code compiled by
623 @code{byte-compile} rather than @code{byte-compile-file}, the
624 effect is identical to @code{eval-when-compile}. In uncompiled
625 code, both @code{eval-when-compile} and @code{cl-load-time-value}
626 act exactly like @code{progn}.
627
628 @example
629 (defun report ()
630 (insert "This function was executed on: "
631 (current-time-string)
632 ", compiled on: "
633 (eval-when-compile (current-time-string))
634 ;; or '#.(current-time-string) in real Common Lisp
635 ", and loaded on: "
636 (cl-load-time-value (current-time-string))))
637 @end example
638
639 @noindent
640 Byte-compiled, the above defun will result in the following code
641 (or its compiled equivalent, of course) in the @file{.elc} file:
642
643 @example
644 (setq --temp-- (current-time-string))
645 (defun report ()
646 (insert "This function was executed on: "
647 (current-time-string)
648 ", compiled on: "
649 '"Wed Oct 31 16:32:28 2012"
650 ", and loaded on: "
651 --temp--))
652 @end example
653 @end defmac
654
655 @node Predicates
656 @chapter Predicates
657
658 @noindent
659 This section describes functions for testing whether various
660 facts are true or false.
661
662 @menu
663 * Type Predicates:: @code{cl-typep}, @code{cl-deftype}, and @code{cl-coerce}.
664 * Equality Predicates:: @code{cl-equalp}.
665 @end menu
666
667 @node Type Predicates
668 @section Type Predicates
669
670 @defun cl-typep object type
671 Check if @var{object} is of type @var{type}, where @var{type} is a
672 (quoted) type name of the sort used by Common Lisp. For example,
673 @code{(cl-typep foo 'integer)} is equivalent to @code{(integerp foo)}.
674 @end defun
675
676 The @var{type} argument to the above function is either a symbol
677 or a list beginning with a symbol.
678
679 @itemize @bullet
680 @item
681 If the type name is a symbol, Emacs appends @samp{-p} to the
682 symbol name to form the name of a predicate function for testing
683 the type. (Built-in predicates whose names end in @samp{p} rather
684 than @samp{-p} are used when appropriate.)
685
686 @item
687 The type symbol @code{t} stands for the union of all types.
688 @code{(cl-typep @var{object} t)} is always true. Likewise, the
689 type symbol @code{nil} stands for nothing at all, and
690 @code{(cl-typep @var{object} nil)} is always false.
691
692 @item
693 The type symbol @code{null} represents the symbol @code{nil}.
694 Thus @code{(cl-typep @var{object} 'null)} is equivalent to
695 @code{(null @var{object})}.
696
697 @item
698 The type symbol @code{atom} represents all objects that are not cons
699 cells. Thus @code{(cl-typep @var{object} 'atom)} is equivalent to
700 @code{(atom @var{object})}.
701
702 @item
703 The type symbol @code{real} is a synonym for @code{number}, and
704 @code{fixnum} is a synonym for @code{integer}.
705
706 @item
707 The type symbols @code{character} and @code{string-char} match
708 integers in the range from 0 to 255.
709
710 @item
711 The type list @code{(integer @var{low} @var{high})} represents all
712 integers between @var{low} and @var{high}, inclusive. Either bound
713 may be a list of a single integer to specify an exclusive limit,
714 or a @code{*} to specify no limit. The type @code{(integer * *)}
715 is thus equivalent to @code{integer}.
716
717 @item
718 Likewise, lists beginning with @code{float}, @code{real}, or
719 @code{number} represent numbers of that type falling in a particular
720 range.
721
722 @item
723 Lists beginning with @code{and}, @code{or}, and @code{not} form
724 combinations of types. For example, @code{(or integer (float 0 *))}
725 represents all objects that are integers or non-negative floats.
726
727 @item
728 Lists beginning with @code{member} or @code{cl-member} represent
729 objects @code{eql} to any of the following values. For example,
730 @code{(member 1 2 3 4)} is equivalent to @code{(integer 1 4)},
731 and @code{(member nil)} is equivalent to @code{null}.
732
733 @item
734 Lists of the form @code{(satisfies @var{predicate})} represent
735 all objects for which @var{predicate} returns true when called
736 with that object as an argument.
737 @end itemize
738
739 The following function and macro (not technically predicates) are
740 related to @code{cl-typep}.
741
742 @defun cl-coerce object type
743 This function attempts to convert @var{object} to the specified
744 @var{type}. If @var{object} is already of that type as determined by
745 @code{cl-typep}, it is simply returned. Otherwise, certain types of
746 conversions will be made: If @var{type} is any sequence type
747 (@code{string}, @code{list}, etc.)@: then @var{object} will be
748 converted to that type if possible. If @var{type} is
749 @code{character}, then strings of length one and symbols with
750 one-character names can be coerced. If @var{type} is @code{float},
751 then integers can be coerced in versions of Emacs that support
752 floats. In all other circumstances, @code{cl-coerce} signals an
753 error.
754 @end defun
755
756 @defmac cl-deftype name arglist forms@dots{}
757 This macro defines a new type called @var{name}. It is similar
758 to @code{defmacro} in many ways; when @var{name} is encountered
759 as a type name, the body @var{forms} are evaluated and should
760 return a type specifier that is equivalent to the type. The
761 @var{arglist} is a Common Lisp argument list of the sort accepted
762 by @code{cl-defmacro}. The type specifier @samp{(@var{name} @var{args}@dots{})}
763 is expanded by calling the expander with those arguments; the type
764 symbol @samp{@var{name}} is expanded by calling the expander with
765 no arguments. The @var{arglist} is processed the same as for
766 @code{cl-defmacro} except that optional arguments without explicit
767 defaults use @code{*} instead of @code{nil} as the ``default''
768 default. Some examples:
769
770 @example
771 (cl-deftype null () '(satisfies null)) ; predefined
772 (cl-deftype list () '(or null cons)) ; predefined
773 (cl-deftype unsigned-byte (&optional bits)
774 (list 'integer 0 (if (eq bits '*) bits (1- (lsh 1 bits)))))
775 (unsigned-byte 8) @equiv{} (integer 0 255)
776 (unsigned-byte) @equiv{} (integer 0 *)
777 unsigned-byte @equiv{} (integer 0 *)
778 @end example
779
780 @noindent
781 The last example shows how the Common Lisp @code{unsigned-byte}
782 type specifier could be implemented if desired; this package does
783 not implement @code{unsigned-byte} by default.
784 @end defmac
785
786 The @code{cl-typecase} (@pxref{Conditionals}) and @code{cl-check-type}
787 (@pxref{Assertions}) macros also use type names. The @code{cl-map},
788 @code{cl-concatenate}, and @code{cl-merge} functions take type-name
789 arguments to specify the type of sequence to return. @xref{Sequences}.
790
791 @node Equality Predicates
792 @section Equality Predicates
793
794 @noindent
795 This package defines the Common Lisp predicate @code{cl-equalp}.
796
797 @defun cl-equalp a b
798 This function is a more flexible version of @code{equal}. In
799 particular, it compares strings case-insensitively, and it compares
800 numbers without regard to type (so that @code{(cl-equalp 3 3.0)} is
801 true). Vectors and conses are compared recursively. All other
802 objects are compared as if by @code{equal}.
803
804 This function differs from Common Lisp @code{equalp} in several
805 respects. First, Common Lisp's @code{equalp} also compares
806 @emph{characters} case-insensitively, which would be impractical
807 in this package since Emacs does not distinguish between integers
808 and characters. In keeping with the idea that strings are less
809 vector-like in Emacs Lisp, this package's @code{cl-equalp} also will
810 not compare strings against vectors of integers.
811 @end defun
812
813 Also note that the Common Lisp functions @code{member} and @code{assoc}
814 use @code{eql} to compare elements, whereas Emacs Lisp follows the
815 MacLisp tradition and uses @code{equal} for these two functions.
816 The functions @code{cl-member} and @code{cl-assoc} use @code{eql},
817 as in Common Lisp. The standard Emacs Lisp functions @code{memq} and
818 @code{assq} use @code{eq}, and the standard @code{memql} uses @code{eql}.
819
820 @node Control Structure
821 @chapter Control Structure
822
823 @noindent
824 The features described in the following sections implement
825 various advanced control structures, including extensions to the
826 standard @code{setf} facility, and a number of looping and conditional
827 constructs.
828
829 @menu
830 * Assignment:: The @code{cl-psetq} form.
831 * Generalized Variables:: Extensions to generalized variables.
832 * Variable Bindings:: @code{cl-progv}, @code{cl-flet}, @code{cl-macrolet}.
833 * Conditionals:: @code{cl-case}, @code{cl-typecase}.
834 * Blocks and Exits:: @code{cl-block}, @code{cl-return}, @code{cl-return-from}.
835 * Iteration:: @code{cl-do}, @code{cl-dotimes}, @code{cl-dolist}, @code{cl-do-symbols}.
836 * Loop Facility:: The Common Lisp @code{loop} macro.
837 * Multiple Values:: @code{cl-values}, @code{cl-multiple-value-bind}, etc.
838 @end menu
839
840 @node Assignment
841 @section Assignment
842
843 @noindent
844 The @code{cl-psetq} form is just like @code{setq}, except that multiple
845 assignments are done in parallel rather than sequentially.
846
847 @defmac cl-psetq [symbol form]@dots{}
848 This special form (actually a macro) is used to assign to several
849 variables simultaneously. Given only one @var{symbol} and @var{form},
850 it has the same effect as @code{setq}. Given several @var{symbol}
851 and @var{form} pairs, it evaluates all the @var{form}s in advance
852 and then stores the corresponding variables afterwards.
853
854 @example
855 (setq x 2 y 3)
856 (setq x (+ x y) y (* x y))
857 x
858 @result{} 5
859 y ; @r{@code{y} was computed after @code{x} was set.}
860 @result{} 15
861 (setq x 2 y 3)
862 (cl-psetq x (+ x y) y (* x y))
863 x
864 @result{} 5
865 y ; @r{@code{y} was computed before @code{x} was set.}
866 @result{} 6
867 @end example
868
869 The simplest use of @code{cl-psetq} is @code{(cl-psetq x y y x)}, which
870 exchanges the values of two variables. (The @code{cl-rotatef} form
871 provides an even more convenient way to swap two variables;
872 @pxref{Modify Macros}.)
873
874 @code{cl-psetq} always returns @code{nil}.
875 @end defmac
876
877 @node Generalized Variables
878 @section Generalized Variables
879
880 A @dfn{generalized variable} or @dfn{place form} is one of the many
881 places in Lisp memory where values can be stored. The simplest place
882 form is a regular Lisp variable. But the @sc{car}s and @sc{cdr}s of lists,
883 elements of arrays, properties of symbols, and many other locations
884 are also places where Lisp values are stored. For basic information,
885 @pxref{Generalized Variables,,,elisp,GNU Emacs Lisp Reference Manual}.
886 This package provides several additional features related to
887 generalized variables.
888
889 @menu
890 * Setf Extensions:: Additional @code{setf} places.
891 * Modify Macros:: @code{cl-incf}, @code{cl-rotatef}, @code{cl-letf}, @code{cl-callf}, etc.
892 @end menu
893
894 @node Setf Extensions
895 @subsection Setf Extensions
896
897 Several standard (e.g., @code{car}) and Emacs-specific
898 (e.g., @code{window-point}) Lisp functions are @code{setf}-able by default.
899 This package defines @code{setf} handlers for several additional functions:
900
901 @itemize
902 @item
903 Functions from this package:
904 @example
905 cl-rest cl-subseq cl-get cl-getf
906 cl-caaar@dots{}cl-cddddr cl-first@dots{}cl-tenth
907 @end example
908
909 @noindent
910 Note that for @code{cl-getf} (as for @code{nthcdr}), the list argument
911 of the function must itself be a valid @var{place} form.
912
913 @item
914 General Emacs Lisp functions:
915 @example
916 buffer-file-name getenv
917 buffer-modified-p global-key-binding
918 buffer-name local-key-binding
919 buffer-string mark
920 buffer-substring mark-marker
921 current-buffer marker-position
922 current-case-table mouse-position
923 current-column point
924 current-global-map point-marker
925 current-input-mode point-max
926 current-local-map point-min
927 current-window-configuration read-mouse-position
928 default-file-modes screen-height
929 documentation-property screen-width
930 face-background selected-window
931 face-background-pixmap selected-screen
932 face-font selected-frame
933 face-foreground standard-case-table
934 face-underline-p syntax-table
935 file-modes visited-file-modtime
936 frame-height window-height
937 frame-parameters window-width
938 frame-visible-p x-get-secondary-selection
939 frame-width x-get-selection
940 get-register
941 @end example
942
943 Most of these have directly corresponding ``set'' functions, like
944 @code{use-local-map} for @code{current-local-map}, or @code{goto-char}
945 for @code{point}. A few, like @code{point-min}, expand to longer
946 sequences of code when they are used with @code{setf}
947 (@code{(narrow-to-region x (point-max))} in this case).
948
949 @item
950 A call of the form @code{(substring @var{subplace} @var{n} [@var{m}])},
951 where @var{subplace} is itself a valid generalized variable whose
952 current value is a string, and where the value stored is also a
953 string. The new string is spliced into the specified part of the
954 destination string. For example:
955
956 @example
957 (setq a (list "hello" "world"))
958 @result{} ("hello" "world")
959 (cadr a)
960 @result{} "world"
961 (substring (cadr a) 2 4)
962 @result{} "rl"
963 (setf (substring (cadr a) 2 4) "o")
964 @result{} "o"
965 (cadr a)
966 @result{} "wood"
967 a
968 @result{} ("hello" "wood")
969 @end example
970
971 The generalized variable @code{buffer-substring}, listed above,
972 also works in this way by replacing a portion of the current buffer.
973
974 @c FIXME? Also `eq'? (see cl-lib.el)
975
976 @c Currently commented out in cl.el.
977 @ignore
978 @item
979 A call of the form @code{(apply '@var{func} @dots{})} or
980 @code{(apply (function @var{func}) @dots{})}, where @var{func}
981 is a @code{setf}-able function whose store function is ``suitable''
982 in the sense described in Steele's book; since none of the standard
983 Emacs place functions are suitable in this sense, this feature is
984 only interesting when used with places you define yourself with
985 @code{define-setf-method} or the long form of @code{defsetf}.
986 @xref{Obsolete Setf Customization}.
987 @end ignore
988
989 @c FIXME? Is this still true?
990 @item
991 A macro call, in which case the macro is expanded and @code{setf}
992 is applied to the resulting form.
993 @end itemize
994
995 @c FIXME should this be in lispref? It seems self-evident.
996 @c Contrast with the cl-incf example later on.
997 @c Here it really only serves as a contrast to wrong-order.
998 The @code{setf} macro takes care to evaluate all subforms in
999 the proper left-to-right order; for example,
1000
1001 @example
1002 (setf (aref vec (cl-incf i)) i)
1003 @end example
1004
1005 @noindent
1006 looks like it will evaluate @code{(cl-incf i)} exactly once, before the
1007 following access to @code{i}; the @code{setf} expander will insert
1008 temporary variables as necessary to ensure that it does in fact work
1009 this way no matter what setf-method is defined for @code{aref}.
1010 (In this case, @code{aset} would be used and no such steps would
1011 be necessary since @code{aset} takes its arguments in a convenient
1012 order.)
1013
1014 However, if the @var{place} form is a macro which explicitly
1015 evaluates its arguments in an unusual order, this unusual order
1016 will be preserved. Adapting an example from Steele, given
1017
1018 @example
1019 (defmacro wrong-order (x y) (list 'aref y x))
1020 @end example
1021
1022 @noindent
1023 the form @code{(setf (wrong-order @var{a} @var{b}) 17)} will
1024 evaluate @var{b} first, then @var{a}, just as in an actual call
1025 to @code{wrong-order}.
1026
1027 @node Modify Macros
1028 @subsection Modify Macros
1029
1030 @noindent
1031 This package defines a number of macros that operate on generalized
1032 variables. Many are interesting and useful even when the @var{place}
1033 is just a variable name.
1034
1035 @defmac cl-psetf [place form]@dots{}
1036 This macro is to @code{setf} what @code{cl-psetq} is to @code{setq}:
1037 When several @var{place}s and @var{form}s are involved, the
1038 assignments take place in parallel rather than sequentially.
1039 Specifically, all subforms are evaluated from left to right, then
1040 all the assignments are done (in an undefined order).
1041 @end defmac
1042
1043 @defmac cl-incf place &optional x
1044 This macro increments the number stored in @var{place} by one, or
1045 by @var{x} if specified. The incremented value is returned. For
1046 example, @code{(cl-incf i)} is equivalent to @code{(setq i (1+ i))}, and
1047 @code{(cl-incf (car x) 2)} is equivalent to @code{(setcar x (+ (car x) 2))}.
1048
1049 As with @code{setf}, care is taken to preserve the ``apparent'' order
1050 of evaluation. For example,
1051
1052 @example
1053 (cl-incf (aref vec (cl-incf i)))
1054 @end example
1055
1056 @noindent
1057 appears to increment @code{i} once, then increment the element of
1058 @code{vec} addressed by @code{i}; this is indeed exactly what it
1059 does, which means the above form is @emph{not} equivalent to the
1060 ``obvious'' expansion,
1061
1062 @example
1063 (setf (aref vec (cl-incf i))
1064 (1+ (aref vec (cl-incf i)))) ; wrong!
1065 @end example
1066
1067 @noindent
1068 but rather to something more like
1069
1070 @example
1071 (let ((temp (cl-incf i)))
1072 (setf (aref vec temp) (1+ (aref vec temp))))
1073 @end example
1074
1075 @noindent
1076 Again, all of this is taken care of automatically by @code{cl-incf} and
1077 the other generalized-variable macros.
1078
1079 As a more Emacs-specific example of @code{cl-incf}, the expression
1080 @code{(cl-incf (point) @var{n})} is essentially equivalent to
1081 @code{(forward-char @var{n})}.
1082 @end defmac
1083
1084 @defmac cl-decf place &optional x
1085 This macro decrements the number stored in @var{place} by one, or
1086 by @var{x} if specified.
1087 @end defmac
1088
1089 @defmac cl-pushnew x place @t{&key :test :test-not :key}
1090 This macro inserts @var{x} at the front of the list stored in
1091 @var{place}, but only if @var{x} was not @code{eql} to any
1092 existing element of the list. The optional keyword arguments
1093 are interpreted in the same way as for @code{cl-adjoin}.
1094 @xref{Lists as Sets}.
1095 @end defmac
1096
1097 @defmac cl-shiftf place@dots{} newvalue
1098 This macro shifts the @var{place}s left by one, shifting in the
1099 value of @var{newvalue} (which may be any Lisp expression, not just
1100 a generalized variable), and returning the value shifted out of
1101 the first @var{place}. Thus, @code{(cl-shiftf @var{a} @var{b} @var{c}
1102 @var{d})} is equivalent to
1103
1104 @example
1105 (prog1
1106 @var{a}
1107 (cl-psetf @var{a} @var{b}
1108 @var{b} @var{c}
1109 @var{c} @var{d}))
1110 @end example
1111
1112 @noindent
1113 except that the subforms of @var{a}, @var{b}, and @var{c} are actually
1114 evaluated only once each and in the apparent order.
1115 @end defmac
1116
1117 @defmac cl-rotatef place@dots{}
1118 This macro rotates the @var{place}s left by one in circular fashion.
1119 Thus, @code{(cl-rotatef @var{a} @var{b} @var{c} @var{d})} is equivalent to
1120
1121 @example
1122 (cl-psetf @var{a} @var{b}
1123 @var{b} @var{c}
1124 @var{c} @var{d}
1125 @var{d} @var{a})
1126 @end example
1127
1128 @noindent
1129 except for the evaluation of subforms. @code{cl-rotatef} always
1130 returns @code{nil}. Note that @code{(cl-rotatef @var{a} @var{b})}
1131 conveniently exchanges @var{a} and @var{b}.
1132 @end defmac
1133
1134 The following macros were invented for this package; they have no
1135 analogues in Common Lisp.
1136
1137 @defmac cl-letf (bindings@dots{}) forms@dots{}
1138 This macro is analogous to @code{let}, but for generalized variables
1139 rather than just symbols. Each @var{binding} should be of the form
1140 @code{(@var{place} @var{value})}; the original contents of the
1141 @var{place}s are saved, the @var{value}s are stored in them, and
1142 then the body @var{form}s are executed. Afterwards, the @var{places}
1143 are set back to their original saved contents. This cleanup happens
1144 even if the @var{form}s exit irregularly due to a @code{throw} or an
1145 error.
1146
1147 For example,
1148
1149 @example
1150 (cl-letf (((point) (point-min))
1151 (a 17))
1152 @dots{})
1153 @end example
1154
1155 @noindent
1156 moves point in the current buffer to the beginning of the buffer,
1157 and also binds @code{a} to 17 (as if by a normal @code{let}, since
1158 @code{a} is just a regular variable). After the body exits, @code{a}
1159 is set back to its original value and point is moved back to its
1160 original position.
1161
1162 Note that @code{cl-letf} on @code{(point)} is not quite like a
1163 @code{save-excursion}, as the latter effectively saves a marker
1164 which tracks insertions and deletions in the buffer. Actually,
1165 a @code{cl-letf} of @code{(point-marker)} is much closer to this
1166 behavior. (@code{point} and @code{point-marker} are equivalent
1167 as @code{setf} places; each will accept either an integer or a
1168 marker as the stored value.)
1169
1170 Since generalized variables look like lists, @code{let}'s shorthand
1171 of using @samp{foo} for @samp{(foo nil)} as a @var{binding} would
1172 be ambiguous in @code{cl-letf} and is not allowed.
1173
1174 However, a @var{binding} specifier may be a one-element list
1175 @samp{(@var{place})}, which is similar to @samp{(@var{place}
1176 @var{place})}. In other words, the @var{place} is not disturbed
1177 on entry to the body, and the only effect of the @code{cl-letf} is
1178 to restore the original value of @var{place} afterwards.
1179 @c I suspect this may no longer be true; either way it's
1180 @c implementation detail and so not essential to document.
1181 @ignore
1182 (The redundant access-and-store suggested by the @code{(@var{place}
1183 @var{place})} example does not actually occur.)
1184 @end ignore
1185
1186 Note that in this case, and in fact almost every case, @var{place}
1187 must have a well-defined value outside the @code{cl-letf} body.
1188 There is essentially only one exception to this, which is @var{place}
1189 a plain variable with a specified @var{value} (such as @code{(a 17)}
1190 in the above example).
1191 @c See http://debbugs.gnu.org/12758
1192 @c Some or all of this was true for cl.el, but not for cl-lib.el.
1193 @ignore
1194 The only exceptions are plain variables and calls to
1195 @code{symbol-value} and @code{symbol-function}. If the symbol is not
1196 bound on entry, it is simply made unbound by @code{makunbound} or
1197 @code{fmakunbound} on exit.
1198 @end ignore
1199 @end defmac
1200
1201 @defmac cl-letf* (bindings@dots{}) forms@dots{}
1202 This macro is to @code{cl-letf} what @code{let*} is to @code{let}:
1203 It does the bindings in sequential rather than parallel order.
1204 @end defmac
1205
1206 @defmac cl-callf @var{function} @var{place} @var{args}@dots{}
1207 This is the ``generic'' modify macro. It calls @var{function},
1208 which should be an unquoted function name, macro name, or lambda.
1209 It passes @var{place} and @var{args} as arguments, and assigns the
1210 result back to @var{place}. For example, @code{(cl-incf @var{place}
1211 @var{n})} is the same as @code{(cl-callf + @var{place} @var{n})}.
1212 Some more examples:
1213
1214 @example
1215 (cl-callf abs my-number)
1216 (cl-callf concat (buffer-name) "<" (number-to-string n) ">")
1217 (cl-callf cl-union happy-people (list joe bob) :test 'same-person)
1218 @end example
1219
1220 Note again that @code{cl-callf} is an extension to standard Common Lisp.
1221 @end defmac
1222
1223 @defmac cl-callf2 @var{function} @var{arg1} @var{place} @var{args}@dots{}
1224 This macro is like @code{cl-callf}, except that @var{place} is
1225 the @emph{second} argument of @var{function} rather than the
1226 first. For example, @code{(push @var{x} @var{place})} is
1227 equivalent to @code{(cl-callf2 cons @var{x} @var{place})}.
1228 @end defmac
1229
1230 The @code{cl-callf} and @code{cl-callf2} macros serve as building
1231 blocks for other macros like @code{cl-incf}, and @code{cl-pushnew}.
1232 The @code{cl-letf} and @code{cl-letf*} macros are used in the processing
1233 of symbol macros; @pxref{Macro Bindings}.
1234
1235
1236 @node Variable Bindings
1237 @section Variable Bindings
1238
1239 @noindent
1240 These Lisp forms make bindings to variables and function names,
1241 analogous to Lisp's built-in @code{let} form.
1242
1243 @xref{Modify Macros}, for the @code{cl-letf} and @code{cl-letf*} forms which
1244 are also related to variable bindings.
1245
1246 @menu
1247 * Dynamic Bindings:: The @code{cl-progv} form.
1248 * Function Bindings:: @code{cl-flet} and @code{cl-labels}.
1249 * Macro Bindings:: @code{cl-macrolet} and @code{cl-symbol-macrolet}.
1250 @end menu
1251
1252 @node Dynamic Bindings
1253 @subsection Dynamic Bindings
1254
1255 @noindent
1256 The standard @code{let} form binds variables whose names are known
1257 at compile-time. The @code{cl-progv} form provides an easy way to
1258 bind variables whose names are computed at run-time.
1259
1260 @defmac cl-progv symbols values forms@dots{}
1261 This form establishes @code{let}-style variable bindings on a
1262 set of variables computed at run-time. The expressions
1263 @var{symbols} and @var{values} are evaluated, and must return lists
1264 of symbols and values, respectively. The symbols are bound to the
1265 corresponding values for the duration of the body @var{form}s.
1266 If @var{values} is shorter than @var{symbols}, the last few symbols
1267 are bound to @code{nil}.
1268 If @var{symbols} is shorter than @var{values}, the excess values
1269 are ignored.
1270 @end defmac
1271
1272 @node Function Bindings
1273 @subsection Function Bindings
1274
1275 @noindent
1276 These forms make @code{let}-like bindings to functions instead
1277 of variables.
1278
1279 @defmac cl-flet (bindings@dots{}) forms@dots{}
1280 This form establishes @code{let}-style bindings on the function
1281 cells of symbols rather than on the value cells. Each @var{binding}
1282 must be a list of the form @samp{(@var{name} @var{arglist}
1283 @var{forms}@dots{})}, which defines a function exactly as if
1284 it were a @code{cl-defun} form. The function @var{name} is defined
1285 accordingly but only within the body of the @code{cl-flet}, hiding any external
1286 definition if applicable.
1287
1288 The bindings are lexical in scope. This means that all references to
1289 the named functions must appear physically within the body of the
1290 @code{cl-flet} form.
1291
1292 Functions defined by @code{cl-flet} may use the full Common Lisp
1293 argument notation supported by @code{cl-defun}; also, the function
1294 body is enclosed in an implicit block as if by @code{cl-defun}.
1295 @xref{Program Structure}.
1296
1297 Note that the @file{cl.el} version of this macro behaves slightly
1298 differently. In particular, its binding is dynamic rather than
1299 lexical. @xref{Obsolete Macros}.
1300 @end defmac
1301
1302 @defmac cl-labels (bindings@dots{}) forms@dots{}
1303 The @code{cl-labels} form is like @code{cl-flet}, except that
1304 the function bindings can be recursive. The scoping is lexical,
1305 but you can only capture functions in closures if
1306 @code{lexical-binding} is @code{t}.
1307 @xref{Closures,,,elisp,GNU Emacs Lisp Reference Manual}, and
1308 @ref{Using Lexical Binding,,,elisp,GNU Emacs Lisp Reference Manual}.
1309
1310 Lexical scoping means that all references to the named
1311 functions must appear physically within the body of the
1312 @code{cl-labels} form. References may appear both in the body
1313 @var{forms} of @code{cl-labels} itself, and in the bodies of
1314 the functions themselves. Thus, @code{cl-labels} can define
1315 local recursive functions, or mutually-recursive sets of functions.
1316
1317 A ``reference'' to a function name is either a call to that
1318 function, or a use of its name quoted by @code{quote} or
1319 @code{function} to be passed on to, say, @code{mapcar}.
1320
1321 Note that the @file{cl.el} version of this macro behaves slightly
1322 differently. @xref{Obsolete Macros}.
1323 @end defmac
1324
1325 @node Macro Bindings
1326 @subsection Macro Bindings
1327
1328 @noindent
1329 These forms create local macros and ``symbol macros''.
1330
1331 @defmac cl-macrolet (bindings@dots{}) forms@dots{}
1332 This form is analogous to @code{cl-flet}, but for macros instead of
1333 functions. Each @var{binding} is a list of the same form as the
1334 arguments to @code{cl-defmacro} (i.e., a macro name, argument list,
1335 and macro-expander forms). The macro is defined accordingly for
1336 use within the body of the @code{cl-macrolet}.
1337
1338 Because of the nature of macros, @code{cl-macrolet} is always lexically
1339 scoped. The @code{cl-macrolet} binding will
1340 affect only calls that appear physically within the body
1341 @var{forms}, possibly after expansion of other macros in the
1342 body.
1343 @end defmac
1344
1345 @defmac cl-symbol-macrolet (bindings@dots{}) forms@dots{}
1346 This form creates @dfn{symbol macros}, which are macros that look
1347 like variable references rather than function calls. Each
1348 @var{binding} is a list @samp{(@var{var} @var{expansion})};
1349 any reference to @var{var} within the body @var{forms} is
1350 replaced by @var{expansion}.
1351
1352 @example
1353 (setq bar '(5 . 9))
1354 (cl-symbol-macrolet ((foo (car bar)))
1355 (cl-incf foo))
1356 bar
1357 @result{} (6 . 9)
1358 @end example
1359
1360 A @code{setq} of a symbol macro is treated the same as a @code{setf}.
1361 I.e., @code{(setq foo 4)} in the above would be equivalent to
1362 @code{(setf foo 4)}, which in turn expands to @code{(setf (car bar) 4)}.
1363
1364 Likewise, a @code{let} or @code{let*} binding a symbol macro is
1365 treated like a @code{cl-letf} or @code{cl-letf*}. This differs from true
1366 Common Lisp, where the rules of lexical scoping cause a @code{let}
1367 binding to shadow a @code{symbol-macrolet} binding. In this package,
1368 such shadowing does not occur, even when @code{lexical-binding} is
1369 @c See http://debbugs.gnu.org/12119
1370 @code{t}. (This behavior predates the addition of lexical binding to
1371 Emacs Lisp, and may change in future to respect @code{lexical-binding}.)
1372 At present in this package, only @code{lexical-let} and
1373 @code{lexical-let*} will shadow a symbol macro. @xref{Obsolete
1374 Lexical Binding}.
1375
1376 There is no analogue of @code{defmacro} for symbol macros; all symbol
1377 macros are local. A typical use of @code{cl-symbol-macrolet} is in the
1378 expansion of another macro:
1379
1380 @example
1381 (cl-defmacro my-dolist ((x list) &rest body)
1382 (let ((var (cl-gensym)))
1383 (list 'cl-loop 'for var 'on list 'do
1384 (cl-list* 'cl-symbol-macrolet
1385 (list (list x (list 'car var)))
1386 body))))
1387
1388 (setq mylist '(1 2 3 4))
1389 (my-dolist (x mylist) (cl-incf x))
1390 mylist
1391 @result{} (2 3 4 5)
1392 @end example
1393
1394 @noindent
1395 In this example, the @code{my-dolist} macro is similar to @code{dolist}
1396 (@pxref{Iteration}) except that the variable @code{x} becomes a true
1397 reference onto the elements of the list. The @code{my-dolist} call
1398 shown here expands to
1399
1400 @example
1401 (cl-loop for G1234 on mylist do
1402 (cl-symbol-macrolet ((x (car G1234)))
1403 (cl-incf x)))
1404 @end example
1405
1406 @noindent
1407 which in turn expands to
1408
1409 @example
1410 (cl-loop for G1234 on mylist do (cl-incf (car G1234)))
1411 @end example
1412
1413 @xref{Loop Facility}, for a description of the @code{cl-loop} macro.
1414 This package defines a nonstandard @code{in-ref} loop clause that
1415 works much like @code{my-dolist}.
1416 @end defmac
1417
1418 @node Conditionals
1419 @section Conditionals
1420
1421 @noindent
1422 These conditional forms augment Emacs Lisp's simple @code{if},
1423 @code{and}, @code{or}, and @code{cond} forms.
1424
1425 @defmac cl-case keyform clause@dots{}
1426 This macro evaluates @var{keyform}, then compares it with the key
1427 values listed in the various @var{clause}s. Whichever clause matches
1428 the key is executed; comparison is done by @code{eql}. If no clause
1429 matches, the @code{cl-case} form returns @code{nil}. The clauses are
1430 of the form
1431
1432 @example
1433 (@var{keylist} @var{body-forms}@dots{})
1434 @end example
1435
1436 @noindent
1437 where @var{keylist} is a list of key values. If there is exactly
1438 one value, and it is not a cons cell or the symbol @code{nil} or
1439 @code{t}, then it can be used by itself as a @var{keylist} without
1440 being enclosed in a list. All key values in the @code{cl-case} form
1441 must be distinct. The final clauses may use @code{t} in place of
1442 a @var{keylist} to indicate a default clause that should be taken
1443 if none of the other clauses match. (The symbol @code{otherwise}
1444 is also recognized in place of @code{t}. To make a clause that
1445 matches the actual symbol @code{t}, @code{nil}, or @code{otherwise},
1446 enclose the symbol in a list.)
1447
1448 For example, this expression reads a keystroke, then does one of
1449 four things depending on whether it is an @samp{a}, a @samp{b},
1450 a @key{RET} or @kbd{C-j}, or anything else.
1451
1452 @example
1453 (cl-case (read-char)
1454 (?a (do-a-thing))
1455 (?b (do-b-thing))
1456 ((?\r ?\n) (do-ret-thing))
1457 (t (do-other-thing)))
1458 @end example
1459 @end defmac
1460
1461 @defmac cl-ecase keyform clause@dots{}
1462 This macro is just like @code{cl-case}, except that if the key does
1463 not match any of the clauses, an error is signaled rather than
1464 simply returning @code{nil}.
1465 @end defmac
1466
1467 @defmac cl-typecase keyform clause@dots{}
1468 This macro is a version of @code{cl-case} that checks for types
1469 rather than values. Each @var{clause} is of the form
1470 @samp{(@var{type} @var{body}@dots{})}. @xref{Type Predicates},
1471 for a description of type specifiers. For example,
1472
1473 @example
1474 (cl-typecase x
1475 (integer (munch-integer x))
1476 (float (munch-float x))
1477 (string (munch-integer (string-to-int x)))
1478 (t (munch-anything x)))
1479 @end example
1480
1481 The type specifier @code{t} matches any type of object; the word
1482 @code{otherwise} is also allowed. To make one clause match any of
1483 several types, use an @code{(or @dots{})} type specifier.
1484 @end defmac
1485
1486 @defmac cl-etypecase keyform clause@dots{}
1487 This macro is just like @code{cl-typecase}, except that if the key does
1488 not match any of the clauses, an error is signaled rather than
1489 simply returning @code{nil}.
1490 @end defmac
1491
1492 @node Blocks and Exits
1493 @section Blocks and Exits
1494 @cindex block
1495
1496 @noindent
1497 Common Lisp @dfn{blocks} provide a non-local exit mechanism very
1498 similar to @code{catch} and @code{throw}, with lexical scoping.
1499 This package actually implements @code{cl-block}
1500 in terms of @code{catch}; however, the lexical scoping allows the
1501 byte-compiler to omit the costly @code{catch} step if the
1502 body of the block does not actually @code{cl-return-from} the block.
1503
1504 @defmac cl-block name forms@dots{}
1505 The @var{forms} are evaluated as if by a @code{progn}. However,
1506 if any of the @var{forms} execute @code{(cl-return-from @var{name})},
1507 they will jump out and return directly from the @code{cl-block} form.
1508 The @code{cl-block} returns the result of the last @var{form} unless
1509 a @code{cl-return-from} occurs.
1510
1511 The @code{cl-block}/@code{cl-return-from} mechanism is quite similar to
1512 the @code{catch}/@code{throw} mechanism. The main differences are
1513 that block @var{name}s are unevaluated symbols, rather than forms
1514 (such as quoted symbols) that evaluate to a tag at run-time; and
1515 also that blocks are always lexically scoped.
1516 In a dynamically scoped @code{catch}, functions called from the
1517 @code{catch} body can also @code{throw} to the @code{catch}. This
1518 is not an option for @code{cl-block}, where
1519 the @code{cl-return-from} referring to a block name must appear
1520 physically within the @var{forms} that make up the body of the block.
1521 They may not appear within other called functions, although they may
1522 appear within macro expansions or @code{lambda}s in the body. Block
1523 names and @code{catch} names form independent name-spaces.
1524
1525 In true Common Lisp, @code{defun} and @code{defmacro} surround
1526 the function or expander bodies with implicit blocks with the
1527 same name as the function or macro. This does not occur in Emacs
1528 Lisp, but this package provides @code{cl-defun} and @code{cl-defmacro}
1529 forms, which do create the implicit block.
1530
1531 The Common Lisp looping constructs defined by this package,
1532 such as @code{cl-loop} and @code{cl-dolist}, also create implicit blocks
1533 just as in Common Lisp.
1534
1535 Because they are implemented in terms of Emacs Lisp's @code{catch}
1536 and @code{throw}, blocks have the same overhead as actual
1537 @code{catch} constructs (roughly two function calls). However,
1538 the byte compiler will optimize away the @code{catch}
1539 if the block does
1540 not in fact contain any @code{cl-return} or @code{cl-return-from} calls
1541 that jump to it. This means that @code{cl-do} loops and @code{cl-defun}
1542 functions that don't use @code{cl-return} don't pay the overhead to
1543 support it.
1544 @end defmac
1545
1546 @defmac cl-return-from name [result]
1547 This macro returns from the block named @var{name}, which must be
1548 an (unevaluated) symbol. If a @var{result} form is specified, it
1549 is evaluated to produce the result returned from the @code{block}.
1550 Otherwise, @code{nil} is returned.
1551 @end defmac
1552
1553 @defmac cl-return [result]
1554 This macro is exactly like @code{(cl-return-from nil @var{result})}.
1555 Common Lisp loops like @code{cl-do} and @code{cl-dolist} implicitly enclose
1556 themselves in @code{nil} blocks.
1557 @end defmac
1558
1559 @node Iteration
1560 @section Iteration
1561
1562 @noindent
1563 The macros described here provide more sophisticated, high-level
1564 looping constructs to complement Emacs Lisp's basic loop forms
1565 (@pxref{Iteration,,,elisp,GNU Emacs Lisp Reference Manual}).
1566
1567 @defmac cl-loop forms@dots{}
1568 This package supports both the simple, old-style meaning of
1569 @code{loop} and the extremely powerful and flexible feature known as
1570 the @dfn{Loop Facility} or @dfn{Loop Macro}. This more advanced
1571 facility is discussed in the following section; @pxref{Loop Facility}.
1572 The simple form of @code{loop} is described here.
1573
1574 If @code{cl-loop} is followed by zero or more Lisp expressions,
1575 then @code{(cl-loop @var{exprs}@dots{})} simply creates an infinite
1576 loop executing the expressions over and over. The loop is
1577 enclosed in an implicit @code{nil} block. Thus,
1578
1579 @example
1580 (cl-loop (foo) (if (no-more) (return 72)) (bar))
1581 @end example
1582
1583 @noindent
1584 is exactly equivalent to
1585
1586 @example
1587 (cl-block nil (while t (foo) (if (no-more) (return 72)) (bar)))
1588 @end example
1589
1590 If any of the expressions are plain symbols, the loop is instead
1591 interpreted as a Loop Macro specification as described later.
1592 (This is not a restriction in practice, since a plain symbol
1593 in the above notation would simply access and throw away the
1594 value of a variable.)
1595 @end defmac
1596
1597 @defmac cl-do (spec@dots{}) (end-test [result@dots{}]) forms@dots{}
1598 This macro creates a general iterative loop. Each @var{spec} is
1599 of the form
1600
1601 @example
1602 (@var{var} [@var{init} [@var{step}]])
1603 @end example
1604
1605 The loop works as follows: First, each @var{var} is bound to the
1606 associated @var{init} value as if by a @code{let} form. Then, in
1607 each iteration of the loop, the @var{end-test} is evaluated; if
1608 true, the loop is finished. Otherwise, the body @var{forms} are
1609 evaluated, then each @var{var} is set to the associated @var{step}
1610 expression (as if by a @code{cl-psetq} form) and the next iteration
1611 begins. Once the @var{end-test} becomes true, the @var{result}
1612 forms are evaluated (with the @var{var}s still bound to their
1613 values) to produce the result returned by @code{cl-do}.
1614
1615 The entire @code{cl-do} loop is enclosed in an implicit @code{nil}
1616 block, so that you can use @code{(cl-return)} to break out of the
1617 loop at any time.
1618
1619 If there are no @var{result} forms, the loop returns @code{nil}.
1620 If a given @var{var} has no @var{step} form, it is bound to its
1621 @var{init} value but not otherwise modified during the @code{cl-do}
1622 loop (unless the code explicitly modifies it); this case is just
1623 a shorthand for putting a @code{(let ((@var{var} @var{init})) @dots{})}
1624 around the loop. If @var{init} is also omitted it defaults to
1625 @code{nil}, and in this case a plain @samp{@var{var}} can be used
1626 in place of @samp{(@var{var})}, again following the analogy with
1627 @code{let}.
1628
1629 This example (from Steele) illustrates a loop that applies the
1630 function @code{f} to successive pairs of values from the lists
1631 @code{foo} and @code{bar}; it is equivalent to the call
1632 @code{(cl-mapcar 'f foo bar)}. Note that this loop has no body
1633 @var{forms} at all, performing all its work as side effects of
1634 the rest of the loop.
1635
1636 @example
1637 (cl-do ((x foo (cdr x))
1638 (y bar (cdr y))
1639 (z nil (cons (f (car x) (car y)) z)))
1640 ((or (null x) (null y))
1641 (nreverse z)))
1642 @end example
1643 @end defmac
1644
1645 @defmac cl-do* (spec@dots{}) (end-test [result@dots{}]) forms@dots{}
1646 This is to @code{cl-do} what @code{let*} is to @code{let}. In
1647 particular, the initial values are bound as if by @code{let*}
1648 rather than @code{let}, and the steps are assigned as if by
1649 @code{setq} rather than @code{cl-psetq}.
1650
1651 Here is another way to write the above loop:
1652
1653 @example
1654 (cl-do* ((xp foo (cdr xp))
1655 (yp bar (cdr yp))
1656 (x (car xp) (car xp))
1657 (y (car yp) (car yp))
1658 z)
1659 ((or (null xp) (null yp))
1660 (nreverse z))
1661 (push (f x y) z))
1662 @end example
1663 @end defmac
1664
1665 @defmac cl-dolist (var list [result]) forms@dots{}
1666 This is exactly like the standard Emacs Lisp macro @code{dolist},
1667 but surrounds the loop with an implicit @code{nil} block.
1668 @end defmac
1669
1670 @defmac cl-dotimes (var count [result]) forms@dots{}
1671 This is exactly like the standard Emacs Lisp macro @code{dotimes},
1672 but surrounds the loop with an implicit @code{nil} block.
1673 The body is executed with @var{var} bound to the integers
1674 from zero (inclusive) to @var{count} (exclusive), in turn. Then
1675 @c FIXME lispref does not state this part explicitly, could move this there.
1676 the @code{result} form is evaluated with @var{var} bound to the total
1677 number of iterations that were done (i.e., @code{(max 0 @var{count})})
1678 to get the return value for the loop form.
1679 @end defmac
1680
1681 @defmac cl-do-symbols (var [obarray [result]]) forms@dots{}
1682 This loop iterates over all interned symbols. If @var{obarray}
1683 is specified and is not @code{nil}, it loops over all symbols in
1684 that obarray. For each symbol, the body @var{forms} are evaluated
1685 with @var{var} bound to that symbol. The symbols are visited in
1686 an unspecified order. Afterward the @var{result} form, if any,
1687 is evaluated (with @var{var} bound to @code{nil}) to get the return
1688 value. The loop is surrounded by an implicit @code{nil} block.
1689 @end defmac
1690
1691 @defmac cl-do-all-symbols (var [result]) forms@dots{}
1692 This is identical to @code{cl-do-symbols} except that the @var{obarray}
1693 argument is omitted; it always iterates over the default obarray.
1694 @end defmac
1695
1696 @xref{Mapping over Sequences}, for some more functions for
1697 iterating over vectors or lists.
1698
1699 @node Loop Facility
1700 @section Loop Facility
1701
1702 @noindent
1703 A common complaint with Lisp's traditional looping constructs was
1704 that they were either too simple and limited, such as @code{dotimes}
1705 or @code{while}, or too unreadable and obscure, like Common Lisp's
1706 @code{do} loop.
1707
1708 To remedy this, Common Lisp added a construct called the ``Loop
1709 Facility'' or ``@code{loop} macro'', with an easy-to-use but very
1710 powerful and expressive syntax.
1711
1712 @menu
1713 * Loop Basics:: The @code{cl-loop} macro, basic clause structure.
1714 * Loop Examples:: Working examples of the @code{cl-loop} macro.
1715 * For Clauses:: Clauses introduced by @code{for} or @code{as}.
1716 * Iteration Clauses:: @code{repeat}, @code{while}, @code{thereis}, etc.
1717 * Accumulation Clauses:: @code{collect}, @code{sum}, @code{maximize}, etc.
1718 * Other Clauses:: @code{with}, @code{if}, @code{initially}, @code{finally}.
1719 @end menu
1720
1721 @node Loop Basics
1722 @subsection Loop Basics
1723
1724 @noindent
1725 The @code{cl-loop} macro essentially creates a mini-language within
1726 Lisp that is specially tailored for describing loops. While this
1727 language is a little strange-looking by the standards of regular Lisp,
1728 it turns out to be very easy to learn and well-suited to its purpose.
1729
1730 Since @code{cl-loop} is a macro, all parsing of the loop language
1731 takes place at byte-compile time; compiled @code{cl-loop}s are just
1732 as efficient as the equivalent @code{while} loops written longhand.
1733
1734 @defmac cl-loop clauses@dots{}
1735 A loop construct consists of a series of @var{clause}s, each
1736 introduced by a symbol like @code{for} or @code{do}. Clauses
1737 are simply strung together in the argument list of @code{cl-loop},
1738 with minimal extra parentheses. The various types of clauses
1739 specify initializations, such as the binding of temporary
1740 variables, actions to be taken in the loop, stepping actions,
1741 and final cleanup.
1742
1743 Common Lisp specifies a certain general order of clauses in a
1744 loop:
1745
1746 @example
1747 (loop @var{name-clause}
1748 @var{var-clauses}@dots{}
1749 @var{action-clauses}@dots{})
1750 @end example
1751
1752 The @var{name-clause} optionally gives a name to the implicit
1753 block that surrounds the loop. By default, the implicit block
1754 is named @code{nil}. The @var{var-clauses} specify what
1755 variables should be bound during the loop, and how they should
1756 be modified or iterated throughout the course of the loop. The
1757 @var{action-clauses} are things to be done during the loop, such
1758 as computing, collecting, and returning values.
1759
1760 The Emacs version of the @code{cl-loop} macro is less restrictive about
1761 the order of clauses, but things will behave most predictably if
1762 you put the variable-binding clauses @code{with}, @code{for}, and
1763 @code{repeat} before the action clauses. As in Common Lisp,
1764 @code{initially} and @code{finally} clauses can go anywhere.
1765
1766 Loops generally return @code{nil} by default, but you can cause
1767 them to return a value by using an accumulation clause like
1768 @code{collect}, an end-test clause like @code{always}, or an
1769 explicit @code{return} clause to jump out of the implicit block.
1770 (Because the loop body is enclosed in an implicit block, you can
1771 also use regular Lisp @code{cl-return} or @code{cl-return-from} to
1772 break out of the loop.)
1773 @end defmac
1774
1775 The following sections give some examples of the loop macro in
1776 action, and describe the particular loop clauses in great detail.
1777 Consult the second edition of Steele for additional discussion
1778 and examples.
1779
1780 @node Loop Examples
1781 @subsection Loop Examples
1782
1783 @noindent
1784 Before listing the full set of clauses that are allowed, let's
1785 look at a few example loops just to get a feel for the @code{cl-loop}
1786 language.
1787
1788 @example
1789 (cl-loop for buf in (buffer-list)
1790 collect (buffer-file-name buf))
1791 @end example
1792
1793 @noindent
1794 This loop iterates over all Emacs buffers, using the list
1795 returned by @code{buffer-list}. For each buffer @var{buf},
1796 it calls @code{buffer-file-name} and collects the results into
1797 a list, which is then returned from the @code{cl-loop} construct.
1798 The result is a list of the file names of all the buffers in
1799 Emacs's memory. The words @code{for}, @code{in}, and @code{collect}
1800 are reserved words in the @code{cl-loop} language.
1801
1802 @example
1803 (cl-loop repeat 20 do (insert "Yowsa\n"))
1804 @end example
1805
1806 @noindent
1807 This loop inserts the phrase ``Yowsa'' twenty times in the
1808 current buffer.
1809
1810 @example
1811 (cl-loop until (eobp) do (munch-line) (forward-line 1))
1812 @end example
1813
1814 @noindent
1815 This loop calls @code{munch-line} on every line until the end
1816 of the buffer. If point is already at the end of the buffer,
1817 the loop exits immediately.
1818
1819 @example
1820 (cl-loop do (munch-line) until (eobp) do (forward-line 1))
1821 @end example
1822
1823 @noindent
1824 This loop is similar to the above one, except that @code{munch-line}
1825 is always called at least once.
1826
1827 @example
1828 (cl-loop for x from 1 to 100
1829 for y = (* x x)
1830 until (>= y 729)
1831 finally return (list x (= y 729)))
1832 @end example
1833
1834 @noindent
1835 This more complicated loop searches for a number @code{x} whose
1836 square is 729. For safety's sake it only examines @code{x}
1837 values up to 100; dropping the phrase @samp{to 100} would
1838 cause the loop to count upwards with no limit. The second
1839 @code{for} clause defines @code{y} to be the square of @code{x}
1840 within the loop; the expression after the @code{=} sign is
1841 reevaluated each time through the loop. The @code{until}
1842 clause gives a condition for terminating the loop, and the
1843 @code{finally} clause says what to do when the loop finishes.
1844 (This particular example was written less concisely than it
1845 could have been, just for the sake of illustration.)
1846
1847 Note that even though this loop contains three clauses (two
1848 @code{for}s and an @code{until}) that would have been enough to
1849 define loops all by themselves, it still creates a single loop
1850 rather than some sort of triple-nested loop. You must explicitly
1851 nest your @code{cl-loop} constructs if you want nested loops.
1852
1853 @node For Clauses
1854 @subsection For Clauses
1855
1856 @noindent
1857 Most loops are governed by one or more @code{for} clauses.
1858 A @code{for} clause simultaneously describes variables to be
1859 bound, how those variables are to be stepped during the loop,
1860 and usually an end condition based on those variables.
1861
1862 The word @code{as} is a synonym for the word @code{for}. This
1863 word is followed by a variable name, then a word like @code{from}
1864 or @code{across} that describes the kind of iteration desired.
1865 In Common Lisp, the phrase @code{being the} sometimes precedes
1866 the type of iteration; in this package both @code{being} and
1867 @code{the} are optional. The word @code{each} is a synonym
1868 for @code{the}, and the word that follows it may be singular
1869 or plural: @samp{for x being the elements of y} or
1870 @samp{for x being each element of y}. Which form you use
1871 is purely a matter of style.
1872
1873 The variable is bound around the loop as if by @code{let}:
1874
1875 @example
1876 (setq i 'happy)
1877 (cl-loop for i from 1 to 10 do (do-something-with i))
1878 i
1879 @result{} happy
1880 @end example
1881
1882 @table @code
1883 @item for @var{var} from @var{expr1} to @var{expr2} by @var{expr3}
1884 This type of @code{for} clause creates a counting loop. Each of
1885 the three sub-terms is optional, though there must be at least one
1886 term so that the clause is marked as a counting clause.
1887
1888 The three expressions are the starting value, the ending value, and
1889 the step value, respectively, of the variable. The loop counts
1890 upwards by default (@var{expr3} must be positive), from @var{expr1}
1891 to @var{expr2} inclusively. If you omit the @code{from} term, the
1892 loop counts from zero; if you omit the @code{to} term, the loop
1893 counts forever without stopping (unless stopped by some other
1894 loop clause, of course); if you omit the @code{by} term, the loop
1895 counts in steps of one.
1896
1897 You can replace the word @code{from} with @code{upfrom} or
1898 @code{downfrom} to indicate the direction of the loop. Likewise,
1899 you can replace @code{to} with @code{upto} or @code{downto}.
1900 For example, @samp{for x from 5 downto 1} executes five times
1901 with @code{x} taking on the integers from 5 down to 1 in turn.
1902 Also, you can replace @code{to} with @code{below} or @code{above},
1903 which are like @code{upto} and @code{downto} respectively except
1904 that they are exclusive rather than inclusive limits:
1905
1906 @example
1907 (cl-loop for x to 10 collect x)
1908 @result{} (0 1 2 3 4 5 6 7 8 9 10)
1909 (cl-loop for x below 10 collect x)
1910 @result{} (0 1 2 3 4 5 6 7 8 9)
1911 @end example
1912
1913 The @code{by} value is always positive, even for downward-counting
1914 loops. Some sort of @code{from} value is required for downward
1915 loops; @samp{for x downto 5} is not a valid loop clause all by
1916 itself.
1917
1918 @item for @var{var} in @var{list} by @var{function}
1919 This clause iterates @var{var} over all the elements of @var{list},
1920 in turn. If you specify the @code{by} term, then @var{function}
1921 is used to traverse the list instead of @code{cdr}; it must be a
1922 function taking one argument. For example:
1923
1924 @example
1925 (cl-loop for x in '(1 2 3 4 5 6) collect (* x x))
1926 @result{} (1 4 9 16 25 36)
1927 (cl-loop for x in '(1 2 3 4 5 6) by 'cddr collect (* x x))
1928 @result{} (1 9 25)
1929 @end example
1930
1931 @item for @var{var} on @var{list} by @var{function}
1932 This clause iterates @var{var} over all the cons cells of @var{list}.
1933
1934 @example
1935 (cl-loop for x on '(1 2 3 4) collect x)
1936 @result{} ((1 2 3 4) (2 3 4) (3 4) (4))
1937 @end example
1938
1939 With @code{by}, there is no real reason that the @code{on} expression
1940 must be a list. For example:
1941
1942 @example
1943 (cl-loop for x on first-animal by 'next-animal collect x)
1944 @end example
1945
1946 @noindent
1947 where @code{(next-animal x)} takes an ``animal'' @var{x} and returns
1948 the next in the (assumed) sequence of animals, or @code{nil} if
1949 @var{x} was the last animal in the sequence.
1950
1951 @item for @var{var} in-ref @var{list} by @var{function}
1952 This is like a regular @code{in} clause, but @var{var} becomes
1953 a @code{setf}-able ``reference'' onto the elements of the list
1954 rather than just a temporary variable. For example,
1955
1956 @example
1957 (cl-loop for x in-ref my-list do (cl-incf x))
1958 @end example
1959
1960 @noindent
1961 increments every element of @code{my-list} in place. This clause
1962 is an extension to standard Common Lisp.
1963
1964 @item for @var{var} across @var{array}
1965 This clause iterates @var{var} over all the elements of @var{array},
1966 which may be a vector or a string.
1967
1968 @example
1969 (cl-loop for x across "aeiou"
1970 do (use-vowel (char-to-string x)))
1971 @end example
1972
1973 @item for @var{var} across-ref @var{array}
1974 This clause iterates over an array, with @var{var} a @code{setf}-able
1975 reference onto the elements; see @code{in-ref} above.
1976
1977 @item for @var{var} being the elements of @var{sequence}
1978 This clause iterates over the elements of @var{sequence}, which may
1979 be a list, vector, or string. Since the type must be determined
1980 at run-time, this is somewhat less efficient than @code{in} or
1981 @code{across}. The clause may be followed by the additional term
1982 @samp{using (index @var{var2})} to cause @var{var2} to be bound to
1983 the successive indices (starting at 0) of the elements.
1984
1985 This clause type is taken from older versions of the @code{loop} macro,
1986 and is not present in modern Common Lisp. The @samp{using (sequence @dots{})}
1987 term of the older macros is not supported.
1988
1989 @item for @var{var} being the elements of-ref @var{sequence}
1990 This clause iterates over a sequence, with @var{var} a @code{setf}-able
1991 reference onto the elements; see @code{in-ref} above.
1992
1993 @item for @var{var} being the symbols [of @var{obarray}]
1994 This clause iterates over symbols, either over all interned symbols
1995 or over all symbols in @var{obarray}. The loop is executed with
1996 @var{var} bound to each symbol in turn. The symbols are visited in
1997 an unspecified order.
1998
1999 As an example,
2000
2001 @example
2002 (cl-loop for sym being the symbols
2003 when (fboundp sym)
2004 when (string-match "^map" (symbol-name sym))
2005 collect sym)
2006 @end example
2007
2008 @noindent
2009 returns a list of all the functions whose names begin with @samp{map}.
2010
2011 The Common Lisp words @code{external-symbols} and @code{present-symbols}
2012 are also recognized but are equivalent to @code{symbols} in Emacs Lisp.
2013
2014 Due to a minor implementation restriction, it will not work to have
2015 more than one @code{for} clause iterating over symbols, hash tables,
2016 keymaps, overlays, or intervals in a given @code{cl-loop}. Fortunately,
2017 it would rarely if ever be useful to do so. It @emph{is} valid to mix
2018 one of these types of clauses with other clauses like @code{for @dots{} to}
2019 or @code{while}.
2020
2021 @item for @var{var} being the hash-keys of @var{hash-table}
2022 @itemx for @var{var} being the hash-values of @var{hash-table}
2023 This clause iterates over the entries in @var{hash-table} with
2024 @var{var} bound to each key, or value. A @samp{using} clause can bind
2025 a second variable to the opposite part.
2026
2027 @example
2028 (cl-loop for k being the hash-keys of h
2029 using (hash-values v)
2030 do
2031 (message "key %S -> value %S" k v))
2032 @end example
2033
2034 @item for @var{var} being the key-codes of @var{keymap}
2035 @itemx for @var{var} being the key-bindings of @var{keymap}
2036 This clause iterates over the entries in @var{keymap}.
2037 The iteration does not enter nested keymaps but does enter inherited
2038 (parent) keymaps.
2039 A @code{using} clause can access both the codes and the bindings
2040 together.
2041
2042 @example
2043 (cl-loop for c being the key-codes of (current-local-map)
2044 using (key-bindings b)
2045 do
2046 (message "key %S -> binding %S" c b))
2047 @end example
2048
2049
2050 @item for @var{var} being the key-seqs of @var{keymap}
2051 This clause iterates over all key sequences defined by @var{keymap}
2052 and its nested keymaps, where @var{var} takes on values which are
2053 vectors. The strings or vectors
2054 are reused for each iteration, so you must copy them if you wish to keep
2055 them permanently. You can add a @samp{using (key-bindings @dots{})}
2056 clause to get the command bindings as well.
2057
2058 @item for @var{var} being the overlays [of @var{buffer}] @dots{}
2059 This clause iterates over the ``overlays'' of a buffer
2060 (the clause @code{extents} is synonymous
2061 with @code{overlays}). If the @code{of} term is omitted, the current
2062 buffer is used.
2063 This clause also accepts optional @samp{from @var{pos}} and
2064 @samp{to @var{pos}} terms, limiting the clause to overlays which
2065 overlap the specified region.
2066
2067 @item for @var{var} being the intervals [of @var{buffer}] @dots{}
2068 This clause iterates over all intervals of a buffer with constant
2069 text properties. The variable @var{var} will be bound to conses
2070 of start and end positions, where one start position is always equal
2071 to the previous end position. The clause allows @code{of},
2072 @code{from}, @code{to}, and @code{property} terms, where the latter
2073 term restricts the search to just the specified property. The
2074 @code{of} term may specify either a buffer or a string.
2075
2076 @item for @var{var} being the frames
2077 This clause iterates over all Emacs frames. The clause @code{screens} is
2078 a synonym for @code{frames}. The frames are visited in
2079 @code{next-frame} order starting from @code{selected-frame}.
2080
2081 @item for @var{var} being the windows [of @var{frame}]
2082 This clause iterates over the windows (in the Emacs sense) of
2083 the current frame, or of the specified @var{frame}. It visits windows
2084 in @code{next-window} order starting from @code{selected-window}
2085 (or @code{frame-selected-window} if you specify @var{frame}).
2086 This clause treats the minibuffer window in the same way as
2087 @code{next-window} does. For greater flexibility, consider using
2088 @code{walk-windows} instead.
2089
2090 @item for @var{var} being the buffers
2091 This clause iterates over all buffers in Emacs. It is equivalent
2092 to @samp{for @var{var} in (buffer-list)}.
2093
2094 @item for @var{var} = @var{expr1} then @var{expr2}
2095 This clause does a general iteration. The first time through
2096 the loop, @var{var} will be bound to @var{expr1}. On the second
2097 and successive iterations it will be set by evaluating @var{expr2}
2098 (which may refer to the old value of @var{var}). For example,
2099 these two loops are effectively the same:
2100
2101 @example
2102 (cl-loop for x on my-list by 'cddr do @dots{})
2103 (cl-loop for x = my-list then (cddr x) while x do @dots{})
2104 @end example
2105
2106 Note that this type of @code{for} clause does not imply any sort
2107 of terminating condition; the above example combines it with a
2108 @code{while} clause to tell when to end the loop.
2109
2110 If you omit the @code{then} term, @var{expr1} is used both for
2111 the initial setting and for successive settings:
2112
2113 @example
2114 (cl-loop for x = (random) when (> x 0) return x)
2115 @end example
2116
2117 @noindent
2118 This loop keeps taking random numbers from the @code{(random)}
2119 function until it gets a positive one, which it then returns.
2120 @end table
2121
2122 If you include several @code{for} clauses in a row, they are
2123 treated sequentially (as if by @code{let*} and @code{setq}).
2124 You can instead use the word @code{and} to link the clauses,
2125 in which case they are processed in parallel (as if by @code{let}
2126 and @code{cl-psetq}).
2127
2128 @example
2129 (cl-loop for x below 5 for y = nil then x collect (list x y))
2130 @result{} ((0 nil) (1 1) (2 2) (3 3) (4 4))
2131 (cl-loop for x below 5 and y = nil then x collect (list x y))
2132 @result{} ((0 nil) (1 0) (2 1) (3 2) (4 3))
2133 @end example
2134
2135 @noindent
2136 In the first loop, @code{y} is set based on the value of @code{x}
2137 that was just set by the previous clause; in the second loop,
2138 @code{x} and @code{y} are set simultaneously so @code{y} is set
2139 based on the value of @code{x} left over from the previous time
2140 through the loop.
2141
2142 @cindex destructuring, in cl-loop
2143 Another feature of the @code{cl-loop} macro is @emph{destructuring},
2144 similar in concept to the destructuring provided by @code{defmacro}
2145 (@pxref{Argument Lists}).
2146 The @var{var} part of any @code{for} clause can be given as a list
2147 of variables instead of a single variable. The values produced
2148 during loop execution must be lists; the values in the lists are
2149 stored in the corresponding variables.
2150
2151 @example
2152 (cl-loop for (x y) in '((2 3) (4 5) (6 7)) collect (+ x y))
2153 @result{} (5 9 13)
2154 @end example
2155
2156 In loop destructuring, if there are more values than variables
2157 the trailing values are ignored, and if there are more variables
2158 than values the trailing variables get the value @code{nil}.
2159 If @code{nil} is used as a variable name, the corresponding
2160 values are ignored. Destructuring may be nested, and dotted
2161 lists of variables like @code{(x . y)} are allowed, so for example
2162 to process an alist
2163
2164 @example
2165 (cl-loop for (key . value) in '((a . 1) (b . 2))
2166 collect value)
2167 @result{} (1 2)
2168 @end example
2169
2170 @node Iteration Clauses
2171 @subsection Iteration Clauses
2172
2173 @noindent
2174 Aside from @code{for} clauses, there are several other loop clauses
2175 that control the way the loop operates. They might be used by
2176 themselves, or in conjunction with one or more @code{for} clauses.
2177
2178 @table @code
2179 @item repeat @var{integer}
2180 This clause simply counts up to the specified number using an
2181 internal temporary variable. The loops
2182
2183 @example
2184 (cl-loop repeat (1+ n) do @dots{})
2185 (cl-loop for temp to n do @dots{})
2186 @end example
2187
2188 @noindent
2189 are identical except that the second one forces you to choose
2190 a name for a variable you aren't actually going to use.
2191
2192 @item while @var{condition}
2193 This clause stops the loop when the specified condition (any Lisp
2194 expression) becomes @code{nil}. For example, the following two
2195 loops are equivalent, except for the implicit @code{nil} block
2196 that surrounds the second one:
2197
2198 @example
2199 (while @var{cond} @var{forms}@dots{})
2200 (cl-loop while @var{cond} do @var{forms}@dots{})
2201 @end example
2202
2203 @item until @var{condition}
2204 This clause stops the loop when the specified condition is true,
2205 i.e., non-@code{nil}.
2206
2207 @item always @var{condition}
2208 This clause stops the loop when the specified condition is @code{nil}.
2209 Unlike @code{while}, it stops the loop using @code{return nil} so that
2210 the @code{finally} clauses are not executed. If all the conditions
2211 were non-@code{nil}, the loop returns @code{t}:
2212
2213 @example
2214 (if (cl-loop for size in size-list always (> size 10))
2215 (some-big-sizes)
2216 (no-big-sizes))
2217 @end example
2218
2219 @item never @var{condition}
2220 This clause is like @code{always}, except that the loop returns
2221 @code{t} if any conditions were false, or @code{nil} otherwise.
2222
2223 @item thereis @var{condition}
2224 This clause stops the loop when the specified form is non-@code{nil};
2225 in this case, it returns that non-@code{nil} value. If all the
2226 values were @code{nil}, the loop returns @code{nil}.
2227 @end table
2228
2229 @node Accumulation Clauses
2230 @subsection Accumulation Clauses
2231
2232 @noindent
2233 These clauses cause the loop to accumulate information about the
2234 specified Lisp @var{form}. The accumulated result is returned
2235 from the loop unless overridden, say, by a @code{return} clause.
2236
2237 @table @code
2238 @item collect @var{form}
2239 This clause collects the values of @var{form} into a list. Several
2240 examples of @code{collect} appear elsewhere in this manual.
2241
2242 The word @code{collecting} is a synonym for @code{collect}, and
2243 likewise for the other accumulation clauses.
2244
2245 @item append @var{form}
2246 This clause collects lists of values into a result list using
2247 @code{append}.
2248
2249 @item nconc @var{form}
2250 This clause collects lists of values into a result list by
2251 destructively modifying the lists rather than copying them.
2252
2253 @item concat @var{form}
2254 This clause concatenates the values of the specified @var{form}
2255 into a string. (It and the following clause are extensions to
2256 standard Common Lisp.)
2257
2258 @item vconcat @var{form}
2259 This clause concatenates the values of the specified @var{form}
2260 into a vector.
2261
2262 @item count @var{form}
2263 This clause counts the number of times the specified @var{form}
2264 evaluates to a non-@code{nil} value.
2265
2266 @item sum @var{form}
2267 This clause accumulates the sum of the values of the specified
2268 @var{form}, which must evaluate to a number.
2269
2270 @item maximize @var{form}
2271 This clause accumulates the maximum value of the specified @var{form},
2272 which must evaluate to a number. The return value is undefined if
2273 @code{maximize} is executed zero times.
2274
2275 @item minimize @var{form}
2276 This clause accumulates the minimum value of the specified @var{form}.
2277 @end table
2278
2279 Accumulation clauses can be followed by @samp{into @var{var}} to
2280 cause the data to be collected into variable @var{var} (which is
2281 automatically @code{let}-bound during the loop) rather than an
2282 unnamed temporary variable. Also, @code{into} accumulations do
2283 not automatically imply a return value. The loop must use some
2284 explicit mechanism, such as @code{finally return}, to return
2285 the accumulated result.
2286
2287 It is valid for several accumulation clauses of the same type to
2288 accumulate into the same place. From Steele:
2289
2290 @example
2291 (cl-loop for name in '(fred sue alice joe june)
2292 for kids in '((bob ken) () () (kris sunshine) ())
2293 collect name
2294 append kids)
2295 @result{} (fred bob ken sue alice joe kris sunshine june)
2296 @end example
2297
2298 @node Other Clauses
2299 @subsection Other Clauses
2300
2301 @noindent
2302 This section describes the remaining loop clauses.
2303
2304 @table @code
2305 @item with @var{var} = @var{value}
2306 This clause binds a variable to a value around the loop, but
2307 otherwise leaves the variable alone during the loop. The following
2308 loops are basically equivalent:
2309
2310 @example
2311 (cl-loop with x = 17 do @dots{})
2312 (let ((x 17)) (cl-loop do @dots{}))
2313 (cl-loop for x = 17 then x do @dots{})
2314 @end example
2315
2316 Naturally, the variable @var{var} might be used for some purpose
2317 in the rest of the loop. For example:
2318
2319 @example
2320 (cl-loop for x in my-list with res = nil do (push x res)
2321 finally return res)
2322 @end example
2323
2324 This loop inserts the elements of @code{my-list} at the front of
2325 a new list being accumulated in @code{res}, then returns the
2326 list @code{res} at the end of the loop. The effect is similar
2327 to that of a @code{collect} clause, but the list gets reversed
2328 by virtue of the fact that elements are being pushed onto the
2329 front of @code{res} rather than the end.
2330
2331 If you omit the @code{=} term, the variable is initialized to
2332 @code{nil}. (Thus the @samp{= nil} in the above example is
2333 unnecessary.)
2334
2335 Bindings made by @code{with} are sequential by default, as if
2336 by @code{let*}. Just like @code{for} clauses, @code{with} clauses
2337 can be linked with @code{and} to cause the bindings to be made by
2338 @code{let} instead.
2339
2340 @item if @var{condition} @var{clause}
2341 This clause executes the following loop clause only if the specified
2342 condition is true. The following @var{clause} should be an accumulation,
2343 @code{do}, @code{return}, @code{if}, or @code{unless} clause.
2344 Several clauses may be linked by separating them with @code{and}.
2345 These clauses may be followed by @code{else} and a clause or clauses
2346 to execute if the condition was false. The whole construct may
2347 optionally be followed by the word @code{end} (which may be used to
2348 disambiguate an @code{else} or @code{and} in a nested @code{if}).
2349
2350 The actual non-@code{nil} value of the condition form is available
2351 by the name @code{it} in the ``then'' part. For example:
2352
2353 @example
2354 (setq funny-numbers '(6 13 -1))
2355 @result{} (6 13 -1)
2356 (cl-loop for x below 10
2357 if (cl-oddp x)
2358 collect x into odds
2359 and if (memq x funny-numbers) return (cdr it) end
2360 else
2361 collect x into evens
2362 finally return (vector odds evens))
2363 @result{} [(1 3 5 7 9) (0 2 4 6 8)]
2364 (setq funny-numbers '(6 7 13 -1))
2365 @result{} (6 7 13 -1)
2366 (cl-loop <@r{same thing again}>)
2367 @result{} (13 -1)
2368 @end example
2369
2370 Note the use of @code{and} to put two clauses into the ``then''
2371 part, one of which is itself an @code{if} clause. Note also that
2372 @code{end}, while normally optional, was necessary here to make
2373 it clear that the @code{else} refers to the outermost @code{if}
2374 clause. In the first case, the loop returns a vector of lists
2375 of the odd and even values of @var{x}. In the second case, the
2376 odd number 7 is one of the @code{funny-numbers} so the loop
2377 returns early; the actual returned value is based on the result
2378 of the @code{memq} call.
2379
2380 @item when @var{condition} @var{clause}
2381 This clause is just a synonym for @code{if}.
2382
2383 @item unless @var{condition} @var{clause}
2384 The @code{unless} clause is just like @code{if} except that the
2385 sense of the condition is reversed.
2386
2387 @item named @var{name}
2388 This clause gives a name other than @code{nil} to the implicit
2389 block surrounding the loop. The @var{name} is the symbol to be
2390 used as the block name.
2391
2392 @item initially [do] @var{forms}@dots{}
2393 This keyword introduces one or more Lisp forms which will be
2394 executed before the loop itself begins (but after any variables
2395 requested by @code{for} or @code{with} have been bound to their
2396 initial values). @code{initially} clauses can appear anywhere;
2397 if there are several, they are executed in the order they appear
2398 in the loop. The keyword @code{do} is optional.
2399
2400 @item finally [do] @var{forms}@dots{}
2401 This introduces Lisp forms which will be executed after the loop
2402 finishes (say, on request of a @code{for} or @code{while}).
2403 @code{initially} and @code{finally} clauses may appear anywhere
2404 in the loop construct, but they are executed (in the specified
2405 order) at the beginning or end, respectively, of the loop.
2406
2407 @item finally return @var{form}
2408 This says that @var{form} should be executed after the loop
2409 is done to obtain a return value. (Without this, or some other
2410 clause like @code{collect} or @code{return}, the loop will simply
2411 return @code{nil}.) Variables bound by @code{for}, @code{with},
2412 or @code{into} will still contain their final values when @var{form}
2413 is executed.
2414
2415 @item do @var{forms}@dots{}
2416 The word @code{do} may be followed by any number of Lisp expressions
2417 which are executed as an implicit @code{progn} in the body of the
2418 loop. Many of the examples in this section illustrate the use of
2419 @code{do}.
2420
2421 @item return @var{form}
2422 This clause causes the loop to return immediately. The following
2423 Lisp form is evaluated to give the return value of the loop
2424 form. The @code{finally} clauses, if any, are not executed.
2425 Of course, @code{return} is generally used inside an @code{if} or
2426 @code{unless}, as its use in a top-level loop clause would mean
2427 the loop would never get to ``loop'' more than once.
2428
2429 The clause @samp{return @var{form}} is equivalent to
2430 @samp{do (cl-return @var{form})} (or @code{cl-return-from} if the loop
2431 was named). The @code{return} clause is implemented a bit more
2432 efficiently, though.
2433 @end table
2434
2435 While there is no high-level way to add user extensions to @code{cl-loop},
2436 this package does offer two properties called @code{cl-loop-handler}
2437 and @code{cl-loop-for-handler} which are functions to be called when a
2438 given symbol is encountered as a top-level loop clause or @code{for}
2439 clause, respectively. Consult the source code in file
2440 @file{cl-macs.el} for details.
2441
2442 This package's @code{cl-loop} macro is compatible with that of Common
2443 Lisp, except that a few features are not implemented: @code{loop-finish}
2444 and data-type specifiers. Naturally, the @code{for} clauses that
2445 iterate over keymaps, overlays, intervals, frames, windows, and
2446 buffers are Emacs-specific extensions.
2447
2448 @node Multiple Values
2449 @section Multiple Values
2450
2451 @noindent
2452 Common Lisp functions can return zero or more results. Emacs Lisp
2453 functions, by contrast, always return exactly one result. This
2454 package makes no attempt to emulate Common Lisp multiple return
2455 values; Emacs versions of Common Lisp functions that return more
2456 than one value either return just the first value (as in
2457 @code{cl-compiler-macroexpand}) or return a list of values.
2458 This package @emph{does} define placeholders
2459 for the Common Lisp functions that work with multiple values, but
2460 in Emacs Lisp these functions simply operate on lists instead.
2461 The @code{cl-values} form, for example, is a synonym for @code{list}
2462 in Emacs.
2463
2464 @defmac cl-multiple-value-bind (var@dots{}) values-form forms@dots{}
2465 This form evaluates @var{values-form}, which must return a list of
2466 values. It then binds the @var{var}s to these respective values,
2467 as if by @code{let}, and then executes the body @var{forms}.
2468 If there are more @var{var}s than values, the extra @var{var}s
2469 are bound to @code{nil}. If there are fewer @var{var}s than
2470 values, the excess values are ignored.
2471 @end defmac
2472
2473 @defmac cl-multiple-value-setq (var@dots{}) form
2474 This form evaluates @var{form}, which must return a list of values.
2475 It then sets the @var{var}s to these respective values, as if by
2476 @code{setq}. Extra @var{var}s or values are treated the same as
2477 in @code{cl-multiple-value-bind}.
2478 @end defmac
2479
2480 Since a perfect emulation is not feasible in Emacs Lisp, this
2481 package opts to keep it as simple and predictable as possible.
2482
2483 @node Macros
2484 @chapter Macros
2485
2486 @noindent
2487 This package implements the various Common Lisp features of
2488 @code{defmacro}, such as destructuring, @code{&environment},
2489 and @code{&body}. Top-level @code{&whole} is not implemented
2490 for @code{defmacro} due to technical difficulties.
2491 @xref{Argument Lists}.
2492
2493 Destructuring is made available to the user by way of the
2494 following macro:
2495
2496 @defmac cl-destructuring-bind arglist expr forms@dots{}
2497 This macro expands to code that executes @var{forms}, with
2498 the variables in @var{arglist} bound to the list of values
2499 returned by @var{expr}. The @var{arglist} can include all
2500 the features allowed for @code{cl-defmacro} argument lists,
2501 including destructuring. (The @code{&environment} keyword
2502 is not allowed.) The macro expansion will signal an error
2503 if @var{expr} returns a list of the wrong number of arguments
2504 or with incorrect keyword arguments.
2505 @end defmac
2506
2507 @cindex compiler macros
2508 @cindex define compiler macros
2509 This package also includes the Common Lisp @code{define-compiler-macro}
2510 facility, which allows you to define compile-time expansions and
2511 optimizations for your functions.
2512
2513 @defmac cl-define-compiler-macro name arglist forms@dots{}
2514 This form is similar to @code{defmacro}, except that it only expands
2515 calls to @var{name} at compile-time; calls processed by the Lisp
2516 interpreter are not expanded, nor are they expanded by the
2517 @code{macroexpand} function.
2518
2519 The argument list may begin with a @code{&whole} keyword and a
2520 variable. This variable is bound to the macro-call form itself,
2521 i.e., to a list of the form @samp{(@var{name} @var{args}@dots{})}.
2522 If the macro expander returns this form unchanged, then the
2523 compiler treats it as a normal function call. This allows
2524 compiler macros to work as optimizers for special cases of a
2525 function, leaving complicated cases alone.
2526
2527 For example, here is a simplified version of a definition that
2528 appears as a standard part of this package:
2529
2530 @example
2531 (cl-define-compiler-macro cl-member (&whole form a list &rest keys)
2532 (if (and (null keys)
2533 (eq (car-safe a) 'quote)
2534 (not (floatp (cadr a))))
2535 (list 'memq a list)
2536 form))
2537 @end example
2538
2539 @noindent
2540 This definition causes @code{(cl-member @var{a} @var{list})} to change
2541 to a call to the faster @code{memq} in the common case where @var{a}
2542 is a non-floating-point constant; if @var{a} is anything else, or
2543 if there are any keyword arguments in the call, then the original
2544 @code{cl-member} call is left intact. (The actual compiler macro
2545 for @code{cl-member} optimizes a number of other cases, including
2546 common @code{:test} predicates.)
2547 @end defmac
2548
2549 @defun cl-compiler-macroexpand form
2550 This function is analogous to @code{macroexpand}, except that it
2551 expands compiler macros rather than regular macros. It returns
2552 @var{form} unchanged if it is not a call to a function for which
2553 a compiler macro has been defined, or if that compiler macro
2554 decided to punt by returning its @code{&whole} argument. Like
2555 @code{macroexpand}, it expands repeatedly until it reaches a form
2556 for which no further expansion is possible.
2557 @end defun
2558
2559 @xref{Macro Bindings}, for descriptions of the @code{cl-macrolet}
2560 and @code{cl-symbol-macrolet} forms for making ``local'' macro
2561 definitions.
2562
2563 @node Declarations
2564 @chapter Declarations
2565
2566 @noindent
2567 Common Lisp includes a complex and powerful ``declaration''
2568 mechanism that allows you to give the compiler special hints
2569 about the types of data that will be stored in particular variables,
2570 and about the ways those variables and functions will be used. This
2571 package defines versions of all the Common Lisp declaration forms:
2572 @code{declare}, @code{locally}, @code{proclaim}, @code{declaim},
2573 and @code{the}.
2574
2575 Most of the Common Lisp declarations are not currently useful in Emacs
2576 Lisp. For example, the byte-code system provides little
2577 opportunity to benefit from type information.
2578 @ignore
2579 and @code{special} declarations are redundant in a fully
2580 dynamically-scoped Lisp.
2581 @end ignore
2582 A few declarations are meaningful when byte compiler optimizations
2583 are enabled, as they are by the default. Otherwise these
2584 declarations will effectively be ignored.
2585
2586 @defun cl-proclaim decl-spec
2587 This function records a ``global'' declaration specified by
2588 @var{decl-spec}. Since @code{cl-proclaim} is a function, @var{decl-spec}
2589 is evaluated and thus should normally be quoted.
2590 @end defun
2591
2592 @defmac cl-declaim decl-specs@dots{}
2593 This macro is like @code{cl-proclaim}, except that it takes any number
2594 of @var{decl-spec} arguments, and the arguments are unevaluated and
2595 unquoted. The @code{cl-declaim} macro also puts @code{(cl-eval-when
2596 (compile load eval) @dots{})} around the declarations so that they will
2597 be registered at compile-time as well as at run-time. (This is vital,
2598 since normally the declarations are meant to influence the way the
2599 compiler treats the rest of the file that contains the @code{cl-declaim}
2600 form.)
2601 @end defmac
2602
2603 @defmac cl-declare decl-specs@dots{}
2604 This macro is used to make declarations within functions and other
2605 code. Common Lisp allows declarations in various locations, generally
2606 at the beginning of any of the many ``implicit @code{progn}s''
2607 throughout Lisp syntax, such as function bodies, @code{let} bodies,
2608 etc. Currently the only declaration understood by @code{cl-declare}
2609 is @code{special}.
2610 @end defmac
2611
2612 @defmac cl-locally declarations@dots{} forms@dots{}
2613 In this package, @code{cl-locally} is no different from @code{progn}.
2614 @end defmac
2615
2616 @defmac cl-the type form
2617 Type information provided by @code{cl-the} is ignored in this package;
2618 in other words, @code{(cl-the @var{type} @var{form})} is equivalent to
2619 @var{form}. Future byte-compiler optimizations may make use of this
2620 information.
2621
2622 For example, @code{mapcar} can map over both lists and arrays. It is
2623 hard for the compiler to expand @code{mapcar} into an in-line loop
2624 unless it knows whether the sequence will be a list or an array ahead
2625 of time. With @code{(mapcar 'car (cl-the vector foo))}, a future
2626 compiler would have enough information to expand the loop in-line.
2627 For now, Emacs Lisp will treat the above code as exactly equivalent
2628 to @code{(mapcar 'car foo)}.
2629 @end defmac
2630
2631 Each @var{decl-spec} in a @code{cl-proclaim}, @code{cl-declaim}, or
2632 @code{cl-declare} should be a list beginning with a symbol that says
2633 what kind of declaration it is. This package currently understands
2634 @code{special}, @code{inline}, @code{notinline}, @code{optimize},
2635 and @code{warn} declarations. (The @code{warn} declaration is an
2636 extension of standard Common Lisp.) Other Common Lisp declarations,
2637 such as @code{type} and @code{ftype}, are silently ignored.
2638
2639 @table @code
2640 @item special
2641 @c FIXME ?
2642 Since all variables in Emacs Lisp are ``special'' (in the Common
2643 Lisp sense), @code{special} declarations are only advisory. They
2644 simply tell the byte compiler that the specified
2645 variables are intentionally being referred to without being
2646 bound in the body of the function. The compiler normally emits
2647 warnings for such references, since they could be typographical
2648 errors for references to local variables.
2649
2650 The declaration @code{(cl-declare (special @var{var1} @var{var2}))} is
2651 equivalent to @code{(defvar @var{var1}) (defvar @var{var2})}.
2652
2653 In top-level contexts, it is generally better to write
2654 @code{(defvar @var{var})} than @code{(cl-declaim (special @var{var}))},
2655 since @code{defvar} makes your intentions clearer.
2656
2657 @item inline
2658 The @code{inline} @var{decl-spec} lists one or more functions
2659 whose bodies should be expanded ``in-line'' into calling functions
2660 whenever the compiler is able to arrange for it. For example,
2661 the function @code{cl-acons} is declared @code{inline}
2662 by this package so that the form @code{(cl-acons @var{key} @var{value}
2663 @var{alist})} will
2664 expand directly into @code{(cons (cons @var{key} @var{value}) @var{alist})}
2665 when it is called in user functions, so as to save function calls.
2666
2667 The following declarations are all equivalent. Note that the
2668 @code{defsubst} form is a convenient way to define a function
2669 and declare it inline all at once.
2670
2671 @example
2672 (cl-declaim (inline foo bar))
2673 (cl-eval-when (compile load eval)
2674 (cl-proclaim '(inline foo bar)))
2675 (defsubst foo (@dots{}) @dots{}) ; instead of defun
2676 @end example
2677
2678 @strong{Please note:} this declaration remains in effect after the
2679 containing source file is done. It is correct to use it to
2680 request that a function you have defined should be inlined,
2681 but it is impolite to use it to request inlining of an external
2682 function.
2683
2684 In Common Lisp, it is possible to use @code{(declare (inline @dots{}))}
2685 before a particular call to a function to cause just that call to
2686 be inlined; the current byte compilers provide no way to implement
2687 this, so @code{(cl-declare (inline @dots{}))} is currently ignored by
2688 this package.
2689
2690 @item notinline
2691 The @code{notinline} declaration lists functions which should
2692 not be inlined after all; it cancels a previous @code{inline}
2693 declaration.
2694
2695 @item optimize
2696 This declaration controls how much optimization is performed by
2697 the compiler.
2698
2699 The word @code{optimize} is followed by any number of lists like
2700 @code{(speed 3)} or @code{(safety 2)}. Common Lisp defines several
2701 optimization ``qualities''; this package ignores all but @code{speed}
2702 and @code{safety}. The value of a quality should be an integer from
2703 0 to 3, with 0 meaning ``unimportant'' and 3 meaning ``very important''.
2704 The default level for both qualities is 1.
2705
2706 In this package, the @code{speed} quality is tied to the @code{byte-optimize}
2707 flag, which is set to @code{nil} for @code{(speed 0)} and to
2708 @code{t} for higher settings; and the @code{safety} quality is
2709 tied to the @code{byte-compile-delete-errors} flag, which is
2710 set to @code{nil} for @code{(safety 3)} and to @code{t} for all
2711 lower settings. (The latter flag controls whether the compiler
2712 is allowed to optimize out code whose only side-effect could
2713 be to signal an error, e.g., rewriting @code{(progn foo bar)} to
2714 @code{bar} when it is not known whether @code{foo} will be bound
2715 at run-time.)
2716
2717 Note that even compiling with @code{(safety 0)}, the Emacs
2718 byte-code system provides sufficient checking to prevent real
2719 harm from being done. For example, barring serious bugs in
2720 Emacs itself, Emacs will not crash with a segmentation fault
2721 just because of an error in a fully-optimized Lisp program.
2722
2723 The @code{optimize} declaration is normally used in a top-level
2724 @code{cl-proclaim} or @code{cl-declaim} in a file; Common Lisp allows
2725 it to be used with @code{declare} to set the level of optimization
2726 locally for a given form, but this will not work correctly with the
2727 current byte-compiler. (The @code{cl-declare}
2728 will set the new optimization level, but that level will not
2729 automatically be unset after the enclosing form is done.)
2730
2731 @item warn
2732 This declaration controls what sorts of warnings are generated
2733 by the byte compiler. The word @code{warn} is followed by any
2734 number of ``warning qualities'', similar in form to optimization
2735 qualities. The currently supported warning types are
2736 @code{redefine}, @code{callargs}, @code{unresolved}, and
2737 @code{free-vars}; in the current system, a value of 0 will
2738 disable these warnings and any higher value will enable them.
2739 See the documentation of the variable @code{byte-compile-warnings}
2740 for more details.
2741 @end table
2742
2743 @node Symbols
2744 @chapter Symbols
2745
2746 @noindent
2747 This package defines several symbol-related features that were
2748 missing from Emacs Lisp.
2749
2750 @menu
2751 * Property Lists:: @code{cl-get}, @code{cl-remprop}, @code{cl-getf}, @code{cl-remf}.
2752 * Creating Symbols:: @code{cl-gensym}, @code{cl-gentemp}.
2753 @end menu
2754
2755 @node Property Lists
2756 @section Property Lists
2757
2758 @noindent
2759 These functions augment the standard Emacs Lisp functions @code{get}
2760 and @code{put} for operating on properties attached to symbols.
2761 There are also functions for working with property lists as
2762 first-class data structures not attached to particular symbols.
2763
2764 @defun cl-get symbol property &optional default
2765 This function is like @code{get}, except that if the property is
2766 not found, the @var{default} argument provides the return value.
2767 (The Emacs Lisp @code{get} function always uses @code{nil} as
2768 the default; this package's @code{cl-get} is equivalent to Common
2769 Lisp's @code{get}.)
2770
2771 The @code{cl-get} function is @code{setf}-able; when used in this
2772 fashion, the @var{default} argument is allowed but ignored.
2773 @end defun
2774
2775 @defun cl-remprop symbol property
2776 This function removes the entry for @var{property} from the property
2777 list of @var{symbol}. It returns a true value if the property was
2778 indeed found and removed, or @code{nil} if there was no such property.
2779 (This function was probably omitted from Emacs originally because,
2780 since @code{get} did not allow a @var{default}, it was very difficult
2781 to distinguish between a missing property and a property whose value
2782 was @code{nil}; thus, setting a property to @code{nil} was close
2783 enough to @code{cl-remprop} for most purposes.)
2784 @end defun
2785
2786 @defun cl-getf place property &optional default
2787 This function scans the list @var{place} as if it were a property
2788 list, i.e., a list of alternating property names and values. If
2789 an even-numbered element of @var{place} is found which is @code{eq}
2790 to @var{property}, the following odd-numbered element is returned.
2791 Otherwise, @var{default} is returned (or @code{nil} if no default
2792 is given).
2793
2794 In particular,
2795
2796 @example
2797 (get sym prop) @equiv{} (cl-getf (symbol-plist sym) prop)
2798 @end example
2799
2800 It is valid to use @code{cl-getf} as a @code{setf} place, in which case
2801 its @var{place} argument must itself be a valid @code{setf} place.
2802 The @var{default} argument, if any, is ignored in this context.
2803 The effect is to change (via @code{setcar}) the value cell in the
2804 list that corresponds to @var{property}, or to cons a new property-value
2805 pair onto the list if the property is not yet present.
2806
2807 @example
2808 (put sym prop val) @equiv{} (setf (cl-getf (symbol-plist sym) prop) val)
2809 @end example
2810
2811 The @code{get} and @code{cl-get} functions are also @code{setf}-able.
2812 The fact that @code{default} is ignored can sometimes be useful:
2813
2814 @example
2815 (cl-incf (cl-get 'foo 'usage-count 0))
2816 @end example
2817
2818 Here, symbol @code{foo}'s @code{usage-count} property is incremented
2819 if it exists, or set to 1 (an incremented 0) otherwise.
2820
2821 When not used as a @code{setf} form, @code{cl-getf} is just a regular
2822 function and its @var{place} argument can actually be any Lisp
2823 expression.
2824 @end defun
2825
2826 @defmac cl-remf place property
2827 This macro removes the property-value pair for @var{property} from
2828 the property list stored at @var{place}, which is any @code{setf}-able
2829 place expression. It returns true if the property was found. Note
2830 that if @var{property} happens to be first on the list, this will
2831 effectively do a @code{(setf @var{place} (cddr @var{place}))},
2832 whereas if it occurs later, this simply uses @code{setcdr} to splice
2833 out the property and value cells.
2834 @end defmac
2835
2836 @node Creating Symbols
2837 @section Creating Symbols
2838
2839 @noindent
2840 These functions create unique symbols, typically for use as
2841 temporary variables.
2842
2843 @defun cl-gensym &optional x
2844 This function creates a new, uninterned symbol (using @code{make-symbol})
2845 with a unique name. (The name of an uninterned symbol is relevant
2846 only if the symbol is printed.) By default, the name is generated
2847 from an increasing sequence of numbers, @samp{G1000}, @samp{G1001},
2848 @samp{G1002}, etc. If the optional argument @var{x} is a string, that
2849 string is used as a prefix instead of @samp{G}. Uninterned symbols
2850 are used in macro expansions for temporary variables, to ensure that
2851 their names will not conflict with ``real'' variables in the user's
2852 code.
2853
2854 (Internally, the variable @code{cl--gensym-counter} holds the counter
2855 used to generate names. It is incremented after each use. In Common
2856 Lisp this is initialized with 0, but this package initializes it with
2857 a random time-dependent value to avoid trouble when two files that
2858 each used @code{cl-gensym} in their compilation are loaded together.
2859 Uninterned symbols become interned when the compiler writes them out
2860 to a file and the Emacs loader loads them, so their names have to be
2861 treated a bit more carefully than in Common Lisp where uninterned
2862 symbols remain uninterned after loading.)
2863 @end defun
2864
2865 @defun cl-gentemp &optional x
2866 This function is like @code{cl-gensym}, except that it produces a new
2867 @emph{interned} symbol. If the symbol that is generated already
2868 exists, the function keeps incrementing the counter and trying
2869 again until a new symbol is generated.
2870 @end defun
2871
2872 This package automatically creates all keywords that are called for by
2873 @code{&key} argument specifiers, and discourages the use of keywords
2874 as data unrelated to keyword arguments, so the related function
2875 @code{defkeyword} (to create self-quoting keyword symbols) is not
2876 provided.
2877
2878 @node Numbers
2879 @chapter Numbers
2880
2881 @noindent
2882 This section defines a few simple Common Lisp operations on numbers
2883 that were left out of Emacs Lisp.
2884
2885 @menu
2886 * Predicates on Numbers:: @code{cl-plusp}, @code{cl-oddp}, etc.
2887 * Numerical Functions:: @code{cl-floor}, @code{cl-ceiling}, etc.
2888 * Random Numbers:: @code{cl-random}, @code{cl-make-random-state}.
2889 * Implementation Parameters:: @code{cl-most-positive-float}, etc.
2890 @end menu
2891
2892 @node Predicates on Numbers
2893 @section Predicates on Numbers
2894
2895 @noindent
2896 These functions return @code{t} if the specified condition is
2897 true of the numerical argument, or @code{nil} otherwise.
2898
2899 @defun cl-plusp number
2900 This predicate tests whether @var{number} is positive. It is an
2901 error if the argument is not a number.
2902 @end defun
2903
2904 @defun cl-minusp number
2905 This predicate tests whether @var{number} is negative. It is an
2906 error if the argument is not a number.
2907 @end defun
2908
2909 @defun cl-oddp integer
2910 This predicate tests whether @var{integer} is odd. It is an
2911 error if the argument is not an integer.
2912 @end defun
2913
2914 @defun cl-evenp integer
2915 This predicate tests whether @var{integer} is even. It is an
2916 error if the argument is not an integer.
2917 @end defun
2918
2919 @node Numerical Functions
2920 @section Numerical Functions
2921
2922 @noindent
2923 These functions perform various arithmetic operations on numbers.
2924
2925 @defun cl-gcd &rest integers
2926 This function returns the Greatest Common Divisor of the arguments.
2927 For one argument, it returns the absolute value of that argument.
2928 For zero arguments, it returns zero.
2929 @end defun
2930
2931 @defun cl-lcm &rest integers
2932 This function returns the Least Common Multiple of the arguments.
2933 For one argument, it returns the absolute value of that argument.
2934 For zero arguments, it returns one.
2935 @end defun
2936
2937 @defun cl-isqrt integer
2938 This function computes the ``integer square root'' of its integer
2939 argument, i.e., the greatest integer less than or equal to the true
2940 square root of the argument.
2941 @end defun
2942
2943 @defun cl-floor number &optional divisor
2944 With one argument, @code{cl-floor} returns a list of two numbers:
2945 The argument rounded down (toward minus infinity) to an integer,
2946 and the ``remainder'' which would have to be added back to the
2947 first return value to yield the argument again. If the argument
2948 is an integer @var{x}, the result is always the list @code{(@var{x} 0)}.
2949 If the argument is a floating-point number, the first
2950 result is a Lisp integer and the second is a Lisp float between
2951 0 (inclusive) and 1 (exclusive).
2952
2953 With two arguments, @code{cl-floor} divides @var{number} by
2954 @var{divisor}, and returns the floor of the quotient and the
2955 corresponding remainder as a list of two numbers. If
2956 @code{(cl-floor @var{x} @var{y})} returns @code{(@var{q} @var{r})},
2957 then @code{@var{q}*@var{y} + @var{r} = @var{x}}, with @var{r}
2958 between 0 (inclusive) and @var{r} (exclusive). Also, note
2959 that @code{(cl-floor @var{x})} is exactly equivalent to
2960 @code{(cl-floor @var{x} 1)}.
2961
2962 This function is entirely compatible with Common Lisp's @code{floor}
2963 function, except that it returns the two results in a list since
2964 Emacs Lisp does not support multiple-valued functions.
2965 @end defun
2966
2967 @defun cl-ceiling number &optional divisor
2968 This function implements the Common Lisp @code{ceiling} function,
2969 which is analogous to @code{floor} except that it rounds the
2970 argument or quotient of the arguments up toward plus infinity.
2971 The remainder will be between 0 and minus @var{r}.
2972 @end defun
2973
2974 @defun cl-truncate number &optional divisor
2975 This function implements the Common Lisp @code{truncate} function,
2976 which is analogous to @code{floor} except that it rounds the
2977 argument or quotient of the arguments toward zero. Thus it is
2978 equivalent to @code{cl-floor} if the argument or quotient is
2979 positive, or to @code{cl-ceiling} otherwise. The remainder has
2980 the same sign as @var{number}.
2981 @end defun
2982
2983 @defun cl-round number &optional divisor
2984 This function implements the Common Lisp @code{round} function,
2985 which is analogous to @code{floor} except that it rounds the
2986 argument or quotient of the arguments to the nearest integer.
2987 In the case of a tie (the argument or quotient is exactly
2988 halfway between two integers), it rounds to the even integer.
2989 @end defun
2990
2991 @defun cl-mod number divisor
2992 This function returns the same value as the second return value
2993 of @code{cl-floor}.
2994 @end defun
2995
2996 @defun cl-rem number divisor
2997 This function returns the same value as the second return value
2998 of @code{cl-truncate}.
2999 @end defun
3000
3001 @node Random Numbers
3002 @section Random Numbers
3003
3004 @noindent
3005 This package also provides an implementation of the Common Lisp
3006 random number generator. It uses its own additive-congruential
3007 algorithm, which is much more likely to give statistically clean
3008 @c FIXME? Still true?
3009 random numbers than the simple generators supplied by many
3010 operating systems.
3011
3012 @defun cl-random number &optional state
3013 This function returns a random nonnegative number less than
3014 @var{number}, and of the same type (either integer or floating-point).
3015 The @var{state} argument should be a @code{random-state} object
3016 that holds the state of the random number generator. The
3017 function modifies this state object as a side effect. If
3018 @var{state} is omitted, it defaults to the internal variable
3019 @code{cl--random-state}, which contains a pre-initialized
3020 default @code{random-state} object. (Since any number of programs in
3021 the Emacs process may be accessing @code{cl--random-state} in
3022 interleaved fashion, the sequence generated from this will be
3023 irreproducible for all intents and purposes.)
3024 @end defun
3025
3026 @defun cl-make-random-state &optional state
3027 This function creates or copies a @code{random-state} object.
3028 If @var{state} is omitted or @code{nil}, it returns a new copy of
3029 @code{cl--random-state}. This is a copy in the sense that future
3030 sequences of calls to @code{(cl-random @var{n})} and
3031 @code{(cl-random @var{n} @var{s})} (where @var{s} is the new
3032 random-state object) will return identical sequences of random
3033 numbers.
3034
3035 If @var{state} is a @code{random-state} object, this function
3036 returns a copy of that object. If @var{state} is @code{t}, this
3037 function returns a new @code{random-state} object seeded from the
3038 date and time. As an extension to Common Lisp, @var{state} may also
3039 be an integer in which case the new object is seeded from that
3040 integer; each different integer seed will result in a completely
3041 different sequence of random numbers.
3042
3043 It is valid to print a @code{random-state} object to a buffer or
3044 file and later read it back with @code{read}. If a program wishes
3045 to use a sequence of pseudo-random numbers which can be reproduced
3046 later for debugging, it can call @code{(cl-make-random-state t)} to
3047 get a new sequence, then print this sequence to a file. When the
3048 program is later rerun, it can read the original run's random-state
3049 from the file.
3050 @end defun
3051
3052 @defun cl-random-state-p object
3053 This predicate returns @code{t} if @var{object} is a
3054 @code{random-state} object, or @code{nil} otherwise.
3055 @end defun
3056
3057 @node Implementation Parameters
3058 @section Implementation Parameters
3059
3060 @noindent
3061 This package defines several useful constants having to do with
3062 floating-point numbers.
3063
3064 It determines their values by exercising the computer's
3065 floating-point arithmetic in various ways. Because this operation
3066 might be slow, the code for initializing them is kept in a separate
3067 function that must be called before the parameters can be used.
3068
3069 @defun cl-float-limits
3070 This function makes sure that the Common Lisp floating-point parameters
3071 like @code{cl-most-positive-float} have been initialized. Until it is
3072 called, these parameters will be @code{nil}.
3073 @c If this version of Emacs does not support floats, the parameters will
3074 @c remain @code{nil}.
3075 If the parameters have already been initialized, the function returns
3076 immediately.
3077
3078 The algorithm makes assumptions that will be valid for almost all
3079 machines, but will fail if the machine's arithmetic is extremely
3080 unusual, e.g., decimal.
3081 @end defun
3082
3083 Since true Common Lisp supports up to four different floating-point
3084 precisions, it has families of constants like
3085 @code{most-positive-single-float}, @code{most-positive-double-float},
3086 @code{most-positive-long-float}, and so on. Emacs has only one
3087 floating-point precision, so this package omits the precision word
3088 from the constants' names.
3089
3090 @defvar cl-most-positive-float
3091 This constant equals the largest value a Lisp float can hold.
3092 For those systems whose arithmetic supports infinities, this is
3093 the largest @emph{finite} value. For IEEE machines, the value
3094 is approximately @code{1.79e+308}.
3095 @end defvar
3096
3097 @defvar cl-most-negative-float
3098 This constant equals the most negative value a Lisp float can hold.
3099 (It is assumed to be equal to @code{(- cl-most-positive-float)}.)
3100 @end defvar
3101
3102 @defvar cl-least-positive-float
3103 This constant equals the smallest Lisp float value greater than zero.
3104 For IEEE machines, it is about @code{4.94e-324} if denormals are
3105 supported or @code{2.22e-308} if not.
3106 @end defvar
3107
3108 @defvar cl-least-positive-normalized-float
3109 This constant equals the smallest @emph{normalized} Lisp float greater
3110 than zero, i.e., the smallest value for which IEEE denormalization
3111 will not result in a loss of precision. For IEEE machines, this
3112 value is about @code{2.22e-308}. For machines that do not support
3113 the concept of denormalization and gradual underflow, this constant
3114 will always equal @code{cl-least-positive-float}.
3115 @end defvar
3116
3117 @defvar cl-least-negative-float
3118 This constant is the negative counterpart of @code{cl-least-positive-float}.
3119 @end defvar
3120
3121 @defvar cl-least-negative-normalized-float
3122 This constant is the negative counterpart of
3123 @code{cl-least-positive-normalized-float}.
3124 @end defvar
3125
3126 @defvar cl-float-epsilon
3127 This constant is the smallest positive Lisp float that can be added
3128 to 1.0 to produce a distinct value. Adding a smaller number to 1.0
3129 will yield 1.0 again due to roundoff. For IEEE machines, epsilon
3130 is about @code{2.22e-16}.
3131 @end defvar
3132
3133 @defvar cl-float-negative-epsilon
3134 This is the smallest positive value that can be subtracted from
3135 1.0 to produce a distinct value. For IEEE machines, it is about
3136 @code{1.11e-16}.
3137 @end defvar
3138
3139 @node Sequences
3140 @chapter Sequences
3141
3142 @noindent
3143 Common Lisp defines a number of functions that operate on
3144 @dfn{sequences}, which are either lists, strings, or vectors.
3145 Emacs Lisp includes a few of these, notably @code{elt} and
3146 @code{length}; this package defines most of the rest.
3147
3148 @menu
3149 * Sequence Basics:: Arguments shared by all sequence functions.
3150 * Mapping over Sequences:: @code{cl-mapcar}, @code{cl-map}, @code{cl-maplist}, etc.
3151 * Sequence Functions:: @code{cl-subseq}, @code{cl-remove}, @code{cl-substitute}, etc.
3152 * Searching Sequences:: @code{cl-find}, @code{cl-count}, @code{cl-search}, etc.
3153 * Sorting Sequences:: @code{cl-sort}, @code{cl-stable-sort}, @code{cl-merge}.
3154 @end menu
3155
3156 @node Sequence Basics
3157 @section Sequence Basics
3158
3159 @noindent
3160 Many of the sequence functions take keyword arguments; @pxref{Argument
3161 Lists}. All keyword arguments are optional and, if specified,
3162 may appear in any order.
3163
3164 The @code{:key} argument should be passed either @code{nil}, or a
3165 function of one argument. This key function is used as a filter
3166 through which the elements of the sequence are seen; for example,
3167 @code{(cl-find x y :key 'car)} is similar to @code{(cl-assoc x y)}.
3168 It searches for an element of the list whose @sc{car} equals
3169 @code{x}, rather than for an element which equals @code{x} itself.
3170 If @code{:key} is omitted or @code{nil}, the filter is effectively
3171 the identity function.
3172
3173 The @code{:test} and @code{:test-not} arguments should be either
3174 @code{nil}, or functions of two arguments. The test function is
3175 used to compare two sequence elements, or to compare a search value
3176 with sequence elements. (The two values are passed to the test
3177 function in the same order as the original sequence function
3178 arguments from which they are derived, or, if they both come from
3179 the same sequence, in the same order as they appear in that sequence.)
3180 The @code{:test} argument specifies a function which must return
3181 true (non-@code{nil}) to indicate a match; instead, you may use
3182 @code{:test-not} to give a function which returns @emph{false} to
3183 indicate a match. The default test function is @code{eql}.
3184
3185 Many functions that take @var{item} and @code{:test} or @code{:test-not}
3186 arguments also come in @code{-if} and @code{-if-not} varieties,
3187 where a @var{predicate} function is passed instead of @var{item},
3188 and sequence elements match if the predicate returns true on them
3189 (or false in the case of @code{-if-not}). For example:
3190
3191 @example
3192 (cl-remove 0 seq :test '=) @equiv{} (cl-remove-if 'zerop seq)
3193 @end example
3194
3195 @noindent
3196 to remove all zeros from sequence @code{seq}.
3197
3198 Some operations can work on a subsequence of the argument sequence;
3199 these function take @code{:start} and @code{:end} arguments, which
3200 default to zero and the length of the sequence, respectively.
3201 Only elements between @var{start} (inclusive) and @var{end}
3202 (exclusive) are affected by the operation. The @var{end} argument
3203 may be passed @code{nil} to signify the length of the sequence;
3204 otherwise, both @var{start} and @var{end} must be integers, with
3205 @code{0 <= @var{start} <= @var{end} <= (length @var{seq})}.
3206 If the function takes two sequence arguments, the limits are
3207 defined by keywords @code{:start1} and @code{:end1} for the first,
3208 and @code{:start2} and @code{:end2} for the second.
3209
3210 A few functions accept a @code{:from-end} argument, which, if
3211 non-@code{nil}, causes the operation to go from right-to-left
3212 through the sequence instead of left-to-right, and a @code{:count}
3213 argument, which specifies an integer maximum number of elements
3214 to be removed or otherwise processed.
3215
3216 The sequence functions make no guarantees about the order in
3217 which the @code{:test}, @code{:test-not}, and @code{:key} functions
3218 are called on various elements. Therefore, it is a bad idea to depend
3219 on side effects of these functions. For example, @code{:from-end}
3220 may cause the sequence to be scanned actually in reverse, or it may
3221 be scanned forwards but computing a result ``as if'' it were scanned
3222 backwards. (Some functions, like @code{cl-mapcar} and @code{cl-every},
3223 @emph{do} specify exactly the order in which the function is called
3224 so side effects are perfectly acceptable in those cases.)
3225
3226 Strings may contain ``text properties'' as well
3227 as character data. Except as noted, it is undefined whether or
3228 not text properties are preserved by sequence functions. For
3229 example, @code{(cl-remove ?A @var{str})} may or may not preserve
3230 the properties of the characters copied from @var{str} into the
3231 result.
3232
3233 @node Mapping over Sequences
3234 @section Mapping over Sequences
3235
3236 @noindent
3237 These functions ``map'' the function you specify over the elements
3238 of lists or arrays. They are all variations on the theme of the
3239 built-in function @code{mapcar}.
3240
3241 @defun cl-mapcar function seq &rest more-seqs
3242 This function calls @var{function} on successive parallel sets of
3243 elements from its argument sequences. Given a single @var{seq}
3244 argument it is equivalent to @code{mapcar}; given @var{n} sequences,
3245 it calls the function with the first elements of each of the sequences
3246 as the @var{n} arguments to yield the first element of the result
3247 list, then with the second elements, and so on. The mapping stops as
3248 soon as the shortest sequence runs out. The argument sequences may
3249 be any mixture of lists, strings, and vectors; the return sequence
3250 is always a list.
3251
3252 Common Lisp's @code{mapcar} accepts multiple arguments but works
3253 only on lists; Emacs Lisp's @code{mapcar} accepts a single sequence
3254 argument. This package's @code{cl-mapcar} works as a compatible
3255 superset of both.
3256 @end defun
3257
3258 @defun cl-map result-type function seq &rest more-seqs
3259 This function maps @var{function} over the argument sequences,
3260 just like @code{cl-mapcar}, but it returns a sequence of type
3261 @var{result-type} rather than a list. @var{result-type} must
3262 be one of the following symbols: @code{vector}, @code{string},
3263 @code{list} (in which case the effect is the same as for
3264 @code{cl-mapcar}), or @code{nil} (in which case the results are
3265 thrown away and @code{cl-map} returns @code{nil}).
3266 @end defun
3267
3268 @defun cl-maplist function list &rest more-lists
3269 This function calls @var{function} on each of its argument lists,
3270 then on the @sc{cdr}s of those lists, and so on, until the
3271 shortest list runs out. The results are returned in the form
3272 of a list. Thus, @code{cl-maplist} is like @code{cl-mapcar} except
3273 that it passes in the list pointers themselves rather than the
3274 @sc{car}s of the advancing pointers.
3275 @end defun
3276
3277 @defun cl-mapc function seq &rest more-seqs
3278 This function is like @code{cl-mapcar}, except that the values returned
3279 by @var{function} are ignored and thrown away rather than being
3280 collected into a list. The return value of @code{cl-mapc} is @var{seq},
3281 the first sequence. This function is more general than the Emacs
3282 primitive @code{mapc}. (Note that this function is called
3283 @code{cl-mapc} even in @file{cl.el}, rather than @code{mapc*} as you
3284 might expect.)
3285 @c http://debbugs.gnu.org/6575
3286 @end defun
3287
3288 @defun cl-mapl function list &rest more-lists
3289 This function is like @code{cl-maplist}, except that it throws away
3290 the values returned by @var{function}.
3291 @end defun
3292
3293 @defun cl-mapcan function seq &rest more-seqs
3294 This function is like @code{cl-mapcar}, except that it concatenates
3295 the return values (which must be lists) using @code{nconc},
3296 rather than simply collecting them into a list.
3297 @end defun
3298
3299 @defun cl-mapcon function list &rest more-lists
3300 This function is like @code{cl-maplist}, except that it concatenates
3301 the return values using @code{nconc}.
3302 @end defun
3303
3304 @defun cl-some predicate seq &rest more-seqs
3305 This function calls @var{predicate} on each element of @var{seq}
3306 in turn; if @var{predicate} returns a non-@code{nil} value,
3307 @code{cl-some} returns that value, otherwise it returns @code{nil}.
3308 Given several sequence arguments, it steps through the sequences
3309 in parallel until the shortest one runs out, just as in
3310 @code{cl-mapcar}. You can rely on the left-to-right order in which
3311 the elements are visited, and on the fact that mapping stops
3312 immediately as soon as @var{predicate} returns non-@code{nil}.
3313 @end defun
3314
3315 @defun cl-every predicate seq &rest more-seqs
3316 This function calls @var{predicate} on each element of the sequence(s)
3317 in turn; it returns @code{nil} as soon as @var{predicate} returns
3318 @code{nil} for any element, or @code{t} if the predicate was true
3319 for all elements.
3320 @end defun
3321
3322 @defun cl-notany predicate seq &rest more-seqs
3323 This function calls @var{predicate} on each element of the sequence(s)
3324 in turn; it returns @code{nil} as soon as @var{predicate} returns
3325 a non-@code{nil} value for any element, or @code{t} if the predicate
3326 was @code{nil} for all elements.
3327 @end defun
3328
3329 @defun cl-notevery predicate seq &rest more-seqs
3330 This function calls @var{predicate} on each element of the sequence(s)
3331 in turn; it returns a non-@code{nil} value as soon as @var{predicate}
3332 returns @code{nil} for any element, or @code{t} if the predicate was
3333 true for all elements.
3334 @end defun
3335
3336 @defun cl-reduce function seq @t{&key :from-end :start :end :initial-value :key}
3337 This function combines the elements of @var{seq} using an associative
3338 binary operation. Suppose @var{function} is @code{*} and @var{seq} is
3339 the list @code{(2 3 4 5)}. The first two elements of the list are
3340 combined with @code{(* 2 3) = 6}; this is combined with the next
3341 element, @code{(* 6 4) = 24}, and that is combined with the final
3342 element: @code{(* 24 5) = 120}. Note that the @code{*} function happens
3343 to be self-reducing, so that @code{(* 2 3 4 5)} has the same effect as
3344 an explicit call to @code{cl-reduce}.
3345
3346 If @code{:from-end} is true, the reduction is right-associative instead
3347 of left-associative:
3348
3349 @example
3350 (cl-reduce '- '(1 2 3 4))
3351 @equiv{} (- (- (- 1 2) 3) 4) @result{} -8
3352 (cl-reduce '- '(1 2 3 4) :from-end t)
3353 @equiv{} (- 1 (- 2 (- 3 4))) @result{} -2
3354 @end example
3355
3356 If @code{:key} is specified, it is a function of one argument, which
3357 is called on each of the sequence elements in turn.
3358
3359 If @code{:initial-value} is specified, it is effectively added to the
3360 front (or rear in the case of @code{:from-end}) of the sequence.
3361 The @code{:key} function is @emph{not} applied to the initial value.
3362
3363 If the sequence, including the initial value, has exactly one element
3364 then that element is returned without ever calling @var{function}.
3365 If the sequence is empty (and there is no initial value), then
3366 @var{function} is called with no arguments to obtain the return value.
3367 @end defun
3368
3369 All of these mapping operations can be expressed conveniently in
3370 terms of the @code{cl-loop} macro. In compiled code, @code{cl-loop} will
3371 be faster since it generates the loop as in-line code with no
3372 function calls.
3373
3374 @node Sequence Functions
3375 @section Sequence Functions
3376
3377 @noindent
3378 This section describes a number of Common Lisp functions for
3379 operating on sequences.
3380
3381 @defun cl-subseq sequence start &optional end
3382 This function returns a given subsequence of the argument
3383 @var{sequence}, which may be a list, string, or vector.
3384 The indices @var{start} and @var{end} must be in range, and
3385 @var{start} must be no greater than @var{end}. If @var{end}
3386 is omitted, it defaults to the length of the sequence. The
3387 return value is always a copy; it does not share structure
3388 with @var{sequence}.
3389
3390 As an extension to Common Lisp, @var{start} and/or @var{end}
3391 may be negative, in which case they represent a distance back
3392 from the end of the sequence. This is for compatibility with
3393 Emacs's @code{substring} function. Note that @code{cl-subseq} is
3394 the @emph{only} sequence function that allows negative
3395 @var{start} and @var{end}.
3396
3397 You can use @code{setf} on a @code{cl-subseq} form to replace a
3398 specified range of elements with elements from another sequence.
3399 The replacement is done as if by @code{cl-replace}, described below.
3400 @end defun
3401
3402 @defun cl-concatenate result-type &rest seqs
3403 This function concatenates the argument sequences together to
3404 form a result sequence of type @var{result-type}, one of the
3405 symbols @code{vector}, @code{string}, or @code{list}. The
3406 arguments are always copied, even in cases such as
3407 @code{(cl-concatenate 'list '(1 2 3))} where the result is
3408 identical to an argument.
3409 @end defun
3410
3411 @defun cl-fill seq item @t{&key :start :end}
3412 This function fills the elements of the sequence (or the specified
3413 part of the sequence) with the value @var{item}.
3414 @end defun
3415
3416 @defun cl-replace seq1 seq2 @t{&key :start1 :end1 :start2 :end2}
3417 This function copies part of @var{seq2} into part of @var{seq1}.
3418 The sequence @var{seq1} is not stretched or resized; the amount
3419 of data copied is simply the shorter of the source and destination
3420 (sub)sequences. The function returns @var{seq1}.
3421
3422 If @var{seq1} and @var{seq2} are @code{eq}, then the replacement
3423 will work correctly even if the regions indicated by the start
3424 and end arguments overlap. However, if @var{seq1} and @var{seq2}
3425 are lists that share storage but are not @code{eq}, and the
3426 start and end arguments specify overlapping regions, the effect
3427 is undefined.
3428 @end defun
3429
3430 @defun cl-remove item seq @t{&key :test :test-not :key :count :start :end :from-end}
3431 This returns a copy of @var{seq} with all elements matching
3432 @var{item} removed. The result may share storage with or be
3433 @code{eq} to @var{seq} in some circumstances, but the original
3434 @var{seq} will not be modified. The @code{:test}, @code{:test-not},
3435 and @code{:key} arguments define the matching test that is used;
3436 by default, elements @code{eql} to @var{item} are removed. The
3437 @code{:count} argument specifies the maximum number of matching
3438 elements that can be removed (only the leftmost @var{count} matches
3439 are removed). The @code{:start} and @code{:end} arguments specify
3440 a region in @var{seq} in which elements will be removed; elements
3441 outside that region are not matched or removed. The @code{:from-end}
3442 argument, if true, says that elements should be deleted from the
3443 end of the sequence rather than the beginning (this matters only
3444 if @var{count} was also specified).
3445 @end defun
3446
3447 @defun cl-delete item seq @t{&key :test :test-not :key :count :start :end :from-end}
3448 This deletes all elements of @var{seq} that match @var{item}.
3449 It is a destructive operation. Since Emacs Lisp does not support
3450 stretchable strings or vectors, this is the same as @code{cl-remove}
3451 for those sequence types. On lists, @code{cl-remove} will copy the
3452 list if necessary to preserve the original list, whereas
3453 @code{cl-delete} will splice out parts of the argument list.
3454 Compare @code{append} and @code{nconc}, which are analogous
3455 non-destructive and destructive list operations in Emacs Lisp.
3456 @end defun
3457
3458 @findex cl-remove-if
3459 @findex cl-remove-if-not
3460 @findex cl-delete-if
3461 @findex cl-delete-if-not
3462 The predicate-oriented functions @code{cl-remove-if}, @code{cl-remove-if-not},
3463 @code{cl-delete-if}, and @code{cl-delete-if-not} are defined similarly.
3464
3465 @defun cl-remove-duplicates seq @t{&key :test :test-not :key :start :end :from-end}
3466 This function returns a copy of @var{seq} with duplicate elements
3467 removed. Specifically, if two elements from the sequence match
3468 according to the @code{:test}, @code{:test-not}, and @code{:key}
3469 arguments, only the rightmost one is retained. If @code{:from-end}
3470 is true, the leftmost one is retained instead. If @code{:start} or
3471 @code{:end} is specified, only elements within that subsequence are
3472 examined or removed.
3473 @end defun
3474
3475 @defun cl-delete-duplicates seq @t{&key :test :test-not :key :start :end :from-end}
3476 This function deletes duplicate elements from @var{seq}. It is
3477 a destructive version of @code{cl-remove-duplicates}.
3478 @end defun
3479
3480 @defun cl-substitute new old seq @t{&key :test :test-not :key :count :start :end :from-end}
3481 This function returns a copy of @var{seq}, with all elements
3482 matching @var{old} replaced with @var{new}. The @code{:count},
3483 @code{:start}, @code{:end}, and @code{:from-end} arguments may be
3484 used to limit the number of substitutions made.
3485 @end defun
3486
3487 @defun cl-nsubstitute new old seq @t{&key :test :test-not :key :count :start :end :from-end}
3488 This is a destructive version of @code{cl-substitute}; it performs
3489 the substitution using @code{setcar} or @code{aset} rather than
3490 by returning a changed copy of the sequence.
3491 @end defun
3492
3493 @findex cl-substitute-if
3494 @findex cl-substitute-if-not
3495 @findex cl-nsubstitute-if
3496 @findex cl-nsubstitute-if-not
3497 The functions @code{cl-substitute-if}, @code{cl-substitute-if-not},
3498 @code{cl-nsubstitute-if}, and @code{cl-nsubstitute-if-not} are defined
3499 similarly. For these, a @var{predicate} is given in place of the
3500 @var{old} argument.
3501
3502 @node Searching Sequences
3503 @section Searching Sequences
3504
3505 @noindent
3506 These functions search for elements or subsequences in a sequence.
3507 (See also @code{cl-member} and @code{cl-assoc}; @pxref{Lists}.)
3508
3509 @defun cl-find item seq @t{&key :test :test-not :key :start :end :from-end}
3510 This function searches @var{seq} for an element matching @var{item}.
3511 If it finds a match, it returns the matching element. Otherwise,
3512 it returns @code{nil}. It returns the leftmost match, unless
3513 @code{:from-end} is true, in which case it returns the rightmost
3514 match. The @code{:start} and @code{:end} arguments may be used to
3515 limit the range of elements that are searched.
3516 @end defun
3517
3518 @defun cl-position item seq @t{&key :test :test-not :key :start :end :from-end}
3519 This function is like @code{cl-find}, except that it returns the
3520 integer position in the sequence of the matching item rather than
3521 the item itself. The position is relative to the start of the
3522 sequence as a whole, even if @code{:start} is non-zero. The function
3523 returns @code{nil} if no matching element was found.
3524 @end defun
3525
3526 @defun cl-count item seq @t{&key :test :test-not :key :start :end}
3527 This function returns the number of elements of @var{seq} which
3528 match @var{item}. The result is always a nonnegative integer.
3529 @end defun
3530
3531 @findex cl-find-if
3532 @findex cl-find-if-not
3533 @findex cl-position-if
3534 @findex cl-position-if-not
3535 @findex cl-count-if
3536 @findex cl-count-if-not
3537 The @code{cl-find-if}, @code{cl-find-if-not}, @code{cl-position-if},
3538 @code{cl-position-if-not}, @code{cl-count-if}, and @code{cl-count-if-not}
3539 functions are defined similarly.
3540
3541 @defun cl-mismatch seq1 seq2 @t{&key :test :test-not :key :start1 :end1 :start2 :end2 :from-end}
3542 This function compares the specified parts of @var{seq1} and
3543 @var{seq2}. If they are the same length and the corresponding
3544 elements match (according to @code{:test}, @code{:test-not},
3545 and @code{:key}), the function returns @code{nil}. If there is
3546 a mismatch, the function returns the index (relative to @var{seq1})
3547 of the first mismatching element. This will be the leftmost pair of
3548 elements that do not match, or the position at which the shorter of
3549 the two otherwise-matching sequences runs out.
3550
3551 If @code{:from-end} is true, then the elements are compared from right
3552 to left starting at @code{(1- @var{end1})} and @code{(1- @var{end2})}.
3553 If the sequences differ, then one plus the index of the rightmost
3554 difference (relative to @var{seq1}) is returned.
3555
3556 An interesting example is @code{(cl-mismatch str1 str2 :key 'upcase)},
3557 which compares two strings case-insensitively.
3558 @end defun
3559
3560 @defun cl-search seq1 seq2 @t{&key :test :test-not :key :from-end :start1 :end1 :start2 :end2}
3561 This function searches @var{seq2} for a subsequence that matches
3562 @var{seq1} (or part of it specified by @code{:start1} and
3563 @code{:end1}). Only matches that fall entirely within the region
3564 defined by @code{:start2} and @code{:end2} will be considered.
3565 The return value is the index of the leftmost element of the
3566 leftmost match, relative to the start of @var{seq2}, or @code{nil}
3567 if no matches were found. If @code{:from-end} is true, the
3568 function finds the @emph{rightmost} matching subsequence.
3569 @end defun
3570
3571 @node Sorting Sequences
3572 @section Sorting Sequences
3573
3574 @defun cl-sort seq predicate @t{&key :key}
3575 This function sorts @var{seq} into increasing order as determined
3576 by using @var{predicate} to compare pairs of elements. @var{predicate}
3577 should return true (non-@code{nil}) if and only if its first argument
3578 is less than (not equal to) its second argument. For example,
3579 @code{<} and @code{string-lessp} are suitable predicate functions
3580 for sorting numbers and strings, respectively; @code{>} would sort
3581 numbers into decreasing rather than increasing order.
3582
3583 This function differs from Emacs's built-in @code{sort} in that it
3584 can operate on any type of sequence, not just lists. Also, it
3585 accepts a @code{:key} argument, which is used to preprocess data
3586 fed to the @var{predicate} function. For example,
3587
3588 @example
3589 (setq data (cl-sort data 'string-lessp :key 'downcase))
3590 @end example
3591
3592 @noindent
3593 sorts @var{data}, a sequence of strings, into increasing alphabetical
3594 order without regard to case. A @code{:key} function of @code{car}
3595 would be useful for sorting association lists. It should only be a
3596 simple accessor though, since it's used heavily in the current
3597 implementation.
3598
3599 The @code{cl-sort} function is destructive; it sorts lists by actually
3600 rearranging the @sc{cdr} pointers in suitable fashion.
3601 @end defun
3602
3603 @defun cl-stable-sort seq predicate @t{&key :key}
3604 This function sorts @var{seq} @dfn{stably}, meaning two elements
3605 which are equal in terms of @var{predicate} are guaranteed not to
3606 be rearranged out of their original order by the sort.
3607
3608 In practice, @code{cl-sort} and @code{cl-stable-sort} are equivalent
3609 in Emacs Lisp because the underlying @code{sort} function is
3610 stable by default. However, this package reserves the right to
3611 use non-stable methods for @code{cl-sort} in the future.
3612 @end defun
3613
3614 @defun cl-merge type seq1 seq2 predicate @t{&key :key}
3615 This function merges two sequences @var{seq1} and @var{seq2} by
3616 interleaving their elements. The result sequence, of type @var{type}
3617 (in the sense of @code{cl-concatenate}), has length equal to the sum
3618 of the lengths of the two input sequences. The sequences may be
3619 modified destructively. Order of elements within @var{seq1} and
3620 @var{seq2} is preserved in the interleaving; elements of the two
3621 sequences are compared by @var{predicate} (in the sense of
3622 @code{sort}) and the lesser element goes first in the result.
3623 When elements are equal, those from @var{seq1} precede those from
3624 @var{seq2} in the result. Thus, if @var{seq1} and @var{seq2} are
3625 both sorted according to @var{predicate}, then the result will be
3626 a merged sequence which is (stably) sorted according to
3627 @var{predicate}.
3628 @end defun
3629
3630 @node Lists
3631 @chapter Lists
3632
3633 @noindent
3634 The functions described here operate on lists.
3635
3636 @menu
3637 * List Functions:: @code{cl-caddr}, @code{cl-first}, @code{cl-list*}, etc.
3638 * Substitution of Expressions:: @code{cl-subst}, @code{cl-sublis}, etc.
3639 * Lists as Sets:: @code{cl-member}, @code{cl-adjoin}, @code{cl-union}, etc.
3640 * Association Lists:: @code{cl-assoc}, @code{cl-acons}, @code{cl-pairlis}, etc.
3641 @end menu
3642
3643 @node List Functions
3644 @section List Functions
3645
3646 @noindent
3647 This section describes a number of simple operations on lists,
3648 i.e., chains of cons cells.
3649
3650 @defun cl-caddr x
3651 This function is equivalent to @code{(car (cdr (cdr @var{x})))}.
3652 Likewise, this package defines all 24 @code{c@var{xxx}r} functions
3653 where @var{xxx} is up to four @samp{a}s and/or @samp{d}s.
3654 All of these functions are @code{setf}-able, and calls to them
3655 are expanded inline by the byte-compiler for maximum efficiency.
3656 @end defun
3657
3658 @defun cl-first x
3659 This function is a synonym for @code{(car @var{x})}. Likewise,
3660 the functions @code{cl-second}, @code{cl-third}, @dots{}, through
3661 @code{cl-tenth} return the given element of the list @var{x}.
3662 @end defun
3663
3664 @defun cl-rest x
3665 This function is a synonym for @code{(cdr @var{x})}.
3666 @end defun
3667
3668 @defun cl-endp x
3669 Common Lisp defines this function to act like @code{null}, but
3670 signaling an error if @code{x} is neither a @code{nil} nor a
3671 cons cell. This package simply defines @code{cl-endp} as a synonym
3672 for @code{null}.
3673 @end defun
3674
3675 @defun cl-list-length x
3676 This function returns the length of list @var{x}, exactly like
3677 @code{(length @var{x})}, except that if @var{x} is a circular
3678 list (where the @sc{cdr}-chain forms a loop rather than terminating
3679 with @code{nil}), this function returns @code{nil}. (The regular
3680 @code{length} function would get stuck if given a circular list.
3681 See also the @code{safe-length} function.)
3682 @end defun
3683
3684 @defun cl-list* arg &rest others
3685 This function constructs a list of its arguments. The final
3686 argument becomes the @sc{cdr} of the last cell constructed.
3687 Thus, @code{(cl-list* @var{a} @var{b} @var{c})} is equivalent to
3688 @code{(cons @var{a} (cons @var{b} @var{c}))}, and
3689 @code{(cl-list* @var{a} @var{b} nil)} is equivalent to
3690 @code{(list @var{a} @var{b})}.
3691 @end defun
3692
3693 @defun cl-ldiff list sublist
3694 If @var{sublist} is a sublist of @var{list}, i.e., is @code{eq} to
3695 one of the cons cells of @var{list}, then this function returns
3696 a copy of the part of @var{list} up to but not including
3697 @var{sublist}. For example, @code{(cl-ldiff x (cddr x))} returns
3698 the first two elements of the list @code{x}. The result is a
3699 copy; the original @var{list} is not modified. If @var{sublist}
3700 is not a sublist of @var{list}, a copy of the entire @var{list}
3701 is returned.
3702 @end defun
3703
3704 @defun cl-copy-list list
3705 This function returns a copy of the list @var{list}. It copies
3706 dotted lists like @code{(1 2 . 3)} correctly.
3707 @end defun
3708
3709 @defun cl-tree-equal x y @t{&key :test :test-not :key}
3710 This function compares two trees of cons cells. If @var{x} and
3711 @var{y} are both cons cells, their @sc{car}s and @sc{cdr}s are
3712 compared recursively. If neither @var{x} nor @var{y} is a cons
3713 cell, they are compared by @code{eql}, or according to the
3714 specified test. The @code{:key} function, if specified, is
3715 applied to the elements of both trees. @xref{Sequences}.
3716 @end defun
3717
3718 @node Substitution of Expressions
3719 @section Substitution of Expressions
3720
3721 @noindent
3722 These functions substitute elements throughout a tree of cons
3723 cells. (@xref{Sequence Functions}, for the @code{cl-substitute}
3724 function, which works on just the top-level elements of a list.)
3725
3726 @defun cl-subst new old tree @t{&key :test :test-not :key}
3727 This function substitutes occurrences of @var{old} with @var{new}
3728 in @var{tree}, a tree of cons cells. It returns a substituted
3729 tree, which will be a copy except that it may share storage with
3730 the argument @var{tree} in parts where no substitutions occurred.
3731 The original @var{tree} is not modified. This function recurses
3732 on, and compares against @var{old}, both @sc{car}s and @sc{cdr}s
3733 of the component cons cells. If @var{old} is itself a cons cell,
3734 then matching cells in the tree are substituted as usual without
3735 recursively substituting in that cell. Comparisons with @var{old}
3736 are done according to the specified test (@code{eql} by default).
3737 The @code{:key} function is applied to the elements of the tree
3738 but not to @var{old}.
3739 @end defun
3740
3741 @defun cl-nsubst new old tree @t{&key :test :test-not :key}
3742 This function is like @code{cl-subst}, except that it works by
3743 destructive modification (by @code{setcar} or @code{setcdr})
3744 rather than copying.
3745 @end defun
3746
3747 @findex cl-subst-if
3748 @findex cl-subst-if-not
3749 @findex cl-nsubst-if
3750 @findex cl-nsubst-if-not
3751 The @code{cl-subst-if}, @code{cl-subst-if-not}, @code{cl-nsubst-if}, and
3752 @code{cl-nsubst-if-not} functions are defined similarly.
3753
3754 @defun cl-sublis alist tree @t{&key :test :test-not :key}
3755 This function is like @code{cl-subst}, except that it takes an
3756 association list @var{alist} of @var{old}-@var{new} pairs.
3757 Each element of the tree (after applying the @code{:key}
3758 function, if any), is compared with the @sc{car}s of
3759 @var{alist}; if it matches, it is replaced by the corresponding
3760 @sc{cdr}.
3761 @end defun
3762
3763 @defun cl-nsublis alist tree @t{&key :test :test-not :key}
3764 This is a destructive version of @code{cl-sublis}.
3765 @end defun
3766
3767 @node Lists as Sets
3768 @section Lists as Sets
3769
3770 @noindent
3771 These functions perform operations on lists that represent sets
3772 of elements.
3773
3774 @defun cl-member item list @t{&key :test :test-not :key}
3775 This function searches @var{list} for an element matching @var{item}.
3776 If a match is found, it returns the cons cell whose @sc{car} was
3777 the matching element. Otherwise, it returns @code{nil}. Elements
3778 are compared by @code{eql} by default; you can use the @code{:test},
3779 @code{:test-not}, and @code{:key} arguments to modify this behavior.
3780 @xref{Sequences}.
3781
3782 The standard Emacs lisp function @code{member} uses @code{equal} for
3783 comparisons; it is equivalent to @code{(cl-member @var{item} @var{list}
3784 :test 'equal)}. With no keyword arguments, @code{cl-member} is
3785 equivalent to @code{memq}.
3786 @end defun
3787
3788 @findex cl-member-if
3789 @findex cl-member-if-not
3790 The @code{cl-member-if} and @code{cl-member-if-not} functions
3791 analogously search for elements that satisfy a given predicate.
3792
3793 @defun cl-tailp sublist list
3794 This function returns @code{t} if @var{sublist} is a sublist of
3795 @var{list}, i.e., if @var{sublist} is @code{eql} to @var{list} or to
3796 any of its @sc{cdr}s.
3797 @end defun
3798
3799 @defun cl-adjoin item list @t{&key :test :test-not :key}
3800 This function conses @var{item} onto the front of @var{list},
3801 like @code{(cons @var{item} @var{list})}, but only if @var{item}
3802 is not already present on the list (as determined by @code{cl-member}).
3803 If a @code{:key} argument is specified, it is applied to
3804 @var{item} as well as to the elements of @var{list} during
3805 the search, on the reasoning that @var{item} is ``about'' to
3806 become part of the list.
3807 @end defun
3808
3809 @defun cl-union list1 list2 @t{&key :test :test-not :key}
3810 This function combines two lists that represent sets of items,
3811 returning a list that represents the union of those two sets.
3812 The resulting list contains all items that appear in @var{list1}
3813 or @var{list2}, and no others. If an item appears in both
3814 @var{list1} and @var{list2} it is copied only once. If
3815 an item is duplicated in @var{list1} or @var{list2}, it is
3816 undefined whether or not that duplication will survive in the
3817 result list. The order of elements in the result list is also
3818 undefined.
3819 @end defun
3820
3821 @defun cl-nunion list1 list2 @t{&key :test :test-not :key}
3822 This is a destructive version of @code{cl-union}; rather than copying,
3823 it tries to reuse the storage of the argument lists if possible.
3824 @end defun
3825
3826 @defun cl-intersection list1 list2 @t{&key :test :test-not :key}
3827 This function computes the intersection of the sets represented
3828 by @var{list1} and @var{list2}. It returns the list of items
3829 that appear in both @var{list1} and @var{list2}.
3830 @end defun
3831
3832 @defun cl-nintersection list1 list2 @t{&key :test :test-not :key}
3833 This is a destructive version of @code{cl-intersection}. It
3834 tries to reuse storage of @var{list1} rather than copying.
3835 It does @emph{not} reuse the storage of @var{list2}.
3836 @end defun
3837
3838 @defun cl-set-difference list1 list2 @t{&key :test :test-not :key}
3839 This function computes the ``set difference'' of @var{list1}
3840 and @var{list2}, i.e., the set of elements that appear in
3841 @var{list1} but @emph{not} in @var{list2}.
3842 @end defun
3843
3844 @defun cl-nset-difference list1 list2 @t{&key :test :test-not :key}
3845 This is a destructive @code{cl-set-difference}, which will try
3846 to reuse @var{list1} if possible.
3847 @end defun
3848
3849 @defun cl-set-exclusive-or list1 list2 @t{&key :test :test-not :key}
3850 This function computes the ``set exclusive or'' of @var{list1}
3851 and @var{list2}, i.e., the set of elements that appear in
3852 exactly one of @var{list1} and @var{list2}.
3853 @end defun
3854
3855 @defun cl-nset-exclusive-or list1 list2 @t{&key :test :test-not :key}
3856 This is a destructive @code{cl-set-exclusive-or}, which will try
3857 to reuse @var{list1} and @var{list2} if possible.
3858 @end defun
3859
3860 @defun cl-subsetp list1 list2 @t{&key :test :test-not :key}
3861 This function checks whether @var{list1} represents a subset
3862 of @var{list2}, i.e., whether every element of @var{list1}
3863 also appears in @var{list2}.
3864 @end defun
3865
3866 @node Association Lists
3867 @section Association Lists
3868
3869 @noindent
3870 An @dfn{association list} is a list representing a mapping from
3871 one set of values to another; any list whose elements are cons
3872 cells is an association list.
3873
3874 @defun cl-assoc item a-list @t{&key :test :test-not :key}
3875 This function searches the association list @var{a-list} for an
3876 element whose @sc{car} matches (in the sense of @code{:test},
3877 @code{:test-not}, and @code{:key}, or by comparison with @code{eql})
3878 a given @var{item}. It returns the matching element, if any,
3879 otherwise @code{nil}. It ignores elements of @var{a-list} that
3880 are not cons cells. (This corresponds to the behavior of
3881 @code{assq} and @code{assoc} in Emacs Lisp; Common Lisp's
3882 @code{assoc} ignores @code{nil}s but considers any other non-cons
3883 elements of @var{a-list} to be an error.)
3884 @end defun
3885
3886 @defun cl-rassoc item a-list @t{&key :test :test-not :key}
3887 This function searches for an element whose @sc{cdr} matches
3888 @var{item}. If @var{a-list} represents a mapping, this applies
3889 the inverse of the mapping to @var{item}.
3890 @end defun
3891
3892 @findex cl-assoc-if
3893 @findex cl-assoc-if-not
3894 @findex cl-rassoc-if
3895 @findex cl-rassoc-if-not
3896 The @code{cl-assoc-if}, @code{cl-assoc-if-not}, @code{cl-rassoc-if},
3897 and @code{cl-rassoc-if-not} functions are defined similarly.
3898
3899 Two simple functions for constructing association lists are:
3900
3901 @defun cl-acons key value alist
3902 This is equivalent to @code{(cons (cons @var{key} @var{value}) @var{alist})}.
3903 @end defun
3904
3905 @defun cl-pairlis keys values &optional alist
3906 This is equivalent to @code{(nconc (cl-mapcar 'cons @var{keys} @var{values})
3907 @var{alist})}.
3908 @end defun
3909
3910 @node Structures
3911 @chapter Structures
3912
3913 @noindent
3914 The Common Lisp @dfn{structure} mechanism provides a general way
3915 to define data types similar to C's @code{struct} types. A
3916 structure is a Lisp object containing some number of @dfn{slots},
3917 each of which can hold any Lisp data object. Functions are
3918 provided for accessing and setting the slots, creating or copying
3919 structure objects, and recognizing objects of a particular structure
3920 type.
3921
3922 In true Common Lisp, each structure type is a new type distinct
3923 from all existing Lisp types. Since the underlying Emacs Lisp
3924 system provides no way to create new distinct types, this package
3925 implements structures as vectors (or lists upon request) with a
3926 special ``tag'' symbol to identify them.
3927
3928 @defmac cl-defstruct name slots@dots{}
3929 The @code{cl-defstruct} form defines a new structure type called
3930 @var{name}, with the specified @var{slots}. (The @var{slots}
3931 may begin with a string which documents the structure type.)
3932 In the simplest case, @var{name} and each of the @var{slots}
3933 are symbols. For example,
3934
3935 @example
3936 (cl-defstruct person name age sex)
3937 @end example
3938
3939 @noindent
3940 defines a struct type called @code{person} that contains three
3941 slots. Given a @code{person} object @var{p}, you can access those
3942 slots by calling @code{(person-name @var{p})}, @code{(person-age @var{p})},
3943 and @code{(person-sex @var{p})}. You can also change these slots by
3944 using @code{setf} on any of these place forms, for example:
3945
3946 @example
3947 (cl-incf (person-age birthday-boy))
3948 @end example
3949
3950 You can create a new @code{person} by calling @code{make-person},
3951 which takes keyword arguments @code{:name}, @code{:age}, and
3952 @code{:sex} to specify the initial values of these slots in the
3953 new object. (Omitting any of these arguments leaves the corresponding
3954 slot ``undefined'', according to the Common Lisp standard; in Emacs
3955 Lisp, such uninitialized slots are filled with @code{nil}.)
3956
3957 Given a @code{person}, @code{(copy-person @var{p})} makes a new
3958 object of the same type whose slots are @code{eq} to those of @var{p}.
3959
3960 Given any Lisp object @var{x}, @code{(person-p @var{x})} returns
3961 true if @var{x} looks like a @code{person}, and false otherwise. (Again,
3962 in Common Lisp this predicate would be exact; in Emacs Lisp the
3963 best it can do is verify that @var{x} is a vector of the correct
3964 length that starts with the correct tag symbol.)
3965
3966 Accessors like @code{person-name} normally check their arguments
3967 (effectively using @code{person-p}) and signal an error if the
3968 argument is the wrong type. This check is affected by
3969 @code{(optimize (safety @dots{}))} declarations. Safety level 1,
3970 the default, uses a somewhat optimized check that will detect all
3971 incorrect arguments, but may use an uninformative error message
3972 (e.g., ``expected a vector'' instead of ``expected a @code{person}'').
3973 Safety level 0 omits all checks except as provided by the underlying
3974 @code{aref} call; safety levels 2 and 3 do rigorous checking that will
3975 always print a descriptive error message for incorrect inputs.
3976 @xref{Declarations}.
3977
3978 @example
3979 (setq dave (make-person :name "Dave" :sex 'male))
3980 @result{} [cl-struct-person "Dave" nil male]
3981 (setq other (copy-person dave))
3982 @result{} [cl-struct-person "Dave" nil male]
3983 (eq dave other)
3984 @result{} nil
3985 (eq (person-name dave) (person-name other))
3986 @result{} t
3987 (person-p dave)
3988 @result{} t
3989 (person-p [1 2 3 4])
3990 @result{} nil
3991 (person-p "Bogus")
3992 @result{} nil
3993 (person-p '[cl-struct-person counterfeit person object])
3994 @result{} t
3995 @end example
3996
3997 In general, @var{name} is either a name symbol or a list of a name
3998 symbol followed by any number of @dfn{struct options}; each @var{slot}
3999 is either a slot symbol or a list of the form @samp{(@var{slot-name}
4000 @var{default-value} @var{slot-options}@dots{})}. The @var{default-value}
4001 is a Lisp form that is evaluated any time an instance of the
4002 structure type is created without specifying that slot's value.
4003
4004 Common Lisp defines several slot options, but the only one
4005 implemented in this package is @code{:read-only}. A non-@code{nil}
4006 value for this option means the slot should not be @code{setf}-able;
4007 the slot's value is determined when the object is created and does
4008 not change afterward.
4009
4010 @example
4011 (cl-defstruct person
4012 (name nil :read-only t)
4013 age
4014 (sex 'unknown))
4015 @end example
4016
4017 Any slot options other than @code{:read-only} are ignored.
4018
4019 For obscure historical reasons, structure options take a different
4020 form than slot options. A structure option is either a keyword
4021 symbol, or a list beginning with a keyword symbol possibly followed
4022 by arguments. (By contrast, slot options are key-value pairs not
4023 enclosed in lists.)
4024
4025 @example
4026 (cl-defstruct (person (:constructor create-person)
4027 (:type list)
4028 :named)
4029 name age sex)
4030 @end example
4031
4032 The following structure options are recognized.
4033
4034 @table @code
4035 @item :conc-name
4036 The argument is a symbol whose print name is used as the prefix for
4037 the names of slot accessor functions. The default is the name of
4038 the struct type followed by a hyphen. The option @code{(:conc-name p-)}
4039 would change this prefix to @code{p-}. Specifying @code{nil} as an
4040 argument means no prefix, so that the slot names themselves are used
4041 to name the accessor functions.
4042
4043 @item :constructor
4044 In the simple case, this option takes one argument which is an
4045 alternate name to use for the constructor function. The default
4046 is @code{make-@var{name}}, e.g., @code{make-person}. The above
4047 example changes this to @code{create-person}. Specifying @code{nil}
4048 as an argument means that no standard constructor should be
4049 generated at all.
4050
4051 In the full form of this option, the constructor name is followed
4052 by an arbitrary argument list. @xref{Program Structure}, for a
4053 description of the format of Common Lisp argument lists. All
4054 options, such as @code{&rest} and @code{&key}, are supported.
4055 The argument names should match the slot names; each slot is
4056 initialized from the corresponding argument. Slots whose names
4057 do not appear in the argument list are initialized based on the
4058 @var{default-value} in their slot descriptor. Also, @code{&optional}
4059 and @code{&key} arguments that don't specify defaults take their
4060 defaults from the slot descriptor. It is valid to include arguments
4061 that don't correspond to slot names; these are useful if they are
4062 referred to in the defaults for optional, keyword, or @code{&aux}
4063 arguments that @emph{do} correspond to slots.
4064
4065 You can specify any number of full-format @code{:constructor}
4066 options on a structure. The default constructor is still generated
4067 as well unless you disable it with a simple-format @code{:constructor}
4068 option.
4069
4070 @example
4071 (cl-defstruct
4072 (person
4073 (:constructor nil) ; no default constructor
4074 (:constructor new-person
4075 (name sex &optional (age 0)))
4076 (:constructor new-hound (&key (name "Rover")
4077 (dog-years 0)
4078 &aux (age (* 7 dog-years))
4079 (sex 'canine))))
4080 name age sex)
4081 @end example
4082
4083 The first constructor here takes its arguments positionally rather
4084 than by keyword. (In official Common Lisp terminology, constructors
4085 that work By Order of Arguments instead of by keyword are called
4086 ``BOA constructors''. No, I'm not making this up.) For example,
4087 @code{(new-person "Jane" 'female)} generates a person whose slots
4088 are @code{"Jane"}, 0, and @code{female}, respectively.
4089
4090 The second constructor takes two keyword arguments, @code{:name},
4091 which initializes the @code{name} slot and defaults to @code{"Rover"},
4092 and @code{:dog-years}, which does not itself correspond to a slot
4093 but which is used to initialize the @code{age} slot. The @code{sex}
4094 slot is forced to the symbol @code{canine} with no syntax for
4095 overriding it.
4096
4097 @item :copier
4098 The argument is an alternate name for the copier function for
4099 this type. The default is @code{copy-@var{name}}. @code{nil}
4100 means not to generate a copier function. (In this implementation,
4101 all copier functions are simply synonyms for @code{copy-sequence}.)
4102
4103 @item :predicate
4104 The argument is an alternate name for the predicate that recognizes
4105 objects of this type. The default is @code{@var{name}-p}. @code{nil}
4106 means not to generate a predicate function. (If the @code{:type}
4107 option is used without the @code{:named} option, no predicate is
4108 ever generated.)
4109
4110 In true Common Lisp, @code{typep} is always able to recognize a
4111 structure object even if @code{:predicate} was used. In this
4112 package, @code{cl-typep} simply looks for a function called
4113 @code{@var{typename}-p}, so it will work for structure types
4114 only if they used the default predicate name.
4115
4116 @item :include
4117 This option implements a very limited form of C++-style inheritance.
4118 The argument is the name of another structure type previously
4119 created with @code{cl-defstruct}. The effect is to cause the new
4120 structure type to inherit all of the included structure's slots
4121 (plus, of course, any new slots described by this struct's slot
4122 descriptors). The new structure is considered a ``specialization''
4123 of the included one. In fact, the predicate and slot accessors
4124 for the included type will also accept objects of the new type.
4125
4126 If there are extra arguments to the @code{:include} option after
4127 the included-structure name, these options are treated as replacement
4128 slot descriptors for slots in the included structure, possibly with
4129 modified default values. Borrowing an example from Steele:
4130
4131 @example
4132 (cl-defstruct person name (age 0) sex)
4133 @result{} person
4134 (cl-defstruct (astronaut (:include person (age 45)))
4135 helmet-size
4136 (favorite-beverage 'tang))
4137 @result{} astronaut
4138
4139 (setq joe (make-person :name "Joe"))
4140 @result{} [cl-struct-person "Joe" 0 nil]
4141 (setq buzz (make-astronaut :name "Buzz"))
4142 @result{} [cl-struct-astronaut "Buzz" 45 nil nil tang]
4143
4144 (list (person-p joe) (person-p buzz))
4145 @result{} (t t)
4146 (list (astronaut-p joe) (astronaut-p buzz))
4147 @result{} (nil t)
4148
4149 (person-name buzz)
4150 @result{} "Buzz"
4151 (astronaut-name joe)
4152 @result{} error: "astronaut-name accessing a non-astronaut"
4153 @end example
4154
4155 Thus, if @code{astronaut} is a specialization of @code{person},
4156 then every @code{astronaut} is also a @code{person} (but not the
4157 other way around). Every @code{astronaut} includes all the slots
4158 of a @code{person}, plus extra slots that are specific to
4159 astronauts. Operations that work on people (like @code{person-name})
4160 work on astronauts just like other people.
4161
4162 @item :print-function
4163 In full Common Lisp, this option allows you to specify a function
4164 that is called to print an instance of the structure type. The
4165 Emacs Lisp system offers no hooks into the Lisp printer which would
4166 allow for such a feature, so this package simply ignores
4167 @code{:print-function}.
4168
4169 @item :type
4170 The argument should be one of the symbols @code{vector} or @code{list}.
4171 This tells which underlying Lisp data type should be used to implement
4172 the new structure type. Vectors are used by default, but
4173 @code{(:type list)} will cause structure objects to be stored as
4174 lists instead.
4175
4176 The vector representation for structure objects has the advantage
4177 that all structure slots can be accessed quickly, although creating
4178 vectors is a bit slower in Emacs Lisp. Lists are easier to create,
4179 but take a relatively long time accessing the later slots.
4180
4181 @item :named
4182 This option, which takes no arguments, causes a characteristic ``tag''
4183 symbol to be stored at the front of the structure object. Using
4184 @code{:type} without also using @code{:named} will result in a
4185 structure type stored as plain vectors or lists with no identifying
4186 features.
4187
4188 The default, if you don't specify @code{:type} explicitly, is to
4189 use named vectors. Therefore, @code{:named} is only useful in
4190 conjunction with @code{:type}.
4191
4192 @example
4193 (cl-defstruct (person1) name age sex)
4194 (cl-defstruct (person2 (:type list) :named) name age sex)
4195 (cl-defstruct (person3 (:type list)) name age sex)
4196
4197 (setq p1 (make-person1))
4198 @result{} [cl-struct-person1 nil nil nil]
4199 (setq p2 (make-person2))
4200 @result{} (person2 nil nil nil)
4201 (setq p3 (make-person3))
4202 @result{} (nil nil nil)
4203
4204 (person1-p p1)
4205 @result{} t
4206 (person2-p p2)
4207 @result{} t
4208 (person3-p p3)
4209 @result{} error: function person3-p undefined
4210 @end example
4211
4212 Since unnamed structures don't have tags, @code{cl-defstruct} is not
4213 able to make a useful predicate for recognizing them. Also,
4214 accessors like @code{person3-name} will be generated but they
4215 will not be able to do any type checking. The @code{person3-name}
4216 function, for example, will simply be a synonym for @code{car} in
4217 this case. By contrast, @code{person2-name} is able to verify
4218 that its argument is indeed a @code{person2} object before
4219 proceeding.
4220
4221 @item :initial-offset
4222 The argument must be a nonnegative integer. It specifies a
4223 number of slots to be left ``empty'' at the front of the
4224 structure. If the structure is named, the tag appears at the
4225 specified position in the list or vector; otherwise, the first
4226 slot appears at that position. Earlier positions are filled
4227 with @code{nil} by the constructors and ignored otherwise. If
4228 the type @code{:include}s another type, then @code{:initial-offset}
4229 specifies a number of slots to be skipped between the last slot
4230 of the included type and the first new slot.
4231 @end table
4232 @end defmac
4233
4234 Except as noted, the @code{cl-defstruct} facility of this package is
4235 entirely compatible with that of Common Lisp.
4236
4237 @node Assertions
4238 @chapter Assertions and Errors
4239
4240 @noindent
4241 This section describes two macros that test @dfn{assertions}, i.e.,
4242 conditions which must be true if the program is operating correctly.
4243 Assertions never add to the behavior of a Lisp program; they simply
4244 make ``sanity checks'' to make sure everything is as it should be.
4245
4246 If the optimization property @code{speed} has been set to 3, and
4247 @code{safety} is less than 3, then the byte-compiler will optimize
4248 away the following assertions. Because assertions might be optimized
4249 away, it is a bad idea for them to include side-effects.
4250
4251 @defmac cl-assert test-form [show-args string args@dots{}]
4252 This form verifies that @var{test-form} is true (i.e., evaluates to
4253 a non-@code{nil} value). If so, it returns @code{nil}. If the test
4254 is not satisfied, @code{cl-assert} signals an error.
4255
4256 A default error message will be supplied which includes @var{test-form}.
4257 You can specify a different error message by including a @var{string}
4258 argument plus optional extra arguments. Those arguments are simply
4259 passed to @code{error} to signal the error.
4260
4261 If the optional second argument @var{show-args} is @code{t} instead
4262 of @code{nil}, then the error message (with or without @var{string})
4263 will also include all non-constant arguments of the top-level
4264 @var{form}. For example:
4265
4266 @example
4267 (cl-assert (> x 10) t "x is too small: %d")
4268 @end example
4269
4270 This usage of @var{show-args} is an extension to Common Lisp. In
4271 true Common Lisp, the second argument gives a list of @var{places}
4272 which can be @code{setf}'d by the user before continuing from the
4273 error. Since Emacs Lisp does not support continuable errors, it
4274 makes no sense to specify @var{places}.
4275 @end defmac
4276
4277 @defmac cl-check-type form type [string]
4278 This form verifies that @var{form} evaluates to a value of type
4279 @var{type}. If so, it returns @code{nil}. If not, @code{cl-check-type}
4280 signals a @code{wrong-type-argument} error. The default error message
4281 lists the erroneous value along with @var{type} and @var{form}
4282 themselves. If @var{string} is specified, it is included in the
4283 error message in place of @var{type}. For example:
4284
4285 @example
4286 (cl-check-type x (integer 1 *) "a positive integer")
4287 @end example
4288
4289 @xref{Type Predicates}, for a description of the type specifiers
4290 that may be used for @var{type}.
4291
4292 Note that in Common Lisp, the first argument to @code{check-type}
4293 must be a @var{place} suitable for use by @code{setf}, because
4294 @code{check-type} signals a continuable error that allows the
4295 user to modify @var{place}.
4296 @end defmac
4297
4298 @node Efficiency Concerns
4299 @appendix Efficiency Concerns
4300
4301 @appendixsec Macros
4302
4303 @noindent
4304 Many of the advanced features of this package, such as @code{cl-defun},
4305 @code{cl-loop}, etc., are implemented as Lisp macros. In
4306 byte-compiled code, these complex notations will be expanded into
4307 equivalent Lisp code which is simple and efficient. For example,
4308 the form
4309
4310 @example
4311 (cl-incf i n)
4312 @end example
4313
4314 @noindent
4315 is expanded at compile-time to the Lisp form
4316
4317 @example
4318 (setq i (+ i n))
4319 @end example
4320
4321 @noindent
4322 which is the most efficient ways of doing this operation
4323 in Lisp. Thus, there is no performance penalty for using the more
4324 readable @code{cl-incf} form in your compiled code.
4325
4326 @emph{Interpreted} code, on the other hand, must expand these macros
4327 every time they are executed. For this reason it is strongly
4328 recommended that code making heavy use of macros be compiled.
4329 A loop using @code{cl-incf} a hundred times will execute considerably
4330 faster if compiled, and will also garbage-collect less because the
4331 macro expansion will not have to be generated, used, and thrown away a
4332 hundred times.
4333
4334 You can find out how a macro expands by using the
4335 @code{cl-prettyexpand} function.
4336
4337 @defun cl-prettyexpand form &optional full
4338 This function takes a single Lisp form as an argument and inserts
4339 a nicely formatted copy of it in the current buffer (which must be
4340 in Lisp mode so that indentation works properly). It also expands
4341 all Lisp macros that appear in the form. The easiest way to use
4342 this function is to go to the @file{*scratch*} buffer and type, say,
4343
4344 @example
4345 (cl-prettyexpand '(cl-loop for x below 10 collect x))
4346 @end example
4347
4348 @noindent
4349 and type @kbd{C-x C-e} immediately after the closing parenthesis;
4350 an expansion similar to:
4351
4352 @example
4353 (cl-block nil
4354 (let* ((x 0)
4355 (G1004 nil))
4356 (while (< x 10)
4357 (setq G1004 (cons x G1004))
4358 (setq x (+ x 1)))
4359 (nreverse G1004)))
4360 @end example
4361
4362 @noindent
4363 will be inserted into the buffer. (The @code{cl-block} macro is
4364 expanded differently in the interpreter and compiler, so
4365 @code{cl-prettyexpand} just leaves it alone. The temporary
4366 variable @code{G1004} was created by @code{cl-gensym}.)
4367
4368 If the optional argument @var{full} is true, then @emph{all}
4369 macros are expanded, including @code{cl-block}, @code{cl-eval-when},
4370 and compiler macros. Expansion is done as if @var{form} were
4371 a top-level form in a file being compiled.
4372
4373 @c FIXME none of these examples are still applicable.
4374 @ignore
4375 For example,
4376
4377 @example
4378 (cl-prettyexpand '(cl-pushnew 'x list))
4379 @print{} (setq list (cl-adjoin 'x list))
4380 (cl-prettyexpand '(cl-pushnew 'x list) t)
4381 @print{} (setq list (if (memq 'x list) list (cons 'x list)))
4382 (cl-prettyexpand '(caddr (cl-member 'a list)) t)
4383 @print{} (car (cdr (cdr (memq 'a list))))
4384 @end example
4385 @end ignore
4386
4387 Note that @code{cl-adjoin}, @code{cl-caddr}, and @code{cl-member} all
4388 have built-in compiler macros to optimize them in common cases.
4389 @end defun
4390
4391 @appendixsec Error Checking
4392
4393 @noindent
4394 Common Lisp compliance has in general not been sacrificed for the
4395 sake of efficiency. A few exceptions have been made for cases
4396 where substantial gains were possible at the expense of marginal
4397 incompatibility.
4398
4399 The Common Lisp standard (as embodied in Steele's book) uses the
4400 phrase ``it is an error if'' to indicate a situation that is not
4401 supposed to arise in complying programs; implementations are strongly
4402 encouraged but not required to signal an error in these situations.
4403 This package sometimes omits such error checking in the interest of
4404 compactness and efficiency. For example, @code{cl-do} variable
4405 specifiers are supposed to be lists of one, two, or three forms;
4406 extra forms are ignored by this package rather than signaling a
4407 syntax error. The @code{cl-endp} function is simply a synonym for
4408 @code{null} in this package. Functions taking keyword arguments
4409 will accept an odd number of arguments, treating the trailing
4410 keyword as if it were followed by the value @code{nil}.
4411
4412 Argument lists (as processed by @code{cl-defun} and friends)
4413 @emph{are} checked rigorously except for the minor point just
4414 mentioned; in particular, keyword arguments are checked for
4415 validity, and @code{&allow-other-keys} and @code{:allow-other-keys}
4416 are fully implemented. Keyword validity checking is slightly
4417 time consuming (though not too bad in byte-compiled code);
4418 you can use @code{&allow-other-keys} to omit this check. Functions
4419 defined in this package such as @code{cl-find} and @code{cl-member}
4420 do check their keyword arguments for validity.
4421
4422 @appendixsec Compiler Optimizations
4423
4424 @noindent
4425 Changing the value of @code{byte-optimize} from the default @code{t}
4426 is highly discouraged; many of the Common
4427 Lisp macros emit
4428 code that can be improved by optimization. In particular,
4429 @code{cl-block}s (whether explicit or implicit in constructs like
4430 @code{cl-defun} and @code{cl-loop}) carry a fair run-time penalty; the
4431 byte-compiler removes @code{cl-block}s that are not actually
4432 referenced by @code{cl-return} or @code{cl-return-from} inside the block.
4433
4434 @node Common Lisp Compatibility
4435 @appendix Common Lisp Compatibility
4436
4437 @noindent
4438 The following is a list of all known incompatibilities between this
4439 package and Common Lisp as documented in Steele (2nd edition).
4440
4441 The word @code{cl-defun} is required instead of @code{defun} in order
4442 to use extended Common Lisp argument lists in a function. Likewise,
4443 @code{cl-defmacro} and @code{cl-function} are versions of those forms
4444 which understand full-featured argument lists. The @code{&whole}
4445 keyword does not work in @code{cl-defmacro} argument lists (except
4446 inside recursive argument lists).
4447
4448 The @code{equal} predicate does not distinguish
4449 between IEEE floating-point plus and minus zero. The @code{cl-equalp}
4450 predicate has several differences with Common Lisp; @pxref{Predicates}.
4451
4452 The @code{cl-do-all-symbols} form is the same as @code{cl-do-symbols}
4453 with no @var{obarray} argument. In Common Lisp, this form would
4454 iterate over all symbols in all packages. Since Emacs obarrays
4455 are not a first-class package mechanism, there is no way for
4456 @code{cl-do-all-symbols} to locate any but the default obarray.
4457
4458 The @code{cl-loop} macro is complete except that @code{loop-finish}
4459 and type specifiers are unimplemented.
4460
4461 The multiple-value return facility treats lists as multiple
4462 values, since Emacs Lisp cannot support multiple return values
4463 directly. The macros will be compatible with Common Lisp if
4464 @code{cl-values} or @code{cl-values-list} is always used to return to
4465 a @code{cl-multiple-value-bind} or other multiple-value receiver;
4466 if @code{cl-values} is used without @code{cl-multiple-value-@dots{}}
4467 or vice-versa the effect will be different from Common Lisp.
4468
4469 Many Common Lisp declarations are ignored, and others match
4470 the Common Lisp standard in concept but not in detail. For
4471 example, local @code{special} declarations, which are purely
4472 advisory in Emacs Lisp, do not rigorously obey the scoping rules
4473 set down in Steele's book.
4474
4475 The variable @code{cl--gensym-counter} starts out with a pseudo-random
4476 value rather than with zero. This is to cope with the fact that
4477 generated symbols become interned when they are written to and
4478 loaded back from a file.
4479
4480 The @code{cl-defstruct} facility is compatible, except that structures
4481 are of type @code{:type vector :named} by default rather than some
4482 special, distinct type. Also, the @code{:type} slot option is ignored.
4483
4484 The second argument of @code{cl-check-type} is treated differently.
4485
4486 @node Porting Common Lisp
4487 @appendix Porting Common Lisp
4488
4489 @noindent
4490 This package is meant to be used as an extension to Emacs Lisp,
4491 not as an Emacs implementation of true Common Lisp. Some of the
4492 remaining differences between Emacs Lisp and Common Lisp make it
4493 difficult to port large Common Lisp applications to Emacs. For
4494 one, some of the features in this package are not fully compliant
4495 with ANSI or Steele; @pxref{Common Lisp Compatibility}. But there
4496 are also quite a few features that this package does not provide
4497 at all. Here are some major omissions that you will want to watch out
4498 for when bringing Common Lisp code into Emacs.
4499
4500 @itemize @bullet
4501 @item
4502 Case-insensitivity. Symbols in Common Lisp are case-insensitive
4503 by default. Some programs refer to a function or variable as
4504 @code{foo} in one place and @code{Foo} or @code{FOO} in another.
4505 Emacs Lisp will treat these as three distinct symbols.
4506
4507 Some Common Lisp code is written entirely in upper case. While Emacs
4508 is happy to let the program's own functions and variables use
4509 this convention, calls to Lisp builtins like @code{if} and
4510 @code{defun} will have to be changed to lower case.
4511
4512 @item
4513 Lexical scoping. In Common Lisp, function arguments and @code{let}
4514 bindings apply only to references physically within their bodies (or
4515 within macro expansions in their bodies). Traditionally, Emacs Lisp
4516 uses @dfn{dynamic scoping} wherein a binding to a variable is visible
4517 even inside functions called from the body.
4518 @xref{Dynamic Binding,,,elisp,GNU Emacs Lisp Reference Manual}.
4519 Lexical binding is available since Emacs 24.1, so be sure to set
4520 @code{lexical-binding} to @code{t} if you need to emulate this aspect
4521 of Common Lisp. @xref{Lexical Binding,,,elisp,GNU Emacs Lisp Reference Manual}.
4522
4523 Here is an example of a Common Lisp code fragment that would fail in
4524 Emacs Lisp if @code{lexical-binding} were set to @code{nil}:
4525
4526 @example
4527 (defun map-odd-elements (func list)
4528 (loop for x in list
4529 for flag = t then (not flag)
4530 collect (if flag x (funcall func x))))
4531
4532 (defun add-odd-elements (list x)
4533 (map-odd-elements (lambda (a) (+ a x)) list))
4534 @end example
4535
4536 @noindent
4537 With lexical binding, the two functions' usages of @code{x} are
4538 completely independent. With dynamic binding, the binding to @code{x}
4539 made by @code{add-odd-elements} will have been hidden by the binding
4540 in @code{map-odd-elements} by the time the @code{(+ a x)} function is
4541 called.
4542
4543 Internally, this package uses lexical binding so that such problems do
4544 not occur. @xref{Obsolete Lexical Binding}, for a description of the obsolete
4545 @code{lexical-let} form that emulates a Common Lisp-style lexical
4546 binding when dynamic binding is in use.
4547
4548 @item
4549 Reader macros. Common Lisp includes a second type of macro that
4550 works at the level of individual characters. For example, Common
4551 Lisp implements the quote notation by a reader macro called @code{'},
4552 whereas Emacs Lisp's parser just treats quote as a special case.
4553 Some Lisp packages use reader macros to create special syntaxes
4554 for themselves, which the Emacs parser is incapable of reading.
4555
4556 @item
4557 Other syntactic features. Common Lisp provides a number of
4558 notations beginning with @code{#} that the Emacs Lisp parser
4559 won't understand. For example, @samp{#| @dots{} |#} is an
4560 alternate comment notation, and @samp{#+lucid (foo)} tells
4561 the parser to ignore the @code{(foo)} except in Lucid Common
4562 Lisp.
4563
4564 @item
4565 Packages. In Common Lisp, symbols are divided into @dfn{packages}.
4566 Symbols that are Lisp built-ins are typically stored in one package;
4567 symbols that are vendor extensions are put in another, and each
4568 application program would have a package for its own symbols.
4569 Certain symbols are ``exported'' by a package and others are
4570 internal; certain packages ``use'' or import the exported symbols
4571 of other packages. To access symbols that would not normally be
4572 visible due to this importing and exporting, Common Lisp provides
4573 a syntax like @code{package:symbol} or @code{package::symbol}.
4574
4575 Emacs Lisp has a single namespace for all interned symbols, and
4576 then uses a naming convention of putting a prefix like @code{cl-}
4577 in front of the name. Some Emacs packages adopt the Common Lisp-like
4578 convention of using @code{cl:} or @code{cl::} as the prefix.
4579 However, the Emacs parser does not understand colons and just
4580 treats them as part of the symbol name. Thus, while @code{mapcar}
4581 and @code{lisp:mapcar} may refer to the same symbol in Common
4582 Lisp, they are totally distinct in Emacs Lisp. Common Lisp
4583 programs that refer to a symbol by the full name sometimes
4584 and the short name other times will not port cleanly to Emacs.
4585
4586 Emacs Lisp does have a concept of ``obarrays'', which are
4587 package-like collections of symbols, but this feature is not
4588 strong enough to be used as a true package mechanism.
4589
4590 @item
4591 The @code{format} function is quite different between Common
4592 Lisp and Emacs Lisp. It takes an additional ``destination''
4593 argument before the format string. A destination of @code{nil}
4594 means to format to a string as in Emacs Lisp; a destination
4595 of @code{t} means to write to the terminal (similar to
4596 @code{message} in Emacs). Also, format control strings are
4597 utterly different; @code{~} is used instead of @code{%} to
4598 introduce format codes, and the set of available codes is
4599 much richer. There are no notations like @code{\n} for
4600 string literals; instead, @code{format} is used with the
4601 ``newline'' format code, @code{~%}. More advanced formatting
4602 codes provide such features as paragraph filling, case
4603 conversion, and even loops and conditionals.
4604
4605 While it would have been possible to implement most of Common
4606 Lisp @code{format} in this package (under the name @code{cl-format},
4607 of course), it was not deemed worthwhile. It would have required
4608 a huge amount of code to implement even a decent subset of
4609 @code{format}, yet the functionality it would provide over
4610 Emacs Lisp's @code{format} would rarely be useful.
4611
4612 @item
4613 Vector constants use square brackets in Emacs Lisp, but
4614 @code{#(a b c)} notation in Common Lisp. To further complicate
4615 matters, Emacs has its own @code{#(} notation for
4616 something entirely different---strings with properties.
4617
4618 @item
4619 Characters are distinct from integers in Common Lisp. The notation
4620 for character constants is also different: @code{#\A} in Common Lisp
4621 where Emacs Lisp uses @code{?A}. Also, @code{string=} and
4622 @code{string-equal} are synonyms in Emacs Lisp, whereas the latter is
4623 case-insensitive in Common Lisp.
4624
4625 @item
4626 Data types. Some Common Lisp data types do not exist in Emacs
4627 Lisp. Rational numbers and complex numbers are not present,
4628 nor are large integers (all integers are ``fixnums''). All
4629 arrays are one-dimensional. There are no readtables or pathnames;
4630 streams are a set of existing data types rather than a new data
4631 type of their own. Hash tables, random-states, structures, and
4632 packages (obarrays) are built from Lisp vectors or lists rather
4633 than being distinct types.
4634
4635 @item
4636 The Common Lisp Object System (CLOS) is not implemented,
4637 nor is the Common Lisp Condition System. However, the EIEIO package
4638 (@pxref{Top, , Introduction, eieio, EIEIO}) does implement some
4639 CLOS functionality.
4640
4641 @item
4642 Common Lisp features that are completely redundant with Emacs
4643 Lisp features of a different name generally have not been
4644 implemented. For example, Common Lisp writes @code{defconstant}
4645 where Emacs Lisp uses @code{defconst}. Similarly, @code{make-list}
4646 takes its arguments in different ways in the two Lisps but does
4647 exactly the same thing, so this package has not bothered to
4648 implement a Common Lisp-style @code{make-list}.
4649
4650 @item
4651 A few more notable Common Lisp features not included in this
4652 package: @code{compiler-let}, @code{tagbody}, @code{prog},
4653 @code{ldb/dpb}, @code{parse-integer}, @code{cerror}.
4654
4655 @item
4656 Recursion. While recursion works in Emacs Lisp just like it
4657 does in Common Lisp, various details of the Emacs Lisp system
4658 and compiler make recursion much less efficient than it is in
4659 most Lisps. Some schools of thought prefer to use recursion
4660 in Lisp over other techniques; they would sum a list of
4661 numbers using something like
4662
4663 @example
4664 (defun sum-list (list)
4665 (if list
4666 (+ (car list) (sum-list (cdr list)))
4667 0))
4668 @end example
4669
4670 @noindent
4671 where a more iteratively-minded programmer might write one of
4672 these forms:
4673
4674 @example
4675 (let ((total 0)) (dolist (x my-list) (incf total x)) total)
4676 (loop for x in my-list sum x)
4677 @end example
4678
4679 While this would be mainly a stylistic choice in most Common Lisps,
4680 in Emacs Lisp you should be aware that the iterative forms are
4681 much faster than recursion. Also, Lisp programmers will want to
4682 note that the current Emacs Lisp compiler does not optimize tail
4683 recursion.
4684 @end itemize
4685
4686 @node Obsolete Features
4687 @appendix Obsolete Features
4688
4689 This section describes some features of the package that are obsolete
4690 and should not be used in new code. They are either only provided by
4691 the old @file{cl.el} entry point, not by the newer @file{cl-lib.el};
4692 or where versions with a @samp{cl-} prefix do exist they do not behave
4693 in exactly the same way.
4694
4695 @menu
4696 * Obsolete Lexical Binding:: An approximation of lexical binding.
4697 * Obsolete Macros:: Obsolete macros.
4698 * Obsolete Setf Customization:: Obsolete ways to customize setf.
4699 @end menu
4700
4701 @node Obsolete Lexical Binding
4702 @appendixsec Obsolete Lexical Binding
4703
4704 The following macros are extensions to Common Lisp, where all bindings
4705 are lexical unless declared otherwise. These features are likewise
4706 obsolete since the introduction of true lexical binding in Emacs 24.1.
4707
4708 @defmac lexical-let (bindings@dots{}) forms@dots{}
4709 This form is exactly like @code{let} except that the bindings it
4710 establishes are purely lexical.
4711 @end defmac
4712
4713 @c FIXME remove this and refer to elisp manual.
4714 @c Maybe merge some stuff from here to there?
4715 @noindent
4716 Lexical bindings are similar to local variables in a language like C:
4717 Only the code physically within the body of the @code{lexical-let}
4718 (after macro expansion) may refer to the bound variables.
4719
4720 @example
4721 (setq a 5)
4722 (defun foo (b) (+ a b))
4723 (let ((a 2)) (foo a))
4724 @result{} 4
4725 (lexical-let ((a 2)) (foo a))
4726 @result{} 7
4727 @end example
4728
4729 @noindent
4730 In this example, a regular @code{let} binding of @code{a} actually
4731 makes a temporary change to the global variable @code{a}, so @code{foo}
4732 is able to see the binding of @code{a} to 2. But @code{lexical-let}
4733 actually creates a distinct local variable @code{a} for use within its
4734 body, without any effect on the global variable of the same name.
4735
4736 The most important use of lexical bindings is to create @dfn{closures}.
4737 A closure is a function object that refers to an outside lexical
4738 variable (@pxref{Closures,,,elisp,GNU Emacs Lisp Reference Manual}).
4739 For example:
4740
4741 @example
4742 (defun make-adder (n)
4743 (lexical-let ((n n))
4744 (function (lambda (m) (+ n m)))))
4745 (setq add17 (make-adder 17))
4746 (funcall add17 4)
4747 @result{} 21
4748 @end example
4749
4750 @noindent
4751 The call @code{(make-adder 17)} returns a function object which adds
4752 17 to its argument. If @code{let} had been used instead of
4753 @code{lexical-let}, the function object would have referred to the
4754 global @code{n}, which would have been bound to 17 only during the
4755 call to @code{make-adder} itself.
4756
4757 @example
4758 (defun make-counter ()
4759 (lexical-let ((n 0))
4760 (cl-function (lambda (&optional (m 1)) (cl-incf n m)))))
4761 (setq count-1 (make-counter))
4762 (funcall count-1 3)
4763 @result{} 3
4764 (funcall count-1 14)
4765 @result{} 17
4766 (setq count-2 (make-counter))
4767 (funcall count-2 5)
4768 @result{} 5
4769 (funcall count-1 2)
4770 @result{} 19
4771 (funcall count-2)
4772 @result{} 6
4773 @end example
4774
4775 @noindent
4776 Here we see that each call to @code{make-counter} creates a distinct
4777 local variable @code{n}, which serves as a private counter for the
4778 function object that is returned.
4779
4780 Closed-over lexical variables persist until the last reference to
4781 them goes away, just like all other Lisp objects. For example,
4782 @code{count-2} refers to a function object which refers to an
4783 instance of the variable @code{n}; this is the only reference
4784 to that variable, so after @code{(setq count-2 nil)} the garbage
4785 collector would be able to delete this instance of @code{n}.
4786 Of course, if a @code{lexical-let} does not actually create any
4787 closures, then the lexical variables are free as soon as the
4788 @code{lexical-let} returns.
4789
4790 Many closures are used only during the extent of the bindings they
4791 refer to; these are known as ``downward funargs'' in Lisp parlance.
4792 When a closure is used in this way, regular Emacs Lisp dynamic
4793 bindings suffice and will be more efficient than @code{lexical-let}
4794 closures:
4795
4796 @example
4797 (defun add-to-list (x list)
4798 (mapcar (lambda (y) (+ x y))) list)
4799 (add-to-list 7 '(1 2 5))
4800 @result{} (8 9 12)
4801 @end example
4802
4803 @noindent
4804 Since this lambda is only used while @code{x} is still bound,
4805 it is not necessary to make a true closure out of it.
4806
4807 You can use @code{defun} or @code{flet} inside a @code{lexical-let}
4808 to create a named closure. If several closures are created in the
4809 body of a single @code{lexical-let}, they all close over the same
4810 instance of the lexical variable.
4811
4812 @defmac lexical-let* (bindings@dots{}) forms@dots{}
4813 This form is just like @code{lexical-let}, except that the bindings
4814 are made sequentially in the manner of @code{let*}.
4815 @end defmac
4816
4817 @node Obsolete Macros
4818 @appendixsec Obsolete Macros
4819
4820 The following macros are obsolete, and are replaced by versions with
4821 a @samp{cl-} prefix that do not behave in exactly the same way.
4822 Consequently, the @file{cl.el} versions are not simply aliases to the
4823 @file{cl-lib.el} versions.
4824
4825 @defmac flet (bindings@dots{}) forms@dots{}
4826 This macro is replaced by @code{cl-flet} (@pxref{Function Bindings}),
4827 which behaves the same way as Common Lisp's @code{flet}.
4828 This @code{flet} takes the same arguments as @code{cl-flet}, but does
4829 not behave in precisely the same way.
4830
4831 While @code{flet} in Common Lisp establishes a lexical function
4832 binding, this @code{flet} makes a dynamic binding (it dates from a
4833 time before Emacs had lexical binding). The result is
4834 that @code{flet} affects indirect calls to a function as well as calls
4835 directly inside the @code{flet} form itself.
4836
4837 This will even work on Emacs primitives, although note that some calls
4838 to primitive functions internal to Emacs are made without going
4839 through the symbol's function cell, and so will not be affected by
4840 @code{flet}. For example,
4841
4842 @example
4843 (flet ((message (&rest args) (push args saved-msgs)))
4844 (do-something))
4845 @end example
4846
4847 This code attempts to replace the built-in function @code{message}
4848 with a function that simply saves the messages in a list rather
4849 than displaying them. The original definition of @code{message}
4850 will be restored after @code{do-something} exits. This code will
4851 work fine on messages generated by other Lisp code, but messages
4852 generated directly inside Emacs will not be caught since they make
4853 direct C-language calls to the message routines rather than going
4854 through the Lisp @code{message} function.
4855
4856 For those cases where the dynamic scoping of @code{flet} is desired,
4857 @code{cl-flet} is clearly not a substitute. The most direct replacement would
4858 be instead to use @code{cl-letf} to temporarily rebind @code{(symbol-function
4859 '@var{fun})}. But in most cases, a better substitute is to use an advice, such
4860 as:
4861
4862 @example
4863 (defvar my-fun-advice-enable nil)
4864 (add-advice '@var{fun} :around
4865 (lambda (orig &rest args)
4866 (if my-fun-advice-enable (do-something)
4867 (apply orig args))))
4868 @end example
4869
4870 so that you can then replace the @code{flet} with a simple dynamically scoped
4871 binding of @code{my-fun-advice-enable}.
4872
4873 @c Bug#411.
4874 Note that many primitives (e.g., @code{+}) have special byte-compile handling.
4875 Attempts to redefine such functions using @code{flet}, @code{cl-letf}, or an
4876 advice will fail when byte-compiled.
4877 @c Or cl-flet.
4878 @c In such cases, use @code{labels} instead.
4879 @end defmac
4880
4881 @defmac labels (bindings@dots{}) forms@dots{}
4882 This macro is replaced by @code{cl-labels} (@pxref{Function Bindings}),
4883 which behaves the same way as Common Lisp's @code{labels}.
4884 This @code{labels} takes the same arguments as @code{cl-labels}, but
4885 does not behave in precisely the same way.
4886
4887 This version of @code{labels} uses the obsolete @code{lexical-let}
4888 form (@pxref{Obsolete Lexical Binding}), rather than the true
4889 lexical binding that @code{cl-labels} uses.
4890 @end defmac
4891
4892 @node Obsolete Setf Customization
4893 @appendixsec Obsolete Ways to Customize Setf
4894
4895 Common Lisp defines three macros, @code{define-modify-macro},
4896 @code{defsetf}, and @code{define-setf-method}, that allow the
4897 user to extend generalized variables in various ways.
4898 In Emacs, these are obsolete, replaced by various features of
4899 @file{gv.el} in Emacs 24.3.
4900 @xref{Adding Generalized Variables,,,elisp,GNU Emacs Lisp Reference Manual}.
4901
4902
4903 @defmac define-modify-macro name arglist function [doc-string]
4904 This macro defines a ``read-modify-write'' macro similar to
4905 @code{cl-incf} and @code{cl-decf}. You can replace this macro
4906 with @code{gv-letplace}.
4907
4908 The macro @var{name} is defined to take a @var{place} argument
4909 followed by additional arguments described by @var{arglist}. The call
4910
4911 @example
4912 (@var{name} @var{place} @var{args}@dots{})
4913 @end example
4914
4915 @noindent
4916 will be expanded to
4917
4918 @example
4919 (cl-callf @var{func} @var{place} @var{args}@dots{})
4920 @end example
4921
4922 @noindent
4923 which in turn is roughly equivalent to
4924
4925 @example
4926 (setf @var{place} (@var{func} @var{place} @var{args}@dots{}))
4927 @end example
4928
4929 For example:
4930
4931 @example
4932 (define-modify-macro incf (&optional (n 1)) +)
4933 (define-modify-macro concatf (&rest args) concat)
4934 @end example
4935
4936 Note that @code{&key} is not allowed in @var{arglist}, but
4937 @code{&rest} is sufficient to pass keywords on to the function.
4938
4939 Most of the modify macros defined by Common Lisp do not exactly
4940 follow the pattern of @code{define-modify-macro}. For example,
4941 @code{push} takes its arguments in the wrong order, and @code{pop}
4942 is completely irregular.
4943
4944 The above @code{incf} example could be written using
4945 @code{gv-letplace} as:
4946 @example
4947 (defmacro incf (place &optional n)
4948 (gv-letplace (getter setter) place
4949 (macroexp-let2 nil v (or n 1)
4950 (funcall setter `(+ ,v ,getter)))))
4951 @end example
4952 @ignore
4953 (defmacro concatf (place &rest args)
4954 (gv-letplace (getter setter) place
4955 (macroexp-let2 nil v (mapconcat 'identity args "")
4956 (funcall setter `(concat ,getter ,v)))))
4957 @end ignore
4958 @end defmac
4959
4960 @defmac defsetf access-fn update-fn
4961 This is the simpler of two @code{defsetf} forms, and is
4962 replaced by @code{gv-define-simple-setter}.
4963
4964 With @var{access-fn} the name of a function that accesses a place,
4965 this declares @var{update-fn} to be the corresponding store function.
4966 From now on,
4967
4968 @example
4969 (setf (@var{access-fn} @var{arg1} @var{arg2} @var{arg3}) @var{value})
4970 @end example
4971
4972 @noindent
4973 will be expanded to
4974
4975 @example
4976 (@var{update-fn} @var{arg1} @var{arg2} @var{arg3} @var{value})
4977 @end example
4978
4979 @noindent
4980 The @var{update-fn} is required to be either a true function, or
4981 a macro that evaluates its arguments in a function-like way. Also,
4982 the @var{update-fn} is expected to return @var{value} as its result.
4983 Otherwise, the above expansion would not obey the rules for the way
4984 @code{setf} is supposed to behave.
4985
4986 As a special (non-Common-Lisp) extension, a third argument of @code{t}
4987 to @code{defsetf} says that the return value of @code{update-fn} is
4988 not suitable, so that the above @code{setf} should be expanded to
4989 something more like
4990
4991 @example
4992 (let ((temp @var{value}))
4993 (@var{update-fn} @var{arg1} @var{arg2} @var{arg3} temp)
4994 temp)
4995 @end example
4996
4997 Some examples are:
4998
4999 @example
5000 (defsetf car setcar)
5001 (defsetf buffer-name rename-buffer t)
5002 @end example
5003
5004 These translate directly to @code{gv-define-simple-setter}:
5005
5006 @example
5007 (gv-define-simple-setter car setcar)
5008 (gv-define-simple-setter buffer-name rename-buffer t)
5009 @end example
5010 @end defmac
5011
5012 @defmac defsetf access-fn arglist (store-var) forms@dots{}
5013 This is the second, more complex, form of @code{defsetf}.
5014 It can be replaced by @code{gv-define-setter}.
5015
5016 This form of @code{defsetf} is rather like @code{defmacro} except for
5017 the additional @var{store-var} argument. The @var{forms} should
5018 return a Lisp form that stores the value of @var{store-var} into the
5019 generalized variable formed by a call to @var{access-fn} with
5020 arguments described by @var{arglist}. The @var{forms} may begin with
5021 a string which documents the @code{setf} method (analogous to the doc
5022 string that appears at the front of a function).
5023
5024 For example, the simple form of @code{defsetf} is shorthand for
5025
5026 @example
5027 (defsetf @var{access-fn} (&rest args) (store)
5028 (append '(@var{update-fn}) args (list store)))
5029 @end example
5030
5031 The Lisp form that is returned can access the arguments from
5032 @var{arglist} and @var{store-var} in an unrestricted fashion;
5033 macros like @code{cl-incf} that invoke this
5034 setf-method will insert temporary variables as needed to make
5035 sure the apparent order of evaluation is preserved.
5036
5037 Another standard example:
5038
5039 @example
5040 (defsetf nth (n x) (store)
5041 `(setcar (nthcdr ,n ,x) ,store))
5042 @end example
5043
5044 You could write this using @code{gv-define-setter} as:
5045
5046 @example
5047 (gv-define-setter nth (store n x)
5048 `(setcar (nthcdr ,n ,x) ,store))
5049 @end example
5050 @end defmac
5051
5052 @defmac define-setf-method access-fn arglist forms@dots{}
5053 This is the most general way to create new place forms. You can
5054 replace this by @code{gv-define-setter} or @code{gv-define-expander}.
5055
5056 When a @code{setf} to @var{access-fn} with arguments described by
5057 @var{arglist} is expanded, the @var{forms} are evaluated and must
5058 return a list of five items:
5059
5060 @enumerate
5061 @item
5062 A list of @dfn{temporary variables}.
5063
5064 @item
5065 A list of @dfn{value forms} corresponding to the temporary variables
5066 above. The temporary variables will be bound to these value forms
5067 as the first step of any operation on the generalized variable.
5068
5069 @item
5070 A list of exactly one @dfn{store variable} (generally obtained
5071 from a call to @code{gensym}).
5072
5073 @item
5074 A Lisp form that stores the contents of the store variable into
5075 the generalized variable, assuming the temporaries have been
5076 bound as described above.
5077
5078 @item
5079 A Lisp form that accesses the contents of the generalized variable,
5080 assuming the temporaries have been bound.
5081 @end enumerate
5082
5083 This is exactly like the Common Lisp macro of the same name,
5084 except that the method returns a list of five values rather
5085 than the five values themselves, since Emacs Lisp does not
5086 support Common Lisp's notion of multiple return values.
5087 (Note that the @code{setf} implementation provided by @file{gv.el}
5088 does not use this five item format. Its use here is only for
5089 backwards compatibility.)
5090
5091 Once again, the @var{forms} may begin with a documentation string.
5092
5093 A setf-method should be maximally conservative with regard to
5094 temporary variables. In the setf-methods generated by
5095 @code{defsetf}, the second return value is simply the list of
5096 arguments in the place form, and the first return value is a
5097 list of a corresponding number of temporary variables generated
5098 @c FIXME I don't think this is true anymore.
5099 by @code{cl-gensym}. Macros like @code{cl-incf} that
5100 use this setf-method will optimize away most temporaries that
5101 turn out to be unnecessary, so there is little reason for the
5102 setf-method itself to optimize.
5103 @end defmac
5104
5105 @c Removed in Emacs 24.3, not possible to make a compatible replacement.
5106 @ignore
5107 @defun get-setf-method place &optional env
5108 This function returns the setf-method for @var{place}, by
5109 invoking the definition previously recorded by @code{defsetf}
5110 or @code{define-setf-method}. The result is a list of five
5111 values as described above. You can use this function to build
5112 your own @code{cl-incf}-like modify macros.
5113
5114 The argument @var{env} specifies the ``environment'' to be
5115 passed on to @code{macroexpand} if @code{get-setf-method} should
5116 need to expand a macro in @var{place}. It should come from
5117 an @code{&environment} argument to the macro or setf-method
5118 that called @code{get-setf-method}.
5119 @end defun
5120 @end ignore
5121
5122
5123 @node GNU Free Documentation License
5124 @appendix GNU Free Documentation License
5125 @include doclicense.texi
5126
5127 @node Function Index
5128 @unnumbered Function Index
5129
5130 @printindex fn
5131
5132 @node Variable Index
5133 @unnumbered Variable Index
5134
5135 @printindex vr
5136
5137 @bye