]> code.delx.au - gnu-emacs/blob - src/intervals.c
* xdisp.c (display_menu_bar): Redisplay all lines occupied by the
[gnu-emacs] / src / intervals.c
1 /* Code for doing intervals.
2 Copyright (C) 1993 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* NOTES:
22
23 Have to ensure that we can't put symbol nil on a plist, or some
24 functions may work incorrectly.
25
26 An idea: Have the owner of the tree keep count of splits and/or
27 insertion lengths (in intervals), and balance after every N.
28
29 Need to call *_left_hook when buffer is killed.
30
31 Scan for zero-length, or 0-length to see notes about handling
32 zero length interval-markers.
33
34 There are comments around about freeing intervals. It might be
35 faster to explicitly free them (put them on the free list) than
36 to GC them.
37
38 */
39
40
41 #include "config.h"
42 #include "lisp.h"
43 #include "intervals.h"
44 #include "buffer.h"
45
46 /* The rest of the file is within this conditional. */
47 #ifdef USE_TEXT_PROPERTIES
48
49 /* Factor for weight-balancing interval trees. */
50 Lisp_Object interval_balance_threshold;
51 \f
52 /* Utility functions for intervals. */
53
54
55 /* Create the root interval of some object, a buffer or string. */
56
57 INTERVAL
58 create_root_interval (parent)
59 Lisp_Object parent;
60 {
61 INTERVAL new = make_interval ();
62
63 if (XTYPE (parent) == Lisp_Buffer)
64 {
65 new->total_length = (BUF_Z (XBUFFER (parent))
66 - BUF_BEG (XBUFFER (parent)));
67 XBUFFER (parent)->intervals = new;
68 }
69 else if (XTYPE (parent) == Lisp_String)
70 {
71 new->total_length = XSTRING (parent)->size;
72 XSTRING (parent)->intervals = new;
73 }
74
75 new->parent = (INTERVAL) parent;
76 new->position = 1;
77
78 return new;
79 }
80
81 /* Make the interval TARGET have exactly the properties of SOURCE */
82
83 void
84 copy_properties (source, target)
85 register INTERVAL source, target;
86 {
87 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
88 return;
89
90 COPY_INTERVAL_CACHE (source, target);
91 target->plist = Fcopy_sequence (source->plist);
92 }
93
94 /* Merge the properties of interval SOURCE into the properties
95 of interval TARGET. That is to say, each property in SOURCE
96 is added to TARGET if TARGET has no such property as yet. */
97
98 static void
99 merge_properties (source, target)
100 register INTERVAL source, target;
101 {
102 register Lisp_Object o, sym, val;
103
104 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
105 return;
106
107 MERGE_INTERVAL_CACHE (source, target);
108
109 o = source->plist;
110 while (! EQ (o, Qnil))
111 {
112 sym = Fcar (o);
113 val = Fmemq (sym, target->plist);
114
115 if (NILP (val))
116 {
117 o = Fcdr (o);
118 val = Fcar (o);
119 target->plist = Fcons (sym, Fcons (val, target->plist));
120 o = Fcdr (o);
121 }
122 else
123 o = Fcdr (Fcdr (o));
124 }
125 }
126
127 /* Return 1 if the two intervals have the same properties,
128 0 otherwise. */
129
130 int
131 intervals_equal (i0, i1)
132 INTERVAL i0, i1;
133 {
134 register Lisp_Object i0_cdr, i0_sym, i1_val;
135 register i1_len;
136
137 if (DEFAULT_INTERVAL_P (i0) && DEFAULT_INTERVAL_P (i1))
138 return 1;
139
140 if (DEFAULT_INTERVAL_P (i0) || DEFAULT_INTERVAL_P (i1))
141 return 0;
142
143 i1_len = XFASTINT (Flength (i1->plist));
144 if (i1_len & 0x1) /* Paranoia -- plists are always even */
145 abort ();
146 i1_len /= 2;
147 i0_cdr = i0->plist;
148 while (!NILP (i0_cdr))
149 {
150 /* Lengths of the two plists were unequal. */
151 if (i1_len == 0)
152 return 0;
153
154 i0_sym = Fcar (i0_cdr);
155 i1_val = Fmemq (i0_sym, i1->plist);
156
157 /* i0 has something i1 doesn't. */
158 if (EQ (i1_val, Qnil))
159 return 0;
160
161 /* i0 and i1 both have sym, but it has different values in each. */
162 i0_cdr = Fcdr (i0_cdr);
163 if (! EQ (Fcar (Fcdr (i1_val)), Fcar (i0_cdr)))
164 return 0;
165
166 i0_cdr = Fcdr (i0_cdr);
167 i1_len--;
168 }
169
170 /* Lengths of the two plists were unequal. */
171 if (i1_len > 0)
172 return 0;
173
174 return 1;
175 }
176 \f
177 static int icount;
178 static int idepth;
179 static int zero_length;
180
181 /* Traverse an interval tree TREE, performing FUNCTION on each node.
182 Pass FUNCTION two args: an interval, and ARG. */
183
184 void
185 traverse_intervals (tree, position, depth, function, arg)
186 INTERVAL tree;
187 int position, depth;
188 void (* function) ();
189 Lisp_Object arg;
190 {
191 if (NULL_INTERVAL_P (tree))
192 return;
193
194 traverse_intervals (tree->left, position, depth + 1, function, arg);
195 position += LEFT_TOTAL_LENGTH (tree);
196 tree->position = position;
197 (*function) (tree, arg);
198 position += LENGTH (tree);
199 traverse_intervals (tree->right, position, depth + 1, function, arg);
200 }
201 \f
202 #if 0
203 /* These functions are temporary, for debugging purposes only. */
204
205 INTERVAL search_interval, found_interval;
206
207 void
208 check_for_interval (i)
209 register INTERVAL i;
210 {
211 if (i == search_interval)
212 {
213 found_interval = i;
214 icount++;
215 }
216 }
217
218 INTERVAL
219 search_for_interval (i, tree)
220 register INTERVAL i, tree;
221 {
222 icount = 0;
223 search_interval = i;
224 found_interval = NULL_INTERVAL;
225 traverse_intervals (tree, 1, 0, &check_for_interval, Qnil);
226 return found_interval;
227 }
228
229 static void
230 inc_interval_count (i)
231 INTERVAL i;
232 {
233 icount++;
234 if (LENGTH (i) == 0)
235 zero_length++;
236 if (depth > idepth)
237 idepth = depth;
238 }
239
240 int
241 count_intervals (i)
242 register INTERVAL i;
243 {
244 icount = 0;
245 idepth = 0;
246 zero_length = 0;
247 traverse_intervals (i, 1, 0, &inc_interval_count, Qnil);
248
249 return icount;
250 }
251
252 static INTERVAL
253 root_interval (interval)
254 INTERVAL interval;
255 {
256 register INTERVAL i = interval;
257
258 while (! ROOT_INTERVAL_P (i))
259 i = i->parent;
260
261 return i;
262 }
263 #endif
264 \f
265 /* Assuming that a left child exists, perform the following operation:
266
267 A B
268 / \ / \
269 B => A
270 / \ / \
271 c c
272 */
273
274 static INTERVAL
275 rotate_right (interval)
276 INTERVAL interval;
277 {
278 INTERVAL i;
279 INTERVAL B = interval->left;
280 int len = LENGTH (interval);
281
282 /* Deal with any Parent of A; make it point to B. */
283 if (! ROOT_INTERVAL_P (interval))
284 if (AM_LEFT_CHILD (interval))
285 interval->parent->left = interval->left;
286 else
287 interval->parent->right = interval->left;
288 interval->left->parent = interval->parent;
289
290 /* B gets the same length as A, since it get A's position in the tree. */
291 interval->left->total_length = interval->total_length;
292
293 /* B becomes the parent of A. */
294 i = interval->left->right;
295 interval->left->right = interval;
296 interval->parent = interval->left;
297
298 /* A gets c as left child. */
299 interval->left = i;
300 if (! NULL_INTERVAL_P (i))
301 i->parent = interval;
302 interval->total_length = (len + LEFT_TOTAL_LENGTH (interval)
303 + RIGHT_TOTAL_LENGTH (interval));
304
305 return B;
306 }
307 \f
308 /* Assuming that a right child exists, perform the following operation:
309
310 A B
311 / \ / \
312 B => A
313 / \ / \
314 c c
315 */
316
317 static INTERVAL
318 rotate_left (interval)
319 INTERVAL interval;
320 {
321 INTERVAL i;
322 INTERVAL B = interval->right;
323 int len = LENGTH (interval);
324
325 /* Deal with the parent of A. */
326 if (! ROOT_INTERVAL_P (interval))
327 if (AM_LEFT_CHILD (interval))
328 interval->parent->left = interval->right;
329 else
330 interval->parent->right = interval->right;
331 interval->right->parent = interval->parent;
332
333 /* B must have the same total length of A. */
334 interval->right->total_length = interval->total_length;
335
336 /* Make B the parent of A */
337 i = interval->right->left;
338 interval->right->left = interval;
339 interval->parent = interval->right;
340
341 /* Make A point to c */
342 interval->right = i;
343 if (! NULL_INTERVAL_P (i))
344 i->parent = interval;
345 interval->total_length = (len + LEFT_TOTAL_LENGTH (interval)
346 + RIGHT_TOTAL_LENGTH (interval));
347
348 return B;
349 }
350 \f
351 /* Split INTERVAL into two pieces, starting the second piece at
352 character position OFFSET (counting from 0), relative to INTERVAL.
353 INTERVAL becomes the left-hand piece, and the right-hand piece
354 (second, lexicographically) is returned.
355
356 The size and position fields of the two intervals are set based upon
357 those of the original interval. The property list of the new interval
358 is reset, thus it is up to the caller to do the right thing with the
359 result.
360
361 Note that this does not change the position of INTERVAL; if it is a root,
362 it is still a root after this operation. */
363
364 INTERVAL
365 split_interval_right (interval, offset)
366 INTERVAL interval;
367 int offset;
368 {
369 INTERVAL new = make_interval ();
370 int position = interval->position;
371 int new_length = LENGTH (interval) - offset;
372
373 new->position = position + offset;
374 new->parent = interval;
375
376 if (LEAF_INTERVAL_P (interval) || NULL_RIGHT_CHILD (interval))
377 {
378 interval->right = new;
379 new->total_length = new_length;
380
381 return new;
382 }
383
384 /* Insert the new node between INTERVAL and its right child. */
385 new->right = interval->right;
386 interval->right->parent = new;
387 interval->right = new;
388
389 new->total_length = new_length + new->right->total_length;
390
391 return new;
392 }
393
394 /* Split INTERVAL into two pieces, starting the second piece at
395 character position OFFSET (counting from 0), relative to INTERVAL.
396 INTERVAL becomes the right-hand piece, and the left-hand piece
397 (first, lexicographically) is returned.
398
399 The size and position fields of the two intervals are set based upon
400 those of the original interval. The property list of the new interval
401 is reset, thus it is up to the caller to do the right thing with the
402 result.
403
404 Note that this does not change the position of INTERVAL; if it is a root,
405 it is still a root after this operation. */
406
407 INTERVAL
408 split_interval_left (interval, offset)
409 INTERVAL interval;
410 int offset;
411 {
412 INTERVAL new = make_interval ();
413 int position = interval->position;
414 int new_length = offset;
415
416 new->position = interval->position;
417 interval->position = interval->position + offset;
418 new->parent = interval;
419
420 if (NULL_LEFT_CHILD (interval))
421 {
422 interval->left = new;
423 new->total_length = new_length;
424
425 return new;
426 }
427
428 /* Insert the new node between INTERVAL and its left child. */
429 new->left = interval->left;
430 new->left->parent = new;
431 interval->left = new;
432 new->total_length = new_length + LEFT_TOTAL_LENGTH (new);
433
434 return new;
435 }
436 \f
437 /* Find the interval containing text position POSITION in the text
438 represented by the interval tree TREE. POSITION is a buffer
439 position; the earliest position is 1. If POSITION is at the end of
440 the buffer, return the interval containing the last character.
441
442 The `position' field, which is a cache of an interval's position,
443 is updated in the interval found. Other functions (e.g., next_interval)
444 will update this cache based on the result of find_interval. */
445
446 INLINE INTERVAL
447 find_interval (tree, position)
448 register INTERVAL tree;
449 register int position;
450 {
451 /* The distance from the left edge of the subtree at TREE
452 to POSITION. */
453 register int relative_position = position - BEG;
454
455 if (NULL_INTERVAL_P (tree))
456 return NULL_INTERVAL;
457
458 if (relative_position > TOTAL_LENGTH (tree))
459 abort (); /* Paranoia */
460
461 while (1)
462 {
463 if (relative_position < LEFT_TOTAL_LENGTH (tree))
464 {
465 tree = tree->left;
466 }
467 else if (! NULL_RIGHT_CHILD (tree)
468 && relative_position >= (TOTAL_LENGTH (tree)
469 - RIGHT_TOTAL_LENGTH (tree)))
470 {
471 relative_position -= (TOTAL_LENGTH (tree)
472 - RIGHT_TOTAL_LENGTH (tree));
473 tree = tree->right;
474 }
475 else
476 {
477 tree->position =
478 (position - relative_position /* the left edge of *tree */
479 + LEFT_TOTAL_LENGTH (tree)); /* the left edge of this interval */
480
481 return tree;
482 }
483 }
484 }
485 \f
486 /* Find the succeeding interval (lexicographically) to INTERVAL.
487 Sets the `position' field based on that of INTERVAL (see
488 find_interval). */
489
490 INTERVAL
491 next_interval (interval)
492 register INTERVAL interval;
493 {
494 register INTERVAL i = interval;
495 register int next_position;
496
497 if (NULL_INTERVAL_P (i))
498 return NULL_INTERVAL;
499 next_position = interval->position + LENGTH (interval);
500
501 if (! NULL_RIGHT_CHILD (i))
502 {
503 i = i->right;
504 while (! NULL_LEFT_CHILD (i))
505 i = i->left;
506
507 i->position = next_position;
508 return i;
509 }
510
511 while (! NULL_PARENT (i))
512 {
513 if (AM_LEFT_CHILD (i))
514 {
515 i = i->parent;
516 i->position = next_position;
517 return i;
518 }
519
520 i = i->parent;
521 }
522
523 return NULL_INTERVAL;
524 }
525
526 /* Find the preceding interval (lexicographically) to INTERVAL.
527 Sets the `position' field based on that of INTERVAL (see
528 find_interval). */
529
530 INTERVAL
531 previous_interval (interval)
532 register INTERVAL interval;
533 {
534 register INTERVAL i;
535 register position_of_previous;
536
537 if (NULL_INTERVAL_P (interval))
538 return NULL_INTERVAL;
539
540 if (! NULL_LEFT_CHILD (interval))
541 {
542 i = interval->left;
543 while (! NULL_RIGHT_CHILD (i))
544 i = i->right;
545
546 i->position = interval->position - LENGTH (i);
547 return i;
548 }
549
550 i = interval;
551 while (! NULL_PARENT (i))
552 {
553 if (AM_RIGHT_CHILD (i))
554 {
555 i = i->parent;
556
557 i->position = interval->position - LENGTH (i);
558 return i;
559 }
560 i = i->parent;
561 }
562
563 return NULL_INTERVAL;
564 }
565 \f
566 #if 0
567 /* Traverse a path down the interval tree TREE to the interval
568 containing POSITION, adjusting all nodes on the path for
569 an addition of LENGTH characters. Insertion between two intervals
570 (i.e., point == i->position, where i is second interval) means
571 text goes into second interval.
572
573 Modifications are needed to handle the hungry bits -- after simply
574 finding the interval at position (don't add length going down),
575 if it's the beginning of the interval, get the previous interval
576 and check the hugry bits of both. Then add the length going back up
577 to the root. */
578
579 static INTERVAL
580 adjust_intervals_for_insertion (tree, position, length)
581 INTERVAL tree;
582 int position, length;
583 {
584 register int relative_position;
585 register INTERVAL this;
586
587 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
588 abort ();
589
590 /* If inserting at point-max of a buffer, that position
591 will be out of range */
592 if (position > TOTAL_LENGTH (tree))
593 position = TOTAL_LENGTH (tree);
594 relative_position = position;
595 this = tree;
596
597 while (1)
598 {
599 if (relative_position <= LEFT_TOTAL_LENGTH (this))
600 {
601 this->total_length += length;
602 this = this->left;
603 }
604 else if (relative_position > (TOTAL_LENGTH (this)
605 - RIGHT_TOTAL_LENGTH (this)))
606 {
607 relative_position -= (TOTAL_LENGTH (this)
608 - RIGHT_TOTAL_LENGTH (this));
609 this->total_length += length;
610 this = this->right;
611 }
612 else
613 {
614 /* If we are to use zero-length intervals as buffer pointers,
615 then this code will have to change. */
616 this->total_length += length;
617 this->position = LEFT_TOTAL_LENGTH (this)
618 + position - relative_position + 1;
619 return tree;
620 }
621 }
622 }
623 #endif
624
625 /* Effect an adjustment corresponding to the addition of LENGTH characters
626 of text. Do this by finding the interval containing POSITION in the
627 interval tree TREE, and then adjusting all of it's ancestors by adding
628 LENGTH to them.
629
630 If POSITION is the first character of an interval, meaning that point
631 is actually between the two intervals, make the new text belong to
632 the interval which is "sticky".
633
634 If both intervals are "sticky", then make them belong to the left-most
635 interval. Another possibility would be to create a new interval for
636 this text, and make it have the merged properties of both ends. */
637
638 static INTERVAL
639 adjust_intervals_for_insertion (tree, position, length)
640 INTERVAL tree;
641 int position, length;
642 {
643 register INTERVAL i;
644 register INTERVAL temp;
645 int eobp = 0;
646
647 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
648 abort ();
649
650 /* If inserting at point-max of a buffer, that position will be out
651 of range. Remember that buffer positions are 1-based. */
652 if (position >= BEG + TOTAL_LENGTH (tree)){
653 position = BEG + TOTAL_LENGTH (tree);
654 eobp = 1;
655 }
656
657 i = find_interval (tree, position);
658
659 /* If we are positioned between intervals, check the stickiness of
660 both of them. We have to do this too, if we are at BEG or Z. */
661 if (position == i->position || eobp)
662 {
663 register INTERVAL prev;
664
665 if (position == BEG)
666 prev = 0;
667 else if (eobp)
668 {
669 prev = i;
670 i = 0;
671 }
672 else
673 prev = previous_interval (i);
674
675 /* Even if we are positioned between intervals, we default
676 to the left one if it exists. We extend it now and split
677 off a part later, if stickyness demands it. */
678 for (temp = prev ? prev : i; ! NULL_INTERVAL_P (temp); temp = temp->parent)
679 temp->total_length += length;
680
681 /* If at least one interval has sticky properties,
682 we check the stickyness property by property. */
683 if (END_NONSTICKY_P (prev) || FRONT_STICKY_P (i))
684 {
685 Lisp_Object pleft = NULL_INTERVAL_P (prev) ? Qnil : prev->plist;
686 Lisp_Object pright = NULL_INTERVAL_P (i) ? Qnil : i->plist;
687 struct interval newi;
688
689 newi.plist = merge_properties_sticky (pleft, pright);
690
691 if(! prev) /* i.e. position == BEG */
692 {
693 if (! intervals_equal (i, &newi))
694 {
695 i = split_interval_left (i, length);
696 i->plist = newi.plist;
697 }
698 }
699 else if (! intervals_equal (prev, &newi))
700 {
701 prev = split_interval_right (prev,
702 position - prev->position);
703 prev->plist = newi.plist;
704 if (! NULL_INTERVAL_P (i)
705 && intervals_equal (prev, i))
706 merge_interval_right (prev);
707 }
708
709 /* We will need to update the cache here later. */
710 }
711 else if (! prev && ! NILP (i->plist))
712 {
713 /* Just split off a new interval at the left.
714 Since I wasn't front-sticky, the empty plist is ok. */
715 i = split_interval_left (i, length);
716 }
717 }
718
719 /* Otherwise just extend the interval. */
720 else
721 {
722 for (temp = i; ! NULL_INTERVAL_P (temp); temp = temp->parent)
723 temp->total_length += length;
724 }
725
726 return tree;
727 }
728
729 Lisp_Object
730 merge_properties_sticky (pleft, pright)
731 Lisp_Object pleft, pright;
732 {
733 register Lisp_Object props = Qnil, front = Qnil, rear = Qnil;
734
735 Lisp_Object lfront = textget (pleft, Qfront_sticky);
736 Lisp_Object lrear = textget (pleft, Qrear_nonsticky);
737 Lisp_Object rfront = textget (pright, Qfront_sticky);
738 Lisp_Object rrear = textget (pright, Qrear_nonsticky);
739
740 register Lisp_Object tail1, tail2, sym;
741
742 /* Go through each element of PLEFT. */
743 for (tail1 = pleft; ! NILP (tail1); tail1 = Fcdr (Fcdr (tail1)))
744 {
745 sym = Fcar (tail1);
746
747 /* Sticky properties get special treatment. */
748 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
749 continue;
750
751 if (NILP (Fmemq (sym, lrear)))
752 {
753 /* rear-sticky is dominant, we needn't search in PRIGHT. */
754
755 props = Fcons (sym, Fcons (Fcar (Fcdr (tail1)), props));
756 if (! NILP (Fmemq (sym, lfront)))
757 front = Fcons (sym, front);
758 }
759 else
760 {
761 /* Go through PRIGHT, looking for sym. */
762 for (tail2 = pright; ! NILP (tail2); tail2 = Fcdr (Fcdr (tail2)))
763 if (EQ (sym, Fcar (tail2)))
764 {
765
766 if (! NILP (Fmemq (sym, rfront)))
767 {
768 /* Nonsticky at the left and sticky at the right,
769 so take the right one. */
770 props = Fcons (sym, Fcons (Fcar (Fcdr (tail2)), props));
771 front = Fcons (sym, front);
772 if (! NILP (Fmemq (sym, rrear)))
773 rear = Fcons (sym, rear);
774 }
775 break;
776 }
777 }
778 }
779 /* Now let's see what to keep from PRIGHT. */
780 for (tail2 = pright; ! NILP (tail2); tail2 = Fcdr (Fcdr (tail2)))
781 {
782 sym = Fcar (tail2);
783
784 /* Sticky properties get special treatment. */
785 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
786 continue;
787
788 /* If it ain't sticky, we don't take it. */
789 if (NILP (Fmemq (sym, rfront)))
790 continue;
791
792 /* If sym is in PLEFT we already got it. */
793 for (tail1 = pleft; ! NILP (tail1); tail1 = Fcdr (Fcdr (tail1)))
794 if (EQ (sym, Fcar (tail1)))
795 break;
796
797 if (NILP (tail1))
798 {
799 props = Fcons (sym, Fcons (Fcar (Fcdr (tail2)), props));
800 front = Fcons (sym, front);
801 if (! NILP (Fmemq (sym, rrear)))
802 rear = Fcons (sym, rear);
803 }
804 }
805 if (! NILP (front))
806 props = Fcons (Qfront_sticky, Fcons (front, props));
807 if (! NILP (rear))
808 props = Fcons (Qrear_nonsticky, Fcons (rear, props));
809 return props;
810
811 }
812
813 \f
814 /* Delete an node I from its interval tree by merging its subtrees
815 into one subtree which is then returned. Caller is responsible for
816 storing the resulting subtree into its parent. */
817
818 static INTERVAL
819 delete_node (i)
820 register INTERVAL i;
821 {
822 register INTERVAL migrate, this;
823 register int migrate_amt;
824
825 if (NULL_INTERVAL_P (i->left))
826 return i->right;
827 if (NULL_INTERVAL_P (i->right))
828 return i->left;
829
830 migrate = i->left;
831 migrate_amt = i->left->total_length;
832 this = i->right;
833 this->total_length += migrate_amt;
834 while (! NULL_INTERVAL_P (this->left))
835 {
836 this = this->left;
837 this->total_length += migrate_amt;
838 }
839 this->left = migrate;
840 migrate->parent = this;
841
842 return i->right;
843 }
844
845 /* Delete interval I from its tree by calling `delete_node'
846 and properly connecting the resultant subtree.
847
848 I is presumed to be empty; that is, no adjustments are made
849 for the length of I. */
850
851 void
852 delete_interval (i)
853 register INTERVAL i;
854 {
855 register INTERVAL parent;
856 int amt = LENGTH (i);
857
858 if (amt > 0) /* Only used on zero-length intervals now. */
859 abort ();
860
861 if (ROOT_INTERVAL_P (i))
862 {
863 Lisp_Object owner = (Lisp_Object) i->parent;
864 parent = delete_node (i);
865 if (! NULL_INTERVAL_P (parent))
866 parent->parent = (INTERVAL) owner;
867
868 if (XTYPE (owner) == Lisp_Buffer)
869 XBUFFER (owner)->intervals = parent;
870 else if (XTYPE (owner) == Lisp_String)
871 XSTRING (owner)->intervals = parent;
872 else
873 abort ();
874
875 return;
876 }
877
878 parent = i->parent;
879 if (AM_LEFT_CHILD (i))
880 {
881 parent->left = delete_node (i);
882 if (! NULL_INTERVAL_P (parent->left))
883 parent->left->parent = parent;
884 }
885 else
886 {
887 parent->right = delete_node (i);
888 if (! NULL_INTERVAL_P (parent->right))
889 parent->right->parent = parent;
890 }
891 }
892 \f
893 /* Find the interval in TREE corresponding to the relative position
894 FROM and delete as much as possible of AMOUNT from that interval.
895 Return the amount actually deleted, and if the interval was
896 zeroed-out, delete that interval node from the tree.
897
898 Note that FROM is actually origin zero, aka relative to the
899 leftmost edge of tree. This is appropriate since we call ourselves
900 recursively on subtrees.
901
902 Do this by recursing down TREE to the interval in question, and
903 deleting the appropriate amount of text. */
904
905 static int
906 interval_deletion_adjustment (tree, from, amount)
907 register INTERVAL tree;
908 register int from, amount;
909 {
910 register int relative_position = from;
911
912 if (NULL_INTERVAL_P (tree))
913 return 0;
914
915 /* Left branch */
916 if (relative_position < LEFT_TOTAL_LENGTH (tree))
917 {
918 int subtract = interval_deletion_adjustment (tree->left,
919 relative_position,
920 amount);
921 tree->total_length -= subtract;
922 return subtract;
923 }
924 /* Right branch */
925 else if (relative_position >= (TOTAL_LENGTH (tree)
926 - RIGHT_TOTAL_LENGTH (tree)))
927 {
928 int subtract;
929
930 relative_position -= (tree->total_length
931 - RIGHT_TOTAL_LENGTH (tree));
932 subtract = interval_deletion_adjustment (tree->right,
933 relative_position,
934 amount);
935 tree->total_length -= subtract;
936 return subtract;
937 }
938 /* Here -- this node. */
939 else
940 {
941 /* How much can we delete from this interval? */
942 int my_amount = ((tree->total_length
943 - RIGHT_TOTAL_LENGTH (tree))
944 - relative_position);
945
946 if (amount > my_amount)
947 amount = my_amount;
948
949 tree->total_length -= amount;
950 if (LENGTH (tree) == 0)
951 delete_interval (tree);
952
953 return amount;
954 }
955
956 /* Never reach here. */
957 }
958
959 /* Effect the adjustments necessary to the interval tree of BUFFER to
960 correspond to the deletion of LENGTH characters from that buffer
961 text. The deletion is effected at position START (which is a
962 buffer position, i.e. origin 1). */
963
964 static void
965 adjust_intervals_for_deletion (buffer, start, length)
966 struct buffer *buffer;
967 int start, length;
968 {
969 register int left_to_delete = length;
970 register INTERVAL tree = buffer->intervals;
971 register int deleted;
972
973 if (NULL_INTERVAL_P (tree))
974 return;
975
976 if (start > BEG + TOTAL_LENGTH (tree)
977 || start + length > BEG + TOTAL_LENGTH (tree))
978 abort ();
979
980 if (length == TOTAL_LENGTH (tree))
981 {
982 buffer->intervals = NULL_INTERVAL;
983 return;
984 }
985
986 if (ONLY_INTERVAL_P (tree))
987 {
988 tree->total_length -= length;
989 return;
990 }
991
992 if (start > BEG + TOTAL_LENGTH (tree))
993 start = BEG + TOTAL_LENGTH (tree);
994 while (left_to_delete > 0)
995 {
996 left_to_delete -= interval_deletion_adjustment (tree, start - 1,
997 left_to_delete);
998 tree = buffer->intervals;
999 if (left_to_delete == tree->total_length)
1000 {
1001 buffer->intervals = NULL_INTERVAL;
1002 return;
1003 }
1004 }
1005 }
1006 \f
1007 /* Make the adjustments necessary to the interval tree of BUFFER to
1008 represent an addition or deletion of LENGTH characters starting
1009 at position START. Addition or deletion is indicated by the sign
1010 of LENGTH. */
1011
1012 INLINE void
1013 offset_intervals (buffer, start, length)
1014 struct buffer *buffer;
1015 int start, length;
1016 {
1017 if (NULL_INTERVAL_P (buffer->intervals) || length == 0)
1018 return;
1019
1020 if (length > 0)
1021 adjust_intervals_for_insertion (buffer->intervals, start, length);
1022 else
1023 adjust_intervals_for_deletion (buffer, start, -length);
1024 }
1025 \f
1026 /* Merge interval I with its lexicographic successor. The resulting
1027 interval is returned, and has the properties of the original
1028 successor. The properties of I are lost. I is removed from the
1029 interval tree.
1030
1031 IMPORTANT:
1032 The caller must verify that this is not the last (rightmost)
1033 interval. */
1034
1035 INTERVAL
1036 merge_interval_right (i)
1037 register INTERVAL i;
1038 {
1039 register int absorb = LENGTH (i);
1040 register INTERVAL successor;
1041
1042 /* Zero out this interval. */
1043 i->total_length -= absorb;
1044
1045 /* Find the succeeding interval. */
1046 if (! NULL_RIGHT_CHILD (i)) /* It's below us. Add absorb
1047 as we descend. */
1048 {
1049 successor = i->right;
1050 while (! NULL_LEFT_CHILD (successor))
1051 {
1052 successor->total_length += absorb;
1053 successor = successor->left;
1054 }
1055
1056 successor->total_length += absorb;
1057 delete_interval (i);
1058 return successor;
1059 }
1060
1061 successor = i;
1062 while (! NULL_PARENT (successor)) /* It's above us. Subtract as
1063 we ascend. */
1064 {
1065 if (AM_LEFT_CHILD (successor))
1066 {
1067 successor = successor->parent;
1068 delete_interval (i);
1069 return successor;
1070 }
1071
1072 successor = successor->parent;
1073 successor->total_length -= absorb;
1074 }
1075
1076 /* This must be the rightmost or last interval and cannot
1077 be merged right. The caller should have known. */
1078 abort ();
1079 }
1080 \f
1081 /* Merge interval I with its lexicographic predecessor. The resulting
1082 interval is returned, and has the properties of the original predecessor.
1083 The properties of I are lost. Interval node I is removed from the tree.
1084
1085 IMPORTANT:
1086 The caller must verify that this is not the first (leftmost) interval. */
1087
1088 INTERVAL
1089 merge_interval_left (i)
1090 register INTERVAL i;
1091 {
1092 register int absorb = LENGTH (i);
1093 register INTERVAL predecessor;
1094
1095 /* Zero out this interval. */
1096 i->total_length -= absorb;
1097
1098 /* Find the preceding interval. */
1099 if (! NULL_LEFT_CHILD (i)) /* It's below us. Go down,
1100 adding ABSORB as we go. */
1101 {
1102 predecessor = i->left;
1103 while (! NULL_RIGHT_CHILD (predecessor))
1104 {
1105 predecessor->total_length += absorb;
1106 predecessor = predecessor->right;
1107 }
1108
1109 predecessor->total_length += absorb;
1110 delete_interval (i);
1111 return predecessor;
1112 }
1113
1114 predecessor = i;
1115 while (! NULL_PARENT (predecessor)) /* It's above us. Go up,
1116 subtracting ABSORB. */
1117 {
1118 if (AM_RIGHT_CHILD (predecessor))
1119 {
1120 predecessor = predecessor->parent;
1121 delete_interval (i);
1122 return predecessor;
1123 }
1124
1125 predecessor = predecessor->parent;
1126 predecessor->total_length -= absorb;
1127 }
1128
1129 /* This must be the leftmost or first interval and cannot
1130 be merged left. The caller should have known. */
1131 abort ();
1132 }
1133 \f
1134 /* Make an exact copy of interval tree SOURCE which descends from
1135 PARENT. This is done by recursing through SOURCE, copying
1136 the current interval and its properties, and then adjusting
1137 the pointers of the copy. */
1138
1139 static INTERVAL
1140 reproduce_tree (source, parent)
1141 INTERVAL source, parent;
1142 {
1143 register INTERVAL t = make_interval ();
1144
1145 bcopy (source, t, INTERVAL_SIZE);
1146 copy_properties (source, t);
1147 t->parent = parent;
1148 if (! NULL_LEFT_CHILD (source))
1149 t->left = reproduce_tree (source->left, t);
1150 if (! NULL_RIGHT_CHILD (source))
1151 t->right = reproduce_tree (source->right, t);
1152
1153 return t;
1154 }
1155
1156 #if 0
1157 /* Nobody calls this. Perhaps it's a vestige of an earlier design. */
1158
1159 /* Make a new interval of length LENGTH starting at START in the
1160 group of intervals INTERVALS, which is actually an interval tree.
1161 Returns the new interval.
1162
1163 Generate an error if the new positions would overlap an existing
1164 interval. */
1165
1166 static INTERVAL
1167 make_new_interval (intervals, start, length)
1168 INTERVAL intervals;
1169 int start, length;
1170 {
1171 INTERVAL slot;
1172
1173 slot = find_interval (intervals, start);
1174 if (start + length > slot->position + LENGTH (slot))
1175 error ("Interval would overlap");
1176
1177 if (start == slot->position && length == LENGTH (slot))
1178 return slot;
1179
1180 if (slot->position == start)
1181 {
1182 /* New right node. */
1183 split_interval_right (slot, length);
1184 return slot;
1185 }
1186
1187 if (slot->position + LENGTH (slot) == start + length)
1188 {
1189 /* New left node. */
1190 split_interval_left (slot, LENGTH (slot) - length);
1191 return slot;
1192 }
1193
1194 /* Convert interval SLOT into three intervals. */
1195 split_interval_left (slot, start - slot->position);
1196 split_interval_right (slot, length);
1197 return slot;
1198 }
1199 #endif
1200 \f
1201 /* Insert the intervals of SOURCE into BUFFER at POSITION.
1202
1203 This is used in insdel.c when inserting Lisp_Strings into the
1204 buffer. The text corresponding to SOURCE is already in the buffer
1205 when this is called. The intervals of new tree are a copy of those
1206 belonging to the string being inserted; intervals are never
1207 shared.
1208
1209 If the inserted text had no intervals associated, this function
1210 simply returns -- offset_intervals should handle placing the
1211 text in the correct interval, depending on the sticky bits.
1212
1213 If the inserted text had properties (intervals), then there are two
1214 cases -- either insertion happened in the middle of some interval,
1215 or between two intervals.
1216
1217 If the text goes into the middle of an interval, then new
1218 intervals are created in the middle with only the properties of
1219 the new text, *unless* the macro MERGE_INSERTIONS is true, in
1220 which case the new text has the union of its properties and those
1221 of the text into which it was inserted.
1222
1223 If the text goes between two intervals, then if neither interval
1224 had its appropriate sticky property set (front_sticky, rear_sticky),
1225 the new text has only its properties. If one of the sticky properties
1226 is set, then the new text "sticks" to that region and its properties
1227 depend on merging as above. If both the preceding and succeeding
1228 intervals to the new text are "sticky", then the new text retains
1229 only its properties, as if neither sticky property were set. Perhaps
1230 we should consider merging all three sets of properties onto the new
1231 text... */
1232
1233 void
1234 graft_intervals_into_buffer (source, position, buffer)
1235 INTERVAL source;
1236 int position;
1237 struct buffer *buffer;
1238 {
1239 register INTERVAL under, over, this, prev;
1240 register INTERVAL tree = buffer->intervals;
1241 int middle;
1242
1243 /* If the new text has no properties, it becomes part of whatever
1244 interval it was inserted into. */
1245 if (NULL_INTERVAL_P (source))
1246 return;
1247
1248 if (NULL_INTERVAL_P (tree))
1249 {
1250 /* The inserted text constitutes the whole buffer, so
1251 simply copy over the interval structure. */
1252 if ((BUF_Z (buffer) - BUF_BEG (buffer)) == TOTAL_LENGTH (source))
1253 {
1254 Lisp_Object buf;
1255 XSET (buf, Lisp_Buffer, buffer);
1256 buffer->intervals = reproduce_tree (source, buf);
1257 /* Explicitly free the old tree here. */
1258
1259 return;
1260 }
1261
1262 /* Create an interval tree in which to place a copy
1263 of the intervals of the inserted string. */
1264 {
1265 Lisp_Object buf;
1266 XSET (buf, Lisp_Buffer, buffer);
1267 tree = create_root_interval (buf);
1268 }
1269 }
1270 else
1271 if (TOTAL_LENGTH (tree) == TOTAL_LENGTH (source))
1272 /* If the buffer contains only the new string, but
1273 there was already some interval tree there, then it may be
1274 some zero length intervals. Eventually, do something clever
1275 about inserting properly. For now, just waste the old intervals. */
1276 {
1277 buffer->intervals = reproduce_tree (source, tree->parent);
1278 /* Explicitly free the old tree here. */
1279
1280 return;
1281 }
1282 else
1283 /* Paranoia -- the text has already been added, so this buffer
1284 should be of non-zero length. */
1285 if (TOTAL_LENGTH (tree) == 0)
1286 abort ();
1287
1288 this = under = find_interval (tree, position);
1289 if (NULL_INTERVAL_P (under)) /* Paranoia */
1290 abort ();
1291 over = find_interval (source, 1);
1292
1293 /* Here for insertion in the middle of an interval.
1294 Split off an equivalent interval to the right,
1295 then don't bother with it any more. */
1296
1297 if (position > under->position)
1298 {
1299 INTERVAL end_unchanged
1300 = split_interval_left (this, position - under->position);
1301 copy_properties (under, end_unchanged);
1302 under->position = position;
1303 prev = 0;
1304 middle = 1;
1305 }
1306 else
1307 {
1308 prev = previous_interval (under);
1309 if (prev && !END_NONSTICKY_P (prev))
1310 prev = 0;
1311 }
1312
1313 /* Insertion is now at beginning of UNDER. */
1314
1315 /* The inserted text "sticks" to the interval `under',
1316 which means it gets those properties.
1317 The properties of under are the result of
1318 adjust_intervals_for_insertion, so stickyness has
1319 already been taken care of. */
1320
1321 while (! NULL_INTERVAL_P (over))
1322 {
1323 if (LENGTH (over) + 1 < LENGTH (under))
1324 {
1325 this = split_interval_left (under, LENGTH (over));
1326 copy_properties (under, this);
1327 }
1328 else
1329 this = under;
1330 copy_properties (over, this);
1331 if (MERGE_INSERTIONS (this))
1332 merge_properties (over, this);
1333 else
1334 copy_properties (over, this);
1335 over = next_interval (over);
1336 }
1337
1338 buffer->intervals = balance_intervals (buffer->intervals);
1339 return;
1340 }
1341
1342 /* Get the value of property PROP from PLIST,
1343 which is the plist of an interval.
1344 We check for direct properties and for categories with property PROP. */
1345
1346 Lisp_Object
1347 textget (plist, prop)
1348 Lisp_Object plist;
1349 register Lisp_Object prop;
1350 {
1351 register Lisp_Object tail, fallback;
1352 fallback = Qnil;
1353
1354 for (tail = plist; !NILP (tail); tail = Fcdr (Fcdr (tail)))
1355 {
1356 register Lisp_Object tem;
1357 tem = Fcar (tail);
1358 if (EQ (prop, tem))
1359 return Fcar (Fcdr (tail));
1360 if (EQ (tem, Qcategory))
1361 fallback = Fget (Fcar (Fcdr (tail)), prop);
1362 }
1363
1364 return fallback;
1365 }
1366
1367 /* Get the value of property PROP from PLIST,
1368 which is the plist of an interval.
1369 We check for direct properties only! */
1370
1371 Lisp_Object
1372 textget_direct (plist, prop)
1373 Lisp_Object plist;
1374 register Lisp_Object prop;
1375 {
1376 register Lisp_Object tail;
1377
1378 for (tail = plist; !NILP (tail); tail = Fcdr (Fcdr (tail)))
1379 {
1380 if (EQ (prop, Fcar (tail)))
1381 return Fcar (Fcdr (tail));
1382 }
1383
1384 return Qnil;
1385 }
1386 \f
1387 /* Set point in BUFFER to POSITION. If the target position is
1388 before an invisible character which is not displayed with a special glyph,
1389 move back to an ok place to display. */
1390
1391 void
1392 set_point (position, buffer)
1393 register int position;
1394 register struct buffer *buffer;
1395 {
1396 register INTERVAL to, from, toprev, fromprev, target;
1397 int buffer_point;
1398 register Lisp_Object obj;
1399 int backwards = (position < BUF_PT (buffer)) ? 1 : 0;
1400 int old_position = buffer->text.pt;
1401
1402 if (position == buffer->text.pt)
1403 return;
1404
1405 /* Check this now, before checking if the buffer has any intervals.
1406 That way, we can catch conditions which break this sanity check
1407 whether or not there are intervals in the buffer. */
1408 if (position > BUF_Z (buffer) || position < BUF_BEG (buffer))
1409 abort ();
1410
1411 if (NULL_INTERVAL_P (buffer->intervals))
1412 {
1413 buffer->text.pt = position;
1414 return;
1415 }
1416
1417 /* Set TO to the interval containing the char after POSITION,
1418 and TOPREV to the interval containing the char before POSITION.
1419 Either one may be null. They may be equal. */
1420 to = find_interval (buffer->intervals, position);
1421 if (position == BUF_BEGV (buffer))
1422 toprev = 0;
1423 else if (to->position == position)
1424 toprev = previous_interval (to);
1425 else
1426 toprev = to;
1427
1428 buffer_point = (BUF_PT (buffer) == BUF_ZV (buffer)
1429 ? BUF_ZV (buffer) - 1
1430 : BUF_PT (buffer));
1431
1432 /* Set FROM to the interval containing the char after PT,
1433 and FROMPREV to the interval containing the char before PT.
1434 Either one may be null. They may be equal. */
1435 /* We could cache this and save time. */
1436 from = find_interval (buffer->intervals, buffer_point);
1437 if (buffer_point == BUF_BEGV (buffer))
1438 fromprev = 0;
1439 else if (from->position == BUF_PT (buffer))
1440 fromprev = previous_interval (from);
1441 else if (buffer_point != BUF_PT (buffer))
1442 fromprev = from, from = 0;
1443 else
1444 fromprev = from;
1445
1446 /* Moving within an interval. */
1447 if (to == from && toprev == fromprev && INTERVAL_VISIBLE_P (to))
1448 {
1449 buffer->text.pt = position;
1450 return;
1451 }
1452
1453 /* If the new position is before an invisible character
1454 that has an `invisible' property of value `hidden',
1455 move forward over all such. */
1456 while (! NULL_INTERVAL_P (to)
1457 && EQ (textget (to->plist, Qinvisible), Qhidden)
1458 && ! DISPLAY_INVISIBLE_GLYPH (to))
1459 {
1460 toprev = to;
1461 to = next_interval (to);
1462 if (NULL_INTERVAL_P (to))
1463 position = BUF_ZV (buffer);
1464 else
1465 position = to->position;
1466 }
1467
1468 buffer->text.pt = position;
1469
1470 /* We run point-left and point-entered hooks here, iff the
1471 two intervals are not equivalent. These hooks take
1472 (old_point, new_point) as arguments. */
1473 if (NILP (Vinhibit_point_motion_hooks)
1474 && (! intervals_equal (from, to)
1475 || ! intervals_equal (fromprev, toprev)))
1476 {
1477 Lisp_Object leave_after, leave_before, enter_after, enter_before;
1478
1479 if (fromprev)
1480 leave_after = textget (fromprev->plist, Qpoint_left);
1481 else
1482 leave_after = Qnil;
1483 if (from)
1484 leave_before = textget (from->plist, Qpoint_left);
1485 else
1486 leave_before = Qnil;
1487
1488 if (toprev)
1489 enter_after = textget (toprev->plist, Qpoint_entered);
1490 else
1491 enter_after = Qnil;
1492 if (to)
1493 enter_before = textget (to->plist, Qpoint_entered);
1494 else
1495 enter_before = Qnil;
1496
1497 if (! EQ (leave_before, enter_before) && !NILP (leave_before))
1498 call2 (leave_before, old_position, position);
1499 if (! EQ (leave_after, enter_after) && !NILP (leave_after))
1500 call2 (leave_after, old_position, position);
1501
1502 if (! EQ (enter_before, leave_before) && !NILP (enter_before))
1503 call2 (enter_before, old_position, position);
1504 if (! EQ (enter_after, leave_after) && !NILP (enter_after))
1505 call2 (enter_after, old_position, position);
1506 }
1507 }
1508
1509 /* Set point temporarily, without checking any text properties. */
1510
1511 INLINE void
1512 temp_set_point (position, buffer)
1513 int position;
1514 struct buffer *buffer;
1515 {
1516 buffer->text.pt = position;
1517 }
1518 \f
1519 /* Return the proper local map for position POSITION in BUFFER.
1520 Use the map specified by the local-map property, if any.
1521 Otherwise, use BUFFER's local map. */
1522
1523 Lisp_Object
1524 get_local_map (position, buffer)
1525 register int position;
1526 register struct buffer *buffer;
1527 {
1528 register INTERVAL interval;
1529 Lisp_Object prop, tem;
1530
1531 if (NULL_INTERVAL_P (buffer->intervals))
1532 return current_buffer->keymap;
1533
1534 /* Perhaps we should just change `position' to the limit. */
1535 if (position > BUF_Z (buffer) || position < BUF_BEG (buffer))
1536 abort ();
1537
1538 interval = find_interval (buffer->intervals, position);
1539 prop = textget (interval->plist, Qlocal_map);
1540 if (NILP (prop))
1541 return current_buffer->keymap;
1542
1543 /* Use the local map only if it is valid. */
1544 tem = Fkeymapp (prop);
1545 if (!NILP (tem))
1546 return prop;
1547
1548 return current_buffer->keymap;
1549 }
1550 \f
1551 /* Call the modification hook functions in LIST, each with START and END. */
1552
1553 static void
1554 call_mod_hooks (list, start, end)
1555 Lisp_Object list, start, end;
1556 {
1557 struct gcpro gcpro1;
1558 GCPRO1 (list);
1559 while (!NILP (list))
1560 {
1561 call2 (Fcar (list), start, end);
1562 list = Fcdr (list);
1563 }
1564 UNGCPRO;
1565 }
1566
1567 /* Check for read-only intervals and signal an error if we find one.
1568 Then check for any modification hooks in the range START up to
1569 (but not including) TO. Create a list of all these hooks in
1570 lexicographic order, eliminating consecutive extra copies of the
1571 same hook. Then call those hooks in order, with START and END - 1
1572 as arguments. */
1573
1574 void
1575 verify_interval_modification (buf, start, end)
1576 struct buffer *buf;
1577 int start, end;
1578 {
1579 register INTERVAL intervals = buf->intervals;
1580 register INTERVAL i, prev;
1581 Lisp_Object hooks;
1582 register Lisp_Object prev_mod_hooks;
1583 Lisp_Object mod_hooks;
1584 struct gcpro gcpro1;
1585
1586 hooks = Qnil;
1587 prev_mod_hooks = Qnil;
1588 mod_hooks = Qnil;
1589
1590 if (NULL_INTERVAL_P (intervals))
1591 return;
1592
1593 if (start > end)
1594 {
1595 int temp = start;
1596 start = end;
1597 end = temp;
1598 }
1599
1600 /* For an insert operation, check the two chars around the position. */
1601 if (start == end)
1602 {
1603 INTERVAL prev;
1604 Lisp_Object before, after;
1605
1606 /* Set I to the interval containing the char after START,
1607 and PREV to the interval containing the char before START.
1608 Either one may be null. They may be equal. */
1609 i = find_interval (intervals, start);
1610
1611 if (start == BUF_BEGV (buf))
1612 prev = 0;
1613 else if (i->position == start)
1614 prev = previous_interval (i);
1615 else if (i->position < start)
1616 prev = i;
1617 if (start == BUF_ZV (buf))
1618 i = 0;
1619
1620 /* If Vinhibit_read_only is set and is not a list, we can
1621 skip the read_only checks. */
1622 if (NILP (Vinhibit_read_only) || CONSP (Vinhibit_read_only))
1623 {
1624 /* If I and PREV differ we need to check for the read-only
1625 property together with its stickyness. If either I or
1626 PREV are 0, this check is all we need.
1627 We have to take special care, since read-only may be
1628 indirectly defined via the category property. */
1629 if (i != prev)
1630 {
1631 if (! NULL_INTERVAL_P (i))
1632 {
1633 after = textget (i->plist, Qread_only);
1634
1635 /* If interval I is read-only and read-only is
1636 front-sticky, inhibit insertion.
1637 Check for read-only as well as category. */
1638 if (! NILP (after)
1639 && NILP (Fmemq (after, Vinhibit_read_only))
1640 && (! NILP (Fmemq (Qread_only,
1641 textget (i->plist, Qfront_sticky)))
1642 || (NILP (textget_direct (i->plist, Qread_only))
1643 && ! NILP (Fmemq (Qcategory,
1644 textget (i->plist,
1645 Qfront_sticky))))))
1646 error ("Attempt to insert within read-only text");
1647 }
1648 else
1649 after = Qnil;
1650 if (! NULL_INTERVAL_P (prev))
1651 {
1652 before = textget (prev->plist, Qread_only);
1653
1654 /* If interval PREV is read-only and read-only isn't
1655 rear-nonsticky, inhibit insertion.
1656 Check for read-only as well as category. */
1657 if (! NILP (before)
1658 && NILP (Fmemq (before, Vinhibit_read_only))
1659 && NILP (Fmemq (Qread_only,
1660 textget (prev->plist, Qrear_nonsticky)))
1661 && (! NILP (textget_direct (prev->plist,Qread_only))
1662 || NILP (Fmemq (Qcategory,
1663 textget (prev->plist,
1664 Qrear_nonsticky)))))
1665 error ("Attempt to insert within read-only text");
1666 }
1667 else
1668 before = Qnil;
1669 }
1670 else if (! NULL_INTERVAL_P (i))
1671 before = after = textget (i->plist, Qread_only);
1672 if (! NULL_INTERVAL_P (i) && ! NULL_INTERVAL_P (prev))
1673 {
1674 /* If I and PREV differ, neither of them has a sticky
1675 read-only property. It only remains to check, whether
1676 they have a common read-only property. */
1677 if (! NILP (before) && EQ (before, after))
1678 error ("Attempt to insert within read-only text");
1679 }
1680 }
1681
1682 /* Run both insert hooks (just once if they're the same). */
1683 if (!NULL_INTERVAL_P (prev))
1684 prev_mod_hooks = textget (prev->plist, Qinsert_behind_hooks);
1685 if (!NULL_INTERVAL_P (i))
1686 mod_hooks = textget (i->plist, Qinsert_in_front_hooks);
1687 GCPRO1 (mod_hooks);
1688 if (! NILP (prev_mod_hooks))
1689 call_mod_hooks (prev_mod_hooks, make_number (start),
1690 make_number (end));
1691 UNGCPRO;
1692 if (! NILP (mod_hooks) && ! EQ (mod_hooks, prev_mod_hooks))
1693 call_mod_hooks (mod_hooks, make_number (start), make_number (end));
1694 }
1695 else
1696 {
1697 /* Loop over intervals on or next to START...END,
1698 collecting their hooks. */
1699
1700 i = find_interval (intervals, start);
1701 do
1702 {
1703 if (! INTERVAL_WRITABLE_P (i))
1704 error ("Attempt to modify read-only text");
1705
1706 mod_hooks = textget (i->plist, Qmodification_hooks);
1707 if (! NILP (mod_hooks) && ! EQ (mod_hooks, prev_mod_hooks))
1708 {
1709 hooks = Fcons (mod_hooks, hooks);
1710 prev_mod_hooks = mod_hooks;
1711 }
1712
1713 i = next_interval (i);
1714 }
1715 /* Keep going thru the interval containing the char before END. */
1716 while (! NULL_INTERVAL_P (i) && i->position < end);
1717
1718 GCPRO1 (hooks);
1719 hooks = Fnreverse (hooks);
1720 while (! EQ (hooks, Qnil))
1721 {
1722 call_mod_hooks (Fcar (hooks), make_number (start),
1723 make_number (end));
1724 hooks = Fcdr (hooks);
1725 }
1726 UNGCPRO;
1727 }
1728 }
1729
1730 /* Balance an interval node if the amount of text in its left and right
1731 subtrees differs by more than the percentage specified by
1732 `interval-balance-threshold'. */
1733
1734 static INTERVAL
1735 balance_an_interval (i)
1736 INTERVAL i;
1737 {
1738 register int total_children_size = (LEFT_TOTAL_LENGTH (i)
1739 + RIGHT_TOTAL_LENGTH (i));
1740 register int threshold = (XFASTINT (interval_balance_threshold)
1741 * (total_children_size / 100));
1742
1743 /* Balance within each side. */
1744 balance_intervals (i->left);
1745 balance_intervals (i->right);
1746
1747 if (LEFT_TOTAL_LENGTH (i) > RIGHT_TOTAL_LENGTH (i)
1748 && (LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i)) > threshold)
1749 {
1750 i = rotate_right (i);
1751 /* If that made it unbalanced the other way, take it back. */
1752 if (RIGHT_TOTAL_LENGTH (i) > LEFT_TOTAL_LENGTH (i)
1753 && (RIGHT_TOTAL_LENGTH (i) - LEFT_TOTAL_LENGTH (i)) > threshold)
1754 return rotate_left (i);
1755 return i;
1756 }
1757
1758 if (RIGHT_TOTAL_LENGTH (i) > LEFT_TOTAL_LENGTH (i)
1759 && (RIGHT_TOTAL_LENGTH (i) - LEFT_TOTAL_LENGTH (i)) > threshold)
1760 {
1761 i = rotate_left (i);
1762 if (LEFT_TOTAL_LENGTH (i) > RIGHT_TOTAL_LENGTH (i)
1763 && (LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i)) > threshold)
1764 return rotate_right (i);
1765 return i;
1766 }
1767
1768 return i;
1769 }
1770
1771 /* Balance the interval tree TREE. Balancing is by weight
1772 (the amount of text). */
1773
1774 INTERVAL
1775 balance_intervals (tree)
1776 register INTERVAL tree;
1777 {
1778 register INTERVAL new_tree;
1779
1780 if (NULL_INTERVAL_P (tree))
1781 return NULL_INTERVAL;
1782
1783 new_tree = tree;
1784 do
1785 {
1786 tree = new_tree;
1787 new_tree = balance_an_interval (new_tree);
1788 }
1789 while (new_tree != tree);
1790
1791 return new_tree;
1792 }
1793
1794 /* Produce an interval tree reflecting the intervals in
1795 TREE from START to START + LENGTH. */
1796
1797 INTERVAL
1798 copy_intervals (tree, start, length)
1799 INTERVAL tree;
1800 int start, length;
1801 {
1802 register INTERVAL i, new, t;
1803 register int got, prevlen;
1804
1805 if (NULL_INTERVAL_P (tree) || length <= 0)
1806 return NULL_INTERVAL;
1807
1808 i = find_interval (tree, start);
1809 if (NULL_INTERVAL_P (i) || LENGTH (i) == 0)
1810 abort ();
1811
1812 /* If there is only one interval and it's the default, return nil. */
1813 if ((start - i->position + 1 + length) < LENGTH (i)
1814 && DEFAULT_INTERVAL_P (i))
1815 return NULL_INTERVAL;
1816
1817 new = make_interval ();
1818 new->position = 1;
1819 got = (LENGTH (i) - (start - i->position));
1820 new->total_length = length;
1821 copy_properties (i, new);
1822
1823 t = new;
1824 prevlen = got;
1825 while (got < length)
1826 {
1827 i = next_interval (i);
1828 t = split_interval_right (t, prevlen);
1829 copy_properties (i, t);
1830 prevlen = LENGTH (i);
1831 got += prevlen;
1832 }
1833
1834 return balance_intervals (new);
1835 }
1836
1837 /* Give STRING the properties of BUFFER from POSITION to LENGTH. */
1838
1839 INLINE void
1840 copy_intervals_to_string (string, buffer, position, length)
1841 Lisp_Object string, buffer;
1842 int position, length;
1843 {
1844 INTERVAL interval_copy = copy_intervals (XBUFFER (buffer)->intervals,
1845 position, length);
1846 if (NULL_INTERVAL_P (interval_copy))
1847 return;
1848
1849 interval_copy->parent = (INTERVAL) string;
1850 XSTRING (string)->intervals = interval_copy;
1851 }
1852
1853 #endif /* USE_TEXT_PROPERTIES */