]> code.delx.au - gnu-emacs/blob - src/editfns.c
Improve time zone documentation
[gnu-emacs] / src / editfns.c
1 /* Lisp functions pertaining to editing. -*- coding: utf-8 -*-
2
3 Copyright (C) 1985-1987, 1989, 1993-2016 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or (at
10 your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include <config.h>
22 #include <sys/types.h>
23 #include <stdio.h>
24
25 #ifdef HAVE_PWD_H
26 #include <pwd.h>
27 #include <grp.h>
28 #endif
29
30 #include <unistd.h>
31
32 #ifdef HAVE_SYS_UTSNAME_H
33 #include <sys/utsname.h>
34 #endif
35
36 #include "lisp.h"
37
38 /* systime.h includes <sys/time.h> which, on some systems, is required
39 for <sys/resource.h>; thus systime.h must be included before
40 <sys/resource.h> */
41 #include "systime.h"
42
43 #if defined HAVE_SYS_RESOURCE_H
44 #include <sys/resource.h>
45 #endif
46
47 #include <errno.h>
48 #include <float.h>
49 #include <limits.h>
50
51 #include <intprops.h>
52 #include <strftime.h>
53 #include <verify.h>
54
55 #include "composite.h"
56 #include "intervals.h"
57 #include "character.h"
58 #include "buffer.h"
59 #include "coding.h"
60 #include "window.h"
61 #include "blockinput.h"
62
63 #define TM_YEAR_BASE 1900
64
65 #ifdef WINDOWSNT
66 extern Lisp_Object w32_get_internal_run_time (void);
67 #endif
68
69 static struct lisp_time lisp_time_struct (Lisp_Object, int *);
70 static Lisp_Object format_time_string (char const *, ptrdiff_t, struct timespec,
71 Lisp_Object, struct tm *);
72 static long int tm_gmtoff (struct tm *);
73 static int tm_diff (struct tm *, struct tm *);
74 static void update_buffer_properties (ptrdiff_t, ptrdiff_t);
75 static Lisp_Object styled_format (ptrdiff_t, Lisp_Object *, bool);
76
77 #ifndef HAVE_TM_GMTOFF
78 # define HAVE_TM_GMTOFF false
79 #endif
80
81 enum { tzeqlen = sizeof "TZ=" - 1 };
82
83 /* Time zones equivalent to current local time, to wall clock time,
84 and to UTC, respectively. */
85 static timezone_t local_tz;
86 static timezone_t wall_clock_tz;
87 static timezone_t const utc_tz = 0;
88
89 /* A valid but unlikely setting for the TZ environment variable.
90 It is OK (though a bit slower) if the user chooses this value. */
91 static char dump_tz_string[] = "TZ=UtC0";
92
93 /* The cached value of Vsystem_name. This is used only to compare it
94 to Vsystem_name, so it need not be visible to the GC. */
95 static Lisp_Object cached_system_name;
96
97 static void
98 init_and_cache_system_name (void)
99 {
100 init_system_name ();
101 cached_system_name = Vsystem_name;
102 }
103
104 static struct tm *
105 emacs_localtime_rz (timezone_t tz, time_t const *t, struct tm *tm)
106 {
107 tm = localtime_rz (tz, t, tm);
108 if (!tm && errno == ENOMEM)
109 memory_full (SIZE_MAX);
110 return tm;
111 }
112
113 static time_t
114 emacs_mktime_z (timezone_t tz, struct tm *tm)
115 {
116 errno = 0;
117 time_t t = mktime_z (tz, tm);
118 if (t == (time_t) -1 && errno == ENOMEM)
119 memory_full (SIZE_MAX);
120 return t;
121 }
122
123 /* Allocate a timezone, signaling on failure. */
124 static timezone_t
125 xtzalloc (char const *name)
126 {
127 timezone_t tz = tzalloc (name);
128 if (!tz)
129 memory_full (SIZE_MAX);
130 return tz;
131 }
132
133 /* Free a timezone, except do not free the time zone for local time.
134 Freeing utc_tz is also a no-op. */
135 static void
136 xtzfree (timezone_t tz)
137 {
138 if (tz != local_tz)
139 tzfree (tz);
140 }
141
142 /* Convert the Lisp time zone rule ZONE to a timezone_t object.
143 The returned value either is 0, or is LOCAL_TZ, or is newly allocated.
144 If SETTZ, set Emacs local time to the time zone rule; otherwise,
145 the caller should eventually pass the returned value to xtzfree. */
146 static timezone_t
147 tzlookup (Lisp_Object zone, bool settz)
148 {
149 static char const tzbuf_format[] = "XXX%s%"pI"d:%02d:%02d";
150 char tzbuf[sizeof tzbuf_format + INT_STRLEN_BOUND (EMACS_INT)];
151 char const *zone_string;
152 timezone_t new_tz;
153
154 if (NILP (zone))
155 return local_tz;
156 else if (EQ (zone, Qt))
157 {
158 zone_string = "UTC0";
159 new_tz = utc_tz;
160 }
161 else
162 {
163 if (EQ (zone, Qwall))
164 zone_string = 0;
165 else if (STRINGP (zone))
166 zone_string = SSDATA (zone);
167 else if (INTEGERP (zone))
168 {
169 EMACS_INT abszone = eabs (XINT (zone)), hour = abszone / (60 * 60);
170 int min = (abszone / 60) % 60, sec = abszone % 60;
171 sprintf (tzbuf, tzbuf_format, &"-"[XINT (zone) < 0], hour, min, sec);
172 zone_string = tzbuf;
173 }
174 else
175 xsignal2 (Qerror, build_string ("Invalid time zone specification"),
176 zone);
177 new_tz = xtzalloc (zone_string);
178 }
179
180 if (settz)
181 {
182 block_input ();
183 emacs_setenv_TZ (zone_string);
184 timezone_t old_tz = local_tz;
185 local_tz = new_tz;
186 tzfree (old_tz);
187 unblock_input ();
188 }
189
190 return new_tz;
191 }
192
193 void
194 init_editfns (bool dumping)
195 {
196 const char *user_name;
197 register char *p;
198 struct passwd *pw; /* password entry for the current user */
199 Lisp_Object tem;
200
201 /* Set up system_name even when dumping. */
202 init_and_cache_system_name ();
203
204 #ifndef CANNOT_DUMP
205 /* When just dumping out, set the time zone to a known unlikely value
206 and skip the rest of this function. */
207 if (dumping)
208 {
209 # ifdef HAVE_TZSET
210 xputenv (dump_tz_string);
211 tzset ();
212 # endif
213 return;
214 }
215 #endif
216
217 char *tz = getenv ("TZ");
218
219 #if !defined CANNOT_DUMP && defined HAVE_TZSET
220 /* If the execution TZ happens to be the same as the dump TZ,
221 change it to some other value and then change it back,
222 to force the underlying implementation to reload the TZ info.
223 This is needed on implementations that load TZ info from files,
224 since the TZ file contents may differ between dump and execution. */
225 if (tz && strcmp (tz, &dump_tz_string[tzeqlen]) == 0)
226 {
227 ++*tz;
228 tzset ();
229 --*tz;
230 }
231 #endif
232
233 /* Set the time zone rule now, so that the call to putenv is done
234 before multiple threads are active. */
235 wall_clock_tz = xtzalloc (0);
236 tzlookup (tz ? build_string (tz) : Qwall, true);
237
238 pw = getpwuid (getuid ());
239 #ifdef MSDOS
240 /* We let the real user name default to "root" because that's quite
241 accurate on MS-DOS and because it lets Emacs find the init file.
242 (The DVX libraries override the Djgpp libraries here.) */
243 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
244 #else
245 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
246 #endif
247
248 /* Get the effective user name, by consulting environment variables,
249 or the effective uid if those are unset. */
250 user_name = getenv ("LOGNAME");
251 if (!user_name)
252 #ifdef WINDOWSNT
253 user_name = getenv ("USERNAME"); /* it's USERNAME on NT */
254 #else /* WINDOWSNT */
255 user_name = getenv ("USER");
256 #endif /* WINDOWSNT */
257 if (!user_name)
258 {
259 pw = getpwuid (geteuid ());
260 user_name = pw ? pw->pw_name : "unknown";
261 }
262 Vuser_login_name = build_string (user_name);
263
264 /* If the user name claimed in the environment vars differs from
265 the real uid, use the claimed name to find the full name. */
266 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
267 if (! NILP (tem))
268 tem = Vuser_login_name;
269 else
270 {
271 uid_t euid = geteuid ();
272 tem = make_fixnum_or_float (euid);
273 }
274 Vuser_full_name = Fuser_full_name (tem);
275
276 p = getenv ("NAME");
277 if (p)
278 Vuser_full_name = build_string (p);
279 else if (NILP (Vuser_full_name))
280 Vuser_full_name = build_string ("unknown");
281
282 #ifdef HAVE_SYS_UTSNAME_H
283 {
284 struct utsname uts;
285 uname (&uts);
286 Voperating_system_release = build_string (uts.release);
287 }
288 #else
289 Voperating_system_release = Qnil;
290 #endif
291 }
292 \f
293 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
294 doc: /* Convert arg CHAR to a string containing that character.
295 usage: (char-to-string CHAR) */)
296 (Lisp_Object character)
297 {
298 int c, len;
299 unsigned char str[MAX_MULTIBYTE_LENGTH];
300
301 CHECK_CHARACTER (character);
302 c = XFASTINT (character);
303
304 len = CHAR_STRING (c, str);
305 return make_string_from_bytes ((char *) str, 1, len);
306 }
307
308 DEFUN ("byte-to-string", Fbyte_to_string, Sbyte_to_string, 1, 1, 0,
309 doc: /* Convert arg BYTE to a unibyte string containing that byte. */)
310 (Lisp_Object byte)
311 {
312 unsigned char b;
313 CHECK_NUMBER (byte);
314 if (XINT (byte) < 0 || XINT (byte) > 255)
315 error ("Invalid byte");
316 b = XINT (byte);
317 return make_string_from_bytes ((char *) &b, 1, 1);
318 }
319
320 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
321 doc: /* Return the first character in STRING. */)
322 (register Lisp_Object string)
323 {
324 register Lisp_Object val;
325 CHECK_STRING (string);
326 if (SCHARS (string))
327 {
328 if (STRING_MULTIBYTE (string))
329 XSETFASTINT (val, STRING_CHAR (SDATA (string)));
330 else
331 XSETFASTINT (val, SREF (string, 0));
332 }
333 else
334 XSETFASTINT (val, 0);
335 return val;
336 }
337
338 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
339 doc: /* Return value of point, as an integer.
340 Beginning of buffer is position (point-min). */)
341 (void)
342 {
343 Lisp_Object temp;
344 XSETFASTINT (temp, PT);
345 return temp;
346 }
347
348 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
349 doc: /* Return value of point, as a marker object. */)
350 (void)
351 {
352 return build_marker (current_buffer, PT, PT_BYTE);
353 }
354
355 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
356 doc: /* Set point to POSITION, a number or marker.
357 Beginning of buffer is position (point-min), end is (point-max).
358
359 The return value is POSITION. */)
360 (register Lisp_Object position)
361 {
362 if (MARKERP (position))
363 set_point_from_marker (position);
364 else if (INTEGERP (position))
365 SET_PT (clip_to_bounds (BEGV, XINT (position), ZV));
366 else
367 wrong_type_argument (Qinteger_or_marker_p, position);
368 return position;
369 }
370
371
372 /* Return the start or end position of the region.
373 BEGINNINGP means return the start.
374 If there is no region active, signal an error. */
375
376 static Lisp_Object
377 region_limit (bool beginningp)
378 {
379 Lisp_Object m;
380
381 if (!NILP (Vtransient_mark_mode)
382 && NILP (Vmark_even_if_inactive)
383 && NILP (BVAR (current_buffer, mark_active)))
384 xsignal0 (Qmark_inactive);
385
386 m = Fmarker_position (BVAR (current_buffer, mark));
387 if (NILP (m))
388 error ("The mark is not set now, so there is no region");
389
390 /* Clip to the current narrowing (bug#11770). */
391 return make_number ((PT < XFASTINT (m)) == beginningp
392 ? PT
393 : clip_to_bounds (BEGV, XFASTINT (m), ZV));
394 }
395
396 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
397 doc: /* Return the integer value of point or mark, whichever is smaller. */)
398 (void)
399 {
400 return region_limit (1);
401 }
402
403 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
404 doc: /* Return the integer value of point or mark, whichever is larger. */)
405 (void)
406 {
407 return region_limit (0);
408 }
409
410 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
411 doc: /* Return this buffer's mark, as a marker object.
412 Watch out! Moving this marker changes the mark position.
413 If you set the marker not to point anywhere, the buffer will have no mark. */)
414 (void)
415 {
416 return BVAR (current_buffer, mark);
417 }
418
419 \f
420 /* Find all the overlays in the current buffer that touch position POS.
421 Return the number found, and store them in a vector in VEC
422 of length LEN. */
423
424 static ptrdiff_t
425 overlays_around (EMACS_INT pos, Lisp_Object *vec, ptrdiff_t len)
426 {
427 Lisp_Object overlay, start, end;
428 struct Lisp_Overlay *tail;
429 ptrdiff_t startpos, endpos;
430 ptrdiff_t idx = 0;
431
432 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
433 {
434 XSETMISC (overlay, tail);
435
436 end = OVERLAY_END (overlay);
437 endpos = OVERLAY_POSITION (end);
438 if (endpos < pos)
439 break;
440 start = OVERLAY_START (overlay);
441 startpos = OVERLAY_POSITION (start);
442 if (startpos <= pos)
443 {
444 if (idx < len)
445 vec[idx] = overlay;
446 /* Keep counting overlays even if we can't return them all. */
447 idx++;
448 }
449 }
450
451 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
452 {
453 XSETMISC (overlay, tail);
454
455 start = OVERLAY_START (overlay);
456 startpos = OVERLAY_POSITION (start);
457 if (pos < startpos)
458 break;
459 end = OVERLAY_END (overlay);
460 endpos = OVERLAY_POSITION (end);
461 if (pos <= endpos)
462 {
463 if (idx < len)
464 vec[idx] = overlay;
465 idx++;
466 }
467 }
468
469 return idx;
470 }
471
472 DEFUN ("get-pos-property", Fget_pos_property, Sget_pos_property, 2, 3, 0,
473 doc: /* Return the value of POSITION's property PROP, in OBJECT.
474 Almost identical to `get-char-property' except for the following difference:
475 Whereas `get-char-property' returns the property of the char at (i.e. right
476 after) POSITION, this pays attention to properties's stickiness and overlays's
477 advancement settings, in order to find the property of POSITION itself,
478 i.e. the property that a char would inherit if it were inserted
479 at POSITION. */)
480 (Lisp_Object position, register Lisp_Object prop, Lisp_Object object)
481 {
482 CHECK_NUMBER_COERCE_MARKER (position);
483
484 if (NILP (object))
485 XSETBUFFER (object, current_buffer);
486 else if (WINDOWP (object))
487 object = XWINDOW (object)->contents;
488
489 if (!BUFFERP (object))
490 /* pos-property only makes sense in buffers right now, since strings
491 have no overlays and no notion of insertion for which stickiness
492 could be obeyed. */
493 return Fget_text_property (position, prop, object);
494 else
495 {
496 EMACS_INT posn = XINT (position);
497 ptrdiff_t noverlays;
498 Lisp_Object *overlay_vec, tem;
499 struct buffer *obuf = current_buffer;
500 USE_SAFE_ALLOCA;
501
502 set_buffer_temp (XBUFFER (object));
503
504 /* First try with room for 40 overlays. */
505 Lisp_Object overlay_vecbuf[40];
506 noverlays = ARRAYELTS (overlay_vecbuf);
507 overlay_vec = overlay_vecbuf;
508 noverlays = overlays_around (posn, overlay_vec, noverlays);
509
510 /* If there are more than 40,
511 make enough space for all, and try again. */
512 if (ARRAYELTS (overlay_vecbuf) < noverlays)
513 {
514 SAFE_ALLOCA_LISP (overlay_vec, noverlays);
515 noverlays = overlays_around (posn, overlay_vec, noverlays);
516 }
517 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
518
519 set_buffer_temp (obuf);
520
521 /* Now check the overlays in order of decreasing priority. */
522 while (--noverlays >= 0)
523 {
524 Lisp_Object ol = overlay_vec[noverlays];
525 tem = Foverlay_get (ol, prop);
526 if (!NILP (tem))
527 {
528 /* Check the overlay is indeed active at point. */
529 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
530 if ((OVERLAY_POSITION (start) == posn
531 && XMARKER (start)->insertion_type == 1)
532 || (OVERLAY_POSITION (finish) == posn
533 && XMARKER (finish)->insertion_type == 0))
534 ; /* The overlay will not cover a char inserted at point. */
535 else
536 {
537 SAFE_FREE ();
538 return tem;
539 }
540 }
541 }
542 SAFE_FREE ();
543
544 { /* Now check the text properties. */
545 int stickiness = text_property_stickiness (prop, position, object);
546 if (stickiness > 0)
547 return Fget_text_property (position, prop, object);
548 else if (stickiness < 0
549 && XINT (position) > BUF_BEGV (XBUFFER (object)))
550 return Fget_text_property (make_number (XINT (position) - 1),
551 prop, object);
552 else
553 return Qnil;
554 }
555 }
556 }
557
558 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
559 the value of point is used instead. If BEG or END is null,
560 means don't store the beginning or end of the field.
561
562 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
563 results; they do not effect boundary behavior.
564
565 If MERGE_AT_BOUNDARY is non-nil, then if POS is at the very first
566 position of a field, then the beginning of the previous field is
567 returned instead of the beginning of POS's field (since the end of a
568 field is actually also the beginning of the next input field, this
569 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
570 non-nil case, if two fields are separated by a field with the special
571 value `boundary', and POS lies within it, then the two separated
572 fields are considered to be adjacent, and POS between them, when
573 finding the beginning and ending of the "merged" field.
574
575 Either BEG or END may be 0, in which case the corresponding value
576 is not stored. */
577
578 static void
579 find_field (Lisp_Object pos, Lisp_Object merge_at_boundary,
580 Lisp_Object beg_limit,
581 ptrdiff_t *beg, Lisp_Object end_limit, ptrdiff_t *end)
582 {
583 /* Fields right before and after the point. */
584 Lisp_Object before_field, after_field;
585 /* True if POS counts as the start of a field. */
586 bool at_field_start = 0;
587 /* True if POS counts as the end of a field. */
588 bool at_field_end = 0;
589
590 if (NILP (pos))
591 XSETFASTINT (pos, PT);
592 else
593 CHECK_NUMBER_COERCE_MARKER (pos);
594
595 after_field
596 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
597 before_field
598 = (XFASTINT (pos) > BEGV
599 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
600 Qfield, Qnil, NULL)
601 /* Using nil here would be a more obvious choice, but it would
602 fail when the buffer starts with a non-sticky field. */
603 : after_field);
604
605 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
606 and POS is at beginning of a field, which can also be interpreted
607 as the end of the previous field. Note that the case where if
608 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
609 more natural one; then we avoid treating the beginning of a field
610 specially. */
611 if (NILP (merge_at_boundary))
612 {
613 Lisp_Object field = Fget_pos_property (pos, Qfield, Qnil);
614 if (!EQ (field, after_field))
615 at_field_end = 1;
616 if (!EQ (field, before_field))
617 at_field_start = 1;
618 if (NILP (field) && at_field_start && at_field_end)
619 /* If an inserted char would have a nil field while the surrounding
620 text is non-nil, we're probably not looking at a
621 zero-length field, but instead at a non-nil field that's
622 not intended for editing (such as comint's prompts). */
623 at_field_end = at_field_start = 0;
624 }
625
626 /* Note about special `boundary' fields:
627
628 Consider the case where the point (`.') is between the fields `x' and `y':
629
630 xxxx.yyyy
631
632 In this situation, if merge_at_boundary is non-nil, consider the
633 `x' and `y' fields as forming one big merged field, and so the end
634 of the field is the end of `y'.
635
636 However, if `x' and `y' are separated by a special `boundary' field
637 (a field with a `field' char-property of 'boundary), then ignore
638 this special field when merging adjacent fields. Here's the same
639 situation, but with a `boundary' field between the `x' and `y' fields:
640
641 xxx.BBBByyyy
642
643 Here, if point is at the end of `x', the beginning of `y', or
644 anywhere in-between (within the `boundary' field), merge all
645 three fields and consider the beginning as being the beginning of
646 the `x' field, and the end as being the end of the `y' field. */
647
648 if (beg)
649 {
650 if (at_field_start)
651 /* POS is at the edge of a field, and we should consider it as
652 the beginning of the following field. */
653 *beg = XFASTINT (pos);
654 else
655 /* Find the previous field boundary. */
656 {
657 Lisp_Object p = pos;
658 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
659 /* Skip a `boundary' field. */
660 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
661 beg_limit);
662
663 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
664 beg_limit);
665 *beg = NILP (p) ? BEGV : XFASTINT (p);
666 }
667 }
668
669 if (end)
670 {
671 if (at_field_end)
672 /* POS is at the edge of a field, and we should consider it as
673 the end of the previous field. */
674 *end = XFASTINT (pos);
675 else
676 /* Find the next field boundary. */
677 {
678 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
679 /* Skip a `boundary' field. */
680 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
681 end_limit);
682
683 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
684 end_limit);
685 *end = NILP (pos) ? ZV : XFASTINT (pos);
686 }
687 }
688 }
689
690 \f
691 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
692 doc: /* Delete the field surrounding POS.
693 A field is a region of text with the same `field' property.
694 If POS is nil, the value of point is used for POS. */)
695 (Lisp_Object pos)
696 {
697 ptrdiff_t beg, end;
698 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
699 if (beg != end)
700 del_range (beg, end);
701 return Qnil;
702 }
703
704 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
705 doc: /* Return the contents of the field surrounding POS as a string.
706 A field is a region of text with the same `field' property.
707 If POS is nil, the value of point is used for POS. */)
708 (Lisp_Object pos)
709 {
710 ptrdiff_t beg, end;
711 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
712 return make_buffer_string (beg, end, 1);
713 }
714
715 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
716 doc: /* Return the contents of the field around POS, without text properties.
717 A field is a region of text with the same `field' property.
718 If POS is nil, the value of point is used for POS. */)
719 (Lisp_Object pos)
720 {
721 ptrdiff_t beg, end;
722 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
723 return make_buffer_string (beg, end, 0);
724 }
725
726 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
727 doc: /* Return the beginning of the field surrounding POS.
728 A field is a region of text with the same `field' property.
729 If POS is nil, the value of point is used for POS.
730 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
731 field, then the beginning of the *previous* field is returned.
732 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
733 is before LIMIT, then LIMIT will be returned instead. */)
734 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
735 {
736 ptrdiff_t beg;
737 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
738 return make_number (beg);
739 }
740
741 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
742 doc: /* Return the end of the field surrounding POS.
743 A field is a region of text with the same `field' property.
744 If POS is nil, the value of point is used for POS.
745 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
746 then the end of the *following* field is returned.
747 If LIMIT is non-nil, it is a buffer position; if the end of the field
748 is after LIMIT, then LIMIT will be returned instead. */)
749 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
750 {
751 ptrdiff_t end;
752 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
753 return make_number (end);
754 }
755
756 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
757 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
758 A field is a region of text with the same `field' property.
759
760 If NEW-POS is nil, then use the current point instead, and move point
761 to the resulting constrained position, in addition to returning that
762 position.
763
764 If OLD-POS is at the boundary of two fields, then the allowable
765 positions for NEW-POS depends on the value of the optional argument
766 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
767 constrained to the field that has the same `field' char-property
768 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
769 is non-nil, NEW-POS is constrained to the union of the two adjacent
770 fields. Additionally, if two fields are separated by another field with
771 the special value `boundary', then any point within this special field is
772 also considered to be `on the boundary'.
773
774 If the optional argument ONLY-IN-LINE is non-nil and constraining
775 NEW-POS would move it to a different line, NEW-POS is returned
776 unconstrained. This is useful for commands that move by line, like
777 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
778 only in the case where they can still move to the right line.
779
780 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
781 a non-nil property of that name, then any field boundaries are ignored.
782
783 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
784 (Lisp_Object new_pos, Lisp_Object old_pos, Lisp_Object escape_from_edge,
785 Lisp_Object only_in_line, Lisp_Object inhibit_capture_property)
786 {
787 /* If non-zero, then the original point, before re-positioning. */
788 ptrdiff_t orig_point = 0;
789 bool fwd;
790 Lisp_Object prev_old, prev_new;
791
792 if (NILP (new_pos))
793 /* Use the current point, and afterwards, set it. */
794 {
795 orig_point = PT;
796 XSETFASTINT (new_pos, PT);
797 }
798
799 CHECK_NUMBER_COERCE_MARKER (new_pos);
800 CHECK_NUMBER_COERCE_MARKER (old_pos);
801
802 fwd = (XINT (new_pos) > XINT (old_pos));
803
804 prev_old = make_number (XINT (old_pos) - 1);
805 prev_new = make_number (XINT (new_pos) - 1);
806
807 if (NILP (Vinhibit_field_text_motion)
808 && !EQ (new_pos, old_pos)
809 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
810 || !NILP (Fget_char_property (old_pos, Qfield, Qnil))
811 /* To recognize field boundaries, we must also look at the
812 previous positions; we could use `Fget_pos_property'
813 instead, but in itself that would fail inside non-sticky
814 fields (like comint prompts). */
815 || (XFASTINT (new_pos) > BEGV
816 && !NILP (Fget_char_property (prev_new, Qfield, Qnil)))
817 || (XFASTINT (old_pos) > BEGV
818 && !NILP (Fget_char_property (prev_old, Qfield, Qnil))))
819 && (NILP (inhibit_capture_property)
820 /* Field boundaries are again a problem; but now we must
821 decide the case exactly, so we need to call
822 `get_pos_property' as well. */
823 || (NILP (Fget_pos_property (old_pos, inhibit_capture_property, Qnil))
824 && (XFASTINT (old_pos) <= BEGV
825 || NILP (Fget_char_property
826 (old_pos, inhibit_capture_property, Qnil))
827 || NILP (Fget_char_property
828 (prev_old, inhibit_capture_property, Qnil))))))
829 /* It is possible that NEW_POS is not within the same field as
830 OLD_POS; try to move NEW_POS so that it is. */
831 {
832 ptrdiff_t shortage;
833 Lisp_Object field_bound;
834
835 if (fwd)
836 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
837 else
838 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
839
840 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
841 other side of NEW_POS, which would mean that NEW_POS is
842 already acceptable, and it's not necessary to constrain it
843 to FIELD_BOUND. */
844 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
845 /* NEW_POS should be constrained, but only if either
846 ONLY_IN_LINE is nil (in which case any constraint is OK),
847 or NEW_POS and FIELD_BOUND are on the same line (in which
848 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
849 && (NILP (only_in_line)
850 /* This is the ONLY_IN_LINE case, check that NEW_POS and
851 FIELD_BOUND are on the same line by seeing whether
852 there's an intervening newline or not. */
853 || (find_newline (XFASTINT (new_pos), -1,
854 XFASTINT (field_bound), -1,
855 fwd ? -1 : 1, &shortage, NULL, 1),
856 shortage != 0)))
857 /* Constrain NEW_POS to FIELD_BOUND. */
858 new_pos = field_bound;
859
860 if (orig_point && XFASTINT (new_pos) != orig_point)
861 /* The NEW_POS argument was originally nil, so automatically set PT. */
862 SET_PT (XFASTINT (new_pos));
863 }
864
865 return new_pos;
866 }
867
868 \f
869 DEFUN ("line-beginning-position",
870 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
871 doc: /* Return the character position of the first character on the current line.
872 With optional argument N, scan forward N - 1 lines first.
873 If the scan reaches the end of the buffer, return that position.
874
875 This function ignores text display directionality; it returns the
876 position of the first character in logical order, i.e. the smallest
877 character position on the line.
878
879 This function constrains the returned position to the current field
880 unless that position would be on a different line than the original,
881 unconstrained result. If N is nil or 1, and a front-sticky field
882 starts at point, the scan stops as soon as it starts. To ignore field
883 boundaries, bind `inhibit-field-text-motion' to t.
884
885 This function does not move point. */)
886 (Lisp_Object n)
887 {
888 ptrdiff_t charpos, bytepos;
889
890 if (NILP (n))
891 XSETFASTINT (n, 1);
892 else
893 CHECK_NUMBER (n);
894
895 scan_newline_from_point (XINT (n) - 1, &charpos, &bytepos);
896
897 /* Return END constrained to the current input field. */
898 return Fconstrain_to_field (make_number (charpos), make_number (PT),
899 XINT (n) != 1 ? Qt : Qnil,
900 Qt, Qnil);
901 }
902
903 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
904 doc: /* Return the character position of the last character on the current line.
905 With argument N not nil or 1, move forward N - 1 lines first.
906 If scan reaches end of buffer, return that position.
907
908 This function ignores text display directionality; it returns the
909 position of the last character in logical order, i.e. the largest
910 character position on the line.
911
912 This function constrains the returned position to the current field
913 unless that would be on a different line than the original,
914 unconstrained result. If N is nil or 1, and a rear-sticky field ends
915 at point, the scan stops as soon as it starts. To ignore field
916 boundaries bind `inhibit-field-text-motion' to t.
917
918 This function does not move point. */)
919 (Lisp_Object n)
920 {
921 ptrdiff_t clipped_n;
922 ptrdiff_t end_pos;
923 ptrdiff_t orig = PT;
924
925 if (NILP (n))
926 XSETFASTINT (n, 1);
927 else
928 CHECK_NUMBER (n);
929
930 clipped_n = clip_to_bounds (PTRDIFF_MIN + 1, XINT (n), PTRDIFF_MAX);
931 end_pos = find_before_next_newline (orig, 0, clipped_n - (clipped_n <= 0),
932 NULL);
933
934 /* Return END_POS constrained to the current input field. */
935 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
936 Qnil, Qt, Qnil);
937 }
938
939 /* Save current buffer state for `save-excursion' special form.
940 We (ab)use Lisp_Misc_Save_Value to allow explicit free and so
941 offload some work from GC. */
942
943 Lisp_Object
944 save_excursion_save (void)
945 {
946 return make_save_obj_obj_obj_obj
947 (Fpoint_marker (),
948 Qnil,
949 /* Selected window if current buffer is shown in it, nil otherwise. */
950 (EQ (XWINDOW (selected_window)->contents, Fcurrent_buffer ())
951 ? selected_window : Qnil),
952 Qnil);
953 }
954
955 /* Restore saved buffer before leaving `save-excursion' special form. */
956
957 void
958 save_excursion_restore (Lisp_Object info)
959 {
960 Lisp_Object tem, tem1;
961
962 tem = Fmarker_buffer (XSAVE_OBJECT (info, 0));
963 /* If we're unwinding to top level, saved buffer may be deleted. This
964 means that all of its markers are unchained and so tem is nil. */
965 if (NILP (tem))
966 goto out;
967
968 Fset_buffer (tem);
969
970 /* Point marker. */
971 tem = XSAVE_OBJECT (info, 0);
972 Fgoto_char (tem);
973 unchain_marker (XMARKER (tem));
974
975 /* If buffer was visible in a window, and a different window was
976 selected, and the old selected window is still showing this
977 buffer, restore point in that window. */
978 tem = XSAVE_OBJECT (info, 2);
979 if (WINDOWP (tem)
980 && !EQ (tem, selected_window)
981 && (tem1 = XWINDOW (tem)->contents,
982 (/* Window is live... */
983 BUFFERP (tem1)
984 /* ...and it shows the current buffer. */
985 && XBUFFER (tem1) == current_buffer)))
986 Fset_window_point (tem, make_number (PT));
987
988 out:
989
990 free_misc (info);
991 }
992
993 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
994 doc: /* Save point, and current buffer; execute BODY; restore those things.
995 Executes BODY just like `progn'.
996 The values of point and the current buffer are restored
997 even in case of abnormal exit (throw or error).
998
999 If you only want to save the current buffer but not point,
1000 then just use `save-current-buffer', or even `with-current-buffer'.
1001
1002 Before Emacs 25.1, `save-excursion' used to save the mark state.
1003 To save the marker state as well as the point and buffer, use
1004 `save-mark-and-excursion'.
1005
1006 usage: (save-excursion &rest BODY) */)
1007 (Lisp_Object args)
1008 {
1009 register Lisp_Object val;
1010 ptrdiff_t count = SPECPDL_INDEX ();
1011
1012 record_unwind_protect (save_excursion_restore, save_excursion_save ());
1013
1014 val = Fprogn (args);
1015 return unbind_to (count, val);
1016 }
1017
1018 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
1019 doc: /* Record which buffer is current; execute BODY; make that buffer current.
1020 BODY is executed just like `progn'.
1021 usage: (save-current-buffer &rest BODY) */)
1022 (Lisp_Object args)
1023 {
1024 ptrdiff_t count = SPECPDL_INDEX ();
1025
1026 record_unwind_current_buffer ();
1027 return unbind_to (count, Fprogn (args));
1028 }
1029 \f
1030 DEFUN ("buffer-size", Fbuffer_size, Sbuffer_size, 0, 1, 0,
1031 doc: /* Return the number of characters in the current buffer.
1032 If BUFFER, return the number of characters in that buffer instead. */)
1033 (Lisp_Object buffer)
1034 {
1035 if (NILP (buffer))
1036 return make_number (Z - BEG);
1037 else
1038 {
1039 CHECK_BUFFER (buffer);
1040 return make_number (BUF_Z (XBUFFER (buffer))
1041 - BUF_BEG (XBUFFER (buffer)));
1042 }
1043 }
1044
1045 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
1046 doc: /* Return the minimum permissible value of point in the current buffer.
1047 This is 1, unless narrowing (a buffer restriction) is in effect. */)
1048 (void)
1049 {
1050 Lisp_Object temp;
1051 XSETFASTINT (temp, BEGV);
1052 return temp;
1053 }
1054
1055 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
1056 doc: /* Return a marker to the minimum permissible value of point in this buffer.
1057 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
1058 (void)
1059 {
1060 return build_marker (current_buffer, BEGV, BEGV_BYTE);
1061 }
1062
1063 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
1064 doc: /* Return the maximum permissible value of point in the current buffer.
1065 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1066 is in effect, in which case it is less. */)
1067 (void)
1068 {
1069 Lisp_Object temp;
1070 XSETFASTINT (temp, ZV);
1071 return temp;
1072 }
1073
1074 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
1075 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1076 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1077 is in effect, in which case it is less. */)
1078 (void)
1079 {
1080 return build_marker (current_buffer, ZV, ZV_BYTE);
1081 }
1082
1083 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1084 doc: /* Return the position of the gap, in the current buffer.
1085 See also `gap-size'. */)
1086 (void)
1087 {
1088 Lisp_Object temp;
1089 XSETFASTINT (temp, GPT);
1090 return temp;
1091 }
1092
1093 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1094 doc: /* Return the size of the current buffer's gap.
1095 See also `gap-position'. */)
1096 (void)
1097 {
1098 Lisp_Object temp;
1099 XSETFASTINT (temp, GAP_SIZE);
1100 return temp;
1101 }
1102
1103 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1104 doc: /* Return the byte position for character position POSITION.
1105 If POSITION is out of range, the value is nil. */)
1106 (Lisp_Object position)
1107 {
1108 CHECK_NUMBER_COERCE_MARKER (position);
1109 if (XINT (position) < BEG || XINT (position) > Z)
1110 return Qnil;
1111 return make_number (CHAR_TO_BYTE (XINT (position)));
1112 }
1113
1114 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1115 doc: /* Return the character position for byte position BYTEPOS.
1116 If BYTEPOS is out of range, the value is nil. */)
1117 (Lisp_Object bytepos)
1118 {
1119 ptrdiff_t pos_byte;
1120
1121 CHECK_NUMBER (bytepos);
1122 pos_byte = XINT (bytepos);
1123 if (pos_byte < BEG_BYTE || pos_byte > Z_BYTE)
1124 return Qnil;
1125 if (Z != Z_BYTE)
1126 /* There are multibyte characters in the buffer.
1127 The argument of BYTE_TO_CHAR must be a byte position at
1128 a character boundary, so search for the start of the current
1129 character. */
1130 while (!CHAR_HEAD_P (FETCH_BYTE (pos_byte)))
1131 pos_byte--;
1132 return make_number (BYTE_TO_CHAR (pos_byte));
1133 }
1134 \f
1135 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1136 doc: /* Return the character following point, as a number.
1137 At the end of the buffer or accessible region, return 0. */)
1138 (void)
1139 {
1140 Lisp_Object temp;
1141 if (PT >= ZV)
1142 XSETFASTINT (temp, 0);
1143 else
1144 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1145 return temp;
1146 }
1147
1148 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1149 doc: /* Return the character preceding point, as a number.
1150 At the beginning of the buffer or accessible region, return 0. */)
1151 (void)
1152 {
1153 Lisp_Object temp;
1154 if (PT <= BEGV)
1155 XSETFASTINT (temp, 0);
1156 else if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1157 {
1158 ptrdiff_t pos = PT_BYTE;
1159 DEC_POS (pos);
1160 XSETFASTINT (temp, FETCH_CHAR (pos));
1161 }
1162 else
1163 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1164 return temp;
1165 }
1166
1167 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1168 doc: /* Return t if point is at the beginning of the buffer.
1169 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1170 (void)
1171 {
1172 if (PT == BEGV)
1173 return Qt;
1174 return Qnil;
1175 }
1176
1177 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1178 doc: /* Return t if point is at the end of the buffer.
1179 If the buffer is narrowed, this means the end of the narrowed part. */)
1180 (void)
1181 {
1182 if (PT == ZV)
1183 return Qt;
1184 return Qnil;
1185 }
1186
1187 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1188 doc: /* Return t if point is at the beginning of a line. */)
1189 (void)
1190 {
1191 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1192 return Qt;
1193 return Qnil;
1194 }
1195
1196 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1197 doc: /* Return t if point is at the end of a line.
1198 `End of a line' includes point being at the end of the buffer. */)
1199 (void)
1200 {
1201 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1202 return Qt;
1203 return Qnil;
1204 }
1205
1206 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1207 doc: /* Return character in current buffer at position POS.
1208 POS is an integer or a marker and defaults to point.
1209 If POS is out of range, the value is nil. */)
1210 (Lisp_Object pos)
1211 {
1212 register ptrdiff_t pos_byte;
1213
1214 if (NILP (pos))
1215 {
1216 pos_byte = PT_BYTE;
1217 XSETFASTINT (pos, PT);
1218 }
1219
1220 if (MARKERP (pos))
1221 {
1222 pos_byte = marker_byte_position (pos);
1223 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1224 return Qnil;
1225 }
1226 else
1227 {
1228 CHECK_NUMBER_COERCE_MARKER (pos);
1229 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1230 return Qnil;
1231
1232 pos_byte = CHAR_TO_BYTE (XINT (pos));
1233 }
1234
1235 return make_number (FETCH_CHAR (pos_byte));
1236 }
1237
1238 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1239 doc: /* Return character in current buffer preceding position POS.
1240 POS is an integer or a marker and defaults to point.
1241 If POS is out of range, the value is nil. */)
1242 (Lisp_Object pos)
1243 {
1244 register Lisp_Object val;
1245 register ptrdiff_t pos_byte;
1246
1247 if (NILP (pos))
1248 {
1249 pos_byte = PT_BYTE;
1250 XSETFASTINT (pos, PT);
1251 }
1252
1253 if (MARKERP (pos))
1254 {
1255 pos_byte = marker_byte_position (pos);
1256
1257 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1258 return Qnil;
1259 }
1260 else
1261 {
1262 CHECK_NUMBER_COERCE_MARKER (pos);
1263
1264 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1265 return Qnil;
1266
1267 pos_byte = CHAR_TO_BYTE (XINT (pos));
1268 }
1269
1270 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1271 {
1272 DEC_POS (pos_byte);
1273 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1274 }
1275 else
1276 {
1277 pos_byte--;
1278 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1279 }
1280 return val;
1281 }
1282 \f
1283 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1284 doc: /* Return the name under which the user logged in, as a string.
1285 This is based on the effective uid, not the real uid.
1286 Also, if the environment variables LOGNAME or USER are set,
1287 that determines the value of this function.
1288
1289 If optional argument UID is an integer or a float, return the login name
1290 of the user with that uid, or nil if there is no such user. */)
1291 (Lisp_Object uid)
1292 {
1293 struct passwd *pw;
1294 uid_t id;
1295
1296 /* Set up the user name info if we didn't do it before.
1297 (That can happen if Emacs is dumpable
1298 but you decide to run `temacs -l loadup' and not dump. */
1299 if (NILP (Vuser_login_name))
1300 init_editfns (false);
1301
1302 if (NILP (uid))
1303 return Vuser_login_name;
1304
1305 CONS_TO_INTEGER (uid, uid_t, id);
1306 block_input ();
1307 pw = getpwuid (id);
1308 unblock_input ();
1309 return (pw ? build_string (pw->pw_name) : Qnil);
1310 }
1311
1312 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1313 0, 0, 0,
1314 doc: /* Return the name of the user's real uid, as a string.
1315 This ignores the environment variables LOGNAME and USER, so it differs from
1316 `user-login-name' when running under `su'. */)
1317 (void)
1318 {
1319 /* Set up the user name info if we didn't do it before.
1320 (That can happen if Emacs is dumpable
1321 but you decide to run `temacs -l loadup' and not dump. */
1322 if (NILP (Vuser_login_name))
1323 init_editfns (false);
1324 return Vuser_real_login_name;
1325 }
1326
1327 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1328 doc: /* Return the effective uid of Emacs.
1329 Value is an integer or a float, depending on the value. */)
1330 (void)
1331 {
1332 uid_t euid = geteuid ();
1333 return make_fixnum_or_float (euid);
1334 }
1335
1336 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1337 doc: /* Return the real uid of Emacs.
1338 Value is an integer or a float, depending on the value. */)
1339 (void)
1340 {
1341 uid_t uid = getuid ();
1342 return make_fixnum_or_float (uid);
1343 }
1344
1345 DEFUN ("group-gid", Fgroup_gid, Sgroup_gid, 0, 0, 0,
1346 doc: /* Return the effective gid of Emacs.
1347 Value is an integer or a float, depending on the value. */)
1348 (void)
1349 {
1350 gid_t egid = getegid ();
1351 return make_fixnum_or_float (egid);
1352 }
1353
1354 DEFUN ("group-real-gid", Fgroup_real_gid, Sgroup_real_gid, 0, 0, 0,
1355 doc: /* Return the real gid of Emacs.
1356 Value is an integer or a float, depending on the value. */)
1357 (void)
1358 {
1359 gid_t gid = getgid ();
1360 return make_fixnum_or_float (gid);
1361 }
1362
1363 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1364 doc: /* Return the full name of the user logged in, as a string.
1365 If the full name corresponding to Emacs's userid is not known,
1366 return "unknown".
1367
1368 If optional argument UID is an integer or float, return the full name
1369 of the user with that uid, or nil if there is no such user.
1370 If UID is a string, return the full name of the user with that login
1371 name, or nil if there is no such user. */)
1372 (Lisp_Object uid)
1373 {
1374 struct passwd *pw;
1375 register char *p, *q;
1376 Lisp_Object full;
1377
1378 if (NILP (uid))
1379 return Vuser_full_name;
1380 else if (NUMBERP (uid))
1381 {
1382 uid_t u;
1383 CONS_TO_INTEGER (uid, uid_t, u);
1384 block_input ();
1385 pw = getpwuid (u);
1386 unblock_input ();
1387 }
1388 else if (STRINGP (uid))
1389 {
1390 block_input ();
1391 pw = getpwnam (SSDATA (uid));
1392 unblock_input ();
1393 }
1394 else
1395 error ("Invalid UID specification");
1396
1397 if (!pw)
1398 return Qnil;
1399
1400 p = USER_FULL_NAME;
1401 /* Chop off everything after the first comma. */
1402 q = strchr (p, ',');
1403 full = make_string (p, q ? q - p : strlen (p));
1404
1405 #ifdef AMPERSAND_FULL_NAME
1406 p = SSDATA (full);
1407 q = strchr (p, '&');
1408 /* Substitute the login name for the &, upcasing the first character. */
1409 if (q)
1410 {
1411 Lisp_Object login = Fuser_login_name (make_number (pw->pw_uid));
1412 USE_SAFE_ALLOCA;
1413 char *r = SAFE_ALLOCA (strlen (p) + SBYTES (login) + 1);
1414 memcpy (r, p, q - p);
1415 char *s = lispstpcpy (&r[q - p], login);
1416 r[q - p] = upcase ((unsigned char) r[q - p]);
1417 strcpy (s, q + 1);
1418 full = build_string (r);
1419 SAFE_FREE ();
1420 }
1421 #endif /* AMPERSAND_FULL_NAME */
1422
1423 return full;
1424 }
1425
1426 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1427 doc: /* Return the host name of the machine you are running on, as a string. */)
1428 (void)
1429 {
1430 if (EQ (Vsystem_name, cached_system_name))
1431 init_and_cache_system_name ();
1432 return Vsystem_name;
1433 }
1434
1435 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1436 doc: /* Return the process ID of Emacs, as a number. */)
1437 (void)
1438 {
1439 pid_t pid = getpid ();
1440 return make_fixnum_or_float (pid);
1441 }
1442
1443 \f
1444
1445 #ifndef TIME_T_MIN
1446 # define TIME_T_MIN TYPE_MINIMUM (time_t)
1447 #endif
1448 #ifndef TIME_T_MAX
1449 # define TIME_T_MAX TYPE_MAXIMUM (time_t)
1450 #endif
1451
1452 /* Report that a time value is out of range for Emacs. */
1453 void
1454 time_overflow (void)
1455 {
1456 error ("Specified time is not representable");
1457 }
1458
1459 static _Noreturn void
1460 invalid_time (void)
1461 {
1462 error ("Invalid time specification");
1463 }
1464
1465 /* Check a return value compatible with that of decode_time_components. */
1466 static void
1467 check_time_validity (int validity)
1468 {
1469 if (validity <= 0)
1470 {
1471 if (validity < 0)
1472 time_overflow ();
1473 else
1474 invalid_time ();
1475 }
1476 }
1477
1478 /* Return the upper part of the time T (everything but the bottom 16 bits). */
1479 static EMACS_INT
1480 hi_time (time_t t)
1481 {
1482 time_t hi = t >> LO_TIME_BITS;
1483
1484 /* Check for overflow, helping the compiler for common cases where
1485 no runtime check is needed, and taking care not to convert
1486 negative numbers to unsigned before comparing them. */
1487 if (! ((! TYPE_SIGNED (time_t)
1488 || MOST_NEGATIVE_FIXNUM <= TIME_T_MIN >> LO_TIME_BITS
1489 || MOST_NEGATIVE_FIXNUM <= hi)
1490 && (TIME_T_MAX >> LO_TIME_BITS <= MOST_POSITIVE_FIXNUM
1491 || hi <= MOST_POSITIVE_FIXNUM)))
1492 time_overflow ();
1493
1494 return hi;
1495 }
1496
1497 /* Return the bottom bits of the time T. */
1498 static int
1499 lo_time (time_t t)
1500 {
1501 return t & ((1 << LO_TIME_BITS) - 1);
1502 }
1503
1504 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1505 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1506 The time is returned as a list of integers (HIGH LOW USEC PSEC).
1507 HIGH has the most significant bits of the seconds, while LOW has the
1508 least significant 16 bits. USEC and PSEC are the microsecond and
1509 picosecond counts. */)
1510 (void)
1511 {
1512 return make_lisp_time (current_timespec ());
1513 }
1514
1515 static struct lisp_time
1516 time_add (struct lisp_time ta, struct lisp_time tb)
1517 {
1518 EMACS_INT hi = ta.hi + tb.hi;
1519 int lo = ta.lo + tb.lo;
1520 int us = ta.us + tb.us;
1521 int ps = ta.ps + tb.ps;
1522 us += (1000000 <= ps);
1523 ps -= (1000000 <= ps) * 1000000;
1524 lo += (1000000 <= us);
1525 us -= (1000000 <= us) * 1000000;
1526 hi += (1 << LO_TIME_BITS <= lo);
1527 lo -= (1 << LO_TIME_BITS <= lo) << LO_TIME_BITS;
1528 return (struct lisp_time) { hi, lo, us, ps };
1529 }
1530
1531 static struct lisp_time
1532 time_subtract (struct lisp_time ta, struct lisp_time tb)
1533 {
1534 EMACS_INT hi = ta.hi - tb.hi;
1535 int lo = ta.lo - tb.lo;
1536 int us = ta.us - tb.us;
1537 int ps = ta.ps - tb.ps;
1538 us -= (ps < 0);
1539 ps += (ps < 0) * 1000000;
1540 lo -= (us < 0);
1541 us += (us < 0) * 1000000;
1542 hi -= (lo < 0);
1543 lo += (lo < 0) << LO_TIME_BITS;
1544 return (struct lisp_time) { hi, lo, us, ps };
1545 }
1546
1547 static Lisp_Object
1548 time_arith (Lisp_Object a, Lisp_Object b,
1549 struct lisp_time (*op) (struct lisp_time, struct lisp_time))
1550 {
1551 int alen, blen;
1552 struct lisp_time ta = lisp_time_struct (a, &alen);
1553 struct lisp_time tb = lisp_time_struct (b, &blen);
1554 struct lisp_time t = op (ta, tb);
1555 if (! (MOST_NEGATIVE_FIXNUM <= t.hi && t.hi <= MOST_POSITIVE_FIXNUM))
1556 time_overflow ();
1557 Lisp_Object val = Qnil;
1558
1559 switch (max (alen, blen))
1560 {
1561 default:
1562 val = Fcons (make_number (t.ps), val);
1563 /* Fall through. */
1564 case 3:
1565 val = Fcons (make_number (t.us), val);
1566 /* Fall through. */
1567 case 2:
1568 val = Fcons (make_number (t.lo), val);
1569 val = Fcons (make_number (t.hi), val);
1570 break;
1571 }
1572
1573 return val;
1574 }
1575
1576 DEFUN ("time-add", Ftime_add, Stime_add, 2, 2, 0,
1577 doc: /* Return the sum of two time values A and B, as a time value. */)
1578 (Lisp_Object a, Lisp_Object b)
1579 {
1580 return time_arith (a, b, time_add);
1581 }
1582
1583 DEFUN ("time-subtract", Ftime_subtract, Stime_subtract, 2, 2, 0,
1584 doc: /* Return the difference between two time values A and B, as a time value. */)
1585 (Lisp_Object a, Lisp_Object b)
1586 {
1587 return time_arith (a, b, time_subtract);
1588 }
1589
1590 DEFUN ("time-less-p", Ftime_less_p, Stime_less_p, 2, 2, 0,
1591 doc: /* Return non-nil if time value T1 is earlier than time value T2. */)
1592 (Lisp_Object t1, Lisp_Object t2)
1593 {
1594 int t1len, t2len;
1595 struct lisp_time a = lisp_time_struct (t1, &t1len);
1596 struct lisp_time b = lisp_time_struct (t2, &t2len);
1597 return ((a.hi != b.hi ? a.hi < b.hi
1598 : a.lo != b.lo ? a.lo < b.lo
1599 : a.us != b.us ? a.us < b.us
1600 : a.ps < b.ps)
1601 ? Qt : Qnil);
1602 }
1603
1604
1605 DEFUN ("get-internal-run-time", Fget_internal_run_time, Sget_internal_run_time,
1606 0, 0, 0,
1607 doc: /* Return the current run time used by Emacs.
1608 The time is returned as a list (HIGH LOW USEC PSEC), using the same
1609 style as (current-time).
1610
1611 On systems that can't determine the run time, `get-internal-run-time'
1612 does the same thing as `current-time'. */)
1613 (void)
1614 {
1615 #ifdef HAVE_GETRUSAGE
1616 struct rusage usage;
1617 time_t secs;
1618 int usecs;
1619
1620 if (getrusage (RUSAGE_SELF, &usage) < 0)
1621 /* This shouldn't happen. What action is appropriate? */
1622 xsignal0 (Qerror);
1623
1624 /* Sum up user time and system time. */
1625 secs = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
1626 usecs = usage.ru_utime.tv_usec + usage.ru_stime.tv_usec;
1627 if (usecs >= 1000000)
1628 {
1629 usecs -= 1000000;
1630 secs++;
1631 }
1632 return make_lisp_time (make_timespec (secs, usecs * 1000));
1633 #else /* ! HAVE_GETRUSAGE */
1634 #ifdef WINDOWSNT
1635 return w32_get_internal_run_time ();
1636 #else /* ! WINDOWSNT */
1637 return Fcurrent_time ();
1638 #endif /* WINDOWSNT */
1639 #endif /* HAVE_GETRUSAGE */
1640 }
1641 \f
1642
1643 /* Make a Lisp list that represents the Emacs time T. T may be an
1644 invalid time, with a slightly negative tv_nsec value such as
1645 UNKNOWN_MODTIME_NSECS; in that case, the Lisp list contains a
1646 correspondingly negative picosecond count. */
1647 Lisp_Object
1648 make_lisp_time (struct timespec t)
1649 {
1650 time_t s = t.tv_sec;
1651 int ns = t.tv_nsec;
1652 return list4i (hi_time (s), lo_time (s), ns / 1000, ns % 1000 * 1000);
1653 }
1654
1655 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1656 Set *PHIGH, *PLOW, *PUSEC, *PPSEC to its parts; do not check their values.
1657 Return 2, 3, or 4 to indicate the effective length of SPECIFIED_TIME
1658 if successful, 0 if unsuccessful. */
1659 static int
1660 disassemble_lisp_time (Lisp_Object specified_time, Lisp_Object *phigh,
1661 Lisp_Object *plow, Lisp_Object *pusec,
1662 Lisp_Object *ppsec)
1663 {
1664 Lisp_Object high = make_number (0);
1665 Lisp_Object low = specified_time;
1666 Lisp_Object usec = make_number (0);
1667 Lisp_Object psec = make_number (0);
1668 int len = 4;
1669
1670 if (CONSP (specified_time))
1671 {
1672 high = XCAR (specified_time);
1673 low = XCDR (specified_time);
1674 if (CONSP (low))
1675 {
1676 Lisp_Object low_tail = XCDR (low);
1677 low = XCAR (low);
1678 if (CONSP (low_tail))
1679 {
1680 usec = XCAR (low_tail);
1681 low_tail = XCDR (low_tail);
1682 if (CONSP (low_tail))
1683 psec = XCAR (low_tail);
1684 else
1685 len = 3;
1686 }
1687 else if (!NILP (low_tail))
1688 {
1689 usec = low_tail;
1690 len = 3;
1691 }
1692 else
1693 len = 2;
1694 }
1695 else
1696 len = 2;
1697
1698 /* When combining components, require LOW to be an integer,
1699 as otherwise it would be a pain to add up times. */
1700 if (! INTEGERP (low))
1701 return 0;
1702 }
1703 else if (INTEGERP (specified_time))
1704 len = 2;
1705
1706 *phigh = high;
1707 *plow = low;
1708 *pusec = usec;
1709 *ppsec = psec;
1710 return len;
1711 }
1712
1713 /* Convert T into an Emacs time *RESULT, truncating toward minus infinity.
1714 Return true if T is in range, false otherwise. */
1715 static bool
1716 decode_float_time (double t, struct lisp_time *result)
1717 {
1718 double lo_multiplier = 1 << LO_TIME_BITS;
1719 double emacs_time_min = MOST_NEGATIVE_FIXNUM * lo_multiplier;
1720 if (! (emacs_time_min <= t && t < -emacs_time_min))
1721 return false;
1722
1723 double small_t = t / lo_multiplier;
1724 EMACS_INT hi = small_t;
1725 double t_sans_hi = t - hi * lo_multiplier;
1726 int lo = t_sans_hi;
1727 long double fracps = (t_sans_hi - lo) * 1e12L;
1728 #ifdef INT_FAST64_MAX
1729 int_fast64_t ifracps = fracps;
1730 int us = ifracps / 1000000;
1731 int ps = ifracps % 1000000;
1732 #else
1733 int us = fracps / 1e6L;
1734 int ps = fracps - us * 1e6L;
1735 #endif
1736 us -= (ps < 0);
1737 ps += (ps < 0) * 1000000;
1738 lo -= (us < 0);
1739 us += (us < 0) * 1000000;
1740 hi -= (lo < 0);
1741 lo += (lo < 0) << LO_TIME_BITS;
1742 result->hi = hi;
1743 result->lo = lo;
1744 result->us = us;
1745 result->ps = ps;
1746 return true;
1747 }
1748
1749 /* From the time components HIGH, LOW, USEC and PSEC taken from a Lisp
1750 list, generate the corresponding time value.
1751 If LOW is floating point, the other components should be zero.
1752
1753 If RESULT is not null, store into *RESULT the converted time.
1754 If *DRESULT is not null, store into *DRESULT the number of
1755 seconds since the start of the POSIX Epoch.
1756
1757 Return 1 if successful, 0 if the components are of the
1758 wrong type, and -1 if the time is out of range. */
1759 int
1760 decode_time_components (Lisp_Object high, Lisp_Object low, Lisp_Object usec,
1761 Lisp_Object psec,
1762 struct lisp_time *result, double *dresult)
1763 {
1764 EMACS_INT hi, lo, us, ps;
1765 if (! (INTEGERP (high)
1766 && INTEGERP (usec) && INTEGERP (psec)))
1767 return 0;
1768 if (! INTEGERP (low))
1769 {
1770 if (FLOATP (low))
1771 {
1772 double t = XFLOAT_DATA (low);
1773 if (result && ! decode_float_time (t, result))
1774 return -1;
1775 if (dresult)
1776 *dresult = t;
1777 return 1;
1778 }
1779 else if (NILP (low))
1780 {
1781 struct timespec now = current_timespec ();
1782 if (result)
1783 {
1784 result->hi = hi_time (now.tv_sec);
1785 result->lo = lo_time (now.tv_sec);
1786 result->us = now.tv_nsec / 1000;
1787 result->ps = now.tv_nsec % 1000 * 1000;
1788 }
1789 if (dresult)
1790 *dresult = now.tv_sec + now.tv_nsec / 1e9;
1791 return 1;
1792 }
1793 else
1794 return 0;
1795 }
1796
1797 hi = XINT (high);
1798 lo = XINT (low);
1799 us = XINT (usec);
1800 ps = XINT (psec);
1801
1802 /* Normalize out-of-range lower-order components by carrying
1803 each overflow into the next higher-order component. */
1804 us += ps / 1000000 - (ps % 1000000 < 0);
1805 lo += us / 1000000 - (us % 1000000 < 0);
1806 hi += lo >> LO_TIME_BITS;
1807 ps = ps % 1000000 + 1000000 * (ps % 1000000 < 0);
1808 us = us % 1000000 + 1000000 * (us % 1000000 < 0);
1809 lo &= (1 << LO_TIME_BITS) - 1;
1810
1811 if (result)
1812 {
1813 if (! (MOST_NEGATIVE_FIXNUM <= hi && hi <= MOST_POSITIVE_FIXNUM))
1814 return -1;
1815 result->hi = hi;
1816 result->lo = lo;
1817 result->us = us;
1818 result->ps = ps;
1819 }
1820
1821 if (dresult)
1822 {
1823 double dhi = hi;
1824 *dresult = (us * 1e6 + ps) / 1e12 + lo + dhi * (1 << LO_TIME_BITS);
1825 }
1826
1827 return 1;
1828 }
1829
1830 struct timespec
1831 lisp_to_timespec (struct lisp_time t)
1832 {
1833 if (! ((TYPE_SIGNED (time_t) ? TIME_T_MIN >> LO_TIME_BITS <= t.hi : 0 <= t.hi)
1834 && t.hi <= TIME_T_MAX >> LO_TIME_BITS))
1835 return invalid_timespec ();
1836 time_t s = (t.hi << LO_TIME_BITS) + t.lo;
1837 int ns = t.us * 1000 + t.ps / 1000;
1838 return make_timespec (s, ns);
1839 }
1840
1841 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1842 Store its effective length into *PLEN.
1843 If SPECIFIED_TIME is nil, use the current time.
1844 Signal an error if SPECIFIED_TIME does not represent a time. */
1845 static struct lisp_time
1846 lisp_time_struct (Lisp_Object specified_time, int *plen)
1847 {
1848 Lisp_Object high, low, usec, psec;
1849 struct lisp_time t;
1850 int len = disassemble_lisp_time (specified_time, &high, &low, &usec, &psec);
1851 if (!len)
1852 invalid_time ();
1853 int val = decode_time_components (high, low, usec, psec, &t, 0);
1854 check_time_validity (val);
1855 *plen = len;
1856 return t;
1857 }
1858
1859 /* Like lisp_time_struct, except return a struct timespec.
1860 Discard any low-order digits. */
1861 struct timespec
1862 lisp_time_argument (Lisp_Object specified_time)
1863 {
1864 int len;
1865 struct lisp_time lt = lisp_time_struct (specified_time, &len);
1866 struct timespec t = lisp_to_timespec (lt);
1867 if (! timespec_valid_p (t))
1868 time_overflow ();
1869 return t;
1870 }
1871
1872 /* Like lisp_time_argument, except decode only the seconds part,
1873 and do not check the subseconds part. */
1874 static time_t
1875 lisp_seconds_argument (Lisp_Object specified_time)
1876 {
1877 Lisp_Object high, low, usec, psec;
1878 struct lisp_time t;
1879
1880 int val = disassemble_lisp_time (specified_time, &high, &low, &usec, &psec);
1881 if (val != 0)
1882 {
1883 val = decode_time_components (high, low, make_number (0),
1884 make_number (0), &t, 0);
1885 if (0 < val
1886 && ! ((TYPE_SIGNED (time_t)
1887 ? TIME_T_MIN >> LO_TIME_BITS <= t.hi
1888 : 0 <= t.hi)
1889 && t.hi <= TIME_T_MAX >> LO_TIME_BITS))
1890 val = -1;
1891 }
1892 check_time_validity (val);
1893 return (t.hi << LO_TIME_BITS) + t.lo;
1894 }
1895
1896 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1897 doc: /* Return the current time, as a float number of seconds since the epoch.
1898 If SPECIFIED-TIME is given, it is the time to convert to float
1899 instead of the current time. The argument should have the form
1900 \(HIGH LOW) or (HIGH LOW USEC) or (HIGH LOW USEC PSEC). Thus,
1901 you can use times from `current-time' and from `file-attributes'.
1902 SPECIFIED-TIME can also have the form (HIGH . LOW), but this is
1903 considered obsolete.
1904
1905 WARNING: Since the result is floating point, it may not be exact.
1906 If precise time stamps are required, use either `current-time',
1907 or (if you need time as a string) `format-time-string'. */)
1908 (Lisp_Object specified_time)
1909 {
1910 double t;
1911 Lisp_Object high, low, usec, psec;
1912 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1913 && decode_time_components (high, low, usec, psec, 0, &t)))
1914 invalid_time ();
1915 return make_float (t);
1916 }
1917
1918 /* Write information into buffer S of size MAXSIZE, according to the
1919 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1920 Use the time zone specified by TZ.
1921 Use NS as the number of nanoseconds in the %N directive.
1922 Return the number of bytes written, not including the terminating
1923 '\0'. If S is NULL, nothing will be written anywhere; so to
1924 determine how many bytes would be written, use NULL for S and
1925 ((size_t) -1) for MAXSIZE.
1926
1927 This function behaves like nstrftime, except it allows null
1928 bytes in FORMAT and it does not support nanoseconds. */
1929 static size_t
1930 emacs_nmemftime (char *s, size_t maxsize, const char *format,
1931 size_t format_len, const struct tm *tp, timezone_t tz, int ns)
1932 {
1933 size_t total = 0;
1934
1935 /* Loop through all the null-terminated strings in the format
1936 argument. Normally there's just one null-terminated string, but
1937 there can be arbitrarily many, concatenated together, if the
1938 format contains '\0' bytes. nstrftime stops at the first
1939 '\0' byte so we must invoke it separately for each such string. */
1940 for (;;)
1941 {
1942 size_t len;
1943 size_t result;
1944
1945 if (s)
1946 s[0] = '\1';
1947
1948 result = nstrftime (s, maxsize, format, tp, tz, ns);
1949
1950 if (s)
1951 {
1952 if (result == 0 && s[0] != '\0')
1953 return 0;
1954 s += result + 1;
1955 }
1956
1957 maxsize -= result + 1;
1958 total += result;
1959 len = strlen (format);
1960 if (len == format_len)
1961 return total;
1962 total++;
1963 format += len + 1;
1964 format_len -= len + 1;
1965 }
1966 }
1967
1968 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1969 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1970 TIME is specified as (HIGH LOW USEC PSEC), as returned by
1971 `current-time' or `file-attributes'. The obsolete form (HIGH . LOW)
1972 is also still accepted. The optional ZONE is omitted or nil for Emacs
1973 local time, t for Universal Time, `wall' for system wall clock time,
1974 or a string as in the TZ environment variable.
1975
1976 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1977 by text that describes the specified date and time in TIME:
1978
1979 %Y is the year, %y within the century, %C the century.
1980 %G is the year corresponding to the ISO week, %g within the century.
1981 %m is the numeric month.
1982 %b and %h are the locale's abbreviated month name, %B the full name.
1983 (%h is not supported on MS-Windows.)
1984 %d is the day of the month, zero-padded, %e is blank-padded.
1985 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1986 %a is the locale's abbreviated name of the day of week, %A the full name.
1987 %U is the week number starting on Sunday, %W starting on Monday,
1988 %V according to ISO 8601.
1989 %j is the day of the year.
1990
1991 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1992 only blank-padded, %l is like %I blank-padded.
1993 %p is the locale's equivalent of either AM or PM.
1994 %M is the minute.
1995 %S is the second.
1996 %N is the nanosecond, %6N the microsecond, %3N the millisecond, etc.
1997 %Z is the time zone name, %z is the numeric form.
1998 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1999
2000 %c is the locale's date and time format.
2001 %x is the locale's "preferred" date format.
2002 %D is like "%m/%d/%y".
2003 %F is the ISO 8601 date format (like "%Y-%m-%d").
2004
2005 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
2006 %X is the locale's "preferred" time format.
2007
2008 Finally, %n is a newline, %t is a tab, %% is a literal %.
2009
2010 Certain flags and modifiers are available with some format controls.
2011 The flags are `_', `-', `^' and `#'. For certain characters X,
2012 %_X is like %X, but padded with blanks; %-X is like %X,
2013 but without padding. %^X is like %X, but with all textual
2014 characters up-cased; %#X is like %X, but with letter-case of
2015 all textual characters reversed.
2016 %NX (where N stands for an integer) is like %X,
2017 but takes up at least N (a number) positions.
2018 The modifiers are `E' and `O'. For certain characters X,
2019 %EX is a locale's alternative version of %X;
2020 %OX is like %X, but uses the locale's number symbols.
2021
2022 For example, to produce full ISO 8601 format, use "%FT%T%z".
2023
2024 usage: (format-time-string FORMAT-STRING &optional TIME ZONE) */)
2025 (Lisp_Object format_string, Lisp_Object timeval, Lisp_Object zone)
2026 {
2027 struct timespec t = lisp_time_argument (timeval);
2028 struct tm tm;
2029
2030 CHECK_STRING (format_string);
2031 format_string = code_convert_string_norecord (format_string,
2032 Vlocale_coding_system, 1);
2033 return format_time_string (SSDATA (format_string), SBYTES (format_string),
2034 t, zone, &tm);
2035 }
2036
2037 static Lisp_Object
2038 format_time_string (char const *format, ptrdiff_t formatlen,
2039 struct timespec t, Lisp_Object zone, struct tm *tmp)
2040 {
2041 char buffer[4000];
2042 char *buf = buffer;
2043 ptrdiff_t size = sizeof buffer;
2044 size_t len;
2045 Lisp_Object bufstring;
2046 int ns = t.tv_nsec;
2047 USE_SAFE_ALLOCA;
2048
2049 timezone_t tz = tzlookup (zone, false);
2050 tmp = emacs_localtime_rz (tz, &t.tv_sec, tmp);
2051 if (! tmp)
2052 {
2053 xtzfree (tz);
2054 time_overflow ();
2055 }
2056 synchronize_system_time_locale ();
2057
2058 while (true)
2059 {
2060 buf[0] = '\1';
2061 len = emacs_nmemftime (buf, size, format, formatlen, tmp, tz, ns);
2062 if ((0 < len && len < size) || (len == 0 && buf[0] == '\0'))
2063 break;
2064
2065 /* Buffer was too small, so make it bigger and try again. */
2066 len = emacs_nmemftime (NULL, SIZE_MAX, format, formatlen, tmp, tz, ns);
2067 if (STRING_BYTES_BOUND <= len)
2068 {
2069 xtzfree (tz);
2070 string_overflow ();
2071 }
2072 size = len + 1;
2073 buf = SAFE_ALLOCA (size);
2074 }
2075
2076 xtzfree (tz);
2077 bufstring = make_unibyte_string (buf, len);
2078 SAFE_FREE ();
2079 return code_convert_string_norecord (bufstring, Vlocale_coding_system, 0);
2080 }
2081
2082 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 2, 0,
2083 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST UTCOFF).
2084 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED),
2085 as from `current-time' and `file-attributes', or nil to use the
2086 current time. The obsolete form (HIGH . LOW) is also still accepted.
2087 The optional ZONE is omitted or nil for Emacs local time, t for
2088 Universal Time, `wall' for system wall clock time, or a string as in
2089 the TZ environment variable.
2090
2091 The list has the following nine members: SEC is an integer between 0
2092 and 60; SEC is 60 for a leap second, which only some operating systems
2093 support. MINUTE is an integer between 0 and 59. HOUR is an integer
2094 between 0 and 23. DAY is an integer between 1 and 31. MONTH is an
2095 integer between 1 and 12. YEAR is an integer indicating the
2096 four-digit year. DOW is the day of week, an integer between 0 and 6,
2097 where 0 is Sunday. DST is t if daylight saving time is in effect,
2098 otherwise nil. UTCOFF is an integer indicating the UTC offset in
2099 seconds, i.e., the number of seconds east of Greenwich. (Note that
2100 Common Lisp has different meanings for DOW and UTCOFF.)
2101
2102 usage: (decode-time &optional TIME ZONE) */)
2103 (Lisp_Object specified_time, Lisp_Object zone)
2104 {
2105 time_t time_spec = lisp_seconds_argument (specified_time);
2106 struct tm local_tm, gmt_tm;
2107 timezone_t tz = tzlookup (zone, false);
2108 struct tm *tm = emacs_localtime_rz (tz, &time_spec, &local_tm);
2109 xtzfree (tz);
2110
2111 if (! (tm
2112 && MOST_NEGATIVE_FIXNUM - TM_YEAR_BASE <= local_tm.tm_year
2113 && local_tm.tm_year <= MOST_POSITIVE_FIXNUM - TM_YEAR_BASE))
2114 time_overflow ();
2115
2116 /* Avoid overflow when INT_MAX < EMACS_INT_MAX. */
2117 EMACS_INT tm_year_base = TM_YEAR_BASE;
2118
2119 return CALLN (Flist,
2120 make_number (local_tm.tm_sec),
2121 make_number (local_tm.tm_min),
2122 make_number (local_tm.tm_hour),
2123 make_number (local_tm.tm_mday),
2124 make_number (local_tm.tm_mon + 1),
2125 make_number (local_tm.tm_year + tm_year_base),
2126 make_number (local_tm.tm_wday),
2127 local_tm.tm_isdst ? Qt : Qnil,
2128 (HAVE_TM_GMTOFF
2129 ? make_number (tm_gmtoff (&local_tm))
2130 : gmtime_r (&time_spec, &gmt_tm)
2131 ? make_number (tm_diff (&local_tm, &gmt_tm))
2132 : Qnil));
2133 }
2134
2135 /* Return OBJ - OFFSET, checking that OBJ is a valid fixnum and that
2136 the result is representable as an int. Assume OFFSET is small and
2137 nonnegative. */
2138 static int
2139 check_tm_member (Lisp_Object obj, int offset)
2140 {
2141 EMACS_INT n;
2142 CHECK_NUMBER (obj);
2143 n = XINT (obj);
2144 if (! (INT_MIN + offset <= n && n - offset <= INT_MAX))
2145 time_overflow ();
2146 return n - offset;
2147 }
2148
2149 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
2150 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
2151 This is the reverse operation of `decode-time', which see.
2152 The optional ZONE is omitted or nil for Emacs local time, t for
2153 Universal Time, `wall' for system wall clock time, or a string as in
2154 the TZ environment variable. It can also be a list (as from
2155 `current-time-zone') or an integer (as from `decode-time') applied
2156 without consideration for daylight saving time.
2157
2158 You can pass more than 7 arguments; then the first six arguments
2159 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
2160 The intervening arguments are ignored.
2161 This feature lets (apply \\='encode-time (decode-time ...)) work.
2162
2163 Out-of-range values for SECOND, MINUTE, HOUR, DAY, or MONTH are allowed;
2164 for example, a DAY of 0 means the day preceding the given month.
2165 Year numbers less than 100 are treated just like other year numbers.
2166 If you want them to stand for years in this century, you must do that yourself.
2167
2168 Years before 1970 are not guaranteed to work. On some systems,
2169 year values as low as 1901 do work.
2170
2171 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
2172 (ptrdiff_t nargs, Lisp_Object *args)
2173 {
2174 time_t value;
2175 struct tm tm;
2176 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
2177
2178 tm.tm_sec = check_tm_member (args[0], 0);
2179 tm.tm_min = check_tm_member (args[1], 0);
2180 tm.tm_hour = check_tm_member (args[2], 0);
2181 tm.tm_mday = check_tm_member (args[3], 0);
2182 tm.tm_mon = check_tm_member (args[4], 1);
2183 tm.tm_year = check_tm_member (args[5], TM_YEAR_BASE);
2184 tm.tm_isdst = -1;
2185
2186 if (CONSP (zone))
2187 zone = XCAR (zone);
2188 timezone_t tz = tzlookup (zone, false);
2189 value = emacs_mktime_z (tz, &tm);
2190 xtzfree (tz);
2191
2192 if (value == (time_t) -1)
2193 time_overflow ();
2194
2195 return list2i (hi_time (value), lo_time (value));
2196 }
2197
2198 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string,
2199 0, 2, 0,
2200 doc: /* Return the current local time, as a human-readable string.
2201 Programs can use this function to decode a time,
2202 since the number of columns in each field is fixed
2203 if the year is in the range 1000-9999.
2204 The format is `Sun Sep 16 01:03:52 1973'.
2205 However, see also the functions `decode-time' and `format-time-string'
2206 which provide a much more powerful and general facility.
2207
2208 If SPECIFIED-TIME is given, it is a time to format instead of the
2209 current time. The argument should have the form (HIGH LOW . IGNORED).
2210 Thus, you can use times obtained from `current-time' and from
2211 `file-attributes'. SPECIFIED-TIME can also have the form (HIGH . LOW),
2212 but this is considered obsolete.
2213
2214 The optional ZONE is omitted or nil for Emacs local time, t for
2215 Universal Time, `wall' for system wall clock time, or a string as in
2216 the TZ environment variable. */)
2217 (Lisp_Object specified_time, Lisp_Object zone)
2218 {
2219 time_t value = lisp_seconds_argument (specified_time);
2220 timezone_t tz = tzlookup (zone, false);
2221
2222 /* Convert to a string in ctime format, except without the trailing
2223 newline, and without the 4-digit year limit. Don't use asctime
2224 or ctime, as they might dump core if the year is outside the
2225 range -999 .. 9999. */
2226 struct tm tm;
2227 struct tm *tmp = emacs_localtime_rz (tz, &value, &tm);
2228 xtzfree (tz);
2229 if (! tmp)
2230 time_overflow ();
2231
2232 static char const wday_name[][4] =
2233 { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
2234 static char const mon_name[][4] =
2235 { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
2236 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
2237 printmax_t year_base = TM_YEAR_BASE;
2238 char buf[sizeof "Mon Apr 30 12:49:17 " + INT_STRLEN_BOUND (int) + 1];
2239 int len = sprintf (buf, "%s %s%3d %02d:%02d:%02d %"pMd,
2240 wday_name[tm.tm_wday], mon_name[tm.tm_mon], tm.tm_mday,
2241 tm.tm_hour, tm.tm_min, tm.tm_sec,
2242 tm.tm_year + year_base);
2243
2244 return make_unibyte_string (buf, len);
2245 }
2246
2247 /* Yield A - B, measured in seconds.
2248 This function is copied from the GNU C Library. */
2249 static int
2250 tm_diff (struct tm *a, struct tm *b)
2251 {
2252 /* Compute intervening leap days correctly even if year is negative.
2253 Take care to avoid int overflow in leap day calculations,
2254 but it's OK to assume that A and B are close to each other. */
2255 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
2256 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
2257 int a100 = a4 / 25 - (a4 % 25 < 0);
2258 int b100 = b4 / 25 - (b4 % 25 < 0);
2259 int a400 = a100 >> 2;
2260 int b400 = b100 >> 2;
2261 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
2262 int years = a->tm_year - b->tm_year;
2263 int days = (365 * years + intervening_leap_days
2264 + (a->tm_yday - b->tm_yday));
2265 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
2266 + (a->tm_min - b->tm_min))
2267 + (a->tm_sec - b->tm_sec));
2268 }
2269
2270 /* Yield A's UTC offset, or an unspecified value if unknown. */
2271 static long int
2272 tm_gmtoff (struct tm *a)
2273 {
2274 #if HAVE_TM_GMTOFF
2275 return a->tm_gmtoff;
2276 #else
2277 return 0;
2278 #endif
2279 }
2280
2281 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 2, 0,
2282 doc: /* Return the offset and name for the local time zone.
2283 This returns a list of the form (OFFSET NAME).
2284 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
2285 A negative value means west of Greenwich.
2286 NAME is a string giving the name of the time zone.
2287 If SPECIFIED-TIME is given, the time zone offset is determined from it
2288 instead of using the current time. The argument should have the form
2289 \(HIGH LOW . IGNORED). Thus, you can use times obtained from
2290 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
2291 have the form (HIGH . LOW), but this is considered obsolete.
2292 Optional second arg ZONE is omitted or nil for the local time zone, or
2293 a string as in the TZ environment variable.
2294
2295 Some operating systems cannot provide all this information to Emacs;
2296 in this case, `current-time-zone' returns a list containing nil for
2297 the data it can't find. */)
2298 (Lisp_Object specified_time, Lisp_Object zone)
2299 {
2300 struct timespec value;
2301 struct tm local_tm, gmt_tm;
2302 Lisp_Object zone_offset, zone_name;
2303
2304 zone_offset = Qnil;
2305 value = make_timespec (lisp_seconds_argument (specified_time), 0);
2306 zone_name = format_time_string ("%Z", sizeof "%Z" - 1, value,
2307 zone, &local_tm);
2308
2309 if (HAVE_TM_GMTOFF || gmtime_r (&value.tv_sec, &gmt_tm))
2310 {
2311 long int offset = (HAVE_TM_GMTOFF
2312 ? tm_gmtoff (&local_tm)
2313 : tm_diff (&local_tm, &gmt_tm));
2314 zone_offset = make_number (offset);
2315 if (SCHARS (zone_name) == 0)
2316 {
2317 /* No local time zone name is available; use "+-NNNN" instead. */
2318 long int m = offset / 60;
2319 long int am = offset < 0 ? - m : m;
2320 long int hour = am / 60;
2321 int min = am % 60;
2322 char buf[sizeof "+00" + INT_STRLEN_BOUND (long int)];
2323 zone_name = make_formatted_string (buf, "%c%02ld%02d",
2324 (offset < 0 ? '-' : '+'),
2325 hour, min);
2326 }
2327 }
2328
2329 return list2 (zone_offset, zone_name);
2330 }
2331
2332 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
2333 doc: /* Set the Emacs local time zone using TZ, a string specifying a time zone rule.
2334
2335 If TZ is nil or `wall', use system wall clock time; this differs from
2336 the usual Emacs convention where nil means current local time. If TZ
2337 is t, use Universal Time. If TZ is an integer, treat it as in
2338 `encode-time'.
2339
2340 Instead of calling this function, you typically want something else.
2341 To temporarily use a different time zone rule for just one invocation
2342 of `decode-time', `encode-time', or `format-time-string', pass the
2343 function a ZONE argument. To change local time consistently
2344 throughout Emacs, call (setenv "TZ" TZ): this changes both the
2345 environment of the Emacs process and the variable
2346 `process-environment', whereas `set-time-zone-rule' affects only the
2347 former. */)
2348 (Lisp_Object tz)
2349 {
2350 tzlookup (NILP (tz) ? Qwall : tz, true);
2351 return Qnil;
2352 }
2353
2354 /* A buffer holding a string of the form "TZ=value", intended
2355 to be part of the environment. If TZ is supposed to be unset,
2356 the buffer string is "tZ=". */
2357 static char *tzvalbuf;
2358
2359 /* Get the local time zone rule. */
2360 char *
2361 emacs_getenv_TZ (void)
2362 {
2363 return tzvalbuf[0] == 'T' ? tzvalbuf + tzeqlen : 0;
2364 }
2365
2366 /* Set the local time zone rule to TZSTRING, which can be null to
2367 denote wall clock time. Do not record the setting in LOCAL_TZ.
2368
2369 This function is not thread-safe, in theory because putenv is not,
2370 but mostly because of the static storage it updates. Other threads
2371 that invoke localtime etc. may be adversely affected while this
2372 function is executing. */
2373
2374 int
2375 emacs_setenv_TZ (const char *tzstring)
2376 {
2377 static ptrdiff_t tzvalbufsize;
2378 ptrdiff_t tzstringlen = tzstring ? strlen (tzstring) : 0;
2379 char *tzval = tzvalbuf;
2380 bool new_tzvalbuf = tzvalbufsize <= tzeqlen + tzstringlen;
2381
2382 if (new_tzvalbuf)
2383 {
2384 /* Do not attempt to free the old tzvalbuf, since another thread
2385 may be using it. In practice, the first allocation is large
2386 enough and memory does not leak. */
2387 tzval = xpalloc (NULL, &tzvalbufsize,
2388 tzeqlen + tzstringlen - tzvalbufsize + 1, -1, 1);
2389 tzvalbuf = tzval;
2390 tzval[1] = 'Z';
2391 tzval[2] = '=';
2392 }
2393
2394 if (tzstring)
2395 {
2396 /* Modify TZVAL in place. Although this is dicey in a
2397 multithreaded environment, we know of no portable alternative.
2398 Calling putenv or setenv could crash some other thread. */
2399 tzval[0] = 'T';
2400 strcpy (tzval + tzeqlen, tzstring);
2401 }
2402 else
2403 {
2404 /* Turn 'TZ=whatever' into an empty environment variable 'tZ='.
2405 Although this is also dicey, calling unsetenv here can crash Emacs.
2406 See Bug#8705. */
2407 tzval[0] = 't';
2408 tzval[tzeqlen] = 0;
2409 }
2410
2411 if (new_tzvalbuf
2412 #ifdef WINDOWSNT
2413 /* MS-Windows implementation of 'putenv' copies the argument
2414 string into a block it allocates, so modifying tzval string
2415 does not change the environment. OTOH, the other threads run
2416 by Emacs on MS-Windows never call 'xputenv' or 'putenv' or
2417 'unsetenv', so the original cause for the dicey in-place
2418 modification technique doesn't exist there in the first
2419 place. */
2420 || 1
2421 #endif
2422 )
2423 {
2424 /* Although this is not thread-safe, in practice this runs only
2425 on startup when there is only one thread. */
2426 xputenv (tzval);
2427 }
2428
2429 return 0;
2430 }
2431 \f
2432 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
2433 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
2434 type of object is Lisp_String). INHERIT is passed to
2435 INSERT_FROM_STRING_FUNC as the last argument. */
2436
2437 static void
2438 general_insert_function (void (*insert_func)
2439 (const char *, ptrdiff_t),
2440 void (*insert_from_string_func)
2441 (Lisp_Object, ptrdiff_t, ptrdiff_t,
2442 ptrdiff_t, ptrdiff_t, bool),
2443 bool inherit, ptrdiff_t nargs, Lisp_Object *args)
2444 {
2445 ptrdiff_t argnum;
2446 Lisp_Object val;
2447
2448 for (argnum = 0; argnum < nargs; argnum++)
2449 {
2450 val = args[argnum];
2451 if (CHARACTERP (val))
2452 {
2453 int c = XFASTINT (val);
2454 unsigned char str[MAX_MULTIBYTE_LENGTH];
2455 int len;
2456
2457 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2458 len = CHAR_STRING (c, str);
2459 else
2460 {
2461 str[0] = CHAR_TO_BYTE8 (c);
2462 len = 1;
2463 }
2464 (*insert_func) ((char *) str, len);
2465 }
2466 else if (STRINGP (val))
2467 {
2468 (*insert_from_string_func) (val, 0, 0,
2469 SCHARS (val),
2470 SBYTES (val),
2471 inherit);
2472 }
2473 else
2474 wrong_type_argument (Qchar_or_string_p, val);
2475 }
2476 }
2477
2478 void
2479 insert1 (Lisp_Object arg)
2480 {
2481 Finsert (1, &arg);
2482 }
2483
2484
2485 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2486 doc: /* Insert the arguments, either strings or characters, at point.
2487 Point and before-insertion markers move forward to end up
2488 after the inserted text.
2489 Any other markers at the point of insertion remain before the text.
2490
2491 If the current buffer is multibyte, unibyte strings are converted
2492 to multibyte for insertion (see `string-make-multibyte').
2493 If the current buffer is unibyte, multibyte strings are converted
2494 to unibyte for insertion (see `string-make-unibyte').
2495
2496 When operating on binary data, it may be necessary to preserve the
2497 original bytes of a unibyte string when inserting it into a multibyte
2498 buffer; to accomplish this, apply `string-as-multibyte' to the string
2499 and insert the result.
2500
2501 usage: (insert &rest ARGS) */)
2502 (ptrdiff_t nargs, Lisp_Object *args)
2503 {
2504 general_insert_function (insert, insert_from_string, 0, nargs, args);
2505 return Qnil;
2506 }
2507
2508 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2509 0, MANY, 0,
2510 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2511 Point and before-insertion markers move forward to end up
2512 after the inserted text.
2513 Any other markers at the point of insertion remain before the text.
2514
2515 If the current buffer is multibyte, unibyte strings are converted
2516 to multibyte for insertion (see `unibyte-char-to-multibyte').
2517 If the current buffer is unibyte, multibyte strings are converted
2518 to unibyte for insertion.
2519
2520 usage: (insert-and-inherit &rest ARGS) */)
2521 (ptrdiff_t nargs, Lisp_Object *args)
2522 {
2523 general_insert_function (insert_and_inherit, insert_from_string, 1,
2524 nargs, args);
2525 return Qnil;
2526 }
2527
2528 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2529 doc: /* Insert strings or characters at point, relocating markers after the text.
2530 Point and markers move forward to end up after the inserted text.
2531
2532 If the current buffer is multibyte, unibyte strings are converted
2533 to multibyte for insertion (see `unibyte-char-to-multibyte').
2534 If the current buffer is unibyte, multibyte strings are converted
2535 to unibyte for insertion.
2536
2537 If an overlay begins at the insertion point, the inserted text falls
2538 outside the overlay; if a nonempty overlay ends at the insertion
2539 point, the inserted text falls inside that overlay.
2540
2541 usage: (insert-before-markers &rest ARGS) */)
2542 (ptrdiff_t nargs, Lisp_Object *args)
2543 {
2544 general_insert_function (insert_before_markers,
2545 insert_from_string_before_markers, 0,
2546 nargs, args);
2547 return Qnil;
2548 }
2549
2550 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2551 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2552 doc: /* Insert text at point, relocating markers and inheriting properties.
2553 Point and markers move forward to end up after the inserted text.
2554
2555 If the current buffer is multibyte, unibyte strings are converted
2556 to multibyte for insertion (see `unibyte-char-to-multibyte').
2557 If the current buffer is unibyte, multibyte strings are converted
2558 to unibyte for insertion.
2559
2560 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2561 (ptrdiff_t nargs, Lisp_Object *args)
2562 {
2563 general_insert_function (insert_before_markers_and_inherit,
2564 insert_from_string_before_markers, 1,
2565 nargs, args);
2566 return Qnil;
2567 }
2568 \f
2569 DEFUN ("insert-char", Finsert_char, Sinsert_char, 1, 3,
2570 "(list (read-char-by-name \"Insert character (Unicode name or hex): \")\
2571 (prefix-numeric-value current-prefix-arg)\
2572 t))",
2573 doc: /* Insert COUNT copies of CHARACTER.
2574 Interactively, prompt for CHARACTER. You can specify CHARACTER in one
2575 of these ways:
2576
2577 - As its Unicode character name, e.g. \"LATIN SMALL LETTER A\".
2578 Completion is available; if you type a substring of the name
2579 preceded by an asterisk `*', Emacs shows all names which include
2580 that substring, not necessarily at the beginning of the name.
2581
2582 - As a hexadecimal code point, e.g. 263A. Note that code points in
2583 Emacs are equivalent to Unicode up to 10FFFF (which is the limit of
2584 the Unicode code space).
2585
2586 - As a code point with a radix specified with #, e.g. #o21430
2587 (octal), #x2318 (hex), or #10r8984 (decimal).
2588
2589 If called interactively, COUNT is given by the prefix argument. If
2590 omitted or nil, it defaults to 1.
2591
2592 Inserting the character(s) relocates point and before-insertion
2593 markers in the same ways as the function `insert'.
2594
2595 The optional third argument INHERIT, if non-nil, says to inherit text
2596 properties from adjoining text, if those properties are sticky. If
2597 called interactively, INHERIT is t. */)
2598 (Lisp_Object character, Lisp_Object count, Lisp_Object inherit)
2599 {
2600 int i, stringlen;
2601 register ptrdiff_t n;
2602 int c, len;
2603 unsigned char str[MAX_MULTIBYTE_LENGTH];
2604 char string[4000];
2605
2606 CHECK_CHARACTER (character);
2607 if (NILP (count))
2608 XSETFASTINT (count, 1);
2609 CHECK_NUMBER (count);
2610 c = XFASTINT (character);
2611
2612 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2613 len = CHAR_STRING (c, str);
2614 else
2615 str[0] = c, len = 1;
2616 if (XINT (count) <= 0)
2617 return Qnil;
2618 if (BUF_BYTES_MAX / len < XINT (count))
2619 buffer_overflow ();
2620 n = XINT (count) * len;
2621 stringlen = min (n, sizeof string - sizeof string % len);
2622 for (i = 0; i < stringlen; i++)
2623 string[i] = str[i % len];
2624 while (n > stringlen)
2625 {
2626 QUIT;
2627 if (!NILP (inherit))
2628 insert_and_inherit (string, stringlen);
2629 else
2630 insert (string, stringlen);
2631 n -= stringlen;
2632 }
2633 if (!NILP (inherit))
2634 insert_and_inherit (string, n);
2635 else
2636 insert (string, n);
2637 return Qnil;
2638 }
2639
2640 DEFUN ("insert-byte", Finsert_byte, Sinsert_byte, 2, 3, 0,
2641 doc: /* Insert COUNT (second arg) copies of BYTE (first arg).
2642 Both arguments are required.
2643 BYTE is a number of the range 0..255.
2644
2645 If BYTE is 128..255 and the current buffer is multibyte, the
2646 corresponding eight-bit character is inserted.
2647
2648 Point, and before-insertion markers, are relocated as in the function `insert'.
2649 The optional third arg INHERIT, if non-nil, says to inherit text properties
2650 from adjoining text, if those properties are sticky. */)
2651 (Lisp_Object byte, Lisp_Object count, Lisp_Object inherit)
2652 {
2653 CHECK_NUMBER (byte);
2654 if (XINT (byte) < 0 || XINT (byte) > 255)
2655 args_out_of_range_3 (byte, make_number (0), make_number (255));
2656 if (XINT (byte) >= 128
2657 && ! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2658 XSETFASTINT (byte, BYTE8_TO_CHAR (XINT (byte)));
2659 return Finsert_char (byte, count, inherit);
2660 }
2661
2662 \f
2663 /* Making strings from buffer contents. */
2664
2665 /* Return a Lisp_String containing the text of the current buffer from
2666 START to END. If text properties are in use and the current buffer
2667 has properties in the range specified, the resulting string will also
2668 have them, if PROPS is true.
2669
2670 We don't want to use plain old make_string here, because it calls
2671 make_uninit_string, which can cause the buffer arena to be
2672 compacted. make_string has no way of knowing that the data has
2673 been moved, and thus copies the wrong data into the string. This
2674 doesn't effect most of the other users of make_string, so it should
2675 be left as is. But we should use this function when conjuring
2676 buffer substrings. */
2677
2678 Lisp_Object
2679 make_buffer_string (ptrdiff_t start, ptrdiff_t end, bool props)
2680 {
2681 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
2682 ptrdiff_t end_byte = CHAR_TO_BYTE (end);
2683
2684 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2685 }
2686
2687 /* Return a Lisp_String containing the text of the current buffer from
2688 START / START_BYTE to END / END_BYTE.
2689
2690 If text properties are in use and the current buffer
2691 has properties in the range specified, the resulting string will also
2692 have them, if PROPS is true.
2693
2694 We don't want to use plain old make_string here, because it calls
2695 make_uninit_string, which can cause the buffer arena to be
2696 compacted. make_string has no way of knowing that the data has
2697 been moved, and thus copies the wrong data into the string. This
2698 doesn't effect most of the other users of make_string, so it should
2699 be left as is. But we should use this function when conjuring
2700 buffer substrings. */
2701
2702 Lisp_Object
2703 make_buffer_string_both (ptrdiff_t start, ptrdiff_t start_byte,
2704 ptrdiff_t end, ptrdiff_t end_byte, bool props)
2705 {
2706 Lisp_Object result, tem, tem1;
2707 ptrdiff_t beg0, end0, beg1, end1, size;
2708
2709 if (start_byte < GPT_BYTE && GPT_BYTE < end_byte)
2710 {
2711 /* Two regions, before and after the gap. */
2712 beg0 = start_byte;
2713 end0 = GPT_BYTE;
2714 beg1 = GPT_BYTE + GAP_SIZE - BEG_BYTE;
2715 end1 = end_byte + GAP_SIZE - BEG_BYTE;
2716 }
2717 else
2718 {
2719 /* The only region. */
2720 beg0 = start_byte;
2721 end0 = end_byte;
2722 beg1 = -1;
2723 end1 = -1;
2724 }
2725
2726 if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2727 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2728 else
2729 result = make_uninit_string (end - start);
2730
2731 size = end0 - beg0;
2732 memcpy (SDATA (result), BYTE_POS_ADDR (beg0), size);
2733 if (beg1 != -1)
2734 memcpy (SDATA (result) + size, BEG_ADDR + beg1, end1 - beg1);
2735
2736 /* If desired, update and copy the text properties. */
2737 if (props)
2738 {
2739 update_buffer_properties (start, end);
2740
2741 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2742 tem1 = Ftext_properties_at (make_number (start), Qnil);
2743
2744 if (XINT (tem) != end || !NILP (tem1))
2745 copy_intervals_to_string (result, current_buffer, start,
2746 end - start);
2747 }
2748
2749 return result;
2750 }
2751
2752 /* Call Vbuffer_access_fontify_functions for the range START ... END
2753 in the current buffer, if necessary. */
2754
2755 static void
2756 update_buffer_properties (ptrdiff_t start, ptrdiff_t end)
2757 {
2758 /* If this buffer has some access functions,
2759 call them, specifying the range of the buffer being accessed. */
2760 if (!NILP (Vbuffer_access_fontify_functions))
2761 {
2762 /* But don't call them if we can tell that the work
2763 has already been done. */
2764 if (!NILP (Vbuffer_access_fontified_property))
2765 {
2766 Lisp_Object tem
2767 = Ftext_property_any (make_number (start), make_number (end),
2768 Vbuffer_access_fontified_property,
2769 Qnil, Qnil);
2770 if (NILP (tem))
2771 return;
2772 }
2773
2774 CALLN (Frun_hook_with_args, Qbuffer_access_fontify_functions,
2775 make_number (start), make_number (end));
2776 }
2777 }
2778
2779 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2780 doc: /* Return the contents of part of the current buffer as a string.
2781 The two arguments START and END are character positions;
2782 they can be in either order.
2783 The string returned is multibyte if the buffer is multibyte.
2784
2785 This function copies the text properties of that part of the buffer
2786 into the result string; if you don't want the text properties,
2787 use `buffer-substring-no-properties' instead. */)
2788 (Lisp_Object start, Lisp_Object end)
2789 {
2790 register ptrdiff_t b, e;
2791
2792 validate_region (&start, &end);
2793 b = XINT (start);
2794 e = XINT (end);
2795
2796 return make_buffer_string (b, e, 1);
2797 }
2798
2799 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2800 Sbuffer_substring_no_properties, 2, 2, 0,
2801 doc: /* Return the characters of part of the buffer, without the text properties.
2802 The two arguments START and END are character positions;
2803 they can be in either order. */)
2804 (Lisp_Object start, Lisp_Object end)
2805 {
2806 register ptrdiff_t b, e;
2807
2808 validate_region (&start, &end);
2809 b = XINT (start);
2810 e = XINT (end);
2811
2812 return make_buffer_string (b, e, 0);
2813 }
2814
2815 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2816 doc: /* Return the contents of the current buffer as a string.
2817 If narrowing is in effect, this function returns only the visible part
2818 of the buffer. */)
2819 (void)
2820 {
2821 return make_buffer_string_both (BEGV, BEGV_BYTE, ZV, ZV_BYTE, 1);
2822 }
2823
2824 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2825 1, 3, 0,
2826 doc: /* Insert before point a substring of the contents of BUFFER.
2827 BUFFER may be a buffer or a buffer name.
2828 Arguments START and END are character positions specifying the substring.
2829 They default to the values of (point-min) and (point-max) in BUFFER.
2830
2831 Point and before-insertion markers move forward to end up after the
2832 inserted text.
2833 Any other markers at the point of insertion remain before the text.
2834
2835 If the current buffer is multibyte and BUFFER is unibyte, or vice
2836 versa, strings are converted from unibyte to multibyte or vice versa
2837 using `string-make-multibyte' or `string-make-unibyte', which see. */)
2838 (Lisp_Object buffer, Lisp_Object start, Lisp_Object end)
2839 {
2840 register EMACS_INT b, e, temp;
2841 register struct buffer *bp, *obuf;
2842 Lisp_Object buf;
2843
2844 buf = Fget_buffer (buffer);
2845 if (NILP (buf))
2846 nsberror (buffer);
2847 bp = XBUFFER (buf);
2848 if (!BUFFER_LIVE_P (bp))
2849 error ("Selecting deleted buffer");
2850
2851 if (NILP (start))
2852 b = BUF_BEGV (bp);
2853 else
2854 {
2855 CHECK_NUMBER_COERCE_MARKER (start);
2856 b = XINT (start);
2857 }
2858 if (NILP (end))
2859 e = BUF_ZV (bp);
2860 else
2861 {
2862 CHECK_NUMBER_COERCE_MARKER (end);
2863 e = XINT (end);
2864 }
2865
2866 if (b > e)
2867 temp = b, b = e, e = temp;
2868
2869 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2870 args_out_of_range (start, end);
2871
2872 obuf = current_buffer;
2873 set_buffer_internal_1 (bp);
2874 update_buffer_properties (b, e);
2875 set_buffer_internal_1 (obuf);
2876
2877 insert_from_buffer (bp, b, e - b, 0);
2878 return Qnil;
2879 }
2880
2881 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2882 6, 6, 0,
2883 doc: /* Compare two substrings of two buffers; return result as number.
2884 Return -N if first string is less after N-1 chars, +N if first string is
2885 greater after N-1 chars, or 0 if strings match. Each substring is
2886 represented as three arguments: BUFFER, START and END. That makes six
2887 args in all, three for each substring.
2888
2889 The value of `case-fold-search' in the current buffer
2890 determines whether case is significant or ignored. */)
2891 (Lisp_Object buffer1, Lisp_Object start1, Lisp_Object end1, Lisp_Object buffer2, Lisp_Object start2, Lisp_Object end2)
2892 {
2893 register EMACS_INT begp1, endp1, begp2, endp2, temp;
2894 register struct buffer *bp1, *bp2;
2895 register Lisp_Object trt
2896 = (!NILP (BVAR (current_buffer, case_fold_search))
2897 ? BVAR (current_buffer, case_canon_table) : Qnil);
2898 ptrdiff_t chars = 0;
2899 ptrdiff_t i1, i2, i1_byte, i2_byte;
2900
2901 /* Find the first buffer and its substring. */
2902
2903 if (NILP (buffer1))
2904 bp1 = current_buffer;
2905 else
2906 {
2907 Lisp_Object buf1;
2908 buf1 = Fget_buffer (buffer1);
2909 if (NILP (buf1))
2910 nsberror (buffer1);
2911 bp1 = XBUFFER (buf1);
2912 if (!BUFFER_LIVE_P (bp1))
2913 error ("Selecting deleted buffer");
2914 }
2915
2916 if (NILP (start1))
2917 begp1 = BUF_BEGV (bp1);
2918 else
2919 {
2920 CHECK_NUMBER_COERCE_MARKER (start1);
2921 begp1 = XINT (start1);
2922 }
2923 if (NILP (end1))
2924 endp1 = BUF_ZV (bp1);
2925 else
2926 {
2927 CHECK_NUMBER_COERCE_MARKER (end1);
2928 endp1 = XINT (end1);
2929 }
2930
2931 if (begp1 > endp1)
2932 temp = begp1, begp1 = endp1, endp1 = temp;
2933
2934 if (!(BUF_BEGV (bp1) <= begp1
2935 && begp1 <= endp1
2936 && endp1 <= BUF_ZV (bp1)))
2937 args_out_of_range (start1, end1);
2938
2939 /* Likewise for second substring. */
2940
2941 if (NILP (buffer2))
2942 bp2 = current_buffer;
2943 else
2944 {
2945 Lisp_Object buf2;
2946 buf2 = Fget_buffer (buffer2);
2947 if (NILP (buf2))
2948 nsberror (buffer2);
2949 bp2 = XBUFFER (buf2);
2950 if (!BUFFER_LIVE_P (bp2))
2951 error ("Selecting deleted buffer");
2952 }
2953
2954 if (NILP (start2))
2955 begp2 = BUF_BEGV (bp2);
2956 else
2957 {
2958 CHECK_NUMBER_COERCE_MARKER (start2);
2959 begp2 = XINT (start2);
2960 }
2961 if (NILP (end2))
2962 endp2 = BUF_ZV (bp2);
2963 else
2964 {
2965 CHECK_NUMBER_COERCE_MARKER (end2);
2966 endp2 = XINT (end2);
2967 }
2968
2969 if (begp2 > endp2)
2970 temp = begp2, begp2 = endp2, endp2 = temp;
2971
2972 if (!(BUF_BEGV (bp2) <= begp2
2973 && begp2 <= endp2
2974 && endp2 <= BUF_ZV (bp2)))
2975 args_out_of_range (start2, end2);
2976
2977 i1 = begp1;
2978 i2 = begp2;
2979 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2980 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2981
2982 while (i1 < endp1 && i2 < endp2)
2983 {
2984 /* When we find a mismatch, we must compare the
2985 characters, not just the bytes. */
2986 int c1, c2;
2987
2988 QUIT;
2989
2990 if (! NILP (BVAR (bp1, enable_multibyte_characters)))
2991 {
2992 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2993 BUF_INC_POS (bp1, i1_byte);
2994 i1++;
2995 }
2996 else
2997 {
2998 c1 = BUF_FETCH_BYTE (bp1, i1);
2999 MAKE_CHAR_MULTIBYTE (c1);
3000 i1++;
3001 }
3002
3003 if (! NILP (BVAR (bp2, enable_multibyte_characters)))
3004 {
3005 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
3006 BUF_INC_POS (bp2, i2_byte);
3007 i2++;
3008 }
3009 else
3010 {
3011 c2 = BUF_FETCH_BYTE (bp2, i2);
3012 MAKE_CHAR_MULTIBYTE (c2);
3013 i2++;
3014 }
3015
3016 if (!NILP (trt))
3017 {
3018 c1 = char_table_translate (trt, c1);
3019 c2 = char_table_translate (trt, c2);
3020 }
3021 if (c1 < c2)
3022 return make_number (- 1 - chars);
3023 if (c1 > c2)
3024 return make_number (chars + 1);
3025
3026 chars++;
3027 }
3028
3029 /* The strings match as far as they go.
3030 If one is shorter, that one is less. */
3031 if (chars < endp1 - begp1)
3032 return make_number (chars + 1);
3033 else if (chars < endp2 - begp2)
3034 return make_number (- chars - 1);
3035
3036 /* Same length too => they are equal. */
3037 return make_number (0);
3038 }
3039 \f
3040 static void
3041 subst_char_in_region_unwind (Lisp_Object arg)
3042 {
3043 bset_undo_list (current_buffer, arg);
3044 }
3045
3046 static void
3047 subst_char_in_region_unwind_1 (Lisp_Object arg)
3048 {
3049 bset_filename (current_buffer, arg);
3050 }
3051
3052 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
3053 Ssubst_char_in_region, 4, 5, 0,
3054 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
3055 If optional arg NOUNDO is non-nil, don't record this change for undo
3056 and don't mark the buffer as really changed.
3057 Both characters must have the same length of multi-byte form. */)
3058 (Lisp_Object start, Lisp_Object end, Lisp_Object fromchar, Lisp_Object tochar, Lisp_Object noundo)
3059 {
3060 register ptrdiff_t pos, pos_byte, stop, i, len, end_byte;
3061 /* Keep track of the first change in the buffer:
3062 if 0 we haven't found it yet.
3063 if < 0 we've found it and we've run the before-change-function.
3064 if > 0 we've actually performed it and the value is its position. */
3065 ptrdiff_t changed = 0;
3066 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
3067 unsigned char *p;
3068 ptrdiff_t count = SPECPDL_INDEX ();
3069 #define COMBINING_NO 0
3070 #define COMBINING_BEFORE 1
3071 #define COMBINING_AFTER 2
3072 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
3073 int maybe_byte_combining = COMBINING_NO;
3074 ptrdiff_t last_changed = 0;
3075 bool multibyte_p
3076 = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3077 int fromc, toc;
3078
3079 restart:
3080
3081 validate_region (&start, &end);
3082 CHECK_CHARACTER (fromchar);
3083 CHECK_CHARACTER (tochar);
3084 fromc = XFASTINT (fromchar);
3085 toc = XFASTINT (tochar);
3086
3087 if (multibyte_p)
3088 {
3089 len = CHAR_STRING (fromc, fromstr);
3090 if (CHAR_STRING (toc, tostr) != len)
3091 error ("Characters in `subst-char-in-region' have different byte-lengths");
3092 if (!ASCII_CHAR_P (*tostr))
3093 {
3094 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
3095 complete multibyte character, it may be combined with the
3096 after bytes. If it is in the range 0xA0..0xFF, it may be
3097 combined with the before and after bytes. */
3098 if (!CHAR_HEAD_P (*tostr))
3099 maybe_byte_combining = COMBINING_BOTH;
3100 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
3101 maybe_byte_combining = COMBINING_AFTER;
3102 }
3103 }
3104 else
3105 {
3106 len = 1;
3107 fromstr[0] = fromc;
3108 tostr[0] = toc;
3109 }
3110
3111 pos = XINT (start);
3112 pos_byte = CHAR_TO_BYTE (pos);
3113 stop = CHAR_TO_BYTE (XINT (end));
3114 end_byte = stop;
3115
3116 /* If we don't want undo, turn off putting stuff on the list.
3117 That's faster than getting rid of things,
3118 and it prevents even the entry for a first change.
3119 Also inhibit locking the file. */
3120 if (!changed && !NILP (noundo))
3121 {
3122 record_unwind_protect (subst_char_in_region_unwind,
3123 BVAR (current_buffer, undo_list));
3124 bset_undo_list (current_buffer, Qt);
3125 /* Don't do file-locking. */
3126 record_unwind_protect (subst_char_in_region_unwind_1,
3127 BVAR (current_buffer, filename));
3128 bset_filename (current_buffer, Qnil);
3129 }
3130
3131 if (pos_byte < GPT_BYTE)
3132 stop = min (stop, GPT_BYTE);
3133 while (1)
3134 {
3135 ptrdiff_t pos_byte_next = pos_byte;
3136
3137 if (pos_byte >= stop)
3138 {
3139 if (pos_byte >= end_byte) break;
3140 stop = end_byte;
3141 }
3142 p = BYTE_POS_ADDR (pos_byte);
3143 if (multibyte_p)
3144 INC_POS (pos_byte_next);
3145 else
3146 ++pos_byte_next;
3147 if (pos_byte_next - pos_byte == len
3148 && p[0] == fromstr[0]
3149 && (len == 1
3150 || (p[1] == fromstr[1]
3151 && (len == 2 || (p[2] == fromstr[2]
3152 && (len == 3 || p[3] == fromstr[3]))))))
3153 {
3154 if (changed < 0)
3155 /* We've already seen this and run the before-change-function;
3156 this time we only need to record the actual position. */
3157 changed = pos;
3158 else if (!changed)
3159 {
3160 changed = -1;
3161 modify_text (pos, XINT (end));
3162
3163 if (! NILP (noundo))
3164 {
3165 if (MODIFF - 1 == SAVE_MODIFF)
3166 SAVE_MODIFF++;
3167 if (MODIFF - 1 == BUF_AUTOSAVE_MODIFF (current_buffer))
3168 BUF_AUTOSAVE_MODIFF (current_buffer)++;
3169 }
3170
3171 /* The before-change-function may have moved the gap
3172 or even modified the buffer so we should start over. */
3173 goto restart;
3174 }
3175
3176 /* Take care of the case where the new character
3177 combines with neighboring bytes. */
3178 if (maybe_byte_combining
3179 && (maybe_byte_combining == COMBINING_AFTER
3180 ? (pos_byte_next < Z_BYTE
3181 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
3182 : ((pos_byte_next < Z_BYTE
3183 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
3184 || (pos_byte > BEG_BYTE
3185 && ! ASCII_CHAR_P (FETCH_BYTE (pos_byte - 1))))))
3186 {
3187 Lisp_Object tem, string;
3188
3189 tem = BVAR (current_buffer, undo_list);
3190
3191 /* Make a multibyte string containing this single character. */
3192 string = make_multibyte_string ((char *) tostr, 1, len);
3193 /* replace_range is less efficient, because it moves the gap,
3194 but it handles combining correctly. */
3195 replace_range (pos, pos + 1, string,
3196 0, 0, 1);
3197 pos_byte_next = CHAR_TO_BYTE (pos);
3198 if (pos_byte_next > pos_byte)
3199 /* Before combining happened. We should not increment
3200 POS. So, to cancel the later increment of POS,
3201 decrease it now. */
3202 pos--;
3203 else
3204 INC_POS (pos_byte_next);
3205
3206 if (! NILP (noundo))
3207 bset_undo_list (current_buffer, tem);
3208 }
3209 else
3210 {
3211 if (NILP (noundo))
3212 record_change (pos, 1);
3213 for (i = 0; i < len; i++) *p++ = tostr[i];
3214 }
3215 last_changed = pos + 1;
3216 }
3217 pos_byte = pos_byte_next;
3218 pos++;
3219 }
3220
3221 if (changed > 0)
3222 {
3223 signal_after_change (changed,
3224 last_changed - changed, last_changed - changed);
3225 update_compositions (changed, last_changed, CHECK_ALL);
3226 }
3227
3228 unbind_to (count, Qnil);
3229 return Qnil;
3230 }
3231
3232
3233 static Lisp_Object check_translation (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3234 Lisp_Object);
3235
3236 /* Helper function for Ftranslate_region_internal.
3237
3238 Check if a character sequence at POS (POS_BYTE) matches an element
3239 of VAL. VAL is a list (([FROM-CHAR ...] . TO) ...). If a matching
3240 element is found, return it. Otherwise return Qnil. */
3241
3242 static Lisp_Object
3243 check_translation (ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t end,
3244 Lisp_Object val)
3245 {
3246 int initial_buf[16];
3247 int *buf = initial_buf;
3248 ptrdiff_t buf_size = ARRAYELTS (initial_buf);
3249 int *bufalloc = 0;
3250 ptrdiff_t buf_used = 0;
3251 Lisp_Object result = Qnil;
3252
3253 for (; CONSP (val); val = XCDR (val))
3254 {
3255 Lisp_Object elt;
3256 ptrdiff_t len, i;
3257
3258 elt = XCAR (val);
3259 if (! CONSP (elt))
3260 continue;
3261 elt = XCAR (elt);
3262 if (! VECTORP (elt))
3263 continue;
3264 len = ASIZE (elt);
3265 if (len <= end - pos)
3266 {
3267 for (i = 0; i < len; i++)
3268 {
3269 if (buf_used <= i)
3270 {
3271 unsigned char *p = BYTE_POS_ADDR (pos_byte);
3272 int len1;
3273
3274 if (buf_used == buf_size)
3275 {
3276 bufalloc = xpalloc (bufalloc, &buf_size, 1, -1,
3277 sizeof *bufalloc);
3278 if (buf == initial_buf)
3279 memcpy (bufalloc, buf, sizeof initial_buf);
3280 buf = bufalloc;
3281 }
3282 buf[buf_used++] = STRING_CHAR_AND_LENGTH (p, len1);
3283 pos_byte += len1;
3284 }
3285 if (XINT (AREF (elt, i)) != buf[i])
3286 break;
3287 }
3288 if (i == len)
3289 {
3290 result = XCAR (val);
3291 break;
3292 }
3293 }
3294 }
3295
3296 xfree (bufalloc);
3297 return result;
3298 }
3299
3300
3301 DEFUN ("translate-region-internal", Ftranslate_region_internal,
3302 Stranslate_region_internal, 3, 3, 0,
3303 doc: /* Internal use only.
3304 From START to END, translate characters according to TABLE.
3305 TABLE is a string or a char-table; the Nth character in it is the
3306 mapping for the character with code N.
3307 It returns the number of characters changed. */)
3308 (Lisp_Object start, Lisp_Object end, register Lisp_Object table)
3309 {
3310 register unsigned char *tt; /* Trans table. */
3311 register int nc; /* New character. */
3312 int cnt; /* Number of changes made. */
3313 ptrdiff_t size; /* Size of translate table. */
3314 ptrdiff_t pos, pos_byte, end_pos;
3315 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3316 bool string_multibyte IF_LINT (= 0);
3317
3318 validate_region (&start, &end);
3319 if (CHAR_TABLE_P (table))
3320 {
3321 if (! EQ (XCHAR_TABLE (table)->purpose, Qtranslation_table))
3322 error ("Not a translation table");
3323 size = MAX_CHAR;
3324 tt = NULL;
3325 }
3326 else
3327 {
3328 CHECK_STRING (table);
3329
3330 if (! multibyte && (SCHARS (table) < SBYTES (table)))
3331 table = string_make_unibyte (table);
3332 string_multibyte = SCHARS (table) < SBYTES (table);
3333 size = SBYTES (table);
3334 tt = SDATA (table);
3335 }
3336
3337 pos = XINT (start);
3338 pos_byte = CHAR_TO_BYTE (pos);
3339 end_pos = XINT (end);
3340 modify_text (pos, end_pos);
3341
3342 cnt = 0;
3343 for (; pos < end_pos; )
3344 {
3345 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
3346 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
3347 int len, str_len;
3348 int oc;
3349 Lisp_Object val;
3350
3351 if (multibyte)
3352 oc = STRING_CHAR_AND_LENGTH (p, len);
3353 else
3354 oc = *p, len = 1;
3355 if (oc < size)
3356 {
3357 if (tt)
3358 {
3359 /* Reload as signal_after_change in last iteration may GC. */
3360 tt = SDATA (table);
3361 if (string_multibyte)
3362 {
3363 str = tt + string_char_to_byte (table, oc);
3364 nc = STRING_CHAR_AND_LENGTH (str, str_len);
3365 }
3366 else
3367 {
3368 nc = tt[oc];
3369 if (! ASCII_CHAR_P (nc) && multibyte)
3370 {
3371 str_len = BYTE8_STRING (nc, buf);
3372 str = buf;
3373 }
3374 else
3375 {
3376 str_len = 1;
3377 str = tt + oc;
3378 }
3379 }
3380 }
3381 else
3382 {
3383 nc = oc;
3384 val = CHAR_TABLE_REF (table, oc);
3385 if (CHARACTERP (val))
3386 {
3387 nc = XFASTINT (val);
3388 str_len = CHAR_STRING (nc, buf);
3389 str = buf;
3390 }
3391 else if (VECTORP (val) || (CONSP (val)))
3392 {
3393 /* VAL is [TO_CHAR ...] or (([FROM-CHAR ...] . TO) ...)
3394 where TO is TO-CHAR or [TO-CHAR ...]. */
3395 nc = -1;
3396 }
3397 }
3398
3399 if (nc != oc && nc >= 0)
3400 {
3401 /* Simple one char to one char translation. */
3402 if (len != str_len)
3403 {
3404 Lisp_Object string;
3405
3406 /* This is less efficient, because it moves the gap,
3407 but it should handle multibyte characters correctly. */
3408 string = make_multibyte_string ((char *) str, 1, str_len);
3409 replace_range (pos, pos + 1, string, 1, 0, 1);
3410 len = str_len;
3411 }
3412 else
3413 {
3414 record_change (pos, 1);
3415 while (str_len-- > 0)
3416 *p++ = *str++;
3417 signal_after_change (pos, 1, 1);
3418 update_compositions (pos, pos + 1, CHECK_BORDER);
3419 }
3420 ++cnt;
3421 }
3422 else if (nc < 0)
3423 {
3424 Lisp_Object string;
3425
3426 if (CONSP (val))
3427 {
3428 val = check_translation (pos, pos_byte, end_pos, val);
3429 if (NILP (val))
3430 {
3431 pos_byte += len;
3432 pos++;
3433 continue;
3434 }
3435 /* VAL is ([FROM-CHAR ...] . TO). */
3436 len = ASIZE (XCAR (val));
3437 val = XCDR (val);
3438 }
3439 else
3440 len = 1;
3441
3442 if (VECTORP (val))
3443 {
3444 string = Fconcat (1, &val);
3445 }
3446 else
3447 {
3448 string = Fmake_string (make_number (1), val);
3449 }
3450 replace_range (pos, pos + len, string, 1, 0, 1);
3451 pos_byte += SBYTES (string);
3452 pos += SCHARS (string);
3453 cnt += SCHARS (string);
3454 end_pos += SCHARS (string) - len;
3455 continue;
3456 }
3457 }
3458 pos_byte += len;
3459 pos++;
3460 }
3461
3462 return make_number (cnt);
3463 }
3464
3465 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
3466 doc: /* Delete the text between START and END.
3467 If called interactively, delete the region between point and mark.
3468 This command deletes buffer text without modifying the kill ring. */)
3469 (Lisp_Object start, Lisp_Object end)
3470 {
3471 validate_region (&start, &end);
3472 del_range (XINT (start), XINT (end));
3473 return Qnil;
3474 }
3475
3476 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
3477 Sdelete_and_extract_region, 2, 2, 0,
3478 doc: /* Delete the text between START and END and return it. */)
3479 (Lisp_Object start, Lisp_Object end)
3480 {
3481 validate_region (&start, &end);
3482 if (XINT (start) == XINT (end))
3483 return empty_unibyte_string;
3484 return del_range_1 (XINT (start), XINT (end), 1, 1);
3485 }
3486 \f
3487 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
3488 doc: /* Remove restrictions (narrowing) from current buffer.
3489 This allows the buffer's full text to be seen and edited. */)
3490 (void)
3491 {
3492 if (BEG != BEGV || Z != ZV)
3493 current_buffer->clip_changed = 1;
3494 BEGV = BEG;
3495 BEGV_BYTE = BEG_BYTE;
3496 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
3497 /* Changing the buffer bounds invalidates any recorded current column. */
3498 invalidate_current_column ();
3499 return Qnil;
3500 }
3501
3502 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
3503 doc: /* Restrict editing in this buffer to the current region.
3504 The rest of the text becomes temporarily invisible and untouchable
3505 but is not deleted; if you save the buffer in a file, the invisible
3506 text is included in the file. \\[widen] makes all visible again.
3507 See also `save-restriction'.
3508
3509 When calling from a program, pass two arguments; positions (integers
3510 or markers) bounding the text that should remain visible. */)
3511 (register Lisp_Object start, Lisp_Object end)
3512 {
3513 CHECK_NUMBER_COERCE_MARKER (start);
3514 CHECK_NUMBER_COERCE_MARKER (end);
3515
3516 if (XINT (start) > XINT (end))
3517 {
3518 Lisp_Object tem;
3519 tem = start; start = end; end = tem;
3520 }
3521
3522 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
3523 args_out_of_range (start, end);
3524
3525 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
3526 current_buffer->clip_changed = 1;
3527
3528 SET_BUF_BEGV (current_buffer, XFASTINT (start));
3529 SET_BUF_ZV (current_buffer, XFASTINT (end));
3530 if (PT < XFASTINT (start))
3531 SET_PT (XFASTINT (start));
3532 if (PT > XFASTINT (end))
3533 SET_PT (XFASTINT (end));
3534 /* Changing the buffer bounds invalidates any recorded current column. */
3535 invalidate_current_column ();
3536 return Qnil;
3537 }
3538
3539 Lisp_Object
3540 save_restriction_save (void)
3541 {
3542 if (BEGV == BEG && ZV == Z)
3543 /* The common case that the buffer isn't narrowed.
3544 We return just the buffer object, which save_restriction_restore
3545 recognizes as meaning `no restriction'. */
3546 return Fcurrent_buffer ();
3547 else
3548 /* We have to save a restriction, so return a pair of markers, one
3549 for the beginning and one for the end. */
3550 {
3551 Lisp_Object beg, end;
3552
3553 beg = build_marker (current_buffer, BEGV, BEGV_BYTE);
3554 end = build_marker (current_buffer, ZV, ZV_BYTE);
3555
3556 /* END must move forward if text is inserted at its exact location. */
3557 XMARKER (end)->insertion_type = 1;
3558
3559 return Fcons (beg, end);
3560 }
3561 }
3562
3563 void
3564 save_restriction_restore (Lisp_Object data)
3565 {
3566 struct buffer *cur = NULL;
3567 struct buffer *buf = (CONSP (data)
3568 ? XMARKER (XCAR (data))->buffer
3569 : XBUFFER (data));
3570
3571 if (buf && buf != current_buffer && !NILP (BVAR (buf, pt_marker)))
3572 { /* If `buf' uses markers to keep track of PT, BEGV, and ZV (as
3573 is the case if it is or has an indirect buffer), then make
3574 sure it is current before we update BEGV, so
3575 set_buffer_internal takes care of managing those markers. */
3576 cur = current_buffer;
3577 set_buffer_internal (buf);
3578 }
3579
3580 if (CONSP (data))
3581 /* A pair of marks bounding a saved restriction. */
3582 {
3583 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3584 struct Lisp_Marker *end = XMARKER (XCDR (data));
3585 eassert (buf == end->buffer);
3586
3587 if (buf /* Verify marker still points to a buffer. */
3588 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3589 /* The restriction has changed from the saved one, so restore
3590 the saved restriction. */
3591 {
3592 ptrdiff_t pt = BUF_PT (buf);
3593
3594 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3595 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3596
3597 if (pt < beg->charpos || pt > end->charpos)
3598 /* The point is outside the new visible range, move it inside. */
3599 SET_BUF_PT_BOTH (buf,
3600 clip_to_bounds (beg->charpos, pt, end->charpos),
3601 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3602 end->bytepos));
3603
3604 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3605 }
3606 /* These aren't needed anymore, so don't wait for GC. */
3607 free_marker (XCAR (data));
3608 free_marker (XCDR (data));
3609 free_cons (XCONS (data));
3610 }
3611 else
3612 /* A buffer, which means that there was no old restriction. */
3613 {
3614 if (buf /* Verify marker still points to a buffer. */
3615 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3616 /* The buffer has been narrowed, get rid of the narrowing. */
3617 {
3618 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3619 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3620
3621 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3622 }
3623 }
3624
3625 /* Changing the buffer bounds invalidates any recorded current column. */
3626 invalidate_current_column ();
3627
3628 if (cur)
3629 set_buffer_internal (cur);
3630 }
3631
3632 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3633 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3634 The buffer's restrictions make parts of the beginning and end invisible.
3635 \(They are set up with `narrow-to-region' and eliminated with `widen'.)
3636 This special form, `save-restriction', saves the current buffer's restrictions
3637 when it is entered, and restores them when it is exited.
3638 So any `narrow-to-region' within BODY lasts only until the end of the form.
3639 The old restrictions settings are restored
3640 even in case of abnormal exit (throw or error).
3641
3642 The value returned is the value of the last form in BODY.
3643
3644 Note: if you are using both `save-excursion' and `save-restriction',
3645 use `save-excursion' outermost:
3646 (save-excursion (save-restriction ...))
3647
3648 usage: (save-restriction &rest BODY) */)
3649 (Lisp_Object body)
3650 {
3651 register Lisp_Object val;
3652 ptrdiff_t count = SPECPDL_INDEX ();
3653
3654 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3655 val = Fprogn (body);
3656 return unbind_to (count, val);
3657 }
3658 \f
3659 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3660 doc: /* Display a message at the bottom of the screen.
3661 The message also goes into the `*Messages*' buffer, if `message-log-max'
3662 is non-nil. (In keyboard macros, that's all it does.)
3663 Return the message.
3664
3665 In batch mode, the message is printed to the standard error stream,
3666 followed by a newline.
3667
3668 The first argument is a format control string, and the rest are data
3669 to be formatted under control of the string. See `format' for details.
3670
3671 Note: Use (message "%s" VALUE) to print the value of expressions and
3672 variables to avoid accidentally interpreting `%' as format specifiers.
3673
3674 If the first argument is nil or the empty string, the function clears
3675 any existing message; this lets the minibuffer contents show. See
3676 also `current-message'.
3677
3678 usage: (message FORMAT-STRING &rest ARGS) */)
3679 (ptrdiff_t nargs, Lisp_Object *args)
3680 {
3681 if (NILP (args[0])
3682 || (STRINGP (args[0])
3683 && SBYTES (args[0]) == 0))
3684 {
3685 message1 (0);
3686 return args[0];
3687 }
3688 else
3689 {
3690 Lisp_Object val = Fformat_message (nargs, args);
3691 message3 (val);
3692 return val;
3693 }
3694 }
3695
3696 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3697 doc: /* Display a message, in a dialog box if possible.
3698 If a dialog box is not available, use the echo area.
3699 The first argument is a format control string, and the rest are data
3700 to be formatted under control of the string. See `format' for details.
3701
3702 If the first argument is nil or the empty string, clear any existing
3703 message; let the minibuffer contents show.
3704
3705 usage: (message-box FORMAT-STRING &rest ARGS) */)
3706 (ptrdiff_t nargs, Lisp_Object *args)
3707 {
3708 if (NILP (args[0]))
3709 {
3710 message1 (0);
3711 return Qnil;
3712 }
3713 else
3714 {
3715 Lisp_Object val = Fformat_message (nargs, args);
3716 Lisp_Object pane, menu;
3717
3718 pane = list1 (Fcons (build_string ("OK"), Qt));
3719 menu = Fcons (val, pane);
3720 Fx_popup_dialog (Qt, menu, Qt);
3721 return val;
3722 }
3723 }
3724
3725 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3726 doc: /* Display a message in a dialog box or in the echo area.
3727 If this command was invoked with the mouse, use a dialog box if
3728 `use-dialog-box' is non-nil.
3729 Otherwise, use the echo area.
3730 The first argument is a format control string, and the rest are data
3731 to be formatted under control of the string. See `format' for details.
3732
3733 If the first argument is nil or the empty string, clear any existing
3734 message; let the minibuffer contents show.
3735
3736 usage: (message-or-box FORMAT-STRING &rest ARGS) */)
3737 (ptrdiff_t nargs, Lisp_Object *args)
3738 {
3739 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3740 && use_dialog_box)
3741 return Fmessage_box (nargs, args);
3742 return Fmessage (nargs, args);
3743 }
3744
3745 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3746 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3747 (void)
3748 {
3749 return current_message ();
3750 }
3751
3752
3753 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3754 doc: /* Return a copy of STRING with text properties added.
3755 First argument is the string to copy.
3756 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3757 properties to add to the result.
3758 usage: (propertize STRING &rest PROPERTIES) */)
3759 (ptrdiff_t nargs, Lisp_Object *args)
3760 {
3761 Lisp_Object properties, string;
3762 ptrdiff_t i;
3763
3764 /* Number of args must be odd. */
3765 if ((nargs & 1) == 0)
3766 error ("Wrong number of arguments");
3767
3768 properties = string = Qnil;
3769
3770 /* First argument must be a string. */
3771 CHECK_STRING (args[0]);
3772 string = Fcopy_sequence (args[0]);
3773
3774 for (i = 1; i < nargs; i += 2)
3775 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3776
3777 Fadd_text_properties (make_number (0),
3778 make_number (SCHARS (string)),
3779 properties, string);
3780 return string;
3781 }
3782
3783 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3784 doc: /* Format a string out of a format-string and arguments.
3785 The first argument is a format control string.
3786 The other arguments are substituted into it to make the result, a string.
3787
3788 The format control string may contain %-sequences meaning to substitute
3789 the next available argument:
3790
3791 %s means print a string argument. Actually, prints any object, with `princ'.
3792 %d means print as number in decimal (%o octal, %x hex).
3793 %X is like %x, but uses upper case.
3794 %e means print a number in exponential notation.
3795 %f means print a number in decimal-point notation.
3796 %g means print a number in exponential notation
3797 or decimal-point notation, whichever uses fewer characters.
3798 %c means print a number as a single character.
3799 %S means print any object as an s-expression (using `prin1').
3800
3801 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3802 Use %% to put a single % into the output.
3803
3804 A %-sequence may contain optional flag, width, and precision
3805 specifiers, as follows:
3806
3807 %<flags><width><precision>character
3808
3809 where flags is [+ #-0]+, width is [0-9]+, and precision is .[0-9]+
3810
3811 The + flag character inserts a + before any positive number, while a
3812 space inserts a space before any positive number; these flags only
3813 affect %d, %e, %f, and %g sequences, and the + flag takes precedence.
3814 The - and 0 flags affect the width specifier, as described below.
3815
3816 The # flag means to use an alternate display form for %o, %x, %X, %e,
3817 %f, and %g sequences: for %o, it ensures that the result begins with
3818 \"0\"; for %x and %X, it prefixes the result with \"0x\" or \"0X\";
3819 for %e, %f, and %g, it causes a decimal point to be included even if
3820 the precision is zero.
3821
3822 The width specifier supplies a lower limit for the length of the
3823 printed representation. The padding, if any, normally goes on the
3824 left, but it goes on the right if the - flag is present. The padding
3825 character is normally a space, but it is 0 if the 0 flag is present.
3826 The 0 flag is ignored if the - flag is present, or the format sequence
3827 is something other than %d, %e, %f, and %g.
3828
3829 For %e, %f, and %g sequences, the number after the "." in the
3830 precision specifier says how many decimal places to show; if zero, the
3831 decimal point itself is omitted. For %s and %S, the precision
3832 specifier truncates the string to the given width.
3833
3834 usage: (format STRING &rest OBJECTS) */)
3835 (ptrdiff_t nargs, Lisp_Object *args)
3836 {
3837 return styled_format (nargs, args, false);
3838 }
3839
3840 DEFUN ("format-message", Fformat_message, Sformat_message, 1, MANY, 0,
3841 doc: /* Format a string out of a format-string and arguments.
3842 The first argument is a format control string.
3843 The other arguments are substituted into it to make the result, a string.
3844
3845 This acts like `format', except it also replaces each left single
3846 quotation mark (\\=‘) and grave accent (\\=`) by a left quote, and each
3847 right single quotation mark (\\=’) and apostrophe (\\=') by a right quote.
3848 The left and right quote replacement characters are specified by
3849 `text-quoting-style'.
3850
3851 usage: (format-message STRING &rest OBJECTS) */)
3852 (ptrdiff_t nargs, Lisp_Object *args)
3853 {
3854 return styled_format (nargs, args, true);
3855 }
3856
3857 /* Implement ‘format-message’ if MESSAGE is true, ‘format’ otherwise. */
3858
3859 static Lisp_Object
3860 styled_format (ptrdiff_t nargs, Lisp_Object *args, bool message)
3861 {
3862 ptrdiff_t n; /* The number of the next arg to substitute. */
3863 char initial_buffer[4000];
3864 char *buf = initial_buffer;
3865 ptrdiff_t bufsize = sizeof initial_buffer;
3866 ptrdiff_t max_bufsize = STRING_BYTES_BOUND + 1;
3867 char *p;
3868 ptrdiff_t buf_save_value_index IF_LINT (= 0);
3869 char *format, *end;
3870 ptrdiff_t nchars;
3871 /* When we make a multibyte string, we must pay attention to the
3872 byte combining problem, i.e., a byte may be combined with a
3873 multibyte character of the previous string. This flag tells if we
3874 must consider such a situation or not. */
3875 bool maybe_combine_byte;
3876 bool arg_intervals = false;
3877 USE_SAFE_ALLOCA;
3878
3879 /* Each element records, for one argument,
3880 the start and end bytepos in the output string,
3881 whether the argument has been converted to string (e.g., due to "%S"),
3882 and whether the argument is a string with intervals. */
3883 struct info
3884 {
3885 ptrdiff_t start, end;
3886 bool_bf converted_to_string : 1;
3887 bool_bf intervals : 1;
3888 } *info;
3889
3890 CHECK_STRING (args[0]);
3891 char *format_start = SSDATA (args[0]);
3892 ptrdiff_t formatlen = SBYTES (args[0]);
3893
3894 /* Allocate the info and discarded tables. */
3895 ptrdiff_t alloca_size;
3896 if (INT_MULTIPLY_WRAPV (nargs, sizeof *info, &alloca_size)
3897 || INT_ADD_WRAPV (sizeof *info, alloca_size, &alloca_size)
3898 || INT_ADD_WRAPV (formatlen, alloca_size, &alloca_size)
3899 || SIZE_MAX < alloca_size)
3900 memory_full (SIZE_MAX);
3901 /* info[0] is unused. Unused elements have -1 for start. */
3902 info = SAFE_ALLOCA (alloca_size);
3903 memset (info, 0, alloca_size);
3904 for (ptrdiff_t i = 0; i < nargs + 1; i++)
3905 info[i].start = -1;
3906 /* discarded[I] is 1 if byte I of the format
3907 string was not copied into the output.
3908 It is 2 if byte I was not the first byte of its character. */
3909 char *discarded = (char *) &info[nargs + 1];
3910
3911 /* Try to determine whether the result should be multibyte.
3912 This is not always right; sometimes the result needs to be multibyte
3913 because of an object that we will pass through prin1.
3914 or because a grave accent or apostrophe is requoted,
3915 and in that case, we won't know it here. */
3916
3917 /* True if the format is multibyte. */
3918 bool multibyte_format = STRING_MULTIBYTE (args[0]);
3919 /* True if the output should be a multibyte string,
3920 which is true if any of the inputs is one. */
3921 bool multibyte = multibyte_format;
3922 for (ptrdiff_t i = 1; !multibyte && i < nargs; i++)
3923 if (STRINGP (args[i]) && STRING_MULTIBYTE (args[i]))
3924 multibyte = true;
3925
3926 int quoting_style = message ? text_quoting_style () : -1;
3927
3928 /* If we start out planning a unibyte result,
3929 then discover it has to be multibyte, we jump back to retry. */
3930 retry:
3931
3932 p = buf;
3933 nchars = 0;
3934 n = 0;
3935
3936 /* Scan the format and store result in BUF. */
3937 format = format_start;
3938 end = format + formatlen;
3939 maybe_combine_byte = false;
3940
3941 while (format != end)
3942 {
3943 /* The values of N and FORMAT when the loop body is entered. */
3944 ptrdiff_t n0 = n;
3945 char *format0 = format;
3946 char const *convsrc = format;
3947 unsigned char format_char = *format++;
3948
3949 /* Bytes needed to represent the output of this conversion. */
3950 ptrdiff_t convbytes = 1;
3951
3952 if (format_char == '%')
3953 {
3954 /* General format specifications look like
3955
3956 '%' [flags] [field-width] [precision] format
3957
3958 where
3959
3960 flags ::= [-+0# ]+
3961 field-width ::= [0-9]+
3962 precision ::= '.' [0-9]*
3963
3964 If a field-width is specified, it specifies to which width
3965 the output should be padded with blanks, if the output
3966 string is shorter than field-width.
3967
3968 If precision is specified, it specifies the number of
3969 digits to print after the '.' for floats, or the max.
3970 number of chars to print from a string. */
3971
3972 bool minus_flag = false;
3973 bool plus_flag = false;
3974 bool space_flag = false;
3975 bool sharp_flag = false;
3976 bool zero_flag = false;
3977
3978 for (; ; format++)
3979 {
3980 switch (*format)
3981 {
3982 case '-': minus_flag = true; continue;
3983 case '+': plus_flag = true; continue;
3984 case ' ': space_flag = true; continue;
3985 case '#': sharp_flag = true; continue;
3986 case '0': zero_flag = true; continue;
3987 }
3988 break;
3989 }
3990
3991 /* Ignore flags when sprintf ignores them. */
3992 space_flag &= ~ plus_flag;
3993 zero_flag &= ~ minus_flag;
3994
3995 char *num_end;
3996 uintmax_t raw_field_width = strtoumax (format, &num_end, 10);
3997 if (max_bufsize <= raw_field_width)
3998 string_overflow ();
3999 ptrdiff_t field_width = raw_field_width;
4000
4001 bool precision_given = *num_end == '.';
4002 uintmax_t precision = (precision_given
4003 ? strtoumax (num_end + 1, &num_end, 10)
4004 : UINTMAX_MAX);
4005 format = num_end;
4006
4007 if (format == end)
4008 error ("Format string ends in middle of format specifier");
4009
4010 char conversion = *format++;
4011 memset (&discarded[format0 - format_start], 1,
4012 format - format0 - (conversion == '%'));
4013 if (conversion == '%')
4014 goto copy_char;
4015
4016 ++n;
4017 if (! (n < nargs))
4018 error ("Not enough arguments for format string");
4019
4020 /* For 'S', prin1 the argument, and then treat like 's'.
4021 For 's', princ any argument that is not a string or
4022 symbol. But don't do this conversion twice, which might
4023 happen after retrying. */
4024 if ((conversion == 'S'
4025 || (conversion == 's'
4026 && ! STRINGP (args[n]) && ! SYMBOLP (args[n]))))
4027 {
4028 if (! info[n].converted_to_string)
4029 {
4030 Lisp_Object noescape = conversion == 'S' ? Qnil : Qt;
4031 args[n] = Fprin1_to_string (args[n], noescape);
4032 info[n].converted_to_string = true;
4033 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
4034 {
4035 multibyte = true;
4036 goto retry;
4037 }
4038 }
4039 conversion = 's';
4040 }
4041 else if (conversion == 'c')
4042 {
4043 if (FLOATP (args[n]))
4044 {
4045 double d = XFLOAT_DATA (args[n]);
4046 args[n] = make_number (FIXNUM_OVERFLOW_P (d) ? -1 : d);
4047 }
4048
4049 if (INTEGERP (args[n]) && ! ASCII_CHAR_P (XINT (args[n])))
4050 {
4051 if (!multibyte)
4052 {
4053 multibyte = true;
4054 goto retry;
4055 }
4056 args[n] = Fchar_to_string (args[n]);
4057 info[n].converted_to_string = true;
4058 }
4059
4060 if (info[n].converted_to_string)
4061 conversion = 's';
4062 zero_flag = false;
4063 }
4064
4065 if (SYMBOLP (args[n]))
4066 {
4067 args[n] = SYMBOL_NAME (args[n]);
4068 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
4069 {
4070 multibyte = true;
4071 goto retry;
4072 }
4073 }
4074
4075 if (conversion == 's')
4076 {
4077 /* handle case (precision[n] >= 0) */
4078
4079 ptrdiff_t prec = -1;
4080 if (precision_given && precision <= TYPE_MAXIMUM (ptrdiff_t))
4081 prec = precision;
4082
4083 /* lisp_string_width ignores a precision of 0, but GNU
4084 libc functions print 0 characters when the precision
4085 is 0. Imitate libc behavior here. Changing
4086 lisp_string_width is the right thing, and will be
4087 done, but meanwhile we work with it. */
4088
4089 ptrdiff_t width, nbytes;
4090 ptrdiff_t nchars_string;
4091 if (prec == 0)
4092 width = nchars_string = nbytes = 0;
4093 else
4094 {
4095 ptrdiff_t nch, nby;
4096 width = lisp_string_width (args[n], prec, &nch, &nby);
4097 if (prec < 0)
4098 {
4099 nchars_string = SCHARS (args[n]);
4100 nbytes = SBYTES (args[n]);
4101 }
4102 else
4103 {
4104 nchars_string = nch;
4105 nbytes = nby;
4106 }
4107 }
4108
4109 convbytes = nbytes;
4110 if (convbytes && multibyte && ! STRING_MULTIBYTE (args[n]))
4111 convbytes = count_size_as_multibyte (SDATA (args[n]), nbytes);
4112
4113 ptrdiff_t padding
4114 = width < field_width ? field_width - width : 0;
4115
4116 if (max_bufsize - padding <= convbytes)
4117 string_overflow ();
4118 convbytes += padding;
4119 if (convbytes <= buf + bufsize - p)
4120 {
4121 if (! minus_flag)
4122 {
4123 memset (p, ' ', padding);
4124 p += padding;
4125 nchars += padding;
4126 }
4127
4128 if (p > buf
4129 && multibyte
4130 && !ASCII_CHAR_P (*((unsigned char *) p - 1))
4131 && STRING_MULTIBYTE (args[n])
4132 && !CHAR_HEAD_P (SREF (args[n], 0)))
4133 maybe_combine_byte = true;
4134
4135 p += copy_text (SDATA (args[n]), (unsigned char *) p,
4136 nbytes,
4137 STRING_MULTIBYTE (args[n]), multibyte);
4138
4139 info[n].start = nchars;
4140 nchars += nchars_string;
4141 info[n].end = nchars;
4142
4143 if (minus_flag)
4144 {
4145 memset (p, ' ', padding);
4146 p += padding;
4147 nchars += padding;
4148 }
4149
4150 /* If this argument has text properties, record where
4151 in the result string it appears. */
4152 if (string_intervals (args[n]))
4153 info[n].intervals = arg_intervals = true;
4154
4155 continue;
4156 }
4157 }
4158 else if (! (conversion == 'c' || conversion == 'd'
4159 || conversion == 'e' || conversion == 'f'
4160 || conversion == 'g' || conversion == 'i'
4161 || conversion == 'o' || conversion == 'x'
4162 || conversion == 'X'))
4163 error ("Invalid format operation %%%c",
4164 STRING_CHAR ((unsigned char *) format - 1));
4165 else if (! NUMBERP (args[n]))
4166 error ("Format specifier doesn't match argument type");
4167 else
4168 {
4169 enum
4170 {
4171 /* Maximum precision for a %f conversion such that the
4172 trailing output digit might be nonzero. Any precision
4173 larger than this will not yield useful information. */
4174 USEFUL_PRECISION_MAX =
4175 ((1 - DBL_MIN_EXP)
4176 * (FLT_RADIX == 2 || FLT_RADIX == 10 ? 1
4177 : FLT_RADIX == 16 ? 4
4178 : -1)),
4179
4180 /* Maximum number of bytes generated by any format, if
4181 precision is no more than USEFUL_PRECISION_MAX.
4182 On all practical hosts, %f is the worst case. */
4183 SPRINTF_BUFSIZE =
4184 sizeof "-." + (DBL_MAX_10_EXP + 1) + USEFUL_PRECISION_MAX,
4185
4186 /* Length of pM (that is, of pMd without the
4187 trailing "d"). */
4188 pMlen = sizeof pMd - 2
4189 };
4190 verify (USEFUL_PRECISION_MAX > 0);
4191
4192 /* Avoid undefined behavior in underlying sprintf. */
4193 if (conversion == 'd' || conversion == 'i')
4194 sharp_flag = false;
4195
4196 /* Create the copy of the conversion specification, with
4197 any width and precision removed, with ".*" inserted,
4198 and with pM inserted for integer formats.
4199 At most three flags F can be specified at once. */
4200 char convspec[sizeof "%FFF.*d" + pMlen];
4201 {
4202 char *f = convspec;
4203 *f++ = '%';
4204 *f = '-'; f += minus_flag;
4205 *f = '+'; f += plus_flag;
4206 *f = ' '; f += space_flag;
4207 *f = '#'; f += sharp_flag;
4208 *f = '0'; f += zero_flag;
4209 *f++ = '.';
4210 *f++ = '*';
4211 if (conversion == 'd' || conversion == 'i'
4212 || conversion == 'o' || conversion == 'x'
4213 || conversion == 'X')
4214 {
4215 memcpy (f, pMd, pMlen);
4216 f += pMlen;
4217 zero_flag &= ~ precision_given;
4218 }
4219 *f++ = conversion;
4220 *f = '\0';
4221 }
4222
4223 int prec = -1;
4224 if (precision_given)
4225 prec = min (precision, USEFUL_PRECISION_MAX);
4226
4227 /* Use sprintf to format this number into sprintf_buf. Omit
4228 padding and excess precision, though, because sprintf limits
4229 output length to INT_MAX.
4230
4231 There are four types of conversion: double, unsigned
4232 char (passed as int), wide signed int, and wide
4233 unsigned int. Treat them separately because the
4234 sprintf ABI is sensitive to which type is passed. Be
4235 careful about integer overflow, NaNs, infinities, and
4236 conversions; for example, the min and max macros are
4237 not suitable here. */
4238 char sprintf_buf[SPRINTF_BUFSIZE];
4239 ptrdiff_t sprintf_bytes;
4240 if (conversion == 'e' || conversion == 'f' || conversion == 'g')
4241 {
4242 double x = (INTEGERP (args[n])
4243 ? XINT (args[n])
4244 : XFLOAT_DATA (args[n]));
4245 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4246 }
4247 else if (conversion == 'c')
4248 {
4249 /* Don't use sprintf here, as it might mishandle prec. */
4250 sprintf_buf[0] = XINT (args[n]);
4251 sprintf_bytes = prec != 0;
4252 }
4253 else if (conversion == 'd')
4254 {
4255 /* For float, maybe we should use "%1.0f"
4256 instead so it also works for values outside
4257 the integer range. */
4258 printmax_t x;
4259 if (INTEGERP (args[n]))
4260 x = XINT (args[n]);
4261 else
4262 {
4263 double d = XFLOAT_DATA (args[n]);
4264 if (d < 0)
4265 {
4266 x = TYPE_MINIMUM (printmax_t);
4267 if (x < d)
4268 x = d;
4269 }
4270 else
4271 {
4272 x = TYPE_MAXIMUM (printmax_t);
4273 if (d < x)
4274 x = d;
4275 }
4276 }
4277 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4278 }
4279 else
4280 {
4281 /* Don't sign-extend for octal or hex printing. */
4282 uprintmax_t x;
4283 if (INTEGERP (args[n]))
4284 x = XUINT (args[n]);
4285 else
4286 {
4287 double d = XFLOAT_DATA (args[n]);
4288 if (d < 0)
4289 x = 0;
4290 else
4291 {
4292 x = TYPE_MAXIMUM (uprintmax_t);
4293 if (d < x)
4294 x = d;
4295 }
4296 }
4297 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4298 }
4299
4300 /* Now the length of the formatted item is known, except it omits
4301 padding and excess precision. Deal with excess precision
4302 first. This happens only when the format specifies
4303 ridiculously large precision. */
4304 uintmax_t excess_precision = precision - prec;
4305 uintmax_t leading_zeros = 0, trailing_zeros = 0;
4306 if (excess_precision)
4307 {
4308 if (conversion == 'e' || conversion == 'f'
4309 || conversion == 'g')
4310 {
4311 if ((conversion == 'g' && ! sharp_flag)
4312 || ! ('0' <= sprintf_buf[sprintf_bytes - 1]
4313 && sprintf_buf[sprintf_bytes - 1] <= '9'))
4314 excess_precision = 0;
4315 else
4316 {
4317 if (conversion == 'g')
4318 {
4319 char *dot = strchr (sprintf_buf, '.');
4320 if (!dot)
4321 excess_precision = 0;
4322 }
4323 }
4324 trailing_zeros = excess_precision;
4325 }
4326 else
4327 leading_zeros = excess_precision;
4328 }
4329
4330 /* Compute the total bytes needed for this item, including
4331 excess precision and padding. */
4332 uintmax_t numwidth = sprintf_bytes + excess_precision;
4333 ptrdiff_t padding
4334 = numwidth < field_width ? field_width - numwidth : 0;
4335 if (max_bufsize - sprintf_bytes <= excess_precision
4336 || max_bufsize - padding <= numwidth)
4337 string_overflow ();
4338 convbytes = numwidth + padding;
4339
4340 if (convbytes <= buf + bufsize - p)
4341 {
4342 /* Copy the formatted item from sprintf_buf into buf,
4343 inserting padding and excess-precision zeros. */
4344
4345 char *src = sprintf_buf;
4346 char src0 = src[0];
4347 int exponent_bytes = 0;
4348 bool signedp = src0 == '-' || src0 == '+' || src0 == ' ';
4349 if (zero_flag
4350 && ((src[signedp] >= '0' && src[signedp] <= '9')
4351 || (src[signedp] >= 'a' && src[signedp] <= 'f')
4352 || (src[signedp] >= 'A' && src[signedp] <= 'F')))
4353 {
4354 leading_zeros += padding;
4355 padding = 0;
4356 }
4357
4358 if (excess_precision
4359 && (conversion == 'e' || conversion == 'g'))
4360 {
4361 char *e = strchr (src, 'e');
4362 if (e)
4363 exponent_bytes = src + sprintf_bytes - e;
4364 }
4365
4366 if (! minus_flag)
4367 {
4368 memset (p, ' ', padding);
4369 p += padding;
4370 nchars += padding;
4371 }
4372
4373 *p = src0;
4374 src += signedp;
4375 p += signedp;
4376 memset (p, '0', leading_zeros);
4377 p += leading_zeros;
4378 int significand_bytes
4379 = sprintf_bytes - signedp - exponent_bytes;
4380 memcpy (p, src, significand_bytes);
4381 p += significand_bytes;
4382 src += significand_bytes;
4383 memset (p, '0', trailing_zeros);
4384 p += trailing_zeros;
4385 memcpy (p, src, exponent_bytes);
4386 p += exponent_bytes;
4387
4388 info[n].start = nchars;
4389 nchars += leading_zeros + sprintf_bytes + trailing_zeros;
4390 info[n].end = nchars;
4391
4392 if (minus_flag)
4393 {
4394 memset (p, ' ', padding);
4395 p += padding;
4396 nchars += padding;
4397 }
4398
4399 continue;
4400 }
4401 }
4402 }
4403 else
4404 {
4405 /* Named constants for the UTF-8 encodings of U+2018 LEFT SINGLE
4406 QUOTATION MARK and U+2019 RIGHT SINGLE QUOTATION MARK. */
4407 enum
4408 {
4409 uLSQM0 = 0xE2, uLSQM1 = 0x80, uLSQM2 = 0x98,
4410 /* uRSQM0 = 0xE2, uRSQM1 = 0x80, */ uRSQM2 = 0x99
4411 };
4412
4413 unsigned char str[MAX_MULTIBYTE_LENGTH];
4414
4415 if ((format_char == '`' || format_char == '\'')
4416 && quoting_style == CURVE_QUOTING_STYLE)
4417 {
4418 if (! multibyte)
4419 {
4420 multibyte = true;
4421 goto retry;
4422 }
4423 convsrc = format_char == '`' ? uLSQM : uRSQM;
4424 convbytes = 3;
4425 }
4426 else if (format_char == '`' && quoting_style == STRAIGHT_QUOTING_STYLE)
4427 convsrc = "'";
4428 else if (format_char == uLSQM0 && CURVE_QUOTING_STYLE < quoting_style
4429 && multibyte_format
4430 && (unsigned char) format[0] == uLSQM1
4431 && ((unsigned char) format[1] == uLSQM2
4432 || (unsigned char) format[1] == uRSQM2))
4433 {
4434 convsrc = (((unsigned char) format[1] == uLSQM2
4435 && quoting_style == GRAVE_QUOTING_STYLE)
4436 ? "`" : "'");
4437 format += 2;
4438 memset (&discarded[format0 + 1 - format_start], 2, 2);
4439 }
4440 else
4441 {
4442 /* Copy a single character from format to buf. */
4443 if (multibyte_format)
4444 {
4445 /* Copy a whole multibyte character. */
4446 if (p > buf
4447 && !ASCII_CHAR_P (*((unsigned char *) p - 1))
4448 && !CHAR_HEAD_P (format_char))
4449 maybe_combine_byte = true;
4450
4451 while (! CHAR_HEAD_P (*format))
4452 format++;
4453
4454 convbytes = format - format0;
4455 memset (&discarded[format0 + 1 - format_start], 2,
4456 convbytes - 1);
4457 }
4458 else if (multibyte && !ASCII_CHAR_P (format_char))
4459 {
4460 int c = BYTE8_TO_CHAR (format_char);
4461 convbytes = CHAR_STRING (c, str);
4462 convsrc = (char *) str;
4463 }
4464 }
4465
4466 copy_char:
4467 if (convbytes <= buf + bufsize - p)
4468 {
4469 memcpy (p, convsrc, convbytes);
4470 p += convbytes;
4471 nchars++;
4472 continue;
4473 }
4474 }
4475
4476 /* There wasn't enough room to store this conversion or single
4477 character. CONVBYTES says how much room is needed. Allocate
4478 enough room (and then some) and do it again. */
4479
4480 ptrdiff_t used = p - buf;
4481 if (max_bufsize - used < convbytes)
4482 string_overflow ();
4483 bufsize = used + convbytes;
4484 bufsize = bufsize < max_bufsize / 2 ? bufsize * 2 : max_bufsize;
4485
4486 if (buf == initial_buffer)
4487 {
4488 buf = xmalloc (bufsize);
4489 sa_must_free = true;
4490 buf_save_value_index = SPECPDL_INDEX ();
4491 record_unwind_protect_ptr (xfree, buf);
4492 memcpy (buf, initial_buffer, used);
4493 }
4494 else
4495 {
4496 buf = xrealloc (buf, bufsize);
4497 set_unwind_protect_ptr (buf_save_value_index, xfree, buf);
4498 }
4499
4500 p = buf + used;
4501 format = format0;
4502 n = n0;
4503 }
4504
4505 if (bufsize < p - buf)
4506 emacs_abort ();
4507
4508 if (maybe_combine_byte)
4509 nchars = multibyte_chars_in_text ((unsigned char *) buf, p - buf);
4510 Lisp_Object val = make_specified_string (buf, nchars, p - buf, multibyte);
4511
4512 /* If the format string has text properties, or any of the string
4513 arguments has text properties, set up text properties of the
4514 result string. */
4515
4516 if (string_intervals (args[0]) || arg_intervals)
4517 {
4518 /* Add text properties from the format string. */
4519 Lisp_Object len = make_number (SCHARS (args[0]));
4520 Lisp_Object props = text_property_list (args[0], make_number (0),
4521 len, Qnil);
4522 if (CONSP (props))
4523 {
4524 ptrdiff_t bytepos = 0, position = 0, translated = 0;
4525 ptrdiff_t argn = 1;
4526
4527 /* Adjust the bounds of each text property
4528 to the proper start and end in the output string. */
4529
4530 /* Put the positions in PROPS in increasing order, so that
4531 we can do (effectively) one scan through the position
4532 space of the format string. */
4533 props = Fnreverse (props);
4534
4535 /* BYTEPOS is the byte position in the format string,
4536 POSITION is the untranslated char position in it,
4537 TRANSLATED is the translated char position in BUF,
4538 and ARGN is the number of the next arg we will come to. */
4539 for (Lisp_Object list = props; CONSP (list); list = XCDR (list))
4540 {
4541 Lisp_Object item = XCAR (list);
4542
4543 /* First adjust the property start position. */
4544 ptrdiff_t pos = XINT (XCAR (item));
4545
4546 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
4547 up to this position. */
4548 for (; position < pos; bytepos++)
4549 {
4550 if (! discarded[bytepos])
4551 position++, translated++;
4552 else if (discarded[bytepos] == 1)
4553 {
4554 position++;
4555 if (translated == info[argn].start)
4556 {
4557 translated += info[argn].end - info[argn].start;
4558 argn++;
4559 }
4560 }
4561 }
4562
4563 XSETCAR (item, make_number (translated));
4564
4565 /* Likewise adjust the property end position. */
4566 pos = XINT (XCAR (XCDR (item)));
4567
4568 for (; position < pos; bytepos++)
4569 {
4570 if (! discarded[bytepos])
4571 position++, translated++;
4572 else if (discarded[bytepos] == 1)
4573 {
4574 position++;
4575 if (translated == info[argn].start)
4576 {
4577 translated += info[argn].end - info[argn].start;
4578 argn++;
4579 }
4580 }
4581 }
4582
4583 XSETCAR (XCDR (item), make_number (translated));
4584 }
4585
4586 add_text_properties_from_list (val, props, make_number (0));
4587 }
4588
4589 /* Add text properties from arguments. */
4590 if (arg_intervals)
4591 for (ptrdiff_t i = 1; i < nargs; i++)
4592 if (info[i].intervals)
4593 {
4594 len = make_number (SCHARS (args[i]));
4595 Lisp_Object new_len = make_number (info[i].end - info[i].start);
4596 props = text_property_list (args[i], make_number (0), len, Qnil);
4597 props = extend_property_ranges (props, new_len);
4598 /* If successive arguments have properties, be sure that
4599 the value of `composition' property be the copy. */
4600 if (1 < i && info[i - 1].end)
4601 make_composition_value_copy (props);
4602 add_text_properties_from_list (val, props,
4603 make_number (info[i].start));
4604 }
4605 }
4606
4607 /* If we allocated BUF or INFO with malloc, free it too. */
4608 SAFE_FREE ();
4609
4610 return val;
4611 }
4612 \f
4613 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
4614 doc: /* Return t if two characters match, optionally ignoring case.
4615 Both arguments must be characters (i.e. integers).
4616 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
4617 (register Lisp_Object c1, Lisp_Object c2)
4618 {
4619 int i1, i2;
4620 /* Check they're chars, not just integers, otherwise we could get array
4621 bounds violations in downcase. */
4622 CHECK_CHARACTER (c1);
4623 CHECK_CHARACTER (c2);
4624
4625 if (XINT (c1) == XINT (c2))
4626 return Qt;
4627 if (NILP (BVAR (current_buffer, case_fold_search)))
4628 return Qnil;
4629
4630 i1 = XFASTINT (c1);
4631 i2 = XFASTINT (c2);
4632
4633 /* FIXME: It is possible to compare multibyte characters even when
4634 the current buffer is unibyte. Unfortunately this is ambiguous
4635 for characters between 128 and 255, as they could be either
4636 eight-bit raw bytes or Latin-1 characters. Assume the former for
4637 now. See Bug#17011, and also see casefiddle.c's casify_object,
4638 which has a similar problem. */
4639 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4640 {
4641 if (SINGLE_BYTE_CHAR_P (i1))
4642 i1 = UNIBYTE_TO_CHAR (i1);
4643 if (SINGLE_BYTE_CHAR_P (i2))
4644 i2 = UNIBYTE_TO_CHAR (i2);
4645 }
4646
4647 return (downcase (i1) == downcase (i2) ? Qt : Qnil);
4648 }
4649 \f
4650 /* Transpose the markers in two regions of the current buffer, and
4651 adjust the ones between them if necessary (i.e.: if the regions
4652 differ in size).
4653
4654 START1, END1 are the character positions of the first region.
4655 START1_BYTE, END1_BYTE are the byte positions.
4656 START2, END2 are the character positions of the second region.
4657 START2_BYTE, END2_BYTE are the byte positions.
4658
4659 Traverses the entire marker list of the buffer to do so, adding an
4660 appropriate amount to some, subtracting from some, and leaving the
4661 rest untouched. Most of this is copied from adjust_markers in insdel.c.
4662
4663 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
4664
4665 static void
4666 transpose_markers (ptrdiff_t start1, ptrdiff_t end1,
4667 ptrdiff_t start2, ptrdiff_t end2,
4668 ptrdiff_t start1_byte, ptrdiff_t end1_byte,
4669 ptrdiff_t start2_byte, ptrdiff_t end2_byte)
4670 {
4671 register ptrdiff_t amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
4672 register struct Lisp_Marker *marker;
4673
4674 /* Update point as if it were a marker. */
4675 if (PT < start1)
4676 ;
4677 else if (PT < end1)
4678 TEMP_SET_PT_BOTH (PT + (end2 - end1),
4679 PT_BYTE + (end2_byte - end1_byte));
4680 else if (PT < start2)
4681 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
4682 (PT_BYTE + (end2_byte - start2_byte)
4683 - (end1_byte - start1_byte)));
4684 else if (PT < end2)
4685 TEMP_SET_PT_BOTH (PT - (start2 - start1),
4686 PT_BYTE - (start2_byte - start1_byte));
4687
4688 /* We used to adjust the endpoints here to account for the gap, but that
4689 isn't good enough. Even if we assume the caller has tried to move the
4690 gap out of our way, it might still be at start1 exactly, for example;
4691 and that places it `inside' the interval, for our purposes. The amount
4692 of adjustment is nontrivial if there's a `denormalized' marker whose
4693 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
4694 the dirty work to Fmarker_position, below. */
4695
4696 /* The difference between the region's lengths */
4697 diff = (end2 - start2) - (end1 - start1);
4698 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
4699
4700 /* For shifting each marker in a region by the length of the other
4701 region plus the distance between the regions. */
4702 amt1 = (end2 - start2) + (start2 - end1);
4703 amt2 = (end1 - start1) + (start2 - end1);
4704 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
4705 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
4706
4707 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
4708 {
4709 mpos = marker->bytepos;
4710 if (mpos >= start1_byte && mpos < end2_byte)
4711 {
4712 if (mpos < end1_byte)
4713 mpos += amt1_byte;
4714 else if (mpos < start2_byte)
4715 mpos += diff_byte;
4716 else
4717 mpos -= amt2_byte;
4718 marker->bytepos = mpos;
4719 }
4720 mpos = marker->charpos;
4721 if (mpos >= start1 && mpos < end2)
4722 {
4723 if (mpos < end1)
4724 mpos += amt1;
4725 else if (mpos < start2)
4726 mpos += diff;
4727 else
4728 mpos -= amt2;
4729 }
4730 marker->charpos = mpos;
4731 }
4732 }
4733
4734 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
4735 doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2.
4736 The regions should not be overlapping, because the size of the buffer is
4737 never changed in a transposition.
4738
4739 Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update
4740 any markers that happen to be located in the regions.
4741
4742 Transposing beyond buffer boundaries is an error. */)
4743 (Lisp_Object startr1, Lisp_Object endr1, Lisp_Object startr2, Lisp_Object endr2, Lisp_Object leave_markers)
4744 {
4745 register ptrdiff_t start1, end1, start2, end2;
4746 ptrdiff_t start1_byte, start2_byte, len1_byte, len2_byte, end2_byte;
4747 ptrdiff_t gap, len1, len_mid, len2;
4748 unsigned char *start1_addr, *start2_addr, *temp;
4749
4750 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2, tmp_interval3;
4751 Lisp_Object buf;
4752
4753 XSETBUFFER (buf, current_buffer);
4754 cur_intv = buffer_intervals (current_buffer);
4755
4756 validate_region (&startr1, &endr1);
4757 validate_region (&startr2, &endr2);
4758
4759 start1 = XFASTINT (startr1);
4760 end1 = XFASTINT (endr1);
4761 start2 = XFASTINT (startr2);
4762 end2 = XFASTINT (endr2);
4763 gap = GPT;
4764
4765 /* Swap the regions if they're reversed. */
4766 if (start2 < end1)
4767 {
4768 register ptrdiff_t glumph = start1;
4769 start1 = start2;
4770 start2 = glumph;
4771 glumph = end1;
4772 end1 = end2;
4773 end2 = glumph;
4774 }
4775
4776 len1 = end1 - start1;
4777 len2 = end2 - start2;
4778
4779 if (start2 < end1)
4780 error ("Transposed regions overlap");
4781 /* Nothing to change for adjacent regions with one being empty */
4782 else if ((start1 == end1 || start2 == end2) && end1 == start2)
4783 return Qnil;
4784
4785 /* The possibilities are:
4786 1. Adjacent (contiguous) regions, or separate but equal regions
4787 (no, really equal, in this case!), or
4788 2. Separate regions of unequal size.
4789
4790 The worst case is usually No. 2. It means that (aside from
4791 potential need for getting the gap out of the way), there also
4792 needs to be a shifting of the text between the two regions. So
4793 if they are spread far apart, we are that much slower... sigh. */
4794
4795 /* It must be pointed out that the really studly thing to do would
4796 be not to move the gap at all, but to leave it in place and work
4797 around it if necessary. This would be extremely efficient,
4798 especially considering that people are likely to do
4799 transpositions near where they are working interactively, which
4800 is exactly where the gap would be found. However, such code
4801 would be much harder to write and to read. So, if you are
4802 reading this comment and are feeling squirrely, by all means have
4803 a go! I just didn't feel like doing it, so I will simply move
4804 the gap the minimum distance to get it out of the way, and then
4805 deal with an unbroken array. */
4806
4807 start1_byte = CHAR_TO_BYTE (start1);
4808 end2_byte = CHAR_TO_BYTE (end2);
4809
4810 /* Make sure the gap won't interfere, by moving it out of the text
4811 we will operate on. */
4812 if (start1 < gap && gap < end2)
4813 {
4814 if (gap - start1 < end2 - gap)
4815 move_gap_both (start1, start1_byte);
4816 else
4817 move_gap_both (end2, end2_byte);
4818 }
4819
4820 start2_byte = CHAR_TO_BYTE (start2);
4821 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4822 len2_byte = end2_byte - start2_byte;
4823
4824 #ifdef BYTE_COMBINING_DEBUG
4825 if (end1 == start2)
4826 {
4827 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4828 len2_byte, start1, start1_byte)
4829 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4830 len1_byte, end2, start2_byte + len2_byte)
4831 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4832 len1_byte, end2, start2_byte + len2_byte))
4833 emacs_abort ();
4834 }
4835 else
4836 {
4837 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4838 len2_byte, start1, start1_byte)
4839 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4840 len1_byte, start2, start2_byte)
4841 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4842 len2_byte, end1, start1_byte + len1_byte)
4843 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4844 len1_byte, end2, start2_byte + len2_byte))
4845 emacs_abort ();
4846 }
4847 #endif
4848
4849 /* Hmmm... how about checking to see if the gap is large
4850 enough to use as the temporary storage? That would avoid an
4851 allocation... interesting. Later, don't fool with it now. */
4852
4853 /* Working without memmove, for portability (sigh), so must be
4854 careful of overlapping subsections of the array... */
4855
4856 if (end1 == start2) /* adjacent regions */
4857 {
4858 modify_text (start1, end2);
4859 record_change (start1, len1 + len2);
4860
4861 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4862 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4863 /* Don't use Fset_text_properties: that can cause GC, which can
4864 clobber objects stored in the tmp_intervals. */
4865 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4866 if (tmp_interval3)
4867 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4868
4869 USE_SAFE_ALLOCA;
4870
4871 /* First region smaller than second. */
4872 if (len1_byte < len2_byte)
4873 {
4874 temp = SAFE_ALLOCA (len2_byte);
4875
4876 /* Don't precompute these addresses. We have to compute them
4877 at the last minute, because the relocating allocator might
4878 have moved the buffer around during the xmalloc. */
4879 start1_addr = BYTE_POS_ADDR (start1_byte);
4880 start2_addr = BYTE_POS_ADDR (start2_byte);
4881
4882 memcpy (temp, start2_addr, len2_byte);
4883 memcpy (start1_addr + len2_byte, start1_addr, len1_byte);
4884 memcpy (start1_addr, temp, len2_byte);
4885 }
4886 else
4887 /* First region not smaller than second. */
4888 {
4889 temp = SAFE_ALLOCA (len1_byte);
4890 start1_addr = BYTE_POS_ADDR (start1_byte);
4891 start2_addr = BYTE_POS_ADDR (start2_byte);
4892 memcpy (temp, start1_addr, len1_byte);
4893 memcpy (start1_addr, start2_addr, len2_byte);
4894 memcpy (start1_addr + len2_byte, temp, len1_byte);
4895 }
4896
4897 SAFE_FREE ();
4898 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4899 len1, current_buffer, 0);
4900 graft_intervals_into_buffer (tmp_interval2, start1,
4901 len2, current_buffer, 0);
4902 update_compositions (start1, start1 + len2, CHECK_BORDER);
4903 update_compositions (start1 + len2, end2, CHECK_TAIL);
4904 }
4905 /* Non-adjacent regions, because end1 != start2, bleagh... */
4906 else
4907 {
4908 len_mid = start2_byte - (start1_byte + len1_byte);
4909
4910 if (len1_byte == len2_byte)
4911 /* Regions are same size, though, how nice. */
4912 {
4913 USE_SAFE_ALLOCA;
4914
4915 modify_text (start1, end1);
4916 modify_text (start2, end2);
4917 record_change (start1, len1);
4918 record_change (start2, len2);
4919 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4920 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4921
4922 tmp_interval3 = validate_interval_range (buf, &startr1, &endr1, 0);
4923 if (tmp_interval3)
4924 set_text_properties_1 (startr1, endr1, Qnil, buf, tmp_interval3);
4925
4926 tmp_interval3 = validate_interval_range (buf, &startr2, &endr2, 0);
4927 if (tmp_interval3)
4928 set_text_properties_1 (startr2, endr2, Qnil, buf, tmp_interval3);
4929
4930 temp = SAFE_ALLOCA (len1_byte);
4931 start1_addr = BYTE_POS_ADDR (start1_byte);
4932 start2_addr = BYTE_POS_ADDR (start2_byte);
4933 memcpy (temp, start1_addr, len1_byte);
4934 memcpy (start1_addr, start2_addr, len2_byte);
4935 memcpy (start2_addr, temp, len1_byte);
4936 SAFE_FREE ();
4937
4938 graft_intervals_into_buffer (tmp_interval1, start2,
4939 len1, current_buffer, 0);
4940 graft_intervals_into_buffer (tmp_interval2, start1,
4941 len2, current_buffer, 0);
4942 }
4943
4944 else if (len1_byte < len2_byte) /* Second region larger than first */
4945 /* Non-adjacent & unequal size, area between must also be shifted. */
4946 {
4947 USE_SAFE_ALLOCA;
4948
4949 modify_text (start1, end2);
4950 record_change (start1, (end2 - start1));
4951 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4952 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4953 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4954
4955 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4956 if (tmp_interval3)
4957 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4958
4959 /* holds region 2 */
4960 temp = SAFE_ALLOCA (len2_byte);
4961 start1_addr = BYTE_POS_ADDR (start1_byte);
4962 start2_addr = BYTE_POS_ADDR (start2_byte);
4963 memcpy (temp, start2_addr, len2_byte);
4964 memcpy (start1_addr + len_mid + len2_byte, start1_addr, len1_byte);
4965 memmove (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4966 memcpy (start1_addr, temp, len2_byte);
4967 SAFE_FREE ();
4968
4969 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4970 len1, current_buffer, 0);
4971 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4972 len_mid, current_buffer, 0);
4973 graft_intervals_into_buffer (tmp_interval2, start1,
4974 len2, current_buffer, 0);
4975 }
4976 else
4977 /* Second region smaller than first. */
4978 {
4979 USE_SAFE_ALLOCA;
4980
4981 record_change (start1, (end2 - start1));
4982 modify_text (start1, end2);
4983
4984 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4985 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4986 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4987
4988 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4989 if (tmp_interval3)
4990 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4991
4992 /* holds region 1 */
4993 temp = SAFE_ALLOCA (len1_byte);
4994 start1_addr = BYTE_POS_ADDR (start1_byte);
4995 start2_addr = BYTE_POS_ADDR (start2_byte);
4996 memcpy (temp, start1_addr, len1_byte);
4997 memcpy (start1_addr, start2_addr, len2_byte);
4998 memcpy (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4999 memcpy (start1_addr + len2_byte + len_mid, temp, len1_byte);
5000 SAFE_FREE ();
5001
5002 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
5003 len1, current_buffer, 0);
5004 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
5005 len_mid, current_buffer, 0);
5006 graft_intervals_into_buffer (tmp_interval2, start1,
5007 len2, current_buffer, 0);
5008 }
5009
5010 update_compositions (start1, start1 + len2, CHECK_BORDER);
5011 update_compositions (end2 - len1, end2, CHECK_BORDER);
5012 }
5013
5014 /* When doing multiple transpositions, it might be nice
5015 to optimize this. Perhaps the markers in any one buffer
5016 should be organized in some sorted data tree. */
5017 if (NILP (leave_markers))
5018 {
5019 transpose_markers (start1, end1, start2, end2,
5020 start1_byte, start1_byte + len1_byte,
5021 start2_byte, start2_byte + len2_byte);
5022 fix_start_end_in_overlays (start1, end2);
5023 }
5024
5025 signal_after_change (start1, end2 - start1, end2 - start1);
5026 return Qnil;
5027 }
5028
5029 \f
5030 void
5031 syms_of_editfns (void)
5032 {
5033 DEFSYM (Qbuffer_access_fontify_functions, "buffer-access-fontify-functions");
5034 DEFSYM (Qwall, "wall");
5035
5036 DEFVAR_LISP ("inhibit-field-text-motion", Vinhibit_field_text_motion,
5037 doc: /* Non-nil means text motion commands don't notice fields. */);
5038 Vinhibit_field_text_motion = Qnil;
5039
5040 DEFVAR_LISP ("buffer-access-fontify-functions",
5041 Vbuffer_access_fontify_functions,
5042 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
5043 Each function is called with two arguments which specify the range
5044 of the buffer being accessed. */);
5045 Vbuffer_access_fontify_functions = Qnil;
5046
5047 {
5048 Lisp_Object obuf;
5049 obuf = Fcurrent_buffer ();
5050 /* Do this here, because init_buffer_once is too early--it won't work. */
5051 Fset_buffer (Vprin1_to_string_buffer);
5052 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
5053 Fset (Fmake_local_variable (Qbuffer_access_fontify_functions), Qnil);
5054 Fset_buffer (obuf);
5055 }
5056
5057 DEFVAR_LISP ("buffer-access-fontified-property",
5058 Vbuffer_access_fontified_property,
5059 doc: /* Property which (if non-nil) indicates text has been fontified.
5060 `buffer-substring' need not call the `buffer-access-fontify-functions'
5061 functions if all the text being accessed has this property. */);
5062 Vbuffer_access_fontified_property = Qnil;
5063
5064 DEFVAR_LISP ("system-name", Vsystem_name,
5065 doc: /* The host name of the machine Emacs is running on. */);
5066 Vsystem_name = cached_system_name = Qnil;
5067
5068 DEFVAR_LISP ("user-full-name", Vuser_full_name,
5069 doc: /* The full name of the user logged in. */);
5070
5071 DEFVAR_LISP ("user-login-name", Vuser_login_name,
5072 doc: /* The user's name, taken from environment variables if possible. */);
5073 Vuser_login_name = Qnil;
5074
5075 DEFVAR_LISP ("user-real-login-name", Vuser_real_login_name,
5076 doc: /* The user's name, based upon the real uid only. */);
5077
5078 DEFVAR_LISP ("operating-system-release", Voperating_system_release,
5079 doc: /* The release of the operating system Emacs is running on. */);
5080
5081 defsubr (&Spropertize);
5082 defsubr (&Schar_equal);
5083 defsubr (&Sgoto_char);
5084 defsubr (&Sstring_to_char);
5085 defsubr (&Schar_to_string);
5086 defsubr (&Sbyte_to_string);
5087 defsubr (&Sbuffer_substring);
5088 defsubr (&Sbuffer_substring_no_properties);
5089 defsubr (&Sbuffer_string);
5090 defsubr (&Sget_pos_property);
5091
5092 defsubr (&Spoint_marker);
5093 defsubr (&Smark_marker);
5094 defsubr (&Spoint);
5095 defsubr (&Sregion_beginning);
5096 defsubr (&Sregion_end);
5097
5098 /* Symbol for the text property used to mark fields. */
5099 DEFSYM (Qfield, "field");
5100
5101 /* A special value for Qfield properties. */
5102 DEFSYM (Qboundary, "boundary");
5103
5104 defsubr (&Sfield_beginning);
5105 defsubr (&Sfield_end);
5106 defsubr (&Sfield_string);
5107 defsubr (&Sfield_string_no_properties);
5108 defsubr (&Sdelete_field);
5109 defsubr (&Sconstrain_to_field);
5110
5111 defsubr (&Sline_beginning_position);
5112 defsubr (&Sline_end_position);
5113
5114 defsubr (&Ssave_excursion);
5115 defsubr (&Ssave_current_buffer);
5116
5117 defsubr (&Sbuffer_size);
5118 defsubr (&Spoint_max);
5119 defsubr (&Spoint_min);
5120 defsubr (&Spoint_min_marker);
5121 defsubr (&Spoint_max_marker);
5122 defsubr (&Sgap_position);
5123 defsubr (&Sgap_size);
5124 defsubr (&Sposition_bytes);
5125 defsubr (&Sbyte_to_position);
5126
5127 defsubr (&Sbobp);
5128 defsubr (&Seobp);
5129 defsubr (&Sbolp);
5130 defsubr (&Seolp);
5131 defsubr (&Sfollowing_char);
5132 defsubr (&Sprevious_char);
5133 defsubr (&Schar_after);
5134 defsubr (&Schar_before);
5135 defsubr (&Sinsert);
5136 defsubr (&Sinsert_before_markers);
5137 defsubr (&Sinsert_and_inherit);
5138 defsubr (&Sinsert_and_inherit_before_markers);
5139 defsubr (&Sinsert_char);
5140 defsubr (&Sinsert_byte);
5141
5142 defsubr (&Suser_login_name);
5143 defsubr (&Suser_real_login_name);
5144 defsubr (&Suser_uid);
5145 defsubr (&Suser_real_uid);
5146 defsubr (&Sgroup_gid);
5147 defsubr (&Sgroup_real_gid);
5148 defsubr (&Suser_full_name);
5149 defsubr (&Semacs_pid);
5150 defsubr (&Scurrent_time);
5151 defsubr (&Stime_add);
5152 defsubr (&Stime_subtract);
5153 defsubr (&Stime_less_p);
5154 defsubr (&Sget_internal_run_time);
5155 defsubr (&Sformat_time_string);
5156 defsubr (&Sfloat_time);
5157 defsubr (&Sdecode_time);
5158 defsubr (&Sencode_time);
5159 defsubr (&Scurrent_time_string);
5160 defsubr (&Scurrent_time_zone);
5161 defsubr (&Sset_time_zone_rule);
5162 defsubr (&Ssystem_name);
5163 defsubr (&Smessage);
5164 defsubr (&Smessage_box);
5165 defsubr (&Smessage_or_box);
5166 defsubr (&Scurrent_message);
5167 defsubr (&Sformat);
5168 defsubr (&Sformat_message);
5169
5170 defsubr (&Sinsert_buffer_substring);
5171 defsubr (&Scompare_buffer_substrings);
5172 defsubr (&Ssubst_char_in_region);
5173 defsubr (&Stranslate_region_internal);
5174 defsubr (&Sdelete_region);
5175 defsubr (&Sdelete_and_extract_region);
5176 defsubr (&Swiden);
5177 defsubr (&Snarrow_to_region);
5178 defsubr (&Ssave_restriction);
5179 defsubr (&Stranspose_regions);
5180 }