]> code.delx.au - gnu-emacs/blob - src/alloc.c
Merge from emacs--rel--22
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include <config.h>
24 #include <stdio.h>
25 #include <limits.h> /* For CHAR_BIT. */
26
27 #ifdef STDC_HEADERS
28 #include <stddef.h> /* For offsetof, used by PSEUDOVECSIZE. */
29 #endif
30
31 #ifdef ALLOC_DEBUG
32 #undef INLINE
33 #endif
34
35 /* Note that this declares bzero on OSF/1. How dumb. */
36
37 #include <signal.h>
38
39 #ifdef HAVE_GTK_AND_PTHREAD
40 #include <pthread.h>
41 #endif
42
43 /* This file is part of the core Lisp implementation, and thus must
44 deal with the real data structures. If the Lisp implementation is
45 replaced, this file likely will not be used. */
46
47 #undef HIDE_LISP_IMPLEMENTATION
48 #include "lisp.h"
49 #include "process.h"
50 #include "intervals.h"
51 #include "puresize.h"
52 #include "buffer.h"
53 #include "window.h"
54 #include "keyboard.h"
55 #include "frame.h"
56 #include "blockinput.h"
57 #include "character.h"
58 #include "syssignal.h"
59 #include "termhooks.h" /* For struct terminal. */
60 #include <setjmp.h>
61
62 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
63 memory. Can do this only if using gmalloc.c. */
64
65 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
66 #undef GC_MALLOC_CHECK
67 #endif
68
69 #ifdef HAVE_UNISTD_H
70 #include <unistd.h>
71 #else
72 extern POINTER_TYPE *sbrk ();
73 #endif
74
75 #ifdef HAVE_FCNTL_H
76 #define INCLUDED_FCNTL
77 #include <fcntl.h>
78 #endif
79 #ifndef O_WRONLY
80 #define O_WRONLY 1
81 #endif
82
83 #ifdef WINDOWSNT
84 #include <fcntl.h>
85 #include "w32.h"
86 #endif
87
88 #ifdef DOUG_LEA_MALLOC
89
90 #include <malloc.h>
91 /* malloc.h #defines this as size_t, at least in glibc2. */
92 #ifndef __malloc_size_t
93 #define __malloc_size_t int
94 #endif
95
96 /* Specify maximum number of areas to mmap. It would be nice to use a
97 value that explicitly means "no limit". */
98
99 #define MMAP_MAX_AREAS 100000000
100
101 #else /* not DOUG_LEA_MALLOC */
102
103 /* The following come from gmalloc.c. */
104
105 #define __malloc_size_t size_t
106 extern __malloc_size_t _bytes_used;
107 extern __malloc_size_t __malloc_extra_blocks;
108
109 #endif /* not DOUG_LEA_MALLOC */
110
111 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
112
113 /* When GTK uses the file chooser dialog, different backends can be loaded
114 dynamically. One such a backend is the Gnome VFS backend that gets loaded
115 if you run Gnome. That backend creates several threads and also allocates
116 memory with malloc.
117
118 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
119 functions below are called from malloc, there is a chance that one
120 of these threads preempts the Emacs main thread and the hook variables
121 end up in an inconsistent state. So we have a mutex to prevent that (note
122 that the backend handles concurrent access to malloc within its own threads
123 but Emacs code running in the main thread is not included in that control).
124
125 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
126 happens in one of the backend threads we will have two threads that tries
127 to run Emacs code at once, and the code is not prepared for that.
128 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
129
130 static pthread_mutex_t alloc_mutex;
131
132 #define BLOCK_INPUT_ALLOC \
133 do \
134 { \
135 if (pthread_equal (pthread_self (), main_thread)) \
136 BLOCK_INPUT; \
137 pthread_mutex_lock (&alloc_mutex); \
138 } \
139 while (0)
140 #define UNBLOCK_INPUT_ALLOC \
141 do \
142 { \
143 pthread_mutex_unlock (&alloc_mutex); \
144 if (pthread_equal (pthread_self (), main_thread)) \
145 UNBLOCK_INPUT; \
146 } \
147 while (0)
148
149 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
150
151 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
152 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
153
154 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
155
156 /* Value of _bytes_used, when spare_memory was freed. */
157
158 static __malloc_size_t bytes_used_when_full;
159
160 static __malloc_size_t bytes_used_when_reconsidered;
161
162 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
163 to a struct Lisp_String. */
164
165 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
166 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
167 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
168
169 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
170 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
171 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
172
173 /* Value is the number of bytes/chars of S, a pointer to a struct
174 Lisp_String. This must be used instead of STRING_BYTES (S) or
175 S->size during GC, because S->size contains the mark bit for
176 strings. */
177
178 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
179 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
180
181 /* Number of bytes of consing done since the last gc. */
182
183 int consing_since_gc;
184
185 /* Count the amount of consing of various sorts of space. */
186
187 EMACS_INT cons_cells_consed;
188 EMACS_INT floats_consed;
189 EMACS_INT vector_cells_consed;
190 EMACS_INT symbols_consed;
191 EMACS_INT string_chars_consed;
192 EMACS_INT misc_objects_consed;
193 EMACS_INT intervals_consed;
194 EMACS_INT strings_consed;
195
196 /* Minimum number of bytes of consing since GC before next GC. */
197
198 EMACS_INT gc_cons_threshold;
199
200 /* Similar minimum, computed from Vgc_cons_percentage. */
201
202 EMACS_INT gc_relative_threshold;
203
204 static Lisp_Object Vgc_cons_percentage;
205
206 /* Minimum number of bytes of consing since GC before next GC,
207 when memory is full. */
208
209 EMACS_INT memory_full_cons_threshold;
210
211 /* Nonzero during GC. */
212
213 int gc_in_progress;
214
215 /* Nonzero means abort if try to GC.
216 This is for code which is written on the assumption that
217 no GC will happen, so as to verify that assumption. */
218
219 int abort_on_gc;
220
221 /* Nonzero means display messages at beginning and end of GC. */
222
223 int garbage_collection_messages;
224
225 #ifndef VIRT_ADDR_VARIES
226 extern
227 #endif /* VIRT_ADDR_VARIES */
228 int malloc_sbrk_used;
229
230 #ifndef VIRT_ADDR_VARIES
231 extern
232 #endif /* VIRT_ADDR_VARIES */
233 int malloc_sbrk_unused;
234
235 /* Number of live and free conses etc. */
236
237 static int total_conses, total_markers, total_symbols, total_vector_size;
238 static int total_free_conses, total_free_markers, total_free_symbols;
239 static int total_free_floats, total_floats;
240
241 /* Points to memory space allocated as "spare", to be freed if we run
242 out of memory. We keep one large block, four cons-blocks, and
243 two string blocks. */
244
245 static char *spare_memory[7];
246
247 /* Amount of spare memory to keep in large reserve block. */
248
249 #define SPARE_MEMORY (1 << 14)
250
251 /* Number of extra blocks malloc should get when it needs more core. */
252
253 static int malloc_hysteresis;
254
255 /* Non-nil means defun should do purecopy on the function definition. */
256
257 Lisp_Object Vpurify_flag;
258
259 /* Non-nil means we are handling a memory-full error. */
260
261 Lisp_Object Vmemory_full;
262
263 #ifndef HAVE_SHM
264
265 /* Initialize it to a nonzero value to force it into data space
266 (rather than bss space). That way unexec will remap it into text
267 space (pure), on some systems. We have not implemented the
268 remapping on more recent systems because this is less important
269 nowadays than in the days of small memories and timesharing. */
270
271 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
272 #define PUREBEG (char *) pure
273
274 #else /* HAVE_SHM */
275
276 #define pure PURE_SEG_BITS /* Use shared memory segment */
277 #define PUREBEG (char *)PURE_SEG_BITS
278
279 #endif /* HAVE_SHM */
280
281 /* Pointer to the pure area, and its size. */
282
283 static char *purebeg;
284 static size_t pure_size;
285
286 /* Number of bytes of pure storage used before pure storage overflowed.
287 If this is non-zero, this implies that an overflow occurred. */
288
289 static size_t pure_bytes_used_before_overflow;
290
291 /* Value is non-zero if P points into pure space. */
292
293 #define PURE_POINTER_P(P) \
294 (((PNTR_COMPARISON_TYPE) (P) \
295 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
296 && ((PNTR_COMPARISON_TYPE) (P) \
297 >= (PNTR_COMPARISON_TYPE) purebeg))
298
299 /* Total number of bytes allocated in pure storage. */
300
301 EMACS_INT pure_bytes_used;
302
303 /* Index in pure at which next pure Lisp object will be allocated.. */
304
305 static EMACS_INT pure_bytes_used_lisp;
306
307 /* Number of bytes allocated for non-Lisp objects in pure storage. */
308
309 static EMACS_INT pure_bytes_used_non_lisp;
310
311 /* If nonzero, this is a warning delivered by malloc and not yet
312 displayed. */
313
314 char *pending_malloc_warning;
315
316 /* Pre-computed signal argument for use when memory is exhausted. */
317
318 Lisp_Object Vmemory_signal_data;
319
320 /* Maximum amount of C stack to save when a GC happens. */
321
322 #ifndef MAX_SAVE_STACK
323 #define MAX_SAVE_STACK 16000
324 #endif
325
326 /* Buffer in which we save a copy of the C stack at each GC. */
327
328 static char *stack_copy;
329 static int stack_copy_size;
330
331 /* Non-zero means ignore malloc warnings. Set during initialization.
332 Currently not used. */
333
334 static int ignore_warnings;
335
336 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
337
338 /* Hook run after GC has finished. */
339
340 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
341
342 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
343 EMACS_INT gcs_done; /* accumulated GCs */
344
345 static void mark_buffer P_ ((Lisp_Object));
346 static void mark_terminals P_ ((void));
347 extern void mark_kboards P_ ((void));
348 extern void mark_ttys P_ ((void));
349 extern void mark_backtrace P_ ((void));
350 static void gc_sweep P_ ((void));
351 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
352 static void mark_face_cache P_ ((struct face_cache *));
353
354 #ifdef HAVE_WINDOW_SYSTEM
355 extern void mark_fringe_data P_ ((void));
356 #endif /* HAVE_WINDOW_SYSTEM */
357
358 static struct Lisp_String *allocate_string P_ ((void));
359 static void compact_small_strings P_ ((void));
360 static void free_large_strings P_ ((void));
361 static void sweep_strings P_ ((void));
362
363 extern int message_enable_multibyte;
364
365 /* When scanning the C stack for live Lisp objects, Emacs keeps track
366 of what memory allocated via lisp_malloc is intended for what
367 purpose. This enumeration specifies the type of memory. */
368
369 enum mem_type
370 {
371 MEM_TYPE_NON_LISP,
372 MEM_TYPE_BUFFER,
373 MEM_TYPE_CONS,
374 MEM_TYPE_STRING,
375 MEM_TYPE_MISC,
376 MEM_TYPE_SYMBOL,
377 MEM_TYPE_FLOAT,
378 /* We used to keep separate mem_types for subtypes of vectors such as
379 process, hash_table, frame, terminal, and window, but we never made
380 use of the distinction, so it only caused source-code complexity
381 and runtime slowdown. Minor but pointless. */
382 MEM_TYPE_VECTORLIKE
383 };
384
385 static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
386 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
387 void refill_memory_reserve ();
388
389
390 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
391
392 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
393 #include <stdio.h> /* For fprintf. */
394 #endif
395
396 /* A unique object in pure space used to make some Lisp objects
397 on free lists recognizable in O(1). */
398
399 static Lisp_Object Vdead;
400
401 #ifdef GC_MALLOC_CHECK
402
403 enum mem_type allocated_mem_type;
404 static int dont_register_blocks;
405
406 #endif /* GC_MALLOC_CHECK */
407
408 /* A node in the red-black tree describing allocated memory containing
409 Lisp data. Each such block is recorded with its start and end
410 address when it is allocated, and removed from the tree when it
411 is freed.
412
413 A red-black tree is a balanced binary tree with the following
414 properties:
415
416 1. Every node is either red or black.
417 2. Every leaf is black.
418 3. If a node is red, then both of its children are black.
419 4. Every simple path from a node to a descendant leaf contains
420 the same number of black nodes.
421 5. The root is always black.
422
423 When nodes are inserted into the tree, or deleted from the tree,
424 the tree is "fixed" so that these properties are always true.
425
426 A red-black tree with N internal nodes has height at most 2
427 log(N+1). Searches, insertions and deletions are done in O(log N).
428 Please see a text book about data structures for a detailed
429 description of red-black trees. Any book worth its salt should
430 describe them. */
431
432 struct mem_node
433 {
434 /* Children of this node. These pointers are never NULL. When there
435 is no child, the value is MEM_NIL, which points to a dummy node. */
436 struct mem_node *left, *right;
437
438 /* The parent of this node. In the root node, this is NULL. */
439 struct mem_node *parent;
440
441 /* Start and end of allocated region. */
442 void *start, *end;
443
444 /* Node color. */
445 enum {MEM_BLACK, MEM_RED} color;
446
447 /* Memory type. */
448 enum mem_type type;
449 };
450
451 /* Base address of stack. Set in main. */
452
453 Lisp_Object *stack_base;
454
455 /* Root of the tree describing allocated Lisp memory. */
456
457 static struct mem_node *mem_root;
458
459 /* Lowest and highest known address in the heap. */
460
461 static void *min_heap_address, *max_heap_address;
462
463 /* Sentinel node of the tree. */
464
465 static struct mem_node mem_z;
466 #define MEM_NIL &mem_z
467
468 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
469 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT));
470 static void lisp_free P_ ((POINTER_TYPE *));
471 static void mark_stack P_ ((void));
472 static int live_vector_p P_ ((struct mem_node *, void *));
473 static int live_buffer_p P_ ((struct mem_node *, void *));
474 static int live_string_p P_ ((struct mem_node *, void *));
475 static int live_cons_p P_ ((struct mem_node *, void *));
476 static int live_symbol_p P_ ((struct mem_node *, void *));
477 static int live_float_p P_ ((struct mem_node *, void *));
478 static int live_misc_p P_ ((struct mem_node *, void *));
479 static void mark_maybe_object P_ ((Lisp_Object));
480 static void mark_memory P_ ((void *, void *, int));
481 static void mem_init P_ ((void));
482 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
483 static void mem_insert_fixup P_ ((struct mem_node *));
484 static void mem_rotate_left P_ ((struct mem_node *));
485 static void mem_rotate_right P_ ((struct mem_node *));
486 static void mem_delete P_ ((struct mem_node *));
487 static void mem_delete_fixup P_ ((struct mem_node *));
488 static INLINE struct mem_node *mem_find P_ ((void *));
489
490
491 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
492 static void check_gcpros P_ ((void));
493 #endif
494
495 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
496
497 /* Recording what needs to be marked for gc. */
498
499 struct gcpro *gcprolist;
500
501 /* Addresses of staticpro'd variables. Initialize it to a nonzero
502 value; otherwise some compilers put it into BSS. */
503
504 #define NSTATICS 0x600
505 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
506
507 /* Index of next unused slot in staticvec. */
508
509 static int staticidx = 0;
510
511 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
512
513
514 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
515 ALIGNMENT must be a power of 2. */
516
517 #define ALIGN(ptr, ALIGNMENT) \
518 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
519 & ~((ALIGNMENT) - 1)))
520
521
522 \f
523 /************************************************************************
524 Malloc
525 ************************************************************************/
526
527 /* Function malloc calls this if it finds we are near exhausting storage. */
528
529 void
530 malloc_warning (str)
531 char *str;
532 {
533 pending_malloc_warning = str;
534 }
535
536
537 /* Display an already-pending malloc warning. */
538
539 void
540 display_malloc_warning ()
541 {
542 call3 (intern ("display-warning"),
543 intern ("alloc"),
544 build_string (pending_malloc_warning),
545 intern ("emergency"));
546 pending_malloc_warning = 0;
547 }
548
549
550 #ifdef DOUG_LEA_MALLOC
551 # define BYTES_USED (mallinfo ().uordblks)
552 #else
553 # define BYTES_USED _bytes_used
554 #endif
555 \f
556 /* Called if we can't allocate relocatable space for a buffer. */
557
558 void
559 buffer_memory_full ()
560 {
561 /* If buffers use the relocating allocator, no need to free
562 spare_memory, because we may have plenty of malloc space left
563 that we could get, and if we don't, the malloc that fails will
564 itself cause spare_memory to be freed. If buffers don't use the
565 relocating allocator, treat this like any other failing
566 malloc. */
567
568 #ifndef REL_ALLOC
569 memory_full ();
570 #endif
571
572 /* This used to call error, but if we've run out of memory, we could
573 get infinite recursion trying to build the string. */
574 xsignal (Qnil, Vmemory_signal_data);
575 }
576
577
578 #ifdef XMALLOC_OVERRUN_CHECK
579
580 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
581 and a 16 byte trailer around each block.
582
583 The header consists of 12 fixed bytes + a 4 byte integer contaning the
584 original block size, while the trailer consists of 16 fixed bytes.
585
586 The header is used to detect whether this block has been allocated
587 through these functions -- as it seems that some low-level libc
588 functions may bypass the malloc hooks.
589 */
590
591
592 #define XMALLOC_OVERRUN_CHECK_SIZE 16
593
594 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
595 { 0x9a, 0x9b, 0xae, 0xaf,
596 0xbf, 0xbe, 0xce, 0xcf,
597 0xea, 0xeb, 0xec, 0xed };
598
599 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
600 { 0xaa, 0xab, 0xac, 0xad,
601 0xba, 0xbb, 0xbc, 0xbd,
602 0xca, 0xcb, 0xcc, 0xcd,
603 0xda, 0xdb, 0xdc, 0xdd };
604
605 /* Macros to insert and extract the block size in the header. */
606
607 #define XMALLOC_PUT_SIZE(ptr, size) \
608 (ptr[-1] = (size & 0xff), \
609 ptr[-2] = ((size >> 8) & 0xff), \
610 ptr[-3] = ((size >> 16) & 0xff), \
611 ptr[-4] = ((size >> 24) & 0xff))
612
613 #define XMALLOC_GET_SIZE(ptr) \
614 (size_t)((unsigned)(ptr[-1]) | \
615 ((unsigned)(ptr[-2]) << 8) | \
616 ((unsigned)(ptr[-3]) << 16) | \
617 ((unsigned)(ptr[-4]) << 24))
618
619
620 /* The call depth in overrun_check functions. For example, this might happen:
621 xmalloc()
622 overrun_check_malloc()
623 -> malloc -> (via hook)_-> emacs_blocked_malloc
624 -> overrun_check_malloc
625 call malloc (hooks are NULL, so real malloc is called).
626 malloc returns 10000.
627 add overhead, return 10016.
628 <- (back in overrun_check_malloc)
629 add overhead again, return 10032
630 xmalloc returns 10032.
631
632 (time passes).
633
634 xfree(10032)
635 overrun_check_free(10032)
636 decrease overhed
637 free(10016) <- crash, because 10000 is the original pointer. */
638
639 static int check_depth;
640
641 /* Like malloc, but wraps allocated block with header and trailer. */
642
643 POINTER_TYPE *
644 overrun_check_malloc (size)
645 size_t size;
646 {
647 register unsigned char *val;
648 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
649
650 val = (unsigned char *) malloc (size + overhead);
651 if (val && check_depth == 1)
652 {
653 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
654 val += XMALLOC_OVERRUN_CHECK_SIZE;
655 XMALLOC_PUT_SIZE(val, size);
656 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
657 }
658 --check_depth;
659 return (POINTER_TYPE *)val;
660 }
661
662
663 /* Like realloc, but checks old block for overrun, and wraps new block
664 with header and trailer. */
665
666 POINTER_TYPE *
667 overrun_check_realloc (block, size)
668 POINTER_TYPE *block;
669 size_t size;
670 {
671 register unsigned char *val = (unsigned char *)block;
672 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
673
674 if (val
675 && check_depth == 1
676 && bcmp (xmalloc_overrun_check_header,
677 val - XMALLOC_OVERRUN_CHECK_SIZE,
678 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
679 {
680 size_t osize = XMALLOC_GET_SIZE (val);
681 if (bcmp (xmalloc_overrun_check_trailer,
682 val + osize,
683 XMALLOC_OVERRUN_CHECK_SIZE))
684 abort ();
685 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
686 val -= XMALLOC_OVERRUN_CHECK_SIZE;
687 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
688 }
689
690 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
691
692 if (val && check_depth == 1)
693 {
694 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
695 val += XMALLOC_OVERRUN_CHECK_SIZE;
696 XMALLOC_PUT_SIZE(val, size);
697 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
698 }
699 --check_depth;
700 return (POINTER_TYPE *)val;
701 }
702
703 /* Like free, but checks block for overrun. */
704
705 void
706 overrun_check_free (block)
707 POINTER_TYPE *block;
708 {
709 unsigned char *val = (unsigned char *)block;
710
711 ++check_depth;
712 if (val
713 && check_depth == 1
714 && bcmp (xmalloc_overrun_check_header,
715 val - XMALLOC_OVERRUN_CHECK_SIZE,
716 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
717 {
718 size_t osize = XMALLOC_GET_SIZE (val);
719 if (bcmp (xmalloc_overrun_check_trailer,
720 val + osize,
721 XMALLOC_OVERRUN_CHECK_SIZE))
722 abort ();
723 #ifdef XMALLOC_CLEAR_FREE_MEMORY
724 val -= XMALLOC_OVERRUN_CHECK_SIZE;
725 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
726 #else
727 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
728 val -= XMALLOC_OVERRUN_CHECK_SIZE;
729 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
730 #endif
731 }
732
733 free (val);
734 --check_depth;
735 }
736
737 #undef malloc
738 #undef realloc
739 #undef free
740 #define malloc overrun_check_malloc
741 #define realloc overrun_check_realloc
742 #define free overrun_check_free
743 #endif
744
745 #ifdef SYNC_INPUT
746 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
747 there's no need to block input around malloc. */
748 #define MALLOC_BLOCK_INPUT ((void)0)
749 #define MALLOC_UNBLOCK_INPUT ((void)0)
750 #else
751 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
752 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
753 #endif
754
755 /* Like malloc but check for no memory and block interrupt input.. */
756
757 POINTER_TYPE *
758 xmalloc (size)
759 size_t size;
760 {
761 register POINTER_TYPE *val;
762
763 MALLOC_BLOCK_INPUT;
764 val = (POINTER_TYPE *) malloc (size);
765 MALLOC_UNBLOCK_INPUT;
766
767 if (!val && size)
768 memory_full ();
769 return val;
770 }
771
772
773 /* Like realloc but check for no memory and block interrupt input.. */
774
775 POINTER_TYPE *
776 xrealloc (block, size)
777 POINTER_TYPE *block;
778 size_t size;
779 {
780 register POINTER_TYPE *val;
781
782 MALLOC_BLOCK_INPUT;
783 /* We must call malloc explicitly when BLOCK is 0, since some
784 reallocs don't do this. */
785 if (! block)
786 val = (POINTER_TYPE *) malloc (size);
787 else
788 val = (POINTER_TYPE *) realloc (block, size);
789 MALLOC_UNBLOCK_INPUT;
790
791 if (!val && size) memory_full ();
792 return val;
793 }
794
795
796 /* Like free but block interrupt input. */
797
798 void
799 xfree (block)
800 POINTER_TYPE *block;
801 {
802 MALLOC_BLOCK_INPUT;
803 free (block);
804 MALLOC_UNBLOCK_INPUT;
805 /* We don't call refill_memory_reserve here
806 because that duplicates doing so in emacs_blocked_free
807 and the criterion should go there. */
808 }
809
810
811 /* Like strdup, but uses xmalloc. */
812
813 char *
814 xstrdup (s)
815 const char *s;
816 {
817 size_t len = strlen (s) + 1;
818 char *p = (char *) xmalloc (len);
819 bcopy (s, p, len);
820 return p;
821 }
822
823
824 /* Unwind for SAFE_ALLOCA */
825
826 Lisp_Object
827 safe_alloca_unwind (arg)
828 Lisp_Object arg;
829 {
830 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
831
832 p->dogc = 0;
833 xfree (p->pointer);
834 p->pointer = 0;
835 free_misc (arg);
836 return Qnil;
837 }
838
839
840 /* Like malloc but used for allocating Lisp data. NBYTES is the
841 number of bytes to allocate, TYPE describes the intended use of the
842 allcated memory block (for strings, for conses, ...). */
843
844 #ifndef USE_LSB_TAG
845 static void *lisp_malloc_loser;
846 #endif
847
848 static POINTER_TYPE *
849 lisp_malloc (nbytes, type)
850 size_t nbytes;
851 enum mem_type type;
852 {
853 register void *val;
854
855 MALLOC_BLOCK_INPUT;
856
857 #ifdef GC_MALLOC_CHECK
858 allocated_mem_type = type;
859 #endif
860
861 val = (void *) malloc (nbytes);
862
863 #ifndef USE_LSB_TAG
864 /* If the memory just allocated cannot be addressed thru a Lisp
865 object's pointer, and it needs to be,
866 that's equivalent to running out of memory. */
867 if (val && type != MEM_TYPE_NON_LISP)
868 {
869 Lisp_Object tem;
870 XSETCONS (tem, (char *) val + nbytes - 1);
871 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
872 {
873 lisp_malloc_loser = val;
874 free (val);
875 val = 0;
876 }
877 }
878 #endif
879
880 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
881 if (val && type != MEM_TYPE_NON_LISP)
882 mem_insert (val, (char *) val + nbytes, type);
883 #endif
884
885 MALLOC_UNBLOCK_INPUT;
886 if (!val && nbytes)
887 memory_full ();
888 return val;
889 }
890
891 /* Free BLOCK. This must be called to free memory allocated with a
892 call to lisp_malloc. */
893
894 static void
895 lisp_free (block)
896 POINTER_TYPE *block;
897 {
898 MALLOC_BLOCK_INPUT;
899 free (block);
900 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
901 mem_delete (mem_find (block));
902 #endif
903 MALLOC_UNBLOCK_INPUT;
904 }
905
906 /* Allocation of aligned blocks of memory to store Lisp data. */
907 /* The entry point is lisp_align_malloc which returns blocks of at most */
908 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
909
910 /* Use posix_memalloc if the system has it and we're using the system's
911 malloc (because our gmalloc.c routines don't have posix_memalign although
912 its memalloc could be used). */
913 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
914 #define USE_POSIX_MEMALIGN 1
915 #endif
916
917 /* BLOCK_ALIGN has to be a power of 2. */
918 #define BLOCK_ALIGN (1 << 10)
919
920 /* Padding to leave at the end of a malloc'd block. This is to give
921 malloc a chance to minimize the amount of memory wasted to alignment.
922 It should be tuned to the particular malloc library used.
923 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
924 posix_memalign on the other hand would ideally prefer a value of 4
925 because otherwise, there's 1020 bytes wasted between each ablocks.
926 In Emacs, testing shows that those 1020 can most of the time be
927 efficiently used by malloc to place other objects, so a value of 0 can
928 still preferable unless you have a lot of aligned blocks and virtually
929 nothing else. */
930 #define BLOCK_PADDING 0
931 #define BLOCK_BYTES \
932 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
933
934 /* Internal data structures and constants. */
935
936 #define ABLOCKS_SIZE 16
937
938 /* An aligned block of memory. */
939 struct ablock
940 {
941 union
942 {
943 char payload[BLOCK_BYTES];
944 struct ablock *next_free;
945 } x;
946 /* `abase' is the aligned base of the ablocks. */
947 /* It is overloaded to hold the virtual `busy' field that counts
948 the number of used ablock in the parent ablocks.
949 The first ablock has the `busy' field, the others have the `abase'
950 field. To tell the difference, we assume that pointers will have
951 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
952 is used to tell whether the real base of the parent ablocks is `abase'
953 (if not, the word before the first ablock holds a pointer to the
954 real base). */
955 struct ablocks *abase;
956 /* The padding of all but the last ablock is unused. The padding of
957 the last ablock in an ablocks is not allocated. */
958 #if BLOCK_PADDING
959 char padding[BLOCK_PADDING];
960 #endif
961 };
962
963 /* A bunch of consecutive aligned blocks. */
964 struct ablocks
965 {
966 struct ablock blocks[ABLOCKS_SIZE];
967 };
968
969 /* Size of the block requested from malloc or memalign. */
970 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
971
972 #define ABLOCK_ABASE(block) \
973 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
974 ? (struct ablocks *)(block) \
975 : (block)->abase)
976
977 /* Virtual `busy' field. */
978 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
979
980 /* Pointer to the (not necessarily aligned) malloc block. */
981 #ifdef USE_POSIX_MEMALIGN
982 #define ABLOCKS_BASE(abase) (abase)
983 #else
984 #define ABLOCKS_BASE(abase) \
985 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
986 #endif
987
988 /* The list of free ablock. */
989 static struct ablock *free_ablock;
990
991 /* Allocate an aligned block of nbytes.
992 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
993 smaller or equal to BLOCK_BYTES. */
994 static POINTER_TYPE *
995 lisp_align_malloc (nbytes, type)
996 size_t nbytes;
997 enum mem_type type;
998 {
999 void *base, *val;
1000 struct ablocks *abase;
1001
1002 eassert (nbytes <= BLOCK_BYTES);
1003
1004 MALLOC_BLOCK_INPUT;
1005
1006 #ifdef GC_MALLOC_CHECK
1007 allocated_mem_type = type;
1008 #endif
1009
1010 if (!free_ablock)
1011 {
1012 int i;
1013 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
1014
1015 #ifdef DOUG_LEA_MALLOC
1016 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1017 because mapped region contents are not preserved in
1018 a dumped Emacs. */
1019 mallopt (M_MMAP_MAX, 0);
1020 #endif
1021
1022 #ifdef USE_POSIX_MEMALIGN
1023 {
1024 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1025 if (err)
1026 base = NULL;
1027 abase = base;
1028 }
1029 #else
1030 base = malloc (ABLOCKS_BYTES);
1031 abase = ALIGN (base, BLOCK_ALIGN);
1032 #endif
1033
1034 if (base == 0)
1035 {
1036 MALLOC_UNBLOCK_INPUT;
1037 memory_full ();
1038 }
1039
1040 aligned = (base == abase);
1041 if (!aligned)
1042 ((void**)abase)[-1] = base;
1043
1044 #ifdef DOUG_LEA_MALLOC
1045 /* Back to a reasonable maximum of mmap'ed areas. */
1046 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1047 #endif
1048
1049 #ifndef USE_LSB_TAG
1050 /* If the memory just allocated cannot be addressed thru a Lisp
1051 object's pointer, and it needs to be, that's equivalent to
1052 running out of memory. */
1053 if (type != MEM_TYPE_NON_LISP)
1054 {
1055 Lisp_Object tem;
1056 char *end = (char *) base + ABLOCKS_BYTES - 1;
1057 XSETCONS (tem, end);
1058 if ((char *) XCONS (tem) != end)
1059 {
1060 lisp_malloc_loser = base;
1061 free (base);
1062 MALLOC_UNBLOCK_INPUT;
1063 memory_full ();
1064 }
1065 }
1066 #endif
1067
1068 /* Initialize the blocks and put them on the free list.
1069 Is `base' was not properly aligned, we can't use the last block. */
1070 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1071 {
1072 abase->blocks[i].abase = abase;
1073 abase->blocks[i].x.next_free = free_ablock;
1074 free_ablock = &abase->blocks[i];
1075 }
1076 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1077
1078 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1079 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1080 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1081 eassert (ABLOCKS_BASE (abase) == base);
1082 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1083 }
1084
1085 abase = ABLOCK_ABASE (free_ablock);
1086 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1087 val = free_ablock;
1088 free_ablock = free_ablock->x.next_free;
1089
1090 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1091 if (val && type != MEM_TYPE_NON_LISP)
1092 mem_insert (val, (char *) val + nbytes, type);
1093 #endif
1094
1095 MALLOC_UNBLOCK_INPUT;
1096 if (!val && nbytes)
1097 memory_full ();
1098
1099 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1100 return val;
1101 }
1102
1103 static void
1104 lisp_align_free (block)
1105 POINTER_TYPE *block;
1106 {
1107 struct ablock *ablock = block;
1108 struct ablocks *abase = ABLOCK_ABASE (ablock);
1109
1110 MALLOC_BLOCK_INPUT;
1111 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1112 mem_delete (mem_find (block));
1113 #endif
1114 /* Put on free list. */
1115 ablock->x.next_free = free_ablock;
1116 free_ablock = ablock;
1117 /* Update busy count. */
1118 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1119
1120 if (2 > (long) ABLOCKS_BUSY (abase))
1121 { /* All the blocks are free. */
1122 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1123 struct ablock **tem = &free_ablock;
1124 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1125
1126 while (*tem)
1127 {
1128 if (*tem >= (struct ablock *) abase && *tem < atop)
1129 {
1130 i++;
1131 *tem = (*tem)->x.next_free;
1132 }
1133 else
1134 tem = &(*tem)->x.next_free;
1135 }
1136 eassert ((aligned & 1) == aligned);
1137 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1138 #ifdef USE_POSIX_MEMALIGN
1139 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1140 #endif
1141 free (ABLOCKS_BASE (abase));
1142 }
1143 MALLOC_UNBLOCK_INPUT;
1144 }
1145
1146 /* Return a new buffer structure allocated from the heap with
1147 a call to lisp_malloc. */
1148
1149 struct buffer *
1150 allocate_buffer ()
1151 {
1152 struct buffer *b
1153 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1154 MEM_TYPE_BUFFER);
1155 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1156 XSETPVECTYPE (b, PVEC_BUFFER);
1157 return b;
1158 }
1159
1160 \f
1161 #ifndef SYSTEM_MALLOC
1162
1163 /* Arranging to disable input signals while we're in malloc.
1164
1165 This only works with GNU malloc. To help out systems which can't
1166 use GNU malloc, all the calls to malloc, realloc, and free
1167 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1168 pair; unfortunately, we have no idea what C library functions
1169 might call malloc, so we can't really protect them unless you're
1170 using GNU malloc. Fortunately, most of the major operating systems
1171 can use GNU malloc. */
1172
1173 #ifndef SYNC_INPUT
1174 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1175 there's no need to block input around malloc. */
1176
1177 #ifndef DOUG_LEA_MALLOC
1178 extern void * (*__malloc_hook) P_ ((size_t, const void *));
1179 extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1180 extern void (*__free_hook) P_ ((void *, const void *));
1181 /* Else declared in malloc.h, perhaps with an extra arg. */
1182 #endif /* DOUG_LEA_MALLOC */
1183 static void * (*old_malloc_hook) P_ ((size_t, const void *));
1184 static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
1185 static void (*old_free_hook) P_ ((void*, const void*));
1186
1187 /* This function is used as the hook for free to call. */
1188
1189 static void
1190 emacs_blocked_free (ptr, ptr2)
1191 void *ptr;
1192 const void *ptr2;
1193 {
1194 BLOCK_INPUT_ALLOC;
1195
1196 #ifdef GC_MALLOC_CHECK
1197 if (ptr)
1198 {
1199 struct mem_node *m;
1200
1201 m = mem_find (ptr);
1202 if (m == MEM_NIL || m->start != ptr)
1203 {
1204 fprintf (stderr,
1205 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1206 abort ();
1207 }
1208 else
1209 {
1210 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1211 mem_delete (m);
1212 }
1213 }
1214 #endif /* GC_MALLOC_CHECK */
1215
1216 __free_hook = old_free_hook;
1217 free (ptr);
1218
1219 /* If we released our reserve (due to running out of memory),
1220 and we have a fair amount free once again,
1221 try to set aside another reserve in case we run out once more. */
1222 if (! NILP (Vmemory_full)
1223 /* Verify there is enough space that even with the malloc
1224 hysteresis this call won't run out again.
1225 The code here is correct as long as SPARE_MEMORY
1226 is substantially larger than the block size malloc uses. */
1227 && (bytes_used_when_full
1228 > ((bytes_used_when_reconsidered = BYTES_USED)
1229 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1230 refill_memory_reserve ();
1231
1232 __free_hook = emacs_blocked_free;
1233 UNBLOCK_INPUT_ALLOC;
1234 }
1235
1236
1237 /* This function is the malloc hook that Emacs uses. */
1238
1239 static void *
1240 emacs_blocked_malloc (size, ptr)
1241 size_t size;
1242 const void *ptr;
1243 {
1244 void *value;
1245
1246 BLOCK_INPUT_ALLOC;
1247 __malloc_hook = old_malloc_hook;
1248 #ifdef DOUG_LEA_MALLOC
1249 /* Segfaults on my system. --lorentey */
1250 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1251 #else
1252 __malloc_extra_blocks = malloc_hysteresis;
1253 #endif
1254
1255 value = (void *) malloc (size);
1256
1257 #ifdef GC_MALLOC_CHECK
1258 {
1259 struct mem_node *m = mem_find (value);
1260 if (m != MEM_NIL)
1261 {
1262 fprintf (stderr, "Malloc returned %p which is already in use\n",
1263 value);
1264 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1265 m->start, m->end, (char *) m->end - (char *) m->start,
1266 m->type);
1267 abort ();
1268 }
1269
1270 if (!dont_register_blocks)
1271 {
1272 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1273 allocated_mem_type = MEM_TYPE_NON_LISP;
1274 }
1275 }
1276 #endif /* GC_MALLOC_CHECK */
1277
1278 __malloc_hook = emacs_blocked_malloc;
1279 UNBLOCK_INPUT_ALLOC;
1280
1281 /* fprintf (stderr, "%p malloc\n", value); */
1282 return value;
1283 }
1284
1285
1286 /* This function is the realloc hook that Emacs uses. */
1287
1288 static void *
1289 emacs_blocked_realloc (ptr, size, ptr2)
1290 void *ptr;
1291 size_t size;
1292 const void *ptr2;
1293 {
1294 void *value;
1295
1296 BLOCK_INPUT_ALLOC;
1297 __realloc_hook = old_realloc_hook;
1298
1299 #ifdef GC_MALLOC_CHECK
1300 if (ptr)
1301 {
1302 struct mem_node *m = mem_find (ptr);
1303 if (m == MEM_NIL || m->start != ptr)
1304 {
1305 fprintf (stderr,
1306 "Realloc of %p which wasn't allocated with malloc\n",
1307 ptr);
1308 abort ();
1309 }
1310
1311 mem_delete (m);
1312 }
1313
1314 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1315
1316 /* Prevent malloc from registering blocks. */
1317 dont_register_blocks = 1;
1318 #endif /* GC_MALLOC_CHECK */
1319
1320 value = (void *) realloc (ptr, size);
1321
1322 #ifdef GC_MALLOC_CHECK
1323 dont_register_blocks = 0;
1324
1325 {
1326 struct mem_node *m = mem_find (value);
1327 if (m != MEM_NIL)
1328 {
1329 fprintf (stderr, "Realloc returns memory that is already in use\n");
1330 abort ();
1331 }
1332
1333 /* Can't handle zero size regions in the red-black tree. */
1334 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1335 }
1336
1337 /* fprintf (stderr, "%p <- realloc\n", value); */
1338 #endif /* GC_MALLOC_CHECK */
1339
1340 __realloc_hook = emacs_blocked_realloc;
1341 UNBLOCK_INPUT_ALLOC;
1342
1343 return value;
1344 }
1345
1346
1347 #ifdef HAVE_GTK_AND_PTHREAD
1348 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1349 normal malloc. Some thread implementations need this as they call
1350 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1351 calls malloc because it is the first call, and we have an endless loop. */
1352
1353 void
1354 reset_malloc_hooks ()
1355 {
1356 __free_hook = old_free_hook;
1357 __malloc_hook = old_malloc_hook;
1358 __realloc_hook = old_realloc_hook;
1359 }
1360 #endif /* HAVE_GTK_AND_PTHREAD */
1361
1362
1363 /* Called from main to set up malloc to use our hooks. */
1364
1365 void
1366 uninterrupt_malloc ()
1367 {
1368 #ifdef HAVE_GTK_AND_PTHREAD
1369 pthread_mutexattr_t attr;
1370
1371 /* GLIBC has a faster way to do this, but lets keep it portable.
1372 This is according to the Single UNIX Specification. */
1373 pthread_mutexattr_init (&attr);
1374 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1375 pthread_mutex_init (&alloc_mutex, &attr);
1376 #endif /* HAVE_GTK_AND_PTHREAD */
1377
1378 if (__free_hook != emacs_blocked_free)
1379 old_free_hook = __free_hook;
1380 __free_hook = emacs_blocked_free;
1381
1382 if (__malloc_hook != emacs_blocked_malloc)
1383 old_malloc_hook = __malloc_hook;
1384 __malloc_hook = emacs_blocked_malloc;
1385
1386 if (__realloc_hook != emacs_blocked_realloc)
1387 old_realloc_hook = __realloc_hook;
1388 __realloc_hook = emacs_blocked_realloc;
1389 }
1390
1391 #endif /* not SYNC_INPUT */
1392 #endif /* not SYSTEM_MALLOC */
1393
1394
1395 \f
1396 /***********************************************************************
1397 Interval Allocation
1398 ***********************************************************************/
1399
1400 /* Number of intervals allocated in an interval_block structure.
1401 The 1020 is 1024 minus malloc overhead. */
1402
1403 #define INTERVAL_BLOCK_SIZE \
1404 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1405
1406 /* Intervals are allocated in chunks in form of an interval_block
1407 structure. */
1408
1409 struct interval_block
1410 {
1411 /* Place `intervals' first, to preserve alignment. */
1412 struct interval intervals[INTERVAL_BLOCK_SIZE];
1413 struct interval_block *next;
1414 };
1415
1416 /* Current interval block. Its `next' pointer points to older
1417 blocks. */
1418
1419 static struct interval_block *interval_block;
1420
1421 /* Index in interval_block above of the next unused interval
1422 structure. */
1423
1424 static int interval_block_index;
1425
1426 /* Number of free and live intervals. */
1427
1428 static int total_free_intervals, total_intervals;
1429
1430 /* List of free intervals. */
1431
1432 INTERVAL interval_free_list;
1433
1434 /* Total number of interval blocks now in use. */
1435
1436 static int n_interval_blocks;
1437
1438
1439 /* Initialize interval allocation. */
1440
1441 static void
1442 init_intervals ()
1443 {
1444 interval_block = NULL;
1445 interval_block_index = INTERVAL_BLOCK_SIZE;
1446 interval_free_list = 0;
1447 n_interval_blocks = 0;
1448 }
1449
1450
1451 /* Return a new interval. */
1452
1453 INTERVAL
1454 make_interval ()
1455 {
1456 INTERVAL val;
1457
1458 /* eassert (!handling_signal); */
1459
1460 MALLOC_BLOCK_INPUT;
1461
1462 if (interval_free_list)
1463 {
1464 val = interval_free_list;
1465 interval_free_list = INTERVAL_PARENT (interval_free_list);
1466 }
1467 else
1468 {
1469 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1470 {
1471 register struct interval_block *newi;
1472
1473 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1474 MEM_TYPE_NON_LISP);
1475
1476 newi->next = interval_block;
1477 interval_block = newi;
1478 interval_block_index = 0;
1479 n_interval_blocks++;
1480 }
1481 val = &interval_block->intervals[interval_block_index++];
1482 }
1483
1484 MALLOC_UNBLOCK_INPUT;
1485
1486 consing_since_gc += sizeof (struct interval);
1487 intervals_consed++;
1488 RESET_INTERVAL (val);
1489 val->gcmarkbit = 0;
1490 return val;
1491 }
1492
1493
1494 /* Mark Lisp objects in interval I. */
1495
1496 static void
1497 mark_interval (i, dummy)
1498 register INTERVAL i;
1499 Lisp_Object dummy;
1500 {
1501 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1502 i->gcmarkbit = 1;
1503 mark_object (i->plist);
1504 }
1505
1506
1507 /* Mark the interval tree rooted in TREE. Don't call this directly;
1508 use the macro MARK_INTERVAL_TREE instead. */
1509
1510 static void
1511 mark_interval_tree (tree)
1512 register INTERVAL tree;
1513 {
1514 /* No need to test if this tree has been marked already; this
1515 function is always called through the MARK_INTERVAL_TREE macro,
1516 which takes care of that. */
1517
1518 traverse_intervals_noorder (tree, mark_interval, Qnil);
1519 }
1520
1521
1522 /* Mark the interval tree rooted in I. */
1523
1524 #define MARK_INTERVAL_TREE(i) \
1525 do { \
1526 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1527 mark_interval_tree (i); \
1528 } while (0)
1529
1530
1531 #define UNMARK_BALANCE_INTERVALS(i) \
1532 do { \
1533 if (! NULL_INTERVAL_P (i)) \
1534 (i) = balance_intervals (i); \
1535 } while (0)
1536
1537 \f
1538 /* Number support. If NO_UNION_TYPE isn't in effect, we
1539 can't create number objects in macros. */
1540 #ifndef make_number
1541 Lisp_Object
1542 make_number (n)
1543 EMACS_INT n;
1544 {
1545 Lisp_Object obj;
1546 obj.s.val = n;
1547 obj.s.type = Lisp_Int;
1548 return obj;
1549 }
1550 #endif
1551 \f
1552 /***********************************************************************
1553 String Allocation
1554 ***********************************************************************/
1555
1556 /* Lisp_Strings are allocated in string_block structures. When a new
1557 string_block is allocated, all the Lisp_Strings it contains are
1558 added to a free-list string_free_list. When a new Lisp_String is
1559 needed, it is taken from that list. During the sweep phase of GC,
1560 string_blocks that are entirely free are freed, except two which
1561 we keep.
1562
1563 String data is allocated from sblock structures. Strings larger
1564 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1565 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1566
1567 Sblocks consist internally of sdata structures, one for each
1568 Lisp_String. The sdata structure points to the Lisp_String it
1569 belongs to. The Lisp_String points back to the `u.data' member of
1570 its sdata structure.
1571
1572 When a Lisp_String is freed during GC, it is put back on
1573 string_free_list, and its `data' member and its sdata's `string'
1574 pointer is set to null. The size of the string is recorded in the
1575 `u.nbytes' member of the sdata. So, sdata structures that are no
1576 longer used, can be easily recognized, and it's easy to compact the
1577 sblocks of small strings which we do in compact_small_strings. */
1578
1579 /* Size in bytes of an sblock structure used for small strings. This
1580 is 8192 minus malloc overhead. */
1581
1582 #define SBLOCK_SIZE 8188
1583
1584 /* Strings larger than this are considered large strings. String data
1585 for large strings is allocated from individual sblocks. */
1586
1587 #define LARGE_STRING_BYTES 1024
1588
1589 /* Structure describing string memory sub-allocated from an sblock.
1590 This is where the contents of Lisp strings are stored. */
1591
1592 struct sdata
1593 {
1594 /* Back-pointer to the string this sdata belongs to. If null, this
1595 structure is free, and the NBYTES member of the union below
1596 contains the string's byte size (the same value that STRING_BYTES
1597 would return if STRING were non-null). If non-null, STRING_BYTES
1598 (STRING) is the size of the data, and DATA contains the string's
1599 contents. */
1600 struct Lisp_String *string;
1601
1602 #ifdef GC_CHECK_STRING_BYTES
1603
1604 EMACS_INT nbytes;
1605 unsigned char data[1];
1606
1607 #define SDATA_NBYTES(S) (S)->nbytes
1608 #define SDATA_DATA(S) (S)->data
1609
1610 #else /* not GC_CHECK_STRING_BYTES */
1611
1612 union
1613 {
1614 /* When STRING in non-null. */
1615 unsigned char data[1];
1616
1617 /* When STRING is null. */
1618 EMACS_INT nbytes;
1619 } u;
1620
1621
1622 #define SDATA_NBYTES(S) (S)->u.nbytes
1623 #define SDATA_DATA(S) (S)->u.data
1624
1625 #endif /* not GC_CHECK_STRING_BYTES */
1626 };
1627
1628
1629 /* Structure describing a block of memory which is sub-allocated to
1630 obtain string data memory for strings. Blocks for small strings
1631 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1632 as large as needed. */
1633
1634 struct sblock
1635 {
1636 /* Next in list. */
1637 struct sblock *next;
1638
1639 /* Pointer to the next free sdata block. This points past the end
1640 of the sblock if there isn't any space left in this block. */
1641 struct sdata *next_free;
1642
1643 /* Start of data. */
1644 struct sdata first_data;
1645 };
1646
1647 /* Number of Lisp strings in a string_block structure. The 1020 is
1648 1024 minus malloc overhead. */
1649
1650 #define STRING_BLOCK_SIZE \
1651 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1652
1653 /* Structure describing a block from which Lisp_String structures
1654 are allocated. */
1655
1656 struct string_block
1657 {
1658 /* Place `strings' first, to preserve alignment. */
1659 struct Lisp_String strings[STRING_BLOCK_SIZE];
1660 struct string_block *next;
1661 };
1662
1663 /* Head and tail of the list of sblock structures holding Lisp string
1664 data. We always allocate from current_sblock. The NEXT pointers
1665 in the sblock structures go from oldest_sblock to current_sblock. */
1666
1667 static struct sblock *oldest_sblock, *current_sblock;
1668
1669 /* List of sblocks for large strings. */
1670
1671 static struct sblock *large_sblocks;
1672
1673 /* List of string_block structures, and how many there are. */
1674
1675 static struct string_block *string_blocks;
1676 static int n_string_blocks;
1677
1678 /* Free-list of Lisp_Strings. */
1679
1680 static struct Lisp_String *string_free_list;
1681
1682 /* Number of live and free Lisp_Strings. */
1683
1684 static int total_strings, total_free_strings;
1685
1686 /* Number of bytes used by live strings. */
1687
1688 static int total_string_size;
1689
1690 /* Given a pointer to a Lisp_String S which is on the free-list
1691 string_free_list, return a pointer to its successor in the
1692 free-list. */
1693
1694 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1695
1696 /* Return a pointer to the sdata structure belonging to Lisp string S.
1697 S must be live, i.e. S->data must not be null. S->data is actually
1698 a pointer to the `u.data' member of its sdata structure; the
1699 structure starts at a constant offset in front of that. */
1700
1701 #ifdef GC_CHECK_STRING_BYTES
1702
1703 #define SDATA_OF_STRING(S) \
1704 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1705 - sizeof (EMACS_INT)))
1706
1707 #else /* not GC_CHECK_STRING_BYTES */
1708
1709 #define SDATA_OF_STRING(S) \
1710 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1711
1712 #endif /* not GC_CHECK_STRING_BYTES */
1713
1714
1715 #ifdef GC_CHECK_STRING_OVERRUN
1716
1717 /* We check for overrun in string data blocks by appending a small
1718 "cookie" after each allocated string data block, and check for the
1719 presence of this cookie during GC. */
1720
1721 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1722 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1723 { 0xde, 0xad, 0xbe, 0xef };
1724
1725 #else
1726 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1727 #endif
1728
1729 /* Value is the size of an sdata structure large enough to hold NBYTES
1730 bytes of string data. The value returned includes a terminating
1731 NUL byte, the size of the sdata structure, and padding. */
1732
1733 #ifdef GC_CHECK_STRING_BYTES
1734
1735 #define SDATA_SIZE(NBYTES) \
1736 ((sizeof (struct Lisp_String *) \
1737 + (NBYTES) + 1 \
1738 + sizeof (EMACS_INT) \
1739 + sizeof (EMACS_INT) - 1) \
1740 & ~(sizeof (EMACS_INT) - 1))
1741
1742 #else /* not GC_CHECK_STRING_BYTES */
1743
1744 #define SDATA_SIZE(NBYTES) \
1745 ((sizeof (struct Lisp_String *) \
1746 + (NBYTES) + 1 \
1747 + sizeof (EMACS_INT) - 1) \
1748 & ~(sizeof (EMACS_INT) - 1))
1749
1750 #endif /* not GC_CHECK_STRING_BYTES */
1751
1752 /* Extra bytes to allocate for each string. */
1753
1754 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1755
1756 /* Initialize string allocation. Called from init_alloc_once. */
1757
1758 static void
1759 init_strings ()
1760 {
1761 total_strings = total_free_strings = total_string_size = 0;
1762 oldest_sblock = current_sblock = large_sblocks = NULL;
1763 string_blocks = NULL;
1764 n_string_blocks = 0;
1765 string_free_list = NULL;
1766 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1767 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1768 }
1769
1770
1771 #ifdef GC_CHECK_STRING_BYTES
1772
1773 static int check_string_bytes_count;
1774
1775 static void check_string_bytes P_ ((int));
1776 static void check_sblock P_ ((struct sblock *));
1777
1778 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1779
1780
1781 /* Like GC_STRING_BYTES, but with debugging check. */
1782
1783 int
1784 string_bytes (s)
1785 struct Lisp_String *s;
1786 {
1787 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1788 if (!PURE_POINTER_P (s)
1789 && s->data
1790 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1791 abort ();
1792 return nbytes;
1793 }
1794
1795 /* Check validity of Lisp strings' string_bytes member in B. */
1796
1797 static void
1798 check_sblock (b)
1799 struct sblock *b;
1800 {
1801 struct sdata *from, *end, *from_end;
1802
1803 end = b->next_free;
1804
1805 for (from = &b->first_data; from < end; from = from_end)
1806 {
1807 /* Compute the next FROM here because copying below may
1808 overwrite data we need to compute it. */
1809 int nbytes;
1810
1811 /* Check that the string size recorded in the string is the
1812 same as the one recorded in the sdata structure. */
1813 if (from->string)
1814 CHECK_STRING_BYTES (from->string);
1815
1816 if (from->string)
1817 nbytes = GC_STRING_BYTES (from->string);
1818 else
1819 nbytes = SDATA_NBYTES (from);
1820
1821 nbytes = SDATA_SIZE (nbytes);
1822 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1823 }
1824 }
1825
1826
1827 /* Check validity of Lisp strings' string_bytes member. ALL_P
1828 non-zero means check all strings, otherwise check only most
1829 recently allocated strings. Used for hunting a bug. */
1830
1831 static void
1832 check_string_bytes (all_p)
1833 int all_p;
1834 {
1835 if (all_p)
1836 {
1837 struct sblock *b;
1838
1839 for (b = large_sblocks; b; b = b->next)
1840 {
1841 struct Lisp_String *s = b->first_data.string;
1842 if (s)
1843 CHECK_STRING_BYTES (s);
1844 }
1845
1846 for (b = oldest_sblock; b; b = b->next)
1847 check_sblock (b);
1848 }
1849 else
1850 check_sblock (current_sblock);
1851 }
1852
1853 #endif /* GC_CHECK_STRING_BYTES */
1854
1855 #ifdef GC_CHECK_STRING_FREE_LIST
1856
1857 /* Walk through the string free list looking for bogus next pointers.
1858 This may catch buffer overrun from a previous string. */
1859
1860 static void
1861 check_string_free_list ()
1862 {
1863 struct Lisp_String *s;
1864
1865 /* Pop a Lisp_String off the free-list. */
1866 s = string_free_list;
1867 while (s != NULL)
1868 {
1869 if ((unsigned)s < 1024)
1870 abort();
1871 s = NEXT_FREE_LISP_STRING (s);
1872 }
1873 }
1874 #else
1875 #define check_string_free_list()
1876 #endif
1877
1878 /* Return a new Lisp_String. */
1879
1880 static struct Lisp_String *
1881 allocate_string ()
1882 {
1883 struct Lisp_String *s;
1884
1885 /* eassert (!handling_signal); */
1886
1887 MALLOC_BLOCK_INPUT;
1888
1889 /* If the free-list is empty, allocate a new string_block, and
1890 add all the Lisp_Strings in it to the free-list. */
1891 if (string_free_list == NULL)
1892 {
1893 struct string_block *b;
1894 int i;
1895
1896 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1897 bzero (b, sizeof *b);
1898 b->next = string_blocks;
1899 string_blocks = b;
1900 ++n_string_blocks;
1901
1902 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1903 {
1904 s = b->strings + i;
1905 NEXT_FREE_LISP_STRING (s) = string_free_list;
1906 string_free_list = s;
1907 }
1908
1909 total_free_strings += STRING_BLOCK_SIZE;
1910 }
1911
1912 check_string_free_list ();
1913
1914 /* Pop a Lisp_String off the free-list. */
1915 s = string_free_list;
1916 string_free_list = NEXT_FREE_LISP_STRING (s);
1917
1918 MALLOC_UNBLOCK_INPUT;
1919
1920 /* Probably not strictly necessary, but play it safe. */
1921 bzero (s, sizeof *s);
1922
1923 --total_free_strings;
1924 ++total_strings;
1925 ++strings_consed;
1926 consing_since_gc += sizeof *s;
1927
1928 #ifdef GC_CHECK_STRING_BYTES
1929 if (!noninteractive)
1930 {
1931 if (++check_string_bytes_count == 200)
1932 {
1933 check_string_bytes_count = 0;
1934 check_string_bytes (1);
1935 }
1936 else
1937 check_string_bytes (0);
1938 }
1939 #endif /* GC_CHECK_STRING_BYTES */
1940
1941 return s;
1942 }
1943
1944
1945 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1946 plus a NUL byte at the end. Allocate an sdata structure for S, and
1947 set S->data to its `u.data' member. Store a NUL byte at the end of
1948 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1949 S->data if it was initially non-null. */
1950
1951 void
1952 allocate_string_data (s, nchars, nbytes)
1953 struct Lisp_String *s;
1954 int nchars, nbytes;
1955 {
1956 struct sdata *data, *old_data;
1957 struct sblock *b;
1958 int needed, old_nbytes;
1959
1960 /* Determine the number of bytes needed to store NBYTES bytes
1961 of string data. */
1962 needed = SDATA_SIZE (nbytes);
1963 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1964 old_nbytes = GC_STRING_BYTES (s);
1965
1966 MALLOC_BLOCK_INPUT;
1967
1968 if (nbytes > LARGE_STRING_BYTES)
1969 {
1970 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1971
1972 #ifdef DOUG_LEA_MALLOC
1973 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1974 because mapped region contents are not preserved in
1975 a dumped Emacs.
1976
1977 In case you think of allowing it in a dumped Emacs at the
1978 cost of not being able to re-dump, there's another reason:
1979 mmap'ed data typically have an address towards the top of the
1980 address space, which won't fit into an EMACS_INT (at least on
1981 32-bit systems with the current tagging scheme). --fx */
1982 mallopt (M_MMAP_MAX, 0);
1983 #endif
1984
1985 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1986
1987 #ifdef DOUG_LEA_MALLOC
1988 /* Back to a reasonable maximum of mmap'ed areas. */
1989 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1990 #endif
1991
1992 b->next_free = &b->first_data;
1993 b->first_data.string = NULL;
1994 b->next = large_sblocks;
1995 large_sblocks = b;
1996 }
1997 else if (current_sblock == NULL
1998 || (((char *) current_sblock + SBLOCK_SIZE
1999 - (char *) current_sblock->next_free)
2000 < (needed + GC_STRING_EXTRA)))
2001 {
2002 /* Not enough room in the current sblock. */
2003 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2004 b->next_free = &b->first_data;
2005 b->first_data.string = NULL;
2006 b->next = NULL;
2007
2008 if (current_sblock)
2009 current_sblock->next = b;
2010 else
2011 oldest_sblock = b;
2012 current_sblock = b;
2013 }
2014 else
2015 b = current_sblock;
2016
2017 data = b->next_free;
2018 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2019
2020 MALLOC_UNBLOCK_INPUT;
2021
2022 data->string = s;
2023 s->data = SDATA_DATA (data);
2024 #ifdef GC_CHECK_STRING_BYTES
2025 SDATA_NBYTES (data) = nbytes;
2026 #endif
2027 s->size = nchars;
2028 s->size_byte = nbytes;
2029 s->data[nbytes] = '\0';
2030 #ifdef GC_CHECK_STRING_OVERRUN
2031 bcopy (string_overrun_cookie, (char *) data + needed,
2032 GC_STRING_OVERRUN_COOKIE_SIZE);
2033 #endif
2034
2035 /* If S had already data assigned, mark that as free by setting its
2036 string back-pointer to null, and recording the size of the data
2037 in it. */
2038 if (old_data)
2039 {
2040 SDATA_NBYTES (old_data) = old_nbytes;
2041 old_data->string = NULL;
2042 }
2043
2044 consing_since_gc += needed;
2045 }
2046
2047
2048 /* Sweep and compact strings. */
2049
2050 static void
2051 sweep_strings ()
2052 {
2053 struct string_block *b, *next;
2054 struct string_block *live_blocks = NULL;
2055
2056 string_free_list = NULL;
2057 total_strings = total_free_strings = 0;
2058 total_string_size = 0;
2059
2060 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2061 for (b = string_blocks; b; b = next)
2062 {
2063 int i, nfree = 0;
2064 struct Lisp_String *free_list_before = string_free_list;
2065
2066 next = b->next;
2067
2068 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2069 {
2070 struct Lisp_String *s = b->strings + i;
2071
2072 if (s->data)
2073 {
2074 /* String was not on free-list before. */
2075 if (STRING_MARKED_P (s))
2076 {
2077 /* String is live; unmark it and its intervals. */
2078 UNMARK_STRING (s);
2079
2080 if (!NULL_INTERVAL_P (s->intervals))
2081 UNMARK_BALANCE_INTERVALS (s->intervals);
2082
2083 ++total_strings;
2084 total_string_size += STRING_BYTES (s);
2085 }
2086 else
2087 {
2088 /* String is dead. Put it on the free-list. */
2089 struct sdata *data = SDATA_OF_STRING (s);
2090
2091 /* Save the size of S in its sdata so that we know
2092 how large that is. Reset the sdata's string
2093 back-pointer so that we know it's free. */
2094 #ifdef GC_CHECK_STRING_BYTES
2095 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2096 abort ();
2097 #else
2098 data->u.nbytes = GC_STRING_BYTES (s);
2099 #endif
2100 data->string = NULL;
2101
2102 /* Reset the strings's `data' member so that we
2103 know it's free. */
2104 s->data = NULL;
2105
2106 /* Put the string on the free-list. */
2107 NEXT_FREE_LISP_STRING (s) = string_free_list;
2108 string_free_list = s;
2109 ++nfree;
2110 }
2111 }
2112 else
2113 {
2114 /* S was on the free-list before. Put it there again. */
2115 NEXT_FREE_LISP_STRING (s) = string_free_list;
2116 string_free_list = s;
2117 ++nfree;
2118 }
2119 }
2120
2121 /* Free blocks that contain free Lisp_Strings only, except
2122 the first two of them. */
2123 if (nfree == STRING_BLOCK_SIZE
2124 && total_free_strings > STRING_BLOCK_SIZE)
2125 {
2126 lisp_free (b);
2127 --n_string_blocks;
2128 string_free_list = free_list_before;
2129 }
2130 else
2131 {
2132 total_free_strings += nfree;
2133 b->next = live_blocks;
2134 live_blocks = b;
2135 }
2136 }
2137
2138 check_string_free_list ();
2139
2140 string_blocks = live_blocks;
2141 free_large_strings ();
2142 compact_small_strings ();
2143
2144 check_string_free_list ();
2145 }
2146
2147
2148 /* Free dead large strings. */
2149
2150 static void
2151 free_large_strings ()
2152 {
2153 struct sblock *b, *next;
2154 struct sblock *live_blocks = NULL;
2155
2156 for (b = large_sblocks; b; b = next)
2157 {
2158 next = b->next;
2159
2160 if (b->first_data.string == NULL)
2161 lisp_free (b);
2162 else
2163 {
2164 b->next = live_blocks;
2165 live_blocks = b;
2166 }
2167 }
2168
2169 large_sblocks = live_blocks;
2170 }
2171
2172
2173 /* Compact data of small strings. Free sblocks that don't contain
2174 data of live strings after compaction. */
2175
2176 static void
2177 compact_small_strings ()
2178 {
2179 struct sblock *b, *tb, *next;
2180 struct sdata *from, *to, *end, *tb_end;
2181 struct sdata *to_end, *from_end;
2182
2183 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2184 to, and TB_END is the end of TB. */
2185 tb = oldest_sblock;
2186 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2187 to = &tb->first_data;
2188
2189 /* Step through the blocks from the oldest to the youngest. We
2190 expect that old blocks will stabilize over time, so that less
2191 copying will happen this way. */
2192 for (b = oldest_sblock; b; b = b->next)
2193 {
2194 end = b->next_free;
2195 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2196
2197 for (from = &b->first_data; from < end; from = from_end)
2198 {
2199 /* Compute the next FROM here because copying below may
2200 overwrite data we need to compute it. */
2201 int nbytes;
2202
2203 #ifdef GC_CHECK_STRING_BYTES
2204 /* Check that the string size recorded in the string is the
2205 same as the one recorded in the sdata structure. */
2206 if (from->string
2207 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2208 abort ();
2209 #endif /* GC_CHECK_STRING_BYTES */
2210
2211 if (from->string)
2212 nbytes = GC_STRING_BYTES (from->string);
2213 else
2214 nbytes = SDATA_NBYTES (from);
2215
2216 if (nbytes > LARGE_STRING_BYTES)
2217 abort ();
2218
2219 nbytes = SDATA_SIZE (nbytes);
2220 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2221
2222 #ifdef GC_CHECK_STRING_OVERRUN
2223 if (bcmp (string_overrun_cookie,
2224 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2225 GC_STRING_OVERRUN_COOKIE_SIZE))
2226 abort ();
2227 #endif
2228
2229 /* FROM->string non-null means it's alive. Copy its data. */
2230 if (from->string)
2231 {
2232 /* If TB is full, proceed with the next sblock. */
2233 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2234 if (to_end > tb_end)
2235 {
2236 tb->next_free = to;
2237 tb = tb->next;
2238 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2239 to = &tb->first_data;
2240 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2241 }
2242
2243 /* Copy, and update the string's `data' pointer. */
2244 if (from != to)
2245 {
2246 xassert (tb != b || to <= from);
2247 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2248 to->string->data = SDATA_DATA (to);
2249 }
2250
2251 /* Advance past the sdata we copied to. */
2252 to = to_end;
2253 }
2254 }
2255 }
2256
2257 /* The rest of the sblocks following TB don't contain live data, so
2258 we can free them. */
2259 for (b = tb->next; b; b = next)
2260 {
2261 next = b->next;
2262 lisp_free (b);
2263 }
2264
2265 tb->next_free = to;
2266 tb->next = NULL;
2267 current_sblock = tb;
2268 }
2269
2270
2271 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2272 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2273 LENGTH must be an integer.
2274 INIT must be an integer that represents a character. */)
2275 (length, init)
2276 Lisp_Object length, init;
2277 {
2278 register Lisp_Object val;
2279 register unsigned char *p, *end;
2280 int c, nbytes;
2281
2282 CHECK_NATNUM (length);
2283 CHECK_NUMBER (init);
2284
2285 c = XINT (init);
2286 if (ASCII_CHAR_P (c))
2287 {
2288 nbytes = XINT (length);
2289 val = make_uninit_string (nbytes);
2290 p = SDATA (val);
2291 end = p + SCHARS (val);
2292 while (p != end)
2293 *p++ = c;
2294 }
2295 else
2296 {
2297 unsigned char str[MAX_MULTIBYTE_LENGTH];
2298 int len = CHAR_STRING (c, str);
2299
2300 nbytes = len * XINT (length);
2301 val = make_uninit_multibyte_string (XINT (length), nbytes);
2302 p = SDATA (val);
2303 end = p + nbytes;
2304 while (p != end)
2305 {
2306 bcopy (str, p, len);
2307 p += len;
2308 }
2309 }
2310
2311 *p = 0;
2312 return val;
2313 }
2314
2315
2316 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2317 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2318 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2319 (length, init)
2320 Lisp_Object length, init;
2321 {
2322 register Lisp_Object val;
2323 struct Lisp_Bool_Vector *p;
2324 int real_init, i;
2325 int length_in_chars, length_in_elts, bits_per_value;
2326
2327 CHECK_NATNUM (length);
2328
2329 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2330
2331 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2332 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2333 / BOOL_VECTOR_BITS_PER_CHAR);
2334
2335 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2336 slot `size' of the struct Lisp_Bool_Vector. */
2337 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2338
2339 /* Get rid of any bits that would cause confusion. */
2340 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2341 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2342 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2343
2344 p = XBOOL_VECTOR (val);
2345 p->size = XFASTINT (length);
2346
2347 real_init = (NILP (init) ? 0 : -1);
2348 for (i = 0; i < length_in_chars ; i++)
2349 p->data[i] = real_init;
2350
2351 /* Clear the extraneous bits in the last byte. */
2352 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2353 p->data[length_in_chars - 1]
2354 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2355
2356 return val;
2357 }
2358
2359
2360 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2361 of characters from the contents. This string may be unibyte or
2362 multibyte, depending on the contents. */
2363
2364 Lisp_Object
2365 make_string (contents, nbytes)
2366 const char *contents;
2367 int nbytes;
2368 {
2369 register Lisp_Object val;
2370 int nchars, multibyte_nbytes;
2371
2372 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2373 if (nbytes == nchars || nbytes != multibyte_nbytes)
2374 /* CONTENTS contains no multibyte sequences or contains an invalid
2375 multibyte sequence. We must make unibyte string. */
2376 val = make_unibyte_string (contents, nbytes);
2377 else
2378 val = make_multibyte_string (contents, nchars, nbytes);
2379 return val;
2380 }
2381
2382
2383 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2384
2385 Lisp_Object
2386 make_unibyte_string (contents, length)
2387 const char *contents;
2388 int length;
2389 {
2390 register Lisp_Object val;
2391 val = make_uninit_string (length);
2392 bcopy (contents, SDATA (val), length);
2393 STRING_SET_UNIBYTE (val);
2394 return val;
2395 }
2396
2397
2398 /* Make a multibyte string from NCHARS characters occupying NBYTES
2399 bytes at CONTENTS. */
2400
2401 Lisp_Object
2402 make_multibyte_string (contents, nchars, nbytes)
2403 const char *contents;
2404 int nchars, nbytes;
2405 {
2406 register Lisp_Object val;
2407 val = make_uninit_multibyte_string (nchars, nbytes);
2408 bcopy (contents, SDATA (val), nbytes);
2409 return val;
2410 }
2411
2412
2413 /* Make a string from NCHARS characters occupying NBYTES bytes at
2414 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2415
2416 Lisp_Object
2417 make_string_from_bytes (contents, nchars, nbytes)
2418 const char *contents;
2419 int nchars, nbytes;
2420 {
2421 register Lisp_Object val;
2422 val = make_uninit_multibyte_string (nchars, nbytes);
2423 bcopy (contents, SDATA (val), nbytes);
2424 if (SBYTES (val) == SCHARS (val))
2425 STRING_SET_UNIBYTE (val);
2426 return val;
2427 }
2428
2429
2430 /* Make a string from NCHARS characters occupying NBYTES bytes at
2431 CONTENTS. The argument MULTIBYTE controls whether to label the
2432 string as multibyte. If NCHARS is negative, it counts the number of
2433 characters by itself. */
2434
2435 Lisp_Object
2436 make_specified_string (contents, nchars, nbytes, multibyte)
2437 const char *contents;
2438 int nchars, nbytes;
2439 int multibyte;
2440 {
2441 register Lisp_Object val;
2442
2443 if (nchars < 0)
2444 {
2445 if (multibyte)
2446 nchars = multibyte_chars_in_text (contents, nbytes);
2447 else
2448 nchars = nbytes;
2449 }
2450 val = make_uninit_multibyte_string (nchars, nbytes);
2451 bcopy (contents, SDATA (val), nbytes);
2452 if (!multibyte)
2453 STRING_SET_UNIBYTE (val);
2454 return val;
2455 }
2456
2457
2458 /* Make a string from the data at STR, treating it as multibyte if the
2459 data warrants. */
2460
2461 Lisp_Object
2462 build_string (str)
2463 const char *str;
2464 {
2465 return make_string (str, strlen (str));
2466 }
2467
2468
2469 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2470 occupying LENGTH bytes. */
2471
2472 Lisp_Object
2473 make_uninit_string (length)
2474 int length;
2475 {
2476 Lisp_Object val;
2477
2478 if (!length)
2479 return empty_unibyte_string;
2480 val = make_uninit_multibyte_string (length, length);
2481 STRING_SET_UNIBYTE (val);
2482 return val;
2483 }
2484
2485
2486 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2487 which occupy NBYTES bytes. */
2488
2489 Lisp_Object
2490 make_uninit_multibyte_string (nchars, nbytes)
2491 int nchars, nbytes;
2492 {
2493 Lisp_Object string;
2494 struct Lisp_String *s;
2495
2496 if (nchars < 0)
2497 abort ();
2498 if (!nbytes)
2499 return empty_multibyte_string;
2500
2501 s = allocate_string ();
2502 allocate_string_data (s, nchars, nbytes);
2503 XSETSTRING (string, s);
2504 string_chars_consed += nbytes;
2505 return string;
2506 }
2507
2508
2509 \f
2510 /***********************************************************************
2511 Float Allocation
2512 ***********************************************************************/
2513
2514 /* We store float cells inside of float_blocks, allocating a new
2515 float_block with malloc whenever necessary. Float cells reclaimed
2516 by GC are put on a free list to be reallocated before allocating
2517 any new float cells from the latest float_block. */
2518
2519 #define FLOAT_BLOCK_SIZE \
2520 (((BLOCK_BYTES - sizeof (struct float_block *) \
2521 /* The compiler might add padding at the end. */ \
2522 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2523 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2524
2525 #define GETMARKBIT(block,n) \
2526 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2527 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2528 & 1)
2529
2530 #define SETMARKBIT(block,n) \
2531 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2532 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2533
2534 #define UNSETMARKBIT(block,n) \
2535 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2536 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2537
2538 #define FLOAT_BLOCK(fptr) \
2539 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2540
2541 #define FLOAT_INDEX(fptr) \
2542 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2543
2544 struct float_block
2545 {
2546 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2547 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2548 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2549 struct float_block *next;
2550 };
2551
2552 #define FLOAT_MARKED_P(fptr) \
2553 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2554
2555 #define FLOAT_MARK(fptr) \
2556 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2557
2558 #define FLOAT_UNMARK(fptr) \
2559 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2560
2561 /* Current float_block. */
2562
2563 struct float_block *float_block;
2564
2565 /* Index of first unused Lisp_Float in the current float_block. */
2566
2567 int float_block_index;
2568
2569 /* Total number of float blocks now in use. */
2570
2571 int n_float_blocks;
2572
2573 /* Free-list of Lisp_Floats. */
2574
2575 struct Lisp_Float *float_free_list;
2576
2577
2578 /* Initialize float allocation. */
2579
2580 static void
2581 init_float ()
2582 {
2583 float_block = NULL;
2584 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2585 float_free_list = 0;
2586 n_float_blocks = 0;
2587 }
2588
2589
2590 /* Explicitly free a float cell by putting it on the free-list. */
2591
2592 static void
2593 free_float (ptr)
2594 struct Lisp_Float *ptr;
2595 {
2596 ptr->u.chain = float_free_list;
2597 float_free_list = ptr;
2598 }
2599
2600
2601 /* Return a new float object with value FLOAT_VALUE. */
2602
2603 Lisp_Object
2604 make_float (float_value)
2605 double float_value;
2606 {
2607 register Lisp_Object val;
2608
2609 /* eassert (!handling_signal); */
2610
2611 MALLOC_BLOCK_INPUT;
2612
2613 if (float_free_list)
2614 {
2615 /* We use the data field for chaining the free list
2616 so that we won't use the same field that has the mark bit. */
2617 XSETFLOAT (val, float_free_list);
2618 float_free_list = float_free_list->u.chain;
2619 }
2620 else
2621 {
2622 if (float_block_index == FLOAT_BLOCK_SIZE)
2623 {
2624 register struct float_block *new;
2625
2626 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2627 MEM_TYPE_FLOAT);
2628 new->next = float_block;
2629 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2630 float_block = new;
2631 float_block_index = 0;
2632 n_float_blocks++;
2633 }
2634 XSETFLOAT (val, &float_block->floats[float_block_index]);
2635 float_block_index++;
2636 }
2637
2638 MALLOC_UNBLOCK_INPUT;
2639
2640 XFLOAT_DATA (val) = float_value;
2641 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2642 consing_since_gc += sizeof (struct Lisp_Float);
2643 floats_consed++;
2644 return val;
2645 }
2646
2647
2648 \f
2649 /***********************************************************************
2650 Cons Allocation
2651 ***********************************************************************/
2652
2653 /* We store cons cells inside of cons_blocks, allocating a new
2654 cons_block with malloc whenever necessary. Cons cells reclaimed by
2655 GC are put on a free list to be reallocated before allocating
2656 any new cons cells from the latest cons_block. */
2657
2658 #define CONS_BLOCK_SIZE \
2659 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2660 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2661
2662 #define CONS_BLOCK(fptr) \
2663 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2664
2665 #define CONS_INDEX(fptr) \
2666 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2667
2668 struct cons_block
2669 {
2670 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2671 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2672 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2673 struct cons_block *next;
2674 };
2675
2676 #define CONS_MARKED_P(fptr) \
2677 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2678
2679 #define CONS_MARK(fptr) \
2680 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2681
2682 #define CONS_UNMARK(fptr) \
2683 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2684
2685 /* Current cons_block. */
2686
2687 struct cons_block *cons_block;
2688
2689 /* Index of first unused Lisp_Cons in the current block. */
2690
2691 int cons_block_index;
2692
2693 /* Free-list of Lisp_Cons structures. */
2694
2695 struct Lisp_Cons *cons_free_list;
2696
2697 /* Total number of cons blocks now in use. */
2698
2699 static int n_cons_blocks;
2700
2701
2702 /* Initialize cons allocation. */
2703
2704 static void
2705 init_cons ()
2706 {
2707 cons_block = NULL;
2708 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2709 cons_free_list = 0;
2710 n_cons_blocks = 0;
2711 }
2712
2713
2714 /* Explicitly free a cons cell by putting it on the free-list. */
2715
2716 void
2717 free_cons (ptr)
2718 struct Lisp_Cons *ptr;
2719 {
2720 ptr->u.chain = cons_free_list;
2721 #if GC_MARK_STACK
2722 ptr->car = Vdead;
2723 #endif
2724 cons_free_list = ptr;
2725 }
2726
2727 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2728 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2729 (car, cdr)
2730 Lisp_Object car, cdr;
2731 {
2732 register Lisp_Object val;
2733
2734 /* eassert (!handling_signal); */
2735
2736 MALLOC_BLOCK_INPUT;
2737
2738 if (cons_free_list)
2739 {
2740 /* We use the cdr for chaining the free list
2741 so that we won't use the same field that has the mark bit. */
2742 XSETCONS (val, cons_free_list);
2743 cons_free_list = cons_free_list->u.chain;
2744 }
2745 else
2746 {
2747 if (cons_block_index == CONS_BLOCK_SIZE)
2748 {
2749 register struct cons_block *new;
2750 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2751 MEM_TYPE_CONS);
2752 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2753 new->next = cons_block;
2754 cons_block = new;
2755 cons_block_index = 0;
2756 n_cons_blocks++;
2757 }
2758 XSETCONS (val, &cons_block->conses[cons_block_index]);
2759 cons_block_index++;
2760 }
2761
2762 MALLOC_UNBLOCK_INPUT;
2763
2764 XSETCAR (val, car);
2765 XSETCDR (val, cdr);
2766 eassert (!CONS_MARKED_P (XCONS (val)));
2767 consing_since_gc += sizeof (struct Lisp_Cons);
2768 cons_cells_consed++;
2769 return val;
2770 }
2771
2772 /* Get an error now if there's any junk in the cons free list. */
2773 void
2774 check_cons_list ()
2775 {
2776 #ifdef GC_CHECK_CONS_LIST
2777 struct Lisp_Cons *tail = cons_free_list;
2778
2779 while (tail)
2780 tail = tail->u.chain;
2781 #endif
2782 }
2783
2784 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2785
2786 Lisp_Object
2787 list1 (arg1)
2788 Lisp_Object arg1;
2789 {
2790 return Fcons (arg1, Qnil);
2791 }
2792
2793 Lisp_Object
2794 list2 (arg1, arg2)
2795 Lisp_Object arg1, arg2;
2796 {
2797 return Fcons (arg1, Fcons (arg2, Qnil));
2798 }
2799
2800
2801 Lisp_Object
2802 list3 (arg1, arg2, arg3)
2803 Lisp_Object arg1, arg2, arg3;
2804 {
2805 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2806 }
2807
2808
2809 Lisp_Object
2810 list4 (arg1, arg2, arg3, arg4)
2811 Lisp_Object arg1, arg2, arg3, arg4;
2812 {
2813 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2814 }
2815
2816
2817 Lisp_Object
2818 list5 (arg1, arg2, arg3, arg4, arg5)
2819 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2820 {
2821 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2822 Fcons (arg5, Qnil)))));
2823 }
2824
2825
2826 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2827 doc: /* Return a newly created list with specified arguments as elements.
2828 Any number of arguments, even zero arguments, are allowed.
2829 usage: (list &rest OBJECTS) */)
2830 (nargs, args)
2831 int nargs;
2832 register Lisp_Object *args;
2833 {
2834 register Lisp_Object val;
2835 val = Qnil;
2836
2837 while (nargs > 0)
2838 {
2839 nargs--;
2840 val = Fcons (args[nargs], val);
2841 }
2842 return val;
2843 }
2844
2845
2846 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2847 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2848 (length, init)
2849 register Lisp_Object length, init;
2850 {
2851 register Lisp_Object val;
2852 register int size;
2853
2854 CHECK_NATNUM (length);
2855 size = XFASTINT (length);
2856
2857 val = Qnil;
2858 while (size > 0)
2859 {
2860 val = Fcons (init, val);
2861 --size;
2862
2863 if (size > 0)
2864 {
2865 val = Fcons (init, val);
2866 --size;
2867
2868 if (size > 0)
2869 {
2870 val = Fcons (init, val);
2871 --size;
2872
2873 if (size > 0)
2874 {
2875 val = Fcons (init, val);
2876 --size;
2877
2878 if (size > 0)
2879 {
2880 val = Fcons (init, val);
2881 --size;
2882 }
2883 }
2884 }
2885 }
2886
2887 QUIT;
2888 }
2889
2890 return val;
2891 }
2892
2893
2894 \f
2895 /***********************************************************************
2896 Vector Allocation
2897 ***********************************************************************/
2898
2899 /* Singly-linked list of all vectors. */
2900
2901 static struct Lisp_Vector *all_vectors;
2902
2903 /* Total number of vector-like objects now in use. */
2904
2905 static int n_vectors;
2906
2907
2908 /* Value is a pointer to a newly allocated Lisp_Vector structure
2909 with room for LEN Lisp_Objects. */
2910
2911 static struct Lisp_Vector *
2912 allocate_vectorlike (len)
2913 EMACS_INT len;
2914 {
2915 struct Lisp_Vector *p;
2916 size_t nbytes;
2917
2918 MALLOC_BLOCK_INPUT;
2919
2920 #ifdef DOUG_LEA_MALLOC
2921 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2922 because mapped region contents are not preserved in
2923 a dumped Emacs. */
2924 mallopt (M_MMAP_MAX, 0);
2925 #endif
2926
2927 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2928 /* eassert (!handling_signal); */
2929
2930 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2931 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2932
2933 #ifdef DOUG_LEA_MALLOC
2934 /* Back to a reasonable maximum of mmap'ed areas. */
2935 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2936 #endif
2937
2938 consing_since_gc += nbytes;
2939 vector_cells_consed += len;
2940
2941 p->next = all_vectors;
2942 all_vectors = p;
2943
2944 MALLOC_UNBLOCK_INPUT;
2945
2946 ++n_vectors;
2947 return p;
2948 }
2949
2950
2951 /* Allocate a vector with NSLOTS slots. */
2952
2953 struct Lisp_Vector *
2954 allocate_vector (nslots)
2955 EMACS_INT nslots;
2956 {
2957 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2958 v->size = nslots;
2959 return v;
2960 }
2961
2962
2963 /* Allocate other vector-like structures. */
2964
2965 struct Lisp_Vector *
2966 allocate_pseudovector (memlen, lisplen, tag)
2967 int memlen, lisplen;
2968 EMACS_INT tag;
2969 {
2970 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2971 EMACS_INT i;
2972
2973 /* Only the first lisplen slots will be traced normally by the GC. */
2974 v->size = lisplen;
2975 for (i = 0; i < lisplen; ++i)
2976 v->contents[i] = Qnil;
2977
2978 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2979 return v;
2980 }
2981
2982 struct Lisp_Hash_Table *
2983 allocate_hash_table (void)
2984 {
2985 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2986 }
2987
2988
2989 struct window *
2990 allocate_window ()
2991 {
2992 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2993 }
2994
2995
2996 struct terminal *
2997 allocate_terminal ()
2998 {
2999 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
3000 next_terminal, PVEC_TERMINAL);
3001 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3002 bzero (&(t->next_terminal),
3003 ((char*)(t+1)) - ((char*)&(t->next_terminal)));
3004
3005 return t;
3006 }
3007
3008 struct frame *
3009 allocate_frame ()
3010 {
3011 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3012 face_cache, PVEC_FRAME);
3013 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3014 bzero (&(f->face_cache),
3015 ((char*)(f+1)) - ((char*)&(f->face_cache)));
3016 return f;
3017 }
3018
3019
3020 struct Lisp_Process *
3021 allocate_process ()
3022 {
3023 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3024 }
3025
3026
3027 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3028 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3029 See also the function `vector'. */)
3030 (length, init)
3031 register Lisp_Object length, init;
3032 {
3033 Lisp_Object vector;
3034 register EMACS_INT sizei;
3035 register int index;
3036 register struct Lisp_Vector *p;
3037
3038 CHECK_NATNUM (length);
3039 sizei = XFASTINT (length);
3040
3041 p = allocate_vector (sizei);
3042 for (index = 0; index < sizei; index++)
3043 p->contents[index] = init;
3044
3045 XSETVECTOR (vector, p);
3046 return vector;
3047 }
3048
3049
3050 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3051 doc: /* Return a newly created vector with specified arguments as elements.
3052 Any number of arguments, even zero arguments, are allowed.
3053 usage: (vector &rest OBJECTS) */)
3054 (nargs, args)
3055 register int nargs;
3056 Lisp_Object *args;
3057 {
3058 register Lisp_Object len, val;
3059 register int index;
3060 register struct Lisp_Vector *p;
3061
3062 XSETFASTINT (len, nargs);
3063 val = Fmake_vector (len, Qnil);
3064 p = XVECTOR (val);
3065 for (index = 0; index < nargs; index++)
3066 p->contents[index] = args[index];
3067 return val;
3068 }
3069
3070
3071 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3072 doc: /* Create a byte-code object with specified arguments as elements.
3073 The arguments should be the arglist, bytecode-string, constant vector,
3074 stack size, (optional) doc string, and (optional) interactive spec.
3075 The first four arguments are required; at most six have any
3076 significance.
3077 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3078 (nargs, args)
3079 register int nargs;
3080 Lisp_Object *args;
3081 {
3082 register Lisp_Object len, val;
3083 register int index;
3084 register struct Lisp_Vector *p;
3085
3086 XSETFASTINT (len, nargs);
3087 if (!NILP (Vpurify_flag))
3088 val = make_pure_vector ((EMACS_INT) nargs);
3089 else
3090 val = Fmake_vector (len, Qnil);
3091
3092 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3093 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3094 earlier because they produced a raw 8-bit string for byte-code
3095 and now such a byte-code string is loaded as multibyte while
3096 raw 8-bit characters converted to multibyte form. Thus, now we
3097 must convert them back to the original unibyte form. */
3098 args[1] = Fstring_as_unibyte (args[1]);
3099
3100 p = XVECTOR (val);
3101 for (index = 0; index < nargs; index++)
3102 {
3103 if (!NILP (Vpurify_flag))
3104 args[index] = Fpurecopy (args[index]);
3105 p->contents[index] = args[index];
3106 }
3107 XSETPVECTYPE (p, PVEC_COMPILED);
3108 XSETCOMPILED (val, p);
3109 return val;
3110 }
3111
3112
3113 \f
3114 /***********************************************************************
3115 Symbol Allocation
3116 ***********************************************************************/
3117
3118 /* Each symbol_block is just under 1020 bytes long, since malloc
3119 really allocates in units of powers of two and uses 4 bytes for its
3120 own overhead. */
3121
3122 #define SYMBOL_BLOCK_SIZE \
3123 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3124
3125 struct symbol_block
3126 {
3127 /* Place `symbols' first, to preserve alignment. */
3128 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3129 struct symbol_block *next;
3130 };
3131
3132 /* Current symbol block and index of first unused Lisp_Symbol
3133 structure in it. */
3134
3135 static struct symbol_block *symbol_block;
3136 static int symbol_block_index;
3137
3138 /* List of free symbols. */
3139
3140 static struct Lisp_Symbol *symbol_free_list;
3141
3142 /* Total number of symbol blocks now in use. */
3143
3144 static int n_symbol_blocks;
3145
3146
3147 /* Initialize symbol allocation. */
3148
3149 static void
3150 init_symbol ()
3151 {
3152 symbol_block = NULL;
3153 symbol_block_index = SYMBOL_BLOCK_SIZE;
3154 symbol_free_list = 0;
3155 n_symbol_blocks = 0;
3156 }
3157
3158
3159 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3160 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3161 Its value and function definition are void, and its property list is nil. */)
3162 (name)
3163 Lisp_Object name;
3164 {
3165 register Lisp_Object val;
3166 register struct Lisp_Symbol *p;
3167
3168 CHECK_STRING (name);
3169
3170 /* eassert (!handling_signal); */
3171
3172 MALLOC_BLOCK_INPUT;
3173
3174 if (symbol_free_list)
3175 {
3176 XSETSYMBOL (val, symbol_free_list);
3177 symbol_free_list = symbol_free_list->next;
3178 }
3179 else
3180 {
3181 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3182 {
3183 struct symbol_block *new;
3184 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3185 MEM_TYPE_SYMBOL);
3186 new->next = symbol_block;
3187 symbol_block = new;
3188 symbol_block_index = 0;
3189 n_symbol_blocks++;
3190 }
3191 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3192 symbol_block_index++;
3193 }
3194
3195 MALLOC_UNBLOCK_INPUT;
3196
3197 p = XSYMBOL (val);
3198 p->xname = name;
3199 p->plist = Qnil;
3200 p->value = Qunbound;
3201 p->function = Qunbound;
3202 p->next = NULL;
3203 p->gcmarkbit = 0;
3204 p->interned = SYMBOL_UNINTERNED;
3205 p->constant = 0;
3206 p->indirect_variable = 0;
3207 consing_since_gc += sizeof (struct Lisp_Symbol);
3208 symbols_consed++;
3209 return val;
3210 }
3211
3212
3213 \f
3214 /***********************************************************************
3215 Marker (Misc) Allocation
3216 ***********************************************************************/
3217
3218 /* Allocation of markers and other objects that share that structure.
3219 Works like allocation of conses. */
3220
3221 #define MARKER_BLOCK_SIZE \
3222 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3223
3224 struct marker_block
3225 {
3226 /* Place `markers' first, to preserve alignment. */
3227 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3228 struct marker_block *next;
3229 };
3230
3231 static struct marker_block *marker_block;
3232 static int marker_block_index;
3233
3234 static union Lisp_Misc *marker_free_list;
3235
3236 /* Total number of marker blocks now in use. */
3237
3238 static int n_marker_blocks;
3239
3240 static void
3241 init_marker ()
3242 {
3243 marker_block = NULL;
3244 marker_block_index = MARKER_BLOCK_SIZE;
3245 marker_free_list = 0;
3246 n_marker_blocks = 0;
3247 }
3248
3249 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3250
3251 Lisp_Object
3252 allocate_misc ()
3253 {
3254 Lisp_Object val;
3255
3256 /* eassert (!handling_signal); */
3257
3258 MALLOC_BLOCK_INPUT;
3259
3260 if (marker_free_list)
3261 {
3262 XSETMISC (val, marker_free_list);
3263 marker_free_list = marker_free_list->u_free.chain;
3264 }
3265 else
3266 {
3267 if (marker_block_index == MARKER_BLOCK_SIZE)
3268 {
3269 struct marker_block *new;
3270 new = (struct marker_block *) lisp_malloc (sizeof *new,
3271 MEM_TYPE_MISC);
3272 new->next = marker_block;
3273 marker_block = new;
3274 marker_block_index = 0;
3275 n_marker_blocks++;
3276 total_free_markers += MARKER_BLOCK_SIZE;
3277 }
3278 XSETMISC (val, &marker_block->markers[marker_block_index]);
3279 marker_block_index++;
3280 }
3281
3282 MALLOC_UNBLOCK_INPUT;
3283
3284 --total_free_markers;
3285 consing_since_gc += sizeof (union Lisp_Misc);
3286 misc_objects_consed++;
3287 XMISCANY (val)->gcmarkbit = 0;
3288 return val;
3289 }
3290
3291 /* Free a Lisp_Misc object */
3292
3293 void
3294 free_misc (misc)
3295 Lisp_Object misc;
3296 {
3297 XMISCTYPE (misc) = Lisp_Misc_Free;
3298 XMISC (misc)->u_free.chain = marker_free_list;
3299 marker_free_list = XMISC (misc);
3300
3301 total_free_markers++;
3302 }
3303
3304 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3305 INTEGER. This is used to package C values to call record_unwind_protect.
3306 The unwind function can get the C values back using XSAVE_VALUE. */
3307
3308 Lisp_Object
3309 make_save_value (pointer, integer)
3310 void *pointer;
3311 int integer;
3312 {
3313 register Lisp_Object val;
3314 register struct Lisp_Save_Value *p;
3315
3316 val = allocate_misc ();
3317 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3318 p = XSAVE_VALUE (val);
3319 p->pointer = pointer;
3320 p->integer = integer;
3321 p->dogc = 0;
3322 return val;
3323 }
3324
3325 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3326 doc: /* Return a newly allocated marker which does not point at any place. */)
3327 ()
3328 {
3329 register Lisp_Object val;
3330 register struct Lisp_Marker *p;
3331
3332 val = allocate_misc ();
3333 XMISCTYPE (val) = Lisp_Misc_Marker;
3334 p = XMARKER (val);
3335 p->buffer = 0;
3336 p->bytepos = 0;
3337 p->charpos = 0;
3338 p->next = NULL;
3339 p->insertion_type = 0;
3340 return val;
3341 }
3342
3343 /* Put MARKER back on the free list after using it temporarily. */
3344
3345 void
3346 free_marker (marker)
3347 Lisp_Object marker;
3348 {
3349 unchain_marker (XMARKER (marker));
3350 free_misc (marker);
3351 }
3352
3353 \f
3354 /* Return a newly created vector or string with specified arguments as
3355 elements. If all the arguments are characters that can fit
3356 in a string of events, make a string; otherwise, make a vector.
3357
3358 Any number of arguments, even zero arguments, are allowed. */
3359
3360 Lisp_Object
3361 make_event_array (nargs, args)
3362 register int nargs;
3363 Lisp_Object *args;
3364 {
3365 int i;
3366
3367 for (i = 0; i < nargs; i++)
3368 /* The things that fit in a string
3369 are characters that are in 0...127,
3370 after discarding the meta bit and all the bits above it. */
3371 if (!INTEGERP (args[i])
3372 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3373 return Fvector (nargs, args);
3374
3375 /* Since the loop exited, we know that all the things in it are
3376 characters, so we can make a string. */
3377 {
3378 Lisp_Object result;
3379
3380 result = Fmake_string (make_number (nargs), make_number (0));
3381 for (i = 0; i < nargs; i++)
3382 {
3383 SSET (result, i, XINT (args[i]));
3384 /* Move the meta bit to the right place for a string char. */
3385 if (XINT (args[i]) & CHAR_META)
3386 SSET (result, i, SREF (result, i) | 0x80);
3387 }
3388
3389 return result;
3390 }
3391 }
3392
3393
3394 \f
3395 /************************************************************************
3396 Memory Full Handling
3397 ************************************************************************/
3398
3399
3400 /* Called if malloc returns zero. */
3401
3402 void
3403 memory_full ()
3404 {
3405 int i;
3406
3407 Vmemory_full = Qt;
3408
3409 memory_full_cons_threshold = sizeof (struct cons_block);
3410
3411 /* The first time we get here, free the spare memory. */
3412 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3413 if (spare_memory[i])
3414 {
3415 if (i == 0)
3416 free (spare_memory[i]);
3417 else if (i >= 1 && i <= 4)
3418 lisp_align_free (spare_memory[i]);
3419 else
3420 lisp_free (spare_memory[i]);
3421 spare_memory[i] = 0;
3422 }
3423
3424 /* Record the space now used. When it decreases substantially,
3425 we can refill the memory reserve. */
3426 #ifndef SYSTEM_MALLOC
3427 bytes_used_when_full = BYTES_USED;
3428 #endif
3429
3430 /* This used to call error, but if we've run out of memory, we could
3431 get infinite recursion trying to build the string. */
3432 xsignal (Qnil, Vmemory_signal_data);
3433 }
3434
3435 /* If we released our reserve (due to running out of memory),
3436 and we have a fair amount free once again,
3437 try to set aside another reserve in case we run out once more.
3438
3439 This is called when a relocatable block is freed in ralloc.c,
3440 and also directly from this file, in case we're not using ralloc.c. */
3441
3442 void
3443 refill_memory_reserve ()
3444 {
3445 #ifndef SYSTEM_MALLOC
3446 if (spare_memory[0] == 0)
3447 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3448 if (spare_memory[1] == 0)
3449 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3450 MEM_TYPE_CONS);
3451 if (spare_memory[2] == 0)
3452 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3453 MEM_TYPE_CONS);
3454 if (spare_memory[3] == 0)
3455 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3456 MEM_TYPE_CONS);
3457 if (spare_memory[4] == 0)
3458 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3459 MEM_TYPE_CONS);
3460 if (spare_memory[5] == 0)
3461 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3462 MEM_TYPE_STRING);
3463 if (spare_memory[6] == 0)
3464 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3465 MEM_TYPE_STRING);
3466 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3467 Vmemory_full = Qnil;
3468 #endif
3469 }
3470 \f
3471 /************************************************************************
3472 C Stack Marking
3473 ************************************************************************/
3474
3475 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3476
3477 /* Conservative C stack marking requires a method to identify possibly
3478 live Lisp objects given a pointer value. We do this by keeping
3479 track of blocks of Lisp data that are allocated in a red-black tree
3480 (see also the comment of mem_node which is the type of nodes in
3481 that tree). Function lisp_malloc adds information for an allocated
3482 block to the red-black tree with calls to mem_insert, and function
3483 lisp_free removes it with mem_delete. Functions live_string_p etc
3484 call mem_find to lookup information about a given pointer in the
3485 tree, and use that to determine if the pointer points to a Lisp
3486 object or not. */
3487
3488 /* Initialize this part of alloc.c. */
3489
3490 static void
3491 mem_init ()
3492 {
3493 mem_z.left = mem_z.right = MEM_NIL;
3494 mem_z.parent = NULL;
3495 mem_z.color = MEM_BLACK;
3496 mem_z.start = mem_z.end = NULL;
3497 mem_root = MEM_NIL;
3498 }
3499
3500
3501 /* Value is a pointer to the mem_node containing START. Value is
3502 MEM_NIL if there is no node in the tree containing START. */
3503
3504 static INLINE struct mem_node *
3505 mem_find (start)
3506 void *start;
3507 {
3508 struct mem_node *p;
3509
3510 if (start < min_heap_address || start > max_heap_address)
3511 return MEM_NIL;
3512
3513 /* Make the search always successful to speed up the loop below. */
3514 mem_z.start = start;
3515 mem_z.end = (char *) start + 1;
3516
3517 p = mem_root;
3518 while (start < p->start || start >= p->end)
3519 p = start < p->start ? p->left : p->right;
3520 return p;
3521 }
3522
3523
3524 /* Insert a new node into the tree for a block of memory with start
3525 address START, end address END, and type TYPE. Value is a
3526 pointer to the node that was inserted. */
3527
3528 static struct mem_node *
3529 mem_insert (start, end, type)
3530 void *start, *end;
3531 enum mem_type type;
3532 {
3533 struct mem_node *c, *parent, *x;
3534
3535 if (min_heap_address == NULL || start < min_heap_address)
3536 min_heap_address = start;
3537 if (max_heap_address == NULL || end > max_heap_address)
3538 max_heap_address = end;
3539
3540 /* See where in the tree a node for START belongs. In this
3541 particular application, it shouldn't happen that a node is already
3542 present. For debugging purposes, let's check that. */
3543 c = mem_root;
3544 parent = NULL;
3545
3546 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3547
3548 while (c != MEM_NIL)
3549 {
3550 if (start >= c->start && start < c->end)
3551 abort ();
3552 parent = c;
3553 c = start < c->start ? c->left : c->right;
3554 }
3555
3556 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3557
3558 while (c != MEM_NIL)
3559 {
3560 parent = c;
3561 c = start < c->start ? c->left : c->right;
3562 }
3563
3564 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3565
3566 /* Create a new node. */
3567 #ifdef GC_MALLOC_CHECK
3568 x = (struct mem_node *) _malloc_internal (sizeof *x);
3569 if (x == NULL)
3570 abort ();
3571 #else
3572 x = (struct mem_node *) xmalloc (sizeof *x);
3573 #endif
3574 x->start = start;
3575 x->end = end;
3576 x->type = type;
3577 x->parent = parent;
3578 x->left = x->right = MEM_NIL;
3579 x->color = MEM_RED;
3580
3581 /* Insert it as child of PARENT or install it as root. */
3582 if (parent)
3583 {
3584 if (start < parent->start)
3585 parent->left = x;
3586 else
3587 parent->right = x;
3588 }
3589 else
3590 mem_root = x;
3591
3592 /* Re-establish red-black tree properties. */
3593 mem_insert_fixup (x);
3594
3595 return x;
3596 }
3597
3598
3599 /* Re-establish the red-black properties of the tree, and thereby
3600 balance the tree, after node X has been inserted; X is always red. */
3601
3602 static void
3603 mem_insert_fixup (x)
3604 struct mem_node *x;
3605 {
3606 while (x != mem_root && x->parent->color == MEM_RED)
3607 {
3608 /* X is red and its parent is red. This is a violation of
3609 red-black tree property #3. */
3610
3611 if (x->parent == x->parent->parent->left)
3612 {
3613 /* We're on the left side of our grandparent, and Y is our
3614 "uncle". */
3615 struct mem_node *y = x->parent->parent->right;
3616
3617 if (y->color == MEM_RED)
3618 {
3619 /* Uncle and parent are red but should be black because
3620 X is red. Change the colors accordingly and proceed
3621 with the grandparent. */
3622 x->parent->color = MEM_BLACK;
3623 y->color = MEM_BLACK;
3624 x->parent->parent->color = MEM_RED;
3625 x = x->parent->parent;
3626 }
3627 else
3628 {
3629 /* Parent and uncle have different colors; parent is
3630 red, uncle is black. */
3631 if (x == x->parent->right)
3632 {
3633 x = x->parent;
3634 mem_rotate_left (x);
3635 }
3636
3637 x->parent->color = MEM_BLACK;
3638 x->parent->parent->color = MEM_RED;
3639 mem_rotate_right (x->parent->parent);
3640 }
3641 }
3642 else
3643 {
3644 /* This is the symmetrical case of above. */
3645 struct mem_node *y = x->parent->parent->left;
3646
3647 if (y->color == MEM_RED)
3648 {
3649 x->parent->color = MEM_BLACK;
3650 y->color = MEM_BLACK;
3651 x->parent->parent->color = MEM_RED;
3652 x = x->parent->parent;
3653 }
3654 else
3655 {
3656 if (x == x->parent->left)
3657 {
3658 x = x->parent;
3659 mem_rotate_right (x);
3660 }
3661
3662 x->parent->color = MEM_BLACK;
3663 x->parent->parent->color = MEM_RED;
3664 mem_rotate_left (x->parent->parent);
3665 }
3666 }
3667 }
3668
3669 /* The root may have been changed to red due to the algorithm. Set
3670 it to black so that property #5 is satisfied. */
3671 mem_root->color = MEM_BLACK;
3672 }
3673
3674
3675 /* (x) (y)
3676 / \ / \
3677 a (y) ===> (x) c
3678 / \ / \
3679 b c a b */
3680
3681 static void
3682 mem_rotate_left (x)
3683 struct mem_node *x;
3684 {
3685 struct mem_node *y;
3686
3687 /* Turn y's left sub-tree into x's right sub-tree. */
3688 y = x->right;
3689 x->right = y->left;
3690 if (y->left != MEM_NIL)
3691 y->left->parent = x;
3692
3693 /* Y's parent was x's parent. */
3694 if (y != MEM_NIL)
3695 y->parent = x->parent;
3696
3697 /* Get the parent to point to y instead of x. */
3698 if (x->parent)
3699 {
3700 if (x == x->parent->left)
3701 x->parent->left = y;
3702 else
3703 x->parent->right = y;
3704 }
3705 else
3706 mem_root = y;
3707
3708 /* Put x on y's left. */
3709 y->left = x;
3710 if (x != MEM_NIL)
3711 x->parent = y;
3712 }
3713
3714
3715 /* (x) (Y)
3716 / \ / \
3717 (y) c ===> a (x)
3718 / \ / \
3719 a b b c */
3720
3721 static void
3722 mem_rotate_right (x)
3723 struct mem_node *x;
3724 {
3725 struct mem_node *y = x->left;
3726
3727 x->left = y->right;
3728 if (y->right != MEM_NIL)
3729 y->right->parent = x;
3730
3731 if (y != MEM_NIL)
3732 y->parent = x->parent;
3733 if (x->parent)
3734 {
3735 if (x == x->parent->right)
3736 x->parent->right = y;
3737 else
3738 x->parent->left = y;
3739 }
3740 else
3741 mem_root = y;
3742
3743 y->right = x;
3744 if (x != MEM_NIL)
3745 x->parent = y;
3746 }
3747
3748
3749 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3750
3751 static void
3752 mem_delete (z)
3753 struct mem_node *z;
3754 {
3755 struct mem_node *x, *y;
3756
3757 if (!z || z == MEM_NIL)
3758 return;
3759
3760 if (z->left == MEM_NIL || z->right == MEM_NIL)
3761 y = z;
3762 else
3763 {
3764 y = z->right;
3765 while (y->left != MEM_NIL)
3766 y = y->left;
3767 }
3768
3769 if (y->left != MEM_NIL)
3770 x = y->left;
3771 else
3772 x = y->right;
3773
3774 x->parent = y->parent;
3775 if (y->parent)
3776 {
3777 if (y == y->parent->left)
3778 y->parent->left = x;
3779 else
3780 y->parent->right = x;
3781 }
3782 else
3783 mem_root = x;
3784
3785 if (y != z)
3786 {
3787 z->start = y->start;
3788 z->end = y->end;
3789 z->type = y->type;
3790 }
3791
3792 if (y->color == MEM_BLACK)
3793 mem_delete_fixup (x);
3794
3795 #ifdef GC_MALLOC_CHECK
3796 _free_internal (y);
3797 #else
3798 xfree (y);
3799 #endif
3800 }
3801
3802
3803 /* Re-establish the red-black properties of the tree, after a
3804 deletion. */
3805
3806 static void
3807 mem_delete_fixup (x)
3808 struct mem_node *x;
3809 {
3810 while (x != mem_root && x->color == MEM_BLACK)
3811 {
3812 if (x == x->parent->left)
3813 {
3814 struct mem_node *w = x->parent->right;
3815
3816 if (w->color == MEM_RED)
3817 {
3818 w->color = MEM_BLACK;
3819 x->parent->color = MEM_RED;
3820 mem_rotate_left (x->parent);
3821 w = x->parent->right;
3822 }
3823
3824 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3825 {
3826 w->color = MEM_RED;
3827 x = x->parent;
3828 }
3829 else
3830 {
3831 if (w->right->color == MEM_BLACK)
3832 {
3833 w->left->color = MEM_BLACK;
3834 w->color = MEM_RED;
3835 mem_rotate_right (w);
3836 w = x->parent->right;
3837 }
3838 w->color = x->parent->color;
3839 x->parent->color = MEM_BLACK;
3840 w->right->color = MEM_BLACK;
3841 mem_rotate_left (x->parent);
3842 x = mem_root;
3843 }
3844 }
3845 else
3846 {
3847 struct mem_node *w = x->parent->left;
3848
3849 if (w->color == MEM_RED)
3850 {
3851 w->color = MEM_BLACK;
3852 x->parent->color = MEM_RED;
3853 mem_rotate_right (x->parent);
3854 w = x->parent->left;
3855 }
3856
3857 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3858 {
3859 w->color = MEM_RED;
3860 x = x->parent;
3861 }
3862 else
3863 {
3864 if (w->left->color == MEM_BLACK)
3865 {
3866 w->right->color = MEM_BLACK;
3867 w->color = MEM_RED;
3868 mem_rotate_left (w);
3869 w = x->parent->left;
3870 }
3871
3872 w->color = x->parent->color;
3873 x->parent->color = MEM_BLACK;
3874 w->left->color = MEM_BLACK;
3875 mem_rotate_right (x->parent);
3876 x = mem_root;
3877 }
3878 }
3879 }
3880
3881 x->color = MEM_BLACK;
3882 }
3883
3884
3885 /* Value is non-zero if P is a pointer to a live Lisp string on
3886 the heap. M is a pointer to the mem_block for P. */
3887
3888 static INLINE int
3889 live_string_p (m, p)
3890 struct mem_node *m;
3891 void *p;
3892 {
3893 if (m->type == MEM_TYPE_STRING)
3894 {
3895 struct string_block *b = (struct string_block *) m->start;
3896 int offset = (char *) p - (char *) &b->strings[0];
3897
3898 /* P must point to the start of a Lisp_String structure, and it
3899 must not be on the free-list. */
3900 return (offset >= 0
3901 && offset % sizeof b->strings[0] == 0
3902 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3903 && ((struct Lisp_String *) p)->data != NULL);
3904 }
3905 else
3906 return 0;
3907 }
3908
3909
3910 /* Value is non-zero if P is a pointer to a live Lisp cons on
3911 the heap. M is a pointer to the mem_block for P. */
3912
3913 static INLINE int
3914 live_cons_p (m, p)
3915 struct mem_node *m;
3916 void *p;
3917 {
3918 if (m->type == MEM_TYPE_CONS)
3919 {
3920 struct cons_block *b = (struct cons_block *) m->start;
3921 int offset = (char *) p - (char *) &b->conses[0];
3922
3923 /* P must point to the start of a Lisp_Cons, not be
3924 one of the unused cells in the current cons block,
3925 and not be on the free-list. */
3926 return (offset >= 0
3927 && offset % sizeof b->conses[0] == 0
3928 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3929 && (b != cons_block
3930 || offset / sizeof b->conses[0] < cons_block_index)
3931 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3932 }
3933 else
3934 return 0;
3935 }
3936
3937
3938 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3939 the heap. M is a pointer to the mem_block for P. */
3940
3941 static INLINE int
3942 live_symbol_p (m, p)
3943 struct mem_node *m;
3944 void *p;
3945 {
3946 if (m->type == MEM_TYPE_SYMBOL)
3947 {
3948 struct symbol_block *b = (struct symbol_block *) m->start;
3949 int offset = (char *) p - (char *) &b->symbols[0];
3950
3951 /* P must point to the start of a Lisp_Symbol, not be
3952 one of the unused cells in the current symbol block,
3953 and not be on the free-list. */
3954 return (offset >= 0
3955 && offset % sizeof b->symbols[0] == 0
3956 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3957 && (b != symbol_block
3958 || offset / sizeof b->symbols[0] < symbol_block_index)
3959 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3960 }
3961 else
3962 return 0;
3963 }
3964
3965
3966 /* Value is non-zero if P is a pointer to a live Lisp float on
3967 the heap. M is a pointer to the mem_block for P. */
3968
3969 static INLINE int
3970 live_float_p (m, p)
3971 struct mem_node *m;
3972 void *p;
3973 {
3974 if (m->type == MEM_TYPE_FLOAT)
3975 {
3976 struct float_block *b = (struct float_block *) m->start;
3977 int offset = (char *) p - (char *) &b->floats[0];
3978
3979 /* P must point to the start of a Lisp_Float and not be
3980 one of the unused cells in the current float block. */
3981 return (offset >= 0
3982 && offset % sizeof b->floats[0] == 0
3983 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3984 && (b != float_block
3985 || offset / sizeof b->floats[0] < float_block_index));
3986 }
3987 else
3988 return 0;
3989 }
3990
3991
3992 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3993 the heap. M is a pointer to the mem_block for P. */
3994
3995 static INLINE int
3996 live_misc_p (m, p)
3997 struct mem_node *m;
3998 void *p;
3999 {
4000 if (m->type == MEM_TYPE_MISC)
4001 {
4002 struct marker_block *b = (struct marker_block *) m->start;
4003 int offset = (char *) p - (char *) &b->markers[0];
4004
4005 /* P must point to the start of a Lisp_Misc, not be
4006 one of the unused cells in the current misc block,
4007 and not be on the free-list. */
4008 return (offset >= 0
4009 && offset % sizeof b->markers[0] == 0
4010 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4011 && (b != marker_block
4012 || offset / sizeof b->markers[0] < marker_block_index)
4013 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4014 }
4015 else
4016 return 0;
4017 }
4018
4019
4020 /* Value is non-zero if P is a pointer to a live vector-like object.
4021 M is a pointer to the mem_block for P. */
4022
4023 static INLINE int
4024 live_vector_p (m, p)
4025 struct mem_node *m;
4026 void *p;
4027 {
4028 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
4029 }
4030
4031
4032 /* Value is non-zero if P is a pointer to a live buffer. M is a
4033 pointer to the mem_block for P. */
4034
4035 static INLINE int
4036 live_buffer_p (m, p)
4037 struct mem_node *m;
4038 void *p;
4039 {
4040 /* P must point to the start of the block, and the buffer
4041 must not have been killed. */
4042 return (m->type == MEM_TYPE_BUFFER
4043 && p == m->start
4044 && !NILP (((struct buffer *) p)->name));
4045 }
4046
4047 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4048
4049 #if GC_MARK_STACK
4050
4051 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4052
4053 /* Array of objects that are kept alive because the C stack contains
4054 a pattern that looks like a reference to them . */
4055
4056 #define MAX_ZOMBIES 10
4057 static Lisp_Object zombies[MAX_ZOMBIES];
4058
4059 /* Number of zombie objects. */
4060
4061 static int nzombies;
4062
4063 /* Number of garbage collections. */
4064
4065 static int ngcs;
4066
4067 /* Average percentage of zombies per collection. */
4068
4069 static double avg_zombies;
4070
4071 /* Max. number of live and zombie objects. */
4072
4073 static int max_live, max_zombies;
4074
4075 /* Average number of live objects per GC. */
4076
4077 static double avg_live;
4078
4079 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4080 doc: /* Show information about live and zombie objects. */)
4081 ()
4082 {
4083 Lisp_Object args[8], zombie_list = Qnil;
4084 int i;
4085 for (i = 0; i < nzombies; i++)
4086 zombie_list = Fcons (zombies[i], zombie_list);
4087 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4088 args[1] = make_number (ngcs);
4089 args[2] = make_float (avg_live);
4090 args[3] = make_float (avg_zombies);
4091 args[4] = make_float (avg_zombies / avg_live / 100);
4092 args[5] = make_number (max_live);
4093 args[6] = make_number (max_zombies);
4094 args[7] = zombie_list;
4095 return Fmessage (8, args);
4096 }
4097
4098 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4099
4100
4101 /* Mark OBJ if we can prove it's a Lisp_Object. */
4102
4103 static INLINE void
4104 mark_maybe_object (obj)
4105 Lisp_Object obj;
4106 {
4107 void *po = (void *) XPNTR (obj);
4108 struct mem_node *m = mem_find (po);
4109
4110 if (m != MEM_NIL)
4111 {
4112 int mark_p = 0;
4113
4114 switch (XTYPE (obj))
4115 {
4116 case Lisp_String:
4117 mark_p = (live_string_p (m, po)
4118 && !STRING_MARKED_P ((struct Lisp_String *) po));
4119 break;
4120
4121 case Lisp_Cons:
4122 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4123 break;
4124
4125 case Lisp_Symbol:
4126 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4127 break;
4128
4129 case Lisp_Float:
4130 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4131 break;
4132
4133 case Lisp_Vectorlike:
4134 /* Note: can't check BUFFERP before we know it's a
4135 buffer because checking that dereferences the pointer
4136 PO which might point anywhere. */
4137 if (live_vector_p (m, po))
4138 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4139 else if (live_buffer_p (m, po))
4140 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4141 break;
4142
4143 case Lisp_Misc:
4144 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4145 break;
4146
4147 case Lisp_Int:
4148 case Lisp_Type_Limit:
4149 break;
4150 }
4151
4152 if (mark_p)
4153 {
4154 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4155 if (nzombies < MAX_ZOMBIES)
4156 zombies[nzombies] = obj;
4157 ++nzombies;
4158 #endif
4159 mark_object (obj);
4160 }
4161 }
4162 }
4163
4164
4165 /* If P points to Lisp data, mark that as live if it isn't already
4166 marked. */
4167
4168 static INLINE void
4169 mark_maybe_pointer (p)
4170 void *p;
4171 {
4172 struct mem_node *m;
4173
4174 /* Quickly rule out some values which can't point to Lisp data. */
4175 if ((EMACS_INT) p %
4176 #ifdef USE_LSB_TAG
4177 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4178 #else
4179 2 /* We assume that Lisp data is aligned on even addresses. */
4180 #endif
4181 )
4182 return;
4183
4184 m = mem_find (p);
4185 if (m != MEM_NIL)
4186 {
4187 Lisp_Object obj = Qnil;
4188
4189 switch (m->type)
4190 {
4191 case MEM_TYPE_NON_LISP:
4192 /* Nothing to do; not a pointer to Lisp memory. */
4193 break;
4194
4195 case MEM_TYPE_BUFFER:
4196 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4197 XSETVECTOR (obj, p);
4198 break;
4199
4200 case MEM_TYPE_CONS:
4201 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4202 XSETCONS (obj, p);
4203 break;
4204
4205 case MEM_TYPE_STRING:
4206 if (live_string_p (m, p)
4207 && !STRING_MARKED_P ((struct Lisp_String *) p))
4208 XSETSTRING (obj, p);
4209 break;
4210
4211 case MEM_TYPE_MISC:
4212 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4213 XSETMISC (obj, p);
4214 break;
4215
4216 case MEM_TYPE_SYMBOL:
4217 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4218 XSETSYMBOL (obj, p);
4219 break;
4220
4221 case MEM_TYPE_FLOAT:
4222 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4223 XSETFLOAT (obj, p);
4224 break;
4225
4226 case MEM_TYPE_VECTORLIKE:
4227 if (live_vector_p (m, p))
4228 {
4229 Lisp_Object tem;
4230 XSETVECTOR (tem, p);
4231 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4232 obj = tem;
4233 }
4234 break;
4235
4236 default:
4237 abort ();
4238 }
4239
4240 if (!NILP (obj))
4241 mark_object (obj);
4242 }
4243 }
4244
4245
4246 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4247 or END+OFFSET..START. */
4248
4249 static void
4250 mark_memory (start, end, offset)
4251 void *start, *end;
4252 int offset;
4253 {
4254 Lisp_Object *p;
4255 void **pp;
4256
4257 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4258 nzombies = 0;
4259 #endif
4260
4261 /* Make START the pointer to the start of the memory region,
4262 if it isn't already. */
4263 if (end < start)
4264 {
4265 void *tem = start;
4266 start = end;
4267 end = tem;
4268 }
4269
4270 /* Mark Lisp_Objects. */
4271 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4272 mark_maybe_object (*p);
4273
4274 /* Mark Lisp data pointed to. This is necessary because, in some
4275 situations, the C compiler optimizes Lisp objects away, so that
4276 only a pointer to them remains. Example:
4277
4278 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4279 ()
4280 {
4281 Lisp_Object obj = build_string ("test");
4282 struct Lisp_String *s = XSTRING (obj);
4283 Fgarbage_collect ();
4284 fprintf (stderr, "test `%s'\n", s->data);
4285 return Qnil;
4286 }
4287
4288 Here, `obj' isn't really used, and the compiler optimizes it
4289 away. The only reference to the life string is through the
4290 pointer `s'. */
4291
4292 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4293 mark_maybe_pointer (*pp);
4294 }
4295
4296 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4297 the GCC system configuration. In gcc 3.2, the only systems for
4298 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4299 by others?) and ns32k-pc532-min. */
4300
4301 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4302
4303 static int setjmp_tested_p, longjmps_done;
4304
4305 #define SETJMP_WILL_LIKELY_WORK "\
4306 \n\
4307 Emacs garbage collector has been changed to use conservative stack\n\
4308 marking. Emacs has determined that the method it uses to do the\n\
4309 marking will likely work on your system, but this isn't sure.\n\
4310 \n\
4311 If you are a system-programmer, or can get the help of a local wizard\n\
4312 who is, please take a look at the function mark_stack in alloc.c, and\n\
4313 verify that the methods used are appropriate for your system.\n\
4314 \n\
4315 Please mail the result to <emacs-devel@gnu.org>.\n\
4316 "
4317
4318 #define SETJMP_WILL_NOT_WORK "\
4319 \n\
4320 Emacs garbage collector has been changed to use conservative stack\n\
4321 marking. Emacs has determined that the default method it uses to do the\n\
4322 marking will not work on your system. We will need a system-dependent\n\
4323 solution for your system.\n\
4324 \n\
4325 Please take a look at the function mark_stack in alloc.c, and\n\
4326 try to find a way to make it work on your system.\n\
4327 \n\
4328 Note that you may get false negatives, depending on the compiler.\n\
4329 In particular, you need to use -O with GCC for this test.\n\
4330 \n\
4331 Please mail the result to <emacs-devel@gnu.org>.\n\
4332 "
4333
4334
4335 /* Perform a quick check if it looks like setjmp saves registers in a
4336 jmp_buf. Print a message to stderr saying so. When this test
4337 succeeds, this is _not_ a proof that setjmp is sufficient for
4338 conservative stack marking. Only the sources or a disassembly
4339 can prove that. */
4340
4341 static void
4342 test_setjmp ()
4343 {
4344 char buf[10];
4345 register int x;
4346 jmp_buf jbuf;
4347 int result = 0;
4348
4349 /* Arrange for X to be put in a register. */
4350 sprintf (buf, "1");
4351 x = strlen (buf);
4352 x = 2 * x - 1;
4353
4354 setjmp (jbuf);
4355 if (longjmps_done == 1)
4356 {
4357 /* Came here after the longjmp at the end of the function.
4358
4359 If x == 1, the longjmp has restored the register to its
4360 value before the setjmp, and we can hope that setjmp
4361 saves all such registers in the jmp_buf, although that
4362 isn't sure.
4363
4364 For other values of X, either something really strange is
4365 taking place, or the setjmp just didn't save the register. */
4366
4367 if (x == 1)
4368 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4369 else
4370 {
4371 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4372 exit (1);
4373 }
4374 }
4375
4376 ++longjmps_done;
4377 x = 2;
4378 if (longjmps_done == 1)
4379 longjmp (jbuf, 1);
4380 }
4381
4382 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4383
4384
4385 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4386
4387 /* Abort if anything GCPRO'd doesn't survive the GC. */
4388
4389 static void
4390 check_gcpros ()
4391 {
4392 struct gcpro *p;
4393 int i;
4394
4395 for (p = gcprolist; p; p = p->next)
4396 for (i = 0; i < p->nvars; ++i)
4397 if (!survives_gc_p (p->var[i]))
4398 /* FIXME: It's not necessarily a bug. It might just be that the
4399 GCPRO is unnecessary or should release the object sooner. */
4400 abort ();
4401 }
4402
4403 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4404
4405 static void
4406 dump_zombies ()
4407 {
4408 int i;
4409
4410 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4411 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4412 {
4413 fprintf (stderr, " %d = ", i);
4414 debug_print (zombies[i]);
4415 }
4416 }
4417
4418 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4419
4420
4421 /* Mark live Lisp objects on the C stack.
4422
4423 There are several system-dependent problems to consider when
4424 porting this to new architectures:
4425
4426 Processor Registers
4427
4428 We have to mark Lisp objects in CPU registers that can hold local
4429 variables or are used to pass parameters.
4430
4431 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4432 something that either saves relevant registers on the stack, or
4433 calls mark_maybe_object passing it each register's contents.
4434
4435 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4436 implementation assumes that calling setjmp saves registers we need
4437 to see in a jmp_buf which itself lies on the stack. This doesn't
4438 have to be true! It must be verified for each system, possibly
4439 by taking a look at the source code of setjmp.
4440
4441 Stack Layout
4442
4443 Architectures differ in the way their processor stack is organized.
4444 For example, the stack might look like this
4445
4446 +----------------+
4447 | Lisp_Object | size = 4
4448 +----------------+
4449 | something else | size = 2
4450 +----------------+
4451 | Lisp_Object | size = 4
4452 +----------------+
4453 | ... |
4454
4455 In such a case, not every Lisp_Object will be aligned equally. To
4456 find all Lisp_Object on the stack it won't be sufficient to walk
4457 the stack in steps of 4 bytes. Instead, two passes will be
4458 necessary, one starting at the start of the stack, and a second
4459 pass starting at the start of the stack + 2. Likewise, if the
4460 minimal alignment of Lisp_Objects on the stack is 1, four passes
4461 would be necessary, each one starting with one byte more offset
4462 from the stack start.
4463
4464 The current code assumes by default that Lisp_Objects are aligned
4465 equally on the stack. */
4466
4467 static void
4468 mark_stack ()
4469 {
4470 int i;
4471 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4472 union aligned_jmpbuf {
4473 Lisp_Object o;
4474 jmp_buf j;
4475 } j;
4476 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4477 void *end;
4478
4479 /* This trick flushes the register windows so that all the state of
4480 the process is contained in the stack. */
4481 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4482 needed on ia64 too. See mach_dep.c, where it also says inline
4483 assembler doesn't work with relevant proprietary compilers. */
4484 #ifdef sparc
4485 asm ("ta 3");
4486 #endif
4487
4488 /* Save registers that we need to see on the stack. We need to see
4489 registers used to hold register variables and registers used to
4490 pass parameters. */
4491 #ifdef GC_SAVE_REGISTERS_ON_STACK
4492 GC_SAVE_REGISTERS_ON_STACK (end);
4493 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4494
4495 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4496 setjmp will definitely work, test it
4497 and print a message with the result
4498 of the test. */
4499 if (!setjmp_tested_p)
4500 {
4501 setjmp_tested_p = 1;
4502 test_setjmp ();
4503 }
4504 #endif /* GC_SETJMP_WORKS */
4505
4506 setjmp (j.j);
4507 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4508 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4509
4510 /* This assumes that the stack is a contiguous region in memory. If
4511 that's not the case, something has to be done here to iterate
4512 over the stack segments. */
4513 #ifndef GC_LISP_OBJECT_ALIGNMENT
4514 #ifdef __GNUC__
4515 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4516 #else
4517 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4518 #endif
4519 #endif
4520 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4521 mark_memory (stack_base, end, i);
4522 /* Allow for marking a secondary stack, like the register stack on the
4523 ia64. */
4524 #ifdef GC_MARK_SECONDARY_STACK
4525 GC_MARK_SECONDARY_STACK ();
4526 #endif
4527
4528 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4529 check_gcpros ();
4530 #endif
4531 }
4532
4533 #endif /* GC_MARK_STACK != 0 */
4534
4535
4536 /* Determine whether it is safe to access memory at address P. */
4537 static int
4538 valid_pointer_p (p)
4539 void *p;
4540 {
4541 #ifdef WINDOWSNT
4542 return w32_valid_pointer_p (p, 16);
4543 #else
4544 int fd;
4545
4546 /* Obviously, we cannot just access it (we would SEGV trying), so we
4547 trick the o/s to tell us whether p is a valid pointer.
4548 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4549 not validate p in that case. */
4550
4551 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4552 {
4553 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4554 emacs_close (fd);
4555 unlink ("__Valid__Lisp__Object__");
4556 return valid;
4557 }
4558
4559 return -1;
4560 #endif
4561 }
4562
4563 /* Return 1 if OBJ is a valid lisp object.
4564 Return 0 if OBJ is NOT a valid lisp object.
4565 Return -1 if we cannot validate OBJ.
4566 This function can be quite slow,
4567 so it should only be used in code for manual debugging. */
4568
4569 int
4570 valid_lisp_object_p (obj)
4571 Lisp_Object obj;
4572 {
4573 void *p;
4574 #if GC_MARK_STACK
4575 struct mem_node *m;
4576 #endif
4577
4578 if (INTEGERP (obj))
4579 return 1;
4580
4581 p = (void *) XPNTR (obj);
4582 if (PURE_POINTER_P (p))
4583 return 1;
4584
4585 #if !GC_MARK_STACK
4586 return valid_pointer_p (p);
4587 #else
4588
4589 m = mem_find (p);
4590
4591 if (m == MEM_NIL)
4592 {
4593 int valid = valid_pointer_p (p);
4594 if (valid <= 0)
4595 return valid;
4596
4597 if (SUBRP (obj))
4598 return 1;
4599
4600 return 0;
4601 }
4602
4603 switch (m->type)
4604 {
4605 case MEM_TYPE_NON_LISP:
4606 return 0;
4607
4608 case MEM_TYPE_BUFFER:
4609 return live_buffer_p (m, p);
4610
4611 case MEM_TYPE_CONS:
4612 return live_cons_p (m, p);
4613
4614 case MEM_TYPE_STRING:
4615 return live_string_p (m, p);
4616
4617 case MEM_TYPE_MISC:
4618 return live_misc_p (m, p);
4619
4620 case MEM_TYPE_SYMBOL:
4621 return live_symbol_p (m, p);
4622
4623 case MEM_TYPE_FLOAT:
4624 return live_float_p (m, p);
4625
4626 case MEM_TYPE_VECTORLIKE:
4627 return live_vector_p (m, p);
4628
4629 default:
4630 break;
4631 }
4632
4633 return 0;
4634 #endif
4635 }
4636
4637
4638
4639 \f
4640 /***********************************************************************
4641 Pure Storage Management
4642 ***********************************************************************/
4643
4644 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4645 pointer to it. TYPE is the Lisp type for which the memory is
4646 allocated. TYPE < 0 means it's not used for a Lisp object. */
4647
4648 static POINTER_TYPE *
4649 pure_alloc (size, type)
4650 size_t size;
4651 int type;
4652 {
4653 POINTER_TYPE *result;
4654 #ifdef USE_LSB_TAG
4655 size_t alignment = (1 << GCTYPEBITS);
4656 #else
4657 size_t alignment = sizeof (EMACS_INT);
4658
4659 /* Give Lisp_Floats an extra alignment. */
4660 if (type == Lisp_Float)
4661 {
4662 #if defined __GNUC__ && __GNUC__ >= 2
4663 alignment = __alignof (struct Lisp_Float);
4664 #else
4665 alignment = sizeof (struct Lisp_Float);
4666 #endif
4667 }
4668 #endif
4669
4670 again:
4671 if (type >= 0)
4672 {
4673 /* Allocate space for a Lisp object from the beginning of the free
4674 space with taking account of alignment. */
4675 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4676 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4677 }
4678 else
4679 {
4680 /* Allocate space for a non-Lisp object from the end of the free
4681 space. */
4682 pure_bytes_used_non_lisp += size;
4683 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4684 }
4685 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4686
4687 if (pure_bytes_used <= pure_size)
4688 return result;
4689
4690 /* Don't allocate a large amount here,
4691 because it might get mmap'd and then its address
4692 might not be usable. */
4693 purebeg = (char *) xmalloc (10000);
4694 pure_size = 10000;
4695 pure_bytes_used_before_overflow += pure_bytes_used - size;
4696 pure_bytes_used = 0;
4697 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4698 goto again;
4699 }
4700
4701
4702 /* Print a warning if PURESIZE is too small. */
4703
4704 void
4705 check_pure_size ()
4706 {
4707 if (pure_bytes_used_before_overflow)
4708 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4709 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4710 }
4711
4712
4713 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4714 the non-Lisp data pool of the pure storage, and return its start
4715 address. Return NULL if not found. */
4716
4717 static char *
4718 find_string_data_in_pure (data, nbytes)
4719 char *data;
4720 int nbytes;
4721 {
4722 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4723 unsigned char *p;
4724 char *non_lisp_beg;
4725
4726 if (pure_bytes_used_non_lisp < nbytes + 1)
4727 return NULL;
4728
4729 /* Set up the Boyer-Moore table. */
4730 skip = nbytes + 1;
4731 for (i = 0; i < 256; i++)
4732 bm_skip[i] = skip;
4733
4734 p = (unsigned char *) data;
4735 while (--skip > 0)
4736 bm_skip[*p++] = skip;
4737
4738 last_char_skip = bm_skip['\0'];
4739
4740 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4741 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4742
4743 /* See the comments in the function `boyer_moore' (search.c) for the
4744 use of `infinity'. */
4745 infinity = pure_bytes_used_non_lisp + 1;
4746 bm_skip['\0'] = infinity;
4747
4748 p = (unsigned char *) non_lisp_beg + nbytes;
4749 start = 0;
4750 do
4751 {
4752 /* Check the last character (== '\0'). */
4753 do
4754 {
4755 start += bm_skip[*(p + start)];
4756 }
4757 while (start <= start_max);
4758
4759 if (start < infinity)
4760 /* Couldn't find the last character. */
4761 return NULL;
4762
4763 /* No less than `infinity' means we could find the last
4764 character at `p[start - infinity]'. */
4765 start -= infinity;
4766
4767 /* Check the remaining characters. */
4768 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4769 /* Found. */
4770 return non_lisp_beg + start;
4771
4772 start += last_char_skip;
4773 }
4774 while (start <= start_max);
4775
4776 return NULL;
4777 }
4778
4779
4780 /* Return a string allocated in pure space. DATA is a buffer holding
4781 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4782 non-zero means make the result string multibyte.
4783
4784 Must get an error if pure storage is full, since if it cannot hold
4785 a large string it may be able to hold conses that point to that
4786 string; then the string is not protected from gc. */
4787
4788 Lisp_Object
4789 make_pure_string (data, nchars, nbytes, multibyte)
4790 char *data;
4791 int nchars, nbytes;
4792 int multibyte;
4793 {
4794 Lisp_Object string;
4795 struct Lisp_String *s;
4796
4797 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4798 s->data = find_string_data_in_pure (data, nbytes);
4799 if (s->data == NULL)
4800 {
4801 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4802 bcopy (data, s->data, nbytes);
4803 s->data[nbytes] = '\0';
4804 }
4805 s->size = nchars;
4806 s->size_byte = multibyte ? nbytes : -1;
4807 s->intervals = NULL_INTERVAL;
4808 XSETSTRING (string, s);
4809 return string;
4810 }
4811
4812
4813 /* Return a cons allocated from pure space. Give it pure copies
4814 of CAR as car and CDR as cdr. */
4815
4816 Lisp_Object
4817 pure_cons (car, cdr)
4818 Lisp_Object car, cdr;
4819 {
4820 register Lisp_Object new;
4821 struct Lisp_Cons *p;
4822
4823 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4824 XSETCONS (new, p);
4825 XSETCAR (new, Fpurecopy (car));
4826 XSETCDR (new, Fpurecopy (cdr));
4827 return new;
4828 }
4829
4830
4831 /* Value is a float object with value NUM allocated from pure space. */
4832
4833 static Lisp_Object
4834 make_pure_float (num)
4835 double num;
4836 {
4837 register Lisp_Object new;
4838 struct Lisp_Float *p;
4839
4840 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4841 XSETFLOAT (new, p);
4842 XFLOAT_DATA (new) = num;
4843 return new;
4844 }
4845
4846
4847 /* Return a vector with room for LEN Lisp_Objects allocated from
4848 pure space. */
4849
4850 Lisp_Object
4851 make_pure_vector (len)
4852 EMACS_INT len;
4853 {
4854 Lisp_Object new;
4855 struct Lisp_Vector *p;
4856 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4857
4858 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4859 XSETVECTOR (new, p);
4860 XVECTOR (new)->size = len;
4861 return new;
4862 }
4863
4864
4865 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4866 doc: /* Make a copy of object OBJ in pure storage.
4867 Recursively copies contents of vectors and cons cells.
4868 Does not copy symbols. Copies strings without text properties. */)
4869 (obj)
4870 register Lisp_Object obj;
4871 {
4872 if (NILP (Vpurify_flag))
4873 return obj;
4874
4875 if (PURE_POINTER_P (XPNTR (obj)))
4876 return obj;
4877
4878 if (CONSP (obj))
4879 return pure_cons (XCAR (obj), XCDR (obj));
4880 else if (FLOATP (obj))
4881 return make_pure_float (XFLOAT_DATA (obj));
4882 else if (STRINGP (obj))
4883 return make_pure_string (SDATA (obj), SCHARS (obj),
4884 SBYTES (obj),
4885 STRING_MULTIBYTE (obj));
4886 else if (COMPILEDP (obj) || VECTORP (obj))
4887 {
4888 register struct Lisp_Vector *vec;
4889 register int i;
4890 EMACS_INT size;
4891
4892 size = XVECTOR (obj)->size;
4893 if (size & PSEUDOVECTOR_FLAG)
4894 size &= PSEUDOVECTOR_SIZE_MASK;
4895 vec = XVECTOR (make_pure_vector (size));
4896 for (i = 0; i < size; i++)
4897 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4898 if (COMPILEDP (obj))
4899 {
4900 XSETPVECTYPE (vec, PVEC_COMPILED);
4901 XSETCOMPILED (obj, vec);
4902 }
4903 else
4904 XSETVECTOR (obj, vec);
4905 return obj;
4906 }
4907 else if (MARKERP (obj))
4908 error ("Attempt to copy a marker to pure storage");
4909
4910 return obj;
4911 }
4912
4913
4914 \f
4915 /***********************************************************************
4916 Protection from GC
4917 ***********************************************************************/
4918
4919 /* Put an entry in staticvec, pointing at the variable with address
4920 VARADDRESS. */
4921
4922 void
4923 staticpro (varaddress)
4924 Lisp_Object *varaddress;
4925 {
4926 staticvec[staticidx++] = varaddress;
4927 if (staticidx >= NSTATICS)
4928 abort ();
4929 }
4930
4931 struct catchtag
4932 {
4933 Lisp_Object tag;
4934 Lisp_Object val;
4935 struct catchtag *next;
4936 };
4937
4938 \f
4939 /***********************************************************************
4940 Protection from GC
4941 ***********************************************************************/
4942
4943 /* Temporarily prevent garbage collection. */
4944
4945 int
4946 inhibit_garbage_collection ()
4947 {
4948 int count = SPECPDL_INDEX ();
4949 int nbits = min (VALBITS, BITS_PER_INT);
4950
4951 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4952 return count;
4953 }
4954
4955
4956 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4957 doc: /* Reclaim storage for Lisp objects no longer needed.
4958 Garbage collection happens automatically if you cons more than
4959 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4960 `garbage-collect' normally returns a list with info on amount of space in use:
4961 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4962 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4963 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4964 (USED-STRINGS . FREE-STRINGS))
4965 However, if there was overflow in pure space, `garbage-collect'
4966 returns nil, because real GC can't be done. */)
4967 ()
4968 {
4969 register struct specbinding *bind;
4970 struct catchtag *catch;
4971 struct handler *handler;
4972 char stack_top_variable;
4973 register int i;
4974 int message_p;
4975 Lisp_Object total[8];
4976 int count = SPECPDL_INDEX ();
4977 EMACS_TIME t1, t2, t3;
4978
4979 if (abort_on_gc)
4980 abort ();
4981
4982 /* Can't GC if pure storage overflowed because we can't determine
4983 if something is a pure object or not. */
4984 if (pure_bytes_used_before_overflow)
4985 return Qnil;
4986
4987 CHECK_CONS_LIST ();
4988
4989 /* Don't keep undo information around forever.
4990 Do this early on, so it is no problem if the user quits. */
4991 {
4992 register struct buffer *nextb = all_buffers;
4993
4994 while (nextb)
4995 {
4996 /* If a buffer's undo list is Qt, that means that undo is
4997 turned off in that buffer. Calling truncate_undo_list on
4998 Qt tends to return NULL, which effectively turns undo back on.
4999 So don't call truncate_undo_list if undo_list is Qt. */
5000 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
5001 truncate_undo_list (nextb);
5002
5003 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5004 if (nextb->base_buffer == 0 && !NILP (nextb->name)
5005 && ! nextb->text->inhibit_shrinking)
5006 {
5007 /* If a buffer's gap size is more than 10% of the buffer
5008 size, or larger than 2000 bytes, then shrink it
5009 accordingly. Keep a minimum size of 20 bytes. */
5010 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5011
5012 if (nextb->text->gap_size > size)
5013 {
5014 struct buffer *save_current = current_buffer;
5015 current_buffer = nextb;
5016 make_gap (-(nextb->text->gap_size - size));
5017 current_buffer = save_current;
5018 }
5019 }
5020
5021 nextb = nextb->next;
5022 }
5023 }
5024
5025 EMACS_GET_TIME (t1);
5026
5027 /* In case user calls debug_print during GC,
5028 don't let that cause a recursive GC. */
5029 consing_since_gc = 0;
5030
5031 /* Save what's currently displayed in the echo area. */
5032 message_p = push_message ();
5033 record_unwind_protect (pop_message_unwind, Qnil);
5034
5035 /* Save a copy of the contents of the stack, for debugging. */
5036 #if MAX_SAVE_STACK > 0
5037 if (NILP (Vpurify_flag))
5038 {
5039 i = &stack_top_variable - stack_bottom;
5040 if (i < 0) i = -i;
5041 if (i < MAX_SAVE_STACK)
5042 {
5043 if (stack_copy == 0)
5044 stack_copy = (char *) xmalloc (stack_copy_size = i);
5045 else if (stack_copy_size < i)
5046 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
5047 if (stack_copy)
5048 {
5049 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
5050 bcopy (stack_bottom, stack_copy, i);
5051 else
5052 bcopy (&stack_top_variable, stack_copy, i);
5053 }
5054 }
5055 }
5056 #endif /* MAX_SAVE_STACK > 0 */
5057
5058 if (garbage_collection_messages)
5059 message1_nolog ("Garbage collecting...");
5060
5061 BLOCK_INPUT;
5062
5063 shrink_regexp_cache ();
5064
5065 gc_in_progress = 1;
5066
5067 /* clear_marks (); */
5068
5069 /* Mark all the special slots that serve as the roots of accessibility. */
5070
5071 for (i = 0; i < staticidx; i++)
5072 mark_object (*staticvec[i]);
5073
5074 for (bind = specpdl; bind != specpdl_ptr; bind++)
5075 {
5076 mark_object (bind->symbol);
5077 mark_object (bind->old_value);
5078 }
5079 mark_terminals ();
5080 mark_kboards ();
5081 mark_ttys ();
5082
5083 #ifdef USE_GTK
5084 {
5085 extern void xg_mark_data ();
5086 xg_mark_data ();
5087 }
5088 #endif
5089
5090 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5091 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5092 mark_stack ();
5093 #else
5094 {
5095 register struct gcpro *tail;
5096 for (tail = gcprolist; tail; tail = tail->next)
5097 for (i = 0; i < tail->nvars; i++)
5098 mark_object (tail->var[i]);
5099 }
5100 #endif
5101
5102 mark_byte_stack ();
5103 for (catch = catchlist; catch; catch = catch->next)
5104 {
5105 mark_object (catch->tag);
5106 mark_object (catch->val);
5107 }
5108 for (handler = handlerlist; handler; handler = handler->next)
5109 {
5110 mark_object (handler->handler);
5111 mark_object (handler->var);
5112 }
5113 mark_backtrace ();
5114
5115 #ifdef HAVE_WINDOW_SYSTEM
5116 mark_fringe_data ();
5117 #endif
5118
5119 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5120 mark_stack ();
5121 #endif
5122
5123 /* Everything is now marked, except for the things that require special
5124 finalization, i.e. the undo_list.
5125 Look thru every buffer's undo list
5126 for elements that update markers that were not marked,
5127 and delete them. */
5128 {
5129 register struct buffer *nextb = all_buffers;
5130
5131 while (nextb)
5132 {
5133 /* If a buffer's undo list is Qt, that means that undo is
5134 turned off in that buffer. Calling truncate_undo_list on
5135 Qt tends to return NULL, which effectively turns undo back on.
5136 So don't call truncate_undo_list if undo_list is Qt. */
5137 if (! EQ (nextb->undo_list, Qt))
5138 {
5139 Lisp_Object tail, prev;
5140 tail = nextb->undo_list;
5141 prev = Qnil;
5142 while (CONSP (tail))
5143 {
5144 if (CONSP (XCAR (tail))
5145 && MARKERP (XCAR (XCAR (tail)))
5146 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5147 {
5148 if (NILP (prev))
5149 nextb->undo_list = tail = XCDR (tail);
5150 else
5151 {
5152 tail = XCDR (tail);
5153 XSETCDR (prev, tail);
5154 }
5155 }
5156 else
5157 {
5158 prev = tail;
5159 tail = XCDR (tail);
5160 }
5161 }
5162 }
5163 /* Now that we have stripped the elements that need not be in the
5164 undo_list any more, we can finally mark the list. */
5165 mark_object (nextb->undo_list);
5166
5167 nextb = nextb->next;
5168 }
5169 }
5170
5171 gc_sweep ();
5172
5173 /* Clear the mark bits that we set in certain root slots. */
5174
5175 unmark_byte_stack ();
5176 VECTOR_UNMARK (&buffer_defaults);
5177 VECTOR_UNMARK (&buffer_local_symbols);
5178
5179 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5180 dump_zombies ();
5181 #endif
5182
5183 UNBLOCK_INPUT;
5184
5185 CHECK_CONS_LIST ();
5186
5187 /* clear_marks (); */
5188 gc_in_progress = 0;
5189
5190 consing_since_gc = 0;
5191 if (gc_cons_threshold < 10000)
5192 gc_cons_threshold = 10000;
5193
5194 if (FLOATP (Vgc_cons_percentage))
5195 { /* Set gc_cons_combined_threshold. */
5196 EMACS_INT total = 0;
5197
5198 total += total_conses * sizeof (struct Lisp_Cons);
5199 total += total_symbols * sizeof (struct Lisp_Symbol);
5200 total += total_markers * sizeof (union Lisp_Misc);
5201 total += total_string_size;
5202 total += total_vector_size * sizeof (Lisp_Object);
5203 total += total_floats * sizeof (struct Lisp_Float);
5204 total += total_intervals * sizeof (struct interval);
5205 total += total_strings * sizeof (struct Lisp_String);
5206
5207 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5208 }
5209 else
5210 gc_relative_threshold = 0;
5211
5212 if (garbage_collection_messages)
5213 {
5214 if (message_p || minibuf_level > 0)
5215 restore_message ();
5216 else
5217 message1_nolog ("Garbage collecting...done");
5218 }
5219
5220 unbind_to (count, Qnil);
5221
5222 total[0] = Fcons (make_number (total_conses),
5223 make_number (total_free_conses));
5224 total[1] = Fcons (make_number (total_symbols),
5225 make_number (total_free_symbols));
5226 total[2] = Fcons (make_number (total_markers),
5227 make_number (total_free_markers));
5228 total[3] = make_number (total_string_size);
5229 total[4] = make_number (total_vector_size);
5230 total[5] = Fcons (make_number (total_floats),
5231 make_number (total_free_floats));
5232 total[6] = Fcons (make_number (total_intervals),
5233 make_number (total_free_intervals));
5234 total[7] = Fcons (make_number (total_strings),
5235 make_number (total_free_strings));
5236
5237 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5238 {
5239 /* Compute average percentage of zombies. */
5240 double nlive = 0;
5241
5242 for (i = 0; i < 7; ++i)
5243 if (CONSP (total[i]))
5244 nlive += XFASTINT (XCAR (total[i]));
5245
5246 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5247 max_live = max (nlive, max_live);
5248 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5249 max_zombies = max (nzombies, max_zombies);
5250 ++ngcs;
5251 }
5252 #endif
5253
5254 if (!NILP (Vpost_gc_hook))
5255 {
5256 int count = inhibit_garbage_collection ();
5257 safe_run_hooks (Qpost_gc_hook);
5258 unbind_to (count, Qnil);
5259 }
5260
5261 /* Accumulate statistics. */
5262 EMACS_GET_TIME (t2);
5263 EMACS_SUB_TIME (t3, t2, t1);
5264 if (FLOATP (Vgc_elapsed))
5265 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5266 EMACS_SECS (t3) +
5267 EMACS_USECS (t3) * 1.0e-6);
5268 gcs_done++;
5269
5270 return Flist (sizeof total / sizeof *total, total);
5271 }
5272
5273
5274 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5275 only interesting objects referenced from glyphs are strings. */
5276
5277 static void
5278 mark_glyph_matrix (matrix)
5279 struct glyph_matrix *matrix;
5280 {
5281 struct glyph_row *row = matrix->rows;
5282 struct glyph_row *end = row + matrix->nrows;
5283
5284 for (; row < end; ++row)
5285 if (row->enabled_p)
5286 {
5287 int area;
5288 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5289 {
5290 struct glyph *glyph = row->glyphs[area];
5291 struct glyph *end_glyph = glyph + row->used[area];
5292
5293 for (; glyph < end_glyph; ++glyph)
5294 if (STRINGP (glyph->object)
5295 && !STRING_MARKED_P (XSTRING (glyph->object)))
5296 mark_object (glyph->object);
5297 }
5298 }
5299 }
5300
5301
5302 /* Mark Lisp faces in the face cache C. */
5303
5304 static void
5305 mark_face_cache (c)
5306 struct face_cache *c;
5307 {
5308 if (c)
5309 {
5310 int i, j;
5311 for (i = 0; i < c->used; ++i)
5312 {
5313 struct face *face = FACE_FROM_ID (c->f, i);
5314
5315 if (face)
5316 {
5317 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5318 mark_object (face->lface[j]);
5319 }
5320 }
5321 }
5322 }
5323
5324
5325 \f
5326 /* Mark reference to a Lisp_Object.
5327 If the object referred to has not been seen yet, recursively mark
5328 all the references contained in it. */
5329
5330 #define LAST_MARKED_SIZE 500
5331 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5332 int last_marked_index;
5333
5334 /* For debugging--call abort when we cdr down this many
5335 links of a list, in mark_object. In debugging,
5336 the call to abort will hit a breakpoint.
5337 Normally this is zero and the check never goes off. */
5338 static int mark_object_loop_halt;
5339
5340 /* Return non-zero if the object was not yet marked. */
5341 static int
5342 mark_vectorlike (ptr)
5343 struct Lisp_Vector *ptr;
5344 {
5345 register EMACS_INT size = ptr->size;
5346 register int i;
5347
5348 if (VECTOR_MARKED_P (ptr))
5349 return 0; /* Already marked */
5350 VECTOR_MARK (ptr); /* Else mark it */
5351 if (size & PSEUDOVECTOR_FLAG)
5352 size &= PSEUDOVECTOR_SIZE_MASK;
5353
5354 /* Note that this size is not the memory-footprint size, but only
5355 the number of Lisp_Object fields that we should trace.
5356 The distinction is used e.g. by Lisp_Process which places extra
5357 non-Lisp_Object fields at the end of the structure. */
5358 for (i = 0; i < size; i++) /* and then mark its elements */
5359 mark_object (ptr->contents[i]);
5360 return 1;
5361 }
5362
5363 void
5364 mark_object (arg)
5365 Lisp_Object arg;
5366 {
5367 register Lisp_Object obj = arg;
5368 #ifdef GC_CHECK_MARKED_OBJECTS
5369 void *po;
5370 struct mem_node *m;
5371 #endif
5372 int cdr_count = 0;
5373
5374 loop:
5375
5376 if (PURE_POINTER_P (XPNTR (obj)))
5377 return;
5378
5379 last_marked[last_marked_index++] = obj;
5380 if (last_marked_index == LAST_MARKED_SIZE)
5381 last_marked_index = 0;
5382
5383 /* Perform some sanity checks on the objects marked here. Abort if
5384 we encounter an object we know is bogus. This increases GC time
5385 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5386 #ifdef GC_CHECK_MARKED_OBJECTS
5387
5388 po = (void *) XPNTR (obj);
5389
5390 /* Check that the object pointed to by PO is known to be a Lisp
5391 structure allocated from the heap. */
5392 #define CHECK_ALLOCATED() \
5393 do { \
5394 m = mem_find (po); \
5395 if (m == MEM_NIL) \
5396 abort (); \
5397 } while (0)
5398
5399 /* Check that the object pointed to by PO is live, using predicate
5400 function LIVEP. */
5401 #define CHECK_LIVE(LIVEP) \
5402 do { \
5403 if (!LIVEP (m, po)) \
5404 abort (); \
5405 } while (0)
5406
5407 /* Check both of the above conditions. */
5408 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5409 do { \
5410 CHECK_ALLOCATED (); \
5411 CHECK_LIVE (LIVEP); \
5412 } while (0) \
5413
5414 #else /* not GC_CHECK_MARKED_OBJECTS */
5415
5416 #define CHECK_ALLOCATED() (void) 0
5417 #define CHECK_LIVE(LIVEP) (void) 0
5418 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5419
5420 #endif /* not GC_CHECK_MARKED_OBJECTS */
5421
5422 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5423 {
5424 case Lisp_String:
5425 {
5426 register struct Lisp_String *ptr = XSTRING (obj);
5427 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5428 MARK_INTERVAL_TREE (ptr->intervals);
5429 MARK_STRING (ptr);
5430 #ifdef GC_CHECK_STRING_BYTES
5431 /* Check that the string size recorded in the string is the
5432 same as the one recorded in the sdata structure. */
5433 CHECK_STRING_BYTES (ptr);
5434 #endif /* GC_CHECK_STRING_BYTES */
5435 }
5436 break;
5437
5438 case Lisp_Vectorlike:
5439 #ifdef GC_CHECK_MARKED_OBJECTS
5440 m = mem_find (po);
5441 if (m == MEM_NIL && !SUBRP (obj)
5442 && po != &buffer_defaults
5443 && po != &buffer_local_symbols)
5444 abort ();
5445 #endif /* GC_CHECK_MARKED_OBJECTS */
5446
5447 if (BUFFERP (obj))
5448 {
5449 if (!VECTOR_MARKED_P (XBUFFER (obj)))
5450 {
5451 #ifdef GC_CHECK_MARKED_OBJECTS
5452 if (po != &buffer_defaults && po != &buffer_local_symbols)
5453 {
5454 struct buffer *b;
5455 for (b = all_buffers; b && b != po; b = b->next)
5456 ;
5457 if (b == NULL)
5458 abort ();
5459 }
5460 #endif /* GC_CHECK_MARKED_OBJECTS */
5461 mark_buffer (obj);
5462 }
5463 }
5464 else if (SUBRP (obj))
5465 break;
5466 else if (COMPILEDP (obj))
5467 /* We could treat this just like a vector, but it is better to
5468 save the COMPILED_CONSTANTS element for last and avoid
5469 recursion there. */
5470 {
5471 register struct Lisp_Vector *ptr = XVECTOR (obj);
5472 register EMACS_INT size = ptr->size;
5473 register int i;
5474
5475 if (VECTOR_MARKED_P (ptr))
5476 break; /* Already marked */
5477
5478 CHECK_LIVE (live_vector_p);
5479 VECTOR_MARK (ptr); /* Else mark it */
5480 size &= PSEUDOVECTOR_SIZE_MASK;
5481 for (i = 0; i < size; i++) /* and then mark its elements */
5482 {
5483 if (i != COMPILED_CONSTANTS)
5484 mark_object (ptr->contents[i]);
5485 }
5486 obj = ptr->contents[COMPILED_CONSTANTS];
5487 goto loop;
5488 }
5489 else if (FRAMEP (obj))
5490 {
5491 register struct frame *ptr = XFRAME (obj);
5492 if (mark_vectorlike (XVECTOR (obj)))
5493 mark_face_cache (ptr->face_cache);
5494 }
5495 else if (WINDOWP (obj))
5496 {
5497 register struct Lisp_Vector *ptr = XVECTOR (obj);
5498 struct window *w = XWINDOW (obj);
5499 if (mark_vectorlike (ptr))
5500 {
5501 /* Mark glyphs for leaf windows. Marking window matrices is
5502 sufficient because frame matrices use the same glyph
5503 memory. */
5504 if (NILP (w->hchild)
5505 && NILP (w->vchild)
5506 && w->current_matrix)
5507 {
5508 mark_glyph_matrix (w->current_matrix);
5509 mark_glyph_matrix (w->desired_matrix);
5510 }
5511 }
5512 }
5513 else if (HASH_TABLE_P (obj))
5514 {
5515 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5516 if (mark_vectorlike ((struct Lisp_Vector *)h))
5517 { /* If hash table is not weak, mark all keys and values.
5518 For weak tables, mark only the vector. */
5519 if (NILP (h->weak))
5520 mark_object (h->key_and_value);
5521 else
5522 VECTOR_MARK (XVECTOR (h->key_and_value));
5523 }
5524 }
5525 else
5526 mark_vectorlike (XVECTOR (obj));
5527 break;
5528
5529 case Lisp_Symbol:
5530 {
5531 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5532 struct Lisp_Symbol *ptrx;
5533
5534 if (ptr->gcmarkbit) break;
5535 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5536 ptr->gcmarkbit = 1;
5537 mark_object (ptr->value);
5538 mark_object (ptr->function);
5539 mark_object (ptr->plist);
5540
5541 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5542 MARK_STRING (XSTRING (ptr->xname));
5543 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5544
5545 /* Note that we do not mark the obarray of the symbol.
5546 It is safe not to do so because nothing accesses that
5547 slot except to check whether it is nil. */
5548 ptr = ptr->next;
5549 if (ptr)
5550 {
5551 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5552 XSETSYMBOL (obj, ptrx);
5553 goto loop;
5554 }
5555 }
5556 break;
5557
5558 case Lisp_Misc:
5559 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5560 if (XMISCANY (obj)->gcmarkbit)
5561 break;
5562 XMISCANY (obj)->gcmarkbit = 1;
5563
5564 switch (XMISCTYPE (obj))
5565 {
5566 case Lisp_Misc_Buffer_Local_Value:
5567 {
5568 register struct Lisp_Buffer_Local_Value *ptr
5569 = XBUFFER_LOCAL_VALUE (obj);
5570 /* If the cdr is nil, avoid recursion for the car. */
5571 if (EQ (ptr->cdr, Qnil))
5572 {
5573 obj = ptr->realvalue;
5574 goto loop;
5575 }
5576 mark_object (ptr->realvalue);
5577 mark_object (ptr->buffer);
5578 mark_object (ptr->frame);
5579 obj = ptr->cdr;
5580 goto loop;
5581 }
5582
5583 case Lisp_Misc_Marker:
5584 /* DO NOT mark thru the marker's chain.
5585 The buffer's markers chain does not preserve markers from gc;
5586 instead, markers are removed from the chain when freed by gc. */
5587 break;
5588
5589 case Lisp_Misc_Intfwd:
5590 case Lisp_Misc_Boolfwd:
5591 case Lisp_Misc_Objfwd:
5592 case Lisp_Misc_Buffer_Objfwd:
5593 case Lisp_Misc_Kboard_Objfwd:
5594 /* Don't bother with Lisp_Buffer_Objfwd,
5595 since all markable slots in current buffer marked anyway. */
5596 /* Don't need to do Lisp_Objfwd, since the places they point
5597 are protected with staticpro. */
5598 break;
5599
5600 case Lisp_Misc_Save_Value:
5601 #if GC_MARK_STACK
5602 {
5603 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5604 /* If DOGC is set, POINTER is the address of a memory
5605 area containing INTEGER potential Lisp_Objects. */
5606 if (ptr->dogc)
5607 {
5608 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5609 int nelt;
5610 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5611 mark_maybe_object (*p);
5612 }
5613 }
5614 #endif
5615 break;
5616
5617 case Lisp_Misc_Overlay:
5618 {
5619 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5620 mark_object (ptr->start);
5621 mark_object (ptr->end);
5622 mark_object (ptr->plist);
5623 if (ptr->next)
5624 {
5625 XSETMISC (obj, ptr->next);
5626 goto loop;
5627 }
5628 }
5629 break;
5630
5631 default:
5632 abort ();
5633 }
5634 break;
5635
5636 case Lisp_Cons:
5637 {
5638 register struct Lisp_Cons *ptr = XCONS (obj);
5639 if (CONS_MARKED_P (ptr)) break;
5640 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5641 CONS_MARK (ptr);
5642 /* If the cdr is nil, avoid recursion for the car. */
5643 if (EQ (ptr->u.cdr, Qnil))
5644 {
5645 obj = ptr->car;
5646 cdr_count = 0;
5647 goto loop;
5648 }
5649 mark_object (ptr->car);
5650 obj = ptr->u.cdr;
5651 cdr_count++;
5652 if (cdr_count == mark_object_loop_halt)
5653 abort ();
5654 goto loop;
5655 }
5656
5657 case Lisp_Float:
5658 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5659 FLOAT_MARK (XFLOAT (obj));
5660 break;
5661
5662 case Lisp_Int:
5663 break;
5664
5665 default:
5666 abort ();
5667 }
5668
5669 #undef CHECK_LIVE
5670 #undef CHECK_ALLOCATED
5671 #undef CHECK_ALLOCATED_AND_LIVE
5672 }
5673
5674 /* Mark the pointers in a buffer structure. */
5675
5676 static void
5677 mark_buffer (buf)
5678 Lisp_Object buf;
5679 {
5680 register struct buffer *buffer = XBUFFER (buf);
5681 register Lisp_Object *ptr, tmp;
5682 Lisp_Object base_buffer;
5683
5684 VECTOR_MARK (buffer);
5685
5686 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5687
5688 /* For now, we just don't mark the undo_list. It's done later in
5689 a special way just before the sweep phase, and after stripping
5690 some of its elements that are not needed any more. */
5691
5692 if (buffer->overlays_before)
5693 {
5694 XSETMISC (tmp, buffer->overlays_before);
5695 mark_object (tmp);
5696 }
5697 if (buffer->overlays_after)
5698 {
5699 XSETMISC (tmp, buffer->overlays_after);
5700 mark_object (tmp);
5701 }
5702
5703 /* buffer-local Lisp variables start at `undo_list',
5704 tho only the ones from `name' on are GC'd normally. */
5705 for (ptr = &buffer->name;
5706 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5707 ptr++)
5708 mark_object (*ptr);
5709
5710 /* If this is an indirect buffer, mark its base buffer. */
5711 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5712 {
5713 XSETBUFFER (base_buffer, buffer->base_buffer);
5714 mark_buffer (base_buffer);
5715 }
5716 }
5717
5718 /* Mark the Lisp pointers in the terminal objects.
5719 Called by the Fgarbage_collector. */
5720
5721 static void
5722 mark_terminals (void)
5723 {
5724 struct terminal *t;
5725 for (t = terminal_list; t; t = t->next_terminal)
5726 {
5727 eassert (t->name != NULL);
5728 #ifdef HAVE_WINDOW_SYSTEM
5729 mark_image_cache (t->image_cache);
5730 #endif /* HAVE_WINDOW_SYSTEM */
5731 mark_vectorlike ((struct Lisp_Vector *)t);
5732 }
5733 }
5734
5735
5736
5737 /* Value is non-zero if OBJ will survive the current GC because it's
5738 either marked or does not need to be marked to survive. */
5739
5740 int
5741 survives_gc_p (obj)
5742 Lisp_Object obj;
5743 {
5744 int survives_p;
5745
5746 switch (XTYPE (obj))
5747 {
5748 case Lisp_Int:
5749 survives_p = 1;
5750 break;
5751
5752 case Lisp_Symbol:
5753 survives_p = XSYMBOL (obj)->gcmarkbit;
5754 break;
5755
5756 case Lisp_Misc:
5757 survives_p = XMISCANY (obj)->gcmarkbit;
5758 break;
5759
5760 case Lisp_String:
5761 survives_p = STRING_MARKED_P (XSTRING (obj));
5762 break;
5763
5764 case Lisp_Vectorlike:
5765 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5766 break;
5767
5768 case Lisp_Cons:
5769 survives_p = CONS_MARKED_P (XCONS (obj));
5770 break;
5771
5772 case Lisp_Float:
5773 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5774 break;
5775
5776 default:
5777 abort ();
5778 }
5779
5780 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5781 }
5782
5783
5784 \f
5785 /* Sweep: find all structures not marked, and free them. */
5786
5787 static void
5788 gc_sweep ()
5789 {
5790 /* Remove or mark entries in weak hash tables.
5791 This must be done before any object is unmarked. */
5792 sweep_weak_hash_tables ();
5793
5794 sweep_strings ();
5795 #ifdef GC_CHECK_STRING_BYTES
5796 if (!noninteractive)
5797 check_string_bytes (1);
5798 #endif
5799
5800 /* Put all unmarked conses on free list */
5801 {
5802 register struct cons_block *cblk;
5803 struct cons_block **cprev = &cons_block;
5804 register int lim = cons_block_index;
5805 register int num_free = 0, num_used = 0;
5806
5807 cons_free_list = 0;
5808
5809 for (cblk = cons_block; cblk; cblk = *cprev)
5810 {
5811 register int i = 0;
5812 int this_free = 0;
5813 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5814
5815 /* Scan the mark bits an int at a time. */
5816 for (i = 0; i <= ilim; i++)
5817 {
5818 if (cblk->gcmarkbits[i] == -1)
5819 {
5820 /* Fast path - all cons cells for this int are marked. */
5821 cblk->gcmarkbits[i] = 0;
5822 num_used += BITS_PER_INT;
5823 }
5824 else
5825 {
5826 /* Some cons cells for this int are not marked.
5827 Find which ones, and free them. */
5828 int start, pos, stop;
5829
5830 start = i * BITS_PER_INT;
5831 stop = lim - start;
5832 if (stop > BITS_PER_INT)
5833 stop = BITS_PER_INT;
5834 stop += start;
5835
5836 for (pos = start; pos < stop; pos++)
5837 {
5838 if (!CONS_MARKED_P (&cblk->conses[pos]))
5839 {
5840 this_free++;
5841 cblk->conses[pos].u.chain = cons_free_list;
5842 cons_free_list = &cblk->conses[pos];
5843 #if GC_MARK_STACK
5844 cons_free_list->car = Vdead;
5845 #endif
5846 }
5847 else
5848 {
5849 num_used++;
5850 CONS_UNMARK (&cblk->conses[pos]);
5851 }
5852 }
5853 }
5854 }
5855
5856 lim = CONS_BLOCK_SIZE;
5857 /* If this block contains only free conses and we have already
5858 seen more than two blocks worth of free conses then deallocate
5859 this block. */
5860 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5861 {
5862 *cprev = cblk->next;
5863 /* Unhook from the free list. */
5864 cons_free_list = cblk->conses[0].u.chain;
5865 lisp_align_free (cblk);
5866 n_cons_blocks--;
5867 }
5868 else
5869 {
5870 num_free += this_free;
5871 cprev = &cblk->next;
5872 }
5873 }
5874 total_conses = num_used;
5875 total_free_conses = num_free;
5876 }
5877
5878 /* Put all unmarked floats on free list */
5879 {
5880 register struct float_block *fblk;
5881 struct float_block **fprev = &float_block;
5882 register int lim = float_block_index;
5883 register int num_free = 0, num_used = 0;
5884
5885 float_free_list = 0;
5886
5887 for (fblk = float_block; fblk; fblk = *fprev)
5888 {
5889 register int i;
5890 int this_free = 0;
5891 for (i = 0; i < lim; i++)
5892 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5893 {
5894 this_free++;
5895 fblk->floats[i].u.chain = float_free_list;
5896 float_free_list = &fblk->floats[i];
5897 }
5898 else
5899 {
5900 num_used++;
5901 FLOAT_UNMARK (&fblk->floats[i]);
5902 }
5903 lim = FLOAT_BLOCK_SIZE;
5904 /* If this block contains only free floats and we have already
5905 seen more than two blocks worth of free floats then deallocate
5906 this block. */
5907 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5908 {
5909 *fprev = fblk->next;
5910 /* Unhook from the free list. */
5911 float_free_list = fblk->floats[0].u.chain;
5912 lisp_align_free (fblk);
5913 n_float_blocks--;
5914 }
5915 else
5916 {
5917 num_free += this_free;
5918 fprev = &fblk->next;
5919 }
5920 }
5921 total_floats = num_used;
5922 total_free_floats = num_free;
5923 }
5924
5925 /* Put all unmarked intervals on free list */
5926 {
5927 register struct interval_block *iblk;
5928 struct interval_block **iprev = &interval_block;
5929 register int lim = interval_block_index;
5930 register int num_free = 0, num_used = 0;
5931
5932 interval_free_list = 0;
5933
5934 for (iblk = interval_block; iblk; iblk = *iprev)
5935 {
5936 register int i;
5937 int this_free = 0;
5938
5939 for (i = 0; i < lim; i++)
5940 {
5941 if (!iblk->intervals[i].gcmarkbit)
5942 {
5943 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5944 interval_free_list = &iblk->intervals[i];
5945 this_free++;
5946 }
5947 else
5948 {
5949 num_used++;
5950 iblk->intervals[i].gcmarkbit = 0;
5951 }
5952 }
5953 lim = INTERVAL_BLOCK_SIZE;
5954 /* If this block contains only free intervals and we have already
5955 seen more than two blocks worth of free intervals then
5956 deallocate this block. */
5957 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5958 {
5959 *iprev = iblk->next;
5960 /* Unhook from the free list. */
5961 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5962 lisp_free (iblk);
5963 n_interval_blocks--;
5964 }
5965 else
5966 {
5967 num_free += this_free;
5968 iprev = &iblk->next;
5969 }
5970 }
5971 total_intervals = num_used;
5972 total_free_intervals = num_free;
5973 }
5974
5975 /* Put all unmarked symbols on free list */
5976 {
5977 register struct symbol_block *sblk;
5978 struct symbol_block **sprev = &symbol_block;
5979 register int lim = symbol_block_index;
5980 register int num_free = 0, num_used = 0;
5981
5982 symbol_free_list = NULL;
5983
5984 for (sblk = symbol_block; sblk; sblk = *sprev)
5985 {
5986 int this_free = 0;
5987 struct Lisp_Symbol *sym = sblk->symbols;
5988 struct Lisp_Symbol *end = sym + lim;
5989
5990 for (; sym < end; ++sym)
5991 {
5992 /* Check if the symbol was created during loadup. In such a case
5993 it might be pointed to by pure bytecode which we don't trace,
5994 so we conservatively assume that it is live. */
5995 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5996
5997 if (!sym->gcmarkbit && !pure_p)
5998 {
5999 sym->next = symbol_free_list;
6000 symbol_free_list = sym;
6001 #if GC_MARK_STACK
6002 symbol_free_list->function = Vdead;
6003 #endif
6004 ++this_free;
6005 }
6006 else
6007 {
6008 ++num_used;
6009 if (!pure_p)
6010 UNMARK_STRING (XSTRING (sym->xname));
6011 sym->gcmarkbit = 0;
6012 }
6013 }
6014
6015 lim = SYMBOL_BLOCK_SIZE;
6016 /* If this block contains only free symbols and we have already
6017 seen more than two blocks worth of free symbols then deallocate
6018 this block. */
6019 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6020 {
6021 *sprev = sblk->next;
6022 /* Unhook from the free list. */
6023 symbol_free_list = sblk->symbols[0].next;
6024 lisp_free (sblk);
6025 n_symbol_blocks--;
6026 }
6027 else
6028 {
6029 num_free += this_free;
6030 sprev = &sblk->next;
6031 }
6032 }
6033 total_symbols = num_used;
6034 total_free_symbols = num_free;
6035 }
6036
6037 /* Put all unmarked misc's on free list.
6038 For a marker, first unchain it from the buffer it points into. */
6039 {
6040 register struct marker_block *mblk;
6041 struct marker_block **mprev = &marker_block;
6042 register int lim = marker_block_index;
6043 register int num_free = 0, num_used = 0;
6044
6045 marker_free_list = 0;
6046
6047 for (mblk = marker_block; mblk; mblk = *mprev)
6048 {
6049 register int i;
6050 int this_free = 0;
6051
6052 for (i = 0; i < lim; i++)
6053 {
6054 if (!mblk->markers[i].u_any.gcmarkbit)
6055 {
6056 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
6057 unchain_marker (&mblk->markers[i].u_marker);
6058 /* Set the type of the freed object to Lisp_Misc_Free.
6059 We could leave the type alone, since nobody checks it,
6060 but this might catch bugs faster. */
6061 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6062 mblk->markers[i].u_free.chain = marker_free_list;
6063 marker_free_list = &mblk->markers[i];
6064 this_free++;
6065 }
6066 else
6067 {
6068 num_used++;
6069 mblk->markers[i].u_any.gcmarkbit = 0;
6070 }
6071 }
6072 lim = MARKER_BLOCK_SIZE;
6073 /* If this block contains only free markers and we have already
6074 seen more than two blocks worth of free markers then deallocate
6075 this block. */
6076 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6077 {
6078 *mprev = mblk->next;
6079 /* Unhook from the free list. */
6080 marker_free_list = mblk->markers[0].u_free.chain;
6081 lisp_free (mblk);
6082 n_marker_blocks--;
6083 }
6084 else
6085 {
6086 num_free += this_free;
6087 mprev = &mblk->next;
6088 }
6089 }
6090
6091 total_markers = num_used;
6092 total_free_markers = num_free;
6093 }
6094
6095 /* Free all unmarked buffers */
6096 {
6097 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6098
6099 while (buffer)
6100 if (!VECTOR_MARKED_P (buffer))
6101 {
6102 if (prev)
6103 prev->next = buffer->next;
6104 else
6105 all_buffers = buffer->next;
6106 next = buffer->next;
6107 lisp_free (buffer);
6108 buffer = next;
6109 }
6110 else
6111 {
6112 VECTOR_UNMARK (buffer);
6113 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6114 prev = buffer, buffer = buffer->next;
6115 }
6116 }
6117
6118 /* Free all unmarked vectors */
6119 {
6120 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6121 total_vector_size = 0;
6122
6123 while (vector)
6124 if (!VECTOR_MARKED_P (vector))
6125 {
6126 if (prev)
6127 prev->next = vector->next;
6128 else
6129 all_vectors = vector->next;
6130 next = vector->next;
6131 lisp_free (vector);
6132 n_vectors--;
6133 vector = next;
6134
6135 }
6136 else
6137 {
6138 VECTOR_UNMARK (vector);
6139 if (vector->size & PSEUDOVECTOR_FLAG)
6140 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6141 else
6142 total_vector_size += vector->size;
6143 prev = vector, vector = vector->next;
6144 }
6145 }
6146
6147 #ifdef GC_CHECK_STRING_BYTES
6148 if (!noninteractive)
6149 check_string_bytes (1);
6150 #endif
6151 }
6152
6153
6154
6155 \f
6156 /* Debugging aids. */
6157
6158 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6159 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6160 This may be helpful in debugging Emacs's memory usage.
6161 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6162 ()
6163 {
6164 Lisp_Object end;
6165
6166 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6167
6168 return end;
6169 }
6170
6171 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6172 doc: /* Return a list of counters that measure how much consing there has been.
6173 Each of these counters increments for a certain kind of object.
6174 The counters wrap around from the largest positive integer to zero.
6175 Garbage collection does not decrease them.
6176 The elements of the value are as follows:
6177 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6178 All are in units of 1 = one object consed
6179 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6180 objects consed.
6181 MISCS include overlays, markers, and some internal types.
6182 Frames, windows, buffers, and subprocesses count as vectors
6183 (but the contents of a buffer's text do not count here). */)
6184 ()
6185 {
6186 Lisp_Object consed[8];
6187
6188 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6189 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6190 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6191 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6192 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6193 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6194 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6195 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6196
6197 return Flist (8, consed);
6198 }
6199
6200 int suppress_checking;
6201
6202 void
6203 die (msg, file, line)
6204 const char *msg;
6205 const char *file;
6206 int line;
6207 {
6208 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6209 file, line, msg);
6210 abort ();
6211 }
6212 \f
6213 /* Initialization */
6214
6215 void
6216 init_alloc_once ()
6217 {
6218 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6219 purebeg = PUREBEG;
6220 pure_size = PURESIZE;
6221 pure_bytes_used = 0;
6222 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6223 pure_bytes_used_before_overflow = 0;
6224
6225 /* Initialize the list of free aligned blocks. */
6226 free_ablock = NULL;
6227
6228 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6229 mem_init ();
6230 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6231 #endif
6232
6233 all_vectors = 0;
6234 ignore_warnings = 1;
6235 #ifdef DOUG_LEA_MALLOC
6236 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6237 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6238 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6239 #endif
6240 init_strings ();
6241 init_cons ();
6242 init_symbol ();
6243 init_marker ();
6244 init_float ();
6245 init_intervals ();
6246
6247 #ifdef REL_ALLOC
6248 malloc_hysteresis = 32;
6249 #else
6250 malloc_hysteresis = 0;
6251 #endif
6252
6253 refill_memory_reserve ();
6254
6255 ignore_warnings = 0;
6256 gcprolist = 0;
6257 byte_stack_list = 0;
6258 staticidx = 0;
6259 consing_since_gc = 0;
6260 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6261 gc_relative_threshold = 0;
6262
6263 #ifdef VIRT_ADDR_VARIES
6264 malloc_sbrk_unused = 1<<22; /* A large number */
6265 malloc_sbrk_used = 100000; /* as reasonable as any number */
6266 #endif /* VIRT_ADDR_VARIES */
6267 }
6268
6269 void
6270 init_alloc ()
6271 {
6272 gcprolist = 0;
6273 byte_stack_list = 0;
6274 #if GC_MARK_STACK
6275 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6276 setjmp_tested_p = longjmps_done = 0;
6277 #endif
6278 #endif
6279 Vgc_elapsed = make_float (0.0);
6280 gcs_done = 0;
6281 }
6282
6283 void
6284 syms_of_alloc ()
6285 {
6286 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6287 doc: /* *Number of bytes of consing between garbage collections.
6288 Garbage collection can happen automatically once this many bytes have been
6289 allocated since the last garbage collection. All data types count.
6290
6291 Garbage collection happens automatically only when `eval' is called.
6292
6293 By binding this temporarily to a large number, you can effectively
6294 prevent garbage collection during a part of the program.
6295 See also `gc-cons-percentage'. */);
6296
6297 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6298 doc: /* *Portion of the heap used for allocation.
6299 Garbage collection can happen automatically once this portion of the heap
6300 has been allocated since the last garbage collection.
6301 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6302 Vgc_cons_percentage = make_float (0.1);
6303
6304 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6305 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6306
6307 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6308 doc: /* Number of cons cells that have been consed so far. */);
6309
6310 DEFVAR_INT ("floats-consed", &floats_consed,
6311 doc: /* Number of floats that have been consed so far. */);
6312
6313 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6314 doc: /* Number of vector cells that have been consed so far. */);
6315
6316 DEFVAR_INT ("symbols-consed", &symbols_consed,
6317 doc: /* Number of symbols that have been consed so far. */);
6318
6319 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6320 doc: /* Number of string characters that have been consed so far. */);
6321
6322 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6323 doc: /* Number of miscellaneous objects that have been consed so far. */);
6324
6325 DEFVAR_INT ("intervals-consed", &intervals_consed,
6326 doc: /* Number of intervals that have been consed so far. */);
6327
6328 DEFVAR_INT ("strings-consed", &strings_consed,
6329 doc: /* Number of strings that have been consed so far. */);
6330
6331 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6332 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6333 This means that certain objects should be allocated in shared (pure) space. */);
6334
6335 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6336 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6337 garbage_collection_messages = 0;
6338
6339 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6340 doc: /* Hook run after garbage collection has finished. */);
6341 Vpost_gc_hook = Qnil;
6342 Qpost_gc_hook = intern ("post-gc-hook");
6343 staticpro (&Qpost_gc_hook);
6344
6345 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6346 doc: /* Precomputed `signal' argument for memory-full error. */);
6347 /* We build this in advance because if we wait until we need it, we might
6348 not be able to allocate the memory to hold it. */
6349 Vmemory_signal_data
6350 = list2 (Qerror,
6351 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6352
6353 DEFVAR_LISP ("memory-full", &Vmemory_full,
6354 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6355 Vmemory_full = Qnil;
6356
6357 staticpro (&Qgc_cons_threshold);
6358 Qgc_cons_threshold = intern ("gc-cons-threshold");
6359
6360 staticpro (&Qchar_table_extra_slots);
6361 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6362
6363 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6364 doc: /* Accumulated time elapsed in garbage collections.
6365 The time is in seconds as a floating point value. */);
6366 DEFVAR_INT ("gcs-done", &gcs_done,
6367 doc: /* Accumulated number of garbage collections done. */);
6368
6369 defsubr (&Scons);
6370 defsubr (&Slist);
6371 defsubr (&Svector);
6372 defsubr (&Smake_byte_code);
6373 defsubr (&Smake_list);
6374 defsubr (&Smake_vector);
6375 defsubr (&Smake_string);
6376 defsubr (&Smake_bool_vector);
6377 defsubr (&Smake_symbol);
6378 defsubr (&Smake_marker);
6379 defsubr (&Spurecopy);
6380 defsubr (&Sgarbage_collect);
6381 defsubr (&Smemory_limit);
6382 defsubr (&Smemory_use_counts);
6383
6384 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6385 defsubr (&Sgc_status);
6386 #endif
6387 }
6388
6389 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6390 (do not change this comment) */