]> code.delx.au - gnu-emacs/blob - doc/lispref/sequences.texi
Merge from emacs-24
[gnu-emacs] / doc / lispref / sequences.texi
1 @c -*-texinfo-*-
2 @c This is part of the GNU Emacs Lisp Reference Manual.
3 @c Copyright (C) 1990-1995, 1998-1999, 2001-2014 Free Software
4 @c Foundation, Inc.
5 @c See the file elisp.texi for copying conditions.
6 @node Sequences Arrays Vectors
7 @chapter Sequences, Arrays, and Vectors
8 @cindex sequence
9
10 The @dfn{sequence} type is the union of two other Lisp types: lists
11 and arrays. In other words, any list is a sequence, and any array is
12 a sequence. The common property that all sequences have is that each
13 is an ordered collection of elements.
14
15 An @dfn{array} is a fixed-length object with a slot for each of its
16 elements. All the elements are accessible in constant time. The four
17 types of arrays are strings, vectors, char-tables and bool-vectors.
18
19 A list is a sequence of elements, but it is not a single primitive
20 object; it is made of cons cells, one cell per element. Finding the
21 @var{n}th element requires looking through @var{n} cons cells, so
22 elements farther from the beginning of the list take longer to access.
23 But it is possible to add elements to the list, or remove elements.
24
25 The following diagram shows the relationship between these types:
26
27 @example
28 @group
29 _____________________________________________
30 | |
31 | Sequence |
32 | ______ ________________________________ |
33 | | | | | |
34 | | List | | Array | |
35 | | | | ________ ________ | |
36 | |______| | | | | | | |
37 | | | Vector | | String | | |
38 | | |________| |________| | |
39 | | ____________ _____________ | |
40 | | | | | | | |
41 | | | Char-table | | Bool-vector | | |
42 | | |____________| |_____________| | |
43 | |________________________________| |
44 |_____________________________________________|
45 @end group
46 @end example
47
48 @menu
49 * Sequence Functions:: Functions that accept any kind of sequence.
50 * Arrays:: Characteristics of arrays in Emacs Lisp.
51 * Array Functions:: Functions specifically for arrays.
52 * Vectors:: Special characteristics of Emacs Lisp vectors.
53 * Vector Functions:: Functions specifically for vectors.
54 * Char-Tables:: How to work with char-tables.
55 * Bool-Vectors:: How to work with bool-vectors.
56 * Rings:: Managing a fixed-size ring of objects.
57 @end menu
58
59 @node Sequence Functions
60 @section Sequences
61
62 This section describes functions that accept any kind of sequence.
63
64 @defun sequencep object
65 This function returns @code{t} if @var{object} is a list, vector,
66 string, bool-vector, or char-table, @code{nil} otherwise.
67 @end defun
68
69 @defun length sequence
70 @cindex string length
71 @cindex list length
72 @cindex vector length
73 @cindex sequence length
74 @cindex char-table length
75 This function returns the number of elements in @var{sequence}. If
76 @var{sequence} is a dotted list, a @code{wrong-type-argument} error is
77 signaled. Circular lists may cause an infinite loop. For a
78 char-table, the value returned is always one more than the maximum
79 Emacs character code.
80
81 @xref{Definition of safe-length}, for the related function @code{safe-length}.
82
83 @example
84 @group
85 (length '(1 2 3))
86 @result{} 3
87 @end group
88 @group
89 (length ())
90 @result{} 0
91 @end group
92 @group
93 (length "foobar")
94 @result{} 6
95 @end group
96 @group
97 (length [1 2 3])
98 @result{} 3
99 @end group
100 @group
101 (length (make-bool-vector 5 nil))
102 @result{} 5
103 @end group
104 @end example
105 @end defun
106
107 @noindent
108 See also @code{string-bytes}, in @ref{Text Representations}.
109
110 If you need to compute the width of a string on display, you should use
111 @code{string-width} (@pxref{Size of Displayed Text}), not @code{length},
112 since @code{length} only counts the number of characters, but does not
113 account for the display width of each character.
114
115 @defun elt sequence index
116 @cindex elements of sequences
117 This function returns the element of @var{sequence} indexed by
118 @var{index}. Legitimate values of @var{index} are integers ranging
119 from 0 up to one less than the length of @var{sequence}. If
120 @var{sequence} is a list, out-of-range values behave as for
121 @code{nth}. @xref{Definition of nth}. Otherwise, out-of-range values
122 trigger an @code{args-out-of-range} error.
123
124 @example
125 @group
126 (elt [1 2 3 4] 2)
127 @result{} 3
128 @end group
129 @group
130 (elt '(1 2 3 4) 2)
131 @result{} 3
132 @end group
133 @group
134 ;; @r{We use @code{string} to show clearly which character @code{elt} returns.}
135 (string (elt "1234" 2))
136 @result{} "3"
137 @end group
138 @group
139 (elt [1 2 3 4] 4)
140 @error{} Args out of range: [1 2 3 4], 4
141 @end group
142 @group
143 (elt [1 2 3 4] -1)
144 @error{} Args out of range: [1 2 3 4], -1
145 @end group
146 @end example
147
148 This function generalizes @code{aref} (@pxref{Array Functions}) and
149 @code{nth} (@pxref{Definition of nth}).
150 @end defun
151
152 @defun copy-sequence sequence
153 @cindex copying sequences
154 This function returns a copy of @var{sequence}. The copy is the same
155 type of object as the original sequence, and it has the same elements
156 in the same order.
157
158 Storing a new element into the copy does not affect the original
159 @var{sequence}, and vice versa. However, the elements of the new
160 sequence are not copies; they are identical (@code{eq}) to the elements
161 of the original. Therefore, changes made within these elements, as
162 found via the copied sequence, are also visible in the original
163 sequence.
164
165 If the sequence is a string with text properties, the property list in
166 the copy is itself a copy, not shared with the original's property
167 list. However, the actual values of the properties are shared.
168 @xref{Text Properties}.
169
170 This function does not work for dotted lists. Trying to copy a
171 circular list may cause an infinite loop.
172
173 See also @code{append} in @ref{Building Lists}, @code{concat} in
174 @ref{Creating Strings}, and @code{vconcat} in @ref{Vector Functions},
175 for other ways to copy sequences.
176
177 @example
178 @group
179 (setq bar '(1 2))
180 @result{} (1 2)
181 @end group
182 @group
183 (setq x (vector 'foo bar))
184 @result{} [foo (1 2)]
185 @end group
186 @group
187 (setq y (copy-sequence x))
188 @result{} [foo (1 2)]
189 @end group
190
191 @group
192 (eq x y)
193 @result{} nil
194 @end group
195 @group
196 (equal x y)
197 @result{} t
198 @end group
199 @group
200 (eq (elt x 1) (elt y 1))
201 @result{} t
202 @end group
203
204 @group
205 ;; @r{Replacing an element of one sequence.}
206 (aset x 0 'quux)
207 x @result{} [quux (1 2)]
208 y @result{} [foo (1 2)]
209 @end group
210
211 @group
212 ;; @r{Modifying the inside of a shared element.}
213 (setcar (aref x 1) 69)
214 x @result{} [quux (69 2)]
215 y @result{} [foo (69 2)]
216 @end group
217 @end example
218 @end defun
219
220 @defun reverse seq
221 @cindex string reverse
222 @cindex list reverse
223 @cindex vector reverse
224 @cindex sequence reverse
225 This function creates a new sequence whose elements are the elements
226 of @var{seq}, but in reverse order. The original argument @var{seq}
227 is @emph{not} altered. Note that char-table cannot be reversed.
228
229 @example
230 @group
231 (setq x '(1 2 3 4))
232 @result{} (1 2 3 4)
233 @end group
234 @group
235 (reverse x)
236 @result{} (4 3 2 1)
237 x
238 @result{} (1 2 3 4)
239 @end group
240 @group
241 (setq x [1 2 3 4])
242 @result{} [1 2 3 4]
243 @end group
244 @group
245 (reverse x)
246 @result{} [4 3 2 1]
247 x
248 @result{} [1 2 3 4]
249 @end group
250 @group
251 (setq x "xyzzy")
252 @result{} "xyzzy"
253 @end group
254 @group
255 (reverse x)
256 @result{} "yzzyx"
257 x
258 @result{} "xyzzy"
259 @end group
260 @end example
261 @end defun
262
263 @defun nreverse seq
264 @cindex reversing a string
265 @cindex reversing a list
266 @cindex reversing a vector
267 This function reverses the order of the elements of @var{seq}.
268 Unlike @code{reverse} the original @var{seq} may be modified.
269
270 For example:
271
272 @example
273 @group
274 (setq x '(a b c))
275 @result{} (a b c)
276 @end group
277 @group
278 x
279 @result{} (a b c)
280 (nreverse x)
281 @result{} (c b a)
282 @end group
283 @group
284 ;; @r{The cons cell that was first is now last.}
285 x
286 @result{} (a)
287 @end group
288 @end example
289
290 To avoid confusion, we usually store the result of @code{nreverse}
291 back in the same variable which held the original list:
292
293 @example
294 (setq x (nreverse x))
295 @end example
296
297 Here is the @code{nreverse} of our favorite example, @code{(a b c)},
298 presented graphically:
299
300 @smallexample
301 @group
302 @r{Original list head:} @r{Reversed list:}
303 ------------- ------------- ------------
304 | car | cdr | | car | cdr | | car | cdr |
305 | a | nil |<-- | b | o |<-- | c | o |
306 | | | | | | | | | | | | |
307 ------------- | --------- | - | -------- | -
308 | | | |
309 ------------- ------------
310 @end group
311 @end smallexample
312
313 For the vector, it is even simpler because you don't need setq:
314
315 @example
316 (setq x [1 2 3 4])
317 @result{} [1 2 3 4]
318 (nreverse x)
319 @result{} [4 3 2 1]
320 x
321 @result{} [4 3 2 1]
322 @end example
323
324 Note that unlike @code{reverse}, this function doesn't work with strings.
325 Although you can alter string data by using @code{aset}, it is strongly
326 encouraged to treat strings as immutable.
327
328 @end defun
329
330 @defun sort sequence predicate
331 @cindex stable sort
332 @cindex sorting lists
333 @cindex sorting vectors
334 This function sorts @var{sequence} stably. Note that this function doesn't work
335 for all sequences; it may be used only for lists and vectors. If @var{sequence}
336 is a list, it is modified destructively. This functions returns the sorted
337 @var{sequence} and compares elements using @var{predicate}. A stable sort is
338 one in which elements with equal sort keys maintain their relative order before
339 and after the sort. Stability is important when successive sorts are used to
340 order elements according to different criteria.
341
342 The argument @var{predicate} must be a function that accepts two
343 arguments. It is called with two elements of @var{sequence}. To get an
344 increasing order sort, the @var{predicate} should return non-@code{nil} if the
345 first element is ``less than'' the second, or @code{nil} if not.
346
347 The comparison function @var{predicate} must give reliable results for
348 any given pair of arguments, at least within a single call to
349 @code{sort}. It must be @dfn{antisymmetric}; that is, if @var{a} is
350 less than @var{b}, @var{b} must not be less than @var{a}. It must be
351 @dfn{transitive}---that is, if @var{a} is less than @var{b}, and @var{b}
352 is less than @var{c}, then @var{a} must be less than @var{c}. If you
353 use a comparison function which does not meet these requirements, the
354 result of @code{sort} is unpredictable.
355
356 The destructive aspect of @code{sort} for lists is that it rearranges the
357 cons cells forming @var{sequence} by changing @sc{cdr}s. A nondestructive
358 sort function would create new cons cells to store the elements in their
359 sorted order. If you wish to make a sorted copy without destroying the
360 original, copy it first with @code{copy-sequence} and then sort.
361
362 Sorting does not change the @sc{car}s of the cons cells in @var{sequence};
363 the cons cell that originally contained the element @code{a} in
364 @var{sequence} still has @code{a} in its @sc{car} after sorting, but it now
365 appears in a different position in the list due to the change of
366 @sc{cdr}s. For example:
367
368 @example
369 @group
370 (setq nums '(1 3 2 6 5 4 0))
371 @result{} (1 3 2 6 5 4 0)
372 @end group
373 @group
374 (sort nums '<)
375 @result{} (0 1 2 3 4 5 6)
376 @end group
377 @group
378 nums
379 @result{} (1 2 3 4 5 6)
380 @end group
381 @end example
382
383 @noindent
384 @strong{Warning}: Note that the list in @code{nums} no longer contains
385 0; this is the same cons cell that it was before, but it is no longer
386 the first one in the list. Don't assume a variable that formerly held
387 the argument now holds the entire sorted list! Instead, save the result
388 of @code{sort} and use that. Most often we store the result back into
389 the variable that held the original list:
390
391 @example
392 (setq nums (sort nums '<))
393 @end example
394
395 For the better understanding of what stable sort is, consider the following
396 vector example. After sorting, all items whose @code{car} is 8 are grouped
397 at the beginning of @code{vector}, but their relative order is preserved.
398 All items whose @code{car} is 9 are grouped at the end of @code{vector},
399 but their relative order is also preserved:
400
401 @example
402 @group
403 (setq
404 vector
405 (vector '(8 . "xxx") '(9 . "aaa") '(8 . "bbb") '(9 . "zzz")
406 '(9 . "ppp") '(8 . "ttt") '(8 . "eee") '(9 . "fff")))
407 @result{} [(8 . "xxx") (9 . "aaa") (8 . "bbb") (9 . "zzz")
408 (9 . "ppp") (8 . "ttt") (8 . "eee") (9 . "fff")]
409 @end group
410 @group
411 (sort vector (lambda (x y) (< (car x) (car y))))
412 @result{} [(8 . "xxx") (8 . "bbb") (8 . "ttt") (8 . "eee")
413 (9 . "aaa") (9 . "zzz") (9 . "ppp") (9 . "fff")]
414 @end group
415 @end example
416
417 @xref{Sorting}, for more functions that perform sorting.
418 See @code{documentation} in @ref{Accessing Documentation}, for a
419 useful example of @code{sort}.
420 @end defun
421
422 @node Arrays
423 @section Arrays
424 @cindex array
425
426 An @dfn{array} object has slots that hold a number of other Lisp
427 objects, called the elements of the array. Any element of an array
428 may be accessed in constant time. In contrast, the time to access an
429 element of a list is proportional to the position of that element in
430 the list.
431
432 Emacs defines four types of array, all one-dimensional:
433 @dfn{strings} (@pxref{String Type}), @dfn{vectors} (@pxref{Vector
434 Type}), @dfn{bool-vectors} (@pxref{Bool-Vector Type}), and
435 @dfn{char-tables} (@pxref{Char-Table Type}). Vectors and char-tables
436 can hold elements of any type, but strings can only hold characters,
437 and bool-vectors can only hold @code{t} and @code{nil}.
438
439 All four kinds of array share these characteristics:
440
441 @itemize @bullet
442 @item
443 The first element of an array has index zero, the second element has
444 index 1, and so on. This is called @dfn{zero-origin} indexing. For
445 example, an array of four elements has indices 0, 1, 2, @w{and 3}.
446
447 @item
448 The length of the array is fixed once you create it; you cannot
449 change the length of an existing array.
450
451 @item
452 For purposes of evaluation, the array is a constant---i.e.,
453 it evaluates to itself.
454
455 @item
456 The elements of an array may be referenced or changed with the functions
457 @code{aref} and @code{aset}, respectively (@pxref{Array Functions}).
458 @end itemize
459
460 When you create an array, other than a char-table, you must specify
461 its length. You cannot specify the length of a char-table, because that
462 is determined by the range of character codes.
463
464 In principle, if you want an array of text characters, you could use
465 either a string or a vector. In practice, we always choose strings for
466 such applications, for four reasons:
467
468 @itemize @bullet
469 @item
470 They occupy one-fourth the space of a vector of the same elements.
471
472 @item
473 Strings are printed in a way that shows the contents more clearly
474 as text.
475
476 @item
477 Strings can hold text properties. @xref{Text Properties}.
478
479 @item
480 Many of the specialized editing and I/O facilities of Emacs accept only
481 strings. For example, you cannot insert a vector of characters into a
482 buffer the way you can insert a string. @xref{Strings and Characters}.
483 @end itemize
484
485 By contrast, for an array of keyboard input characters (such as a key
486 sequence), a vector may be necessary, because many keyboard input
487 characters are outside the range that will fit in a string. @xref{Key
488 Sequence Input}.
489
490 @node Array Functions
491 @section Functions that Operate on Arrays
492
493 In this section, we describe the functions that accept all types of
494 arrays.
495
496 @defun arrayp object
497 This function returns @code{t} if @var{object} is an array (i.e., a
498 vector, a string, a bool-vector or a char-table).
499
500 @example
501 @group
502 (arrayp [a])
503 @result{} t
504 (arrayp "asdf")
505 @result{} t
506 (arrayp (syntax-table)) ;; @r{A char-table.}
507 @result{} t
508 @end group
509 @end example
510 @end defun
511
512 @defun aref array index
513 @cindex array elements
514 This function returns the @var{index}th element of @var{array}. The
515 first element is at index zero.
516
517 @example
518 @group
519 (setq primes [2 3 5 7 11 13])
520 @result{} [2 3 5 7 11 13]
521 (aref primes 4)
522 @result{} 11
523 @end group
524 @group
525 (aref "abcdefg" 1)
526 @result{} 98 ; @r{@samp{b} is @acronym{ASCII} code 98.}
527 @end group
528 @end example
529
530 See also the function @code{elt}, in @ref{Sequence Functions}.
531 @end defun
532
533 @defun aset array index object
534 This function sets the @var{index}th element of @var{array} to be
535 @var{object}. It returns @var{object}.
536
537 @example
538 @group
539 (setq w [foo bar baz])
540 @result{} [foo bar baz]
541 (aset w 0 'fu)
542 @result{} fu
543 w
544 @result{} [fu bar baz]
545 @end group
546
547 @group
548 (setq x "asdfasfd")
549 @result{} "asdfasfd"
550 (aset x 3 ?Z)
551 @result{} 90
552 x
553 @result{} "asdZasfd"
554 @end group
555 @end example
556
557 If @var{array} is a string and @var{object} is not a character, a
558 @code{wrong-type-argument} error results. The function converts a
559 unibyte string to multibyte if necessary to insert a character.
560 @end defun
561
562 @defun fillarray array object
563 This function fills the array @var{array} with @var{object}, so that
564 each element of @var{array} is @var{object}. It returns @var{array}.
565
566 @example
567 @group
568 (setq a [a b c d e f g])
569 @result{} [a b c d e f g]
570 (fillarray a 0)
571 @result{} [0 0 0 0 0 0 0]
572 a
573 @result{} [0 0 0 0 0 0 0]
574 @end group
575 @group
576 (setq s "When in the course")
577 @result{} "When in the course"
578 (fillarray s ?-)
579 @result{} "------------------"
580 @end group
581 @end example
582
583 If @var{array} is a string and @var{object} is not a character, a
584 @code{wrong-type-argument} error results.
585 @end defun
586
587 The general sequence functions @code{copy-sequence} and @code{length}
588 are often useful for objects known to be arrays. @xref{Sequence Functions}.
589
590 @node Vectors
591 @section Vectors
592 @cindex vector (type)
593
594 A @dfn{vector} is a general-purpose array whose elements can be any
595 Lisp objects. (By contrast, the elements of a string can only be
596 characters. @xref{Strings and Characters}.) Vectors are used in
597 Emacs for many purposes: as key sequences (@pxref{Key Sequences}), as
598 symbol-lookup tables (@pxref{Creating Symbols}), as part of the
599 representation of a byte-compiled function (@pxref{Byte Compilation}),
600 and more.
601
602 Like other arrays, vectors use zero-origin indexing: the first
603 element has index 0.
604
605 Vectors are printed with square brackets surrounding the elements.
606 Thus, a vector whose elements are the symbols @code{a}, @code{b} and
607 @code{a} is printed as @code{[a b a]}. You can write vectors in the
608 same way in Lisp input.
609
610 A vector, like a string or a number, is considered a constant for
611 evaluation: the result of evaluating it is the same vector. This does
612 not evaluate or even examine the elements of the vector.
613 @xref{Self-Evaluating Forms}.
614
615 Here are examples illustrating these principles:
616
617 @example
618 @group
619 (setq avector [1 two '(three) "four" [five]])
620 @result{} [1 two (quote (three)) "four" [five]]
621 (eval avector)
622 @result{} [1 two (quote (three)) "four" [five]]
623 (eq avector (eval avector))
624 @result{} t
625 @end group
626 @end example
627
628 @node Vector Functions
629 @section Functions for Vectors
630
631 Here are some functions that relate to vectors:
632
633 @defun vectorp object
634 This function returns @code{t} if @var{object} is a vector.
635
636 @example
637 @group
638 (vectorp [a])
639 @result{} t
640 (vectorp "asdf")
641 @result{} nil
642 @end group
643 @end example
644 @end defun
645
646 @defun vector &rest objects
647 This function creates and returns a vector whose elements are the
648 arguments, @var{objects}.
649
650 @example
651 @group
652 (vector 'foo 23 [bar baz] "rats")
653 @result{} [foo 23 [bar baz] "rats"]
654 (vector)
655 @result{} []
656 @end group
657 @end example
658 @end defun
659
660 @defun make-vector length object
661 This function returns a new vector consisting of @var{length} elements,
662 each initialized to @var{object}.
663
664 @example
665 @group
666 (setq sleepy (make-vector 9 'Z))
667 @result{} [Z Z Z Z Z Z Z Z Z]
668 @end group
669 @end example
670 @end defun
671
672 @defun vconcat &rest sequences
673 @cindex copying vectors
674 This function returns a new vector containing all the elements of
675 @var{sequences}. The arguments @var{sequences} may be true lists,
676 vectors, strings or bool-vectors. If no @var{sequences} are given,
677 the empty vector is returned.
678
679 The value is either the empty vector, or is a newly constructed
680 nonempty vector that is not @code{eq} to any existing vector.
681
682 @example
683 @group
684 (setq a (vconcat '(A B C) '(D E F)))
685 @result{} [A B C D E F]
686 (eq a (vconcat a))
687 @result{} nil
688 @end group
689 @group
690 (vconcat)
691 @result{} []
692 (vconcat [A B C] "aa" '(foo (6 7)))
693 @result{} [A B C 97 97 foo (6 7)]
694 @end group
695 @end example
696
697 The @code{vconcat} function also allows byte-code function objects as
698 arguments. This is a special feature to make it easy to access the entire
699 contents of a byte-code function object. @xref{Byte-Code Objects}.
700
701 For other concatenation functions, see @code{mapconcat} in @ref{Mapping
702 Functions}, @code{concat} in @ref{Creating Strings}, and @code{append}
703 in @ref{Building Lists}.
704 @end defun
705
706 The @code{append} function also provides a way to convert a vector into a
707 list with the same elements:
708
709 @example
710 @group
711 (setq avector [1 two (quote (three)) "four" [five]])
712 @result{} [1 two (quote (three)) "four" [five]]
713 (append avector nil)
714 @result{} (1 two (quote (three)) "four" [five])
715 @end group
716 @end example
717
718 @node Char-Tables
719 @section Char-Tables
720 @cindex char-tables
721 @cindex extra slots of char-table
722
723 A char-table is much like a vector, except that it is indexed by
724 character codes. Any valid character code, without modifiers, can be
725 used as an index in a char-table. You can access a char-table's
726 elements with @code{aref} and @code{aset}, as with any array. In
727 addition, a char-table can have @dfn{extra slots} to hold additional
728 data not associated with particular character codes. Like vectors,
729 char-tables are constants when evaluated, and can hold elements of any
730 type.
731
732 @cindex subtype of char-table
733 Each char-table has a @dfn{subtype}, a symbol, which serves two
734 purposes:
735
736 @itemize @bullet
737 @item
738 The subtype provides an easy way to tell what the char-table is for.
739 For instance, display tables are char-tables with @code{display-table}
740 as the subtype, and syntax tables are char-tables with
741 @code{syntax-table} as the subtype. The subtype can be queried using
742 the function @code{char-table-subtype}, described below.
743
744 @item
745 The subtype controls the number of @dfn{extra slots} in the
746 char-table. This number is specified by the subtype's
747 @code{char-table-extra-slots} symbol property (@pxref{Symbol
748 Properties}), whose value should be an integer between 0 and 10. If
749 the subtype has no such symbol property, the char-table has no extra
750 slots.
751 @end itemize
752
753 @cindex parent of char-table
754 A char-table can have a @dfn{parent}, which is another char-table. If
755 it does, then whenever the char-table specifies @code{nil} for a
756 particular character @var{c}, it inherits the value specified in the
757 parent. In other words, @code{(aref @var{char-table} @var{c})} returns
758 the value from the parent of @var{char-table} if @var{char-table} itself
759 specifies @code{nil}.
760
761 @cindex default value of char-table
762 A char-table can also have a @dfn{default value}. If so, then
763 @code{(aref @var{char-table} @var{c})} returns the default value
764 whenever the char-table does not specify any other non-@code{nil} value.
765
766 @defun make-char-table subtype &optional init
767 Return a newly-created char-table, with subtype @var{subtype} (a
768 symbol). Each element is initialized to @var{init}, which defaults to
769 @code{nil}. You cannot alter the subtype of a char-table after the
770 char-table is created.
771
772 There is no argument to specify the length of the char-table, because
773 all char-tables have room for any valid character code as an index.
774
775 If @var{subtype} has the @code{char-table-extra-slots} symbol
776 property, that specifies the number of extra slots in the char-table.
777 This should be an integer between 0 and 10; otherwise,
778 @code{make-char-table} raises an error. If @var{subtype} has no
779 @code{char-table-extra-slots} symbol property (@pxref{Property
780 Lists}), the char-table has no extra slots.
781 @end defun
782
783 @defun char-table-p object
784 This function returns @code{t} if @var{object} is a char-table, and
785 @code{nil} otherwise.
786 @end defun
787
788 @defun char-table-subtype char-table
789 This function returns the subtype symbol of @var{char-table}.
790 @end defun
791
792 There is no special function to access default values in a char-table.
793 To do that, use @code{char-table-range} (see below).
794
795 @defun char-table-parent char-table
796 This function returns the parent of @var{char-table}. The parent is
797 always either @code{nil} or another char-table.
798 @end defun
799
800 @defun set-char-table-parent char-table new-parent
801 This function sets the parent of @var{char-table} to @var{new-parent}.
802 @end defun
803
804 @defun char-table-extra-slot char-table n
805 This function returns the contents of extra slot @var{n} of
806 @var{char-table}. The number of extra slots in a char-table is
807 determined by its subtype.
808 @end defun
809
810 @defun set-char-table-extra-slot char-table n value
811 This function stores @var{value} in extra slot @var{n} of
812 @var{char-table}.
813 @end defun
814
815 A char-table can specify an element value for a single character code;
816 it can also specify a value for an entire character set.
817
818 @defun char-table-range char-table range
819 This returns the value specified in @var{char-table} for a range of
820 characters @var{range}. Here are the possibilities for @var{range}:
821
822 @table @asis
823 @item @code{nil}
824 Refers to the default value.
825
826 @item @var{char}
827 Refers to the element for character @var{char}
828 (supposing @var{char} is a valid character code).
829
830 @item @code{(@var{from} . @var{to})}
831 A cons cell refers to all the characters in the inclusive range
832 @samp{[@var{from}..@var{to}]}.
833 @end table
834 @end defun
835
836 @defun set-char-table-range char-table range value
837 This function sets the value in @var{char-table} for a range of
838 characters @var{range}. Here are the possibilities for @var{range}:
839
840 @table @asis
841 @item @code{nil}
842 Refers to the default value.
843
844 @item @code{t}
845 Refers to the whole range of character codes.
846
847 @item @var{char}
848 Refers to the element for character @var{char}
849 (supposing @var{char} is a valid character code).
850
851 @item @code{(@var{from} . @var{to})}
852 A cons cell refers to all the characters in the inclusive range
853 @samp{[@var{from}..@var{to}]}.
854 @end table
855 @end defun
856
857 @defun map-char-table function char-table
858 This function calls its argument @var{function} for each element of
859 @var{char-table} that has a non-@code{nil} value. The call to
860 @var{function} is with two arguments, a key and a value. The key
861 is a possible @var{range} argument for @code{char-table-range}---either
862 a valid character or a cons cell @code{(@var{from} . @var{to})},
863 specifying a range of characters that share the same value. The value is
864 what @code{(char-table-range @var{char-table} @var{key})} returns.
865
866 Overall, the key-value pairs passed to @var{function} describe all the
867 values stored in @var{char-table}.
868
869 The return value is always @code{nil}; to make calls to
870 @code{map-char-table} useful, @var{function} should have side effects.
871 For example, here is how to examine the elements of the syntax table:
872
873 @example
874 (let (accumulator)
875 (map-char-table
876 #'(lambda (key value)
877 (setq accumulator
878 (cons (list
879 (if (consp key)
880 (list (car key) (cdr key))
881 key)
882 value)
883 accumulator)))
884 (syntax-table))
885 accumulator)
886 @result{}
887 (((2597602 4194303) (2)) ((2597523 2597601) (3))
888 ... (65379 (5 . 65378)) (65378 (4 . 65379)) (65377 (1))
889 ... (12 (0)) (11 (3)) (10 (12)) (9 (0)) ((0 8) (3)))
890 @end example
891 @end defun
892
893 @node Bool-Vectors
894 @section Bool-vectors
895 @cindex Bool-vectors
896
897 A bool-vector is much like a vector, except that it stores only the
898 values @code{t} and @code{nil}. If you try to store any non-@code{nil}
899 value into an element of the bool-vector, the effect is to store
900 @code{t} there. As with all arrays, bool-vector indices start from 0,
901 and the length cannot be changed once the bool-vector is created.
902 Bool-vectors are constants when evaluated.
903
904 Several functions work specifically with bool-vectors; aside
905 from that, you manipulate them with same functions used for other kinds
906 of arrays.
907
908 @defun make-bool-vector length initial
909 Return a new bool-vector of @var{length} elements,
910 each one initialized to @var{initial}.
911 @end defun
912
913 @defun bool-vector &rest objects
914 This function creates and returns a bool-vector whose elements are the
915 arguments, @var{objects}.
916 @end defun
917
918 @defun bool-vector-p object
919 This returns @code{t} if @var{object} is a bool-vector,
920 and @code{nil} otherwise.
921 @end defun
922
923 There are also some bool-vector set operation functions, described below:
924
925 @defun bool-vector-exclusive-or a b &optional c
926 Return @dfn{bitwise exclusive or} of bool vectors @var{a} and @var{b}.
927 If optional argument @var{c} is given, the result of this operation is
928 stored into @var{c}. All arguments should be bool vectors of the same length.
929 @end defun
930
931 @defun bool-vector-union a b &optional c
932 Return @dfn{bitwise or} of bool vectors @var{a} and @var{b}. If
933 optional argument @var{c} is given, the result of this operation is
934 stored into @var{c}. All arguments should be bool vectors of the same length.
935 @end defun
936
937 @defun bool-vector-intersection a b &optional c
938 Return @dfn{bitwise and} of bool vectors @var{a} and @var{b}. If
939 optional argument @var{c} is given, the result of this operation is
940 stored into @var{c}. All arguments should be bool vectors of the same length.
941 @end defun
942
943 @defun bool-vector-set-difference a b &optional c
944 Return @dfn{set difference} of bool vectors @var{a} and @var{b}. If
945 optional argument @var{c} is given, the result of this operation is
946 stored into @var{c}. All arguments should be bool vectors of the same length.
947 @end defun
948
949 @defun bool-vector-not a &optional b
950 Return @dfn{set complement} of bool vector @var{a}. If optional
951 argument @var{b} is given, the result of this operation is stored into
952 @var{b}. All arguments should be bool vectors of the same length.
953 @end defun
954
955 @defun bool-vector-subsetp a b
956 Return @code{t} if every @code{t} value in @var{a} is also t in
957 @var{b}, @code{nil} otherwise. All arguments should be bool vectors of the
958 same length.
959 @end defun
960
961 @defun bool-vector-count-consecutive a b i
962 Return the number of consecutive elements in @var{a} equal @var{b}
963 starting at @var{i}. @code{a} is a bool vector, @var{b} is @code{t}
964 or @code{nil}, and @var{i} is an index into @code{a}.
965 @end defun
966
967 @defun bool-vector-count-population a
968 Return the number of elements that are @code{t} in bool vector @var{a}.
969 @end defun
970
971 The printed form represents up to 8 boolean values as a single
972 character:
973
974 @example
975 @group
976 (bool-vector t nil t nil)
977 @result{} #&4"^E"
978 (bool-vector)
979 @result{} #&0""
980 @end group
981 @end example
982
983 You can use @code{vconcat} to print a bool-vector like other vectors:
984
985 @example
986 @group
987 (vconcat (bool-vector nil t nil t))
988 @result{} [nil t nil t]
989 @end group
990 @end example
991
992 Here is another example of creating, examining, and updating a
993 bool-vector:
994
995 @example
996 (setq bv (make-bool-vector 5 t))
997 @result{} #&5"^_"
998 (aref bv 1)
999 @result{} t
1000 (aset bv 3 nil)
1001 @result{} nil
1002 bv
1003 @result{} #&5"^W"
1004 @end example
1005
1006 @noindent
1007 These results make sense because the binary codes for control-_ and
1008 control-W are 11111 and 10111, respectively.
1009
1010 @node Rings
1011 @section Managing a Fixed-Size Ring of Objects
1012
1013 @cindex ring data structure
1014 A @dfn{ring} is a fixed-size data structure that supports insertion,
1015 deletion, rotation, and modulo-indexed reference and traversal. An
1016 efficient ring data structure is implemented by the @code{ring}
1017 package. It provides the functions listed in this section.
1018
1019 Note that several ``rings'' in Emacs, like the kill ring and the
1020 mark ring, are actually implemented as simple lists, @emph{not} using
1021 the @code{ring} package; thus the following functions won't work on
1022 them.
1023
1024 @defun make-ring size
1025 This returns a new ring capable of holding @var{size} objects.
1026 @var{size} should be an integer.
1027 @end defun
1028
1029 @defun ring-p object
1030 This returns @code{t} if @var{object} is a ring, @code{nil} otherwise.
1031 @end defun
1032
1033 @defun ring-size ring
1034 This returns the maximum capacity of the @var{ring}.
1035 @end defun
1036
1037 @defun ring-length ring
1038 This returns the number of objects that @var{ring} currently contains.
1039 The value will never exceed that returned by @code{ring-size}.
1040 @end defun
1041
1042 @defun ring-elements ring
1043 This returns a list of the objects in @var{ring}, in order, newest first.
1044 @end defun
1045
1046 @defun ring-copy ring
1047 This returns a new ring which is a copy of @var{ring}.
1048 The new ring contains the same (@code{eq}) objects as @var{ring}.
1049 @end defun
1050
1051 @defun ring-empty-p ring
1052 This returns @code{t} if @var{ring} is empty, @code{nil} otherwise.
1053 @end defun
1054
1055 The newest element in the ring always has index 0. Higher indices
1056 correspond to older elements. Indices are computed modulo the ring
1057 length. Index @minus{}1 corresponds to the oldest element, @minus{}2
1058 to the next-oldest, and so forth.
1059
1060 @defun ring-ref ring index
1061 This returns the object in @var{ring} found at index @var{index}.
1062 @var{index} may be negative or greater than the ring length. If
1063 @var{ring} is empty, @code{ring-ref} signals an error.
1064 @end defun
1065
1066 @defun ring-insert ring object
1067 This inserts @var{object} into @var{ring}, making it the newest
1068 element, and returns @var{object}.
1069
1070 If the ring is full, insertion removes the oldest element to
1071 make room for the new element.
1072 @end defun
1073
1074 @defun ring-remove ring &optional index
1075 Remove an object from @var{ring}, and return that object. The
1076 argument @var{index} specifies which item to remove; if it is
1077 @code{nil}, that means to remove the oldest item. If @var{ring} is
1078 empty, @code{ring-remove} signals an error.
1079 @end defun
1080
1081 @defun ring-insert-at-beginning ring object
1082 This inserts @var{object} into @var{ring}, treating it as the oldest
1083 element. The return value is not significant.
1084
1085 If the ring is full, this function removes the newest element to make
1086 room for the inserted element.
1087 @end defun
1088
1089 @cindex fifo data structure
1090 If you are careful not to exceed the ring size, you can
1091 use the ring as a first-in-first-out queue. For example:
1092
1093 @lisp
1094 (let ((fifo (make-ring 5)))
1095 (mapc (lambda (obj) (ring-insert fifo obj))
1096 '(0 one "two"))
1097 (list (ring-remove fifo) t
1098 (ring-remove fifo) t
1099 (ring-remove fifo)))
1100 @result{} (0 t one t "two")
1101 @end lisp