]> code.delx.au - gnu-emacs/blob - src/alloc.c
* alloc.c (make_unibyte_string): Don't SET_UNIBYTE redundantly.
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21 #include <stdio.h>
22 #include <limits.h> /* For CHAR_BIT. */
23 #include <setjmp.h>
24
25 #ifdef ALLOC_DEBUG
26 #undef INLINE
27 #endif
28
29 #include <signal.h>
30
31 #ifdef HAVE_GTK_AND_PTHREAD
32 #include <pthread.h>
33 #endif
34
35 /* This file is part of the core Lisp implementation, and thus must
36 deal with the real data structures. If the Lisp implementation is
37 replaced, this file likely will not be used. */
38
39 #undef HIDE_LISP_IMPLEMENTATION
40 #include "lisp.h"
41 #include "process.h"
42 #include "intervals.h"
43 #include "puresize.h"
44 #include "buffer.h"
45 #include "window.h"
46 #include "keyboard.h"
47 #include "frame.h"
48 #include "blockinput.h"
49 #include "character.h"
50 #include "syssignal.h"
51 #include "termhooks.h" /* For struct terminal. */
52 #include <setjmp.h>
53
54 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
55 memory. Can do this only if using gmalloc.c. */
56
57 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
58 #undef GC_MALLOC_CHECK
59 #endif
60
61 #include <unistd.h>
62 #ifndef HAVE_UNISTD_H
63 extern POINTER_TYPE *sbrk ();
64 #endif
65
66 #include <fcntl.h>
67
68 #ifdef WINDOWSNT
69 #include "w32.h"
70 #endif
71
72 #ifdef DOUG_LEA_MALLOC
73
74 #include <malloc.h>
75 /* malloc.h #defines this as size_t, at least in glibc2. */
76 #ifndef __malloc_size_t
77 #define __malloc_size_t int
78 #endif
79
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
82
83 #define MMAP_MAX_AREAS 100000000
84
85 #else /* not DOUG_LEA_MALLOC */
86
87 /* The following come from gmalloc.c. */
88
89 #define __malloc_size_t size_t
90 extern __malloc_size_t _bytes_used;
91 extern __malloc_size_t __malloc_extra_blocks;
92
93 #endif /* not DOUG_LEA_MALLOC */
94
95 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
96
97 /* When GTK uses the file chooser dialog, different backends can be loaded
98 dynamically. One such a backend is the Gnome VFS backend that gets loaded
99 if you run Gnome. That backend creates several threads and also allocates
100 memory with malloc.
101
102 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
103 functions below are called from malloc, there is a chance that one
104 of these threads preempts the Emacs main thread and the hook variables
105 end up in an inconsistent state. So we have a mutex to prevent that (note
106 that the backend handles concurrent access to malloc within its own threads
107 but Emacs code running in the main thread is not included in that control).
108
109 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
110 happens in one of the backend threads we will have two threads that tries
111 to run Emacs code at once, and the code is not prepared for that.
112 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
113
114 static pthread_mutex_t alloc_mutex;
115
116 #define BLOCK_INPUT_ALLOC \
117 do \
118 { \
119 if (pthread_equal (pthread_self (), main_thread)) \
120 BLOCK_INPUT; \
121 pthread_mutex_lock (&alloc_mutex); \
122 } \
123 while (0)
124 #define UNBLOCK_INPUT_ALLOC \
125 do \
126 { \
127 pthread_mutex_unlock (&alloc_mutex); \
128 if (pthread_equal (pthread_self (), main_thread)) \
129 UNBLOCK_INPUT; \
130 } \
131 while (0)
132
133 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
134
135 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
136 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
137
138 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
139
140 /* Value of _bytes_used, when spare_memory was freed. */
141
142 static __malloc_size_t bytes_used_when_full;
143
144 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
145 to a struct Lisp_String. */
146
147 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
148 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
149 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
150
151 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
152 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
153 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
154
155 /* Value is the number of bytes/chars of S, a pointer to a struct
156 Lisp_String. This must be used instead of STRING_BYTES (S) or
157 S->size during GC, because S->size contains the mark bit for
158 strings. */
159
160 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
161 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
162
163 /* Global variables. */
164 struct emacs_globals globals;
165
166 /* Number of bytes of consing done since the last gc. */
167
168 int consing_since_gc;
169
170 /* Similar minimum, computed from Vgc_cons_percentage. */
171
172 EMACS_INT gc_relative_threshold;
173
174 /* Minimum number of bytes of consing since GC before next GC,
175 when memory is full. */
176
177 EMACS_INT memory_full_cons_threshold;
178
179 /* Nonzero during GC. */
180
181 int gc_in_progress;
182
183 /* Nonzero means abort if try to GC.
184 This is for code which is written on the assumption that
185 no GC will happen, so as to verify that assumption. */
186
187 int abort_on_gc;
188
189 /* Number of live and free conses etc. */
190
191 static int total_conses, total_markers, total_symbols, total_vector_size;
192 static int total_free_conses, total_free_markers, total_free_symbols;
193 static int total_free_floats, total_floats;
194
195 /* Points to memory space allocated as "spare", to be freed if we run
196 out of memory. We keep one large block, four cons-blocks, and
197 two string blocks. */
198
199 static char *spare_memory[7];
200
201 /* Amount of spare memory to keep in large reserve block. */
202
203 #define SPARE_MEMORY (1 << 14)
204
205 /* Number of extra blocks malloc should get when it needs more core. */
206
207 static int malloc_hysteresis;
208
209 /* Initialize it to a nonzero value to force it into data space
210 (rather than bss space). That way unexec will remap it into text
211 space (pure), on some systems. We have not implemented the
212 remapping on more recent systems because this is less important
213 nowadays than in the days of small memories and timesharing. */
214
215 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
216 #define PUREBEG (char *) pure
217
218 /* Pointer to the pure area, and its size. */
219
220 static char *purebeg;
221 static size_t pure_size;
222
223 /* Number of bytes of pure storage used before pure storage overflowed.
224 If this is non-zero, this implies that an overflow occurred. */
225
226 static size_t pure_bytes_used_before_overflow;
227
228 /* Value is non-zero if P points into pure space. */
229
230 #define PURE_POINTER_P(P) \
231 (((PNTR_COMPARISON_TYPE) (P) \
232 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
233 && ((PNTR_COMPARISON_TYPE) (P) \
234 >= (PNTR_COMPARISON_TYPE) purebeg))
235
236 /* Index in pure at which next pure Lisp object will be allocated.. */
237
238 static EMACS_INT pure_bytes_used_lisp;
239
240 /* Number of bytes allocated for non-Lisp objects in pure storage. */
241
242 static EMACS_INT pure_bytes_used_non_lisp;
243
244 /* If nonzero, this is a warning delivered by malloc and not yet
245 displayed. */
246
247 const char *pending_malloc_warning;
248
249 /* Maximum amount of C stack to save when a GC happens. */
250
251 #ifndef MAX_SAVE_STACK
252 #define MAX_SAVE_STACK 16000
253 #endif
254
255 /* Buffer in which we save a copy of the C stack at each GC. */
256
257 static char *stack_copy;
258 static int stack_copy_size;
259
260 /* Non-zero means ignore malloc warnings. Set during initialization.
261 Currently not used. */
262
263 static int ignore_warnings;
264
265 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
266
267 /* Hook run after GC has finished. */
268
269 Lisp_Object Qpost_gc_hook;
270
271 static void mark_buffer (Lisp_Object);
272 static void mark_terminals (void);
273 extern void mark_kboards (void);
274 extern void mark_ttys (void);
275 extern void mark_backtrace (void);
276 static void gc_sweep (void);
277 static void mark_glyph_matrix (struct glyph_matrix *);
278 static void mark_face_cache (struct face_cache *);
279
280 #ifdef HAVE_WINDOW_SYSTEM
281 extern void mark_fringe_data (void);
282 #endif /* HAVE_WINDOW_SYSTEM */
283
284 static struct Lisp_String *allocate_string (void);
285 static void compact_small_strings (void);
286 static void free_large_strings (void);
287 static void sweep_strings (void);
288
289 extern int message_enable_multibyte;
290
291 /* When scanning the C stack for live Lisp objects, Emacs keeps track
292 of what memory allocated via lisp_malloc is intended for what
293 purpose. This enumeration specifies the type of memory. */
294
295 enum mem_type
296 {
297 MEM_TYPE_NON_LISP,
298 MEM_TYPE_BUFFER,
299 MEM_TYPE_CONS,
300 MEM_TYPE_STRING,
301 MEM_TYPE_MISC,
302 MEM_TYPE_SYMBOL,
303 MEM_TYPE_FLOAT,
304 /* We used to keep separate mem_types for subtypes of vectors such as
305 process, hash_table, frame, terminal, and window, but we never made
306 use of the distinction, so it only caused source-code complexity
307 and runtime slowdown. Minor but pointless. */
308 MEM_TYPE_VECTORLIKE
309 };
310
311 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
312 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
313
314
315 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
316
317 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
318 #include <stdio.h> /* For fprintf. */
319 #endif
320
321 /* A unique object in pure space used to make some Lisp objects
322 on free lists recognizable in O(1). */
323
324 static Lisp_Object Vdead;
325
326 #ifdef GC_MALLOC_CHECK
327
328 enum mem_type allocated_mem_type;
329 static int dont_register_blocks;
330
331 #endif /* GC_MALLOC_CHECK */
332
333 /* A node in the red-black tree describing allocated memory containing
334 Lisp data. Each such block is recorded with its start and end
335 address when it is allocated, and removed from the tree when it
336 is freed.
337
338 A red-black tree is a balanced binary tree with the following
339 properties:
340
341 1. Every node is either red or black.
342 2. Every leaf is black.
343 3. If a node is red, then both of its children are black.
344 4. Every simple path from a node to a descendant leaf contains
345 the same number of black nodes.
346 5. The root is always black.
347
348 When nodes are inserted into the tree, or deleted from the tree,
349 the tree is "fixed" so that these properties are always true.
350
351 A red-black tree with N internal nodes has height at most 2
352 log(N+1). Searches, insertions and deletions are done in O(log N).
353 Please see a text book about data structures for a detailed
354 description of red-black trees. Any book worth its salt should
355 describe them. */
356
357 struct mem_node
358 {
359 /* Children of this node. These pointers are never NULL. When there
360 is no child, the value is MEM_NIL, which points to a dummy node. */
361 struct mem_node *left, *right;
362
363 /* The parent of this node. In the root node, this is NULL. */
364 struct mem_node *parent;
365
366 /* Start and end of allocated region. */
367 void *start, *end;
368
369 /* Node color. */
370 enum {MEM_BLACK, MEM_RED} color;
371
372 /* Memory type. */
373 enum mem_type type;
374 };
375
376 /* Base address of stack. Set in main. */
377
378 Lisp_Object *stack_base;
379
380 /* Root of the tree describing allocated Lisp memory. */
381
382 static struct mem_node *mem_root;
383
384 /* Lowest and highest known address in the heap. */
385
386 static void *min_heap_address, *max_heap_address;
387
388 /* Sentinel node of the tree. */
389
390 static struct mem_node mem_z;
391 #define MEM_NIL &mem_z
392
393 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
394 static void lisp_free (POINTER_TYPE *);
395 static void mark_stack (void);
396 static int live_vector_p (struct mem_node *, void *);
397 static int live_buffer_p (struct mem_node *, void *);
398 static int live_string_p (struct mem_node *, void *);
399 static int live_cons_p (struct mem_node *, void *);
400 static int live_symbol_p (struct mem_node *, void *);
401 static int live_float_p (struct mem_node *, void *);
402 static int live_misc_p (struct mem_node *, void *);
403 static void mark_maybe_object (Lisp_Object);
404 static void mark_memory (void *, void *, int);
405 static void mem_init (void);
406 static struct mem_node *mem_insert (void *, void *, enum mem_type);
407 static void mem_insert_fixup (struct mem_node *);
408 static void mem_rotate_left (struct mem_node *);
409 static void mem_rotate_right (struct mem_node *);
410 static void mem_delete (struct mem_node *);
411 static void mem_delete_fixup (struct mem_node *);
412 static INLINE struct mem_node *mem_find (void *);
413
414
415 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
416 static void check_gcpros (void);
417 #endif
418
419 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
420
421 /* Recording what needs to be marked for gc. */
422
423 struct gcpro *gcprolist;
424
425 /* Addresses of staticpro'd variables. Initialize it to a nonzero
426 value; otherwise some compilers put it into BSS. */
427
428 #define NSTATICS 0x640
429 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
430
431 /* Index of next unused slot in staticvec. */
432
433 static int staticidx = 0;
434
435 static POINTER_TYPE *pure_alloc (size_t, int);
436
437
438 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
439 ALIGNMENT must be a power of 2. */
440
441 #define ALIGN(ptr, ALIGNMENT) \
442 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
443 & ~((ALIGNMENT) - 1)))
444
445
446 \f
447 /************************************************************************
448 Malloc
449 ************************************************************************/
450
451 /* Function malloc calls this if it finds we are near exhausting storage. */
452
453 void
454 malloc_warning (const char *str)
455 {
456 pending_malloc_warning = str;
457 }
458
459
460 /* Display an already-pending malloc warning. */
461
462 void
463 display_malloc_warning (void)
464 {
465 call3 (intern ("display-warning"),
466 intern ("alloc"),
467 build_string (pending_malloc_warning),
468 intern ("emergency"));
469 pending_malloc_warning = 0;
470 }
471
472
473 #ifdef DOUG_LEA_MALLOC
474 # define BYTES_USED (mallinfo ().uordblks)
475 #else
476 # define BYTES_USED _bytes_used
477 #endif
478 \f
479 /* Called if we can't allocate relocatable space for a buffer. */
480
481 void
482 buffer_memory_full (void)
483 {
484 /* If buffers use the relocating allocator, no need to free
485 spare_memory, because we may have plenty of malloc space left
486 that we could get, and if we don't, the malloc that fails will
487 itself cause spare_memory to be freed. If buffers don't use the
488 relocating allocator, treat this like any other failing
489 malloc. */
490
491 #ifndef REL_ALLOC
492 memory_full ();
493 #endif
494
495 /* This used to call error, but if we've run out of memory, we could
496 get infinite recursion trying to build the string. */
497 xsignal (Qnil, Vmemory_signal_data);
498 }
499
500
501 #ifdef XMALLOC_OVERRUN_CHECK
502
503 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
504 and a 16 byte trailer around each block.
505
506 The header consists of 12 fixed bytes + a 4 byte integer contaning the
507 original block size, while the trailer consists of 16 fixed bytes.
508
509 The header is used to detect whether this block has been allocated
510 through these functions -- as it seems that some low-level libc
511 functions may bypass the malloc hooks.
512 */
513
514
515 #define XMALLOC_OVERRUN_CHECK_SIZE 16
516
517 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
518 { 0x9a, 0x9b, 0xae, 0xaf,
519 0xbf, 0xbe, 0xce, 0xcf,
520 0xea, 0xeb, 0xec, 0xed };
521
522 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
523 { 0xaa, 0xab, 0xac, 0xad,
524 0xba, 0xbb, 0xbc, 0xbd,
525 0xca, 0xcb, 0xcc, 0xcd,
526 0xda, 0xdb, 0xdc, 0xdd };
527
528 /* Macros to insert and extract the block size in the header. */
529
530 #define XMALLOC_PUT_SIZE(ptr, size) \
531 (ptr[-1] = (size & 0xff), \
532 ptr[-2] = ((size >> 8) & 0xff), \
533 ptr[-3] = ((size >> 16) & 0xff), \
534 ptr[-4] = ((size >> 24) & 0xff))
535
536 #define XMALLOC_GET_SIZE(ptr) \
537 (size_t)((unsigned)(ptr[-1]) | \
538 ((unsigned)(ptr[-2]) << 8) | \
539 ((unsigned)(ptr[-3]) << 16) | \
540 ((unsigned)(ptr[-4]) << 24))
541
542
543 /* The call depth in overrun_check functions. For example, this might happen:
544 xmalloc()
545 overrun_check_malloc()
546 -> malloc -> (via hook)_-> emacs_blocked_malloc
547 -> overrun_check_malloc
548 call malloc (hooks are NULL, so real malloc is called).
549 malloc returns 10000.
550 add overhead, return 10016.
551 <- (back in overrun_check_malloc)
552 add overhead again, return 10032
553 xmalloc returns 10032.
554
555 (time passes).
556
557 xfree(10032)
558 overrun_check_free(10032)
559 decrease overhed
560 free(10016) <- crash, because 10000 is the original pointer. */
561
562 static int check_depth;
563
564 /* Like malloc, but wraps allocated block with header and trailer. */
565
566 POINTER_TYPE *
567 overrun_check_malloc (size)
568 size_t size;
569 {
570 register unsigned char *val;
571 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
572
573 val = (unsigned char *) malloc (size + overhead);
574 if (val && check_depth == 1)
575 {
576 memcpy (val, xmalloc_overrun_check_header,
577 XMALLOC_OVERRUN_CHECK_SIZE - 4);
578 val += XMALLOC_OVERRUN_CHECK_SIZE;
579 XMALLOC_PUT_SIZE(val, size);
580 memcpy (val + size, xmalloc_overrun_check_trailer,
581 XMALLOC_OVERRUN_CHECK_SIZE);
582 }
583 --check_depth;
584 return (POINTER_TYPE *)val;
585 }
586
587
588 /* Like realloc, but checks old block for overrun, and wraps new block
589 with header and trailer. */
590
591 POINTER_TYPE *
592 overrun_check_realloc (block, size)
593 POINTER_TYPE *block;
594 size_t size;
595 {
596 register unsigned char *val = (unsigned char *)block;
597 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
598
599 if (val
600 && check_depth == 1
601 && memcmp (xmalloc_overrun_check_header,
602 val - XMALLOC_OVERRUN_CHECK_SIZE,
603 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
604 {
605 size_t osize = XMALLOC_GET_SIZE (val);
606 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
607 XMALLOC_OVERRUN_CHECK_SIZE))
608 abort ();
609 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
610 val -= XMALLOC_OVERRUN_CHECK_SIZE;
611 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
612 }
613
614 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
615
616 if (val && check_depth == 1)
617 {
618 memcpy (val, xmalloc_overrun_check_header,
619 XMALLOC_OVERRUN_CHECK_SIZE - 4);
620 val += XMALLOC_OVERRUN_CHECK_SIZE;
621 XMALLOC_PUT_SIZE(val, size);
622 memcpy (val + size, xmalloc_overrun_check_trailer,
623 XMALLOC_OVERRUN_CHECK_SIZE);
624 }
625 --check_depth;
626 return (POINTER_TYPE *)val;
627 }
628
629 /* Like free, but checks block for overrun. */
630
631 void
632 overrun_check_free (block)
633 POINTER_TYPE *block;
634 {
635 unsigned char *val = (unsigned char *)block;
636
637 ++check_depth;
638 if (val
639 && check_depth == 1
640 && memcmp (xmalloc_overrun_check_header,
641 val - XMALLOC_OVERRUN_CHECK_SIZE,
642 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
643 {
644 size_t osize = XMALLOC_GET_SIZE (val);
645 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
646 XMALLOC_OVERRUN_CHECK_SIZE))
647 abort ();
648 #ifdef XMALLOC_CLEAR_FREE_MEMORY
649 val -= XMALLOC_OVERRUN_CHECK_SIZE;
650 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
651 #else
652 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
653 val -= XMALLOC_OVERRUN_CHECK_SIZE;
654 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
655 #endif
656 }
657
658 free (val);
659 --check_depth;
660 }
661
662 #undef malloc
663 #undef realloc
664 #undef free
665 #define malloc overrun_check_malloc
666 #define realloc overrun_check_realloc
667 #define free overrun_check_free
668 #endif
669
670 #ifdef SYNC_INPUT
671 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
672 there's no need to block input around malloc. */
673 #define MALLOC_BLOCK_INPUT ((void)0)
674 #define MALLOC_UNBLOCK_INPUT ((void)0)
675 #else
676 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
677 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
678 #endif
679
680 /* Like malloc but check for no memory and block interrupt input.. */
681
682 POINTER_TYPE *
683 xmalloc (size_t size)
684 {
685 register POINTER_TYPE *val;
686
687 MALLOC_BLOCK_INPUT;
688 val = (POINTER_TYPE *) malloc (size);
689 MALLOC_UNBLOCK_INPUT;
690
691 if (!val && size)
692 memory_full ();
693 return val;
694 }
695
696
697 /* Like realloc but check for no memory and block interrupt input.. */
698
699 POINTER_TYPE *
700 xrealloc (POINTER_TYPE *block, size_t size)
701 {
702 register POINTER_TYPE *val;
703
704 MALLOC_BLOCK_INPUT;
705 /* We must call malloc explicitly when BLOCK is 0, since some
706 reallocs don't do this. */
707 if (! block)
708 val = (POINTER_TYPE *) malloc (size);
709 else
710 val = (POINTER_TYPE *) realloc (block, size);
711 MALLOC_UNBLOCK_INPUT;
712
713 if (!val && size) memory_full ();
714 return val;
715 }
716
717
718 /* Like free but block interrupt input. */
719
720 void
721 xfree (POINTER_TYPE *block)
722 {
723 if (!block)
724 return;
725 MALLOC_BLOCK_INPUT;
726 free (block);
727 MALLOC_UNBLOCK_INPUT;
728 /* We don't call refill_memory_reserve here
729 because that duplicates doing so in emacs_blocked_free
730 and the criterion should go there. */
731 }
732
733
734 /* Like strdup, but uses xmalloc. */
735
736 char *
737 xstrdup (const char *s)
738 {
739 size_t len = strlen (s) + 1;
740 char *p = (char *) xmalloc (len);
741 memcpy (p, s, len);
742 return p;
743 }
744
745
746 /* Unwind for SAFE_ALLOCA */
747
748 Lisp_Object
749 safe_alloca_unwind (Lisp_Object arg)
750 {
751 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
752
753 p->dogc = 0;
754 xfree (p->pointer);
755 p->pointer = 0;
756 free_misc (arg);
757 return Qnil;
758 }
759
760
761 /* Like malloc but used for allocating Lisp data. NBYTES is the
762 number of bytes to allocate, TYPE describes the intended use of the
763 allcated memory block (for strings, for conses, ...). */
764
765 #ifndef USE_LSB_TAG
766 static void *lisp_malloc_loser;
767 #endif
768
769 static POINTER_TYPE *
770 lisp_malloc (size_t nbytes, enum mem_type type)
771 {
772 register void *val;
773
774 MALLOC_BLOCK_INPUT;
775
776 #ifdef GC_MALLOC_CHECK
777 allocated_mem_type = type;
778 #endif
779
780 val = (void *) malloc (nbytes);
781
782 #ifndef USE_LSB_TAG
783 /* If the memory just allocated cannot be addressed thru a Lisp
784 object's pointer, and it needs to be,
785 that's equivalent to running out of memory. */
786 if (val && type != MEM_TYPE_NON_LISP)
787 {
788 Lisp_Object tem;
789 XSETCONS (tem, (char *) val + nbytes - 1);
790 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
791 {
792 lisp_malloc_loser = val;
793 free (val);
794 val = 0;
795 }
796 }
797 #endif
798
799 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
800 if (val && type != MEM_TYPE_NON_LISP)
801 mem_insert (val, (char *) val + nbytes, type);
802 #endif
803
804 MALLOC_UNBLOCK_INPUT;
805 if (!val && nbytes)
806 memory_full ();
807 return val;
808 }
809
810 /* Free BLOCK. This must be called to free memory allocated with a
811 call to lisp_malloc. */
812
813 static void
814 lisp_free (POINTER_TYPE *block)
815 {
816 MALLOC_BLOCK_INPUT;
817 free (block);
818 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
819 mem_delete (mem_find (block));
820 #endif
821 MALLOC_UNBLOCK_INPUT;
822 }
823
824 /* Allocation of aligned blocks of memory to store Lisp data. */
825 /* The entry point is lisp_align_malloc which returns blocks of at most */
826 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
827
828 /* Use posix_memalloc if the system has it and we're using the system's
829 malloc (because our gmalloc.c routines don't have posix_memalign although
830 its memalloc could be used). */
831 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
832 #define USE_POSIX_MEMALIGN 1
833 #endif
834
835 /* BLOCK_ALIGN has to be a power of 2. */
836 #define BLOCK_ALIGN (1 << 10)
837
838 /* Padding to leave at the end of a malloc'd block. This is to give
839 malloc a chance to minimize the amount of memory wasted to alignment.
840 It should be tuned to the particular malloc library used.
841 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
842 posix_memalign on the other hand would ideally prefer a value of 4
843 because otherwise, there's 1020 bytes wasted between each ablocks.
844 In Emacs, testing shows that those 1020 can most of the time be
845 efficiently used by malloc to place other objects, so a value of 0 can
846 still preferable unless you have a lot of aligned blocks and virtually
847 nothing else. */
848 #define BLOCK_PADDING 0
849 #define BLOCK_BYTES \
850 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
851
852 /* Internal data structures and constants. */
853
854 #define ABLOCKS_SIZE 16
855
856 /* An aligned block of memory. */
857 struct ablock
858 {
859 union
860 {
861 char payload[BLOCK_BYTES];
862 struct ablock *next_free;
863 } x;
864 /* `abase' is the aligned base of the ablocks. */
865 /* It is overloaded to hold the virtual `busy' field that counts
866 the number of used ablock in the parent ablocks.
867 The first ablock has the `busy' field, the others have the `abase'
868 field. To tell the difference, we assume that pointers will have
869 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
870 is used to tell whether the real base of the parent ablocks is `abase'
871 (if not, the word before the first ablock holds a pointer to the
872 real base). */
873 struct ablocks *abase;
874 /* The padding of all but the last ablock is unused. The padding of
875 the last ablock in an ablocks is not allocated. */
876 #if BLOCK_PADDING
877 char padding[BLOCK_PADDING];
878 #endif
879 };
880
881 /* A bunch of consecutive aligned blocks. */
882 struct ablocks
883 {
884 struct ablock blocks[ABLOCKS_SIZE];
885 };
886
887 /* Size of the block requested from malloc or memalign. */
888 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
889
890 #define ABLOCK_ABASE(block) \
891 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
892 ? (struct ablocks *)(block) \
893 : (block)->abase)
894
895 /* Virtual `busy' field. */
896 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
897
898 /* Pointer to the (not necessarily aligned) malloc block. */
899 #ifdef USE_POSIX_MEMALIGN
900 #define ABLOCKS_BASE(abase) (abase)
901 #else
902 #define ABLOCKS_BASE(abase) \
903 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
904 #endif
905
906 /* The list of free ablock. */
907 static struct ablock *free_ablock;
908
909 /* Allocate an aligned block of nbytes.
910 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
911 smaller or equal to BLOCK_BYTES. */
912 static POINTER_TYPE *
913 lisp_align_malloc (size_t nbytes, enum mem_type type)
914 {
915 void *base, *val;
916 struct ablocks *abase;
917
918 eassert (nbytes <= BLOCK_BYTES);
919
920 MALLOC_BLOCK_INPUT;
921
922 #ifdef GC_MALLOC_CHECK
923 allocated_mem_type = type;
924 #endif
925
926 if (!free_ablock)
927 {
928 int i;
929 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
930
931 #ifdef DOUG_LEA_MALLOC
932 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
933 because mapped region contents are not preserved in
934 a dumped Emacs. */
935 mallopt (M_MMAP_MAX, 0);
936 #endif
937
938 #ifdef USE_POSIX_MEMALIGN
939 {
940 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
941 if (err)
942 base = NULL;
943 abase = base;
944 }
945 #else
946 base = malloc (ABLOCKS_BYTES);
947 abase = ALIGN (base, BLOCK_ALIGN);
948 #endif
949
950 if (base == 0)
951 {
952 MALLOC_UNBLOCK_INPUT;
953 memory_full ();
954 }
955
956 aligned = (base == abase);
957 if (!aligned)
958 ((void**)abase)[-1] = base;
959
960 #ifdef DOUG_LEA_MALLOC
961 /* Back to a reasonable maximum of mmap'ed areas. */
962 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
963 #endif
964
965 #ifndef USE_LSB_TAG
966 /* If the memory just allocated cannot be addressed thru a Lisp
967 object's pointer, and it needs to be, that's equivalent to
968 running out of memory. */
969 if (type != MEM_TYPE_NON_LISP)
970 {
971 Lisp_Object tem;
972 char *end = (char *) base + ABLOCKS_BYTES - 1;
973 XSETCONS (tem, end);
974 if ((char *) XCONS (tem) != end)
975 {
976 lisp_malloc_loser = base;
977 free (base);
978 MALLOC_UNBLOCK_INPUT;
979 memory_full ();
980 }
981 }
982 #endif
983
984 /* Initialize the blocks and put them on the free list.
985 Is `base' was not properly aligned, we can't use the last block. */
986 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
987 {
988 abase->blocks[i].abase = abase;
989 abase->blocks[i].x.next_free = free_ablock;
990 free_ablock = &abase->blocks[i];
991 }
992 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
993
994 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
995 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
996 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
997 eassert (ABLOCKS_BASE (abase) == base);
998 eassert (aligned == (long) ABLOCKS_BUSY (abase));
999 }
1000
1001 abase = ABLOCK_ABASE (free_ablock);
1002 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1003 val = free_ablock;
1004 free_ablock = free_ablock->x.next_free;
1005
1006 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1007 if (val && type != MEM_TYPE_NON_LISP)
1008 mem_insert (val, (char *) val + nbytes, type);
1009 #endif
1010
1011 MALLOC_UNBLOCK_INPUT;
1012 if (!val && nbytes)
1013 memory_full ();
1014
1015 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1016 return val;
1017 }
1018
1019 static void
1020 lisp_align_free (POINTER_TYPE *block)
1021 {
1022 struct ablock *ablock = block;
1023 struct ablocks *abase = ABLOCK_ABASE (ablock);
1024
1025 MALLOC_BLOCK_INPUT;
1026 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1027 mem_delete (mem_find (block));
1028 #endif
1029 /* Put on free list. */
1030 ablock->x.next_free = free_ablock;
1031 free_ablock = ablock;
1032 /* Update busy count. */
1033 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1034
1035 if (2 > (long) ABLOCKS_BUSY (abase))
1036 { /* All the blocks are free. */
1037 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1038 struct ablock **tem = &free_ablock;
1039 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1040
1041 while (*tem)
1042 {
1043 if (*tem >= (struct ablock *) abase && *tem < atop)
1044 {
1045 i++;
1046 *tem = (*tem)->x.next_free;
1047 }
1048 else
1049 tem = &(*tem)->x.next_free;
1050 }
1051 eassert ((aligned & 1) == aligned);
1052 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1053 #ifdef USE_POSIX_MEMALIGN
1054 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1055 #endif
1056 free (ABLOCKS_BASE (abase));
1057 }
1058 MALLOC_UNBLOCK_INPUT;
1059 }
1060
1061 /* Return a new buffer structure allocated from the heap with
1062 a call to lisp_malloc. */
1063
1064 struct buffer *
1065 allocate_buffer (void)
1066 {
1067 struct buffer *b
1068 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1069 MEM_TYPE_BUFFER);
1070 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1071 XSETPVECTYPE (b, PVEC_BUFFER);
1072 return b;
1073 }
1074
1075 \f
1076 #ifndef SYSTEM_MALLOC
1077
1078 /* Arranging to disable input signals while we're in malloc.
1079
1080 This only works with GNU malloc. To help out systems which can't
1081 use GNU malloc, all the calls to malloc, realloc, and free
1082 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1083 pair; unfortunately, we have no idea what C library functions
1084 might call malloc, so we can't really protect them unless you're
1085 using GNU malloc. Fortunately, most of the major operating systems
1086 can use GNU malloc. */
1087
1088 #ifndef SYNC_INPUT
1089 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1090 there's no need to block input around malloc. */
1091
1092 #ifndef DOUG_LEA_MALLOC
1093 extern void * (*__malloc_hook) (size_t, const void *);
1094 extern void * (*__realloc_hook) (void *, size_t, const void *);
1095 extern void (*__free_hook) (void *, const void *);
1096 /* Else declared in malloc.h, perhaps with an extra arg. */
1097 #endif /* DOUG_LEA_MALLOC */
1098 static void * (*old_malloc_hook) (size_t, const void *);
1099 static void * (*old_realloc_hook) (void *, size_t, const void*);
1100 static void (*old_free_hook) (void*, const void*);
1101
1102 static __malloc_size_t bytes_used_when_reconsidered;
1103
1104 /* This function is used as the hook for free to call. */
1105
1106 static void
1107 emacs_blocked_free (void *ptr, const void *ptr2)
1108 {
1109 BLOCK_INPUT_ALLOC;
1110
1111 #ifdef GC_MALLOC_CHECK
1112 if (ptr)
1113 {
1114 struct mem_node *m;
1115
1116 m = mem_find (ptr);
1117 if (m == MEM_NIL || m->start != ptr)
1118 {
1119 fprintf (stderr,
1120 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1121 abort ();
1122 }
1123 else
1124 {
1125 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1126 mem_delete (m);
1127 }
1128 }
1129 #endif /* GC_MALLOC_CHECK */
1130
1131 __free_hook = old_free_hook;
1132 free (ptr);
1133
1134 /* If we released our reserve (due to running out of memory),
1135 and we have a fair amount free once again,
1136 try to set aside another reserve in case we run out once more. */
1137 if (! NILP (Vmemory_full)
1138 /* Verify there is enough space that even with the malloc
1139 hysteresis this call won't run out again.
1140 The code here is correct as long as SPARE_MEMORY
1141 is substantially larger than the block size malloc uses. */
1142 && (bytes_used_when_full
1143 > ((bytes_used_when_reconsidered = BYTES_USED)
1144 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1145 refill_memory_reserve ();
1146
1147 __free_hook = emacs_blocked_free;
1148 UNBLOCK_INPUT_ALLOC;
1149 }
1150
1151
1152 /* This function is the malloc hook that Emacs uses. */
1153
1154 static void *
1155 emacs_blocked_malloc (size_t size, const void *ptr)
1156 {
1157 void *value;
1158
1159 BLOCK_INPUT_ALLOC;
1160 __malloc_hook = old_malloc_hook;
1161 #ifdef DOUG_LEA_MALLOC
1162 /* Segfaults on my system. --lorentey */
1163 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1164 #else
1165 __malloc_extra_blocks = malloc_hysteresis;
1166 #endif
1167
1168 value = (void *) malloc (size);
1169
1170 #ifdef GC_MALLOC_CHECK
1171 {
1172 struct mem_node *m = mem_find (value);
1173 if (m != MEM_NIL)
1174 {
1175 fprintf (stderr, "Malloc returned %p which is already in use\n",
1176 value);
1177 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1178 m->start, m->end, (char *) m->end - (char *) m->start,
1179 m->type);
1180 abort ();
1181 }
1182
1183 if (!dont_register_blocks)
1184 {
1185 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1186 allocated_mem_type = MEM_TYPE_NON_LISP;
1187 }
1188 }
1189 #endif /* GC_MALLOC_CHECK */
1190
1191 __malloc_hook = emacs_blocked_malloc;
1192 UNBLOCK_INPUT_ALLOC;
1193
1194 /* fprintf (stderr, "%p malloc\n", value); */
1195 return value;
1196 }
1197
1198
1199 /* This function is the realloc hook that Emacs uses. */
1200
1201 static void *
1202 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1203 {
1204 void *value;
1205
1206 BLOCK_INPUT_ALLOC;
1207 __realloc_hook = old_realloc_hook;
1208
1209 #ifdef GC_MALLOC_CHECK
1210 if (ptr)
1211 {
1212 struct mem_node *m = mem_find (ptr);
1213 if (m == MEM_NIL || m->start != ptr)
1214 {
1215 fprintf (stderr,
1216 "Realloc of %p which wasn't allocated with malloc\n",
1217 ptr);
1218 abort ();
1219 }
1220
1221 mem_delete (m);
1222 }
1223
1224 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1225
1226 /* Prevent malloc from registering blocks. */
1227 dont_register_blocks = 1;
1228 #endif /* GC_MALLOC_CHECK */
1229
1230 value = (void *) realloc (ptr, size);
1231
1232 #ifdef GC_MALLOC_CHECK
1233 dont_register_blocks = 0;
1234
1235 {
1236 struct mem_node *m = mem_find (value);
1237 if (m != MEM_NIL)
1238 {
1239 fprintf (stderr, "Realloc returns memory that is already in use\n");
1240 abort ();
1241 }
1242
1243 /* Can't handle zero size regions in the red-black tree. */
1244 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1245 }
1246
1247 /* fprintf (stderr, "%p <- realloc\n", value); */
1248 #endif /* GC_MALLOC_CHECK */
1249
1250 __realloc_hook = emacs_blocked_realloc;
1251 UNBLOCK_INPUT_ALLOC;
1252
1253 return value;
1254 }
1255
1256
1257 #ifdef HAVE_GTK_AND_PTHREAD
1258 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1259 normal malloc. Some thread implementations need this as they call
1260 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1261 calls malloc because it is the first call, and we have an endless loop. */
1262
1263 void
1264 reset_malloc_hooks ()
1265 {
1266 __free_hook = old_free_hook;
1267 __malloc_hook = old_malloc_hook;
1268 __realloc_hook = old_realloc_hook;
1269 }
1270 #endif /* HAVE_GTK_AND_PTHREAD */
1271
1272
1273 /* Called from main to set up malloc to use our hooks. */
1274
1275 void
1276 uninterrupt_malloc (void)
1277 {
1278 #ifdef HAVE_GTK_AND_PTHREAD
1279 #ifdef DOUG_LEA_MALLOC
1280 pthread_mutexattr_t attr;
1281
1282 /* GLIBC has a faster way to do this, but lets keep it portable.
1283 This is according to the Single UNIX Specification. */
1284 pthread_mutexattr_init (&attr);
1285 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1286 pthread_mutex_init (&alloc_mutex, &attr);
1287 #else /* !DOUG_LEA_MALLOC */
1288 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1289 and the bundled gmalloc.c doesn't require it. */
1290 pthread_mutex_init (&alloc_mutex, NULL);
1291 #endif /* !DOUG_LEA_MALLOC */
1292 #endif /* HAVE_GTK_AND_PTHREAD */
1293
1294 if (__free_hook != emacs_blocked_free)
1295 old_free_hook = __free_hook;
1296 __free_hook = emacs_blocked_free;
1297
1298 if (__malloc_hook != emacs_blocked_malloc)
1299 old_malloc_hook = __malloc_hook;
1300 __malloc_hook = emacs_blocked_malloc;
1301
1302 if (__realloc_hook != emacs_blocked_realloc)
1303 old_realloc_hook = __realloc_hook;
1304 __realloc_hook = emacs_blocked_realloc;
1305 }
1306
1307 #endif /* not SYNC_INPUT */
1308 #endif /* not SYSTEM_MALLOC */
1309
1310
1311 \f
1312 /***********************************************************************
1313 Interval Allocation
1314 ***********************************************************************/
1315
1316 /* Number of intervals allocated in an interval_block structure.
1317 The 1020 is 1024 minus malloc overhead. */
1318
1319 #define INTERVAL_BLOCK_SIZE \
1320 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1321
1322 /* Intervals are allocated in chunks in form of an interval_block
1323 structure. */
1324
1325 struct interval_block
1326 {
1327 /* Place `intervals' first, to preserve alignment. */
1328 struct interval intervals[INTERVAL_BLOCK_SIZE];
1329 struct interval_block *next;
1330 };
1331
1332 /* Current interval block. Its `next' pointer points to older
1333 blocks. */
1334
1335 static struct interval_block *interval_block;
1336
1337 /* Index in interval_block above of the next unused interval
1338 structure. */
1339
1340 static int interval_block_index;
1341
1342 /* Number of free and live intervals. */
1343
1344 static int total_free_intervals, total_intervals;
1345
1346 /* List of free intervals. */
1347
1348 INTERVAL interval_free_list;
1349
1350 /* Total number of interval blocks now in use. */
1351
1352 static int n_interval_blocks;
1353
1354
1355 /* Initialize interval allocation. */
1356
1357 static void
1358 init_intervals (void)
1359 {
1360 interval_block = NULL;
1361 interval_block_index = INTERVAL_BLOCK_SIZE;
1362 interval_free_list = 0;
1363 n_interval_blocks = 0;
1364 }
1365
1366
1367 /* Return a new interval. */
1368
1369 INTERVAL
1370 make_interval (void)
1371 {
1372 INTERVAL val;
1373
1374 /* eassert (!handling_signal); */
1375
1376 MALLOC_BLOCK_INPUT;
1377
1378 if (interval_free_list)
1379 {
1380 val = interval_free_list;
1381 interval_free_list = INTERVAL_PARENT (interval_free_list);
1382 }
1383 else
1384 {
1385 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1386 {
1387 register struct interval_block *newi;
1388
1389 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1390 MEM_TYPE_NON_LISP);
1391
1392 newi->next = interval_block;
1393 interval_block = newi;
1394 interval_block_index = 0;
1395 n_interval_blocks++;
1396 }
1397 val = &interval_block->intervals[interval_block_index++];
1398 }
1399
1400 MALLOC_UNBLOCK_INPUT;
1401
1402 consing_since_gc += sizeof (struct interval);
1403 intervals_consed++;
1404 RESET_INTERVAL (val);
1405 val->gcmarkbit = 0;
1406 return val;
1407 }
1408
1409
1410 /* Mark Lisp objects in interval I. */
1411
1412 static void
1413 mark_interval (register INTERVAL i, Lisp_Object dummy)
1414 {
1415 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1416 i->gcmarkbit = 1;
1417 mark_object (i->plist);
1418 }
1419
1420
1421 /* Mark the interval tree rooted in TREE. Don't call this directly;
1422 use the macro MARK_INTERVAL_TREE instead. */
1423
1424 static void
1425 mark_interval_tree (register INTERVAL tree)
1426 {
1427 /* No need to test if this tree has been marked already; this
1428 function is always called through the MARK_INTERVAL_TREE macro,
1429 which takes care of that. */
1430
1431 traverse_intervals_noorder (tree, mark_interval, Qnil);
1432 }
1433
1434
1435 /* Mark the interval tree rooted in I. */
1436
1437 #define MARK_INTERVAL_TREE(i) \
1438 do { \
1439 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1440 mark_interval_tree (i); \
1441 } while (0)
1442
1443
1444 #define UNMARK_BALANCE_INTERVALS(i) \
1445 do { \
1446 if (! NULL_INTERVAL_P (i)) \
1447 (i) = balance_intervals (i); \
1448 } while (0)
1449
1450 \f
1451 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1452 can't create number objects in macros. */
1453 #ifndef make_number
1454 Lisp_Object
1455 make_number (EMACS_INT n)
1456 {
1457 Lisp_Object obj;
1458 obj.s.val = n;
1459 obj.s.type = Lisp_Int;
1460 return obj;
1461 }
1462 #endif
1463 \f
1464 /***********************************************************************
1465 String Allocation
1466 ***********************************************************************/
1467
1468 /* Lisp_Strings are allocated in string_block structures. When a new
1469 string_block is allocated, all the Lisp_Strings it contains are
1470 added to a free-list string_free_list. When a new Lisp_String is
1471 needed, it is taken from that list. During the sweep phase of GC,
1472 string_blocks that are entirely free are freed, except two which
1473 we keep.
1474
1475 String data is allocated from sblock structures. Strings larger
1476 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1477 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1478
1479 Sblocks consist internally of sdata structures, one for each
1480 Lisp_String. The sdata structure points to the Lisp_String it
1481 belongs to. The Lisp_String points back to the `u.data' member of
1482 its sdata structure.
1483
1484 When a Lisp_String is freed during GC, it is put back on
1485 string_free_list, and its `data' member and its sdata's `string'
1486 pointer is set to null. The size of the string is recorded in the
1487 `u.nbytes' member of the sdata. So, sdata structures that are no
1488 longer used, can be easily recognized, and it's easy to compact the
1489 sblocks of small strings which we do in compact_small_strings. */
1490
1491 /* Size in bytes of an sblock structure used for small strings. This
1492 is 8192 minus malloc overhead. */
1493
1494 #define SBLOCK_SIZE 8188
1495
1496 /* Strings larger than this are considered large strings. String data
1497 for large strings is allocated from individual sblocks. */
1498
1499 #define LARGE_STRING_BYTES 1024
1500
1501 /* Structure describing string memory sub-allocated from an sblock.
1502 This is where the contents of Lisp strings are stored. */
1503
1504 struct sdata
1505 {
1506 /* Back-pointer to the string this sdata belongs to. If null, this
1507 structure is free, and the NBYTES member of the union below
1508 contains the string's byte size (the same value that STRING_BYTES
1509 would return if STRING were non-null). If non-null, STRING_BYTES
1510 (STRING) is the size of the data, and DATA contains the string's
1511 contents. */
1512 struct Lisp_String *string;
1513
1514 #ifdef GC_CHECK_STRING_BYTES
1515
1516 EMACS_INT nbytes;
1517 unsigned char data[1];
1518
1519 #define SDATA_NBYTES(S) (S)->nbytes
1520 #define SDATA_DATA(S) (S)->data
1521
1522 #else /* not GC_CHECK_STRING_BYTES */
1523
1524 union
1525 {
1526 /* When STRING in non-null. */
1527 unsigned char data[1];
1528
1529 /* When STRING is null. */
1530 EMACS_INT nbytes;
1531 } u;
1532
1533
1534 #define SDATA_NBYTES(S) (S)->u.nbytes
1535 #define SDATA_DATA(S) (S)->u.data
1536
1537 #endif /* not GC_CHECK_STRING_BYTES */
1538 };
1539
1540
1541 /* Structure describing a block of memory which is sub-allocated to
1542 obtain string data memory for strings. Blocks for small strings
1543 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1544 as large as needed. */
1545
1546 struct sblock
1547 {
1548 /* Next in list. */
1549 struct sblock *next;
1550
1551 /* Pointer to the next free sdata block. This points past the end
1552 of the sblock if there isn't any space left in this block. */
1553 struct sdata *next_free;
1554
1555 /* Start of data. */
1556 struct sdata first_data;
1557 };
1558
1559 /* Number of Lisp strings in a string_block structure. The 1020 is
1560 1024 minus malloc overhead. */
1561
1562 #define STRING_BLOCK_SIZE \
1563 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1564
1565 /* Structure describing a block from which Lisp_String structures
1566 are allocated. */
1567
1568 struct string_block
1569 {
1570 /* Place `strings' first, to preserve alignment. */
1571 struct Lisp_String strings[STRING_BLOCK_SIZE];
1572 struct string_block *next;
1573 };
1574
1575 /* Head and tail of the list of sblock structures holding Lisp string
1576 data. We always allocate from current_sblock. The NEXT pointers
1577 in the sblock structures go from oldest_sblock to current_sblock. */
1578
1579 static struct sblock *oldest_sblock, *current_sblock;
1580
1581 /* List of sblocks for large strings. */
1582
1583 static struct sblock *large_sblocks;
1584
1585 /* List of string_block structures, and how many there are. */
1586
1587 static struct string_block *string_blocks;
1588 static int n_string_blocks;
1589
1590 /* Free-list of Lisp_Strings. */
1591
1592 static struct Lisp_String *string_free_list;
1593
1594 /* Number of live and free Lisp_Strings. */
1595
1596 static int total_strings, total_free_strings;
1597
1598 /* Number of bytes used by live strings. */
1599
1600 static EMACS_INT total_string_size;
1601
1602 /* Given a pointer to a Lisp_String S which is on the free-list
1603 string_free_list, return a pointer to its successor in the
1604 free-list. */
1605
1606 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1607
1608 /* Return a pointer to the sdata structure belonging to Lisp string S.
1609 S must be live, i.e. S->data must not be null. S->data is actually
1610 a pointer to the `u.data' member of its sdata structure; the
1611 structure starts at a constant offset in front of that. */
1612
1613 #ifdef GC_CHECK_STRING_BYTES
1614
1615 #define SDATA_OF_STRING(S) \
1616 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1617 - sizeof (EMACS_INT)))
1618
1619 #else /* not GC_CHECK_STRING_BYTES */
1620
1621 #define SDATA_OF_STRING(S) \
1622 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1623
1624 #endif /* not GC_CHECK_STRING_BYTES */
1625
1626
1627 #ifdef GC_CHECK_STRING_OVERRUN
1628
1629 /* We check for overrun in string data blocks by appending a small
1630 "cookie" after each allocated string data block, and check for the
1631 presence of this cookie during GC. */
1632
1633 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1634 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1635 { 0xde, 0xad, 0xbe, 0xef };
1636
1637 #else
1638 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1639 #endif
1640
1641 /* Value is the size of an sdata structure large enough to hold NBYTES
1642 bytes of string data. The value returned includes a terminating
1643 NUL byte, the size of the sdata structure, and padding. */
1644
1645 #ifdef GC_CHECK_STRING_BYTES
1646
1647 #define SDATA_SIZE(NBYTES) \
1648 ((sizeof (struct Lisp_String *) \
1649 + (NBYTES) + 1 \
1650 + sizeof (EMACS_INT) \
1651 + sizeof (EMACS_INT) - 1) \
1652 & ~(sizeof (EMACS_INT) - 1))
1653
1654 #else /* not GC_CHECK_STRING_BYTES */
1655
1656 #define SDATA_SIZE(NBYTES) \
1657 ((sizeof (struct Lisp_String *) \
1658 + (NBYTES) + 1 \
1659 + sizeof (EMACS_INT) - 1) \
1660 & ~(sizeof (EMACS_INT) - 1))
1661
1662 #endif /* not GC_CHECK_STRING_BYTES */
1663
1664 /* Extra bytes to allocate for each string. */
1665
1666 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1667
1668 /* Initialize string allocation. Called from init_alloc_once. */
1669
1670 static void
1671 init_strings (void)
1672 {
1673 total_strings = total_free_strings = total_string_size = 0;
1674 oldest_sblock = current_sblock = large_sblocks = NULL;
1675 string_blocks = NULL;
1676 n_string_blocks = 0;
1677 string_free_list = NULL;
1678 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1679 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1680 }
1681
1682
1683 #ifdef GC_CHECK_STRING_BYTES
1684
1685 static int check_string_bytes_count;
1686
1687 static void check_string_bytes (int);
1688 static void check_sblock (struct sblock *);
1689
1690 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1691
1692
1693 /* Like GC_STRING_BYTES, but with debugging check. */
1694
1695 EMACS_INT
1696 string_bytes (struct Lisp_String *s)
1697 {
1698 EMACS_INT nbytes =
1699 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1700
1701 if (!PURE_POINTER_P (s)
1702 && s->data
1703 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1704 abort ();
1705 return nbytes;
1706 }
1707
1708 /* Check validity of Lisp strings' string_bytes member in B. */
1709
1710 static void
1711 check_sblock (b)
1712 struct sblock *b;
1713 {
1714 struct sdata *from, *end, *from_end;
1715
1716 end = b->next_free;
1717
1718 for (from = &b->first_data; from < end; from = from_end)
1719 {
1720 /* Compute the next FROM here because copying below may
1721 overwrite data we need to compute it. */
1722 EMACS_INT nbytes;
1723
1724 /* Check that the string size recorded in the string is the
1725 same as the one recorded in the sdata structure. */
1726 if (from->string)
1727 CHECK_STRING_BYTES (from->string);
1728
1729 if (from->string)
1730 nbytes = GC_STRING_BYTES (from->string);
1731 else
1732 nbytes = SDATA_NBYTES (from);
1733
1734 nbytes = SDATA_SIZE (nbytes);
1735 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1736 }
1737 }
1738
1739
1740 /* Check validity of Lisp strings' string_bytes member. ALL_P
1741 non-zero means check all strings, otherwise check only most
1742 recently allocated strings. Used for hunting a bug. */
1743
1744 static void
1745 check_string_bytes (all_p)
1746 int all_p;
1747 {
1748 if (all_p)
1749 {
1750 struct sblock *b;
1751
1752 for (b = large_sblocks; b; b = b->next)
1753 {
1754 struct Lisp_String *s = b->first_data.string;
1755 if (s)
1756 CHECK_STRING_BYTES (s);
1757 }
1758
1759 for (b = oldest_sblock; b; b = b->next)
1760 check_sblock (b);
1761 }
1762 else
1763 check_sblock (current_sblock);
1764 }
1765
1766 #endif /* GC_CHECK_STRING_BYTES */
1767
1768 #ifdef GC_CHECK_STRING_FREE_LIST
1769
1770 /* Walk through the string free list looking for bogus next pointers.
1771 This may catch buffer overrun from a previous string. */
1772
1773 static void
1774 check_string_free_list ()
1775 {
1776 struct Lisp_String *s;
1777
1778 /* Pop a Lisp_String off the free-list. */
1779 s = string_free_list;
1780 while (s != NULL)
1781 {
1782 if ((unsigned long)s < 1024)
1783 abort();
1784 s = NEXT_FREE_LISP_STRING (s);
1785 }
1786 }
1787 #else
1788 #define check_string_free_list()
1789 #endif
1790
1791 /* Return a new Lisp_String. */
1792
1793 static struct Lisp_String *
1794 allocate_string (void)
1795 {
1796 struct Lisp_String *s;
1797
1798 /* eassert (!handling_signal); */
1799
1800 MALLOC_BLOCK_INPUT;
1801
1802 /* If the free-list is empty, allocate a new string_block, and
1803 add all the Lisp_Strings in it to the free-list. */
1804 if (string_free_list == NULL)
1805 {
1806 struct string_block *b;
1807 int i;
1808
1809 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1810 memset (b, 0, sizeof *b);
1811 b->next = string_blocks;
1812 string_blocks = b;
1813 ++n_string_blocks;
1814
1815 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1816 {
1817 s = b->strings + i;
1818 NEXT_FREE_LISP_STRING (s) = string_free_list;
1819 string_free_list = s;
1820 }
1821
1822 total_free_strings += STRING_BLOCK_SIZE;
1823 }
1824
1825 check_string_free_list ();
1826
1827 /* Pop a Lisp_String off the free-list. */
1828 s = string_free_list;
1829 string_free_list = NEXT_FREE_LISP_STRING (s);
1830
1831 MALLOC_UNBLOCK_INPUT;
1832
1833 /* Probably not strictly necessary, but play it safe. */
1834 memset (s, 0, sizeof *s);
1835
1836 --total_free_strings;
1837 ++total_strings;
1838 ++strings_consed;
1839 consing_since_gc += sizeof *s;
1840
1841 #ifdef GC_CHECK_STRING_BYTES
1842 if (!noninteractive)
1843 {
1844 if (++check_string_bytes_count == 200)
1845 {
1846 check_string_bytes_count = 0;
1847 check_string_bytes (1);
1848 }
1849 else
1850 check_string_bytes (0);
1851 }
1852 #endif /* GC_CHECK_STRING_BYTES */
1853
1854 return s;
1855 }
1856
1857
1858 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1859 plus a NUL byte at the end. Allocate an sdata structure for S, and
1860 set S->data to its `u.data' member. Store a NUL byte at the end of
1861 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1862 S->data if it was initially non-null. */
1863
1864 void
1865 allocate_string_data (struct Lisp_String *s,
1866 EMACS_INT nchars, EMACS_INT nbytes)
1867 {
1868 struct sdata *data, *old_data;
1869 struct sblock *b;
1870 EMACS_INT needed, old_nbytes;
1871
1872 /* Determine the number of bytes needed to store NBYTES bytes
1873 of string data. */
1874 needed = SDATA_SIZE (nbytes);
1875 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1876 old_nbytes = GC_STRING_BYTES (s);
1877
1878 MALLOC_BLOCK_INPUT;
1879
1880 if (nbytes > LARGE_STRING_BYTES)
1881 {
1882 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1883
1884 #ifdef DOUG_LEA_MALLOC
1885 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1886 because mapped region contents are not preserved in
1887 a dumped Emacs.
1888
1889 In case you think of allowing it in a dumped Emacs at the
1890 cost of not being able to re-dump, there's another reason:
1891 mmap'ed data typically have an address towards the top of the
1892 address space, which won't fit into an EMACS_INT (at least on
1893 32-bit systems with the current tagging scheme). --fx */
1894 mallopt (M_MMAP_MAX, 0);
1895 #endif
1896
1897 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1898
1899 #ifdef DOUG_LEA_MALLOC
1900 /* Back to a reasonable maximum of mmap'ed areas. */
1901 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1902 #endif
1903
1904 b->next_free = &b->first_data;
1905 b->first_data.string = NULL;
1906 b->next = large_sblocks;
1907 large_sblocks = b;
1908 }
1909 else if (current_sblock == NULL
1910 || (((char *) current_sblock + SBLOCK_SIZE
1911 - (char *) current_sblock->next_free)
1912 < (needed + GC_STRING_EXTRA)))
1913 {
1914 /* Not enough room in the current sblock. */
1915 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1916 b->next_free = &b->first_data;
1917 b->first_data.string = NULL;
1918 b->next = NULL;
1919
1920 if (current_sblock)
1921 current_sblock->next = b;
1922 else
1923 oldest_sblock = b;
1924 current_sblock = b;
1925 }
1926 else
1927 b = current_sblock;
1928
1929 data = b->next_free;
1930 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1931
1932 MALLOC_UNBLOCK_INPUT;
1933
1934 data->string = s;
1935 s->data = SDATA_DATA (data);
1936 #ifdef GC_CHECK_STRING_BYTES
1937 SDATA_NBYTES (data) = nbytes;
1938 #endif
1939 s->size = nchars;
1940 s->size_byte = nbytes;
1941 s->data[nbytes] = '\0';
1942 #ifdef GC_CHECK_STRING_OVERRUN
1943 memcpy (data + needed, string_overrun_cookie, GC_STRING_OVERRUN_COOKIE_SIZE);
1944 #endif
1945
1946 /* If S had already data assigned, mark that as free by setting its
1947 string back-pointer to null, and recording the size of the data
1948 in it. */
1949 if (old_data)
1950 {
1951 SDATA_NBYTES (old_data) = old_nbytes;
1952 old_data->string = NULL;
1953 }
1954
1955 consing_since_gc += needed;
1956 }
1957
1958
1959 /* Sweep and compact strings. */
1960
1961 static void
1962 sweep_strings (void)
1963 {
1964 struct string_block *b, *next;
1965 struct string_block *live_blocks = NULL;
1966
1967 string_free_list = NULL;
1968 total_strings = total_free_strings = 0;
1969 total_string_size = 0;
1970
1971 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1972 for (b = string_blocks; b; b = next)
1973 {
1974 int i, nfree = 0;
1975 struct Lisp_String *free_list_before = string_free_list;
1976
1977 next = b->next;
1978
1979 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1980 {
1981 struct Lisp_String *s = b->strings + i;
1982
1983 if (s->data)
1984 {
1985 /* String was not on free-list before. */
1986 if (STRING_MARKED_P (s))
1987 {
1988 /* String is live; unmark it and its intervals. */
1989 UNMARK_STRING (s);
1990
1991 if (!NULL_INTERVAL_P (s->intervals))
1992 UNMARK_BALANCE_INTERVALS (s->intervals);
1993
1994 ++total_strings;
1995 total_string_size += STRING_BYTES (s);
1996 }
1997 else
1998 {
1999 /* String is dead. Put it on the free-list. */
2000 struct sdata *data = SDATA_OF_STRING (s);
2001
2002 /* Save the size of S in its sdata so that we know
2003 how large that is. Reset the sdata's string
2004 back-pointer so that we know it's free. */
2005 #ifdef GC_CHECK_STRING_BYTES
2006 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2007 abort ();
2008 #else
2009 data->u.nbytes = GC_STRING_BYTES (s);
2010 #endif
2011 data->string = NULL;
2012
2013 /* Reset the strings's `data' member so that we
2014 know it's free. */
2015 s->data = NULL;
2016
2017 /* Put the string on the free-list. */
2018 NEXT_FREE_LISP_STRING (s) = string_free_list;
2019 string_free_list = s;
2020 ++nfree;
2021 }
2022 }
2023 else
2024 {
2025 /* S was on the free-list before. Put it there again. */
2026 NEXT_FREE_LISP_STRING (s) = string_free_list;
2027 string_free_list = s;
2028 ++nfree;
2029 }
2030 }
2031
2032 /* Free blocks that contain free Lisp_Strings only, except
2033 the first two of them. */
2034 if (nfree == STRING_BLOCK_SIZE
2035 && total_free_strings > STRING_BLOCK_SIZE)
2036 {
2037 lisp_free (b);
2038 --n_string_blocks;
2039 string_free_list = free_list_before;
2040 }
2041 else
2042 {
2043 total_free_strings += nfree;
2044 b->next = live_blocks;
2045 live_blocks = b;
2046 }
2047 }
2048
2049 check_string_free_list ();
2050
2051 string_blocks = live_blocks;
2052 free_large_strings ();
2053 compact_small_strings ();
2054
2055 check_string_free_list ();
2056 }
2057
2058
2059 /* Free dead large strings. */
2060
2061 static void
2062 free_large_strings (void)
2063 {
2064 struct sblock *b, *next;
2065 struct sblock *live_blocks = NULL;
2066
2067 for (b = large_sblocks; b; b = next)
2068 {
2069 next = b->next;
2070
2071 if (b->first_data.string == NULL)
2072 lisp_free (b);
2073 else
2074 {
2075 b->next = live_blocks;
2076 live_blocks = b;
2077 }
2078 }
2079
2080 large_sblocks = live_blocks;
2081 }
2082
2083
2084 /* Compact data of small strings. Free sblocks that don't contain
2085 data of live strings after compaction. */
2086
2087 static void
2088 compact_small_strings (void)
2089 {
2090 struct sblock *b, *tb, *next;
2091 struct sdata *from, *to, *end, *tb_end;
2092 struct sdata *to_end, *from_end;
2093
2094 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2095 to, and TB_END is the end of TB. */
2096 tb = oldest_sblock;
2097 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2098 to = &tb->first_data;
2099
2100 /* Step through the blocks from the oldest to the youngest. We
2101 expect that old blocks will stabilize over time, so that less
2102 copying will happen this way. */
2103 for (b = oldest_sblock; b; b = b->next)
2104 {
2105 end = b->next_free;
2106 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2107
2108 for (from = &b->first_data; from < end; from = from_end)
2109 {
2110 /* Compute the next FROM here because copying below may
2111 overwrite data we need to compute it. */
2112 EMACS_INT nbytes;
2113
2114 #ifdef GC_CHECK_STRING_BYTES
2115 /* Check that the string size recorded in the string is the
2116 same as the one recorded in the sdata structure. */
2117 if (from->string
2118 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2119 abort ();
2120 #endif /* GC_CHECK_STRING_BYTES */
2121
2122 if (from->string)
2123 nbytes = GC_STRING_BYTES (from->string);
2124 else
2125 nbytes = SDATA_NBYTES (from);
2126
2127 if (nbytes > LARGE_STRING_BYTES)
2128 abort ();
2129
2130 nbytes = SDATA_SIZE (nbytes);
2131 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2132
2133 #ifdef GC_CHECK_STRING_OVERRUN
2134 if (memcmp (string_overrun_cookie,
2135 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2136 GC_STRING_OVERRUN_COOKIE_SIZE))
2137 abort ();
2138 #endif
2139
2140 /* FROM->string non-null means it's alive. Copy its data. */
2141 if (from->string)
2142 {
2143 /* If TB is full, proceed with the next sblock. */
2144 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2145 if (to_end > tb_end)
2146 {
2147 tb->next_free = to;
2148 tb = tb->next;
2149 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2150 to = &tb->first_data;
2151 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2152 }
2153
2154 /* Copy, and update the string's `data' pointer. */
2155 if (from != to)
2156 {
2157 xassert (tb != b || to <= from);
2158 memmove (to, from, nbytes + GC_STRING_EXTRA);
2159 to->string->data = SDATA_DATA (to);
2160 }
2161
2162 /* Advance past the sdata we copied to. */
2163 to = to_end;
2164 }
2165 }
2166 }
2167
2168 /* The rest of the sblocks following TB don't contain live data, so
2169 we can free them. */
2170 for (b = tb->next; b; b = next)
2171 {
2172 next = b->next;
2173 lisp_free (b);
2174 }
2175
2176 tb->next_free = to;
2177 tb->next = NULL;
2178 current_sblock = tb;
2179 }
2180
2181
2182 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2183 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2184 LENGTH must be an integer.
2185 INIT must be an integer that represents a character. */)
2186 (Lisp_Object length, Lisp_Object init)
2187 {
2188 register Lisp_Object val;
2189 register unsigned char *p, *end;
2190 int c;
2191 EMACS_INT nbytes;
2192
2193 CHECK_NATNUM (length);
2194 CHECK_NUMBER (init);
2195
2196 c = XINT (init);
2197 if (ASCII_CHAR_P (c))
2198 {
2199 nbytes = XINT (length);
2200 val = make_uninit_string (nbytes);
2201 p = SDATA (val);
2202 end = p + SCHARS (val);
2203 while (p != end)
2204 *p++ = c;
2205 }
2206 else
2207 {
2208 unsigned char str[MAX_MULTIBYTE_LENGTH];
2209 int len = CHAR_STRING (c, str);
2210 EMACS_INT string_len = XINT (length);
2211
2212 if (string_len > MOST_POSITIVE_FIXNUM / len)
2213 error ("Maximum string size exceeded");
2214 nbytes = len * string_len;
2215 val = make_uninit_multibyte_string (string_len, nbytes);
2216 p = SDATA (val);
2217 end = p + nbytes;
2218 while (p != end)
2219 {
2220 memcpy (p, str, len);
2221 p += len;
2222 }
2223 }
2224
2225 *p = 0;
2226 return val;
2227 }
2228
2229
2230 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2231 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2232 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2233 (Lisp_Object length, Lisp_Object init)
2234 {
2235 register Lisp_Object val;
2236 struct Lisp_Bool_Vector *p;
2237 int real_init, i;
2238 EMACS_INT length_in_chars, length_in_elts;
2239 int bits_per_value;
2240
2241 CHECK_NATNUM (length);
2242
2243 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2244
2245 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2246 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2247 / BOOL_VECTOR_BITS_PER_CHAR);
2248
2249 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2250 slot `size' of the struct Lisp_Bool_Vector. */
2251 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2252
2253 /* Get rid of any bits that would cause confusion. */
2254 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2255 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2256 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2257
2258 p = XBOOL_VECTOR (val);
2259 p->size = XFASTINT (length);
2260
2261 real_init = (NILP (init) ? 0 : -1);
2262 for (i = 0; i < length_in_chars ; i++)
2263 p->data[i] = real_init;
2264
2265 /* Clear the extraneous bits in the last byte. */
2266 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2267 p->data[length_in_chars - 1]
2268 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2269
2270 return val;
2271 }
2272
2273
2274 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2275 of characters from the contents. This string may be unibyte or
2276 multibyte, depending on the contents. */
2277
2278 Lisp_Object
2279 make_string (const char *contents, EMACS_INT nbytes)
2280 {
2281 register Lisp_Object val;
2282 EMACS_INT nchars, multibyte_nbytes;
2283
2284 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2285 &nchars, &multibyte_nbytes);
2286 if (nbytes == nchars || nbytes != multibyte_nbytes)
2287 /* CONTENTS contains no multibyte sequences or contains an invalid
2288 multibyte sequence. We must make unibyte string. */
2289 val = make_unibyte_string (contents, nbytes);
2290 else
2291 val = make_multibyte_string (contents, nchars, nbytes);
2292 return val;
2293 }
2294
2295
2296 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2297
2298 Lisp_Object
2299 make_unibyte_string (const char *contents, EMACS_INT length)
2300 {
2301 register Lisp_Object val;
2302 val = make_uninit_string (length);
2303 memcpy (SDATA (val), contents, length);
2304 return val;
2305 }
2306
2307
2308 /* Make a multibyte string from NCHARS characters occupying NBYTES
2309 bytes at CONTENTS. */
2310
2311 Lisp_Object
2312 make_multibyte_string (const char *contents,
2313 EMACS_INT nchars, EMACS_INT nbytes)
2314 {
2315 register Lisp_Object val;
2316 val = make_uninit_multibyte_string (nchars, nbytes);
2317 memcpy (SDATA (val), contents, nbytes);
2318 return val;
2319 }
2320
2321
2322 /* Make a string from NCHARS characters occupying NBYTES bytes at
2323 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2324
2325 Lisp_Object
2326 make_string_from_bytes (const char *contents,
2327 EMACS_INT nchars, EMACS_INT nbytes)
2328 {
2329 register Lisp_Object val;
2330 val = make_uninit_multibyte_string (nchars, nbytes);
2331 memcpy (SDATA (val), contents, nbytes);
2332 if (SBYTES (val) == SCHARS (val))
2333 STRING_SET_UNIBYTE (val);
2334 return val;
2335 }
2336
2337
2338 /* Make a string from NCHARS characters occupying NBYTES bytes at
2339 CONTENTS. The argument MULTIBYTE controls whether to label the
2340 string as multibyte. If NCHARS is negative, it counts the number of
2341 characters by itself. */
2342
2343 Lisp_Object
2344 make_specified_string (const char *contents,
2345 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2346 {
2347 register Lisp_Object val;
2348
2349 if (nchars < 0)
2350 {
2351 if (multibyte)
2352 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2353 nbytes);
2354 else
2355 nchars = nbytes;
2356 }
2357 val = make_uninit_multibyte_string (nchars, nbytes);
2358 memcpy (SDATA (val), contents, nbytes);
2359 if (!multibyte)
2360 STRING_SET_UNIBYTE (val);
2361 return val;
2362 }
2363
2364
2365 /* Make a string from the data at STR, treating it as multibyte if the
2366 data warrants. */
2367
2368 Lisp_Object
2369 build_string (const char *str)
2370 {
2371 return make_string (str, strlen (str));
2372 }
2373
2374
2375 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2376 occupying LENGTH bytes. */
2377
2378 Lisp_Object
2379 make_uninit_string (EMACS_INT length)
2380 {
2381 Lisp_Object val;
2382
2383 if (!length)
2384 return empty_unibyte_string;
2385 val = make_uninit_multibyte_string (length, length);
2386 STRING_SET_UNIBYTE (val);
2387 return val;
2388 }
2389
2390
2391 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2392 which occupy NBYTES bytes. */
2393
2394 Lisp_Object
2395 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2396 {
2397 Lisp_Object string;
2398 struct Lisp_String *s;
2399
2400 if (nchars < 0)
2401 abort ();
2402 if (!nbytes)
2403 return empty_multibyte_string;
2404
2405 s = allocate_string ();
2406 allocate_string_data (s, nchars, nbytes);
2407 XSETSTRING (string, s);
2408 string_chars_consed += nbytes;
2409 return string;
2410 }
2411
2412
2413 \f
2414 /***********************************************************************
2415 Float Allocation
2416 ***********************************************************************/
2417
2418 /* We store float cells inside of float_blocks, allocating a new
2419 float_block with malloc whenever necessary. Float cells reclaimed
2420 by GC are put on a free list to be reallocated before allocating
2421 any new float cells from the latest float_block. */
2422
2423 #define FLOAT_BLOCK_SIZE \
2424 (((BLOCK_BYTES - sizeof (struct float_block *) \
2425 /* The compiler might add padding at the end. */ \
2426 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2427 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2428
2429 #define GETMARKBIT(block,n) \
2430 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2431 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2432 & 1)
2433
2434 #define SETMARKBIT(block,n) \
2435 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2436 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2437
2438 #define UNSETMARKBIT(block,n) \
2439 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2440 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2441
2442 #define FLOAT_BLOCK(fptr) \
2443 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2444
2445 #define FLOAT_INDEX(fptr) \
2446 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2447
2448 struct float_block
2449 {
2450 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2451 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2452 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2453 struct float_block *next;
2454 };
2455
2456 #define FLOAT_MARKED_P(fptr) \
2457 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2458
2459 #define FLOAT_MARK(fptr) \
2460 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2461
2462 #define FLOAT_UNMARK(fptr) \
2463 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2464
2465 /* Current float_block. */
2466
2467 struct float_block *float_block;
2468
2469 /* Index of first unused Lisp_Float in the current float_block. */
2470
2471 int float_block_index;
2472
2473 /* Total number of float blocks now in use. */
2474
2475 int n_float_blocks;
2476
2477 /* Free-list of Lisp_Floats. */
2478
2479 struct Lisp_Float *float_free_list;
2480
2481
2482 /* Initialize float allocation. */
2483
2484 static void
2485 init_float (void)
2486 {
2487 float_block = NULL;
2488 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2489 float_free_list = 0;
2490 n_float_blocks = 0;
2491 }
2492
2493
2494 /* Return a new float object with value FLOAT_VALUE. */
2495
2496 Lisp_Object
2497 make_float (double float_value)
2498 {
2499 register Lisp_Object val;
2500
2501 /* eassert (!handling_signal); */
2502
2503 MALLOC_BLOCK_INPUT;
2504
2505 if (float_free_list)
2506 {
2507 /* We use the data field for chaining the free list
2508 so that we won't use the same field that has the mark bit. */
2509 XSETFLOAT (val, float_free_list);
2510 float_free_list = float_free_list->u.chain;
2511 }
2512 else
2513 {
2514 if (float_block_index == FLOAT_BLOCK_SIZE)
2515 {
2516 register struct float_block *new;
2517
2518 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2519 MEM_TYPE_FLOAT);
2520 new->next = float_block;
2521 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2522 float_block = new;
2523 float_block_index = 0;
2524 n_float_blocks++;
2525 }
2526 XSETFLOAT (val, &float_block->floats[float_block_index]);
2527 float_block_index++;
2528 }
2529
2530 MALLOC_UNBLOCK_INPUT;
2531
2532 XFLOAT_INIT (val, float_value);
2533 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2534 consing_since_gc += sizeof (struct Lisp_Float);
2535 floats_consed++;
2536 return val;
2537 }
2538
2539
2540 \f
2541 /***********************************************************************
2542 Cons Allocation
2543 ***********************************************************************/
2544
2545 /* We store cons cells inside of cons_blocks, allocating a new
2546 cons_block with malloc whenever necessary. Cons cells reclaimed by
2547 GC are put on a free list to be reallocated before allocating
2548 any new cons cells from the latest cons_block. */
2549
2550 #define CONS_BLOCK_SIZE \
2551 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2552 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2553
2554 #define CONS_BLOCK(fptr) \
2555 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2556
2557 #define CONS_INDEX(fptr) \
2558 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2559
2560 struct cons_block
2561 {
2562 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2563 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2564 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2565 struct cons_block *next;
2566 };
2567
2568 #define CONS_MARKED_P(fptr) \
2569 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2570
2571 #define CONS_MARK(fptr) \
2572 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2573
2574 #define CONS_UNMARK(fptr) \
2575 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2576
2577 /* Current cons_block. */
2578
2579 struct cons_block *cons_block;
2580
2581 /* Index of first unused Lisp_Cons in the current block. */
2582
2583 int cons_block_index;
2584
2585 /* Free-list of Lisp_Cons structures. */
2586
2587 struct Lisp_Cons *cons_free_list;
2588
2589 /* Total number of cons blocks now in use. */
2590
2591 static int n_cons_blocks;
2592
2593
2594 /* Initialize cons allocation. */
2595
2596 static void
2597 init_cons (void)
2598 {
2599 cons_block = NULL;
2600 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2601 cons_free_list = 0;
2602 n_cons_blocks = 0;
2603 }
2604
2605
2606 /* Explicitly free a cons cell by putting it on the free-list. */
2607
2608 void
2609 free_cons (struct Lisp_Cons *ptr)
2610 {
2611 ptr->u.chain = cons_free_list;
2612 #if GC_MARK_STACK
2613 ptr->car = Vdead;
2614 #endif
2615 cons_free_list = ptr;
2616 }
2617
2618 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2619 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2620 (Lisp_Object car, Lisp_Object cdr)
2621 {
2622 register Lisp_Object val;
2623
2624 /* eassert (!handling_signal); */
2625
2626 MALLOC_BLOCK_INPUT;
2627
2628 if (cons_free_list)
2629 {
2630 /* We use the cdr for chaining the free list
2631 so that we won't use the same field that has the mark bit. */
2632 XSETCONS (val, cons_free_list);
2633 cons_free_list = cons_free_list->u.chain;
2634 }
2635 else
2636 {
2637 if (cons_block_index == CONS_BLOCK_SIZE)
2638 {
2639 register struct cons_block *new;
2640 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2641 MEM_TYPE_CONS);
2642 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2643 new->next = cons_block;
2644 cons_block = new;
2645 cons_block_index = 0;
2646 n_cons_blocks++;
2647 }
2648 XSETCONS (val, &cons_block->conses[cons_block_index]);
2649 cons_block_index++;
2650 }
2651
2652 MALLOC_UNBLOCK_INPUT;
2653
2654 XSETCAR (val, car);
2655 XSETCDR (val, cdr);
2656 eassert (!CONS_MARKED_P (XCONS (val)));
2657 consing_since_gc += sizeof (struct Lisp_Cons);
2658 cons_cells_consed++;
2659 return val;
2660 }
2661
2662 /* Get an error now if there's any junk in the cons free list. */
2663 void
2664 check_cons_list (void)
2665 {
2666 #ifdef GC_CHECK_CONS_LIST
2667 struct Lisp_Cons *tail = cons_free_list;
2668
2669 while (tail)
2670 tail = tail->u.chain;
2671 #endif
2672 }
2673
2674 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2675
2676 Lisp_Object
2677 list1 (Lisp_Object arg1)
2678 {
2679 return Fcons (arg1, Qnil);
2680 }
2681
2682 Lisp_Object
2683 list2 (Lisp_Object arg1, Lisp_Object arg2)
2684 {
2685 return Fcons (arg1, Fcons (arg2, Qnil));
2686 }
2687
2688
2689 Lisp_Object
2690 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2691 {
2692 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2693 }
2694
2695
2696 Lisp_Object
2697 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2698 {
2699 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2700 }
2701
2702
2703 Lisp_Object
2704 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2705 {
2706 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2707 Fcons (arg5, Qnil)))));
2708 }
2709
2710
2711 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2712 doc: /* Return a newly created list with specified arguments as elements.
2713 Any number of arguments, even zero arguments, are allowed.
2714 usage: (list &rest OBJECTS) */)
2715 (int nargs, register Lisp_Object *args)
2716 {
2717 register Lisp_Object val;
2718 val = Qnil;
2719
2720 while (nargs > 0)
2721 {
2722 nargs--;
2723 val = Fcons (args[nargs], val);
2724 }
2725 return val;
2726 }
2727
2728
2729 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2730 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2731 (register Lisp_Object length, Lisp_Object init)
2732 {
2733 register Lisp_Object val;
2734 register EMACS_INT size;
2735
2736 CHECK_NATNUM (length);
2737 size = XFASTINT (length);
2738
2739 val = Qnil;
2740 while (size > 0)
2741 {
2742 val = Fcons (init, val);
2743 --size;
2744
2745 if (size > 0)
2746 {
2747 val = Fcons (init, val);
2748 --size;
2749
2750 if (size > 0)
2751 {
2752 val = Fcons (init, val);
2753 --size;
2754
2755 if (size > 0)
2756 {
2757 val = Fcons (init, val);
2758 --size;
2759
2760 if (size > 0)
2761 {
2762 val = Fcons (init, val);
2763 --size;
2764 }
2765 }
2766 }
2767 }
2768
2769 QUIT;
2770 }
2771
2772 return val;
2773 }
2774
2775
2776 \f
2777 /***********************************************************************
2778 Vector Allocation
2779 ***********************************************************************/
2780
2781 /* Singly-linked list of all vectors. */
2782
2783 static struct Lisp_Vector *all_vectors;
2784
2785 /* Total number of vector-like objects now in use. */
2786
2787 static int n_vectors;
2788
2789
2790 /* Value is a pointer to a newly allocated Lisp_Vector structure
2791 with room for LEN Lisp_Objects. */
2792
2793 static struct Lisp_Vector *
2794 allocate_vectorlike (EMACS_INT len)
2795 {
2796 struct Lisp_Vector *p;
2797 size_t nbytes;
2798
2799 MALLOC_BLOCK_INPUT;
2800
2801 #ifdef DOUG_LEA_MALLOC
2802 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2803 because mapped region contents are not preserved in
2804 a dumped Emacs. */
2805 mallopt (M_MMAP_MAX, 0);
2806 #endif
2807
2808 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2809 /* eassert (!handling_signal); */
2810
2811 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2812 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2813
2814 #ifdef DOUG_LEA_MALLOC
2815 /* Back to a reasonable maximum of mmap'ed areas. */
2816 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2817 #endif
2818
2819 consing_since_gc += nbytes;
2820 vector_cells_consed += len;
2821
2822 p->next = all_vectors;
2823 all_vectors = p;
2824
2825 MALLOC_UNBLOCK_INPUT;
2826
2827 ++n_vectors;
2828 return p;
2829 }
2830
2831
2832 /* Allocate a vector with NSLOTS slots. */
2833
2834 struct Lisp_Vector *
2835 allocate_vector (EMACS_INT nslots)
2836 {
2837 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2838 v->size = nslots;
2839 return v;
2840 }
2841
2842
2843 /* Allocate other vector-like structures. */
2844
2845 struct Lisp_Vector *
2846 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2847 {
2848 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2849 EMACS_INT i;
2850
2851 /* Only the first lisplen slots will be traced normally by the GC. */
2852 v->size = lisplen;
2853 for (i = 0; i < lisplen; ++i)
2854 v->contents[i] = Qnil;
2855
2856 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2857 return v;
2858 }
2859
2860 struct Lisp_Hash_Table *
2861 allocate_hash_table (void)
2862 {
2863 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2864 }
2865
2866
2867 struct window *
2868 allocate_window (void)
2869 {
2870 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2871 }
2872
2873
2874 struct terminal *
2875 allocate_terminal (void)
2876 {
2877 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2878 next_terminal, PVEC_TERMINAL);
2879 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2880 memset (&t->next_terminal, 0,
2881 (char*) (t + 1) - (char*) &t->next_terminal);
2882
2883 return t;
2884 }
2885
2886 struct frame *
2887 allocate_frame (void)
2888 {
2889 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2890 face_cache, PVEC_FRAME);
2891 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2892 memset (&f->face_cache, 0,
2893 (char *) (f + 1) - (char *) &f->face_cache);
2894 return f;
2895 }
2896
2897
2898 struct Lisp_Process *
2899 allocate_process (void)
2900 {
2901 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2902 }
2903
2904
2905 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2906 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2907 See also the function `vector'. */)
2908 (register Lisp_Object length, Lisp_Object init)
2909 {
2910 Lisp_Object vector;
2911 register EMACS_INT sizei;
2912 register EMACS_INT index;
2913 register struct Lisp_Vector *p;
2914
2915 CHECK_NATNUM (length);
2916 sizei = XFASTINT (length);
2917
2918 p = allocate_vector (sizei);
2919 for (index = 0; index < sizei; index++)
2920 p->contents[index] = init;
2921
2922 XSETVECTOR (vector, p);
2923 return vector;
2924 }
2925
2926
2927 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2928 doc: /* Return a newly created vector with specified arguments as elements.
2929 Any number of arguments, even zero arguments, are allowed.
2930 usage: (vector &rest OBJECTS) */)
2931 (register int nargs, Lisp_Object *args)
2932 {
2933 register Lisp_Object len, val;
2934 register int index;
2935 register struct Lisp_Vector *p;
2936
2937 XSETFASTINT (len, nargs);
2938 val = Fmake_vector (len, Qnil);
2939 p = XVECTOR (val);
2940 for (index = 0; index < nargs; index++)
2941 p->contents[index] = args[index];
2942 return val;
2943 }
2944
2945
2946 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2947 doc: /* Create a byte-code object with specified arguments as elements.
2948 The arguments should be the arglist, bytecode-string, constant vector,
2949 stack size, (optional) doc string, and (optional) interactive spec.
2950 The first four arguments are required; at most six have any
2951 significance.
2952 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2953 (register int nargs, Lisp_Object *args)
2954 {
2955 register Lisp_Object len, val;
2956 register int index;
2957 register struct Lisp_Vector *p;
2958
2959 XSETFASTINT (len, nargs);
2960 if (!NILP (Vpurify_flag))
2961 val = make_pure_vector ((EMACS_INT) nargs);
2962 else
2963 val = Fmake_vector (len, Qnil);
2964
2965 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2966 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2967 earlier because they produced a raw 8-bit string for byte-code
2968 and now such a byte-code string is loaded as multibyte while
2969 raw 8-bit characters converted to multibyte form. Thus, now we
2970 must convert them back to the original unibyte form. */
2971 args[1] = Fstring_as_unibyte (args[1]);
2972
2973 p = XVECTOR (val);
2974 for (index = 0; index < nargs; index++)
2975 {
2976 if (!NILP (Vpurify_flag))
2977 args[index] = Fpurecopy (args[index]);
2978 p->contents[index] = args[index];
2979 }
2980 XSETPVECTYPE (p, PVEC_COMPILED);
2981 XSETCOMPILED (val, p);
2982 return val;
2983 }
2984
2985
2986 \f
2987 /***********************************************************************
2988 Symbol Allocation
2989 ***********************************************************************/
2990
2991 /* Each symbol_block is just under 1020 bytes long, since malloc
2992 really allocates in units of powers of two and uses 4 bytes for its
2993 own overhead. */
2994
2995 #define SYMBOL_BLOCK_SIZE \
2996 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2997
2998 struct symbol_block
2999 {
3000 /* Place `symbols' first, to preserve alignment. */
3001 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3002 struct symbol_block *next;
3003 };
3004
3005 /* Current symbol block and index of first unused Lisp_Symbol
3006 structure in it. */
3007
3008 static struct symbol_block *symbol_block;
3009 static int symbol_block_index;
3010
3011 /* List of free symbols. */
3012
3013 static struct Lisp_Symbol *symbol_free_list;
3014
3015 /* Total number of symbol blocks now in use. */
3016
3017 static int n_symbol_blocks;
3018
3019
3020 /* Initialize symbol allocation. */
3021
3022 static void
3023 init_symbol (void)
3024 {
3025 symbol_block = NULL;
3026 symbol_block_index = SYMBOL_BLOCK_SIZE;
3027 symbol_free_list = 0;
3028 n_symbol_blocks = 0;
3029 }
3030
3031
3032 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3033 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3034 Its value and function definition are void, and its property list is nil. */)
3035 (Lisp_Object name)
3036 {
3037 register Lisp_Object val;
3038 register struct Lisp_Symbol *p;
3039
3040 CHECK_STRING (name);
3041
3042 /* eassert (!handling_signal); */
3043
3044 MALLOC_BLOCK_INPUT;
3045
3046 if (symbol_free_list)
3047 {
3048 XSETSYMBOL (val, symbol_free_list);
3049 symbol_free_list = symbol_free_list->next;
3050 }
3051 else
3052 {
3053 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3054 {
3055 struct symbol_block *new;
3056 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3057 MEM_TYPE_SYMBOL);
3058 new->next = symbol_block;
3059 symbol_block = new;
3060 symbol_block_index = 0;
3061 n_symbol_blocks++;
3062 }
3063 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3064 symbol_block_index++;
3065 }
3066
3067 MALLOC_UNBLOCK_INPUT;
3068
3069 p = XSYMBOL (val);
3070 p->xname = name;
3071 p->plist = Qnil;
3072 p->redirect = SYMBOL_PLAINVAL;
3073 SET_SYMBOL_VAL (p, Qunbound);
3074 p->function = Qunbound;
3075 p->next = NULL;
3076 p->gcmarkbit = 0;
3077 p->interned = SYMBOL_UNINTERNED;
3078 p->constant = 0;
3079 consing_since_gc += sizeof (struct Lisp_Symbol);
3080 symbols_consed++;
3081 return val;
3082 }
3083
3084
3085 \f
3086 /***********************************************************************
3087 Marker (Misc) Allocation
3088 ***********************************************************************/
3089
3090 /* Allocation of markers and other objects that share that structure.
3091 Works like allocation of conses. */
3092
3093 #define MARKER_BLOCK_SIZE \
3094 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3095
3096 struct marker_block
3097 {
3098 /* Place `markers' first, to preserve alignment. */
3099 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3100 struct marker_block *next;
3101 };
3102
3103 static struct marker_block *marker_block;
3104 static int marker_block_index;
3105
3106 static union Lisp_Misc *marker_free_list;
3107
3108 /* Total number of marker blocks now in use. */
3109
3110 static int n_marker_blocks;
3111
3112 static void
3113 init_marker (void)
3114 {
3115 marker_block = NULL;
3116 marker_block_index = MARKER_BLOCK_SIZE;
3117 marker_free_list = 0;
3118 n_marker_blocks = 0;
3119 }
3120
3121 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3122
3123 Lisp_Object
3124 allocate_misc (void)
3125 {
3126 Lisp_Object val;
3127
3128 /* eassert (!handling_signal); */
3129
3130 MALLOC_BLOCK_INPUT;
3131
3132 if (marker_free_list)
3133 {
3134 XSETMISC (val, marker_free_list);
3135 marker_free_list = marker_free_list->u_free.chain;
3136 }
3137 else
3138 {
3139 if (marker_block_index == MARKER_BLOCK_SIZE)
3140 {
3141 struct marker_block *new;
3142 new = (struct marker_block *) lisp_malloc (sizeof *new,
3143 MEM_TYPE_MISC);
3144 new->next = marker_block;
3145 marker_block = new;
3146 marker_block_index = 0;
3147 n_marker_blocks++;
3148 total_free_markers += MARKER_BLOCK_SIZE;
3149 }
3150 XSETMISC (val, &marker_block->markers[marker_block_index]);
3151 marker_block_index++;
3152 }
3153
3154 MALLOC_UNBLOCK_INPUT;
3155
3156 --total_free_markers;
3157 consing_since_gc += sizeof (union Lisp_Misc);
3158 misc_objects_consed++;
3159 XMISCANY (val)->gcmarkbit = 0;
3160 return val;
3161 }
3162
3163 /* Free a Lisp_Misc object */
3164
3165 void
3166 free_misc (Lisp_Object misc)
3167 {
3168 XMISCTYPE (misc) = Lisp_Misc_Free;
3169 XMISC (misc)->u_free.chain = marker_free_list;
3170 marker_free_list = XMISC (misc);
3171
3172 total_free_markers++;
3173 }
3174
3175 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3176 INTEGER. This is used to package C values to call record_unwind_protect.
3177 The unwind function can get the C values back using XSAVE_VALUE. */
3178
3179 Lisp_Object
3180 make_save_value (void *pointer, int integer)
3181 {
3182 register Lisp_Object val;
3183 register struct Lisp_Save_Value *p;
3184
3185 val = allocate_misc ();
3186 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3187 p = XSAVE_VALUE (val);
3188 p->pointer = pointer;
3189 p->integer = integer;
3190 p->dogc = 0;
3191 return val;
3192 }
3193
3194 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3195 doc: /* Return a newly allocated marker which does not point at any place. */)
3196 (void)
3197 {
3198 register Lisp_Object val;
3199 register struct Lisp_Marker *p;
3200
3201 val = allocate_misc ();
3202 XMISCTYPE (val) = Lisp_Misc_Marker;
3203 p = XMARKER (val);
3204 p->buffer = 0;
3205 p->bytepos = 0;
3206 p->charpos = 0;
3207 p->next = NULL;
3208 p->insertion_type = 0;
3209 return val;
3210 }
3211
3212 /* Put MARKER back on the free list after using it temporarily. */
3213
3214 void
3215 free_marker (Lisp_Object marker)
3216 {
3217 unchain_marker (XMARKER (marker));
3218 free_misc (marker);
3219 }
3220
3221 \f
3222 /* Return a newly created vector or string with specified arguments as
3223 elements. If all the arguments are characters that can fit
3224 in a string of events, make a string; otherwise, make a vector.
3225
3226 Any number of arguments, even zero arguments, are allowed. */
3227
3228 Lisp_Object
3229 make_event_array (register int nargs, Lisp_Object *args)
3230 {
3231 int i;
3232
3233 for (i = 0; i < nargs; i++)
3234 /* The things that fit in a string
3235 are characters that are in 0...127,
3236 after discarding the meta bit and all the bits above it. */
3237 if (!INTEGERP (args[i])
3238 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3239 return Fvector (nargs, args);
3240
3241 /* Since the loop exited, we know that all the things in it are
3242 characters, so we can make a string. */
3243 {
3244 Lisp_Object result;
3245
3246 result = Fmake_string (make_number (nargs), make_number (0));
3247 for (i = 0; i < nargs; i++)
3248 {
3249 SSET (result, i, XINT (args[i]));
3250 /* Move the meta bit to the right place for a string char. */
3251 if (XINT (args[i]) & CHAR_META)
3252 SSET (result, i, SREF (result, i) | 0x80);
3253 }
3254
3255 return result;
3256 }
3257 }
3258
3259
3260 \f
3261 /************************************************************************
3262 Memory Full Handling
3263 ************************************************************************/
3264
3265
3266 /* Called if malloc returns zero. */
3267
3268 void
3269 memory_full (void)
3270 {
3271 int i;
3272
3273 Vmemory_full = Qt;
3274
3275 memory_full_cons_threshold = sizeof (struct cons_block);
3276
3277 /* The first time we get here, free the spare memory. */
3278 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3279 if (spare_memory[i])
3280 {
3281 if (i == 0)
3282 free (spare_memory[i]);
3283 else if (i >= 1 && i <= 4)
3284 lisp_align_free (spare_memory[i]);
3285 else
3286 lisp_free (spare_memory[i]);
3287 spare_memory[i] = 0;
3288 }
3289
3290 /* Record the space now used. When it decreases substantially,
3291 we can refill the memory reserve. */
3292 #ifndef SYSTEM_MALLOC
3293 bytes_used_when_full = BYTES_USED;
3294 #endif
3295
3296 /* This used to call error, but if we've run out of memory, we could
3297 get infinite recursion trying to build the string. */
3298 xsignal (Qnil, Vmemory_signal_data);
3299 }
3300
3301 /* If we released our reserve (due to running out of memory),
3302 and we have a fair amount free once again,
3303 try to set aside another reserve in case we run out once more.
3304
3305 This is called when a relocatable block is freed in ralloc.c,
3306 and also directly from this file, in case we're not using ralloc.c. */
3307
3308 void
3309 refill_memory_reserve (void)
3310 {
3311 #ifndef SYSTEM_MALLOC
3312 if (spare_memory[0] == 0)
3313 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3314 if (spare_memory[1] == 0)
3315 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3316 MEM_TYPE_CONS);
3317 if (spare_memory[2] == 0)
3318 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3319 MEM_TYPE_CONS);
3320 if (spare_memory[3] == 0)
3321 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3322 MEM_TYPE_CONS);
3323 if (spare_memory[4] == 0)
3324 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3325 MEM_TYPE_CONS);
3326 if (spare_memory[5] == 0)
3327 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3328 MEM_TYPE_STRING);
3329 if (spare_memory[6] == 0)
3330 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3331 MEM_TYPE_STRING);
3332 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3333 Vmemory_full = Qnil;
3334 #endif
3335 }
3336 \f
3337 /************************************************************************
3338 C Stack Marking
3339 ************************************************************************/
3340
3341 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3342
3343 /* Conservative C stack marking requires a method to identify possibly
3344 live Lisp objects given a pointer value. We do this by keeping
3345 track of blocks of Lisp data that are allocated in a red-black tree
3346 (see also the comment of mem_node which is the type of nodes in
3347 that tree). Function lisp_malloc adds information for an allocated
3348 block to the red-black tree with calls to mem_insert, and function
3349 lisp_free removes it with mem_delete. Functions live_string_p etc
3350 call mem_find to lookup information about a given pointer in the
3351 tree, and use that to determine if the pointer points to a Lisp
3352 object or not. */
3353
3354 /* Initialize this part of alloc.c. */
3355
3356 static void
3357 mem_init (void)
3358 {
3359 mem_z.left = mem_z.right = MEM_NIL;
3360 mem_z.parent = NULL;
3361 mem_z.color = MEM_BLACK;
3362 mem_z.start = mem_z.end = NULL;
3363 mem_root = MEM_NIL;
3364 }
3365
3366
3367 /* Value is a pointer to the mem_node containing START. Value is
3368 MEM_NIL if there is no node in the tree containing START. */
3369
3370 static INLINE struct mem_node *
3371 mem_find (void *start)
3372 {
3373 struct mem_node *p;
3374
3375 if (start < min_heap_address || start > max_heap_address)
3376 return MEM_NIL;
3377
3378 /* Make the search always successful to speed up the loop below. */
3379 mem_z.start = start;
3380 mem_z.end = (char *) start + 1;
3381
3382 p = mem_root;
3383 while (start < p->start || start >= p->end)
3384 p = start < p->start ? p->left : p->right;
3385 return p;
3386 }
3387
3388
3389 /* Insert a new node into the tree for a block of memory with start
3390 address START, end address END, and type TYPE. Value is a
3391 pointer to the node that was inserted. */
3392
3393 static struct mem_node *
3394 mem_insert (void *start, void *end, enum mem_type type)
3395 {
3396 struct mem_node *c, *parent, *x;
3397
3398 if (min_heap_address == NULL || start < min_heap_address)
3399 min_heap_address = start;
3400 if (max_heap_address == NULL || end > max_heap_address)
3401 max_heap_address = end;
3402
3403 /* See where in the tree a node for START belongs. In this
3404 particular application, it shouldn't happen that a node is already
3405 present. For debugging purposes, let's check that. */
3406 c = mem_root;
3407 parent = NULL;
3408
3409 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3410
3411 while (c != MEM_NIL)
3412 {
3413 if (start >= c->start && start < c->end)
3414 abort ();
3415 parent = c;
3416 c = start < c->start ? c->left : c->right;
3417 }
3418
3419 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3420
3421 while (c != MEM_NIL)
3422 {
3423 parent = c;
3424 c = start < c->start ? c->left : c->right;
3425 }
3426
3427 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3428
3429 /* Create a new node. */
3430 #ifdef GC_MALLOC_CHECK
3431 x = (struct mem_node *) _malloc_internal (sizeof *x);
3432 if (x == NULL)
3433 abort ();
3434 #else
3435 x = (struct mem_node *) xmalloc (sizeof *x);
3436 #endif
3437 x->start = start;
3438 x->end = end;
3439 x->type = type;
3440 x->parent = parent;
3441 x->left = x->right = MEM_NIL;
3442 x->color = MEM_RED;
3443
3444 /* Insert it as child of PARENT or install it as root. */
3445 if (parent)
3446 {
3447 if (start < parent->start)
3448 parent->left = x;
3449 else
3450 parent->right = x;
3451 }
3452 else
3453 mem_root = x;
3454
3455 /* Re-establish red-black tree properties. */
3456 mem_insert_fixup (x);
3457
3458 return x;
3459 }
3460
3461
3462 /* Re-establish the red-black properties of the tree, and thereby
3463 balance the tree, after node X has been inserted; X is always red. */
3464
3465 static void
3466 mem_insert_fixup (struct mem_node *x)
3467 {
3468 while (x != mem_root && x->parent->color == MEM_RED)
3469 {
3470 /* X is red and its parent is red. This is a violation of
3471 red-black tree property #3. */
3472
3473 if (x->parent == x->parent->parent->left)
3474 {
3475 /* We're on the left side of our grandparent, and Y is our
3476 "uncle". */
3477 struct mem_node *y = x->parent->parent->right;
3478
3479 if (y->color == MEM_RED)
3480 {
3481 /* Uncle and parent are red but should be black because
3482 X is red. Change the colors accordingly and proceed
3483 with the grandparent. */
3484 x->parent->color = MEM_BLACK;
3485 y->color = MEM_BLACK;
3486 x->parent->parent->color = MEM_RED;
3487 x = x->parent->parent;
3488 }
3489 else
3490 {
3491 /* Parent and uncle have different colors; parent is
3492 red, uncle is black. */
3493 if (x == x->parent->right)
3494 {
3495 x = x->parent;
3496 mem_rotate_left (x);
3497 }
3498
3499 x->parent->color = MEM_BLACK;
3500 x->parent->parent->color = MEM_RED;
3501 mem_rotate_right (x->parent->parent);
3502 }
3503 }
3504 else
3505 {
3506 /* This is the symmetrical case of above. */
3507 struct mem_node *y = x->parent->parent->left;
3508
3509 if (y->color == MEM_RED)
3510 {
3511 x->parent->color = MEM_BLACK;
3512 y->color = MEM_BLACK;
3513 x->parent->parent->color = MEM_RED;
3514 x = x->parent->parent;
3515 }
3516 else
3517 {
3518 if (x == x->parent->left)
3519 {
3520 x = x->parent;
3521 mem_rotate_right (x);
3522 }
3523
3524 x->parent->color = MEM_BLACK;
3525 x->parent->parent->color = MEM_RED;
3526 mem_rotate_left (x->parent->parent);
3527 }
3528 }
3529 }
3530
3531 /* The root may have been changed to red due to the algorithm. Set
3532 it to black so that property #5 is satisfied. */
3533 mem_root->color = MEM_BLACK;
3534 }
3535
3536
3537 /* (x) (y)
3538 / \ / \
3539 a (y) ===> (x) c
3540 / \ / \
3541 b c a b */
3542
3543 static void
3544 mem_rotate_left (struct mem_node *x)
3545 {
3546 struct mem_node *y;
3547
3548 /* Turn y's left sub-tree into x's right sub-tree. */
3549 y = x->right;
3550 x->right = y->left;
3551 if (y->left != MEM_NIL)
3552 y->left->parent = x;
3553
3554 /* Y's parent was x's parent. */
3555 if (y != MEM_NIL)
3556 y->parent = x->parent;
3557
3558 /* Get the parent to point to y instead of x. */
3559 if (x->parent)
3560 {
3561 if (x == x->parent->left)
3562 x->parent->left = y;
3563 else
3564 x->parent->right = y;
3565 }
3566 else
3567 mem_root = y;
3568
3569 /* Put x on y's left. */
3570 y->left = x;
3571 if (x != MEM_NIL)
3572 x->parent = y;
3573 }
3574
3575
3576 /* (x) (Y)
3577 / \ / \
3578 (y) c ===> a (x)
3579 / \ / \
3580 a b b c */
3581
3582 static void
3583 mem_rotate_right (struct mem_node *x)
3584 {
3585 struct mem_node *y = x->left;
3586
3587 x->left = y->right;
3588 if (y->right != MEM_NIL)
3589 y->right->parent = x;
3590
3591 if (y != MEM_NIL)
3592 y->parent = x->parent;
3593 if (x->parent)
3594 {
3595 if (x == x->parent->right)
3596 x->parent->right = y;
3597 else
3598 x->parent->left = y;
3599 }
3600 else
3601 mem_root = y;
3602
3603 y->right = x;
3604 if (x != MEM_NIL)
3605 x->parent = y;
3606 }
3607
3608
3609 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3610
3611 static void
3612 mem_delete (struct mem_node *z)
3613 {
3614 struct mem_node *x, *y;
3615
3616 if (!z || z == MEM_NIL)
3617 return;
3618
3619 if (z->left == MEM_NIL || z->right == MEM_NIL)
3620 y = z;
3621 else
3622 {
3623 y = z->right;
3624 while (y->left != MEM_NIL)
3625 y = y->left;
3626 }
3627
3628 if (y->left != MEM_NIL)
3629 x = y->left;
3630 else
3631 x = y->right;
3632
3633 x->parent = y->parent;
3634 if (y->parent)
3635 {
3636 if (y == y->parent->left)
3637 y->parent->left = x;
3638 else
3639 y->parent->right = x;
3640 }
3641 else
3642 mem_root = x;
3643
3644 if (y != z)
3645 {
3646 z->start = y->start;
3647 z->end = y->end;
3648 z->type = y->type;
3649 }
3650
3651 if (y->color == MEM_BLACK)
3652 mem_delete_fixup (x);
3653
3654 #ifdef GC_MALLOC_CHECK
3655 _free_internal (y);
3656 #else
3657 xfree (y);
3658 #endif
3659 }
3660
3661
3662 /* Re-establish the red-black properties of the tree, after a
3663 deletion. */
3664
3665 static void
3666 mem_delete_fixup (struct mem_node *x)
3667 {
3668 while (x != mem_root && x->color == MEM_BLACK)
3669 {
3670 if (x == x->parent->left)
3671 {
3672 struct mem_node *w = x->parent->right;
3673
3674 if (w->color == MEM_RED)
3675 {
3676 w->color = MEM_BLACK;
3677 x->parent->color = MEM_RED;
3678 mem_rotate_left (x->parent);
3679 w = x->parent->right;
3680 }
3681
3682 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3683 {
3684 w->color = MEM_RED;
3685 x = x->parent;
3686 }
3687 else
3688 {
3689 if (w->right->color == MEM_BLACK)
3690 {
3691 w->left->color = MEM_BLACK;
3692 w->color = MEM_RED;
3693 mem_rotate_right (w);
3694 w = x->parent->right;
3695 }
3696 w->color = x->parent->color;
3697 x->parent->color = MEM_BLACK;
3698 w->right->color = MEM_BLACK;
3699 mem_rotate_left (x->parent);
3700 x = mem_root;
3701 }
3702 }
3703 else
3704 {
3705 struct mem_node *w = x->parent->left;
3706
3707 if (w->color == MEM_RED)
3708 {
3709 w->color = MEM_BLACK;
3710 x->parent->color = MEM_RED;
3711 mem_rotate_right (x->parent);
3712 w = x->parent->left;
3713 }
3714
3715 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3716 {
3717 w->color = MEM_RED;
3718 x = x->parent;
3719 }
3720 else
3721 {
3722 if (w->left->color == MEM_BLACK)
3723 {
3724 w->right->color = MEM_BLACK;
3725 w->color = MEM_RED;
3726 mem_rotate_left (w);
3727 w = x->parent->left;
3728 }
3729
3730 w->color = x->parent->color;
3731 x->parent->color = MEM_BLACK;
3732 w->left->color = MEM_BLACK;
3733 mem_rotate_right (x->parent);
3734 x = mem_root;
3735 }
3736 }
3737 }
3738
3739 x->color = MEM_BLACK;
3740 }
3741
3742
3743 /* Value is non-zero if P is a pointer to a live Lisp string on
3744 the heap. M is a pointer to the mem_block for P. */
3745
3746 static INLINE int
3747 live_string_p (struct mem_node *m, void *p)
3748 {
3749 if (m->type == MEM_TYPE_STRING)
3750 {
3751 struct string_block *b = (struct string_block *) m->start;
3752 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3753
3754 /* P must point to the start of a Lisp_String structure, and it
3755 must not be on the free-list. */
3756 return (offset >= 0
3757 && offset % sizeof b->strings[0] == 0
3758 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3759 && ((struct Lisp_String *) p)->data != NULL);
3760 }
3761 else
3762 return 0;
3763 }
3764
3765
3766 /* Value is non-zero if P is a pointer to a live Lisp cons on
3767 the heap. M is a pointer to the mem_block for P. */
3768
3769 static INLINE int
3770 live_cons_p (struct mem_node *m, void *p)
3771 {
3772 if (m->type == MEM_TYPE_CONS)
3773 {
3774 struct cons_block *b = (struct cons_block *) m->start;
3775 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3776
3777 /* P must point to the start of a Lisp_Cons, not be
3778 one of the unused cells in the current cons block,
3779 and not be on the free-list. */
3780 return (offset >= 0
3781 && offset % sizeof b->conses[0] == 0
3782 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3783 && (b != cons_block
3784 || offset / sizeof b->conses[0] < cons_block_index)
3785 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3786 }
3787 else
3788 return 0;
3789 }
3790
3791
3792 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3793 the heap. M is a pointer to the mem_block for P. */
3794
3795 static INLINE int
3796 live_symbol_p (struct mem_node *m, void *p)
3797 {
3798 if (m->type == MEM_TYPE_SYMBOL)
3799 {
3800 struct symbol_block *b = (struct symbol_block *) m->start;
3801 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3802
3803 /* P must point to the start of a Lisp_Symbol, not be
3804 one of the unused cells in the current symbol block,
3805 and not be on the free-list. */
3806 return (offset >= 0
3807 && offset % sizeof b->symbols[0] == 0
3808 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3809 && (b != symbol_block
3810 || offset / sizeof b->symbols[0] < symbol_block_index)
3811 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3812 }
3813 else
3814 return 0;
3815 }
3816
3817
3818 /* Value is non-zero if P is a pointer to a live Lisp float on
3819 the heap. M is a pointer to the mem_block for P. */
3820
3821 static INLINE int
3822 live_float_p (struct mem_node *m, void *p)
3823 {
3824 if (m->type == MEM_TYPE_FLOAT)
3825 {
3826 struct float_block *b = (struct float_block *) m->start;
3827 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3828
3829 /* P must point to the start of a Lisp_Float and not be
3830 one of the unused cells in the current float block. */
3831 return (offset >= 0
3832 && offset % sizeof b->floats[0] == 0
3833 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3834 && (b != float_block
3835 || offset / sizeof b->floats[0] < float_block_index));
3836 }
3837 else
3838 return 0;
3839 }
3840
3841
3842 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3843 the heap. M is a pointer to the mem_block for P. */
3844
3845 static INLINE int
3846 live_misc_p (struct mem_node *m, void *p)
3847 {
3848 if (m->type == MEM_TYPE_MISC)
3849 {
3850 struct marker_block *b = (struct marker_block *) m->start;
3851 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
3852
3853 /* P must point to the start of a Lisp_Misc, not be
3854 one of the unused cells in the current misc block,
3855 and not be on the free-list. */
3856 return (offset >= 0
3857 && offset % sizeof b->markers[0] == 0
3858 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3859 && (b != marker_block
3860 || offset / sizeof b->markers[0] < marker_block_index)
3861 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3862 }
3863 else
3864 return 0;
3865 }
3866
3867
3868 /* Value is non-zero if P is a pointer to a live vector-like object.
3869 M is a pointer to the mem_block for P. */
3870
3871 static INLINE int
3872 live_vector_p (struct mem_node *m, void *p)
3873 {
3874 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3875 }
3876
3877
3878 /* Value is non-zero if P is a pointer to a live buffer. M is a
3879 pointer to the mem_block for P. */
3880
3881 static INLINE int
3882 live_buffer_p (struct mem_node *m, void *p)
3883 {
3884 /* P must point to the start of the block, and the buffer
3885 must not have been killed. */
3886 return (m->type == MEM_TYPE_BUFFER
3887 && p == m->start
3888 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
3889 }
3890
3891 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3892
3893 #if GC_MARK_STACK
3894
3895 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3896
3897 /* Array of objects that are kept alive because the C stack contains
3898 a pattern that looks like a reference to them . */
3899
3900 #define MAX_ZOMBIES 10
3901 static Lisp_Object zombies[MAX_ZOMBIES];
3902
3903 /* Number of zombie objects. */
3904
3905 static int nzombies;
3906
3907 /* Number of garbage collections. */
3908
3909 static int ngcs;
3910
3911 /* Average percentage of zombies per collection. */
3912
3913 static double avg_zombies;
3914
3915 /* Max. number of live and zombie objects. */
3916
3917 static int max_live, max_zombies;
3918
3919 /* Average number of live objects per GC. */
3920
3921 static double avg_live;
3922
3923 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3924 doc: /* Show information about live and zombie objects. */)
3925 (void)
3926 {
3927 Lisp_Object args[8], zombie_list = Qnil;
3928 int i;
3929 for (i = 0; i < nzombies; i++)
3930 zombie_list = Fcons (zombies[i], zombie_list);
3931 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3932 args[1] = make_number (ngcs);
3933 args[2] = make_float (avg_live);
3934 args[3] = make_float (avg_zombies);
3935 args[4] = make_float (avg_zombies / avg_live / 100);
3936 args[5] = make_number (max_live);
3937 args[6] = make_number (max_zombies);
3938 args[7] = zombie_list;
3939 return Fmessage (8, args);
3940 }
3941
3942 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3943
3944
3945 /* Mark OBJ if we can prove it's a Lisp_Object. */
3946
3947 static INLINE void
3948 mark_maybe_object (Lisp_Object obj)
3949 {
3950 void *po;
3951 struct mem_node *m;
3952
3953 if (INTEGERP (obj))
3954 return;
3955
3956 po = (void *) XPNTR (obj);
3957 m = mem_find (po);
3958
3959 if (m != MEM_NIL)
3960 {
3961 int mark_p = 0;
3962
3963 switch (XTYPE (obj))
3964 {
3965 case Lisp_String:
3966 mark_p = (live_string_p (m, po)
3967 && !STRING_MARKED_P ((struct Lisp_String *) po));
3968 break;
3969
3970 case Lisp_Cons:
3971 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3972 break;
3973
3974 case Lisp_Symbol:
3975 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3976 break;
3977
3978 case Lisp_Float:
3979 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3980 break;
3981
3982 case Lisp_Vectorlike:
3983 /* Note: can't check BUFFERP before we know it's a
3984 buffer because checking that dereferences the pointer
3985 PO which might point anywhere. */
3986 if (live_vector_p (m, po))
3987 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3988 else if (live_buffer_p (m, po))
3989 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3990 break;
3991
3992 case Lisp_Misc:
3993 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
3994 break;
3995
3996 default:
3997 break;
3998 }
3999
4000 if (mark_p)
4001 {
4002 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4003 if (nzombies < MAX_ZOMBIES)
4004 zombies[nzombies] = obj;
4005 ++nzombies;
4006 #endif
4007 mark_object (obj);
4008 }
4009 }
4010 }
4011
4012
4013 /* If P points to Lisp data, mark that as live if it isn't already
4014 marked. */
4015
4016 static INLINE void
4017 mark_maybe_pointer (void *p)
4018 {
4019 struct mem_node *m;
4020
4021 /* Quickly rule out some values which can't point to Lisp data. */
4022 if ((EMACS_INT) p %
4023 #ifdef USE_LSB_TAG
4024 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4025 #else
4026 2 /* We assume that Lisp data is aligned on even addresses. */
4027 #endif
4028 )
4029 return;
4030
4031 m = mem_find (p);
4032 if (m != MEM_NIL)
4033 {
4034 Lisp_Object obj = Qnil;
4035
4036 switch (m->type)
4037 {
4038 case MEM_TYPE_NON_LISP:
4039 /* Nothing to do; not a pointer to Lisp memory. */
4040 break;
4041
4042 case MEM_TYPE_BUFFER:
4043 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4044 XSETVECTOR (obj, p);
4045 break;
4046
4047 case MEM_TYPE_CONS:
4048 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4049 XSETCONS (obj, p);
4050 break;
4051
4052 case MEM_TYPE_STRING:
4053 if (live_string_p (m, p)
4054 && !STRING_MARKED_P ((struct Lisp_String *) p))
4055 XSETSTRING (obj, p);
4056 break;
4057
4058 case MEM_TYPE_MISC:
4059 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4060 XSETMISC (obj, p);
4061 break;
4062
4063 case MEM_TYPE_SYMBOL:
4064 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4065 XSETSYMBOL (obj, p);
4066 break;
4067
4068 case MEM_TYPE_FLOAT:
4069 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4070 XSETFLOAT (obj, p);
4071 break;
4072
4073 case MEM_TYPE_VECTORLIKE:
4074 if (live_vector_p (m, p))
4075 {
4076 Lisp_Object tem;
4077 XSETVECTOR (tem, p);
4078 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4079 obj = tem;
4080 }
4081 break;
4082
4083 default:
4084 abort ();
4085 }
4086
4087 if (!NILP (obj))
4088 mark_object (obj);
4089 }
4090 }
4091
4092
4093 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4094 or END+OFFSET..START. */
4095
4096 static void
4097 mark_memory (void *start, void *end, int offset)
4098 {
4099 Lisp_Object *p;
4100 void **pp;
4101
4102 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4103 nzombies = 0;
4104 #endif
4105
4106 /* Make START the pointer to the start of the memory region,
4107 if it isn't already. */
4108 if (end < start)
4109 {
4110 void *tem = start;
4111 start = end;
4112 end = tem;
4113 }
4114
4115 /* Mark Lisp_Objects. */
4116 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4117 mark_maybe_object (*p);
4118
4119 /* Mark Lisp data pointed to. This is necessary because, in some
4120 situations, the C compiler optimizes Lisp objects away, so that
4121 only a pointer to them remains. Example:
4122
4123 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4124 ()
4125 {
4126 Lisp_Object obj = build_string ("test");
4127 struct Lisp_String *s = XSTRING (obj);
4128 Fgarbage_collect ();
4129 fprintf (stderr, "test `%s'\n", s->data);
4130 return Qnil;
4131 }
4132
4133 Here, `obj' isn't really used, and the compiler optimizes it
4134 away. The only reference to the life string is through the
4135 pointer `s'. */
4136
4137 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4138 mark_maybe_pointer (*pp);
4139 }
4140
4141 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4142 the GCC system configuration. In gcc 3.2, the only systems for
4143 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4144 by others?) and ns32k-pc532-min. */
4145
4146 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4147
4148 static int setjmp_tested_p, longjmps_done;
4149
4150 #define SETJMP_WILL_LIKELY_WORK "\
4151 \n\
4152 Emacs garbage collector has been changed to use conservative stack\n\
4153 marking. Emacs has determined that the method it uses to do the\n\
4154 marking will likely work on your system, but this isn't sure.\n\
4155 \n\
4156 If you are a system-programmer, or can get the help of a local wizard\n\
4157 who is, please take a look at the function mark_stack in alloc.c, and\n\
4158 verify that the methods used are appropriate for your system.\n\
4159 \n\
4160 Please mail the result to <emacs-devel@gnu.org>.\n\
4161 "
4162
4163 #define SETJMP_WILL_NOT_WORK "\
4164 \n\
4165 Emacs garbage collector has been changed to use conservative stack\n\
4166 marking. Emacs has determined that the default method it uses to do the\n\
4167 marking will not work on your system. We will need a system-dependent\n\
4168 solution for your system.\n\
4169 \n\
4170 Please take a look at the function mark_stack in alloc.c, and\n\
4171 try to find a way to make it work on your system.\n\
4172 \n\
4173 Note that you may get false negatives, depending on the compiler.\n\
4174 In particular, you need to use -O with GCC for this test.\n\
4175 \n\
4176 Please mail the result to <emacs-devel@gnu.org>.\n\
4177 "
4178
4179
4180 /* Perform a quick check if it looks like setjmp saves registers in a
4181 jmp_buf. Print a message to stderr saying so. When this test
4182 succeeds, this is _not_ a proof that setjmp is sufficient for
4183 conservative stack marking. Only the sources or a disassembly
4184 can prove that. */
4185
4186 static void
4187 test_setjmp (void)
4188 {
4189 char buf[10];
4190 register int x;
4191 jmp_buf jbuf;
4192 int result = 0;
4193
4194 /* Arrange for X to be put in a register. */
4195 sprintf (buf, "1");
4196 x = strlen (buf);
4197 x = 2 * x - 1;
4198
4199 setjmp (jbuf);
4200 if (longjmps_done == 1)
4201 {
4202 /* Came here after the longjmp at the end of the function.
4203
4204 If x == 1, the longjmp has restored the register to its
4205 value before the setjmp, and we can hope that setjmp
4206 saves all such registers in the jmp_buf, although that
4207 isn't sure.
4208
4209 For other values of X, either something really strange is
4210 taking place, or the setjmp just didn't save the register. */
4211
4212 if (x == 1)
4213 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4214 else
4215 {
4216 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4217 exit (1);
4218 }
4219 }
4220
4221 ++longjmps_done;
4222 x = 2;
4223 if (longjmps_done == 1)
4224 longjmp (jbuf, 1);
4225 }
4226
4227 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4228
4229
4230 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4231
4232 /* Abort if anything GCPRO'd doesn't survive the GC. */
4233
4234 static void
4235 check_gcpros (void)
4236 {
4237 struct gcpro *p;
4238 int i;
4239
4240 for (p = gcprolist; p; p = p->next)
4241 for (i = 0; i < p->nvars; ++i)
4242 if (!survives_gc_p (p->var[i]))
4243 /* FIXME: It's not necessarily a bug. It might just be that the
4244 GCPRO is unnecessary or should release the object sooner. */
4245 abort ();
4246 }
4247
4248 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4249
4250 static void
4251 dump_zombies (void)
4252 {
4253 int i;
4254
4255 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4256 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4257 {
4258 fprintf (stderr, " %d = ", i);
4259 debug_print (zombies[i]);
4260 }
4261 }
4262
4263 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4264
4265
4266 /* Mark live Lisp objects on the C stack.
4267
4268 There are several system-dependent problems to consider when
4269 porting this to new architectures:
4270
4271 Processor Registers
4272
4273 We have to mark Lisp objects in CPU registers that can hold local
4274 variables or are used to pass parameters.
4275
4276 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4277 something that either saves relevant registers on the stack, or
4278 calls mark_maybe_object passing it each register's contents.
4279
4280 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4281 implementation assumes that calling setjmp saves registers we need
4282 to see in a jmp_buf which itself lies on the stack. This doesn't
4283 have to be true! It must be verified for each system, possibly
4284 by taking a look at the source code of setjmp.
4285
4286 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4287 can use it as a machine independent method to store all registers
4288 to the stack. In this case the macros described in the previous
4289 two paragraphs are not used.
4290
4291 Stack Layout
4292
4293 Architectures differ in the way their processor stack is organized.
4294 For example, the stack might look like this
4295
4296 +----------------+
4297 | Lisp_Object | size = 4
4298 +----------------+
4299 | something else | size = 2
4300 +----------------+
4301 | Lisp_Object | size = 4
4302 +----------------+
4303 | ... |
4304
4305 In such a case, not every Lisp_Object will be aligned equally. To
4306 find all Lisp_Object on the stack it won't be sufficient to walk
4307 the stack in steps of 4 bytes. Instead, two passes will be
4308 necessary, one starting at the start of the stack, and a second
4309 pass starting at the start of the stack + 2. Likewise, if the
4310 minimal alignment of Lisp_Objects on the stack is 1, four passes
4311 would be necessary, each one starting with one byte more offset
4312 from the stack start.
4313
4314 The current code assumes by default that Lisp_Objects are aligned
4315 equally on the stack. */
4316
4317 static void
4318 mark_stack (void)
4319 {
4320 int i;
4321 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4322 union aligned_jmpbuf {
4323 Lisp_Object o;
4324 jmp_buf j;
4325 } j;
4326 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4327 void *end;
4328
4329 #ifdef HAVE___BUILTIN_UNWIND_INIT
4330 /* Force callee-saved registers and register windows onto the stack.
4331 This is the preferred method if available, obviating the need for
4332 machine dependent methods. */
4333 __builtin_unwind_init ();
4334 end = &end;
4335 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4336 /* This trick flushes the register windows so that all the state of
4337 the process is contained in the stack. */
4338 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4339 needed on ia64 too. See mach_dep.c, where it also says inline
4340 assembler doesn't work with relevant proprietary compilers. */
4341 #ifdef __sparc__
4342 #if defined (__sparc64__) && defined (__FreeBSD__)
4343 /* FreeBSD does not have a ta 3 handler. */
4344 asm ("flushw");
4345 #else
4346 asm ("ta 3");
4347 #endif
4348 #endif
4349
4350 /* Save registers that we need to see on the stack. We need to see
4351 registers used to hold register variables and registers used to
4352 pass parameters. */
4353 #ifdef GC_SAVE_REGISTERS_ON_STACK
4354 GC_SAVE_REGISTERS_ON_STACK (end);
4355 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4356
4357 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4358 setjmp will definitely work, test it
4359 and print a message with the result
4360 of the test. */
4361 if (!setjmp_tested_p)
4362 {
4363 setjmp_tested_p = 1;
4364 test_setjmp ();
4365 }
4366 #endif /* GC_SETJMP_WORKS */
4367
4368 setjmp (j.j);
4369 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4370 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4371 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4372
4373 /* This assumes that the stack is a contiguous region in memory. If
4374 that's not the case, something has to be done here to iterate
4375 over the stack segments. */
4376 #ifndef GC_LISP_OBJECT_ALIGNMENT
4377 #ifdef __GNUC__
4378 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4379 #else
4380 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4381 #endif
4382 #endif
4383 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4384 mark_memory (stack_base, end, i);
4385 /* Allow for marking a secondary stack, like the register stack on the
4386 ia64. */
4387 #ifdef GC_MARK_SECONDARY_STACK
4388 GC_MARK_SECONDARY_STACK ();
4389 #endif
4390
4391 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4392 check_gcpros ();
4393 #endif
4394 }
4395
4396 #endif /* GC_MARK_STACK != 0 */
4397
4398
4399 /* Determine whether it is safe to access memory at address P. */
4400 static int
4401 valid_pointer_p (void *p)
4402 {
4403 #ifdef WINDOWSNT
4404 return w32_valid_pointer_p (p, 16);
4405 #else
4406 int fd;
4407
4408 /* Obviously, we cannot just access it (we would SEGV trying), so we
4409 trick the o/s to tell us whether p is a valid pointer.
4410 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4411 not validate p in that case. */
4412
4413 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4414 {
4415 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4416 emacs_close (fd);
4417 unlink ("__Valid__Lisp__Object__");
4418 return valid;
4419 }
4420
4421 return -1;
4422 #endif
4423 }
4424
4425 /* Return 1 if OBJ is a valid lisp object.
4426 Return 0 if OBJ is NOT a valid lisp object.
4427 Return -1 if we cannot validate OBJ.
4428 This function can be quite slow,
4429 so it should only be used in code for manual debugging. */
4430
4431 int
4432 valid_lisp_object_p (Lisp_Object obj)
4433 {
4434 void *p;
4435 #if GC_MARK_STACK
4436 struct mem_node *m;
4437 #endif
4438
4439 if (INTEGERP (obj))
4440 return 1;
4441
4442 p = (void *) XPNTR (obj);
4443 if (PURE_POINTER_P (p))
4444 return 1;
4445
4446 #if !GC_MARK_STACK
4447 return valid_pointer_p (p);
4448 #else
4449
4450 m = mem_find (p);
4451
4452 if (m == MEM_NIL)
4453 {
4454 int valid = valid_pointer_p (p);
4455 if (valid <= 0)
4456 return valid;
4457
4458 if (SUBRP (obj))
4459 return 1;
4460
4461 return 0;
4462 }
4463
4464 switch (m->type)
4465 {
4466 case MEM_TYPE_NON_LISP:
4467 return 0;
4468
4469 case MEM_TYPE_BUFFER:
4470 return live_buffer_p (m, p);
4471
4472 case MEM_TYPE_CONS:
4473 return live_cons_p (m, p);
4474
4475 case MEM_TYPE_STRING:
4476 return live_string_p (m, p);
4477
4478 case MEM_TYPE_MISC:
4479 return live_misc_p (m, p);
4480
4481 case MEM_TYPE_SYMBOL:
4482 return live_symbol_p (m, p);
4483
4484 case MEM_TYPE_FLOAT:
4485 return live_float_p (m, p);
4486
4487 case MEM_TYPE_VECTORLIKE:
4488 return live_vector_p (m, p);
4489
4490 default:
4491 break;
4492 }
4493
4494 return 0;
4495 #endif
4496 }
4497
4498
4499
4500 \f
4501 /***********************************************************************
4502 Pure Storage Management
4503 ***********************************************************************/
4504
4505 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4506 pointer to it. TYPE is the Lisp type for which the memory is
4507 allocated. TYPE < 0 means it's not used for a Lisp object. */
4508
4509 static POINTER_TYPE *
4510 pure_alloc (size_t size, int type)
4511 {
4512 POINTER_TYPE *result;
4513 #ifdef USE_LSB_TAG
4514 size_t alignment = (1 << GCTYPEBITS);
4515 #else
4516 size_t alignment = sizeof (EMACS_INT);
4517
4518 /* Give Lisp_Floats an extra alignment. */
4519 if (type == Lisp_Float)
4520 {
4521 #if defined __GNUC__ && __GNUC__ >= 2
4522 alignment = __alignof (struct Lisp_Float);
4523 #else
4524 alignment = sizeof (struct Lisp_Float);
4525 #endif
4526 }
4527 #endif
4528
4529 again:
4530 if (type >= 0)
4531 {
4532 /* Allocate space for a Lisp object from the beginning of the free
4533 space with taking account of alignment. */
4534 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4535 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4536 }
4537 else
4538 {
4539 /* Allocate space for a non-Lisp object from the end of the free
4540 space. */
4541 pure_bytes_used_non_lisp += size;
4542 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4543 }
4544 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4545
4546 if (pure_bytes_used <= pure_size)
4547 return result;
4548
4549 /* Don't allocate a large amount here,
4550 because it might get mmap'd and then its address
4551 might not be usable. */
4552 purebeg = (char *) xmalloc (10000);
4553 pure_size = 10000;
4554 pure_bytes_used_before_overflow += pure_bytes_used - size;
4555 pure_bytes_used = 0;
4556 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4557 goto again;
4558 }
4559
4560
4561 /* Print a warning if PURESIZE is too small. */
4562
4563 void
4564 check_pure_size (void)
4565 {
4566 if (pure_bytes_used_before_overflow)
4567 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4568 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4569 }
4570
4571
4572 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4573 the non-Lisp data pool of the pure storage, and return its start
4574 address. Return NULL if not found. */
4575
4576 static char *
4577 find_string_data_in_pure (const char *data, EMACS_INT nbytes)
4578 {
4579 int i;
4580 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4581 const unsigned char *p;
4582 char *non_lisp_beg;
4583
4584 if (pure_bytes_used_non_lisp < nbytes + 1)
4585 return NULL;
4586
4587 /* Set up the Boyer-Moore table. */
4588 skip = nbytes + 1;
4589 for (i = 0; i < 256; i++)
4590 bm_skip[i] = skip;
4591
4592 p = (const unsigned char *) data;
4593 while (--skip > 0)
4594 bm_skip[*p++] = skip;
4595
4596 last_char_skip = bm_skip['\0'];
4597
4598 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4599 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4600
4601 /* See the comments in the function `boyer_moore' (search.c) for the
4602 use of `infinity'. */
4603 infinity = pure_bytes_used_non_lisp + 1;
4604 bm_skip['\0'] = infinity;
4605
4606 p = (const unsigned char *) non_lisp_beg + nbytes;
4607 start = 0;
4608 do
4609 {
4610 /* Check the last character (== '\0'). */
4611 do
4612 {
4613 start += bm_skip[*(p + start)];
4614 }
4615 while (start <= start_max);
4616
4617 if (start < infinity)
4618 /* Couldn't find the last character. */
4619 return NULL;
4620
4621 /* No less than `infinity' means we could find the last
4622 character at `p[start - infinity]'. */
4623 start -= infinity;
4624
4625 /* Check the remaining characters. */
4626 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4627 /* Found. */
4628 return non_lisp_beg + start;
4629
4630 start += last_char_skip;
4631 }
4632 while (start <= start_max);
4633
4634 return NULL;
4635 }
4636
4637
4638 /* Return a string allocated in pure space. DATA is a buffer holding
4639 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4640 non-zero means make the result string multibyte.
4641
4642 Must get an error if pure storage is full, since if it cannot hold
4643 a large string it may be able to hold conses that point to that
4644 string; then the string is not protected from gc. */
4645
4646 Lisp_Object
4647 make_pure_string (const char *data,
4648 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
4649 {
4650 Lisp_Object string;
4651 struct Lisp_String *s;
4652
4653 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4654 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4655 if (s->data == NULL)
4656 {
4657 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4658 memcpy (s->data, data, nbytes);
4659 s->data[nbytes] = '\0';
4660 }
4661 s->size = nchars;
4662 s->size_byte = multibyte ? nbytes : -1;
4663 s->intervals = NULL_INTERVAL;
4664 XSETSTRING (string, s);
4665 return string;
4666 }
4667
4668 /* Return a string a string allocated in pure space. Do not allocate
4669 the string data, just point to DATA. */
4670
4671 Lisp_Object
4672 make_pure_c_string (const char *data)
4673 {
4674 Lisp_Object string;
4675 struct Lisp_String *s;
4676 EMACS_INT nchars = strlen (data);
4677
4678 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4679 s->size = nchars;
4680 s->size_byte = -1;
4681 s->data = (unsigned char *) data;
4682 s->intervals = NULL_INTERVAL;
4683 XSETSTRING (string, s);
4684 return string;
4685 }
4686
4687 /* Return a cons allocated from pure space. Give it pure copies
4688 of CAR as car and CDR as cdr. */
4689
4690 Lisp_Object
4691 pure_cons (Lisp_Object car, Lisp_Object cdr)
4692 {
4693 register Lisp_Object new;
4694 struct Lisp_Cons *p;
4695
4696 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4697 XSETCONS (new, p);
4698 XSETCAR (new, Fpurecopy (car));
4699 XSETCDR (new, Fpurecopy (cdr));
4700 return new;
4701 }
4702
4703
4704 /* Value is a float object with value NUM allocated from pure space. */
4705
4706 static Lisp_Object
4707 make_pure_float (double num)
4708 {
4709 register Lisp_Object new;
4710 struct Lisp_Float *p;
4711
4712 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4713 XSETFLOAT (new, p);
4714 XFLOAT_INIT (new, num);
4715 return new;
4716 }
4717
4718
4719 /* Return a vector with room for LEN Lisp_Objects allocated from
4720 pure space. */
4721
4722 Lisp_Object
4723 make_pure_vector (EMACS_INT len)
4724 {
4725 Lisp_Object new;
4726 struct Lisp_Vector *p;
4727 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4728
4729 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4730 XSETVECTOR (new, p);
4731 XVECTOR (new)->size = len;
4732 return new;
4733 }
4734
4735
4736 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4737 doc: /* Make a copy of object OBJ in pure storage.
4738 Recursively copies contents of vectors and cons cells.
4739 Does not copy symbols. Copies strings without text properties. */)
4740 (register Lisp_Object obj)
4741 {
4742 if (NILP (Vpurify_flag))
4743 return obj;
4744
4745 if (PURE_POINTER_P (XPNTR (obj)))
4746 return obj;
4747
4748 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4749 {
4750 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4751 if (!NILP (tmp))
4752 return tmp;
4753 }
4754
4755 if (CONSP (obj))
4756 obj = pure_cons (XCAR (obj), XCDR (obj));
4757 else if (FLOATP (obj))
4758 obj = make_pure_float (XFLOAT_DATA (obj));
4759 else if (STRINGP (obj))
4760 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
4761 SBYTES (obj),
4762 STRING_MULTIBYTE (obj));
4763 else if (COMPILEDP (obj) || VECTORP (obj))
4764 {
4765 register struct Lisp_Vector *vec;
4766 register EMACS_INT i;
4767 EMACS_INT size;
4768
4769 size = XVECTOR (obj)->size;
4770 if (size & PSEUDOVECTOR_FLAG)
4771 size &= PSEUDOVECTOR_SIZE_MASK;
4772 vec = XVECTOR (make_pure_vector (size));
4773 for (i = 0; i < size; i++)
4774 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4775 if (COMPILEDP (obj))
4776 {
4777 XSETPVECTYPE (vec, PVEC_COMPILED);
4778 XSETCOMPILED (obj, vec);
4779 }
4780 else
4781 XSETVECTOR (obj, vec);
4782 }
4783 else if (MARKERP (obj))
4784 error ("Attempt to copy a marker to pure storage");
4785 else
4786 /* Not purified, don't hash-cons. */
4787 return obj;
4788
4789 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4790 Fputhash (obj, obj, Vpurify_flag);
4791
4792 return obj;
4793 }
4794
4795
4796 \f
4797 /***********************************************************************
4798 Protection from GC
4799 ***********************************************************************/
4800
4801 /* Put an entry in staticvec, pointing at the variable with address
4802 VARADDRESS. */
4803
4804 void
4805 staticpro (Lisp_Object *varaddress)
4806 {
4807 staticvec[staticidx++] = varaddress;
4808 if (staticidx >= NSTATICS)
4809 abort ();
4810 }
4811
4812 \f
4813 /***********************************************************************
4814 Protection from GC
4815 ***********************************************************************/
4816
4817 /* Temporarily prevent garbage collection. */
4818
4819 int
4820 inhibit_garbage_collection (void)
4821 {
4822 int count = SPECPDL_INDEX ();
4823 int nbits = min (VALBITS, BITS_PER_INT);
4824
4825 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4826 return count;
4827 }
4828
4829
4830 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4831 doc: /* Reclaim storage for Lisp objects no longer needed.
4832 Garbage collection happens automatically if you cons more than
4833 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4834 `garbage-collect' normally returns a list with info on amount of space in use:
4835 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4836 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4837 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4838 (USED-STRINGS . FREE-STRINGS))
4839 However, if there was overflow in pure space, `garbage-collect'
4840 returns nil, because real GC can't be done. */)
4841 (void)
4842 {
4843 register struct specbinding *bind;
4844 char stack_top_variable;
4845 register int i;
4846 int message_p;
4847 Lisp_Object total[8];
4848 int count = SPECPDL_INDEX ();
4849 EMACS_TIME t1, t2, t3;
4850
4851 if (abort_on_gc)
4852 abort ();
4853
4854 /* Can't GC if pure storage overflowed because we can't determine
4855 if something is a pure object or not. */
4856 if (pure_bytes_used_before_overflow)
4857 return Qnil;
4858
4859 CHECK_CONS_LIST ();
4860
4861 /* Don't keep undo information around forever.
4862 Do this early on, so it is no problem if the user quits. */
4863 {
4864 register struct buffer *nextb = all_buffers;
4865
4866 while (nextb)
4867 {
4868 /* If a buffer's undo list is Qt, that means that undo is
4869 turned off in that buffer. Calling truncate_undo_list on
4870 Qt tends to return NULL, which effectively turns undo back on.
4871 So don't call truncate_undo_list if undo_list is Qt. */
4872 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
4873 truncate_undo_list (nextb);
4874
4875 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4876 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
4877 && ! nextb->text->inhibit_shrinking)
4878 {
4879 /* If a buffer's gap size is more than 10% of the buffer
4880 size, or larger than 2000 bytes, then shrink it
4881 accordingly. Keep a minimum size of 20 bytes. */
4882 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4883
4884 if (nextb->text->gap_size > size)
4885 {
4886 struct buffer *save_current = current_buffer;
4887 current_buffer = nextb;
4888 make_gap (-(nextb->text->gap_size - size));
4889 current_buffer = save_current;
4890 }
4891 }
4892
4893 nextb = nextb->next;
4894 }
4895 }
4896
4897 EMACS_GET_TIME (t1);
4898
4899 /* In case user calls debug_print during GC,
4900 don't let that cause a recursive GC. */
4901 consing_since_gc = 0;
4902
4903 /* Save what's currently displayed in the echo area. */
4904 message_p = push_message ();
4905 record_unwind_protect (pop_message_unwind, Qnil);
4906
4907 /* Save a copy of the contents of the stack, for debugging. */
4908 #if MAX_SAVE_STACK > 0
4909 if (NILP (Vpurify_flag))
4910 {
4911 i = &stack_top_variable - stack_bottom;
4912 if (i < 0) i = -i;
4913 if (i < MAX_SAVE_STACK)
4914 {
4915 if (stack_copy == 0)
4916 stack_copy = (char *) xmalloc (stack_copy_size = i);
4917 else if (stack_copy_size < i)
4918 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4919 if (stack_copy)
4920 {
4921 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4922 memcpy (stack_copy, stack_bottom, i);
4923 else
4924 memcpy (stack_copy, &stack_top_variable, i);
4925 }
4926 }
4927 }
4928 #endif /* MAX_SAVE_STACK > 0 */
4929
4930 if (garbage_collection_messages)
4931 message1_nolog ("Garbage collecting...");
4932
4933 BLOCK_INPUT;
4934
4935 shrink_regexp_cache ();
4936
4937 gc_in_progress = 1;
4938
4939 /* clear_marks (); */
4940
4941 /* Mark all the special slots that serve as the roots of accessibility. */
4942
4943 for (i = 0; i < staticidx; i++)
4944 mark_object (*staticvec[i]);
4945
4946 for (bind = specpdl; bind != specpdl_ptr; bind++)
4947 {
4948 mark_object (bind->symbol);
4949 mark_object (bind->old_value);
4950 }
4951 mark_terminals ();
4952 mark_kboards ();
4953 mark_ttys ();
4954
4955 #ifdef USE_GTK
4956 {
4957 extern void xg_mark_data (void);
4958 xg_mark_data ();
4959 }
4960 #endif
4961
4962 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4963 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4964 mark_stack ();
4965 #else
4966 {
4967 register struct gcpro *tail;
4968 for (tail = gcprolist; tail; tail = tail->next)
4969 for (i = 0; i < tail->nvars; i++)
4970 mark_object (tail->var[i]);
4971 }
4972 mark_byte_stack ();
4973 {
4974 struct catchtag *catch;
4975 struct handler *handler;
4976
4977 for (catch = catchlist; catch; catch = catch->next)
4978 {
4979 mark_object (catch->tag);
4980 mark_object (catch->val);
4981 }
4982 for (handler = handlerlist; handler; handler = handler->next)
4983 {
4984 mark_object (handler->handler);
4985 mark_object (handler->var);
4986 }
4987 }
4988 mark_backtrace ();
4989 #endif
4990
4991 #ifdef HAVE_WINDOW_SYSTEM
4992 mark_fringe_data ();
4993 #endif
4994
4995 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4996 mark_stack ();
4997 #endif
4998
4999 /* Everything is now marked, except for the things that require special
5000 finalization, i.e. the undo_list.
5001 Look thru every buffer's undo list
5002 for elements that update markers that were not marked,
5003 and delete them. */
5004 {
5005 register struct buffer *nextb = all_buffers;
5006
5007 while (nextb)
5008 {
5009 /* If a buffer's undo list is Qt, that means that undo is
5010 turned off in that buffer. Calling truncate_undo_list on
5011 Qt tends to return NULL, which effectively turns undo back on.
5012 So don't call truncate_undo_list if undo_list is Qt. */
5013 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5014 {
5015 Lisp_Object tail, prev;
5016 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5017 prev = Qnil;
5018 while (CONSP (tail))
5019 {
5020 if (CONSP (XCAR (tail))
5021 && MARKERP (XCAR (XCAR (tail)))
5022 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5023 {
5024 if (NILP (prev))
5025 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5026 else
5027 {
5028 tail = XCDR (tail);
5029 XSETCDR (prev, tail);
5030 }
5031 }
5032 else
5033 {
5034 prev = tail;
5035 tail = XCDR (tail);
5036 }
5037 }
5038 }
5039 /* Now that we have stripped the elements that need not be in the
5040 undo_list any more, we can finally mark the list. */
5041 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5042
5043 nextb = nextb->next;
5044 }
5045 }
5046
5047 gc_sweep ();
5048
5049 /* Clear the mark bits that we set in certain root slots. */
5050
5051 unmark_byte_stack ();
5052 VECTOR_UNMARK (&buffer_defaults);
5053 VECTOR_UNMARK (&buffer_local_symbols);
5054
5055 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5056 dump_zombies ();
5057 #endif
5058
5059 UNBLOCK_INPUT;
5060
5061 CHECK_CONS_LIST ();
5062
5063 /* clear_marks (); */
5064 gc_in_progress = 0;
5065
5066 consing_since_gc = 0;
5067 if (gc_cons_threshold < 10000)
5068 gc_cons_threshold = 10000;
5069
5070 if (FLOATP (Vgc_cons_percentage))
5071 { /* Set gc_cons_combined_threshold. */
5072 EMACS_INT total = 0;
5073
5074 total += total_conses * sizeof (struct Lisp_Cons);
5075 total += total_symbols * sizeof (struct Lisp_Symbol);
5076 total += total_markers * sizeof (union Lisp_Misc);
5077 total += total_string_size;
5078 total += total_vector_size * sizeof (Lisp_Object);
5079 total += total_floats * sizeof (struct Lisp_Float);
5080 total += total_intervals * sizeof (struct interval);
5081 total += total_strings * sizeof (struct Lisp_String);
5082
5083 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5084 }
5085 else
5086 gc_relative_threshold = 0;
5087
5088 if (garbage_collection_messages)
5089 {
5090 if (message_p || minibuf_level > 0)
5091 restore_message ();
5092 else
5093 message1_nolog ("Garbage collecting...done");
5094 }
5095
5096 unbind_to (count, Qnil);
5097
5098 total[0] = Fcons (make_number (total_conses),
5099 make_number (total_free_conses));
5100 total[1] = Fcons (make_number (total_symbols),
5101 make_number (total_free_symbols));
5102 total[2] = Fcons (make_number (total_markers),
5103 make_number (total_free_markers));
5104 total[3] = make_number (total_string_size);
5105 total[4] = make_number (total_vector_size);
5106 total[5] = Fcons (make_number (total_floats),
5107 make_number (total_free_floats));
5108 total[6] = Fcons (make_number (total_intervals),
5109 make_number (total_free_intervals));
5110 total[7] = Fcons (make_number (total_strings),
5111 make_number (total_free_strings));
5112
5113 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5114 {
5115 /* Compute average percentage of zombies. */
5116 double nlive = 0;
5117
5118 for (i = 0; i < 7; ++i)
5119 if (CONSP (total[i]))
5120 nlive += XFASTINT (XCAR (total[i]));
5121
5122 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5123 max_live = max (nlive, max_live);
5124 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5125 max_zombies = max (nzombies, max_zombies);
5126 ++ngcs;
5127 }
5128 #endif
5129
5130 if (!NILP (Vpost_gc_hook))
5131 {
5132 int count = inhibit_garbage_collection ();
5133 safe_run_hooks (Qpost_gc_hook);
5134 unbind_to (count, Qnil);
5135 }
5136
5137 /* Accumulate statistics. */
5138 EMACS_GET_TIME (t2);
5139 EMACS_SUB_TIME (t3, t2, t1);
5140 if (FLOATP (Vgc_elapsed))
5141 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5142 EMACS_SECS (t3) +
5143 EMACS_USECS (t3) * 1.0e-6);
5144 gcs_done++;
5145
5146 return Flist (sizeof total / sizeof *total, total);
5147 }
5148
5149
5150 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5151 only interesting objects referenced from glyphs are strings. */
5152
5153 static void
5154 mark_glyph_matrix (struct glyph_matrix *matrix)
5155 {
5156 struct glyph_row *row = matrix->rows;
5157 struct glyph_row *end = row + matrix->nrows;
5158
5159 for (; row < end; ++row)
5160 if (row->enabled_p)
5161 {
5162 int area;
5163 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5164 {
5165 struct glyph *glyph = row->glyphs[area];
5166 struct glyph *end_glyph = glyph + row->used[area];
5167
5168 for (; glyph < end_glyph; ++glyph)
5169 if (STRINGP (glyph->object)
5170 && !STRING_MARKED_P (XSTRING (glyph->object)))
5171 mark_object (glyph->object);
5172 }
5173 }
5174 }
5175
5176
5177 /* Mark Lisp faces in the face cache C. */
5178
5179 static void
5180 mark_face_cache (struct face_cache *c)
5181 {
5182 if (c)
5183 {
5184 int i, j;
5185 for (i = 0; i < c->used; ++i)
5186 {
5187 struct face *face = FACE_FROM_ID (c->f, i);
5188
5189 if (face)
5190 {
5191 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5192 mark_object (face->lface[j]);
5193 }
5194 }
5195 }
5196 }
5197
5198
5199 \f
5200 /* Mark reference to a Lisp_Object.
5201 If the object referred to has not been seen yet, recursively mark
5202 all the references contained in it. */
5203
5204 #define LAST_MARKED_SIZE 500
5205 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5206 int last_marked_index;
5207
5208 /* For debugging--call abort when we cdr down this many
5209 links of a list, in mark_object. In debugging,
5210 the call to abort will hit a breakpoint.
5211 Normally this is zero and the check never goes off. */
5212 static int mark_object_loop_halt;
5213
5214 static void
5215 mark_vectorlike (struct Lisp_Vector *ptr)
5216 {
5217 register EMACS_UINT size = ptr->size;
5218 register EMACS_UINT i;
5219
5220 eassert (!VECTOR_MARKED_P (ptr));
5221 VECTOR_MARK (ptr); /* Else mark it */
5222 if (size & PSEUDOVECTOR_FLAG)
5223 size &= PSEUDOVECTOR_SIZE_MASK;
5224
5225 /* Note that this size is not the memory-footprint size, but only
5226 the number of Lisp_Object fields that we should trace.
5227 The distinction is used e.g. by Lisp_Process which places extra
5228 non-Lisp_Object fields at the end of the structure. */
5229 for (i = 0; i < size; i++) /* and then mark its elements */
5230 mark_object (ptr->contents[i]);
5231 }
5232
5233 /* Like mark_vectorlike but optimized for char-tables (and
5234 sub-char-tables) assuming that the contents are mostly integers or
5235 symbols. */
5236
5237 static void
5238 mark_char_table (struct Lisp_Vector *ptr)
5239 {
5240 register EMACS_UINT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5241 register EMACS_UINT i;
5242
5243 eassert (!VECTOR_MARKED_P (ptr));
5244 VECTOR_MARK (ptr);
5245 for (i = 0; i < size; i++)
5246 {
5247 Lisp_Object val = ptr->contents[i];
5248
5249 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5250 continue;
5251 if (SUB_CHAR_TABLE_P (val))
5252 {
5253 if (! VECTOR_MARKED_P (XVECTOR (val)))
5254 mark_char_table (XVECTOR (val));
5255 }
5256 else
5257 mark_object (val);
5258 }
5259 }
5260
5261 void
5262 mark_object (Lisp_Object arg)
5263 {
5264 register Lisp_Object obj = arg;
5265 #ifdef GC_CHECK_MARKED_OBJECTS
5266 void *po;
5267 struct mem_node *m;
5268 #endif
5269 int cdr_count = 0;
5270
5271 loop:
5272
5273 if (PURE_POINTER_P (XPNTR (obj)))
5274 return;
5275
5276 last_marked[last_marked_index++] = obj;
5277 if (last_marked_index == LAST_MARKED_SIZE)
5278 last_marked_index = 0;
5279
5280 /* Perform some sanity checks on the objects marked here. Abort if
5281 we encounter an object we know is bogus. This increases GC time
5282 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5283 #ifdef GC_CHECK_MARKED_OBJECTS
5284
5285 po = (void *) XPNTR (obj);
5286
5287 /* Check that the object pointed to by PO is known to be a Lisp
5288 structure allocated from the heap. */
5289 #define CHECK_ALLOCATED() \
5290 do { \
5291 m = mem_find (po); \
5292 if (m == MEM_NIL) \
5293 abort (); \
5294 } while (0)
5295
5296 /* Check that the object pointed to by PO is live, using predicate
5297 function LIVEP. */
5298 #define CHECK_LIVE(LIVEP) \
5299 do { \
5300 if (!LIVEP (m, po)) \
5301 abort (); \
5302 } while (0)
5303
5304 /* Check both of the above conditions. */
5305 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5306 do { \
5307 CHECK_ALLOCATED (); \
5308 CHECK_LIVE (LIVEP); \
5309 } while (0) \
5310
5311 #else /* not GC_CHECK_MARKED_OBJECTS */
5312
5313 #define CHECK_ALLOCATED() (void) 0
5314 #define CHECK_LIVE(LIVEP) (void) 0
5315 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5316
5317 #endif /* not GC_CHECK_MARKED_OBJECTS */
5318
5319 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5320 {
5321 case Lisp_String:
5322 {
5323 register struct Lisp_String *ptr = XSTRING (obj);
5324 if (STRING_MARKED_P (ptr))
5325 break;
5326 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5327 MARK_INTERVAL_TREE (ptr->intervals);
5328 MARK_STRING (ptr);
5329 #ifdef GC_CHECK_STRING_BYTES
5330 /* Check that the string size recorded in the string is the
5331 same as the one recorded in the sdata structure. */
5332 CHECK_STRING_BYTES (ptr);
5333 #endif /* GC_CHECK_STRING_BYTES */
5334 }
5335 break;
5336
5337 case Lisp_Vectorlike:
5338 if (VECTOR_MARKED_P (XVECTOR (obj)))
5339 break;
5340 #ifdef GC_CHECK_MARKED_OBJECTS
5341 m = mem_find (po);
5342 if (m == MEM_NIL && !SUBRP (obj)
5343 && po != &buffer_defaults
5344 && po != &buffer_local_symbols)
5345 abort ();
5346 #endif /* GC_CHECK_MARKED_OBJECTS */
5347
5348 if (BUFFERP (obj))
5349 {
5350 #ifdef GC_CHECK_MARKED_OBJECTS
5351 if (po != &buffer_defaults && po != &buffer_local_symbols)
5352 {
5353 struct buffer *b;
5354 for (b = all_buffers; b && b != po; b = b->next)
5355 ;
5356 if (b == NULL)
5357 abort ();
5358 }
5359 #endif /* GC_CHECK_MARKED_OBJECTS */
5360 mark_buffer (obj);
5361 }
5362 else if (SUBRP (obj))
5363 break;
5364 else if (COMPILEDP (obj))
5365 /* We could treat this just like a vector, but it is better to
5366 save the COMPILED_CONSTANTS element for last and avoid
5367 recursion there. */
5368 {
5369 register struct Lisp_Vector *ptr = XVECTOR (obj);
5370 register EMACS_UINT size = ptr->size;
5371 register EMACS_UINT i;
5372
5373 CHECK_LIVE (live_vector_p);
5374 VECTOR_MARK (ptr); /* Else mark it */
5375 size &= PSEUDOVECTOR_SIZE_MASK;
5376 for (i = 0; i < size; i++) /* and then mark its elements */
5377 {
5378 if (i != COMPILED_CONSTANTS)
5379 mark_object (ptr->contents[i]);
5380 }
5381 obj = ptr->contents[COMPILED_CONSTANTS];
5382 goto loop;
5383 }
5384 else if (FRAMEP (obj))
5385 {
5386 register struct frame *ptr = XFRAME (obj);
5387 mark_vectorlike (XVECTOR (obj));
5388 mark_face_cache (ptr->face_cache);
5389 }
5390 else if (WINDOWP (obj))
5391 {
5392 register struct Lisp_Vector *ptr = XVECTOR (obj);
5393 struct window *w = XWINDOW (obj);
5394 mark_vectorlike (ptr);
5395 /* Mark glyphs for leaf windows. Marking window matrices is
5396 sufficient because frame matrices use the same glyph
5397 memory. */
5398 if (NILP (w->hchild)
5399 && NILP (w->vchild)
5400 && w->current_matrix)
5401 {
5402 mark_glyph_matrix (w->current_matrix);
5403 mark_glyph_matrix (w->desired_matrix);
5404 }
5405 }
5406 else if (HASH_TABLE_P (obj))
5407 {
5408 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5409 mark_vectorlike ((struct Lisp_Vector *)h);
5410 /* If hash table is not weak, mark all keys and values.
5411 For weak tables, mark only the vector. */
5412 if (NILP (h->weak))
5413 mark_object (h->key_and_value);
5414 else
5415 VECTOR_MARK (XVECTOR (h->key_and_value));
5416 }
5417 else if (CHAR_TABLE_P (obj))
5418 mark_char_table (XVECTOR (obj));
5419 else
5420 mark_vectorlike (XVECTOR (obj));
5421 break;
5422
5423 case Lisp_Symbol:
5424 {
5425 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5426 struct Lisp_Symbol *ptrx;
5427
5428 if (ptr->gcmarkbit)
5429 break;
5430 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5431 ptr->gcmarkbit = 1;
5432 mark_object (ptr->function);
5433 mark_object (ptr->plist);
5434 switch (ptr->redirect)
5435 {
5436 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5437 case SYMBOL_VARALIAS:
5438 {
5439 Lisp_Object tem;
5440 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5441 mark_object (tem);
5442 break;
5443 }
5444 case SYMBOL_LOCALIZED:
5445 {
5446 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5447 /* If the value is forwarded to a buffer or keyboard field,
5448 these are marked when we see the corresponding object.
5449 And if it's forwarded to a C variable, either it's not
5450 a Lisp_Object var, or it's staticpro'd already. */
5451 mark_object (blv->where);
5452 mark_object (blv->valcell);
5453 mark_object (blv->defcell);
5454 break;
5455 }
5456 case SYMBOL_FORWARDED:
5457 /* If the value is forwarded to a buffer or keyboard field,
5458 these are marked when we see the corresponding object.
5459 And if it's forwarded to a C variable, either it's not
5460 a Lisp_Object var, or it's staticpro'd already. */
5461 break;
5462 default: abort ();
5463 }
5464 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5465 MARK_STRING (XSTRING (ptr->xname));
5466 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5467
5468 ptr = ptr->next;
5469 if (ptr)
5470 {
5471 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5472 XSETSYMBOL (obj, ptrx);
5473 goto loop;
5474 }
5475 }
5476 break;
5477
5478 case Lisp_Misc:
5479 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5480 if (XMISCANY (obj)->gcmarkbit)
5481 break;
5482 XMISCANY (obj)->gcmarkbit = 1;
5483
5484 switch (XMISCTYPE (obj))
5485 {
5486
5487 case Lisp_Misc_Marker:
5488 /* DO NOT mark thru the marker's chain.
5489 The buffer's markers chain does not preserve markers from gc;
5490 instead, markers are removed from the chain when freed by gc. */
5491 break;
5492
5493 case Lisp_Misc_Save_Value:
5494 #if GC_MARK_STACK
5495 {
5496 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5497 /* If DOGC is set, POINTER is the address of a memory
5498 area containing INTEGER potential Lisp_Objects. */
5499 if (ptr->dogc)
5500 {
5501 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5502 int nelt;
5503 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5504 mark_maybe_object (*p);
5505 }
5506 }
5507 #endif
5508 break;
5509
5510 case Lisp_Misc_Overlay:
5511 {
5512 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5513 mark_object (ptr->start);
5514 mark_object (ptr->end);
5515 mark_object (ptr->plist);
5516 if (ptr->next)
5517 {
5518 XSETMISC (obj, ptr->next);
5519 goto loop;
5520 }
5521 }
5522 break;
5523
5524 default:
5525 abort ();
5526 }
5527 break;
5528
5529 case Lisp_Cons:
5530 {
5531 register struct Lisp_Cons *ptr = XCONS (obj);
5532 if (CONS_MARKED_P (ptr))
5533 break;
5534 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5535 CONS_MARK (ptr);
5536 /* If the cdr is nil, avoid recursion for the car. */
5537 if (EQ (ptr->u.cdr, Qnil))
5538 {
5539 obj = ptr->car;
5540 cdr_count = 0;
5541 goto loop;
5542 }
5543 mark_object (ptr->car);
5544 obj = ptr->u.cdr;
5545 cdr_count++;
5546 if (cdr_count == mark_object_loop_halt)
5547 abort ();
5548 goto loop;
5549 }
5550
5551 case Lisp_Float:
5552 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5553 FLOAT_MARK (XFLOAT (obj));
5554 break;
5555
5556 case_Lisp_Int:
5557 break;
5558
5559 default:
5560 abort ();
5561 }
5562
5563 #undef CHECK_LIVE
5564 #undef CHECK_ALLOCATED
5565 #undef CHECK_ALLOCATED_AND_LIVE
5566 }
5567
5568 /* Mark the pointers in a buffer structure. */
5569
5570 static void
5571 mark_buffer (Lisp_Object buf)
5572 {
5573 register struct buffer *buffer = XBUFFER (buf);
5574 register Lisp_Object *ptr, tmp;
5575 Lisp_Object base_buffer;
5576
5577 eassert (!VECTOR_MARKED_P (buffer));
5578 VECTOR_MARK (buffer);
5579
5580 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5581
5582 /* For now, we just don't mark the undo_list. It's done later in
5583 a special way just before the sweep phase, and after stripping
5584 some of its elements that are not needed any more. */
5585
5586 if (buffer->overlays_before)
5587 {
5588 XSETMISC (tmp, buffer->overlays_before);
5589 mark_object (tmp);
5590 }
5591 if (buffer->overlays_after)
5592 {
5593 XSETMISC (tmp, buffer->overlays_after);
5594 mark_object (tmp);
5595 }
5596
5597 /* buffer-local Lisp variables start at `undo_list',
5598 tho only the ones from `name' on are GC'd normally. */
5599 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
5600 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5601 ptr++)
5602 mark_object (*ptr);
5603
5604 /* If this is an indirect buffer, mark its base buffer. */
5605 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5606 {
5607 XSETBUFFER (base_buffer, buffer->base_buffer);
5608 mark_buffer (base_buffer);
5609 }
5610 }
5611
5612 /* Mark the Lisp pointers in the terminal objects.
5613 Called by the Fgarbage_collector. */
5614
5615 static void
5616 mark_terminals (void)
5617 {
5618 struct terminal *t;
5619 for (t = terminal_list; t; t = t->next_terminal)
5620 {
5621 eassert (t->name != NULL);
5622 #ifdef HAVE_WINDOW_SYSTEM
5623 /* If a terminal object is reachable from a stacpro'ed object,
5624 it might have been marked already. Make sure the image cache
5625 gets marked. */
5626 mark_image_cache (t->image_cache);
5627 #endif /* HAVE_WINDOW_SYSTEM */
5628 if (!VECTOR_MARKED_P (t))
5629 mark_vectorlike ((struct Lisp_Vector *)t);
5630 }
5631 }
5632
5633
5634
5635 /* Value is non-zero if OBJ will survive the current GC because it's
5636 either marked or does not need to be marked to survive. */
5637
5638 int
5639 survives_gc_p (Lisp_Object obj)
5640 {
5641 int survives_p;
5642
5643 switch (XTYPE (obj))
5644 {
5645 case_Lisp_Int:
5646 survives_p = 1;
5647 break;
5648
5649 case Lisp_Symbol:
5650 survives_p = XSYMBOL (obj)->gcmarkbit;
5651 break;
5652
5653 case Lisp_Misc:
5654 survives_p = XMISCANY (obj)->gcmarkbit;
5655 break;
5656
5657 case Lisp_String:
5658 survives_p = STRING_MARKED_P (XSTRING (obj));
5659 break;
5660
5661 case Lisp_Vectorlike:
5662 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5663 break;
5664
5665 case Lisp_Cons:
5666 survives_p = CONS_MARKED_P (XCONS (obj));
5667 break;
5668
5669 case Lisp_Float:
5670 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5671 break;
5672
5673 default:
5674 abort ();
5675 }
5676
5677 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5678 }
5679
5680
5681 \f
5682 /* Sweep: find all structures not marked, and free them. */
5683
5684 static void
5685 gc_sweep (void)
5686 {
5687 /* Remove or mark entries in weak hash tables.
5688 This must be done before any object is unmarked. */
5689 sweep_weak_hash_tables ();
5690
5691 sweep_strings ();
5692 #ifdef GC_CHECK_STRING_BYTES
5693 if (!noninteractive)
5694 check_string_bytes (1);
5695 #endif
5696
5697 /* Put all unmarked conses on free list */
5698 {
5699 register struct cons_block *cblk;
5700 struct cons_block **cprev = &cons_block;
5701 register int lim = cons_block_index;
5702 register int num_free = 0, num_used = 0;
5703
5704 cons_free_list = 0;
5705
5706 for (cblk = cons_block; cblk; cblk = *cprev)
5707 {
5708 register int i = 0;
5709 int this_free = 0;
5710 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5711
5712 /* Scan the mark bits an int at a time. */
5713 for (i = 0; i <= ilim; i++)
5714 {
5715 if (cblk->gcmarkbits[i] == -1)
5716 {
5717 /* Fast path - all cons cells for this int are marked. */
5718 cblk->gcmarkbits[i] = 0;
5719 num_used += BITS_PER_INT;
5720 }
5721 else
5722 {
5723 /* Some cons cells for this int are not marked.
5724 Find which ones, and free them. */
5725 int start, pos, stop;
5726
5727 start = i * BITS_PER_INT;
5728 stop = lim - start;
5729 if (stop > BITS_PER_INT)
5730 stop = BITS_PER_INT;
5731 stop += start;
5732
5733 for (pos = start; pos < stop; pos++)
5734 {
5735 if (!CONS_MARKED_P (&cblk->conses[pos]))
5736 {
5737 this_free++;
5738 cblk->conses[pos].u.chain = cons_free_list;
5739 cons_free_list = &cblk->conses[pos];
5740 #if GC_MARK_STACK
5741 cons_free_list->car = Vdead;
5742 #endif
5743 }
5744 else
5745 {
5746 num_used++;
5747 CONS_UNMARK (&cblk->conses[pos]);
5748 }
5749 }
5750 }
5751 }
5752
5753 lim = CONS_BLOCK_SIZE;
5754 /* If this block contains only free conses and we have already
5755 seen more than two blocks worth of free conses then deallocate
5756 this block. */
5757 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5758 {
5759 *cprev = cblk->next;
5760 /* Unhook from the free list. */
5761 cons_free_list = cblk->conses[0].u.chain;
5762 lisp_align_free (cblk);
5763 n_cons_blocks--;
5764 }
5765 else
5766 {
5767 num_free += this_free;
5768 cprev = &cblk->next;
5769 }
5770 }
5771 total_conses = num_used;
5772 total_free_conses = num_free;
5773 }
5774
5775 /* Put all unmarked floats on free list */
5776 {
5777 register struct float_block *fblk;
5778 struct float_block **fprev = &float_block;
5779 register int lim = float_block_index;
5780 register int num_free = 0, num_used = 0;
5781
5782 float_free_list = 0;
5783
5784 for (fblk = float_block; fblk; fblk = *fprev)
5785 {
5786 register int i;
5787 int this_free = 0;
5788 for (i = 0; i < lim; i++)
5789 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5790 {
5791 this_free++;
5792 fblk->floats[i].u.chain = float_free_list;
5793 float_free_list = &fblk->floats[i];
5794 }
5795 else
5796 {
5797 num_used++;
5798 FLOAT_UNMARK (&fblk->floats[i]);
5799 }
5800 lim = FLOAT_BLOCK_SIZE;
5801 /* If this block contains only free floats and we have already
5802 seen more than two blocks worth of free floats then deallocate
5803 this block. */
5804 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5805 {
5806 *fprev = fblk->next;
5807 /* Unhook from the free list. */
5808 float_free_list = fblk->floats[0].u.chain;
5809 lisp_align_free (fblk);
5810 n_float_blocks--;
5811 }
5812 else
5813 {
5814 num_free += this_free;
5815 fprev = &fblk->next;
5816 }
5817 }
5818 total_floats = num_used;
5819 total_free_floats = num_free;
5820 }
5821
5822 /* Put all unmarked intervals on free list */
5823 {
5824 register struct interval_block *iblk;
5825 struct interval_block **iprev = &interval_block;
5826 register int lim = interval_block_index;
5827 register int num_free = 0, num_used = 0;
5828
5829 interval_free_list = 0;
5830
5831 for (iblk = interval_block; iblk; iblk = *iprev)
5832 {
5833 register int i;
5834 int this_free = 0;
5835
5836 for (i = 0; i < lim; i++)
5837 {
5838 if (!iblk->intervals[i].gcmarkbit)
5839 {
5840 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5841 interval_free_list = &iblk->intervals[i];
5842 this_free++;
5843 }
5844 else
5845 {
5846 num_used++;
5847 iblk->intervals[i].gcmarkbit = 0;
5848 }
5849 }
5850 lim = INTERVAL_BLOCK_SIZE;
5851 /* If this block contains only free intervals and we have already
5852 seen more than two blocks worth of free intervals then
5853 deallocate this block. */
5854 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5855 {
5856 *iprev = iblk->next;
5857 /* Unhook from the free list. */
5858 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5859 lisp_free (iblk);
5860 n_interval_blocks--;
5861 }
5862 else
5863 {
5864 num_free += this_free;
5865 iprev = &iblk->next;
5866 }
5867 }
5868 total_intervals = num_used;
5869 total_free_intervals = num_free;
5870 }
5871
5872 /* Put all unmarked symbols on free list */
5873 {
5874 register struct symbol_block *sblk;
5875 struct symbol_block **sprev = &symbol_block;
5876 register int lim = symbol_block_index;
5877 register int num_free = 0, num_used = 0;
5878
5879 symbol_free_list = NULL;
5880
5881 for (sblk = symbol_block; sblk; sblk = *sprev)
5882 {
5883 int this_free = 0;
5884 struct Lisp_Symbol *sym = sblk->symbols;
5885 struct Lisp_Symbol *end = sym + lim;
5886
5887 for (; sym < end; ++sym)
5888 {
5889 /* Check if the symbol was created during loadup. In such a case
5890 it might be pointed to by pure bytecode which we don't trace,
5891 so we conservatively assume that it is live. */
5892 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5893
5894 if (!sym->gcmarkbit && !pure_p)
5895 {
5896 if (sym->redirect == SYMBOL_LOCALIZED)
5897 xfree (SYMBOL_BLV (sym));
5898 sym->next = symbol_free_list;
5899 symbol_free_list = sym;
5900 #if GC_MARK_STACK
5901 symbol_free_list->function = Vdead;
5902 #endif
5903 ++this_free;
5904 }
5905 else
5906 {
5907 ++num_used;
5908 if (!pure_p)
5909 UNMARK_STRING (XSTRING (sym->xname));
5910 sym->gcmarkbit = 0;
5911 }
5912 }
5913
5914 lim = SYMBOL_BLOCK_SIZE;
5915 /* If this block contains only free symbols and we have already
5916 seen more than two blocks worth of free symbols then deallocate
5917 this block. */
5918 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5919 {
5920 *sprev = sblk->next;
5921 /* Unhook from the free list. */
5922 symbol_free_list = sblk->symbols[0].next;
5923 lisp_free (sblk);
5924 n_symbol_blocks--;
5925 }
5926 else
5927 {
5928 num_free += this_free;
5929 sprev = &sblk->next;
5930 }
5931 }
5932 total_symbols = num_used;
5933 total_free_symbols = num_free;
5934 }
5935
5936 /* Put all unmarked misc's on free list.
5937 For a marker, first unchain it from the buffer it points into. */
5938 {
5939 register struct marker_block *mblk;
5940 struct marker_block **mprev = &marker_block;
5941 register int lim = marker_block_index;
5942 register int num_free = 0, num_used = 0;
5943
5944 marker_free_list = 0;
5945
5946 for (mblk = marker_block; mblk; mblk = *mprev)
5947 {
5948 register int i;
5949 int this_free = 0;
5950
5951 for (i = 0; i < lim; i++)
5952 {
5953 if (!mblk->markers[i].u_any.gcmarkbit)
5954 {
5955 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
5956 unchain_marker (&mblk->markers[i].u_marker);
5957 /* Set the type of the freed object to Lisp_Misc_Free.
5958 We could leave the type alone, since nobody checks it,
5959 but this might catch bugs faster. */
5960 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5961 mblk->markers[i].u_free.chain = marker_free_list;
5962 marker_free_list = &mblk->markers[i];
5963 this_free++;
5964 }
5965 else
5966 {
5967 num_used++;
5968 mblk->markers[i].u_any.gcmarkbit = 0;
5969 }
5970 }
5971 lim = MARKER_BLOCK_SIZE;
5972 /* If this block contains only free markers and we have already
5973 seen more than two blocks worth of free markers then deallocate
5974 this block. */
5975 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5976 {
5977 *mprev = mblk->next;
5978 /* Unhook from the free list. */
5979 marker_free_list = mblk->markers[0].u_free.chain;
5980 lisp_free (mblk);
5981 n_marker_blocks--;
5982 }
5983 else
5984 {
5985 num_free += this_free;
5986 mprev = &mblk->next;
5987 }
5988 }
5989
5990 total_markers = num_used;
5991 total_free_markers = num_free;
5992 }
5993
5994 /* Free all unmarked buffers */
5995 {
5996 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5997
5998 while (buffer)
5999 if (!VECTOR_MARKED_P (buffer))
6000 {
6001 if (prev)
6002 prev->next = buffer->next;
6003 else
6004 all_buffers = buffer->next;
6005 next = buffer->next;
6006 lisp_free (buffer);
6007 buffer = next;
6008 }
6009 else
6010 {
6011 VECTOR_UNMARK (buffer);
6012 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6013 prev = buffer, buffer = buffer->next;
6014 }
6015 }
6016
6017 /* Free all unmarked vectors */
6018 {
6019 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6020 total_vector_size = 0;
6021
6022 while (vector)
6023 if (!VECTOR_MARKED_P (vector))
6024 {
6025 if (prev)
6026 prev->next = vector->next;
6027 else
6028 all_vectors = vector->next;
6029 next = vector->next;
6030 lisp_free (vector);
6031 n_vectors--;
6032 vector = next;
6033
6034 }
6035 else
6036 {
6037 VECTOR_UNMARK (vector);
6038 if (vector->size & PSEUDOVECTOR_FLAG)
6039 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6040 else
6041 total_vector_size += vector->size;
6042 prev = vector, vector = vector->next;
6043 }
6044 }
6045
6046 #ifdef GC_CHECK_STRING_BYTES
6047 if (!noninteractive)
6048 check_string_bytes (1);
6049 #endif
6050 }
6051
6052
6053
6054 \f
6055 /* Debugging aids. */
6056
6057 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6058 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6059 This may be helpful in debugging Emacs's memory usage.
6060 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6061 (void)
6062 {
6063 Lisp_Object end;
6064
6065 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6066
6067 return end;
6068 }
6069
6070 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6071 doc: /* Return a list of counters that measure how much consing there has been.
6072 Each of these counters increments for a certain kind of object.
6073 The counters wrap around from the largest positive integer to zero.
6074 Garbage collection does not decrease them.
6075 The elements of the value are as follows:
6076 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6077 All are in units of 1 = one object consed
6078 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6079 objects consed.
6080 MISCS include overlays, markers, and some internal types.
6081 Frames, windows, buffers, and subprocesses count as vectors
6082 (but the contents of a buffer's text do not count here). */)
6083 (void)
6084 {
6085 Lisp_Object consed[8];
6086
6087 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6088 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6089 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6090 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6091 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6092 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6093 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6094 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6095
6096 return Flist (8, consed);
6097 }
6098
6099 int suppress_checking;
6100
6101 void
6102 die (const char *msg, const char *file, int line)
6103 {
6104 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6105 file, line, msg);
6106 abort ();
6107 }
6108 \f
6109 /* Initialization */
6110
6111 void
6112 init_alloc_once (void)
6113 {
6114 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6115 purebeg = PUREBEG;
6116 pure_size = PURESIZE;
6117 pure_bytes_used = 0;
6118 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6119 pure_bytes_used_before_overflow = 0;
6120
6121 /* Initialize the list of free aligned blocks. */
6122 free_ablock = NULL;
6123
6124 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6125 mem_init ();
6126 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6127 #endif
6128
6129 all_vectors = 0;
6130 ignore_warnings = 1;
6131 #ifdef DOUG_LEA_MALLOC
6132 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6133 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6134 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6135 #endif
6136 init_strings ();
6137 init_cons ();
6138 init_symbol ();
6139 init_marker ();
6140 init_float ();
6141 init_intervals ();
6142 init_weak_hash_tables ();
6143
6144 #ifdef REL_ALLOC
6145 malloc_hysteresis = 32;
6146 #else
6147 malloc_hysteresis = 0;
6148 #endif
6149
6150 refill_memory_reserve ();
6151
6152 ignore_warnings = 0;
6153 gcprolist = 0;
6154 byte_stack_list = 0;
6155 staticidx = 0;
6156 consing_since_gc = 0;
6157 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6158 gc_relative_threshold = 0;
6159 }
6160
6161 void
6162 init_alloc (void)
6163 {
6164 gcprolist = 0;
6165 byte_stack_list = 0;
6166 #if GC_MARK_STACK
6167 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6168 setjmp_tested_p = longjmps_done = 0;
6169 #endif
6170 #endif
6171 Vgc_elapsed = make_float (0.0);
6172 gcs_done = 0;
6173 }
6174
6175 void
6176 syms_of_alloc (void)
6177 {
6178 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6179 doc: /* *Number of bytes of consing between garbage collections.
6180 Garbage collection can happen automatically once this many bytes have been
6181 allocated since the last garbage collection. All data types count.
6182
6183 Garbage collection happens automatically only when `eval' is called.
6184
6185 By binding this temporarily to a large number, you can effectively
6186 prevent garbage collection during a part of the program.
6187 See also `gc-cons-percentage'. */);
6188
6189 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6190 doc: /* *Portion of the heap used for allocation.
6191 Garbage collection can happen automatically once this portion of the heap
6192 has been allocated since the last garbage collection.
6193 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6194 Vgc_cons_percentage = make_float (0.1);
6195
6196 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6197 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6198
6199 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6200 doc: /* Number of cons cells that have been consed so far. */);
6201
6202 DEFVAR_INT ("floats-consed", floats_consed,
6203 doc: /* Number of floats that have been consed so far. */);
6204
6205 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6206 doc: /* Number of vector cells that have been consed so far. */);
6207
6208 DEFVAR_INT ("symbols-consed", symbols_consed,
6209 doc: /* Number of symbols that have been consed so far. */);
6210
6211 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6212 doc: /* Number of string characters that have been consed so far. */);
6213
6214 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6215 doc: /* Number of miscellaneous objects that have been consed so far. */);
6216
6217 DEFVAR_INT ("intervals-consed", intervals_consed,
6218 doc: /* Number of intervals that have been consed so far. */);
6219
6220 DEFVAR_INT ("strings-consed", strings_consed,
6221 doc: /* Number of strings that have been consed so far. */);
6222
6223 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6224 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6225 This means that certain objects should be allocated in shared (pure) space.
6226 It can also be set to a hash-table, in which case this table is used to
6227 do hash-consing of the objects allocated to pure space. */);
6228
6229 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6230 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6231 garbage_collection_messages = 0;
6232
6233 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6234 doc: /* Hook run after garbage collection has finished. */);
6235 Vpost_gc_hook = Qnil;
6236 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6237 staticpro (&Qpost_gc_hook);
6238
6239 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6240 doc: /* Precomputed `signal' argument for memory-full error. */);
6241 /* We build this in advance because if we wait until we need it, we might
6242 not be able to allocate the memory to hold it. */
6243 Vmemory_signal_data
6244 = pure_cons (Qerror,
6245 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6246
6247 DEFVAR_LISP ("memory-full", Vmemory_full,
6248 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6249 Vmemory_full = Qnil;
6250
6251 staticpro (&Qgc_cons_threshold);
6252 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6253
6254 staticpro (&Qchar_table_extra_slots);
6255 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6256
6257 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6258 doc: /* Accumulated time elapsed in garbage collections.
6259 The time is in seconds as a floating point value. */);
6260 DEFVAR_INT ("gcs-done", gcs_done,
6261 doc: /* Accumulated number of garbage collections done. */);
6262
6263 defsubr (&Scons);
6264 defsubr (&Slist);
6265 defsubr (&Svector);
6266 defsubr (&Smake_byte_code);
6267 defsubr (&Smake_list);
6268 defsubr (&Smake_vector);
6269 defsubr (&Smake_string);
6270 defsubr (&Smake_bool_vector);
6271 defsubr (&Smake_symbol);
6272 defsubr (&Smake_marker);
6273 defsubr (&Spurecopy);
6274 defsubr (&Sgarbage_collect);
6275 defsubr (&Smemory_limit);
6276 defsubr (&Smemory_use_counts);
6277
6278 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6279 defsubr (&Sgc_status);
6280 #endif
6281 }