]> code.delx.au - gnu-emacs/blob - src/alloc.c
(spare_memory, stack_copy, stack_copy_size, ignore_warnings, Vdead,
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef STDC_HEADERS
27 #include <stddef.h> /* For offsetof, used by PSEUDOVECSIZE. */
28 #endif
29
30 #ifdef ALLOC_DEBUG
31 #undef INLINE
32 #endif
33
34 /* Note that this declares bzero on OSF/1. How dumb. */
35
36 #include <signal.h>
37
38 #ifdef HAVE_GTK_AND_PTHREAD
39 #include <pthread.h>
40 #endif
41
42 /* This file is part of the core Lisp implementation, and thus must
43 deal with the real data structures. If the Lisp implementation is
44 replaced, this file likely will not be used. */
45
46 #undef HIDE_LISP_IMPLEMENTATION
47 #include "lisp.h"
48 #include "process.h"
49 #include "intervals.h"
50 #include "puresize.h"
51 #include "buffer.h"
52 #include "window.h"
53 #include "keyboard.h"
54 #include "frame.h"
55 #include "blockinput.h"
56 #include "charset.h"
57 #include "syssignal.h"
58 #include "termhooks.h" /* For struct terminal. */
59 #include <setjmp.h>
60
61 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
62 memory. Can do this only if using gmalloc.c. */
63
64 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
65 #undef GC_MALLOC_CHECK
66 #endif
67
68 #ifdef HAVE_UNISTD_H
69 #include <unistd.h>
70 #else
71 extern POINTER_TYPE *sbrk ();
72 #endif
73
74 #ifdef HAVE_FCNTL_H
75 #define INCLUDED_FCNTL
76 #include <fcntl.h>
77 #endif
78 #ifndef O_WRONLY
79 #define O_WRONLY 1
80 #endif
81
82 #ifdef WINDOWSNT
83 #include <fcntl.h>
84 #include "w32.h"
85 #endif
86
87 #ifdef DOUG_LEA_MALLOC
88
89 #include <malloc.h>
90 /* malloc.h #defines this as size_t, at least in glibc2. */
91 #ifndef __malloc_size_t
92 #define __malloc_size_t int
93 #endif
94
95 /* Specify maximum number of areas to mmap. It would be nice to use a
96 value that explicitly means "no limit". */
97
98 #define MMAP_MAX_AREAS 100000000
99
100 #else /* not DOUG_LEA_MALLOC */
101
102 /* The following come from gmalloc.c. */
103
104 #define __malloc_size_t size_t
105 extern __malloc_size_t _bytes_used;
106 extern __malloc_size_t __malloc_extra_blocks;
107
108 #endif /* not DOUG_LEA_MALLOC */
109
110 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
111
112 /* When GTK uses the file chooser dialog, different backends can be loaded
113 dynamically. One such a backend is the Gnome VFS backend that gets loaded
114 if you run Gnome. That backend creates several threads and also allocates
115 memory with malloc.
116
117 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
118 functions below are called from malloc, there is a chance that one
119 of these threads preempts the Emacs main thread and the hook variables
120 end up in an inconsistent state. So we have a mutex to prevent that (note
121 that the backend handles concurrent access to malloc within its own threads
122 but Emacs code running in the main thread is not included in that control).
123
124 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
125 happens in one of the backend threads we will have two threads that tries
126 to run Emacs code at once, and the code is not prepared for that.
127 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
128
129 static pthread_mutex_t alloc_mutex;
130
131 #define BLOCK_INPUT_ALLOC \
132 do \
133 { \
134 if (pthread_equal (pthread_self (), main_thread)) \
135 BLOCK_INPUT; \
136 pthread_mutex_lock (&alloc_mutex); \
137 } \
138 while (0)
139 #define UNBLOCK_INPUT_ALLOC \
140 do \
141 { \
142 pthread_mutex_unlock (&alloc_mutex); \
143 if (pthread_equal (pthread_self (), main_thread)) \
144 UNBLOCK_INPUT; \
145 } \
146 while (0)
147
148 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
149
150 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
151 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
152
153 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
154
155 /* Value of _bytes_used, when spare_memory was freed. */
156
157 static __malloc_size_t bytes_used_when_full;
158
159 static __malloc_size_t bytes_used_when_reconsidered;
160
161 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
162 to a struct Lisp_String. */
163
164 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
165 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
166 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
167
168 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
169 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
170 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
171
172 /* Value is the number of bytes/chars of S, a pointer to a struct
173 Lisp_String. This must be used instead of STRING_BYTES (S) or
174 S->size during GC, because S->size contains the mark bit for
175 strings. */
176
177 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
178 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
179
180 /* Number of bytes of consing done since the last gc. */
181
182 int consing_since_gc;
183
184 /* Count the amount of consing of various sorts of space. */
185
186 EMACS_INT cons_cells_consed;
187 EMACS_INT floats_consed;
188 EMACS_INT vector_cells_consed;
189 EMACS_INT symbols_consed;
190 EMACS_INT string_chars_consed;
191 EMACS_INT misc_objects_consed;
192 EMACS_INT intervals_consed;
193 EMACS_INT strings_consed;
194
195 /* Minimum number of bytes of consing since GC before next GC. */
196
197 EMACS_INT gc_cons_threshold;
198
199 /* Similar minimum, computed from Vgc_cons_percentage. */
200
201 EMACS_INT gc_relative_threshold;
202
203 static Lisp_Object Vgc_cons_percentage;
204
205 /* Minimum number of bytes of consing since GC before next GC,
206 when memory is full. */
207
208 EMACS_INT memory_full_cons_threshold;
209
210 /* Nonzero during GC. */
211
212 int gc_in_progress;
213
214 /* Nonzero means abort if try to GC.
215 This is for code which is written on the assumption that
216 no GC will happen, so as to verify that assumption. */
217
218 int abort_on_gc;
219
220 /* Nonzero means display messages at beginning and end of GC. */
221
222 int garbage_collection_messages;
223
224 #ifndef VIRT_ADDR_VARIES
225 extern
226 #endif /* VIRT_ADDR_VARIES */
227 int malloc_sbrk_used;
228
229 #ifndef VIRT_ADDR_VARIES
230 extern
231 #endif /* VIRT_ADDR_VARIES */
232 int malloc_sbrk_unused;
233
234 /* Number of live and free conses etc. */
235
236 static int total_conses, total_markers, total_symbols, total_vector_size;
237 static int total_free_conses, total_free_markers, total_free_symbols;
238 static int total_free_floats, total_floats;
239
240 /* Points to memory space allocated as "spare", to be freed if we run
241 out of memory. We keep one large block, four cons-blocks, and
242 two string blocks. */
243
244 static char *spare_memory[7];
245
246 /* Amount of spare memory to keep in large reserve block. */
247
248 #define SPARE_MEMORY (1 << 14)
249
250 /* Number of extra blocks malloc should get when it needs more core. */
251
252 static int malloc_hysteresis;
253
254 /* Non-nil means defun should do purecopy on the function definition. */
255
256 Lisp_Object Vpurify_flag;
257
258 /* Non-nil means we are handling a memory-full error. */
259
260 Lisp_Object Vmemory_full;
261
262 #ifndef HAVE_SHM
263
264 /* Initialize it to a nonzero value to force it into data space
265 (rather than bss space). That way unexec will remap it into text
266 space (pure), on some systems. We have not implemented the
267 remapping on more recent systems because this is less important
268 nowadays than in the days of small memories and timesharing. */
269
270 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
271 #define PUREBEG (char *) pure
272
273 #else /* HAVE_SHM */
274
275 #define pure PURE_SEG_BITS /* Use shared memory segment */
276 #define PUREBEG (char *)PURE_SEG_BITS
277
278 #endif /* HAVE_SHM */
279
280 /* Pointer to the pure area, and its size. */
281
282 static char *purebeg;
283 static size_t pure_size;
284
285 /* Number of bytes of pure storage used before pure storage overflowed.
286 If this is non-zero, this implies that an overflow occurred. */
287
288 static size_t pure_bytes_used_before_overflow;
289
290 /* Value is non-zero if P points into pure space. */
291
292 #define PURE_POINTER_P(P) \
293 (((PNTR_COMPARISON_TYPE) (P) \
294 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
295 && ((PNTR_COMPARISON_TYPE) (P) \
296 >= (PNTR_COMPARISON_TYPE) purebeg))
297
298 /* Total number of bytes allocated in pure storage. */
299
300 EMACS_INT pure_bytes_used;
301
302 /* Index in pure at which next pure Lisp object will be allocated.. */
303
304 static EMACS_INT pure_bytes_used_lisp;
305
306 /* Number of bytes allocated for non-Lisp objects in pure storage. */
307
308 static EMACS_INT pure_bytes_used_non_lisp;
309
310 /* If nonzero, this is a warning delivered by malloc and not yet
311 displayed. */
312
313 char *pending_malloc_warning;
314
315 /* Pre-computed signal argument for use when memory is exhausted. */
316
317 Lisp_Object Vmemory_signal_data;
318
319 /* Maximum amount of C stack to save when a GC happens. */
320
321 #ifndef MAX_SAVE_STACK
322 #define MAX_SAVE_STACK 16000
323 #endif
324
325 /* Buffer in which we save a copy of the C stack at each GC. */
326
327 static char *stack_copy;
328 static int stack_copy_size;
329
330 /* Non-zero means ignore malloc warnings. Set during initialization.
331 Currently not used. */
332
333 static int ignore_warnings;
334
335 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
336
337 /* Hook run after GC has finished. */
338
339 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
340
341 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
342 EMACS_INT gcs_done; /* accumulated GCs */
343
344 static void mark_buffer P_ ((Lisp_Object));
345 static void mark_terminals P_ ((void));
346 extern void mark_kboards P_ ((void));
347 extern void mark_ttys P_ ((void));
348 extern void mark_backtrace P_ ((void));
349 static void gc_sweep P_ ((void));
350 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
351 static void mark_face_cache P_ ((struct face_cache *));
352
353 #ifdef HAVE_WINDOW_SYSTEM
354 extern void mark_fringe_data P_ ((void));
355 static void mark_image P_ ((struct image *));
356 static void mark_image_cache P_ ((struct frame *));
357 #endif /* HAVE_WINDOW_SYSTEM */
358
359 static struct Lisp_String *allocate_string P_ ((void));
360 static void compact_small_strings P_ ((void));
361 static void free_large_strings P_ ((void));
362 static void sweep_strings P_ ((void));
363
364 extern int message_enable_multibyte;
365
366 /* When scanning the C stack for live Lisp objects, Emacs keeps track
367 of what memory allocated via lisp_malloc is intended for what
368 purpose. This enumeration specifies the type of memory. */
369
370 enum mem_type
371 {
372 MEM_TYPE_NON_LISP,
373 MEM_TYPE_BUFFER,
374 MEM_TYPE_CONS,
375 MEM_TYPE_STRING,
376 MEM_TYPE_MISC,
377 MEM_TYPE_SYMBOL,
378 MEM_TYPE_FLOAT,
379 /* We used to keep separate mem_types for subtypes of vectors such as
380 process, hash_table, frame, terminal, and window, but we never made
381 use of the distinction, so it only caused source-code complexity
382 and runtime slowdown. Minor but pointless. */
383 MEM_TYPE_VECTORLIKE
384 };
385
386 static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
387 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
388 void refill_memory_reserve ();
389
390
391 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
392
393 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
394 #include <stdio.h> /* For fprintf. */
395 #endif
396
397 /* A unique object in pure space used to make some Lisp objects
398 on free lists recognizable in O(1). */
399
400 static Lisp_Object Vdead;
401
402 #ifdef GC_MALLOC_CHECK
403
404 enum mem_type allocated_mem_type;
405 static int dont_register_blocks;
406
407 #endif /* GC_MALLOC_CHECK */
408
409 /* A node in the red-black tree describing allocated memory containing
410 Lisp data. Each such block is recorded with its start and end
411 address when it is allocated, and removed from the tree when it
412 is freed.
413
414 A red-black tree is a balanced binary tree with the following
415 properties:
416
417 1. Every node is either red or black.
418 2. Every leaf is black.
419 3. If a node is red, then both of its children are black.
420 4. Every simple path from a node to a descendant leaf contains
421 the same number of black nodes.
422 5. The root is always black.
423
424 When nodes are inserted into the tree, or deleted from the tree,
425 the tree is "fixed" so that these properties are always true.
426
427 A red-black tree with N internal nodes has height at most 2
428 log(N+1). Searches, insertions and deletions are done in O(log N).
429 Please see a text book about data structures for a detailed
430 description of red-black trees. Any book worth its salt should
431 describe them. */
432
433 struct mem_node
434 {
435 /* Children of this node. These pointers are never NULL. When there
436 is no child, the value is MEM_NIL, which points to a dummy node. */
437 struct mem_node *left, *right;
438
439 /* The parent of this node. In the root node, this is NULL. */
440 struct mem_node *parent;
441
442 /* Start and end of allocated region. */
443 void *start, *end;
444
445 /* Node color. */
446 enum {MEM_BLACK, MEM_RED} color;
447
448 /* Memory type. */
449 enum mem_type type;
450 };
451
452 /* Base address of stack. Set in main. */
453
454 Lisp_Object *stack_base;
455
456 /* Root of the tree describing allocated Lisp memory. */
457
458 static struct mem_node *mem_root;
459
460 /* Lowest and highest known address in the heap. */
461
462 static void *min_heap_address, *max_heap_address;
463
464 /* Sentinel node of the tree. */
465
466 static struct mem_node mem_z;
467 #define MEM_NIL &mem_z
468
469 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
470 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT));
471 static void lisp_free P_ ((POINTER_TYPE *));
472 static void mark_stack P_ ((void));
473 static int live_vector_p P_ ((struct mem_node *, void *));
474 static int live_buffer_p P_ ((struct mem_node *, void *));
475 static int live_string_p P_ ((struct mem_node *, void *));
476 static int live_cons_p P_ ((struct mem_node *, void *));
477 static int live_symbol_p P_ ((struct mem_node *, void *));
478 static int live_float_p P_ ((struct mem_node *, void *));
479 static int live_misc_p P_ ((struct mem_node *, void *));
480 static void mark_maybe_object P_ ((Lisp_Object));
481 static void mark_memory P_ ((void *, void *, int));
482 static void mem_init P_ ((void));
483 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
484 static void mem_insert_fixup P_ ((struct mem_node *));
485 static void mem_rotate_left P_ ((struct mem_node *));
486 static void mem_rotate_right P_ ((struct mem_node *));
487 static void mem_delete P_ ((struct mem_node *));
488 static void mem_delete_fixup P_ ((struct mem_node *));
489 static INLINE struct mem_node *mem_find P_ ((void *));
490
491
492 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
493 static void check_gcpros P_ ((void));
494 #endif
495
496 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
497
498 /* Recording what needs to be marked for gc. */
499
500 struct gcpro *gcprolist;
501
502 /* Addresses of staticpro'd variables. Initialize it to a nonzero
503 value; otherwise some compilers put it into BSS. */
504
505 #define NSTATICS 1280
506 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
507
508 /* Index of next unused slot in staticvec. */
509
510 static int staticidx = 0;
511
512 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
513
514
515 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
516 ALIGNMENT must be a power of 2. */
517
518 #define ALIGN(ptr, ALIGNMENT) \
519 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
520 & ~((ALIGNMENT) - 1)))
521
522
523 \f
524 /************************************************************************
525 Malloc
526 ************************************************************************/
527
528 /* Function malloc calls this if it finds we are near exhausting storage. */
529
530 void
531 malloc_warning (str)
532 char *str;
533 {
534 pending_malloc_warning = str;
535 }
536
537
538 /* Display an already-pending malloc warning. */
539
540 void
541 display_malloc_warning ()
542 {
543 call3 (intern ("display-warning"),
544 intern ("alloc"),
545 build_string (pending_malloc_warning),
546 intern ("emergency"));
547 pending_malloc_warning = 0;
548 }
549
550
551 #ifdef DOUG_LEA_MALLOC
552 # define BYTES_USED (mallinfo ().uordblks)
553 #else
554 # define BYTES_USED _bytes_used
555 #endif
556 \f
557 /* Called if we can't allocate relocatable space for a buffer. */
558
559 void
560 buffer_memory_full ()
561 {
562 /* If buffers use the relocating allocator, no need to free
563 spare_memory, because we may have plenty of malloc space left
564 that we could get, and if we don't, the malloc that fails will
565 itself cause spare_memory to be freed. If buffers don't use the
566 relocating allocator, treat this like any other failing
567 malloc. */
568
569 #ifndef REL_ALLOC
570 memory_full ();
571 #endif
572
573 /* This used to call error, but if we've run out of memory, we could
574 get infinite recursion trying to build the string. */
575 xsignal (Qnil, Vmemory_signal_data);
576 }
577
578
579 #ifdef XMALLOC_OVERRUN_CHECK
580
581 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
582 and a 16 byte trailer around each block.
583
584 The header consists of 12 fixed bytes + a 4 byte integer contaning the
585 original block size, while the trailer consists of 16 fixed bytes.
586
587 The header is used to detect whether this block has been allocated
588 through these functions -- as it seems that some low-level libc
589 functions may bypass the malloc hooks.
590 */
591
592
593 #define XMALLOC_OVERRUN_CHECK_SIZE 16
594
595 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
596 { 0x9a, 0x9b, 0xae, 0xaf,
597 0xbf, 0xbe, 0xce, 0xcf,
598 0xea, 0xeb, 0xec, 0xed };
599
600 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
601 { 0xaa, 0xab, 0xac, 0xad,
602 0xba, 0xbb, 0xbc, 0xbd,
603 0xca, 0xcb, 0xcc, 0xcd,
604 0xda, 0xdb, 0xdc, 0xdd };
605
606 /* Macros to insert and extract the block size in the header. */
607
608 #define XMALLOC_PUT_SIZE(ptr, size) \
609 (ptr[-1] = (size & 0xff), \
610 ptr[-2] = ((size >> 8) & 0xff), \
611 ptr[-3] = ((size >> 16) & 0xff), \
612 ptr[-4] = ((size >> 24) & 0xff))
613
614 #define XMALLOC_GET_SIZE(ptr) \
615 (size_t)((unsigned)(ptr[-1]) | \
616 ((unsigned)(ptr[-2]) << 8) | \
617 ((unsigned)(ptr[-3]) << 16) | \
618 ((unsigned)(ptr[-4]) << 24))
619
620
621 /* The call depth in overrun_check functions. For example, this might happen:
622 xmalloc()
623 overrun_check_malloc()
624 -> malloc -> (via hook)_-> emacs_blocked_malloc
625 -> overrun_check_malloc
626 call malloc (hooks are NULL, so real malloc is called).
627 malloc returns 10000.
628 add overhead, return 10016.
629 <- (back in overrun_check_malloc)
630 add overhead again, return 10032
631 xmalloc returns 10032.
632
633 (time passes).
634
635 xfree(10032)
636 overrun_check_free(10032)
637 decrease overhed
638 free(10016) <- crash, because 10000 is the original pointer. */
639
640 static int check_depth;
641
642 /* Like malloc, but wraps allocated block with header and trailer. */
643
644 POINTER_TYPE *
645 overrun_check_malloc (size)
646 size_t size;
647 {
648 register unsigned char *val;
649 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
650
651 val = (unsigned char *) malloc (size + overhead);
652 if (val && check_depth == 1)
653 {
654 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
655 val += XMALLOC_OVERRUN_CHECK_SIZE;
656 XMALLOC_PUT_SIZE(val, size);
657 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
658 }
659 --check_depth;
660 return (POINTER_TYPE *)val;
661 }
662
663
664 /* Like realloc, but checks old block for overrun, and wraps new block
665 with header and trailer. */
666
667 POINTER_TYPE *
668 overrun_check_realloc (block, size)
669 POINTER_TYPE *block;
670 size_t size;
671 {
672 register unsigned char *val = (unsigned char *)block;
673 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
674
675 if (val
676 && check_depth == 1
677 && bcmp (xmalloc_overrun_check_header,
678 val - XMALLOC_OVERRUN_CHECK_SIZE,
679 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
680 {
681 size_t osize = XMALLOC_GET_SIZE (val);
682 if (bcmp (xmalloc_overrun_check_trailer,
683 val + osize,
684 XMALLOC_OVERRUN_CHECK_SIZE))
685 abort ();
686 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
687 val -= XMALLOC_OVERRUN_CHECK_SIZE;
688 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
689 }
690
691 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
692
693 if (val && check_depth == 1)
694 {
695 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
696 val += XMALLOC_OVERRUN_CHECK_SIZE;
697 XMALLOC_PUT_SIZE(val, size);
698 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
699 }
700 --check_depth;
701 return (POINTER_TYPE *)val;
702 }
703
704 /* Like free, but checks block for overrun. */
705
706 void
707 overrun_check_free (block)
708 POINTER_TYPE *block;
709 {
710 unsigned char *val = (unsigned char *)block;
711
712 ++check_depth;
713 if (val
714 && check_depth == 1
715 && bcmp (xmalloc_overrun_check_header,
716 val - XMALLOC_OVERRUN_CHECK_SIZE,
717 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
718 {
719 size_t osize = XMALLOC_GET_SIZE (val);
720 if (bcmp (xmalloc_overrun_check_trailer,
721 val + osize,
722 XMALLOC_OVERRUN_CHECK_SIZE))
723 abort ();
724 #ifdef XMALLOC_CLEAR_FREE_MEMORY
725 val -= XMALLOC_OVERRUN_CHECK_SIZE;
726 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
727 #else
728 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
729 val -= XMALLOC_OVERRUN_CHECK_SIZE;
730 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
731 #endif
732 }
733
734 free (val);
735 --check_depth;
736 }
737
738 #undef malloc
739 #undef realloc
740 #undef free
741 #define malloc overrun_check_malloc
742 #define realloc overrun_check_realloc
743 #define free overrun_check_free
744 #endif
745
746 #ifdef SYNC_INPUT
747 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
748 there's no need to block input around malloc. */
749 #define MALLOC_BLOCK_INPUT ((void)0)
750 #define MALLOC_UNBLOCK_INPUT ((void)0)
751 #else
752 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
753 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
754 #endif
755
756 /* Like malloc but check for no memory and block interrupt input.. */
757
758 POINTER_TYPE *
759 xmalloc (size)
760 size_t size;
761 {
762 register POINTER_TYPE *val;
763
764 MALLOC_BLOCK_INPUT;
765 val = (POINTER_TYPE *) malloc (size);
766 MALLOC_UNBLOCK_INPUT;
767
768 if (!val && size)
769 memory_full ();
770 return val;
771 }
772
773
774 /* Like realloc but check for no memory and block interrupt input.. */
775
776 POINTER_TYPE *
777 xrealloc (block, size)
778 POINTER_TYPE *block;
779 size_t size;
780 {
781 register POINTER_TYPE *val;
782
783 MALLOC_BLOCK_INPUT;
784 /* We must call malloc explicitly when BLOCK is 0, since some
785 reallocs don't do this. */
786 if (! block)
787 val = (POINTER_TYPE *) malloc (size);
788 else
789 val = (POINTER_TYPE *) realloc (block, size);
790 MALLOC_UNBLOCK_INPUT;
791
792 if (!val && size) memory_full ();
793 return val;
794 }
795
796
797 /* Like free but block interrupt input. */
798
799 void
800 xfree (block)
801 POINTER_TYPE *block;
802 {
803 MALLOC_BLOCK_INPUT;
804 free (block);
805 MALLOC_UNBLOCK_INPUT;
806 /* We don't call refill_memory_reserve here
807 because that duplicates doing so in emacs_blocked_free
808 and the criterion should go there. */
809 }
810
811
812 /* Like strdup, but uses xmalloc. */
813
814 char *
815 xstrdup (s)
816 const char *s;
817 {
818 size_t len = strlen (s) + 1;
819 char *p = (char *) xmalloc (len);
820 bcopy (s, p, len);
821 return p;
822 }
823
824
825 /* Unwind for SAFE_ALLOCA */
826
827 Lisp_Object
828 safe_alloca_unwind (arg)
829 Lisp_Object arg;
830 {
831 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
832
833 p->dogc = 0;
834 xfree (p->pointer);
835 p->pointer = 0;
836 free_misc (arg);
837 return Qnil;
838 }
839
840
841 /* Like malloc but used for allocating Lisp data. NBYTES is the
842 number of bytes to allocate, TYPE describes the intended use of the
843 allcated memory block (for strings, for conses, ...). */
844
845 #ifndef USE_LSB_TAG
846 static void *lisp_malloc_loser;
847 #endif
848
849 static POINTER_TYPE *
850 lisp_malloc (nbytes, type)
851 size_t nbytes;
852 enum mem_type type;
853 {
854 register void *val;
855
856 MALLOC_BLOCK_INPUT;
857
858 #ifdef GC_MALLOC_CHECK
859 allocated_mem_type = type;
860 #endif
861
862 val = (void *) malloc (nbytes);
863
864 #ifndef USE_LSB_TAG
865 /* If the memory just allocated cannot be addressed thru a Lisp
866 object's pointer, and it needs to be,
867 that's equivalent to running out of memory. */
868 if (val && type != MEM_TYPE_NON_LISP)
869 {
870 Lisp_Object tem;
871 XSETCONS (tem, (char *) val + nbytes - 1);
872 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
873 {
874 lisp_malloc_loser = val;
875 free (val);
876 val = 0;
877 }
878 }
879 #endif
880
881 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
882 if (val && type != MEM_TYPE_NON_LISP)
883 mem_insert (val, (char *) val + nbytes, type);
884 #endif
885
886 MALLOC_UNBLOCK_INPUT;
887 if (!val && nbytes)
888 memory_full ();
889 return val;
890 }
891
892 /* Free BLOCK. This must be called to free memory allocated with a
893 call to lisp_malloc. */
894
895 static void
896 lisp_free (block)
897 POINTER_TYPE *block;
898 {
899 MALLOC_BLOCK_INPUT;
900 free (block);
901 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
902 mem_delete (mem_find (block));
903 #endif
904 MALLOC_UNBLOCK_INPUT;
905 }
906
907 /* Allocation of aligned blocks of memory to store Lisp data. */
908 /* The entry point is lisp_align_malloc which returns blocks of at most */
909 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
910
911 /* Use posix_memalloc if the system has it and we're using the system's
912 malloc (because our gmalloc.c routines don't have posix_memalign although
913 its memalloc could be used). */
914 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
915 #define USE_POSIX_MEMALIGN 1
916 #endif
917
918 /* BLOCK_ALIGN has to be a power of 2. */
919 #define BLOCK_ALIGN (1 << 10)
920
921 /* Padding to leave at the end of a malloc'd block. This is to give
922 malloc a chance to minimize the amount of memory wasted to alignment.
923 It should be tuned to the particular malloc library used.
924 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
925 posix_memalign on the other hand would ideally prefer a value of 4
926 because otherwise, there's 1020 bytes wasted between each ablocks.
927 In Emacs, testing shows that those 1020 can most of the time be
928 efficiently used by malloc to place other objects, so a value of 0 can
929 still preferable unless you have a lot of aligned blocks and virtually
930 nothing else. */
931 #define BLOCK_PADDING 0
932 #define BLOCK_BYTES \
933 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
934
935 /* Internal data structures and constants. */
936
937 #define ABLOCKS_SIZE 16
938
939 /* An aligned block of memory. */
940 struct ablock
941 {
942 union
943 {
944 char payload[BLOCK_BYTES];
945 struct ablock *next_free;
946 } x;
947 /* `abase' is the aligned base of the ablocks. */
948 /* It is overloaded to hold the virtual `busy' field that counts
949 the number of used ablock in the parent ablocks.
950 The first ablock has the `busy' field, the others have the `abase'
951 field. To tell the difference, we assume that pointers will have
952 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
953 is used to tell whether the real base of the parent ablocks is `abase'
954 (if not, the word before the first ablock holds a pointer to the
955 real base). */
956 struct ablocks *abase;
957 /* The padding of all but the last ablock is unused. The padding of
958 the last ablock in an ablocks is not allocated. */
959 #if BLOCK_PADDING
960 char padding[BLOCK_PADDING];
961 #endif
962 };
963
964 /* A bunch of consecutive aligned blocks. */
965 struct ablocks
966 {
967 struct ablock blocks[ABLOCKS_SIZE];
968 };
969
970 /* Size of the block requested from malloc or memalign. */
971 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
972
973 #define ABLOCK_ABASE(block) \
974 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
975 ? (struct ablocks *)(block) \
976 : (block)->abase)
977
978 /* Virtual `busy' field. */
979 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
980
981 /* Pointer to the (not necessarily aligned) malloc block. */
982 #ifdef USE_POSIX_MEMALIGN
983 #define ABLOCKS_BASE(abase) (abase)
984 #else
985 #define ABLOCKS_BASE(abase) \
986 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
987 #endif
988
989 /* The list of free ablock. */
990 static struct ablock *free_ablock;
991
992 /* Allocate an aligned block of nbytes.
993 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
994 smaller or equal to BLOCK_BYTES. */
995 static POINTER_TYPE *
996 lisp_align_malloc (nbytes, type)
997 size_t nbytes;
998 enum mem_type type;
999 {
1000 void *base, *val;
1001 struct ablocks *abase;
1002
1003 eassert (nbytes <= BLOCK_BYTES);
1004
1005 MALLOC_BLOCK_INPUT;
1006
1007 #ifdef GC_MALLOC_CHECK
1008 allocated_mem_type = type;
1009 #endif
1010
1011 if (!free_ablock)
1012 {
1013 int i;
1014 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
1015
1016 #ifdef DOUG_LEA_MALLOC
1017 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1018 because mapped region contents are not preserved in
1019 a dumped Emacs. */
1020 mallopt (M_MMAP_MAX, 0);
1021 #endif
1022
1023 #ifdef USE_POSIX_MEMALIGN
1024 {
1025 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1026 if (err)
1027 base = NULL;
1028 abase = base;
1029 }
1030 #else
1031 base = malloc (ABLOCKS_BYTES);
1032 abase = ALIGN (base, BLOCK_ALIGN);
1033 #endif
1034
1035 if (base == 0)
1036 {
1037 MALLOC_UNBLOCK_INPUT;
1038 memory_full ();
1039 }
1040
1041 aligned = (base == abase);
1042 if (!aligned)
1043 ((void**)abase)[-1] = base;
1044
1045 #ifdef DOUG_LEA_MALLOC
1046 /* Back to a reasonable maximum of mmap'ed areas. */
1047 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1048 #endif
1049
1050 #ifndef USE_LSB_TAG
1051 /* If the memory just allocated cannot be addressed thru a Lisp
1052 object's pointer, and it needs to be, that's equivalent to
1053 running out of memory. */
1054 if (type != MEM_TYPE_NON_LISP)
1055 {
1056 Lisp_Object tem;
1057 char *end = (char *) base + ABLOCKS_BYTES - 1;
1058 XSETCONS (tem, end);
1059 if ((char *) XCONS (tem) != end)
1060 {
1061 lisp_malloc_loser = base;
1062 free (base);
1063 MALLOC_UNBLOCK_INPUT;
1064 memory_full ();
1065 }
1066 }
1067 #endif
1068
1069 /* Initialize the blocks and put them on the free list.
1070 Is `base' was not properly aligned, we can't use the last block. */
1071 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1072 {
1073 abase->blocks[i].abase = abase;
1074 abase->blocks[i].x.next_free = free_ablock;
1075 free_ablock = &abase->blocks[i];
1076 }
1077 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1078
1079 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1080 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1081 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1082 eassert (ABLOCKS_BASE (abase) == base);
1083 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1084 }
1085
1086 abase = ABLOCK_ABASE (free_ablock);
1087 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1088 val = free_ablock;
1089 free_ablock = free_ablock->x.next_free;
1090
1091 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1092 if (val && type != MEM_TYPE_NON_LISP)
1093 mem_insert (val, (char *) val + nbytes, type);
1094 #endif
1095
1096 MALLOC_UNBLOCK_INPUT;
1097 if (!val && nbytes)
1098 memory_full ();
1099
1100 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1101 return val;
1102 }
1103
1104 static void
1105 lisp_align_free (block)
1106 POINTER_TYPE *block;
1107 {
1108 struct ablock *ablock = block;
1109 struct ablocks *abase = ABLOCK_ABASE (ablock);
1110
1111 MALLOC_BLOCK_INPUT;
1112 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1113 mem_delete (mem_find (block));
1114 #endif
1115 /* Put on free list. */
1116 ablock->x.next_free = free_ablock;
1117 free_ablock = ablock;
1118 /* Update busy count. */
1119 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1120
1121 if (2 > (long) ABLOCKS_BUSY (abase))
1122 { /* All the blocks are free. */
1123 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1124 struct ablock **tem = &free_ablock;
1125 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1126
1127 while (*tem)
1128 {
1129 if (*tem >= (struct ablock *) abase && *tem < atop)
1130 {
1131 i++;
1132 *tem = (*tem)->x.next_free;
1133 }
1134 else
1135 tem = &(*tem)->x.next_free;
1136 }
1137 eassert ((aligned & 1) == aligned);
1138 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1139 #ifdef USE_POSIX_MEMALIGN
1140 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1141 #endif
1142 free (ABLOCKS_BASE (abase));
1143 }
1144 MALLOC_UNBLOCK_INPUT;
1145 }
1146
1147 /* Return a new buffer structure allocated from the heap with
1148 a call to lisp_malloc. */
1149
1150 struct buffer *
1151 allocate_buffer ()
1152 {
1153 struct buffer *b
1154 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1155 MEM_TYPE_BUFFER);
1156 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1157 XSETPVECTYPE (b, PVEC_BUFFER);
1158 return b;
1159 }
1160
1161 \f
1162 #ifndef SYSTEM_MALLOC
1163
1164 /* Arranging to disable input signals while we're in malloc.
1165
1166 This only works with GNU malloc. To help out systems which can't
1167 use GNU malloc, all the calls to malloc, realloc, and free
1168 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1169 pair; unfortunately, we have no idea what C library functions
1170 might call malloc, so we can't really protect them unless you're
1171 using GNU malloc. Fortunately, most of the major operating systems
1172 can use GNU malloc. */
1173
1174 #ifndef SYNC_INPUT
1175 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1176 there's no need to block input around malloc. */
1177
1178 #ifndef DOUG_LEA_MALLOC
1179 extern void * (*__malloc_hook) P_ ((size_t, const void *));
1180 extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1181 extern void (*__free_hook) P_ ((void *, const void *));
1182 /* Else declared in malloc.h, perhaps with an extra arg. */
1183 #endif /* DOUG_LEA_MALLOC */
1184 static void * (*old_malloc_hook) P_ ((size_t, const void *));
1185 static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
1186 static void (*old_free_hook) P_ ((void*, const void*));
1187
1188 /* This function is used as the hook for free to call. */
1189
1190 static void
1191 emacs_blocked_free (ptr, ptr2)
1192 void *ptr;
1193 const void *ptr2;
1194 {
1195 BLOCK_INPUT_ALLOC;
1196
1197 #ifdef GC_MALLOC_CHECK
1198 if (ptr)
1199 {
1200 struct mem_node *m;
1201
1202 m = mem_find (ptr);
1203 if (m == MEM_NIL || m->start != ptr)
1204 {
1205 fprintf (stderr,
1206 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1207 abort ();
1208 }
1209 else
1210 {
1211 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1212 mem_delete (m);
1213 }
1214 }
1215 #endif /* GC_MALLOC_CHECK */
1216
1217 __free_hook = old_free_hook;
1218 free (ptr);
1219
1220 /* If we released our reserve (due to running out of memory),
1221 and we have a fair amount free once again,
1222 try to set aside another reserve in case we run out once more. */
1223 if (! NILP (Vmemory_full)
1224 /* Verify there is enough space that even with the malloc
1225 hysteresis this call won't run out again.
1226 The code here is correct as long as SPARE_MEMORY
1227 is substantially larger than the block size malloc uses. */
1228 && (bytes_used_when_full
1229 > ((bytes_used_when_reconsidered = BYTES_USED)
1230 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1231 refill_memory_reserve ();
1232
1233 __free_hook = emacs_blocked_free;
1234 UNBLOCK_INPUT_ALLOC;
1235 }
1236
1237
1238 /* This function is the malloc hook that Emacs uses. */
1239
1240 static void *
1241 emacs_blocked_malloc (size, ptr)
1242 size_t size;
1243 const void *ptr;
1244 {
1245 void *value;
1246
1247 BLOCK_INPUT_ALLOC;
1248 __malloc_hook = old_malloc_hook;
1249 #ifdef DOUG_LEA_MALLOC
1250 /* Segfaults on my system. --lorentey */
1251 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1252 #else
1253 __malloc_extra_blocks = malloc_hysteresis;
1254 #endif
1255
1256 value = (void *) malloc (size);
1257
1258 #ifdef GC_MALLOC_CHECK
1259 {
1260 struct mem_node *m = mem_find (value);
1261 if (m != MEM_NIL)
1262 {
1263 fprintf (stderr, "Malloc returned %p which is already in use\n",
1264 value);
1265 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1266 m->start, m->end, (char *) m->end - (char *) m->start,
1267 m->type);
1268 abort ();
1269 }
1270
1271 if (!dont_register_blocks)
1272 {
1273 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1274 allocated_mem_type = MEM_TYPE_NON_LISP;
1275 }
1276 }
1277 #endif /* GC_MALLOC_CHECK */
1278
1279 __malloc_hook = emacs_blocked_malloc;
1280 UNBLOCK_INPUT_ALLOC;
1281
1282 /* fprintf (stderr, "%p malloc\n", value); */
1283 return value;
1284 }
1285
1286
1287 /* This function is the realloc hook that Emacs uses. */
1288
1289 static void *
1290 emacs_blocked_realloc (ptr, size, ptr2)
1291 void *ptr;
1292 size_t size;
1293 const void *ptr2;
1294 {
1295 void *value;
1296
1297 BLOCK_INPUT_ALLOC;
1298 __realloc_hook = old_realloc_hook;
1299
1300 #ifdef GC_MALLOC_CHECK
1301 if (ptr)
1302 {
1303 struct mem_node *m = mem_find (ptr);
1304 if (m == MEM_NIL || m->start != ptr)
1305 {
1306 fprintf (stderr,
1307 "Realloc of %p which wasn't allocated with malloc\n",
1308 ptr);
1309 abort ();
1310 }
1311
1312 mem_delete (m);
1313 }
1314
1315 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1316
1317 /* Prevent malloc from registering blocks. */
1318 dont_register_blocks = 1;
1319 #endif /* GC_MALLOC_CHECK */
1320
1321 value = (void *) realloc (ptr, size);
1322
1323 #ifdef GC_MALLOC_CHECK
1324 dont_register_blocks = 0;
1325
1326 {
1327 struct mem_node *m = mem_find (value);
1328 if (m != MEM_NIL)
1329 {
1330 fprintf (stderr, "Realloc returns memory that is already in use\n");
1331 abort ();
1332 }
1333
1334 /* Can't handle zero size regions in the red-black tree. */
1335 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1336 }
1337
1338 /* fprintf (stderr, "%p <- realloc\n", value); */
1339 #endif /* GC_MALLOC_CHECK */
1340
1341 __realloc_hook = emacs_blocked_realloc;
1342 UNBLOCK_INPUT_ALLOC;
1343
1344 return value;
1345 }
1346
1347
1348 #ifdef HAVE_GTK_AND_PTHREAD
1349 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1350 normal malloc. Some thread implementations need this as they call
1351 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1352 calls malloc because it is the first call, and we have an endless loop. */
1353
1354 void
1355 reset_malloc_hooks ()
1356 {
1357 __free_hook = old_free_hook;
1358 __malloc_hook = old_malloc_hook;
1359 __realloc_hook = old_realloc_hook;
1360 }
1361 #endif /* HAVE_GTK_AND_PTHREAD */
1362
1363
1364 /* Called from main to set up malloc to use our hooks. */
1365
1366 void
1367 uninterrupt_malloc ()
1368 {
1369 #ifdef HAVE_GTK_AND_PTHREAD
1370 pthread_mutexattr_t attr;
1371
1372 /* GLIBC has a faster way to do this, but lets keep it portable.
1373 This is according to the Single UNIX Specification. */
1374 pthread_mutexattr_init (&attr);
1375 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1376 pthread_mutex_init (&alloc_mutex, &attr);
1377 #endif /* HAVE_GTK_AND_PTHREAD */
1378
1379 if (__free_hook != emacs_blocked_free)
1380 old_free_hook = __free_hook;
1381 __free_hook = emacs_blocked_free;
1382
1383 if (__malloc_hook != emacs_blocked_malloc)
1384 old_malloc_hook = __malloc_hook;
1385 __malloc_hook = emacs_blocked_malloc;
1386
1387 if (__realloc_hook != emacs_blocked_realloc)
1388 old_realloc_hook = __realloc_hook;
1389 __realloc_hook = emacs_blocked_realloc;
1390 }
1391
1392 #endif /* not SYNC_INPUT */
1393 #endif /* not SYSTEM_MALLOC */
1394
1395
1396 \f
1397 /***********************************************************************
1398 Interval Allocation
1399 ***********************************************************************/
1400
1401 /* Number of intervals allocated in an interval_block structure.
1402 The 1020 is 1024 minus malloc overhead. */
1403
1404 #define INTERVAL_BLOCK_SIZE \
1405 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1406
1407 /* Intervals are allocated in chunks in form of an interval_block
1408 structure. */
1409
1410 struct interval_block
1411 {
1412 /* Place `intervals' first, to preserve alignment. */
1413 struct interval intervals[INTERVAL_BLOCK_SIZE];
1414 struct interval_block *next;
1415 };
1416
1417 /* Current interval block. Its `next' pointer points to older
1418 blocks. */
1419
1420 static struct interval_block *interval_block;
1421
1422 /* Index in interval_block above of the next unused interval
1423 structure. */
1424
1425 static int interval_block_index;
1426
1427 /* Number of free and live intervals. */
1428
1429 static int total_free_intervals, total_intervals;
1430
1431 /* List of free intervals. */
1432
1433 INTERVAL interval_free_list;
1434
1435 /* Total number of interval blocks now in use. */
1436
1437 static int n_interval_blocks;
1438
1439
1440 /* Initialize interval allocation. */
1441
1442 static void
1443 init_intervals ()
1444 {
1445 interval_block = NULL;
1446 interval_block_index = INTERVAL_BLOCK_SIZE;
1447 interval_free_list = 0;
1448 n_interval_blocks = 0;
1449 }
1450
1451
1452 /* Return a new interval. */
1453
1454 INTERVAL
1455 make_interval ()
1456 {
1457 INTERVAL val;
1458
1459 /* eassert (!handling_signal); */
1460
1461 MALLOC_BLOCK_INPUT;
1462
1463 if (interval_free_list)
1464 {
1465 val = interval_free_list;
1466 interval_free_list = INTERVAL_PARENT (interval_free_list);
1467 }
1468 else
1469 {
1470 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1471 {
1472 register struct interval_block *newi;
1473
1474 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1475 MEM_TYPE_NON_LISP);
1476
1477 newi->next = interval_block;
1478 interval_block = newi;
1479 interval_block_index = 0;
1480 n_interval_blocks++;
1481 }
1482 val = &interval_block->intervals[interval_block_index++];
1483 }
1484
1485 MALLOC_UNBLOCK_INPUT;
1486
1487 consing_since_gc += sizeof (struct interval);
1488 intervals_consed++;
1489 RESET_INTERVAL (val);
1490 val->gcmarkbit = 0;
1491 return val;
1492 }
1493
1494
1495 /* Mark Lisp objects in interval I. */
1496
1497 static void
1498 mark_interval (i, dummy)
1499 register INTERVAL i;
1500 Lisp_Object dummy;
1501 {
1502 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1503 i->gcmarkbit = 1;
1504 mark_object (i->plist);
1505 }
1506
1507
1508 /* Mark the interval tree rooted in TREE. Don't call this directly;
1509 use the macro MARK_INTERVAL_TREE instead. */
1510
1511 static void
1512 mark_interval_tree (tree)
1513 register INTERVAL tree;
1514 {
1515 /* No need to test if this tree has been marked already; this
1516 function is always called through the MARK_INTERVAL_TREE macro,
1517 which takes care of that. */
1518
1519 traverse_intervals_noorder (tree, mark_interval, Qnil);
1520 }
1521
1522
1523 /* Mark the interval tree rooted in I. */
1524
1525 #define MARK_INTERVAL_TREE(i) \
1526 do { \
1527 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1528 mark_interval_tree (i); \
1529 } while (0)
1530
1531
1532 #define UNMARK_BALANCE_INTERVALS(i) \
1533 do { \
1534 if (! NULL_INTERVAL_P (i)) \
1535 (i) = balance_intervals (i); \
1536 } while (0)
1537
1538 \f
1539 /* Number support. If NO_UNION_TYPE isn't in effect, we
1540 can't create number objects in macros. */
1541 #ifndef make_number
1542 Lisp_Object
1543 make_number (n)
1544 EMACS_INT n;
1545 {
1546 Lisp_Object obj;
1547 obj.s.val = n;
1548 obj.s.type = Lisp_Int;
1549 return obj;
1550 }
1551 #endif
1552 \f
1553 /***********************************************************************
1554 String Allocation
1555 ***********************************************************************/
1556
1557 /* Lisp_Strings are allocated in string_block structures. When a new
1558 string_block is allocated, all the Lisp_Strings it contains are
1559 added to a free-list string_free_list. When a new Lisp_String is
1560 needed, it is taken from that list. During the sweep phase of GC,
1561 string_blocks that are entirely free are freed, except two which
1562 we keep.
1563
1564 String data is allocated from sblock structures. Strings larger
1565 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1566 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1567
1568 Sblocks consist internally of sdata structures, one for each
1569 Lisp_String. The sdata structure points to the Lisp_String it
1570 belongs to. The Lisp_String points back to the `u.data' member of
1571 its sdata structure.
1572
1573 When a Lisp_String is freed during GC, it is put back on
1574 string_free_list, and its `data' member and its sdata's `string'
1575 pointer is set to null. The size of the string is recorded in the
1576 `u.nbytes' member of the sdata. So, sdata structures that are no
1577 longer used, can be easily recognized, and it's easy to compact the
1578 sblocks of small strings which we do in compact_small_strings. */
1579
1580 /* Size in bytes of an sblock structure used for small strings. This
1581 is 8192 minus malloc overhead. */
1582
1583 #define SBLOCK_SIZE 8188
1584
1585 /* Strings larger than this are considered large strings. String data
1586 for large strings is allocated from individual sblocks. */
1587
1588 #define LARGE_STRING_BYTES 1024
1589
1590 /* Structure describing string memory sub-allocated from an sblock.
1591 This is where the contents of Lisp strings are stored. */
1592
1593 struct sdata
1594 {
1595 /* Back-pointer to the string this sdata belongs to. If null, this
1596 structure is free, and the NBYTES member of the union below
1597 contains the string's byte size (the same value that STRING_BYTES
1598 would return if STRING were non-null). If non-null, STRING_BYTES
1599 (STRING) is the size of the data, and DATA contains the string's
1600 contents. */
1601 struct Lisp_String *string;
1602
1603 #ifdef GC_CHECK_STRING_BYTES
1604
1605 EMACS_INT nbytes;
1606 unsigned char data[1];
1607
1608 #define SDATA_NBYTES(S) (S)->nbytes
1609 #define SDATA_DATA(S) (S)->data
1610
1611 #else /* not GC_CHECK_STRING_BYTES */
1612
1613 union
1614 {
1615 /* When STRING in non-null. */
1616 unsigned char data[1];
1617
1618 /* When STRING is null. */
1619 EMACS_INT nbytes;
1620 } u;
1621
1622
1623 #define SDATA_NBYTES(S) (S)->u.nbytes
1624 #define SDATA_DATA(S) (S)->u.data
1625
1626 #endif /* not GC_CHECK_STRING_BYTES */
1627 };
1628
1629
1630 /* Structure describing a block of memory which is sub-allocated to
1631 obtain string data memory for strings. Blocks for small strings
1632 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1633 as large as needed. */
1634
1635 struct sblock
1636 {
1637 /* Next in list. */
1638 struct sblock *next;
1639
1640 /* Pointer to the next free sdata block. This points past the end
1641 of the sblock if there isn't any space left in this block. */
1642 struct sdata *next_free;
1643
1644 /* Start of data. */
1645 struct sdata first_data;
1646 };
1647
1648 /* Number of Lisp strings in a string_block structure. The 1020 is
1649 1024 minus malloc overhead. */
1650
1651 #define STRING_BLOCK_SIZE \
1652 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1653
1654 /* Structure describing a block from which Lisp_String structures
1655 are allocated. */
1656
1657 struct string_block
1658 {
1659 /* Place `strings' first, to preserve alignment. */
1660 struct Lisp_String strings[STRING_BLOCK_SIZE];
1661 struct string_block *next;
1662 };
1663
1664 /* Head and tail of the list of sblock structures holding Lisp string
1665 data. We always allocate from current_sblock. The NEXT pointers
1666 in the sblock structures go from oldest_sblock to current_sblock. */
1667
1668 static struct sblock *oldest_sblock, *current_sblock;
1669
1670 /* List of sblocks for large strings. */
1671
1672 static struct sblock *large_sblocks;
1673
1674 /* List of string_block structures, and how many there are. */
1675
1676 static struct string_block *string_blocks;
1677 static int n_string_blocks;
1678
1679 /* Free-list of Lisp_Strings. */
1680
1681 static struct Lisp_String *string_free_list;
1682
1683 /* Number of live and free Lisp_Strings. */
1684
1685 static int total_strings, total_free_strings;
1686
1687 /* Number of bytes used by live strings. */
1688
1689 static int total_string_size;
1690
1691 /* Given a pointer to a Lisp_String S which is on the free-list
1692 string_free_list, return a pointer to its successor in the
1693 free-list. */
1694
1695 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1696
1697 /* Return a pointer to the sdata structure belonging to Lisp string S.
1698 S must be live, i.e. S->data must not be null. S->data is actually
1699 a pointer to the `u.data' member of its sdata structure; the
1700 structure starts at a constant offset in front of that. */
1701
1702 #ifdef GC_CHECK_STRING_BYTES
1703
1704 #define SDATA_OF_STRING(S) \
1705 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1706 - sizeof (EMACS_INT)))
1707
1708 #else /* not GC_CHECK_STRING_BYTES */
1709
1710 #define SDATA_OF_STRING(S) \
1711 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1712
1713 #endif /* not GC_CHECK_STRING_BYTES */
1714
1715
1716 #ifdef GC_CHECK_STRING_OVERRUN
1717
1718 /* We check for overrun in string data blocks by appending a small
1719 "cookie" after each allocated string data block, and check for the
1720 presence of this cookie during GC. */
1721
1722 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1723 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1724 { 0xde, 0xad, 0xbe, 0xef };
1725
1726 #else
1727 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1728 #endif
1729
1730 /* Value is the size of an sdata structure large enough to hold NBYTES
1731 bytes of string data. The value returned includes a terminating
1732 NUL byte, the size of the sdata structure, and padding. */
1733
1734 #ifdef GC_CHECK_STRING_BYTES
1735
1736 #define SDATA_SIZE(NBYTES) \
1737 ((sizeof (struct Lisp_String *) \
1738 + (NBYTES) + 1 \
1739 + sizeof (EMACS_INT) \
1740 + sizeof (EMACS_INT) - 1) \
1741 & ~(sizeof (EMACS_INT) - 1))
1742
1743 #else /* not GC_CHECK_STRING_BYTES */
1744
1745 #define SDATA_SIZE(NBYTES) \
1746 ((sizeof (struct Lisp_String *) \
1747 + (NBYTES) + 1 \
1748 + sizeof (EMACS_INT) - 1) \
1749 & ~(sizeof (EMACS_INT) - 1))
1750
1751 #endif /* not GC_CHECK_STRING_BYTES */
1752
1753 /* Extra bytes to allocate for each string. */
1754
1755 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1756
1757 /* Initialize string allocation. Called from init_alloc_once. */
1758
1759 static void
1760 init_strings ()
1761 {
1762 total_strings = total_free_strings = total_string_size = 0;
1763 oldest_sblock = current_sblock = large_sblocks = NULL;
1764 string_blocks = NULL;
1765 n_string_blocks = 0;
1766 string_free_list = NULL;
1767 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1768 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1769 }
1770
1771
1772 #ifdef GC_CHECK_STRING_BYTES
1773
1774 static int check_string_bytes_count;
1775
1776 static void check_string_bytes P_ ((int));
1777 static void check_sblock P_ ((struct sblock *));
1778
1779 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1780
1781
1782 /* Like GC_STRING_BYTES, but with debugging check. */
1783
1784 int
1785 string_bytes (s)
1786 struct Lisp_String *s;
1787 {
1788 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1789 if (!PURE_POINTER_P (s)
1790 && s->data
1791 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1792 abort ();
1793 return nbytes;
1794 }
1795
1796 /* Check validity of Lisp strings' string_bytes member in B. */
1797
1798 static void
1799 check_sblock (b)
1800 struct sblock *b;
1801 {
1802 struct sdata *from, *end, *from_end;
1803
1804 end = b->next_free;
1805
1806 for (from = &b->first_data; from < end; from = from_end)
1807 {
1808 /* Compute the next FROM here because copying below may
1809 overwrite data we need to compute it. */
1810 int nbytes;
1811
1812 /* Check that the string size recorded in the string is the
1813 same as the one recorded in the sdata structure. */
1814 if (from->string)
1815 CHECK_STRING_BYTES (from->string);
1816
1817 if (from->string)
1818 nbytes = GC_STRING_BYTES (from->string);
1819 else
1820 nbytes = SDATA_NBYTES (from);
1821
1822 nbytes = SDATA_SIZE (nbytes);
1823 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1824 }
1825 }
1826
1827
1828 /* Check validity of Lisp strings' string_bytes member. ALL_P
1829 non-zero means check all strings, otherwise check only most
1830 recently allocated strings. Used for hunting a bug. */
1831
1832 static void
1833 check_string_bytes (all_p)
1834 int all_p;
1835 {
1836 if (all_p)
1837 {
1838 struct sblock *b;
1839
1840 for (b = large_sblocks; b; b = b->next)
1841 {
1842 struct Lisp_String *s = b->first_data.string;
1843 if (s)
1844 CHECK_STRING_BYTES (s);
1845 }
1846
1847 for (b = oldest_sblock; b; b = b->next)
1848 check_sblock (b);
1849 }
1850 else
1851 check_sblock (current_sblock);
1852 }
1853
1854 #endif /* GC_CHECK_STRING_BYTES */
1855
1856 #ifdef GC_CHECK_STRING_FREE_LIST
1857
1858 /* Walk through the string free list looking for bogus next pointers.
1859 This may catch buffer overrun from a previous string. */
1860
1861 static void
1862 check_string_free_list ()
1863 {
1864 struct Lisp_String *s;
1865
1866 /* Pop a Lisp_String off the free-list. */
1867 s = string_free_list;
1868 while (s != NULL)
1869 {
1870 if ((unsigned)s < 1024)
1871 abort();
1872 s = NEXT_FREE_LISP_STRING (s);
1873 }
1874 }
1875 #else
1876 #define check_string_free_list()
1877 #endif
1878
1879 /* Return a new Lisp_String. */
1880
1881 static struct Lisp_String *
1882 allocate_string ()
1883 {
1884 struct Lisp_String *s;
1885
1886 /* eassert (!handling_signal); */
1887
1888 MALLOC_BLOCK_INPUT;
1889
1890 /* If the free-list is empty, allocate a new string_block, and
1891 add all the Lisp_Strings in it to the free-list. */
1892 if (string_free_list == NULL)
1893 {
1894 struct string_block *b;
1895 int i;
1896
1897 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1898 bzero (b, sizeof *b);
1899 b->next = string_blocks;
1900 string_blocks = b;
1901 ++n_string_blocks;
1902
1903 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1904 {
1905 s = b->strings + i;
1906 NEXT_FREE_LISP_STRING (s) = string_free_list;
1907 string_free_list = s;
1908 }
1909
1910 total_free_strings += STRING_BLOCK_SIZE;
1911 }
1912
1913 check_string_free_list ();
1914
1915 /* Pop a Lisp_String off the free-list. */
1916 s = string_free_list;
1917 string_free_list = NEXT_FREE_LISP_STRING (s);
1918
1919 MALLOC_UNBLOCK_INPUT;
1920
1921 /* Probably not strictly necessary, but play it safe. */
1922 bzero (s, sizeof *s);
1923
1924 --total_free_strings;
1925 ++total_strings;
1926 ++strings_consed;
1927 consing_since_gc += sizeof *s;
1928
1929 #ifdef GC_CHECK_STRING_BYTES
1930 if (!noninteractive
1931 #ifdef MAC_OS8
1932 && current_sblock
1933 #endif
1934 )
1935 {
1936 if (++check_string_bytes_count == 200)
1937 {
1938 check_string_bytes_count = 0;
1939 check_string_bytes (1);
1940 }
1941 else
1942 check_string_bytes (0);
1943 }
1944 #endif /* GC_CHECK_STRING_BYTES */
1945
1946 return s;
1947 }
1948
1949
1950 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1951 plus a NUL byte at the end. Allocate an sdata structure for S, and
1952 set S->data to its `u.data' member. Store a NUL byte at the end of
1953 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1954 S->data if it was initially non-null. */
1955
1956 void
1957 allocate_string_data (s, nchars, nbytes)
1958 struct Lisp_String *s;
1959 int nchars, nbytes;
1960 {
1961 struct sdata *data, *old_data;
1962 struct sblock *b;
1963 int needed, old_nbytes;
1964
1965 /* Determine the number of bytes needed to store NBYTES bytes
1966 of string data. */
1967 needed = SDATA_SIZE (nbytes);
1968 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1969 old_nbytes = GC_STRING_BYTES (s);
1970
1971 MALLOC_BLOCK_INPUT;
1972
1973 if (nbytes > LARGE_STRING_BYTES)
1974 {
1975 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1976
1977 #ifdef DOUG_LEA_MALLOC
1978 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1979 because mapped region contents are not preserved in
1980 a dumped Emacs.
1981
1982 In case you think of allowing it in a dumped Emacs at the
1983 cost of not being able to re-dump, there's another reason:
1984 mmap'ed data typically have an address towards the top of the
1985 address space, which won't fit into an EMACS_INT (at least on
1986 32-bit systems with the current tagging scheme). --fx */
1987 mallopt (M_MMAP_MAX, 0);
1988 #endif
1989
1990 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1991
1992 #ifdef DOUG_LEA_MALLOC
1993 /* Back to a reasonable maximum of mmap'ed areas. */
1994 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1995 #endif
1996
1997 b->next_free = &b->first_data;
1998 b->first_data.string = NULL;
1999 b->next = large_sblocks;
2000 large_sblocks = b;
2001 }
2002 else if (current_sblock == NULL
2003 || (((char *) current_sblock + SBLOCK_SIZE
2004 - (char *) current_sblock->next_free)
2005 < (needed + GC_STRING_EXTRA)))
2006 {
2007 /* Not enough room in the current sblock. */
2008 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2009 b->next_free = &b->first_data;
2010 b->first_data.string = NULL;
2011 b->next = NULL;
2012
2013 if (current_sblock)
2014 current_sblock->next = b;
2015 else
2016 oldest_sblock = b;
2017 current_sblock = b;
2018 }
2019 else
2020 b = current_sblock;
2021
2022 data = b->next_free;
2023 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2024
2025 MALLOC_UNBLOCK_INPUT;
2026
2027 data->string = s;
2028 s->data = SDATA_DATA (data);
2029 #ifdef GC_CHECK_STRING_BYTES
2030 SDATA_NBYTES (data) = nbytes;
2031 #endif
2032 s->size = nchars;
2033 s->size_byte = nbytes;
2034 s->data[nbytes] = '\0';
2035 #ifdef GC_CHECK_STRING_OVERRUN
2036 bcopy (string_overrun_cookie, (char *) data + needed,
2037 GC_STRING_OVERRUN_COOKIE_SIZE);
2038 #endif
2039
2040 /* If S had already data assigned, mark that as free by setting its
2041 string back-pointer to null, and recording the size of the data
2042 in it. */
2043 if (old_data)
2044 {
2045 SDATA_NBYTES (old_data) = old_nbytes;
2046 old_data->string = NULL;
2047 }
2048
2049 consing_since_gc += needed;
2050 }
2051
2052
2053 /* Sweep and compact strings. */
2054
2055 static void
2056 sweep_strings ()
2057 {
2058 struct string_block *b, *next;
2059 struct string_block *live_blocks = NULL;
2060
2061 string_free_list = NULL;
2062 total_strings = total_free_strings = 0;
2063 total_string_size = 0;
2064
2065 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2066 for (b = string_blocks; b; b = next)
2067 {
2068 int i, nfree = 0;
2069 struct Lisp_String *free_list_before = string_free_list;
2070
2071 next = b->next;
2072
2073 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2074 {
2075 struct Lisp_String *s = b->strings + i;
2076
2077 if (s->data)
2078 {
2079 /* String was not on free-list before. */
2080 if (STRING_MARKED_P (s))
2081 {
2082 /* String is live; unmark it and its intervals. */
2083 UNMARK_STRING (s);
2084
2085 if (!NULL_INTERVAL_P (s->intervals))
2086 UNMARK_BALANCE_INTERVALS (s->intervals);
2087
2088 ++total_strings;
2089 total_string_size += STRING_BYTES (s);
2090 }
2091 else
2092 {
2093 /* String is dead. Put it on the free-list. */
2094 struct sdata *data = SDATA_OF_STRING (s);
2095
2096 /* Save the size of S in its sdata so that we know
2097 how large that is. Reset the sdata's string
2098 back-pointer so that we know it's free. */
2099 #ifdef GC_CHECK_STRING_BYTES
2100 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2101 abort ();
2102 #else
2103 data->u.nbytes = GC_STRING_BYTES (s);
2104 #endif
2105 data->string = NULL;
2106
2107 /* Reset the strings's `data' member so that we
2108 know it's free. */
2109 s->data = NULL;
2110
2111 /* Put the string on the free-list. */
2112 NEXT_FREE_LISP_STRING (s) = string_free_list;
2113 string_free_list = s;
2114 ++nfree;
2115 }
2116 }
2117 else
2118 {
2119 /* S was on the free-list before. Put it there again. */
2120 NEXT_FREE_LISP_STRING (s) = string_free_list;
2121 string_free_list = s;
2122 ++nfree;
2123 }
2124 }
2125
2126 /* Free blocks that contain free Lisp_Strings only, except
2127 the first two of them. */
2128 if (nfree == STRING_BLOCK_SIZE
2129 && total_free_strings > STRING_BLOCK_SIZE)
2130 {
2131 lisp_free (b);
2132 --n_string_blocks;
2133 string_free_list = free_list_before;
2134 }
2135 else
2136 {
2137 total_free_strings += nfree;
2138 b->next = live_blocks;
2139 live_blocks = b;
2140 }
2141 }
2142
2143 check_string_free_list ();
2144
2145 string_blocks = live_blocks;
2146 free_large_strings ();
2147 compact_small_strings ();
2148
2149 check_string_free_list ();
2150 }
2151
2152
2153 /* Free dead large strings. */
2154
2155 static void
2156 free_large_strings ()
2157 {
2158 struct sblock *b, *next;
2159 struct sblock *live_blocks = NULL;
2160
2161 for (b = large_sblocks; b; b = next)
2162 {
2163 next = b->next;
2164
2165 if (b->first_data.string == NULL)
2166 lisp_free (b);
2167 else
2168 {
2169 b->next = live_blocks;
2170 live_blocks = b;
2171 }
2172 }
2173
2174 large_sblocks = live_blocks;
2175 }
2176
2177
2178 /* Compact data of small strings. Free sblocks that don't contain
2179 data of live strings after compaction. */
2180
2181 static void
2182 compact_small_strings ()
2183 {
2184 struct sblock *b, *tb, *next;
2185 struct sdata *from, *to, *end, *tb_end;
2186 struct sdata *to_end, *from_end;
2187
2188 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2189 to, and TB_END is the end of TB. */
2190 tb = oldest_sblock;
2191 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2192 to = &tb->first_data;
2193
2194 /* Step through the blocks from the oldest to the youngest. We
2195 expect that old blocks will stabilize over time, so that less
2196 copying will happen this way. */
2197 for (b = oldest_sblock; b; b = b->next)
2198 {
2199 end = b->next_free;
2200 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2201
2202 for (from = &b->first_data; from < end; from = from_end)
2203 {
2204 /* Compute the next FROM here because copying below may
2205 overwrite data we need to compute it. */
2206 int nbytes;
2207
2208 #ifdef GC_CHECK_STRING_BYTES
2209 /* Check that the string size recorded in the string is the
2210 same as the one recorded in the sdata structure. */
2211 if (from->string
2212 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2213 abort ();
2214 #endif /* GC_CHECK_STRING_BYTES */
2215
2216 if (from->string)
2217 nbytes = GC_STRING_BYTES (from->string);
2218 else
2219 nbytes = SDATA_NBYTES (from);
2220
2221 if (nbytes > LARGE_STRING_BYTES)
2222 abort ();
2223
2224 nbytes = SDATA_SIZE (nbytes);
2225 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2226
2227 #ifdef GC_CHECK_STRING_OVERRUN
2228 if (bcmp (string_overrun_cookie,
2229 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2230 GC_STRING_OVERRUN_COOKIE_SIZE))
2231 abort ();
2232 #endif
2233
2234 /* FROM->string non-null means it's alive. Copy its data. */
2235 if (from->string)
2236 {
2237 /* If TB is full, proceed with the next sblock. */
2238 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2239 if (to_end > tb_end)
2240 {
2241 tb->next_free = to;
2242 tb = tb->next;
2243 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2244 to = &tb->first_data;
2245 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2246 }
2247
2248 /* Copy, and update the string's `data' pointer. */
2249 if (from != to)
2250 {
2251 xassert (tb != b || to <= from);
2252 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2253 to->string->data = SDATA_DATA (to);
2254 }
2255
2256 /* Advance past the sdata we copied to. */
2257 to = to_end;
2258 }
2259 }
2260 }
2261
2262 /* The rest of the sblocks following TB don't contain live data, so
2263 we can free them. */
2264 for (b = tb->next; b; b = next)
2265 {
2266 next = b->next;
2267 lisp_free (b);
2268 }
2269
2270 tb->next_free = to;
2271 tb->next = NULL;
2272 current_sblock = tb;
2273 }
2274
2275
2276 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2277 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2278 LENGTH must be an integer.
2279 INIT must be an integer that represents a character. */)
2280 (length, init)
2281 Lisp_Object length, init;
2282 {
2283 register Lisp_Object val;
2284 register unsigned char *p, *end;
2285 int c, nbytes;
2286
2287 CHECK_NATNUM (length);
2288 CHECK_NUMBER (init);
2289
2290 c = XINT (init);
2291 if (SINGLE_BYTE_CHAR_P (c))
2292 {
2293 nbytes = XINT (length);
2294 val = make_uninit_string (nbytes);
2295 p = SDATA (val);
2296 end = p + SCHARS (val);
2297 while (p != end)
2298 *p++ = c;
2299 }
2300 else
2301 {
2302 unsigned char str[MAX_MULTIBYTE_LENGTH];
2303 int len = CHAR_STRING (c, str);
2304
2305 nbytes = len * XINT (length);
2306 val = make_uninit_multibyte_string (XINT (length), nbytes);
2307 p = SDATA (val);
2308 end = p + nbytes;
2309 while (p != end)
2310 {
2311 bcopy (str, p, len);
2312 p += len;
2313 }
2314 }
2315
2316 *p = 0;
2317 return val;
2318 }
2319
2320
2321 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2322 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2323 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2324 (length, init)
2325 Lisp_Object length, init;
2326 {
2327 register Lisp_Object val;
2328 struct Lisp_Bool_Vector *p;
2329 int real_init, i;
2330 int length_in_chars, length_in_elts, bits_per_value;
2331
2332 CHECK_NATNUM (length);
2333
2334 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2335
2336 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2337 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2338 / BOOL_VECTOR_BITS_PER_CHAR);
2339
2340 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2341 slot `size' of the struct Lisp_Bool_Vector. */
2342 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2343
2344 /* Get rid of any bits that would cause confusion. */
2345 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2346 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2347 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2348
2349 p = XBOOL_VECTOR (val);
2350 p->size = XFASTINT (length);
2351
2352 real_init = (NILP (init) ? 0 : -1);
2353 for (i = 0; i < length_in_chars ; i++)
2354 p->data[i] = real_init;
2355
2356 /* Clear the extraneous bits in the last byte. */
2357 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2358 p->data[length_in_chars - 1]
2359 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2360
2361 return val;
2362 }
2363
2364
2365 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2366 of characters from the contents. This string may be unibyte or
2367 multibyte, depending on the contents. */
2368
2369 Lisp_Object
2370 make_string (contents, nbytes)
2371 const char *contents;
2372 int nbytes;
2373 {
2374 register Lisp_Object val;
2375 int nchars, multibyte_nbytes;
2376
2377 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2378 if (nbytes == nchars || nbytes != multibyte_nbytes)
2379 /* CONTENTS contains no multibyte sequences or contains an invalid
2380 multibyte sequence. We must make unibyte string. */
2381 val = make_unibyte_string (contents, nbytes);
2382 else
2383 val = make_multibyte_string (contents, nchars, nbytes);
2384 return val;
2385 }
2386
2387
2388 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2389
2390 Lisp_Object
2391 make_unibyte_string (contents, length)
2392 const char *contents;
2393 int length;
2394 {
2395 register Lisp_Object val;
2396 val = make_uninit_string (length);
2397 bcopy (contents, SDATA (val), length);
2398 STRING_SET_UNIBYTE (val);
2399 return val;
2400 }
2401
2402
2403 /* Make a multibyte string from NCHARS characters occupying NBYTES
2404 bytes at CONTENTS. */
2405
2406 Lisp_Object
2407 make_multibyte_string (contents, nchars, nbytes)
2408 const char *contents;
2409 int nchars, nbytes;
2410 {
2411 register Lisp_Object val;
2412 val = make_uninit_multibyte_string (nchars, nbytes);
2413 bcopy (contents, SDATA (val), nbytes);
2414 return val;
2415 }
2416
2417
2418 /* Make a string from NCHARS characters occupying NBYTES bytes at
2419 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2420
2421 Lisp_Object
2422 make_string_from_bytes (contents, nchars, nbytes)
2423 const char *contents;
2424 int nchars, nbytes;
2425 {
2426 register Lisp_Object val;
2427 val = make_uninit_multibyte_string (nchars, nbytes);
2428 bcopy (contents, SDATA (val), nbytes);
2429 if (SBYTES (val) == SCHARS (val))
2430 STRING_SET_UNIBYTE (val);
2431 return val;
2432 }
2433
2434
2435 /* Make a string from NCHARS characters occupying NBYTES bytes at
2436 CONTENTS. The argument MULTIBYTE controls whether to label the
2437 string as multibyte. If NCHARS is negative, it counts the number of
2438 characters by itself. */
2439
2440 Lisp_Object
2441 make_specified_string (contents, nchars, nbytes, multibyte)
2442 const char *contents;
2443 int nchars, nbytes;
2444 int multibyte;
2445 {
2446 register Lisp_Object val;
2447
2448 if (nchars < 0)
2449 {
2450 if (multibyte)
2451 nchars = multibyte_chars_in_text (contents, nbytes);
2452 else
2453 nchars = nbytes;
2454 }
2455 val = make_uninit_multibyte_string (nchars, nbytes);
2456 bcopy (contents, SDATA (val), nbytes);
2457 if (!multibyte)
2458 STRING_SET_UNIBYTE (val);
2459 return val;
2460 }
2461
2462
2463 /* Make a string from the data at STR, treating it as multibyte if the
2464 data warrants. */
2465
2466 Lisp_Object
2467 build_string (str)
2468 const char *str;
2469 {
2470 return make_string (str, strlen (str));
2471 }
2472
2473
2474 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2475 occupying LENGTH bytes. */
2476
2477 Lisp_Object
2478 make_uninit_string (length)
2479 int length;
2480 {
2481 Lisp_Object val;
2482
2483 if (!length)
2484 return empty_unibyte_string;
2485 val = make_uninit_multibyte_string (length, length);
2486 STRING_SET_UNIBYTE (val);
2487 return val;
2488 }
2489
2490
2491 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2492 which occupy NBYTES bytes. */
2493
2494 Lisp_Object
2495 make_uninit_multibyte_string (nchars, nbytes)
2496 int nchars, nbytes;
2497 {
2498 Lisp_Object string;
2499 struct Lisp_String *s;
2500
2501 if (nchars < 0)
2502 abort ();
2503 if (!nbytes)
2504 return empty_multibyte_string;
2505
2506 s = allocate_string ();
2507 allocate_string_data (s, nchars, nbytes);
2508 XSETSTRING (string, s);
2509 string_chars_consed += nbytes;
2510 return string;
2511 }
2512
2513
2514 \f
2515 /***********************************************************************
2516 Float Allocation
2517 ***********************************************************************/
2518
2519 /* We store float cells inside of float_blocks, allocating a new
2520 float_block with malloc whenever necessary. Float cells reclaimed
2521 by GC are put on a free list to be reallocated before allocating
2522 any new float cells from the latest float_block. */
2523
2524 #define FLOAT_BLOCK_SIZE \
2525 (((BLOCK_BYTES - sizeof (struct float_block *) \
2526 /* The compiler might add padding at the end. */ \
2527 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2528 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2529
2530 #define GETMARKBIT(block,n) \
2531 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2532 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2533 & 1)
2534
2535 #define SETMARKBIT(block,n) \
2536 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2537 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2538
2539 #define UNSETMARKBIT(block,n) \
2540 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2541 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2542
2543 #define FLOAT_BLOCK(fptr) \
2544 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2545
2546 #define FLOAT_INDEX(fptr) \
2547 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2548
2549 struct float_block
2550 {
2551 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2552 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2553 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2554 struct float_block *next;
2555 };
2556
2557 #define FLOAT_MARKED_P(fptr) \
2558 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2559
2560 #define FLOAT_MARK(fptr) \
2561 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2562
2563 #define FLOAT_UNMARK(fptr) \
2564 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2565
2566 /* Current float_block. */
2567
2568 struct float_block *float_block;
2569
2570 /* Index of first unused Lisp_Float in the current float_block. */
2571
2572 int float_block_index;
2573
2574 /* Total number of float blocks now in use. */
2575
2576 int n_float_blocks;
2577
2578 /* Free-list of Lisp_Floats. */
2579
2580 struct Lisp_Float *float_free_list;
2581
2582
2583 /* Initialize float allocation. */
2584
2585 static void
2586 init_float ()
2587 {
2588 float_block = NULL;
2589 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2590 float_free_list = 0;
2591 n_float_blocks = 0;
2592 }
2593
2594
2595 /* Explicitly free a float cell by putting it on the free-list. */
2596
2597 static void
2598 free_float (ptr)
2599 struct Lisp_Float *ptr;
2600 {
2601 ptr->u.chain = float_free_list;
2602 float_free_list = ptr;
2603 }
2604
2605
2606 /* Return a new float object with value FLOAT_VALUE. */
2607
2608 Lisp_Object
2609 make_float (float_value)
2610 double float_value;
2611 {
2612 register Lisp_Object val;
2613
2614 /* eassert (!handling_signal); */
2615
2616 MALLOC_BLOCK_INPUT;
2617
2618 if (float_free_list)
2619 {
2620 /* We use the data field for chaining the free list
2621 so that we won't use the same field that has the mark bit. */
2622 XSETFLOAT (val, float_free_list);
2623 float_free_list = float_free_list->u.chain;
2624 }
2625 else
2626 {
2627 if (float_block_index == FLOAT_BLOCK_SIZE)
2628 {
2629 register struct float_block *new;
2630
2631 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2632 MEM_TYPE_FLOAT);
2633 new->next = float_block;
2634 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2635 float_block = new;
2636 float_block_index = 0;
2637 n_float_blocks++;
2638 }
2639 XSETFLOAT (val, &float_block->floats[float_block_index]);
2640 float_block_index++;
2641 }
2642
2643 MALLOC_UNBLOCK_INPUT;
2644
2645 XFLOAT_DATA (val) = float_value;
2646 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2647 consing_since_gc += sizeof (struct Lisp_Float);
2648 floats_consed++;
2649 return val;
2650 }
2651
2652
2653 \f
2654 /***********************************************************************
2655 Cons Allocation
2656 ***********************************************************************/
2657
2658 /* We store cons cells inside of cons_blocks, allocating a new
2659 cons_block with malloc whenever necessary. Cons cells reclaimed by
2660 GC are put on a free list to be reallocated before allocating
2661 any new cons cells from the latest cons_block. */
2662
2663 #define CONS_BLOCK_SIZE \
2664 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2665 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2666
2667 #define CONS_BLOCK(fptr) \
2668 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2669
2670 #define CONS_INDEX(fptr) \
2671 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2672
2673 struct cons_block
2674 {
2675 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2676 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2677 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2678 struct cons_block *next;
2679 };
2680
2681 #define CONS_MARKED_P(fptr) \
2682 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2683
2684 #define CONS_MARK(fptr) \
2685 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2686
2687 #define CONS_UNMARK(fptr) \
2688 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2689
2690 /* Current cons_block. */
2691
2692 struct cons_block *cons_block;
2693
2694 /* Index of first unused Lisp_Cons in the current block. */
2695
2696 int cons_block_index;
2697
2698 /* Free-list of Lisp_Cons structures. */
2699
2700 struct Lisp_Cons *cons_free_list;
2701
2702 /* Total number of cons blocks now in use. */
2703
2704 static int n_cons_blocks;
2705
2706
2707 /* Initialize cons allocation. */
2708
2709 static void
2710 init_cons ()
2711 {
2712 cons_block = NULL;
2713 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2714 cons_free_list = 0;
2715 n_cons_blocks = 0;
2716 }
2717
2718
2719 /* Explicitly free a cons cell by putting it on the free-list. */
2720
2721 void
2722 free_cons (ptr)
2723 struct Lisp_Cons *ptr;
2724 {
2725 ptr->u.chain = cons_free_list;
2726 #if GC_MARK_STACK
2727 ptr->car = Vdead;
2728 #endif
2729 cons_free_list = ptr;
2730 }
2731
2732 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2733 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2734 (car, cdr)
2735 Lisp_Object car, cdr;
2736 {
2737 register Lisp_Object val;
2738
2739 /* eassert (!handling_signal); */
2740
2741 MALLOC_BLOCK_INPUT;
2742
2743 if (cons_free_list)
2744 {
2745 /* We use the cdr for chaining the free list
2746 so that we won't use the same field that has the mark bit. */
2747 XSETCONS (val, cons_free_list);
2748 cons_free_list = cons_free_list->u.chain;
2749 }
2750 else
2751 {
2752 if (cons_block_index == CONS_BLOCK_SIZE)
2753 {
2754 register struct cons_block *new;
2755 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2756 MEM_TYPE_CONS);
2757 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2758 new->next = cons_block;
2759 cons_block = new;
2760 cons_block_index = 0;
2761 n_cons_blocks++;
2762 }
2763 XSETCONS (val, &cons_block->conses[cons_block_index]);
2764 cons_block_index++;
2765 }
2766
2767 MALLOC_UNBLOCK_INPUT;
2768
2769 XSETCAR (val, car);
2770 XSETCDR (val, cdr);
2771 eassert (!CONS_MARKED_P (XCONS (val)));
2772 consing_since_gc += sizeof (struct Lisp_Cons);
2773 cons_cells_consed++;
2774 return val;
2775 }
2776
2777 /* Get an error now if there's any junk in the cons free list. */
2778 void
2779 check_cons_list ()
2780 {
2781 #ifdef GC_CHECK_CONS_LIST
2782 struct Lisp_Cons *tail = cons_free_list;
2783
2784 while (tail)
2785 tail = tail->u.chain;
2786 #endif
2787 }
2788
2789 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2790
2791 Lisp_Object
2792 list1 (arg1)
2793 Lisp_Object arg1;
2794 {
2795 return Fcons (arg1, Qnil);
2796 }
2797
2798 Lisp_Object
2799 list2 (arg1, arg2)
2800 Lisp_Object arg1, arg2;
2801 {
2802 return Fcons (arg1, Fcons (arg2, Qnil));
2803 }
2804
2805
2806 Lisp_Object
2807 list3 (arg1, arg2, arg3)
2808 Lisp_Object arg1, arg2, arg3;
2809 {
2810 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2811 }
2812
2813
2814 Lisp_Object
2815 list4 (arg1, arg2, arg3, arg4)
2816 Lisp_Object arg1, arg2, arg3, arg4;
2817 {
2818 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2819 }
2820
2821
2822 Lisp_Object
2823 list5 (arg1, arg2, arg3, arg4, arg5)
2824 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2825 {
2826 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2827 Fcons (arg5, Qnil)))));
2828 }
2829
2830
2831 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2832 doc: /* Return a newly created list with specified arguments as elements.
2833 Any number of arguments, even zero arguments, are allowed.
2834 usage: (list &rest OBJECTS) */)
2835 (nargs, args)
2836 int nargs;
2837 register Lisp_Object *args;
2838 {
2839 register Lisp_Object val;
2840 val = Qnil;
2841
2842 while (nargs > 0)
2843 {
2844 nargs--;
2845 val = Fcons (args[nargs], val);
2846 }
2847 return val;
2848 }
2849
2850
2851 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2852 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2853 (length, init)
2854 register Lisp_Object length, init;
2855 {
2856 register Lisp_Object val;
2857 register int size;
2858
2859 CHECK_NATNUM (length);
2860 size = XFASTINT (length);
2861
2862 val = Qnil;
2863 while (size > 0)
2864 {
2865 val = Fcons (init, val);
2866 --size;
2867
2868 if (size > 0)
2869 {
2870 val = Fcons (init, val);
2871 --size;
2872
2873 if (size > 0)
2874 {
2875 val = Fcons (init, val);
2876 --size;
2877
2878 if (size > 0)
2879 {
2880 val = Fcons (init, val);
2881 --size;
2882
2883 if (size > 0)
2884 {
2885 val = Fcons (init, val);
2886 --size;
2887 }
2888 }
2889 }
2890 }
2891
2892 QUIT;
2893 }
2894
2895 return val;
2896 }
2897
2898
2899 \f
2900 /***********************************************************************
2901 Vector Allocation
2902 ***********************************************************************/
2903
2904 /* Singly-linked list of all vectors. */
2905
2906 static struct Lisp_Vector *all_vectors;
2907
2908 /* Total number of vector-like objects now in use. */
2909
2910 static int n_vectors;
2911
2912
2913 /* Value is a pointer to a newly allocated Lisp_Vector structure
2914 with room for LEN Lisp_Objects. */
2915
2916 static struct Lisp_Vector *
2917 allocate_vectorlike (len)
2918 EMACS_INT len;
2919 {
2920 struct Lisp_Vector *p;
2921 size_t nbytes;
2922
2923 MALLOC_BLOCK_INPUT;
2924
2925 #ifdef DOUG_LEA_MALLOC
2926 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2927 because mapped region contents are not preserved in
2928 a dumped Emacs. */
2929 mallopt (M_MMAP_MAX, 0);
2930 #endif
2931
2932 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2933 /* eassert (!handling_signal); */
2934
2935 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2936 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2937
2938 #ifdef DOUG_LEA_MALLOC
2939 /* Back to a reasonable maximum of mmap'ed areas. */
2940 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2941 #endif
2942
2943 consing_since_gc += nbytes;
2944 vector_cells_consed += len;
2945
2946 p->next = all_vectors;
2947 all_vectors = p;
2948
2949 MALLOC_UNBLOCK_INPUT;
2950
2951 ++n_vectors;
2952 return p;
2953 }
2954
2955
2956 /* Allocate a vector with NSLOTS slots. */
2957
2958 struct Lisp_Vector *
2959 allocate_vector (nslots)
2960 EMACS_INT nslots;
2961 {
2962 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2963 v->size = nslots;
2964 return v;
2965 }
2966
2967
2968 /* Allocate other vector-like structures. */
2969
2970 static struct Lisp_Vector *
2971 allocate_pseudovector (memlen, lisplen, tag)
2972 int memlen, lisplen;
2973 EMACS_INT tag;
2974 {
2975 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2976 EMACS_INT i;
2977
2978 /* Only the first lisplen slots will be traced normally by the GC. */
2979 v->size = lisplen;
2980 for (i = 0; i < lisplen; ++i)
2981 v->contents[i] = Qnil;
2982
2983 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2984 return v;
2985 }
2986 #define ALLOCATE_PSEUDOVECTOR(typ,field,tag) \
2987 ((typ*) \
2988 allocate_pseudovector \
2989 (VECSIZE (typ), PSEUDOVECSIZE (typ, field), tag))
2990
2991 struct Lisp_Hash_Table *
2992 allocate_hash_table (void)
2993 {
2994 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2995 }
2996
2997
2998 struct window *
2999 allocate_window ()
3000 {
3001 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
3002 }
3003
3004
3005 struct terminal *
3006 allocate_terminal ()
3007 {
3008 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
3009 next_terminal, PVEC_TERMINAL);
3010 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3011 bzero (&(t->next_terminal),
3012 ((char*)(t+1)) - ((char*)&(t->next_terminal)));
3013
3014 return t;
3015 }
3016
3017 struct frame *
3018 allocate_frame ()
3019 {
3020 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3021 face_cache, PVEC_FRAME);
3022 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3023 bzero (&(f->face_cache),
3024 ((char*)(f+1)) - ((char*)&(f->face_cache)));
3025 return f;
3026 }
3027
3028
3029 struct Lisp_Process *
3030 allocate_process ()
3031 {
3032 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3033 }
3034
3035
3036 /* Only used for PVEC_WINDOW_CONFIGURATION. */
3037 struct Lisp_Vector *
3038 allocate_other_vector (len)
3039 EMACS_INT len;
3040 {
3041 struct Lisp_Vector *v = allocate_vectorlike (len);
3042 EMACS_INT i;
3043
3044 for (i = 0; i < len; ++i)
3045 v->contents[i] = Qnil;
3046 v->size = len;
3047
3048 return v;
3049 }
3050
3051
3052 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3053 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3054 See also the function `vector'. */)
3055 (length, init)
3056 register Lisp_Object length, init;
3057 {
3058 Lisp_Object vector;
3059 register EMACS_INT sizei;
3060 register int index;
3061 register struct Lisp_Vector *p;
3062
3063 CHECK_NATNUM (length);
3064 sizei = XFASTINT (length);
3065
3066 p = allocate_vector (sizei);
3067 for (index = 0; index < sizei; index++)
3068 p->contents[index] = init;
3069
3070 XSETVECTOR (vector, p);
3071 return vector;
3072 }
3073
3074
3075 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
3076 doc: /* Return a newly created char-table, with purpose PURPOSE.
3077 Each element is initialized to INIT, which defaults to nil.
3078 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
3079 The property's value should be an integer between 0 and 10. */)
3080 (purpose, init)
3081 register Lisp_Object purpose, init;
3082 {
3083 Lisp_Object vector;
3084 Lisp_Object n;
3085 CHECK_SYMBOL (purpose);
3086 n = Fget (purpose, Qchar_table_extra_slots);
3087 CHECK_NUMBER (n);
3088 if (XINT (n) < 0 || XINT (n) > 10)
3089 args_out_of_range (n, Qnil);
3090 /* Add 2 to the size for the defalt and parent slots. */
3091 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
3092 init);
3093 XSETPVECTYPE (XVECTOR (vector), PVEC_CHAR_TABLE);
3094 XCHAR_TABLE (vector)->top = Qt;
3095 XCHAR_TABLE (vector)->parent = Qnil;
3096 XCHAR_TABLE (vector)->purpose = purpose;
3097 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3098 return vector;
3099 }
3100
3101
3102 /* Return a newly created sub char table with slots initialized by INIT.
3103 Since a sub char table does not appear as a top level Emacs Lisp
3104 object, we don't need a Lisp interface to make it. */
3105
3106 Lisp_Object
3107 make_sub_char_table (init)
3108 Lisp_Object init;
3109 {
3110 Lisp_Object vector
3111 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), init);
3112 XSETPVECTYPE (XVECTOR (vector), PVEC_CHAR_TABLE);
3113 XCHAR_TABLE (vector)->top = Qnil;
3114 XCHAR_TABLE (vector)->defalt = Qnil;
3115 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3116 return vector;
3117 }
3118
3119
3120 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3121 doc: /* Return a newly created vector with specified arguments as elements.
3122 Any number of arguments, even zero arguments, are allowed.
3123 usage: (vector &rest OBJECTS) */)
3124 (nargs, args)
3125 register int nargs;
3126 Lisp_Object *args;
3127 {
3128 register Lisp_Object len, val;
3129 register int index;
3130 register struct Lisp_Vector *p;
3131
3132 XSETFASTINT (len, nargs);
3133 val = Fmake_vector (len, Qnil);
3134 p = XVECTOR (val);
3135 for (index = 0; index < nargs; index++)
3136 p->contents[index] = args[index];
3137 return val;
3138 }
3139
3140
3141 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3142 doc: /* Create a byte-code object with specified arguments as elements.
3143 The arguments should be the arglist, bytecode-string, constant vector,
3144 stack size, (optional) doc string, and (optional) interactive spec.
3145 The first four arguments are required; at most six have any
3146 significance.
3147 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3148 (nargs, args)
3149 register int nargs;
3150 Lisp_Object *args;
3151 {
3152 register Lisp_Object len, val;
3153 register int index;
3154 register struct Lisp_Vector *p;
3155
3156 XSETFASTINT (len, nargs);
3157 if (!NILP (Vpurify_flag))
3158 val = make_pure_vector ((EMACS_INT) nargs);
3159 else
3160 val = Fmake_vector (len, Qnil);
3161
3162 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3163 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3164 earlier because they produced a raw 8-bit string for byte-code
3165 and now such a byte-code string is loaded as multibyte while
3166 raw 8-bit characters converted to multibyte form. Thus, now we
3167 must convert them back to the original unibyte form. */
3168 args[1] = Fstring_as_unibyte (args[1]);
3169
3170 p = XVECTOR (val);
3171 for (index = 0; index < nargs; index++)
3172 {
3173 if (!NILP (Vpurify_flag))
3174 args[index] = Fpurecopy (args[index]);
3175 p->contents[index] = args[index];
3176 }
3177 XSETPVECTYPE (p, PVEC_COMPILED);
3178 XSETCOMPILED (val, p);
3179 return val;
3180 }
3181
3182
3183 \f
3184 /***********************************************************************
3185 Symbol Allocation
3186 ***********************************************************************/
3187
3188 /* Each symbol_block is just under 1020 bytes long, since malloc
3189 really allocates in units of powers of two and uses 4 bytes for its
3190 own overhead. */
3191
3192 #define SYMBOL_BLOCK_SIZE \
3193 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3194
3195 struct symbol_block
3196 {
3197 /* Place `symbols' first, to preserve alignment. */
3198 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3199 struct symbol_block *next;
3200 };
3201
3202 /* Current symbol block and index of first unused Lisp_Symbol
3203 structure in it. */
3204
3205 static struct symbol_block *symbol_block;
3206 static int symbol_block_index;
3207
3208 /* List of free symbols. */
3209
3210 static struct Lisp_Symbol *symbol_free_list;
3211
3212 /* Total number of symbol blocks now in use. */
3213
3214 static int n_symbol_blocks;
3215
3216
3217 /* Initialize symbol allocation. */
3218
3219 static void
3220 init_symbol ()
3221 {
3222 symbol_block = NULL;
3223 symbol_block_index = SYMBOL_BLOCK_SIZE;
3224 symbol_free_list = 0;
3225 n_symbol_blocks = 0;
3226 }
3227
3228
3229 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3230 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3231 Its value and function definition are void, and its property list is nil. */)
3232 (name)
3233 Lisp_Object name;
3234 {
3235 register Lisp_Object val;
3236 register struct Lisp_Symbol *p;
3237
3238 CHECK_STRING (name);
3239
3240 /* eassert (!handling_signal); */
3241
3242 MALLOC_BLOCK_INPUT;
3243
3244 if (symbol_free_list)
3245 {
3246 XSETSYMBOL (val, symbol_free_list);
3247 symbol_free_list = symbol_free_list->next;
3248 }
3249 else
3250 {
3251 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3252 {
3253 struct symbol_block *new;
3254 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3255 MEM_TYPE_SYMBOL);
3256 new->next = symbol_block;
3257 symbol_block = new;
3258 symbol_block_index = 0;
3259 n_symbol_blocks++;
3260 }
3261 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3262 symbol_block_index++;
3263 }
3264
3265 MALLOC_UNBLOCK_INPUT;
3266
3267 p = XSYMBOL (val);
3268 p->xname = name;
3269 p->plist = Qnil;
3270 p->value = Qunbound;
3271 p->function = Qunbound;
3272 p->next = NULL;
3273 p->gcmarkbit = 0;
3274 p->interned = SYMBOL_UNINTERNED;
3275 p->constant = 0;
3276 p->indirect_variable = 0;
3277 consing_since_gc += sizeof (struct Lisp_Symbol);
3278 symbols_consed++;
3279 return val;
3280 }
3281
3282
3283 \f
3284 /***********************************************************************
3285 Marker (Misc) Allocation
3286 ***********************************************************************/
3287
3288 /* Allocation of markers and other objects that share that structure.
3289 Works like allocation of conses. */
3290
3291 #define MARKER_BLOCK_SIZE \
3292 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3293
3294 struct marker_block
3295 {
3296 /* Place `markers' first, to preserve alignment. */
3297 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3298 struct marker_block *next;
3299 };
3300
3301 static struct marker_block *marker_block;
3302 static int marker_block_index;
3303
3304 static union Lisp_Misc *marker_free_list;
3305
3306 /* Total number of marker blocks now in use. */
3307
3308 static int n_marker_blocks;
3309
3310 static void
3311 init_marker ()
3312 {
3313 marker_block = NULL;
3314 marker_block_index = MARKER_BLOCK_SIZE;
3315 marker_free_list = 0;
3316 n_marker_blocks = 0;
3317 }
3318
3319 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3320
3321 Lisp_Object
3322 allocate_misc ()
3323 {
3324 Lisp_Object val;
3325
3326 /* eassert (!handling_signal); */
3327
3328 MALLOC_BLOCK_INPUT;
3329
3330 if (marker_free_list)
3331 {
3332 XSETMISC (val, marker_free_list);
3333 marker_free_list = marker_free_list->u_free.chain;
3334 }
3335 else
3336 {
3337 if (marker_block_index == MARKER_BLOCK_SIZE)
3338 {
3339 struct marker_block *new;
3340 new = (struct marker_block *) lisp_malloc (sizeof *new,
3341 MEM_TYPE_MISC);
3342 new->next = marker_block;
3343 marker_block = new;
3344 marker_block_index = 0;
3345 n_marker_blocks++;
3346 total_free_markers += MARKER_BLOCK_SIZE;
3347 }
3348 XSETMISC (val, &marker_block->markers[marker_block_index]);
3349 marker_block_index++;
3350 }
3351
3352 MALLOC_UNBLOCK_INPUT;
3353
3354 --total_free_markers;
3355 consing_since_gc += sizeof (union Lisp_Misc);
3356 misc_objects_consed++;
3357 XMISCANY (val)->gcmarkbit = 0;
3358 return val;
3359 }
3360
3361 /* Free a Lisp_Misc object */
3362
3363 void
3364 free_misc (misc)
3365 Lisp_Object misc;
3366 {
3367 XMISCTYPE (misc) = Lisp_Misc_Free;
3368 XMISC (misc)->u_free.chain = marker_free_list;
3369 marker_free_list = XMISC (misc);
3370
3371 total_free_markers++;
3372 }
3373
3374 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3375 INTEGER. This is used to package C values to call record_unwind_protect.
3376 The unwind function can get the C values back using XSAVE_VALUE. */
3377
3378 Lisp_Object
3379 make_save_value (pointer, integer)
3380 void *pointer;
3381 int integer;
3382 {
3383 register Lisp_Object val;
3384 register struct Lisp_Save_Value *p;
3385
3386 val = allocate_misc ();
3387 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3388 p = XSAVE_VALUE (val);
3389 p->pointer = pointer;
3390 p->integer = integer;
3391 p->dogc = 0;
3392 return val;
3393 }
3394
3395 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3396 doc: /* Return a newly allocated marker which does not point at any place. */)
3397 ()
3398 {
3399 register Lisp_Object val;
3400 register struct Lisp_Marker *p;
3401
3402 val = allocate_misc ();
3403 XMISCTYPE (val) = Lisp_Misc_Marker;
3404 p = XMARKER (val);
3405 p->buffer = 0;
3406 p->bytepos = 0;
3407 p->charpos = 0;
3408 p->next = NULL;
3409 p->insertion_type = 0;
3410 return val;
3411 }
3412
3413 /* Put MARKER back on the free list after using it temporarily. */
3414
3415 void
3416 free_marker (marker)
3417 Lisp_Object marker;
3418 {
3419 unchain_marker (XMARKER (marker));
3420 free_misc (marker);
3421 }
3422
3423 \f
3424 /* Return a newly created vector or string with specified arguments as
3425 elements. If all the arguments are characters that can fit
3426 in a string of events, make a string; otherwise, make a vector.
3427
3428 Any number of arguments, even zero arguments, are allowed. */
3429
3430 Lisp_Object
3431 make_event_array (nargs, args)
3432 register int nargs;
3433 Lisp_Object *args;
3434 {
3435 int i;
3436
3437 for (i = 0; i < nargs; i++)
3438 /* The things that fit in a string
3439 are characters that are in 0...127,
3440 after discarding the meta bit and all the bits above it. */
3441 if (!INTEGERP (args[i])
3442 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3443 return Fvector (nargs, args);
3444
3445 /* Since the loop exited, we know that all the things in it are
3446 characters, so we can make a string. */
3447 {
3448 Lisp_Object result;
3449
3450 result = Fmake_string (make_number (nargs), make_number (0));
3451 for (i = 0; i < nargs; i++)
3452 {
3453 SSET (result, i, XINT (args[i]));
3454 /* Move the meta bit to the right place for a string char. */
3455 if (XINT (args[i]) & CHAR_META)
3456 SSET (result, i, SREF (result, i) | 0x80);
3457 }
3458
3459 return result;
3460 }
3461 }
3462
3463
3464 \f
3465 /************************************************************************
3466 Memory Full Handling
3467 ************************************************************************/
3468
3469
3470 /* Called if malloc returns zero. */
3471
3472 void
3473 memory_full ()
3474 {
3475 int i;
3476
3477 Vmemory_full = Qt;
3478
3479 memory_full_cons_threshold = sizeof (struct cons_block);
3480
3481 /* The first time we get here, free the spare memory. */
3482 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3483 if (spare_memory[i])
3484 {
3485 if (i == 0)
3486 free (spare_memory[i]);
3487 else if (i >= 1 && i <= 4)
3488 lisp_align_free (spare_memory[i]);
3489 else
3490 lisp_free (spare_memory[i]);
3491 spare_memory[i] = 0;
3492 }
3493
3494 /* Record the space now used. When it decreases substantially,
3495 we can refill the memory reserve. */
3496 #ifndef SYSTEM_MALLOC
3497 bytes_used_when_full = BYTES_USED;
3498 #endif
3499
3500 /* This used to call error, but if we've run out of memory, we could
3501 get infinite recursion trying to build the string. */
3502 xsignal (Qnil, Vmemory_signal_data);
3503 }
3504
3505 /* If we released our reserve (due to running out of memory),
3506 and we have a fair amount free once again,
3507 try to set aside another reserve in case we run out once more.
3508
3509 This is called when a relocatable block is freed in ralloc.c,
3510 and also directly from this file, in case we're not using ralloc.c. */
3511
3512 void
3513 refill_memory_reserve ()
3514 {
3515 #ifndef SYSTEM_MALLOC
3516 if (spare_memory[0] == 0)
3517 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3518 if (spare_memory[1] == 0)
3519 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3520 MEM_TYPE_CONS);
3521 if (spare_memory[2] == 0)
3522 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3523 MEM_TYPE_CONS);
3524 if (spare_memory[3] == 0)
3525 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3526 MEM_TYPE_CONS);
3527 if (spare_memory[4] == 0)
3528 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3529 MEM_TYPE_CONS);
3530 if (spare_memory[5] == 0)
3531 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3532 MEM_TYPE_STRING);
3533 if (spare_memory[6] == 0)
3534 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3535 MEM_TYPE_STRING);
3536 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3537 Vmemory_full = Qnil;
3538 #endif
3539 }
3540 \f
3541 /************************************************************************
3542 C Stack Marking
3543 ************************************************************************/
3544
3545 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3546
3547 /* Conservative C stack marking requires a method to identify possibly
3548 live Lisp objects given a pointer value. We do this by keeping
3549 track of blocks of Lisp data that are allocated in a red-black tree
3550 (see also the comment of mem_node which is the type of nodes in
3551 that tree). Function lisp_malloc adds information for an allocated
3552 block to the red-black tree with calls to mem_insert, and function
3553 lisp_free removes it with mem_delete. Functions live_string_p etc
3554 call mem_find to lookup information about a given pointer in the
3555 tree, and use that to determine if the pointer points to a Lisp
3556 object or not. */
3557
3558 /* Initialize this part of alloc.c. */
3559
3560 static void
3561 mem_init ()
3562 {
3563 mem_z.left = mem_z.right = MEM_NIL;
3564 mem_z.parent = NULL;
3565 mem_z.color = MEM_BLACK;
3566 mem_z.start = mem_z.end = NULL;
3567 mem_root = MEM_NIL;
3568 }
3569
3570
3571 /* Value is a pointer to the mem_node containing START. Value is
3572 MEM_NIL if there is no node in the tree containing START. */
3573
3574 static INLINE struct mem_node *
3575 mem_find (start)
3576 void *start;
3577 {
3578 struct mem_node *p;
3579
3580 if (start < min_heap_address || start > max_heap_address)
3581 return MEM_NIL;
3582
3583 /* Make the search always successful to speed up the loop below. */
3584 mem_z.start = start;
3585 mem_z.end = (char *) start + 1;
3586
3587 p = mem_root;
3588 while (start < p->start || start >= p->end)
3589 p = start < p->start ? p->left : p->right;
3590 return p;
3591 }
3592
3593
3594 /* Insert a new node into the tree for a block of memory with start
3595 address START, end address END, and type TYPE. Value is a
3596 pointer to the node that was inserted. */
3597
3598 static struct mem_node *
3599 mem_insert (start, end, type)
3600 void *start, *end;
3601 enum mem_type type;
3602 {
3603 struct mem_node *c, *parent, *x;
3604
3605 if (min_heap_address == NULL || start < min_heap_address)
3606 min_heap_address = start;
3607 if (max_heap_address == NULL || end > max_heap_address)
3608 max_heap_address = end;
3609
3610 /* See where in the tree a node for START belongs. In this
3611 particular application, it shouldn't happen that a node is already
3612 present. For debugging purposes, let's check that. */
3613 c = mem_root;
3614 parent = NULL;
3615
3616 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3617
3618 while (c != MEM_NIL)
3619 {
3620 if (start >= c->start && start < c->end)
3621 abort ();
3622 parent = c;
3623 c = start < c->start ? c->left : c->right;
3624 }
3625
3626 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3627
3628 while (c != MEM_NIL)
3629 {
3630 parent = c;
3631 c = start < c->start ? c->left : c->right;
3632 }
3633
3634 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3635
3636 /* Create a new node. */
3637 #ifdef GC_MALLOC_CHECK
3638 x = (struct mem_node *) _malloc_internal (sizeof *x);
3639 if (x == NULL)
3640 abort ();
3641 #else
3642 x = (struct mem_node *) xmalloc (sizeof *x);
3643 #endif
3644 x->start = start;
3645 x->end = end;
3646 x->type = type;
3647 x->parent = parent;
3648 x->left = x->right = MEM_NIL;
3649 x->color = MEM_RED;
3650
3651 /* Insert it as child of PARENT or install it as root. */
3652 if (parent)
3653 {
3654 if (start < parent->start)
3655 parent->left = x;
3656 else
3657 parent->right = x;
3658 }
3659 else
3660 mem_root = x;
3661
3662 /* Re-establish red-black tree properties. */
3663 mem_insert_fixup (x);
3664
3665 return x;
3666 }
3667
3668
3669 /* Re-establish the red-black properties of the tree, and thereby
3670 balance the tree, after node X has been inserted; X is always red. */
3671
3672 static void
3673 mem_insert_fixup (x)
3674 struct mem_node *x;
3675 {
3676 while (x != mem_root && x->parent->color == MEM_RED)
3677 {
3678 /* X is red and its parent is red. This is a violation of
3679 red-black tree property #3. */
3680
3681 if (x->parent == x->parent->parent->left)
3682 {
3683 /* We're on the left side of our grandparent, and Y is our
3684 "uncle". */
3685 struct mem_node *y = x->parent->parent->right;
3686
3687 if (y->color == MEM_RED)
3688 {
3689 /* Uncle and parent are red but should be black because
3690 X is red. Change the colors accordingly and proceed
3691 with the grandparent. */
3692 x->parent->color = MEM_BLACK;
3693 y->color = MEM_BLACK;
3694 x->parent->parent->color = MEM_RED;
3695 x = x->parent->parent;
3696 }
3697 else
3698 {
3699 /* Parent and uncle have different colors; parent is
3700 red, uncle is black. */
3701 if (x == x->parent->right)
3702 {
3703 x = x->parent;
3704 mem_rotate_left (x);
3705 }
3706
3707 x->parent->color = MEM_BLACK;
3708 x->parent->parent->color = MEM_RED;
3709 mem_rotate_right (x->parent->parent);
3710 }
3711 }
3712 else
3713 {
3714 /* This is the symmetrical case of above. */
3715 struct mem_node *y = x->parent->parent->left;
3716
3717 if (y->color == MEM_RED)
3718 {
3719 x->parent->color = MEM_BLACK;
3720 y->color = MEM_BLACK;
3721 x->parent->parent->color = MEM_RED;
3722 x = x->parent->parent;
3723 }
3724 else
3725 {
3726 if (x == x->parent->left)
3727 {
3728 x = x->parent;
3729 mem_rotate_right (x);
3730 }
3731
3732 x->parent->color = MEM_BLACK;
3733 x->parent->parent->color = MEM_RED;
3734 mem_rotate_left (x->parent->parent);
3735 }
3736 }
3737 }
3738
3739 /* The root may have been changed to red due to the algorithm. Set
3740 it to black so that property #5 is satisfied. */
3741 mem_root->color = MEM_BLACK;
3742 }
3743
3744
3745 /* (x) (y)
3746 / \ / \
3747 a (y) ===> (x) c
3748 / \ / \
3749 b c a b */
3750
3751 static void
3752 mem_rotate_left (x)
3753 struct mem_node *x;
3754 {
3755 struct mem_node *y;
3756
3757 /* Turn y's left sub-tree into x's right sub-tree. */
3758 y = x->right;
3759 x->right = y->left;
3760 if (y->left != MEM_NIL)
3761 y->left->parent = x;
3762
3763 /* Y's parent was x's parent. */
3764 if (y != MEM_NIL)
3765 y->parent = x->parent;
3766
3767 /* Get the parent to point to y instead of x. */
3768 if (x->parent)
3769 {
3770 if (x == x->parent->left)
3771 x->parent->left = y;
3772 else
3773 x->parent->right = y;
3774 }
3775 else
3776 mem_root = y;
3777
3778 /* Put x on y's left. */
3779 y->left = x;
3780 if (x != MEM_NIL)
3781 x->parent = y;
3782 }
3783
3784
3785 /* (x) (Y)
3786 / \ / \
3787 (y) c ===> a (x)
3788 / \ / \
3789 a b b c */
3790
3791 static void
3792 mem_rotate_right (x)
3793 struct mem_node *x;
3794 {
3795 struct mem_node *y = x->left;
3796
3797 x->left = y->right;
3798 if (y->right != MEM_NIL)
3799 y->right->parent = x;
3800
3801 if (y != MEM_NIL)
3802 y->parent = x->parent;
3803 if (x->parent)
3804 {
3805 if (x == x->parent->right)
3806 x->parent->right = y;
3807 else
3808 x->parent->left = y;
3809 }
3810 else
3811 mem_root = y;
3812
3813 y->right = x;
3814 if (x != MEM_NIL)
3815 x->parent = y;
3816 }
3817
3818
3819 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3820
3821 static void
3822 mem_delete (z)
3823 struct mem_node *z;
3824 {
3825 struct mem_node *x, *y;
3826
3827 if (!z || z == MEM_NIL)
3828 return;
3829
3830 if (z->left == MEM_NIL || z->right == MEM_NIL)
3831 y = z;
3832 else
3833 {
3834 y = z->right;
3835 while (y->left != MEM_NIL)
3836 y = y->left;
3837 }
3838
3839 if (y->left != MEM_NIL)
3840 x = y->left;
3841 else
3842 x = y->right;
3843
3844 x->parent = y->parent;
3845 if (y->parent)
3846 {
3847 if (y == y->parent->left)
3848 y->parent->left = x;
3849 else
3850 y->parent->right = x;
3851 }
3852 else
3853 mem_root = x;
3854
3855 if (y != z)
3856 {
3857 z->start = y->start;
3858 z->end = y->end;
3859 z->type = y->type;
3860 }
3861
3862 if (y->color == MEM_BLACK)
3863 mem_delete_fixup (x);
3864
3865 #ifdef GC_MALLOC_CHECK
3866 _free_internal (y);
3867 #else
3868 xfree (y);
3869 #endif
3870 }
3871
3872
3873 /* Re-establish the red-black properties of the tree, after a
3874 deletion. */
3875
3876 static void
3877 mem_delete_fixup (x)
3878 struct mem_node *x;
3879 {
3880 while (x != mem_root && x->color == MEM_BLACK)
3881 {
3882 if (x == x->parent->left)
3883 {
3884 struct mem_node *w = x->parent->right;
3885
3886 if (w->color == MEM_RED)
3887 {
3888 w->color = MEM_BLACK;
3889 x->parent->color = MEM_RED;
3890 mem_rotate_left (x->parent);
3891 w = x->parent->right;
3892 }
3893
3894 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3895 {
3896 w->color = MEM_RED;
3897 x = x->parent;
3898 }
3899 else
3900 {
3901 if (w->right->color == MEM_BLACK)
3902 {
3903 w->left->color = MEM_BLACK;
3904 w->color = MEM_RED;
3905 mem_rotate_right (w);
3906 w = x->parent->right;
3907 }
3908 w->color = x->parent->color;
3909 x->parent->color = MEM_BLACK;
3910 w->right->color = MEM_BLACK;
3911 mem_rotate_left (x->parent);
3912 x = mem_root;
3913 }
3914 }
3915 else
3916 {
3917 struct mem_node *w = x->parent->left;
3918
3919 if (w->color == MEM_RED)
3920 {
3921 w->color = MEM_BLACK;
3922 x->parent->color = MEM_RED;
3923 mem_rotate_right (x->parent);
3924 w = x->parent->left;
3925 }
3926
3927 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3928 {
3929 w->color = MEM_RED;
3930 x = x->parent;
3931 }
3932 else
3933 {
3934 if (w->left->color == MEM_BLACK)
3935 {
3936 w->right->color = MEM_BLACK;
3937 w->color = MEM_RED;
3938 mem_rotate_left (w);
3939 w = x->parent->left;
3940 }
3941
3942 w->color = x->parent->color;
3943 x->parent->color = MEM_BLACK;
3944 w->left->color = MEM_BLACK;
3945 mem_rotate_right (x->parent);
3946 x = mem_root;
3947 }
3948 }
3949 }
3950
3951 x->color = MEM_BLACK;
3952 }
3953
3954
3955 /* Value is non-zero if P is a pointer to a live Lisp string on
3956 the heap. M is a pointer to the mem_block for P. */
3957
3958 static INLINE int
3959 live_string_p (m, p)
3960 struct mem_node *m;
3961 void *p;
3962 {
3963 if (m->type == MEM_TYPE_STRING)
3964 {
3965 struct string_block *b = (struct string_block *) m->start;
3966 int offset = (char *) p - (char *) &b->strings[0];
3967
3968 /* P must point to the start of a Lisp_String structure, and it
3969 must not be on the free-list. */
3970 return (offset >= 0
3971 && offset % sizeof b->strings[0] == 0
3972 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3973 && ((struct Lisp_String *) p)->data != NULL);
3974 }
3975 else
3976 return 0;
3977 }
3978
3979
3980 /* Value is non-zero if P is a pointer to a live Lisp cons on
3981 the heap. M is a pointer to the mem_block for P. */
3982
3983 static INLINE int
3984 live_cons_p (m, p)
3985 struct mem_node *m;
3986 void *p;
3987 {
3988 if (m->type == MEM_TYPE_CONS)
3989 {
3990 struct cons_block *b = (struct cons_block *) m->start;
3991 int offset = (char *) p - (char *) &b->conses[0];
3992
3993 /* P must point to the start of a Lisp_Cons, not be
3994 one of the unused cells in the current cons block,
3995 and not be on the free-list. */
3996 return (offset >= 0
3997 && offset % sizeof b->conses[0] == 0
3998 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3999 && (b != cons_block
4000 || offset / sizeof b->conses[0] < cons_block_index)
4001 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4002 }
4003 else
4004 return 0;
4005 }
4006
4007
4008 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4009 the heap. M is a pointer to the mem_block for P. */
4010
4011 static INLINE int
4012 live_symbol_p (m, p)
4013 struct mem_node *m;
4014 void *p;
4015 {
4016 if (m->type == MEM_TYPE_SYMBOL)
4017 {
4018 struct symbol_block *b = (struct symbol_block *) m->start;
4019 int offset = (char *) p - (char *) &b->symbols[0];
4020
4021 /* P must point to the start of a Lisp_Symbol, not be
4022 one of the unused cells in the current symbol block,
4023 and not be on the free-list. */
4024 return (offset >= 0
4025 && offset % sizeof b->symbols[0] == 0
4026 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4027 && (b != symbol_block
4028 || offset / sizeof b->symbols[0] < symbol_block_index)
4029 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4030 }
4031 else
4032 return 0;
4033 }
4034
4035
4036 /* Value is non-zero if P is a pointer to a live Lisp float on
4037 the heap. M is a pointer to the mem_block for P. */
4038
4039 static INLINE int
4040 live_float_p (m, p)
4041 struct mem_node *m;
4042 void *p;
4043 {
4044 if (m->type == MEM_TYPE_FLOAT)
4045 {
4046 struct float_block *b = (struct float_block *) m->start;
4047 int offset = (char *) p - (char *) &b->floats[0];
4048
4049 /* P must point to the start of a Lisp_Float and not be
4050 one of the unused cells in the current float block. */
4051 return (offset >= 0
4052 && offset % sizeof b->floats[0] == 0
4053 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4054 && (b != float_block
4055 || offset / sizeof b->floats[0] < float_block_index));
4056 }
4057 else
4058 return 0;
4059 }
4060
4061
4062 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4063 the heap. M is a pointer to the mem_block for P. */
4064
4065 static INLINE int
4066 live_misc_p (m, p)
4067 struct mem_node *m;
4068 void *p;
4069 {
4070 if (m->type == MEM_TYPE_MISC)
4071 {
4072 struct marker_block *b = (struct marker_block *) m->start;
4073 int offset = (char *) p - (char *) &b->markers[0];
4074
4075 /* P must point to the start of a Lisp_Misc, not be
4076 one of the unused cells in the current misc block,
4077 and not be on the free-list. */
4078 return (offset >= 0
4079 && offset % sizeof b->markers[0] == 0
4080 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4081 && (b != marker_block
4082 || offset / sizeof b->markers[0] < marker_block_index)
4083 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4084 }
4085 else
4086 return 0;
4087 }
4088
4089
4090 /* Value is non-zero if P is a pointer to a live vector-like object.
4091 M is a pointer to the mem_block for P. */
4092
4093 static INLINE int
4094 live_vector_p (m, p)
4095 struct mem_node *m;
4096 void *p;
4097 {
4098 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
4099 }
4100
4101
4102 /* Value is non-zero if P is a pointer to a live buffer. M is a
4103 pointer to the mem_block for P. */
4104
4105 static INLINE int
4106 live_buffer_p (m, p)
4107 struct mem_node *m;
4108 void *p;
4109 {
4110 /* P must point to the start of the block, and the buffer
4111 must not have been killed. */
4112 return (m->type == MEM_TYPE_BUFFER
4113 && p == m->start
4114 && !NILP (((struct buffer *) p)->name));
4115 }
4116
4117 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4118
4119 #if GC_MARK_STACK
4120
4121 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4122
4123 /* Array of objects that are kept alive because the C stack contains
4124 a pattern that looks like a reference to them . */
4125
4126 #define MAX_ZOMBIES 10
4127 static Lisp_Object zombies[MAX_ZOMBIES];
4128
4129 /* Number of zombie objects. */
4130
4131 static int nzombies;
4132
4133 /* Number of garbage collections. */
4134
4135 static int ngcs;
4136
4137 /* Average percentage of zombies per collection. */
4138
4139 static double avg_zombies;
4140
4141 /* Max. number of live and zombie objects. */
4142
4143 static int max_live, max_zombies;
4144
4145 /* Average number of live objects per GC. */
4146
4147 static double avg_live;
4148
4149 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4150 doc: /* Show information about live and zombie objects. */)
4151 ()
4152 {
4153 Lisp_Object args[8], zombie_list = Qnil;
4154 int i;
4155 for (i = 0; i < nzombies; i++)
4156 zombie_list = Fcons (zombies[i], zombie_list);
4157 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4158 args[1] = make_number (ngcs);
4159 args[2] = make_float (avg_live);
4160 args[3] = make_float (avg_zombies);
4161 args[4] = make_float (avg_zombies / avg_live / 100);
4162 args[5] = make_number (max_live);
4163 args[6] = make_number (max_zombies);
4164 args[7] = zombie_list;
4165 return Fmessage (8, args);
4166 }
4167
4168 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4169
4170
4171 /* Mark OBJ if we can prove it's a Lisp_Object. */
4172
4173 static INLINE void
4174 mark_maybe_object (obj)
4175 Lisp_Object obj;
4176 {
4177 void *po = (void *) XPNTR (obj);
4178 struct mem_node *m = mem_find (po);
4179
4180 if (m != MEM_NIL)
4181 {
4182 int mark_p = 0;
4183
4184 switch (XGCTYPE (obj))
4185 {
4186 case Lisp_String:
4187 mark_p = (live_string_p (m, po)
4188 && !STRING_MARKED_P ((struct Lisp_String *) po));
4189 break;
4190
4191 case Lisp_Cons:
4192 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4193 break;
4194
4195 case Lisp_Symbol:
4196 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4197 break;
4198
4199 case Lisp_Float:
4200 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4201 break;
4202
4203 case Lisp_Vectorlike:
4204 /* Note: can't check GC_BUFFERP before we know it's a
4205 buffer because checking that dereferences the pointer
4206 PO which might point anywhere. */
4207 if (live_vector_p (m, po))
4208 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4209 else if (live_buffer_p (m, po))
4210 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4211 break;
4212
4213 case Lisp_Misc:
4214 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4215 break;
4216
4217 case Lisp_Int:
4218 case Lisp_Type_Limit:
4219 break;
4220 }
4221
4222 if (mark_p)
4223 {
4224 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4225 if (nzombies < MAX_ZOMBIES)
4226 zombies[nzombies] = obj;
4227 ++nzombies;
4228 #endif
4229 mark_object (obj);
4230 }
4231 }
4232 }
4233
4234
4235 /* If P points to Lisp data, mark that as live if it isn't already
4236 marked. */
4237
4238 static INLINE void
4239 mark_maybe_pointer (p)
4240 void *p;
4241 {
4242 struct mem_node *m;
4243
4244 /* Quickly rule out some values which can't point to Lisp data. */
4245 if ((EMACS_INT) p %
4246 #ifdef USE_LSB_TAG
4247 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4248 #else
4249 2 /* We assume that Lisp data is aligned on even addresses. */
4250 #endif
4251 )
4252 return;
4253
4254 m = mem_find (p);
4255 if (m != MEM_NIL)
4256 {
4257 Lisp_Object obj = Qnil;
4258
4259 switch (m->type)
4260 {
4261 case MEM_TYPE_NON_LISP:
4262 /* Nothing to do; not a pointer to Lisp memory. */
4263 break;
4264
4265 case MEM_TYPE_BUFFER:
4266 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4267 XSETVECTOR (obj, p);
4268 break;
4269
4270 case MEM_TYPE_CONS:
4271 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4272 XSETCONS (obj, p);
4273 break;
4274
4275 case MEM_TYPE_STRING:
4276 if (live_string_p (m, p)
4277 && !STRING_MARKED_P ((struct Lisp_String *) p))
4278 XSETSTRING (obj, p);
4279 break;
4280
4281 case MEM_TYPE_MISC:
4282 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4283 XSETMISC (obj, p);
4284 break;
4285
4286 case MEM_TYPE_SYMBOL:
4287 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4288 XSETSYMBOL (obj, p);
4289 break;
4290
4291 case MEM_TYPE_FLOAT:
4292 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4293 XSETFLOAT (obj, p);
4294 break;
4295
4296 case MEM_TYPE_VECTORLIKE:
4297 if (live_vector_p (m, p))
4298 {
4299 Lisp_Object tem;
4300 XSETVECTOR (tem, p);
4301 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4302 obj = tem;
4303 }
4304 break;
4305
4306 default:
4307 abort ();
4308 }
4309
4310 if (!GC_NILP (obj))
4311 mark_object (obj);
4312 }
4313 }
4314
4315
4316 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4317 or END+OFFSET..START. */
4318
4319 static void
4320 mark_memory (start, end, offset)
4321 void *start, *end;
4322 int offset;
4323 {
4324 Lisp_Object *p;
4325 void **pp;
4326
4327 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4328 nzombies = 0;
4329 #endif
4330
4331 /* Make START the pointer to the start of the memory region,
4332 if it isn't already. */
4333 if (end < start)
4334 {
4335 void *tem = start;
4336 start = end;
4337 end = tem;
4338 }
4339
4340 /* Mark Lisp_Objects. */
4341 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4342 mark_maybe_object (*p);
4343
4344 /* Mark Lisp data pointed to. This is necessary because, in some
4345 situations, the C compiler optimizes Lisp objects away, so that
4346 only a pointer to them remains. Example:
4347
4348 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4349 ()
4350 {
4351 Lisp_Object obj = build_string ("test");
4352 struct Lisp_String *s = XSTRING (obj);
4353 Fgarbage_collect ();
4354 fprintf (stderr, "test `%s'\n", s->data);
4355 return Qnil;
4356 }
4357
4358 Here, `obj' isn't really used, and the compiler optimizes it
4359 away. The only reference to the life string is through the
4360 pointer `s'. */
4361
4362 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4363 mark_maybe_pointer (*pp);
4364 }
4365
4366 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4367 the GCC system configuration. In gcc 3.2, the only systems for
4368 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4369 by others?) and ns32k-pc532-min. */
4370
4371 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4372
4373 static int setjmp_tested_p, longjmps_done;
4374
4375 #define SETJMP_WILL_LIKELY_WORK "\
4376 \n\
4377 Emacs garbage collector has been changed to use conservative stack\n\
4378 marking. Emacs has determined that the method it uses to do the\n\
4379 marking will likely work on your system, but this isn't sure.\n\
4380 \n\
4381 If you are a system-programmer, or can get the help of a local wizard\n\
4382 who is, please take a look at the function mark_stack in alloc.c, and\n\
4383 verify that the methods used are appropriate for your system.\n\
4384 \n\
4385 Please mail the result to <emacs-devel@gnu.org>.\n\
4386 "
4387
4388 #define SETJMP_WILL_NOT_WORK "\
4389 \n\
4390 Emacs garbage collector has been changed to use conservative stack\n\
4391 marking. Emacs has determined that the default method it uses to do the\n\
4392 marking will not work on your system. We will need a system-dependent\n\
4393 solution for your system.\n\
4394 \n\
4395 Please take a look at the function mark_stack in alloc.c, and\n\
4396 try to find a way to make it work on your system.\n\
4397 \n\
4398 Note that you may get false negatives, depending on the compiler.\n\
4399 In particular, you need to use -O with GCC for this test.\n\
4400 \n\
4401 Please mail the result to <emacs-devel@gnu.org>.\n\
4402 "
4403
4404
4405 /* Perform a quick check if it looks like setjmp saves registers in a
4406 jmp_buf. Print a message to stderr saying so. When this test
4407 succeeds, this is _not_ a proof that setjmp is sufficient for
4408 conservative stack marking. Only the sources or a disassembly
4409 can prove that. */
4410
4411 static void
4412 test_setjmp ()
4413 {
4414 char buf[10];
4415 register int x;
4416 jmp_buf jbuf;
4417 int result = 0;
4418
4419 /* Arrange for X to be put in a register. */
4420 sprintf (buf, "1");
4421 x = strlen (buf);
4422 x = 2 * x - 1;
4423
4424 setjmp (jbuf);
4425 if (longjmps_done == 1)
4426 {
4427 /* Came here after the longjmp at the end of the function.
4428
4429 If x == 1, the longjmp has restored the register to its
4430 value before the setjmp, and we can hope that setjmp
4431 saves all such registers in the jmp_buf, although that
4432 isn't sure.
4433
4434 For other values of X, either something really strange is
4435 taking place, or the setjmp just didn't save the register. */
4436
4437 if (x == 1)
4438 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4439 else
4440 {
4441 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4442 exit (1);
4443 }
4444 }
4445
4446 ++longjmps_done;
4447 x = 2;
4448 if (longjmps_done == 1)
4449 longjmp (jbuf, 1);
4450 }
4451
4452 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4453
4454
4455 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4456
4457 /* Abort if anything GCPRO'd doesn't survive the GC. */
4458
4459 static void
4460 check_gcpros ()
4461 {
4462 struct gcpro *p;
4463 int i;
4464
4465 for (p = gcprolist; p; p = p->next)
4466 for (i = 0; i < p->nvars; ++i)
4467 if (!survives_gc_p (p->var[i]))
4468 /* FIXME: It's not necessarily a bug. It might just be that the
4469 GCPRO is unnecessary or should release the object sooner. */
4470 abort ();
4471 }
4472
4473 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4474
4475 static void
4476 dump_zombies ()
4477 {
4478 int i;
4479
4480 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4481 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4482 {
4483 fprintf (stderr, " %d = ", i);
4484 debug_print (zombies[i]);
4485 }
4486 }
4487
4488 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4489
4490
4491 /* Mark live Lisp objects on the C stack.
4492
4493 There are several system-dependent problems to consider when
4494 porting this to new architectures:
4495
4496 Processor Registers
4497
4498 We have to mark Lisp objects in CPU registers that can hold local
4499 variables or are used to pass parameters.
4500
4501 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4502 something that either saves relevant registers on the stack, or
4503 calls mark_maybe_object passing it each register's contents.
4504
4505 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4506 implementation assumes that calling setjmp saves registers we need
4507 to see in a jmp_buf which itself lies on the stack. This doesn't
4508 have to be true! It must be verified for each system, possibly
4509 by taking a look at the source code of setjmp.
4510
4511 Stack Layout
4512
4513 Architectures differ in the way their processor stack is organized.
4514 For example, the stack might look like this
4515
4516 +----------------+
4517 | Lisp_Object | size = 4
4518 +----------------+
4519 | something else | size = 2
4520 +----------------+
4521 | Lisp_Object | size = 4
4522 +----------------+
4523 | ... |
4524
4525 In such a case, not every Lisp_Object will be aligned equally. To
4526 find all Lisp_Object on the stack it won't be sufficient to walk
4527 the stack in steps of 4 bytes. Instead, two passes will be
4528 necessary, one starting at the start of the stack, and a second
4529 pass starting at the start of the stack + 2. Likewise, if the
4530 minimal alignment of Lisp_Objects on the stack is 1, four passes
4531 would be necessary, each one starting with one byte more offset
4532 from the stack start.
4533
4534 The current code assumes by default that Lisp_Objects are aligned
4535 equally on the stack. */
4536
4537 static void
4538 mark_stack ()
4539 {
4540 int i;
4541 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4542 union aligned_jmpbuf {
4543 Lisp_Object o;
4544 jmp_buf j;
4545 } j;
4546 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4547 void *end;
4548
4549 /* This trick flushes the register windows so that all the state of
4550 the process is contained in the stack. */
4551 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4552 needed on ia64 too. See mach_dep.c, where it also says inline
4553 assembler doesn't work with relevant proprietary compilers. */
4554 #ifdef sparc
4555 asm ("ta 3");
4556 #endif
4557
4558 /* Save registers that we need to see on the stack. We need to see
4559 registers used to hold register variables and registers used to
4560 pass parameters. */
4561 #ifdef GC_SAVE_REGISTERS_ON_STACK
4562 GC_SAVE_REGISTERS_ON_STACK (end);
4563 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4564
4565 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4566 setjmp will definitely work, test it
4567 and print a message with the result
4568 of the test. */
4569 if (!setjmp_tested_p)
4570 {
4571 setjmp_tested_p = 1;
4572 test_setjmp ();
4573 }
4574 #endif /* GC_SETJMP_WORKS */
4575
4576 setjmp (j.j);
4577 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4578 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4579
4580 /* This assumes that the stack is a contiguous region in memory. If
4581 that's not the case, something has to be done here to iterate
4582 over the stack segments. */
4583 #ifndef GC_LISP_OBJECT_ALIGNMENT
4584 #ifdef __GNUC__
4585 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4586 #else
4587 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4588 #endif
4589 #endif
4590 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4591 mark_memory (stack_base, end, i);
4592 /* Allow for marking a secondary stack, like the register stack on the
4593 ia64. */
4594 #ifdef GC_MARK_SECONDARY_STACK
4595 GC_MARK_SECONDARY_STACK ();
4596 #endif
4597
4598 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4599 check_gcpros ();
4600 #endif
4601 }
4602
4603 #endif /* GC_MARK_STACK != 0 */
4604
4605
4606 /* Determine whether it is safe to access memory at address P. */
4607 static int
4608 valid_pointer_p (p)
4609 void *p;
4610 {
4611 #ifdef WINDOWSNT
4612 return w32_valid_pointer_p (p, 16);
4613 #else
4614 int fd;
4615
4616 /* Obviously, we cannot just access it (we would SEGV trying), so we
4617 trick the o/s to tell us whether p is a valid pointer.
4618 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4619 not validate p in that case. */
4620
4621 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4622 {
4623 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4624 emacs_close (fd);
4625 unlink ("__Valid__Lisp__Object__");
4626 return valid;
4627 }
4628
4629 return -1;
4630 #endif
4631 }
4632
4633 /* Return 1 if OBJ is a valid lisp object.
4634 Return 0 if OBJ is NOT a valid lisp object.
4635 Return -1 if we cannot validate OBJ.
4636 This function can be quite slow,
4637 so it should only be used in code for manual debugging. */
4638
4639 int
4640 valid_lisp_object_p (obj)
4641 Lisp_Object obj;
4642 {
4643 void *p;
4644 #if GC_MARK_STACK
4645 struct mem_node *m;
4646 #endif
4647
4648 if (INTEGERP (obj))
4649 return 1;
4650
4651 p = (void *) XPNTR (obj);
4652 if (PURE_POINTER_P (p))
4653 return 1;
4654
4655 #if !GC_MARK_STACK
4656 return valid_pointer_p (p);
4657 #else
4658
4659 m = mem_find (p);
4660
4661 if (m == MEM_NIL)
4662 {
4663 int valid = valid_pointer_p (p);
4664 if (valid <= 0)
4665 return valid;
4666
4667 if (SUBRP (obj))
4668 return 1;
4669
4670 return 0;
4671 }
4672
4673 switch (m->type)
4674 {
4675 case MEM_TYPE_NON_LISP:
4676 return 0;
4677
4678 case MEM_TYPE_BUFFER:
4679 return live_buffer_p (m, p);
4680
4681 case MEM_TYPE_CONS:
4682 return live_cons_p (m, p);
4683
4684 case MEM_TYPE_STRING:
4685 return live_string_p (m, p);
4686
4687 case MEM_TYPE_MISC:
4688 return live_misc_p (m, p);
4689
4690 case MEM_TYPE_SYMBOL:
4691 return live_symbol_p (m, p);
4692
4693 case MEM_TYPE_FLOAT:
4694 return live_float_p (m, p);
4695
4696 case MEM_TYPE_VECTORLIKE:
4697 return live_vector_p (m, p);
4698
4699 default:
4700 break;
4701 }
4702
4703 return 0;
4704 #endif
4705 }
4706
4707
4708
4709 \f
4710 /***********************************************************************
4711 Pure Storage Management
4712 ***********************************************************************/
4713
4714 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4715 pointer to it. TYPE is the Lisp type for which the memory is
4716 allocated. TYPE < 0 means it's not used for a Lisp object. */
4717
4718 static POINTER_TYPE *
4719 pure_alloc (size, type)
4720 size_t size;
4721 int type;
4722 {
4723 POINTER_TYPE *result;
4724 #ifdef USE_LSB_TAG
4725 size_t alignment = (1 << GCTYPEBITS);
4726 #else
4727 size_t alignment = sizeof (EMACS_INT);
4728
4729 /* Give Lisp_Floats an extra alignment. */
4730 if (type == Lisp_Float)
4731 {
4732 #if defined __GNUC__ && __GNUC__ >= 2
4733 alignment = __alignof (struct Lisp_Float);
4734 #else
4735 alignment = sizeof (struct Lisp_Float);
4736 #endif
4737 }
4738 #endif
4739
4740 again:
4741 if (type >= 0)
4742 {
4743 /* Allocate space for a Lisp object from the beginning of the free
4744 space with taking account of alignment. */
4745 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4746 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4747 }
4748 else
4749 {
4750 /* Allocate space for a non-Lisp object from the end of the free
4751 space. */
4752 pure_bytes_used_non_lisp += size;
4753 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4754 }
4755 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4756
4757 if (pure_bytes_used <= pure_size)
4758 return result;
4759
4760 /* Don't allocate a large amount here,
4761 because it might get mmap'd and then its address
4762 might not be usable. */
4763 purebeg = (char *) xmalloc (10000);
4764 pure_size = 10000;
4765 pure_bytes_used_before_overflow += pure_bytes_used - size;
4766 pure_bytes_used = 0;
4767 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4768 goto again;
4769 }
4770
4771
4772 /* Print a warning if PURESIZE is too small. */
4773
4774 void
4775 check_pure_size ()
4776 {
4777 if (pure_bytes_used_before_overflow)
4778 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4779 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4780 }
4781
4782
4783 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4784 the non-Lisp data pool of the pure storage, and return its start
4785 address. Return NULL if not found. */
4786
4787 static char *
4788 find_string_data_in_pure (data, nbytes)
4789 char *data;
4790 int nbytes;
4791 {
4792 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4793 unsigned char *p;
4794 char *non_lisp_beg;
4795
4796 if (pure_bytes_used_non_lisp < nbytes + 1)
4797 return NULL;
4798
4799 /* Set up the Boyer-Moore table. */
4800 skip = nbytes + 1;
4801 for (i = 0; i < 256; i++)
4802 bm_skip[i] = skip;
4803
4804 p = (unsigned char *) data;
4805 while (--skip > 0)
4806 bm_skip[*p++] = skip;
4807
4808 last_char_skip = bm_skip['\0'];
4809
4810 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4811 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4812
4813 /* See the comments in the function `boyer_moore' (search.c) for the
4814 use of `infinity'. */
4815 infinity = pure_bytes_used_non_lisp + 1;
4816 bm_skip['\0'] = infinity;
4817
4818 p = (unsigned char *) non_lisp_beg + nbytes;
4819 start = 0;
4820 do
4821 {
4822 /* Check the last character (== '\0'). */
4823 do
4824 {
4825 start += bm_skip[*(p + start)];
4826 }
4827 while (start <= start_max);
4828
4829 if (start < infinity)
4830 /* Couldn't find the last character. */
4831 return NULL;
4832
4833 /* No less than `infinity' means we could find the last
4834 character at `p[start - infinity]'. */
4835 start -= infinity;
4836
4837 /* Check the remaining characters. */
4838 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4839 /* Found. */
4840 return non_lisp_beg + start;
4841
4842 start += last_char_skip;
4843 }
4844 while (start <= start_max);
4845
4846 return NULL;
4847 }
4848
4849
4850 /* Return a string allocated in pure space. DATA is a buffer holding
4851 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4852 non-zero means make the result string multibyte.
4853
4854 Must get an error if pure storage is full, since if it cannot hold
4855 a large string it may be able to hold conses that point to that
4856 string; then the string is not protected from gc. */
4857
4858 Lisp_Object
4859 make_pure_string (data, nchars, nbytes, multibyte)
4860 char *data;
4861 int nchars, nbytes;
4862 int multibyte;
4863 {
4864 Lisp_Object string;
4865 struct Lisp_String *s;
4866
4867 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4868 s->data = find_string_data_in_pure (data, nbytes);
4869 if (s->data == NULL)
4870 {
4871 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4872 bcopy (data, s->data, nbytes);
4873 s->data[nbytes] = '\0';
4874 }
4875 s->size = nchars;
4876 s->size_byte = multibyte ? nbytes : -1;
4877 s->intervals = NULL_INTERVAL;
4878 XSETSTRING (string, s);
4879 return string;
4880 }
4881
4882
4883 /* Return a cons allocated from pure space. Give it pure copies
4884 of CAR as car and CDR as cdr. */
4885
4886 Lisp_Object
4887 pure_cons (car, cdr)
4888 Lisp_Object car, cdr;
4889 {
4890 register Lisp_Object new;
4891 struct Lisp_Cons *p;
4892
4893 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4894 XSETCONS (new, p);
4895 XSETCAR (new, Fpurecopy (car));
4896 XSETCDR (new, Fpurecopy (cdr));
4897 return new;
4898 }
4899
4900
4901 /* Value is a float object with value NUM allocated from pure space. */
4902
4903 static Lisp_Object
4904 make_pure_float (num)
4905 double num;
4906 {
4907 register Lisp_Object new;
4908 struct Lisp_Float *p;
4909
4910 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4911 XSETFLOAT (new, p);
4912 XFLOAT_DATA (new) = num;
4913 return new;
4914 }
4915
4916
4917 /* Return a vector with room for LEN Lisp_Objects allocated from
4918 pure space. */
4919
4920 Lisp_Object
4921 make_pure_vector (len)
4922 EMACS_INT len;
4923 {
4924 Lisp_Object new;
4925 struct Lisp_Vector *p;
4926 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4927
4928 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4929 XSETVECTOR (new, p);
4930 XVECTOR (new)->size = len;
4931 return new;
4932 }
4933
4934
4935 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4936 doc: /* Make a copy of object OBJ in pure storage.
4937 Recursively copies contents of vectors and cons cells.
4938 Does not copy symbols. Copies strings without text properties. */)
4939 (obj)
4940 register Lisp_Object obj;
4941 {
4942 if (NILP (Vpurify_flag))
4943 return obj;
4944
4945 if (PURE_POINTER_P (XPNTR (obj)))
4946 return obj;
4947
4948 if (CONSP (obj))
4949 return pure_cons (XCAR (obj), XCDR (obj));
4950 else if (FLOATP (obj))
4951 return make_pure_float (XFLOAT_DATA (obj));
4952 else if (STRINGP (obj))
4953 return make_pure_string (SDATA (obj), SCHARS (obj),
4954 SBYTES (obj),
4955 STRING_MULTIBYTE (obj));
4956 else if (COMPILEDP (obj) || VECTORP (obj))
4957 {
4958 register struct Lisp_Vector *vec;
4959 register int i;
4960 EMACS_INT size;
4961
4962 size = XVECTOR (obj)->size;
4963 if (size & PSEUDOVECTOR_FLAG)
4964 size &= PSEUDOVECTOR_SIZE_MASK;
4965 vec = XVECTOR (make_pure_vector (size));
4966 for (i = 0; i < size; i++)
4967 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4968 if (COMPILEDP (obj))
4969 {
4970 XSETPVECTYPE (vec, PVEC_COMPILED);
4971 XSETCOMPILED (obj, vec);
4972 }
4973 else
4974 XSETVECTOR (obj, vec);
4975 return obj;
4976 }
4977 else if (MARKERP (obj))
4978 error ("Attempt to copy a marker to pure storage");
4979
4980 return obj;
4981 }
4982
4983
4984 \f
4985 /***********************************************************************
4986 Protection from GC
4987 ***********************************************************************/
4988
4989 /* Put an entry in staticvec, pointing at the variable with address
4990 VARADDRESS. */
4991
4992 void
4993 staticpro (varaddress)
4994 Lisp_Object *varaddress;
4995 {
4996 staticvec[staticidx++] = varaddress;
4997 if (staticidx >= NSTATICS)
4998 abort ();
4999 }
5000
5001 struct catchtag
5002 {
5003 Lisp_Object tag;
5004 Lisp_Object val;
5005 struct catchtag *next;
5006 };
5007
5008 \f
5009 /***********************************************************************
5010 Protection from GC
5011 ***********************************************************************/
5012
5013 /* Temporarily prevent garbage collection. */
5014
5015 int
5016 inhibit_garbage_collection ()
5017 {
5018 int count = SPECPDL_INDEX ();
5019 int nbits = min (VALBITS, BITS_PER_INT);
5020
5021 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
5022 return count;
5023 }
5024
5025
5026 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5027 doc: /* Reclaim storage for Lisp objects no longer needed.
5028 Garbage collection happens automatically if you cons more than
5029 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5030 `garbage-collect' normally returns a list with info on amount of space in use:
5031 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
5032 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
5033 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
5034 (USED-STRINGS . FREE-STRINGS))
5035 However, if there was overflow in pure space, `garbage-collect'
5036 returns nil, because real GC can't be done. */)
5037 ()
5038 {
5039 register struct specbinding *bind;
5040 struct catchtag *catch;
5041 struct handler *handler;
5042 char stack_top_variable;
5043 register int i;
5044 int message_p;
5045 Lisp_Object total[8];
5046 int count = SPECPDL_INDEX ();
5047 EMACS_TIME t1, t2, t3;
5048
5049 if (abort_on_gc)
5050 abort ();
5051
5052 /* Can't GC if pure storage overflowed because we can't determine
5053 if something is a pure object or not. */
5054 if (pure_bytes_used_before_overflow)
5055 return Qnil;
5056
5057 CHECK_CONS_LIST ();
5058
5059 /* Don't keep undo information around forever.
5060 Do this early on, so it is no problem if the user quits. */
5061 {
5062 register struct buffer *nextb = all_buffers;
5063
5064 while (nextb)
5065 {
5066 /* If a buffer's undo list is Qt, that means that undo is
5067 turned off in that buffer. Calling truncate_undo_list on
5068 Qt tends to return NULL, which effectively turns undo back on.
5069 So don't call truncate_undo_list if undo_list is Qt. */
5070 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
5071 truncate_undo_list (nextb);
5072
5073 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5074 if (nextb->base_buffer == 0 && !NILP (nextb->name))
5075 {
5076 /* If a buffer's gap size is more than 10% of the buffer
5077 size, or larger than 2000 bytes, then shrink it
5078 accordingly. Keep a minimum size of 20 bytes. */
5079 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5080
5081 if (nextb->text->gap_size > size)
5082 {
5083 struct buffer *save_current = current_buffer;
5084 current_buffer = nextb;
5085 make_gap (-(nextb->text->gap_size - size));
5086 current_buffer = save_current;
5087 }
5088 }
5089
5090 nextb = nextb->next;
5091 }
5092 }
5093
5094 EMACS_GET_TIME (t1);
5095
5096 /* In case user calls debug_print during GC,
5097 don't let that cause a recursive GC. */
5098 consing_since_gc = 0;
5099
5100 /* Save what's currently displayed in the echo area. */
5101 message_p = push_message ();
5102 record_unwind_protect (pop_message_unwind, Qnil);
5103
5104 /* Save a copy of the contents of the stack, for debugging. */
5105 #if MAX_SAVE_STACK > 0
5106 if (NILP (Vpurify_flag))
5107 {
5108 i = &stack_top_variable - stack_bottom;
5109 if (i < 0) i = -i;
5110 if (i < MAX_SAVE_STACK)
5111 {
5112 if (stack_copy == 0)
5113 stack_copy = (char *) xmalloc (stack_copy_size = i);
5114 else if (stack_copy_size < i)
5115 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
5116 if (stack_copy)
5117 {
5118 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
5119 bcopy (stack_bottom, stack_copy, i);
5120 else
5121 bcopy (&stack_top_variable, stack_copy, i);
5122 }
5123 }
5124 }
5125 #endif /* MAX_SAVE_STACK > 0 */
5126
5127 if (garbage_collection_messages)
5128 message1_nolog ("Garbage collecting...");
5129
5130 BLOCK_INPUT;
5131
5132 shrink_regexp_cache ();
5133
5134 gc_in_progress = 1;
5135
5136 /* clear_marks (); */
5137
5138 /* Mark all the special slots that serve as the roots of accessibility. */
5139
5140 for (i = 0; i < staticidx; i++)
5141 mark_object (*staticvec[i]);
5142
5143 for (bind = specpdl; bind != specpdl_ptr; bind++)
5144 {
5145 mark_object (bind->symbol);
5146 mark_object (bind->old_value);
5147 }
5148 mark_terminals ();
5149 mark_kboards ();
5150 mark_ttys ();
5151
5152 #ifdef USE_GTK
5153 {
5154 extern void xg_mark_data ();
5155 xg_mark_data ();
5156 }
5157 #endif
5158
5159 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5160 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5161 mark_stack ();
5162 #else
5163 {
5164 register struct gcpro *tail;
5165 for (tail = gcprolist; tail; tail = tail->next)
5166 for (i = 0; i < tail->nvars; i++)
5167 mark_object (tail->var[i]);
5168 }
5169 #endif
5170
5171 mark_byte_stack ();
5172 for (catch = catchlist; catch; catch = catch->next)
5173 {
5174 mark_object (catch->tag);
5175 mark_object (catch->val);
5176 }
5177 for (handler = handlerlist; handler; handler = handler->next)
5178 {
5179 mark_object (handler->handler);
5180 mark_object (handler->var);
5181 }
5182 mark_backtrace ();
5183
5184 #ifdef HAVE_WINDOW_SYSTEM
5185 mark_fringe_data ();
5186 #endif
5187
5188 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5189 mark_stack ();
5190 #endif
5191
5192 /* Everything is now marked, except for the things that require special
5193 finalization, i.e. the undo_list.
5194 Look thru every buffer's undo list
5195 for elements that update markers that were not marked,
5196 and delete them. */
5197 {
5198 register struct buffer *nextb = all_buffers;
5199
5200 while (nextb)
5201 {
5202 /* If a buffer's undo list is Qt, that means that undo is
5203 turned off in that buffer. Calling truncate_undo_list on
5204 Qt tends to return NULL, which effectively turns undo back on.
5205 So don't call truncate_undo_list if undo_list is Qt. */
5206 if (! EQ (nextb->undo_list, Qt))
5207 {
5208 Lisp_Object tail, prev;
5209 tail = nextb->undo_list;
5210 prev = Qnil;
5211 while (CONSP (tail))
5212 {
5213 if (GC_CONSP (XCAR (tail))
5214 && GC_MARKERP (XCAR (XCAR (tail)))
5215 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5216 {
5217 if (NILP (prev))
5218 nextb->undo_list = tail = XCDR (tail);
5219 else
5220 {
5221 tail = XCDR (tail);
5222 XSETCDR (prev, tail);
5223 }
5224 }
5225 else
5226 {
5227 prev = tail;
5228 tail = XCDR (tail);
5229 }
5230 }
5231 }
5232 /* Now that we have stripped the elements that need not be in the
5233 undo_list any more, we can finally mark the list. */
5234 mark_object (nextb->undo_list);
5235
5236 nextb = nextb->next;
5237 }
5238 }
5239
5240 gc_sweep ();
5241
5242 /* Clear the mark bits that we set in certain root slots. */
5243
5244 unmark_byte_stack ();
5245 VECTOR_UNMARK (&buffer_defaults);
5246 VECTOR_UNMARK (&buffer_local_symbols);
5247
5248 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5249 dump_zombies ();
5250 #endif
5251
5252 UNBLOCK_INPUT;
5253
5254 CHECK_CONS_LIST ();
5255
5256 /* clear_marks (); */
5257 gc_in_progress = 0;
5258
5259 consing_since_gc = 0;
5260 if (gc_cons_threshold < 10000)
5261 gc_cons_threshold = 10000;
5262
5263 if (FLOATP (Vgc_cons_percentage))
5264 { /* Set gc_cons_combined_threshold. */
5265 EMACS_INT total = 0;
5266
5267 total += total_conses * sizeof (struct Lisp_Cons);
5268 total += total_symbols * sizeof (struct Lisp_Symbol);
5269 total += total_markers * sizeof (union Lisp_Misc);
5270 total += total_string_size;
5271 total += total_vector_size * sizeof (Lisp_Object);
5272 total += total_floats * sizeof (struct Lisp_Float);
5273 total += total_intervals * sizeof (struct interval);
5274 total += total_strings * sizeof (struct Lisp_String);
5275
5276 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5277 }
5278 else
5279 gc_relative_threshold = 0;
5280
5281 if (garbage_collection_messages)
5282 {
5283 if (message_p || minibuf_level > 0)
5284 restore_message ();
5285 else
5286 message1_nolog ("Garbage collecting...done");
5287 }
5288
5289 unbind_to (count, Qnil);
5290
5291 total[0] = Fcons (make_number (total_conses),
5292 make_number (total_free_conses));
5293 total[1] = Fcons (make_number (total_symbols),
5294 make_number (total_free_symbols));
5295 total[2] = Fcons (make_number (total_markers),
5296 make_number (total_free_markers));
5297 total[3] = make_number (total_string_size);
5298 total[4] = make_number (total_vector_size);
5299 total[5] = Fcons (make_number (total_floats),
5300 make_number (total_free_floats));
5301 total[6] = Fcons (make_number (total_intervals),
5302 make_number (total_free_intervals));
5303 total[7] = Fcons (make_number (total_strings),
5304 make_number (total_free_strings));
5305
5306 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5307 {
5308 /* Compute average percentage of zombies. */
5309 double nlive = 0;
5310
5311 for (i = 0; i < 7; ++i)
5312 if (CONSP (total[i]))
5313 nlive += XFASTINT (XCAR (total[i]));
5314
5315 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5316 max_live = max (nlive, max_live);
5317 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5318 max_zombies = max (nzombies, max_zombies);
5319 ++ngcs;
5320 }
5321 #endif
5322
5323 if (!NILP (Vpost_gc_hook))
5324 {
5325 int count = inhibit_garbage_collection ();
5326 safe_run_hooks (Qpost_gc_hook);
5327 unbind_to (count, Qnil);
5328 }
5329
5330 /* Accumulate statistics. */
5331 EMACS_GET_TIME (t2);
5332 EMACS_SUB_TIME (t3, t2, t1);
5333 if (FLOATP (Vgc_elapsed))
5334 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5335 EMACS_SECS (t3) +
5336 EMACS_USECS (t3) * 1.0e-6);
5337 gcs_done++;
5338
5339 return Flist (sizeof total / sizeof *total, total);
5340 }
5341
5342
5343 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5344 only interesting objects referenced from glyphs are strings. */
5345
5346 static void
5347 mark_glyph_matrix (matrix)
5348 struct glyph_matrix *matrix;
5349 {
5350 struct glyph_row *row = matrix->rows;
5351 struct glyph_row *end = row + matrix->nrows;
5352
5353 for (; row < end; ++row)
5354 if (row->enabled_p)
5355 {
5356 int area;
5357 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5358 {
5359 struct glyph *glyph = row->glyphs[area];
5360 struct glyph *end_glyph = glyph + row->used[area];
5361
5362 for (; glyph < end_glyph; ++glyph)
5363 if (GC_STRINGP (glyph->object)
5364 && !STRING_MARKED_P (XSTRING (glyph->object)))
5365 mark_object (glyph->object);
5366 }
5367 }
5368 }
5369
5370
5371 /* Mark Lisp faces in the face cache C. */
5372
5373 static void
5374 mark_face_cache (c)
5375 struct face_cache *c;
5376 {
5377 if (c)
5378 {
5379 int i, j;
5380 for (i = 0; i < c->used; ++i)
5381 {
5382 struct face *face = FACE_FROM_ID (c->f, i);
5383
5384 if (face)
5385 {
5386 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5387 mark_object (face->lface[j]);
5388 }
5389 }
5390 }
5391 }
5392
5393
5394 #ifdef HAVE_WINDOW_SYSTEM
5395
5396 /* Mark Lisp objects in image IMG. */
5397
5398 static void
5399 mark_image (img)
5400 struct image *img;
5401 {
5402 mark_object (img->spec);
5403
5404 if (!NILP (img->data.lisp_val))
5405 mark_object (img->data.lisp_val);
5406 }
5407
5408
5409 /* Mark Lisp objects in image cache of frame F. It's done this way so
5410 that we don't have to include xterm.h here. */
5411
5412 static void
5413 mark_image_cache (f)
5414 struct frame *f;
5415 {
5416 forall_images_in_image_cache (f, mark_image);
5417 }
5418
5419 #endif /* HAVE_X_WINDOWS */
5420
5421
5422 \f
5423 /* Mark reference to a Lisp_Object.
5424 If the object referred to has not been seen yet, recursively mark
5425 all the references contained in it. */
5426
5427 #define LAST_MARKED_SIZE 500
5428 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5429 int last_marked_index;
5430
5431 /* For debugging--call abort when we cdr down this many
5432 links of a list, in mark_object. In debugging,
5433 the call to abort will hit a breakpoint.
5434 Normally this is zero and the check never goes off. */
5435 static int mark_object_loop_halt;
5436
5437 /* Return non-zero if the object was not yet marked. */
5438 static int
5439 mark_vectorlike (ptr)
5440 struct Lisp_Vector *ptr;
5441 {
5442 register EMACS_INT size = ptr->size;
5443 register int i;
5444
5445 if (VECTOR_MARKED_P (ptr))
5446 return 0; /* Already marked */
5447 VECTOR_MARK (ptr); /* Else mark it */
5448 if (size & PSEUDOVECTOR_FLAG)
5449 size &= PSEUDOVECTOR_SIZE_MASK;
5450
5451 /* Note that this size is not the memory-footprint size, but only
5452 the number of Lisp_Object fields that we should trace.
5453 The distinction is used e.g. by Lisp_Process which places extra
5454 non-Lisp_Object fields at the end of the structure. */
5455 for (i = 0; i < size; i++) /* and then mark its elements */
5456 mark_object (ptr->contents[i]);
5457 return 1;
5458 }
5459
5460 void
5461 mark_object (arg)
5462 Lisp_Object arg;
5463 {
5464 register Lisp_Object obj = arg;
5465 #ifdef GC_CHECK_MARKED_OBJECTS
5466 void *po;
5467 struct mem_node *m;
5468 #endif
5469 int cdr_count = 0;
5470
5471 loop:
5472
5473 if (PURE_POINTER_P (XPNTR (obj)))
5474 return;
5475
5476 last_marked[last_marked_index++] = obj;
5477 if (last_marked_index == LAST_MARKED_SIZE)
5478 last_marked_index = 0;
5479
5480 /* Perform some sanity checks on the objects marked here. Abort if
5481 we encounter an object we know is bogus. This increases GC time
5482 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5483 #ifdef GC_CHECK_MARKED_OBJECTS
5484
5485 po = (void *) XPNTR (obj);
5486
5487 /* Check that the object pointed to by PO is known to be a Lisp
5488 structure allocated from the heap. */
5489 #define CHECK_ALLOCATED() \
5490 do { \
5491 m = mem_find (po); \
5492 if (m == MEM_NIL) \
5493 abort (); \
5494 } while (0)
5495
5496 /* Check that the object pointed to by PO is live, using predicate
5497 function LIVEP. */
5498 #define CHECK_LIVE(LIVEP) \
5499 do { \
5500 if (!LIVEP (m, po)) \
5501 abort (); \
5502 } while (0)
5503
5504 /* Check both of the above conditions. */
5505 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5506 do { \
5507 CHECK_ALLOCATED (); \
5508 CHECK_LIVE (LIVEP); \
5509 } while (0) \
5510
5511 #else /* not GC_CHECK_MARKED_OBJECTS */
5512
5513 #define CHECK_ALLOCATED() (void) 0
5514 #define CHECK_LIVE(LIVEP) (void) 0
5515 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5516
5517 #endif /* not GC_CHECK_MARKED_OBJECTS */
5518
5519 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
5520 {
5521 case Lisp_String:
5522 {
5523 register struct Lisp_String *ptr = XSTRING (obj);
5524 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5525 MARK_INTERVAL_TREE (ptr->intervals);
5526 MARK_STRING (ptr);
5527 #ifdef GC_CHECK_STRING_BYTES
5528 /* Check that the string size recorded in the string is the
5529 same as the one recorded in the sdata structure. */
5530 CHECK_STRING_BYTES (ptr);
5531 #endif /* GC_CHECK_STRING_BYTES */
5532 }
5533 break;
5534
5535 case Lisp_Vectorlike:
5536 #ifdef GC_CHECK_MARKED_OBJECTS
5537 m = mem_find (po);
5538 if (m == MEM_NIL && !GC_SUBRP (obj)
5539 && po != &buffer_defaults
5540 && po != &buffer_local_symbols)
5541 abort ();
5542 #endif /* GC_CHECK_MARKED_OBJECTS */
5543
5544 if (GC_BUFFERP (obj))
5545 {
5546 if (!VECTOR_MARKED_P (XBUFFER (obj)))
5547 {
5548 #ifdef GC_CHECK_MARKED_OBJECTS
5549 if (po != &buffer_defaults && po != &buffer_local_symbols)
5550 {
5551 struct buffer *b;
5552 for (b = all_buffers; b && b != po; b = b->next)
5553 ;
5554 if (b == NULL)
5555 abort ();
5556 }
5557 #endif /* GC_CHECK_MARKED_OBJECTS */
5558 mark_buffer (obj);
5559 }
5560 }
5561 else if (GC_SUBRP (obj))
5562 break;
5563 else if (GC_COMPILEDP (obj))
5564 /* We could treat this just like a vector, but it is better to
5565 save the COMPILED_CONSTANTS element for last and avoid
5566 recursion there. */
5567 {
5568 register struct Lisp_Vector *ptr = XVECTOR (obj);
5569 register EMACS_INT size = ptr->size;
5570 register int i;
5571
5572 if (VECTOR_MARKED_P (ptr))
5573 break; /* Already marked */
5574
5575 CHECK_LIVE (live_vector_p);
5576 VECTOR_MARK (ptr); /* Else mark it */
5577 size &= PSEUDOVECTOR_SIZE_MASK;
5578 for (i = 0; i < size; i++) /* and then mark its elements */
5579 {
5580 if (i != COMPILED_CONSTANTS)
5581 mark_object (ptr->contents[i]);
5582 }
5583 obj = ptr->contents[COMPILED_CONSTANTS];
5584 goto loop;
5585 }
5586 else if (GC_FRAMEP (obj))
5587 {
5588 register struct frame *ptr = XFRAME (obj);
5589 if (mark_vectorlike (XVECTOR (obj)))
5590 {
5591 mark_face_cache (ptr->face_cache);
5592 #ifdef HAVE_WINDOW_SYSTEM
5593 mark_image_cache (ptr);
5594 #endif /* HAVE_WINDOW_SYSTEM */
5595 }
5596 }
5597 else if (GC_WINDOWP (obj))
5598 {
5599 register struct Lisp_Vector *ptr = XVECTOR (obj);
5600 struct window *w = XWINDOW (obj);
5601 if (mark_vectorlike (ptr))
5602 {
5603 /* Mark glyphs for leaf windows. Marking window matrices is
5604 sufficient because frame matrices use the same glyph
5605 memory. */
5606 if (NILP (w->hchild)
5607 && NILP (w->vchild)
5608 && w->current_matrix)
5609 {
5610 mark_glyph_matrix (w->current_matrix);
5611 mark_glyph_matrix (w->desired_matrix);
5612 }
5613 }
5614 }
5615 else if (GC_HASH_TABLE_P (obj))
5616 {
5617 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5618 if (mark_vectorlike ((struct Lisp_Vector *)h))
5619 { /* If hash table is not weak, mark all keys and values.
5620 For weak tables, mark only the vector. */
5621 if (GC_NILP (h->weak))
5622 mark_object (h->key_and_value);
5623 else
5624 VECTOR_MARK (XVECTOR (h->key_and_value));
5625 }
5626 }
5627 else
5628 mark_vectorlike (XVECTOR (obj));
5629 break;
5630
5631 case Lisp_Symbol:
5632 {
5633 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5634 struct Lisp_Symbol *ptrx;
5635
5636 if (ptr->gcmarkbit) break;
5637 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5638 ptr->gcmarkbit = 1;
5639 mark_object (ptr->value);
5640 mark_object (ptr->function);
5641 mark_object (ptr->plist);
5642
5643 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5644 MARK_STRING (XSTRING (ptr->xname));
5645 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5646
5647 /* Note that we do not mark the obarray of the symbol.
5648 It is safe not to do so because nothing accesses that
5649 slot except to check whether it is nil. */
5650 ptr = ptr->next;
5651 if (ptr)
5652 {
5653 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5654 XSETSYMBOL (obj, ptrx);
5655 goto loop;
5656 }
5657 }
5658 break;
5659
5660 case Lisp_Misc:
5661 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5662 if (XMISCANY (obj)->gcmarkbit)
5663 break;
5664 XMISCANY (obj)->gcmarkbit = 1;
5665
5666 switch (XMISCTYPE (obj))
5667 {
5668 case Lisp_Misc_Buffer_Local_Value:
5669 {
5670 register struct Lisp_Buffer_Local_Value *ptr
5671 = XBUFFER_LOCAL_VALUE (obj);
5672 /* If the cdr is nil, avoid recursion for the car. */
5673 if (EQ (ptr->cdr, Qnil))
5674 {
5675 obj = ptr->realvalue;
5676 goto loop;
5677 }
5678 mark_object (ptr->realvalue);
5679 mark_object (ptr->buffer);
5680 mark_object (ptr->frame);
5681 obj = ptr->cdr;
5682 goto loop;
5683 }
5684
5685 case Lisp_Misc_Marker:
5686 /* DO NOT mark thru the marker's chain.
5687 The buffer's markers chain does not preserve markers from gc;
5688 instead, markers are removed from the chain when freed by gc. */
5689 break;
5690
5691 case Lisp_Misc_Intfwd:
5692 case Lisp_Misc_Boolfwd:
5693 case Lisp_Misc_Objfwd:
5694 case Lisp_Misc_Buffer_Objfwd:
5695 case Lisp_Misc_Kboard_Objfwd:
5696 /* Don't bother with Lisp_Buffer_Objfwd,
5697 since all markable slots in current buffer marked anyway. */
5698 /* Don't need to do Lisp_Objfwd, since the places they point
5699 are protected with staticpro. */
5700 break;
5701
5702 case Lisp_Misc_Save_Value:
5703 #if GC_MARK_STACK
5704 {
5705 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5706 /* If DOGC is set, POINTER is the address of a memory
5707 area containing INTEGER potential Lisp_Objects. */
5708 if (ptr->dogc)
5709 {
5710 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5711 int nelt;
5712 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5713 mark_maybe_object (*p);
5714 }
5715 }
5716 #endif
5717 break;
5718
5719 case Lisp_Misc_Overlay:
5720 {
5721 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5722 mark_object (ptr->start);
5723 mark_object (ptr->end);
5724 mark_object (ptr->plist);
5725 if (ptr->next)
5726 {
5727 XSETMISC (obj, ptr->next);
5728 goto loop;
5729 }
5730 }
5731 break;
5732
5733 default:
5734 abort ();
5735 }
5736 break;
5737
5738 case Lisp_Cons:
5739 {
5740 register struct Lisp_Cons *ptr = XCONS (obj);
5741 if (CONS_MARKED_P (ptr)) break;
5742 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5743 CONS_MARK (ptr);
5744 /* If the cdr is nil, avoid recursion for the car. */
5745 if (EQ (ptr->u.cdr, Qnil))
5746 {
5747 obj = ptr->car;
5748 cdr_count = 0;
5749 goto loop;
5750 }
5751 mark_object (ptr->car);
5752 obj = ptr->u.cdr;
5753 cdr_count++;
5754 if (cdr_count == mark_object_loop_halt)
5755 abort ();
5756 goto loop;
5757 }
5758
5759 case Lisp_Float:
5760 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5761 FLOAT_MARK (XFLOAT (obj));
5762 break;
5763
5764 case Lisp_Int:
5765 break;
5766
5767 default:
5768 abort ();
5769 }
5770
5771 #undef CHECK_LIVE
5772 #undef CHECK_ALLOCATED
5773 #undef CHECK_ALLOCATED_AND_LIVE
5774 }
5775
5776 /* Mark the pointers in a buffer structure. */
5777
5778 static void
5779 mark_buffer (buf)
5780 Lisp_Object buf;
5781 {
5782 register struct buffer *buffer = XBUFFER (buf);
5783 register Lisp_Object *ptr, tmp;
5784 Lisp_Object base_buffer;
5785
5786 VECTOR_MARK (buffer);
5787
5788 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5789
5790 /* For now, we just don't mark the undo_list. It's done later in
5791 a special way just before the sweep phase, and after stripping
5792 some of its elements that are not needed any more. */
5793
5794 if (buffer->overlays_before)
5795 {
5796 XSETMISC (tmp, buffer->overlays_before);
5797 mark_object (tmp);
5798 }
5799 if (buffer->overlays_after)
5800 {
5801 XSETMISC (tmp, buffer->overlays_after);
5802 mark_object (tmp);
5803 }
5804
5805 for (ptr = &buffer->name;
5806 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5807 ptr++)
5808 mark_object (*ptr);
5809
5810 /* If this is an indirect buffer, mark its base buffer. */
5811 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5812 {
5813 XSETBUFFER (base_buffer, buffer->base_buffer);
5814 mark_buffer (base_buffer);
5815 }
5816 }
5817
5818 /* Mark the Lisp pointers in the terminal objects.
5819 Called by the Fgarbage_collector. */
5820
5821 static void
5822 mark_terminals (void)
5823 {
5824 struct terminal *t;
5825 for (t = terminal_list; t; t = t->next_terminal)
5826 {
5827 eassert (t->name != NULL);
5828 mark_vectorlike ((struct Lisp_Vector *)t);
5829 }
5830 }
5831
5832
5833
5834 /* Value is non-zero if OBJ will survive the current GC because it's
5835 either marked or does not need to be marked to survive. */
5836
5837 int
5838 survives_gc_p (obj)
5839 Lisp_Object obj;
5840 {
5841 int survives_p;
5842
5843 switch (XGCTYPE (obj))
5844 {
5845 case Lisp_Int:
5846 survives_p = 1;
5847 break;
5848
5849 case Lisp_Symbol:
5850 survives_p = XSYMBOL (obj)->gcmarkbit;
5851 break;
5852
5853 case Lisp_Misc:
5854 survives_p = XMISCANY (obj)->gcmarkbit;
5855 break;
5856
5857 case Lisp_String:
5858 survives_p = STRING_MARKED_P (XSTRING (obj));
5859 break;
5860
5861 case Lisp_Vectorlike:
5862 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5863 break;
5864
5865 case Lisp_Cons:
5866 survives_p = CONS_MARKED_P (XCONS (obj));
5867 break;
5868
5869 case Lisp_Float:
5870 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5871 break;
5872
5873 default:
5874 abort ();
5875 }
5876
5877 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5878 }
5879
5880
5881 \f
5882 /* Sweep: find all structures not marked, and free them. */
5883
5884 static void
5885 gc_sweep ()
5886 {
5887 /* Remove or mark entries in weak hash tables.
5888 This must be done before any object is unmarked. */
5889 sweep_weak_hash_tables ();
5890
5891 sweep_strings ();
5892 #ifdef GC_CHECK_STRING_BYTES
5893 if (!noninteractive)
5894 check_string_bytes (1);
5895 #endif
5896
5897 /* Put all unmarked conses on free list */
5898 {
5899 register struct cons_block *cblk;
5900 struct cons_block **cprev = &cons_block;
5901 register int lim = cons_block_index;
5902 register int num_free = 0, num_used = 0;
5903
5904 cons_free_list = 0;
5905
5906 for (cblk = cons_block; cblk; cblk = *cprev)
5907 {
5908 register int i = 0;
5909 int this_free = 0;
5910 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5911
5912 /* Scan the mark bits an int at a time. */
5913 for (i = 0; i <= ilim; i++)
5914 {
5915 if (cblk->gcmarkbits[i] == -1)
5916 {
5917 /* Fast path - all cons cells for this int are marked. */
5918 cblk->gcmarkbits[i] = 0;
5919 num_used += BITS_PER_INT;
5920 }
5921 else
5922 {
5923 /* Some cons cells for this int are not marked.
5924 Find which ones, and free them. */
5925 int start, pos, stop;
5926
5927 start = i * BITS_PER_INT;
5928 stop = lim - start;
5929 if (stop > BITS_PER_INT)
5930 stop = BITS_PER_INT;
5931 stop += start;
5932
5933 for (pos = start; pos < stop; pos++)
5934 {
5935 if (!CONS_MARKED_P (&cblk->conses[pos]))
5936 {
5937 this_free++;
5938 cblk->conses[pos].u.chain = cons_free_list;
5939 cons_free_list = &cblk->conses[pos];
5940 #if GC_MARK_STACK
5941 cons_free_list->car = Vdead;
5942 #endif
5943 }
5944 else
5945 {
5946 num_used++;
5947 CONS_UNMARK (&cblk->conses[pos]);
5948 }
5949 }
5950 }
5951 }
5952
5953 lim = CONS_BLOCK_SIZE;
5954 /* If this block contains only free conses and we have already
5955 seen more than two blocks worth of free conses then deallocate
5956 this block. */
5957 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5958 {
5959 *cprev = cblk->next;
5960 /* Unhook from the free list. */
5961 cons_free_list = cblk->conses[0].u.chain;
5962 lisp_align_free (cblk);
5963 n_cons_blocks--;
5964 }
5965 else
5966 {
5967 num_free += this_free;
5968 cprev = &cblk->next;
5969 }
5970 }
5971 total_conses = num_used;
5972 total_free_conses = num_free;
5973 }
5974
5975 /* Put all unmarked floats on free list */
5976 {
5977 register struct float_block *fblk;
5978 struct float_block **fprev = &float_block;
5979 register int lim = float_block_index;
5980 register int num_free = 0, num_used = 0;
5981
5982 float_free_list = 0;
5983
5984 for (fblk = float_block; fblk; fblk = *fprev)
5985 {
5986 register int i;
5987 int this_free = 0;
5988 for (i = 0; i < lim; i++)
5989 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5990 {
5991 this_free++;
5992 fblk->floats[i].u.chain = float_free_list;
5993 float_free_list = &fblk->floats[i];
5994 }
5995 else
5996 {
5997 num_used++;
5998 FLOAT_UNMARK (&fblk->floats[i]);
5999 }
6000 lim = FLOAT_BLOCK_SIZE;
6001 /* If this block contains only free floats and we have already
6002 seen more than two blocks worth of free floats then deallocate
6003 this block. */
6004 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6005 {
6006 *fprev = fblk->next;
6007 /* Unhook from the free list. */
6008 float_free_list = fblk->floats[0].u.chain;
6009 lisp_align_free (fblk);
6010 n_float_blocks--;
6011 }
6012 else
6013 {
6014 num_free += this_free;
6015 fprev = &fblk->next;
6016 }
6017 }
6018 total_floats = num_used;
6019 total_free_floats = num_free;
6020 }
6021
6022 /* Put all unmarked intervals on free list */
6023 {
6024 register struct interval_block *iblk;
6025 struct interval_block **iprev = &interval_block;
6026 register int lim = interval_block_index;
6027 register int num_free = 0, num_used = 0;
6028
6029 interval_free_list = 0;
6030
6031 for (iblk = interval_block; iblk; iblk = *iprev)
6032 {
6033 register int i;
6034 int this_free = 0;
6035
6036 for (i = 0; i < lim; i++)
6037 {
6038 if (!iblk->intervals[i].gcmarkbit)
6039 {
6040 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
6041 interval_free_list = &iblk->intervals[i];
6042 this_free++;
6043 }
6044 else
6045 {
6046 num_used++;
6047 iblk->intervals[i].gcmarkbit = 0;
6048 }
6049 }
6050 lim = INTERVAL_BLOCK_SIZE;
6051 /* If this block contains only free intervals and we have already
6052 seen more than two blocks worth of free intervals then
6053 deallocate this block. */
6054 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6055 {
6056 *iprev = iblk->next;
6057 /* Unhook from the free list. */
6058 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6059 lisp_free (iblk);
6060 n_interval_blocks--;
6061 }
6062 else
6063 {
6064 num_free += this_free;
6065 iprev = &iblk->next;
6066 }
6067 }
6068 total_intervals = num_used;
6069 total_free_intervals = num_free;
6070 }
6071
6072 /* Put all unmarked symbols on free list */
6073 {
6074 register struct symbol_block *sblk;
6075 struct symbol_block **sprev = &symbol_block;
6076 register int lim = symbol_block_index;
6077 register int num_free = 0, num_used = 0;
6078
6079 symbol_free_list = NULL;
6080
6081 for (sblk = symbol_block; sblk; sblk = *sprev)
6082 {
6083 int this_free = 0;
6084 struct Lisp_Symbol *sym = sblk->symbols;
6085 struct Lisp_Symbol *end = sym + lim;
6086
6087 for (; sym < end; ++sym)
6088 {
6089 /* Check if the symbol was created during loadup. In such a case
6090 it might be pointed to by pure bytecode which we don't trace,
6091 so we conservatively assume that it is live. */
6092 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
6093
6094 if (!sym->gcmarkbit && !pure_p)
6095 {
6096 sym->next = symbol_free_list;
6097 symbol_free_list = sym;
6098 #if GC_MARK_STACK
6099 symbol_free_list->function = Vdead;
6100 #endif
6101 ++this_free;
6102 }
6103 else
6104 {
6105 ++num_used;
6106 if (!pure_p)
6107 UNMARK_STRING (XSTRING (sym->xname));
6108 sym->gcmarkbit = 0;
6109 }
6110 }
6111
6112 lim = SYMBOL_BLOCK_SIZE;
6113 /* If this block contains only free symbols and we have already
6114 seen more than two blocks worth of free symbols then deallocate
6115 this block. */
6116 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6117 {
6118 *sprev = sblk->next;
6119 /* Unhook from the free list. */
6120 symbol_free_list = sblk->symbols[0].next;
6121 lisp_free (sblk);
6122 n_symbol_blocks--;
6123 }
6124 else
6125 {
6126 num_free += this_free;
6127 sprev = &sblk->next;
6128 }
6129 }
6130 total_symbols = num_used;
6131 total_free_symbols = num_free;
6132 }
6133
6134 /* Put all unmarked misc's on free list.
6135 For a marker, first unchain it from the buffer it points into. */
6136 {
6137 register struct marker_block *mblk;
6138 struct marker_block **mprev = &marker_block;
6139 register int lim = marker_block_index;
6140 register int num_free = 0, num_used = 0;
6141
6142 marker_free_list = 0;
6143
6144 for (mblk = marker_block; mblk; mblk = *mprev)
6145 {
6146 register int i;
6147 int this_free = 0;
6148
6149 for (i = 0; i < lim; i++)
6150 {
6151 if (!mblk->markers[i].u_any.gcmarkbit)
6152 {
6153 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
6154 unchain_marker (&mblk->markers[i].u_marker);
6155 /* Set the type of the freed object to Lisp_Misc_Free.
6156 We could leave the type alone, since nobody checks it,
6157 but this might catch bugs faster. */
6158 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6159 mblk->markers[i].u_free.chain = marker_free_list;
6160 marker_free_list = &mblk->markers[i];
6161 this_free++;
6162 }
6163 else
6164 {
6165 num_used++;
6166 mblk->markers[i].u_any.gcmarkbit = 0;
6167 }
6168 }
6169 lim = MARKER_BLOCK_SIZE;
6170 /* If this block contains only free markers and we have already
6171 seen more than two blocks worth of free markers then deallocate
6172 this block. */
6173 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6174 {
6175 *mprev = mblk->next;
6176 /* Unhook from the free list. */
6177 marker_free_list = mblk->markers[0].u_free.chain;
6178 lisp_free (mblk);
6179 n_marker_blocks--;
6180 }
6181 else
6182 {
6183 num_free += this_free;
6184 mprev = &mblk->next;
6185 }
6186 }
6187
6188 total_markers = num_used;
6189 total_free_markers = num_free;
6190 }
6191
6192 /* Free all unmarked buffers */
6193 {
6194 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6195
6196 while (buffer)
6197 if (!VECTOR_MARKED_P (buffer))
6198 {
6199 if (prev)
6200 prev->next = buffer->next;
6201 else
6202 all_buffers = buffer->next;
6203 next = buffer->next;
6204 lisp_free (buffer);
6205 buffer = next;
6206 }
6207 else
6208 {
6209 VECTOR_UNMARK (buffer);
6210 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6211 prev = buffer, buffer = buffer->next;
6212 }
6213 }
6214
6215 /* Free all unmarked vectors */
6216 {
6217 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6218 total_vector_size = 0;
6219
6220 while (vector)
6221 if (!VECTOR_MARKED_P (vector))
6222 {
6223 if (prev)
6224 prev->next = vector->next;
6225 else
6226 all_vectors = vector->next;
6227 next = vector->next;
6228 lisp_free (vector);
6229 n_vectors--;
6230 vector = next;
6231
6232 }
6233 else
6234 {
6235 VECTOR_UNMARK (vector);
6236 if (vector->size & PSEUDOVECTOR_FLAG)
6237 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6238 else
6239 total_vector_size += vector->size;
6240 prev = vector, vector = vector->next;
6241 }
6242 }
6243
6244 #ifdef GC_CHECK_STRING_BYTES
6245 if (!noninteractive)
6246 check_string_bytes (1);
6247 #endif
6248 }
6249
6250
6251
6252 \f
6253 /* Debugging aids. */
6254
6255 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6256 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6257 This may be helpful in debugging Emacs's memory usage.
6258 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6259 ()
6260 {
6261 Lisp_Object end;
6262
6263 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6264
6265 return end;
6266 }
6267
6268 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6269 doc: /* Return a list of counters that measure how much consing there has been.
6270 Each of these counters increments for a certain kind of object.
6271 The counters wrap around from the largest positive integer to zero.
6272 Garbage collection does not decrease them.
6273 The elements of the value are as follows:
6274 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6275 All are in units of 1 = one object consed
6276 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6277 objects consed.
6278 MISCS include overlays, markers, and some internal types.
6279 Frames, windows, buffers, and subprocesses count as vectors
6280 (but the contents of a buffer's text do not count here). */)
6281 ()
6282 {
6283 Lisp_Object consed[8];
6284
6285 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6286 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6287 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6288 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6289 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6290 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6291 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6292 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6293
6294 return Flist (8, consed);
6295 }
6296
6297 int suppress_checking;
6298
6299 void
6300 die (msg, file, line)
6301 const char *msg;
6302 const char *file;
6303 int line;
6304 {
6305 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6306 file, line, msg);
6307 abort ();
6308 }
6309 \f
6310 /* Initialization */
6311
6312 void
6313 init_alloc_once ()
6314 {
6315 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6316 purebeg = PUREBEG;
6317 pure_size = PURESIZE;
6318 pure_bytes_used = 0;
6319 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6320 pure_bytes_used_before_overflow = 0;
6321
6322 /* Initialize the list of free aligned blocks. */
6323 free_ablock = NULL;
6324
6325 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6326 mem_init ();
6327 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6328 #endif
6329
6330 all_vectors = 0;
6331 ignore_warnings = 1;
6332 #ifdef DOUG_LEA_MALLOC
6333 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6334 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6335 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6336 #endif
6337 init_strings ();
6338 init_cons ();
6339 init_symbol ();
6340 init_marker ();
6341 init_float ();
6342 init_intervals ();
6343
6344 #ifdef REL_ALLOC
6345 malloc_hysteresis = 32;
6346 #else
6347 malloc_hysteresis = 0;
6348 #endif
6349
6350 refill_memory_reserve ();
6351
6352 ignore_warnings = 0;
6353 gcprolist = 0;
6354 byte_stack_list = 0;
6355 staticidx = 0;
6356 consing_since_gc = 0;
6357 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6358 gc_relative_threshold = 0;
6359
6360 #ifdef VIRT_ADDR_VARIES
6361 malloc_sbrk_unused = 1<<22; /* A large number */
6362 malloc_sbrk_used = 100000; /* as reasonable as any number */
6363 #endif /* VIRT_ADDR_VARIES */
6364 }
6365
6366 void
6367 init_alloc ()
6368 {
6369 gcprolist = 0;
6370 byte_stack_list = 0;
6371 #if GC_MARK_STACK
6372 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6373 setjmp_tested_p = longjmps_done = 0;
6374 #endif
6375 #endif
6376 Vgc_elapsed = make_float (0.0);
6377 gcs_done = 0;
6378 }
6379
6380 void
6381 syms_of_alloc ()
6382 {
6383 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6384 doc: /* *Number of bytes of consing between garbage collections.
6385 Garbage collection can happen automatically once this many bytes have been
6386 allocated since the last garbage collection. All data types count.
6387
6388 Garbage collection happens automatically only when `eval' is called.
6389
6390 By binding this temporarily to a large number, you can effectively
6391 prevent garbage collection during a part of the program.
6392 See also `gc-cons-percentage'. */);
6393
6394 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6395 doc: /* *Portion of the heap used for allocation.
6396 Garbage collection can happen automatically once this portion of the heap
6397 has been allocated since the last garbage collection.
6398 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6399 Vgc_cons_percentage = make_float (0.1);
6400
6401 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6402 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6403
6404 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6405 doc: /* Number of cons cells that have been consed so far. */);
6406
6407 DEFVAR_INT ("floats-consed", &floats_consed,
6408 doc: /* Number of floats that have been consed so far. */);
6409
6410 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6411 doc: /* Number of vector cells that have been consed so far. */);
6412
6413 DEFVAR_INT ("symbols-consed", &symbols_consed,
6414 doc: /* Number of symbols that have been consed so far. */);
6415
6416 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6417 doc: /* Number of string characters that have been consed so far. */);
6418
6419 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6420 doc: /* Number of miscellaneous objects that have been consed so far. */);
6421
6422 DEFVAR_INT ("intervals-consed", &intervals_consed,
6423 doc: /* Number of intervals that have been consed so far. */);
6424
6425 DEFVAR_INT ("strings-consed", &strings_consed,
6426 doc: /* Number of strings that have been consed so far. */);
6427
6428 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6429 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6430 This means that certain objects should be allocated in shared (pure) space. */);
6431
6432 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6433 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6434 garbage_collection_messages = 0;
6435
6436 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6437 doc: /* Hook run after garbage collection has finished. */);
6438 Vpost_gc_hook = Qnil;
6439 Qpost_gc_hook = intern ("post-gc-hook");
6440 staticpro (&Qpost_gc_hook);
6441
6442 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6443 doc: /* Precomputed `signal' argument for memory-full error. */);
6444 /* We build this in advance because if we wait until we need it, we might
6445 not be able to allocate the memory to hold it. */
6446 Vmemory_signal_data
6447 = list2 (Qerror,
6448 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6449
6450 DEFVAR_LISP ("memory-full", &Vmemory_full,
6451 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6452 Vmemory_full = Qnil;
6453
6454 staticpro (&Qgc_cons_threshold);
6455 Qgc_cons_threshold = intern ("gc-cons-threshold");
6456
6457 staticpro (&Qchar_table_extra_slots);
6458 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6459
6460 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6461 doc: /* Accumulated time elapsed in garbage collections.
6462 The time is in seconds as a floating point value. */);
6463 DEFVAR_INT ("gcs-done", &gcs_done,
6464 doc: /* Accumulated number of garbage collections done. */);
6465
6466 defsubr (&Scons);
6467 defsubr (&Slist);
6468 defsubr (&Svector);
6469 defsubr (&Smake_byte_code);
6470 defsubr (&Smake_list);
6471 defsubr (&Smake_vector);
6472 defsubr (&Smake_char_table);
6473 defsubr (&Smake_string);
6474 defsubr (&Smake_bool_vector);
6475 defsubr (&Smake_symbol);
6476 defsubr (&Smake_marker);
6477 defsubr (&Spurecopy);
6478 defsubr (&Sgarbage_collect);
6479 defsubr (&Smemory_limit);
6480 defsubr (&Smemory_use_counts);
6481
6482 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6483 defsubr (&Sgc_status);
6484 #endif
6485 }
6486
6487 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6488 (do not change this comment) */