]> code.delx.au - gnu-emacs/blob - src/alloc.c
(struct interval_block, struct string_block)
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985,86,88,93,94,95,97,98,1999,2000,01,02,03,2004
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
29
30 /* Note that this declares bzero on OSF/1. How dumb. */
31
32 #include <signal.h>
33
34 /* This file is part of the core Lisp implementation, and thus must
35 deal with the real data structures. If the Lisp implementation is
36 replaced, this file likely will not be used. */
37
38 #undef HIDE_LISP_IMPLEMENTATION
39 #include "lisp.h"
40 #include "process.h"
41 #include "intervals.h"
42 #include "puresize.h"
43 #include "buffer.h"
44 #include "window.h"
45 #include "keyboard.h"
46 #include "frame.h"
47 #include "blockinput.h"
48 #include "charset.h"
49 #include "syssignal.h"
50 #include <setjmp.h>
51
52 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
53 memory. Can do this only if using gmalloc.c. */
54
55 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
56 #undef GC_MALLOC_CHECK
57 #endif
58
59 #ifdef HAVE_UNISTD_H
60 #include <unistd.h>
61 #else
62 extern POINTER_TYPE *sbrk ();
63 #endif
64
65 #ifdef DOUG_LEA_MALLOC
66
67 #include <malloc.h>
68 /* malloc.h #defines this as size_t, at least in glibc2. */
69 #ifndef __malloc_size_t
70 #define __malloc_size_t int
71 #endif
72
73 /* Specify maximum number of areas to mmap. It would be nice to use a
74 value that explicitly means "no limit". */
75
76 #define MMAP_MAX_AREAS 100000000
77
78 #else /* not DOUG_LEA_MALLOC */
79
80 /* The following come from gmalloc.c. */
81
82 #define __malloc_size_t size_t
83 extern __malloc_size_t _bytes_used;
84 extern __malloc_size_t __malloc_extra_blocks;
85
86 #endif /* not DOUG_LEA_MALLOC */
87
88 /* Value of _bytes_used, when spare_memory was freed. */
89
90 static __malloc_size_t bytes_used_when_full;
91
92 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
93 to a struct Lisp_String. */
94
95 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
96 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
97 #define STRING_MARKED_P(S) ((S)->size & ARRAY_MARK_FLAG)
98
99 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
100 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
101 #define VECTOR_MARKED_P(V) ((V)->size & ARRAY_MARK_FLAG)
102
103 /* Value is the number of bytes/chars of S, a pointer to a struct
104 Lisp_String. This must be used instead of STRING_BYTES (S) or
105 S->size during GC, because S->size contains the mark bit for
106 strings. */
107
108 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
109 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
110
111 /* Number of bytes of consing done since the last gc. */
112
113 int consing_since_gc;
114
115 /* Count the amount of consing of various sorts of space. */
116
117 EMACS_INT cons_cells_consed;
118 EMACS_INT floats_consed;
119 EMACS_INT vector_cells_consed;
120 EMACS_INT symbols_consed;
121 EMACS_INT string_chars_consed;
122 EMACS_INT misc_objects_consed;
123 EMACS_INT intervals_consed;
124 EMACS_INT strings_consed;
125
126 /* Number of bytes of consing since GC before another GC should be done. */
127
128 EMACS_INT gc_cons_threshold;
129
130 /* Nonzero during GC. */
131
132 int gc_in_progress;
133
134 /* Nonzero means abort if try to GC.
135 This is for code which is written on the assumption that
136 no GC will happen, so as to verify that assumption. */
137
138 int abort_on_gc;
139
140 /* Nonzero means display messages at beginning and end of GC. */
141
142 int garbage_collection_messages;
143
144 #ifndef VIRT_ADDR_VARIES
145 extern
146 #endif /* VIRT_ADDR_VARIES */
147 int malloc_sbrk_used;
148
149 #ifndef VIRT_ADDR_VARIES
150 extern
151 #endif /* VIRT_ADDR_VARIES */
152 int malloc_sbrk_unused;
153
154 /* Two limits controlling how much undo information to keep. */
155
156 EMACS_INT undo_limit;
157 EMACS_INT undo_strong_limit;
158
159 /* Number of live and free conses etc. */
160
161 static int total_conses, total_markers, total_symbols, total_vector_size;
162 static int total_free_conses, total_free_markers, total_free_symbols;
163 static int total_free_floats, total_floats;
164
165 /* Points to memory space allocated as "spare", to be freed if we run
166 out of memory. */
167
168 static char *spare_memory;
169
170 /* Amount of spare memory to keep in reserve. */
171
172 #define SPARE_MEMORY (1 << 14)
173
174 /* Number of extra blocks malloc should get when it needs more core. */
175
176 static int malloc_hysteresis;
177
178 /* Non-nil means defun should do purecopy on the function definition. */
179
180 Lisp_Object Vpurify_flag;
181
182 /* Non-nil means we are handling a memory-full error. */
183
184 Lisp_Object Vmemory_full;
185
186 #ifndef HAVE_SHM
187
188 /* Force it into data space! Initialize it to a nonzero value;
189 otherwise some compilers put it into BSS. */
190
191 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
192 #define PUREBEG (char *) pure
193
194 #else /* HAVE_SHM */
195
196 #define pure PURE_SEG_BITS /* Use shared memory segment */
197 #define PUREBEG (char *)PURE_SEG_BITS
198
199 #endif /* HAVE_SHM */
200
201 /* Pointer to the pure area, and its size. */
202
203 static char *purebeg;
204 static size_t pure_size;
205
206 /* Number of bytes of pure storage used before pure storage overflowed.
207 If this is non-zero, this implies that an overflow occurred. */
208
209 static size_t pure_bytes_used_before_overflow;
210
211 /* Value is non-zero if P points into pure space. */
212
213 #define PURE_POINTER_P(P) \
214 (((PNTR_COMPARISON_TYPE) (P) \
215 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
216 && ((PNTR_COMPARISON_TYPE) (P) \
217 >= (PNTR_COMPARISON_TYPE) purebeg))
218
219 /* Index in pure at which next pure object will be allocated.. */
220
221 EMACS_INT pure_bytes_used;
222
223 /* If nonzero, this is a warning delivered by malloc and not yet
224 displayed. */
225
226 char *pending_malloc_warning;
227
228 /* Pre-computed signal argument for use when memory is exhausted. */
229
230 Lisp_Object Vmemory_signal_data;
231
232 /* Maximum amount of C stack to save when a GC happens. */
233
234 #ifndef MAX_SAVE_STACK
235 #define MAX_SAVE_STACK 16000
236 #endif
237
238 /* Buffer in which we save a copy of the C stack at each GC. */
239
240 char *stack_copy;
241 int stack_copy_size;
242
243 /* Non-zero means ignore malloc warnings. Set during initialization.
244 Currently not used. */
245
246 int ignore_warnings;
247
248 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
249
250 /* Hook run after GC has finished. */
251
252 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
253
254 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
255 EMACS_INT gcs_done; /* accumulated GCs */
256
257 static void mark_buffer P_ ((Lisp_Object));
258 extern void mark_kboards P_ ((void));
259 static void gc_sweep P_ ((void));
260 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
261 static void mark_face_cache P_ ((struct face_cache *));
262
263 #ifdef HAVE_WINDOW_SYSTEM
264 static void mark_image P_ ((struct image *));
265 static void mark_image_cache P_ ((struct frame *));
266 #endif /* HAVE_WINDOW_SYSTEM */
267
268 static struct Lisp_String *allocate_string P_ ((void));
269 static void compact_small_strings P_ ((void));
270 static void free_large_strings P_ ((void));
271 static void sweep_strings P_ ((void));
272
273 extern int message_enable_multibyte;
274
275 /* When scanning the C stack for live Lisp objects, Emacs keeps track
276 of what memory allocated via lisp_malloc is intended for what
277 purpose. This enumeration specifies the type of memory. */
278
279 enum mem_type
280 {
281 MEM_TYPE_NON_LISP,
282 MEM_TYPE_BUFFER,
283 MEM_TYPE_CONS,
284 MEM_TYPE_STRING,
285 MEM_TYPE_MISC,
286 MEM_TYPE_SYMBOL,
287 MEM_TYPE_FLOAT,
288 /* Keep the following vector-like types together, with
289 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
290 first. Or change the code of live_vector_p, for instance. */
291 MEM_TYPE_VECTOR,
292 MEM_TYPE_PROCESS,
293 MEM_TYPE_HASH_TABLE,
294 MEM_TYPE_FRAME,
295 MEM_TYPE_WINDOW
296 };
297
298 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
299
300 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
301 #include <stdio.h> /* For fprintf. */
302 #endif
303
304 /* A unique object in pure space used to make some Lisp objects
305 on free lists recognizable in O(1). */
306
307 Lisp_Object Vdead;
308
309 #ifdef GC_MALLOC_CHECK
310
311 enum mem_type allocated_mem_type;
312 int dont_register_blocks;
313
314 #endif /* GC_MALLOC_CHECK */
315
316 /* A node in the red-black tree describing allocated memory containing
317 Lisp data. Each such block is recorded with its start and end
318 address when it is allocated, and removed from the tree when it
319 is freed.
320
321 A red-black tree is a balanced binary tree with the following
322 properties:
323
324 1. Every node is either red or black.
325 2. Every leaf is black.
326 3. If a node is red, then both of its children are black.
327 4. Every simple path from a node to a descendant leaf contains
328 the same number of black nodes.
329 5. The root is always black.
330
331 When nodes are inserted into the tree, or deleted from the tree,
332 the tree is "fixed" so that these properties are always true.
333
334 A red-black tree with N internal nodes has height at most 2
335 log(N+1). Searches, insertions and deletions are done in O(log N).
336 Please see a text book about data structures for a detailed
337 description of red-black trees. Any book worth its salt should
338 describe them. */
339
340 struct mem_node
341 {
342 /* Children of this node. These pointers are never NULL. When there
343 is no child, the value is MEM_NIL, which points to a dummy node. */
344 struct mem_node *left, *right;
345
346 /* The parent of this node. In the root node, this is NULL. */
347 struct mem_node *parent;
348
349 /* Start and end of allocated region. */
350 void *start, *end;
351
352 /* Node color. */
353 enum {MEM_BLACK, MEM_RED} color;
354
355 /* Memory type. */
356 enum mem_type type;
357 };
358
359 /* Base address of stack. Set in main. */
360
361 Lisp_Object *stack_base;
362
363 /* Root of the tree describing allocated Lisp memory. */
364
365 static struct mem_node *mem_root;
366
367 /* Lowest and highest known address in the heap. */
368
369 static void *min_heap_address, *max_heap_address;
370
371 /* Sentinel node of the tree. */
372
373 static struct mem_node mem_z;
374 #define MEM_NIL &mem_z
375
376 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
377 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
378 static void lisp_free P_ ((POINTER_TYPE *));
379 static void mark_stack P_ ((void));
380 static int live_vector_p P_ ((struct mem_node *, void *));
381 static int live_buffer_p P_ ((struct mem_node *, void *));
382 static int live_string_p P_ ((struct mem_node *, void *));
383 static int live_cons_p P_ ((struct mem_node *, void *));
384 static int live_symbol_p P_ ((struct mem_node *, void *));
385 static int live_float_p P_ ((struct mem_node *, void *));
386 static int live_misc_p P_ ((struct mem_node *, void *));
387 static void mark_maybe_object P_ ((Lisp_Object));
388 static void mark_memory P_ ((void *, void *));
389 static void mem_init P_ ((void));
390 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
391 static void mem_insert_fixup P_ ((struct mem_node *));
392 static void mem_rotate_left P_ ((struct mem_node *));
393 static void mem_rotate_right P_ ((struct mem_node *));
394 static void mem_delete P_ ((struct mem_node *));
395 static void mem_delete_fixup P_ ((struct mem_node *));
396 static INLINE struct mem_node *mem_find P_ ((void *));
397
398 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
399 static void check_gcpros P_ ((void));
400 #endif
401
402 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
403
404 /* Recording what needs to be marked for gc. */
405
406 struct gcpro *gcprolist;
407
408 /* Addresses of staticpro'd variables. Initialize it to a nonzero
409 value; otherwise some compilers put it into BSS. */
410
411 #define NSTATICS 1280
412 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
413
414 /* Index of next unused slot in staticvec. */
415
416 int staticidx = 0;
417
418 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
419
420
421 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
422 ALIGNMENT must be a power of 2. */
423
424 #define ALIGN(ptr, ALIGNMENT) \
425 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
426 & ~((ALIGNMENT) - 1)))
427
428
429 \f
430 /************************************************************************
431 Malloc
432 ************************************************************************/
433
434 /* Function malloc calls this if it finds we are near exhausting storage. */
435
436 void
437 malloc_warning (str)
438 char *str;
439 {
440 pending_malloc_warning = str;
441 }
442
443
444 /* Display an already-pending malloc warning. */
445
446 void
447 display_malloc_warning ()
448 {
449 call3 (intern ("display-warning"),
450 intern ("alloc"),
451 build_string (pending_malloc_warning),
452 intern ("emergency"));
453 pending_malloc_warning = 0;
454 }
455
456
457 #ifdef DOUG_LEA_MALLOC
458 # define BYTES_USED (mallinfo ().arena)
459 #else
460 # define BYTES_USED _bytes_used
461 #endif
462
463
464 /* Called if malloc returns zero. */
465
466 void
467 memory_full ()
468 {
469 Vmemory_full = Qt;
470
471 #ifndef SYSTEM_MALLOC
472 bytes_used_when_full = BYTES_USED;
473 #endif
474
475 /* The first time we get here, free the spare memory. */
476 if (spare_memory)
477 {
478 free (spare_memory);
479 spare_memory = 0;
480 }
481
482 /* This used to call error, but if we've run out of memory, we could
483 get infinite recursion trying to build the string. */
484 while (1)
485 Fsignal (Qnil, Vmemory_signal_data);
486 }
487
488
489 /* Called if we can't allocate relocatable space for a buffer. */
490
491 void
492 buffer_memory_full ()
493 {
494 /* If buffers use the relocating allocator, no need to free
495 spare_memory, because we may have plenty of malloc space left
496 that we could get, and if we don't, the malloc that fails will
497 itself cause spare_memory to be freed. If buffers don't use the
498 relocating allocator, treat this like any other failing
499 malloc. */
500
501 #ifndef REL_ALLOC
502 memory_full ();
503 #endif
504
505 Vmemory_full = Qt;
506
507 /* This used to call error, but if we've run out of memory, we could
508 get infinite recursion trying to build the string. */
509 while (1)
510 Fsignal (Qnil, Vmemory_signal_data);
511 }
512
513
514 /* Like malloc but check for no memory and block interrupt input.. */
515
516 POINTER_TYPE *
517 xmalloc (size)
518 size_t size;
519 {
520 register POINTER_TYPE *val;
521
522 BLOCK_INPUT;
523 val = (POINTER_TYPE *) malloc (size);
524 UNBLOCK_INPUT;
525
526 if (!val && size)
527 memory_full ();
528 return val;
529 }
530
531
532 /* Like realloc but check for no memory and block interrupt input.. */
533
534 POINTER_TYPE *
535 xrealloc (block, size)
536 POINTER_TYPE *block;
537 size_t size;
538 {
539 register POINTER_TYPE *val;
540
541 BLOCK_INPUT;
542 /* We must call malloc explicitly when BLOCK is 0, since some
543 reallocs don't do this. */
544 if (! block)
545 val = (POINTER_TYPE *) malloc (size);
546 else
547 val = (POINTER_TYPE *) realloc (block, size);
548 UNBLOCK_INPUT;
549
550 if (!val && size) memory_full ();
551 return val;
552 }
553
554
555 /* Like free but block interrupt input. */
556
557 void
558 xfree (block)
559 POINTER_TYPE *block;
560 {
561 BLOCK_INPUT;
562 free (block);
563 UNBLOCK_INPUT;
564 }
565
566
567 /* Like strdup, but uses xmalloc. */
568
569 char *
570 xstrdup (s)
571 const char *s;
572 {
573 size_t len = strlen (s) + 1;
574 char *p = (char *) xmalloc (len);
575 bcopy (s, p, len);
576 return p;
577 }
578
579
580 /* Like malloc but used for allocating Lisp data. NBYTES is the
581 number of bytes to allocate, TYPE describes the intended use of the
582 allcated memory block (for strings, for conses, ...). */
583
584 static void *lisp_malloc_loser;
585
586 static POINTER_TYPE *
587 lisp_malloc (nbytes, type)
588 size_t nbytes;
589 enum mem_type type;
590 {
591 register void *val;
592
593 BLOCK_INPUT;
594
595 #ifdef GC_MALLOC_CHECK
596 allocated_mem_type = type;
597 #endif
598
599 val = (void *) malloc (nbytes);
600
601 /* If the memory just allocated cannot be addressed thru a Lisp
602 object's pointer, and it needs to be,
603 that's equivalent to running out of memory. */
604 if (val && type != MEM_TYPE_NON_LISP)
605 {
606 Lisp_Object tem;
607 XSETCONS (tem, (char *) val + nbytes - 1);
608 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
609 {
610 lisp_malloc_loser = val;
611 free (val);
612 val = 0;
613 }
614 }
615
616 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
617 if (val && type != MEM_TYPE_NON_LISP)
618 mem_insert (val, (char *) val + nbytes, type);
619 #endif
620
621 UNBLOCK_INPUT;
622 if (!val && nbytes)
623 memory_full ();
624 return val;
625 }
626
627 /* Free BLOCK. This must be called to free memory allocated with a
628 call to lisp_malloc. */
629
630 static void
631 lisp_free (block)
632 POINTER_TYPE *block;
633 {
634 BLOCK_INPUT;
635 free (block);
636 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
637 mem_delete (mem_find (block));
638 #endif
639 UNBLOCK_INPUT;
640 }
641
642 /* Allocation of aligned blocks of memory to store Lisp data. */
643 /* The entry point is lisp_align_malloc which returns blocks of at most */
644 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
645
646
647 /* BLOCK_ALIGN has to be a power of 2. */
648 #define BLOCK_ALIGN (1 << 10)
649
650 /* Padding to leave at the end of a malloc'd block. This is to give
651 malloc a chance to minimize the amount of memory wasted to alignment.
652 It should be tuned to the particular malloc library used.
653 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
654 posix_memalign on the other hand would ideally prefer a value of 4
655 because otherwise, there's 1020 bytes wasted between each ablocks.
656 But testing shows that those 1020 will most of the time be efficiently
657 used by malloc to place other objects, so a value of 0 is still preferable
658 unless you have a lot of cons&floats and virtually nothing else. */
659 #define BLOCK_PADDING 0
660 #define BLOCK_BYTES \
661 (BLOCK_ALIGN - sizeof (struct aligned_block *) - BLOCK_PADDING)
662
663 /* Internal data structures and constants. */
664
665 #define ABLOCKS_SIZE 16
666
667 /* An aligned block of memory. */
668 struct ablock
669 {
670 union
671 {
672 char payload[BLOCK_BYTES];
673 struct ablock *next_free;
674 } x;
675 /* `abase' is the aligned base of the ablocks. */
676 /* It is overloaded to hold the virtual `busy' field that counts
677 the number of used ablock in the parent ablocks.
678 The first ablock has the `busy' field, the others have the `abase'
679 field. To tell the difference, we assume that pointers will have
680 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
681 is used to tell whether the real base of the parent ablocks is `abase'
682 (if not, the word before the first ablock holds a pointer to the
683 real base). */
684 struct ablocks *abase;
685 /* The padding of all but the last ablock is unused. The padding of
686 the last ablock in an ablocks is not allocated. */
687 #if BLOCK_PADDING
688 char padding[BLOCK_PADDING];
689 #endif
690 };
691
692 /* A bunch of consecutive aligned blocks. */
693 struct ablocks
694 {
695 struct ablock blocks[ABLOCKS_SIZE];
696 };
697
698 /* Size of the block requested from malloc or memalign. */
699 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
700
701 #define ABLOCK_ABASE(block) \
702 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
703 ? (struct ablocks *)(block) \
704 : (block)->abase)
705
706 /* Virtual `busy' field. */
707 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
708
709 /* Pointer to the (not necessarily aligned) malloc block. */
710 #ifdef HAVE_POSIX_MEMALIGN
711 #define ABLOCKS_BASE(abase) (abase)
712 #else
713 #define ABLOCKS_BASE(abase) \
714 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
715 #endif
716
717 /* The list of free ablock. */
718 static struct ablock *free_ablock;
719
720 /* Allocate an aligned block of nbytes.
721 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
722 smaller or equal to BLOCK_BYTES. */
723 static POINTER_TYPE *
724 lisp_align_malloc (nbytes, type)
725 size_t nbytes;
726 enum mem_type type;
727 {
728 void *base, *val;
729 struct ablocks *abase;
730
731 eassert (nbytes <= BLOCK_BYTES);
732
733 BLOCK_INPUT;
734
735 #ifdef GC_MALLOC_CHECK
736 allocated_mem_type = type;
737 #endif
738
739 if (!free_ablock)
740 {
741 int i;
742 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
743
744 #ifdef DOUG_LEA_MALLOC
745 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
746 because mapped region contents are not preserved in
747 a dumped Emacs. */
748 mallopt (M_MMAP_MAX, 0);
749 #endif
750
751 #ifdef HAVE_POSIX_MEMALIGN
752 {
753 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
754 abase = err ? (base = NULL) : base;
755 }
756 #else
757 base = malloc (ABLOCKS_BYTES);
758 abase = ALIGN (base, BLOCK_ALIGN);
759 if (base == 0)
760 {
761 UNBLOCK_INPUT;
762 memory_full ();
763 }
764 #endif
765
766 aligned = (base == abase);
767 if (!aligned)
768 ((void**)abase)[-1] = base;
769
770 #ifdef DOUG_LEA_MALLOC
771 /* Back to a reasonable maximum of mmap'ed areas. */
772 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
773 #endif
774
775 /* If the memory just allocated cannot be addressed thru a Lisp
776 object's pointer, and it needs to be, that's equivalent to
777 running out of memory. */
778 if (type != MEM_TYPE_NON_LISP)
779 {
780 Lisp_Object tem;
781 char *end = (char *) base + ABLOCKS_BYTES - 1;
782 XSETCONS (tem, end);
783 if ((char *) XCONS (tem) != end)
784 {
785 lisp_malloc_loser = base;
786 free (base);
787 UNBLOCK_INPUT;
788 memory_full ();
789 }
790 }
791
792 /* Initialize the blocks and put them on the free list.
793 Is `base' was not properly aligned, we can't use the last block. */
794 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
795 {
796 abase->blocks[i].abase = abase;
797 abase->blocks[i].x.next_free = free_ablock;
798 free_ablock = &abase->blocks[i];
799 }
800 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
801
802 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
803 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
804 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
805 eassert (ABLOCKS_BASE (abase) == base);
806 eassert (aligned == (long) ABLOCKS_BUSY (abase));
807 }
808
809 abase = ABLOCK_ABASE (free_ablock);
810 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
811 val = free_ablock;
812 free_ablock = free_ablock->x.next_free;
813
814 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
815 if (val && type != MEM_TYPE_NON_LISP)
816 mem_insert (val, (char *) val + nbytes, type);
817 #endif
818
819 UNBLOCK_INPUT;
820 if (!val && nbytes)
821 memory_full ();
822
823 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
824 return val;
825 }
826
827 static void
828 lisp_align_free (block)
829 POINTER_TYPE *block;
830 {
831 struct ablock *ablock = block;
832 struct ablocks *abase = ABLOCK_ABASE (ablock);
833
834 BLOCK_INPUT;
835 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
836 mem_delete (mem_find (block));
837 #endif
838 /* Put on free list. */
839 ablock->x.next_free = free_ablock;
840 free_ablock = ablock;
841 /* Update busy count. */
842 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
843
844 if (2 > (long) ABLOCKS_BUSY (abase))
845 { /* All the blocks are free. */
846 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
847 struct ablock **tem = &free_ablock;
848 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
849
850 while (*tem)
851 {
852 if (*tem >= (struct ablock *) abase && *tem < atop)
853 {
854 i++;
855 *tem = (*tem)->x.next_free;
856 }
857 else
858 tem = &(*tem)->x.next_free;
859 }
860 eassert ((aligned & 1) == aligned);
861 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
862 free (ABLOCKS_BASE (abase));
863 }
864 UNBLOCK_INPUT;
865 }
866
867 /* Return a new buffer structure allocated from the heap with
868 a call to lisp_malloc. */
869
870 struct buffer *
871 allocate_buffer ()
872 {
873 struct buffer *b
874 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
875 MEM_TYPE_BUFFER);
876 return b;
877 }
878
879 \f
880 /* Arranging to disable input signals while we're in malloc.
881
882 This only works with GNU malloc. To help out systems which can't
883 use GNU malloc, all the calls to malloc, realloc, and free
884 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
885 pairs; unfortunately, we have no idea what C library functions
886 might call malloc, so we can't really protect them unless you're
887 using GNU malloc. Fortunately, most of the major operating systems
888 can use GNU malloc. */
889
890 #ifndef SYSTEM_MALLOC
891 #ifndef DOUG_LEA_MALLOC
892 extern void * (*__malloc_hook) P_ ((size_t));
893 extern void * (*__realloc_hook) P_ ((void *, size_t));
894 extern void (*__free_hook) P_ ((void *));
895 /* Else declared in malloc.h, perhaps with an extra arg. */
896 #endif /* DOUG_LEA_MALLOC */
897 static void * (*old_malloc_hook) ();
898 static void * (*old_realloc_hook) ();
899 static void (*old_free_hook) ();
900
901 /* This function is used as the hook for free to call. */
902
903 static void
904 emacs_blocked_free (ptr)
905 void *ptr;
906 {
907 BLOCK_INPUT;
908
909 #ifdef GC_MALLOC_CHECK
910 if (ptr)
911 {
912 struct mem_node *m;
913
914 m = mem_find (ptr);
915 if (m == MEM_NIL || m->start != ptr)
916 {
917 fprintf (stderr,
918 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
919 abort ();
920 }
921 else
922 {
923 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
924 mem_delete (m);
925 }
926 }
927 #endif /* GC_MALLOC_CHECK */
928
929 __free_hook = old_free_hook;
930 free (ptr);
931
932 /* If we released our reserve (due to running out of memory),
933 and we have a fair amount free once again,
934 try to set aside another reserve in case we run out once more. */
935 if (spare_memory == 0
936 /* Verify there is enough space that even with the malloc
937 hysteresis this call won't run out again.
938 The code here is correct as long as SPARE_MEMORY
939 is substantially larger than the block size malloc uses. */
940 && (bytes_used_when_full
941 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
942 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
943
944 __free_hook = emacs_blocked_free;
945 UNBLOCK_INPUT;
946 }
947
948
949 /* If we released our reserve (due to running out of memory),
950 and we have a fair amount free once again,
951 try to set aside another reserve in case we run out once more.
952
953 This is called when a relocatable block is freed in ralloc.c. */
954
955 void
956 refill_memory_reserve ()
957 {
958 if (spare_memory == 0)
959 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
960 }
961
962
963 /* This function is the malloc hook that Emacs uses. */
964
965 static void *
966 emacs_blocked_malloc (size)
967 size_t size;
968 {
969 void *value;
970
971 BLOCK_INPUT;
972 __malloc_hook = old_malloc_hook;
973 #ifdef DOUG_LEA_MALLOC
974 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
975 #else
976 __malloc_extra_blocks = malloc_hysteresis;
977 #endif
978
979 value = (void *) malloc (size);
980
981 #ifdef GC_MALLOC_CHECK
982 {
983 struct mem_node *m = mem_find (value);
984 if (m != MEM_NIL)
985 {
986 fprintf (stderr, "Malloc returned %p which is already in use\n",
987 value);
988 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
989 m->start, m->end, (char *) m->end - (char *) m->start,
990 m->type);
991 abort ();
992 }
993
994 if (!dont_register_blocks)
995 {
996 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
997 allocated_mem_type = MEM_TYPE_NON_LISP;
998 }
999 }
1000 #endif /* GC_MALLOC_CHECK */
1001
1002 __malloc_hook = emacs_blocked_malloc;
1003 UNBLOCK_INPUT;
1004
1005 /* fprintf (stderr, "%p malloc\n", value); */
1006 return value;
1007 }
1008
1009
1010 /* This function is the realloc hook that Emacs uses. */
1011
1012 static void *
1013 emacs_blocked_realloc (ptr, size)
1014 void *ptr;
1015 size_t size;
1016 {
1017 void *value;
1018
1019 BLOCK_INPUT;
1020 __realloc_hook = old_realloc_hook;
1021
1022 #ifdef GC_MALLOC_CHECK
1023 if (ptr)
1024 {
1025 struct mem_node *m = mem_find (ptr);
1026 if (m == MEM_NIL || m->start != ptr)
1027 {
1028 fprintf (stderr,
1029 "Realloc of %p which wasn't allocated with malloc\n",
1030 ptr);
1031 abort ();
1032 }
1033
1034 mem_delete (m);
1035 }
1036
1037 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1038
1039 /* Prevent malloc from registering blocks. */
1040 dont_register_blocks = 1;
1041 #endif /* GC_MALLOC_CHECK */
1042
1043 value = (void *) realloc (ptr, size);
1044
1045 #ifdef GC_MALLOC_CHECK
1046 dont_register_blocks = 0;
1047
1048 {
1049 struct mem_node *m = mem_find (value);
1050 if (m != MEM_NIL)
1051 {
1052 fprintf (stderr, "Realloc returns memory that is already in use\n");
1053 abort ();
1054 }
1055
1056 /* Can't handle zero size regions in the red-black tree. */
1057 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1058 }
1059
1060 /* fprintf (stderr, "%p <- realloc\n", value); */
1061 #endif /* GC_MALLOC_CHECK */
1062
1063 __realloc_hook = emacs_blocked_realloc;
1064 UNBLOCK_INPUT;
1065
1066 return value;
1067 }
1068
1069
1070 /* Called from main to set up malloc to use our hooks. */
1071
1072 void
1073 uninterrupt_malloc ()
1074 {
1075 if (__free_hook != emacs_blocked_free)
1076 old_free_hook = __free_hook;
1077 __free_hook = emacs_blocked_free;
1078
1079 if (__malloc_hook != emacs_blocked_malloc)
1080 old_malloc_hook = __malloc_hook;
1081 __malloc_hook = emacs_blocked_malloc;
1082
1083 if (__realloc_hook != emacs_blocked_realloc)
1084 old_realloc_hook = __realloc_hook;
1085 __realloc_hook = emacs_blocked_realloc;
1086 }
1087
1088 #endif /* not SYSTEM_MALLOC */
1089
1090
1091 \f
1092 /***********************************************************************
1093 Interval Allocation
1094 ***********************************************************************/
1095
1096 /* Number of intervals allocated in an interval_block structure.
1097 The 1020 is 1024 minus malloc overhead. */
1098
1099 #define INTERVAL_BLOCK_SIZE \
1100 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1101
1102 /* Intervals are allocated in chunks in form of an interval_block
1103 structure. */
1104
1105 struct interval_block
1106 {
1107 /* Place `intervals' first, to preserve alignment. */
1108 struct interval intervals[INTERVAL_BLOCK_SIZE];
1109 struct interval_block *next;
1110 };
1111
1112 /* Current interval block. Its `next' pointer points to older
1113 blocks. */
1114
1115 struct interval_block *interval_block;
1116
1117 /* Index in interval_block above of the next unused interval
1118 structure. */
1119
1120 static int interval_block_index;
1121
1122 /* Number of free and live intervals. */
1123
1124 static int total_free_intervals, total_intervals;
1125
1126 /* List of free intervals. */
1127
1128 INTERVAL interval_free_list;
1129
1130 /* Total number of interval blocks now in use. */
1131
1132 int n_interval_blocks;
1133
1134
1135 /* Initialize interval allocation. */
1136
1137 static void
1138 init_intervals ()
1139 {
1140 interval_block = NULL;
1141 interval_block_index = INTERVAL_BLOCK_SIZE;
1142 interval_free_list = 0;
1143 n_interval_blocks = 0;
1144 }
1145
1146
1147 /* Return a new interval. */
1148
1149 INTERVAL
1150 make_interval ()
1151 {
1152 INTERVAL val;
1153
1154 if (interval_free_list)
1155 {
1156 val = interval_free_list;
1157 interval_free_list = INTERVAL_PARENT (interval_free_list);
1158 }
1159 else
1160 {
1161 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1162 {
1163 register struct interval_block *newi;
1164
1165 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1166 MEM_TYPE_NON_LISP);
1167
1168 newi->next = interval_block;
1169 interval_block = newi;
1170 interval_block_index = 0;
1171 n_interval_blocks++;
1172 }
1173 val = &interval_block->intervals[interval_block_index++];
1174 }
1175 consing_since_gc += sizeof (struct interval);
1176 intervals_consed++;
1177 RESET_INTERVAL (val);
1178 val->gcmarkbit = 0;
1179 return val;
1180 }
1181
1182
1183 /* Mark Lisp objects in interval I. */
1184
1185 static void
1186 mark_interval (i, dummy)
1187 register INTERVAL i;
1188 Lisp_Object dummy;
1189 {
1190 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1191 i->gcmarkbit = 1;
1192 mark_object (i->plist);
1193 }
1194
1195
1196 /* Mark the interval tree rooted in TREE. Don't call this directly;
1197 use the macro MARK_INTERVAL_TREE instead. */
1198
1199 static void
1200 mark_interval_tree (tree)
1201 register INTERVAL tree;
1202 {
1203 /* No need to test if this tree has been marked already; this
1204 function is always called through the MARK_INTERVAL_TREE macro,
1205 which takes care of that. */
1206
1207 traverse_intervals_noorder (tree, mark_interval, Qnil);
1208 }
1209
1210
1211 /* Mark the interval tree rooted in I. */
1212
1213 #define MARK_INTERVAL_TREE(i) \
1214 do { \
1215 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1216 mark_interval_tree (i); \
1217 } while (0)
1218
1219
1220 #define UNMARK_BALANCE_INTERVALS(i) \
1221 do { \
1222 if (! NULL_INTERVAL_P (i)) \
1223 (i) = balance_intervals (i); \
1224 } while (0)
1225
1226 \f
1227 /* Number support. If NO_UNION_TYPE isn't in effect, we
1228 can't create number objects in macros. */
1229 #ifndef make_number
1230 Lisp_Object
1231 make_number (n)
1232 int n;
1233 {
1234 Lisp_Object obj;
1235 obj.s.val = n;
1236 obj.s.type = Lisp_Int;
1237 return obj;
1238 }
1239 #endif
1240 \f
1241 /***********************************************************************
1242 String Allocation
1243 ***********************************************************************/
1244
1245 /* Lisp_Strings are allocated in string_block structures. When a new
1246 string_block is allocated, all the Lisp_Strings it contains are
1247 added to a free-list string_free_list. When a new Lisp_String is
1248 needed, it is taken from that list. During the sweep phase of GC,
1249 string_blocks that are entirely free are freed, except two which
1250 we keep.
1251
1252 String data is allocated from sblock structures. Strings larger
1253 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1254 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1255
1256 Sblocks consist internally of sdata structures, one for each
1257 Lisp_String. The sdata structure points to the Lisp_String it
1258 belongs to. The Lisp_String points back to the `u.data' member of
1259 its sdata structure.
1260
1261 When a Lisp_String is freed during GC, it is put back on
1262 string_free_list, and its `data' member and its sdata's `string'
1263 pointer is set to null. The size of the string is recorded in the
1264 `u.nbytes' member of the sdata. So, sdata structures that are no
1265 longer used, can be easily recognized, and it's easy to compact the
1266 sblocks of small strings which we do in compact_small_strings. */
1267
1268 /* Size in bytes of an sblock structure used for small strings. This
1269 is 8192 minus malloc overhead. */
1270
1271 #define SBLOCK_SIZE 8188
1272
1273 /* Strings larger than this are considered large strings. String data
1274 for large strings is allocated from individual sblocks. */
1275
1276 #define LARGE_STRING_BYTES 1024
1277
1278 /* Structure describing string memory sub-allocated from an sblock.
1279 This is where the contents of Lisp strings are stored. */
1280
1281 struct sdata
1282 {
1283 /* Back-pointer to the string this sdata belongs to. If null, this
1284 structure is free, and the NBYTES member of the union below
1285 contains the string's byte size (the same value that STRING_BYTES
1286 would return if STRING were non-null). If non-null, STRING_BYTES
1287 (STRING) is the size of the data, and DATA contains the string's
1288 contents. */
1289 struct Lisp_String *string;
1290
1291 #ifdef GC_CHECK_STRING_BYTES
1292
1293 EMACS_INT nbytes;
1294 unsigned char data[1];
1295
1296 #define SDATA_NBYTES(S) (S)->nbytes
1297 #define SDATA_DATA(S) (S)->data
1298
1299 #else /* not GC_CHECK_STRING_BYTES */
1300
1301 union
1302 {
1303 /* When STRING in non-null. */
1304 unsigned char data[1];
1305
1306 /* When STRING is null. */
1307 EMACS_INT nbytes;
1308 } u;
1309
1310
1311 #define SDATA_NBYTES(S) (S)->u.nbytes
1312 #define SDATA_DATA(S) (S)->u.data
1313
1314 #endif /* not GC_CHECK_STRING_BYTES */
1315 };
1316
1317
1318 /* Structure describing a block of memory which is sub-allocated to
1319 obtain string data memory for strings. Blocks for small strings
1320 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1321 as large as needed. */
1322
1323 struct sblock
1324 {
1325 /* Next in list. */
1326 struct sblock *next;
1327
1328 /* Pointer to the next free sdata block. This points past the end
1329 of the sblock if there isn't any space left in this block. */
1330 struct sdata *next_free;
1331
1332 /* Start of data. */
1333 struct sdata first_data;
1334 };
1335
1336 /* Number of Lisp strings in a string_block structure. The 1020 is
1337 1024 minus malloc overhead. */
1338
1339 #define STRING_BLOCK_SIZE \
1340 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1341
1342 /* Structure describing a block from which Lisp_String structures
1343 are allocated. */
1344
1345 struct string_block
1346 {
1347 /* Place `strings' first, to preserve alignment. */
1348 struct Lisp_String strings[STRING_BLOCK_SIZE];
1349 struct string_block *next;
1350 };
1351
1352 /* Head and tail of the list of sblock structures holding Lisp string
1353 data. We always allocate from current_sblock. The NEXT pointers
1354 in the sblock structures go from oldest_sblock to current_sblock. */
1355
1356 static struct sblock *oldest_sblock, *current_sblock;
1357
1358 /* List of sblocks for large strings. */
1359
1360 static struct sblock *large_sblocks;
1361
1362 /* List of string_block structures, and how many there are. */
1363
1364 static struct string_block *string_blocks;
1365 static int n_string_blocks;
1366
1367 /* Free-list of Lisp_Strings. */
1368
1369 static struct Lisp_String *string_free_list;
1370
1371 /* Number of live and free Lisp_Strings. */
1372
1373 static int total_strings, total_free_strings;
1374
1375 /* Number of bytes used by live strings. */
1376
1377 static int total_string_size;
1378
1379 /* Given a pointer to a Lisp_String S which is on the free-list
1380 string_free_list, return a pointer to its successor in the
1381 free-list. */
1382
1383 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1384
1385 /* Return a pointer to the sdata structure belonging to Lisp string S.
1386 S must be live, i.e. S->data must not be null. S->data is actually
1387 a pointer to the `u.data' member of its sdata structure; the
1388 structure starts at a constant offset in front of that. */
1389
1390 #ifdef GC_CHECK_STRING_BYTES
1391
1392 #define SDATA_OF_STRING(S) \
1393 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1394 - sizeof (EMACS_INT)))
1395
1396 #else /* not GC_CHECK_STRING_BYTES */
1397
1398 #define SDATA_OF_STRING(S) \
1399 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1400
1401 #endif /* not GC_CHECK_STRING_BYTES */
1402
1403 /* Value is the size of an sdata structure large enough to hold NBYTES
1404 bytes of string data. The value returned includes a terminating
1405 NUL byte, the size of the sdata structure, and padding. */
1406
1407 #ifdef GC_CHECK_STRING_BYTES
1408
1409 #define SDATA_SIZE(NBYTES) \
1410 ((sizeof (struct Lisp_String *) \
1411 + (NBYTES) + 1 \
1412 + sizeof (EMACS_INT) \
1413 + sizeof (EMACS_INT) - 1) \
1414 & ~(sizeof (EMACS_INT) - 1))
1415
1416 #else /* not GC_CHECK_STRING_BYTES */
1417
1418 #define SDATA_SIZE(NBYTES) \
1419 ((sizeof (struct Lisp_String *) \
1420 + (NBYTES) + 1 \
1421 + sizeof (EMACS_INT) - 1) \
1422 & ~(sizeof (EMACS_INT) - 1))
1423
1424 #endif /* not GC_CHECK_STRING_BYTES */
1425
1426 /* Initialize string allocation. Called from init_alloc_once. */
1427
1428 void
1429 init_strings ()
1430 {
1431 total_strings = total_free_strings = total_string_size = 0;
1432 oldest_sblock = current_sblock = large_sblocks = NULL;
1433 string_blocks = NULL;
1434 n_string_blocks = 0;
1435 string_free_list = NULL;
1436 }
1437
1438
1439 #ifdef GC_CHECK_STRING_BYTES
1440
1441 static int check_string_bytes_count;
1442
1443 void check_string_bytes P_ ((int));
1444 void check_sblock P_ ((struct sblock *));
1445
1446 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1447
1448
1449 /* Like GC_STRING_BYTES, but with debugging check. */
1450
1451 int
1452 string_bytes (s)
1453 struct Lisp_String *s;
1454 {
1455 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1456 if (!PURE_POINTER_P (s)
1457 && s->data
1458 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1459 abort ();
1460 return nbytes;
1461 }
1462
1463 /* Check validity of Lisp strings' string_bytes member in B. */
1464
1465 void
1466 check_sblock (b)
1467 struct sblock *b;
1468 {
1469 struct sdata *from, *end, *from_end;
1470
1471 end = b->next_free;
1472
1473 for (from = &b->first_data; from < end; from = from_end)
1474 {
1475 /* Compute the next FROM here because copying below may
1476 overwrite data we need to compute it. */
1477 int nbytes;
1478
1479 /* Check that the string size recorded in the string is the
1480 same as the one recorded in the sdata structure. */
1481 if (from->string)
1482 CHECK_STRING_BYTES (from->string);
1483
1484 if (from->string)
1485 nbytes = GC_STRING_BYTES (from->string);
1486 else
1487 nbytes = SDATA_NBYTES (from);
1488
1489 nbytes = SDATA_SIZE (nbytes);
1490 from_end = (struct sdata *) ((char *) from + nbytes);
1491 }
1492 }
1493
1494
1495 /* Check validity of Lisp strings' string_bytes member. ALL_P
1496 non-zero means check all strings, otherwise check only most
1497 recently allocated strings. Used for hunting a bug. */
1498
1499 void
1500 check_string_bytes (all_p)
1501 int all_p;
1502 {
1503 if (all_p)
1504 {
1505 struct sblock *b;
1506
1507 for (b = large_sblocks; b; b = b->next)
1508 {
1509 struct Lisp_String *s = b->first_data.string;
1510 if (s)
1511 CHECK_STRING_BYTES (s);
1512 }
1513
1514 for (b = oldest_sblock; b; b = b->next)
1515 check_sblock (b);
1516 }
1517 else
1518 check_sblock (current_sblock);
1519 }
1520
1521 #endif /* GC_CHECK_STRING_BYTES */
1522
1523
1524 /* Return a new Lisp_String. */
1525
1526 static struct Lisp_String *
1527 allocate_string ()
1528 {
1529 struct Lisp_String *s;
1530
1531 /* If the free-list is empty, allocate a new string_block, and
1532 add all the Lisp_Strings in it to the free-list. */
1533 if (string_free_list == NULL)
1534 {
1535 struct string_block *b;
1536 int i;
1537
1538 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1539 bzero (b, sizeof *b);
1540 b->next = string_blocks;
1541 string_blocks = b;
1542 ++n_string_blocks;
1543
1544 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1545 {
1546 s = b->strings + i;
1547 NEXT_FREE_LISP_STRING (s) = string_free_list;
1548 string_free_list = s;
1549 }
1550
1551 total_free_strings += STRING_BLOCK_SIZE;
1552 }
1553
1554 /* Pop a Lisp_String off the free-list. */
1555 s = string_free_list;
1556 string_free_list = NEXT_FREE_LISP_STRING (s);
1557
1558 /* Probably not strictly necessary, but play it safe. */
1559 bzero (s, sizeof *s);
1560
1561 --total_free_strings;
1562 ++total_strings;
1563 ++strings_consed;
1564 consing_since_gc += sizeof *s;
1565
1566 #ifdef GC_CHECK_STRING_BYTES
1567 if (!noninteractive
1568 #ifdef MAC_OS8
1569 && current_sblock
1570 #endif
1571 )
1572 {
1573 if (++check_string_bytes_count == 200)
1574 {
1575 check_string_bytes_count = 0;
1576 check_string_bytes (1);
1577 }
1578 else
1579 check_string_bytes (0);
1580 }
1581 #endif /* GC_CHECK_STRING_BYTES */
1582
1583 return s;
1584 }
1585
1586
1587 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1588 plus a NUL byte at the end. Allocate an sdata structure for S, and
1589 set S->data to its `u.data' member. Store a NUL byte at the end of
1590 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1591 S->data if it was initially non-null. */
1592
1593 void
1594 allocate_string_data (s, nchars, nbytes)
1595 struct Lisp_String *s;
1596 int nchars, nbytes;
1597 {
1598 struct sdata *data, *old_data;
1599 struct sblock *b;
1600 int needed, old_nbytes;
1601
1602 /* Determine the number of bytes needed to store NBYTES bytes
1603 of string data. */
1604 needed = SDATA_SIZE (nbytes);
1605
1606 if (nbytes > LARGE_STRING_BYTES)
1607 {
1608 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1609
1610 #ifdef DOUG_LEA_MALLOC
1611 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1612 because mapped region contents are not preserved in
1613 a dumped Emacs.
1614
1615 In case you think of allowing it in a dumped Emacs at the
1616 cost of not being able to re-dump, there's another reason:
1617 mmap'ed data typically have an address towards the top of the
1618 address space, which won't fit into an EMACS_INT (at least on
1619 32-bit systems with the current tagging scheme). --fx */
1620 mallopt (M_MMAP_MAX, 0);
1621 #endif
1622
1623 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
1624
1625 #ifdef DOUG_LEA_MALLOC
1626 /* Back to a reasonable maximum of mmap'ed areas. */
1627 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1628 #endif
1629
1630 b->next_free = &b->first_data;
1631 b->first_data.string = NULL;
1632 b->next = large_sblocks;
1633 large_sblocks = b;
1634 }
1635 else if (current_sblock == NULL
1636 || (((char *) current_sblock + SBLOCK_SIZE
1637 - (char *) current_sblock->next_free)
1638 < needed))
1639 {
1640 /* Not enough room in the current sblock. */
1641 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1642 b->next_free = &b->first_data;
1643 b->first_data.string = NULL;
1644 b->next = NULL;
1645
1646 if (current_sblock)
1647 current_sblock->next = b;
1648 else
1649 oldest_sblock = b;
1650 current_sblock = b;
1651 }
1652 else
1653 b = current_sblock;
1654
1655 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1656 old_nbytes = GC_STRING_BYTES (s);
1657
1658 data = b->next_free;
1659 data->string = s;
1660 s->data = SDATA_DATA (data);
1661 #ifdef GC_CHECK_STRING_BYTES
1662 SDATA_NBYTES (data) = nbytes;
1663 #endif
1664 s->size = nchars;
1665 s->size_byte = nbytes;
1666 s->data[nbytes] = '\0';
1667 b->next_free = (struct sdata *) ((char *) data + needed);
1668
1669 /* If S had already data assigned, mark that as free by setting its
1670 string back-pointer to null, and recording the size of the data
1671 in it. */
1672 if (old_data)
1673 {
1674 SDATA_NBYTES (old_data) = old_nbytes;
1675 old_data->string = NULL;
1676 }
1677
1678 consing_since_gc += needed;
1679 }
1680
1681
1682 /* Sweep and compact strings. */
1683
1684 static void
1685 sweep_strings ()
1686 {
1687 struct string_block *b, *next;
1688 struct string_block *live_blocks = NULL;
1689
1690 string_free_list = NULL;
1691 total_strings = total_free_strings = 0;
1692 total_string_size = 0;
1693
1694 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1695 for (b = string_blocks; b; b = next)
1696 {
1697 int i, nfree = 0;
1698 struct Lisp_String *free_list_before = string_free_list;
1699
1700 next = b->next;
1701
1702 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1703 {
1704 struct Lisp_String *s = b->strings + i;
1705
1706 if (s->data)
1707 {
1708 /* String was not on free-list before. */
1709 if (STRING_MARKED_P (s))
1710 {
1711 /* String is live; unmark it and its intervals. */
1712 UNMARK_STRING (s);
1713
1714 if (!NULL_INTERVAL_P (s->intervals))
1715 UNMARK_BALANCE_INTERVALS (s->intervals);
1716
1717 ++total_strings;
1718 total_string_size += STRING_BYTES (s);
1719 }
1720 else
1721 {
1722 /* String is dead. Put it on the free-list. */
1723 struct sdata *data = SDATA_OF_STRING (s);
1724
1725 /* Save the size of S in its sdata so that we know
1726 how large that is. Reset the sdata's string
1727 back-pointer so that we know it's free. */
1728 #ifdef GC_CHECK_STRING_BYTES
1729 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1730 abort ();
1731 #else
1732 data->u.nbytes = GC_STRING_BYTES (s);
1733 #endif
1734 data->string = NULL;
1735
1736 /* Reset the strings's `data' member so that we
1737 know it's free. */
1738 s->data = NULL;
1739
1740 /* Put the string on the free-list. */
1741 NEXT_FREE_LISP_STRING (s) = string_free_list;
1742 string_free_list = s;
1743 ++nfree;
1744 }
1745 }
1746 else
1747 {
1748 /* S was on the free-list before. Put it there again. */
1749 NEXT_FREE_LISP_STRING (s) = string_free_list;
1750 string_free_list = s;
1751 ++nfree;
1752 }
1753 }
1754
1755 /* Free blocks that contain free Lisp_Strings only, except
1756 the first two of them. */
1757 if (nfree == STRING_BLOCK_SIZE
1758 && total_free_strings > STRING_BLOCK_SIZE)
1759 {
1760 lisp_free (b);
1761 --n_string_blocks;
1762 string_free_list = free_list_before;
1763 }
1764 else
1765 {
1766 total_free_strings += nfree;
1767 b->next = live_blocks;
1768 live_blocks = b;
1769 }
1770 }
1771
1772 string_blocks = live_blocks;
1773 free_large_strings ();
1774 compact_small_strings ();
1775 }
1776
1777
1778 /* Free dead large strings. */
1779
1780 static void
1781 free_large_strings ()
1782 {
1783 struct sblock *b, *next;
1784 struct sblock *live_blocks = NULL;
1785
1786 for (b = large_sblocks; b; b = next)
1787 {
1788 next = b->next;
1789
1790 if (b->first_data.string == NULL)
1791 lisp_free (b);
1792 else
1793 {
1794 b->next = live_blocks;
1795 live_blocks = b;
1796 }
1797 }
1798
1799 large_sblocks = live_blocks;
1800 }
1801
1802
1803 /* Compact data of small strings. Free sblocks that don't contain
1804 data of live strings after compaction. */
1805
1806 static void
1807 compact_small_strings ()
1808 {
1809 struct sblock *b, *tb, *next;
1810 struct sdata *from, *to, *end, *tb_end;
1811 struct sdata *to_end, *from_end;
1812
1813 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1814 to, and TB_END is the end of TB. */
1815 tb = oldest_sblock;
1816 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1817 to = &tb->first_data;
1818
1819 /* Step through the blocks from the oldest to the youngest. We
1820 expect that old blocks will stabilize over time, so that less
1821 copying will happen this way. */
1822 for (b = oldest_sblock; b; b = b->next)
1823 {
1824 end = b->next_free;
1825 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1826
1827 for (from = &b->first_data; from < end; from = from_end)
1828 {
1829 /* Compute the next FROM here because copying below may
1830 overwrite data we need to compute it. */
1831 int nbytes;
1832
1833 #ifdef GC_CHECK_STRING_BYTES
1834 /* Check that the string size recorded in the string is the
1835 same as the one recorded in the sdata structure. */
1836 if (from->string
1837 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
1838 abort ();
1839 #endif /* GC_CHECK_STRING_BYTES */
1840
1841 if (from->string)
1842 nbytes = GC_STRING_BYTES (from->string);
1843 else
1844 nbytes = SDATA_NBYTES (from);
1845
1846 nbytes = SDATA_SIZE (nbytes);
1847 from_end = (struct sdata *) ((char *) from + nbytes);
1848
1849 /* FROM->string non-null means it's alive. Copy its data. */
1850 if (from->string)
1851 {
1852 /* If TB is full, proceed with the next sblock. */
1853 to_end = (struct sdata *) ((char *) to + nbytes);
1854 if (to_end > tb_end)
1855 {
1856 tb->next_free = to;
1857 tb = tb->next;
1858 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1859 to = &tb->first_data;
1860 to_end = (struct sdata *) ((char *) to + nbytes);
1861 }
1862
1863 /* Copy, and update the string's `data' pointer. */
1864 if (from != to)
1865 {
1866 xassert (tb != b || to <= from);
1867 safe_bcopy ((char *) from, (char *) to, nbytes);
1868 to->string->data = SDATA_DATA (to);
1869 }
1870
1871 /* Advance past the sdata we copied to. */
1872 to = to_end;
1873 }
1874 }
1875 }
1876
1877 /* The rest of the sblocks following TB don't contain live data, so
1878 we can free them. */
1879 for (b = tb->next; b; b = next)
1880 {
1881 next = b->next;
1882 lisp_free (b);
1883 }
1884
1885 tb->next_free = to;
1886 tb->next = NULL;
1887 current_sblock = tb;
1888 }
1889
1890
1891 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1892 doc: /* Return a newly created string of length LENGTH, with each element being INIT.
1893 Both LENGTH and INIT must be numbers. */)
1894 (length, init)
1895 Lisp_Object length, init;
1896 {
1897 register Lisp_Object val;
1898 register unsigned char *p, *end;
1899 int c, nbytes;
1900
1901 CHECK_NATNUM (length);
1902 CHECK_NUMBER (init);
1903
1904 c = XINT (init);
1905 if (SINGLE_BYTE_CHAR_P (c))
1906 {
1907 nbytes = XINT (length);
1908 val = make_uninit_string (nbytes);
1909 p = SDATA (val);
1910 end = p + SCHARS (val);
1911 while (p != end)
1912 *p++ = c;
1913 }
1914 else
1915 {
1916 unsigned char str[MAX_MULTIBYTE_LENGTH];
1917 int len = CHAR_STRING (c, str);
1918
1919 nbytes = len * XINT (length);
1920 val = make_uninit_multibyte_string (XINT (length), nbytes);
1921 p = SDATA (val);
1922 end = p + nbytes;
1923 while (p != end)
1924 {
1925 bcopy (str, p, len);
1926 p += len;
1927 }
1928 }
1929
1930 *p = 0;
1931 return val;
1932 }
1933
1934
1935 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
1936 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
1937 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1938 (length, init)
1939 Lisp_Object length, init;
1940 {
1941 register Lisp_Object val;
1942 struct Lisp_Bool_Vector *p;
1943 int real_init, i;
1944 int length_in_chars, length_in_elts, bits_per_value;
1945
1946 CHECK_NATNUM (length);
1947
1948 bits_per_value = sizeof (EMACS_INT) * BITS_PER_CHAR;
1949
1950 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1951 length_in_chars = ((XFASTINT (length) + BITS_PER_CHAR - 1) / BITS_PER_CHAR);
1952
1953 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1954 slot `size' of the struct Lisp_Bool_Vector. */
1955 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1956 p = XBOOL_VECTOR (val);
1957
1958 /* Get rid of any bits that would cause confusion. */
1959 p->vector_size = 0;
1960 XSETBOOL_VECTOR (val, p);
1961 p->size = XFASTINT (length);
1962
1963 real_init = (NILP (init) ? 0 : -1);
1964 for (i = 0; i < length_in_chars ; i++)
1965 p->data[i] = real_init;
1966
1967 /* Clear the extraneous bits in the last byte. */
1968 if (XINT (length) != length_in_chars * BITS_PER_CHAR)
1969 XBOOL_VECTOR (val)->data[length_in_chars - 1]
1970 &= (1 << (XINT (length) % BITS_PER_CHAR)) - 1;
1971
1972 return val;
1973 }
1974
1975
1976 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
1977 of characters from the contents. This string may be unibyte or
1978 multibyte, depending on the contents. */
1979
1980 Lisp_Object
1981 make_string (contents, nbytes)
1982 const char *contents;
1983 int nbytes;
1984 {
1985 register Lisp_Object val;
1986 int nchars, multibyte_nbytes;
1987
1988 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
1989 if (nbytes == nchars || nbytes != multibyte_nbytes)
1990 /* CONTENTS contains no multibyte sequences or contains an invalid
1991 multibyte sequence. We must make unibyte string. */
1992 val = make_unibyte_string (contents, nbytes);
1993 else
1994 val = make_multibyte_string (contents, nchars, nbytes);
1995 return val;
1996 }
1997
1998
1999 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2000
2001 Lisp_Object
2002 make_unibyte_string (contents, length)
2003 const char *contents;
2004 int length;
2005 {
2006 register Lisp_Object val;
2007 val = make_uninit_string (length);
2008 bcopy (contents, SDATA (val), length);
2009 STRING_SET_UNIBYTE (val);
2010 return val;
2011 }
2012
2013
2014 /* Make a multibyte string from NCHARS characters occupying NBYTES
2015 bytes at CONTENTS. */
2016
2017 Lisp_Object
2018 make_multibyte_string (contents, nchars, nbytes)
2019 const char *contents;
2020 int nchars, nbytes;
2021 {
2022 register Lisp_Object val;
2023 val = make_uninit_multibyte_string (nchars, nbytes);
2024 bcopy (contents, SDATA (val), nbytes);
2025 return val;
2026 }
2027
2028
2029 /* Make a string from NCHARS characters occupying NBYTES bytes at
2030 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2031
2032 Lisp_Object
2033 make_string_from_bytes (contents, nchars, nbytes)
2034 const char *contents;
2035 int nchars, nbytes;
2036 {
2037 register Lisp_Object val;
2038 val = make_uninit_multibyte_string (nchars, nbytes);
2039 bcopy (contents, SDATA (val), nbytes);
2040 if (SBYTES (val) == SCHARS (val))
2041 STRING_SET_UNIBYTE (val);
2042 return val;
2043 }
2044
2045
2046 /* Make a string from NCHARS characters occupying NBYTES bytes at
2047 CONTENTS. The argument MULTIBYTE controls whether to label the
2048 string as multibyte. If NCHARS is negative, it counts the number of
2049 characters by itself. */
2050
2051 Lisp_Object
2052 make_specified_string (contents, nchars, nbytes, multibyte)
2053 const char *contents;
2054 int nchars, nbytes;
2055 int multibyte;
2056 {
2057 register Lisp_Object val;
2058
2059 if (nchars < 0)
2060 {
2061 if (multibyte)
2062 nchars = multibyte_chars_in_text (contents, nbytes);
2063 else
2064 nchars = nbytes;
2065 }
2066 val = make_uninit_multibyte_string (nchars, nbytes);
2067 bcopy (contents, SDATA (val), nbytes);
2068 if (!multibyte)
2069 STRING_SET_UNIBYTE (val);
2070 return val;
2071 }
2072
2073
2074 /* Make a string from the data at STR, treating it as multibyte if the
2075 data warrants. */
2076
2077 Lisp_Object
2078 build_string (str)
2079 const char *str;
2080 {
2081 return make_string (str, strlen (str));
2082 }
2083
2084
2085 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2086 occupying LENGTH bytes. */
2087
2088 Lisp_Object
2089 make_uninit_string (length)
2090 int length;
2091 {
2092 Lisp_Object val;
2093 val = make_uninit_multibyte_string (length, length);
2094 STRING_SET_UNIBYTE (val);
2095 return val;
2096 }
2097
2098
2099 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2100 which occupy NBYTES bytes. */
2101
2102 Lisp_Object
2103 make_uninit_multibyte_string (nchars, nbytes)
2104 int nchars, nbytes;
2105 {
2106 Lisp_Object string;
2107 struct Lisp_String *s;
2108
2109 if (nchars < 0)
2110 abort ();
2111
2112 s = allocate_string ();
2113 allocate_string_data (s, nchars, nbytes);
2114 XSETSTRING (string, s);
2115 string_chars_consed += nbytes;
2116 return string;
2117 }
2118
2119
2120 \f
2121 /***********************************************************************
2122 Float Allocation
2123 ***********************************************************************/
2124
2125 /* We store float cells inside of float_blocks, allocating a new
2126 float_block with malloc whenever necessary. Float cells reclaimed
2127 by GC are put on a free list to be reallocated before allocating
2128 any new float cells from the latest float_block. */
2129
2130 #define FLOAT_BLOCK_SIZE \
2131 (((BLOCK_BYTES - sizeof (struct float_block *) \
2132 /* The compiler might add padding at the end. */ \
2133 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2134 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2135
2136 #define GETMARKBIT(block,n) \
2137 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2138 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2139 & 1)
2140
2141 #define SETMARKBIT(block,n) \
2142 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2143 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2144
2145 #define UNSETMARKBIT(block,n) \
2146 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2147 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2148
2149 #define FLOAT_BLOCK(fptr) \
2150 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2151
2152 #define FLOAT_INDEX(fptr) \
2153 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2154
2155 struct float_block
2156 {
2157 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2158 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2159 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2160 struct float_block *next;
2161 };
2162
2163 #define FLOAT_MARKED_P(fptr) \
2164 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2165
2166 #define FLOAT_MARK(fptr) \
2167 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2168
2169 #define FLOAT_UNMARK(fptr) \
2170 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2171
2172 /* Current float_block. */
2173
2174 struct float_block *float_block;
2175
2176 /* Index of first unused Lisp_Float in the current float_block. */
2177
2178 int float_block_index;
2179
2180 /* Total number of float blocks now in use. */
2181
2182 int n_float_blocks;
2183
2184 /* Free-list of Lisp_Floats. */
2185
2186 struct Lisp_Float *float_free_list;
2187
2188
2189 /* Initialize float allocation. */
2190
2191 void
2192 init_float ()
2193 {
2194 float_block = NULL;
2195 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2196 float_free_list = 0;
2197 n_float_blocks = 0;
2198 }
2199
2200
2201 /* Explicitly free a float cell by putting it on the free-list. */
2202
2203 void
2204 free_float (ptr)
2205 struct Lisp_Float *ptr;
2206 {
2207 *(struct Lisp_Float **)&ptr->data = float_free_list;
2208 float_free_list = ptr;
2209 }
2210
2211
2212 /* Return a new float object with value FLOAT_VALUE. */
2213
2214 Lisp_Object
2215 make_float (float_value)
2216 double float_value;
2217 {
2218 register Lisp_Object val;
2219
2220 if (float_free_list)
2221 {
2222 /* We use the data field for chaining the free list
2223 so that we won't use the same field that has the mark bit. */
2224 XSETFLOAT (val, float_free_list);
2225 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2226 }
2227 else
2228 {
2229 if (float_block_index == FLOAT_BLOCK_SIZE)
2230 {
2231 register struct float_block *new;
2232
2233 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2234 MEM_TYPE_FLOAT);
2235 new->next = float_block;
2236 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2237 float_block = new;
2238 float_block_index = 0;
2239 n_float_blocks++;
2240 }
2241 XSETFLOAT (val, &float_block->floats[float_block_index]);
2242 float_block_index++;
2243 }
2244
2245 XFLOAT_DATA (val) = float_value;
2246 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2247 consing_since_gc += sizeof (struct Lisp_Float);
2248 floats_consed++;
2249 return val;
2250 }
2251
2252
2253 \f
2254 /***********************************************************************
2255 Cons Allocation
2256 ***********************************************************************/
2257
2258 /* We store cons cells inside of cons_blocks, allocating a new
2259 cons_block with malloc whenever necessary. Cons cells reclaimed by
2260 GC are put on a free list to be reallocated before allocating
2261 any new cons cells from the latest cons_block. */
2262
2263 #define CONS_BLOCK_SIZE \
2264 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2265 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2266
2267 #define CONS_BLOCK(fptr) \
2268 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2269
2270 #define CONS_INDEX(fptr) \
2271 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2272
2273 struct cons_block
2274 {
2275 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2276 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2277 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2278 struct cons_block *next;
2279 };
2280
2281 #define CONS_MARKED_P(fptr) \
2282 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2283
2284 #define CONS_MARK(fptr) \
2285 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2286
2287 #define CONS_UNMARK(fptr) \
2288 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2289
2290 /* Current cons_block. */
2291
2292 struct cons_block *cons_block;
2293
2294 /* Index of first unused Lisp_Cons in the current block. */
2295
2296 int cons_block_index;
2297
2298 /* Free-list of Lisp_Cons structures. */
2299
2300 struct Lisp_Cons *cons_free_list;
2301
2302 /* Total number of cons blocks now in use. */
2303
2304 int n_cons_blocks;
2305
2306
2307 /* Initialize cons allocation. */
2308
2309 void
2310 init_cons ()
2311 {
2312 cons_block = NULL;
2313 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2314 cons_free_list = 0;
2315 n_cons_blocks = 0;
2316 }
2317
2318
2319 /* Explicitly free a cons cell by putting it on the free-list. */
2320
2321 void
2322 free_cons (ptr)
2323 struct Lisp_Cons *ptr;
2324 {
2325 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2326 #if GC_MARK_STACK
2327 ptr->car = Vdead;
2328 #endif
2329 cons_free_list = ptr;
2330 }
2331
2332
2333 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2334 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2335 (car, cdr)
2336 Lisp_Object car, cdr;
2337 {
2338 register Lisp_Object val;
2339
2340 if (cons_free_list)
2341 {
2342 /* We use the cdr for chaining the free list
2343 so that we won't use the same field that has the mark bit. */
2344 XSETCONS (val, cons_free_list);
2345 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2346 }
2347 else
2348 {
2349 if (cons_block_index == CONS_BLOCK_SIZE)
2350 {
2351 register struct cons_block *new;
2352 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2353 MEM_TYPE_CONS);
2354 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2355 new->next = cons_block;
2356 cons_block = new;
2357 cons_block_index = 0;
2358 n_cons_blocks++;
2359 }
2360 XSETCONS (val, &cons_block->conses[cons_block_index]);
2361 cons_block_index++;
2362 }
2363
2364 XSETCAR (val, car);
2365 XSETCDR (val, cdr);
2366 eassert (!CONS_MARKED_P (XCONS (val)));
2367 consing_since_gc += sizeof (struct Lisp_Cons);
2368 cons_cells_consed++;
2369 return val;
2370 }
2371
2372
2373 /* Make a list of 2, 3, 4 or 5 specified objects. */
2374
2375 Lisp_Object
2376 list2 (arg1, arg2)
2377 Lisp_Object arg1, arg2;
2378 {
2379 return Fcons (arg1, Fcons (arg2, Qnil));
2380 }
2381
2382
2383 Lisp_Object
2384 list3 (arg1, arg2, arg3)
2385 Lisp_Object arg1, arg2, arg3;
2386 {
2387 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2388 }
2389
2390
2391 Lisp_Object
2392 list4 (arg1, arg2, arg3, arg4)
2393 Lisp_Object arg1, arg2, arg3, arg4;
2394 {
2395 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2396 }
2397
2398
2399 Lisp_Object
2400 list5 (arg1, arg2, arg3, arg4, arg5)
2401 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2402 {
2403 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2404 Fcons (arg5, Qnil)))));
2405 }
2406
2407
2408 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2409 doc: /* Return a newly created list with specified arguments as elements.
2410 Any number of arguments, even zero arguments, are allowed.
2411 usage: (list &rest OBJECTS) */)
2412 (nargs, args)
2413 int nargs;
2414 register Lisp_Object *args;
2415 {
2416 register Lisp_Object val;
2417 val = Qnil;
2418
2419 while (nargs > 0)
2420 {
2421 nargs--;
2422 val = Fcons (args[nargs], val);
2423 }
2424 return val;
2425 }
2426
2427
2428 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2429 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2430 (length, init)
2431 register Lisp_Object length, init;
2432 {
2433 register Lisp_Object val;
2434 register int size;
2435
2436 CHECK_NATNUM (length);
2437 size = XFASTINT (length);
2438
2439 val = Qnil;
2440 while (size > 0)
2441 {
2442 val = Fcons (init, val);
2443 --size;
2444
2445 if (size > 0)
2446 {
2447 val = Fcons (init, val);
2448 --size;
2449
2450 if (size > 0)
2451 {
2452 val = Fcons (init, val);
2453 --size;
2454
2455 if (size > 0)
2456 {
2457 val = Fcons (init, val);
2458 --size;
2459
2460 if (size > 0)
2461 {
2462 val = Fcons (init, val);
2463 --size;
2464 }
2465 }
2466 }
2467 }
2468
2469 QUIT;
2470 }
2471
2472 return val;
2473 }
2474
2475
2476 \f
2477 /***********************************************************************
2478 Vector Allocation
2479 ***********************************************************************/
2480
2481 /* Singly-linked list of all vectors. */
2482
2483 struct Lisp_Vector *all_vectors;
2484
2485 /* Total number of vector-like objects now in use. */
2486
2487 int n_vectors;
2488
2489
2490 /* Value is a pointer to a newly allocated Lisp_Vector structure
2491 with room for LEN Lisp_Objects. */
2492
2493 static struct Lisp_Vector *
2494 allocate_vectorlike (len, type)
2495 EMACS_INT len;
2496 enum mem_type type;
2497 {
2498 struct Lisp_Vector *p;
2499 size_t nbytes;
2500
2501 #ifdef DOUG_LEA_MALLOC
2502 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2503 because mapped region contents are not preserved in
2504 a dumped Emacs. */
2505 BLOCK_INPUT;
2506 mallopt (M_MMAP_MAX, 0);
2507 UNBLOCK_INPUT;
2508 #endif
2509
2510 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2511 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2512
2513 #ifdef DOUG_LEA_MALLOC
2514 /* Back to a reasonable maximum of mmap'ed areas. */
2515 BLOCK_INPUT;
2516 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2517 UNBLOCK_INPUT;
2518 #endif
2519
2520 consing_since_gc += nbytes;
2521 vector_cells_consed += len;
2522
2523 p->next = all_vectors;
2524 all_vectors = p;
2525 ++n_vectors;
2526 return p;
2527 }
2528
2529
2530 /* Allocate a vector with NSLOTS slots. */
2531
2532 struct Lisp_Vector *
2533 allocate_vector (nslots)
2534 EMACS_INT nslots;
2535 {
2536 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2537 v->size = nslots;
2538 return v;
2539 }
2540
2541
2542 /* Allocate other vector-like structures. */
2543
2544 struct Lisp_Hash_Table *
2545 allocate_hash_table ()
2546 {
2547 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2548 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2549 EMACS_INT i;
2550
2551 v->size = len;
2552 for (i = 0; i < len; ++i)
2553 v->contents[i] = Qnil;
2554
2555 return (struct Lisp_Hash_Table *) v;
2556 }
2557
2558
2559 struct window *
2560 allocate_window ()
2561 {
2562 EMACS_INT len = VECSIZE (struct window);
2563 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2564 EMACS_INT i;
2565
2566 for (i = 0; i < len; ++i)
2567 v->contents[i] = Qnil;
2568 v->size = len;
2569
2570 return (struct window *) v;
2571 }
2572
2573
2574 struct frame *
2575 allocate_frame ()
2576 {
2577 EMACS_INT len = VECSIZE (struct frame);
2578 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2579 EMACS_INT i;
2580
2581 for (i = 0; i < len; ++i)
2582 v->contents[i] = make_number (0);
2583 v->size = len;
2584 return (struct frame *) v;
2585 }
2586
2587
2588 struct Lisp_Process *
2589 allocate_process ()
2590 {
2591 EMACS_INT len = VECSIZE (struct Lisp_Process);
2592 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2593 EMACS_INT i;
2594
2595 for (i = 0; i < len; ++i)
2596 v->contents[i] = Qnil;
2597 v->size = len;
2598
2599 return (struct Lisp_Process *) v;
2600 }
2601
2602
2603 struct Lisp_Vector *
2604 allocate_other_vector (len)
2605 EMACS_INT len;
2606 {
2607 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2608 EMACS_INT i;
2609
2610 for (i = 0; i < len; ++i)
2611 v->contents[i] = Qnil;
2612 v->size = len;
2613
2614 return v;
2615 }
2616
2617
2618 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2619 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2620 See also the function `vector'. */)
2621 (length, init)
2622 register Lisp_Object length, init;
2623 {
2624 Lisp_Object vector;
2625 register EMACS_INT sizei;
2626 register int index;
2627 register struct Lisp_Vector *p;
2628
2629 CHECK_NATNUM (length);
2630 sizei = XFASTINT (length);
2631
2632 p = allocate_vector (sizei);
2633 for (index = 0; index < sizei; index++)
2634 p->contents[index] = init;
2635
2636 XSETVECTOR (vector, p);
2637 return vector;
2638 }
2639
2640
2641 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
2642 doc: /* Return a newly created char-table, with purpose PURPOSE.
2643 Each element is initialized to INIT, which defaults to nil.
2644 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
2645 The property's value should be an integer between 0 and 10. */)
2646 (purpose, init)
2647 register Lisp_Object purpose, init;
2648 {
2649 Lisp_Object vector;
2650 Lisp_Object n;
2651 CHECK_SYMBOL (purpose);
2652 n = Fget (purpose, Qchar_table_extra_slots);
2653 CHECK_NUMBER (n);
2654 if (XINT (n) < 0 || XINT (n) > 10)
2655 args_out_of_range (n, Qnil);
2656 /* Add 2 to the size for the defalt and parent slots. */
2657 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
2658 init);
2659 XCHAR_TABLE (vector)->top = Qt;
2660 XCHAR_TABLE (vector)->parent = Qnil;
2661 XCHAR_TABLE (vector)->purpose = purpose;
2662 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2663 return vector;
2664 }
2665
2666
2667 /* Return a newly created sub char table with default value DEFALT.
2668 Since a sub char table does not appear as a top level Emacs Lisp
2669 object, we don't need a Lisp interface to make it. */
2670
2671 Lisp_Object
2672 make_sub_char_table (defalt)
2673 Lisp_Object defalt;
2674 {
2675 Lisp_Object vector
2676 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
2677 XCHAR_TABLE (vector)->top = Qnil;
2678 XCHAR_TABLE (vector)->defalt = defalt;
2679 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2680 return vector;
2681 }
2682
2683
2684 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2685 doc: /* Return a newly created vector with specified arguments as elements.
2686 Any number of arguments, even zero arguments, are allowed.
2687 usage: (vector &rest OBJECTS) */)
2688 (nargs, args)
2689 register int nargs;
2690 Lisp_Object *args;
2691 {
2692 register Lisp_Object len, val;
2693 register int index;
2694 register struct Lisp_Vector *p;
2695
2696 XSETFASTINT (len, nargs);
2697 val = Fmake_vector (len, Qnil);
2698 p = XVECTOR (val);
2699 for (index = 0; index < nargs; index++)
2700 p->contents[index] = args[index];
2701 return val;
2702 }
2703
2704
2705 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2706 doc: /* Create a byte-code object with specified arguments as elements.
2707 The arguments should be the arglist, bytecode-string, constant vector,
2708 stack size, (optional) doc string, and (optional) interactive spec.
2709 The first four arguments are required; at most six have any
2710 significance.
2711 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2712 (nargs, args)
2713 register int nargs;
2714 Lisp_Object *args;
2715 {
2716 register Lisp_Object len, val;
2717 register int index;
2718 register struct Lisp_Vector *p;
2719
2720 XSETFASTINT (len, nargs);
2721 if (!NILP (Vpurify_flag))
2722 val = make_pure_vector ((EMACS_INT) nargs);
2723 else
2724 val = Fmake_vector (len, Qnil);
2725
2726 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2727 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2728 earlier because they produced a raw 8-bit string for byte-code
2729 and now such a byte-code string is loaded as multibyte while
2730 raw 8-bit characters converted to multibyte form. Thus, now we
2731 must convert them back to the original unibyte form. */
2732 args[1] = Fstring_as_unibyte (args[1]);
2733
2734 p = XVECTOR (val);
2735 for (index = 0; index < nargs; index++)
2736 {
2737 if (!NILP (Vpurify_flag))
2738 args[index] = Fpurecopy (args[index]);
2739 p->contents[index] = args[index];
2740 }
2741 XSETCOMPILED (val, p);
2742 return val;
2743 }
2744
2745
2746 \f
2747 /***********************************************************************
2748 Symbol Allocation
2749 ***********************************************************************/
2750
2751 /* Each symbol_block is just under 1020 bytes long, since malloc
2752 really allocates in units of powers of two and uses 4 bytes for its
2753 own overhead. */
2754
2755 #define SYMBOL_BLOCK_SIZE \
2756 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2757
2758 struct symbol_block
2759 {
2760 /* Place `symbols' first, to preserve alignment. */
2761 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2762 struct symbol_block *next;
2763 };
2764
2765 /* Current symbol block and index of first unused Lisp_Symbol
2766 structure in it. */
2767
2768 struct symbol_block *symbol_block;
2769 int symbol_block_index;
2770
2771 /* List of free symbols. */
2772
2773 struct Lisp_Symbol *symbol_free_list;
2774
2775 /* Total number of symbol blocks now in use. */
2776
2777 int n_symbol_blocks;
2778
2779
2780 /* Initialize symbol allocation. */
2781
2782 void
2783 init_symbol ()
2784 {
2785 symbol_block = NULL;
2786 symbol_block_index = SYMBOL_BLOCK_SIZE;
2787 symbol_free_list = 0;
2788 n_symbol_blocks = 0;
2789 }
2790
2791
2792 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
2793 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
2794 Its value and function definition are void, and its property list is nil. */)
2795 (name)
2796 Lisp_Object name;
2797 {
2798 register Lisp_Object val;
2799 register struct Lisp_Symbol *p;
2800
2801 CHECK_STRING (name);
2802
2803 if (symbol_free_list)
2804 {
2805 XSETSYMBOL (val, symbol_free_list);
2806 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
2807 }
2808 else
2809 {
2810 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2811 {
2812 struct symbol_block *new;
2813 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2814 MEM_TYPE_SYMBOL);
2815 new->next = symbol_block;
2816 symbol_block = new;
2817 symbol_block_index = 0;
2818 n_symbol_blocks++;
2819 }
2820 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
2821 symbol_block_index++;
2822 }
2823
2824 p = XSYMBOL (val);
2825 p->xname = name;
2826 p->plist = Qnil;
2827 p->value = Qunbound;
2828 p->function = Qunbound;
2829 p->next = NULL;
2830 p->gcmarkbit = 0;
2831 p->interned = SYMBOL_UNINTERNED;
2832 p->constant = 0;
2833 p->indirect_variable = 0;
2834 consing_since_gc += sizeof (struct Lisp_Symbol);
2835 symbols_consed++;
2836 return val;
2837 }
2838
2839
2840 \f
2841 /***********************************************************************
2842 Marker (Misc) Allocation
2843 ***********************************************************************/
2844
2845 /* Allocation of markers and other objects that share that structure.
2846 Works like allocation of conses. */
2847
2848 #define MARKER_BLOCK_SIZE \
2849 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2850
2851 struct marker_block
2852 {
2853 /* Place `markers' first, to preserve alignment. */
2854 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
2855 struct marker_block *next;
2856 };
2857
2858 struct marker_block *marker_block;
2859 int marker_block_index;
2860
2861 union Lisp_Misc *marker_free_list;
2862
2863 /* Total number of marker blocks now in use. */
2864
2865 int n_marker_blocks;
2866
2867 void
2868 init_marker ()
2869 {
2870 marker_block = NULL;
2871 marker_block_index = MARKER_BLOCK_SIZE;
2872 marker_free_list = 0;
2873 n_marker_blocks = 0;
2874 }
2875
2876 /* Return a newly allocated Lisp_Misc object, with no substructure. */
2877
2878 Lisp_Object
2879 allocate_misc ()
2880 {
2881 Lisp_Object val;
2882
2883 if (marker_free_list)
2884 {
2885 XSETMISC (val, marker_free_list);
2886 marker_free_list = marker_free_list->u_free.chain;
2887 }
2888 else
2889 {
2890 if (marker_block_index == MARKER_BLOCK_SIZE)
2891 {
2892 struct marker_block *new;
2893 new = (struct marker_block *) lisp_malloc (sizeof *new,
2894 MEM_TYPE_MISC);
2895 new->next = marker_block;
2896 marker_block = new;
2897 marker_block_index = 0;
2898 n_marker_blocks++;
2899 }
2900 XSETMISC (val, &marker_block->markers[marker_block_index]);
2901 marker_block_index++;
2902 }
2903
2904 consing_since_gc += sizeof (union Lisp_Misc);
2905 misc_objects_consed++;
2906 XMARKER (val)->gcmarkbit = 0;
2907 return val;
2908 }
2909
2910 /* Return a Lisp_Misc_Save_Value object containing POINTER and
2911 INTEGER. This is used to package C values to call record_unwind_protect.
2912 The unwind function can get the C values back using XSAVE_VALUE. */
2913
2914 Lisp_Object
2915 make_save_value (pointer, integer)
2916 void *pointer;
2917 int integer;
2918 {
2919 register Lisp_Object val;
2920 register struct Lisp_Save_Value *p;
2921
2922 val = allocate_misc ();
2923 XMISCTYPE (val) = Lisp_Misc_Save_Value;
2924 p = XSAVE_VALUE (val);
2925 p->pointer = pointer;
2926 p->integer = integer;
2927 return val;
2928 }
2929
2930 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
2931 doc: /* Return a newly allocated marker which does not point at any place. */)
2932 ()
2933 {
2934 register Lisp_Object val;
2935 register struct Lisp_Marker *p;
2936
2937 val = allocate_misc ();
2938 XMISCTYPE (val) = Lisp_Misc_Marker;
2939 p = XMARKER (val);
2940 p->buffer = 0;
2941 p->bytepos = 0;
2942 p->charpos = 0;
2943 p->next = NULL;
2944 p->insertion_type = 0;
2945 return val;
2946 }
2947
2948 /* Put MARKER back on the free list after using it temporarily. */
2949
2950 void
2951 free_marker (marker)
2952 Lisp_Object marker;
2953 {
2954 unchain_marker (XMARKER (marker));
2955
2956 XMISC (marker)->u_marker.type = Lisp_Misc_Free;
2957 XMISC (marker)->u_free.chain = marker_free_list;
2958 marker_free_list = XMISC (marker);
2959
2960 total_free_markers++;
2961 }
2962
2963 \f
2964 /* Return a newly created vector or string with specified arguments as
2965 elements. If all the arguments are characters that can fit
2966 in a string of events, make a string; otherwise, make a vector.
2967
2968 Any number of arguments, even zero arguments, are allowed. */
2969
2970 Lisp_Object
2971 make_event_array (nargs, args)
2972 register int nargs;
2973 Lisp_Object *args;
2974 {
2975 int i;
2976
2977 for (i = 0; i < nargs; i++)
2978 /* The things that fit in a string
2979 are characters that are in 0...127,
2980 after discarding the meta bit and all the bits above it. */
2981 if (!INTEGERP (args[i])
2982 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
2983 return Fvector (nargs, args);
2984
2985 /* Since the loop exited, we know that all the things in it are
2986 characters, so we can make a string. */
2987 {
2988 Lisp_Object result;
2989
2990 result = Fmake_string (make_number (nargs), make_number (0));
2991 for (i = 0; i < nargs; i++)
2992 {
2993 SSET (result, i, XINT (args[i]));
2994 /* Move the meta bit to the right place for a string char. */
2995 if (XINT (args[i]) & CHAR_META)
2996 SSET (result, i, SREF (result, i) | 0x80);
2997 }
2998
2999 return result;
3000 }
3001 }
3002
3003
3004 \f
3005 /************************************************************************
3006 C Stack Marking
3007 ************************************************************************/
3008
3009 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3010
3011 /* Conservative C stack marking requires a method to identify possibly
3012 live Lisp objects given a pointer value. We do this by keeping
3013 track of blocks of Lisp data that are allocated in a red-black tree
3014 (see also the comment of mem_node which is the type of nodes in
3015 that tree). Function lisp_malloc adds information for an allocated
3016 block to the red-black tree with calls to mem_insert, and function
3017 lisp_free removes it with mem_delete. Functions live_string_p etc
3018 call mem_find to lookup information about a given pointer in the
3019 tree, and use that to determine if the pointer points to a Lisp
3020 object or not. */
3021
3022 /* Initialize this part of alloc.c. */
3023
3024 static void
3025 mem_init ()
3026 {
3027 mem_z.left = mem_z.right = MEM_NIL;
3028 mem_z.parent = NULL;
3029 mem_z.color = MEM_BLACK;
3030 mem_z.start = mem_z.end = NULL;
3031 mem_root = MEM_NIL;
3032 }
3033
3034
3035 /* Value is a pointer to the mem_node containing START. Value is
3036 MEM_NIL if there is no node in the tree containing START. */
3037
3038 static INLINE struct mem_node *
3039 mem_find (start)
3040 void *start;
3041 {
3042 struct mem_node *p;
3043
3044 if (start < min_heap_address || start > max_heap_address)
3045 return MEM_NIL;
3046
3047 /* Make the search always successful to speed up the loop below. */
3048 mem_z.start = start;
3049 mem_z.end = (char *) start + 1;
3050
3051 p = mem_root;
3052 while (start < p->start || start >= p->end)
3053 p = start < p->start ? p->left : p->right;
3054 return p;
3055 }
3056
3057
3058 /* Insert a new node into the tree for a block of memory with start
3059 address START, end address END, and type TYPE. Value is a
3060 pointer to the node that was inserted. */
3061
3062 static struct mem_node *
3063 mem_insert (start, end, type)
3064 void *start, *end;
3065 enum mem_type type;
3066 {
3067 struct mem_node *c, *parent, *x;
3068
3069 if (start < min_heap_address)
3070 min_heap_address = start;
3071 if (end > max_heap_address)
3072 max_heap_address = end;
3073
3074 /* See where in the tree a node for START belongs. In this
3075 particular application, it shouldn't happen that a node is already
3076 present. For debugging purposes, let's check that. */
3077 c = mem_root;
3078 parent = NULL;
3079
3080 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3081
3082 while (c != MEM_NIL)
3083 {
3084 if (start >= c->start && start < c->end)
3085 abort ();
3086 parent = c;
3087 c = start < c->start ? c->left : c->right;
3088 }
3089
3090 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3091
3092 while (c != MEM_NIL)
3093 {
3094 parent = c;
3095 c = start < c->start ? c->left : c->right;
3096 }
3097
3098 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3099
3100 /* Create a new node. */
3101 #ifdef GC_MALLOC_CHECK
3102 x = (struct mem_node *) _malloc_internal (sizeof *x);
3103 if (x == NULL)
3104 abort ();
3105 #else
3106 x = (struct mem_node *) xmalloc (sizeof *x);
3107 #endif
3108 x->start = start;
3109 x->end = end;
3110 x->type = type;
3111 x->parent = parent;
3112 x->left = x->right = MEM_NIL;
3113 x->color = MEM_RED;
3114
3115 /* Insert it as child of PARENT or install it as root. */
3116 if (parent)
3117 {
3118 if (start < parent->start)
3119 parent->left = x;
3120 else
3121 parent->right = x;
3122 }
3123 else
3124 mem_root = x;
3125
3126 /* Re-establish red-black tree properties. */
3127 mem_insert_fixup (x);
3128
3129 return x;
3130 }
3131
3132
3133 /* Re-establish the red-black properties of the tree, and thereby
3134 balance the tree, after node X has been inserted; X is always red. */
3135
3136 static void
3137 mem_insert_fixup (x)
3138 struct mem_node *x;
3139 {
3140 while (x != mem_root && x->parent->color == MEM_RED)
3141 {
3142 /* X is red and its parent is red. This is a violation of
3143 red-black tree property #3. */
3144
3145 if (x->parent == x->parent->parent->left)
3146 {
3147 /* We're on the left side of our grandparent, and Y is our
3148 "uncle". */
3149 struct mem_node *y = x->parent->parent->right;
3150
3151 if (y->color == MEM_RED)
3152 {
3153 /* Uncle and parent are red but should be black because
3154 X is red. Change the colors accordingly and proceed
3155 with the grandparent. */
3156 x->parent->color = MEM_BLACK;
3157 y->color = MEM_BLACK;
3158 x->parent->parent->color = MEM_RED;
3159 x = x->parent->parent;
3160 }
3161 else
3162 {
3163 /* Parent and uncle have different colors; parent is
3164 red, uncle is black. */
3165 if (x == x->parent->right)
3166 {
3167 x = x->parent;
3168 mem_rotate_left (x);
3169 }
3170
3171 x->parent->color = MEM_BLACK;
3172 x->parent->parent->color = MEM_RED;
3173 mem_rotate_right (x->parent->parent);
3174 }
3175 }
3176 else
3177 {
3178 /* This is the symmetrical case of above. */
3179 struct mem_node *y = x->parent->parent->left;
3180
3181 if (y->color == MEM_RED)
3182 {
3183 x->parent->color = MEM_BLACK;
3184 y->color = MEM_BLACK;
3185 x->parent->parent->color = MEM_RED;
3186 x = x->parent->parent;
3187 }
3188 else
3189 {
3190 if (x == x->parent->left)
3191 {
3192 x = x->parent;
3193 mem_rotate_right (x);
3194 }
3195
3196 x->parent->color = MEM_BLACK;
3197 x->parent->parent->color = MEM_RED;
3198 mem_rotate_left (x->parent->parent);
3199 }
3200 }
3201 }
3202
3203 /* The root may have been changed to red due to the algorithm. Set
3204 it to black so that property #5 is satisfied. */
3205 mem_root->color = MEM_BLACK;
3206 }
3207
3208
3209 /* (x) (y)
3210 / \ / \
3211 a (y) ===> (x) c
3212 / \ / \
3213 b c a b */
3214
3215 static void
3216 mem_rotate_left (x)
3217 struct mem_node *x;
3218 {
3219 struct mem_node *y;
3220
3221 /* Turn y's left sub-tree into x's right sub-tree. */
3222 y = x->right;
3223 x->right = y->left;
3224 if (y->left != MEM_NIL)
3225 y->left->parent = x;
3226
3227 /* Y's parent was x's parent. */
3228 if (y != MEM_NIL)
3229 y->parent = x->parent;
3230
3231 /* Get the parent to point to y instead of x. */
3232 if (x->parent)
3233 {
3234 if (x == x->parent->left)
3235 x->parent->left = y;
3236 else
3237 x->parent->right = y;
3238 }
3239 else
3240 mem_root = y;
3241
3242 /* Put x on y's left. */
3243 y->left = x;
3244 if (x != MEM_NIL)
3245 x->parent = y;
3246 }
3247
3248
3249 /* (x) (Y)
3250 / \ / \
3251 (y) c ===> a (x)
3252 / \ / \
3253 a b b c */
3254
3255 static void
3256 mem_rotate_right (x)
3257 struct mem_node *x;
3258 {
3259 struct mem_node *y = x->left;
3260
3261 x->left = y->right;
3262 if (y->right != MEM_NIL)
3263 y->right->parent = x;
3264
3265 if (y != MEM_NIL)
3266 y->parent = x->parent;
3267 if (x->parent)
3268 {
3269 if (x == x->parent->right)
3270 x->parent->right = y;
3271 else
3272 x->parent->left = y;
3273 }
3274 else
3275 mem_root = y;
3276
3277 y->right = x;
3278 if (x != MEM_NIL)
3279 x->parent = y;
3280 }
3281
3282
3283 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3284
3285 static void
3286 mem_delete (z)
3287 struct mem_node *z;
3288 {
3289 struct mem_node *x, *y;
3290
3291 if (!z || z == MEM_NIL)
3292 return;
3293
3294 if (z->left == MEM_NIL || z->right == MEM_NIL)
3295 y = z;
3296 else
3297 {
3298 y = z->right;
3299 while (y->left != MEM_NIL)
3300 y = y->left;
3301 }
3302
3303 if (y->left != MEM_NIL)
3304 x = y->left;
3305 else
3306 x = y->right;
3307
3308 x->parent = y->parent;
3309 if (y->parent)
3310 {
3311 if (y == y->parent->left)
3312 y->parent->left = x;
3313 else
3314 y->parent->right = x;
3315 }
3316 else
3317 mem_root = x;
3318
3319 if (y != z)
3320 {
3321 z->start = y->start;
3322 z->end = y->end;
3323 z->type = y->type;
3324 }
3325
3326 if (y->color == MEM_BLACK)
3327 mem_delete_fixup (x);
3328
3329 #ifdef GC_MALLOC_CHECK
3330 _free_internal (y);
3331 #else
3332 xfree (y);
3333 #endif
3334 }
3335
3336
3337 /* Re-establish the red-black properties of the tree, after a
3338 deletion. */
3339
3340 static void
3341 mem_delete_fixup (x)
3342 struct mem_node *x;
3343 {
3344 while (x != mem_root && x->color == MEM_BLACK)
3345 {
3346 if (x == x->parent->left)
3347 {
3348 struct mem_node *w = x->parent->right;
3349
3350 if (w->color == MEM_RED)
3351 {
3352 w->color = MEM_BLACK;
3353 x->parent->color = MEM_RED;
3354 mem_rotate_left (x->parent);
3355 w = x->parent->right;
3356 }
3357
3358 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3359 {
3360 w->color = MEM_RED;
3361 x = x->parent;
3362 }
3363 else
3364 {
3365 if (w->right->color == MEM_BLACK)
3366 {
3367 w->left->color = MEM_BLACK;
3368 w->color = MEM_RED;
3369 mem_rotate_right (w);
3370 w = x->parent->right;
3371 }
3372 w->color = x->parent->color;
3373 x->parent->color = MEM_BLACK;
3374 w->right->color = MEM_BLACK;
3375 mem_rotate_left (x->parent);
3376 x = mem_root;
3377 }
3378 }
3379 else
3380 {
3381 struct mem_node *w = x->parent->left;
3382
3383 if (w->color == MEM_RED)
3384 {
3385 w->color = MEM_BLACK;
3386 x->parent->color = MEM_RED;
3387 mem_rotate_right (x->parent);
3388 w = x->parent->left;
3389 }
3390
3391 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3392 {
3393 w->color = MEM_RED;
3394 x = x->parent;
3395 }
3396 else
3397 {
3398 if (w->left->color == MEM_BLACK)
3399 {
3400 w->right->color = MEM_BLACK;
3401 w->color = MEM_RED;
3402 mem_rotate_left (w);
3403 w = x->parent->left;
3404 }
3405
3406 w->color = x->parent->color;
3407 x->parent->color = MEM_BLACK;
3408 w->left->color = MEM_BLACK;
3409 mem_rotate_right (x->parent);
3410 x = mem_root;
3411 }
3412 }
3413 }
3414
3415 x->color = MEM_BLACK;
3416 }
3417
3418
3419 /* Value is non-zero if P is a pointer to a live Lisp string on
3420 the heap. M is a pointer to the mem_block for P. */
3421
3422 static INLINE int
3423 live_string_p (m, p)
3424 struct mem_node *m;
3425 void *p;
3426 {
3427 if (m->type == MEM_TYPE_STRING)
3428 {
3429 struct string_block *b = (struct string_block *) m->start;
3430 int offset = (char *) p - (char *) &b->strings[0];
3431
3432 /* P must point to the start of a Lisp_String structure, and it
3433 must not be on the free-list. */
3434 return (offset >= 0
3435 && offset % sizeof b->strings[0] == 0
3436 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3437 && ((struct Lisp_String *) p)->data != NULL);
3438 }
3439 else
3440 return 0;
3441 }
3442
3443
3444 /* Value is non-zero if P is a pointer to a live Lisp cons on
3445 the heap. M is a pointer to the mem_block for P. */
3446
3447 static INLINE int
3448 live_cons_p (m, p)
3449 struct mem_node *m;
3450 void *p;
3451 {
3452 if (m->type == MEM_TYPE_CONS)
3453 {
3454 struct cons_block *b = (struct cons_block *) m->start;
3455 int offset = (char *) p - (char *) &b->conses[0];
3456
3457 /* P must point to the start of a Lisp_Cons, not be
3458 one of the unused cells in the current cons block,
3459 and not be on the free-list. */
3460 return (offset >= 0
3461 && offset % sizeof b->conses[0] == 0
3462 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3463 && (b != cons_block
3464 || offset / sizeof b->conses[0] < cons_block_index)
3465 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3466 }
3467 else
3468 return 0;
3469 }
3470
3471
3472 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3473 the heap. M is a pointer to the mem_block for P. */
3474
3475 static INLINE int
3476 live_symbol_p (m, p)
3477 struct mem_node *m;
3478 void *p;
3479 {
3480 if (m->type == MEM_TYPE_SYMBOL)
3481 {
3482 struct symbol_block *b = (struct symbol_block *) m->start;
3483 int offset = (char *) p - (char *) &b->symbols[0];
3484
3485 /* P must point to the start of a Lisp_Symbol, not be
3486 one of the unused cells in the current symbol block,
3487 and not be on the free-list. */
3488 return (offset >= 0
3489 && offset % sizeof b->symbols[0] == 0
3490 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3491 && (b != symbol_block
3492 || offset / sizeof b->symbols[0] < symbol_block_index)
3493 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3494 }
3495 else
3496 return 0;
3497 }
3498
3499
3500 /* Value is non-zero if P is a pointer to a live Lisp float on
3501 the heap. M is a pointer to the mem_block for P. */
3502
3503 static INLINE int
3504 live_float_p (m, p)
3505 struct mem_node *m;
3506 void *p;
3507 {
3508 if (m->type == MEM_TYPE_FLOAT)
3509 {
3510 struct float_block *b = (struct float_block *) m->start;
3511 int offset = (char *) p - (char *) &b->floats[0];
3512
3513 /* P must point to the start of a Lisp_Float and not be
3514 one of the unused cells in the current float block. */
3515 return (offset >= 0
3516 && offset % sizeof b->floats[0] == 0
3517 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3518 && (b != float_block
3519 || offset / sizeof b->floats[0] < float_block_index));
3520 }
3521 else
3522 return 0;
3523 }
3524
3525
3526 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3527 the heap. M is a pointer to the mem_block for P. */
3528
3529 static INLINE int
3530 live_misc_p (m, p)
3531 struct mem_node *m;
3532 void *p;
3533 {
3534 if (m->type == MEM_TYPE_MISC)
3535 {
3536 struct marker_block *b = (struct marker_block *) m->start;
3537 int offset = (char *) p - (char *) &b->markers[0];
3538
3539 /* P must point to the start of a Lisp_Misc, not be
3540 one of the unused cells in the current misc block,
3541 and not be on the free-list. */
3542 return (offset >= 0
3543 && offset % sizeof b->markers[0] == 0
3544 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3545 && (b != marker_block
3546 || offset / sizeof b->markers[0] < marker_block_index)
3547 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3548 }
3549 else
3550 return 0;
3551 }
3552
3553
3554 /* Value is non-zero if P is a pointer to a live vector-like object.
3555 M is a pointer to the mem_block for P. */
3556
3557 static INLINE int
3558 live_vector_p (m, p)
3559 struct mem_node *m;
3560 void *p;
3561 {
3562 return (p == m->start
3563 && m->type >= MEM_TYPE_VECTOR
3564 && m->type <= MEM_TYPE_WINDOW);
3565 }
3566
3567
3568 /* Value is non-zero if P is a pointer to a live buffer. M is a
3569 pointer to the mem_block for P. */
3570
3571 static INLINE int
3572 live_buffer_p (m, p)
3573 struct mem_node *m;
3574 void *p;
3575 {
3576 /* P must point to the start of the block, and the buffer
3577 must not have been killed. */
3578 return (m->type == MEM_TYPE_BUFFER
3579 && p == m->start
3580 && !NILP (((struct buffer *) p)->name));
3581 }
3582
3583 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3584
3585 #if GC_MARK_STACK
3586
3587 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3588
3589 /* Array of objects that are kept alive because the C stack contains
3590 a pattern that looks like a reference to them . */
3591
3592 #define MAX_ZOMBIES 10
3593 static Lisp_Object zombies[MAX_ZOMBIES];
3594
3595 /* Number of zombie objects. */
3596
3597 static int nzombies;
3598
3599 /* Number of garbage collections. */
3600
3601 static int ngcs;
3602
3603 /* Average percentage of zombies per collection. */
3604
3605 static double avg_zombies;
3606
3607 /* Max. number of live and zombie objects. */
3608
3609 static int max_live, max_zombies;
3610
3611 /* Average number of live objects per GC. */
3612
3613 static double avg_live;
3614
3615 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3616 doc: /* Show information about live and zombie objects. */)
3617 ()
3618 {
3619 Lisp_Object args[8], zombie_list = Qnil;
3620 int i;
3621 for (i = 0; i < nzombies; i++)
3622 zombie_list = Fcons (zombies[i], zombie_list);
3623 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3624 args[1] = make_number (ngcs);
3625 args[2] = make_float (avg_live);
3626 args[3] = make_float (avg_zombies);
3627 args[4] = make_float (avg_zombies / avg_live / 100);
3628 args[5] = make_number (max_live);
3629 args[6] = make_number (max_zombies);
3630 args[7] = zombie_list;
3631 return Fmessage (8, args);
3632 }
3633
3634 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3635
3636
3637 /* Mark OBJ if we can prove it's a Lisp_Object. */
3638
3639 static INLINE void
3640 mark_maybe_object (obj)
3641 Lisp_Object obj;
3642 {
3643 void *po = (void *) XPNTR (obj);
3644 struct mem_node *m = mem_find (po);
3645
3646 if (m != MEM_NIL)
3647 {
3648 int mark_p = 0;
3649
3650 switch (XGCTYPE (obj))
3651 {
3652 case Lisp_String:
3653 mark_p = (live_string_p (m, po)
3654 && !STRING_MARKED_P ((struct Lisp_String *) po));
3655 break;
3656
3657 case Lisp_Cons:
3658 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3659 break;
3660
3661 case Lisp_Symbol:
3662 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3663 break;
3664
3665 case Lisp_Float:
3666 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3667 break;
3668
3669 case Lisp_Vectorlike:
3670 /* Note: can't check GC_BUFFERP before we know it's a
3671 buffer because checking that dereferences the pointer
3672 PO which might point anywhere. */
3673 if (live_vector_p (m, po))
3674 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3675 else if (live_buffer_p (m, po))
3676 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3677 break;
3678
3679 case Lisp_Misc:
3680 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
3681 break;
3682
3683 case Lisp_Int:
3684 case Lisp_Type_Limit:
3685 break;
3686 }
3687
3688 if (mark_p)
3689 {
3690 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3691 if (nzombies < MAX_ZOMBIES)
3692 zombies[nzombies] = obj;
3693 ++nzombies;
3694 #endif
3695 mark_object (obj);
3696 }
3697 }
3698 }
3699
3700
3701 /* If P points to Lisp data, mark that as live if it isn't already
3702 marked. */
3703
3704 static INLINE void
3705 mark_maybe_pointer (p)
3706 void *p;
3707 {
3708 struct mem_node *m;
3709
3710 /* Quickly rule out some values which can't point to Lisp data. We
3711 assume that Lisp data is aligned on even addresses. */
3712 if ((EMACS_INT) p & 1)
3713 return;
3714
3715 m = mem_find (p);
3716 if (m != MEM_NIL)
3717 {
3718 Lisp_Object obj = Qnil;
3719
3720 switch (m->type)
3721 {
3722 case MEM_TYPE_NON_LISP:
3723 /* Nothing to do; not a pointer to Lisp memory. */
3724 break;
3725
3726 case MEM_TYPE_BUFFER:
3727 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
3728 XSETVECTOR (obj, p);
3729 break;
3730
3731 case MEM_TYPE_CONS:
3732 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
3733 XSETCONS (obj, p);
3734 break;
3735
3736 case MEM_TYPE_STRING:
3737 if (live_string_p (m, p)
3738 && !STRING_MARKED_P ((struct Lisp_String *) p))
3739 XSETSTRING (obj, p);
3740 break;
3741
3742 case MEM_TYPE_MISC:
3743 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
3744 XSETMISC (obj, p);
3745 break;
3746
3747 case MEM_TYPE_SYMBOL:
3748 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
3749 XSETSYMBOL (obj, p);
3750 break;
3751
3752 case MEM_TYPE_FLOAT:
3753 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
3754 XSETFLOAT (obj, p);
3755 break;
3756
3757 case MEM_TYPE_VECTOR:
3758 case MEM_TYPE_PROCESS:
3759 case MEM_TYPE_HASH_TABLE:
3760 case MEM_TYPE_FRAME:
3761 case MEM_TYPE_WINDOW:
3762 if (live_vector_p (m, p))
3763 {
3764 Lisp_Object tem;
3765 XSETVECTOR (tem, p);
3766 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
3767 obj = tem;
3768 }
3769 break;
3770
3771 default:
3772 abort ();
3773 }
3774
3775 if (!GC_NILP (obj))
3776 mark_object (obj);
3777 }
3778 }
3779
3780
3781 /* Mark Lisp objects referenced from the address range START..END. */
3782
3783 static void
3784 mark_memory (start, end)
3785 void *start, *end;
3786 {
3787 Lisp_Object *p;
3788 void **pp;
3789
3790 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3791 nzombies = 0;
3792 #endif
3793
3794 /* Make START the pointer to the start of the memory region,
3795 if it isn't already. */
3796 if (end < start)
3797 {
3798 void *tem = start;
3799 start = end;
3800 end = tem;
3801 }
3802
3803 /* Mark Lisp_Objects. */
3804 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
3805 mark_maybe_object (*p);
3806
3807 /* Mark Lisp data pointed to. This is necessary because, in some
3808 situations, the C compiler optimizes Lisp objects away, so that
3809 only a pointer to them remains. Example:
3810
3811 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
3812 ()
3813 {
3814 Lisp_Object obj = build_string ("test");
3815 struct Lisp_String *s = XSTRING (obj);
3816 Fgarbage_collect ();
3817 fprintf (stderr, "test `%s'\n", s->data);
3818 return Qnil;
3819 }
3820
3821 Here, `obj' isn't really used, and the compiler optimizes it
3822 away. The only reference to the life string is through the
3823 pointer `s'. */
3824
3825 for (pp = (void **) start; (void *) pp < end; ++pp)
3826 mark_maybe_pointer (*pp);
3827 }
3828
3829 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
3830 the GCC system configuration. In gcc 3.2, the only systems for
3831 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
3832 by others?) and ns32k-pc532-min. */
3833
3834 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3835
3836 static int setjmp_tested_p, longjmps_done;
3837
3838 #define SETJMP_WILL_LIKELY_WORK "\
3839 \n\
3840 Emacs garbage collector has been changed to use conservative stack\n\
3841 marking. Emacs has determined that the method it uses to do the\n\
3842 marking will likely work on your system, but this isn't sure.\n\
3843 \n\
3844 If you are a system-programmer, or can get the help of a local wizard\n\
3845 who is, please take a look at the function mark_stack in alloc.c, and\n\
3846 verify that the methods used are appropriate for your system.\n\
3847 \n\
3848 Please mail the result to <emacs-devel@gnu.org>.\n\
3849 "
3850
3851 #define SETJMP_WILL_NOT_WORK "\
3852 \n\
3853 Emacs garbage collector has been changed to use conservative stack\n\
3854 marking. Emacs has determined that the default method it uses to do the\n\
3855 marking will not work on your system. We will need a system-dependent\n\
3856 solution for your system.\n\
3857 \n\
3858 Please take a look at the function mark_stack in alloc.c, and\n\
3859 try to find a way to make it work on your system.\n\
3860 \n\
3861 Note that you may get false negatives, depending on the compiler.\n\
3862 In particular, you need to use -O with GCC for this test.\n\
3863 \n\
3864 Please mail the result to <emacs-devel@gnu.org>.\n\
3865 "
3866
3867
3868 /* Perform a quick check if it looks like setjmp saves registers in a
3869 jmp_buf. Print a message to stderr saying so. When this test
3870 succeeds, this is _not_ a proof that setjmp is sufficient for
3871 conservative stack marking. Only the sources or a disassembly
3872 can prove that. */
3873
3874 static void
3875 test_setjmp ()
3876 {
3877 char buf[10];
3878 register int x;
3879 jmp_buf jbuf;
3880 int result = 0;
3881
3882 /* Arrange for X to be put in a register. */
3883 sprintf (buf, "1");
3884 x = strlen (buf);
3885 x = 2 * x - 1;
3886
3887 setjmp (jbuf);
3888 if (longjmps_done == 1)
3889 {
3890 /* Came here after the longjmp at the end of the function.
3891
3892 If x == 1, the longjmp has restored the register to its
3893 value before the setjmp, and we can hope that setjmp
3894 saves all such registers in the jmp_buf, although that
3895 isn't sure.
3896
3897 For other values of X, either something really strange is
3898 taking place, or the setjmp just didn't save the register. */
3899
3900 if (x == 1)
3901 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3902 else
3903 {
3904 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3905 exit (1);
3906 }
3907 }
3908
3909 ++longjmps_done;
3910 x = 2;
3911 if (longjmps_done == 1)
3912 longjmp (jbuf, 1);
3913 }
3914
3915 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3916
3917
3918 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3919
3920 /* Abort if anything GCPRO'd doesn't survive the GC. */
3921
3922 static void
3923 check_gcpros ()
3924 {
3925 struct gcpro *p;
3926 int i;
3927
3928 for (p = gcprolist; p; p = p->next)
3929 for (i = 0; i < p->nvars; ++i)
3930 if (!survives_gc_p (p->var[i]))
3931 /* FIXME: It's not necessarily a bug. It might just be that the
3932 GCPRO is unnecessary or should release the object sooner. */
3933 abort ();
3934 }
3935
3936 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3937
3938 static void
3939 dump_zombies ()
3940 {
3941 int i;
3942
3943 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3944 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3945 {
3946 fprintf (stderr, " %d = ", i);
3947 debug_print (zombies[i]);
3948 }
3949 }
3950
3951 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3952
3953
3954 /* Mark live Lisp objects on the C stack.
3955
3956 There are several system-dependent problems to consider when
3957 porting this to new architectures:
3958
3959 Processor Registers
3960
3961 We have to mark Lisp objects in CPU registers that can hold local
3962 variables or are used to pass parameters.
3963
3964 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
3965 something that either saves relevant registers on the stack, or
3966 calls mark_maybe_object passing it each register's contents.
3967
3968 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
3969 implementation assumes that calling setjmp saves registers we need
3970 to see in a jmp_buf which itself lies on the stack. This doesn't
3971 have to be true! It must be verified for each system, possibly
3972 by taking a look at the source code of setjmp.
3973
3974 Stack Layout
3975
3976 Architectures differ in the way their processor stack is organized.
3977 For example, the stack might look like this
3978
3979 +----------------+
3980 | Lisp_Object | size = 4
3981 +----------------+
3982 | something else | size = 2
3983 +----------------+
3984 | Lisp_Object | size = 4
3985 +----------------+
3986 | ... |
3987
3988 In such a case, not every Lisp_Object will be aligned equally. To
3989 find all Lisp_Object on the stack it won't be sufficient to walk
3990 the stack in steps of 4 bytes. Instead, two passes will be
3991 necessary, one starting at the start of the stack, and a second
3992 pass starting at the start of the stack + 2. Likewise, if the
3993 minimal alignment of Lisp_Objects on the stack is 1, four passes
3994 would be necessary, each one starting with one byte more offset
3995 from the stack start.
3996
3997 The current code assumes by default that Lisp_Objects are aligned
3998 equally on the stack. */
3999
4000 static void
4001 mark_stack ()
4002 {
4003 int i;
4004 jmp_buf j;
4005 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4006 void *end;
4007
4008 /* This trick flushes the register windows so that all the state of
4009 the process is contained in the stack. */
4010 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4011 needed on ia64 too. See mach_dep.c, where it also says inline
4012 assembler doesn't work with relevant proprietary compilers. */
4013 #ifdef sparc
4014 asm ("ta 3");
4015 #endif
4016
4017 /* Save registers that we need to see on the stack. We need to see
4018 registers used to hold register variables and registers used to
4019 pass parameters. */
4020 #ifdef GC_SAVE_REGISTERS_ON_STACK
4021 GC_SAVE_REGISTERS_ON_STACK (end);
4022 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4023
4024 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4025 setjmp will definitely work, test it
4026 and print a message with the result
4027 of the test. */
4028 if (!setjmp_tested_p)
4029 {
4030 setjmp_tested_p = 1;
4031 test_setjmp ();
4032 }
4033 #endif /* GC_SETJMP_WORKS */
4034
4035 setjmp (j);
4036 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4037 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4038
4039 /* This assumes that the stack is a contiguous region in memory. If
4040 that's not the case, something has to be done here to iterate
4041 over the stack segments. */
4042 #ifndef GC_LISP_OBJECT_ALIGNMENT
4043 #ifdef __GNUC__
4044 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4045 #else
4046 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4047 #endif
4048 #endif
4049 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4050 mark_memory ((char *) stack_base + i, end);
4051
4052 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4053 check_gcpros ();
4054 #endif
4055 }
4056
4057
4058 #endif /* GC_MARK_STACK != 0 */
4059
4060
4061 \f
4062 /***********************************************************************
4063 Pure Storage Management
4064 ***********************************************************************/
4065
4066 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4067 pointer to it. TYPE is the Lisp type for which the memory is
4068 allocated. TYPE < 0 means it's not used for a Lisp object.
4069
4070 If store_pure_type_info is set and TYPE is >= 0, the type of
4071 the allocated object is recorded in pure_types. */
4072
4073 static POINTER_TYPE *
4074 pure_alloc (size, type)
4075 size_t size;
4076 int type;
4077 {
4078 POINTER_TYPE *result;
4079 size_t alignment = sizeof (EMACS_INT);
4080
4081 /* Give Lisp_Floats an extra alignment. */
4082 if (type == Lisp_Float)
4083 {
4084 #if defined __GNUC__ && __GNUC__ >= 2
4085 alignment = __alignof (struct Lisp_Float);
4086 #else
4087 alignment = sizeof (struct Lisp_Float);
4088 #endif
4089 }
4090
4091 again:
4092 result = ALIGN (purebeg + pure_bytes_used, alignment);
4093 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4094
4095 if (pure_bytes_used <= pure_size)
4096 return result;
4097
4098 /* Don't allocate a large amount here,
4099 because it might get mmap'd and then its address
4100 might not be usable. */
4101 purebeg = (char *) xmalloc (10000);
4102 pure_size = 10000;
4103 pure_bytes_used_before_overflow += pure_bytes_used - size;
4104 pure_bytes_used = 0;
4105 goto again;
4106 }
4107
4108
4109 /* Print a warning if PURESIZE is too small. */
4110
4111 void
4112 check_pure_size ()
4113 {
4114 if (pure_bytes_used_before_overflow)
4115 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4116 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4117 }
4118
4119
4120 /* Return a string allocated in pure space. DATA is a buffer holding
4121 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4122 non-zero means make the result string multibyte.
4123
4124 Must get an error if pure storage is full, since if it cannot hold
4125 a large string it may be able to hold conses that point to that
4126 string; then the string is not protected from gc. */
4127
4128 Lisp_Object
4129 make_pure_string (data, nchars, nbytes, multibyte)
4130 char *data;
4131 int nchars, nbytes;
4132 int multibyte;
4133 {
4134 Lisp_Object string;
4135 struct Lisp_String *s;
4136
4137 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4138 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4139 s->size = nchars;
4140 s->size_byte = multibyte ? nbytes : -1;
4141 bcopy (data, s->data, nbytes);
4142 s->data[nbytes] = '\0';
4143 s->intervals = NULL_INTERVAL;
4144 XSETSTRING (string, s);
4145 return string;
4146 }
4147
4148
4149 /* Return a cons allocated from pure space. Give it pure copies
4150 of CAR as car and CDR as cdr. */
4151
4152 Lisp_Object
4153 pure_cons (car, cdr)
4154 Lisp_Object car, cdr;
4155 {
4156 register Lisp_Object new;
4157 struct Lisp_Cons *p;
4158
4159 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4160 XSETCONS (new, p);
4161 XSETCAR (new, Fpurecopy (car));
4162 XSETCDR (new, Fpurecopy (cdr));
4163 return new;
4164 }
4165
4166
4167 /* Value is a float object with value NUM allocated from pure space. */
4168
4169 Lisp_Object
4170 make_pure_float (num)
4171 double num;
4172 {
4173 register Lisp_Object new;
4174 struct Lisp_Float *p;
4175
4176 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4177 XSETFLOAT (new, p);
4178 XFLOAT_DATA (new) = num;
4179 return new;
4180 }
4181
4182
4183 /* Return a vector with room for LEN Lisp_Objects allocated from
4184 pure space. */
4185
4186 Lisp_Object
4187 make_pure_vector (len)
4188 EMACS_INT len;
4189 {
4190 Lisp_Object new;
4191 struct Lisp_Vector *p;
4192 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4193
4194 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4195 XSETVECTOR (new, p);
4196 XVECTOR (new)->size = len;
4197 return new;
4198 }
4199
4200
4201 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4202 doc: /* Make a copy of OBJECT in pure storage.
4203 Recursively copies contents of vectors and cons cells.
4204 Does not copy symbols. Copies strings without text properties. */)
4205 (obj)
4206 register Lisp_Object obj;
4207 {
4208 if (NILP (Vpurify_flag))
4209 return obj;
4210
4211 if (PURE_POINTER_P (XPNTR (obj)))
4212 return obj;
4213
4214 if (CONSP (obj))
4215 return pure_cons (XCAR (obj), XCDR (obj));
4216 else if (FLOATP (obj))
4217 return make_pure_float (XFLOAT_DATA (obj));
4218 else if (STRINGP (obj))
4219 return make_pure_string (SDATA (obj), SCHARS (obj),
4220 SBYTES (obj),
4221 STRING_MULTIBYTE (obj));
4222 else if (COMPILEDP (obj) || VECTORP (obj))
4223 {
4224 register struct Lisp_Vector *vec;
4225 register int i, size;
4226
4227 size = XVECTOR (obj)->size;
4228 if (size & PSEUDOVECTOR_FLAG)
4229 size &= PSEUDOVECTOR_SIZE_MASK;
4230 vec = XVECTOR (make_pure_vector ((EMACS_INT) size));
4231 for (i = 0; i < size; i++)
4232 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4233 if (COMPILEDP (obj))
4234 XSETCOMPILED (obj, vec);
4235 else
4236 XSETVECTOR (obj, vec);
4237 return obj;
4238 }
4239 else if (MARKERP (obj))
4240 error ("Attempt to copy a marker to pure storage");
4241
4242 return obj;
4243 }
4244
4245
4246 \f
4247 /***********************************************************************
4248 Protection from GC
4249 ***********************************************************************/
4250
4251 /* Put an entry in staticvec, pointing at the variable with address
4252 VARADDRESS. */
4253
4254 void
4255 staticpro (varaddress)
4256 Lisp_Object *varaddress;
4257 {
4258 staticvec[staticidx++] = varaddress;
4259 if (staticidx >= NSTATICS)
4260 abort ();
4261 }
4262
4263 struct catchtag
4264 {
4265 Lisp_Object tag;
4266 Lisp_Object val;
4267 struct catchtag *next;
4268 };
4269
4270 struct backtrace
4271 {
4272 struct backtrace *next;
4273 Lisp_Object *function;
4274 Lisp_Object *args; /* Points to vector of args. */
4275 int nargs; /* Length of vector. */
4276 /* If nargs is UNEVALLED, args points to slot holding list of
4277 unevalled args. */
4278 char evalargs;
4279 };
4280
4281
4282 \f
4283 /***********************************************************************
4284 Protection from GC
4285 ***********************************************************************/
4286
4287 /* Temporarily prevent garbage collection. */
4288
4289 int
4290 inhibit_garbage_collection ()
4291 {
4292 int count = SPECPDL_INDEX ();
4293 int nbits = min (VALBITS, BITS_PER_INT);
4294
4295 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4296 return count;
4297 }
4298
4299
4300 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4301 doc: /* Reclaim storage for Lisp objects no longer needed.
4302 Garbage collection happens automatically if you cons more than
4303 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4304 `garbage-collect' normally returns a list with info on amount of space in use:
4305 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4306 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4307 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4308 (USED-STRINGS . FREE-STRINGS))
4309 However, if there was overflow in pure space, `garbage-collect'
4310 returns nil, because real GC can't be done. */)
4311 ()
4312 {
4313 register struct specbinding *bind;
4314 struct catchtag *catch;
4315 struct handler *handler;
4316 register struct backtrace *backlist;
4317 char stack_top_variable;
4318 register int i;
4319 int message_p;
4320 Lisp_Object total[8];
4321 int count = SPECPDL_INDEX ();
4322 EMACS_TIME t1, t2, t3;
4323
4324 if (abort_on_gc)
4325 abort ();
4326
4327 EMACS_GET_TIME (t1);
4328
4329 /* Can't GC if pure storage overflowed because we can't determine
4330 if something is a pure object or not. */
4331 if (pure_bytes_used_before_overflow)
4332 return Qnil;
4333
4334 /* In case user calls debug_print during GC,
4335 don't let that cause a recursive GC. */
4336 consing_since_gc = 0;
4337
4338 /* Save what's currently displayed in the echo area. */
4339 message_p = push_message ();
4340 record_unwind_protect (pop_message_unwind, Qnil);
4341
4342 /* Save a copy of the contents of the stack, for debugging. */
4343 #if MAX_SAVE_STACK > 0
4344 if (NILP (Vpurify_flag))
4345 {
4346 i = &stack_top_variable - stack_bottom;
4347 if (i < 0) i = -i;
4348 if (i < MAX_SAVE_STACK)
4349 {
4350 if (stack_copy == 0)
4351 stack_copy = (char *) xmalloc (stack_copy_size = i);
4352 else if (stack_copy_size < i)
4353 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4354 if (stack_copy)
4355 {
4356 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4357 bcopy (stack_bottom, stack_copy, i);
4358 else
4359 bcopy (&stack_top_variable, stack_copy, i);
4360 }
4361 }
4362 }
4363 #endif /* MAX_SAVE_STACK > 0 */
4364
4365 if (garbage_collection_messages)
4366 message1_nolog ("Garbage collecting...");
4367
4368 BLOCK_INPUT;
4369
4370 shrink_regexp_cache ();
4371
4372 /* Don't keep undo information around forever. */
4373 {
4374 register struct buffer *nextb = all_buffers;
4375
4376 while (nextb)
4377 {
4378 /* If a buffer's undo list is Qt, that means that undo is
4379 turned off in that buffer. Calling truncate_undo_list on
4380 Qt tends to return NULL, which effectively turns undo back on.
4381 So don't call truncate_undo_list if undo_list is Qt. */
4382 if (! EQ (nextb->undo_list, Qt))
4383 nextb->undo_list
4384 = truncate_undo_list (nextb->undo_list, undo_limit,
4385 undo_strong_limit);
4386
4387 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4388 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4389 {
4390 /* If a buffer's gap size is more than 10% of the buffer
4391 size, or larger than 2000 bytes, then shrink it
4392 accordingly. Keep a minimum size of 20 bytes. */
4393 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4394
4395 if (nextb->text->gap_size > size)
4396 {
4397 struct buffer *save_current = current_buffer;
4398 current_buffer = nextb;
4399 make_gap (-(nextb->text->gap_size - size));
4400 current_buffer = save_current;
4401 }
4402 }
4403
4404 nextb = nextb->next;
4405 }
4406 }
4407
4408 gc_in_progress = 1;
4409
4410 /* clear_marks (); */
4411
4412 /* Mark all the special slots that serve as the roots of accessibility. */
4413
4414 for (i = 0; i < staticidx; i++)
4415 mark_object (*staticvec[i]);
4416
4417 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4418 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4419 mark_stack ();
4420 #else
4421 {
4422 register struct gcpro *tail;
4423 for (tail = gcprolist; tail; tail = tail->next)
4424 for (i = 0; i < tail->nvars; i++)
4425 mark_object (tail->var[i]);
4426 }
4427 #endif
4428
4429 mark_byte_stack ();
4430 for (bind = specpdl; bind != specpdl_ptr; bind++)
4431 {
4432 mark_object (bind->symbol);
4433 mark_object (bind->old_value);
4434 }
4435 for (catch = catchlist; catch; catch = catch->next)
4436 {
4437 mark_object (catch->tag);
4438 mark_object (catch->val);
4439 }
4440 for (handler = handlerlist; handler; handler = handler->next)
4441 {
4442 mark_object (handler->handler);
4443 mark_object (handler->var);
4444 }
4445 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4446 {
4447 mark_object (*backlist->function);
4448
4449 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4450 i = 0;
4451 else
4452 i = backlist->nargs - 1;
4453 for (; i >= 0; i--)
4454 mark_object (backlist->args[i]);
4455 }
4456 mark_kboards ();
4457
4458 /* Look thru every buffer's undo list
4459 for elements that update markers that were not marked,
4460 and delete them. */
4461 {
4462 register struct buffer *nextb = all_buffers;
4463
4464 while (nextb)
4465 {
4466 /* If a buffer's undo list is Qt, that means that undo is
4467 turned off in that buffer. Calling truncate_undo_list on
4468 Qt tends to return NULL, which effectively turns undo back on.
4469 So don't call truncate_undo_list if undo_list is Qt. */
4470 if (! EQ (nextb->undo_list, Qt))
4471 {
4472 Lisp_Object tail, prev;
4473 tail = nextb->undo_list;
4474 prev = Qnil;
4475 while (CONSP (tail))
4476 {
4477 if (GC_CONSP (XCAR (tail))
4478 && GC_MARKERP (XCAR (XCAR (tail)))
4479 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4480 {
4481 if (NILP (prev))
4482 nextb->undo_list = tail = XCDR (tail);
4483 else
4484 {
4485 tail = XCDR (tail);
4486 XSETCDR (prev, tail);
4487 }
4488 }
4489 else
4490 {
4491 prev = tail;
4492 tail = XCDR (tail);
4493 }
4494 }
4495 }
4496
4497 nextb = nextb->next;
4498 }
4499 }
4500
4501 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4502 mark_stack ();
4503 #endif
4504
4505 #ifdef USE_GTK
4506 {
4507 extern void xg_mark_data ();
4508 xg_mark_data ();
4509 }
4510 #endif
4511
4512 gc_sweep ();
4513
4514 /* Clear the mark bits that we set in certain root slots. */
4515
4516 unmark_byte_stack ();
4517 VECTOR_UNMARK (&buffer_defaults);
4518 VECTOR_UNMARK (&buffer_local_symbols);
4519
4520 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4521 dump_zombies ();
4522 #endif
4523
4524 UNBLOCK_INPUT;
4525
4526 /* clear_marks (); */
4527 gc_in_progress = 0;
4528
4529 consing_since_gc = 0;
4530 if (gc_cons_threshold < 10000)
4531 gc_cons_threshold = 10000;
4532
4533 if (garbage_collection_messages)
4534 {
4535 if (message_p || minibuf_level > 0)
4536 restore_message ();
4537 else
4538 message1_nolog ("Garbage collecting...done");
4539 }
4540
4541 unbind_to (count, Qnil);
4542
4543 total[0] = Fcons (make_number (total_conses),
4544 make_number (total_free_conses));
4545 total[1] = Fcons (make_number (total_symbols),
4546 make_number (total_free_symbols));
4547 total[2] = Fcons (make_number (total_markers),
4548 make_number (total_free_markers));
4549 total[3] = make_number (total_string_size);
4550 total[4] = make_number (total_vector_size);
4551 total[5] = Fcons (make_number (total_floats),
4552 make_number (total_free_floats));
4553 total[6] = Fcons (make_number (total_intervals),
4554 make_number (total_free_intervals));
4555 total[7] = Fcons (make_number (total_strings),
4556 make_number (total_free_strings));
4557
4558 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4559 {
4560 /* Compute average percentage of zombies. */
4561 double nlive = 0;
4562
4563 for (i = 0; i < 7; ++i)
4564 if (CONSP (total[i]))
4565 nlive += XFASTINT (XCAR (total[i]));
4566
4567 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4568 max_live = max (nlive, max_live);
4569 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4570 max_zombies = max (nzombies, max_zombies);
4571 ++ngcs;
4572 }
4573 #endif
4574
4575 if (!NILP (Vpost_gc_hook))
4576 {
4577 int count = inhibit_garbage_collection ();
4578 safe_run_hooks (Qpost_gc_hook);
4579 unbind_to (count, Qnil);
4580 }
4581
4582 /* Accumulate statistics. */
4583 EMACS_GET_TIME (t2);
4584 EMACS_SUB_TIME (t3, t2, t1);
4585 if (FLOATP (Vgc_elapsed))
4586 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4587 EMACS_SECS (t3) +
4588 EMACS_USECS (t3) * 1.0e-6);
4589 gcs_done++;
4590
4591 return Flist (sizeof total / sizeof *total, total);
4592 }
4593
4594
4595 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4596 only interesting objects referenced from glyphs are strings. */
4597
4598 static void
4599 mark_glyph_matrix (matrix)
4600 struct glyph_matrix *matrix;
4601 {
4602 struct glyph_row *row = matrix->rows;
4603 struct glyph_row *end = row + matrix->nrows;
4604
4605 for (; row < end; ++row)
4606 if (row->enabled_p)
4607 {
4608 int area;
4609 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4610 {
4611 struct glyph *glyph = row->glyphs[area];
4612 struct glyph *end_glyph = glyph + row->used[area];
4613
4614 for (; glyph < end_glyph; ++glyph)
4615 if (GC_STRINGP (glyph->object)
4616 && !STRING_MARKED_P (XSTRING (glyph->object)))
4617 mark_object (glyph->object);
4618 }
4619 }
4620 }
4621
4622
4623 /* Mark Lisp faces in the face cache C. */
4624
4625 static void
4626 mark_face_cache (c)
4627 struct face_cache *c;
4628 {
4629 if (c)
4630 {
4631 int i, j;
4632 for (i = 0; i < c->used; ++i)
4633 {
4634 struct face *face = FACE_FROM_ID (c->f, i);
4635
4636 if (face)
4637 {
4638 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
4639 mark_object (face->lface[j]);
4640 }
4641 }
4642 }
4643 }
4644
4645
4646 #ifdef HAVE_WINDOW_SYSTEM
4647
4648 /* Mark Lisp objects in image IMG. */
4649
4650 static void
4651 mark_image (img)
4652 struct image *img;
4653 {
4654 mark_object (img->spec);
4655
4656 if (!NILP (img->data.lisp_val))
4657 mark_object (img->data.lisp_val);
4658 }
4659
4660
4661 /* Mark Lisp objects in image cache of frame F. It's done this way so
4662 that we don't have to include xterm.h here. */
4663
4664 static void
4665 mark_image_cache (f)
4666 struct frame *f;
4667 {
4668 forall_images_in_image_cache (f, mark_image);
4669 }
4670
4671 #endif /* HAVE_X_WINDOWS */
4672
4673
4674 \f
4675 /* Mark reference to a Lisp_Object.
4676 If the object referred to has not been seen yet, recursively mark
4677 all the references contained in it. */
4678
4679 #define LAST_MARKED_SIZE 500
4680 Lisp_Object last_marked[LAST_MARKED_SIZE];
4681 int last_marked_index;
4682
4683 /* For debugging--call abort when we cdr down this many
4684 links of a list, in mark_object. In debugging,
4685 the call to abort will hit a breakpoint.
4686 Normally this is zero and the check never goes off. */
4687 int mark_object_loop_halt;
4688
4689 void
4690 mark_object (arg)
4691 Lisp_Object arg;
4692 {
4693 register Lisp_Object obj = arg;
4694 #ifdef GC_CHECK_MARKED_OBJECTS
4695 void *po;
4696 struct mem_node *m;
4697 #endif
4698 int cdr_count = 0;
4699
4700 loop:
4701
4702 if (PURE_POINTER_P (XPNTR (obj)))
4703 return;
4704
4705 last_marked[last_marked_index++] = obj;
4706 if (last_marked_index == LAST_MARKED_SIZE)
4707 last_marked_index = 0;
4708
4709 /* Perform some sanity checks on the objects marked here. Abort if
4710 we encounter an object we know is bogus. This increases GC time
4711 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4712 #ifdef GC_CHECK_MARKED_OBJECTS
4713
4714 po = (void *) XPNTR (obj);
4715
4716 /* Check that the object pointed to by PO is known to be a Lisp
4717 structure allocated from the heap. */
4718 #define CHECK_ALLOCATED() \
4719 do { \
4720 m = mem_find (po); \
4721 if (m == MEM_NIL) \
4722 abort (); \
4723 } while (0)
4724
4725 /* Check that the object pointed to by PO is live, using predicate
4726 function LIVEP. */
4727 #define CHECK_LIVE(LIVEP) \
4728 do { \
4729 if (!LIVEP (m, po)) \
4730 abort (); \
4731 } while (0)
4732
4733 /* Check both of the above conditions. */
4734 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4735 do { \
4736 CHECK_ALLOCATED (); \
4737 CHECK_LIVE (LIVEP); \
4738 } while (0) \
4739
4740 #else /* not GC_CHECK_MARKED_OBJECTS */
4741
4742 #define CHECK_ALLOCATED() (void) 0
4743 #define CHECK_LIVE(LIVEP) (void) 0
4744 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
4745
4746 #endif /* not GC_CHECK_MARKED_OBJECTS */
4747
4748 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
4749 {
4750 case Lisp_String:
4751 {
4752 register struct Lisp_String *ptr = XSTRING (obj);
4753 CHECK_ALLOCATED_AND_LIVE (live_string_p);
4754 MARK_INTERVAL_TREE (ptr->intervals);
4755 MARK_STRING (ptr);
4756 #ifdef GC_CHECK_STRING_BYTES
4757 /* Check that the string size recorded in the string is the
4758 same as the one recorded in the sdata structure. */
4759 CHECK_STRING_BYTES (ptr);
4760 #endif /* GC_CHECK_STRING_BYTES */
4761 }
4762 break;
4763
4764 case Lisp_Vectorlike:
4765 #ifdef GC_CHECK_MARKED_OBJECTS
4766 m = mem_find (po);
4767 if (m == MEM_NIL && !GC_SUBRP (obj)
4768 && po != &buffer_defaults
4769 && po != &buffer_local_symbols)
4770 abort ();
4771 #endif /* GC_CHECK_MARKED_OBJECTS */
4772
4773 if (GC_BUFFERP (obj))
4774 {
4775 if (!VECTOR_MARKED_P (XBUFFER (obj)))
4776 {
4777 #ifdef GC_CHECK_MARKED_OBJECTS
4778 if (po != &buffer_defaults && po != &buffer_local_symbols)
4779 {
4780 struct buffer *b;
4781 for (b = all_buffers; b && b != po; b = b->next)
4782 ;
4783 if (b == NULL)
4784 abort ();
4785 }
4786 #endif /* GC_CHECK_MARKED_OBJECTS */
4787 mark_buffer (obj);
4788 }
4789 }
4790 else if (GC_SUBRP (obj))
4791 break;
4792 else if (GC_COMPILEDP (obj))
4793 /* We could treat this just like a vector, but it is better to
4794 save the COMPILED_CONSTANTS element for last and avoid
4795 recursion there. */
4796 {
4797 register struct Lisp_Vector *ptr = XVECTOR (obj);
4798 register EMACS_INT size = ptr->size;
4799 register int i;
4800
4801 if (VECTOR_MARKED_P (ptr))
4802 break; /* Already marked */
4803
4804 CHECK_LIVE (live_vector_p);
4805 VECTOR_MARK (ptr); /* Else mark it */
4806 size &= PSEUDOVECTOR_SIZE_MASK;
4807 for (i = 0; i < size; i++) /* and then mark its elements */
4808 {
4809 if (i != COMPILED_CONSTANTS)
4810 mark_object (ptr->contents[i]);
4811 }
4812 obj = ptr->contents[COMPILED_CONSTANTS];
4813 goto loop;
4814 }
4815 else if (GC_FRAMEP (obj))
4816 {
4817 register struct frame *ptr = XFRAME (obj);
4818
4819 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4820 VECTOR_MARK (ptr); /* Else mark it */
4821
4822 CHECK_LIVE (live_vector_p);
4823 mark_object (ptr->name);
4824 mark_object (ptr->icon_name);
4825 mark_object (ptr->title);
4826 mark_object (ptr->focus_frame);
4827 mark_object (ptr->selected_window);
4828 mark_object (ptr->minibuffer_window);
4829 mark_object (ptr->param_alist);
4830 mark_object (ptr->scroll_bars);
4831 mark_object (ptr->condemned_scroll_bars);
4832 mark_object (ptr->menu_bar_items);
4833 mark_object (ptr->face_alist);
4834 mark_object (ptr->menu_bar_vector);
4835 mark_object (ptr->buffer_predicate);
4836 mark_object (ptr->buffer_list);
4837 mark_object (ptr->menu_bar_window);
4838 mark_object (ptr->tool_bar_window);
4839 mark_face_cache (ptr->face_cache);
4840 #ifdef HAVE_WINDOW_SYSTEM
4841 mark_image_cache (ptr);
4842 mark_object (ptr->tool_bar_items);
4843 mark_object (ptr->desired_tool_bar_string);
4844 mark_object (ptr->current_tool_bar_string);
4845 #endif /* HAVE_WINDOW_SYSTEM */
4846 }
4847 else if (GC_BOOL_VECTOR_P (obj))
4848 {
4849 register struct Lisp_Vector *ptr = XVECTOR (obj);
4850
4851 if (VECTOR_MARKED_P (ptr))
4852 break; /* Already marked */
4853 CHECK_LIVE (live_vector_p);
4854 VECTOR_MARK (ptr); /* Else mark it */
4855 }
4856 else if (GC_WINDOWP (obj))
4857 {
4858 register struct Lisp_Vector *ptr = XVECTOR (obj);
4859 struct window *w = XWINDOW (obj);
4860 register int i;
4861
4862 /* Stop if already marked. */
4863 if (VECTOR_MARKED_P (ptr))
4864 break;
4865
4866 /* Mark it. */
4867 CHECK_LIVE (live_vector_p);
4868 VECTOR_MARK (ptr);
4869
4870 /* There is no Lisp data above The member CURRENT_MATRIX in
4871 struct WINDOW. Stop marking when that slot is reached. */
4872 for (i = 0;
4873 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
4874 i++)
4875 mark_object (ptr->contents[i]);
4876
4877 /* Mark glyphs for leaf windows. Marking window matrices is
4878 sufficient because frame matrices use the same glyph
4879 memory. */
4880 if (NILP (w->hchild)
4881 && NILP (w->vchild)
4882 && w->current_matrix)
4883 {
4884 mark_glyph_matrix (w->current_matrix);
4885 mark_glyph_matrix (w->desired_matrix);
4886 }
4887 }
4888 else if (GC_HASH_TABLE_P (obj))
4889 {
4890 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
4891
4892 /* Stop if already marked. */
4893 if (VECTOR_MARKED_P (h))
4894 break;
4895
4896 /* Mark it. */
4897 CHECK_LIVE (live_vector_p);
4898 VECTOR_MARK (h);
4899
4900 /* Mark contents. */
4901 /* Do not mark next_free or next_weak.
4902 Being in the next_weak chain
4903 should not keep the hash table alive.
4904 No need to mark `count' since it is an integer. */
4905 mark_object (h->test);
4906 mark_object (h->weak);
4907 mark_object (h->rehash_size);
4908 mark_object (h->rehash_threshold);
4909 mark_object (h->hash);
4910 mark_object (h->next);
4911 mark_object (h->index);
4912 mark_object (h->user_hash_function);
4913 mark_object (h->user_cmp_function);
4914
4915 /* If hash table is not weak, mark all keys and values.
4916 For weak tables, mark only the vector. */
4917 if (GC_NILP (h->weak))
4918 mark_object (h->key_and_value);
4919 else
4920 VECTOR_MARK (XVECTOR (h->key_and_value));
4921 }
4922 else
4923 {
4924 register struct Lisp_Vector *ptr = XVECTOR (obj);
4925 register EMACS_INT size = ptr->size;
4926 register int i;
4927
4928 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4929 CHECK_LIVE (live_vector_p);
4930 VECTOR_MARK (ptr); /* Else mark it */
4931 if (size & PSEUDOVECTOR_FLAG)
4932 size &= PSEUDOVECTOR_SIZE_MASK;
4933
4934 for (i = 0; i < size; i++) /* and then mark its elements */
4935 mark_object (ptr->contents[i]);
4936 }
4937 break;
4938
4939 case Lisp_Symbol:
4940 {
4941 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
4942 struct Lisp_Symbol *ptrx;
4943
4944 if (ptr->gcmarkbit) break;
4945 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
4946 ptr->gcmarkbit = 1;
4947 mark_object (ptr->value);
4948 mark_object (ptr->function);
4949 mark_object (ptr->plist);
4950
4951 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
4952 MARK_STRING (XSTRING (ptr->xname));
4953 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
4954
4955 /* Note that we do not mark the obarray of the symbol.
4956 It is safe not to do so because nothing accesses that
4957 slot except to check whether it is nil. */
4958 ptr = ptr->next;
4959 if (ptr)
4960 {
4961 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
4962 XSETSYMBOL (obj, ptrx);
4963 goto loop;
4964 }
4965 }
4966 break;
4967
4968 case Lisp_Misc:
4969 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
4970 if (XMARKER (obj)->gcmarkbit)
4971 break;
4972 XMARKER (obj)->gcmarkbit = 1;
4973 switch (XMISCTYPE (obj))
4974 {
4975 case Lisp_Misc_Buffer_Local_Value:
4976 case Lisp_Misc_Some_Buffer_Local_Value:
4977 {
4978 register struct Lisp_Buffer_Local_Value *ptr
4979 = XBUFFER_LOCAL_VALUE (obj);
4980 /* If the cdr is nil, avoid recursion for the car. */
4981 if (EQ (ptr->cdr, Qnil))
4982 {
4983 obj = ptr->realvalue;
4984 goto loop;
4985 }
4986 mark_object (ptr->realvalue);
4987 mark_object (ptr->buffer);
4988 mark_object (ptr->frame);
4989 obj = ptr->cdr;
4990 goto loop;
4991 }
4992
4993 case Lisp_Misc_Marker:
4994 /* DO NOT mark thru the marker's chain.
4995 The buffer's markers chain does not preserve markers from gc;
4996 instead, markers are removed from the chain when freed by gc. */
4997 case Lisp_Misc_Intfwd:
4998 case Lisp_Misc_Boolfwd:
4999 case Lisp_Misc_Objfwd:
5000 case Lisp_Misc_Buffer_Objfwd:
5001 case Lisp_Misc_Kboard_Objfwd:
5002 /* Don't bother with Lisp_Buffer_Objfwd,
5003 since all markable slots in current buffer marked anyway. */
5004 /* Don't need to do Lisp_Objfwd, since the places they point
5005 are protected with staticpro. */
5006 case Lisp_Misc_Save_Value:
5007 break;
5008
5009 case Lisp_Misc_Overlay:
5010 {
5011 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5012 mark_object (ptr->start);
5013 mark_object (ptr->end);
5014 mark_object (ptr->plist);
5015 if (ptr->next)
5016 {
5017 XSETMISC (obj, ptr->next);
5018 goto loop;
5019 }
5020 }
5021 break;
5022
5023 default:
5024 abort ();
5025 }
5026 break;
5027
5028 case Lisp_Cons:
5029 {
5030 register struct Lisp_Cons *ptr = XCONS (obj);
5031 if (CONS_MARKED_P (ptr)) break;
5032 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5033 CONS_MARK (ptr);
5034 /* If the cdr is nil, avoid recursion for the car. */
5035 if (EQ (ptr->cdr, Qnil))
5036 {
5037 obj = ptr->car;
5038 cdr_count = 0;
5039 goto loop;
5040 }
5041 mark_object (ptr->car);
5042 obj = ptr->cdr;
5043 cdr_count++;
5044 if (cdr_count == mark_object_loop_halt)
5045 abort ();
5046 goto loop;
5047 }
5048
5049 case Lisp_Float:
5050 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5051 FLOAT_MARK (XFLOAT (obj));
5052 break;
5053
5054 case Lisp_Int:
5055 break;
5056
5057 default:
5058 abort ();
5059 }
5060
5061 #undef CHECK_LIVE
5062 #undef CHECK_ALLOCATED
5063 #undef CHECK_ALLOCATED_AND_LIVE
5064 }
5065
5066 /* Mark the pointers in a buffer structure. */
5067
5068 static void
5069 mark_buffer (buf)
5070 Lisp_Object buf;
5071 {
5072 register struct buffer *buffer = XBUFFER (buf);
5073 register Lisp_Object *ptr, tmp;
5074 Lisp_Object base_buffer;
5075
5076 VECTOR_MARK (buffer);
5077
5078 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5079
5080 if (CONSP (buffer->undo_list))
5081 {
5082 Lisp_Object tail;
5083 tail = buffer->undo_list;
5084
5085 /* We mark the undo list specially because
5086 its pointers to markers should be weak. */
5087
5088 while (CONSP (tail))
5089 {
5090 register struct Lisp_Cons *ptr = XCONS (tail);
5091
5092 if (CONS_MARKED_P (ptr))
5093 break;
5094 CONS_MARK (ptr);
5095 if (GC_CONSP (ptr->car)
5096 && !CONS_MARKED_P (XCONS (ptr->car))
5097 && GC_MARKERP (XCAR (ptr->car)))
5098 {
5099 CONS_MARK (XCONS (ptr->car));
5100 mark_object (XCDR (ptr->car));
5101 }
5102 else
5103 mark_object (ptr->car);
5104
5105 if (CONSP (ptr->cdr))
5106 tail = ptr->cdr;
5107 else
5108 break;
5109 }
5110
5111 mark_object (XCDR (tail));
5112 }
5113 else
5114 mark_object (buffer->undo_list);
5115
5116 if (buffer->overlays_before)
5117 {
5118 XSETMISC (tmp, buffer->overlays_before);
5119 mark_object (tmp);
5120 }
5121 if (buffer->overlays_after)
5122 {
5123 XSETMISC (tmp, buffer->overlays_after);
5124 mark_object (tmp);
5125 }
5126
5127 for (ptr = &buffer->name;
5128 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5129 ptr++)
5130 mark_object (*ptr);
5131
5132 /* If this is an indirect buffer, mark its base buffer. */
5133 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5134 {
5135 XSETBUFFER (base_buffer, buffer->base_buffer);
5136 mark_buffer (base_buffer);
5137 }
5138 }
5139
5140
5141 /* Value is non-zero if OBJ will survive the current GC because it's
5142 either marked or does not need to be marked to survive. */
5143
5144 int
5145 survives_gc_p (obj)
5146 Lisp_Object obj;
5147 {
5148 int survives_p;
5149
5150 switch (XGCTYPE (obj))
5151 {
5152 case Lisp_Int:
5153 survives_p = 1;
5154 break;
5155
5156 case Lisp_Symbol:
5157 survives_p = XSYMBOL (obj)->gcmarkbit;
5158 break;
5159
5160 case Lisp_Misc:
5161 survives_p = XMARKER (obj)->gcmarkbit;
5162 break;
5163
5164 case Lisp_String:
5165 survives_p = STRING_MARKED_P (XSTRING (obj));
5166 break;
5167
5168 case Lisp_Vectorlike:
5169 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5170 break;
5171
5172 case Lisp_Cons:
5173 survives_p = CONS_MARKED_P (XCONS (obj));
5174 break;
5175
5176 case Lisp_Float:
5177 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5178 break;
5179
5180 default:
5181 abort ();
5182 }
5183
5184 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5185 }
5186
5187
5188 \f
5189 /* Sweep: find all structures not marked, and free them. */
5190
5191 static void
5192 gc_sweep ()
5193 {
5194 /* Remove or mark entries in weak hash tables.
5195 This must be done before any object is unmarked. */
5196 sweep_weak_hash_tables ();
5197
5198 sweep_strings ();
5199 #ifdef GC_CHECK_STRING_BYTES
5200 if (!noninteractive)
5201 check_string_bytes (1);
5202 #endif
5203
5204 /* Put all unmarked conses on free list */
5205 {
5206 register struct cons_block *cblk;
5207 struct cons_block **cprev = &cons_block;
5208 register int lim = cons_block_index;
5209 register int num_free = 0, num_used = 0;
5210
5211 cons_free_list = 0;
5212
5213 for (cblk = cons_block; cblk; cblk = *cprev)
5214 {
5215 register int i;
5216 int this_free = 0;
5217 for (i = 0; i < lim; i++)
5218 if (!CONS_MARKED_P (&cblk->conses[i]))
5219 {
5220 this_free++;
5221 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5222 cons_free_list = &cblk->conses[i];
5223 #if GC_MARK_STACK
5224 cons_free_list->car = Vdead;
5225 #endif
5226 }
5227 else
5228 {
5229 num_used++;
5230 CONS_UNMARK (&cblk->conses[i]);
5231 }
5232 lim = CONS_BLOCK_SIZE;
5233 /* If this block contains only free conses and we have already
5234 seen more than two blocks worth of free conses then deallocate
5235 this block. */
5236 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5237 {
5238 *cprev = cblk->next;
5239 /* Unhook from the free list. */
5240 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5241 lisp_align_free (cblk);
5242 n_cons_blocks--;
5243 }
5244 else
5245 {
5246 num_free += this_free;
5247 cprev = &cblk->next;
5248 }
5249 }
5250 total_conses = num_used;
5251 total_free_conses = num_free;
5252 }
5253
5254 /* Put all unmarked floats on free list */
5255 {
5256 register struct float_block *fblk;
5257 struct float_block **fprev = &float_block;
5258 register int lim = float_block_index;
5259 register int num_free = 0, num_used = 0;
5260
5261 float_free_list = 0;
5262
5263 for (fblk = float_block; fblk; fblk = *fprev)
5264 {
5265 register int i;
5266 int this_free = 0;
5267 for (i = 0; i < lim; i++)
5268 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5269 {
5270 this_free++;
5271 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5272 float_free_list = &fblk->floats[i];
5273 }
5274 else
5275 {
5276 num_used++;
5277 FLOAT_UNMARK (&fblk->floats[i]);
5278 }
5279 lim = FLOAT_BLOCK_SIZE;
5280 /* If this block contains only free floats and we have already
5281 seen more than two blocks worth of free floats then deallocate
5282 this block. */
5283 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5284 {
5285 *fprev = fblk->next;
5286 /* Unhook from the free list. */
5287 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5288 lisp_align_free (fblk);
5289 n_float_blocks--;
5290 }
5291 else
5292 {
5293 num_free += this_free;
5294 fprev = &fblk->next;
5295 }
5296 }
5297 total_floats = num_used;
5298 total_free_floats = num_free;
5299 }
5300
5301 /* Put all unmarked intervals on free list */
5302 {
5303 register struct interval_block *iblk;
5304 struct interval_block **iprev = &interval_block;
5305 register int lim = interval_block_index;
5306 register int num_free = 0, num_used = 0;
5307
5308 interval_free_list = 0;
5309
5310 for (iblk = interval_block; iblk; iblk = *iprev)
5311 {
5312 register int i;
5313 int this_free = 0;
5314
5315 for (i = 0; i < lim; i++)
5316 {
5317 if (!iblk->intervals[i].gcmarkbit)
5318 {
5319 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5320 interval_free_list = &iblk->intervals[i];
5321 this_free++;
5322 }
5323 else
5324 {
5325 num_used++;
5326 iblk->intervals[i].gcmarkbit = 0;
5327 }
5328 }
5329 lim = INTERVAL_BLOCK_SIZE;
5330 /* If this block contains only free intervals and we have already
5331 seen more than two blocks worth of free intervals then
5332 deallocate this block. */
5333 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5334 {
5335 *iprev = iblk->next;
5336 /* Unhook from the free list. */
5337 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5338 lisp_free (iblk);
5339 n_interval_blocks--;
5340 }
5341 else
5342 {
5343 num_free += this_free;
5344 iprev = &iblk->next;
5345 }
5346 }
5347 total_intervals = num_used;
5348 total_free_intervals = num_free;
5349 }
5350
5351 /* Put all unmarked symbols on free list */
5352 {
5353 register struct symbol_block *sblk;
5354 struct symbol_block **sprev = &symbol_block;
5355 register int lim = symbol_block_index;
5356 register int num_free = 0, num_used = 0;
5357
5358 symbol_free_list = NULL;
5359
5360 for (sblk = symbol_block; sblk; sblk = *sprev)
5361 {
5362 int this_free = 0;
5363 struct Lisp_Symbol *sym = sblk->symbols;
5364 struct Lisp_Symbol *end = sym + lim;
5365
5366 for (; sym < end; ++sym)
5367 {
5368 /* Check if the symbol was created during loadup. In such a case
5369 it might be pointed to by pure bytecode which we don't trace,
5370 so we conservatively assume that it is live. */
5371 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5372
5373 if (!sym->gcmarkbit && !pure_p)
5374 {
5375 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5376 symbol_free_list = sym;
5377 #if GC_MARK_STACK
5378 symbol_free_list->function = Vdead;
5379 #endif
5380 ++this_free;
5381 }
5382 else
5383 {
5384 ++num_used;
5385 if (!pure_p)
5386 UNMARK_STRING (XSTRING (sym->xname));
5387 sym->gcmarkbit = 0;
5388 }
5389 }
5390
5391 lim = SYMBOL_BLOCK_SIZE;
5392 /* If this block contains only free symbols and we have already
5393 seen more than two blocks worth of free symbols then deallocate
5394 this block. */
5395 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5396 {
5397 *sprev = sblk->next;
5398 /* Unhook from the free list. */
5399 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5400 lisp_free (sblk);
5401 n_symbol_blocks--;
5402 }
5403 else
5404 {
5405 num_free += this_free;
5406 sprev = &sblk->next;
5407 }
5408 }
5409 total_symbols = num_used;
5410 total_free_symbols = num_free;
5411 }
5412
5413 /* Put all unmarked misc's on free list.
5414 For a marker, first unchain it from the buffer it points into. */
5415 {
5416 register struct marker_block *mblk;
5417 struct marker_block **mprev = &marker_block;
5418 register int lim = marker_block_index;
5419 register int num_free = 0, num_used = 0;
5420
5421 marker_free_list = 0;
5422
5423 for (mblk = marker_block; mblk; mblk = *mprev)
5424 {
5425 register int i;
5426 int this_free = 0;
5427
5428 for (i = 0; i < lim; i++)
5429 {
5430 if (!mblk->markers[i].u_marker.gcmarkbit)
5431 {
5432 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5433 unchain_marker (&mblk->markers[i].u_marker);
5434 /* Set the type of the freed object to Lisp_Misc_Free.
5435 We could leave the type alone, since nobody checks it,
5436 but this might catch bugs faster. */
5437 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5438 mblk->markers[i].u_free.chain = marker_free_list;
5439 marker_free_list = &mblk->markers[i];
5440 this_free++;
5441 }
5442 else
5443 {
5444 num_used++;
5445 mblk->markers[i].u_marker.gcmarkbit = 0;
5446 }
5447 }
5448 lim = MARKER_BLOCK_SIZE;
5449 /* If this block contains only free markers and we have already
5450 seen more than two blocks worth of free markers then deallocate
5451 this block. */
5452 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5453 {
5454 *mprev = mblk->next;
5455 /* Unhook from the free list. */
5456 marker_free_list = mblk->markers[0].u_free.chain;
5457 lisp_free (mblk);
5458 n_marker_blocks--;
5459 }
5460 else
5461 {
5462 num_free += this_free;
5463 mprev = &mblk->next;
5464 }
5465 }
5466
5467 total_markers = num_used;
5468 total_free_markers = num_free;
5469 }
5470
5471 /* Free all unmarked buffers */
5472 {
5473 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5474
5475 while (buffer)
5476 if (!VECTOR_MARKED_P (buffer))
5477 {
5478 if (prev)
5479 prev->next = buffer->next;
5480 else
5481 all_buffers = buffer->next;
5482 next = buffer->next;
5483 lisp_free (buffer);
5484 buffer = next;
5485 }
5486 else
5487 {
5488 VECTOR_UNMARK (buffer);
5489 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5490 prev = buffer, buffer = buffer->next;
5491 }
5492 }
5493
5494 /* Free all unmarked vectors */
5495 {
5496 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5497 total_vector_size = 0;
5498
5499 while (vector)
5500 if (!VECTOR_MARKED_P (vector))
5501 {
5502 if (prev)
5503 prev->next = vector->next;
5504 else
5505 all_vectors = vector->next;
5506 next = vector->next;
5507 lisp_free (vector);
5508 n_vectors--;
5509 vector = next;
5510
5511 }
5512 else
5513 {
5514 VECTOR_UNMARK (vector);
5515 if (vector->size & PSEUDOVECTOR_FLAG)
5516 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5517 else
5518 total_vector_size += vector->size;
5519 prev = vector, vector = vector->next;
5520 }
5521 }
5522
5523 #ifdef GC_CHECK_STRING_BYTES
5524 if (!noninteractive)
5525 check_string_bytes (1);
5526 #endif
5527 }
5528
5529
5530
5531 \f
5532 /* Debugging aids. */
5533
5534 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5535 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5536 This may be helpful in debugging Emacs's memory usage.
5537 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5538 ()
5539 {
5540 Lisp_Object end;
5541
5542 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5543
5544 return end;
5545 }
5546
5547 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5548 doc: /* Return a list of counters that measure how much consing there has been.
5549 Each of these counters increments for a certain kind of object.
5550 The counters wrap around from the largest positive integer to zero.
5551 Garbage collection does not decrease them.
5552 The elements of the value are as follows:
5553 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5554 All are in units of 1 = one object consed
5555 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5556 objects consed.
5557 MISCS include overlays, markers, and some internal types.
5558 Frames, windows, buffers, and subprocesses count as vectors
5559 (but the contents of a buffer's text do not count here). */)
5560 ()
5561 {
5562 Lisp_Object consed[8];
5563
5564 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5565 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5566 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5567 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5568 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5569 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5570 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5571 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5572
5573 return Flist (8, consed);
5574 }
5575
5576 int suppress_checking;
5577 void
5578 die (msg, file, line)
5579 const char *msg;
5580 const char *file;
5581 int line;
5582 {
5583 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5584 file, line, msg);
5585 abort ();
5586 }
5587 \f
5588 /* Initialization */
5589
5590 void
5591 init_alloc_once ()
5592 {
5593 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5594 purebeg = PUREBEG;
5595 pure_size = PURESIZE;
5596 pure_bytes_used = 0;
5597 pure_bytes_used_before_overflow = 0;
5598
5599 /* Initialize the list of free aligned blocks. */
5600 free_ablock = NULL;
5601
5602 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5603 mem_init ();
5604 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5605 #endif
5606
5607 all_vectors = 0;
5608 ignore_warnings = 1;
5609 #ifdef DOUG_LEA_MALLOC
5610 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5611 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5612 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5613 #endif
5614 init_strings ();
5615 init_cons ();
5616 init_symbol ();
5617 init_marker ();
5618 init_float ();
5619 init_intervals ();
5620
5621 #ifdef REL_ALLOC
5622 malloc_hysteresis = 32;
5623 #else
5624 malloc_hysteresis = 0;
5625 #endif
5626
5627 spare_memory = (char *) malloc (SPARE_MEMORY);
5628
5629 ignore_warnings = 0;
5630 gcprolist = 0;
5631 byte_stack_list = 0;
5632 staticidx = 0;
5633 consing_since_gc = 0;
5634 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5635 #ifdef VIRT_ADDR_VARIES
5636 malloc_sbrk_unused = 1<<22; /* A large number */
5637 malloc_sbrk_used = 100000; /* as reasonable as any number */
5638 #endif /* VIRT_ADDR_VARIES */
5639 }
5640
5641 void
5642 init_alloc ()
5643 {
5644 gcprolist = 0;
5645 byte_stack_list = 0;
5646 #if GC_MARK_STACK
5647 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5648 setjmp_tested_p = longjmps_done = 0;
5649 #endif
5650 #endif
5651 Vgc_elapsed = make_float (0.0);
5652 gcs_done = 0;
5653 }
5654
5655 void
5656 syms_of_alloc ()
5657 {
5658 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
5659 doc: /* *Number of bytes of consing between garbage collections.
5660 Garbage collection can happen automatically once this many bytes have been
5661 allocated since the last garbage collection. All data types count.
5662
5663 Garbage collection happens automatically only when `eval' is called.
5664
5665 By binding this temporarily to a large number, you can effectively
5666 prevent garbage collection during a part of the program. */);
5667
5668 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
5669 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
5670
5671 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
5672 doc: /* Number of cons cells that have been consed so far. */);
5673
5674 DEFVAR_INT ("floats-consed", &floats_consed,
5675 doc: /* Number of floats that have been consed so far. */);
5676
5677 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
5678 doc: /* Number of vector cells that have been consed so far. */);
5679
5680 DEFVAR_INT ("symbols-consed", &symbols_consed,
5681 doc: /* Number of symbols that have been consed so far. */);
5682
5683 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
5684 doc: /* Number of string characters that have been consed so far. */);
5685
5686 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
5687 doc: /* Number of miscellaneous objects that have been consed so far. */);
5688
5689 DEFVAR_INT ("intervals-consed", &intervals_consed,
5690 doc: /* Number of intervals that have been consed so far. */);
5691
5692 DEFVAR_INT ("strings-consed", &strings_consed,
5693 doc: /* Number of strings that have been consed so far. */);
5694
5695 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
5696 doc: /* Non-nil means loading Lisp code in order to dump an executable.
5697 This means that certain objects should be allocated in shared (pure) space. */);
5698
5699 DEFVAR_INT ("undo-limit", &undo_limit,
5700 doc: /* Keep no more undo information once it exceeds this size.
5701 This limit is applied when garbage collection happens.
5702 The size is counted as the number of bytes occupied,
5703 which includes both saved text and other data. */);
5704 undo_limit = 20000;
5705
5706 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
5707 doc: /* Don't keep more than this much size of undo information.
5708 A command which pushes past this size is itself forgotten.
5709 This limit is applied when garbage collection happens.
5710 The size is counted as the number of bytes occupied,
5711 which includes both saved text and other data. */);
5712 undo_strong_limit = 30000;
5713
5714 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
5715 doc: /* Non-nil means display messages at start and end of garbage collection. */);
5716 garbage_collection_messages = 0;
5717
5718 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
5719 doc: /* Hook run after garbage collection has finished. */);
5720 Vpost_gc_hook = Qnil;
5721 Qpost_gc_hook = intern ("post-gc-hook");
5722 staticpro (&Qpost_gc_hook);
5723
5724 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
5725 doc: /* Precomputed `signal' argument for memory-full error. */);
5726 /* We build this in advance because if we wait until we need it, we might
5727 not be able to allocate the memory to hold it. */
5728 Vmemory_signal_data
5729 = list2 (Qerror,
5730 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
5731
5732 DEFVAR_LISP ("memory-full", &Vmemory_full,
5733 doc: /* Non-nil means we are handling a memory-full error. */);
5734 Vmemory_full = Qnil;
5735
5736 staticpro (&Qgc_cons_threshold);
5737 Qgc_cons_threshold = intern ("gc-cons-threshold");
5738
5739 staticpro (&Qchar_table_extra_slots);
5740 Qchar_table_extra_slots = intern ("char-table-extra-slots");
5741
5742 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
5743 doc: /* Accumulated time elapsed in garbage collections.
5744 The time is in seconds as a floating point value. */);
5745 DEFVAR_INT ("gcs-done", &gcs_done,
5746 doc: /* Accumulated number of garbage collections done. */);
5747
5748 defsubr (&Scons);
5749 defsubr (&Slist);
5750 defsubr (&Svector);
5751 defsubr (&Smake_byte_code);
5752 defsubr (&Smake_list);
5753 defsubr (&Smake_vector);
5754 defsubr (&Smake_char_table);
5755 defsubr (&Smake_string);
5756 defsubr (&Smake_bool_vector);
5757 defsubr (&Smake_symbol);
5758 defsubr (&Smake_marker);
5759 defsubr (&Spurecopy);
5760 defsubr (&Sgarbage_collect);
5761 defsubr (&Smemory_limit);
5762 defsubr (&Smemory_use_counts);
5763
5764 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5765 defsubr (&Sgc_status);
5766 #endif
5767 }
5768
5769 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
5770 (do not change this comment) */