]> code.delx.au - gnu-emacs/blob - src/lisp.h
Simplify lisp.h by removing the __COUNTER__ business.
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2014 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
40 # define ID (some integer preprocessor expression of type TYPE)
41 DEFINE_GDB_SYMBOL_END (ID)
42
43 This hack is for the benefit of compilers that do not make macro
44 definitions or enums visible to the debugger. It's used for symbols
45 that .gdbinit needs. */
46
47 #ifdef MAIN_PROGRAM
48 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) type const id EXTERNALLY_VISIBLE
49 # define DEFINE_GDB_SYMBOL_END(id) = id;
50 #else
51 # define DEFINE_GDB_SYMBOL_BEGIN(type, id)
52 # define DEFINE_GDB_SYMBOL_END(val)
53 #endif
54
55 /* The ubiquitous max and min macros. */
56 #undef min
57 #undef max
58 #define max(a, b) ((a) > (b) ? (a) : (b))
59 #define min(a, b) ((a) < (b) ? (a) : (b))
60
61 /* Number of elements in an array. */
62 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
63
64 /* Number of bits in a Lisp_Object tag. */
65 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
66 #define GCTYPEBITS 3
67 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
68
69 /* The number of bits needed in an EMACS_INT over and above the number
70 of bits in a pointer. This is 0 on systems where:
71 1. We can specify multiple-of-8 alignment on static variables.
72 2. We know malloc returns a multiple of 8. */
73 #if (defined alignas \
74 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
75 || defined DARWIN_OS || defined __sun || defined __MINGW32__ \
76 || defined CYGWIN))
77 # define NONPOINTER_BITS 0
78 #else
79 # define NONPOINTER_BITS GCTYPEBITS
80 #endif
81
82 /* EMACS_INT - signed integer wide enough to hold an Emacs value
83 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
84 pI - printf length modifier for EMACS_INT
85 EMACS_UINT - unsigned variant of EMACS_INT */
86 #ifndef EMACS_INT_MAX
87 # if INTPTR_MAX <= 0
88 # error "INTPTR_MAX misconfigured"
89 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
90 typedef int EMACS_INT;
91 typedef unsigned int EMACS_UINT;
92 # define EMACS_INT_MAX INT_MAX
93 # define pI ""
94 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
95 typedef long int EMACS_INT;
96 typedef unsigned long EMACS_UINT;
97 # define EMACS_INT_MAX LONG_MAX
98 # define pI "l"
99 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
100 In theory this is not safe, but in practice it seems to be OK. */
101 # elif INTPTR_MAX <= LLONG_MAX
102 typedef long long int EMACS_INT;
103 typedef unsigned long long int EMACS_UINT;
104 # define EMACS_INT_MAX LLONG_MAX
105 # define pI "ll"
106 # else
107 # error "INTPTR_MAX too large"
108 # endif
109 #endif
110
111 /* Number of bits to put in each character in the internal representation
112 of bool vectors. This should not vary across implementations. */
113 enum { BOOL_VECTOR_BITS_PER_CHAR =
114 #define BOOL_VECTOR_BITS_PER_CHAR 8
115 BOOL_VECTOR_BITS_PER_CHAR
116 };
117
118 /* An unsigned integer type representing a fixed-length bit sequence,
119 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
120 for speed, but it is unsigned char on weird platforms. */
121 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
122 typedef size_t bits_word;
123 # define BITS_WORD_MAX SIZE_MAX
124 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
125 #else
126 typedef unsigned char bits_word;
127 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
128 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
129 #endif
130 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
131
132 /* Number of bits in some machine integer types. */
133 enum
134 {
135 BITS_PER_CHAR = CHAR_BIT,
136 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
137 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
138 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
139 };
140
141 /* printmax_t and uprintmax_t are types for printing large integers.
142 These are the widest integers that are supported for printing.
143 pMd etc. are conversions for printing them.
144 On C99 hosts, there's no problem, as even the widest integers work.
145 Fall back on EMACS_INT on pre-C99 hosts. */
146 #ifdef PRIdMAX
147 typedef intmax_t printmax_t;
148 typedef uintmax_t uprintmax_t;
149 # define pMd PRIdMAX
150 # define pMu PRIuMAX
151 #else
152 typedef EMACS_INT printmax_t;
153 typedef EMACS_UINT uprintmax_t;
154 # define pMd pI"d"
155 # define pMu pI"u"
156 #endif
157
158 /* Use pD to format ptrdiff_t values, which suffice for indexes into
159 buffers and strings. Emacs never allocates objects larger than
160 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
161 In C99, pD can always be "t"; configure it here for the sake of
162 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
163 #if PTRDIFF_MAX == INT_MAX
164 # define pD ""
165 #elif PTRDIFF_MAX == LONG_MAX
166 # define pD "l"
167 #elif PTRDIFF_MAX == LLONG_MAX
168 # define pD "ll"
169 #else
170 # define pD "t"
171 #endif
172
173 /* Extra internal type checking? */
174
175 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
176 'assume (COND)'. COND should be free of side effects, as it may or
177 may not be evaluated.
178
179 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
180 defined and suppress_checking is false, and does nothing otherwise.
181 Emacs dies if COND is checked and is false. The suppress_checking
182 variable is initialized to 0 in alloc.c. Set it to 1 using a
183 debugger to temporarily disable aborting on detected internal
184 inconsistencies or error conditions.
185
186 In some cases, a good compiler may be able to optimize away the
187 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
188 uses eassert to test STRINGP (x), but a particular use of XSTRING
189 is invoked only after testing that STRINGP (x) is true, making the
190 test redundant.
191
192 eassume is like eassert except that it also causes the compiler to
193 assume that COND is true afterwards, regardless of whether runtime
194 checking is enabled. This can improve performance in some cases,
195 though it can degrade performance in others. It's often suboptimal
196 for COND to call external functions or access volatile storage. */
197
198 #ifndef ENABLE_CHECKING
199 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
200 # define eassume(cond) assume (cond)
201 #else /* ENABLE_CHECKING */
202
203 extern _Noreturn void die (const char *, const char *, int);
204
205 extern bool suppress_checking EXTERNALLY_VISIBLE;
206
207 # define eassert(cond) \
208 (suppress_checking || (cond) \
209 ? (void) 0 \
210 : die (# cond, __FILE__, __LINE__))
211 # define eassume(cond) \
212 (suppress_checking \
213 ? assume (cond) \
214 : (cond) \
215 ? (void) 0 \
216 : die (# cond, __FILE__, __LINE__))
217 #endif /* ENABLE_CHECKING */
218
219 \f
220 /* Use the configure flag --enable-check-lisp-object-type to make
221 Lisp_Object use a struct type instead of the default int. The flag
222 causes CHECK_LISP_OBJECT_TYPE to be defined. */
223
224 /***** Select the tagging scheme. *****/
225 /* The following option controls the tagging scheme:
226 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
227 always 0, and we can thus use them to hold tag bits, without
228 restricting our addressing space.
229
230 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
231 restricting our possible address range.
232
233 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
234 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
235 on the few static Lisp_Objects used: all the defsubr as well
236 as the two special buffers buffer_defaults and buffer_local_symbols. */
237
238 enum Lisp_Bits
239 {
240 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
241 integer constant, for MSVC. */
242 #define GCALIGNMENT 8
243
244 /* Number of bits in a Lisp_Object value, not counting the tag. */
245 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
246
247 /* Number of bits in a Lisp fixnum tag. */
248 INTTYPEBITS = GCTYPEBITS - 1,
249
250 /* Number of bits in a Lisp fixnum value, not counting the tag. */
251 FIXNUM_BITS = VALBITS + 1
252 };
253
254 #if GCALIGNMENT != 1 << GCTYPEBITS
255 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
256 #endif
257
258 /* The maximum value that can be stored in a EMACS_INT, assuming all
259 bits other than the type bits contribute to a nonnegative signed value.
260 This can be used in #if, e.g., '#if VAL_MAX < UINTPTR_MAX' below. */
261 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
262
263 /* Whether the least-significant bits of an EMACS_INT contain the tag.
264 On hosts where pointers-as-ints do not exceed VAL_MAX, USE_LSB_TAG is:
265 a. unnecessary, because the top bits of an EMACS_INT are unused, and
266 b. slower, because it typically requires extra masking.
267 So, USE_LSB_TAG is true only on hosts where it might be useful. */
268 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
269 #define USE_LSB_TAG (EMACS_INT_MAX >> GCTYPEBITS < INTPTR_MAX)
270 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
271
272 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
273 # error "USE_LSB_TAG not supported on this platform; please report this." \
274 "Try 'configure --with-wide-int' to work around the problem."
275 error !;
276 #endif
277
278 #ifndef alignas
279 # define alignas(alignment) /* empty */
280 # if USE_LSB_TAG
281 # error "USE_LSB_TAG requires alignas"
282 # endif
283 #endif
284
285 #ifndef USE_STACK_LISP_OBJECTS
286 # define USE_STACK_LISP_OBJECTS false
287 #endif
288
289 #if defined HAVE_STRUCT_ATTRIBUTE_ALIGNED && USE_STACK_LISP_OBJECTS
290 # define GCALIGNED __attribute__ ((aligned (GCALIGNMENT)))
291 #else
292 # define GCALIGNED /* empty */
293 #endif
294
295 /* Some operations are so commonly executed that they are implemented
296 as macros, not functions, because otherwise runtime performance would
297 suffer too much when compiling with GCC without optimization.
298 There's no need to inline everything, just the operations that
299 would otherwise cause a serious performance problem.
300
301 For each such operation OP, define a macro lisp_h_OP that contains
302 the operation's implementation. That way, OP can be implemented
303 via a macro definition like this:
304
305 #define OP(x) lisp_h_OP (x)
306
307 and/or via a function definition like this:
308
309 LISP_MACRO_DEFUN (OP, Lisp_Object, (Lisp_Object x), (x))
310
311 which macro-expands to this:
312
313 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
314
315 without worrying about the implementations diverging, since
316 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
317 are intended to be private to this include file, and should not be
318 used elsewhere.
319
320 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
321 functions, once most developers have access to GCC 4.8 or later and
322 can use "gcc -Og" to debug. Maybe in the year 2016. See
323 Bug#11935.
324
325 Commentary for these macros can be found near their corresponding
326 functions, below. */
327
328 #if CHECK_LISP_OBJECT_TYPE
329 # define lisp_h_XLI(o) ((o).i)
330 # define lisp_h_XIL(i) ((Lisp_Object) { i })
331 #else
332 # define lisp_h_XLI(o) (o)
333 # define lisp_h_XIL(i) (i)
334 #endif
335 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
336 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
337 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
338 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
339 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
340 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
341 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
342 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
343 #define lisp_h_INTEGERP(x) ((XTYPE (x) & ~Lisp_Int1) == 0)
344 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
345 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
346 #define lisp_h_NILP(x) EQ (x, Qnil)
347 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
348 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
349 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
350 #define lisp_h_SYMBOL_VAL(sym) \
351 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
352 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
353 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
354 #define lisp_h_XCAR(c) XCONS (c)->car
355 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
356 #define lisp_h_XCONS(a) \
357 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
358 #define lisp_h_XHASH(a) XUINT (a)
359 #define lisp_h_XPNTR(a) ((void *) (intptr_t) (XLI (a) & VALMASK))
360 #define lisp_h_XSYMBOL(a) \
361 (eassert (SYMBOLP (a)), (struct Lisp_Symbol *) XUNTAG (a, Lisp_Symbol))
362 #ifndef GC_CHECK_CONS_LIST
363 # define lisp_h_check_cons_list() ((void) 0)
364 #endif
365 #if USE_LSB_TAG
366 # define lisp_h_make_number(n) \
367 XIL ((EMACS_INT) ((EMACS_UINT) (n) << INTTYPEBITS))
368 # define lisp_h_XFASTINT(a) XINT (a)
369 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
370 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
371 # define lisp_h_XUNTAG(a, type) ((void *) (XLI (a) - (type)))
372 #endif
373
374 /* When compiling via gcc -O0, define the key operations as macros, as
375 Emacs is too slow otherwise. To disable this optimization, compile
376 with -DINLINING=false. */
377 #if (defined __NO_INLINE__ \
378 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
379 && ! (defined INLINING && ! INLINING))
380 # define XLI(o) lisp_h_XLI (o)
381 # define XIL(i) lisp_h_XIL (i)
382 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
383 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
384 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
385 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
386 # define CONSP(x) lisp_h_CONSP (x)
387 # define EQ(x, y) lisp_h_EQ (x, y)
388 # define FLOATP(x) lisp_h_FLOATP (x)
389 # define INTEGERP(x) lisp_h_INTEGERP (x)
390 # define MARKERP(x) lisp_h_MARKERP (x)
391 # define MISCP(x) lisp_h_MISCP (x)
392 # define NILP(x) lisp_h_NILP (x)
393 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
394 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
395 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
396 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
397 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
398 # define XCAR(c) lisp_h_XCAR (c)
399 # define XCDR(c) lisp_h_XCDR (c)
400 # define XCONS(a) lisp_h_XCONS (a)
401 # define XHASH(a) lisp_h_XHASH (a)
402 # define XPNTR(a) lisp_h_XPNTR (a)
403 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
404 # ifndef GC_CHECK_CONS_LIST
405 # define check_cons_list() lisp_h_check_cons_list ()
406 # endif
407 # if USE_LSB_TAG
408 # define make_number(n) lisp_h_make_number (n)
409 # define XFASTINT(a) lisp_h_XFASTINT (a)
410 # define XINT(a) lisp_h_XINT (a)
411 # define XTYPE(a) lisp_h_XTYPE (a)
412 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
413 # endif
414 #endif
415
416 /* Define NAME as a lisp.h inline function that returns TYPE and has
417 arguments declared as ARGDECLS and passed as ARGS. ARGDECLS and
418 ARGS should be parenthesized. Implement the function by calling
419 lisp_h_NAME ARGS. */
420 #define LISP_MACRO_DEFUN(name, type, argdecls, args) \
421 INLINE type (name) argdecls { return lisp_h_##name args; }
422
423 /* like LISP_MACRO_DEFUN, except NAME returns void. */
424 #define LISP_MACRO_DEFUN_VOID(name, argdecls, args) \
425 INLINE void (name) argdecls { lisp_h_##name args; }
426
427
428 /* Define the fundamental Lisp data structures. */
429
430 /* This is the set of Lisp data types. If you want to define a new
431 data type, read the comments after Lisp_Fwd_Type definition
432 below. */
433
434 /* Lisp integers use 2 tags, to give them one extra bit, thus
435 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
436 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
437 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
438
439 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
440 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
441 vociferously about them. */
442 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
443 || (defined __SUNPRO_C && __STDC__))
444 #define ENUM_BF(TYPE) unsigned int
445 #else
446 #define ENUM_BF(TYPE) enum TYPE
447 #endif
448
449
450 enum Lisp_Type
451 {
452 /* Integer. XINT (obj) is the integer value. */
453 Lisp_Int0 = 0,
454 Lisp_Int1 = USE_LSB_TAG ? 1 << INTTYPEBITS : 1,
455
456 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
457 Lisp_Symbol = 2,
458
459 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
460 whose first member indicates the subtype. */
461 Lisp_Misc = 3,
462
463 /* String. XSTRING (object) points to a struct Lisp_String.
464 The length of the string, and its contents, are stored therein. */
465 Lisp_String = USE_LSB_TAG ? 1 : 1 << INTTYPEBITS,
466
467 /* Vector of Lisp objects, or something resembling it.
468 XVECTOR (object) points to a struct Lisp_Vector, which contains
469 the size and contents. The size field also contains the type
470 information, if it's not a real vector object. */
471 Lisp_Vectorlike = 5,
472
473 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
474 Lisp_Cons = 6,
475
476 Lisp_Float = 7
477 };
478
479 /* This is the set of data types that share a common structure.
480 The first member of the structure is a type code from this set.
481 The enum values are arbitrary, but we'll use large numbers to make it
482 more likely that we'll spot the error if a random word in memory is
483 mistakenly interpreted as a Lisp_Misc. */
484 enum Lisp_Misc_Type
485 {
486 Lisp_Misc_Free = 0x5eab,
487 Lisp_Misc_Marker,
488 Lisp_Misc_Overlay,
489 Lisp_Misc_Save_Value,
490 /* Currently floats are not a misc type,
491 but let's define this in case we want to change that. */
492 Lisp_Misc_Float,
493 /* This is not a type code. It is for range checking. */
494 Lisp_Misc_Limit
495 };
496
497 /* These are the types of forwarding objects used in the value slot
498 of symbols for special built-in variables whose value is stored in
499 C variables. */
500 enum Lisp_Fwd_Type
501 {
502 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
503 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
504 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
505 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
506 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
507 };
508
509 /* If you want to define a new Lisp data type, here are some
510 instructions. See the thread at
511 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
512 for more info.
513
514 First, there are already a couple of Lisp types that can be used if
515 your new type does not need to be exposed to Lisp programs nor
516 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
517 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
518 is suitable for temporarily stashing away pointers and integers in
519 a Lisp object. The latter is useful for vector-like Lisp objects
520 that need to be used as part of other objects, but which are never
521 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
522 an example).
523
524 These two types don't look pretty when printed, so they are
525 unsuitable for Lisp objects that can be exposed to users.
526
527 To define a new data type, add one more Lisp_Misc subtype or one
528 more pseudovector subtype. Pseudovectors are more suitable for
529 objects with several slots that need to support fast random access,
530 while Lisp_Misc types are for everything else. A pseudovector object
531 provides one or more slots for Lisp objects, followed by struct
532 members that are accessible only from C. A Lisp_Misc object is a
533 wrapper for a C struct that can contain anything you like.
534
535 Explicit freeing is discouraged for Lisp objects in general. But if
536 you really need to exploit this, use Lisp_Misc (check free_misc in
537 alloc.c to see why). There is no way to free a vectorlike object.
538
539 To add a new pseudovector type, extend the pvec_type enumeration;
540 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
541
542 For a Lisp_Misc, you will also need to add your entry to union
543 Lisp_Misc (but make sure the first word has the same structure as
544 the others, starting with a 16-bit member of the Lisp_Misc_Type
545 enumeration and a 1-bit GC markbit) and make sure the overall size
546 of the union is not increased by your addition.
547
548 For a new pseudovector, it's highly desirable to limit the size
549 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
550 Otherwise you will need to change sweep_vectors (also in alloc.c).
551
552 Then you will need to add switch branches in print.c (in
553 print_object, to print your object, and possibly also in
554 print_preprocess) and to alloc.c, to mark your object (in
555 mark_object) and to free it (in gc_sweep). The latter is also the
556 right place to call any code specific to your data type that needs
557 to run when the object is recycled -- e.g., free any additional
558 resources allocated for it that are not Lisp objects. You can even
559 make a pointer to the function that frees the resources a slot in
560 your object -- this way, the same object could be used to represent
561 several disparate C structures. */
562
563 #ifdef CHECK_LISP_OBJECT_TYPE
564
565 typedef struct { EMACS_INT i; } Lisp_Object;
566
567 #define LISP_INITIALLY_ZERO {0}
568
569 #undef CHECK_LISP_OBJECT_TYPE
570 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
571 #else /* CHECK_LISP_OBJECT_TYPE */
572
573 /* If a struct type is not wanted, define Lisp_Object as just a number. */
574
575 typedef EMACS_INT Lisp_Object;
576 #define LISP_INITIALLY_ZERO 0
577 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
578 #endif /* CHECK_LISP_OBJECT_TYPE */
579
580 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
581 At the machine level, these operations are no-ops. */
582 LISP_MACRO_DEFUN (XLI, EMACS_INT, (Lisp_Object o), (o))
583 LISP_MACRO_DEFUN (XIL, Lisp_Object, (EMACS_INT i), (i))
584
585 /* In the size word of a vector, this bit means the vector has been marked. */
586
587 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
588 # define ARRAY_MARK_FLAG PTRDIFF_MIN
589 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
590
591 /* In the size word of a struct Lisp_Vector, this bit means it's really
592 some other vector-like object. */
593 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
594 # define PSEUDOVECTOR_FLAG (PTRDIFF_MAX - PTRDIFF_MAX / 2)
595 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
596
597 /* In a pseudovector, the size field actually contains a word with one
598 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
599 with PVEC_TYPE_MASK to indicate the actual type. */
600 enum pvec_type
601 {
602 PVEC_NORMAL_VECTOR,
603 PVEC_FREE,
604 PVEC_PROCESS,
605 PVEC_FRAME,
606 PVEC_WINDOW,
607 PVEC_BOOL_VECTOR,
608 PVEC_BUFFER,
609 PVEC_HASH_TABLE,
610 PVEC_TERMINAL,
611 PVEC_WINDOW_CONFIGURATION,
612 PVEC_SUBR,
613 PVEC_OTHER,
614 /* These should be last, check internal_equal to see why. */
615 PVEC_COMPILED,
616 PVEC_CHAR_TABLE,
617 PVEC_SUB_CHAR_TABLE,
618 PVEC_FONT /* Should be last because it's used for range checking. */
619 };
620
621 enum More_Lisp_Bits
622 {
623 /* For convenience, we also store the number of elements in these bits.
624 Note that this size is not necessarily the memory-footprint size, but
625 only the number of Lisp_Object fields (that need to be traced by GC).
626 The distinction is used, e.g., by Lisp_Process, which places extra
627 non-Lisp_Object fields at the end of the structure. */
628 PSEUDOVECTOR_SIZE_BITS = 12,
629 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
630
631 /* To calculate the memory footprint of the pseudovector, it's useful
632 to store the size of non-Lisp area in word_size units here. */
633 PSEUDOVECTOR_REST_BITS = 12,
634 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
635 << PSEUDOVECTOR_SIZE_BITS),
636
637 /* Used to extract pseudovector subtype information. */
638 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
639 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
640 };
641 \f
642 /* These functions extract various sorts of values from a Lisp_Object.
643 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
644 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
645 that cons. */
646
647 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
648 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
649 # define VALMASK (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
650 DEFINE_GDB_SYMBOL_END (VALMASK)
651
652 /* Largest and smallest representable fixnum values. These are the C
653 values. They are macros for use in static initializers. */
654 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
655 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
656
657 /* Extract the pointer hidden within A. */
658 LISP_MACRO_DEFUN (XPNTR, void *, (Lisp_Object a), (a))
659
660 #if USE_LSB_TAG
661
662 LISP_MACRO_DEFUN (make_number, Lisp_Object, (EMACS_INT n), (n))
663 LISP_MACRO_DEFUN (XINT, EMACS_INT, (Lisp_Object a), (a))
664 LISP_MACRO_DEFUN (XFASTINT, EMACS_INT, (Lisp_Object a), (a))
665 LISP_MACRO_DEFUN (XTYPE, enum Lisp_Type, (Lisp_Object a), (a))
666 LISP_MACRO_DEFUN (XUNTAG, void *, (Lisp_Object a, int type), (a, type))
667
668 #else /* ! USE_LSB_TAG */
669
670 /* Although compiled only if ! USE_LSB_TAG, the following functions
671 also work when USE_LSB_TAG; this is to aid future maintenance when
672 the lisp_h_* macros are eventually removed. */
673
674 /* Make a Lisp integer representing the value of the low order
675 bits of N. */
676 INLINE Lisp_Object
677 make_number (EMACS_INT n)
678 {
679 if (USE_LSB_TAG)
680 {
681 EMACS_UINT u = n;
682 n = u << INTTYPEBITS;
683 }
684 else
685 n &= INTMASK;
686 return XIL (n);
687 }
688
689 /* Extract A's value as a signed integer. */
690 INLINE EMACS_INT
691 XINT (Lisp_Object a)
692 {
693 EMACS_INT i = XLI (a);
694 if (! USE_LSB_TAG)
695 {
696 EMACS_UINT u = i;
697 i = u << INTTYPEBITS;
698 }
699 return i >> INTTYPEBITS;
700 }
701
702 /* Like XINT (A), but may be faster. A must be nonnegative.
703 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
704 integers have zero-bits in their tags. */
705 INLINE EMACS_INT
706 XFASTINT (Lisp_Object a)
707 {
708 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a);
709 eassert (0 <= n);
710 return n;
711 }
712
713 /* Extract A's type. */
714 INLINE enum Lisp_Type
715 XTYPE (Lisp_Object a)
716 {
717 EMACS_UINT i = XLI (a);
718 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
719 }
720
721 /* Extract A's pointer value, assuming A's type is TYPE. */
722 INLINE void *
723 XUNTAG (Lisp_Object a, int type)
724 {
725 if (USE_LSB_TAG)
726 {
727 intptr_t i = XLI (a) - type;
728 return (void *) i;
729 }
730 return XPNTR (a);
731 }
732
733 #endif /* ! USE_LSB_TAG */
734
735 /* Extract A's value as an unsigned integer. */
736 INLINE EMACS_UINT
737 XUINT (Lisp_Object a)
738 {
739 EMACS_UINT i = XLI (a);
740 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
741 }
742
743 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
744 right now, but XUINT should only be applied to objects we know are
745 integers. */
746 LISP_MACRO_DEFUN (XHASH, EMACS_INT, (Lisp_Object a), (a))
747
748 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
749 INLINE Lisp_Object
750 make_natnum (EMACS_INT n)
751 {
752 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
753 return USE_LSB_TAG ? make_number (n) : XIL (n);
754 }
755
756 /* Return true if X and Y are the same object. */
757 LISP_MACRO_DEFUN (EQ, bool, (Lisp_Object x, Lisp_Object y), (x, y))
758
759 /* Value is true if I doesn't fit into a Lisp fixnum. It is
760 written this way so that it also works if I is of unsigned
761 type or if I is a NaN. */
762
763 #define FIXNUM_OVERFLOW_P(i) \
764 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
765
766 INLINE ptrdiff_t
767 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
768 {
769 return num < lower ? lower : num <= upper ? num : upper;
770 }
771 \f
772 /* Forward declarations. */
773
774 /* Defined in this file. */
775 union Lisp_Fwd;
776 INLINE bool BOOL_VECTOR_P (Lisp_Object);
777 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
778 INLINE bool BUFFERP (Lisp_Object);
779 INLINE bool CHAR_TABLE_P (Lisp_Object);
780 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
781 INLINE bool (CONSP) (Lisp_Object);
782 INLINE bool (FLOATP) (Lisp_Object);
783 INLINE bool functionp (Lisp_Object);
784 INLINE bool (INTEGERP) (Lisp_Object);
785 INLINE bool (MARKERP) (Lisp_Object);
786 INLINE bool (MISCP) (Lisp_Object);
787 INLINE bool (NILP) (Lisp_Object);
788 INLINE bool OVERLAYP (Lisp_Object);
789 INLINE bool PROCESSP (Lisp_Object);
790 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
791 INLINE bool SAVE_VALUEP (Lisp_Object);
792 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
793 Lisp_Object);
794 INLINE bool STRINGP (Lisp_Object);
795 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
796 INLINE bool SUBRP (Lisp_Object);
797 INLINE bool (SYMBOLP) (Lisp_Object);
798 INLINE bool (VECTORLIKEP) (Lisp_Object);
799 INLINE bool WINDOWP (Lisp_Object);
800 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
801
802 /* Defined in chartab.c. */
803 extern Lisp_Object char_table_ref (Lisp_Object, int);
804 extern void char_table_set (Lisp_Object, int, Lisp_Object);
805
806 /* Defined in data.c. */
807 extern Lisp_Object Qarrayp, Qbufferp, Qbuffer_or_string_p, Qchar_table_p;
808 extern Lisp_Object Qconsp, Qfloatp, Qintegerp, Qlambda, Qlistp, Qmarkerp, Qnil;
809 extern Lisp_Object Qnumberp, Qstringp, Qsymbolp, Qt, Qvectorp;
810 extern Lisp_Object Qbool_vector_p;
811 extern Lisp_Object Qvector_or_char_table_p, Qwholenump;
812 extern Lisp_Object Qwindow;
813 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
814 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
815
816 /* Defined in emacs.c. */
817 extern bool might_dump;
818 /* True means Emacs has already been initialized.
819 Used during startup to detect startup of dumped Emacs. */
820 extern bool initialized;
821
822 /* Defined in eval.c. */
823 extern Lisp_Object Qautoload;
824
825 /* Defined in floatfns.c. */
826 extern double extract_float (Lisp_Object);
827
828 /* Defined in process.c. */
829 extern Lisp_Object Qprocessp;
830
831 /* Defined in window.c. */
832 extern Lisp_Object Qwindowp;
833
834 /* Defined in xdisp.c. */
835 extern Lisp_Object Qimage;
836 \f
837
838 /* Extract a value or address from a Lisp_Object. */
839
840 LISP_MACRO_DEFUN (XCONS, struct Lisp_Cons *, (Lisp_Object a), (a))
841
842 INLINE struct Lisp_Vector *
843 XVECTOR (Lisp_Object a)
844 {
845 eassert (VECTORLIKEP (a));
846 return XUNTAG (a, Lisp_Vectorlike);
847 }
848
849 INLINE struct Lisp_String *
850 XSTRING (Lisp_Object a)
851 {
852 eassert (STRINGP (a));
853 return XUNTAG (a, Lisp_String);
854 }
855
856 LISP_MACRO_DEFUN (XSYMBOL, struct Lisp_Symbol *, (Lisp_Object a), (a))
857
858 INLINE struct Lisp_Float *
859 XFLOAT (Lisp_Object a)
860 {
861 eassert (FLOATP (a));
862 return XUNTAG (a, Lisp_Float);
863 }
864
865 /* Pseudovector types. */
866
867 INLINE struct Lisp_Process *
868 XPROCESS (Lisp_Object a)
869 {
870 eassert (PROCESSP (a));
871 return XUNTAG (a, Lisp_Vectorlike);
872 }
873
874 INLINE struct window *
875 XWINDOW (Lisp_Object a)
876 {
877 eassert (WINDOWP (a));
878 return XUNTAG (a, Lisp_Vectorlike);
879 }
880
881 INLINE struct terminal *
882 XTERMINAL (Lisp_Object a)
883 {
884 return XUNTAG (a, Lisp_Vectorlike);
885 }
886
887 INLINE struct Lisp_Subr *
888 XSUBR (Lisp_Object a)
889 {
890 eassert (SUBRP (a));
891 return XUNTAG (a, Lisp_Vectorlike);
892 }
893
894 INLINE struct buffer *
895 XBUFFER (Lisp_Object a)
896 {
897 eassert (BUFFERP (a));
898 return XUNTAG (a, Lisp_Vectorlike);
899 }
900
901 INLINE struct Lisp_Char_Table *
902 XCHAR_TABLE (Lisp_Object a)
903 {
904 eassert (CHAR_TABLE_P (a));
905 return XUNTAG (a, Lisp_Vectorlike);
906 }
907
908 INLINE struct Lisp_Sub_Char_Table *
909 XSUB_CHAR_TABLE (Lisp_Object a)
910 {
911 eassert (SUB_CHAR_TABLE_P (a));
912 return XUNTAG (a, Lisp_Vectorlike);
913 }
914
915 INLINE struct Lisp_Bool_Vector *
916 XBOOL_VECTOR (Lisp_Object a)
917 {
918 eassert (BOOL_VECTOR_P (a));
919 return XUNTAG (a, Lisp_Vectorlike);
920 }
921
922 /* Construct a Lisp_Object from a value or address. */
923
924 INLINE Lisp_Object
925 make_lisp_ptr (void *ptr, enum Lisp_Type type)
926 {
927 EMACS_UINT utype = type;
928 EMACS_UINT typebits = USE_LSB_TAG ? type : utype << VALBITS;
929 Lisp_Object a = XIL (typebits | (uintptr_t) ptr);
930 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
931 return a;
932 }
933
934 INLINE Lisp_Object
935 make_lisp_proc (struct Lisp_Process *p)
936 {
937 return make_lisp_ptr (p, Lisp_Vectorlike);
938 }
939
940 #define XSETINT(a, b) ((a) = make_number (b))
941 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
942 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
943 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
944 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
945 #define XSETSYMBOL(a, b) ((a) = make_lisp_ptr (b, Lisp_Symbol))
946 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
947 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
948
949 /* Pseudovector types. */
950
951 #define XSETPVECTYPE(v, code) \
952 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
953 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
954 ((v)->header.size = (PSEUDOVECTOR_FLAG \
955 | ((code) << PSEUDOVECTOR_AREA_BITS) \
956 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
957 | (lispsize)))
958
959 /* The cast to struct vectorlike_header * avoids aliasing issues. */
960 #define XSETPSEUDOVECTOR(a, b, code) \
961 XSETTYPED_PSEUDOVECTOR (a, b, \
962 (((struct vectorlike_header *) \
963 XUNTAG (a, Lisp_Vectorlike)) \
964 ->size), \
965 code)
966 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
967 (XSETVECTOR (a, b), \
968 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
969 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
970
971 #define XSETWINDOW_CONFIGURATION(a, b) \
972 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
973 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
974 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
975 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
976 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
977 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
978 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
979 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
980 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
981 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
982
983 /* Type checking. */
984
985 LISP_MACRO_DEFUN_VOID (CHECK_TYPE,
986 (int ok, Lisp_Object predicate, Lisp_Object x),
987 (ok, predicate, x))
988
989 /* Deprecated and will be removed soon. */
990
991 #define INTERNAL_FIELD(field) field ## _
992
993 /* See the macros in intervals.h. */
994
995 typedef struct interval *INTERVAL;
996
997 struct GCALIGNED Lisp_Cons
998 {
999 /* Car of this cons cell. */
1000 Lisp_Object car;
1001
1002 union
1003 {
1004 /* Cdr of this cons cell. */
1005 Lisp_Object cdr;
1006
1007 /* Used to chain conses on a free list. */
1008 struct Lisp_Cons *chain;
1009 } u;
1010 };
1011
1012 /* Take the car or cdr of something known to be a cons cell. */
1013 /* The _addr functions shouldn't be used outside of the minimal set
1014 of code that has to know what a cons cell looks like. Other code not
1015 part of the basic lisp implementation should assume that the car and cdr
1016 fields are not accessible. (What if we want to switch to
1017 a copying collector someday? Cached cons cell field addresses may be
1018 invalidated at arbitrary points.) */
1019 INLINE Lisp_Object *
1020 xcar_addr (Lisp_Object c)
1021 {
1022 return &XCONS (c)->car;
1023 }
1024 INLINE Lisp_Object *
1025 xcdr_addr (Lisp_Object c)
1026 {
1027 return &XCONS (c)->u.cdr;
1028 }
1029
1030 /* Use these from normal code. */
1031 LISP_MACRO_DEFUN (XCAR, Lisp_Object, (Lisp_Object c), (c))
1032 LISP_MACRO_DEFUN (XCDR, Lisp_Object, (Lisp_Object c), (c))
1033
1034 /* Use these to set the fields of a cons cell.
1035
1036 Note that both arguments may refer to the same object, so 'n'
1037 should not be read after 'c' is first modified. */
1038 INLINE void
1039 XSETCAR (Lisp_Object c, Lisp_Object n)
1040 {
1041 *xcar_addr (c) = n;
1042 }
1043 INLINE void
1044 XSETCDR (Lisp_Object c, Lisp_Object n)
1045 {
1046 *xcdr_addr (c) = n;
1047 }
1048
1049 /* Take the car or cdr of something whose type is not known. */
1050 INLINE Lisp_Object
1051 CAR (Lisp_Object c)
1052 {
1053 return (CONSP (c) ? XCAR (c)
1054 : NILP (c) ? Qnil
1055 : wrong_type_argument (Qlistp, c));
1056 }
1057 INLINE Lisp_Object
1058 CDR (Lisp_Object c)
1059 {
1060 return (CONSP (c) ? XCDR (c)
1061 : NILP (c) ? Qnil
1062 : wrong_type_argument (Qlistp, c));
1063 }
1064
1065 /* Take the car or cdr of something whose type is not known. */
1066 INLINE Lisp_Object
1067 CAR_SAFE (Lisp_Object c)
1068 {
1069 return CONSP (c) ? XCAR (c) : Qnil;
1070 }
1071 INLINE Lisp_Object
1072 CDR_SAFE (Lisp_Object c)
1073 {
1074 return CONSP (c) ? XCDR (c) : Qnil;
1075 }
1076
1077 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1078
1079 struct Lisp_String
1080 {
1081 ptrdiff_t size;
1082 ptrdiff_t size_byte;
1083 INTERVAL intervals; /* Text properties in this string. */
1084 unsigned char *data;
1085 };
1086
1087 /* True if STR is a multibyte string. */
1088 INLINE bool
1089 STRING_MULTIBYTE (Lisp_Object str)
1090 {
1091 return 0 <= XSTRING (str)->size_byte;
1092 }
1093
1094 /* An upper bound on the number of bytes in a Lisp string, not
1095 counting the terminating null. This a tight enough bound to
1096 prevent integer overflow errors that would otherwise occur during
1097 string size calculations. A string cannot contain more bytes than
1098 a fixnum can represent, nor can it be so long that C pointer
1099 arithmetic stops working on the string plus its terminating null.
1100 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1101 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1102 would expose alloc.c internal details that we'd rather keep
1103 private.
1104
1105 This is a macro for use in static initializers. The cast to
1106 ptrdiff_t ensures that the macro is signed. */
1107 #define STRING_BYTES_BOUND \
1108 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1109
1110 /* Mark STR as a unibyte string. */
1111 #define STRING_SET_UNIBYTE(STR) \
1112 do { \
1113 if (EQ (STR, empty_multibyte_string)) \
1114 (STR) = empty_unibyte_string; \
1115 else \
1116 XSTRING (STR)->size_byte = -1; \
1117 } while (false)
1118
1119 /* Mark STR as a multibyte string. Assure that STR contains only
1120 ASCII characters in advance. */
1121 #define STRING_SET_MULTIBYTE(STR) \
1122 do { \
1123 if (EQ (STR, empty_unibyte_string)) \
1124 (STR) = empty_multibyte_string; \
1125 else \
1126 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1127 } while (false)
1128
1129 /* Convenience functions for dealing with Lisp strings. */
1130
1131 INLINE unsigned char *
1132 SDATA (Lisp_Object string)
1133 {
1134 return XSTRING (string)->data;
1135 }
1136 INLINE char *
1137 SSDATA (Lisp_Object string)
1138 {
1139 /* Avoid "differ in sign" warnings. */
1140 return (char *) SDATA (string);
1141 }
1142 INLINE unsigned char
1143 SREF (Lisp_Object string, ptrdiff_t index)
1144 {
1145 return SDATA (string)[index];
1146 }
1147 INLINE void
1148 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1149 {
1150 SDATA (string)[index] = new;
1151 }
1152 INLINE ptrdiff_t
1153 SCHARS (Lisp_Object string)
1154 {
1155 return XSTRING (string)->size;
1156 }
1157
1158 #ifdef GC_CHECK_STRING_BYTES
1159 extern ptrdiff_t string_bytes (struct Lisp_String *);
1160 #endif
1161 INLINE ptrdiff_t
1162 STRING_BYTES (struct Lisp_String *s)
1163 {
1164 #ifdef GC_CHECK_STRING_BYTES
1165 return string_bytes (s);
1166 #else
1167 return s->size_byte < 0 ? s->size : s->size_byte;
1168 #endif
1169 }
1170
1171 INLINE ptrdiff_t
1172 SBYTES (Lisp_Object string)
1173 {
1174 return STRING_BYTES (XSTRING (string));
1175 }
1176 INLINE void
1177 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1178 {
1179 XSTRING (string)->size = newsize;
1180 }
1181
1182 /* Header of vector-like objects. This documents the layout constraints on
1183 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1184 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1185 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1186 because when two such pointers potentially alias, a compiler won't
1187 incorrectly reorder loads and stores to their size fields. See
1188 Bug#8546. */
1189 struct vectorlike_header
1190 {
1191 /* The only field contains various pieces of information:
1192 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1193 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1194 vector (0) or a pseudovector (1).
1195 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1196 of slots) of the vector.
1197 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1198 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1199 - b) number of Lisp_Objects slots at the beginning of the object
1200 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1201 traced by the GC;
1202 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1203 measured in word_size units. Rest fields may also include
1204 Lisp_Objects, but these objects usually needs some special treatment
1205 during GC.
1206 There are some exceptions. For PVEC_FREE, b) is always zero. For
1207 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1208 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1209 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1210 ptrdiff_t size;
1211 };
1212
1213 /* A regular vector is just a header plus an array of Lisp_Objects. */
1214
1215 struct Lisp_Vector
1216 {
1217 struct vectorlike_header header;
1218 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1219 };
1220
1221 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1222 enum
1223 {
1224 ALIGNOF_STRUCT_LISP_VECTOR
1225 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1226 };
1227
1228 /* A boolvector is a kind of vectorlike, with contents like a string. */
1229
1230 struct Lisp_Bool_Vector
1231 {
1232 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1233 just the subtype information. */
1234 struct vectorlike_header header;
1235 /* This is the size in bits. */
1236 EMACS_INT size;
1237 /* The actual bits, packed into bytes.
1238 Zeros fill out the last word if needed.
1239 The bits are in little-endian order in the bytes, and
1240 the bytes are in little-endian order in the words. */
1241 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1242 };
1243
1244 INLINE EMACS_INT
1245 bool_vector_size (Lisp_Object a)
1246 {
1247 EMACS_INT size = XBOOL_VECTOR (a)->size;
1248 eassume (0 <= size);
1249 return size;
1250 }
1251
1252 INLINE bits_word *
1253 bool_vector_data (Lisp_Object a)
1254 {
1255 return XBOOL_VECTOR (a)->data;
1256 }
1257
1258 INLINE unsigned char *
1259 bool_vector_uchar_data (Lisp_Object a)
1260 {
1261 return (unsigned char *) bool_vector_data (a);
1262 }
1263
1264 /* The number of data words and bytes in a bool vector with SIZE bits. */
1265
1266 INLINE EMACS_INT
1267 bool_vector_words (EMACS_INT size)
1268 {
1269 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1270 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1271 }
1272
1273 INLINE EMACS_INT
1274 bool_vector_bytes (EMACS_INT size)
1275 {
1276 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1277 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1278 }
1279
1280 /* True if A's Ith bit is set. */
1281
1282 INLINE bool
1283 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1284 {
1285 eassume (0 <= i && i < bool_vector_size (a));
1286 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1287 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1288 }
1289
1290 INLINE Lisp_Object
1291 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1292 {
1293 return bool_vector_bitref (a, i) ? Qt : Qnil;
1294 }
1295
1296 /* Set A's Ith bit to B. */
1297
1298 INLINE void
1299 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1300 {
1301 unsigned char *addr;
1302
1303 eassume (0 <= i && i < bool_vector_size (a));
1304 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1305
1306 if (b)
1307 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1308 else
1309 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1310 }
1311
1312 /* Some handy constants for calculating sizes
1313 and offsets, mostly of vectorlike objects. */
1314
1315 enum
1316 {
1317 header_size = offsetof (struct Lisp_Vector, contents),
1318 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1319 word_size = sizeof (Lisp_Object)
1320 };
1321
1322 /* Conveniences for dealing with Lisp arrays. */
1323
1324 INLINE Lisp_Object
1325 AREF (Lisp_Object array, ptrdiff_t idx)
1326 {
1327 return XVECTOR (array)->contents[idx];
1328 }
1329
1330 INLINE Lisp_Object *
1331 aref_addr (Lisp_Object array, ptrdiff_t idx)
1332 {
1333 return & XVECTOR (array)->contents[idx];
1334 }
1335
1336 INLINE ptrdiff_t
1337 ASIZE (Lisp_Object array)
1338 {
1339 return XVECTOR (array)->header.size;
1340 }
1341
1342 INLINE void
1343 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1344 {
1345 eassert (0 <= idx && idx < ASIZE (array));
1346 XVECTOR (array)->contents[idx] = val;
1347 }
1348
1349 INLINE void
1350 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1351 {
1352 /* Like ASET, but also can be used in the garbage collector:
1353 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1354 eassert (0 <= idx && idx < (ASIZE (array) & ~ARRAY_MARK_FLAG));
1355 XVECTOR (array)->contents[idx] = val;
1356 }
1357
1358 /* If a struct is made to look like a vector, this macro returns the length
1359 of the shortest vector that would hold that struct. */
1360
1361 #define VECSIZE(type) \
1362 ((sizeof (type) - header_size + word_size - 1) / word_size)
1363
1364 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1365 at the end and we need to compute the number of Lisp_Object fields (the
1366 ones that the GC needs to trace). */
1367
1368 #define PSEUDOVECSIZE(type, nonlispfield) \
1369 ((offsetof (type, nonlispfield) - header_size) / word_size)
1370
1371 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1372 should be integer expressions. This is not the same as
1373 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1374 returns true. For efficiency, prefer plain unsigned comparison if A
1375 and B's sizes both fit (after integer promotion). */
1376 #define UNSIGNED_CMP(a, op, b) \
1377 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1378 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1379 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1380
1381 /* True iff C is an ASCII character. */
1382 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1383
1384 /* A char-table is a kind of vectorlike, with contents are like a
1385 vector but with a few other slots. For some purposes, it makes
1386 sense to handle a char-table with type struct Lisp_Vector. An
1387 element of a char table can be any Lisp objects, but if it is a sub
1388 char-table, we treat it a table that contains information of a
1389 specific range of characters. A sub char-table is like a vector but
1390 with two integer fields between the header and Lisp data, which means
1391 that it has to be marked with some precautions (see mark_char_table
1392 in alloc.c). A sub char-table appears only in an element of a char-table,
1393 and there's no way to access it directly from Emacs Lisp program. */
1394
1395 enum CHARTAB_SIZE_BITS
1396 {
1397 CHARTAB_SIZE_BITS_0 = 6,
1398 CHARTAB_SIZE_BITS_1 = 4,
1399 CHARTAB_SIZE_BITS_2 = 5,
1400 CHARTAB_SIZE_BITS_3 = 7
1401 };
1402
1403 extern const int chartab_size[4];
1404
1405 struct Lisp_Char_Table
1406 {
1407 /* HEADER.SIZE is the vector's size field, which also holds the
1408 pseudovector type information. It holds the size, too.
1409 The size counts the defalt, parent, purpose, ascii,
1410 contents, and extras slots. */
1411 struct vectorlike_header header;
1412
1413 /* This holds a default value,
1414 which is used whenever the value for a specific character is nil. */
1415 Lisp_Object defalt;
1416
1417 /* This points to another char table, which we inherit from when the
1418 value for a specific character is nil. The `defalt' slot takes
1419 precedence over this. */
1420 Lisp_Object parent;
1421
1422 /* This is a symbol which says what kind of use this char-table is
1423 meant for. */
1424 Lisp_Object purpose;
1425
1426 /* The bottom sub char-table for characters of the range 0..127. It
1427 is nil if none of ASCII character has a specific value. */
1428 Lisp_Object ascii;
1429
1430 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1431
1432 /* These hold additional data. It is a vector. */
1433 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1434 };
1435
1436 struct Lisp_Sub_Char_Table
1437 {
1438 /* HEADER.SIZE is the vector's size field, which also holds the
1439 pseudovector type information. It holds the size, too. */
1440 struct vectorlike_header header;
1441
1442 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1443 char-table of depth 1 contains 16 elements, and each element
1444 covers 4096 (128*32) characters. A sub char-table of depth 2
1445 contains 32 elements, and each element covers 128 characters. A
1446 sub char-table of depth 3 contains 128 elements, and each element
1447 is for one character. */
1448 int depth;
1449
1450 /* Minimum character covered by the sub char-table. */
1451 int min_char;
1452
1453 /* Use set_sub_char_table_contents to set this. */
1454 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1455 };
1456
1457 INLINE Lisp_Object
1458 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1459 {
1460 struct Lisp_Char_Table *tbl = NULL;
1461 Lisp_Object val;
1462 do
1463 {
1464 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1465 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1466 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1467 if (NILP (val))
1468 val = tbl->defalt;
1469 }
1470 while (NILP (val) && ! NILP (tbl->parent));
1471
1472 return val;
1473 }
1474
1475 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1476 characters. Do not check validity of CT. */
1477 INLINE Lisp_Object
1478 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1479 {
1480 return (ASCII_CHAR_P (idx)
1481 ? CHAR_TABLE_REF_ASCII (ct, idx)
1482 : char_table_ref (ct, idx));
1483 }
1484
1485 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1486 8-bit European characters. Do not check validity of CT. */
1487 INLINE void
1488 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1489 {
1490 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1491 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1492 else
1493 char_table_set (ct, idx, val);
1494 }
1495
1496 /* This structure describes a built-in function.
1497 It is generated by the DEFUN macro only.
1498 defsubr makes it into a Lisp object. */
1499
1500 struct Lisp_Subr
1501 {
1502 struct vectorlike_header header;
1503 union {
1504 Lisp_Object (*a0) (void);
1505 Lisp_Object (*a1) (Lisp_Object);
1506 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1507 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1508 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1509 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1510 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1511 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1512 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1513 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1514 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1515 } function;
1516 short min_args, max_args;
1517 const char *symbol_name;
1518 const char *intspec;
1519 const char *doc;
1520 };
1521
1522 enum char_table_specials
1523 {
1524 /* This is the number of slots that every char table must have. This
1525 counts the ordinary slots and the top, defalt, parent, and purpose
1526 slots. */
1527 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1528
1529 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1530 when the latter is treated as an ordinary Lisp_Vector. */
1531 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1532 };
1533
1534 /* Return the number of "extra" slots in the char table CT. */
1535
1536 INLINE int
1537 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1538 {
1539 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1540 - CHAR_TABLE_STANDARD_SLOTS);
1541 }
1542
1543 /* Make sure that sub char-table contents slot
1544 is aligned on a multiple of Lisp_Objects. */
1545 verify ((offsetof (struct Lisp_Sub_Char_Table, contents)
1546 - offsetof (struct Lisp_Sub_Char_Table, depth)) % word_size == 0);
1547
1548 /***********************************************************************
1549 Symbols
1550 ***********************************************************************/
1551
1552 /* Interned state of a symbol. */
1553
1554 enum symbol_interned
1555 {
1556 SYMBOL_UNINTERNED = 0,
1557 SYMBOL_INTERNED = 1,
1558 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
1559 };
1560
1561 enum symbol_redirect
1562 {
1563 SYMBOL_PLAINVAL = 4,
1564 SYMBOL_VARALIAS = 1,
1565 SYMBOL_LOCALIZED = 2,
1566 SYMBOL_FORWARDED = 3
1567 };
1568
1569 struct Lisp_Symbol
1570 {
1571 bool_bf gcmarkbit : 1;
1572
1573 /* Indicates where the value can be found:
1574 0 : it's a plain var, the value is in the `value' field.
1575 1 : it's a varalias, the value is really in the `alias' symbol.
1576 2 : it's a localized var, the value is in the `blv' object.
1577 3 : it's a forwarding variable, the value is in `forward'. */
1578 ENUM_BF (symbol_redirect) redirect : 3;
1579
1580 /* Non-zero means symbol is constant, i.e. changing its value
1581 should signal an error. If the value is 3, then the var
1582 can be changed, but only by `defconst'. */
1583 unsigned constant : 2;
1584
1585 /* Interned state of the symbol. This is an enumerator from
1586 enum symbol_interned. */
1587 unsigned interned : 2;
1588
1589 /* True means that this variable has been explicitly declared
1590 special (with `defvar' etc), and shouldn't be lexically bound. */
1591 bool_bf declared_special : 1;
1592
1593 /* True if pointed to from purespace and hence can't be GC'd. */
1594 bool_bf pinned : 1;
1595
1596 /* The symbol's name, as a Lisp string. */
1597 Lisp_Object name;
1598
1599 /* Value of the symbol or Qunbound if unbound. Which alternative of the
1600 union is used depends on the `redirect' field above. */
1601 union {
1602 Lisp_Object value;
1603 struct Lisp_Symbol *alias;
1604 struct Lisp_Buffer_Local_Value *blv;
1605 union Lisp_Fwd *fwd;
1606 } val;
1607
1608 /* Function value of the symbol or Qnil if not fboundp. */
1609 Lisp_Object function;
1610
1611 /* The symbol's property list. */
1612 Lisp_Object plist;
1613
1614 /* Next symbol in obarray bucket, if the symbol is interned. */
1615 struct Lisp_Symbol *next;
1616 };
1617
1618 /* Value is name of symbol. */
1619
1620 LISP_MACRO_DEFUN (SYMBOL_VAL, Lisp_Object, (struct Lisp_Symbol *sym), (sym))
1621
1622 INLINE struct Lisp_Symbol *
1623 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1624 {
1625 eassert (sym->redirect == SYMBOL_VARALIAS);
1626 return sym->val.alias;
1627 }
1628 INLINE struct Lisp_Buffer_Local_Value *
1629 SYMBOL_BLV (struct Lisp_Symbol *sym)
1630 {
1631 eassert (sym->redirect == SYMBOL_LOCALIZED);
1632 return sym->val.blv;
1633 }
1634 INLINE union Lisp_Fwd *
1635 SYMBOL_FWD (struct Lisp_Symbol *sym)
1636 {
1637 eassert (sym->redirect == SYMBOL_FORWARDED);
1638 return sym->val.fwd;
1639 }
1640
1641 LISP_MACRO_DEFUN_VOID (SET_SYMBOL_VAL,
1642 (struct Lisp_Symbol *sym, Lisp_Object v), (sym, v))
1643
1644 INLINE void
1645 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1646 {
1647 eassert (sym->redirect == SYMBOL_VARALIAS);
1648 sym->val.alias = v;
1649 }
1650 INLINE void
1651 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1652 {
1653 eassert (sym->redirect == SYMBOL_LOCALIZED);
1654 sym->val.blv = v;
1655 }
1656 INLINE void
1657 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1658 {
1659 eassert (sym->redirect == SYMBOL_FORWARDED);
1660 sym->val.fwd = v;
1661 }
1662
1663 INLINE Lisp_Object
1664 SYMBOL_NAME (Lisp_Object sym)
1665 {
1666 return XSYMBOL (sym)->name;
1667 }
1668
1669 /* Value is true if SYM is an interned symbol. */
1670
1671 INLINE bool
1672 SYMBOL_INTERNED_P (Lisp_Object sym)
1673 {
1674 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1675 }
1676
1677 /* Value is true if SYM is interned in initial_obarray. */
1678
1679 INLINE bool
1680 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1681 {
1682 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1683 }
1684
1685 /* Value is non-zero if symbol is considered a constant, i.e. its
1686 value cannot be changed (there is an exception for keyword symbols,
1687 whose value can be set to the keyword symbol itself). */
1688
1689 LISP_MACRO_DEFUN (SYMBOL_CONSTANT_P, int, (Lisp_Object sym), (sym))
1690
1691 #define DEFSYM(sym, name) \
1692 do { (sym) = intern_c_string ((name)); staticpro (&(sym)); } while (false)
1693
1694 \f
1695 /***********************************************************************
1696 Hash Tables
1697 ***********************************************************************/
1698
1699 /* The structure of a Lisp hash table. */
1700
1701 struct hash_table_test
1702 {
1703 /* Name of the function used to compare keys. */
1704 Lisp_Object name;
1705
1706 /* User-supplied hash function, or nil. */
1707 Lisp_Object user_hash_function;
1708
1709 /* User-supplied key comparison function, or nil. */
1710 Lisp_Object user_cmp_function;
1711
1712 /* C function to compare two keys. */
1713 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1714
1715 /* C function to compute hash code. */
1716 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1717 };
1718
1719 struct Lisp_Hash_Table
1720 {
1721 /* This is for Lisp; the hash table code does not refer to it. */
1722 struct vectorlike_header header;
1723
1724 /* Nil if table is non-weak. Otherwise a symbol describing the
1725 weakness of the table. */
1726 Lisp_Object weak;
1727
1728 /* When the table is resized, and this is an integer, compute the
1729 new size by adding this to the old size. If a float, compute the
1730 new size by multiplying the old size with this factor. */
1731 Lisp_Object rehash_size;
1732
1733 /* Resize hash table when number of entries/ table size is >= this
1734 ratio, a float. */
1735 Lisp_Object rehash_threshold;
1736
1737 /* Vector of hash codes. If hash[I] is nil, this means that the
1738 I-th entry is unused. */
1739 Lisp_Object hash;
1740
1741 /* Vector used to chain entries. If entry I is free, next[I] is the
1742 entry number of the next free item. If entry I is non-free,
1743 next[I] is the index of the next entry in the collision chain. */
1744 Lisp_Object next;
1745
1746 /* Index of first free entry in free list. */
1747 Lisp_Object next_free;
1748
1749 /* Bucket vector. A non-nil entry is the index of the first item in
1750 a collision chain. This vector's size can be larger than the
1751 hash table size to reduce collisions. */
1752 Lisp_Object index;
1753
1754 /* Only the fields above are traced normally by the GC. The ones below
1755 `count' are special and are either ignored by the GC or traced in
1756 a special way (e.g. because of weakness). */
1757
1758 /* Number of key/value entries in the table. */
1759 ptrdiff_t count;
1760
1761 /* Vector of keys and values. The key of item I is found at index
1762 2 * I, the value is found at index 2 * I + 1.
1763 This is gc_marked specially if the table is weak. */
1764 Lisp_Object key_and_value;
1765
1766 /* The comparison and hash functions. */
1767 struct hash_table_test test;
1768
1769 /* Next weak hash table if this is a weak hash table. The head
1770 of the list is in weak_hash_tables. */
1771 struct Lisp_Hash_Table *next_weak;
1772 };
1773
1774
1775 INLINE struct Lisp_Hash_Table *
1776 XHASH_TABLE (Lisp_Object a)
1777 {
1778 return XUNTAG (a, Lisp_Vectorlike);
1779 }
1780
1781 #define XSET_HASH_TABLE(VAR, PTR) \
1782 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1783
1784 INLINE bool
1785 HASH_TABLE_P (Lisp_Object a)
1786 {
1787 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1788 }
1789
1790 /* Value is the key part of entry IDX in hash table H. */
1791 INLINE Lisp_Object
1792 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1793 {
1794 return AREF (h->key_and_value, 2 * idx);
1795 }
1796
1797 /* Value is the value part of entry IDX in hash table H. */
1798 INLINE Lisp_Object
1799 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1800 {
1801 return AREF (h->key_and_value, 2 * idx + 1);
1802 }
1803
1804 /* Value is the index of the next entry following the one at IDX
1805 in hash table H. */
1806 INLINE Lisp_Object
1807 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1808 {
1809 return AREF (h->next, idx);
1810 }
1811
1812 /* Value is the hash code computed for entry IDX in hash table H. */
1813 INLINE Lisp_Object
1814 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1815 {
1816 return AREF (h->hash, idx);
1817 }
1818
1819 /* Value is the index of the element in hash table H that is the
1820 start of the collision list at index IDX in the index vector of H. */
1821 INLINE Lisp_Object
1822 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1823 {
1824 return AREF (h->index, idx);
1825 }
1826
1827 /* Value is the size of hash table H. */
1828 INLINE ptrdiff_t
1829 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
1830 {
1831 return ASIZE (h->next);
1832 }
1833
1834 /* Default size for hash tables if not specified. */
1835
1836 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
1837
1838 /* Default threshold specifying when to resize a hash table. The
1839 value gives the ratio of current entries in the hash table and the
1840 size of the hash table. */
1841
1842 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
1843
1844 /* Default factor by which to increase the size of a hash table. */
1845
1846 static double const DEFAULT_REHASH_SIZE = 1.5;
1847
1848 /* Combine two integers X and Y for hashing. The result might not fit
1849 into a Lisp integer. */
1850
1851 INLINE EMACS_UINT
1852 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
1853 {
1854 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
1855 }
1856
1857 /* Hash X, returning a value that fits into a fixnum. */
1858
1859 INLINE EMACS_UINT
1860 SXHASH_REDUCE (EMACS_UINT x)
1861 {
1862 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
1863 }
1864
1865 /* These structures are used for various misc types. */
1866
1867 struct Lisp_Misc_Any /* Supertype of all Misc types. */
1868 {
1869 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
1870 bool_bf gcmarkbit : 1;
1871 unsigned spacer : 15;
1872 };
1873
1874 struct Lisp_Marker
1875 {
1876 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
1877 bool_bf gcmarkbit : 1;
1878 unsigned spacer : 13;
1879 /* This flag is temporarily used in the functions
1880 decode/encode_coding_object to record that the marker position
1881 must be adjusted after the conversion. */
1882 bool_bf need_adjustment : 1;
1883 /* True means normal insertion at the marker's position
1884 leaves the marker after the inserted text. */
1885 bool_bf insertion_type : 1;
1886 /* This is the buffer that the marker points into, or 0 if it points nowhere.
1887 Note: a chain of markers can contain markers pointing into different
1888 buffers (the chain is per buffer_text rather than per buffer, so it's
1889 shared between indirect buffers). */
1890 /* This is used for (other than NULL-checking):
1891 - Fmarker_buffer
1892 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
1893 - unchain_marker: to find the list from which to unchain.
1894 - Fkill_buffer: to only unchain the markers of current indirect buffer.
1895 */
1896 struct buffer *buffer;
1897
1898 /* The remaining fields are meaningless in a marker that
1899 does not point anywhere. */
1900
1901 /* For markers that point somewhere,
1902 this is used to chain of all the markers in a given buffer. */
1903 /* We could remove it and use an array in buffer_text instead.
1904 That would also allow to preserve it ordered. */
1905 struct Lisp_Marker *next;
1906 /* This is the char position where the marker points. */
1907 ptrdiff_t charpos;
1908 /* This is the byte position.
1909 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
1910 used to implement the functionality of markers, but rather to (ab)use
1911 markers as a cache for char<->byte mappings). */
1912 ptrdiff_t bytepos;
1913 };
1914
1915 /* START and END are markers in the overlay's buffer, and
1916 PLIST is the overlay's property list. */
1917 struct Lisp_Overlay
1918 /* An overlay's real data content is:
1919 - plist
1920 - buffer (really there are two buffer pointers, one per marker,
1921 and both points to the same buffer)
1922 - insertion type of both ends (per-marker fields)
1923 - start & start byte (of start marker)
1924 - end & end byte (of end marker)
1925 - next (singly linked list of overlays)
1926 - next fields of start and end markers (singly linked list of markers).
1927 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
1928 */
1929 {
1930 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
1931 bool_bf gcmarkbit : 1;
1932 unsigned spacer : 15;
1933 struct Lisp_Overlay *next;
1934 Lisp_Object start;
1935 Lisp_Object end;
1936 Lisp_Object plist;
1937 };
1938
1939 /* Types of data which may be saved in a Lisp_Save_Value. */
1940
1941 enum
1942 {
1943 SAVE_UNUSED,
1944 SAVE_INTEGER,
1945 SAVE_FUNCPOINTER,
1946 SAVE_POINTER,
1947 SAVE_OBJECT
1948 };
1949
1950 /* Number of bits needed to store one of the above values. */
1951 enum { SAVE_SLOT_BITS = 3 };
1952
1953 /* Number of slots in a save value where save_type is nonzero. */
1954 enum { SAVE_VALUE_SLOTS = 4 };
1955
1956 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
1957
1958 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
1959
1960 enum Lisp_Save_Type
1961 {
1962 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
1963 SAVE_TYPE_INT_INT_INT
1964 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
1965 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
1966 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
1967 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
1968 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
1969 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
1970 SAVE_TYPE_INT_OBJ = SAVE_INTEGER + (SAVE_OBJECT << SAVE_SLOT_BITS),
1971 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
1972 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
1973 SAVE_TYPE_FUNCPTR_PTR_OBJ
1974 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
1975
1976 /* This has an extra bit indicating it's raw memory. */
1977 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
1978 };
1979
1980 /* Special object used to hold a different values for later use.
1981
1982 This is mostly used to package C integers and pointers to call
1983 record_unwind_protect when two or more values need to be saved.
1984 For example:
1985
1986 ...
1987 struct my_data *md = get_my_data ();
1988 ptrdiff_t mi = get_my_integer ();
1989 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
1990 ...
1991
1992 Lisp_Object my_unwind (Lisp_Object arg)
1993 {
1994 struct my_data *md = XSAVE_POINTER (arg, 0);
1995 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
1996 ...
1997 }
1998
1999 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2000 saved objects and raise eassert if type of the saved object doesn't match
2001 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2002 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2003 slot 0 is a pointer. */
2004
2005 typedef void (*voidfuncptr) (void);
2006
2007 struct Lisp_Save_Value
2008 {
2009 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2010 bool_bf gcmarkbit : 1;
2011 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2012
2013 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2014 V's data entries are determined by V->save_type. E.g., if
2015 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2016 V->data[1] is an integer, and V's other data entries are unused.
2017
2018 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2019 a memory area containing V->data[1].integer potential Lisp_Objects. */
2020 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2021 union {
2022 void *pointer;
2023 voidfuncptr funcpointer;
2024 ptrdiff_t integer;
2025 Lisp_Object object;
2026 } data[SAVE_VALUE_SLOTS];
2027 };
2028
2029 /* Return the type of V's Nth saved value. */
2030 INLINE int
2031 save_type (struct Lisp_Save_Value *v, int n)
2032 {
2033 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2034 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2035 }
2036
2037 /* Get and set the Nth saved pointer. */
2038
2039 INLINE void *
2040 XSAVE_POINTER (Lisp_Object obj, int n)
2041 {
2042 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2043 return XSAVE_VALUE (obj)->data[n].pointer;
2044 }
2045 INLINE void
2046 set_save_pointer (Lisp_Object obj, int n, void *val)
2047 {
2048 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2049 XSAVE_VALUE (obj)->data[n].pointer = val;
2050 }
2051 INLINE voidfuncptr
2052 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2053 {
2054 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2055 return XSAVE_VALUE (obj)->data[n].funcpointer;
2056 }
2057
2058 /* Likewise for the saved integer. */
2059
2060 INLINE ptrdiff_t
2061 XSAVE_INTEGER (Lisp_Object obj, int n)
2062 {
2063 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2064 return XSAVE_VALUE (obj)->data[n].integer;
2065 }
2066 INLINE void
2067 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2068 {
2069 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2070 XSAVE_VALUE (obj)->data[n].integer = val;
2071 }
2072
2073 /* Extract Nth saved object. */
2074
2075 INLINE Lisp_Object
2076 XSAVE_OBJECT (Lisp_Object obj, int n)
2077 {
2078 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2079 return XSAVE_VALUE (obj)->data[n].object;
2080 }
2081
2082 /* A miscellaneous object, when it's on the free list. */
2083 struct Lisp_Free
2084 {
2085 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2086 bool_bf gcmarkbit : 1;
2087 unsigned spacer : 15;
2088 union Lisp_Misc *chain;
2089 };
2090
2091 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2092 It uses one of these struct subtypes to get the type field. */
2093
2094 union Lisp_Misc
2095 {
2096 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2097 struct Lisp_Free u_free;
2098 struct Lisp_Marker u_marker;
2099 struct Lisp_Overlay u_overlay;
2100 struct Lisp_Save_Value u_save_value;
2101 };
2102
2103 INLINE union Lisp_Misc *
2104 XMISC (Lisp_Object a)
2105 {
2106 return XUNTAG (a, Lisp_Misc);
2107 }
2108
2109 INLINE struct Lisp_Misc_Any *
2110 XMISCANY (Lisp_Object a)
2111 {
2112 eassert (MISCP (a));
2113 return & XMISC (a)->u_any;
2114 }
2115
2116 INLINE enum Lisp_Misc_Type
2117 XMISCTYPE (Lisp_Object a)
2118 {
2119 return XMISCANY (a)->type;
2120 }
2121
2122 INLINE struct Lisp_Marker *
2123 XMARKER (Lisp_Object a)
2124 {
2125 eassert (MARKERP (a));
2126 return & XMISC (a)->u_marker;
2127 }
2128
2129 INLINE struct Lisp_Overlay *
2130 XOVERLAY (Lisp_Object a)
2131 {
2132 eassert (OVERLAYP (a));
2133 return & XMISC (a)->u_overlay;
2134 }
2135
2136 INLINE struct Lisp_Save_Value *
2137 XSAVE_VALUE (Lisp_Object a)
2138 {
2139 eassert (SAVE_VALUEP (a));
2140 return & XMISC (a)->u_save_value;
2141 }
2142 \f
2143 /* Forwarding pointer to an int variable.
2144 This is allowed only in the value cell of a symbol,
2145 and it means that the symbol's value really lives in the
2146 specified int variable. */
2147 struct Lisp_Intfwd
2148 {
2149 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2150 EMACS_INT *intvar;
2151 };
2152
2153 /* Boolean forwarding pointer to an int variable.
2154 This is like Lisp_Intfwd except that the ostensible
2155 "value" of the symbol is t if the bool variable is true,
2156 nil if it is false. */
2157 struct Lisp_Boolfwd
2158 {
2159 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2160 bool *boolvar;
2161 };
2162
2163 /* Forwarding pointer to a Lisp_Object variable.
2164 This is allowed only in the value cell of a symbol,
2165 and it means that the symbol's value really lives in the
2166 specified variable. */
2167 struct Lisp_Objfwd
2168 {
2169 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2170 Lisp_Object *objvar;
2171 };
2172
2173 /* Like Lisp_Objfwd except that value lives in a slot in the
2174 current buffer. Value is byte index of slot within buffer. */
2175 struct Lisp_Buffer_Objfwd
2176 {
2177 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2178 int offset;
2179 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2180 Lisp_Object predicate;
2181 };
2182
2183 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2184 the symbol has buffer-local or frame-local bindings. (Exception:
2185 some buffer-local variables are built-in, with their values stored
2186 in the buffer structure itself. They are handled differently,
2187 using struct Lisp_Buffer_Objfwd.)
2188
2189 The `realvalue' slot holds the variable's current value, or a
2190 forwarding pointer to where that value is kept. This value is the
2191 one that corresponds to the loaded binding. To read or set the
2192 variable, you must first make sure the right binding is loaded;
2193 then you can access the value in (or through) `realvalue'.
2194
2195 `buffer' and `frame' are the buffer and frame for which the loaded
2196 binding was found. If those have changed, to make sure the right
2197 binding is loaded it is necessary to find which binding goes with
2198 the current buffer and selected frame, then load it. To load it,
2199 first unload the previous binding, then copy the value of the new
2200 binding into `realvalue' (or through it). Also update
2201 LOADED-BINDING to point to the newly loaded binding.
2202
2203 `local_if_set' indicates that merely setting the variable creates a
2204 local binding for the current buffer. Otherwise the latter, setting
2205 the variable does not do that; only make-local-variable does that. */
2206
2207 struct Lisp_Buffer_Local_Value
2208 {
2209 /* True means that merely setting the variable creates a local
2210 binding for the current buffer. */
2211 bool_bf local_if_set : 1;
2212 /* True means this variable can have frame-local bindings, otherwise, it is
2213 can have buffer-local bindings. The two cannot be combined. */
2214 bool_bf frame_local : 1;
2215 /* True means that the binding now loaded was found.
2216 Presumably equivalent to (defcell!=valcell). */
2217 bool_bf found : 1;
2218 /* If non-NULL, a forwarding to the C var where it should also be set. */
2219 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2220 /* The buffer or frame for which the loaded binding was found. */
2221 Lisp_Object where;
2222 /* A cons cell that holds the default value. It has the form
2223 (SYMBOL . DEFAULT-VALUE). */
2224 Lisp_Object defcell;
2225 /* The cons cell from `where's parameter alist.
2226 It always has the form (SYMBOL . VALUE)
2227 Note that if `forward' is non-nil, VALUE may be out of date.
2228 Also if the currently loaded binding is the default binding, then
2229 this is `eq'ual to defcell. */
2230 Lisp_Object valcell;
2231 };
2232
2233 /* Like Lisp_Objfwd except that value lives in a slot in the
2234 current kboard. */
2235 struct Lisp_Kboard_Objfwd
2236 {
2237 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2238 int offset;
2239 };
2240
2241 union Lisp_Fwd
2242 {
2243 struct Lisp_Intfwd u_intfwd;
2244 struct Lisp_Boolfwd u_boolfwd;
2245 struct Lisp_Objfwd u_objfwd;
2246 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2247 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2248 };
2249
2250 INLINE enum Lisp_Fwd_Type
2251 XFWDTYPE (union Lisp_Fwd *a)
2252 {
2253 return a->u_intfwd.type;
2254 }
2255
2256 INLINE struct Lisp_Buffer_Objfwd *
2257 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2258 {
2259 eassert (BUFFER_OBJFWDP (a));
2260 return &a->u_buffer_objfwd;
2261 }
2262 \f
2263 /* Lisp floating point type. */
2264 struct Lisp_Float
2265 {
2266 union
2267 {
2268 double data;
2269 struct Lisp_Float *chain;
2270 } u;
2271 };
2272
2273 INLINE double
2274 XFLOAT_DATA (Lisp_Object f)
2275 {
2276 return XFLOAT (f)->u.data;
2277 }
2278
2279 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2280 representations, have infinities and NaNs, and do not trap on
2281 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2282 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2283 wanted here, but is not quite right because Emacs does not require
2284 all the features of C11 Annex F (and does not require C11 at all,
2285 for that matter). */
2286 enum
2287 {
2288 IEEE_FLOATING_POINT
2289 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2290 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2291 };
2292
2293 /* A character, declared with the following typedef, is a member
2294 of some character set associated with the current buffer. */
2295 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2296 #define _UCHAR_T
2297 typedef unsigned char UCHAR;
2298 #endif
2299
2300 /* Meanings of slots in a Lisp_Compiled: */
2301
2302 enum Lisp_Compiled
2303 {
2304 COMPILED_ARGLIST = 0,
2305 COMPILED_BYTECODE = 1,
2306 COMPILED_CONSTANTS = 2,
2307 COMPILED_STACK_DEPTH = 3,
2308 COMPILED_DOC_STRING = 4,
2309 COMPILED_INTERACTIVE = 5
2310 };
2311
2312 /* Flag bits in a character. These also get used in termhooks.h.
2313 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2314 (MUlti-Lingual Emacs) might need 22 bits for the character value
2315 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2316 enum char_bits
2317 {
2318 CHAR_ALT = 0x0400000,
2319 CHAR_SUPER = 0x0800000,
2320 CHAR_HYPER = 0x1000000,
2321 CHAR_SHIFT = 0x2000000,
2322 CHAR_CTL = 0x4000000,
2323 CHAR_META = 0x8000000,
2324
2325 CHAR_MODIFIER_MASK =
2326 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2327
2328 /* Actually, the current Emacs uses 22 bits for the character value
2329 itself. */
2330 CHARACTERBITS = 22
2331 };
2332 \f
2333 /* Data type checking. */
2334
2335 LISP_MACRO_DEFUN (NILP, bool, (Lisp_Object x), (x))
2336
2337 INLINE bool
2338 NUMBERP (Lisp_Object x)
2339 {
2340 return INTEGERP (x) || FLOATP (x);
2341 }
2342 INLINE bool
2343 NATNUMP (Lisp_Object x)
2344 {
2345 return INTEGERP (x) && 0 <= XINT (x);
2346 }
2347
2348 INLINE bool
2349 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2350 {
2351 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2352 }
2353
2354 #define TYPE_RANGED_INTEGERP(type, x) \
2355 (INTEGERP (x) \
2356 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2357 && XINT (x) <= TYPE_MAXIMUM (type))
2358
2359 LISP_MACRO_DEFUN (CONSP, bool, (Lisp_Object x), (x))
2360 LISP_MACRO_DEFUN (FLOATP, bool, (Lisp_Object x), (x))
2361 LISP_MACRO_DEFUN (MISCP, bool, (Lisp_Object x), (x))
2362 LISP_MACRO_DEFUN (SYMBOLP, bool, (Lisp_Object x), (x))
2363 LISP_MACRO_DEFUN (INTEGERP, bool, (Lisp_Object x), (x))
2364 LISP_MACRO_DEFUN (VECTORLIKEP, bool, (Lisp_Object x), (x))
2365 LISP_MACRO_DEFUN (MARKERP, bool, (Lisp_Object x), (x))
2366
2367 INLINE bool
2368 STRINGP (Lisp_Object x)
2369 {
2370 return XTYPE (x) == Lisp_String;
2371 }
2372 INLINE bool
2373 VECTORP (Lisp_Object x)
2374 {
2375 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2376 }
2377 INLINE bool
2378 OVERLAYP (Lisp_Object x)
2379 {
2380 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2381 }
2382 INLINE bool
2383 SAVE_VALUEP (Lisp_Object x)
2384 {
2385 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2386 }
2387
2388 INLINE bool
2389 AUTOLOADP (Lisp_Object x)
2390 {
2391 return CONSP (x) && EQ (Qautoload, XCAR (x));
2392 }
2393
2394 INLINE bool
2395 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2396 {
2397 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2398 }
2399
2400 INLINE bool
2401 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2402 {
2403 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2404 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2405 }
2406
2407 /* True if A is a pseudovector whose code is CODE. */
2408 INLINE bool
2409 PSEUDOVECTORP (Lisp_Object a, int code)
2410 {
2411 if (! VECTORLIKEP (a))
2412 return false;
2413 else
2414 {
2415 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2416 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2417 return PSEUDOVECTOR_TYPEP (h, code);
2418 }
2419 }
2420
2421
2422 /* Test for specific pseudovector types. */
2423
2424 INLINE bool
2425 WINDOW_CONFIGURATIONP (Lisp_Object a)
2426 {
2427 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2428 }
2429
2430 INLINE bool
2431 PROCESSP (Lisp_Object a)
2432 {
2433 return PSEUDOVECTORP (a, PVEC_PROCESS);
2434 }
2435
2436 INLINE bool
2437 WINDOWP (Lisp_Object a)
2438 {
2439 return PSEUDOVECTORP (a, PVEC_WINDOW);
2440 }
2441
2442 INLINE bool
2443 TERMINALP (Lisp_Object a)
2444 {
2445 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2446 }
2447
2448 INLINE bool
2449 SUBRP (Lisp_Object a)
2450 {
2451 return PSEUDOVECTORP (a, PVEC_SUBR);
2452 }
2453
2454 INLINE bool
2455 COMPILEDP (Lisp_Object a)
2456 {
2457 return PSEUDOVECTORP (a, PVEC_COMPILED);
2458 }
2459
2460 INLINE bool
2461 BUFFERP (Lisp_Object a)
2462 {
2463 return PSEUDOVECTORP (a, PVEC_BUFFER);
2464 }
2465
2466 INLINE bool
2467 CHAR_TABLE_P (Lisp_Object a)
2468 {
2469 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2470 }
2471
2472 INLINE bool
2473 SUB_CHAR_TABLE_P (Lisp_Object a)
2474 {
2475 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2476 }
2477
2478 INLINE bool
2479 BOOL_VECTOR_P (Lisp_Object a)
2480 {
2481 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2482 }
2483
2484 INLINE bool
2485 FRAMEP (Lisp_Object a)
2486 {
2487 return PSEUDOVECTORP (a, PVEC_FRAME);
2488 }
2489
2490 /* Test for image (image . spec) */
2491 INLINE bool
2492 IMAGEP (Lisp_Object x)
2493 {
2494 return CONSP (x) && EQ (XCAR (x), Qimage);
2495 }
2496
2497 /* Array types. */
2498 INLINE bool
2499 ARRAYP (Lisp_Object x)
2500 {
2501 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2502 }
2503 \f
2504 INLINE void
2505 CHECK_LIST (Lisp_Object x)
2506 {
2507 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2508 }
2509
2510 LISP_MACRO_DEFUN_VOID (CHECK_LIST_CONS, (Lisp_Object x, Lisp_Object y), (x, y))
2511 LISP_MACRO_DEFUN_VOID (CHECK_SYMBOL, (Lisp_Object x), (x))
2512 LISP_MACRO_DEFUN_VOID (CHECK_NUMBER, (Lisp_Object x), (x))
2513
2514 INLINE void
2515 CHECK_STRING (Lisp_Object x)
2516 {
2517 CHECK_TYPE (STRINGP (x), Qstringp, x);
2518 }
2519 INLINE void
2520 CHECK_STRING_CAR (Lisp_Object x)
2521 {
2522 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2523 }
2524 INLINE void
2525 CHECK_CONS (Lisp_Object x)
2526 {
2527 CHECK_TYPE (CONSP (x), Qconsp, x);
2528 }
2529 INLINE void
2530 CHECK_VECTOR (Lisp_Object x)
2531 {
2532 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2533 }
2534 INLINE void
2535 CHECK_BOOL_VECTOR (Lisp_Object x)
2536 {
2537 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2538 }
2539 /* This is a bit special because we always need size afterwards. */
2540 INLINE ptrdiff_t
2541 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2542 {
2543 if (VECTORP (x))
2544 return ASIZE (x);
2545 if (STRINGP (x))
2546 return SCHARS (x);
2547 wrong_type_argument (Qarrayp, x);
2548 }
2549 INLINE void
2550 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2551 {
2552 CHECK_TYPE (ARRAYP (x), predicate, x);
2553 }
2554 INLINE void
2555 CHECK_BUFFER (Lisp_Object x)
2556 {
2557 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2558 }
2559 INLINE void
2560 CHECK_WINDOW (Lisp_Object x)
2561 {
2562 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2563 }
2564 #ifdef subprocesses
2565 INLINE void
2566 CHECK_PROCESS (Lisp_Object x)
2567 {
2568 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2569 }
2570 #endif
2571 INLINE void
2572 CHECK_NATNUM (Lisp_Object x)
2573 {
2574 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2575 }
2576
2577 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2578 do { \
2579 CHECK_NUMBER (x); \
2580 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2581 args_out_of_range_3 \
2582 (x, \
2583 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2584 ? MOST_NEGATIVE_FIXNUM \
2585 : (lo)), \
2586 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2587 } while (false)
2588 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2589 do { \
2590 if (TYPE_SIGNED (type)) \
2591 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2592 else \
2593 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2594 } while (false)
2595
2596 #define CHECK_NUMBER_COERCE_MARKER(x) \
2597 do { \
2598 if (MARKERP ((x))) \
2599 XSETFASTINT (x, marker_position (x)); \
2600 else \
2601 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2602 } while (false)
2603
2604 INLINE double
2605 XFLOATINT (Lisp_Object n)
2606 {
2607 return extract_float (n);
2608 }
2609
2610 INLINE void
2611 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2612 {
2613 CHECK_TYPE (FLOATP (x) || INTEGERP (x), Qnumberp, x);
2614 }
2615
2616 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2617 do { \
2618 if (MARKERP (x)) \
2619 XSETFASTINT (x, marker_position (x)); \
2620 else \
2621 CHECK_TYPE (INTEGERP (x) || FLOATP (x), Qnumber_or_marker_p, x); \
2622 } while (false)
2623
2624 /* Since we can't assign directly to the CAR or CDR fields of a cons
2625 cell, use these when checking that those fields contain numbers. */
2626 INLINE void
2627 CHECK_NUMBER_CAR (Lisp_Object x)
2628 {
2629 Lisp_Object tmp = XCAR (x);
2630 CHECK_NUMBER (tmp);
2631 XSETCAR (x, tmp);
2632 }
2633
2634 INLINE void
2635 CHECK_NUMBER_CDR (Lisp_Object x)
2636 {
2637 Lisp_Object tmp = XCDR (x);
2638 CHECK_NUMBER (tmp);
2639 XSETCDR (x, tmp);
2640 }
2641 \f
2642 /* Define a built-in function for calling from Lisp.
2643 `lname' should be the name to give the function in Lisp,
2644 as a null-terminated C string.
2645 `fnname' should be the name of the function in C.
2646 By convention, it starts with F.
2647 `sname' should be the name for the C constant structure
2648 that records information on this function for internal use.
2649 By convention, it should be the same as `fnname' but with S instead of F.
2650 It's too bad that C macros can't compute this from `fnname'.
2651 `minargs' should be a number, the minimum number of arguments allowed.
2652 `maxargs' should be a number, the maximum number of arguments allowed,
2653 or else MANY or UNEVALLED.
2654 MANY means pass a vector of evaluated arguments,
2655 in the form of an integer number-of-arguments
2656 followed by the address of a vector of Lisp_Objects
2657 which contains the argument values.
2658 UNEVALLED means pass the list of unevaluated arguments
2659 `intspec' says how interactive arguments are to be fetched.
2660 If the string starts with a `(', `intspec' is evaluated and the resulting
2661 list is the list of arguments.
2662 If it's a string that doesn't start with `(', the value should follow
2663 the one of the doc string for `interactive'.
2664 A null string means call interactively with no arguments.
2665 `doc' is documentation for the user. */
2666
2667 /* This version of DEFUN declares a function prototype with the right
2668 arguments, so we can catch errors with maxargs at compile-time. */
2669 #ifdef _MSC_VER
2670 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2671 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2672 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2673 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2674 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2675 { (Lisp_Object (__cdecl *)(void))fnname }, \
2676 minargs, maxargs, lname, intspec, 0}; \
2677 Lisp_Object fnname
2678 #else /* not _MSC_VER */
2679 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2680 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2681 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2682 { .a ## maxargs = fnname }, \
2683 minargs, maxargs, lname, intspec, 0}; \
2684 Lisp_Object fnname
2685 #endif
2686
2687 /* Note that the weird token-substitution semantics of ANSI C makes
2688 this work for MANY and UNEVALLED. */
2689 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
2690 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
2691 #define DEFUN_ARGS_0 (void)
2692 #define DEFUN_ARGS_1 (Lisp_Object)
2693 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
2694 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
2695 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
2696 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2697 Lisp_Object)
2698 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2699 Lisp_Object, Lisp_Object)
2700 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2701 Lisp_Object, Lisp_Object, Lisp_Object)
2702 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2703 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
2704
2705 /* True if OBJ is a Lisp function. */
2706 INLINE bool
2707 FUNCTIONP (Lisp_Object obj)
2708 {
2709 return functionp (obj);
2710 }
2711
2712 /* defsubr (Sname);
2713 is how we define the symbol for function `name' at start-up time. */
2714 extern void defsubr (struct Lisp_Subr *);
2715
2716 enum maxargs
2717 {
2718 MANY = -2,
2719 UNEVALLED = -1
2720 };
2721
2722 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2723 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2724 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
2725 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
2726 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
2727
2728 /* Macros we use to define forwarded Lisp variables.
2729 These are used in the syms_of_FILENAME functions.
2730
2731 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
2732 lisp variable is actually a field in `struct emacs_globals'. The
2733 field's name begins with "f_", which is a convention enforced by
2734 these macros. Each such global has a corresponding #define in
2735 globals.h; the plain name should be used in the code.
2736
2737 E.g., the global "cons_cells_consed" is declared as "int
2738 f_cons_cells_consed" in globals.h, but there is a define:
2739
2740 #define cons_cells_consed globals.f_cons_cells_consed
2741
2742 All C code uses the `cons_cells_consed' name. This is all done
2743 this way to support indirection for multi-threaded Emacs. */
2744
2745 #define DEFVAR_LISP(lname, vname, doc) \
2746 do { \
2747 static struct Lisp_Objfwd o_fwd; \
2748 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
2749 } while (false)
2750 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
2751 do { \
2752 static struct Lisp_Objfwd o_fwd; \
2753 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
2754 } while (false)
2755 #define DEFVAR_BOOL(lname, vname, doc) \
2756 do { \
2757 static struct Lisp_Boolfwd b_fwd; \
2758 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
2759 } while (false)
2760 #define DEFVAR_INT(lname, vname, doc) \
2761 do { \
2762 static struct Lisp_Intfwd i_fwd; \
2763 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
2764 } while (false)
2765
2766 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
2767 do { \
2768 static struct Lisp_Objfwd o_fwd; \
2769 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
2770 } while (false)
2771
2772 #define DEFVAR_KBOARD(lname, vname, doc) \
2773 do { \
2774 static struct Lisp_Kboard_Objfwd ko_fwd; \
2775 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
2776 } while (false)
2777 \f
2778 /* Save and restore the instruction and environment pointers,
2779 without affecting the signal mask. */
2780
2781 #ifdef HAVE__SETJMP
2782 typedef jmp_buf sys_jmp_buf;
2783 # define sys_setjmp(j) _setjmp (j)
2784 # define sys_longjmp(j, v) _longjmp (j, v)
2785 #elif defined HAVE_SIGSETJMP
2786 typedef sigjmp_buf sys_jmp_buf;
2787 # define sys_setjmp(j) sigsetjmp (j, 0)
2788 # define sys_longjmp(j, v) siglongjmp (j, v)
2789 #else
2790 /* A platform that uses neither _longjmp nor siglongjmp; assume
2791 longjmp does not affect the sigmask. */
2792 typedef jmp_buf sys_jmp_buf;
2793 # define sys_setjmp(j) setjmp (j)
2794 # define sys_longjmp(j, v) longjmp (j, v)
2795 #endif
2796
2797 \f
2798 /* Elisp uses several stacks:
2799 - the C stack.
2800 - the bytecode stack: used internally by the bytecode interpreter.
2801 Allocated from the C stack.
2802 - The specpdl stack: keeps track of active unwind-protect and
2803 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
2804 managed stack.
2805 - The handler stack: keeps track of active catch tags and condition-case
2806 handlers. Allocated in a manually managed stack implemented by a
2807 doubly-linked list allocated via xmalloc and never freed. */
2808
2809 /* Structure for recording Lisp call stack for backtrace purposes. */
2810
2811 /* The special binding stack holds the outer values of variables while
2812 they are bound by a function application or a let form, stores the
2813 code to be executed for unwind-protect forms.
2814
2815 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
2816 used all over the place, needs to be fast, and needs to know the size of
2817 union specbinding. But only eval.c should access it. */
2818
2819 enum specbind_tag {
2820 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
2821 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
2822 SPECPDL_UNWIND_INT, /* Likewise, on int. */
2823 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
2824 SPECPDL_BACKTRACE, /* An element of the backtrace. */
2825 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
2826 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
2827 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
2828 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
2829 };
2830
2831 union specbinding
2832 {
2833 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2834 struct {
2835 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2836 void (*func) (Lisp_Object);
2837 Lisp_Object arg;
2838 } unwind;
2839 struct {
2840 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2841 void (*func) (void *);
2842 void *arg;
2843 } unwind_ptr;
2844 struct {
2845 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2846 void (*func) (int);
2847 int arg;
2848 } unwind_int;
2849 struct {
2850 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2851 void (*func) (void);
2852 } unwind_void;
2853 struct {
2854 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2855 /* `where' is not used in the case of SPECPDL_LET. */
2856 Lisp_Object symbol, old_value, where;
2857 } let;
2858 struct {
2859 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2860 bool_bf debug_on_exit : 1;
2861 Lisp_Object function;
2862 Lisp_Object *args;
2863 ptrdiff_t nargs;
2864 } bt;
2865 };
2866
2867 extern union specbinding *specpdl;
2868 extern union specbinding *specpdl_ptr;
2869 extern ptrdiff_t specpdl_size;
2870
2871 INLINE ptrdiff_t
2872 SPECPDL_INDEX (void)
2873 {
2874 return specpdl_ptr - specpdl;
2875 }
2876
2877 /* This structure helps implement the `catch/throw' and `condition-case/signal'
2878 control structures. A struct handler contains all the information needed to
2879 restore the state of the interpreter after a non-local jump.
2880
2881 handler structures are chained together in a doubly linked list; the `next'
2882 member points to the next outer catchtag and the `nextfree' member points in
2883 the other direction to the next inner element (which is typically the next
2884 free element since we mostly use it on the deepest handler).
2885
2886 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
2887 member is TAG, and then unbinds to it. The `val' member is used to
2888 hold VAL while the stack is unwound; `val' is returned as the value
2889 of the catch form.
2890
2891 All the other members are concerned with restoring the interpreter
2892 state.
2893
2894 Members are volatile if their values need to survive _longjmp when
2895 a 'struct handler' is a local variable. */
2896
2897 enum handlertype { CATCHER, CONDITION_CASE };
2898
2899 struct handler
2900 {
2901 enum handlertype type;
2902 Lisp_Object tag_or_ch;
2903 Lisp_Object val;
2904 struct handler *next;
2905 struct handler *nextfree;
2906
2907 /* The bytecode interpreter can have several handlers active at the same
2908 time, so when we longjmp to one of them, it needs to know which handler
2909 this was and what was the corresponding internal state. This is stored
2910 here, and when we longjmp we make sure that handlerlist points to the
2911 proper handler. */
2912 Lisp_Object *bytecode_top;
2913 int bytecode_dest;
2914
2915 /* Most global vars are reset to their value via the specpdl mechanism,
2916 but a few others are handled by storing their value here. */
2917 #if true /* GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS, but defined later. */
2918 struct gcpro *gcpro;
2919 #endif
2920 sys_jmp_buf jmp;
2921 EMACS_INT lisp_eval_depth;
2922 ptrdiff_t pdlcount;
2923 int poll_suppress_count;
2924 int interrupt_input_blocked;
2925 struct byte_stack *byte_stack;
2926 };
2927
2928 /* Fill in the components of c, and put it on the list. */
2929 #define PUSH_HANDLER(c, tag_ch_val, handlertype) \
2930 if (handlerlist->nextfree) \
2931 (c) = handlerlist->nextfree; \
2932 else \
2933 { \
2934 (c) = xmalloc (sizeof (struct handler)); \
2935 (c)->nextfree = NULL; \
2936 handlerlist->nextfree = (c); \
2937 } \
2938 (c)->type = (handlertype); \
2939 (c)->tag_or_ch = (tag_ch_val); \
2940 (c)->val = Qnil; \
2941 (c)->next = handlerlist; \
2942 (c)->lisp_eval_depth = lisp_eval_depth; \
2943 (c)->pdlcount = SPECPDL_INDEX (); \
2944 (c)->poll_suppress_count = poll_suppress_count; \
2945 (c)->interrupt_input_blocked = interrupt_input_blocked;\
2946 (c)->gcpro = gcprolist; \
2947 (c)->byte_stack = byte_stack_list; \
2948 handlerlist = (c);
2949
2950
2951 extern Lisp_Object memory_signal_data;
2952
2953 /* An address near the bottom of the stack.
2954 Tells GC how to save a copy of the stack. */
2955 extern char *stack_bottom;
2956
2957 /* Check quit-flag and quit if it is non-nil.
2958 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
2959 So the program needs to do QUIT at times when it is safe to quit.
2960 Every loop that might run for a long time or might not exit
2961 ought to do QUIT at least once, at a safe place.
2962 Unless that is impossible, of course.
2963 But it is very desirable to avoid creating loops where QUIT is impossible.
2964
2965 Exception: if you set immediate_quit to true,
2966 then the handler that responds to the C-g does the quit itself.
2967 This is a good thing to do around a loop that has no side effects
2968 and (in particular) cannot call arbitrary Lisp code.
2969
2970 If quit-flag is set to `kill-emacs' the SIGINT handler has received
2971 a request to exit Emacs when it is safe to do. */
2972
2973 extern void process_pending_signals (void);
2974 extern bool volatile pending_signals;
2975
2976 extern void process_quit_flag (void);
2977 #define QUIT \
2978 do { \
2979 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
2980 process_quit_flag (); \
2981 else if (pending_signals) \
2982 process_pending_signals (); \
2983 } while (false)
2984
2985
2986 /* True if ought to quit now. */
2987
2988 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
2989 \f
2990 extern Lisp_Object Vascii_downcase_table;
2991 extern Lisp_Object Vascii_canon_table;
2992 \f
2993 /* Structure for recording stack slots that need marking. */
2994
2995 /* This is a chain of structures, each of which points at a Lisp_Object
2996 variable whose value should be marked in garbage collection.
2997 Normally every link of the chain is an automatic variable of a function,
2998 and its `val' points to some argument or local variable of the function.
2999 On exit to the function, the chain is set back to the value it had on entry.
3000 This way, no link remains in the chain when the stack frame containing the
3001 link disappears.
3002
3003 Every function that can call Feval must protect in this fashion all
3004 Lisp_Object variables whose contents will be used again. */
3005
3006 extern struct gcpro *gcprolist;
3007
3008 struct gcpro
3009 {
3010 struct gcpro *next;
3011
3012 /* Address of first protected variable. */
3013 volatile Lisp_Object *var;
3014
3015 /* Number of consecutive protected variables. */
3016 ptrdiff_t nvars;
3017
3018 #ifdef DEBUG_GCPRO
3019 int level;
3020 #endif
3021 };
3022
3023 /* Values of GC_MARK_STACK during compilation:
3024
3025 0 Use GCPRO as before
3026 1 Do the real thing, make GCPROs and UNGCPRO no-ops.
3027 2 Mark the stack, and check that everything GCPRO'd is
3028 marked.
3029 3 Mark using GCPRO's, mark stack last, and count how many
3030 dead objects are kept alive.
3031
3032 Formerly, method 0 was used. Currently, method 1 is used unless
3033 otherwise specified by hand when building, e.g.,
3034 "make CPPFLAGS='-DGC_MARK_STACK=GC_USE_GCPROS_AS_BEFORE'".
3035 Methods 2 and 3 are present mainly to debug the transition from 0 to 1. */
3036
3037 #define GC_USE_GCPROS_AS_BEFORE 0
3038 #define GC_MAKE_GCPROS_NOOPS 1
3039 #define GC_MARK_STACK_CHECK_GCPROS 2
3040 #define GC_USE_GCPROS_CHECK_ZOMBIES 3
3041
3042 #ifndef GC_MARK_STACK
3043 #define GC_MARK_STACK GC_MAKE_GCPROS_NOOPS
3044 #endif
3045
3046 /* Whether we do the stack marking manually. */
3047 #define BYTE_MARK_STACK !(GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
3048 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
3049
3050
3051 #if GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS
3052
3053 /* Do something silly with gcproN vars just so gcc shuts up. */
3054 /* You get warnings from MIPSPro... */
3055
3056 #define GCPRO1(varname) ((void) gcpro1)
3057 #define GCPRO2(varname1, varname2) ((void) gcpro2, (void) gcpro1)
3058 #define GCPRO3(varname1, varname2, varname3) \
3059 ((void) gcpro3, (void) gcpro2, (void) gcpro1)
3060 #define GCPRO4(varname1, varname2, varname3, varname4) \
3061 ((void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3062 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3063 ((void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3064 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3065 ((void) gcpro6, (void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, \
3066 (void) gcpro1)
3067 #define GCPRO7(a, b, c, d, e, f, g) (GCPRO6 (a, b, c, d, e, f), (void) gcpro7)
3068 #define UNGCPRO ((void) 0)
3069
3070 #else /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3071
3072 #ifndef DEBUG_GCPRO
3073
3074 #define GCPRO1(varname) \
3075 {gcpro1.next = gcprolist; gcpro1.var = &varname; gcpro1.nvars = 1; \
3076 gcprolist = &gcpro1; }
3077
3078 #define GCPRO2(varname1, varname2) \
3079 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3080 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3081 gcprolist = &gcpro2; }
3082
3083 #define GCPRO3(varname1, varname2, varname3) \
3084 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3085 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3086 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3087 gcprolist = &gcpro3; }
3088
3089 #define GCPRO4(varname1, varname2, varname3, varname4) \
3090 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3091 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3092 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3093 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3094 gcprolist = &gcpro4; }
3095
3096 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3097 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3098 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3099 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3100 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3101 gcpro5.next = &gcpro4; gcpro5.var = &varname5; gcpro5.nvars = 1; \
3102 gcprolist = &gcpro5; }
3103
3104 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3105 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3106 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3107 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3108 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3109 gcpro5.next = &gcpro4; gcpro5.var = &varname5; gcpro5.nvars = 1; \
3110 gcpro6.next = &gcpro5; gcpro6.var = &varname6; gcpro6.nvars = 1; \
3111 gcprolist = &gcpro6; }
3112
3113 #define GCPRO7(a, b, c, d, e, f, g) \
3114 {gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3115 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3116 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3117 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3118 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3119 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3120 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3121 gcprolist = &gcpro7; }
3122
3123 #define UNGCPRO (gcprolist = gcpro1.next)
3124
3125 #else
3126
3127 extern int gcpro_level;
3128
3129 #define GCPRO1(varname) \
3130 {gcpro1.next = gcprolist; gcpro1.var = &varname; gcpro1.nvars = 1; \
3131 gcpro1.level = gcpro_level++; \
3132 gcprolist = &gcpro1; }
3133
3134 #define GCPRO2(varname1, varname2) \
3135 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3136 gcpro1.level = gcpro_level; \
3137 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3138 gcpro2.level = gcpro_level++; \
3139 gcprolist = &gcpro2; }
3140
3141 #define GCPRO3(varname1, varname2, varname3) \
3142 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3143 gcpro1.level = gcpro_level; \
3144 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3145 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3146 gcpro3.level = gcpro_level++; \
3147 gcprolist = &gcpro3; }
3148
3149 #define GCPRO4(varname1, varname2, varname3, varname4) \
3150 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3151 gcpro1.level = gcpro_level; \
3152 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3153 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3154 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3155 gcpro4.level = gcpro_level++; \
3156 gcprolist = &gcpro4; }
3157
3158 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3159 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3160 gcpro1.level = gcpro_level; \
3161 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3162 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3163 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3164 gcpro5.next = &gcpro4; gcpro5.var = &varname5; gcpro5.nvars = 1; \
3165 gcpro5.level = gcpro_level++; \
3166 gcprolist = &gcpro5; }
3167
3168 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3169 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3170 gcpro1.level = gcpro_level; \
3171 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3172 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3173 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3174 gcpro5.next = &gcpro4; gcpro5.var = &varname5; gcpro5.nvars = 1; \
3175 gcpro6.next = &gcpro5; gcpro6.var = &varname6; gcpro6.nvars = 1; \
3176 gcpro6.level = gcpro_level++; \
3177 gcprolist = &gcpro6; }
3178
3179 #define GCPRO7(a, b, c, d, e, f, g) \
3180 {gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3181 gcpro1.level = gcpro_level; \
3182 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3183 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3184 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3185 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3186 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3187 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3188 gcpro7.level = gcpro_level++; \
3189 gcprolist = &gcpro7; }
3190
3191 #define UNGCPRO \
3192 (--gcpro_level != gcpro1.level \
3193 ? emacs_abort () \
3194 : (void) (gcprolist = gcpro1.next))
3195
3196 #endif /* DEBUG_GCPRO */
3197 #endif /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3198
3199
3200 /* Evaluate expr, UNGCPRO, and then return the value of expr. */
3201 #define RETURN_UNGCPRO(expr) \
3202 do \
3203 { \
3204 Lisp_Object ret_ungc_val; \
3205 ret_ungc_val = (expr); \
3206 UNGCPRO; \
3207 return ret_ungc_val; \
3208 } \
3209 while (false)
3210
3211 /* Call staticpro (&var) to protect static variable `var'. */
3212
3213 void staticpro (Lisp_Object *);
3214 \f
3215 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
3216 meaning as in the DEFUN macro, and is used to construct a prototype. */
3217 /* We can use the same trick as in the DEFUN macro to generate the
3218 appropriate prototype. */
3219 #define EXFUN(fnname, maxargs) \
3220 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
3221
3222 #include "globals.h"
3223
3224 /* Forward declarations for prototypes. */
3225 struct window;
3226 struct frame;
3227
3228 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3229
3230 INLINE void
3231 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3232 {
3233 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3234 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3235 }
3236
3237 /* Functions to modify hash tables. */
3238
3239 INLINE void
3240 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3241 {
3242 gc_aset (h->key_and_value, 2 * idx, val);
3243 }
3244
3245 INLINE void
3246 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3247 {
3248 gc_aset (h->key_and_value, 2 * idx + 1, val);
3249 }
3250
3251 /* Use these functions to set Lisp_Object
3252 or pointer slots of struct Lisp_Symbol. */
3253
3254 INLINE void
3255 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3256 {
3257 XSYMBOL (sym)->function = function;
3258 }
3259
3260 INLINE void
3261 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3262 {
3263 XSYMBOL (sym)->plist = plist;
3264 }
3265
3266 INLINE void
3267 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3268 {
3269 XSYMBOL (sym)->next = next;
3270 }
3271
3272 /* Buffer-local (also frame-local) variable access functions. */
3273
3274 INLINE int
3275 blv_found (struct Lisp_Buffer_Local_Value *blv)
3276 {
3277 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3278 return blv->found;
3279 }
3280
3281 /* Set overlay's property list. */
3282
3283 INLINE void
3284 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3285 {
3286 XOVERLAY (overlay)->plist = plist;
3287 }
3288
3289 /* Get text properties of S. */
3290
3291 INLINE INTERVAL
3292 string_intervals (Lisp_Object s)
3293 {
3294 return XSTRING (s)->intervals;
3295 }
3296
3297 /* Set text properties of S to I. */
3298
3299 INLINE void
3300 set_string_intervals (Lisp_Object s, INTERVAL i)
3301 {
3302 XSTRING (s)->intervals = i;
3303 }
3304
3305 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3306 of setting slots directly. */
3307
3308 INLINE void
3309 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3310 {
3311 XCHAR_TABLE (table)->defalt = val;
3312 }
3313 INLINE void
3314 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3315 {
3316 XCHAR_TABLE (table)->purpose = val;
3317 }
3318
3319 /* Set different slots in (sub)character tables. */
3320
3321 INLINE void
3322 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3323 {
3324 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3325 XCHAR_TABLE (table)->extras[idx] = val;
3326 }
3327
3328 INLINE void
3329 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3330 {
3331 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3332 XCHAR_TABLE (table)->contents[idx] = val;
3333 }
3334
3335 INLINE void
3336 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3337 {
3338 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3339 }
3340
3341 /* Defined in data.c. */
3342 extern Lisp_Object Qquote, Qunbound;
3343 extern Lisp_Object Qerror_conditions, Qerror_message, Qtop_level;
3344 extern Lisp_Object Qerror, Qquit, Qargs_out_of_range;
3345 extern Lisp_Object Qvoid_variable, Qvoid_function;
3346 extern Lisp_Object Qinvalid_read_syntax;
3347 extern Lisp_Object Qinvalid_function, Qwrong_number_of_arguments, Qno_catch;
3348 extern Lisp_Object Quser_error, Qend_of_file, Qarith_error, Qmark_inactive;
3349 extern Lisp_Object Qbeginning_of_buffer, Qend_of_buffer, Qbuffer_read_only;
3350 extern Lisp_Object Qtext_read_only;
3351 extern Lisp_Object Qinteractive_form;
3352 extern Lisp_Object Qcircular_list;
3353 extern Lisp_Object Qsequencep;
3354 extern Lisp_Object Qchar_or_string_p, Qinteger_or_marker_p;
3355 extern Lisp_Object Qfboundp;
3356
3357 extern Lisp_Object Qcdr;
3358
3359 extern Lisp_Object Qrange_error, Qoverflow_error;
3360
3361 extern Lisp_Object Qnumber_or_marker_p;
3362
3363 extern Lisp_Object Qbuffer, Qinteger, Qsymbol;
3364
3365 /* Defined in data.c. */
3366 extern Lisp_Object indirect_function (Lisp_Object);
3367 extern Lisp_Object find_symbol_value (Lisp_Object);
3368 enum Arith_Comparison {
3369 ARITH_EQUAL,
3370 ARITH_NOTEQUAL,
3371 ARITH_LESS,
3372 ARITH_GRTR,
3373 ARITH_LESS_OR_EQUAL,
3374 ARITH_GRTR_OR_EQUAL
3375 };
3376 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3377 enum Arith_Comparison comparison);
3378
3379 /* Convert the integer I to an Emacs representation, either the integer
3380 itself, or a cons of two or three integers, or if all else fails a float.
3381 I should not have side effects. */
3382 #define INTEGER_TO_CONS(i) \
3383 (! FIXNUM_OVERFLOW_P (i) \
3384 ? make_number (i) \
3385 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16) \
3386 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16)) \
3387 && FIXNUM_OVERFLOW_P ((i) >> 16)) \
3388 ? Fcons (make_number ((i) >> 16), make_number ((i) & 0xffff)) \
3389 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16 >> 24) \
3390 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16 >> 24)) \
3391 && FIXNUM_OVERFLOW_P ((i) >> 16 >> 24)) \
3392 ? Fcons (make_number ((i) >> 16 >> 24), \
3393 Fcons (make_number ((i) >> 16 & 0xffffff), \
3394 make_number ((i) & 0xffff))) \
3395 : make_float (i))
3396
3397 /* Convert the Emacs representation CONS back to an integer of type
3398 TYPE, storing the result the variable VAR. Signal an error if CONS
3399 is not a valid representation or is out of range for TYPE. */
3400 #define CONS_TO_INTEGER(cons, type, var) \
3401 (TYPE_SIGNED (type) \
3402 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3403 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3404 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3405 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3406
3407 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3408 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3409 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3410 Lisp_Object);
3411 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3412 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3413 extern void syms_of_data (void);
3414 extern void swap_in_global_binding (struct Lisp_Symbol *);
3415
3416 /* Defined in cmds.c */
3417 extern void syms_of_cmds (void);
3418 extern void keys_of_cmds (void);
3419
3420 /* Defined in coding.c. */
3421 extern Lisp_Object Qcharset;
3422 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3423 ptrdiff_t, bool, bool, Lisp_Object);
3424 extern void init_coding (void);
3425 extern void init_coding_once (void);
3426 extern void syms_of_coding (void);
3427
3428 /* Defined in character.c. */
3429 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3430 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3431 extern void syms_of_character (void);
3432
3433 /* Defined in charset.c. */
3434 extern void init_charset (void);
3435 extern void init_charset_once (void);
3436 extern void syms_of_charset (void);
3437 /* Structure forward declarations. */
3438 struct charset;
3439
3440 /* Defined in syntax.c. */
3441 extern void init_syntax_once (void);
3442 extern void syms_of_syntax (void);
3443
3444 /* Defined in fns.c. */
3445 extern Lisp_Object QCrehash_size, QCrehash_threshold;
3446 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3447 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3448 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3449 extern void sweep_weak_hash_tables (void);
3450 extern Lisp_Object Qcursor_in_echo_area;
3451 extern Lisp_Object Qstring_lessp;
3452 extern Lisp_Object QCsize, QCtest, QCweakness, Qequal, Qeq;
3453 EMACS_UINT hash_string (char const *, ptrdiff_t);
3454 EMACS_UINT sxhash (Lisp_Object, int);
3455 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3456 Lisp_Object, Lisp_Object);
3457 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3458 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3459 EMACS_UINT);
3460 extern struct hash_table_test hashtest_eql, hashtest_equal;
3461 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3462 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3463 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3464 ptrdiff_t, ptrdiff_t);
3465 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3466 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3467 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3468 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3469 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3470 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3471 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3472 extern void clear_string_char_byte_cache (void);
3473 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3474 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3475 extern Lisp_Object string_to_multibyte (Lisp_Object);
3476 extern Lisp_Object string_make_unibyte (Lisp_Object);
3477 extern void syms_of_fns (void);
3478
3479 /* Defined in floatfns.c. */
3480 extern void syms_of_floatfns (void);
3481 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3482
3483 /* Defined in fringe.c. */
3484 extern void syms_of_fringe (void);
3485 extern void init_fringe (void);
3486 #ifdef HAVE_WINDOW_SYSTEM
3487 extern void mark_fringe_data (void);
3488 extern void init_fringe_once (void);
3489 #endif /* HAVE_WINDOW_SYSTEM */
3490
3491 /* Defined in image.c. */
3492 extern Lisp_Object QCascent, QCmargin, QCrelief;
3493 extern Lisp_Object QCconversion;
3494 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3495 extern void reset_image_types (void);
3496 extern void syms_of_image (void);
3497
3498 /* Defined in insdel.c. */
3499 extern Lisp_Object Qinhibit_modification_hooks;
3500 extern Lisp_Object Qregion_extract_function;
3501 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3502 extern _Noreturn void buffer_overflow (void);
3503 extern void make_gap (ptrdiff_t);
3504 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3505 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3506 ptrdiff_t, bool, bool);
3507 extern int count_combining_before (const unsigned char *,
3508 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3509 extern int count_combining_after (const unsigned char *,
3510 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3511 extern void insert (const char *, ptrdiff_t);
3512 extern void insert_and_inherit (const char *, ptrdiff_t);
3513 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3514 bool, bool, bool);
3515 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3516 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3517 ptrdiff_t, ptrdiff_t, bool);
3518 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3519 extern void insert_char (int);
3520 extern void insert_string (const char *);
3521 extern void insert_before_markers (const char *, ptrdiff_t);
3522 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3523 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3524 ptrdiff_t, ptrdiff_t,
3525 ptrdiff_t, bool);
3526 extern void del_range (ptrdiff_t, ptrdiff_t);
3527 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3528 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3529 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3530 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3531 ptrdiff_t, ptrdiff_t, bool);
3532 extern void modify_text (ptrdiff_t, ptrdiff_t);
3533 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3534 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3535 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3536 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3537 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3538 ptrdiff_t, ptrdiff_t);
3539 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3540 ptrdiff_t, ptrdiff_t);
3541 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3542 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3543 const char *, ptrdiff_t, ptrdiff_t, bool);
3544 extern void syms_of_insdel (void);
3545
3546 /* Defined in dispnew.c. */
3547 #if (defined PROFILING \
3548 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3549 _Noreturn void __executable_start (void);
3550 #endif
3551 extern Lisp_Object Vwindow_system;
3552 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3553
3554 /* Defined in xdisp.c. */
3555 extern Lisp_Object Qinhibit_point_motion_hooks;
3556 extern Lisp_Object Qinhibit_redisplay;
3557 extern Lisp_Object Qmenu_bar_update_hook;
3558 extern Lisp_Object Qwindow_scroll_functions;
3559 extern Lisp_Object Qoverriding_local_map, Qoverriding_terminal_local_map;
3560 extern Lisp_Object Qtext, Qboth, Qboth_horiz, Qtext_image_horiz;
3561 extern Lisp_Object Qspace, Qcenter, QCalign_to;
3562 extern Lisp_Object Qbar, Qhbar, Qhollow;
3563 extern Lisp_Object Qleft_margin, Qright_margin;
3564 extern Lisp_Object QCdata, QCfile;
3565 extern Lisp_Object QCmap;
3566 extern Lisp_Object Qrisky_local_variable;
3567 extern bool noninteractive_need_newline;
3568 extern Lisp_Object echo_area_buffer[2];
3569 extern void add_to_log (const char *, Lisp_Object, Lisp_Object);
3570 extern void check_message_stack (void);
3571 extern void setup_echo_area_for_printing (int);
3572 extern bool push_message (void);
3573 extern void pop_message_unwind (void);
3574 extern Lisp_Object restore_message_unwind (Lisp_Object);
3575 extern void restore_message (void);
3576 extern Lisp_Object current_message (void);
3577 extern void clear_message (bool, bool);
3578 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3579 extern void message1 (const char *);
3580 extern void message1_nolog (const char *);
3581 extern void message3 (Lisp_Object);
3582 extern void message3_nolog (Lisp_Object);
3583 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3584 extern void message_with_string (const char *, Lisp_Object, int);
3585 extern void message_log_maybe_newline (void);
3586 extern void update_echo_area (void);
3587 extern void truncate_echo_area (ptrdiff_t);
3588 extern void redisplay (void);
3589
3590 void set_frame_cursor_types (struct frame *, Lisp_Object);
3591 extern void syms_of_xdisp (void);
3592 extern void init_xdisp (void);
3593 extern Lisp_Object safe_eval (Lisp_Object);
3594 extern int pos_visible_p (struct window *, ptrdiff_t, int *,
3595 int *, int *, int *, int *, int *);
3596
3597 /* Defined in xsettings.c. */
3598 extern void syms_of_xsettings (void);
3599
3600 /* Defined in vm-limit.c. */
3601 extern void memory_warnings (void *, void (*warnfun) (const char *));
3602
3603 /* Defined in character.c. */
3604 extern void parse_str_as_multibyte (const unsigned char *, ptrdiff_t,
3605 ptrdiff_t *, ptrdiff_t *);
3606
3607 /* Defined in alloc.c. */
3608 extern void check_pure_size (void);
3609 extern void free_misc (Lisp_Object);
3610 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3611 extern void malloc_warning (const char *);
3612 extern _Noreturn void memory_full (size_t);
3613 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3614 extern bool survives_gc_p (Lisp_Object);
3615 extern void mark_object (Lisp_Object);
3616 #if defined REL_ALLOC && !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3617 extern void refill_memory_reserve (void);
3618 #endif
3619 extern const char *pending_malloc_warning;
3620 extern Lisp_Object zero_vector;
3621 extern Lisp_Object *stack_base;
3622 extern EMACS_INT consing_since_gc;
3623 extern EMACS_INT gc_relative_threshold;
3624 extern EMACS_INT memory_full_cons_threshold;
3625 extern Lisp_Object list1 (Lisp_Object);
3626 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3627 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3628 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3629 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3630 Lisp_Object);
3631 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3632 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3633
3634 /* Build a frequently used 2/3/4-integer lists. */
3635
3636 INLINE Lisp_Object
3637 list2i (EMACS_INT x, EMACS_INT y)
3638 {
3639 return list2 (make_number (x), make_number (y));
3640 }
3641
3642 INLINE Lisp_Object
3643 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3644 {
3645 return list3 (make_number (x), make_number (y), make_number (w));
3646 }
3647
3648 INLINE Lisp_Object
3649 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3650 {
3651 return list4 (make_number (x), make_number (y),
3652 make_number (w), make_number (h));
3653 }
3654
3655 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3656 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3657 extern _Noreturn void string_overflow (void);
3658 extern Lisp_Object make_string (const char *, ptrdiff_t);
3659 extern Lisp_Object local_string_init (struct Lisp_String *, char const *,
3660 ptrdiff_t);
3661 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3662 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3663 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3664
3665 /* Make unibyte string from C string when the length isn't known. */
3666
3667 INLINE Lisp_Object
3668 build_unibyte_string (const char *str)
3669 {
3670 return make_unibyte_string (str, strlen (str));
3671 }
3672
3673 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3674 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3675 extern Lisp_Object make_uninit_string (EMACS_INT);
3676 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3677 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3678 extern Lisp_Object make_specified_string (const char *,
3679 ptrdiff_t, ptrdiff_t, bool);
3680 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3681 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3682
3683 /* Make a string allocated in pure space, use STR as string data. */
3684
3685 INLINE Lisp_Object
3686 build_pure_c_string (const char *str)
3687 {
3688 return make_pure_c_string (str, strlen (str));
3689 }
3690
3691 /* Make a string from the data at STR, treating it as multibyte if the
3692 data warrants. */
3693
3694 INLINE Lisp_Object
3695 build_string (const char *str)
3696 {
3697 return make_string (str, strlen (str));
3698 }
3699
3700 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3701 extern void make_byte_code (struct Lisp_Vector *);
3702 extern Lisp_Object Qautomatic_gc;
3703 extern Lisp_Object Qchar_table_extra_slots;
3704 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3705
3706 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3707 be sure that GC cannot happen until the vector is completely
3708 initialized. E.g. the following code is likely to crash:
3709
3710 v = make_uninit_vector (3);
3711 ASET (v, 0, obj0);
3712 ASET (v, 1, Ffunction_can_gc ());
3713 ASET (v, 2, obj1); */
3714
3715 INLINE Lisp_Object
3716 make_uninit_vector (ptrdiff_t size)
3717 {
3718 Lisp_Object v;
3719 struct Lisp_Vector *p;
3720
3721 p = allocate_vector (size);
3722 XSETVECTOR (v, p);
3723 return v;
3724 }
3725
3726 /* Like above, but special for sub char-tables. */
3727
3728 INLINE Lisp_Object
3729 make_uninit_sub_char_table (int depth, int min_char)
3730 {
3731 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3732 Lisp_Object v = make_uninit_vector (slots);
3733
3734 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3735 XSUB_CHAR_TABLE (v)->depth = depth;
3736 XSUB_CHAR_TABLE (v)->min_char = min_char;
3737 return v;
3738 }
3739
3740 extern struct Lisp_Vector *allocate_pseudovector (int, int, enum pvec_type);
3741 #define ALLOCATE_PSEUDOVECTOR(typ,field,tag) \
3742 ((typ*) \
3743 allocate_pseudovector \
3744 (VECSIZE (typ), PSEUDOVECSIZE (typ, field), tag))
3745 extern struct Lisp_Hash_Table *allocate_hash_table (void);
3746 extern struct window *allocate_window (void);
3747 extern struct frame *allocate_frame (void);
3748 extern struct Lisp_Process *allocate_process (void);
3749 extern Lisp_Object local_vector_init (struct Lisp_Vector *, ptrdiff_t,
3750 Lisp_Object);
3751 extern struct terminal *allocate_terminal (void);
3752 extern bool gc_in_progress;
3753 extern bool abort_on_gc;
3754 extern Lisp_Object make_float (double);
3755 extern void display_malloc_warning (void);
3756 extern ptrdiff_t inhibit_garbage_collection (void);
3757 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3758 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3759 Lisp_Object, Lisp_Object);
3760 extern Lisp_Object make_save_ptr (void *);
3761 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3762 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3763 extern Lisp_Object make_save_int_obj (ptrdiff_t, Lisp_Object);
3764 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3765 Lisp_Object);
3766 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3767 extern void free_save_value (Lisp_Object);
3768 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3769 extern void free_marker (Lisp_Object);
3770 extern void free_cons (struct Lisp_Cons *);
3771 extern void init_alloc_once (void);
3772 extern void init_alloc (void);
3773 extern void syms_of_alloc (void);
3774 extern struct buffer * allocate_buffer (void);
3775 extern int valid_lisp_object_p (Lisp_Object);
3776 extern int relocatable_string_data_p (const char *);
3777 #ifdef GC_CHECK_CONS_LIST
3778 extern void check_cons_list (void);
3779 #else
3780 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3781 #endif
3782
3783 #ifdef REL_ALLOC
3784 /* Defined in ralloc.c. */
3785 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3786 extern void r_alloc_free (void **);
3787 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3788 extern void r_alloc_reset_variable (void **, void **);
3789 extern void r_alloc_inhibit_buffer_relocation (int);
3790 #endif
3791
3792 /* Defined in chartab.c. */
3793 extern Lisp_Object copy_char_table (Lisp_Object);
3794 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3795 int *, int *);
3796 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3797 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3798 Lisp_Object),
3799 Lisp_Object, Lisp_Object, Lisp_Object);
3800 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3801 Lisp_Object, Lisp_Object,
3802 Lisp_Object, struct charset *,
3803 unsigned, unsigned);
3804 extern Lisp_Object uniprop_table (Lisp_Object);
3805 extern void syms_of_chartab (void);
3806
3807 /* Defined in print.c. */
3808 extern Lisp_Object Vprin1_to_string_buffer;
3809 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3810 extern Lisp_Object Qstandard_output;
3811 extern Lisp_Object Qexternal_debugging_output;
3812 extern void temp_output_buffer_setup (const char *);
3813 extern int print_level;
3814 extern Lisp_Object Qprint_escape_newlines;
3815 extern void write_string (const char *, int);
3816 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3817 Lisp_Object);
3818 extern Lisp_Object internal_with_output_to_temp_buffer
3819 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3820 #define FLOAT_TO_STRING_BUFSIZE 350
3821 extern int float_to_string (char *, double);
3822 extern void init_print_once (void);
3823 extern void syms_of_print (void);
3824
3825 /* Defined in doprnt.c. */
3826 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3827 va_list);
3828 extern ptrdiff_t esprintf (char *, char const *, ...)
3829 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3830 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3831 char const *, ...)
3832 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3833 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3834 char const *, va_list)
3835 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3836
3837 /* Defined in lread.c. */
3838 extern Lisp_Object Qvariable_documentation, Qstandard_input;
3839 extern Lisp_Object Qbackquote, Qcomma, Qcomma_at, Qcomma_dot, Qfunction;
3840 extern Lisp_Object Qlexical_binding;
3841 extern Lisp_Object check_obarray (Lisp_Object);
3842 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3843 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3844 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3845 INLINE void
3846 LOADHIST_ATTACH (Lisp_Object x)
3847 {
3848 if (initialized)
3849 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3850 }
3851 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3852 Lisp_Object *, Lisp_Object, bool);
3853 extern Lisp_Object string_to_number (char const *, int, bool);
3854 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3855 Lisp_Object);
3856 extern void dir_warning (const char *, Lisp_Object);
3857 extern void init_obarray (void);
3858 extern void init_lread (void);
3859 extern void syms_of_lread (void);
3860
3861 INLINE Lisp_Object
3862 intern (const char *str)
3863 {
3864 return intern_1 (str, strlen (str));
3865 }
3866
3867 INLINE Lisp_Object
3868 intern_c_string (const char *str)
3869 {
3870 return intern_c_string_1 (str, strlen (str));
3871 }
3872
3873 /* Defined in eval.c. */
3874 extern EMACS_INT lisp_eval_depth;
3875 extern Lisp_Object Qexit, Qinteractive, Qcommandp, Qmacro;
3876 extern Lisp_Object Qinhibit_quit, Qinternal_interpreter_environment, Qclosure;
3877 extern Lisp_Object Qand_rest;
3878 extern Lisp_Object Vautoload_queue;
3879 extern Lisp_Object Vsignaling_function;
3880 extern Lisp_Object inhibit_lisp_code;
3881 extern struct handler *handlerlist;
3882
3883 /* To run a normal hook, use the appropriate function from the list below.
3884 The calling convention:
3885
3886 if (!NILP (Vrun_hooks))
3887 call1 (Vrun_hooks, Qmy_funny_hook);
3888
3889 should no longer be used. */
3890 extern Lisp_Object Vrun_hooks;
3891 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3892 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3893 Lisp_Object (*funcall)
3894 (ptrdiff_t nargs, Lisp_Object *args));
3895 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3896 extern _Noreturn void xsignal0 (Lisp_Object);
3897 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3898 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3899 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3900 Lisp_Object);
3901 extern _Noreturn void signal_error (const char *, Lisp_Object);
3902 extern Lisp_Object eval_sub (Lisp_Object form);
3903 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3904 extern Lisp_Object call0 (Lisp_Object);
3905 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3906 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3907 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3908 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3909 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3910 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3911 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3912 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3913 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3914 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3915 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3916 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3917 extern Lisp_Object internal_condition_case_n
3918 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3919 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3920 extern void specbind (Lisp_Object, Lisp_Object);
3921 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3922 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3923 extern void record_unwind_protect_int (void (*) (int), int);
3924 extern void record_unwind_protect_void (void (*) (void));
3925 extern void record_unwind_protect_nothing (void);
3926 extern void clear_unwind_protect (ptrdiff_t);
3927 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3928 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3929 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3930 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3931 extern _Noreturn void verror (const char *, va_list)
3932 ATTRIBUTE_FORMAT_PRINTF (1, 0);
3933 extern void un_autoload (Lisp_Object);
3934 extern Lisp_Object call_debugger (Lisp_Object arg);
3935 extern void init_eval_once (void);
3936 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
3937 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
3938 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3939 extern void init_eval (void);
3940 extern void syms_of_eval (void);
3941 extern void unwind_body (Lisp_Object);
3942 extern void record_in_backtrace (Lisp_Object function,
3943 Lisp_Object *args, ptrdiff_t nargs);
3944 extern void mark_specpdl (void);
3945 extern void get_backtrace (Lisp_Object array);
3946 Lisp_Object backtrace_top_function (void);
3947 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
3948 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
3949
3950
3951 /* Defined in editfns.c. */
3952 extern Lisp_Object Qfield;
3953 extern void insert1 (Lisp_Object);
3954 extern Lisp_Object format2 (const char *, Lisp_Object, Lisp_Object);
3955 extern Lisp_Object save_excursion_save (void);
3956 extern Lisp_Object save_restriction_save (void);
3957 extern void save_excursion_restore (Lisp_Object);
3958 extern void save_restriction_restore (Lisp_Object);
3959 extern _Noreturn void time_overflow (void);
3960 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
3961 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3962 ptrdiff_t, bool);
3963 extern void init_editfns (void);
3964 extern void syms_of_editfns (void);
3965 extern void set_time_zone_rule (const char *);
3966
3967 /* Defined in buffer.c. */
3968 extern bool mouse_face_overlay_overlaps (Lisp_Object);
3969 extern _Noreturn void nsberror (Lisp_Object);
3970 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
3971 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
3972 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
3973 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
3974 Lisp_Object, Lisp_Object, Lisp_Object);
3975 extern bool overlay_touches_p (ptrdiff_t);
3976 extern Lisp_Object other_buffer_safely (Lisp_Object);
3977 extern Lisp_Object get_truename_buffer (Lisp_Object);
3978 extern void init_buffer_once (void);
3979 extern void init_buffer (int);
3980 extern void syms_of_buffer (void);
3981 extern void keys_of_buffer (void);
3982
3983 /* Defined in marker.c. */
3984
3985 extern ptrdiff_t marker_position (Lisp_Object);
3986 extern ptrdiff_t marker_byte_position (Lisp_Object);
3987 extern void clear_charpos_cache (struct buffer *);
3988 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
3989 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
3990 extern void unchain_marker (struct Lisp_Marker *marker);
3991 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
3992 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
3993 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
3994 ptrdiff_t, ptrdiff_t);
3995 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
3996 extern void syms_of_marker (void);
3997
3998 /* Defined in fileio.c. */
3999
4000 extern Lisp_Object Qfile_error;
4001 extern Lisp_Object Qfile_notify_error;
4002 extern Lisp_Object Qfile_exists_p;
4003 extern Lisp_Object Qfile_directory_p;
4004 extern Lisp_Object Qinsert_file_contents;
4005 extern Lisp_Object Qfile_name_history;
4006 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
4007 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
4008 Lisp_Object, Lisp_Object, Lisp_Object,
4009 Lisp_Object, int);
4010 extern void close_file_unwind (int);
4011 extern void fclose_unwind (void *);
4012 extern void restore_point_unwind (Lisp_Object);
4013 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
4014 extern _Noreturn void report_file_error (const char *, Lisp_Object);
4015 extern bool internal_delete_file (Lisp_Object);
4016 extern Lisp_Object emacs_readlinkat (int, const char *);
4017 extern bool file_directory_p (const char *);
4018 extern bool file_accessible_directory_p (Lisp_Object);
4019 extern void init_fileio (void);
4020 extern void syms_of_fileio (void);
4021 extern Lisp_Object make_temp_name (Lisp_Object, bool);
4022 extern Lisp_Object Qdelete_file;
4023
4024 /* Defined in search.c. */
4025 extern void shrink_regexp_cache (void);
4026 extern void restore_search_regs (void);
4027 extern void record_unwind_save_match_data (void);
4028 struct re_registers;
4029 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
4030 struct re_registers *,
4031 Lisp_Object, bool, bool);
4032 extern ptrdiff_t fast_string_match (Lisp_Object, Lisp_Object);
4033 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4034 ptrdiff_t);
4035 extern ptrdiff_t fast_string_match_ignore_case (Lisp_Object, Lisp_Object);
4036 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4037 ptrdiff_t, ptrdiff_t, Lisp_Object);
4038 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4039 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4040 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4041 ptrdiff_t, bool);
4042 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4043 ptrdiff_t, ptrdiff_t *);
4044 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4045 ptrdiff_t, ptrdiff_t *);
4046 extern void syms_of_search (void);
4047 extern void clear_regexp_cache (void);
4048
4049 /* Defined in minibuf.c. */
4050
4051 extern Lisp_Object Qcompletion_ignore_case;
4052 extern Lisp_Object Vminibuffer_list;
4053 extern Lisp_Object last_minibuf_string;
4054 extern Lisp_Object get_minibuffer (EMACS_INT);
4055 extern void init_minibuf_once (void);
4056 extern void syms_of_minibuf (void);
4057
4058 /* Defined in callint.c. */
4059
4060 extern Lisp_Object Qminus, Qplus;
4061 extern Lisp_Object Qprogn;
4062 extern Lisp_Object Qwhen;
4063 extern Lisp_Object Qmouse_leave_buffer_hook;
4064 extern void syms_of_callint (void);
4065
4066 /* Defined in casefiddle.c. */
4067
4068 extern Lisp_Object Qidentity;
4069 extern void syms_of_casefiddle (void);
4070 extern void keys_of_casefiddle (void);
4071
4072 /* Defined in casetab.c. */
4073
4074 extern void init_casetab_once (void);
4075 extern void syms_of_casetab (void);
4076
4077 /* Defined in keyboard.c. */
4078
4079 extern Lisp_Object echo_message_buffer;
4080 extern struct kboard *echo_kboard;
4081 extern void cancel_echoing (void);
4082 extern Lisp_Object Qdisabled, QCfilter;
4083 extern Lisp_Object Qup, Qdown;
4084 extern Lisp_Object last_undo_boundary;
4085 extern bool input_pending;
4086 #ifdef HAVE_STACK_OVERFLOW_HANDLING
4087 extern sigjmp_buf return_to_command_loop;
4088 #endif
4089 extern Lisp_Object menu_bar_items (Lisp_Object);
4090 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4091 extern void discard_mouse_events (void);
4092 #ifdef USABLE_SIGIO
4093 void handle_input_available_signal (int);
4094 #endif
4095 extern Lisp_Object pending_funcalls;
4096 extern bool detect_input_pending (void);
4097 extern bool detect_input_pending_ignore_squeezables (void);
4098 extern bool detect_input_pending_run_timers (bool);
4099 extern void safe_run_hooks (Lisp_Object);
4100 extern void cmd_error_internal (Lisp_Object, const char *);
4101 extern Lisp_Object command_loop_1 (void);
4102 extern Lisp_Object read_menu_command (void);
4103 extern Lisp_Object recursive_edit_1 (void);
4104 extern void record_auto_save (void);
4105 extern void force_auto_save_soon (void);
4106 extern void init_keyboard (void);
4107 extern void syms_of_keyboard (void);
4108 extern void keys_of_keyboard (void);
4109
4110 /* Defined in indent.c. */
4111 extern ptrdiff_t current_column (void);
4112 extern void invalidate_current_column (void);
4113 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4114 extern void syms_of_indent (void);
4115
4116 /* Defined in frame.c. */
4117 extern Lisp_Object Qonly, Qnone;
4118 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4119 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4120 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4121 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4122 extern void frames_discard_buffer (Lisp_Object);
4123 extern void syms_of_frame (void);
4124
4125 /* Defined in emacs.c. */
4126 extern char **initial_argv;
4127 extern int initial_argc;
4128 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4129 extern bool display_arg;
4130 #endif
4131 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4132 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4133 extern Lisp_Object Qfile_name_handler_alist;
4134 extern _Noreturn void terminate_due_to_signal (int, int);
4135 extern Lisp_Object Qkill_emacs;
4136 #ifdef WINDOWSNT
4137 extern Lisp_Object Vlibrary_cache;
4138 #endif
4139 #if HAVE_SETLOCALE
4140 void fixup_locale (void);
4141 void synchronize_system_messages_locale (void);
4142 void synchronize_system_time_locale (void);
4143 #else
4144 INLINE void fixup_locale (void) {}
4145 INLINE void synchronize_system_messages_locale (void) {}
4146 INLINE void synchronize_system_time_locale (void) {}
4147 #endif
4148 extern void shut_down_emacs (int, Lisp_Object);
4149
4150 /* True means don't do interactive redisplay and don't change tty modes. */
4151 extern bool noninteractive;
4152
4153 /* True means remove site-lisp directories from load-path. */
4154 extern bool no_site_lisp;
4155
4156 /* Pipe used to send exit notification to the daemon parent at
4157 startup. */
4158 extern int daemon_pipe[2];
4159 #define IS_DAEMON (daemon_pipe[1] != 0)
4160
4161 /* True if handling a fatal error already. */
4162 extern bool fatal_error_in_progress;
4163
4164 /* True means don't do use window-system-specific display code. */
4165 extern bool inhibit_window_system;
4166 /* True means that a filter or a sentinel is running. */
4167 extern bool running_asynch_code;
4168
4169 /* Defined in process.c. */
4170 extern Lisp_Object QCtype, Qlocal;
4171 extern void kill_buffer_processes (Lisp_Object);
4172 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4173 struct Lisp_Process *, int);
4174 /* Max value for the first argument of wait_reading_process_output. */
4175 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4176 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4177 The bug merely causes a bogus warning, but the warning is annoying. */
4178 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4179 #else
4180 # define WAIT_READING_MAX INTMAX_MAX
4181 #endif
4182 #ifdef HAVE_TIMERFD
4183 extern void add_timer_wait_descriptor (int);
4184 #endif
4185 extern void add_keyboard_wait_descriptor (int);
4186 extern void delete_keyboard_wait_descriptor (int);
4187 #ifdef HAVE_GPM
4188 extern void add_gpm_wait_descriptor (int);
4189 extern void delete_gpm_wait_descriptor (int);
4190 #endif
4191 extern void init_process_emacs (void);
4192 extern void syms_of_process (void);
4193 extern void setup_process_coding_systems (Lisp_Object);
4194
4195 /* Defined in callproc.c. */
4196 #ifndef DOS_NT
4197 _Noreturn
4198 #endif
4199 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4200 extern void init_callproc_1 (void);
4201 extern void init_callproc (void);
4202 extern void set_initial_environment (void);
4203 extern void syms_of_callproc (void);
4204
4205 /* Defined in doc.c. */
4206 extern Lisp_Object Qfunction_documentation;
4207 extern Lisp_Object read_doc_string (Lisp_Object);
4208 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4209 extern void syms_of_doc (void);
4210 extern int read_bytecode_char (bool);
4211
4212 /* Defined in bytecode.c. */
4213 extern void syms_of_bytecode (void);
4214 extern struct byte_stack *byte_stack_list;
4215 #if BYTE_MARK_STACK
4216 extern void mark_byte_stack (void);
4217 #endif
4218 extern void unmark_byte_stack (void);
4219 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4220 Lisp_Object, ptrdiff_t, Lisp_Object *);
4221
4222 /* Defined in macros.c. */
4223 extern void init_macros (void);
4224 extern void syms_of_macros (void);
4225
4226 /* Defined in undo.c. */
4227 extern Lisp_Object Qapply;
4228 extern Lisp_Object Qinhibit_read_only;
4229 extern void truncate_undo_list (struct buffer *);
4230 extern void record_insert (ptrdiff_t, ptrdiff_t);
4231 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4232 extern void record_first_change (void);
4233 extern void record_change (ptrdiff_t, ptrdiff_t);
4234 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4235 Lisp_Object, Lisp_Object,
4236 Lisp_Object);
4237 extern void syms_of_undo (void);
4238 /* Defined in textprop.c. */
4239 extern Lisp_Object Qmouse_face;
4240 extern Lisp_Object Qinsert_in_front_hooks, Qinsert_behind_hooks;
4241 extern Lisp_Object Qminibuffer_prompt;
4242
4243 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4244
4245 /* Defined in menu.c. */
4246 extern void syms_of_menu (void);
4247
4248 /* Defined in xmenu.c. */
4249 extern void syms_of_xmenu (void);
4250
4251 /* Defined in termchar.h. */
4252 struct tty_display_info;
4253
4254 /* Defined in termhooks.h. */
4255 struct terminal;
4256
4257 /* Defined in sysdep.c. */
4258 #ifndef HAVE_GET_CURRENT_DIR_NAME
4259 extern char *get_current_dir_name (void);
4260 #endif
4261 extern void stuff_char (char c);
4262 extern void init_foreground_group (void);
4263 extern void sys_subshell (void);
4264 extern void sys_suspend (void);
4265 extern void discard_tty_input (void);
4266 extern void init_sys_modes (struct tty_display_info *);
4267 extern void reset_sys_modes (struct tty_display_info *);
4268 extern void init_all_sys_modes (void);
4269 extern void reset_all_sys_modes (void);
4270 extern void child_setup_tty (int);
4271 extern void setup_pty (int);
4272 extern int set_window_size (int, int, int);
4273 extern EMACS_INT get_random (void);
4274 extern void seed_random (void *, ptrdiff_t);
4275 extern void init_random (void);
4276 extern void emacs_backtrace (int);
4277 extern _Noreturn void emacs_abort (void) NO_INLINE;
4278 extern int emacs_open (const char *, int, int);
4279 extern int emacs_pipe (int[2]);
4280 extern int emacs_close (int);
4281 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4282 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4283 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4284 extern void emacs_perror (char const *);
4285
4286 extern void unlock_all_files (void);
4287 extern void lock_file (Lisp_Object);
4288 extern void unlock_file (Lisp_Object);
4289 extern void unlock_buffer (struct buffer *);
4290 extern void syms_of_filelock (void);
4291 extern int str_collate (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4292
4293 /* Defined in sound.c. */
4294 extern void syms_of_sound (void);
4295
4296 /* Defined in category.c. */
4297 extern void init_category_once (void);
4298 extern Lisp_Object char_category_set (int);
4299 extern void syms_of_category (void);
4300
4301 /* Defined in ccl.c. */
4302 extern void syms_of_ccl (void);
4303
4304 /* Defined in dired.c. */
4305 extern void syms_of_dired (void);
4306 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4307 Lisp_Object, Lisp_Object,
4308 bool, Lisp_Object);
4309
4310 /* Defined in term.c. */
4311 extern int *char_ins_del_vector;
4312 extern void syms_of_term (void);
4313 extern _Noreturn void fatal (const char *msgid, ...)
4314 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4315
4316 /* Defined in terminal.c. */
4317 extern void syms_of_terminal (void);
4318
4319 /* Defined in font.c. */
4320 extern void syms_of_font (void);
4321 extern void init_font (void);
4322
4323 #ifdef HAVE_WINDOW_SYSTEM
4324 /* Defined in fontset.c. */
4325 extern void syms_of_fontset (void);
4326
4327 /* Defined in xfns.c, w32fns.c, or macfns.c. */
4328 extern Lisp_Object Qfont_param;
4329 #endif
4330
4331 /* Defined in gfilenotify.c */
4332 #ifdef HAVE_GFILENOTIFY
4333 extern void globals_of_gfilenotify (void);
4334 extern void syms_of_gfilenotify (void);
4335 #endif
4336
4337 /* Defined in inotify.c */
4338 #ifdef HAVE_INOTIFY
4339 extern void syms_of_inotify (void);
4340 #endif
4341
4342 #ifdef HAVE_W32NOTIFY
4343 /* Defined on w32notify.c. */
4344 extern void syms_of_w32notify (void);
4345 #endif
4346
4347 /* Defined in xfaces.c. */
4348 extern Lisp_Object Qdefault, Qfringe;
4349 extern Lisp_Object Qscroll_bar, Qcursor;
4350 extern Lisp_Object Qmode_line_inactive;
4351 extern Lisp_Object Qface;
4352 extern Lisp_Object Qnormal;
4353 extern Lisp_Object QCfamily, QCweight, QCslant;
4354 extern Lisp_Object QCheight, QCname, QCwidth, QCforeground, QCbackground;
4355 extern Lisp_Object Qextra_light, Qlight, Qsemi_light, Qsemi_bold;
4356 extern Lisp_Object Qbold, Qextra_bold, Qultra_bold;
4357 extern Lisp_Object Qoblique, Qitalic;
4358 extern Lisp_Object Vface_alternative_font_family_alist;
4359 extern Lisp_Object Vface_alternative_font_registry_alist;
4360 extern void syms_of_xfaces (void);
4361
4362 #ifdef HAVE_X_WINDOWS
4363 /* Defined in xfns.c. */
4364 extern void syms_of_xfns (void);
4365
4366 /* Defined in xsmfns.c. */
4367 extern void syms_of_xsmfns (void);
4368
4369 /* Defined in xselect.c. */
4370 extern void syms_of_xselect (void);
4371
4372 /* Defined in xterm.c. */
4373 extern void syms_of_xterm (void);
4374 #endif /* HAVE_X_WINDOWS */
4375
4376 #ifdef HAVE_WINDOW_SYSTEM
4377 /* Defined in xterm.c, nsterm.m, w32term.c. */
4378 extern char *x_get_keysym_name (int);
4379 #endif /* HAVE_WINDOW_SYSTEM */
4380
4381 #ifdef HAVE_LIBXML2
4382 /* Defined in xml.c. */
4383 extern void syms_of_xml (void);
4384 extern void xml_cleanup_parser (void);
4385 #endif
4386
4387 #ifdef HAVE_ZLIB
4388 /* Defined in decompress.c. */
4389 extern void syms_of_decompress (void);
4390 #endif
4391
4392 #ifdef HAVE_DBUS
4393 /* Defined in dbusbind.c. */
4394 void syms_of_dbusbind (void);
4395 #endif
4396
4397
4398 /* Defined in profiler.c. */
4399 extern bool profiler_memory_running;
4400 extern void malloc_probe (size_t);
4401 extern void syms_of_profiler (void);
4402
4403
4404 #ifdef DOS_NT
4405 /* Defined in msdos.c, w32.c. */
4406 extern char *emacs_root_dir (void);
4407 #endif /* DOS_NT */
4408
4409 /* Defined in lastfile.c. */
4410 extern char my_edata[];
4411 extern char my_endbss[];
4412 extern char *my_endbss_static;
4413
4414 /* True means ^G can quit instantly. */
4415 extern bool immediate_quit;
4416
4417 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4418 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4419 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4420 extern void xfree (void *);
4421 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4422 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4423 ATTRIBUTE_ALLOC_SIZE ((2,3));
4424 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4425
4426 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4427 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4428 extern void dupstring (char **, char const *);
4429 extern void xputenv (const char *);
4430
4431 extern char *egetenv_internal (const char *, ptrdiff_t);
4432
4433 INLINE char *
4434 egetenv (const char *var)
4435 {
4436 /* When VAR is a string literal, strlen can be optimized away. */
4437 return egetenv_internal (var, strlen (var));
4438 }
4439
4440 /* Set up the name of the machine we're running on. */
4441 extern void init_system_name (void);
4442
4443 /* Return the absolute value of X. X should be a signed integer
4444 expression without side effects, and X's absolute value should not
4445 exceed the maximum for its promoted type. This is called 'eabs'
4446 because 'abs' is reserved by the C standard. */
4447 #define eabs(x) ((x) < 0 ? -(x) : (x))
4448
4449 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4450 fixnum. */
4451
4452 #define make_fixnum_or_float(val) \
4453 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4454
4455 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4456 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4457
4458 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4459
4460 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4461
4462 #define USE_SAFE_ALLOCA \
4463 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4464
4465 /* SAFE_ALLOCA allocates a simple buffer. */
4466
4467 #define SAFE_ALLOCA(size) ((size) <= MAX_ALLOCA \
4468 ? alloca (size) \
4469 : (sa_must_free = true, record_xmalloc (size)))
4470
4471 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4472 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4473 positive. The code is tuned for MULTIPLIER being a constant. */
4474
4475 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4476 do { \
4477 if ((nitems) <= MAX_ALLOCA / sizeof *(buf) / (multiplier)) \
4478 (buf) = alloca (sizeof *(buf) * (multiplier) * (nitems)); \
4479 else \
4480 { \
4481 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4482 sa_must_free = true; \
4483 record_unwind_protect_ptr (xfree, buf); \
4484 } \
4485 } while (false)
4486
4487 /* SAFE_ALLOCA_STRING allocates a C copy of a Lisp string. */
4488
4489 #define SAFE_ALLOCA_STRING(ptr, string) \
4490 do { \
4491 (ptr) = SAFE_ALLOCA (SBYTES (string) + 1); \
4492 memcpy (ptr, SDATA (string), SBYTES (string) + 1); \
4493 } while (false)
4494
4495 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4496
4497 #define SAFE_FREE() \
4498 do { \
4499 if (sa_must_free) { \
4500 sa_must_free = false; \
4501 unbind_to (sa_count, Qnil); \
4502 } \
4503 } while (false)
4504
4505
4506 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4507
4508 #define SAFE_ALLOCA_LISP(buf, nelt) \
4509 do { \
4510 if ((nelt) <= MAX_ALLOCA / word_size) \
4511 (buf) = alloca ((nelt) * word_size); \
4512 else if ((nelt) <= min (PTRDIFF_MAX, SIZE_MAX) / word_size) \
4513 { \
4514 Lisp_Object arg_; \
4515 (buf) = xmalloc ((nelt) * word_size); \
4516 arg_ = make_save_memory (buf, nelt); \
4517 sa_must_free = true; \
4518 record_unwind_protect (free_save_value, arg_); \
4519 } \
4520 else \
4521 memory_full (SIZE_MAX); \
4522 } while (false)
4523
4524
4525 /* If USE_STACK_LISP_OBJECTS, define macros that and functions that
4526 allocate block-scoped conses and function-scoped vectors and
4527 strings. These objects are not managed by the garbage collector,
4528 so they are dangerous: passing them out of their scope (e.g., to
4529 user code) results in undefined behavior. Conversely, they have
4530 better performance because GC is not involved.
4531
4532 This feature is experimental and requires careful debugging.
4533 Brave users can compile with CPPFLAGS='-DUSE_STACK_LISP_OBJECTS'
4534 to get into the game. */
4535
4536 /* A struct Lisp_Cons inside a union that is no larger and may be
4537 better-aligned. */
4538
4539 union Aligned_Cons
4540 {
4541 struct Lisp_Cons s;
4542 double d; intmax_t i; void *p;
4543 };
4544 verify (sizeof (struct Lisp_Cons) == sizeof (union Aligned_Cons));
4545
4546 /* Allocate a block-scoped cons. */
4547
4548 #define scoped_cons(car, cdr) \
4549 ((USE_STACK_LISP_OBJECTS \
4550 && alignof (union Aligned_Cons) % GCALIGNMENT == 0) \
4551 ? make_lisp_ptr (&((union Aligned_Cons) {{car, {cdr}}}).s, Lisp_Cons) \
4552 : Fcons (car, cdr))
4553
4554 /* Convenient utility macros similar to listX functions. */
4555
4556 #if USE_STACK_LISP_OBJECTS
4557 # define scoped_list1(x) scoped_cons (x, Qnil)
4558 # define scoped_list2(x, y) scoped_cons (x, scoped_list1 (y))
4559 # define scoped_list3(x, y, z) scoped_cons (x, scoped_list2 (y, z))
4560 #else
4561 # define scoped_list1(x) list1 (x)
4562 # define scoped_list2(x, y) list2 (x, y)
4563 # define scoped_list3(x, y, z) list3 (x, y, z)
4564 #endif
4565
4566 #if USE_STACK_LISP_OBJECTS && HAVE_STATEMENT_EXPRESSIONS
4567
4568 # define USE_LOCAL_ALLOCATORS
4569
4570 /* Return a function-scoped vector of length SIZE, with each element
4571 being INIT. */
4572
4573 # define make_local_vector(size, init) \
4574 ({ \
4575 ptrdiff_t size_ = size; \
4576 Lisp_Object init_ = init; \
4577 Lisp_Object vec_; \
4578 if (size_ <= (MAX_ALLOCA - header_size) / word_size) \
4579 { \
4580 void *ptr_ = alloca (size_ * word_size + header_size); \
4581 vec_ = local_vector_init (ptr_, size_, init_); \
4582 } \
4583 else \
4584 vec_ = Fmake_vector (make_number (size_), init_); \
4585 vec_; \
4586 })
4587
4588 /* Return a function-scoped string with contents DATA and length NBYTES. */
4589
4590 # define make_local_string(data, nbytes) \
4591 ({ \
4592 char const *data_ = data; \
4593 ptrdiff_t nbytes_ = nbytes; \
4594 Lisp_Object string_; \
4595 if (nbytes_ <= MAX_ALLOCA - sizeof (struct Lisp_String) - 1) \
4596 { \
4597 struct Lisp_String *ptr_ = alloca (sizeof (struct Lisp_String) + 1 \
4598 + nbytes_); \
4599 string_ = local_string_init (ptr_, data_, nbytes_); \
4600 } \
4601 else \
4602 string_ = make_string (data_, nbytes_); \
4603 string_; \
4604 })
4605
4606 /* Return a function-scoped string with contents DATA. */
4607
4608 # define build_local_string(data) \
4609 ({ char const *data_ = data; make_local_string (data_, strlen (data_)); })
4610
4611 #else
4612
4613 /* Safer but slower implementations. */
4614 # define make_local_vector(size, init) Fmake_vector (make_number (size), init)
4615 # define make_local_string(data, nbytes) make_string (data, nbytes)
4616 # define build_local_string(data) build_string (data)
4617 #endif
4618
4619
4620 /* Loop over all tails of a list, checking for cycles.
4621 FIXME: Make tortoise and n internal declarations.
4622 FIXME: Unroll the loop body so we don't need `n'. */
4623 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4624 for ((tortoise) = (hare) = (list), (n) = true; \
4625 CONSP (hare); \
4626 (hare = XCDR (hare), (n) = !(n), \
4627 ((n) \
4628 ? (EQ (hare, tortoise) \
4629 ? xsignal1 (Qcircular_list, list) \
4630 : (void) 0) \
4631 /* Move tortoise before the next iteration, in case */ \
4632 /* the next iteration does an Fsetcdr. */ \
4633 : (void) ((tortoise) = XCDR (tortoise)))))
4634
4635 /* Do a `for' loop over alist values. */
4636
4637 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4638 for ((list_var) = (head_var); \
4639 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4640 (list_var) = XCDR (list_var))
4641
4642 /* Check whether it's time for GC, and run it if so. */
4643
4644 INLINE void
4645 maybe_gc (void)
4646 {
4647 if ((consing_since_gc > gc_cons_threshold
4648 && consing_since_gc > gc_relative_threshold)
4649 || (!NILP (Vmemory_full)
4650 && consing_since_gc > memory_full_cons_threshold))
4651 Fgarbage_collect ();
4652 }
4653
4654 INLINE bool
4655 functionp (Lisp_Object object)
4656 {
4657 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4658 {
4659 object = Findirect_function (object, Qt);
4660
4661 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4662 {
4663 /* Autoloaded symbols are functions, except if they load
4664 macros or keymaps. */
4665 int i;
4666 for (i = 0; i < 4 && CONSP (object); i++)
4667 object = XCDR (object);
4668
4669 return ! (CONSP (object) && !NILP (XCAR (object)));
4670 }
4671 }
4672
4673 if (SUBRP (object))
4674 return XSUBR (object)->max_args != UNEVALLED;
4675 else if (COMPILEDP (object))
4676 return true;
4677 else if (CONSP (object))
4678 {
4679 Lisp_Object car = XCAR (object);
4680 return EQ (car, Qlambda) || EQ (car, Qclosure);
4681 }
4682 else
4683 return false;
4684 }
4685
4686 INLINE_HEADER_END
4687
4688 #endif /* EMACS_LISP_H */