]> code.delx.au - gnu-emacs/blob - src/ralloc.c
Revision: miles@gnu.org--gnu-2005/emacs--unicode--0--patch-61
[gnu-emacs] / src / ralloc.c
1 /* Block-relocating memory allocator.
2 Copyright (C) 1993, 1995, 2000 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 /* NOTES:
22
23 Only relocate the blocs necessary for SIZE in r_alloc_sbrk,
24 rather than all of them. This means allowing for a possible
25 hole between the first bloc and the end of malloc storage. */
26
27 #ifdef emacs
28
29 #include <config.h>
30 #include "lisp.h" /* Needed for VALBITS. */
31 #include "blockinput.h"
32
33 #ifdef HAVE_UNISTD_H
34 #include <unistd.h>
35 #endif
36
37 typedef POINTER_TYPE *POINTER;
38 typedef size_t SIZE;
39
40 /* Declared in dispnew.c, this version doesn't screw up if regions
41 overlap. */
42
43 extern void safe_bcopy ();
44
45 #ifdef DOUG_LEA_MALLOC
46 #define M_TOP_PAD -2
47 extern int mallopt ();
48 #else /* not DOUG_LEA_MALLOC */
49 #ifndef SYSTEM_MALLOC
50 extern size_t __malloc_extra_blocks;
51 #endif /* SYSTEM_MALLOC */
52 #endif /* not DOUG_LEA_MALLOC */
53
54 #else /* not emacs */
55
56 #include <stddef.h>
57
58 typedef size_t SIZE;
59 typedef void *POINTER;
60
61 #include <unistd.h>
62 #include <malloc.h>
63
64 #define safe_bcopy(x, y, z) memmove (y, x, z)
65 #define bzero(x, len) memset (x, 0, len)
66
67 #endif /* not emacs */
68
69
70 #include "getpagesize.h"
71
72 #define NIL ((POINTER) 0)
73
74 /* A flag to indicate whether we have initialized ralloc yet. For
75 Emacs's sake, please do not make this local to malloc_init; on some
76 machines, the dumping procedure makes all static variables
77 read-only. On these machines, the word static is #defined to be
78 the empty string, meaning that r_alloc_initialized becomes an
79 automatic variable, and loses its value each time Emacs is started
80 up. */
81
82 static int r_alloc_initialized = 0;
83
84 static void r_alloc_init ();
85
86 \f
87 /* Declarations for working with the malloc, ralloc, and system breaks. */
88
89 /* Function to set the real break value. */
90 POINTER (*real_morecore) ();
91
92 /* The break value, as seen by malloc. */
93 static POINTER virtual_break_value;
94
95 /* The address of the end of the last data in use by ralloc,
96 including relocatable blocs as well as malloc data. */
97 static POINTER break_value;
98
99 /* This is the size of a page. We round memory requests to this boundary. */
100 static int page_size;
101
102 /* Whenever we get memory from the system, get this many extra bytes. This
103 must be a multiple of page_size. */
104 static int extra_bytes;
105
106 /* Macros for rounding. Note that rounding to any value is possible
107 by changing the definition of PAGE. */
108 #define PAGE (getpagesize ())
109 #define ALIGNED(addr) (((unsigned long int) (addr) & (page_size - 1)) == 0)
110 #define ROUNDUP(size) (((unsigned long int) (size) + page_size - 1) \
111 & ~(page_size - 1))
112 #define ROUND_TO_PAGE(addr) (addr & (~(page_size - 1)))
113
114 #define MEM_ALIGN sizeof(double)
115 #define MEM_ROUNDUP(addr) (((unsigned long int)(addr) + MEM_ALIGN - 1) \
116 & ~(MEM_ALIGN - 1))
117
118 /* The hook `malloc' uses for the function which gets more space
119 from the system. */
120
121 #ifndef SYSTEM_MALLOC
122 extern POINTER (*__morecore) ();
123 #endif
124
125
126 \f
127 /***********************************************************************
128 Implementation using sbrk
129 ***********************************************************************/
130
131 /* Data structures of heaps and blocs. */
132
133 /* The relocatable objects, or blocs, and the malloc data
134 both reside within one or more heaps.
135 Each heap contains malloc data, running from `start' to `bloc_start',
136 and relocatable objects, running from `bloc_start' to `free'.
137
138 Relocatable objects may relocate within the same heap
139 or may move into another heap; the heaps themselves may grow
140 but they never move.
141
142 We try to make just one heap and make it larger as necessary.
143 But sometimes we can't do that, because we can't get contiguous
144 space to add onto the heap. When that happens, we start a new heap. */
145
146 typedef struct heap
147 {
148 struct heap *next;
149 struct heap *prev;
150 /* Start of memory range of this heap. */
151 POINTER start;
152 /* End of memory range of this heap. */
153 POINTER end;
154 /* Start of relocatable data in this heap. */
155 POINTER bloc_start;
156 /* Start of unused space in this heap. */
157 POINTER free;
158 /* First bloc in this heap. */
159 struct bp *first_bloc;
160 /* Last bloc in this heap. */
161 struct bp *last_bloc;
162 } *heap_ptr;
163
164 #define NIL_HEAP ((heap_ptr) 0)
165 #define HEAP_PTR_SIZE (sizeof (struct heap))
166
167 /* This is the first heap object.
168 If we need additional heap objects, each one resides at the beginning of
169 the space it covers. */
170 static struct heap heap_base;
171
172 /* Head and tail of the list of heaps. */
173 static heap_ptr first_heap, last_heap;
174
175 /* These structures are allocated in the malloc arena.
176 The linked list is kept in order of increasing '.data' members.
177 The data blocks abut each other; if b->next is non-nil, then
178 b->data + b->size == b->next->data.
179
180 An element with variable==NIL denotes a freed block, which has not yet
181 been collected. They may only appear while r_alloc_freeze > 0, and will be
182 freed when the arena is thawed. Currently, these blocs are not reusable,
183 while the arena is frozen. Very inefficient. */
184
185 typedef struct bp
186 {
187 struct bp *next;
188 struct bp *prev;
189 POINTER *variable;
190 POINTER data;
191 SIZE size;
192 POINTER new_data; /* temporarily used for relocation */
193 struct heap *heap; /* Heap this bloc is in. */
194 } *bloc_ptr;
195
196 #define NIL_BLOC ((bloc_ptr) 0)
197 #define BLOC_PTR_SIZE (sizeof (struct bp))
198
199 /* Head and tail of the list of relocatable blocs. */
200 static bloc_ptr first_bloc, last_bloc;
201
202 static int use_relocatable_buffers;
203
204 /* If >0, no relocation whatsoever takes place. */
205 static int r_alloc_freeze_level;
206
207 \f
208 /* Functions to get and return memory from the system. */
209
210 /* Find the heap that ADDRESS falls within. */
211
212 static heap_ptr
213 find_heap (address)
214 POINTER address;
215 {
216 heap_ptr heap;
217
218 for (heap = last_heap; heap; heap = heap->prev)
219 {
220 if (heap->start <= address && address <= heap->end)
221 return heap;
222 }
223
224 return NIL_HEAP;
225 }
226
227 /* Find SIZE bytes of space in a heap.
228 Try to get them at ADDRESS (which must fall within some heap's range)
229 if we can get that many within one heap.
230
231 If enough space is not presently available in our reserve, this means
232 getting more page-aligned space from the system. If the returned space
233 is not contiguous to the last heap, allocate a new heap, and append it
234
235 obtain does not try to keep track of whether space is in use
236 or not in use. It just returns the address of SIZE bytes that
237 fall within a single heap. If you call obtain twice in a row
238 with the same arguments, you typically get the same value.
239 to the heap list. It's the caller's responsibility to keep
240 track of what space is in use.
241
242 Return the address of the space if all went well, or zero if we couldn't
243 allocate the memory. */
244
245 static POINTER
246 obtain (address, size)
247 POINTER address;
248 SIZE size;
249 {
250 heap_ptr heap;
251 SIZE already_available;
252
253 /* Find the heap that ADDRESS falls within. */
254 for (heap = last_heap; heap; heap = heap->prev)
255 {
256 if (heap->start <= address && address <= heap->end)
257 break;
258 }
259
260 if (! heap)
261 abort ();
262
263 /* If we can't fit SIZE bytes in that heap,
264 try successive later heaps. */
265 while (heap && (char *) address + size > (char *) heap->end)
266 {
267 heap = heap->next;
268 if (heap == NIL_HEAP)
269 break;
270 address = heap->bloc_start;
271 }
272
273 /* If we can't fit them within any existing heap,
274 get more space. */
275 if (heap == NIL_HEAP)
276 {
277 POINTER new = (*real_morecore)(0);
278 SIZE get;
279
280 already_available = (char *)last_heap->end - (char *)address;
281
282 if (new != last_heap->end)
283 {
284 /* Someone else called sbrk. Make a new heap. */
285
286 heap_ptr new_heap = (heap_ptr) MEM_ROUNDUP (new);
287 POINTER bloc_start = (POINTER) MEM_ROUNDUP ((POINTER)(new_heap + 1));
288
289 if ((*real_morecore) ((char *) bloc_start - (char *) new) != new)
290 return 0;
291
292 new_heap->start = new;
293 new_heap->end = bloc_start;
294 new_heap->bloc_start = bloc_start;
295 new_heap->free = bloc_start;
296 new_heap->next = NIL_HEAP;
297 new_heap->prev = last_heap;
298 new_heap->first_bloc = NIL_BLOC;
299 new_heap->last_bloc = NIL_BLOC;
300 last_heap->next = new_heap;
301 last_heap = new_heap;
302
303 address = bloc_start;
304 already_available = 0;
305 }
306
307 /* Add space to the last heap (which we may have just created).
308 Get some extra, so we can come here less often. */
309
310 get = size + extra_bytes - already_available;
311 get = (char *) ROUNDUP ((char *)last_heap->end + get)
312 - (char *) last_heap->end;
313
314 if ((*real_morecore) (get) != last_heap->end)
315 return 0;
316
317 last_heap->end = (char *) last_heap->end + get;
318 }
319
320 return address;
321 }
322
323 /* Return unused heap space to the system
324 if there is a lot of unused space now.
325 This can make the last heap smaller;
326 it can also eliminate the last heap entirely. */
327
328 static void
329 relinquish ()
330 {
331 register heap_ptr h;
332 int excess = 0;
333
334 /* Add the amount of space beyond break_value
335 in all heaps which have extend beyond break_value at all. */
336
337 for (h = last_heap; h && break_value < h->end; h = h->prev)
338 {
339 excess += (char *) h->end - (char *) ((break_value < h->bloc_start)
340 ? h->bloc_start : break_value);
341 }
342
343 if (excess > extra_bytes * 2 && (*real_morecore) (0) == last_heap->end)
344 {
345 /* Keep extra_bytes worth of empty space.
346 And don't free anything unless we can free at least extra_bytes. */
347 excess -= extra_bytes;
348
349 if ((char *)last_heap->end - (char *)last_heap->bloc_start <= excess)
350 {
351 /* This heap should have no blocs in it. */
352 if (last_heap->first_bloc != NIL_BLOC
353 || last_heap->last_bloc != NIL_BLOC)
354 abort ();
355
356 /* Return the last heap, with its header, to the system. */
357 excess = (char *)last_heap->end - (char *)last_heap->start;
358 last_heap = last_heap->prev;
359 last_heap->next = NIL_HEAP;
360 }
361 else
362 {
363 excess = (char *) last_heap->end
364 - (char *) ROUNDUP ((char *)last_heap->end - excess);
365 last_heap->end = (char *) last_heap->end - excess;
366 }
367
368 if ((*real_morecore) (- excess) == 0)
369 {
370 /* If the system didn't want that much memory back, adjust
371 the end of the last heap to reflect that. This can occur
372 if break_value is still within the original data segment. */
373 last_heap->end = (char *) last_heap->end + excess;
374 /* Make sure that the result of the adjustment is accurate.
375 It should be, for the else clause above; the other case,
376 which returns the entire last heap to the system, seems
377 unlikely to trigger this mode of failure. */
378 if (last_heap->end != (*real_morecore) (0))
379 abort ();
380 }
381 }
382 }
383
384 /* Return the total size in use by relocating allocator,
385 above where malloc gets space. */
386
387 long
388 r_alloc_size_in_use ()
389 {
390 return (char *) break_value - (char *) virtual_break_value;
391 }
392 \f
393 /* The meat - allocating, freeing, and relocating blocs. */
394
395 /* Find the bloc referenced by the address in PTR. Returns a pointer
396 to that block. */
397
398 static bloc_ptr
399 find_bloc (ptr)
400 POINTER *ptr;
401 {
402 register bloc_ptr p = first_bloc;
403
404 while (p != NIL_BLOC)
405 {
406 if (p->variable == ptr && p->data == *ptr)
407 return p;
408
409 p = p->next;
410 }
411
412 return p;
413 }
414
415 /* Allocate a bloc of SIZE bytes and append it to the chain of blocs.
416 Returns a pointer to the new bloc, or zero if we couldn't allocate
417 memory for the new block. */
418
419 static bloc_ptr
420 get_bloc (size)
421 SIZE size;
422 {
423 register bloc_ptr new_bloc;
424 register heap_ptr heap;
425
426 if (! (new_bloc = (bloc_ptr) malloc (BLOC_PTR_SIZE))
427 || ! (new_bloc->data = obtain (break_value, size)))
428 {
429 if (new_bloc)
430 free (new_bloc);
431
432 return 0;
433 }
434
435 break_value = (char *) new_bloc->data + size;
436
437 new_bloc->size = size;
438 new_bloc->next = NIL_BLOC;
439 new_bloc->variable = (POINTER *) NIL;
440 new_bloc->new_data = 0;
441
442 /* Record in the heap that this space is in use. */
443 heap = find_heap (new_bloc->data);
444 heap->free = break_value;
445
446 /* Maintain the correspondence between heaps and blocs. */
447 new_bloc->heap = heap;
448 heap->last_bloc = new_bloc;
449 if (heap->first_bloc == NIL_BLOC)
450 heap->first_bloc = new_bloc;
451
452 /* Put this bloc on the doubly-linked list of blocs. */
453 if (first_bloc)
454 {
455 new_bloc->prev = last_bloc;
456 last_bloc->next = new_bloc;
457 last_bloc = new_bloc;
458 }
459 else
460 {
461 first_bloc = last_bloc = new_bloc;
462 new_bloc->prev = NIL_BLOC;
463 }
464
465 return new_bloc;
466 }
467 \f
468 /* Calculate new locations of blocs in the list beginning with BLOC,
469 relocating it to start at ADDRESS, in heap HEAP. If enough space is
470 not presently available in our reserve, call obtain for
471 more space.
472
473 Store the new location of each bloc in its new_data field.
474 Do not touch the contents of blocs or break_value. */
475
476 static int
477 relocate_blocs (bloc, heap, address)
478 bloc_ptr bloc;
479 heap_ptr heap;
480 POINTER address;
481 {
482 register bloc_ptr b = bloc;
483
484 /* No need to ever call this if arena is frozen, bug somewhere! */
485 if (r_alloc_freeze_level)
486 abort();
487
488 while (b)
489 {
490 /* If bloc B won't fit within HEAP,
491 move to the next heap and try again. */
492 while (heap && (char *) address + b->size > (char *) heap->end)
493 {
494 heap = heap->next;
495 if (heap == NIL_HEAP)
496 break;
497 address = heap->bloc_start;
498 }
499
500 /* If BLOC won't fit in any heap,
501 get enough new space to hold BLOC and all following blocs. */
502 if (heap == NIL_HEAP)
503 {
504 register bloc_ptr tb = b;
505 register SIZE s = 0;
506
507 /* Add up the size of all the following blocs. */
508 while (tb != NIL_BLOC)
509 {
510 if (tb->variable)
511 s += tb->size;
512
513 tb = tb->next;
514 }
515
516 /* Get that space. */
517 address = obtain (address, s);
518 if (address == 0)
519 return 0;
520
521 heap = last_heap;
522 }
523
524 /* Record the new address of this bloc
525 and update where the next bloc can start. */
526 b->new_data = address;
527 if (b->variable)
528 address = (char *) address + b->size;
529 b = b->next;
530 }
531
532 return 1;
533 }
534
535 /* Reorder the bloc BLOC to go before bloc BEFORE in the doubly linked list.
536 This is necessary if we put the memory of space of BLOC
537 before that of BEFORE. */
538
539 static void
540 reorder_bloc (bloc, before)
541 bloc_ptr bloc, before;
542 {
543 bloc_ptr prev, next;
544
545 /* Splice BLOC out from where it is. */
546 prev = bloc->prev;
547 next = bloc->next;
548
549 if (prev)
550 prev->next = next;
551 if (next)
552 next->prev = prev;
553
554 /* Splice it in before BEFORE. */
555 prev = before->prev;
556
557 if (prev)
558 prev->next = bloc;
559 bloc->prev = prev;
560
561 before->prev = bloc;
562 bloc->next = before;
563 }
564 \f
565 /* Update the records of which heaps contain which blocs, starting
566 with heap HEAP and bloc BLOC. */
567
568 static void
569 update_heap_bloc_correspondence (bloc, heap)
570 bloc_ptr bloc;
571 heap_ptr heap;
572 {
573 register bloc_ptr b;
574
575 /* Initialize HEAP's status to reflect blocs before BLOC. */
576 if (bloc != NIL_BLOC && bloc->prev != NIL_BLOC && bloc->prev->heap == heap)
577 {
578 /* The previous bloc is in HEAP. */
579 heap->last_bloc = bloc->prev;
580 heap->free = (char *) bloc->prev->data + bloc->prev->size;
581 }
582 else
583 {
584 /* HEAP contains no blocs before BLOC. */
585 heap->first_bloc = NIL_BLOC;
586 heap->last_bloc = NIL_BLOC;
587 heap->free = heap->bloc_start;
588 }
589
590 /* Advance through blocs one by one. */
591 for (b = bloc; b != NIL_BLOC; b = b->next)
592 {
593 /* Advance through heaps, marking them empty,
594 till we get to the one that B is in. */
595 while (heap)
596 {
597 if (heap->bloc_start <= b->data && b->data <= heap->end)
598 break;
599 heap = heap->next;
600 /* We know HEAP is not null now,
601 because there has to be space for bloc B. */
602 heap->first_bloc = NIL_BLOC;
603 heap->last_bloc = NIL_BLOC;
604 heap->free = heap->bloc_start;
605 }
606
607 /* Update HEAP's status for bloc B. */
608 heap->free = (char *) b->data + b->size;
609 heap->last_bloc = b;
610 if (heap->first_bloc == NIL_BLOC)
611 heap->first_bloc = b;
612
613 /* Record that B is in HEAP. */
614 b->heap = heap;
615 }
616
617 /* If there are any remaining heaps and no blocs left,
618 mark those heaps as empty. */
619 heap = heap->next;
620 while (heap)
621 {
622 heap->first_bloc = NIL_BLOC;
623 heap->last_bloc = NIL_BLOC;
624 heap->free = heap->bloc_start;
625 heap = heap->next;
626 }
627 }
628 \f
629 /* Resize BLOC to SIZE bytes. This relocates the blocs
630 that come after BLOC in memory. */
631
632 static int
633 resize_bloc (bloc, size)
634 bloc_ptr bloc;
635 SIZE size;
636 {
637 register bloc_ptr b;
638 heap_ptr heap;
639 POINTER address;
640 SIZE old_size;
641
642 /* No need to ever call this if arena is frozen, bug somewhere! */
643 if (r_alloc_freeze_level)
644 abort();
645
646 if (bloc == NIL_BLOC || size == bloc->size)
647 return 1;
648
649 for (heap = first_heap; heap != NIL_HEAP; heap = heap->next)
650 {
651 if (heap->bloc_start <= bloc->data && bloc->data <= heap->end)
652 break;
653 }
654
655 if (heap == NIL_HEAP)
656 abort ();
657
658 old_size = bloc->size;
659 bloc->size = size;
660
661 /* Note that bloc could be moved into the previous heap. */
662 address = (bloc->prev ? (char *) bloc->prev->data + bloc->prev->size
663 : (char *) first_heap->bloc_start);
664 while (heap)
665 {
666 if (heap->bloc_start <= address && address <= heap->end)
667 break;
668 heap = heap->prev;
669 }
670
671 if (! relocate_blocs (bloc, heap, address))
672 {
673 bloc->size = old_size;
674 return 0;
675 }
676
677 if (size > old_size)
678 {
679 for (b = last_bloc; b != bloc; b = b->prev)
680 {
681 if (!b->variable)
682 {
683 b->size = 0;
684 b->data = b->new_data;
685 }
686 else
687 {
688 safe_bcopy (b->data, b->new_data, b->size);
689 *b->variable = b->data = b->new_data;
690 }
691 }
692 if (!bloc->variable)
693 {
694 bloc->size = 0;
695 bloc->data = bloc->new_data;
696 }
697 else
698 {
699 safe_bcopy (bloc->data, bloc->new_data, old_size);
700 bzero ((char *) bloc->new_data + old_size, size - old_size);
701 *bloc->variable = bloc->data = bloc->new_data;
702 }
703 }
704 else
705 {
706 for (b = bloc; b != NIL_BLOC; b = b->next)
707 {
708 if (!b->variable)
709 {
710 b->size = 0;
711 b->data = b->new_data;
712 }
713 else
714 {
715 safe_bcopy (b->data, b->new_data, b->size);
716 *b->variable = b->data = b->new_data;
717 }
718 }
719 }
720
721 update_heap_bloc_correspondence (bloc, heap);
722
723 break_value = (last_bloc ? (char *) last_bloc->data + last_bloc->size
724 : (char *) first_heap->bloc_start);
725 return 1;
726 }
727 \f
728 /* Free BLOC from the chain of blocs, relocating any blocs above it.
729 This may return space to the system. */
730
731 static void
732 free_bloc (bloc)
733 bloc_ptr bloc;
734 {
735 heap_ptr heap = bloc->heap;
736
737 if (r_alloc_freeze_level)
738 {
739 bloc->variable = (POINTER *) NIL;
740 return;
741 }
742
743 resize_bloc (bloc, 0);
744
745 if (bloc == first_bloc && bloc == last_bloc)
746 {
747 first_bloc = last_bloc = NIL_BLOC;
748 }
749 else if (bloc == last_bloc)
750 {
751 last_bloc = bloc->prev;
752 last_bloc->next = NIL_BLOC;
753 }
754 else if (bloc == first_bloc)
755 {
756 first_bloc = bloc->next;
757 first_bloc->prev = NIL_BLOC;
758 }
759 else
760 {
761 bloc->next->prev = bloc->prev;
762 bloc->prev->next = bloc->next;
763 }
764
765 /* Update the records of which blocs are in HEAP. */
766 if (heap->first_bloc == bloc)
767 {
768 if (bloc->next != 0 && bloc->next->heap == heap)
769 heap->first_bloc = bloc->next;
770 else
771 heap->first_bloc = heap->last_bloc = NIL_BLOC;
772 }
773 if (heap->last_bloc == bloc)
774 {
775 if (bloc->prev != 0 && bloc->prev->heap == heap)
776 heap->last_bloc = bloc->prev;
777 else
778 heap->first_bloc = heap->last_bloc = NIL_BLOC;
779 }
780
781 relinquish ();
782 free (bloc);
783 }
784 \f
785 /* Interface routines. */
786
787 /* Obtain SIZE bytes of storage from the free pool, or the system, as
788 necessary. If relocatable blocs are in use, this means relocating
789 them. This function gets plugged into the GNU malloc's __morecore
790 hook.
791
792 We provide hysteresis, never relocating by less than extra_bytes.
793
794 If we're out of memory, we should return zero, to imitate the other
795 __morecore hook values - in particular, __default_morecore in the
796 GNU malloc package. */
797
798 POINTER
799 r_alloc_sbrk (size)
800 long size;
801 {
802 register bloc_ptr b;
803 POINTER address;
804
805 if (! r_alloc_initialized)
806 r_alloc_init ();
807
808 if (! use_relocatable_buffers)
809 return (*real_morecore) (size);
810
811 if (size == 0)
812 return virtual_break_value;
813
814 if (size > 0)
815 {
816 /* Allocate a page-aligned space. GNU malloc would reclaim an
817 extra space if we passed an unaligned one. But we could
818 not always find a space which is contiguous to the previous. */
819 POINTER new_bloc_start;
820 heap_ptr h = first_heap;
821 SIZE get = ROUNDUP (size);
822
823 address = (POINTER) ROUNDUP (virtual_break_value);
824
825 /* Search the list upward for a heap which is large enough. */
826 while ((char *) h->end < (char *) MEM_ROUNDUP ((char *)address + get))
827 {
828 h = h->next;
829 if (h == NIL_HEAP)
830 break;
831 address = (POINTER) ROUNDUP (h->start);
832 }
833
834 /* If not found, obtain more space. */
835 if (h == NIL_HEAP)
836 {
837 get += extra_bytes + page_size;
838
839 if (! obtain (address, get))
840 return 0;
841
842 if (first_heap == last_heap)
843 address = (POINTER) ROUNDUP (virtual_break_value);
844 else
845 address = (POINTER) ROUNDUP (last_heap->start);
846 h = last_heap;
847 }
848
849 new_bloc_start = (POINTER) MEM_ROUNDUP ((char *)address + get);
850
851 if (first_heap->bloc_start < new_bloc_start)
852 {
853 /* This is no clean solution - no idea how to do it better. */
854 if (r_alloc_freeze_level)
855 return NIL;
856
857 /* There is a bug here: if the above obtain call succeeded, but the
858 relocate_blocs call below does not succeed, we need to free
859 the memory that we got with obtain. */
860
861 /* Move all blocs upward. */
862 if (! relocate_blocs (first_bloc, h, new_bloc_start))
863 return 0;
864
865 /* Note that (POINTER)(h+1) <= new_bloc_start since
866 get >= page_size, so the following does not destroy the heap
867 header. */
868 for (b = last_bloc; b != NIL_BLOC; b = b->prev)
869 {
870 safe_bcopy (b->data, b->new_data, b->size);
871 *b->variable = b->data = b->new_data;
872 }
873
874 h->bloc_start = new_bloc_start;
875
876 update_heap_bloc_correspondence (first_bloc, h);
877 }
878 if (h != first_heap)
879 {
880 /* Give up managing heaps below the one the new
881 virtual_break_value points to. */
882 first_heap->prev = NIL_HEAP;
883 first_heap->next = h->next;
884 first_heap->start = h->start;
885 first_heap->end = h->end;
886 first_heap->free = h->free;
887 first_heap->first_bloc = h->first_bloc;
888 first_heap->last_bloc = h->last_bloc;
889 first_heap->bloc_start = h->bloc_start;
890
891 if (first_heap->next)
892 first_heap->next->prev = first_heap;
893 else
894 last_heap = first_heap;
895 }
896
897 bzero (address, size);
898 }
899 else /* size < 0 */
900 {
901 SIZE excess = (char *)first_heap->bloc_start
902 - ((char *)virtual_break_value + size);
903
904 address = virtual_break_value;
905
906 if (r_alloc_freeze_level == 0 && excess > 2 * extra_bytes)
907 {
908 excess -= extra_bytes;
909 first_heap->bloc_start
910 = (POINTER) MEM_ROUNDUP ((char *)first_heap->bloc_start - excess);
911
912 relocate_blocs (first_bloc, first_heap, first_heap->bloc_start);
913
914 for (b = first_bloc; b != NIL_BLOC; b = b->next)
915 {
916 safe_bcopy (b->data, b->new_data, b->size);
917 *b->variable = b->data = b->new_data;
918 }
919 }
920
921 if ((char *)virtual_break_value + size < (char *)first_heap->start)
922 {
923 /* We found an additional space below the first heap */
924 first_heap->start = (POINTER) ((char *)virtual_break_value + size);
925 }
926 }
927
928 virtual_break_value = (POINTER) ((char *)address + size);
929 break_value = (last_bloc
930 ? (char *) last_bloc->data + last_bloc->size
931 : (char *) first_heap->bloc_start);
932 if (size < 0)
933 relinquish ();
934
935 return address;
936 }
937
938
939 /* Allocate a relocatable bloc of storage of size SIZE. A pointer to
940 the data is returned in *PTR. PTR is thus the address of some variable
941 which will use the data area.
942
943 The allocation of 0 bytes is valid.
944 In case r_alloc_freeze is set, a best fit of unused blocs could be done
945 before allocating a new area. Not yet done.
946
947 If we can't allocate the necessary memory, set *PTR to zero, and
948 return zero. */
949
950 POINTER
951 r_alloc (ptr, size)
952 POINTER *ptr;
953 SIZE size;
954 {
955 register bloc_ptr new_bloc;
956
957 if (! r_alloc_initialized)
958 r_alloc_init ();
959
960 new_bloc = get_bloc (MEM_ROUNDUP (size));
961 if (new_bloc)
962 {
963 new_bloc->variable = ptr;
964 *ptr = new_bloc->data;
965 }
966 else
967 *ptr = 0;
968
969 return *ptr;
970 }
971
972 /* Free a bloc of relocatable storage whose data is pointed to by PTR.
973 Store 0 in *PTR to show there's no block allocated. */
974
975 void
976 r_alloc_free (ptr)
977 register POINTER *ptr;
978 {
979 register bloc_ptr dead_bloc;
980
981 if (! r_alloc_initialized)
982 r_alloc_init ();
983
984 dead_bloc = find_bloc (ptr);
985 if (dead_bloc == NIL_BLOC)
986 abort ();
987
988 free_bloc (dead_bloc);
989 *ptr = 0;
990
991 #ifdef emacs
992 refill_memory_reserve ();
993 #endif
994 }
995
996 /* Given a pointer at address PTR to relocatable data, resize it to SIZE.
997 Do this by shifting all blocks above this one up in memory, unless
998 SIZE is less than or equal to the current bloc size, in which case
999 do nothing.
1000
1001 In case r_alloc_freeze is set, a new bloc is allocated, and the
1002 memory copied to it. Not very efficient. We could traverse the
1003 bloc_list for a best fit of free blocs first.
1004
1005 Change *PTR to reflect the new bloc, and return this value.
1006
1007 If more memory cannot be allocated, then leave *PTR unchanged, and
1008 return zero. */
1009
1010 POINTER
1011 r_re_alloc (ptr, size)
1012 POINTER *ptr;
1013 SIZE size;
1014 {
1015 register bloc_ptr bloc;
1016
1017 if (! r_alloc_initialized)
1018 r_alloc_init ();
1019
1020 if (!*ptr)
1021 return r_alloc (ptr, size);
1022 if (!size)
1023 {
1024 r_alloc_free (ptr);
1025 return r_alloc (ptr, 0);
1026 }
1027
1028 bloc = find_bloc (ptr);
1029 if (bloc == NIL_BLOC)
1030 abort ();
1031
1032 if (size < bloc->size)
1033 {
1034 /* Wouldn't it be useful to actually resize the bloc here? */
1035 /* I think so too, but not if it's too expensive... */
1036 if ((bloc->size - MEM_ROUNDUP (size) >= page_size)
1037 && r_alloc_freeze_level == 0)
1038 {
1039 resize_bloc (bloc, MEM_ROUNDUP (size));
1040 /* Never mind if this fails, just do nothing... */
1041 /* It *should* be infallible! */
1042 }
1043 }
1044 else if (size > bloc->size)
1045 {
1046 if (r_alloc_freeze_level)
1047 {
1048 bloc_ptr new_bloc;
1049 new_bloc = get_bloc (MEM_ROUNDUP (size));
1050 if (new_bloc)
1051 {
1052 new_bloc->variable = ptr;
1053 *ptr = new_bloc->data;
1054 bloc->variable = (POINTER *) NIL;
1055 }
1056 else
1057 return NIL;
1058 }
1059 else
1060 {
1061 if (! resize_bloc (bloc, MEM_ROUNDUP (size)))
1062 return NIL;
1063 }
1064 }
1065 return *ptr;
1066 }
1067
1068 /* Disable relocations, after making room for at least SIZE bytes
1069 of non-relocatable heap if possible. The relocatable blocs are
1070 guaranteed to hold still until thawed, even if this means that
1071 malloc must return a null pointer. */
1072
1073 void
1074 r_alloc_freeze (size)
1075 long size;
1076 {
1077 if (! r_alloc_initialized)
1078 r_alloc_init ();
1079
1080 /* If already frozen, we can't make any more room, so don't try. */
1081 if (r_alloc_freeze_level > 0)
1082 size = 0;
1083 /* If we can't get the amount requested, half is better than nothing. */
1084 while (size > 0 && r_alloc_sbrk (size) == 0)
1085 size /= 2;
1086 ++r_alloc_freeze_level;
1087 if (size > 0)
1088 r_alloc_sbrk (-size);
1089 }
1090
1091 void
1092 r_alloc_thaw ()
1093 {
1094
1095 if (! r_alloc_initialized)
1096 r_alloc_init ();
1097
1098 if (--r_alloc_freeze_level < 0)
1099 abort ();
1100
1101 /* This frees all unused blocs. It is not too inefficient, as the resize
1102 and bcopy is done only once. Afterwards, all unreferenced blocs are
1103 already shrunk to zero size. */
1104 if (!r_alloc_freeze_level)
1105 {
1106 bloc_ptr *b = &first_bloc;
1107 while (*b)
1108 if (!(*b)->variable)
1109 free_bloc (*b);
1110 else
1111 b = &(*b)->next;
1112 }
1113 }
1114
1115
1116 #if defined (emacs) && defined (DOUG_LEA_MALLOC)
1117
1118 /* Reinitialize the morecore hook variables after restarting a dumped
1119 Emacs. This is needed when using Doug Lea's malloc from GNU libc. */
1120 void
1121 r_alloc_reinit ()
1122 {
1123 /* Only do this if the hook has been reset, so that we don't get an
1124 infinite loop, in case Emacs was linked statically. */
1125 if (__morecore != r_alloc_sbrk)
1126 {
1127 real_morecore = __morecore;
1128 __morecore = r_alloc_sbrk;
1129 }
1130 }
1131
1132 #endif /* emacs && DOUG_LEA_MALLOC */
1133
1134 #ifdef DEBUG
1135
1136 #include <assert.h>
1137
1138 void
1139 r_alloc_check ()
1140 {
1141 int found = 0;
1142 heap_ptr h, ph = 0;
1143 bloc_ptr b, pb = 0;
1144
1145 if (!r_alloc_initialized)
1146 return;
1147
1148 assert (first_heap);
1149 assert (last_heap->end <= (POINTER) sbrk (0));
1150 assert ((POINTER) first_heap < first_heap->start);
1151 assert (first_heap->start <= virtual_break_value);
1152 assert (virtual_break_value <= first_heap->end);
1153
1154 for (h = first_heap; h; h = h->next)
1155 {
1156 assert (h->prev == ph);
1157 assert ((POINTER) ROUNDUP (h->end) == h->end);
1158 #if 0 /* ??? The code in ralloc.c does not really try to ensure
1159 the heap start has any sort of alignment.
1160 Perhaps it should. */
1161 assert ((POINTER) MEM_ROUNDUP (h->start) == h->start);
1162 #endif
1163 assert ((POINTER) MEM_ROUNDUP (h->bloc_start) == h->bloc_start);
1164 assert (h->start <= h->bloc_start && h->bloc_start <= h->end);
1165
1166 if (ph)
1167 {
1168 assert (ph->end < h->start);
1169 assert (h->start <= (POINTER)h && (POINTER)(h+1) <= h->bloc_start);
1170 }
1171
1172 if (h->bloc_start <= break_value && break_value <= h->end)
1173 found = 1;
1174
1175 ph = h;
1176 }
1177
1178 assert (found);
1179 assert (last_heap == ph);
1180
1181 for (b = first_bloc; b; b = b->next)
1182 {
1183 assert (b->prev == pb);
1184 assert ((POINTER) MEM_ROUNDUP (b->data) == b->data);
1185 assert ((SIZE) MEM_ROUNDUP (b->size) == b->size);
1186
1187 ph = 0;
1188 for (h = first_heap; h; h = h->next)
1189 {
1190 if (h->bloc_start <= b->data && b->data + b->size <= h->end)
1191 break;
1192 ph = h;
1193 }
1194
1195 assert (h);
1196
1197 if (pb && pb->data + pb->size != b->data)
1198 {
1199 assert (ph && b->data == h->bloc_start);
1200 while (ph)
1201 {
1202 if (ph->bloc_start <= pb->data
1203 && pb->data + pb->size <= ph->end)
1204 {
1205 assert (pb->data + pb->size + b->size > ph->end);
1206 break;
1207 }
1208 else
1209 {
1210 assert (ph->bloc_start + b->size > ph->end);
1211 }
1212 ph = ph->prev;
1213 }
1214 }
1215 pb = b;
1216 }
1217
1218 assert (last_bloc == pb);
1219
1220 if (last_bloc)
1221 assert (last_bloc->data + last_bloc->size == break_value);
1222 else
1223 assert (first_heap->bloc_start == break_value);
1224 }
1225
1226 #endif /* DEBUG */
1227
1228
1229 \f
1230 /***********************************************************************
1231 Initialization
1232 ***********************************************************************/
1233
1234 /* Initialize various things for memory allocation. */
1235
1236 static void
1237 r_alloc_init ()
1238 {
1239 if (r_alloc_initialized)
1240 return;
1241 r_alloc_initialized = 1;
1242
1243 page_size = PAGE;
1244 #ifndef SYSTEM_MALLOC
1245 real_morecore = __morecore;
1246 __morecore = r_alloc_sbrk;
1247
1248 first_heap = last_heap = &heap_base;
1249 first_heap->next = first_heap->prev = NIL_HEAP;
1250 first_heap->start = first_heap->bloc_start
1251 = virtual_break_value = break_value = (*real_morecore) (0);
1252 if (break_value == NIL)
1253 abort ();
1254
1255 extra_bytes = ROUNDUP (50000);
1256 #endif
1257
1258 #ifdef DOUG_LEA_MALLOC
1259 BLOCK_INPUT;
1260 mallopt (M_TOP_PAD, 64 * 4096);
1261 UNBLOCK_INPUT;
1262 #else
1263 #ifndef SYSTEM_MALLOC
1264 /* Give GNU malloc's morecore some hysteresis
1265 so that we move all the relocatable blocks much less often. */
1266 __malloc_extra_blocks = 64;
1267 #endif
1268 #endif
1269
1270 #ifndef SYSTEM_MALLOC
1271 first_heap->end = (POINTER) ROUNDUP (first_heap->start);
1272
1273 /* The extra call to real_morecore guarantees that the end of the
1274 address space is a multiple of page_size, even if page_size is
1275 not really the page size of the system running the binary in
1276 which page_size is stored. This allows a binary to be built on a
1277 system with one page size and run on a system with a smaller page
1278 size. */
1279 (*real_morecore) ((char *) first_heap->end - (char *) first_heap->start);
1280
1281 /* Clear the rest of the last page; this memory is in our address space
1282 even though it is after the sbrk value. */
1283 /* Doubly true, with the additional call that explicitly adds the
1284 rest of that page to the address space. */
1285 bzero (first_heap->start,
1286 (char *) first_heap->end - (char *) first_heap->start);
1287 virtual_break_value = break_value = first_heap->bloc_start = first_heap->end;
1288 #endif
1289
1290 use_relocatable_buffers = 1;
1291 }
1292
1293 /* arch-tag: 6a524a15-faff-44c8-95d4-a5da6f55110f
1294 (do not change this comment) */