]> code.delx.au - gnu-emacs/blob - src/alloc.c
Spelling fixes
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2015 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
29
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
33
34 #include "lisp.h"
35 #include "dispextern.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "systime.h"
39 #include "character.h"
40 #include "buffer.h"
41 #include "window.h"
42 #include "keyboard.h"
43 #include "frame.h"
44 #include "blockinput.h"
45 #include "termhooks.h" /* For struct terminal. */
46 #ifdef HAVE_WINDOW_SYSTEM
47 #include TERM_HEADER
48 #endif /* HAVE_WINDOW_SYSTEM */
49
50 #include <verify.h>
51 #include <execinfo.h> /* For backtrace. */
52
53 #ifdef HAVE_LINUX_SYSINFO
54 #include <sys/sysinfo.h>
55 #endif
56
57 #ifdef MSDOS
58 #include "dosfns.h" /* For dos_memory_info. */
59 #endif
60
61 #if (defined ENABLE_CHECKING \
62 && defined HAVE_VALGRIND_VALGRIND_H \
63 && !defined USE_VALGRIND)
64 # define USE_VALGRIND 1
65 #endif
66
67 #if USE_VALGRIND
68 #include <valgrind/valgrind.h>
69 #include <valgrind/memcheck.h>
70 static bool valgrind_p;
71 #endif
72
73 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects. */
74
75 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
76 memory. Can do this only if using gmalloc.c and if not checking
77 marked objects. */
78
79 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
80 || defined HYBRID_MALLOC || defined GC_CHECK_MARKED_OBJECTS)
81 #undef GC_MALLOC_CHECK
82 #endif
83
84 #include <unistd.h>
85 #include <fcntl.h>
86
87 #ifdef USE_GTK
88 # include "gtkutil.h"
89 #endif
90 #ifdef WINDOWSNT
91 #include "w32.h"
92 #include "w32heap.h" /* for sbrk */
93 #endif
94
95 #ifdef DOUG_LEA_MALLOC
96
97 #include <malloc.h>
98
99 /* Specify maximum number of areas to mmap. It would be nice to use a
100 value that explicitly means "no limit". */
101
102 #define MMAP_MAX_AREAS 100000000
103
104 #endif /* not DOUG_LEA_MALLOC */
105
106 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
107 to a struct Lisp_String. */
108
109 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
110 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
111 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
112
113 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
114 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
115 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
116
117 /* Default value of gc_cons_threshold (see below). */
118
119 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
120
121 /* Global variables. */
122 struct emacs_globals globals;
123
124 /* Number of bytes of consing done since the last gc. */
125
126 EMACS_INT consing_since_gc;
127
128 /* Similar minimum, computed from Vgc_cons_percentage. */
129
130 EMACS_INT gc_relative_threshold;
131
132 /* Minimum number of bytes of consing since GC before next GC,
133 when memory is full. */
134
135 EMACS_INT memory_full_cons_threshold;
136
137 /* True during GC. */
138
139 bool gc_in_progress;
140
141 /* True means abort if try to GC.
142 This is for code which is written on the assumption that
143 no GC will happen, so as to verify that assumption. */
144
145 bool abort_on_gc;
146
147 /* Number of live and free conses etc. */
148
149 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
150 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
151 static EMACS_INT total_free_floats, total_floats;
152
153 /* Points to memory space allocated as "spare", to be freed if we run
154 out of memory. We keep one large block, four cons-blocks, and
155 two string blocks. */
156
157 static char *spare_memory[7];
158
159 /* Amount of spare memory to keep in large reserve block, or to see
160 whether this much is available when malloc fails on a larger request. */
161
162 #define SPARE_MEMORY (1 << 14)
163
164 /* Initialize it to a nonzero value to force it into data space
165 (rather than bss space). That way unexec will remap it into text
166 space (pure), on some systems. We have not implemented the
167 remapping on more recent systems because this is less important
168 nowadays than in the days of small memories and timesharing. */
169
170 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
171 #define PUREBEG (char *) pure
172
173 /* Pointer to the pure area, and its size. */
174
175 static char *purebeg;
176 static ptrdiff_t pure_size;
177
178 /* Number of bytes of pure storage used before pure storage overflowed.
179 If this is non-zero, this implies that an overflow occurred. */
180
181 static ptrdiff_t pure_bytes_used_before_overflow;
182
183 /* Index in pure at which next pure Lisp object will be allocated.. */
184
185 static ptrdiff_t pure_bytes_used_lisp;
186
187 /* Number of bytes allocated for non-Lisp objects in pure storage. */
188
189 static ptrdiff_t pure_bytes_used_non_lisp;
190
191 /* If nonzero, this is a warning delivered by malloc and not yet
192 displayed. */
193
194 const char *pending_malloc_warning;
195
196 #if 0 /* Normally, pointer sanity only on request... */
197 #ifdef ENABLE_CHECKING
198 #define SUSPICIOUS_OBJECT_CHECKING 1
199 #endif
200 #endif
201
202 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
203 bug is unresolved. */
204 #define SUSPICIOUS_OBJECT_CHECKING 1
205
206 #ifdef SUSPICIOUS_OBJECT_CHECKING
207 struct suspicious_free_record
208 {
209 void *suspicious_object;
210 void *backtrace[128];
211 };
212 static void *suspicious_objects[32];
213 static int suspicious_object_index;
214 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
215 static int suspicious_free_history_index;
216 /* Find the first currently-monitored suspicious pointer in range
217 [begin,end) or NULL if no such pointer exists. */
218 static void *find_suspicious_object_in_range (void *begin, void *end);
219 static void detect_suspicious_free (void *ptr);
220 #else
221 # define find_suspicious_object_in_range(begin, end) NULL
222 # define detect_suspicious_free(ptr) (void)
223 #endif
224
225 /* Maximum amount of C stack to save when a GC happens. */
226
227 #ifndef MAX_SAVE_STACK
228 #define MAX_SAVE_STACK 16000
229 #endif
230
231 /* Buffer in which we save a copy of the C stack at each GC. */
232
233 #if MAX_SAVE_STACK > 0
234 static char *stack_copy;
235 static ptrdiff_t stack_copy_size;
236
237 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
238 avoiding any address sanitization. */
239
240 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
241 no_sanitize_memcpy (void *dest, void const *src, size_t size)
242 {
243 if (! ADDRESS_SANITIZER)
244 return memcpy (dest, src, size);
245 else
246 {
247 size_t i;
248 char *d = dest;
249 char const *s = src;
250 for (i = 0; i < size; i++)
251 d[i] = s[i];
252 return dest;
253 }
254 }
255
256 #endif /* MAX_SAVE_STACK > 0 */
257
258 static void mark_terminals (void);
259 static void gc_sweep (void);
260 static Lisp_Object make_pure_vector (ptrdiff_t);
261 static void mark_buffer (struct buffer *);
262
263 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
264 static void refill_memory_reserve (void);
265 #endif
266 static void compact_small_strings (void);
267 static void free_large_strings (void);
268 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
269
270 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
271 what memory allocated via lisp_malloc and lisp_align_malloc is intended
272 for what purpose. This enumeration specifies the type of memory. */
273
274 enum mem_type
275 {
276 MEM_TYPE_NON_LISP,
277 MEM_TYPE_BUFFER,
278 MEM_TYPE_CONS,
279 MEM_TYPE_STRING,
280 MEM_TYPE_MISC,
281 MEM_TYPE_SYMBOL,
282 MEM_TYPE_FLOAT,
283 /* Since all non-bool pseudovectors are small enough to be
284 allocated from vector blocks, this memory type denotes
285 large regular vectors and large bool pseudovectors. */
286 MEM_TYPE_VECTORLIKE,
287 /* Special type to denote vector blocks. */
288 MEM_TYPE_VECTOR_BLOCK,
289 /* Special type to denote reserved memory. */
290 MEM_TYPE_SPARE
291 };
292
293 /* A unique object in pure space used to make some Lisp objects
294 on free lists recognizable in O(1). */
295
296 static Lisp_Object Vdead;
297 #define DEADP(x) EQ (x, Vdead)
298
299 #ifdef GC_MALLOC_CHECK
300
301 enum mem_type allocated_mem_type;
302
303 #endif /* GC_MALLOC_CHECK */
304
305 /* A node in the red-black tree describing allocated memory containing
306 Lisp data. Each such block is recorded with its start and end
307 address when it is allocated, and removed from the tree when it
308 is freed.
309
310 A red-black tree is a balanced binary tree with the following
311 properties:
312
313 1. Every node is either red or black.
314 2. Every leaf is black.
315 3. If a node is red, then both of its children are black.
316 4. Every simple path from a node to a descendant leaf contains
317 the same number of black nodes.
318 5. The root is always black.
319
320 When nodes are inserted into the tree, or deleted from the tree,
321 the tree is "fixed" so that these properties are always true.
322
323 A red-black tree with N internal nodes has height at most 2
324 log(N+1). Searches, insertions and deletions are done in O(log N).
325 Please see a text book about data structures for a detailed
326 description of red-black trees. Any book worth its salt should
327 describe them. */
328
329 struct mem_node
330 {
331 /* Children of this node. These pointers are never NULL. When there
332 is no child, the value is MEM_NIL, which points to a dummy node. */
333 struct mem_node *left, *right;
334
335 /* The parent of this node. In the root node, this is NULL. */
336 struct mem_node *parent;
337
338 /* Start and end of allocated region. */
339 void *start, *end;
340
341 /* Node color. */
342 enum {MEM_BLACK, MEM_RED} color;
343
344 /* Memory type. */
345 enum mem_type type;
346 };
347
348 /* Base address of stack. Set in main. */
349
350 Lisp_Object *stack_base;
351
352 /* Root of the tree describing allocated Lisp memory. */
353
354 static struct mem_node *mem_root;
355
356 /* Lowest and highest known address in the heap. */
357
358 static void *min_heap_address, *max_heap_address;
359
360 /* Sentinel node of the tree. */
361
362 static struct mem_node mem_z;
363 #define MEM_NIL &mem_z
364
365 static struct mem_node *mem_insert (void *, void *, enum mem_type);
366 static void mem_insert_fixup (struct mem_node *);
367 static void mem_rotate_left (struct mem_node *);
368 static void mem_rotate_right (struct mem_node *);
369 static void mem_delete (struct mem_node *);
370 static void mem_delete_fixup (struct mem_node *);
371 static struct mem_node *mem_find (void *);
372
373 #ifndef DEADP
374 # define DEADP(x) 0
375 #endif
376
377 /* Addresses of staticpro'd variables. Initialize it to a nonzero
378 value; otherwise some compilers put it into BSS. */
379
380 enum { NSTATICS = 2048 };
381 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
382
383 /* Index of next unused slot in staticvec. */
384
385 static int staticidx;
386
387 static void *pure_alloc (size_t, int);
388
389 /* Return X rounded to the next multiple of Y. Arguments should not
390 have side effects, as they are evaluated more than once. Assume X
391 + Y - 1 does not overflow. Tune for Y being a power of 2. */
392
393 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
394 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
395 : ((x) + (y) - 1) & ~ ((y) - 1))
396
397 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
398
399 static void *
400 ALIGN (void *ptr, int alignment)
401 {
402 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
403 }
404
405 /* Extract the pointer hidden within A, if A is not a symbol.
406 If A is a symbol, extract the hidden pointer's offset from lispsym,
407 converted to void *. */
408
409 static void *
410 XPNTR_OR_SYMBOL_OFFSET (Lisp_Object a)
411 {
412 intptr_t i = USE_LSB_TAG ? XLI (a) - XTYPE (a) : XLI (a) & VALMASK;
413 return (void *) i;
414 }
415
416 /* Extract the pointer hidden within A. */
417
418 static void *
419 XPNTR (Lisp_Object a)
420 {
421 void *p = XPNTR_OR_SYMBOL_OFFSET (a);
422 if (SYMBOLP (a))
423 p = (intptr_t) p + (char *) lispsym;
424 return p;
425 }
426
427 static void
428 XFLOAT_INIT (Lisp_Object f, double n)
429 {
430 XFLOAT (f)->u.data = n;
431 }
432
433 #ifdef DOUG_LEA_MALLOC
434 static bool
435 pointers_fit_in_lispobj_p (void)
436 {
437 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
438 }
439
440 static bool
441 mmap_lisp_allowed_p (void)
442 {
443 /* If we can't store all memory addresses in our lisp objects, it's
444 risky to let the heap use mmap and give us addresses from all
445 over our address space. We also can't use mmap for lisp objects
446 if we might dump: unexec doesn't preserve the contents of mmapped
447 regions. */
448 return pointers_fit_in_lispobj_p () && !might_dump;
449 }
450 #endif
451
452 /* Head of a circularly-linked list of extant finalizers. */
453 static struct Lisp_Finalizer finalizers;
454
455 /* Head of a circularly-linked list of finalizers that must be invoked
456 because we deemed them unreachable. This list must be global, and
457 not a local inside garbage_collect_1, in case we GC again while
458 running finalizers. */
459 static struct Lisp_Finalizer doomed_finalizers;
460
461 \f
462 /************************************************************************
463 Malloc
464 ************************************************************************/
465
466 /* Function malloc calls this if it finds we are near exhausting storage. */
467
468 void
469 malloc_warning (const char *str)
470 {
471 pending_malloc_warning = str;
472 }
473
474
475 /* Display an already-pending malloc warning. */
476
477 void
478 display_malloc_warning (void)
479 {
480 call3 (intern ("display-warning"),
481 intern ("alloc"),
482 build_string (pending_malloc_warning),
483 intern ("emergency"));
484 pending_malloc_warning = 0;
485 }
486 \f
487 /* Called if we can't allocate relocatable space for a buffer. */
488
489 void
490 buffer_memory_full (ptrdiff_t nbytes)
491 {
492 /* If buffers use the relocating allocator, no need to free
493 spare_memory, because we may have plenty of malloc space left
494 that we could get, and if we don't, the malloc that fails will
495 itself cause spare_memory to be freed. If buffers don't use the
496 relocating allocator, treat this like any other failing
497 malloc. */
498
499 #ifndef REL_ALLOC
500 memory_full (nbytes);
501 #else
502 /* This used to call error, but if we've run out of memory, we could
503 get infinite recursion trying to build the string. */
504 xsignal (Qnil, Vmemory_signal_data);
505 #endif
506 }
507
508 /* A common multiple of the positive integers A and B. Ideally this
509 would be the least common multiple, but there's no way to do that
510 as a constant expression in C, so do the best that we can easily do. */
511 #define COMMON_MULTIPLE(a, b) \
512 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
513
514 #ifndef XMALLOC_OVERRUN_CHECK
515 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
516 #else
517
518 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
519 around each block.
520
521 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
522 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
523 block size in little-endian order. The trailer consists of
524 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
525
526 The header is used to detect whether this block has been allocated
527 through these functions, as some low-level libc functions may
528 bypass the malloc hooks. */
529
530 #define XMALLOC_OVERRUN_CHECK_SIZE 16
531 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
532 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
533
534 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
535 hold a size_t value and (2) the header size is a multiple of the
536 alignment that Emacs needs for C types and for USE_LSB_TAG. */
537 #define XMALLOC_BASE_ALIGNMENT alignof (max_align_t)
538
539 #define XMALLOC_HEADER_ALIGNMENT \
540 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
541 #define XMALLOC_OVERRUN_SIZE_SIZE \
542 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
543 + XMALLOC_HEADER_ALIGNMENT - 1) \
544 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
545 - XMALLOC_OVERRUN_CHECK_SIZE)
546
547 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
548 { '\x9a', '\x9b', '\xae', '\xaf',
549 '\xbf', '\xbe', '\xce', '\xcf',
550 '\xea', '\xeb', '\xec', '\xed',
551 '\xdf', '\xde', '\x9c', '\x9d' };
552
553 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
554 { '\xaa', '\xab', '\xac', '\xad',
555 '\xba', '\xbb', '\xbc', '\xbd',
556 '\xca', '\xcb', '\xcc', '\xcd',
557 '\xda', '\xdb', '\xdc', '\xdd' };
558
559 /* Insert and extract the block size in the header. */
560
561 static void
562 xmalloc_put_size (unsigned char *ptr, size_t size)
563 {
564 int i;
565 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
566 {
567 *--ptr = size & ((1 << CHAR_BIT) - 1);
568 size >>= CHAR_BIT;
569 }
570 }
571
572 static size_t
573 xmalloc_get_size (unsigned char *ptr)
574 {
575 size_t size = 0;
576 int i;
577 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
578 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
579 {
580 size <<= CHAR_BIT;
581 size += *ptr++;
582 }
583 return size;
584 }
585
586
587 /* Like malloc, but wraps allocated block with header and trailer. */
588
589 static void *
590 overrun_check_malloc (size_t size)
591 {
592 register unsigned char *val;
593 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
594 emacs_abort ();
595
596 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
597 if (val)
598 {
599 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
600 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
601 xmalloc_put_size (val, size);
602 memcpy (val + size, xmalloc_overrun_check_trailer,
603 XMALLOC_OVERRUN_CHECK_SIZE);
604 }
605 return val;
606 }
607
608
609 /* Like realloc, but checks old block for overrun, and wraps new block
610 with header and trailer. */
611
612 static void *
613 overrun_check_realloc (void *block, size_t size)
614 {
615 register unsigned char *val = (unsigned char *) block;
616 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
617 emacs_abort ();
618
619 if (val
620 && memcmp (xmalloc_overrun_check_header,
621 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
622 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
623 {
624 size_t osize = xmalloc_get_size (val);
625 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
626 XMALLOC_OVERRUN_CHECK_SIZE))
627 emacs_abort ();
628 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
629 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
630 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
631 }
632
633 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
634
635 if (val)
636 {
637 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
638 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
639 xmalloc_put_size (val, size);
640 memcpy (val + size, xmalloc_overrun_check_trailer,
641 XMALLOC_OVERRUN_CHECK_SIZE);
642 }
643 return val;
644 }
645
646 /* Like free, but checks block for overrun. */
647
648 static void
649 overrun_check_free (void *block)
650 {
651 unsigned char *val = (unsigned char *) block;
652
653 if (val
654 && memcmp (xmalloc_overrun_check_header,
655 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
656 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
657 {
658 size_t osize = xmalloc_get_size (val);
659 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
660 XMALLOC_OVERRUN_CHECK_SIZE))
661 emacs_abort ();
662 #ifdef XMALLOC_CLEAR_FREE_MEMORY
663 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
664 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
665 #else
666 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
667 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
668 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
669 #endif
670 }
671
672 free (val);
673 }
674
675 #undef malloc
676 #undef realloc
677 #undef free
678 #define malloc overrun_check_malloc
679 #define realloc overrun_check_realloc
680 #define free overrun_check_free
681 #endif
682
683 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
684 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
685 If that variable is set, block input while in one of Emacs's memory
686 allocation functions. There should be no need for this debugging
687 option, since signal handlers do not allocate memory, but Emacs
688 formerly allocated memory in signal handlers and this compile-time
689 option remains as a way to help debug the issue should it rear its
690 ugly head again. */
691 #ifdef XMALLOC_BLOCK_INPUT_CHECK
692 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
693 static void
694 malloc_block_input (void)
695 {
696 if (block_input_in_memory_allocators)
697 block_input ();
698 }
699 static void
700 malloc_unblock_input (void)
701 {
702 if (block_input_in_memory_allocators)
703 unblock_input ();
704 }
705 # define MALLOC_BLOCK_INPUT malloc_block_input ()
706 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
707 #else
708 # define MALLOC_BLOCK_INPUT ((void) 0)
709 # define MALLOC_UNBLOCK_INPUT ((void) 0)
710 #endif
711
712 #define MALLOC_PROBE(size) \
713 do { \
714 if (profiler_memory_running) \
715 malloc_probe (size); \
716 } while (0)
717
718
719 /* Like malloc but check for no memory and block interrupt input.. */
720
721 void *
722 xmalloc (size_t size)
723 {
724 void *val;
725
726 MALLOC_BLOCK_INPUT;
727 val = malloc (size);
728 MALLOC_UNBLOCK_INPUT;
729
730 if (!val && size)
731 memory_full (size);
732 MALLOC_PROBE (size);
733 return val;
734 }
735
736 /* Like the above, but zeroes out the memory just allocated. */
737
738 void *
739 xzalloc (size_t size)
740 {
741 void *val;
742
743 MALLOC_BLOCK_INPUT;
744 val = malloc (size);
745 MALLOC_UNBLOCK_INPUT;
746
747 if (!val && size)
748 memory_full (size);
749 memset (val, 0, size);
750 MALLOC_PROBE (size);
751 return val;
752 }
753
754 /* Like realloc but check for no memory and block interrupt input.. */
755
756 void *
757 xrealloc (void *block, size_t size)
758 {
759 void *val;
760
761 MALLOC_BLOCK_INPUT;
762 /* We must call malloc explicitly when BLOCK is 0, since some
763 reallocs don't do this. */
764 if (! block)
765 val = malloc (size);
766 else
767 val = realloc (block, size);
768 MALLOC_UNBLOCK_INPUT;
769
770 if (!val && size)
771 memory_full (size);
772 MALLOC_PROBE (size);
773 return val;
774 }
775
776
777 /* Like free but block interrupt input. */
778
779 void
780 xfree (void *block)
781 {
782 if (!block)
783 return;
784 MALLOC_BLOCK_INPUT;
785 free (block);
786 MALLOC_UNBLOCK_INPUT;
787 /* We don't call refill_memory_reserve here
788 because in practice the call in r_alloc_free seems to suffice. */
789 }
790
791
792 /* Other parts of Emacs pass large int values to allocator functions
793 expecting ptrdiff_t. This is portable in practice, but check it to
794 be safe. */
795 verify (INT_MAX <= PTRDIFF_MAX);
796
797
798 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
799 Signal an error on memory exhaustion, and block interrupt input. */
800
801 void *
802 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
803 {
804 eassert (0 <= nitems && 0 < item_size);
805 ptrdiff_t nbytes;
806 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
807 memory_full (SIZE_MAX);
808 return xmalloc (nbytes);
809 }
810
811
812 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
813 Signal an error on memory exhaustion, and block interrupt input. */
814
815 void *
816 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
817 {
818 eassert (0 <= nitems && 0 < item_size);
819 ptrdiff_t nbytes;
820 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
821 memory_full (SIZE_MAX);
822 return xrealloc (pa, nbytes);
823 }
824
825
826 /* Grow PA, which points to an array of *NITEMS items, and return the
827 location of the reallocated array, updating *NITEMS to reflect its
828 new size. The new array will contain at least NITEMS_INCR_MIN more
829 items, but will not contain more than NITEMS_MAX items total.
830 ITEM_SIZE is the size of each item, in bytes.
831
832 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
833 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
834 infinity.
835
836 If PA is null, then allocate a new array instead of reallocating
837 the old one.
838
839 Block interrupt input as needed. If memory exhaustion occurs, set
840 *NITEMS to zero if PA is null, and signal an error (i.e., do not
841 return).
842
843 Thus, to grow an array A without saving its old contents, do
844 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
845 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
846 and signals an error, and later this code is reexecuted and
847 attempts to free A. */
848
849 void *
850 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
851 ptrdiff_t nitems_max, ptrdiff_t item_size)
852 {
853 ptrdiff_t n0 = *nitems;
854 eassume (0 < item_size && 0 < nitems_incr_min && 0 <= n0 && -1 <= nitems_max);
855
856 /* The approximate size to use for initial small allocation
857 requests. This is the largest "small" request for the GNU C
858 library malloc. */
859 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
860
861 /* If the array is tiny, grow it to about (but no greater than)
862 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%.
863 Adjust the growth according to three constraints: NITEMS_INCR_MIN,
864 NITEMS_MAX, and what the C language can represent safely. */
865
866 ptrdiff_t n, nbytes;
867 if (INT_ADD_WRAPV (n0, n0 >> 1, &n))
868 n = PTRDIFF_MAX;
869 if (0 <= nitems_max && nitems_max < n)
870 n = nitems_max;
871
872 ptrdiff_t adjusted_nbytes
873 = ((INT_MULTIPLY_WRAPV (n, item_size, &nbytes) || SIZE_MAX < nbytes)
874 ? min (PTRDIFF_MAX, SIZE_MAX)
875 : nbytes < DEFAULT_MXFAST ? DEFAULT_MXFAST : 0);
876 if (adjusted_nbytes)
877 {
878 n = adjusted_nbytes / item_size;
879 nbytes = adjusted_nbytes - adjusted_nbytes % item_size;
880 }
881
882 if (! pa)
883 *nitems = 0;
884 if (n - n0 < nitems_incr_min
885 && (INT_ADD_WRAPV (n0, nitems_incr_min, &n)
886 || (0 <= nitems_max && nitems_max < n)
887 || INT_MULTIPLY_WRAPV (n, item_size, &nbytes)))
888 memory_full (SIZE_MAX);
889 pa = xrealloc (pa, nbytes);
890 *nitems = n;
891 return pa;
892 }
893
894
895 /* Like strdup, but uses xmalloc. */
896
897 char *
898 xstrdup (const char *s)
899 {
900 ptrdiff_t size;
901 eassert (s);
902 size = strlen (s) + 1;
903 return memcpy (xmalloc (size), s, size);
904 }
905
906 /* Like above, but duplicates Lisp string to C string. */
907
908 char *
909 xlispstrdup (Lisp_Object string)
910 {
911 ptrdiff_t size = SBYTES (string) + 1;
912 return memcpy (xmalloc (size), SSDATA (string), size);
913 }
914
915 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
916 pointed to. If STRING is null, assign it without copying anything.
917 Allocate before freeing, to avoid a dangling pointer if allocation
918 fails. */
919
920 void
921 dupstring (char **ptr, char const *string)
922 {
923 char *old = *ptr;
924 *ptr = string ? xstrdup (string) : 0;
925 xfree (old);
926 }
927
928
929 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
930 argument is a const pointer. */
931
932 void
933 xputenv (char const *string)
934 {
935 if (putenv ((char *) string) != 0)
936 memory_full (0);
937 }
938
939 /* Return a newly allocated memory block of SIZE bytes, remembering
940 to free it when unwinding. */
941 void *
942 record_xmalloc (size_t size)
943 {
944 void *p = xmalloc (size);
945 record_unwind_protect_ptr (xfree, p);
946 return p;
947 }
948
949
950 /* Like malloc but used for allocating Lisp data. NBYTES is the
951 number of bytes to allocate, TYPE describes the intended use of the
952 allocated memory block (for strings, for conses, ...). */
953
954 #if ! USE_LSB_TAG
955 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
956 #endif
957
958 static void *
959 lisp_malloc (size_t nbytes, enum mem_type type)
960 {
961 register void *val;
962
963 MALLOC_BLOCK_INPUT;
964
965 #ifdef GC_MALLOC_CHECK
966 allocated_mem_type = type;
967 #endif
968
969 val = malloc (nbytes);
970
971 #if ! USE_LSB_TAG
972 /* If the memory just allocated cannot be addressed thru a Lisp
973 object's pointer, and it needs to be,
974 that's equivalent to running out of memory. */
975 if (val && type != MEM_TYPE_NON_LISP)
976 {
977 Lisp_Object tem;
978 XSETCONS (tem, (char *) val + nbytes - 1);
979 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
980 {
981 lisp_malloc_loser = val;
982 free (val);
983 val = 0;
984 }
985 }
986 #endif
987
988 #ifndef GC_MALLOC_CHECK
989 if (val && type != MEM_TYPE_NON_LISP)
990 mem_insert (val, (char *) val + nbytes, type);
991 #endif
992
993 MALLOC_UNBLOCK_INPUT;
994 if (!val && nbytes)
995 memory_full (nbytes);
996 MALLOC_PROBE (nbytes);
997 return val;
998 }
999
1000 /* Free BLOCK. This must be called to free memory allocated with a
1001 call to lisp_malloc. */
1002
1003 static void
1004 lisp_free (void *block)
1005 {
1006 MALLOC_BLOCK_INPUT;
1007 free (block);
1008 #ifndef GC_MALLOC_CHECK
1009 mem_delete (mem_find (block));
1010 #endif
1011 MALLOC_UNBLOCK_INPUT;
1012 }
1013
1014 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1015
1016 /* The entry point is lisp_align_malloc which returns blocks of at most
1017 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1018
1019 /* Use aligned_alloc if it or a simple substitute is available.
1020 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1021 clang 3.3 anyway. */
1022
1023 #if ! ADDRESS_SANITIZER
1024 # if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC && !defined HYBRID_MALLOC
1025 # define USE_ALIGNED_ALLOC 1
1026 /* Defined in gmalloc.c. */
1027 void *aligned_alloc (size_t, size_t);
1028 # elif defined HYBRID_MALLOC
1029 # if defined ALIGNED_ALLOC || defined HAVE_POSIX_MEMALIGN
1030 # define USE_ALIGNED_ALLOC 1
1031 # define aligned_alloc hybrid_aligned_alloc
1032 /* Defined in gmalloc.c. */
1033 void *aligned_alloc (size_t, size_t);
1034 # endif
1035 # elif defined HAVE_ALIGNED_ALLOC
1036 # define USE_ALIGNED_ALLOC 1
1037 # elif defined HAVE_POSIX_MEMALIGN
1038 # define USE_ALIGNED_ALLOC 1
1039 static void *
1040 aligned_alloc (size_t alignment, size_t size)
1041 {
1042 void *p;
1043 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1044 }
1045 # endif
1046 #endif
1047
1048 /* BLOCK_ALIGN has to be a power of 2. */
1049 #define BLOCK_ALIGN (1 << 10)
1050
1051 /* Padding to leave at the end of a malloc'd block. This is to give
1052 malloc a chance to minimize the amount of memory wasted to alignment.
1053 It should be tuned to the particular malloc library used.
1054 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1055 aligned_alloc on the other hand would ideally prefer a value of 4
1056 because otherwise, there's 1020 bytes wasted between each ablocks.
1057 In Emacs, testing shows that those 1020 can most of the time be
1058 efficiently used by malloc to place other objects, so a value of 0 can
1059 still preferable unless you have a lot of aligned blocks and virtually
1060 nothing else. */
1061 #define BLOCK_PADDING 0
1062 #define BLOCK_BYTES \
1063 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1064
1065 /* Internal data structures and constants. */
1066
1067 #define ABLOCKS_SIZE 16
1068
1069 /* An aligned block of memory. */
1070 struct ablock
1071 {
1072 union
1073 {
1074 char payload[BLOCK_BYTES];
1075 struct ablock *next_free;
1076 } x;
1077 /* `abase' is the aligned base of the ablocks. */
1078 /* It is overloaded to hold the virtual `busy' field that counts
1079 the number of used ablock in the parent ablocks.
1080 The first ablock has the `busy' field, the others have the `abase'
1081 field. To tell the difference, we assume that pointers will have
1082 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1083 is used to tell whether the real base of the parent ablocks is `abase'
1084 (if not, the word before the first ablock holds a pointer to the
1085 real base). */
1086 struct ablocks *abase;
1087 /* The padding of all but the last ablock is unused. The padding of
1088 the last ablock in an ablocks is not allocated. */
1089 #if BLOCK_PADDING
1090 char padding[BLOCK_PADDING];
1091 #endif
1092 };
1093
1094 /* A bunch of consecutive aligned blocks. */
1095 struct ablocks
1096 {
1097 struct ablock blocks[ABLOCKS_SIZE];
1098 };
1099
1100 /* Size of the block requested from malloc or aligned_alloc. */
1101 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1102
1103 #define ABLOCK_ABASE(block) \
1104 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1105 ? (struct ablocks *)(block) \
1106 : (block)->abase)
1107
1108 /* Virtual `busy' field. */
1109 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1110
1111 /* Pointer to the (not necessarily aligned) malloc block. */
1112 #ifdef USE_ALIGNED_ALLOC
1113 #define ABLOCKS_BASE(abase) (abase)
1114 #else
1115 #define ABLOCKS_BASE(abase) \
1116 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1117 #endif
1118
1119 /* The list of free ablock. */
1120 static struct ablock *free_ablock;
1121
1122 /* Allocate an aligned block of nbytes.
1123 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1124 smaller or equal to BLOCK_BYTES. */
1125 static void *
1126 lisp_align_malloc (size_t nbytes, enum mem_type type)
1127 {
1128 void *base, *val;
1129 struct ablocks *abase;
1130
1131 eassert (nbytes <= BLOCK_BYTES);
1132
1133 MALLOC_BLOCK_INPUT;
1134
1135 #ifdef GC_MALLOC_CHECK
1136 allocated_mem_type = type;
1137 #endif
1138
1139 if (!free_ablock)
1140 {
1141 int i;
1142 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1143
1144 #ifdef DOUG_LEA_MALLOC
1145 if (!mmap_lisp_allowed_p ())
1146 mallopt (M_MMAP_MAX, 0);
1147 #endif
1148
1149 #ifdef USE_ALIGNED_ALLOC
1150 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1151 #else
1152 base = malloc (ABLOCKS_BYTES);
1153 abase = ALIGN (base, BLOCK_ALIGN);
1154 #endif
1155
1156 if (base == 0)
1157 {
1158 MALLOC_UNBLOCK_INPUT;
1159 memory_full (ABLOCKS_BYTES);
1160 }
1161
1162 aligned = (base == abase);
1163 if (!aligned)
1164 ((void **) abase)[-1] = base;
1165
1166 #ifdef DOUG_LEA_MALLOC
1167 if (!mmap_lisp_allowed_p ())
1168 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1169 #endif
1170
1171 #if ! USE_LSB_TAG
1172 /* If the memory just allocated cannot be addressed thru a Lisp
1173 object's pointer, and it needs to be, that's equivalent to
1174 running out of memory. */
1175 if (type != MEM_TYPE_NON_LISP)
1176 {
1177 Lisp_Object tem;
1178 char *end = (char *) base + ABLOCKS_BYTES - 1;
1179 XSETCONS (tem, end);
1180 if ((char *) XCONS (tem) != end)
1181 {
1182 lisp_malloc_loser = base;
1183 free (base);
1184 MALLOC_UNBLOCK_INPUT;
1185 memory_full (SIZE_MAX);
1186 }
1187 }
1188 #endif
1189
1190 /* Initialize the blocks and put them on the free list.
1191 If `base' was not properly aligned, we can't use the last block. */
1192 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1193 {
1194 abase->blocks[i].abase = abase;
1195 abase->blocks[i].x.next_free = free_ablock;
1196 free_ablock = &abase->blocks[i];
1197 }
1198 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1199
1200 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1201 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1202 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1203 eassert (ABLOCKS_BASE (abase) == base);
1204 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1205 }
1206
1207 abase = ABLOCK_ABASE (free_ablock);
1208 ABLOCKS_BUSY (abase)
1209 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1210 val = free_ablock;
1211 free_ablock = free_ablock->x.next_free;
1212
1213 #ifndef GC_MALLOC_CHECK
1214 if (type != MEM_TYPE_NON_LISP)
1215 mem_insert (val, (char *) val + nbytes, type);
1216 #endif
1217
1218 MALLOC_UNBLOCK_INPUT;
1219
1220 MALLOC_PROBE (nbytes);
1221
1222 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1223 return val;
1224 }
1225
1226 static void
1227 lisp_align_free (void *block)
1228 {
1229 struct ablock *ablock = block;
1230 struct ablocks *abase = ABLOCK_ABASE (ablock);
1231
1232 MALLOC_BLOCK_INPUT;
1233 #ifndef GC_MALLOC_CHECK
1234 mem_delete (mem_find (block));
1235 #endif
1236 /* Put on free list. */
1237 ablock->x.next_free = free_ablock;
1238 free_ablock = ablock;
1239 /* Update busy count. */
1240 ABLOCKS_BUSY (abase)
1241 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1242
1243 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1244 { /* All the blocks are free. */
1245 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1246 struct ablock **tem = &free_ablock;
1247 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1248
1249 while (*tem)
1250 {
1251 if (*tem >= (struct ablock *) abase && *tem < atop)
1252 {
1253 i++;
1254 *tem = (*tem)->x.next_free;
1255 }
1256 else
1257 tem = &(*tem)->x.next_free;
1258 }
1259 eassert ((aligned & 1) == aligned);
1260 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1261 #ifdef USE_POSIX_MEMALIGN
1262 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1263 #endif
1264 free (ABLOCKS_BASE (abase));
1265 }
1266 MALLOC_UNBLOCK_INPUT;
1267 }
1268
1269 \f
1270 /***********************************************************************
1271 Interval Allocation
1272 ***********************************************************************/
1273
1274 /* Number of intervals allocated in an interval_block structure.
1275 The 1020 is 1024 minus malloc overhead. */
1276
1277 #define INTERVAL_BLOCK_SIZE \
1278 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1279
1280 /* Intervals are allocated in chunks in the form of an interval_block
1281 structure. */
1282
1283 struct interval_block
1284 {
1285 /* Place `intervals' first, to preserve alignment. */
1286 struct interval intervals[INTERVAL_BLOCK_SIZE];
1287 struct interval_block *next;
1288 };
1289
1290 /* Current interval block. Its `next' pointer points to older
1291 blocks. */
1292
1293 static struct interval_block *interval_block;
1294
1295 /* Index in interval_block above of the next unused interval
1296 structure. */
1297
1298 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1299
1300 /* Number of free and live intervals. */
1301
1302 static EMACS_INT total_free_intervals, total_intervals;
1303
1304 /* List of free intervals. */
1305
1306 static INTERVAL interval_free_list;
1307
1308 /* Return a new interval. */
1309
1310 INTERVAL
1311 make_interval (void)
1312 {
1313 INTERVAL val;
1314
1315 MALLOC_BLOCK_INPUT;
1316
1317 if (interval_free_list)
1318 {
1319 val = interval_free_list;
1320 interval_free_list = INTERVAL_PARENT (interval_free_list);
1321 }
1322 else
1323 {
1324 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1325 {
1326 struct interval_block *newi
1327 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1328
1329 newi->next = interval_block;
1330 interval_block = newi;
1331 interval_block_index = 0;
1332 total_free_intervals += INTERVAL_BLOCK_SIZE;
1333 }
1334 val = &interval_block->intervals[interval_block_index++];
1335 }
1336
1337 MALLOC_UNBLOCK_INPUT;
1338
1339 consing_since_gc += sizeof (struct interval);
1340 intervals_consed++;
1341 total_free_intervals--;
1342 RESET_INTERVAL (val);
1343 val->gcmarkbit = 0;
1344 return val;
1345 }
1346
1347
1348 /* Mark Lisp objects in interval I. */
1349
1350 static void
1351 mark_interval (register INTERVAL i, Lisp_Object dummy)
1352 {
1353 /* Intervals should never be shared. So, if extra internal checking is
1354 enabled, GC aborts if it seems to have visited an interval twice. */
1355 eassert (!i->gcmarkbit);
1356 i->gcmarkbit = 1;
1357 mark_object (i->plist);
1358 }
1359
1360 /* Mark the interval tree rooted in I. */
1361
1362 #define MARK_INTERVAL_TREE(i) \
1363 do { \
1364 if (i && !i->gcmarkbit) \
1365 traverse_intervals_noorder (i, mark_interval, Qnil); \
1366 } while (0)
1367
1368 /***********************************************************************
1369 String Allocation
1370 ***********************************************************************/
1371
1372 /* Lisp_Strings are allocated in string_block structures. When a new
1373 string_block is allocated, all the Lisp_Strings it contains are
1374 added to a free-list string_free_list. When a new Lisp_String is
1375 needed, it is taken from that list. During the sweep phase of GC,
1376 string_blocks that are entirely free are freed, except two which
1377 we keep.
1378
1379 String data is allocated from sblock structures. Strings larger
1380 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1381 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1382
1383 Sblocks consist internally of sdata structures, one for each
1384 Lisp_String. The sdata structure points to the Lisp_String it
1385 belongs to. The Lisp_String points back to the `u.data' member of
1386 its sdata structure.
1387
1388 When a Lisp_String is freed during GC, it is put back on
1389 string_free_list, and its `data' member and its sdata's `string'
1390 pointer is set to null. The size of the string is recorded in the
1391 `n.nbytes' member of the sdata. So, sdata structures that are no
1392 longer used, can be easily recognized, and it's easy to compact the
1393 sblocks of small strings which we do in compact_small_strings. */
1394
1395 /* Size in bytes of an sblock structure used for small strings. This
1396 is 8192 minus malloc overhead. */
1397
1398 #define SBLOCK_SIZE 8188
1399
1400 /* Strings larger than this are considered large strings. String data
1401 for large strings is allocated from individual sblocks. */
1402
1403 #define LARGE_STRING_BYTES 1024
1404
1405 /* The SDATA typedef is a struct or union describing string memory
1406 sub-allocated from an sblock. This is where the contents of Lisp
1407 strings are stored. */
1408
1409 struct sdata
1410 {
1411 /* Back-pointer to the string this sdata belongs to. If null, this
1412 structure is free, and NBYTES (in this structure or in the union below)
1413 contains the string's byte size (the same value that STRING_BYTES
1414 would return if STRING were non-null). If non-null, STRING_BYTES
1415 (STRING) is the size of the data, and DATA contains the string's
1416 contents. */
1417 struct Lisp_String *string;
1418
1419 #ifdef GC_CHECK_STRING_BYTES
1420 ptrdiff_t nbytes;
1421 #endif
1422
1423 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1424 };
1425
1426 #ifdef GC_CHECK_STRING_BYTES
1427
1428 typedef struct sdata sdata;
1429 #define SDATA_NBYTES(S) (S)->nbytes
1430 #define SDATA_DATA(S) (S)->data
1431
1432 #else
1433
1434 typedef union
1435 {
1436 struct Lisp_String *string;
1437
1438 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1439 which has a flexible array member. However, if implemented by
1440 giving this union a member of type 'struct sdata', the union
1441 could not be the last (flexible) member of 'struct sblock',
1442 because C99 prohibits a flexible array member from having a type
1443 that is itself a flexible array. So, comment this member out here,
1444 but remember that the option's there when using this union. */
1445 #if 0
1446 struct sdata u;
1447 #endif
1448
1449 /* When STRING is null. */
1450 struct
1451 {
1452 struct Lisp_String *string;
1453 ptrdiff_t nbytes;
1454 } n;
1455 } sdata;
1456
1457 #define SDATA_NBYTES(S) (S)->n.nbytes
1458 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1459
1460 #endif /* not GC_CHECK_STRING_BYTES */
1461
1462 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1463
1464 /* Structure describing a block of memory which is sub-allocated to
1465 obtain string data memory for strings. Blocks for small strings
1466 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1467 as large as needed. */
1468
1469 struct sblock
1470 {
1471 /* Next in list. */
1472 struct sblock *next;
1473
1474 /* Pointer to the next free sdata block. This points past the end
1475 of the sblock if there isn't any space left in this block. */
1476 sdata *next_free;
1477
1478 /* String data. */
1479 sdata data[FLEXIBLE_ARRAY_MEMBER];
1480 };
1481
1482 /* Number of Lisp strings in a string_block structure. The 1020 is
1483 1024 minus malloc overhead. */
1484
1485 #define STRING_BLOCK_SIZE \
1486 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1487
1488 /* Structure describing a block from which Lisp_String structures
1489 are allocated. */
1490
1491 struct string_block
1492 {
1493 /* Place `strings' first, to preserve alignment. */
1494 struct Lisp_String strings[STRING_BLOCK_SIZE];
1495 struct string_block *next;
1496 };
1497
1498 /* Head and tail of the list of sblock structures holding Lisp string
1499 data. We always allocate from current_sblock. The NEXT pointers
1500 in the sblock structures go from oldest_sblock to current_sblock. */
1501
1502 static struct sblock *oldest_sblock, *current_sblock;
1503
1504 /* List of sblocks for large strings. */
1505
1506 static struct sblock *large_sblocks;
1507
1508 /* List of string_block structures. */
1509
1510 static struct string_block *string_blocks;
1511
1512 /* Free-list of Lisp_Strings. */
1513
1514 static struct Lisp_String *string_free_list;
1515
1516 /* Number of live and free Lisp_Strings. */
1517
1518 static EMACS_INT total_strings, total_free_strings;
1519
1520 /* Number of bytes used by live strings. */
1521
1522 static EMACS_INT total_string_bytes;
1523
1524 /* Given a pointer to a Lisp_String S which is on the free-list
1525 string_free_list, return a pointer to its successor in the
1526 free-list. */
1527
1528 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1529
1530 /* Return a pointer to the sdata structure belonging to Lisp string S.
1531 S must be live, i.e. S->data must not be null. S->data is actually
1532 a pointer to the `u.data' member of its sdata structure; the
1533 structure starts at a constant offset in front of that. */
1534
1535 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1536
1537
1538 #ifdef GC_CHECK_STRING_OVERRUN
1539
1540 /* We check for overrun in string data blocks by appending a small
1541 "cookie" after each allocated string data block, and check for the
1542 presence of this cookie during GC. */
1543
1544 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1545 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1546 { '\xde', '\xad', '\xbe', '\xef' };
1547
1548 #else
1549 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1550 #endif
1551
1552 /* Value is the size of an sdata structure large enough to hold NBYTES
1553 bytes of string data. The value returned includes a terminating
1554 NUL byte, the size of the sdata structure, and padding. */
1555
1556 #ifdef GC_CHECK_STRING_BYTES
1557
1558 #define SDATA_SIZE(NBYTES) \
1559 ((SDATA_DATA_OFFSET \
1560 + (NBYTES) + 1 \
1561 + sizeof (ptrdiff_t) - 1) \
1562 & ~(sizeof (ptrdiff_t) - 1))
1563
1564 #else /* not GC_CHECK_STRING_BYTES */
1565
1566 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1567 less than the size of that member. The 'max' is not needed when
1568 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1569 alignment code reserves enough space. */
1570
1571 #define SDATA_SIZE(NBYTES) \
1572 ((SDATA_DATA_OFFSET \
1573 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1574 ? NBYTES \
1575 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1576 + 1 \
1577 + sizeof (ptrdiff_t) - 1) \
1578 & ~(sizeof (ptrdiff_t) - 1))
1579
1580 #endif /* not GC_CHECK_STRING_BYTES */
1581
1582 /* Extra bytes to allocate for each string. */
1583
1584 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1585
1586 /* Exact bound on the number of bytes in a string, not counting the
1587 terminating null. A string cannot contain more bytes than
1588 STRING_BYTES_BOUND, nor can it be so long that the size_t
1589 arithmetic in allocate_string_data would overflow while it is
1590 calculating a value to be passed to malloc. */
1591 static ptrdiff_t const STRING_BYTES_MAX =
1592 min (STRING_BYTES_BOUND,
1593 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1594 - GC_STRING_EXTRA
1595 - offsetof (struct sblock, data)
1596 - SDATA_DATA_OFFSET)
1597 & ~(sizeof (EMACS_INT) - 1)));
1598
1599 /* Initialize string allocation. Called from init_alloc_once. */
1600
1601 static void
1602 init_strings (void)
1603 {
1604 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1605 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1606 }
1607
1608
1609 #ifdef GC_CHECK_STRING_BYTES
1610
1611 static int check_string_bytes_count;
1612
1613 /* Like STRING_BYTES, but with debugging check. Can be
1614 called during GC, so pay attention to the mark bit. */
1615
1616 ptrdiff_t
1617 string_bytes (struct Lisp_String *s)
1618 {
1619 ptrdiff_t nbytes =
1620 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1621
1622 if (!PURE_P (s) && s->data && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1623 emacs_abort ();
1624 return nbytes;
1625 }
1626
1627 /* Check validity of Lisp strings' string_bytes member in B. */
1628
1629 static void
1630 check_sblock (struct sblock *b)
1631 {
1632 sdata *from, *end, *from_end;
1633
1634 end = b->next_free;
1635
1636 for (from = b->data; from < end; from = from_end)
1637 {
1638 /* Compute the next FROM here because copying below may
1639 overwrite data we need to compute it. */
1640 ptrdiff_t nbytes;
1641
1642 /* Check that the string size recorded in the string is the
1643 same as the one recorded in the sdata structure. */
1644 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1645 : SDATA_NBYTES (from));
1646 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1647 }
1648 }
1649
1650
1651 /* Check validity of Lisp strings' string_bytes member. ALL_P
1652 means check all strings, otherwise check only most
1653 recently allocated strings. Used for hunting a bug. */
1654
1655 static void
1656 check_string_bytes (bool all_p)
1657 {
1658 if (all_p)
1659 {
1660 struct sblock *b;
1661
1662 for (b = large_sblocks; b; b = b->next)
1663 {
1664 struct Lisp_String *s = b->data[0].string;
1665 if (s)
1666 string_bytes (s);
1667 }
1668
1669 for (b = oldest_sblock; b; b = b->next)
1670 check_sblock (b);
1671 }
1672 else if (current_sblock)
1673 check_sblock (current_sblock);
1674 }
1675
1676 #else /* not GC_CHECK_STRING_BYTES */
1677
1678 #define check_string_bytes(all) ((void) 0)
1679
1680 #endif /* GC_CHECK_STRING_BYTES */
1681
1682 #ifdef GC_CHECK_STRING_FREE_LIST
1683
1684 /* Walk through the string free list looking for bogus next pointers.
1685 This may catch buffer overrun from a previous string. */
1686
1687 static void
1688 check_string_free_list (void)
1689 {
1690 struct Lisp_String *s;
1691
1692 /* Pop a Lisp_String off the free-list. */
1693 s = string_free_list;
1694 while (s != NULL)
1695 {
1696 if ((uintptr_t) s < 1024)
1697 emacs_abort ();
1698 s = NEXT_FREE_LISP_STRING (s);
1699 }
1700 }
1701 #else
1702 #define check_string_free_list()
1703 #endif
1704
1705 /* Return a new Lisp_String. */
1706
1707 static struct Lisp_String *
1708 allocate_string (void)
1709 {
1710 struct Lisp_String *s;
1711
1712 MALLOC_BLOCK_INPUT;
1713
1714 /* If the free-list is empty, allocate a new string_block, and
1715 add all the Lisp_Strings in it to the free-list. */
1716 if (string_free_list == NULL)
1717 {
1718 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1719 int i;
1720
1721 b->next = string_blocks;
1722 string_blocks = b;
1723
1724 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1725 {
1726 s = b->strings + i;
1727 /* Every string on a free list should have NULL data pointer. */
1728 s->data = NULL;
1729 NEXT_FREE_LISP_STRING (s) = string_free_list;
1730 string_free_list = s;
1731 }
1732
1733 total_free_strings += STRING_BLOCK_SIZE;
1734 }
1735
1736 check_string_free_list ();
1737
1738 /* Pop a Lisp_String off the free-list. */
1739 s = string_free_list;
1740 string_free_list = NEXT_FREE_LISP_STRING (s);
1741
1742 MALLOC_UNBLOCK_INPUT;
1743
1744 --total_free_strings;
1745 ++total_strings;
1746 ++strings_consed;
1747 consing_since_gc += sizeof *s;
1748
1749 #ifdef GC_CHECK_STRING_BYTES
1750 if (!noninteractive)
1751 {
1752 if (++check_string_bytes_count == 200)
1753 {
1754 check_string_bytes_count = 0;
1755 check_string_bytes (1);
1756 }
1757 else
1758 check_string_bytes (0);
1759 }
1760 #endif /* GC_CHECK_STRING_BYTES */
1761
1762 return s;
1763 }
1764
1765
1766 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1767 plus a NUL byte at the end. Allocate an sdata structure for S, and
1768 set S->data to its `u.data' member. Store a NUL byte at the end of
1769 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1770 S->data if it was initially non-null. */
1771
1772 void
1773 allocate_string_data (struct Lisp_String *s,
1774 EMACS_INT nchars, EMACS_INT nbytes)
1775 {
1776 sdata *data, *old_data;
1777 struct sblock *b;
1778 ptrdiff_t needed, old_nbytes;
1779
1780 if (STRING_BYTES_MAX < nbytes)
1781 string_overflow ();
1782
1783 /* Determine the number of bytes needed to store NBYTES bytes
1784 of string data. */
1785 needed = SDATA_SIZE (nbytes);
1786 if (s->data)
1787 {
1788 old_data = SDATA_OF_STRING (s);
1789 old_nbytes = STRING_BYTES (s);
1790 }
1791 else
1792 old_data = NULL;
1793
1794 MALLOC_BLOCK_INPUT;
1795
1796 if (nbytes > LARGE_STRING_BYTES)
1797 {
1798 size_t size = offsetof (struct sblock, data) + needed;
1799
1800 #ifdef DOUG_LEA_MALLOC
1801 if (!mmap_lisp_allowed_p ())
1802 mallopt (M_MMAP_MAX, 0);
1803 #endif
1804
1805 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1806
1807 #ifdef DOUG_LEA_MALLOC
1808 if (!mmap_lisp_allowed_p ())
1809 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1810 #endif
1811
1812 b->next_free = b->data;
1813 b->data[0].string = NULL;
1814 b->next = large_sblocks;
1815 large_sblocks = b;
1816 }
1817 else if (current_sblock == NULL
1818 || (((char *) current_sblock + SBLOCK_SIZE
1819 - (char *) current_sblock->next_free)
1820 < (needed + GC_STRING_EXTRA)))
1821 {
1822 /* Not enough room in the current sblock. */
1823 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1824 b->next_free = b->data;
1825 b->data[0].string = NULL;
1826 b->next = NULL;
1827
1828 if (current_sblock)
1829 current_sblock->next = b;
1830 else
1831 oldest_sblock = b;
1832 current_sblock = b;
1833 }
1834 else
1835 b = current_sblock;
1836
1837 data = b->next_free;
1838 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1839
1840 MALLOC_UNBLOCK_INPUT;
1841
1842 data->string = s;
1843 s->data = SDATA_DATA (data);
1844 #ifdef GC_CHECK_STRING_BYTES
1845 SDATA_NBYTES (data) = nbytes;
1846 #endif
1847 s->size = nchars;
1848 s->size_byte = nbytes;
1849 s->data[nbytes] = '\0';
1850 #ifdef GC_CHECK_STRING_OVERRUN
1851 memcpy ((char *) data + needed, string_overrun_cookie,
1852 GC_STRING_OVERRUN_COOKIE_SIZE);
1853 #endif
1854
1855 /* Note that Faset may call to this function when S has already data
1856 assigned. In this case, mark data as free by setting it's string
1857 back-pointer to null, and record the size of the data in it. */
1858 if (old_data)
1859 {
1860 SDATA_NBYTES (old_data) = old_nbytes;
1861 old_data->string = NULL;
1862 }
1863
1864 consing_since_gc += needed;
1865 }
1866
1867
1868 /* Sweep and compact strings. */
1869
1870 NO_INLINE /* For better stack traces */
1871 static void
1872 sweep_strings (void)
1873 {
1874 struct string_block *b, *next;
1875 struct string_block *live_blocks = NULL;
1876
1877 string_free_list = NULL;
1878 total_strings = total_free_strings = 0;
1879 total_string_bytes = 0;
1880
1881 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1882 for (b = string_blocks; b; b = next)
1883 {
1884 int i, nfree = 0;
1885 struct Lisp_String *free_list_before = string_free_list;
1886
1887 next = b->next;
1888
1889 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1890 {
1891 struct Lisp_String *s = b->strings + i;
1892
1893 if (s->data)
1894 {
1895 /* String was not on free-list before. */
1896 if (STRING_MARKED_P (s))
1897 {
1898 /* String is live; unmark it and its intervals. */
1899 UNMARK_STRING (s);
1900
1901 /* Do not use string_(set|get)_intervals here. */
1902 s->intervals = balance_intervals (s->intervals);
1903
1904 ++total_strings;
1905 total_string_bytes += STRING_BYTES (s);
1906 }
1907 else
1908 {
1909 /* String is dead. Put it on the free-list. */
1910 sdata *data = SDATA_OF_STRING (s);
1911
1912 /* Save the size of S in its sdata so that we know
1913 how large that is. Reset the sdata's string
1914 back-pointer so that we know it's free. */
1915 #ifdef GC_CHECK_STRING_BYTES
1916 if (string_bytes (s) != SDATA_NBYTES (data))
1917 emacs_abort ();
1918 #else
1919 data->n.nbytes = STRING_BYTES (s);
1920 #endif
1921 data->string = NULL;
1922
1923 /* Reset the strings's `data' member so that we
1924 know it's free. */
1925 s->data = NULL;
1926
1927 /* Put the string on the free-list. */
1928 NEXT_FREE_LISP_STRING (s) = string_free_list;
1929 string_free_list = s;
1930 ++nfree;
1931 }
1932 }
1933 else
1934 {
1935 /* S was on the free-list before. Put it there again. */
1936 NEXT_FREE_LISP_STRING (s) = string_free_list;
1937 string_free_list = s;
1938 ++nfree;
1939 }
1940 }
1941
1942 /* Free blocks that contain free Lisp_Strings only, except
1943 the first two of them. */
1944 if (nfree == STRING_BLOCK_SIZE
1945 && total_free_strings > STRING_BLOCK_SIZE)
1946 {
1947 lisp_free (b);
1948 string_free_list = free_list_before;
1949 }
1950 else
1951 {
1952 total_free_strings += nfree;
1953 b->next = live_blocks;
1954 live_blocks = b;
1955 }
1956 }
1957
1958 check_string_free_list ();
1959
1960 string_blocks = live_blocks;
1961 free_large_strings ();
1962 compact_small_strings ();
1963
1964 check_string_free_list ();
1965 }
1966
1967
1968 /* Free dead large strings. */
1969
1970 static void
1971 free_large_strings (void)
1972 {
1973 struct sblock *b, *next;
1974 struct sblock *live_blocks = NULL;
1975
1976 for (b = large_sblocks; b; b = next)
1977 {
1978 next = b->next;
1979
1980 if (b->data[0].string == NULL)
1981 lisp_free (b);
1982 else
1983 {
1984 b->next = live_blocks;
1985 live_blocks = b;
1986 }
1987 }
1988
1989 large_sblocks = live_blocks;
1990 }
1991
1992
1993 /* Compact data of small strings. Free sblocks that don't contain
1994 data of live strings after compaction. */
1995
1996 static void
1997 compact_small_strings (void)
1998 {
1999 struct sblock *b, *tb, *next;
2000 sdata *from, *to, *end, *tb_end;
2001 sdata *to_end, *from_end;
2002
2003 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2004 to, and TB_END is the end of TB. */
2005 tb = oldest_sblock;
2006 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2007 to = tb->data;
2008
2009 /* Step through the blocks from the oldest to the youngest. We
2010 expect that old blocks will stabilize over time, so that less
2011 copying will happen this way. */
2012 for (b = oldest_sblock; b; b = b->next)
2013 {
2014 end = b->next_free;
2015 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2016
2017 for (from = b->data; from < end; from = from_end)
2018 {
2019 /* Compute the next FROM here because copying below may
2020 overwrite data we need to compute it. */
2021 ptrdiff_t nbytes;
2022 struct Lisp_String *s = from->string;
2023
2024 #ifdef GC_CHECK_STRING_BYTES
2025 /* Check that the string size recorded in the string is the
2026 same as the one recorded in the sdata structure. */
2027 if (s && string_bytes (s) != SDATA_NBYTES (from))
2028 emacs_abort ();
2029 #endif /* GC_CHECK_STRING_BYTES */
2030
2031 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2032 eassert (nbytes <= LARGE_STRING_BYTES);
2033
2034 nbytes = SDATA_SIZE (nbytes);
2035 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2036
2037 #ifdef GC_CHECK_STRING_OVERRUN
2038 if (memcmp (string_overrun_cookie,
2039 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2040 GC_STRING_OVERRUN_COOKIE_SIZE))
2041 emacs_abort ();
2042 #endif
2043
2044 /* Non-NULL S means it's alive. Copy its data. */
2045 if (s)
2046 {
2047 /* If TB is full, proceed with the next sblock. */
2048 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2049 if (to_end > tb_end)
2050 {
2051 tb->next_free = to;
2052 tb = tb->next;
2053 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2054 to = tb->data;
2055 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2056 }
2057
2058 /* Copy, and update the string's `data' pointer. */
2059 if (from != to)
2060 {
2061 eassert (tb != b || to < from);
2062 memmove (to, from, nbytes + GC_STRING_EXTRA);
2063 to->string->data = SDATA_DATA (to);
2064 }
2065
2066 /* Advance past the sdata we copied to. */
2067 to = to_end;
2068 }
2069 }
2070 }
2071
2072 /* The rest of the sblocks following TB don't contain live data, so
2073 we can free them. */
2074 for (b = tb->next; b; b = next)
2075 {
2076 next = b->next;
2077 lisp_free (b);
2078 }
2079
2080 tb->next_free = to;
2081 tb->next = NULL;
2082 current_sblock = tb;
2083 }
2084
2085 void
2086 string_overflow (void)
2087 {
2088 error ("Maximum string size exceeded");
2089 }
2090
2091 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2092 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2093 LENGTH must be an integer.
2094 INIT must be an integer that represents a character. */)
2095 (Lisp_Object length, Lisp_Object init)
2096 {
2097 register Lisp_Object val;
2098 int c;
2099 EMACS_INT nbytes;
2100
2101 CHECK_NATNUM (length);
2102 CHECK_CHARACTER (init);
2103
2104 c = XFASTINT (init);
2105 if (ASCII_CHAR_P (c))
2106 {
2107 nbytes = XINT (length);
2108 val = make_uninit_string (nbytes);
2109 memset (SDATA (val), c, nbytes);
2110 SDATA (val)[nbytes] = 0;
2111 }
2112 else
2113 {
2114 unsigned char str[MAX_MULTIBYTE_LENGTH];
2115 ptrdiff_t len = CHAR_STRING (c, str);
2116 EMACS_INT string_len = XINT (length);
2117 unsigned char *p, *beg, *end;
2118
2119 if (INT_MULTIPLY_WRAPV (len, string_len, &nbytes))
2120 string_overflow ();
2121 val = make_uninit_multibyte_string (string_len, nbytes);
2122 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2123 {
2124 /* First time we just copy `str' to the data of `val'. */
2125 if (p == beg)
2126 memcpy (p, str, len);
2127 else
2128 {
2129 /* Next time we copy largest possible chunk from
2130 initialized to uninitialized part of `val'. */
2131 len = min (p - beg, end - p);
2132 memcpy (p, beg, len);
2133 }
2134 }
2135 *p = 0;
2136 }
2137
2138 return val;
2139 }
2140
2141 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2142 Return A. */
2143
2144 Lisp_Object
2145 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2146 {
2147 EMACS_INT nbits = bool_vector_size (a);
2148 if (0 < nbits)
2149 {
2150 unsigned char *data = bool_vector_uchar_data (a);
2151 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2152 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2153 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2154 memset (data, pattern, nbytes - 1);
2155 data[nbytes - 1] = pattern & last_mask;
2156 }
2157 return a;
2158 }
2159
2160 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2161
2162 Lisp_Object
2163 make_uninit_bool_vector (EMACS_INT nbits)
2164 {
2165 Lisp_Object val;
2166 EMACS_INT words = bool_vector_words (nbits);
2167 EMACS_INT word_bytes = words * sizeof (bits_word);
2168 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2169 + word_size - 1)
2170 / word_size);
2171 struct Lisp_Bool_Vector *p
2172 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2173 XSETVECTOR (val, p);
2174 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2175 p->size = nbits;
2176
2177 /* Clear padding at the end. */
2178 if (words)
2179 p->data[words - 1] = 0;
2180
2181 return val;
2182 }
2183
2184 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2185 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2186 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2187 (Lisp_Object length, Lisp_Object init)
2188 {
2189 Lisp_Object val;
2190
2191 CHECK_NATNUM (length);
2192 val = make_uninit_bool_vector (XFASTINT (length));
2193 return bool_vector_fill (val, init);
2194 }
2195
2196 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2197 doc: /* Return a new bool-vector with specified arguments as elements.
2198 Any number of arguments, even zero arguments, are allowed.
2199 usage: (bool-vector &rest OBJECTS) */)
2200 (ptrdiff_t nargs, Lisp_Object *args)
2201 {
2202 ptrdiff_t i;
2203 Lisp_Object vector;
2204
2205 vector = make_uninit_bool_vector (nargs);
2206 for (i = 0; i < nargs; i++)
2207 bool_vector_set (vector, i, !NILP (args[i]));
2208
2209 return vector;
2210 }
2211
2212 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2213 of characters from the contents. This string may be unibyte or
2214 multibyte, depending on the contents. */
2215
2216 Lisp_Object
2217 make_string (const char *contents, ptrdiff_t nbytes)
2218 {
2219 register Lisp_Object val;
2220 ptrdiff_t nchars, multibyte_nbytes;
2221
2222 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2223 &nchars, &multibyte_nbytes);
2224 if (nbytes == nchars || nbytes != multibyte_nbytes)
2225 /* CONTENTS contains no multibyte sequences or contains an invalid
2226 multibyte sequence. We must make unibyte string. */
2227 val = make_unibyte_string (contents, nbytes);
2228 else
2229 val = make_multibyte_string (contents, nchars, nbytes);
2230 return val;
2231 }
2232
2233 /* Make a unibyte string from LENGTH bytes at CONTENTS. */
2234
2235 Lisp_Object
2236 make_unibyte_string (const char *contents, ptrdiff_t length)
2237 {
2238 register Lisp_Object val;
2239 val = make_uninit_string (length);
2240 memcpy (SDATA (val), contents, length);
2241 return val;
2242 }
2243
2244
2245 /* Make a multibyte string from NCHARS characters occupying NBYTES
2246 bytes at CONTENTS. */
2247
2248 Lisp_Object
2249 make_multibyte_string (const char *contents,
2250 ptrdiff_t nchars, ptrdiff_t nbytes)
2251 {
2252 register Lisp_Object val;
2253 val = make_uninit_multibyte_string (nchars, nbytes);
2254 memcpy (SDATA (val), contents, nbytes);
2255 return val;
2256 }
2257
2258
2259 /* Make a string from NCHARS characters occupying NBYTES bytes at
2260 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2261
2262 Lisp_Object
2263 make_string_from_bytes (const char *contents,
2264 ptrdiff_t nchars, ptrdiff_t nbytes)
2265 {
2266 register Lisp_Object val;
2267 val = make_uninit_multibyte_string (nchars, nbytes);
2268 memcpy (SDATA (val), contents, nbytes);
2269 if (SBYTES (val) == SCHARS (val))
2270 STRING_SET_UNIBYTE (val);
2271 return val;
2272 }
2273
2274
2275 /* Make a string from NCHARS characters occupying NBYTES bytes at
2276 CONTENTS. The argument MULTIBYTE controls whether to label the
2277 string as multibyte. If NCHARS is negative, it counts the number of
2278 characters by itself. */
2279
2280 Lisp_Object
2281 make_specified_string (const char *contents,
2282 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2283 {
2284 Lisp_Object val;
2285
2286 if (nchars < 0)
2287 {
2288 if (multibyte)
2289 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2290 nbytes);
2291 else
2292 nchars = nbytes;
2293 }
2294 val = make_uninit_multibyte_string (nchars, nbytes);
2295 memcpy (SDATA (val), contents, nbytes);
2296 if (!multibyte)
2297 STRING_SET_UNIBYTE (val);
2298 return val;
2299 }
2300
2301
2302 /* Return a unibyte Lisp_String set up to hold LENGTH characters
2303 occupying LENGTH bytes. */
2304
2305 Lisp_Object
2306 make_uninit_string (EMACS_INT length)
2307 {
2308 Lisp_Object val;
2309
2310 if (!length)
2311 return empty_unibyte_string;
2312 val = make_uninit_multibyte_string (length, length);
2313 STRING_SET_UNIBYTE (val);
2314 return val;
2315 }
2316
2317
2318 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2319 which occupy NBYTES bytes. */
2320
2321 Lisp_Object
2322 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2323 {
2324 Lisp_Object string;
2325 struct Lisp_String *s;
2326
2327 if (nchars < 0)
2328 emacs_abort ();
2329 if (!nbytes)
2330 return empty_multibyte_string;
2331
2332 s = allocate_string ();
2333 s->intervals = NULL;
2334 allocate_string_data (s, nchars, nbytes);
2335 XSETSTRING (string, s);
2336 string_chars_consed += nbytes;
2337 return string;
2338 }
2339
2340 /* Print arguments to BUF according to a FORMAT, then return
2341 a Lisp_String initialized with the data from BUF. */
2342
2343 Lisp_Object
2344 make_formatted_string (char *buf, const char *format, ...)
2345 {
2346 va_list ap;
2347 int length;
2348
2349 va_start (ap, format);
2350 length = vsprintf (buf, format, ap);
2351 va_end (ap);
2352 return make_string (buf, length);
2353 }
2354
2355 \f
2356 /***********************************************************************
2357 Float Allocation
2358 ***********************************************************************/
2359
2360 /* We store float cells inside of float_blocks, allocating a new
2361 float_block with malloc whenever necessary. Float cells reclaimed
2362 by GC are put on a free list to be reallocated before allocating
2363 any new float cells from the latest float_block. */
2364
2365 #define FLOAT_BLOCK_SIZE \
2366 (((BLOCK_BYTES - sizeof (struct float_block *) \
2367 /* The compiler might add padding at the end. */ \
2368 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2369 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2370
2371 #define GETMARKBIT(block,n) \
2372 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2373 >> ((n) % BITS_PER_BITS_WORD)) \
2374 & 1)
2375
2376 #define SETMARKBIT(block,n) \
2377 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2378 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2379
2380 #define UNSETMARKBIT(block,n) \
2381 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2382 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2383
2384 #define FLOAT_BLOCK(fptr) \
2385 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2386
2387 #define FLOAT_INDEX(fptr) \
2388 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2389
2390 struct float_block
2391 {
2392 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2393 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2394 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2395 struct float_block *next;
2396 };
2397
2398 #define FLOAT_MARKED_P(fptr) \
2399 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2400
2401 #define FLOAT_MARK(fptr) \
2402 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2403
2404 #define FLOAT_UNMARK(fptr) \
2405 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2406
2407 /* Current float_block. */
2408
2409 static struct float_block *float_block;
2410
2411 /* Index of first unused Lisp_Float in the current float_block. */
2412
2413 static int float_block_index = FLOAT_BLOCK_SIZE;
2414
2415 /* Free-list of Lisp_Floats. */
2416
2417 static struct Lisp_Float *float_free_list;
2418
2419 /* Return a new float object with value FLOAT_VALUE. */
2420
2421 Lisp_Object
2422 make_float (double float_value)
2423 {
2424 register Lisp_Object val;
2425
2426 MALLOC_BLOCK_INPUT;
2427
2428 if (float_free_list)
2429 {
2430 /* We use the data field for chaining the free list
2431 so that we won't use the same field that has the mark bit. */
2432 XSETFLOAT (val, float_free_list);
2433 float_free_list = float_free_list->u.chain;
2434 }
2435 else
2436 {
2437 if (float_block_index == FLOAT_BLOCK_SIZE)
2438 {
2439 struct float_block *new
2440 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2441 new->next = float_block;
2442 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2443 float_block = new;
2444 float_block_index = 0;
2445 total_free_floats += FLOAT_BLOCK_SIZE;
2446 }
2447 XSETFLOAT (val, &float_block->floats[float_block_index]);
2448 float_block_index++;
2449 }
2450
2451 MALLOC_UNBLOCK_INPUT;
2452
2453 XFLOAT_INIT (val, float_value);
2454 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2455 consing_since_gc += sizeof (struct Lisp_Float);
2456 floats_consed++;
2457 total_free_floats--;
2458 return val;
2459 }
2460
2461
2462 \f
2463 /***********************************************************************
2464 Cons Allocation
2465 ***********************************************************************/
2466
2467 /* We store cons cells inside of cons_blocks, allocating a new
2468 cons_block with malloc whenever necessary. Cons cells reclaimed by
2469 GC are put on a free list to be reallocated before allocating
2470 any new cons cells from the latest cons_block. */
2471
2472 #define CONS_BLOCK_SIZE \
2473 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2474 /* The compiler might add padding at the end. */ \
2475 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2476 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2477
2478 #define CONS_BLOCK(fptr) \
2479 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2480
2481 #define CONS_INDEX(fptr) \
2482 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2483
2484 struct cons_block
2485 {
2486 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2487 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2488 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2489 struct cons_block *next;
2490 };
2491
2492 #define CONS_MARKED_P(fptr) \
2493 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2494
2495 #define CONS_MARK(fptr) \
2496 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2497
2498 #define CONS_UNMARK(fptr) \
2499 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2500
2501 /* Current cons_block. */
2502
2503 static struct cons_block *cons_block;
2504
2505 /* Index of first unused Lisp_Cons in the current block. */
2506
2507 static int cons_block_index = CONS_BLOCK_SIZE;
2508
2509 /* Free-list of Lisp_Cons structures. */
2510
2511 static struct Lisp_Cons *cons_free_list;
2512
2513 /* Explicitly free a cons cell by putting it on the free-list. */
2514
2515 void
2516 free_cons (struct Lisp_Cons *ptr)
2517 {
2518 ptr->u.chain = cons_free_list;
2519 ptr->car = Vdead;
2520 cons_free_list = ptr;
2521 consing_since_gc -= sizeof *ptr;
2522 total_free_conses++;
2523 }
2524
2525 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2526 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2527 (Lisp_Object car, Lisp_Object cdr)
2528 {
2529 register Lisp_Object val;
2530
2531 MALLOC_BLOCK_INPUT;
2532
2533 if (cons_free_list)
2534 {
2535 /* We use the cdr for chaining the free list
2536 so that we won't use the same field that has the mark bit. */
2537 XSETCONS (val, cons_free_list);
2538 cons_free_list = cons_free_list->u.chain;
2539 }
2540 else
2541 {
2542 if (cons_block_index == CONS_BLOCK_SIZE)
2543 {
2544 struct cons_block *new
2545 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2546 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2547 new->next = cons_block;
2548 cons_block = new;
2549 cons_block_index = 0;
2550 total_free_conses += CONS_BLOCK_SIZE;
2551 }
2552 XSETCONS (val, &cons_block->conses[cons_block_index]);
2553 cons_block_index++;
2554 }
2555
2556 MALLOC_UNBLOCK_INPUT;
2557
2558 XSETCAR (val, car);
2559 XSETCDR (val, cdr);
2560 eassert (!CONS_MARKED_P (XCONS (val)));
2561 consing_since_gc += sizeof (struct Lisp_Cons);
2562 total_free_conses--;
2563 cons_cells_consed++;
2564 return val;
2565 }
2566
2567 #ifdef GC_CHECK_CONS_LIST
2568 /* Get an error now if there's any junk in the cons free list. */
2569 void
2570 check_cons_list (void)
2571 {
2572 struct Lisp_Cons *tail = cons_free_list;
2573
2574 while (tail)
2575 tail = tail->u.chain;
2576 }
2577 #endif
2578
2579 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2580
2581 Lisp_Object
2582 list1 (Lisp_Object arg1)
2583 {
2584 return Fcons (arg1, Qnil);
2585 }
2586
2587 Lisp_Object
2588 list2 (Lisp_Object arg1, Lisp_Object arg2)
2589 {
2590 return Fcons (arg1, Fcons (arg2, Qnil));
2591 }
2592
2593
2594 Lisp_Object
2595 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2596 {
2597 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2598 }
2599
2600
2601 Lisp_Object
2602 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2603 {
2604 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2605 }
2606
2607
2608 Lisp_Object
2609 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2610 {
2611 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2612 Fcons (arg5, Qnil)))));
2613 }
2614
2615 /* Make a list of COUNT Lisp_Objects, where ARG is the
2616 first one. Allocate conses from pure space if TYPE
2617 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2618
2619 Lisp_Object
2620 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2621 {
2622 Lisp_Object (*cons) (Lisp_Object, Lisp_Object);
2623 switch (type)
2624 {
2625 case CONSTYPE_PURE: cons = pure_cons; break;
2626 case CONSTYPE_HEAP: cons = Fcons; break;
2627 default: emacs_abort ();
2628 }
2629
2630 eassume (0 < count);
2631 Lisp_Object val = cons (arg, Qnil);
2632 Lisp_Object tail = val;
2633
2634 va_list ap;
2635 va_start (ap, arg);
2636 for (ptrdiff_t i = 1; i < count; i++)
2637 {
2638 Lisp_Object elem = cons (va_arg (ap, Lisp_Object), Qnil);
2639 XSETCDR (tail, elem);
2640 tail = elem;
2641 }
2642 va_end (ap);
2643
2644 return val;
2645 }
2646
2647 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2648 doc: /* Return a newly created list with specified arguments as elements.
2649 Any number of arguments, even zero arguments, are allowed.
2650 usage: (list &rest OBJECTS) */)
2651 (ptrdiff_t nargs, Lisp_Object *args)
2652 {
2653 register Lisp_Object val;
2654 val = Qnil;
2655
2656 while (nargs > 0)
2657 {
2658 nargs--;
2659 val = Fcons (args[nargs], val);
2660 }
2661 return val;
2662 }
2663
2664
2665 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2666 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2667 (register Lisp_Object length, Lisp_Object init)
2668 {
2669 register Lisp_Object val;
2670 register EMACS_INT size;
2671
2672 CHECK_NATNUM (length);
2673 size = XFASTINT (length);
2674
2675 val = Qnil;
2676 while (size > 0)
2677 {
2678 val = Fcons (init, val);
2679 --size;
2680
2681 if (size > 0)
2682 {
2683 val = Fcons (init, val);
2684 --size;
2685
2686 if (size > 0)
2687 {
2688 val = Fcons (init, val);
2689 --size;
2690
2691 if (size > 0)
2692 {
2693 val = Fcons (init, val);
2694 --size;
2695
2696 if (size > 0)
2697 {
2698 val = Fcons (init, val);
2699 --size;
2700 }
2701 }
2702 }
2703 }
2704
2705 QUIT;
2706 }
2707
2708 return val;
2709 }
2710
2711
2712 \f
2713 /***********************************************************************
2714 Vector Allocation
2715 ***********************************************************************/
2716
2717 /* Sometimes a vector's contents are merely a pointer internally used
2718 in vector allocation code. On the rare platforms where a null
2719 pointer cannot be tagged, represent it with a Lisp 0.
2720 Usually you don't want to touch this. */
2721
2722 static struct Lisp_Vector *
2723 next_vector (struct Lisp_Vector *v)
2724 {
2725 return XUNTAG (v->contents[0], Lisp_Int0);
2726 }
2727
2728 static void
2729 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2730 {
2731 v->contents[0] = make_lisp_ptr (p, Lisp_Int0);
2732 }
2733
2734 /* This value is balanced well enough to avoid too much internal overhead
2735 for the most common cases; it's not required to be a power of two, but
2736 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2737
2738 #define VECTOR_BLOCK_SIZE 4096
2739
2740 enum
2741 {
2742 /* Alignment of struct Lisp_Vector objects. */
2743 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2744 GCALIGNMENT),
2745
2746 /* Vector size requests are a multiple of this. */
2747 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2748 };
2749
2750 /* Verify assumptions described above. */
2751 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2752 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2753
2754 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2755 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2756 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2757 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2758
2759 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2760
2761 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2762
2763 /* Size of the minimal vector allocated from block. */
2764
2765 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2766
2767 /* Size of the largest vector allocated from block. */
2768
2769 #define VBLOCK_BYTES_MAX \
2770 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2771
2772 /* We maintain one free list for each possible block-allocated
2773 vector size, and this is the number of free lists we have. */
2774
2775 #define VECTOR_MAX_FREE_LIST_INDEX \
2776 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2777
2778 /* Common shortcut to advance vector pointer over a block data. */
2779
2780 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2781
2782 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2783
2784 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2785
2786 /* Common shortcut to setup vector on a free list. */
2787
2788 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2789 do { \
2790 (tmp) = ((nbytes - header_size) / word_size); \
2791 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2792 eassert ((nbytes) % roundup_size == 0); \
2793 (tmp) = VINDEX (nbytes); \
2794 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2795 set_next_vector (v, vector_free_lists[tmp]); \
2796 vector_free_lists[tmp] = (v); \
2797 total_free_vector_slots += (nbytes) / word_size; \
2798 } while (0)
2799
2800 /* This internal type is used to maintain the list of large vectors
2801 which are allocated at their own, e.g. outside of vector blocks.
2802
2803 struct large_vector itself cannot contain a struct Lisp_Vector, as
2804 the latter contains a flexible array member and C99 does not allow
2805 such structs to be nested. Instead, each struct large_vector
2806 object LV is followed by a struct Lisp_Vector, which is at offset
2807 large_vector_offset from LV, and whose address is therefore
2808 large_vector_vec (&LV). */
2809
2810 struct large_vector
2811 {
2812 struct large_vector *next;
2813 };
2814
2815 enum
2816 {
2817 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2818 };
2819
2820 static struct Lisp_Vector *
2821 large_vector_vec (struct large_vector *p)
2822 {
2823 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2824 }
2825
2826 /* This internal type is used to maintain an underlying storage
2827 for small vectors. */
2828
2829 struct vector_block
2830 {
2831 char data[VECTOR_BLOCK_BYTES];
2832 struct vector_block *next;
2833 };
2834
2835 /* Chain of vector blocks. */
2836
2837 static struct vector_block *vector_blocks;
2838
2839 /* Vector free lists, where NTH item points to a chain of free
2840 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2841
2842 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2843
2844 /* Singly-linked list of large vectors. */
2845
2846 static struct large_vector *large_vectors;
2847
2848 /* The only vector with 0 slots, allocated from pure space. */
2849
2850 Lisp_Object zero_vector;
2851
2852 /* Number of live vectors. */
2853
2854 static EMACS_INT total_vectors;
2855
2856 /* Total size of live and free vectors, in Lisp_Object units. */
2857
2858 static EMACS_INT total_vector_slots, total_free_vector_slots;
2859
2860 /* Get a new vector block. */
2861
2862 static struct vector_block *
2863 allocate_vector_block (void)
2864 {
2865 struct vector_block *block = xmalloc (sizeof *block);
2866
2867 #ifndef GC_MALLOC_CHECK
2868 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2869 MEM_TYPE_VECTOR_BLOCK);
2870 #endif
2871
2872 block->next = vector_blocks;
2873 vector_blocks = block;
2874 return block;
2875 }
2876
2877 /* Called once to initialize vector allocation. */
2878
2879 static void
2880 init_vectors (void)
2881 {
2882 zero_vector = make_pure_vector (0);
2883 }
2884
2885 /* Allocate vector from a vector block. */
2886
2887 static struct Lisp_Vector *
2888 allocate_vector_from_block (size_t nbytes)
2889 {
2890 struct Lisp_Vector *vector;
2891 struct vector_block *block;
2892 size_t index, restbytes;
2893
2894 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2895 eassert (nbytes % roundup_size == 0);
2896
2897 /* First, try to allocate from a free list
2898 containing vectors of the requested size. */
2899 index = VINDEX (nbytes);
2900 if (vector_free_lists[index])
2901 {
2902 vector = vector_free_lists[index];
2903 vector_free_lists[index] = next_vector (vector);
2904 total_free_vector_slots -= nbytes / word_size;
2905 return vector;
2906 }
2907
2908 /* Next, check free lists containing larger vectors. Since
2909 we will split the result, we should have remaining space
2910 large enough to use for one-slot vector at least. */
2911 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2912 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2913 if (vector_free_lists[index])
2914 {
2915 /* This vector is larger than requested. */
2916 vector = vector_free_lists[index];
2917 vector_free_lists[index] = next_vector (vector);
2918 total_free_vector_slots -= nbytes / word_size;
2919
2920 /* Excess bytes are used for the smaller vector,
2921 which should be set on an appropriate free list. */
2922 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2923 eassert (restbytes % roundup_size == 0);
2924 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2925 return vector;
2926 }
2927
2928 /* Finally, need a new vector block. */
2929 block = allocate_vector_block ();
2930
2931 /* New vector will be at the beginning of this block. */
2932 vector = (struct Lisp_Vector *) block->data;
2933
2934 /* If the rest of space from this block is large enough
2935 for one-slot vector at least, set up it on a free list. */
2936 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2937 if (restbytes >= VBLOCK_BYTES_MIN)
2938 {
2939 eassert (restbytes % roundup_size == 0);
2940 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2941 }
2942 return vector;
2943 }
2944
2945 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2946
2947 #define VECTOR_IN_BLOCK(vector, block) \
2948 ((char *) (vector) <= (block)->data \
2949 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2950
2951 /* Return the memory footprint of V in bytes. */
2952
2953 static ptrdiff_t
2954 vector_nbytes (struct Lisp_Vector *v)
2955 {
2956 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2957 ptrdiff_t nwords;
2958
2959 if (size & PSEUDOVECTOR_FLAG)
2960 {
2961 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2962 {
2963 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2964 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
2965 * sizeof (bits_word));
2966 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
2967 verify (header_size <= bool_header_size);
2968 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
2969 }
2970 else
2971 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
2972 + ((size & PSEUDOVECTOR_REST_MASK)
2973 >> PSEUDOVECTOR_SIZE_BITS));
2974 }
2975 else
2976 nwords = size;
2977 return vroundup (header_size + word_size * nwords);
2978 }
2979
2980 /* Release extra resources still in use by VECTOR, which may be any
2981 vector-like object. For now, this is used just to free data in
2982 font objects. */
2983
2984 static void
2985 cleanup_vector (struct Lisp_Vector *vector)
2986 {
2987 detect_suspicious_free (vector);
2988 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
2989 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
2990 == FONT_OBJECT_MAX))
2991 {
2992 struct font_driver *drv = ((struct font *) vector)->driver;
2993
2994 /* The font driver might sometimes be NULL, e.g. if Emacs was
2995 interrupted before it had time to set it up. */
2996 if (drv)
2997 {
2998 /* Attempt to catch subtle bugs like Bug#16140. */
2999 eassert (valid_font_driver (drv));
3000 drv->close ((struct font *) vector);
3001 }
3002 }
3003 }
3004
3005 /* Reclaim space used by unmarked vectors. */
3006
3007 NO_INLINE /* For better stack traces */
3008 static void
3009 sweep_vectors (void)
3010 {
3011 struct vector_block *block, **bprev = &vector_blocks;
3012 struct large_vector *lv, **lvprev = &large_vectors;
3013 struct Lisp_Vector *vector, *next;
3014
3015 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3016 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3017
3018 /* Looking through vector blocks. */
3019
3020 for (block = vector_blocks; block; block = *bprev)
3021 {
3022 bool free_this_block = 0;
3023 ptrdiff_t nbytes;
3024
3025 for (vector = (struct Lisp_Vector *) block->data;
3026 VECTOR_IN_BLOCK (vector, block); vector = next)
3027 {
3028 if (VECTOR_MARKED_P (vector))
3029 {
3030 VECTOR_UNMARK (vector);
3031 total_vectors++;
3032 nbytes = vector_nbytes (vector);
3033 total_vector_slots += nbytes / word_size;
3034 next = ADVANCE (vector, nbytes);
3035 }
3036 else
3037 {
3038 ptrdiff_t total_bytes;
3039
3040 cleanup_vector (vector);
3041 nbytes = vector_nbytes (vector);
3042 total_bytes = nbytes;
3043 next = ADVANCE (vector, nbytes);
3044
3045 /* While NEXT is not marked, try to coalesce with VECTOR,
3046 thus making VECTOR of the largest possible size. */
3047
3048 while (VECTOR_IN_BLOCK (next, block))
3049 {
3050 if (VECTOR_MARKED_P (next))
3051 break;
3052 cleanup_vector (next);
3053 nbytes = vector_nbytes (next);
3054 total_bytes += nbytes;
3055 next = ADVANCE (next, nbytes);
3056 }
3057
3058 eassert (total_bytes % roundup_size == 0);
3059
3060 if (vector == (struct Lisp_Vector *) block->data
3061 && !VECTOR_IN_BLOCK (next, block))
3062 /* This block should be freed because all of its
3063 space was coalesced into the only free vector. */
3064 free_this_block = 1;
3065 else
3066 {
3067 size_t tmp;
3068 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3069 }
3070 }
3071 }
3072
3073 if (free_this_block)
3074 {
3075 *bprev = block->next;
3076 #ifndef GC_MALLOC_CHECK
3077 mem_delete (mem_find (block->data));
3078 #endif
3079 xfree (block);
3080 }
3081 else
3082 bprev = &block->next;
3083 }
3084
3085 /* Sweep large vectors. */
3086
3087 for (lv = large_vectors; lv; lv = *lvprev)
3088 {
3089 vector = large_vector_vec (lv);
3090 if (VECTOR_MARKED_P (vector))
3091 {
3092 VECTOR_UNMARK (vector);
3093 total_vectors++;
3094 if (vector->header.size & PSEUDOVECTOR_FLAG)
3095 {
3096 /* All non-bool pseudovectors are small enough to be allocated
3097 from vector blocks. This code should be redesigned if some
3098 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3099 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3100 total_vector_slots += vector_nbytes (vector) / word_size;
3101 }
3102 else
3103 total_vector_slots
3104 += header_size / word_size + vector->header.size;
3105 lvprev = &lv->next;
3106 }
3107 else
3108 {
3109 *lvprev = lv->next;
3110 lisp_free (lv);
3111 }
3112 }
3113 }
3114
3115 /* Value is a pointer to a newly allocated Lisp_Vector structure
3116 with room for LEN Lisp_Objects. */
3117
3118 static struct Lisp_Vector *
3119 allocate_vectorlike (ptrdiff_t len)
3120 {
3121 struct Lisp_Vector *p;
3122
3123 MALLOC_BLOCK_INPUT;
3124
3125 if (len == 0)
3126 p = XVECTOR (zero_vector);
3127 else
3128 {
3129 size_t nbytes = header_size + len * word_size;
3130
3131 #ifdef DOUG_LEA_MALLOC
3132 if (!mmap_lisp_allowed_p ())
3133 mallopt (M_MMAP_MAX, 0);
3134 #endif
3135
3136 if (nbytes <= VBLOCK_BYTES_MAX)
3137 p = allocate_vector_from_block (vroundup (nbytes));
3138 else
3139 {
3140 struct large_vector *lv
3141 = lisp_malloc ((large_vector_offset + header_size
3142 + len * word_size),
3143 MEM_TYPE_VECTORLIKE);
3144 lv->next = large_vectors;
3145 large_vectors = lv;
3146 p = large_vector_vec (lv);
3147 }
3148
3149 #ifdef DOUG_LEA_MALLOC
3150 if (!mmap_lisp_allowed_p ())
3151 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3152 #endif
3153
3154 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3155 emacs_abort ();
3156
3157 consing_since_gc += nbytes;
3158 vector_cells_consed += len;
3159 }
3160
3161 MALLOC_UNBLOCK_INPUT;
3162
3163 return p;
3164 }
3165
3166
3167 /* Allocate a vector with LEN slots. */
3168
3169 struct Lisp_Vector *
3170 allocate_vector (EMACS_INT len)
3171 {
3172 struct Lisp_Vector *v;
3173 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3174
3175 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3176 memory_full (SIZE_MAX);
3177 v = allocate_vectorlike (len);
3178 v->header.size = len;
3179 return v;
3180 }
3181
3182
3183 /* Allocate other vector-like structures. */
3184
3185 struct Lisp_Vector *
3186 allocate_pseudovector (int memlen, int lisplen,
3187 int zerolen, enum pvec_type tag)
3188 {
3189 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3190
3191 /* Catch bogus values. */
3192 eassert (0 <= tag && tag <= PVEC_FONT);
3193 eassert (0 <= lisplen && lisplen <= zerolen && zerolen <= memlen);
3194 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3195 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3196
3197 /* Only the first LISPLEN slots will be traced normally by the GC. */
3198 memclear (v->contents, zerolen * word_size);
3199 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3200 return v;
3201 }
3202
3203 struct buffer *
3204 allocate_buffer (void)
3205 {
3206 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3207
3208 BUFFER_PVEC_INIT (b);
3209 /* Put B on the chain of all buffers including killed ones. */
3210 b->next = all_buffers;
3211 all_buffers = b;
3212 /* Note that the rest fields of B are not initialized. */
3213 return b;
3214 }
3215
3216 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3217 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3218 See also the function `vector'. */)
3219 (register Lisp_Object length, Lisp_Object init)
3220 {
3221 Lisp_Object vector;
3222 register ptrdiff_t sizei;
3223 register ptrdiff_t i;
3224 register struct Lisp_Vector *p;
3225
3226 CHECK_NATNUM (length);
3227
3228 p = allocate_vector (XFASTINT (length));
3229 sizei = XFASTINT (length);
3230 for (i = 0; i < sizei; i++)
3231 p->contents[i] = init;
3232
3233 XSETVECTOR (vector, p);
3234 return vector;
3235 }
3236
3237 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3238 doc: /* Return a newly created vector with specified arguments as elements.
3239 Any number of arguments, even zero arguments, are allowed.
3240 usage: (vector &rest OBJECTS) */)
3241 (ptrdiff_t nargs, Lisp_Object *args)
3242 {
3243 ptrdiff_t i;
3244 register Lisp_Object val = make_uninit_vector (nargs);
3245 register struct Lisp_Vector *p = XVECTOR (val);
3246
3247 for (i = 0; i < nargs; i++)
3248 p->contents[i] = args[i];
3249 return val;
3250 }
3251
3252 void
3253 make_byte_code (struct Lisp_Vector *v)
3254 {
3255 /* Don't allow the global zero_vector to become a byte code object. */
3256 eassert (0 < v->header.size);
3257
3258 if (v->header.size > 1 && STRINGP (v->contents[1])
3259 && STRING_MULTIBYTE (v->contents[1]))
3260 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3261 earlier because they produced a raw 8-bit string for byte-code
3262 and now such a byte-code string is loaded as multibyte while
3263 raw 8-bit characters converted to multibyte form. Thus, now we
3264 must convert them back to the original unibyte form. */
3265 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3266 XSETPVECTYPE (v, PVEC_COMPILED);
3267 }
3268
3269 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3270 doc: /* Create a byte-code object with specified arguments as elements.
3271 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3272 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3273 and (optional) INTERACTIVE-SPEC.
3274 The first four arguments are required; at most six have any
3275 significance.
3276 The ARGLIST can be either like the one of `lambda', in which case the arguments
3277 will be dynamically bound before executing the byte code, or it can be an
3278 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3279 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3280 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3281 argument to catch the left-over arguments. If such an integer is used, the
3282 arguments will not be dynamically bound but will be instead pushed on the
3283 stack before executing the byte-code.
3284 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3285 (ptrdiff_t nargs, Lisp_Object *args)
3286 {
3287 ptrdiff_t i;
3288 register Lisp_Object val = make_uninit_vector (nargs);
3289 register struct Lisp_Vector *p = XVECTOR (val);
3290
3291 /* We used to purecopy everything here, if purify-flag was set. This worked
3292 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3293 dangerous, since make-byte-code is used during execution to build
3294 closures, so any closure built during the preload phase would end up
3295 copied into pure space, including its free variables, which is sometimes
3296 just wasteful and other times plainly wrong (e.g. those free vars may want
3297 to be setcar'd). */
3298
3299 for (i = 0; i < nargs; i++)
3300 p->contents[i] = args[i];
3301 make_byte_code (p);
3302 XSETCOMPILED (val, p);
3303 return val;
3304 }
3305
3306
3307 \f
3308 /***********************************************************************
3309 Symbol Allocation
3310 ***********************************************************************/
3311
3312 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3313 of the required alignment. */
3314
3315 union aligned_Lisp_Symbol
3316 {
3317 struct Lisp_Symbol s;
3318 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3319 & -GCALIGNMENT];
3320 };
3321
3322 /* Each symbol_block is just under 1020 bytes long, since malloc
3323 really allocates in units of powers of two and uses 4 bytes for its
3324 own overhead. */
3325
3326 #define SYMBOL_BLOCK_SIZE \
3327 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3328
3329 struct symbol_block
3330 {
3331 /* Place `symbols' first, to preserve alignment. */
3332 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3333 struct symbol_block *next;
3334 };
3335
3336 /* Current symbol block and index of first unused Lisp_Symbol
3337 structure in it. */
3338
3339 static struct symbol_block *symbol_block;
3340 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3341 /* Pointer to the first symbol_block that contains pinned symbols.
3342 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3343 10K of which are pinned (and all but 250 of them are interned in obarray),
3344 whereas a "typical session" has in the order of 30K symbols.
3345 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3346 than 30K to find the 10K symbols we need to mark. */
3347 static struct symbol_block *symbol_block_pinned;
3348
3349 /* List of free symbols. */
3350
3351 static struct Lisp_Symbol *symbol_free_list;
3352
3353 static void
3354 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3355 {
3356 XSYMBOL (sym)->name = name;
3357 }
3358
3359 void
3360 init_symbol (Lisp_Object val, Lisp_Object name)
3361 {
3362 struct Lisp_Symbol *p = XSYMBOL (val);
3363 set_symbol_name (val, name);
3364 set_symbol_plist (val, Qnil);
3365 p->redirect = SYMBOL_PLAINVAL;
3366 SET_SYMBOL_VAL (p, Qunbound);
3367 set_symbol_function (val, Qnil);
3368 set_symbol_next (val, NULL);
3369 p->gcmarkbit = false;
3370 p->interned = SYMBOL_UNINTERNED;
3371 p->constant = 0;
3372 p->declared_special = false;
3373 p->pinned = false;
3374 }
3375
3376 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3377 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3378 Its value is void, and its function definition and property list are nil. */)
3379 (Lisp_Object name)
3380 {
3381 Lisp_Object val;
3382
3383 CHECK_STRING (name);
3384
3385 MALLOC_BLOCK_INPUT;
3386
3387 if (symbol_free_list)
3388 {
3389 XSETSYMBOL (val, symbol_free_list);
3390 symbol_free_list = symbol_free_list->next;
3391 }
3392 else
3393 {
3394 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3395 {
3396 struct symbol_block *new
3397 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3398 new->next = symbol_block;
3399 symbol_block = new;
3400 symbol_block_index = 0;
3401 total_free_symbols += SYMBOL_BLOCK_SIZE;
3402 }
3403 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3404 symbol_block_index++;
3405 }
3406
3407 MALLOC_UNBLOCK_INPUT;
3408
3409 init_symbol (val, name);
3410 consing_since_gc += sizeof (struct Lisp_Symbol);
3411 symbols_consed++;
3412 total_free_symbols--;
3413 return val;
3414 }
3415
3416
3417 \f
3418 /***********************************************************************
3419 Marker (Misc) Allocation
3420 ***********************************************************************/
3421
3422 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3423 the required alignment. */
3424
3425 union aligned_Lisp_Misc
3426 {
3427 union Lisp_Misc m;
3428 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3429 & -GCALIGNMENT];
3430 };
3431
3432 /* Allocation of markers and other objects that share that structure.
3433 Works like allocation of conses. */
3434
3435 #define MARKER_BLOCK_SIZE \
3436 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3437
3438 struct marker_block
3439 {
3440 /* Place `markers' first, to preserve alignment. */
3441 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3442 struct marker_block *next;
3443 };
3444
3445 static struct marker_block *marker_block;
3446 static int marker_block_index = MARKER_BLOCK_SIZE;
3447
3448 static union Lisp_Misc *marker_free_list;
3449
3450 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3451
3452 static Lisp_Object
3453 allocate_misc (enum Lisp_Misc_Type type)
3454 {
3455 Lisp_Object val;
3456
3457 MALLOC_BLOCK_INPUT;
3458
3459 if (marker_free_list)
3460 {
3461 XSETMISC (val, marker_free_list);
3462 marker_free_list = marker_free_list->u_free.chain;
3463 }
3464 else
3465 {
3466 if (marker_block_index == MARKER_BLOCK_SIZE)
3467 {
3468 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3469 new->next = marker_block;
3470 marker_block = new;
3471 marker_block_index = 0;
3472 total_free_markers += MARKER_BLOCK_SIZE;
3473 }
3474 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3475 marker_block_index++;
3476 }
3477
3478 MALLOC_UNBLOCK_INPUT;
3479
3480 --total_free_markers;
3481 consing_since_gc += sizeof (union Lisp_Misc);
3482 misc_objects_consed++;
3483 XMISCANY (val)->type = type;
3484 XMISCANY (val)->gcmarkbit = 0;
3485 return val;
3486 }
3487
3488 /* Free a Lisp_Misc object. */
3489
3490 void
3491 free_misc (Lisp_Object misc)
3492 {
3493 XMISCANY (misc)->type = Lisp_Misc_Free;
3494 XMISC (misc)->u_free.chain = marker_free_list;
3495 marker_free_list = XMISC (misc);
3496 consing_since_gc -= sizeof (union Lisp_Misc);
3497 total_free_markers++;
3498 }
3499
3500 /* Verify properties of Lisp_Save_Value's representation
3501 that are assumed here and elsewhere. */
3502
3503 verify (SAVE_UNUSED == 0);
3504 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3505 >> SAVE_SLOT_BITS)
3506 == 0);
3507
3508 /* Return Lisp_Save_Value objects for the various combinations
3509 that callers need. */
3510
3511 Lisp_Object
3512 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3513 {
3514 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3515 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3516 p->save_type = SAVE_TYPE_INT_INT_INT;
3517 p->data[0].integer = a;
3518 p->data[1].integer = b;
3519 p->data[2].integer = c;
3520 return val;
3521 }
3522
3523 Lisp_Object
3524 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3525 Lisp_Object d)
3526 {
3527 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3528 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3529 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3530 p->data[0].object = a;
3531 p->data[1].object = b;
3532 p->data[2].object = c;
3533 p->data[3].object = d;
3534 return val;
3535 }
3536
3537 Lisp_Object
3538 make_save_ptr (void *a)
3539 {
3540 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3541 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3542 p->save_type = SAVE_POINTER;
3543 p->data[0].pointer = a;
3544 return val;
3545 }
3546
3547 Lisp_Object
3548 make_save_ptr_int (void *a, ptrdiff_t b)
3549 {
3550 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3551 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3552 p->save_type = SAVE_TYPE_PTR_INT;
3553 p->data[0].pointer = a;
3554 p->data[1].integer = b;
3555 return val;
3556 }
3557
3558 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3559 Lisp_Object
3560 make_save_ptr_ptr (void *a, void *b)
3561 {
3562 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3563 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3564 p->save_type = SAVE_TYPE_PTR_PTR;
3565 p->data[0].pointer = a;
3566 p->data[1].pointer = b;
3567 return val;
3568 }
3569 #endif
3570
3571 Lisp_Object
3572 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3573 {
3574 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3575 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3576 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3577 p->data[0].funcpointer = a;
3578 p->data[1].pointer = b;
3579 p->data[2].object = c;
3580 return val;
3581 }
3582
3583 /* Return a Lisp_Save_Value object that represents an array A
3584 of N Lisp objects. */
3585
3586 Lisp_Object
3587 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3588 {
3589 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3590 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3591 p->save_type = SAVE_TYPE_MEMORY;
3592 p->data[0].pointer = a;
3593 p->data[1].integer = n;
3594 return val;
3595 }
3596
3597 /* Free a Lisp_Save_Value object. Do not use this function
3598 if SAVE contains pointer other than returned by xmalloc. */
3599
3600 void
3601 free_save_value (Lisp_Object save)
3602 {
3603 xfree (XSAVE_POINTER (save, 0));
3604 free_misc (save);
3605 }
3606
3607 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3608
3609 Lisp_Object
3610 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3611 {
3612 register Lisp_Object overlay;
3613
3614 overlay = allocate_misc (Lisp_Misc_Overlay);
3615 OVERLAY_START (overlay) = start;
3616 OVERLAY_END (overlay) = end;
3617 set_overlay_plist (overlay, plist);
3618 XOVERLAY (overlay)->next = NULL;
3619 return overlay;
3620 }
3621
3622 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3623 doc: /* Return a newly allocated marker which does not point at any place. */)
3624 (void)
3625 {
3626 register Lisp_Object val;
3627 register struct Lisp_Marker *p;
3628
3629 val = allocate_misc (Lisp_Misc_Marker);
3630 p = XMARKER (val);
3631 p->buffer = 0;
3632 p->bytepos = 0;
3633 p->charpos = 0;
3634 p->next = NULL;
3635 p->insertion_type = 0;
3636 p->need_adjustment = 0;
3637 return val;
3638 }
3639
3640 /* Return a newly allocated marker which points into BUF
3641 at character position CHARPOS and byte position BYTEPOS. */
3642
3643 Lisp_Object
3644 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3645 {
3646 Lisp_Object obj;
3647 struct Lisp_Marker *m;
3648
3649 /* No dead buffers here. */
3650 eassert (BUFFER_LIVE_P (buf));
3651
3652 /* Every character is at least one byte. */
3653 eassert (charpos <= bytepos);
3654
3655 obj = allocate_misc (Lisp_Misc_Marker);
3656 m = XMARKER (obj);
3657 m->buffer = buf;
3658 m->charpos = charpos;
3659 m->bytepos = bytepos;
3660 m->insertion_type = 0;
3661 m->need_adjustment = 0;
3662 m->next = BUF_MARKERS (buf);
3663 BUF_MARKERS (buf) = m;
3664 return obj;
3665 }
3666
3667 /* Put MARKER back on the free list after using it temporarily. */
3668
3669 void
3670 free_marker (Lisp_Object marker)
3671 {
3672 unchain_marker (XMARKER (marker));
3673 free_misc (marker);
3674 }
3675
3676 \f
3677 /* Return a newly created vector or string with specified arguments as
3678 elements. If all the arguments are characters that can fit
3679 in a string of events, make a string; otherwise, make a vector.
3680
3681 Any number of arguments, even zero arguments, are allowed. */
3682
3683 Lisp_Object
3684 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3685 {
3686 ptrdiff_t i;
3687
3688 for (i = 0; i < nargs; i++)
3689 /* The things that fit in a string
3690 are characters that are in 0...127,
3691 after discarding the meta bit and all the bits above it. */
3692 if (!INTEGERP (args[i])
3693 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3694 return Fvector (nargs, args);
3695
3696 /* Since the loop exited, we know that all the things in it are
3697 characters, so we can make a string. */
3698 {
3699 Lisp_Object result;
3700
3701 result = Fmake_string (make_number (nargs), make_number (0));
3702 for (i = 0; i < nargs; i++)
3703 {
3704 SSET (result, i, XINT (args[i]));
3705 /* Move the meta bit to the right place for a string char. */
3706 if (XINT (args[i]) & CHAR_META)
3707 SSET (result, i, SREF (result, i) | 0x80);
3708 }
3709
3710 return result;
3711 }
3712 }
3713
3714 static void
3715 init_finalizer_list (struct Lisp_Finalizer *head)
3716 {
3717 head->prev = head->next = head;
3718 }
3719
3720 /* Insert FINALIZER before ELEMENT. */
3721
3722 static void
3723 finalizer_insert (struct Lisp_Finalizer *element,
3724 struct Lisp_Finalizer *finalizer)
3725 {
3726 eassert (finalizer->prev == NULL);
3727 eassert (finalizer->next == NULL);
3728 finalizer->next = element;
3729 finalizer->prev = element->prev;
3730 finalizer->prev->next = finalizer;
3731 element->prev = finalizer;
3732 }
3733
3734 static void
3735 unchain_finalizer (struct Lisp_Finalizer *finalizer)
3736 {
3737 if (finalizer->prev != NULL)
3738 {
3739 eassert (finalizer->next != NULL);
3740 finalizer->prev->next = finalizer->next;
3741 finalizer->next->prev = finalizer->prev;
3742 finalizer->prev = finalizer->next = NULL;
3743 }
3744 }
3745
3746 static void
3747 mark_finalizer_list (struct Lisp_Finalizer *head)
3748 {
3749 for (struct Lisp_Finalizer *finalizer = head->next;
3750 finalizer != head;
3751 finalizer = finalizer->next)
3752 {
3753 finalizer->base.gcmarkbit = true;
3754 mark_object (finalizer->function);
3755 }
3756 }
3757
3758 /* Move doomed finalizers to list DEST from list SRC. A doomed
3759 finalizer is one that is not GC-reachable and whose
3760 finalizer->function is non-nil. */
3761
3762 static void
3763 queue_doomed_finalizers (struct Lisp_Finalizer *dest,
3764 struct Lisp_Finalizer *src)
3765 {
3766 struct Lisp_Finalizer *finalizer = src->next;
3767 while (finalizer != src)
3768 {
3769 struct Lisp_Finalizer *next = finalizer->next;
3770 if (!finalizer->base.gcmarkbit && !NILP (finalizer->function))
3771 {
3772 unchain_finalizer (finalizer);
3773 finalizer_insert (dest, finalizer);
3774 }
3775
3776 finalizer = next;
3777 }
3778 }
3779
3780 static Lisp_Object
3781 run_finalizer_handler (Lisp_Object args)
3782 {
3783 add_to_log ("finalizer failed: %S", args);
3784 return Qnil;
3785 }
3786
3787 static void
3788 run_finalizer_function (Lisp_Object function)
3789 {
3790 ptrdiff_t count = SPECPDL_INDEX ();
3791
3792 specbind (Qinhibit_quit, Qt);
3793 internal_condition_case_1 (call0, function, Qt, run_finalizer_handler);
3794 unbind_to (count, Qnil);
3795 }
3796
3797 static void
3798 run_finalizers (struct Lisp_Finalizer *finalizers)
3799 {
3800 struct Lisp_Finalizer *finalizer;
3801 Lisp_Object function;
3802
3803 while (finalizers->next != finalizers)
3804 {
3805 finalizer = finalizers->next;
3806 eassert (finalizer->base.type == Lisp_Misc_Finalizer);
3807 unchain_finalizer (finalizer);
3808 function = finalizer->function;
3809 if (!NILP (function))
3810 {
3811 finalizer->function = Qnil;
3812 run_finalizer_function (function);
3813 }
3814 }
3815 }
3816
3817 DEFUN ("make-finalizer", Fmake_finalizer, Smake_finalizer, 1, 1, 0,
3818 doc: /* Make a finalizer that will run FUNCTION.
3819 FUNCTION will be called after garbage collection when the returned
3820 finalizer object becomes unreachable. If the finalizer object is
3821 reachable only through references from finalizer objects, it does not
3822 count as reachable for the purpose of deciding whether to run
3823 FUNCTION. FUNCTION will be run once per finalizer object. */)
3824 (Lisp_Object function)
3825 {
3826 Lisp_Object val = allocate_misc (Lisp_Misc_Finalizer);
3827 struct Lisp_Finalizer *finalizer = XFINALIZER (val);
3828 finalizer->function = function;
3829 finalizer->prev = finalizer->next = NULL;
3830 finalizer_insert (&finalizers, finalizer);
3831 return val;
3832 }
3833
3834 \f
3835 /************************************************************************
3836 Memory Full Handling
3837 ************************************************************************/
3838
3839
3840 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3841 there may have been size_t overflow so that malloc was never
3842 called, or perhaps malloc was invoked successfully but the
3843 resulting pointer had problems fitting into a tagged EMACS_INT. In
3844 either case this counts as memory being full even though malloc did
3845 not fail. */
3846
3847 void
3848 memory_full (size_t nbytes)
3849 {
3850 /* Do not go into hysterics merely because a large request failed. */
3851 bool enough_free_memory = 0;
3852 if (SPARE_MEMORY < nbytes)
3853 {
3854 void *p;
3855
3856 MALLOC_BLOCK_INPUT;
3857 p = malloc (SPARE_MEMORY);
3858 if (p)
3859 {
3860 free (p);
3861 enough_free_memory = 1;
3862 }
3863 MALLOC_UNBLOCK_INPUT;
3864 }
3865
3866 if (! enough_free_memory)
3867 {
3868 int i;
3869
3870 Vmemory_full = Qt;
3871
3872 memory_full_cons_threshold = sizeof (struct cons_block);
3873
3874 /* The first time we get here, free the spare memory. */
3875 for (i = 0; i < ARRAYELTS (spare_memory); i++)
3876 if (spare_memory[i])
3877 {
3878 if (i == 0)
3879 free (spare_memory[i]);
3880 else if (i >= 1 && i <= 4)
3881 lisp_align_free (spare_memory[i]);
3882 else
3883 lisp_free (spare_memory[i]);
3884 spare_memory[i] = 0;
3885 }
3886 }
3887
3888 /* This used to call error, but if we've run out of memory, we could
3889 get infinite recursion trying to build the string. */
3890 xsignal (Qnil, Vmemory_signal_data);
3891 }
3892
3893 /* If we released our reserve (due to running out of memory),
3894 and we have a fair amount free once again,
3895 try to set aside another reserve in case we run out once more.
3896
3897 This is called when a relocatable block is freed in ralloc.c,
3898 and also directly from this file, in case we're not using ralloc.c. */
3899
3900 void
3901 refill_memory_reserve (void)
3902 {
3903 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3904 if (spare_memory[0] == 0)
3905 spare_memory[0] = malloc (SPARE_MEMORY);
3906 if (spare_memory[1] == 0)
3907 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3908 MEM_TYPE_SPARE);
3909 if (spare_memory[2] == 0)
3910 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3911 MEM_TYPE_SPARE);
3912 if (spare_memory[3] == 0)
3913 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3914 MEM_TYPE_SPARE);
3915 if (spare_memory[4] == 0)
3916 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3917 MEM_TYPE_SPARE);
3918 if (spare_memory[5] == 0)
3919 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3920 MEM_TYPE_SPARE);
3921 if (spare_memory[6] == 0)
3922 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3923 MEM_TYPE_SPARE);
3924 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3925 Vmemory_full = Qnil;
3926 #endif
3927 }
3928 \f
3929 /************************************************************************
3930 C Stack Marking
3931 ************************************************************************/
3932
3933 /* Conservative C stack marking requires a method to identify possibly
3934 live Lisp objects given a pointer value. We do this by keeping
3935 track of blocks of Lisp data that are allocated in a red-black tree
3936 (see also the comment of mem_node which is the type of nodes in
3937 that tree). Function lisp_malloc adds information for an allocated
3938 block to the red-black tree with calls to mem_insert, and function
3939 lisp_free removes it with mem_delete. Functions live_string_p etc
3940 call mem_find to lookup information about a given pointer in the
3941 tree, and use that to determine if the pointer points to a Lisp
3942 object or not. */
3943
3944 /* Initialize this part of alloc.c. */
3945
3946 static void
3947 mem_init (void)
3948 {
3949 mem_z.left = mem_z.right = MEM_NIL;
3950 mem_z.parent = NULL;
3951 mem_z.color = MEM_BLACK;
3952 mem_z.start = mem_z.end = NULL;
3953 mem_root = MEM_NIL;
3954 }
3955
3956
3957 /* Value is a pointer to the mem_node containing START. Value is
3958 MEM_NIL if there is no node in the tree containing START. */
3959
3960 static struct mem_node *
3961 mem_find (void *start)
3962 {
3963 struct mem_node *p;
3964
3965 if (start < min_heap_address || start > max_heap_address)
3966 return MEM_NIL;
3967
3968 /* Make the search always successful to speed up the loop below. */
3969 mem_z.start = start;
3970 mem_z.end = (char *) start + 1;
3971
3972 p = mem_root;
3973 while (start < p->start || start >= p->end)
3974 p = start < p->start ? p->left : p->right;
3975 return p;
3976 }
3977
3978
3979 /* Insert a new node into the tree for a block of memory with start
3980 address START, end address END, and type TYPE. Value is a
3981 pointer to the node that was inserted. */
3982
3983 static struct mem_node *
3984 mem_insert (void *start, void *end, enum mem_type type)
3985 {
3986 struct mem_node *c, *parent, *x;
3987
3988 if (min_heap_address == NULL || start < min_heap_address)
3989 min_heap_address = start;
3990 if (max_heap_address == NULL || end > max_heap_address)
3991 max_heap_address = end;
3992
3993 /* See where in the tree a node for START belongs. In this
3994 particular application, it shouldn't happen that a node is already
3995 present. For debugging purposes, let's check that. */
3996 c = mem_root;
3997 parent = NULL;
3998
3999 while (c != MEM_NIL)
4000 {
4001 parent = c;
4002 c = start < c->start ? c->left : c->right;
4003 }
4004
4005 /* Create a new node. */
4006 #ifdef GC_MALLOC_CHECK
4007 x = malloc (sizeof *x);
4008 if (x == NULL)
4009 emacs_abort ();
4010 #else
4011 x = xmalloc (sizeof *x);
4012 #endif
4013 x->start = start;
4014 x->end = end;
4015 x->type = type;
4016 x->parent = parent;
4017 x->left = x->right = MEM_NIL;
4018 x->color = MEM_RED;
4019
4020 /* Insert it as child of PARENT or install it as root. */
4021 if (parent)
4022 {
4023 if (start < parent->start)
4024 parent->left = x;
4025 else
4026 parent->right = x;
4027 }
4028 else
4029 mem_root = x;
4030
4031 /* Re-establish red-black tree properties. */
4032 mem_insert_fixup (x);
4033
4034 return x;
4035 }
4036
4037
4038 /* Re-establish the red-black properties of the tree, and thereby
4039 balance the tree, after node X has been inserted; X is always red. */
4040
4041 static void
4042 mem_insert_fixup (struct mem_node *x)
4043 {
4044 while (x != mem_root && x->parent->color == MEM_RED)
4045 {
4046 /* X is red and its parent is red. This is a violation of
4047 red-black tree property #3. */
4048
4049 if (x->parent == x->parent->parent->left)
4050 {
4051 /* We're on the left side of our grandparent, and Y is our
4052 "uncle". */
4053 struct mem_node *y = x->parent->parent->right;
4054
4055 if (y->color == MEM_RED)
4056 {
4057 /* Uncle and parent are red but should be black because
4058 X is red. Change the colors accordingly and proceed
4059 with the grandparent. */
4060 x->parent->color = MEM_BLACK;
4061 y->color = MEM_BLACK;
4062 x->parent->parent->color = MEM_RED;
4063 x = x->parent->parent;
4064 }
4065 else
4066 {
4067 /* Parent and uncle have different colors; parent is
4068 red, uncle is black. */
4069 if (x == x->parent->right)
4070 {
4071 x = x->parent;
4072 mem_rotate_left (x);
4073 }
4074
4075 x->parent->color = MEM_BLACK;
4076 x->parent->parent->color = MEM_RED;
4077 mem_rotate_right (x->parent->parent);
4078 }
4079 }
4080 else
4081 {
4082 /* This is the symmetrical case of above. */
4083 struct mem_node *y = x->parent->parent->left;
4084
4085 if (y->color == MEM_RED)
4086 {
4087 x->parent->color = MEM_BLACK;
4088 y->color = MEM_BLACK;
4089 x->parent->parent->color = MEM_RED;
4090 x = x->parent->parent;
4091 }
4092 else
4093 {
4094 if (x == x->parent->left)
4095 {
4096 x = x->parent;
4097 mem_rotate_right (x);
4098 }
4099
4100 x->parent->color = MEM_BLACK;
4101 x->parent->parent->color = MEM_RED;
4102 mem_rotate_left (x->parent->parent);
4103 }
4104 }
4105 }
4106
4107 /* The root may have been changed to red due to the algorithm. Set
4108 it to black so that property #5 is satisfied. */
4109 mem_root->color = MEM_BLACK;
4110 }
4111
4112
4113 /* (x) (y)
4114 / \ / \
4115 a (y) ===> (x) c
4116 / \ / \
4117 b c a b */
4118
4119 static void
4120 mem_rotate_left (struct mem_node *x)
4121 {
4122 struct mem_node *y;
4123
4124 /* Turn y's left sub-tree into x's right sub-tree. */
4125 y = x->right;
4126 x->right = y->left;
4127 if (y->left != MEM_NIL)
4128 y->left->parent = x;
4129
4130 /* Y's parent was x's parent. */
4131 if (y != MEM_NIL)
4132 y->parent = x->parent;
4133
4134 /* Get the parent to point to y instead of x. */
4135 if (x->parent)
4136 {
4137 if (x == x->parent->left)
4138 x->parent->left = y;
4139 else
4140 x->parent->right = y;
4141 }
4142 else
4143 mem_root = y;
4144
4145 /* Put x on y's left. */
4146 y->left = x;
4147 if (x != MEM_NIL)
4148 x->parent = y;
4149 }
4150
4151
4152 /* (x) (Y)
4153 / \ / \
4154 (y) c ===> a (x)
4155 / \ / \
4156 a b b c */
4157
4158 static void
4159 mem_rotate_right (struct mem_node *x)
4160 {
4161 struct mem_node *y = x->left;
4162
4163 x->left = y->right;
4164 if (y->right != MEM_NIL)
4165 y->right->parent = x;
4166
4167 if (y != MEM_NIL)
4168 y->parent = x->parent;
4169 if (x->parent)
4170 {
4171 if (x == x->parent->right)
4172 x->parent->right = y;
4173 else
4174 x->parent->left = y;
4175 }
4176 else
4177 mem_root = y;
4178
4179 y->right = x;
4180 if (x != MEM_NIL)
4181 x->parent = y;
4182 }
4183
4184
4185 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4186
4187 static void
4188 mem_delete (struct mem_node *z)
4189 {
4190 struct mem_node *x, *y;
4191
4192 if (!z || z == MEM_NIL)
4193 return;
4194
4195 if (z->left == MEM_NIL || z->right == MEM_NIL)
4196 y = z;
4197 else
4198 {
4199 y = z->right;
4200 while (y->left != MEM_NIL)
4201 y = y->left;
4202 }
4203
4204 if (y->left != MEM_NIL)
4205 x = y->left;
4206 else
4207 x = y->right;
4208
4209 x->parent = y->parent;
4210 if (y->parent)
4211 {
4212 if (y == y->parent->left)
4213 y->parent->left = x;
4214 else
4215 y->parent->right = x;
4216 }
4217 else
4218 mem_root = x;
4219
4220 if (y != z)
4221 {
4222 z->start = y->start;
4223 z->end = y->end;
4224 z->type = y->type;
4225 }
4226
4227 if (y->color == MEM_BLACK)
4228 mem_delete_fixup (x);
4229
4230 #ifdef GC_MALLOC_CHECK
4231 free (y);
4232 #else
4233 xfree (y);
4234 #endif
4235 }
4236
4237
4238 /* Re-establish the red-black properties of the tree, after a
4239 deletion. */
4240
4241 static void
4242 mem_delete_fixup (struct mem_node *x)
4243 {
4244 while (x != mem_root && x->color == MEM_BLACK)
4245 {
4246 if (x == x->parent->left)
4247 {
4248 struct mem_node *w = x->parent->right;
4249
4250 if (w->color == MEM_RED)
4251 {
4252 w->color = MEM_BLACK;
4253 x->parent->color = MEM_RED;
4254 mem_rotate_left (x->parent);
4255 w = x->parent->right;
4256 }
4257
4258 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4259 {
4260 w->color = MEM_RED;
4261 x = x->parent;
4262 }
4263 else
4264 {
4265 if (w->right->color == MEM_BLACK)
4266 {
4267 w->left->color = MEM_BLACK;
4268 w->color = MEM_RED;
4269 mem_rotate_right (w);
4270 w = x->parent->right;
4271 }
4272 w->color = x->parent->color;
4273 x->parent->color = MEM_BLACK;
4274 w->right->color = MEM_BLACK;
4275 mem_rotate_left (x->parent);
4276 x = mem_root;
4277 }
4278 }
4279 else
4280 {
4281 struct mem_node *w = x->parent->left;
4282
4283 if (w->color == MEM_RED)
4284 {
4285 w->color = MEM_BLACK;
4286 x->parent->color = MEM_RED;
4287 mem_rotate_right (x->parent);
4288 w = x->parent->left;
4289 }
4290
4291 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4292 {
4293 w->color = MEM_RED;
4294 x = x->parent;
4295 }
4296 else
4297 {
4298 if (w->left->color == MEM_BLACK)
4299 {
4300 w->right->color = MEM_BLACK;
4301 w->color = MEM_RED;
4302 mem_rotate_left (w);
4303 w = x->parent->left;
4304 }
4305
4306 w->color = x->parent->color;
4307 x->parent->color = MEM_BLACK;
4308 w->left->color = MEM_BLACK;
4309 mem_rotate_right (x->parent);
4310 x = mem_root;
4311 }
4312 }
4313 }
4314
4315 x->color = MEM_BLACK;
4316 }
4317
4318
4319 /* Value is non-zero if P is a pointer to a live Lisp string on
4320 the heap. M is a pointer to the mem_block for P. */
4321
4322 static bool
4323 live_string_p (struct mem_node *m, void *p)
4324 {
4325 if (m->type == MEM_TYPE_STRING)
4326 {
4327 struct string_block *b = m->start;
4328 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4329
4330 /* P must point to the start of a Lisp_String structure, and it
4331 must not be on the free-list. */
4332 return (offset >= 0
4333 && offset % sizeof b->strings[0] == 0
4334 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4335 && ((struct Lisp_String *) p)->data != NULL);
4336 }
4337 else
4338 return 0;
4339 }
4340
4341
4342 /* Value is non-zero if P is a pointer to a live Lisp cons on
4343 the heap. M is a pointer to the mem_block for P. */
4344
4345 static bool
4346 live_cons_p (struct mem_node *m, void *p)
4347 {
4348 if (m->type == MEM_TYPE_CONS)
4349 {
4350 struct cons_block *b = m->start;
4351 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4352
4353 /* P must point to the start of a Lisp_Cons, not be
4354 one of the unused cells in the current cons block,
4355 and not be on the free-list. */
4356 return (offset >= 0
4357 && offset % sizeof b->conses[0] == 0
4358 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4359 && (b != cons_block
4360 || offset / sizeof b->conses[0] < cons_block_index)
4361 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4362 }
4363 else
4364 return 0;
4365 }
4366
4367
4368 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4369 the heap. M is a pointer to the mem_block for P. */
4370
4371 static bool
4372 live_symbol_p (struct mem_node *m, void *p)
4373 {
4374 if (m->type == MEM_TYPE_SYMBOL)
4375 {
4376 struct symbol_block *b = m->start;
4377 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4378
4379 /* P must point to the start of a Lisp_Symbol, not be
4380 one of the unused cells in the current symbol block,
4381 and not be on the free-list. */
4382 return (offset >= 0
4383 && offset % sizeof b->symbols[0] == 0
4384 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4385 && (b != symbol_block
4386 || offset / sizeof b->symbols[0] < symbol_block_index)
4387 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4388 }
4389 else
4390 return 0;
4391 }
4392
4393
4394 /* Value is non-zero if P is a pointer to a live Lisp float on
4395 the heap. M is a pointer to the mem_block for P. */
4396
4397 static bool
4398 live_float_p (struct mem_node *m, void *p)
4399 {
4400 if (m->type == MEM_TYPE_FLOAT)
4401 {
4402 struct float_block *b = m->start;
4403 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4404
4405 /* P must point to the start of a Lisp_Float and not be
4406 one of the unused cells in the current float block. */
4407 return (offset >= 0
4408 && offset % sizeof b->floats[0] == 0
4409 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4410 && (b != float_block
4411 || offset / sizeof b->floats[0] < float_block_index));
4412 }
4413 else
4414 return 0;
4415 }
4416
4417
4418 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4419 the heap. M is a pointer to the mem_block for P. */
4420
4421 static bool
4422 live_misc_p (struct mem_node *m, void *p)
4423 {
4424 if (m->type == MEM_TYPE_MISC)
4425 {
4426 struct marker_block *b = m->start;
4427 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4428
4429 /* P must point to the start of a Lisp_Misc, not be
4430 one of the unused cells in the current misc block,
4431 and not be on the free-list. */
4432 return (offset >= 0
4433 && offset % sizeof b->markers[0] == 0
4434 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4435 && (b != marker_block
4436 || offset / sizeof b->markers[0] < marker_block_index)
4437 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4438 }
4439 else
4440 return 0;
4441 }
4442
4443
4444 /* Value is non-zero if P is a pointer to a live vector-like object.
4445 M is a pointer to the mem_block for P. */
4446
4447 static bool
4448 live_vector_p (struct mem_node *m, void *p)
4449 {
4450 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4451 {
4452 /* This memory node corresponds to a vector block. */
4453 struct vector_block *block = m->start;
4454 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4455
4456 /* P is in the block's allocation range. Scan the block
4457 up to P and see whether P points to the start of some
4458 vector which is not on a free list. FIXME: check whether
4459 some allocation patterns (probably a lot of short vectors)
4460 may cause a substantial overhead of this loop. */
4461 while (VECTOR_IN_BLOCK (vector, block)
4462 && vector <= (struct Lisp_Vector *) p)
4463 {
4464 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4465 return 1;
4466 else
4467 vector = ADVANCE (vector, vector_nbytes (vector));
4468 }
4469 }
4470 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4471 /* This memory node corresponds to a large vector. */
4472 return 1;
4473 return 0;
4474 }
4475
4476
4477 /* Value is non-zero if P is a pointer to a live buffer. M is a
4478 pointer to the mem_block for P. */
4479
4480 static bool
4481 live_buffer_p (struct mem_node *m, void *p)
4482 {
4483 /* P must point to the start of the block, and the buffer
4484 must not have been killed. */
4485 return (m->type == MEM_TYPE_BUFFER
4486 && p == m->start
4487 && !NILP (((struct buffer *) p)->name_));
4488 }
4489
4490 /* Mark OBJ if we can prove it's a Lisp_Object. */
4491
4492 static void
4493 mark_maybe_object (Lisp_Object obj)
4494 {
4495 #if USE_VALGRIND
4496 if (valgrind_p)
4497 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4498 #endif
4499
4500 if (INTEGERP (obj))
4501 return;
4502
4503 void *po = XPNTR (obj);
4504 struct mem_node *m = mem_find (po);
4505
4506 if (m != MEM_NIL)
4507 {
4508 bool mark_p = false;
4509
4510 switch (XTYPE (obj))
4511 {
4512 case Lisp_String:
4513 mark_p = (live_string_p (m, po)
4514 && !STRING_MARKED_P ((struct Lisp_String *) po));
4515 break;
4516
4517 case Lisp_Cons:
4518 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4519 break;
4520
4521 case Lisp_Symbol:
4522 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4523 break;
4524
4525 case Lisp_Float:
4526 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4527 break;
4528
4529 case Lisp_Vectorlike:
4530 /* Note: can't check BUFFERP before we know it's a
4531 buffer because checking that dereferences the pointer
4532 PO which might point anywhere. */
4533 if (live_vector_p (m, po))
4534 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4535 else if (live_buffer_p (m, po))
4536 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4537 break;
4538
4539 case Lisp_Misc:
4540 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4541 break;
4542
4543 default:
4544 break;
4545 }
4546
4547 if (mark_p)
4548 mark_object (obj);
4549 }
4550 }
4551
4552 /* Return true if P can point to Lisp data, and false otherwise.
4553 Symbols are implemented via offsets not pointers, but the offsets
4554 are also multiples of GCALIGNMENT. */
4555
4556 static bool
4557 maybe_lisp_pointer (void *p)
4558 {
4559 return (uintptr_t) p % GCALIGNMENT == 0;
4560 }
4561
4562 /* If P points to Lisp data, mark that as live if it isn't already
4563 marked. */
4564
4565 static void
4566 mark_maybe_pointer (void *p)
4567 {
4568 struct mem_node *m;
4569
4570 #if USE_VALGRIND
4571 if (valgrind_p)
4572 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4573 #endif
4574
4575 if (!maybe_lisp_pointer (p))
4576 return;
4577
4578 m = mem_find (p);
4579 if (m != MEM_NIL)
4580 {
4581 Lisp_Object obj = Qnil;
4582
4583 switch (m->type)
4584 {
4585 case MEM_TYPE_NON_LISP:
4586 case MEM_TYPE_SPARE:
4587 /* Nothing to do; not a pointer to Lisp memory. */
4588 break;
4589
4590 case MEM_TYPE_BUFFER:
4591 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4592 XSETVECTOR (obj, p);
4593 break;
4594
4595 case MEM_TYPE_CONS:
4596 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4597 XSETCONS (obj, p);
4598 break;
4599
4600 case MEM_TYPE_STRING:
4601 if (live_string_p (m, p)
4602 && !STRING_MARKED_P ((struct Lisp_String *) p))
4603 XSETSTRING (obj, p);
4604 break;
4605
4606 case MEM_TYPE_MISC:
4607 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4608 XSETMISC (obj, p);
4609 break;
4610
4611 case MEM_TYPE_SYMBOL:
4612 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4613 XSETSYMBOL (obj, p);
4614 break;
4615
4616 case MEM_TYPE_FLOAT:
4617 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4618 XSETFLOAT (obj, p);
4619 break;
4620
4621 case MEM_TYPE_VECTORLIKE:
4622 case MEM_TYPE_VECTOR_BLOCK:
4623 if (live_vector_p (m, p))
4624 {
4625 Lisp_Object tem;
4626 XSETVECTOR (tem, p);
4627 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4628 obj = tem;
4629 }
4630 break;
4631
4632 default:
4633 emacs_abort ();
4634 }
4635
4636 if (!NILP (obj))
4637 mark_object (obj);
4638 }
4639 }
4640
4641
4642 /* Alignment of pointer values. Use alignof, as it sometimes returns
4643 a smaller alignment than GCC's __alignof__ and mark_memory might
4644 miss objects if __alignof__ were used. */
4645 #define GC_POINTER_ALIGNMENT alignof (void *)
4646
4647 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4648 or END+OFFSET..START. */
4649
4650 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4651 mark_memory (void *start, void *end)
4652 {
4653 void **pp;
4654 int i;
4655
4656 /* Make START the pointer to the start of the memory region,
4657 if it isn't already. */
4658 if (end < start)
4659 {
4660 void *tem = start;
4661 start = end;
4662 end = tem;
4663 }
4664
4665 /* Mark Lisp data pointed to. This is necessary because, in some
4666 situations, the C compiler optimizes Lisp objects away, so that
4667 only a pointer to them remains. Example:
4668
4669 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4670 ()
4671 {
4672 Lisp_Object obj = build_string ("test");
4673 struct Lisp_String *s = XSTRING (obj);
4674 Fgarbage_collect ();
4675 fprintf (stderr, "test '%s'\n", s->data);
4676 return Qnil;
4677 }
4678
4679 Here, `obj' isn't really used, and the compiler optimizes it
4680 away. The only reference to the life string is through the
4681 pointer `s'. */
4682
4683 for (pp = start; (void *) pp < end; pp++)
4684 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4685 {
4686 void *p = *(void **) ((char *) pp + i);
4687 mark_maybe_pointer (p);
4688 mark_maybe_object (XIL ((intptr_t) p));
4689 }
4690 }
4691
4692 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4693
4694 static bool setjmp_tested_p;
4695 static int longjmps_done;
4696
4697 #define SETJMP_WILL_LIKELY_WORK "\
4698 \n\
4699 Emacs garbage collector has been changed to use conservative stack\n\
4700 marking. Emacs has determined that the method it uses to do the\n\
4701 marking will likely work on your system, but this isn't sure.\n\
4702 \n\
4703 If you are a system-programmer, or can get the help of a local wizard\n\
4704 who is, please take a look at the function mark_stack in alloc.c, and\n\
4705 verify that the methods used are appropriate for your system.\n\
4706 \n\
4707 Please mail the result to <emacs-devel@gnu.org>.\n\
4708 "
4709
4710 #define SETJMP_WILL_NOT_WORK "\
4711 \n\
4712 Emacs garbage collector has been changed to use conservative stack\n\
4713 marking. Emacs has determined that the default method it uses to do the\n\
4714 marking will not work on your system. We will need a system-dependent\n\
4715 solution for your system.\n\
4716 \n\
4717 Please take a look at the function mark_stack in alloc.c, and\n\
4718 try to find a way to make it work on your system.\n\
4719 \n\
4720 Note that you may get false negatives, depending on the compiler.\n\
4721 In particular, you need to use -O with GCC for this test.\n\
4722 \n\
4723 Please mail the result to <emacs-devel@gnu.org>.\n\
4724 "
4725
4726
4727 /* Perform a quick check if it looks like setjmp saves registers in a
4728 jmp_buf. Print a message to stderr saying so. When this test
4729 succeeds, this is _not_ a proof that setjmp is sufficient for
4730 conservative stack marking. Only the sources or a disassembly
4731 can prove that. */
4732
4733 static void
4734 test_setjmp (void)
4735 {
4736 char buf[10];
4737 register int x;
4738 sys_jmp_buf jbuf;
4739
4740 /* Arrange for X to be put in a register. */
4741 sprintf (buf, "1");
4742 x = strlen (buf);
4743 x = 2 * x - 1;
4744
4745 sys_setjmp (jbuf);
4746 if (longjmps_done == 1)
4747 {
4748 /* Came here after the longjmp at the end of the function.
4749
4750 If x == 1, the longjmp has restored the register to its
4751 value before the setjmp, and we can hope that setjmp
4752 saves all such registers in the jmp_buf, although that
4753 isn't sure.
4754
4755 For other values of X, either something really strange is
4756 taking place, or the setjmp just didn't save the register. */
4757
4758 if (x == 1)
4759 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4760 else
4761 {
4762 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4763 exit (1);
4764 }
4765 }
4766
4767 ++longjmps_done;
4768 x = 2;
4769 if (longjmps_done == 1)
4770 sys_longjmp (jbuf, 1);
4771 }
4772
4773 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4774
4775
4776 /* Mark live Lisp objects on the C stack.
4777
4778 There are several system-dependent problems to consider when
4779 porting this to new architectures:
4780
4781 Processor Registers
4782
4783 We have to mark Lisp objects in CPU registers that can hold local
4784 variables or are used to pass parameters.
4785
4786 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4787 something that either saves relevant registers on the stack, or
4788 calls mark_maybe_object passing it each register's contents.
4789
4790 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4791 implementation assumes that calling setjmp saves registers we need
4792 to see in a jmp_buf which itself lies on the stack. This doesn't
4793 have to be true! It must be verified for each system, possibly
4794 by taking a look at the source code of setjmp.
4795
4796 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4797 can use it as a machine independent method to store all registers
4798 to the stack. In this case the macros described in the previous
4799 two paragraphs are not used.
4800
4801 Stack Layout
4802
4803 Architectures differ in the way their processor stack is organized.
4804 For example, the stack might look like this
4805
4806 +----------------+
4807 | Lisp_Object | size = 4
4808 +----------------+
4809 | something else | size = 2
4810 +----------------+
4811 | Lisp_Object | size = 4
4812 +----------------+
4813 | ... |
4814
4815 In such a case, not every Lisp_Object will be aligned equally. To
4816 find all Lisp_Object on the stack it won't be sufficient to walk
4817 the stack in steps of 4 bytes. Instead, two passes will be
4818 necessary, one starting at the start of the stack, and a second
4819 pass starting at the start of the stack + 2. Likewise, if the
4820 minimal alignment of Lisp_Objects on the stack is 1, four passes
4821 would be necessary, each one starting with one byte more offset
4822 from the stack start. */
4823
4824 static void
4825 mark_stack (void *end)
4826 {
4827
4828 /* This assumes that the stack is a contiguous region in memory. If
4829 that's not the case, something has to be done here to iterate
4830 over the stack segments. */
4831 mark_memory (stack_base, end);
4832
4833 /* Allow for marking a secondary stack, like the register stack on the
4834 ia64. */
4835 #ifdef GC_MARK_SECONDARY_STACK
4836 GC_MARK_SECONDARY_STACK ();
4837 #endif
4838 }
4839
4840 static bool
4841 c_symbol_p (struct Lisp_Symbol *sym)
4842 {
4843 char *lispsym_ptr = (char *) lispsym;
4844 char *sym_ptr = (char *) sym;
4845 ptrdiff_t lispsym_offset = sym_ptr - lispsym_ptr;
4846 return 0 <= lispsym_offset && lispsym_offset < sizeof lispsym;
4847 }
4848
4849 /* Determine whether it is safe to access memory at address P. */
4850 static int
4851 valid_pointer_p (void *p)
4852 {
4853 #ifdef WINDOWSNT
4854 return w32_valid_pointer_p (p, 16);
4855 #else
4856
4857 if (ADDRESS_SANITIZER)
4858 return p ? -1 : 0;
4859
4860 int fd[2];
4861
4862 /* Obviously, we cannot just access it (we would SEGV trying), so we
4863 trick the o/s to tell us whether p is a valid pointer.
4864 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4865 not validate p in that case. */
4866
4867 if (emacs_pipe (fd) == 0)
4868 {
4869 bool valid = emacs_write (fd[1], p, 16) == 16;
4870 emacs_close (fd[1]);
4871 emacs_close (fd[0]);
4872 return valid;
4873 }
4874
4875 return -1;
4876 #endif
4877 }
4878
4879 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4880 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4881 cannot validate OBJ. This function can be quite slow, so its primary
4882 use is the manual debugging. The only exception is print_object, where
4883 we use it to check whether the memory referenced by the pointer of
4884 Lisp_Save_Value object contains valid objects. */
4885
4886 int
4887 valid_lisp_object_p (Lisp_Object obj)
4888 {
4889 if (INTEGERP (obj))
4890 return 1;
4891
4892 void *p = XPNTR (obj);
4893 if (PURE_P (p))
4894 return 1;
4895
4896 if (SYMBOLP (obj) && c_symbol_p (p))
4897 return ((char *) p - (char *) lispsym) % sizeof lispsym[0] == 0;
4898
4899 if (p == &buffer_defaults || p == &buffer_local_symbols)
4900 return 2;
4901
4902 struct mem_node *m = mem_find (p);
4903
4904 if (m == MEM_NIL)
4905 {
4906 int valid = valid_pointer_p (p);
4907 if (valid <= 0)
4908 return valid;
4909
4910 if (SUBRP (obj))
4911 return 1;
4912
4913 return 0;
4914 }
4915
4916 switch (m->type)
4917 {
4918 case MEM_TYPE_NON_LISP:
4919 case MEM_TYPE_SPARE:
4920 return 0;
4921
4922 case MEM_TYPE_BUFFER:
4923 return live_buffer_p (m, p) ? 1 : 2;
4924
4925 case MEM_TYPE_CONS:
4926 return live_cons_p (m, p);
4927
4928 case MEM_TYPE_STRING:
4929 return live_string_p (m, p);
4930
4931 case MEM_TYPE_MISC:
4932 return live_misc_p (m, p);
4933
4934 case MEM_TYPE_SYMBOL:
4935 return live_symbol_p (m, p);
4936
4937 case MEM_TYPE_FLOAT:
4938 return live_float_p (m, p);
4939
4940 case MEM_TYPE_VECTORLIKE:
4941 case MEM_TYPE_VECTOR_BLOCK:
4942 return live_vector_p (m, p);
4943
4944 default:
4945 break;
4946 }
4947
4948 return 0;
4949 }
4950
4951 /***********************************************************************
4952 Pure Storage Management
4953 ***********************************************************************/
4954
4955 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4956 pointer to it. TYPE is the Lisp type for which the memory is
4957 allocated. TYPE < 0 means it's not used for a Lisp object. */
4958
4959 static void *
4960 pure_alloc (size_t size, int type)
4961 {
4962 void *result;
4963
4964 again:
4965 if (type >= 0)
4966 {
4967 /* Allocate space for a Lisp object from the beginning of the free
4968 space with taking account of alignment. */
4969 result = ALIGN (purebeg + pure_bytes_used_lisp, GCALIGNMENT);
4970 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4971 }
4972 else
4973 {
4974 /* Allocate space for a non-Lisp object from the end of the free
4975 space. */
4976 pure_bytes_used_non_lisp += size;
4977 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4978 }
4979 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4980
4981 if (pure_bytes_used <= pure_size)
4982 return result;
4983
4984 /* Don't allocate a large amount here,
4985 because it might get mmap'd and then its address
4986 might not be usable. */
4987 purebeg = xmalloc (10000);
4988 pure_size = 10000;
4989 pure_bytes_used_before_overflow += pure_bytes_used - size;
4990 pure_bytes_used = 0;
4991 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4992 goto again;
4993 }
4994
4995
4996 /* Print a warning if PURESIZE is too small. */
4997
4998 void
4999 check_pure_size (void)
5000 {
5001 if (pure_bytes_used_before_overflow)
5002 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5003 " bytes needed)"),
5004 pure_bytes_used + pure_bytes_used_before_overflow);
5005 }
5006
5007
5008 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5009 the non-Lisp data pool of the pure storage, and return its start
5010 address. Return NULL if not found. */
5011
5012 static char *
5013 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5014 {
5015 int i;
5016 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5017 const unsigned char *p;
5018 char *non_lisp_beg;
5019
5020 if (pure_bytes_used_non_lisp <= nbytes)
5021 return NULL;
5022
5023 /* Set up the Boyer-Moore table. */
5024 skip = nbytes + 1;
5025 for (i = 0; i < 256; i++)
5026 bm_skip[i] = skip;
5027
5028 p = (const unsigned char *) data;
5029 while (--skip > 0)
5030 bm_skip[*p++] = skip;
5031
5032 last_char_skip = bm_skip['\0'];
5033
5034 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5035 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5036
5037 /* See the comments in the function `boyer_moore' (search.c) for the
5038 use of `infinity'. */
5039 infinity = pure_bytes_used_non_lisp + 1;
5040 bm_skip['\0'] = infinity;
5041
5042 p = (const unsigned char *) non_lisp_beg + nbytes;
5043 start = 0;
5044 do
5045 {
5046 /* Check the last character (== '\0'). */
5047 do
5048 {
5049 start += bm_skip[*(p + start)];
5050 }
5051 while (start <= start_max);
5052
5053 if (start < infinity)
5054 /* Couldn't find the last character. */
5055 return NULL;
5056
5057 /* No less than `infinity' means we could find the last
5058 character at `p[start - infinity]'. */
5059 start -= infinity;
5060
5061 /* Check the remaining characters. */
5062 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5063 /* Found. */
5064 return non_lisp_beg + start;
5065
5066 start += last_char_skip;
5067 }
5068 while (start <= start_max);
5069
5070 return NULL;
5071 }
5072
5073
5074 /* Return a string allocated in pure space. DATA is a buffer holding
5075 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5076 means make the result string multibyte.
5077
5078 Must get an error if pure storage is full, since if it cannot hold
5079 a large string it may be able to hold conses that point to that
5080 string; then the string is not protected from gc. */
5081
5082 Lisp_Object
5083 make_pure_string (const char *data,
5084 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5085 {
5086 Lisp_Object string;
5087 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5088 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5089 if (s->data == NULL)
5090 {
5091 s->data = pure_alloc (nbytes + 1, -1);
5092 memcpy (s->data, data, nbytes);
5093 s->data[nbytes] = '\0';
5094 }
5095 s->size = nchars;
5096 s->size_byte = multibyte ? nbytes : -1;
5097 s->intervals = NULL;
5098 XSETSTRING (string, s);
5099 return string;
5100 }
5101
5102 /* Return a string allocated in pure space. Do not
5103 allocate the string data, just point to DATA. */
5104
5105 Lisp_Object
5106 make_pure_c_string (const char *data, ptrdiff_t nchars)
5107 {
5108 Lisp_Object string;
5109 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5110 s->size = nchars;
5111 s->size_byte = -1;
5112 s->data = (unsigned char *) data;
5113 s->intervals = NULL;
5114 XSETSTRING (string, s);
5115 return string;
5116 }
5117
5118 static Lisp_Object purecopy (Lisp_Object obj);
5119
5120 /* Return a cons allocated from pure space. Give it pure copies
5121 of CAR as car and CDR as cdr. */
5122
5123 Lisp_Object
5124 pure_cons (Lisp_Object car, Lisp_Object cdr)
5125 {
5126 Lisp_Object new;
5127 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5128 XSETCONS (new, p);
5129 XSETCAR (new, purecopy (car));
5130 XSETCDR (new, purecopy (cdr));
5131 return new;
5132 }
5133
5134
5135 /* Value is a float object with value NUM allocated from pure space. */
5136
5137 static Lisp_Object
5138 make_pure_float (double num)
5139 {
5140 Lisp_Object new;
5141 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5142 XSETFLOAT (new, p);
5143 XFLOAT_INIT (new, num);
5144 return new;
5145 }
5146
5147
5148 /* Return a vector with room for LEN Lisp_Objects allocated from
5149 pure space. */
5150
5151 static Lisp_Object
5152 make_pure_vector (ptrdiff_t len)
5153 {
5154 Lisp_Object new;
5155 size_t size = header_size + len * word_size;
5156 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5157 XSETVECTOR (new, p);
5158 XVECTOR (new)->header.size = len;
5159 return new;
5160 }
5161
5162 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5163 doc: /* Make a copy of object OBJ in pure storage.
5164 Recursively copies contents of vectors and cons cells.
5165 Does not copy symbols. Copies strings without text properties. */)
5166 (register Lisp_Object obj)
5167 {
5168 if (NILP (Vpurify_flag))
5169 return obj;
5170 else if (MARKERP (obj) || OVERLAYP (obj)
5171 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5172 /* Can't purify those. */
5173 return obj;
5174 else
5175 return purecopy (obj);
5176 }
5177
5178 static Lisp_Object
5179 purecopy (Lisp_Object obj)
5180 {
5181 if (INTEGERP (obj)
5182 || (! SYMBOLP (obj) && PURE_P (XPNTR_OR_SYMBOL_OFFSET (obj)))
5183 || SUBRP (obj))
5184 return obj; /* Already pure. */
5185
5186 if (STRINGP (obj) && XSTRING (obj)->intervals)
5187 message_with_string ("Dropping text-properties while making string `%s' pure",
5188 obj, true);
5189
5190 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5191 {
5192 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5193 if (!NILP (tmp))
5194 return tmp;
5195 }
5196
5197 if (CONSP (obj))
5198 obj = pure_cons (XCAR (obj), XCDR (obj));
5199 else if (FLOATP (obj))
5200 obj = make_pure_float (XFLOAT_DATA (obj));
5201 else if (STRINGP (obj))
5202 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5203 SBYTES (obj),
5204 STRING_MULTIBYTE (obj));
5205 else if (COMPILEDP (obj) || VECTORP (obj) || HASH_TABLE_P (obj))
5206 {
5207 struct Lisp_Vector *objp = XVECTOR (obj);
5208 ptrdiff_t nbytes = vector_nbytes (objp);
5209 struct Lisp_Vector *vec = pure_alloc (nbytes, Lisp_Vectorlike);
5210 register ptrdiff_t i;
5211 ptrdiff_t size = ASIZE (obj);
5212 if (size & PSEUDOVECTOR_FLAG)
5213 size &= PSEUDOVECTOR_SIZE_MASK;
5214 memcpy (vec, objp, nbytes);
5215 for (i = 0; i < size; i++)
5216 vec->contents[i] = purecopy (vec->contents[i]);
5217 XSETVECTOR (obj, vec);
5218 }
5219 else if (SYMBOLP (obj))
5220 {
5221 if (!XSYMBOL (obj)->pinned && !c_symbol_p (XSYMBOL (obj)))
5222 { /* We can't purify them, but they appear in many pure objects.
5223 Mark them as `pinned' so we know to mark them at every GC cycle. */
5224 XSYMBOL (obj)->pinned = true;
5225 symbol_block_pinned = symbol_block;
5226 }
5227 /* Don't hash-cons it. */
5228 return obj;
5229 }
5230 else
5231 {
5232 Lisp_Object fmt = build_pure_c_string ("Don't know how to purify: %S");
5233 Fsignal (Qerror, list1 (CALLN (Fformat, fmt, obj)));
5234 }
5235
5236 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5237 Fputhash (obj, obj, Vpurify_flag);
5238
5239 return obj;
5240 }
5241
5242
5243 \f
5244 /***********************************************************************
5245 Protection from GC
5246 ***********************************************************************/
5247
5248 /* Put an entry in staticvec, pointing at the variable with address
5249 VARADDRESS. */
5250
5251 void
5252 staticpro (Lisp_Object *varaddress)
5253 {
5254 if (staticidx >= NSTATICS)
5255 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5256 staticvec[staticidx++] = varaddress;
5257 }
5258
5259 \f
5260 /***********************************************************************
5261 Protection from GC
5262 ***********************************************************************/
5263
5264 /* Temporarily prevent garbage collection. */
5265
5266 ptrdiff_t
5267 inhibit_garbage_collection (void)
5268 {
5269 ptrdiff_t count = SPECPDL_INDEX ();
5270
5271 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5272 return count;
5273 }
5274
5275 /* Used to avoid possible overflows when
5276 converting from C to Lisp integers. */
5277
5278 static Lisp_Object
5279 bounded_number (EMACS_INT number)
5280 {
5281 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5282 }
5283
5284 /* Calculate total bytes of live objects. */
5285
5286 static size_t
5287 total_bytes_of_live_objects (void)
5288 {
5289 size_t tot = 0;
5290 tot += total_conses * sizeof (struct Lisp_Cons);
5291 tot += total_symbols * sizeof (struct Lisp_Symbol);
5292 tot += total_markers * sizeof (union Lisp_Misc);
5293 tot += total_string_bytes;
5294 tot += total_vector_slots * word_size;
5295 tot += total_floats * sizeof (struct Lisp_Float);
5296 tot += total_intervals * sizeof (struct interval);
5297 tot += total_strings * sizeof (struct Lisp_String);
5298 return tot;
5299 }
5300
5301 #ifdef HAVE_WINDOW_SYSTEM
5302
5303 /* This code has a few issues on MS-Windows, see Bug#15876 and Bug#16140. */
5304
5305 #if !defined (HAVE_NTGUI)
5306
5307 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5308 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5309
5310 static Lisp_Object
5311 compact_font_cache_entry (Lisp_Object entry)
5312 {
5313 Lisp_Object tail, *prev = &entry;
5314
5315 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5316 {
5317 bool drop = 0;
5318 Lisp_Object obj = XCAR (tail);
5319
5320 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5321 if (CONSP (obj) && FONT_SPEC_P (XCAR (obj))
5322 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj)))
5323 && VECTORP (XCDR (obj)))
5324 {
5325 ptrdiff_t i, size = ASIZE (XCDR (obj)) & ~ARRAY_MARK_FLAG;
5326
5327 /* If font-spec is not marked, most likely all font-entities
5328 are not marked too. But we must be sure that nothing is
5329 marked within OBJ before we really drop it. */
5330 for (i = 0; i < size; i++)
5331 {
5332 Lisp_Object objlist;
5333
5334 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj), i))))
5335 break;
5336
5337 objlist = AREF (AREF (XCDR (obj), i), FONT_OBJLIST_INDEX);
5338 for (; CONSP (objlist); objlist = XCDR (objlist))
5339 {
5340 Lisp_Object val = XCAR (objlist);
5341 struct font *font = XFONT_OBJECT (val);
5342
5343 if (!NILP (AREF (val, FONT_TYPE_INDEX))
5344 && VECTOR_MARKED_P(font))
5345 break;
5346 }
5347 if (CONSP (objlist))
5348 {
5349 /* Found a marked font, bail out. */
5350 break;
5351 }
5352 }
5353
5354 if (i == size)
5355 {
5356 /* No marked fonts were found, so this entire font
5357 entity can be dropped. */
5358 drop = 1;
5359 }
5360 }
5361 if (drop)
5362 *prev = XCDR (tail);
5363 else
5364 prev = xcdr_addr (tail);
5365 }
5366 return entry;
5367 }
5368
5369 #endif /* not HAVE_NTGUI */
5370
5371 /* Compact font caches on all terminals and mark
5372 everything which is still here after compaction. */
5373
5374 static void
5375 compact_font_caches (void)
5376 {
5377 struct terminal *t;
5378
5379 for (t = terminal_list; t; t = t->next_terminal)
5380 {
5381 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5382 #if !defined (HAVE_NTGUI)
5383 if (CONSP (cache))
5384 {
5385 Lisp_Object entry;
5386
5387 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5388 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5389 }
5390 #endif /* not HAVE_NTGUI */
5391 mark_object (cache);
5392 }
5393 }
5394
5395 #else /* not HAVE_WINDOW_SYSTEM */
5396
5397 #define compact_font_caches() (void)(0)
5398
5399 #endif /* HAVE_WINDOW_SYSTEM */
5400
5401 /* Remove (MARKER . DATA) entries with unmarked MARKER
5402 from buffer undo LIST and return changed list. */
5403
5404 static Lisp_Object
5405 compact_undo_list (Lisp_Object list)
5406 {
5407 Lisp_Object tail, *prev = &list;
5408
5409 for (tail = list; CONSP (tail); tail = XCDR (tail))
5410 {
5411 if (CONSP (XCAR (tail))
5412 && MARKERP (XCAR (XCAR (tail)))
5413 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5414 *prev = XCDR (tail);
5415 else
5416 prev = xcdr_addr (tail);
5417 }
5418 return list;
5419 }
5420
5421 static void
5422 mark_pinned_symbols (void)
5423 {
5424 struct symbol_block *sblk;
5425 int lim = (symbol_block_pinned == symbol_block
5426 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5427
5428 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5429 {
5430 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5431 for (; sym < end; ++sym)
5432 if (sym->s.pinned)
5433 mark_object (make_lisp_symbol (&sym->s));
5434
5435 lim = SYMBOL_BLOCK_SIZE;
5436 }
5437 }
5438
5439 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5440 separate function so that we could limit mark_stack in searching
5441 the stack frames below this function, thus avoiding the rare cases
5442 where mark_stack finds values that look like live Lisp objects on
5443 portions of stack that couldn't possibly contain such live objects.
5444 For more details of this, see the discussion at
5445 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5446 static Lisp_Object
5447 garbage_collect_1 (void *end)
5448 {
5449 struct buffer *nextb;
5450 char stack_top_variable;
5451 ptrdiff_t i;
5452 bool message_p;
5453 ptrdiff_t count = SPECPDL_INDEX ();
5454 struct timespec start;
5455 Lisp_Object retval = Qnil;
5456 size_t tot_before = 0;
5457
5458 if (abort_on_gc)
5459 emacs_abort ();
5460
5461 /* Can't GC if pure storage overflowed because we can't determine
5462 if something is a pure object or not. */
5463 if (pure_bytes_used_before_overflow)
5464 return Qnil;
5465
5466 /* Record this function, so it appears on the profiler's backtraces. */
5467 record_in_backtrace (Qautomatic_gc, 0, 0);
5468
5469 check_cons_list ();
5470
5471 /* Don't keep undo information around forever.
5472 Do this early on, so it is no problem if the user quits. */
5473 FOR_EACH_BUFFER (nextb)
5474 compact_buffer (nextb);
5475
5476 if (profiler_memory_running)
5477 tot_before = total_bytes_of_live_objects ();
5478
5479 start = current_timespec ();
5480
5481 /* In case user calls debug_print during GC,
5482 don't let that cause a recursive GC. */
5483 consing_since_gc = 0;
5484
5485 /* Save what's currently displayed in the echo area. */
5486 message_p = push_message ();
5487 record_unwind_protect_void (pop_message_unwind);
5488
5489 /* Save a copy of the contents of the stack, for debugging. */
5490 #if MAX_SAVE_STACK > 0
5491 if (NILP (Vpurify_flag))
5492 {
5493 char *stack;
5494 ptrdiff_t stack_size;
5495 if (&stack_top_variable < stack_bottom)
5496 {
5497 stack = &stack_top_variable;
5498 stack_size = stack_bottom - &stack_top_variable;
5499 }
5500 else
5501 {
5502 stack = stack_bottom;
5503 stack_size = &stack_top_variable - stack_bottom;
5504 }
5505 if (stack_size <= MAX_SAVE_STACK)
5506 {
5507 if (stack_copy_size < stack_size)
5508 {
5509 stack_copy = xrealloc (stack_copy, stack_size);
5510 stack_copy_size = stack_size;
5511 }
5512 no_sanitize_memcpy (stack_copy, stack, stack_size);
5513 }
5514 }
5515 #endif /* MAX_SAVE_STACK > 0 */
5516
5517 if (garbage_collection_messages)
5518 message1_nolog ("Garbage collecting...");
5519
5520 block_input ();
5521
5522 shrink_regexp_cache ();
5523
5524 gc_in_progress = 1;
5525
5526 /* Mark all the special slots that serve as the roots of accessibility. */
5527
5528 mark_buffer (&buffer_defaults);
5529 mark_buffer (&buffer_local_symbols);
5530
5531 for (i = 0; i < ARRAYELTS (lispsym); i++)
5532 mark_object (builtin_lisp_symbol (i));
5533
5534 for (i = 0; i < staticidx; i++)
5535 mark_object (*staticvec[i]);
5536
5537 mark_pinned_symbols ();
5538 mark_specpdl ();
5539 mark_terminals ();
5540 mark_kboards ();
5541
5542 #ifdef USE_GTK
5543 xg_mark_data ();
5544 #endif
5545
5546 mark_stack (end);
5547
5548 {
5549 struct handler *handler;
5550 for (handler = handlerlist; handler; handler = handler->next)
5551 {
5552 mark_object (handler->tag_or_ch);
5553 mark_object (handler->val);
5554 }
5555 }
5556 #ifdef HAVE_WINDOW_SYSTEM
5557 mark_fringe_data ();
5558 #endif
5559
5560 /* Everything is now marked, except for the data in font caches,
5561 undo lists, and finalizers. The first two are compacted by
5562 removing an items which aren't reachable otherwise. */
5563
5564 compact_font_caches ();
5565
5566 FOR_EACH_BUFFER (nextb)
5567 {
5568 if (!EQ (BVAR (nextb, undo_list), Qt))
5569 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5570 /* Now that we have stripped the elements that need not be
5571 in the undo_list any more, we can finally mark the list. */
5572 mark_object (BVAR (nextb, undo_list));
5573 }
5574
5575 /* Now pre-sweep finalizers. Here, we add any unmarked finalizers
5576 to doomed_finalizers so we can run their associated functions
5577 after GC. It's important to scan finalizers at this stage so
5578 that we can be sure that unmarked finalizers are really
5579 unreachable except for references from their associated functions
5580 and from other finalizers. */
5581
5582 queue_doomed_finalizers (&doomed_finalizers, &finalizers);
5583 mark_finalizer_list (&doomed_finalizers);
5584
5585 gc_sweep ();
5586
5587 relocate_byte_stack ();
5588
5589 /* Clear the mark bits that we set in certain root slots. */
5590 VECTOR_UNMARK (&buffer_defaults);
5591 VECTOR_UNMARK (&buffer_local_symbols);
5592
5593 check_cons_list ();
5594
5595 gc_in_progress = 0;
5596
5597 unblock_input ();
5598
5599 consing_since_gc = 0;
5600 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5601 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5602
5603 gc_relative_threshold = 0;
5604 if (FLOATP (Vgc_cons_percentage))
5605 { /* Set gc_cons_combined_threshold. */
5606 double tot = total_bytes_of_live_objects ();
5607
5608 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5609 if (0 < tot)
5610 {
5611 if (tot < TYPE_MAXIMUM (EMACS_INT))
5612 gc_relative_threshold = tot;
5613 else
5614 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5615 }
5616 }
5617
5618 if (garbage_collection_messages)
5619 {
5620 if (message_p || minibuf_level > 0)
5621 restore_message ();
5622 else
5623 message1_nolog ("Garbage collecting...done");
5624 }
5625
5626 unbind_to (count, Qnil);
5627
5628 Lisp_Object total[] = {
5629 list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5630 bounded_number (total_conses),
5631 bounded_number (total_free_conses)),
5632 list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5633 bounded_number (total_symbols),
5634 bounded_number (total_free_symbols)),
5635 list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5636 bounded_number (total_markers),
5637 bounded_number (total_free_markers)),
5638 list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5639 bounded_number (total_strings),
5640 bounded_number (total_free_strings)),
5641 list3 (Qstring_bytes, make_number (1),
5642 bounded_number (total_string_bytes)),
5643 list3 (Qvectors,
5644 make_number (header_size + sizeof (Lisp_Object)),
5645 bounded_number (total_vectors)),
5646 list4 (Qvector_slots, make_number (word_size),
5647 bounded_number (total_vector_slots),
5648 bounded_number (total_free_vector_slots)),
5649 list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5650 bounded_number (total_floats),
5651 bounded_number (total_free_floats)),
5652 list4 (Qintervals, make_number (sizeof (struct interval)),
5653 bounded_number (total_intervals),
5654 bounded_number (total_free_intervals)),
5655 list3 (Qbuffers, make_number (sizeof (struct buffer)),
5656 bounded_number (total_buffers)),
5657
5658 #ifdef DOUG_LEA_MALLOC
5659 list4 (Qheap, make_number (1024),
5660 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5661 bounded_number ((mallinfo ().fordblks + 1023) >> 10)),
5662 #endif
5663 };
5664 retval = CALLMANY (Flist, total);
5665
5666 /* GC is complete: now we can run our finalizer callbacks. */
5667 run_finalizers (&doomed_finalizers);
5668
5669 if (!NILP (Vpost_gc_hook))
5670 {
5671 ptrdiff_t gc_count = inhibit_garbage_collection ();
5672 safe_run_hooks (Qpost_gc_hook);
5673 unbind_to (gc_count, Qnil);
5674 }
5675
5676 /* Accumulate statistics. */
5677 if (FLOATP (Vgc_elapsed))
5678 {
5679 struct timespec since_start = timespec_sub (current_timespec (), start);
5680 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5681 + timespectod (since_start));
5682 }
5683
5684 gcs_done++;
5685
5686 /* Collect profiling data. */
5687 if (profiler_memory_running)
5688 {
5689 size_t swept = 0;
5690 size_t tot_after = total_bytes_of_live_objects ();
5691 if (tot_before > tot_after)
5692 swept = tot_before - tot_after;
5693 malloc_probe (swept);
5694 }
5695
5696 return retval;
5697 }
5698
5699 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5700 doc: /* Reclaim storage for Lisp objects no longer needed.
5701 Garbage collection happens automatically if you cons more than
5702 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5703 `garbage-collect' normally returns a list with info on amount of space in use,
5704 where each entry has the form (NAME SIZE USED FREE), where:
5705 - NAME is a symbol describing the kind of objects this entry represents,
5706 - SIZE is the number of bytes used by each one,
5707 - USED is the number of those objects that were found live in the heap,
5708 - FREE is the number of those objects that are not live but that Emacs
5709 keeps around for future allocations (maybe because it does not know how
5710 to return them to the OS).
5711 However, if there was overflow in pure space, `garbage-collect'
5712 returns nil, because real GC can't be done.
5713 See Info node `(elisp)Garbage Collection'. */)
5714 (void)
5715 {
5716 void *end;
5717
5718 #ifdef HAVE___BUILTIN_UNWIND_INIT
5719 /* Force callee-saved registers and register windows onto the stack.
5720 This is the preferred method if available, obviating the need for
5721 machine dependent methods. */
5722 __builtin_unwind_init ();
5723 end = &end;
5724 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5725 #ifndef GC_SAVE_REGISTERS_ON_STACK
5726 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5727 union aligned_jmpbuf {
5728 Lisp_Object o;
5729 sys_jmp_buf j;
5730 } j;
5731 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
5732 #endif
5733 /* This trick flushes the register windows so that all the state of
5734 the process is contained in the stack. */
5735 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5736 needed on ia64 too. See mach_dep.c, where it also says inline
5737 assembler doesn't work with relevant proprietary compilers. */
5738 #ifdef __sparc__
5739 #if defined (__sparc64__) && defined (__FreeBSD__)
5740 /* FreeBSD does not have a ta 3 handler. */
5741 asm ("flushw");
5742 #else
5743 asm ("ta 3");
5744 #endif
5745 #endif
5746
5747 /* Save registers that we need to see on the stack. We need to see
5748 registers used to hold register variables and registers used to
5749 pass parameters. */
5750 #ifdef GC_SAVE_REGISTERS_ON_STACK
5751 GC_SAVE_REGISTERS_ON_STACK (end);
5752 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5753
5754 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5755 setjmp will definitely work, test it
5756 and print a message with the result
5757 of the test. */
5758 if (!setjmp_tested_p)
5759 {
5760 setjmp_tested_p = 1;
5761 test_setjmp ();
5762 }
5763 #endif /* GC_SETJMP_WORKS */
5764
5765 sys_setjmp (j.j);
5766 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
5767 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5768 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5769 return garbage_collect_1 (end);
5770 }
5771
5772 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5773 only interesting objects referenced from glyphs are strings. */
5774
5775 static void
5776 mark_glyph_matrix (struct glyph_matrix *matrix)
5777 {
5778 struct glyph_row *row = matrix->rows;
5779 struct glyph_row *end = row + matrix->nrows;
5780
5781 for (; row < end; ++row)
5782 if (row->enabled_p)
5783 {
5784 int area;
5785 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5786 {
5787 struct glyph *glyph = row->glyphs[area];
5788 struct glyph *end_glyph = glyph + row->used[area];
5789
5790 for (; glyph < end_glyph; ++glyph)
5791 if (STRINGP (glyph->object)
5792 && !STRING_MARKED_P (XSTRING (glyph->object)))
5793 mark_object (glyph->object);
5794 }
5795 }
5796 }
5797
5798 /* Mark reference to a Lisp_Object.
5799 If the object referred to has not been seen yet, recursively mark
5800 all the references contained in it. */
5801
5802 #define LAST_MARKED_SIZE 500
5803 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5804 static int last_marked_index;
5805
5806 /* For debugging--call abort when we cdr down this many
5807 links of a list, in mark_object. In debugging,
5808 the call to abort will hit a breakpoint.
5809 Normally this is zero and the check never goes off. */
5810 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5811
5812 static void
5813 mark_vectorlike (struct Lisp_Vector *ptr)
5814 {
5815 ptrdiff_t size = ptr->header.size;
5816 ptrdiff_t i;
5817
5818 eassert (!VECTOR_MARKED_P (ptr));
5819 VECTOR_MARK (ptr); /* Else mark it. */
5820 if (size & PSEUDOVECTOR_FLAG)
5821 size &= PSEUDOVECTOR_SIZE_MASK;
5822
5823 /* Note that this size is not the memory-footprint size, but only
5824 the number of Lisp_Object fields that we should trace.
5825 The distinction is used e.g. by Lisp_Process which places extra
5826 non-Lisp_Object fields at the end of the structure... */
5827 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5828 mark_object (ptr->contents[i]);
5829 }
5830
5831 /* Like mark_vectorlike but optimized for char-tables (and
5832 sub-char-tables) assuming that the contents are mostly integers or
5833 symbols. */
5834
5835 static void
5836 mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
5837 {
5838 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5839 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
5840 int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);
5841
5842 eassert (!VECTOR_MARKED_P (ptr));
5843 VECTOR_MARK (ptr);
5844 for (i = idx; i < size; i++)
5845 {
5846 Lisp_Object val = ptr->contents[i];
5847
5848 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5849 continue;
5850 if (SUB_CHAR_TABLE_P (val))
5851 {
5852 if (! VECTOR_MARKED_P (XVECTOR (val)))
5853 mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
5854 }
5855 else
5856 mark_object (val);
5857 }
5858 }
5859
5860 NO_INLINE /* To reduce stack depth in mark_object. */
5861 static Lisp_Object
5862 mark_compiled (struct Lisp_Vector *ptr)
5863 {
5864 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5865
5866 VECTOR_MARK (ptr);
5867 for (i = 0; i < size; i++)
5868 if (i != COMPILED_CONSTANTS)
5869 mark_object (ptr->contents[i]);
5870 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
5871 }
5872
5873 /* Mark the chain of overlays starting at PTR. */
5874
5875 static void
5876 mark_overlay (struct Lisp_Overlay *ptr)
5877 {
5878 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5879 {
5880 ptr->gcmarkbit = 1;
5881 /* These two are always markers and can be marked fast. */
5882 XMARKER (ptr->start)->gcmarkbit = 1;
5883 XMARKER (ptr->end)->gcmarkbit = 1;
5884 mark_object (ptr->plist);
5885 }
5886 }
5887
5888 /* Mark Lisp_Objects and special pointers in BUFFER. */
5889
5890 static void
5891 mark_buffer (struct buffer *buffer)
5892 {
5893 /* This is handled much like other pseudovectors... */
5894 mark_vectorlike ((struct Lisp_Vector *) buffer);
5895
5896 /* ...but there are some buffer-specific things. */
5897
5898 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5899
5900 /* For now, we just don't mark the undo_list. It's done later in
5901 a special way just before the sweep phase, and after stripping
5902 some of its elements that are not needed any more. */
5903
5904 mark_overlay (buffer->overlays_before);
5905 mark_overlay (buffer->overlays_after);
5906
5907 /* If this is an indirect buffer, mark its base buffer. */
5908 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5909 mark_buffer (buffer->base_buffer);
5910 }
5911
5912 /* Mark Lisp faces in the face cache C. */
5913
5914 NO_INLINE /* To reduce stack depth in mark_object. */
5915 static void
5916 mark_face_cache (struct face_cache *c)
5917 {
5918 if (c)
5919 {
5920 int i, j;
5921 for (i = 0; i < c->used; ++i)
5922 {
5923 struct face *face = FACE_FROM_ID (c->f, i);
5924
5925 if (face)
5926 {
5927 if (face->font && !VECTOR_MARKED_P (face->font))
5928 mark_vectorlike ((struct Lisp_Vector *) face->font);
5929
5930 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5931 mark_object (face->lface[j]);
5932 }
5933 }
5934 }
5935 }
5936
5937 NO_INLINE /* To reduce stack depth in mark_object. */
5938 static void
5939 mark_localized_symbol (struct Lisp_Symbol *ptr)
5940 {
5941 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5942 Lisp_Object where = blv->where;
5943 /* If the value is set up for a killed buffer or deleted
5944 frame, restore its global binding. If the value is
5945 forwarded to a C variable, either it's not a Lisp_Object
5946 var, or it's staticpro'd already. */
5947 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
5948 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
5949 swap_in_global_binding (ptr);
5950 mark_object (blv->where);
5951 mark_object (blv->valcell);
5952 mark_object (blv->defcell);
5953 }
5954
5955 NO_INLINE /* To reduce stack depth in mark_object. */
5956 static void
5957 mark_save_value (struct Lisp_Save_Value *ptr)
5958 {
5959 /* If `save_type' is zero, `data[0].pointer' is the address
5960 of a memory area containing `data[1].integer' potential
5961 Lisp_Objects. */
5962 if (ptr->save_type == SAVE_TYPE_MEMORY)
5963 {
5964 Lisp_Object *p = ptr->data[0].pointer;
5965 ptrdiff_t nelt;
5966 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
5967 mark_maybe_object (*p);
5968 }
5969 else
5970 {
5971 /* Find Lisp_Objects in `data[N]' slots and mark them. */
5972 int i;
5973 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
5974 if (save_type (ptr, i) == SAVE_OBJECT)
5975 mark_object (ptr->data[i].object);
5976 }
5977 }
5978
5979 /* Remove killed buffers or items whose car is a killed buffer from
5980 LIST, and mark other items. Return changed LIST, which is marked. */
5981
5982 static Lisp_Object
5983 mark_discard_killed_buffers (Lisp_Object list)
5984 {
5985 Lisp_Object tail, *prev = &list;
5986
5987 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5988 tail = XCDR (tail))
5989 {
5990 Lisp_Object tem = XCAR (tail);
5991 if (CONSP (tem))
5992 tem = XCAR (tem);
5993 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5994 *prev = XCDR (tail);
5995 else
5996 {
5997 CONS_MARK (XCONS (tail));
5998 mark_object (XCAR (tail));
5999 prev = xcdr_addr (tail);
6000 }
6001 }
6002 mark_object (tail);
6003 return list;
6004 }
6005
6006 /* Determine type of generic Lisp_Object and mark it accordingly.
6007
6008 This function implements a straightforward depth-first marking
6009 algorithm and so the recursion depth may be very high (a few
6010 tens of thousands is not uncommon). To minimize stack usage,
6011 a few cold paths are moved out to NO_INLINE functions above.
6012 In general, inlining them doesn't help you to gain more speed. */
6013
6014 void
6015 mark_object (Lisp_Object arg)
6016 {
6017 register Lisp_Object obj;
6018 void *po;
6019 #ifdef GC_CHECK_MARKED_OBJECTS
6020 struct mem_node *m;
6021 #endif
6022 ptrdiff_t cdr_count = 0;
6023
6024 obj = arg;
6025 loop:
6026
6027 po = XPNTR (obj);
6028 if (PURE_P (po))
6029 return;
6030
6031 last_marked[last_marked_index++] = obj;
6032 if (last_marked_index == LAST_MARKED_SIZE)
6033 last_marked_index = 0;
6034
6035 /* Perform some sanity checks on the objects marked here. Abort if
6036 we encounter an object we know is bogus. This increases GC time
6037 by ~80%. */
6038 #ifdef GC_CHECK_MARKED_OBJECTS
6039
6040 /* Check that the object pointed to by PO is known to be a Lisp
6041 structure allocated from the heap. */
6042 #define CHECK_ALLOCATED() \
6043 do { \
6044 m = mem_find (po); \
6045 if (m == MEM_NIL) \
6046 emacs_abort (); \
6047 } while (0)
6048
6049 /* Check that the object pointed to by PO is live, using predicate
6050 function LIVEP. */
6051 #define CHECK_LIVE(LIVEP) \
6052 do { \
6053 if (!LIVEP (m, po)) \
6054 emacs_abort (); \
6055 } while (0)
6056
6057 /* Check both of the above conditions, for non-symbols. */
6058 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6059 do { \
6060 CHECK_ALLOCATED (); \
6061 CHECK_LIVE (LIVEP); \
6062 } while (0) \
6063
6064 /* Check both of the above conditions, for symbols. */
6065 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() \
6066 do { \
6067 if (!c_symbol_p (ptr)) \
6068 { \
6069 CHECK_ALLOCATED (); \
6070 CHECK_LIVE (live_symbol_p); \
6071 } \
6072 } while (0) \
6073
6074 #else /* not GC_CHECK_MARKED_OBJECTS */
6075
6076 #define CHECK_LIVE(LIVEP) ((void) 0)
6077 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) ((void) 0)
6078 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() ((void) 0)
6079
6080 #endif /* not GC_CHECK_MARKED_OBJECTS */
6081
6082 switch (XTYPE (obj))
6083 {
6084 case Lisp_String:
6085 {
6086 register struct Lisp_String *ptr = XSTRING (obj);
6087 if (STRING_MARKED_P (ptr))
6088 break;
6089 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6090 MARK_STRING (ptr);
6091 MARK_INTERVAL_TREE (ptr->intervals);
6092 #ifdef GC_CHECK_STRING_BYTES
6093 /* Check that the string size recorded in the string is the
6094 same as the one recorded in the sdata structure. */
6095 string_bytes (ptr);
6096 #endif /* GC_CHECK_STRING_BYTES */
6097 }
6098 break;
6099
6100 case Lisp_Vectorlike:
6101 {
6102 register struct Lisp_Vector *ptr = XVECTOR (obj);
6103 register ptrdiff_t pvectype;
6104
6105 if (VECTOR_MARKED_P (ptr))
6106 break;
6107
6108 #ifdef GC_CHECK_MARKED_OBJECTS
6109 m = mem_find (po);
6110 if (m == MEM_NIL && !SUBRP (obj))
6111 emacs_abort ();
6112 #endif /* GC_CHECK_MARKED_OBJECTS */
6113
6114 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6115 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6116 >> PSEUDOVECTOR_AREA_BITS);
6117 else
6118 pvectype = PVEC_NORMAL_VECTOR;
6119
6120 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6121 CHECK_LIVE (live_vector_p);
6122
6123 switch (pvectype)
6124 {
6125 case PVEC_BUFFER:
6126 #ifdef GC_CHECK_MARKED_OBJECTS
6127 {
6128 struct buffer *b;
6129 FOR_EACH_BUFFER (b)
6130 if (b == po)
6131 break;
6132 if (b == NULL)
6133 emacs_abort ();
6134 }
6135 #endif /* GC_CHECK_MARKED_OBJECTS */
6136 mark_buffer ((struct buffer *) ptr);
6137 break;
6138
6139 case PVEC_COMPILED:
6140 /* Although we could treat this just like a vector, mark_compiled
6141 returns the COMPILED_CONSTANTS element, which is marked at the
6142 next iteration of goto-loop here. This is done to avoid a few
6143 recursive calls to mark_object. */
6144 obj = mark_compiled (ptr);
6145 if (!NILP (obj))
6146 goto loop;
6147 break;
6148
6149 case PVEC_FRAME:
6150 {
6151 struct frame *f = (struct frame *) ptr;
6152
6153 mark_vectorlike (ptr);
6154 mark_face_cache (f->face_cache);
6155 #ifdef HAVE_WINDOW_SYSTEM
6156 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6157 {
6158 struct font *font = FRAME_FONT (f);
6159
6160 if (font && !VECTOR_MARKED_P (font))
6161 mark_vectorlike ((struct Lisp_Vector *) font);
6162 }
6163 #endif
6164 }
6165 break;
6166
6167 case PVEC_WINDOW:
6168 {
6169 struct window *w = (struct window *) ptr;
6170
6171 mark_vectorlike (ptr);
6172
6173 /* Mark glyph matrices, if any. Marking window
6174 matrices is sufficient because frame matrices
6175 use the same glyph memory. */
6176 if (w->current_matrix)
6177 {
6178 mark_glyph_matrix (w->current_matrix);
6179 mark_glyph_matrix (w->desired_matrix);
6180 }
6181
6182 /* Filter out killed buffers from both buffer lists
6183 in attempt to help GC to reclaim killed buffers faster.
6184 We can do it elsewhere for live windows, but this is the
6185 best place to do it for dead windows. */
6186 wset_prev_buffers
6187 (w, mark_discard_killed_buffers (w->prev_buffers));
6188 wset_next_buffers
6189 (w, mark_discard_killed_buffers (w->next_buffers));
6190 }
6191 break;
6192
6193 case PVEC_HASH_TABLE:
6194 {
6195 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6196
6197 mark_vectorlike (ptr);
6198 mark_object (h->test.name);
6199 mark_object (h->test.user_hash_function);
6200 mark_object (h->test.user_cmp_function);
6201 /* If hash table is not weak, mark all keys and values.
6202 For weak tables, mark only the vector. */
6203 if (NILP (h->weak))
6204 mark_object (h->key_and_value);
6205 else
6206 VECTOR_MARK (XVECTOR (h->key_and_value));
6207 }
6208 break;
6209
6210 case PVEC_CHAR_TABLE:
6211 case PVEC_SUB_CHAR_TABLE:
6212 mark_char_table (ptr, (enum pvec_type) pvectype);
6213 break;
6214
6215 case PVEC_BOOL_VECTOR:
6216 /* No Lisp_Objects to mark in a bool vector. */
6217 VECTOR_MARK (ptr);
6218 break;
6219
6220 case PVEC_SUBR:
6221 break;
6222
6223 case PVEC_FREE:
6224 emacs_abort ();
6225
6226 default:
6227 mark_vectorlike (ptr);
6228 }
6229 }
6230 break;
6231
6232 case Lisp_Symbol:
6233 {
6234 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6235 nextsym:
6236 if (ptr->gcmarkbit)
6237 break;
6238 CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
6239 ptr->gcmarkbit = 1;
6240 /* Attempt to catch bogus objects. */
6241 eassert (valid_lisp_object_p (ptr->function));
6242 mark_object (ptr->function);
6243 mark_object (ptr->plist);
6244 switch (ptr->redirect)
6245 {
6246 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6247 case SYMBOL_VARALIAS:
6248 {
6249 Lisp_Object tem;
6250 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6251 mark_object (tem);
6252 break;
6253 }
6254 case SYMBOL_LOCALIZED:
6255 mark_localized_symbol (ptr);
6256 break;
6257 case SYMBOL_FORWARDED:
6258 /* If the value is forwarded to a buffer or keyboard field,
6259 these are marked when we see the corresponding object.
6260 And if it's forwarded to a C variable, either it's not
6261 a Lisp_Object var, or it's staticpro'd already. */
6262 break;
6263 default: emacs_abort ();
6264 }
6265 if (!PURE_P (XSTRING (ptr->name)))
6266 MARK_STRING (XSTRING (ptr->name));
6267 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6268 /* Inner loop to mark next symbol in this bucket, if any. */
6269 po = ptr = ptr->next;
6270 if (ptr)
6271 goto nextsym;
6272 }
6273 break;
6274
6275 case Lisp_Misc:
6276 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6277
6278 if (XMISCANY (obj)->gcmarkbit)
6279 break;
6280
6281 switch (XMISCTYPE (obj))
6282 {
6283 case Lisp_Misc_Marker:
6284 /* DO NOT mark thru the marker's chain.
6285 The buffer's markers chain does not preserve markers from gc;
6286 instead, markers are removed from the chain when freed by gc. */
6287 XMISCANY (obj)->gcmarkbit = 1;
6288 break;
6289
6290 case Lisp_Misc_Save_Value:
6291 XMISCANY (obj)->gcmarkbit = 1;
6292 mark_save_value (XSAVE_VALUE (obj));
6293 break;
6294
6295 case Lisp_Misc_Overlay:
6296 mark_overlay (XOVERLAY (obj));
6297 break;
6298
6299 case Lisp_Misc_Finalizer:
6300 XMISCANY (obj)->gcmarkbit = true;
6301 mark_object (XFINALIZER (obj)->function);
6302 break;
6303
6304 default:
6305 emacs_abort ();
6306 }
6307 break;
6308
6309 case Lisp_Cons:
6310 {
6311 register struct Lisp_Cons *ptr = XCONS (obj);
6312 if (CONS_MARKED_P (ptr))
6313 break;
6314 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6315 CONS_MARK (ptr);
6316 /* If the cdr is nil, avoid recursion for the car. */
6317 if (EQ (ptr->u.cdr, Qnil))
6318 {
6319 obj = ptr->car;
6320 cdr_count = 0;
6321 goto loop;
6322 }
6323 mark_object (ptr->car);
6324 obj = ptr->u.cdr;
6325 cdr_count++;
6326 if (cdr_count == mark_object_loop_halt)
6327 emacs_abort ();
6328 goto loop;
6329 }
6330
6331 case Lisp_Float:
6332 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6333 FLOAT_MARK (XFLOAT (obj));
6334 break;
6335
6336 case_Lisp_Int:
6337 break;
6338
6339 default:
6340 emacs_abort ();
6341 }
6342
6343 #undef CHECK_LIVE
6344 #undef CHECK_ALLOCATED
6345 #undef CHECK_ALLOCATED_AND_LIVE
6346 }
6347 /* Mark the Lisp pointers in the terminal objects.
6348 Called by Fgarbage_collect. */
6349
6350 static void
6351 mark_terminals (void)
6352 {
6353 struct terminal *t;
6354 for (t = terminal_list; t; t = t->next_terminal)
6355 {
6356 eassert (t->name != NULL);
6357 #ifdef HAVE_WINDOW_SYSTEM
6358 /* If a terminal object is reachable from a stacpro'ed object,
6359 it might have been marked already. Make sure the image cache
6360 gets marked. */
6361 mark_image_cache (t->image_cache);
6362 #endif /* HAVE_WINDOW_SYSTEM */
6363 if (!VECTOR_MARKED_P (t))
6364 mark_vectorlike ((struct Lisp_Vector *)t);
6365 }
6366 }
6367
6368
6369
6370 /* Value is non-zero if OBJ will survive the current GC because it's
6371 either marked or does not need to be marked to survive. */
6372
6373 bool
6374 survives_gc_p (Lisp_Object obj)
6375 {
6376 bool survives_p;
6377
6378 switch (XTYPE (obj))
6379 {
6380 case_Lisp_Int:
6381 survives_p = 1;
6382 break;
6383
6384 case Lisp_Symbol:
6385 survives_p = XSYMBOL (obj)->gcmarkbit;
6386 break;
6387
6388 case Lisp_Misc:
6389 survives_p = XMISCANY (obj)->gcmarkbit;
6390 break;
6391
6392 case Lisp_String:
6393 survives_p = STRING_MARKED_P (XSTRING (obj));
6394 break;
6395
6396 case Lisp_Vectorlike:
6397 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6398 break;
6399
6400 case Lisp_Cons:
6401 survives_p = CONS_MARKED_P (XCONS (obj));
6402 break;
6403
6404 case Lisp_Float:
6405 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6406 break;
6407
6408 default:
6409 emacs_abort ();
6410 }
6411
6412 return survives_p || PURE_P (XPNTR (obj));
6413 }
6414
6415
6416 \f
6417
6418 NO_INLINE /* For better stack traces */
6419 static void
6420 sweep_conses (void)
6421 {
6422 struct cons_block *cblk;
6423 struct cons_block **cprev = &cons_block;
6424 int lim = cons_block_index;
6425 EMACS_INT num_free = 0, num_used = 0;
6426
6427 cons_free_list = 0;
6428
6429 for (cblk = cons_block; cblk; cblk = *cprev)
6430 {
6431 int i = 0;
6432 int this_free = 0;
6433 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6434
6435 /* Scan the mark bits an int at a time. */
6436 for (i = 0; i < ilim; i++)
6437 {
6438 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6439 {
6440 /* Fast path - all cons cells for this int are marked. */
6441 cblk->gcmarkbits[i] = 0;
6442 num_used += BITS_PER_BITS_WORD;
6443 }
6444 else
6445 {
6446 /* Some cons cells for this int are not marked.
6447 Find which ones, and free them. */
6448 int start, pos, stop;
6449
6450 start = i * BITS_PER_BITS_WORD;
6451 stop = lim - start;
6452 if (stop > BITS_PER_BITS_WORD)
6453 stop = BITS_PER_BITS_WORD;
6454 stop += start;
6455
6456 for (pos = start; pos < stop; pos++)
6457 {
6458 if (!CONS_MARKED_P (&cblk->conses[pos]))
6459 {
6460 this_free++;
6461 cblk->conses[pos].u.chain = cons_free_list;
6462 cons_free_list = &cblk->conses[pos];
6463 cons_free_list->car = Vdead;
6464 }
6465 else
6466 {
6467 num_used++;
6468 CONS_UNMARK (&cblk->conses[pos]);
6469 }
6470 }
6471 }
6472 }
6473
6474 lim = CONS_BLOCK_SIZE;
6475 /* If this block contains only free conses and we have already
6476 seen more than two blocks worth of free conses then deallocate
6477 this block. */
6478 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6479 {
6480 *cprev = cblk->next;
6481 /* Unhook from the free list. */
6482 cons_free_list = cblk->conses[0].u.chain;
6483 lisp_align_free (cblk);
6484 }
6485 else
6486 {
6487 num_free += this_free;
6488 cprev = &cblk->next;
6489 }
6490 }
6491 total_conses = num_used;
6492 total_free_conses = num_free;
6493 }
6494
6495 NO_INLINE /* For better stack traces */
6496 static void
6497 sweep_floats (void)
6498 {
6499 register struct float_block *fblk;
6500 struct float_block **fprev = &float_block;
6501 register int lim = float_block_index;
6502 EMACS_INT num_free = 0, num_used = 0;
6503
6504 float_free_list = 0;
6505
6506 for (fblk = float_block; fblk; fblk = *fprev)
6507 {
6508 register int i;
6509 int this_free = 0;
6510 for (i = 0; i < lim; i++)
6511 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6512 {
6513 this_free++;
6514 fblk->floats[i].u.chain = float_free_list;
6515 float_free_list = &fblk->floats[i];
6516 }
6517 else
6518 {
6519 num_used++;
6520 FLOAT_UNMARK (&fblk->floats[i]);
6521 }
6522 lim = FLOAT_BLOCK_SIZE;
6523 /* If this block contains only free floats and we have already
6524 seen more than two blocks worth of free floats then deallocate
6525 this block. */
6526 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6527 {
6528 *fprev = fblk->next;
6529 /* Unhook from the free list. */
6530 float_free_list = fblk->floats[0].u.chain;
6531 lisp_align_free (fblk);
6532 }
6533 else
6534 {
6535 num_free += this_free;
6536 fprev = &fblk->next;
6537 }
6538 }
6539 total_floats = num_used;
6540 total_free_floats = num_free;
6541 }
6542
6543 NO_INLINE /* For better stack traces */
6544 static void
6545 sweep_intervals (void)
6546 {
6547 register struct interval_block *iblk;
6548 struct interval_block **iprev = &interval_block;
6549 register int lim = interval_block_index;
6550 EMACS_INT num_free = 0, num_used = 0;
6551
6552 interval_free_list = 0;
6553
6554 for (iblk = interval_block; iblk; iblk = *iprev)
6555 {
6556 register int i;
6557 int this_free = 0;
6558
6559 for (i = 0; i < lim; i++)
6560 {
6561 if (!iblk->intervals[i].gcmarkbit)
6562 {
6563 set_interval_parent (&iblk->intervals[i], interval_free_list);
6564 interval_free_list = &iblk->intervals[i];
6565 this_free++;
6566 }
6567 else
6568 {
6569 num_used++;
6570 iblk->intervals[i].gcmarkbit = 0;
6571 }
6572 }
6573 lim = INTERVAL_BLOCK_SIZE;
6574 /* If this block contains only free intervals and we have already
6575 seen more than two blocks worth of free intervals then
6576 deallocate this block. */
6577 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6578 {
6579 *iprev = iblk->next;
6580 /* Unhook from the free list. */
6581 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6582 lisp_free (iblk);
6583 }
6584 else
6585 {
6586 num_free += this_free;
6587 iprev = &iblk->next;
6588 }
6589 }
6590 total_intervals = num_used;
6591 total_free_intervals = num_free;
6592 }
6593
6594 NO_INLINE /* For better stack traces */
6595 static void
6596 sweep_symbols (void)
6597 {
6598 struct symbol_block *sblk;
6599 struct symbol_block **sprev = &symbol_block;
6600 int lim = symbol_block_index;
6601 EMACS_INT num_free = 0, num_used = ARRAYELTS (lispsym);
6602
6603 symbol_free_list = NULL;
6604
6605 for (int i = 0; i < ARRAYELTS (lispsym); i++)
6606 lispsym[i].gcmarkbit = 0;
6607
6608 for (sblk = symbol_block; sblk; sblk = *sprev)
6609 {
6610 int this_free = 0;
6611 union aligned_Lisp_Symbol *sym = sblk->symbols;
6612 union aligned_Lisp_Symbol *end = sym + lim;
6613
6614 for (; sym < end; ++sym)
6615 {
6616 if (!sym->s.gcmarkbit)
6617 {
6618 if (sym->s.redirect == SYMBOL_LOCALIZED)
6619 xfree (SYMBOL_BLV (&sym->s));
6620 sym->s.next = symbol_free_list;
6621 symbol_free_list = &sym->s;
6622 symbol_free_list->function = Vdead;
6623 ++this_free;
6624 }
6625 else
6626 {
6627 ++num_used;
6628 sym->s.gcmarkbit = 0;
6629 /* Attempt to catch bogus objects. */
6630 eassert (valid_lisp_object_p (sym->s.function));
6631 }
6632 }
6633
6634 lim = SYMBOL_BLOCK_SIZE;
6635 /* If this block contains only free symbols and we have already
6636 seen more than two blocks worth of free symbols then deallocate
6637 this block. */
6638 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6639 {
6640 *sprev = sblk->next;
6641 /* Unhook from the free list. */
6642 symbol_free_list = sblk->symbols[0].s.next;
6643 lisp_free (sblk);
6644 }
6645 else
6646 {
6647 num_free += this_free;
6648 sprev = &sblk->next;
6649 }
6650 }
6651 total_symbols = num_used;
6652 total_free_symbols = num_free;
6653 }
6654
6655 NO_INLINE /* For better stack traces. */
6656 static void
6657 sweep_misc (void)
6658 {
6659 register struct marker_block *mblk;
6660 struct marker_block **mprev = &marker_block;
6661 register int lim = marker_block_index;
6662 EMACS_INT num_free = 0, num_used = 0;
6663
6664 /* Put all unmarked misc's on free list. For a marker, first
6665 unchain it from the buffer it points into. */
6666
6667 marker_free_list = 0;
6668
6669 for (mblk = marker_block; mblk; mblk = *mprev)
6670 {
6671 register int i;
6672 int this_free = 0;
6673
6674 for (i = 0; i < lim; i++)
6675 {
6676 if (!mblk->markers[i].m.u_any.gcmarkbit)
6677 {
6678 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6679 unchain_marker (&mblk->markers[i].m.u_marker);
6680 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Finalizer)
6681 unchain_finalizer (&mblk->markers[i].m.u_finalizer);
6682 /* Set the type of the freed object to Lisp_Misc_Free.
6683 We could leave the type alone, since nobody checks it,
6684 but this might catch bugs faster. */
6685 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6686 mblk->markers[i].m.u_free.chain = marker_free_list;
6687 marker_free_list = &mblk->markers[i].m;
6688 this_free++;
6689 }
6690 else
6691 {
6692 num_used++;
6693 mblk->markers[i].m.u_any.gcmarkbit = 0;
6694 }
6695 }
6696 lim = MARKER_BLOCK_SIZE;
6697 /* If this block contains only free markers and we have already
6698 seen more than two blocks worth of free markers then deallocate
6699 this block. */
6700 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6701 {
6702 *mprev = mblk->next;
6703 /* Unhook from the free list. */
6704 marker_free_list = mblk->markers[0].m.u_free.chain;
6705 lisp_free (mblk);
6706 }
6707 else
6708 {
6709 num_free += this_free;
6710 mprev = &mblk->next;
6711 }
6712 }
6713
6714 total_markers = num_used;
6715 total_free_markers = num_free;
6716 }
6717
6718 NO_INLINE /* For better stack traces */
6719 static void
6720 sweep_buffers (void)
6721 {
6722 register struct buffer *buffer, **bprev = &all_buffers;
6723
6724 total_buffers = 0;
6725 for (buffer = all_buffers; buffer; buffer = *bprev)
6726 if (!VECTOR_MARKED_P (buffer))
6727 {
6728 *bprev = buffer->next;
6729 lisp_free (buffer);
6730 }
6731 else
6732 {
6733 VECTOR_UNMARK (buffer);
6734 /* Do not use buffer_(set|get)_intervals here. */
6735 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6736 total_buffers++;
6737 bprev = &buffer->next;
6738 }
6739 }
6740
6741 /* Sweep: find all structures not marked, and free them. */
6742 static void
6743 gc_sweep (void)
6744 {
6745 /* Remove or mark entries in weak hash tables.
6746 This must be done before any object is unmarked. */
6747 sweep_weak_hash_tables ();
6748
6749 sweep_strings ();
6750 check_string_bytes (!noninteractive);
6751 sweep_conses ();
6752 sweep_floats ();
6753 sweep_intervals ();
6754 sweep_symbols ();
6755 sweep_misc ();
6756 sweep_buffers ();
6757 sweep_vectors ();
6758 check_string_bytes (!noninteractive);
6759 }
6760
6761 DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
6762 doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
6763 All values are in Kbytes. If there is no swap space,
6764 last two values are zero. If the system is not supported
6765 or memory information can't be obtained, return nil. */)
6766 (void)
6767 {
6768 #if defined HAVE_LINUX_SYSINFO
6769 struct sysinfo si;
6770 uintmax_t units;
6771
6772 if (sysinfo (&si))
6773 return Qnil;
6774 #ifdef LINUX_SYSINFO_UNIT
6775 units = si.mem_unit;
6776 #else
6777 units = 1;
6778 #endif
6779 return list4i ((uintmax_t) si.totalram * units / 1024,
6780 (uintmax_t) si.freeram * units / 1024,
6781 (uintmax_t) si.totalswap * units / 1024,
6782 (uintmax_t) si.freeswap * units / 1024);
6783 #elif defined WINDOWSNT
6784 unsigned long long totalram, freeram, totalswap, freeswap;
6785
6786 if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6787 return list4i ((uintmax_t) totalram / 1024,
6788 (uintmax_t) freeram / 1024,
6789 (uintmax_t) totalswap / 1024,
6790 (uintmax_t) freeswap / 1024);
6791 else
6792 return Qnil;
6793 #elif defined MSDOS
6794 unsigned long totalram, freeram, totalswap, freeswap;
6795
6796 if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6797 return list4i ((uintmax_t) totalram / 1024,
6798 (uintmax_t) freeram / 1024,
6799 (uintmax_t) totalswap / 1024,
6800 (uintmax_t) freeswap / 1024);
6801 else
6802 return Qnil;
6803 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6804 /* FIXME: add more systems. */
6805 return Qnil;
6806 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6807 }
6808
6809 /* Debugging aids. */
6810
6811 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6812 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6813 This may be helpful in debugging Emacs's memory usage.
6814 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6815 (void)
6816 {
6817 Lisp_Object end;
6818
6819 #ifdef HAVE_NS
6820 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
6821 XSETINT (end, 0);
6822 #else
6823 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6824 #endif
6825
6826 return end;
6827 }
6828
6829 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6830 doc: /* Return a list of counters that measure how much consing there has been.
6831 Each of these counters increments for a certain kind of object.
6832 The counters wrap around from the largest positive integer to zero.
6833 Garbage collection does not decrease them.
6834 The elements of the value are as follows:
6835 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6836 All are in units of 1 = one object consed
6837 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6838 objects consed.
6839 MISCS include overlays, markers, and some internal types.
6840 Frames, windows, buffers, and subprocesses count as vectors
6841 (but the contents of a buffer's text do not count here). */)
6842 (void)
6843 {
6844 return listn (CONSTYPE_HEAP, 8,
6845 bounded_number (cons_cells_consed),
6846 bounded_number (floats_consed),
6847 bounded_number (vector_cells_consed),
6848 bounded_number (symbols_consed),
6849 bounded_number (string_chars_consed),
6850 bounded_number (misc_objects_consed),
6851 bounded_number (intervals_consed),
6852 bounded_number (strings_consed));
6853 }
6854
6855 static bool
6856 symbol_uses_obj (Lisp_Object symbol, Lisp_Object obj)
6857 {
6858 struct Lisp_Symbol *sym = XSYMBOL (symbol);
6859 Lisp_Object val = find_symbol_value (symbol);
6860 return (EQ (val, obj)
6861 || EQ (sym->function, obj)
6862 || (!NILP (sym->function)
6863 && COMPILEDP (sym->function)
6864 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6865 || (!NILP (val)
6866 && COMPILEDP (val)
6867 && EQ (AREF (val, COMPILED_BYTECODE), obj)));
6868 }
6869
6870 /* Find at most FIND_MAX symbols which have OBJ as their value or
6871 function. This is used in gdbinit's `xwhichsymbols' command. */
6872
6873 Lisp_Object
6874 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6875 {
6876 struct symbol_block *sblk;
6877 ptrdiff_t gc_count = inhibit_garbage_collection ();
6878 Lisp_Object found = Qnil;
6879
6880 if (! DEADP (obj))
6881 {
6882 for (int i = 0; i < ARRAYELTS (lispsym); i++)
6883 {
6884 Lisp_Object sym = builtin_lisp_symbol (i);
6885 if (symbol_uses_obj (sym, obj))
6886 {
6887 found = Fcons (sym, found);
6888 if (--find_max == 0)
6889 goto out;
6890 }
6891 }
6892
6893 for (sblk = symbol_block; sblk; sblk = sblk->next)
6894 {
6895 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6896 int bn;
6897
6898 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6899 {
6900 if (sblk == symbol_block && bn >= symbol_block_index)
6901 break;
6902
6903 Lisp_Object sym = make_lisp_symbol (&aligned_sym->s);
6904 if (symbol_uses_obj (sym, obj))
6905 {
6906 found = Fcons (sym, found);
6907 if (--find_max == 0)
6908 goto out;
6909 }
6910 }
6911 }
6912 }
6913
6914 out:
6915 unbind_to (gc_count, Qnil);
6916 return found;
6917 }
6918
6919 #ifdef SUSPICIOUS_OBJECT_CHECKING
6920
6921 static void *
6922 find_suspicious_object_in_range (void *begin, void *end)
6923 {
6924 char *begin_a = begin;
6925 char *end_a = end;
6926 int i;
6927
6928 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
6929 {
6930 char *suspicious_object = suspicious_objects[i];
6931 if (begin_a <= suspicious_object && suspicious_object < end_a)
6932 return suspicious_object;
6933 }
6934
6935 return NULL;
6936 }
6937
6938 static void
6939 note_suspicious_free (void* ptr)
6940 {
6941 struct suspicious_free_record* rec;
6942
6943 rec = &suspicious_free_history[suspicious_free_history_index++];
6944 if (suspicious_free_history_index ==
6945 ARRAYELTS (suspicious_free_history))
6946 {
6947 suspicious_free_history_index = 0;
6948 }
6949
6950 memset (rec, 0, sizeof (*rec));
6951 rec->suspicious_object = ptr;
6952 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
6953 }
6954
6955 static void
6956 detect_suspicious_free (void* ptr)
6957 {
6958 int i;
6959
6960 eassert (ptr != NULL);
6961
6962 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
6963 if (suspicious_objects[i] == ptr)
6964 {
6965 note_suspicious_free (ptr);
6966 suspicious_objects[i] = NULL;
6967 }
6968 }
6969
6970 #endif /* SUSPICIOUS_OBJECT_CHECKING */
6971
6972 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
6973 doc: /* Return OBJ, maybe marking it for extra scrutiny.
6974 If Emacs is compiled with suspicious object checking, capture
6975 a stack trace when OBJ is freed in order to help track down
6976 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
6977 (Lisp_Object obj)
6978 {
6979 #ifdef SUSPICIOUS_OBJECT_CHECKING
6980 /* Right now, we care only about vectors. */
6981 if (VECTORLIKEP (obj))
6982 {
6983 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
6984 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
6985 suspicious_object_index = 0;
6986 }
6987 #endif
6988 return obj;
6989 }
6990
6991 #ifdef ENABLE_CHECKING
6992
6993 bool suppress_checking;
6994
6995 void
6996 die (const char *msg, const char *file, int line)
6997 {
6998 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
6999 file, line, msg);
7000 terminate_due_to_signal (SIGABRT, INT_MAX);
7001 }
7002
7003 #endif /* ENABLE_CHECKING */
7004
7005 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7006
7007 /* Debugging check whether STR is ASCII-only. */
7008
7009 const char *
7010 verify_ascii (const char *str)
7011 {
7012 const unsigned char *ptr = (unsigned char *) str, *end = ptr + strlen (str);
7013 while (ptr < end)
7014 {
7015 int c = STRING_CHAR_ADVANCE (ptr);
7016 if (!ASCII_CHAR_P (c))
7017 emacs_abort ();
7018 }
7019 return str;
7020 }
7021
7022 /* Stress alloca with inconveniently sized requests and check
7023 whether all allocated areas may be used for Lisp_Object. */
7024
7025 NO_INLINE static void
7026 verify_alloca (void)
7027 {
7028 int i;
7029 enum { ALLOCA_CHECK_MAX = 256 };
7030 /* Start from size of the smallest Lisp object. */
7031 for (i = sizeof (struct Lisp_Cons); i <= ALLOCA_CHECK_MAX; i++)
7032 {
7033 void *ptr = alloca (i);
7034 make_lisp_ptr (ptr, Lisp_Cons);
7035 }
7036 }
7037
7038 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7039
7040 #define verify_alloca() ((void) 0)
7041
7042 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7043
7044 /* Initialization. */
7045
7046 void
7047 init_alloc_once (void)
7048 {
7049 /* Even though Qt's contents are not set up, its address is known. */
7050 Vpurify_flag = Qt;
7051
7052 purebeg = PUREBEG;
7053 pure_size = PURESIZE;
7054
7055 verify_alloca ();
7056 init_finalizer_list (&finalizers);
7057 init_finalizer_list (&doomed_finalizers);
7058
7059 mem_init ();
7060 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7061
7062 #ifdef DOUG_LEA_MALLOC
7063 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7064 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7065 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7066 #endif
7067 init_strings ();
7068 init_vectors ();
7069
7070 refill_memory_reserve ();
7071 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7072 }
7073
7074 void
7075 init_alloc (void)
7076 {
7077 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
7078 setjmp_tested_p = longjmps_done = 0;
7079 #endif
7080 Vgc_elapsed = make_float (0.0);
7081 gcs_done = 0;
7082
7083 #if USE_VALGRIND
7084 valgrind_p = RUNNING_ON_VALGRIND != 0;
7085 #endif
7086 }
7087
7088 void
7089 syms_of_alloc (void)
7090 {
7091 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7092 doc: /* Number of bytes of consing between garbage collections.
7093 Garbage collection can happen automatically once this many bytes have been
7094 allocated since the last garbage collection. All data types count.
7095
7096 Garbage collection happens automatically only when `eval' is called.
7097
7098 By binding this temporarily to a large number, you can effectively
7099 prevent garbage collection during a part of the program.
7100 See also `gc-cons-percentage'. */);
7101
7102 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7103 doc: /* Portion of the heap used for allocation.
7104 Garbage collection can happen automatically once this portion of the heap
7105 has been allocated since the last garbage collection.
7106 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7107 Vgc_cons_percentage = make_float (0.1);
7108
7109 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7110 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7111
7112 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7113 doc: /* Number of cons cells that have been consed so far. */);
7114
7115 DEFVAR_INT ("floats-consed", floats_consed,
7116 doc: /* Number of floats that have been consed so far. */);
7117
7118 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7119 doc: /* Number of vector cells that have been consed so far. */);
7120
7121 DEFVAR_INT ("symbols-consed", symbols_consed,
7122 doc: /* Number of symbols that have been consed so far. */);
7123 symbols_consed += ARRAYELTS (lispsym);
7124
7125 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7126 doc: /* Number of string characters that have been consed so far. */);
7127
7128 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7129 doc: /* Number of miscellaneous objects that have been consed so far.
7130 These include markers and overlays, plus certain objects not visible
7131 to users. */);
7132
7133 DEFVAR_INT ("intervals-consed", intervals_consed,
7134 doc: /* Number of intervals that have been consed so far. */);
7135
7136 DEFVAR_INT ("strings-consed", strings_consed,
7137 doc: /* Number of strings that have been consed so far. */);
7138
7139 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7140 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7141 This means that certain objects should be allocated in shared (pure) space.
7142 It can also be set to a hash-table, in which case this table is used to
7143 do hash-consing of the objects allocated to pure space. */);
7144
7145 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7146 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7147 garbage_collection_messages = 0;
7148
7149 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7150 doc: /* Hook run after garbage collection has finished. */);
7151 Vpost_gc_hook = Qnil;
7152 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7153
7154 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7155 doc: /* Precomputed `signal' argument for memory-full error. */);
7156 /* We build this in advance because if we wait until we need it, we might
7157 not be able to allocate the memory to hold it. */
7158 Vmemory_signal_data
7159 = listn (CONSTYPE_PURE, 2, Qerror,
7160 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7161
7162 DEFVAR_LISP ("memory-full", Vmemory_full,
7163 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7164 Vmemory_full = Qnil;
7165
7166 DEFSYM (Qconses, "conses");
7167 DEFSYM (Qsymbols, "symbols");
7168 DEFSYM (Qmiscs, "miscs");
7169 DEFSYM (Qstrings, "strings");
7170 DEFSYM (Qvectors, "vectors");
7171 DEFSYM (Qfloats, "floats");
7172 DEFSYM (Qintervals, "intervals");
7173 DEFSYM (Qbuffers, "buffers");
7174 DEFSYM (Qstring_bytes, "string-bytes");
7175 DEFSYM (Qvector_slots, "vector-slots");
7176 DEFSYM (Qheap, "heap");
7177 DEFSYM (Qautomatic_gc, "Automatic GC");
7178
7179 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7180 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7181
7182 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7183 doc: /* Accumulated time elapsed in garbage collections.
7184 The time is in seconds as a floating point value. */);
7185 DEFVAR_INT ("gcs-done", gcs_done,
7186 doc: /* Accumulated number of garbage collections done. */);
7187
7188 defsubr (&Scons);
7189 defsubr (&Slist);
7190 defsubr (&Svector);
7191 defsubr (&Sbool_vector);
7192 defsubr (&Smake_byte_code);
7193 defsubr (&Smake_list);
7194 defsubr (&Smake_vector);
7195 defsubr (&Smake_string);
7196 defsubr (&Smake_bool_vector);
7197 defsubr (&Smake_symbol);
7198 defsubr (&Smake_marker);
7199 defsubr (&Smake_finalizer);
7200 defsubr (&Spurecopy);
7201 defsubr (&Sgarbage_collect);
7202 defsubr (&Smemory_limit);
7203 defsubr (&Smemory_info);
7204 defsubr (&Smemory_use_counts);
7205 defsubr (&Ssuspicious_object);
7206 }
7207
7208 /* When compiled with GCC, GDB might say "No enum type named
7209 pvec_type" if we don't have at least one symbol with that type, and
7210 then xbacktrace could fail. Similarly for the other enums and
7211 their values. Some non-GCC compilers don't like these constructs. */
7212 #ifdef __GNUC__
7213 union
7214 {
7215 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7216 enum char_table_specials char_table_specials;
7217 enum char_bits char_bits;
7218 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7219 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7220 enum Lisp_Bits Lisp_Bits;
7221 enum Lisp_Compiled Lisp_Compiled;
7222 enum maxargs maxargs;
7223 enum MAX_ALLOCA MAX_ALLOCA;
7224 enum More_Lisp_Bits More_Lisp_Bits;
7225 enum pvec_type pvec_type;
7226 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7227 #endif /* __GNUC__ */