]> code.delx.au - gnu-emacs/blob - src/regex.c
Revision: emacs@sv.gnu.org/emacs--unicode--0--patch-8
[gnu-emacs] / src / regex.c
1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
4
5 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
6 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
21 USA. */
22
23 /* TODO:
24 - structure the opcode space into opcode+flag.
25 - merge with glibc's regex.[ch].
26 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
27 need to modify the compiled regexp so that re_match can be reentrant.
28 - get rid of on_failure_jump_smart by doing the optimization in re_comp
29 rather than at run-time, so that re_match can be reentrant.
30 */
31
32 /* AIX requires this to be the first thing in the file. */
33 #if defined _AIX && !defined REGEX_MALLOC
34 #pragma alloca
35 #endif
36
37 #ifdef HAVE_CONFIG_H
38 # include <config.h>
39 #endif
40
41 #if defined STDC_HEADERS && !defined emacs
42 # include <stddef.h>
43 #else
44 /* We need this for `regex.h', and perhaps for the Emacs include files. */
45 # include <sys/types.h>
46 #endif
47
48 /* Whether to use ISO C Amendment 1 wide char functions.
49 Those should not be used for Emacs since it uses its own. */
50 #if defined _LIBC
51 #define WIDE_CHAR_SUPPORT 1
52 #else
53 #define WIDE_CHAR_SUPPORT \
54 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
55 #endif
56
57 /* For platform which support the ISO C amendement 1 functionality we
58 support user defined character classes. */
59 #if WIDE_CHAR_SUPPORT
60 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
61 # include <wchar.h>
62 # include <wctype.h>
63 #endif
64
65 #ifdef _LIBC
66 /* We have to keep the namespace clean. */
67 # define regfree(preg) __regfree (preg)
68 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
69 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
70 # define regerror(errcode, preg, errbuf, errbuf_size) \
71 __regerror(errcode, preg, errbuf, errbuf_size)
72 # define re_set_registers(bu, re, nu, st, en) \
73 __re_set_registers (bu, re, nu, st, en)
74 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
75 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
76 # define re_match(bufp, string, size, pos, regs) \
77 __re_match (bufp, string, size, pos, regs)
78 # define re_search(bufp, string, size, startpos, range, regs) \
79 __re_search (bufp, string, size, startpos, range, regs)
80 # define re_compile_pattern(pattern, length, bufp) \
81 __re_compile_pattern (pattern, length, bufp)
82 # define re_set_syntax(syntax) __re_set_syntax (syntax)
83 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
84 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
85 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
86
87 /* Make sure we call libc's function even if the user overrides them. */
88 # define btowc __btowc
89 # define iswctype __iswctype
90 # define wctype __wctype
91
92 # define WEAK_ALIAS(a,b) weak_alias (a, b)
93
94 /* We are also using some library internals. */
95 # include <locale/localeinfo.h>
96 # include <locale/elem-hash.h>
97 # include <langinfo.h>
98 #else
99 # define WEAK_ALIAS(a,b)
100 #endif
101
102 /* This is for other GNU distributions with internationalized messages. */
103 #if HAVE_LIBINTL_H || defined _LIBC
104 # include <libintl.h>
105 #else
106 # define gettext(msgid) (msgid)
107 #endif
108
109 #ifndef gettext_noop
110 /* This define is so xgettext can find the internationalizable
111 strings. */
112 # define gettext_noop(String) String
113 #endif
114
115 /* The `emacs' switch turns on certain matching commands
116 that make sense only in Emacs. */
117 #ifdef emacs
118
119 # include "lisp.h"
120 # include "buffer.h"
121
122 /* Make syntax table lookup grant data in gl_state. */
123 # define SYNTAX_ENTRY_VIA_PROPERTY
124
125 # include "syntax.h"
126 # include "character.h"
127 # include "category.h"
128
129 # ifdef malloc
130 # undef malloc
131 # endif
132 # define malloc xmalloc
133 # ifdef realloc
134 # undef realloc
135 # endif
136 # define realloc xrealloc
137 # ifdef free
138 # undef free
139 # endif
140 # define free xfree
141
142 /* Converts the pointer to the char to BEG-based offset from the start. */
143 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
144 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
145
146 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
147 # define RE_TARGET_MULTIBYTE_P(bufp) ((bufp)->target_multibyte)
148 # define RE_STRING_CHAR(p, s) \
149 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
150 # define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
151 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
152
153 /* Set C a (possibly converted to multibyte) character before P. P
154 points into a string which is the virtual concatenation of STR1
155 (which ends at END1) or STR2 (which ends at END2). */
156 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
157 do { \
158 if (multibyte) \
159 { \
160 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
161 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
162 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
163 c = STRING_CHAR (dtemp, (p) - dtemp); \
164 } \
165 else \
166 { \
167 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
168 MAKE_CHAR_MULTIBYTE (c); \
169 } \
170 } while (0)
171
172 /* Set C a (possibly converted to multibyte) character at P, and set
173 LEN to the byte length of that character. */
174 # define GET_CHAR_AFTER(c, p, len) \
175 do { \
176 if (multibyte) \
177 c = STRING_CHAR_AND_LENGTH (p, 0, len); \
178 else \
179 { \
180 c = *p; \
181 len = 1; \
182 MAKE_CHAR_MULTIBYTE (c); \
183 } \
184 } while (0)
185
186 #else /* not emacs */
187
188 /* If we are not linking with Emacs proper,
189 we can't use the relocating allocator
190 even if config.h says that we can. */
191 # undef REL_ALLOC
192
193 # if defined STDC_HEADERS || defined _LIBC
194 # include <stdlib.h>
195 # else
196 char *malloc ();
197 char *realloc ();
198 # endif
199
200 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
201 If nothing else has been done, use the method below. */
202 # ifdef INHIBIT_STRING_HEADER
203 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
204 # if !defined bzero && !defined bcopy
205 # undef INHIBIT_STRING_HEADER
206 # endif
207 # endif
208 # endif
209
210 /* This is the normal way of making sure we have memcpy, memcmp and bzero.
211 This is used in most programs--a few other programs avoid this
212 by defining INHIBIT_STRING_HEADER. */
213 # ifndef INHIBIT_STRING_HEADER
214 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
215 # include <string.h>
216 # ifndef bzero
217 # ifndef _LIBC
218 # define bzero(s, n) (memset (s, '\0', n), (s))
219 # else
220 # define bzero(s, n) __bzero (s, n)
221 # endif
222 # endif
223 # else
224 # include <strings.h>
225 # ifndef memcmp
226 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
227 # endif
228 # ifndef memcpy
229 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
230 # endif
231 # endif
232 # endif
233
234 /* Define the syntax stuff for \<, \>, etc. */
235
236 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
237 enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
238
239 # ifdef SWITCH_ENUM_BUG
240 # define SWITCH_ENUM_CAST(x) ((int)(x))
241 # else
242 # define SWITCH_ENUM_CAST(x) (x)
243 # endif
244
245 /* Dummy macros for non-Emacs environments. */
246 # define BASE_LEADING_CODE_P(c) (0)
247 # define CHAR_CHARSET(c) 0
248 # define CHARSET_LEADING_CODE_BASE(c) 0
249 # define MAX_MULTIBYTE_LENGTH 1
250 # define RE_MULTIBYTE_P(x) 0
251 # define RE_TARGET_MULTIBYTE_P(x) 0
252 # define WORD_BOUNDARY_P(c1, c2) (0)
253 # define CHAR_HEAD_P(p) (1)
254 # define SINGLE_BYTE_CHAR_P(c) (1)
255 # define SAME_CHARSET_P(c1, c2) (1)
256 # define MULTIBYTE_FORM_LENGTH(p, s) (1)
257 # define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
258 # define STRING_CHAR(p, s) (*(p))
259 # define RE_STRING_CHAR STRING_CHAR
260 # define CHAR_STRING(c, s) (*(s) = (c), 1)
261 # define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
262 # define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
263 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
264 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
265 # define GET_CHAR_AFTER(c, p, len) \
266 (c = *p, len = 1)
267 # define MAKE_CHAR(charset, c1, c2) (c1)
268 # define BYTE8_TO_CHAR(c) (c)
269 # define CHAR_BYTE8_P(c) (0)
270 # define MAKE_CHAR_MULTIBYTE(c) (c)
271 # define MAKE_CHAR_UNIBYTE(c) (c)
272 # define CHAR_LEADING_CODE(c) (c)
273
274 #endif /* not emacs */
275
276 #ifndef RE_TRANSLATE
277 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
278 # define RE_TRANSLATE_P(TBL) (TBL)
279 #endif
280 \f
281 /* Get the interface, including the syntax bits. */
282 #include "regex.h"
283
284 /* isalpha etc. are used for the character classes. */
285 #include <ctype.h>
286
287 #ifdef emacs
288
289 /* 1 if C is an ASCII character. */
290 # define IS_REAL_ASCII(c) ((c) < 0200)
291
292 /* 1 if C is a unibyte character. */
293 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
294
295 /* The Emacs definitions should not be directly affected by locales. */
296
297 /* In Emacs, these are only used for single-byte characters. */
298 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
299 # define ISCNTRL(c) ((c) < ' ')
300 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
301 || ((c) >= 'a' && (c) <= 'f') \
302 || ((c) >= 'A' && (c) <= 'F'))
303
304 /* This is only used for single-byte characters. */
305 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
306
307 /* The rest must handle multibyte characters. */
308
309 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
310 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
311 : 1)
312
313 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
314 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
315 : 1)
316
317 # define ISALNUM(c) (IS_REAL_ASCII (c) \
318 ? (((c) >= 'a' && (c) <= 'z') \
319 || ((c) >= 'A' && (c) <= 'Z') \
320 || ((c) >= '0' && (c) <= '9')) \
321 : SYNTAX (c) == Sword)
322
323 # define ISALPHA(c) (IS_REAL_ASCII (c) \
324 ? (((c) >= 'a' && (c) <= 'z') \
325 || ((c) >= 'A' && (c) <= 'Z')) \
326 : SYNTAX (c) == Sword)
327
328 # define ISLOWER(c) (LOWERCASEP (c))
329
330 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
331 ? ((c) > ' ' && (c) < 0177 \
332 && !(((c) >= 'a' && (c) <= 'z') \
333 || ((c) >= 'A' && (c) <= 'Z') \
334 || ((c) >= '0' && (c) <= '9'))) \
335 : SYNTAX (c) != Sword)
336
337 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
338
339 # define ISUPPER(c) (UPPERCASEP (c))
340
341 # define ISWORD(c) (SYNTAX (c) == Sword)
342
343 #else /* not emacs */
344
345 /* Jim Meyering writes:
346
347 "... Some ctype macros are valid only for character codes that
348 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
349 using /bin/cc or gcc but without giving an ansi option). So, all
350 ctype uses should be through macros like ISPRINT... If
351 STDC_HEADERS is defined, then autoconf has verified that the ctype
352 macros don't need to be guarded with references to isascii. ...
353 Defining isascii to 1 should let any compiler worth its salt
354 eliminate the && through constant folding."
355 Solaris defines some of these symbols so we must undefine them first. */
356
357 # undef ISASCII
358 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
359 # define ISASCII(c) 1
360 # else
361 # define ISASCII(c) isascii(c)
362 # endif
363
364 /* 1 if C is an ASCII character. */
365 # define IS_REAL_ASCII(c) ((c) < 0200)
366
367 /* This distinction is not meaningful, except in Emacs. */
368 # define ISUNIBYTE(c) 1
369
370 # ifdef isblank
371 # define ISBLANK(c) (ISASCII (c) && isblank (c))
372 # else
373 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
374 # endif
375 # ifdef isgraph
376 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
377 # else
378 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
379 # endif
380
381 # undef ISPRINT
382 # define ISPRINT(c) (ISASCII (c) && isprint (c))
383 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
384 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
385 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
386 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
387 # define ISLOWER(c) (ISASCII (c) && islower (c))
388 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
389 # define ISSPACE(c) (ISASCII (c) && isspace (c))
390 # define ISUPPER(c) (ISASCII (c) && isupper (c))
391 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
392
393 # define ISWORD(c) ISALPHA(c)
394
395 # ifdef _tolower
396 # define TOLOWER(c) _tolower(c)
397 # else
398 # define TOLOWER(c) tolower(c)
399 # endif
400
401 /* How many characters in the character set. */
402 # define CHAR_SET_SIZE 256
403
404 # ifdef SYNTAX_TABLE
405
406 extern char *re_syntax_table;
407
408 # else /* not SYNTAX_TABLE */
409
410 static char re_syntax_table[CHAR_SET_SIZE];
411
412 static void
413 init_syntax_once ()
414 {
415 register int c;
416 static int done = 0;
417
418 if (done)
419 return;
420
421 bzero (re_syntax_table, sizeof re_syntax_table);
422
423 for (c = 0; c < CHAR_SET_SIZE; ++c)
424 if (ISALNUM (c))
425 re_syntax_table[c] = Sword;
426
427 re_syntax_table['_'] = Ssymbol;
428
429 done = 1;
430 }
431
432 # endif /* not SYNTAX_TABLE */
433
434 # define SYNTAX(c) re_syntax_table[(c)]
435
436 #endif /* not emacs */
437 \f
438 #ifndef NULL
439 # define NULL (void *)0
440 #endif
441
442 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
443 since ours (we hope) works properly with all combinations of
444 machines, compilers, `char' and `unsigned char' argument types.
445 (Per Bothner suggested the basic approach.) */
446 #undef SIGN_EXTEND_CHAR
447 #if __STDC__
448 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
449 #else /* not __STDC__ */
450 /* As in Harbison and Steele. */
451 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
452 #endif
453 \f
454 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
455 use `alloca' instead of `malloc'. This is because using malloc in
456 re_search* or re_match* could cause memory leaks when C-g is used in
457 Emacs; also, malloc is slower and causes storage fragmentation. On
458 the other hand, malloc is more portable, and easier to debug.
459
460 Because we sometimes use alloca, some routines have to be macros,
461 not functions -- `alloca'-allocated space disappears at the end of the
462 function it is called in. */
463
464 #ifdef REGEX_MALLOC
465
466 # define REGEX_ALLOCATE malloc
467 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
468 # define REGEX_FREE free
469
470 #else /* not REGEX_MALLOC */
471
472 /* Emacs already defines alloca, sometimes. */
473 # ifndef alloca
474
475 /* Make alloca work the best possible way. */
476 # ifdef __GNUC__
477 # define alloca __builtin_alloca
478 # else /* not __GNUC__ */
479 # ifdef HAVE_ALLOCA_H
480 # include <alloca.h>
481 # endif /* HAVE_ALLOCA_H */
482 # endif /* not __GNUC__ */
483
484 # endif /* not alloca */
485
486 # define REGEX_ALLOCATE alloca
487
488 /* Assumes a `char *destination' variable. */
489 # define REGEX_REALLOCATE(source, osize, nsize) \
490 (destination = (char *) alloca (nsize), \
491 memcpy (destination, source, osize))
492
493 /* No need to do anything to free, after alloca. */
494 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
495
496 #endif /* not REGEX_MALLOC */
497
498 /* Define how to allocate the failure stack. */
499
500 #if defined REL_ALLOC && defined REGEX_MALLOC
501
502 # define REGEX_ALLOCATE_STACK(size) \
503 r_alloc (&failure_stack_ptr, (size))
504 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
505 r_re_alloc (&failure_stack_ptr, (nsize))
506 # define REGEX_FREE_STACK(ptr) \
507 r_alloc_free (&failure_stack_ptr)
508
509 #else /* not using relocating allocator */
510
511 # ifdef REGEX_MALLOC
512
513 # define REGEX_ALLOCATE_STACK malloc
514 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
515 # define REGEX_FREE_STACK free
516
517 # else /* not REGEX_MALLOC */
518
519 # define REGEX_ALLOCATE_STACK alloca
520
521 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
522 REGEX_REALLOCATE (source, osize, nsize)
523 /* No need to explicitly free anything. */
524 # define REGEX_FREE_STACK(arg) ((void)0)
525
526 # endif /* not REGEX_MALLOC */
527 #endif /* not using relocating allocator */
528
529
530 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
531 `string1' or just past its end. This works if PTR is NULL, which is
532 a good thing. */
533 #define FIRST_STRING_P(ptr) \
534 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
535
536 /* (Re)Allocate N items of type T using malloc, or fail. */
537 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
538 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
539 #define RETALLOC_IF(addr, n, t) \
540 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
541 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
542
543 #define BYTEWIDTH 8 /* In bits. */
544
545 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
546
547 #undef MAX
548 #undef MIN
549 #define MAX(a, b) ((a) > (b) ? (a) : (b))
550 #define MIN(a, b) ((a) < (b) ? (a) : (b))
551
552 /* Type of source-pattern and string chars. */
553 typedef const unsigned char re_char;
554
555 typedef char boolean;
556 #define false 0
557 #define true 1
558
559 static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
560 re_char *string1, int size1,
561 re_char *string2, int size2,
562 int pos,
563 struct re_registers *regs,
564 int stop));
565 \f
566 /* These are the command codes that appear in compiled regular
567 expressions. Some opcodes are followed by argument bytes. A
568 command code can specify any interpretation whatsoever for its
569 arguments. Zero bytes may appear in the compiled regular expression. */
570
571 typedef enum
572 {
573 no_op = 0,
574
575 /* Succeed right away--no more backtracking. */
576 succeed,
577
578 /* Followed by one byte giving n, then by n literal bytes. */
579 exactn,
580
581 /* Matches any (more or less) character. */
582 anychar,
583
584 /* Matches any one char belonging to specified set. First
585 following byte is number of bitmap bytes. Then come bytes
586 for a bitmap saying which chars are in. Bits in each byte
587 are ordered low-bit-first. A character is in the set if its
588 bit is 1. A character too large to have a bit in the map is
589 automatically not in the set.
590
591 If the length byte has the 0x80 bit set, then that stuff
592 is followed by a range table:
593 2 bytes of flags for character sets (low 8 bits, high 8 bits)
594 See RANGE_TABLE_WORK_BITS below.
595 2 bytes, the number of pairs that follow (upto 32767)
596 pairs, each 2 multibyte characters,
597 each multibyte character represented as 3 bytes. */
598 charset,
599
600 /* Same parameters as charset, but match any character that is
601 not one of those specified. */
602 charset_not,
603
604 /* Start remembering the text that is matched, for storing in a
605 register. Followed by one byte with the register number, in
606 the range 0 to one less than the pattern buffer's re_nsub
607 field. */
608 start_memory,
609
610 /* Stop remembering the text that is matched and store it in a
611 memory register. Followed by one byte with the register
612 number, in the range 0 to one less than `re_nsub' in the
613 pattern buffer. */
614 stop_memory,
615
616 /* Match a duplicate of something remembered. Followed by one
617 byte containing the register number. */
618 duplicate,
619
620 /* Fail unless at beginning of line. */
621 begline,
622
623 /* Fail unless at end of line. */
624 endline,
625
626 /* Succeeds if at beginning of buffer (if emacs) or at beginning
627 of string to be matched (if not). */
628 begbuf,
629
630 /* Analogously, for end of buffer/string. */
631 endbuf,
632
633 /* Followed by two byte relative address to which to jump. */
634 jump,
635
636 /* Followed by two-byte relative address of place to resume at
637 in case of failure. */
638 on_failure_jump,
639
640 /* Like on_failure_jump, but pushes a placeholder instead of the
641 current string position when executed. */
642 on_failure_keep_string_jump,
643
644 /* Just like `on_failure_jump', except that it checks that we
645 don't get stuck in an infinite loop (matching an empty string
646 indefinitely). */
647 on_failure_jump_loop,
648
649 /* Just like `on_failure_jump_loop', except that it checks for
650 a different kind of loop (the kind that shows up with non-greedy
651 operators). This operation has to be immediately preceded
652 by a `no_op'. */
653 on_failure_jump_nastyloop,
654
655 /* A smart `on_failure_jump' used for greedy * and + operators.
656 It analyses the loop before which it is put and if the
657 loop does not require backtracking, it changes itself to
658 `on_failure_keep_string_jump' and short-circuits the loop,
659 else it just defaults to changing itself into `on_failure_jump'.
660 It assumes that it is pointing to just past a `jump'. */
661 on_failure_jump_smart,
662
663 /* Followed by two-byte relative address and two-byte number n.
664 After matching N times, jump to the address upon failure.
665 Does not work if N starts at 0: use on_failure_jump_loop
666 instead. */
667 succeed_n,
668
669 /* Followed by two-byte relative address, and two-byte number n.
670 Jump to the address N times, then fail. */
671 jump_n,
672
673 /* Set the following two-byte relative address to the
674 subsequent two-byte number. The address *includes* the two
675 bytes of number. */
676 set_number_at,
677
678 wordbeg, /* Succeeds if at word beginning. */
679 wordend, /* Succeeds if at word end. */
680
681 wordbound, /* Succeeds if at a word boundary. */
682 notwordbound, /* Succeeds if not at a word boundary. */
683
684 symbeg, /* Succeeds if at symbol beginning. */
685 symend, /* Succeeds if at symbol end. */
686
687 /* Matches any character whose syntax is specified. Followed by
688 a byte which contains a syntax code, e.g., Sword. */
689 syntaxspec,
690
691 /* Matches any character whose syntax is not that specified. */
692 notsyntaxspec
693
694 #ifdef emacs
695 ,before_dot, /* Succeeds if before point. */
696 at_dot, /* Succeeds if at point. */
697 after_dot, /* Succeeds if after point. */
698
699 /* Matches any character whose category-set contains the specified
700 category. The operator is followed by a byte which contains a
701 category code (mnemonic ASCII character). */
702 categoryspec,
703
704 /* Matches any character whose category-set does not contain the
705 specified category. The operator is followed by a byte which
706 contains the category code (mnemonic ASCII character). */
707 notcategoryspec
708 #endif /* emacs */
709 } re_opcode_t;
710 \f
711 /* Common operations on the compiled pattern. */
712
713 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
714
715 #define STORE_NUMBER(destination, number) \
716 do { \
717 (destination)[0] = (number) & 0377; \
718 (destination)[1] = (number) >> 8; \
719 } while (0)
720
721 /* Same as STORE_NUMBER, except increment DESTINATION to
722 the byte after where the number is stored. Therefore, DESTINATION
723 must be an lvalue. */
724
725 #define STORE_NUMBER_AND_INCR(destination, number) \
726 do { \
727 STORE_NUMBER (destination, number); \
728 (destination) += 2; \
729 } while (0)
730
731 /* Put into DESTINATION a number stored in two contiguous bytes starting
732 at SOURCE. */
733
734 #define EXTRACT_NUMBER(destination, source) \
735 do { \
736 (destination) = *(source) & 0377; \
737 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
738 } while (0)
739
740 #ifdef DEBUG
741 static void extract_number _RE_ARGS ((int *dest, re_char *source));
742 static void
743 extract_number (dest, source)
744 int *dest;
745 re_char *source;
746 {
747 int temp = SIGN_EXTEND_CHAR (*(source + 1));
748 *dest = *source & 0377;
749 *dest += temp << 8;
750 }
751
752 # ifndef EXTRACT_MACROS /* To debug the macros. */
753 # undef EXTRACT_NUMBER
754 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
755 # endif /* not EXTRACT_MACROS */
756
757 #endif /* DEBUG */
758
759 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
760 SOURCE must be an lvalue. */
761
762 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
763 do { \
764 EXTRACT_NUMBER (destination, source); \
765 (source) += 2; \
766 } while (0)
767
768 #ifdef DEBUG
769 static void extract_number_and_incr _RE_ARGS ((int *destination,
770 re_char **source));
771 static void
772 extract_number_and_incr (destination, source)
773 int *destination;
774 re_char **source;
775 {
776 extract_number (destination, *source);
777 *source += 2;
778 }
779
780 # ifndef EXTRACT_MACROS
781 # undef EXTRACT_NUMBER_AND_INCR
782 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
783 extract_number_and_incr (&dest, &src)
784 # endif /* not EXTRACT_MACROS */
785
786 #endif /* DEBUG */
787 \f
788 /* Store a multibyte character in three contiguous bytes starting
789 DESTINATION, and increment DESTINATION to the byte after where the
790 character is stored. Therefore, DESTINATION must be an lvalue. */
791
792 #define STORE_CHARACTER_AND_INCR(destination, character) \
793 do { \
794 (destination)[0] = (character) & 0377; \
795 (destination)[1] = ((character) >> 8) & 0377; \
796 (destination)[2] = (character) >> 16; \
797 (destination) += 3; \
798 } while (0)
799
800 /* Put into DESTINATION a character stored in three contiguous bytes
801 starting at SOURCE. */
802
803 #define EXTRACT_CHARACTER(destination, source) \
804 do { \
805 (destination) = ((source)[0] \
806 | ((source)[1] << 8) \
807 | ((source)[2] << 16)); \
808 } while (0)
809
810
811 /* Macros for charset. */
812
813 /* Size of bitmap of charset P in bytes. P is a start of charset,
814 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
815 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
816
817 /* Nonzero if charset P has range table. */
818 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
819
820 /* Return the address of range table of charset P. But not the start
821 of table itself, but the before where the number of ranges is
822 stored. `2 +' means to skip re_opcode_t and size of bitmap,
823 and the 2 bytes of flags at the start of the range table. */
824 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
825
826 /* Extract the bit flags that start a range table. */
827 #define CHARSET_RANGE_TABLE_BITS(p) \
828 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
829 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
830
831 /* Test if C is listed in the bitmap of charset P. */
832 #define CHARSET_LOOKUP_BITMAP(p, c) \
833 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
834 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
835
836 /* Return the address of end of RANGE_TABLE. COUNT is number of
837 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
838 is start of range and end of range. `* 3' is size of each start
839 and end. */
840 #define CHARSET_RANGE_TABLE_END(range_table, count) \
841 ((range_table) + (count) * 2 * 3)
842
843 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
844 COUNT is number of ranges in RANGE_TABLE. */
845 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
846 do \
847 { \
848 re_wchar_t range_start, range_end; \
849 re_char *p; \
850 re_char *range_table_end \
851 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
852 \
853 for (p = (range_table); p < range_table_end; p += 2 * 3) \
854 { \
855 EXTRACT_CHARACTER (range_start, p); \
856 EXTRACT_CHARACTER (range_end, p + 3); \
857 \
858 if (range_start <= (c) && (c) <= range_end) \
859 { \
860 (not) = !(not); \
861 break; \
862 } \
863 } \
864 } \
865 while (0)
866
867 /* Test if C is in range table of CHARSET. The flag NOT is negated if
868 C is listed in it. */
869 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
870 do \
871 { \
872 /* Number of ranges in range table. */ \
873 int count; \
874 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
875 \
876 EXTRACT_NUMBER_AND_INCR (count, range_table); \
877 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
878 } \
879 while (0)
880 \f
881 /* If DEBUG is defined, Regex prints many voluminous messages about what
882 it is doing (if the variable `debug' is nonzero). If linked with the
883 main program in `iregex.c', you can enter patterns and strings
884 interactively. And if linked with the main program in `main.c' and
885 the other test files, you can run the already-written tests. */
886
887 #ifdef DEBUG
888
889 /* We use standard I/O for debugging. */
890 # include <stdio.h>
891
892 /* It is useful to test things that ``must'' be true when debugging. */
893 # include <assert.h>
894
895 static int debug = -100000;
896
897 # define DEBUG_STATEMENT(e) e
898 # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
899 # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
900 # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
901 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
902 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
903 if (debug > 0) print_partial_compiled_pattern (s, e)
904 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
905 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
906
907
908 /* Print the fastmap in human-readable form. */
909
910 void
911 print_fastmap (fastmap)
912 char *fastmap;
913 {
914 unsigned was_a_range = 0;
915 unsigned i = 0;
916
917 while (i < (1 << BYTEWIDTH))
918 {
919 if (fastmap[i++])
920 {
921 was_a_range = 0;
922 putchar (i - 1);
923 while (i < (1 << BYTEWIDTH) && fastmap[i])
924 {
925 was_a_range = 1;
926 i++;
927 }
928 if (was_a_range)
929 {
930 printf ("-");
931 putchar (i - 1);
932 }
933 }
934 }
935 putchar ('\n');
936 }
937
938
939 /* Print a compiled pattern string in human-readable form, starting at
940 the START pointer into it and ending just before the pointer END. */
941
942 void
943 print_partial_compiled_pattern (start, end)
944 re_char *start;
945 re_char *end;
946 {
947 int mcnt, mcnt2;
948 re_char *p = start;
949 re_char *pend = end;
950
951 if (start == NULL)
952 {
953 fprintf (stderr, "(null)\n");
954 return;
955 }
956
957 /* Loop over pattern commands. */
958 while (p < pend)
959 {
960 fprintf (stderr, "%d:\t", p - start);
961
962 switch ((re_opcode_t) *p++)
963 {
964 case no_op:
965 fprintf (stderr, "/no_op");
966 break;
967
968 case succeed:
969 fprintf (stderr, "/succeed");
970 break;
971
972 case exactn:
973 mcnt = *p++;
974 fprintf (stderr, "/exactn/%d", mcnt);
975 do
976 {
977 fprintf (stderr, "/%c", *p++);
978 }
979 while (--mcnt);
980 break;
981
982 case start_memory:
983 fprintf (stderr, "/start_memory/%d", *p++);
984 break;
985
986 case stop_memory:
987 fprintf (stderr, "/stop_memory/%d", *p++);
988 break;
989
990 case duplicate:
991 fprintf (stderr, "/duplicate/%d", *p++);
992 break;
993
994 case anychar:
995 fprintf (stderr, "/anychar");
996 break;
997
998 case charset:
999 case charset_not:
1000 {
1001 register int c, last = -100;
1002 register int in_range = 0;
1003 int length = CHARSET_BITMAP_SIZE (p - 1);
1004 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
1005
1006 fprintf (stderr, "/charset [%s",
1007 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
1008
1009 if (p + *p >= pend)
1010 fprintf (stderr, " !extends past end of pattern! ");
1011
1012 for (c = 0; c < 256; c++)
1013 if (c / 8 < length
1014 && (p[1 + (c/8)] & (1 << (c % 8))))
1015 {
1016 /* Are we starting a range? */
1017 if (last + 1 == c && ! in_range)
1018 {
1019 fprintf (stderr, "-");
1020 in_range = 1;
1021 }
1022 /* Have we broken a range? */
1023 else if (last + 1 != c && in_range)
1024 {
1025 fprintf (stderr, "%c", last);
1026 in_range = 0;
1027 }
1028
1029 if (! in_range)
1030 fprintf (stderr, "%c", c);
1031
1032 last = c;
1033 }
1034
1035 if (in_range)
1036 fprintf (stderr, "%c", last);
1037
1038 fprintf (stderr, "]");
1039
1040 p += 1 + length;
1041
1042 if (has_range_table)
1043 {
1044 int count;
1045 fprintf (stderr, "has-range-table");
1046
1047 /* ??? Should print the range table; for now, just skip it. */
1048 p += 2; /* skip range table bits */
1049 EXTRACT_NUMBER_AND_INCR (count, p);
1050 p = CHARSET_RANGE_TABLE_END (p, count);
1051 }
1052 }
1053 break;
1054
1055 case begline:
1056 fprintf (stderr, "/begline");
1057 break;
1058
1059 case endline:
1060 fprintf (stderr, "/endline");
1061 break;
1062
1063 case on_failure_jump:
1064 extract_number_and_incr (&mcnt, &p);
1065 fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
1066 break;
1067
1068 case on_failure_keep_string_jump:
1069 extract_number_and_incr (&mcnt, &p);
1070 fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
1071 break;
1072
1073 case on_failure_jump_nastyloop:
1074 extract_number_and_incr (&mcnt, &p);
1075 fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
1076 break;
1077
1078 case on_failure_jump_loop:
1079 extract_number_and_incr (&mcnt, &p);
1080 fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
1081 break;
1082
1083 case on_failure_jump_smart:
1084 extract_number_and_incr (&mcnt, &p);
1085 fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
1086 break;
1087
1088 case jump:
1089 extract_number_and_incr (&mcnt, &p);
1090 fprintf (stderr, "/jump to %d", p + mcnt - start);
1091 break;
1092
1093 case succeed_n:
1094 extract_number_and_incr (&mcnt, &p);
1095 extract_number_and_incr (&mcnt2, &p);
1096 fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1097 break;
1098
1099 case jump_n:
1100 extract_number_and_incr (&mcnt, &p);
1101 extract_number_and_incr (&mcnt2, &p);
1102 fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1103 break;
1104
1105 case set_number_at:
1106 extract_number_and_incr (&mcnt, &p);
1107 extract_number_and_incr (&mcnt2, &p);
1108 fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
1109 break;
1110
1111 case wordbound:
1112 fprintf (stderr, "/wordbound");
1113 break;
1114
1115 case notwordbound:
1116 fprintf (stderr, "/notwordbound");
1117 break;
1118
1119 case wordbeg:
1120 fprintf (stderr, "/wordbeg");
1121 break;
1122
1123 case wordend:
1124 fprintf (stderr, "/wordend");
1125 break;
1126
1127 case symbeg:
1128 fprintf (stderr, "/symbeg");
1129 break;
1130
1131 case symend:
1132 fprintf (stderr, "/symend");
1133 break;
1134
1135 case syntaxspec:
1136 fprintf (stderr, "/syntaxspec");
1137 mcnt = *p++;
1138 fprintf (stderr, "/%d", mcnt);
1139 break;
1140
1141 case notsyntaxspec:
1142 fprintf (stderr, "/notsyntaxspec");
1143 mcnt = *p++;
1144 fprintf (stderr, "/%d", mcnt);
1145 break;
1146
1147 # ifdef emacs
1148 case before_dot:
1149 fprintf (stderr, "/before_dot");
1150 break;
1151
1152 case at_dot:
1153 fprintf (stderr, "/at_dot");
1154 break;
1155
1156 case after_dot:
1157 fprintf (stderr, "/after_dot");
1158 break;
1159
1160 case categoryspec:
1161 fprintf (stderr, "/categoryspec");
1162 mcnt = *p++;
1163 fprintf (stderr, "/%d", mcnt);
1164 break;
1165
1166 case notcategoryspec:
1167 fprintf (stderr, "/notcategoryspec");
1168 mcnt = *p++;
1169 fprintf (stderr, "/%d", mcnt);
1170 break;
1171 # endif /* emacs */
1172
1173 case begbuf:
1174 fprintf (stderr, "/begbuf");
1175 break;
1176
1177 case endbuf:
1178 fprintf (stderr, "/endbuf");
1179 break;
1180
1181 default:
1182 fprintf (stderr, "?%d", *(p-1));
1183 }
1184
1185 fprintf (stderr, "\n");
1186 }
1187
1188 fprintf (stderr, "%d:\tend of pattern.\n", p - start);
1189 }
1190
1191
1192 void
1193 print_compiled_pattern (bufp)
1194 struct re_pattern_buffer *bufp;
1195 {
1196 re_char *buffer = bufp->buffer;
1197
1198 print_partial_compiled_pattern (buffer, buffer + bufp->used);
1199 printf ("%ld bytes used/%ld bytes allocated.\n",
1200 bufp->used, bufp->allocated);
1201
1202 if (bufp->fastmap_accurate && bufp->fastmap)
1203 {
1204 printf ("fastmap: ");
1205 print_fastmap (bufp->fastmap);
1206 }
1207
1208 printf ("re_nsub: %d\t", bufp->re_nsub);
1209 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1210 printf ("can_be_null: %d\t", bufp->can_be_null);
1211 printf ("no_sub: %d\t", bufp->no_sub);
1212 printf ("not_bol: %d\t", bufp->not_bol);
1213 printf ("not_eol: %d\t", bufp->not_eol);
1214 printf ("syntax: %lx\n", bufp->syntax);
1215 fflush (stdout);
1216 /* Perhaps we should print the translate table? */
1217 }
1218
1219
1220 void
1221 print_double_string (where, string1, size1, string2, size2)
1222 re_char *where;
1223 re_char *string1;
1224 re_char *string2;
1225 int size1;
1226 int size2;
1227 {
1228 int this_char;
1229
1230 if (where == NULL)
1231 printf ("(null)");
1232 else
1233 {
1234 if (FIRST_STRING_P (where))
1235 {
1236 for (this_char = where - string1; this_char < size1; this_char++)
1237 putchar (string1[this_char]);
1238
1239 where = string2;
1240 }
1241
1242 for (this_char = where - string2; this_char < size2; this_char++)
1243 putchar (string2[this_char]);
1244 }
1245 }
1246
1247 #else /* not DEBUG */
1248
1249 # undef assert
1250 # define assert(e)
1251
1252 # define DEBUG_STATEMENT(e)
1253 # define DEBUG_PRINT1(x)
1254 # define DEBUG_PRINT2(x1, x2)
1255 # define DEBUG_PRINT3(x1, x2, x3)
1256 # define DEBUG_PRINT4(x1, x2, x3, x4)
1257 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1258 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1259
1260 #endif /* not DEBUG */
1261 \f
1262 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1263 also be assigned to arbitrarily: each pattern buffer stores its own
1264 syntax, so it can be changed between regex compilations. */
1265 /* This has no initializer because initialized variables in Emacs
1266 become read-only after dumping. */
1267 reg_syntax_t re_syntax_options;
1268
1269
1270 /* Specify the precise syntax of regexps for compilation. This provides
1271 for compatibility for various utilities which historically have
1272 different, incompatible syntaxes.
1273
1274 The argument SYNTAX is a bit mask comprised of the various bits
1275 defined in regex.h. We return the old syntax. */
1276
1277 reg_syntax_t
1278 re_set_syntax (syntax)
1279 reg_syntax_t syntax;
1280 {
1281 reg_syntax_t ret = re_syntax_options;
1282
1283 re_syntax_options = syntax;
1284 return ret;
1285 }
1286 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1287
1288 /* Regexp to use to replace spaces, or NULL meaning don't. */
1289 static re_char *whitespace_regexp;
1290
1291 void
1292 re_set_whitespace_regexp (regexp)
1293 const char *regexp;
1294 {
1295 whitespace_regexp = (re_char *) regexp;
1296 }
1297 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1298 \f
1299 /* This table gives an error message for each of the error codes listed
1300 in regex.h. Obviously the order here has to be same as there.
1301 POSIX doesn't require that we do anything for REG_NOERROR,
1302 but why not be nice? */
1303
1304 static const char *re_error_msgid[] =
1305 {
1306 gettext_noop ("Success"), /* REG_NOERROR */
1307 gettext_noop ("No match"), /* REG_NOMATCH */
1308 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1309 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1310 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1311 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1312 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1313 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1314 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1315 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1316 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1317 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1318 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1319 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1320 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1321 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1322 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1323 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
1324 };
1325 \f
1326 /* Avoiding alloca during matching, to placate r_alloc. */
1327
1328 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1329 searching and matching functions should not call alloca. On some
1330 systems, alloca is implemented in terms of malloc, and if we're
1331 using the relocating allocator routines, then malloc could cause a
1332 relocation, which might (if the strings being searched are in the
1333 ralloc heap) shift the data out from underneath the regexp
1334 routines.
1335
1336 Here's another reason to avoid allocation: Emacs
1337 processes input from X in a signal handler; processing X input may
1338 call malloc; if input arrives while a matching routine is calling
1339 malloc, then we're scrod. But Emacs can't just block input while
1340 calling matching routines; then we don't notice interrupts when
1341 they come in. So, Emacs blocks input around all regexp calls
1342 except the matching calls, which it leaves unprotected, in the
1343 faith that they will not malloc. */
1344
1345 /* Normally, this is fine. */
1346 #define MATCH_MAY_ALLOCATE
1347
1348 /* When using GNU C, we are not REALLY using the C alloca, no matter
1349 what config.h may say. So don't take precautions for it. */
1350 #ifdef __GNUC__
1351 # undef C_ALLOCA
1352 #endif
1353
1354 /* The match routines may not allocate if (1) they would do it with malloc
1355 and (2) it's not safe for them to use malloc.
1356 Note that if REL_ALLOC is defined, matching would not use malloc for the
1357 failure stack, but we would still use it for the register vectors;
1358 so REL_ALLOC should not affect this. */
1359 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1360 # undef MATCH_MAY_ALLOCATE
1361 #endif
1362
1363 \f
1364 /* Failure stack declarations and macros; both re_compile_fastmap and
1365 re_match_2 use a failure stack. These have to be macros because of
1366 REGEX_ALLOCATE_STACK. */
1367
1368
1369 /* Approximate number of failure points for which to initially allocate space
1370 when matching. If this number is exceeded, we allocate more
1371 space, so it is not a hard limit. */
1372 #ifndef INIT_FAILURE_ALLOC
1373 # define INIT_FAILURE_ALLOC 20
1374 #endif
1375
1376 /* Roughly the maximum number of failure points on the stack. Would be
1377 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1378 This is a variable only so users of regex can assign to it; we never
1379 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1380 before using it, so it should probably be a byte-count instead. */
1381 # if defined MATCH_MAY_ALLOCATE
1382 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1383 whose default stack limit is 2mb. In order for a larger
1384 value to work reliably, you have to try to make it accord
1385 with the process stack limit. */
1386 size_t re_max_failures = 40000;
1387 # else
1388 size_t re_max_failures = 4000;
1389 # endif
1390
1391 union fail_stack_elt
1392 {
1393 re_char *pointer;
1394 /* This should be the biggest `int' that's no bigger than a pointer. */
1395 long integer;
1396 };
1397
1398 typedef union fail_stack_elt fail_stack_elt_t;
1399
1400 typedef struct
1401 {
1402 fail_stack_elt_t *stack;
1403 size_t size;
1404 size_t avail; /* Offset of next open position. */
1405 size_t frame; /* Offset of the cur constructed frame. */
1406 } fail_stack_type;
1407
1408 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1409 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1410
1411
1412 /* Define macros to initialize and free the failure stack.
1413 Do `return -2' if the alloc fails. */
1414
1415 #ifdef MATCH_MAY_ALLOCATE
1416 # define INIT_FAIL_STACK() \
1417 do { \
1418 fail_stack.stack = (fail_stack_elt_t *) \
1419 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1420 * sizeof (fail_stack_elt_t)); \
1421 \
1422 if (fail_stack.stack == NULL) \
1423 return -2; \
1424 \
1425 fail_stack.size = INIT_FAILURE_ALLOC; \
1426 fail_stack.avail = 0; \
1427 fail_stack.frame = 0; \
1428 } while (0)
1429
1430 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1431 #else
1432 # define INIT_FAIL_STACK() \
1433 do { \
1434 fail_stack.avail = 0; \
1435 fail_stack.frame = 0; \
1436 } while (0)
1437
1438 # define RESET_FAIL_STACK() ((void)0)
1439 #endif
1440
1441
1442 /* Double the size of FAIL_STACK, up to a limit
1443 which allows approximately `re_max_failures' items.
1444
1445 Return 1 if succeeds, and 0 if either ran out of memory
1446 allocating space for it or it was already too large.
1447
1448 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1449
1450 /* Factor to increase the failure stack size by
1451 when we increase it.
1452 This used to be 2, but 2 was too wasteful
1453 because the old discarded stacks added up to as much space
1454 were as ultimate, maximum-size stack. */
1455 #define FAIL_STACK_GROWTH_FACTOR 4
1456
1457 #define GROW_FAIL_STACK(fail_stack) \
1458 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1459 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1460 ? 0 \
1461 : ((fail_stack).stack \
1462 = (fail_stack_elt_t *) \
1463 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1464 (fail_stack).size * sizeof (fail_stack_elt_t), \
1465 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1466 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1467 * FAIL_STACK_GROWTH_FACTOR))), \
1468 \
1469 (fail_stack).stack == NULL \
1470 ? 0 \
1471 : ((fail_stack).size \
1472 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1473 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1474 * FAIL_STACK_GROWTH_FACTOR)) \
1475 / sizeof (fail_stack_elt_t)), \
1476 1)))
1477
1478
1479 /* Push a pointer value onto the failure stack.
1480 Assumes the variable `fail_stack'. Probably should only
1481 be called from within `PUSH_FAILURE_POINT'. */
1482 #define PUSH_FAILURE_POINTER(item) \
1483 fail_stack.stack[fail_stack.avail++].pointer = (item)
1484
1485 /* This pushes an integer-valued item onto the failure stack.
1486 Assumes the variable `fail_stack'. Probably should only
1487 be called from within `PUSH_FAILURE_POINT'. */
1488 #define PUSH_FAILURE_INT(item) \
1489 fail_stack.stack[fail_stack.avail++].integer = (item)
1490
1491 /* Push a fail_stack_elt_t value onto the failure stack.
1492 Assumes the variable `fail_stack'. Probably should only
1493 be called from within `PUSH_FAILURE_POINT'. */
1494 #define PUSH_FAILURE_ELT(item) \
1495 fail_stack.stack[fail_stack.avail++] = (item)
1496
1497 /* These three POP... operations complement the three PUSH... operations.
1498 All assume that `fail_stack' is nonempty. */
1499 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1500 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1501 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1502
1503 /* Individual items aside from the registers. */
1504 #define NUM_NONREG_ITEMS 3
1505
1506 /* Used to examine the stack (to detect infinite loops). */
1507 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1508 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1509 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1510 #define TOP_FAILURE_HANDLE() fail_stack.frame
1511
1512
1513 #define ENSURE_FAIL_STACK(space) \
1514 while (REMAINING_AVAIL_SLOTS <= space) { \
1515 if (!GROW_FAIL_STACK (fail_stack)) \
1516 return -2; \
1517 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1518 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1519 }
1520
1521 /* Push register NUM onto the stack. */
1522 #define PUSH_FAILURE_REG(num) \
1523 do { \
1524 char *destination; \
1525 ENSURE_FAIL_STACK(3); \
1526 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1527 num, regstart[num], regend[num]); \
1528 PUSH_FAILURE_POINTER (regstart[num]); \
1529 PUSH_FAILURE_POINTER (regend[num]); \
1530 PUSH_FAILURE_INT (num); \
1531 } while (0)
1532
1533 /* Change the counter's value to VAL, but make sure that it will
1534 be reset when backtracking. */
1535 #define PUSH_NUMBER(ptr,val) \
1536 do { \
1537 char *destination; \
1538 int c; \
1539 ENSURE_FAIL_STACK(3); \
1540 EXTRACT_NUMBER (c, ptr); \
1541 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
1542 PUSH_FAILURE_INT (c); \
1543 PUSH_FAILURE_POINTER (ptr); \
1544 PUSH_FAILURE_INT (-1); \
1545 STORE_NUMBER (ptr, val); \
1546 } while (0)
1547
1548 /* Pop a saved register off the stack. */
1549 #define POP_FAILURE_REG_OR_COUNT() \
1550 do { \
1551 int reg = POP_FAILURE_INT (); \
1552 if (reg == -1) \
1553 { \
1554 /* It's a counter. */ \
1555 /* Here, we discard `const', making re_match non-reentrant. */ \
1556 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1557 reg = POP_FAILURE_INT (); \
1558 STORE_NUMBER (ptr, reg); \
1559 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1560 } \
1561 else \
1562 { \
1563 regend[reg] = POP_FAILURE_POINTER (); \
1564 regstart[reg] = POP_FAILURE_POINTER (); \
1565 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1566 reg, regstart[reg], regend[reg]); \
1567 } \
1568 } while (0)
1569
1570 /* Check that we are not stuck in an infinite loop. */
1571 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1572 do { \
1573 int failure = TOP_FAILURE_HANDLE (); \
1574 /* Check for infinite matching loops */ \
1575 while (failure > 0 \
1576 && (FAILURE_STR (failure) == string_place \
1577 || FAILURE_STR (failure) == NULL)) \
1578 { \
1579 assert (FAILURE_PAT (failure) >= bufp->buffer \
1580 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1581 if (FAILURE_PAT (failure) == pat_cur) \
1582 { \
1583 cycle = 1; \
1584 break; \
1585 } \
1586 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1587 failure = NEXT_FAILURE_HANDLE(failure); \
1588 } \
1589 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1590 } while (0)
1591
1592 /* Push the information about the state we will need
1593 if we ever fail back to it.
1594
1595 Requires variables fail_stack, regstart, regend and
1596 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1597 declared.
1598
1599 Does `return FAILURE_CODE' if runs out of memory. */
1600
1601 #define PUSH_FAILURE_POINT(pattern, string_place) \
1602 do { \
1603 char *destination; \
1604 /* Must be int, so when we don't save any registers, the arithmetic \
1605 of 0 + -1 isn't done as unsigned. */ \
1606 \
1607 DEBUG_STATEMENT (nfailure_points_pushed++); \
1608 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
1609 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1610 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1611 \
1612 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1613 \
1614 DEBUG_PRINT1 ("\n"); \
1615 \
1616 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1617 PUSH_FAILURE_INT (fail_stack.frame); \
1618 \
1619 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1620 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1621 DEBUG_PRINT1 ("'\n"); \
1622 PUSH_FAILURE_POINTER (string_place); \
1623 \
1624 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1625 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1626 PUSH_FAILURE_POINTER (pattern); \
1627 \
1628 /* Close the frame by moving the frame pointer past it. */ \
1629 fail_stack.frame = fail_stack.avail; \
1630 } while (0)
1631
1632 /* Estimate the size of data pushed by a typical failure stack entry.
1633 An estimate is all we need, because all we use this for
1634 is to choose a limit for how big to make the failure stack. */
1635 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1636 #define TYPICAL_FAILURE_SIZE 20
1637
1638 /* How many items can still be added to the stack without overflowing it. */
1639 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1640
1641
1642 /* Pops what PUSH_FAIL_STACK pushes.
1643
1644 We restore into the parameters, all of which should be lvalues:
1645 STR -- the saved data position.
1646 PAT -- the saved pattern position.
1647 REGSTART, REGEND -- arrays of string positions.
1648
1649 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1650 `pend', `string1', `size1', `string2', and `size2'. */
1651
1652 #define POP_FAILURE_POINT(str, pat) \
1653 do { \
1654 assert (!FAIL_STACK_EMPTY ()); \
1655 \
1656 /* Remove failure points and point to how many regs pushed. */ \
1657 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1658 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1659 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1660 \
1661 /* Pop the saved registers. */ \
1662 while (fail_stack.frame < fail_stack.avail) \
1663 POP_FAILURE_REG_OR_COUNT (); \
1664 \
1665 pat = POP_FAILURE_POINTER (); \
1666 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1667 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1668 \
1669 /* If the saved string location is NULL, it came from an \
1670 on_failure_keep_string_jump opcode, and we want to throw away the \
1671 saved NULL, thus retaining our current position in the string. */ \
1672 str = POP_FAILURE_POINTER (); \
1673 DEBUG_PRINT2 (" Popping string %p: `", str); \
1674 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1675 DEBUG_PRINT1 ("'\n"); \
1676 \
1677 fail_stack.frame = POP_FAILURE_INT (); \
1678 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1679 \
1680 assert (fail_stack.avail >= 0); \
1681 assert (fail_stack.frame <= fail_stack.avail); \
1682 \
1683 DEBUG_STATEMENT (nfailure_points_popped++); \
1684 } while (0) /* POP_FAILURE_POINT */
1685
1686
1687 \f
1688 /* Registers are set to a sentinel when they haven't yet matched. */
1689 #define REG_UNSET(e) ((e) == NULL)
1690 \f
1691 /* Subroutine declarations and macros for regex_compile. */
1692
1693 static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1694 reg_syntax_t syntax,
1695 struct re_pattern_buffer *bufp));
1696 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1697 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1698 int arg1, int arg2));
1699 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1700 int arg, unsigned char *end));
1701 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1702 int arg1, int arg2, unsigned char *end));
1703 static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1704 re_char *p,
1705 reg_syntax_t syntax));
1706 static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1707 re_char *pend,
1708 reg_syntax_t syntax));
1709 static re_char *skip_one_char _RE_ARGS ((re_char *p));
1710 static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
1711 char *fastmap, const int multibyte));
1712
1713 /* Fetch the next character in the uncompiled pattern, with no
1714 translation. */
1715 #define PATFETCH(c) \
1716 do { \
1717 int len; \
1718 if (p == pend) return REG_EEND; \
1719 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1720 p += len; \
1721 } while (0)
1722
1723
1724 /* If `translate' is non-null, return translate[D], else just D. We
1725 cast the subscript to translate because some data is declared as
1726 `char *', to avoid warnings when a string constant is passed. But
1727 when we use a character as a subscript we must make it unsigned. */
1728 #ifndef TRANSLATE
1729 # define TRANSLATE(d) \
1730 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1731 #endif
1732
1733
1734 /* Macros for outputting the compiled pattern into `buffer'. */
1735
1736 /* If the buffer isn't allocated when it comes in, use this. */
1737 #define INIT_BUF_SIZE 32
1738
1739 /* Make sure we have at least N more bytes of space in buffer. */
1740 #define GET_BUFFER_SPACE(n) \
1741 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1742 EXTEND_BUFFER ()
1743
1744 /* Make sure we have one more byte of buffer space and then add C to it. */
1745 #define BUF_PUSH(c) \
1746 do { \
1747 GET_BUFFER_SPACE (1); \
1748 *b++ = (unsigned char) (c); \
1749 } while (0)
1750
1751
1752 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1753 #define BUF_PUSH_2(c1, c2) \
1754 do { \
1755 GET_BUFFER_SPACE (2); \
1756 *b++ = (unsigned char) (c1); \
1757 *b++ = (unsigned char) (c2); \
1758 } while (0)
1759
1760
1761 /* As with BUF_PUSH_2, except for three bytes. */
1762 #define BUF_PUSH_3(c1, c2, c3) \
1763 do { \
1764 GET_BUFFER_SPACE (3); \
1765 *b++ = (unsigned char) (c1); \
1766 *b++ = (unsigned char) (c2); \
1767 *b++ = (unsigned char) (c3); \
1768 } while (0)
1769
1770
1771 /* Store a jump with opcode OP at LOC to location TO. We store a
1772 relative address offset by the three bytes the jump itself occupies. */
1773 #define STORE_JUMP(op, loc, to) \
1774 store_op1 (op, loc, (to) - (loc) - 3)
1775
1776 /* Likewise, for a two-argument jump. */
1777 #define STORE_JUMP2(op, loc, to, arg) \
1778 store_op2 (op, loc, (to) - (loc) - 3, arg)
1779
1780 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1781 #define INSERT_JUMP(op, loc, to) \
1782 insert_op1 (op, loc, (to) - (loc) - 3, b)
1783
1784 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1785 #define INSERT_JUMP2(op, loc, to, arg) \
1786 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1787
1788
1789 /* This is not an arbitrary limit: the arguments which represent offsets
1790 into the pattern are two bytes long. So if 2^15 bytes turns out to
1791 be too small, many things would have to change. */
1792 # define MAX_BUF_SIZE (1L << 15)
1793
1794 #if 0 /* This is when we thought it could be 2^16 bytes. */
1795 /* Any other compiler which, like MSC, has allocation limit below 2^16
1796 bytes will have to use approach similar to what was done below for
1797 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1798 reallocating to 0 bytes. Such thing is not going to work too well.
1799 You have been warned!! */
1800 #if defined _MSC_VER && !defined WIN32
1801 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1802 # define MAX_BUF_SIZE 65500L
1803 #else
1804 # define MAX_BUF_SIZE (1L << 16)
1805 #endif
1806 #endif /* 0 */
1807
1808 /* Extend the buffer by twice its current size via realloc and
1809 reset the pointers that pointed into the old block to point to the
1810 correct places in the new one. If extending the buffer results in it
1811 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1812 #if __BOUNDED_POINTERS__
1813 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1814 # define MOVE_BUFFER_POINTER(P) \
1815 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1816 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1817 else \
1818 { \
1819 SET_HIGH_BOUND (b); \
1820 SET_HIGH_BOUND (begalt); \
1821 if (fixup_alt_jump) \
1822 SET_HIGH_BOUND (fixup_alt_jump); \
1823 if (laststart) \
1824 SET_HIGH_BOUND (laststart); \
1825 if (pending_exact) \
1826 SET_HIGH_BOUND (pending_exact); \
1827 }
1828 #else
1829 # define MOVE_BUFFER_POINTER(P) (P) += incr
1830 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1831 #endif
1832 #define EXTEND_BUFFER() \
1833 do { \
1834 re_char *old_buffer = bufp->buffer; \
1835 if (bufp->allocated == MAX_BUF_SIZE) \
1836 return REG_ESIZE; \
1837 bufp->allocated <<= 1; \
1838 if (bufp->allocated > MAX_BUF_SIZE) \
1839 bufp->allocated = MAX_BUF_SIZE; \
1840 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1841 if (bufp->buffer == NULL) \
1842 return REG_ESPACE; \
1843 /* If the buffer moved, move all the pointers into it. */ \
1844 if (old_buffer != bufp->buffer) \
1845 { \
1846 int incr = bufp->buffer - old_buffer; \
1847 MOVE_BUFFER_POINTER (b); \
1848 MOVE_BUFFER_POINTER (begalt); \
1849 if (fixup_alt_jump) \
1850 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1851 if (laststart) \
1852 MOVE_BUFFER_POINTER (laststart); \
1853 if (pending_exact) \
1854 MOVE_BUFFER_POINTER (pending_exact); \
1855 } \
1856 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1857 } while (0)
1858
1859
1860 /* Since we have one byte reserved for the register number argument to
1861 {start,stop}_memory, the maximum number of groups we can report
1862 things about is what fits in that byte. */
1863 #define MAX_REGNUM 255
1864
1865 /* But patterns can have more than `MAX_REGNUM' registers. We just
1866 ignore the excess. */
1867 typedef int regnum_t;
1868
1869
1870 /* Macros for the compile stack. */
1871
1872 /* Since offsets can go either forwards or backwards, this type needs to
1873 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1874 /* int may be not enough when sizeof(int) == 2. */
1875 typedef long pattern_offset_t;
1876
1877 typedef struct
1878 {
1879 pattern_offset_t begalt_offset;
1880 pattern_offset_t fixup_alt_jump;
1881 pattern_offset_t laststart_offset;
1882 regnum_t regnum;
1883 } compile_stack_elt_t;
1884
1885
1886 typedef struct
1887 {
1888 compile_stack_elt_t *stack;
1889 unsigned size;
1890 unsigned avail; /* Offset of next open position. */
1891 } compile_stack_type;
1892
1893
1894 #define INIT_COMPILE_STACK_SIZE 32
1895
1896 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1897 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1898
1899 /* The next available element. */
1900 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1901
1902 /* Explicit quit checking is only used on NTemacs and whenever we
1903 use polling to process input events. */
1904 #if defined emacs && (defined WINDOWSNT || defined SYNC_INPUT) && defined QUIT
1905 extern int immediate_quit;
1906 # define IMMEDIATE_QUIT_CHECK \
1907 do { \
1908 if (immediate_quit) QUIT; \
1909 } while (0)
1910 #else
1911 # define IMMEDIATE_QUIT_CHECK ((void)0)
1912 #endif
1913 \f
1914 /* Structure to manage work area for range table. */
1915 struct range_table_work_area
1916 {
1917 int *table; /* actual work area. */
1918 int allocated; /* allocated size for work area in bytes. */
1919 int used; /* actually used size in words. */
1920 int bits; /* flag to record character classes */
1921 };
1922
1923 /* Make sure that WORK_AREA can hold more N multibyte characters.
1924 This is used only in set_image_of_range and set_image_of_range_1.
1925 It expects WORK_AREA to be a pointer.
1926 If it can't get the space, it returns from the surrounding function. */
1927
1928 #define EXTEND_RANGE_TABLE(work_area, n) \
1929 do { \
1930 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1931 { \
1932 extend_range_table_work_area (&work_area); \
1933 if ((work_area).table == 0) \
1934 return (REG_ESPACE); \
1935 } \
1936 } while (0)
1937
1938 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1939 (work_area).bits |= (bit)
1940
1941 /* Bits used to implement the multibyte-part of the various character classes
1942 such as [:alnum:] in a charset's range table. */
1943 #define BIT_WORD 0x1
1944 #define BIT_LOWER 0x2
1945 #define BIT_PUNCT 0x4
1946 #define BIT_SPACE 0x8
1947 #define BIT_UPPER 0x10
1948 #define BIT_MULTIBYTE 0x20
1949
1950 /* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1951 #define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
1952 do { \
1953 EXTEND_RANGE_TABLE ((work_area), 2); \
1954 (work_area).table[(work_area).used++] = (range_start); \
1955 (work_area).table[(work_area).used++] = (range_end); \
1956 } while (0)
1957
1958 /* Free allocated memory for WORK_AREA. */
1959 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1960 do { \
1961 if ((work_area).table) \
1962 free ((work_area).table); \
1963 } while (0)
1964
1965 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1966 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1967 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1968 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1969 \f
1970
1971 /* Set the bit for character C in a list. */
1972 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1973
1974
1975 #ifdef emacs
1976
1977 /* Store characters in the rage range C0 to C1 in WORK_AREA while
1978 translating them and paying attention to the continuity of
1979 translated characters.
1980
1981 Implementation note: It is better to implement this fairly big
1982 macro by a function, but it's not that easy because macros called
1983 in this macro assume various local variables already declared. */
1984
1985 #define SETUP_MULTIBYTE_RANGE(work_area, c0, c1) \
1986 do { \
1987 re_wchar_t c, t, t_last; \
1988 int n; \
1989 \
1990 c = (c0); \
1991 t_last = multibyte ? TRANSLATE (c) : TRANSLATE (MAKE_CHAR_MULTIBYTE (c)); \
1992 for (c++, n = 1; c <= (c1); c++, n++) \
1993 { \
1994 t = multibyte ? TRANSLATE (c) : TRANSLATE (MAKE_CHAR_MULTIBYTE (c)); \
1995 if (t_last + n == t) \
1996 continue; \
1997 SET_RANGE_TABLE_WORK_AREA ((work_area), t_last, t_last + n - 1); \
1998 t_last = t; \
1999 n = 0; \
2000 } \
2001 if (n > 0) \
2002 SET_RANGE_TABLE_WORK_AREA ((work_area), t_last, t_last + n - 1); \
2003 } while (0)
2004
2005 #endif /* emacs */
2006
2007 /* Get the next unsigned number in the uncompiled pattern. */
2008 #define GET_UNSIGNED_NUMBER(num) \
2009 do { \
2010 if (p == pend) \
2011 FREE_STACK_RETURN (REG_EBRACE); \
2012 else \
2013 { \
2014 PATFETCH (c); \
2015 while ('0' <= c && c <= '9') \
2016 { \
2017 int prev; \
2018 if (num < 0) \
2019 num = 0; \
2020 prev = num; \
2021 num = num * 10 + c - '0'; \
2022 if (num / 10 != prev) \
2023 FREE_STACK_RETURN (REG_BADBR); \
2024 if (p == pend) \
2025 FREE_STACK_RETURN (REG_EBRACE); \
2026 PATFETCH (c); \
2027 } \
2028 } \
2029 } while (0)
2030 \f
2031 #if ! WIDE_CHAR_SUPPORT
2032
2033 /* Map a string to the char class it names (if any). */
2034 re_wctype_t
2035 re_wctype (str)
2036 re_char *str;
2037 {
2038 const char *string = str;
2039 if (STREQ (string, "alnum")) return RECC_ALNUM;
2040 else if (STREQ (string, "alpha")) return RECC_ALPHA;
2041 else if (STREQ (string, "word")) return RECC_WORD;
2042 else if (STREQ (string, "ascii")) return RECC_ASCII;
2043 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
2044 else if (STREQ (string, "graph")) return RECC_GRAPH;
2045 else if (STREQ (string, "lower")) return RECC_LOWER;
2046 else if (STREQ (string, "print")) return RECC_PRINT;
2047 else if (STREQ (string, "punct")) return RECC_PUNCT;
2048 else if (STREQ (string, "space")) return RECC_SPACE;
2049 else if (STREQ (string, "upper")) return RECC_UPPER;
2050 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
2051 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
2052 else if (STREQ (string, "digit")) return RECC_DIGIT;
2053 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
2054 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2055 else if (STREQ (string, "blank")) return RECC_BLANK;
2056 else return 0;
2057 }
2058
2059 /* True iff CH is in the char class CC. */
2060 boolean
2061 re_iswctype (ch, cc)
2062 int ch;
2063 re_wctype_t cc;
2064 {
2065 switch (cc)
2066 {
2067 case RECC_ALNUM: return ISALNUM (ch);
2068 case RECC_ALPHA: return ISALPHA (ch);
2069 case RECC_BLANK: return ISBLANK (ch);
2070 case RECC_CNTRL: return ISCNTRL (ch);
2071 case RECC_DIGIT: return ISDIGIT (ch);
2072 case RECC_GRAPH: return ISGRAPH (ch);
2073 case RECC_LOWER: return ISLOWER (ch);
2074 case RECC_PRINT: return ISPRINT (ch);
2075 case RECC_PUNCT: return ISPUNCT (ch);
2076 case RECC_SPACE: return ISSPACE (ch);
2077 case RECC_UPPER: return ISUPPER (ch);
2078 case RECC_XDIGIT: return ISXDIGIT (ch);
2079 case RECC_ASCII: return IS_REAL_ASCII (ch);
2080 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2081 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2082 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2083 case RECC_WORD: return ISWORD (ch);
2084 case RECC_ERROR: return false;
2085 default:
2086 abort();
2087 }
2088 }
2089
2090 /* Return a bit-pattern to use in the range-table bits to match multibyte
2091 chars of class CC. */
2092 static int
2093 re_wctype_to_bit (cc)
2094 re_wctype_t cc;
2095 {
2096 switch (cc)
2097 {
2098 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
2099 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2100 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2101 case RECC_LOWER: return BIT_LOWER;
2102 case RECC_UPPER: return BIT_UPPER;
2103 case RECC_PUNCT: return BIT_PUNCT;
2104 case RECC_SPACE: return BIT_SPACE;
2105 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
2106 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2107 default:
2108 abort();
2109 }
2110 }
2111 #endif
2112 \f
2113 /* Filling in the work area of a range. */
2114
2115 /* Actually extend the space in WORK_AREA. */
2116
2117 static void
2118 extend_range_table_work_area (work_area)
2119 struct range_table_work_area *work_area;
2120 {
2121 work_area->allocated += 16 * sizeof (int);
2122 if (work_area->table)
2123 work_area->table
2124 = (int *) realloc (work_area->table, work_area->allocated);
2125 else
2126 work_area->table
2127 = (int *) malloc (work_area->allocated);
2128 }
2129
2130 #if 0
2131 #ifdef emacs
2132
2133 /* Carefully find the ranges of codes that are equivalent
2134 under case conversion to the range start..end when passed through
2135 TRANSLATE. Handle the case where non-letters can come in between
2136 two upper-case letters (which happens in Latin-1).
2137 Also handle the case of groups of more than 2 case-equivalent chars.
2138
2139 The basic method is to look at consecutive characters and see
2140 if they can form a run that can be handled as one.
2141
2142 Returns -1 if successful, REG_ESPACE if ran out of space. */
2143
2144 static int
2145 set_image_of_range_1 (work_area, start, end, translate)
2146 RE_TRANSLATE_TYPE translate;
2147 struct range_table_work_area *work_area;
2148 re_wchar_t start, end;
2149 {
2150 /* `one_case' indicates a character, or a run of characters,
2151 each of which is an isolate (no case-equivalents).
2152 This includes all ASCII non-letters.
2153
2154 `two_case' indicates a character, or a run of characters,
2155 each of which has two case-equivalent forms.
2156 This includes all ASCII letters.
2157
2158 `strange' indicates a character that has more than one
2159 case-equivalent. */
2160
2161 enum case_type {one_case, two_case, strange};
2162
2163 /* Describe the run that is in progress,
2164 which the next character can try to extend.
2165 If run_type is strange, that means there really is no run.
2166 If run_type is one_case, then run_start...run_end is the run.
2167 If run_type is two_case, then the run is run_start...run_end,
2168 and the case-equivalents end at run_eqv_end. */
2169
2170 enum case_type run_type = strange;
2171 int run_start, run_end, run_eqv_end;
2172
2173 Lisp_Object eqv_table;
2174
2175 if (!RE_TRANSLATE_P (translate))
2176 {
2177 EXTEND_RANGE_TABLE (work_area, 2);
2178 work_area->table[work_area->used++] = (start);
2179 work_area->table[work_area->used++] = (end);
2180 return -1;
2181 }
2182
2183 eqv_table = XCHAR_TABLE (translate)->extras[2];
2184
2185 for (; start <= end; start++)
2186 {
2187 enum case_type this_type;
2188 int eqv = RE_TRANSLATE (eqv_table, start);
2189 int minchar, maxchar;
2190
2191 /* Classify this character */
2192 if (eqv == start)
2193 this_type = one_case;
2194 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2195 this_type = two_case;
2196 else
2197 this_type = strange;
2198
2199 if (start < eqv)
2200 minchar = start, maxchar = eqv;
2201 else
2202 minchar = eqv, maxchar = start;
2203
2204 /* Can this character extend the run in progress? */
2205 if (this_type == strange || this_type != run_type
2206 || !(minchar == run_end + 1
2207 && (run_type == two_case
2208 ? maxchar == run_eqv_end + 1 : 1)))
2209 {
2210 /* No, end the run.
2211 Record each of its equivalent ranges. */
2212 if (run_type == one_case)
2213 {
2214 EXTEND_RANGE_TABLE (work_area, 2);
2215 work_area->table[work_area->used++] = run_start;
2216 work_area->table[work_area->used++] = run_end;
2217 }
2218 else if (run_type == two_case)
2219 {
2220 EXTEND_RANGE_TABLE (work_area, 4);
2221 work_area->table[work_area->used++] = run_start;
2222 work_area->table[work_area->used++] = run_end;
2223 work_area->table[work_area->used++]
2224 = RE_TRANSLATE (eqv_table, run_start);
2225 work_area->table[work_area->used++]
2226 = RE_TRANSLATE (eqv_table, run_end);
2227 }
2228 run_type = strange;
2229 }
2230
2231 if (this_type == strange)
2232 {
2233 /* For a strange character, add each of its equivalents, one
2234 by one. Don't start a range. */
2235 do
2236 {
2237 EXTEND_RANGE_TABLE (work_area, 2);
2238 work_area->table[work_area->used++] = eqv;
2239 work_area->table[work_area->used++] = eqv;
2240 eqv = RE_TRANSLATE (eqv_table, eqv);
2241 }
2242 while (eqv != start);
2243 }
2244
2245 /* Add this char to the run, or start a new run. */
2246 else if (run_type == strange)
2247 {
2248 /* Initialize a new range. */
2249 run_type = this_type;
2250 run_start = start;
2251 run_end = start;
2252 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2253 }
2254 else
2255 {
2256 /* Extend a running range. */
2257 run_end = minchar;
2258 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2259 }
2260 }
2261
2262 /* If a run is still in progress at the end, finish it now
2263 by recording its equivalent ranges. */
2264 if (run_type == one_case)
2265 {
2266 EXTEND_RANGE_TABLE (work_area, 2);
2267 work_area->table[work_area->used++] = run_start;
2268 work_area->table[work_area->used++] = run_end;
2269 }
2270 else if (run_type == two_case)
2271 {
2272 EXTEND_RANGE_TABLE (work_area, 4);
2273 work_area->table[work_area->used++] = run_start;
2274 work_area->table[work_area->used++] = run_end;
2275 work_area->table[work_area->used++]
2276 = RE_TRANSLATE (eqv_table, run_start);
2277 work_area->table[work_area->used++]
2278 = RE_TRANSLATE (eqv_table, run_end);
2279 }
2280
2281 return -1;
2282 }
2283
2284 #endif /* emacs */
2285
2286 /* Record the the image of the range start..end when passed through
2287 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2288 and is not even necessarily contiguous.
2289 Normally we approximate it with the smallest contiguous range that contains
2290 all the chars we need. However, for Latin-1 we go to extra effort
2291 to do a better job.
2292
2293 This function is not called for ASCII ranges.
2294
2295 Returns -1 if successful, REG_ESPACE if ran out of space. */
2296
2297 static int
2298 set_image_of_range (work_area, start, end, translate)
2299 RE_TRANSLATE_TYPE translate;
2300 struct range_table_work_area *work_area;
2301 re_wchar_t start, end;
2302 {
2303 re_wchar_t cmin, cmax;
2304
2305 #ifdef emacs
2306 /* For Latin-1 ranges, use set_image_of_range_1
2307 to get proper handling of ranges that include letters and nonletters.
2308 For a range that includes the whole of Latin-1, this is not necessary.
2309 For other character sets, we don't bother to get this right. */
2310 if (RE_TRANSLATE_P (translate) && start < 04400
2311 && !(start < 04200 && end >= 04377))
2312 {
2313 int newend;
2314 int tem;
2315 newend = end;
2316 if (newend > 04377)
2317 newend = 04377;
2318 tem = set_image_of_range_1 (work_area, start, newend, translate);
2319 if (tem > 0)
2320 return tem;
2321
2322 start = 04400;
2323 if (end < 04400)
2324 return -1;
2325 }
2326 #endif
2327
2328 EXTEND_RANGE_TABLE (work_area, 2);
2329 work_area->table[work_area->used++] = (start);
2330 work_area->table[work_area->used++] = (end);
2331
2332 cmin = -1, cmax = -1;
2333
2334 if (RE_TRANSLATE_P (translate))
2335 {
2336 int ch;
2337
2338 for (ch = start; ch <= end; ch++)
2339 {
2340 re_wchar_t c = TRANSLATE (ch);
2341 if (! (start <= c && c <= end))
2342 {
2343 if (cmin == -1)
2344 cmin = c, cmax = c;
2345 else
2346 {
2347 cmin = MIN (cmin, c);
2348 cmax = MAX (cmax, c);
2349 }
2350 }
2351 }
2352
2353 if (cmin != -1)
2354 {
2355 EXTEND_RANGE_TABLE (work_area, 2);
2356 work_area->table[work_area->used++] = (cmin);
2357 work_area->table[work_area->used++] = (cmax);
2358 }
2359 }
2360
2361 return -1;
2362 }
2363 #endif /* 0 */
2364 \f
2365 #ifndef MATCH_MAY_ALLOCATE
2366
2367 /* If we cannot allocate large objects within re_match_2_internal,
2368 we make the fail stack and register vectors global.
2369 The fail stack, we grow to the maximum size when a regexp
2370 is compiled.
2371 The register vectors, we adjust in size each time we
2372 compile a regexp, according to the number of registers it needs. */
2373
2374 static fail_stack_type fail_stack;
2375
2376 /* Size with which the following vectors are currently allocated.
2377 That is so we can make them bigger as needed,
2378 but never make them smaller. */
2379 static int regs_allocated_size;
2380
2381 static re_char ** regstart, ** regend;
2382 static re_char **best_regstart, **best_regend;
2383
2384 /* Make the register vectors big enough for NUM_REGS registers,
2385 but don't make them smaller. */
2386
2387 static
2388 regex_grow_registers (num_regs)
2389 int num_regs;
2390 {
2391 if (num_regs > regs_allocated_size)
2392 {
2393 RETALLOC_IF (regstart, num_regs, re_char *);
2394 RETALLOC_IF (regend, num_regs, re_char *);
2395 RETALLOC_IF (best_regstart, num_regs, re_char *);
2396 RETALLOC_IF (best_regend, num_regs, re_char *);
2397
2398 regs_allocated_size = num_regs;
2399 }
2400 }
2401
2402 #endif /* not MATCH_MAY_ALLOCATE */
2403 \f
2404 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2405 compile_stack,
2406 regnum_t regnum));
2407
2408 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2409 Returns one of error codes defined in `regex.h', or zero for success.
2410
2411 Assumes the `allocated' (and perhaps `buffer') and `translate'
2412 fields are set in BUFP on entry.
2413
2414 If it succeeds, results are put in BUFP (if it returns an error, the
2415 contents of BUFP are undefined):
2416 `buffer' is the compiled pattern;
2417 `syntax' is set to SYNTAX;
2418 `used' is set to the length of the compiled pattern;
2419 `fastmap_accurate' is zero;
2420 `re_nsub' is the number of subexpressions in PATTERN;
2421 `not_bol' and `not_eol' are zero;
2422
2423 The `fastmap' field is neither examined nor set. */
2424
2425 /* Insert the `jump' from the end of last alternative to "here".
2426 The space for the jump has already been allocated. */
2427 #define FIXUP_ALT_JUMP() \
2428 do { \
2429 if (fixup_alt_jump) \
2430 STORE_JUMP (jump, fixup_alt_jump, b); \
2431 } while (0)
2432
2433
2434 /* Return, freeing storage we allocated. */
2435 #define FREE_STACK_RETURN(value) \
2436 do { \
2437 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2438 free (compile_stack.stack); \
2439 return value; \
2440 } while (0)
2441
2442 static reg_errcode_t
2443 regex_compile (pattern, size, syntax, bufp)
2444 re_char *pattern;
2445 size_t size;
2446 reg_syntax_t syntax;
2447 struct re_pattern_buffer *bufp;
2448 {
2449 /* We fetch characters from PATTERN here. */
2450 register re_wchar_t c, c1;
2451
2452 /* A random temporary spot in PATTERN. */
2453 re_char *p1;
2454
2455 /* Points to the end of the buffer, where we should append. */
2456 register unsigned char *b;
2457
2458 /* Keeps track of unclosed groups. */
2459 compile_stack_type compile_stack;
2460
2461 /* Points to the current (ending) position in the pattern. */
2462 #ifdef AIX
2463 /* `const' makes AIX compiler fail. */
2464 unsigned char *p = pattern;
2465 #else
2466 re_char *p = pattern;
2467 #endif
2468 re_char *pend = pattern + size;
2469
2470 /* How to translate the characters in the pattern. */
2471 RE_TRANSLATE_TYPE translate = bufp->translate;
2472
2473 /* Address of the count-byte of the most recently inserted `exactn'
2474 command. This makes it possible to tell if a new exact-match
2475 character can be added to that command or if the character requires
2476 a new `exactn' command. */
2477 unsigned char *pending_exact = 0;
2478
2479 /* Address of start of the most recently finished expression.
2480 This tells, e.g., postfix * where to find the start of its
2481 operand. Reset at the beginning of groups and alternatives. */
2482 unsigned char *laststart = 0;
2483
2484 /* Address of beginning of regexp, or inside of last group. */
2485 unsigned char *begalt;
2486
2487 /* Place in the uncompiled pattern (i.e., the {) to
2488 which to go back if the interval is invalid. */
2489 re_char *beg_interval;
2490
2491 /* Address of the place where a forward jump should go to the end of
2492 the containing expression. Each alternative of an `or' -- except the
2493 last -- ends with a forward jump of this sort. */
2494 unsigned char *fixup_alt_jump = 0;
2495
2496 /* Counts open-groups as they are encountered. Remembered for the
2497 matching close-group on the compile stack, so the same register
2498 number is put in the stop_memory as the start_memory. */
2499 regnum_t regnum = 0;
2500
2501 /* Work area for range table of charset. */
2502 struct range_table_work_area range_table_work;
2503
2504 /* If the object matched can contain multibyte characters. */
2505 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2506
2507 /* If a target of matching can contain multibyte characters. */
2508 const boolean target_multibyte = RE_TARGET_MULTIBYTE_P (bufp);
2509
2510 /* Nonzero if we have pushed down into a subpattern. */
2511 int in_subpattern = 0;
2512
2513 /* These hold the values of p, pattern, and pend from the main
2514 pattern when we have pushed into a subpattern. */
2515 re_char *main_p;
2516 re_char *main_pattern;
2517 re_char *main_pend;
2518
2519 #ifdef DEBUG
2520 debug++;
2521 DEBUG_PRINT1 ("\nCompiling pattern: ");
2522 if (debug > 0)
2523 {
2524 unsigned debug_count;
2525
2526 for (debug_count = 0; debug_count < size; debug_count++)
2527 putchar (pattern[debug_count]);
2528 putchar ('\n');
2529 }
2530 #endif /* DEBUG */
2531
2532 /* Initialize the compile stack. */
2533 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2534 if (compile_stack.stack == NULL)
2535 return REG_ESPACE;
2536
2537 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2538 compile_stack.avail = 0;
2539
2540 range_table_work.table = 0;
2541 range_table_work.allocated = 0;
2542
2543 /* Initialize the pattern buffer. */
2544 bufp->syntax = syntax;
2545 bufp->fastmap_accurate = 0;
2546 bufp->not_bol = bufp->not_eol = 0;
2547
2548 /* Set `used' to zero, so that if we return an error, the pattern
2549 printer (for debugging) will think there's no pattern. We reset it
2550 at the end. */
2551 bufp->used = 0;
2552
2553 /* Always count groups, whether or not bufp->no_sub is set. */
2554 bufp->re_nsub = 0;
2555
2556 #if !defined emacs && !defined SYNTAX_TABLE
2557 /* Initialize the syntax table. */
2558 init_syntax_once ();
2559 #endif
2560
2561 if (bufp->allocated == 0)
2562 {
2563 if (bufp->buffer)
2564 { /* If zero allocated, but buffer is non-null, try to realloc
2565 enough space. This loses if buffer's address is bogus, but
2566 that is the user's responsibility. */
2567 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2568 }
2569 else
2570 { /* Caller did not allocate a buffer. Do it for them. */
2571 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2572 }
2573 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2574
2575 bufp->allocated = INIT_BUF_SIZE;
2576 }
2577
2578 begalt = b = bufp->buffer;
2579
2580 /* Loop through the uncompiled pattern until we're at the end. */
2581 while (1)
2582 {
2583 if (p == pend)
2584 {
2585 /* If this is the end of an included regexp,
2586 pop back to the main regexp and try again. */
2587 if (in_subpattern)
2588 {
2589 in_subpattern = 0;
2590 pattern = main_pattern;
2591 p = main_p;
2592 pend = main_pend;
2593 continue;
2594 }
2595 /* If this is the end of the main regexp, we are done. */
2596 break;
2597 }
2598
2599 PATFETCH (c);
2600
2601 switch (c)
2602 {
2603 case ' ':
2604 {
2605 re_char *p1 = p;
2606
2607 /* If there's no special whitespace regexp, treat
2608 spaces normally. And don't try to do this recursively. */
2609 if (!whitespace_regexp || in_subpattern)
2610 goto normal_char;
2611
2612 /* Peek past following spaces. */
2613 while (p1 != pend)
2614 {
2615 if (*p1 != ' ')
2616 break;
2617 p1++;
2618 }
2619 /* If the spaces are followed by a repetition op,
2620 treat them normally. */
2621 if (p1 != pend
2622 && (*p1 == '*' || *p1 == '+' || *p1 == '?'
2623 || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
2624 goto normal_char;
2625
2626 /* Replace the spaces with the whitespace regexp. */
2627 in_subpattern = 1;
2628 main_p = p1;
2629 main_pend = pend;
2630 main_pattern = pattern;
2631 p = pattern = whitespace_regexp;
2632 pend = p + strlen (p);
2633 break;
2634 }
2635
2636 case '^':
2637 {
2638 if ( /* If at start of pattern, it's an operator. */
2639 p == pattern + 1
2640 /* If context independent, it's an operator. */
2641 || syntax & RE_CONTEXT_INDEP_ANCHORS
2642 /* Otherwise, depends on what's come before. */
2643 || at_begline_loc_p (pattern, p, syntax))
2644 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
2645 else
2646 goto normal_char;
2647 }
2648 break;
2649
2650
2651 case '$':
2652 {
2653 if ( /* If at end of pattern, it's an operator. */
2654 p == pend
2655 /* If context independent, it's an operator. */
2656 || syntax & RE_CONTEXT_INDEP_ANCHORS
2657 /* Otherwise, depends on what's next. */
2658 || at_endline_loc_p (p, pend, syntax))
2659 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
2660 else
2661 goto normal_char;
2662 }
2663 break;
2664
2665
2666 case '+':
2667 case '?':
2668 if ((syntax & RE_BK_PLUS_QM)
2669 || (syntax & RE_LIMITED_OPS))
2670 goto normal_char;
2671 handle_plus:
2672 case '*':
2673 /* If there is no previous pattern... */
2674 if (!laststart)
2675 {
2676 if (syntax & RE_CONTEXT_INVALID_OPS)
2677 FREE_STACK_RETURN (REG_BADRPT);
2678 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2679 goto normal_char;
2680 }
2681
2682 {
2683 /* 1 means zero (many) matches is allowed. */
2684 boolean zero_times_ok = 0, many_times_ok = 0;
2685 boolean greedy = 1;
2686
2687 /* If there is a sequence of repetition chars, collapse it
2688 down to just one (the right one). We can't combine
2689 interval operators with these because of, e.g., `a{2}*',
2690 which should only match an even number of `a's. */
2691
2692 for (;;)
2693 {
2694 if ((syntax & RE_FRUGAL)
2695 && c == '?' && (zero_times_ok || many_times_ok))
2696 greedy = 0;
2697 else
2698 {
2699 zero_times_ok |= c != '+';
2700 many_times_ok |= c != '?';
2701 }
2702
2703 if (p == pend)
2704 break;
2705 else if (*p == '*'
2706 || (!(syntax & RE_BK_PLUS_QM)
2707 && (*p == '+' || *p == '?')))
2708 ;
2709 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
2710 {
2711 if (p+1 == pend)
2712 FREE_STACK_RETURN (REG_EESCAPE);
2713 if (p[1] == '+' || p[1] == '?')
2714 PATFETCH (c); /* Gobble up the backslash. */
2715 else
2716 break;
2717 }
2718 else
2719 break;
2720 /* If we get here, we found another repeat character. */
2721 PATFETCH (c);
2722 }
2723
2724 /* Star, etc. applied to an empty pattern is equivalent
2725 to an empty pattern. */
2726 if (!laststart || laststart == b)
2727 break;
2728
2729 /* Now we know whether or not zero matches is allowed
2730 and also whether or not two or more matches is allowed. */
2731 if (greedy)
2732 {
2733 if (many_times_ok)
2734 {
2735 boolean simple = skip_one_char (laststart) == b;
2736 unsigned int startoffset = 0;
2737 re_opcode_t ofj =
2738 /* Check if the loop can match the empty string. */
2739 (simple || !analyse_first (laststart, b, NULL, 0))
2740 ? on_failure_jump : on_failure_jump_loop;
2741 assert (skip_one_char (laststart) <= b);
2742
2743 if (!zero_times_ok && simple)
2744 { /* Since simple * loops can be made faster by using
2745 on_failure_keep_string_jump, we turn simple P+
2746 into PP* if P is simple. */
2747 unsigned char *p1, *p2;
2748 startoffset = b - laststart;
2749 GET_BUFFER_SPACE (startoffset);
2750 p1 = b; p2 = laststart;
2751 while (p2 < p1)
2752 *b++ = *p2++;
2753 zero_times_ok = 1;
2754 }
2755
2756 GET_BUFFER_SPACE (6);
2757 if (!zero_times_ok)
2758 /* A + loop. */
2759 STORE_JUMP (ofj, b, b + 6);
2760 else
2761 /* Simple * loops can use on_failure_keep_string_jump
2762 depending on what follows. But since we don't know
2763 that yet, we leave the decision up to
2764 on_failure_jump_smart. */
2765 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
2766 laststart + startoffset, b + 6);
2767 b += 3;
2768 STORE_JUMP (jump, b, laststart + startoffset);
2769 b += 3;
2770 }
2771 else
2772 {
2773 /* A simple ? pattern. */
2774 assert (zero_times_ok);
2775 GET_BUFFER_SPACE (3);
2776 INSERT_JUMP (on_failure_jump, laststart, b + 3);
2777 b += 3;
2778 }
2779 }
2780 else /* not greedy */
2781 { /* I wish the greedy and non-greedy cases could be merged. */
2782
2783 GET_BUFFER_SPACE (7); /* We might use less. */
2784 if (many_times_ok)
2785 {
2786 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2787
2788 /* The non-greedy multiple match looks like
2789 a repeat..until: we only need a conditional jump
2790 at the end of the loop. */
2791 if (emptyp) BUF_PUSH (no_op);
2792 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2793 : on_failure_jump, b, laststart);
2794 b += 3;
2795 if (zero_times_ok)
2796 {
2797 /* The repeat...until naturally matches one or more.
2798 To also match zero times, we need to first jump to
2799 the end of the loop (its conditional jump). */
2800 INSERT_JUMP (jump, laststart, b);
2801 b += 3;
2802 }
2803 }
2804 else
2805 {
2806 /* non-greedy a?? */
2807 INSERT_JUMP (jump, laststart, b + 3);
2808 b += 3;
2809 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2810 b += 3;
2811 }
2812 }
2813 }
2814 pending_exact = 0;
2815 break;
2816
2817
2818 case '.':
2819 laststart = b;
2820 BUF_PUSH (anychar);
2821 break;
2822
2823
2824 case '[':
2825 {
2826 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
2827
2828 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2829
2830 /* Ensure that we have enough space to push a charset: the
2831 opcode, the length count, and the bitset; 34 bytes in all. */
2832 GET_BUFFER_SPACE (34);
2833
2834 laststart = b;
2835
2836 /* We test `*p == '^' twice, instead of using an if
2837 statement, so we only need one BUF_PUSH. */
2838 BUF_PUSH (*p == '^' ? charset_not : charset);
2839 if (*p == '^')
2840 p++;
2841
2842 /* Remember the first position in the bracket expression. */
2843 p1 = p;
2844
2845 /* Push the number of bytes in the bitmap. */
2846 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2847
2848 /* Clear the whole map. */
2849 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2850
2851 /* charset_not matches newline according to a syntax bit. */
2852 if ((re_opcode_t) b[-2] == charset_not
2853 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2854 SET_LIST_BIT ('\n');
2855
2856 /* Read in characters and ranges, setting map bits. */
2857 for (;;)
2858 {
2859 boolean escaped_char = false;
2860 const unsigned char *p2 = p;
2861
2862 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2863
2864 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2865 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2866 So the translation is done later in a loop. Example:
2867 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2868 PATFETCH (c);
2869
2870 /* \ might escape characters inside [...] and [^...]. */
2871 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2872 {
2873 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2874
2875 PATFETCH (c);
2876 escaped_char = true;
2877 }
2878 else
2879 {
2880 /* Could be the end of the bracket expression. If it's
2881 not (i.e., when the bracket expression is `[]' so
2882 far), the ']' character bit gets set way below. */
2883 if (c == ']' && p2 != p1)
2884 break;
2885 }
2886
2887 /* See if we're at the beginning of a possible character
2888 class. */
2889
2890 if (!escaped_char &&
2891 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2892 {
2893 /* Leave room for the null. */
2894 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
2895 const unsigned char *class_beg;
2896
2897 PATFETCH (c);
2898 c1 = 0;
2899 class_beg = p;
2900
2901 /* If pattern is `[[:'. */
2902 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2903
2904 for (;;)
2905 {
2906 PATFETCH (c);
2907 if ((c == ':' && *p == ']') || p == pend)
2908 break;
2909 if (c1 < CHAR_CLASS_MAX_LENGTH)
2910 str[c1++] = c;
2911 else
2912 /* This is in any case an invalid class name. */
2913 str[0] = '\0';
2914 }
2915 str[c1] = '\0';
2916
2917 /* If isn't a word bracketed by `[:' and `:]':
2918 undo the ending character, the letters, and
2919 leave the leading `:' and `[' (but set bits for
2920 them). */
2921 if (c == ':' && *p == ']')
2922 {
2923 re_wchar_t ch;
2924 re_wctype_t cc;
2925 int limit;
2926
2927 cc = re_wctype (str);
2928
2929 if (cc == 0)
2930 FREE_STACK_RETURN (REG_ECTYPE);
2931
2932 /* Throw away the ] at the end of the character
2933 class. */
2934 PATFETCH (c);
2935
2936 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2937
2938 /* Most character classes in a multibyte match
2939 just set a flag. Exceptions are is_blank,
2940 is_digit, is_cntrl, and is_xdigit, since
2941 they can only match ASCII characters. We
2942 don't need to handle them for multibyte.
2943 They are distinguished by a negative wctype. */
2944
2945 for (ch = 0; ch < 128; ++ch)
2946 if (re_iswctype (btowc (ch), cc))
2947 {
2948 c = TRANSLATE (ch);
2949 SET_LIST_BIT (c);
2950 }
2951
2952 if (target_multibyte)
2953 {
2954 SET_RANGE_TABLE_WORK_AREA_BIT
2955 (range_table_work, re_wctype_to_bit (cc));
2956 }
2957 else
2958 {
2959 for (ch = 0; ch < (1 << BYTEWIDTH); ++ch)
2960 {
2961 c = ch;
2962 MAKE_CHAR_MULTIBYTE (c);
2963 if (re_iswctype (btowc (c), cc))
2964 {
2965 c = TRANSLATE (c);
2966 MAKE_CHAR_UNIBYTE (c);
2967 SET_LIST_BIT (c);
2968 }
2969 }
2970 }
2971
2972 /* Repeat the loop. */
2973 continue;
2974 }
2975 else
2976 {
2977 /* Go back to right after the "[:". */
2978 p = class_beg;
2979 SET_LIST_BIT ('[');
2980
2981 /* Because the `:' may starts the range, we
2982 can't simply set bit and repeat the loop.
2983 Instead, just set it to C and handle below. */
2984 c = ':';
2985 }
2986 }
2987
2988 if (p < pend && p[0] == '-' && p[1] != ']')
2989 {
2990
2991 /* Discard the `-'. */
2992 PATFETCH (c1);
2993
2994 /* Fetch the character which ends the range. */
2995 PATFETCH (c1);
2996 if (c > c1)
2997 {
2998 if (syntax & RE_NO_EMPTY_RANGES)
2999 FREE_STACK_RETURN (REG_ERANGEX);
3000 /* Else, repeat the loop. */
3001 }
3002 }
3003 else
3004 /* Range from C to C. */
3005 c1 = c;
3006
3007 #ifndef emacs
3008 c = TRANSLATE (c);
3009 c1 = TRANSLATE (c1);
3010 /* Set the range into bitmap */
3011 for (; c <= c1; c++)
3012 SET_LIST_BIT (TRANSLATE (c));
3013 #else /* not emacs */
3014 if (target_multibyte)
3015 {
3016 if (c1 >= 128)
3017 {
3018 re_wchar_t c0 = MAX (c, 128);
3019
3020 SETUP_MULTIBYTE_RANGE (range_table_work, c0, c1);
3021 c1 = 127;
3022 }
3023 for (; c <= c1; c++)
3024 SET_LIST_BIT (TRANSLATE (c));
3025 }
3026 else
3027 {
3028 re_wchar_t c0;
3029
3030 for (; c <= c1; c++)
3031 {
3032 c0 = c;
3033 if (! multibyte)
3034 MAKE_CHAR_MULTIBYTE (c0);
3035 c0 = TRANSLATE (c0);
3036 MAKE_CHAR_UNIBYTE (c0);
3037 SET_LIST_BIT (c0);
3038 }
3039 }
3040 #endif /* not emacs */
3041 }
3042
3043 /* Discard any (non)matching list bytes that are all 0 at the
3044 end of the map. Decrease the map-length byte too. */
3045 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3046 b[-1]--;
3047 b += b[-1];
3048
3049 /* Build real range table from work area. */
3050 if (RANGE_TABLE_WORK_USED (range_table_work)
3051 || RANGE_TABLE_WORK_BITS (range_table_work))
3052 {
3053 int i;
3054 int used = RANGE_TABLE_WORK_USED (range_table_work);
3055
3056 /* Allocate space for COUNT + RANGE_TABLE. Needs two
3057 bytes for flags, two for COUNT, and three bytes for
3058 each character. */
3059 GET_BUFFER_SPACE (4 + used * 3);
3060
3061 /* Indicate the existence of range table. */
3062 laststart[1] |= 0x80;
3063
3064 /* Store the character class flag bits into the range table.
3065 If not in emacs, these flag bits are always 0. */
3066 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
3067 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
3068
3069 STORE_NUMBER_AND_INCR (b, used / 2);
3070 for (i = 0; i < used; i++)
3071 STORE_CHARACTER_AND_INCR
3072 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
3073 }
3074 }
3075 break;
3076
3077
3078 case '(':
3079 if (syntax & RE_NO_BK_PARENS)
3080 goto handle_open;
3081 else
3082 goto normal_char;
3083
3084
3085 case ')':
3086 if (syntax & RE_NO_BK_PARENS)
3087 goto handle_close;
3088 else
3089 goto normal_char;
3090
3091
3092 case '\n':
3093 if (syntax & RE_NEWLINE_ALT)
3094 goto handle_alt;
3095 else
3096 goto normal_char;
3097
3098
3099 case '|':
3100 if (syntax & RE_NO_BK_VBAR)
3101 goto handle_alt;
3102 else
3103 goto normal_char;
3104
3105
3106 case '{':
3107 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3108 goto handle_interval;
3109 else
3110 goto normal_char;
3111
3112
3113 case '\\':
3114 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3115
3116 /* Do not translate the character after the \, so that we can
3117 distinguish, e.g., \B from \b, even if we normally would
3118 translate, e.g., B to b. */
3119 PATFETCH (c);
3120
3121 switch (c)
3122 {
3123 case '(':
3124 if (syntax & RE_NO_BK_PARENS)
3125 goto normal_backslash;
3126
3127 handle_open:
3128 {
3129 int shy = 0;
3130 if (p+1 < pend)
3131 {
3132 /* Look for a special (?...) construct */
3133 if ((syntax & RE_SHY_GROUPS) && *p == '?')
3134 {
3135 PATFETCH (c); /* Gobble up the '?'. */
3136 PATFETCH (c);
3137 switch (c)
3138 {
3139 case ':': shy = 1; break;
3140 default:
3141 /* Only (?:...) is supported right now. */
3142 FREE_STACK_RETURN (REG_BADPAT);
3143 }
3144 }
3145 }
3146
3147 if (!shy)
3148 {
3149 bufp->re_nsub++;
3150 regnum++;
3151 }
3152
3153 if (COMPILE_STACK_FULL)
3154 {
3155 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3156 compile_stack_elt_t);
3157 if (compile_stack.stack == NULL) return REG_ESPACE;
3158
3159 compile_stack.size <<= 1;
3160 }
3161
3162 /* These are the values to restore when we hit end of this
3163 group. They are all relative offsets, so that if the
3164 whole pattern moves because of realloc, they will still
3165 be valid. */
3166 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3167 COMPILE_STACK_TOP.fixup_alt_jump
3168 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3169 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
3170 COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
3171
3172 /* Do not push a
3173 start_memory for groups beyond the last one we can
3174 represent in the compiled pattern. */
3175 if (regnum <= MAX_REGNUM && !shy)
3176 BUF_PUSH_2 (start_memory, regnum);
3177
3178 compile_stack.avail++;
3179
3180 fixup_alt_jump = 0;
3181 laststart = 0;
3182 begalt = b;
3183 /* If we've reached MAX_REGNUM groups, then this open
3184 won't actually generate any code, so we'll have to
3185 clear pending_exact explicitly. */
3186 pending_exact = 0;
3187 break;
3188 }
3189
3190 case ')':
3191 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3192
3193 if (COMPILE_STACK_EMPTY)
3194 {
3195 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3196 goto normal_backslash;
3197 else
3198 FREE_STACK_RETURN (REG_ERPAREN);
3199 }
3200
3201 handle_close:
3202 FIXUP_ALT_JUMP ();
3203
3204 /* See similar code for backslashed left paren above. */
3205 if (COMPILE_STACK_EMPTY)
3206 {
3207 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3208 goto normal_char;
3209 else
3210 FREE_STACK_RETURN (REG_ERPAREN);
3211 }
3212
3213 /* Since we just checked for an empty stack above, this
3214 ``can't happen''. */
3215 assert (compile_stack.avail != 0);
3216 {
3217 /* We don't just want to restore into `regnum', because
3218 later groups should continue to be numbered higher,
3219 as in `(ab)c(de)' -- the second group is #2. */
3220 regnum_t this_group_regnum;
3221
3222 compile_stack.avail--;
3223 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3224 fixup_alt_jump
3225 = COMPILE_STACK_TOP.fixup_alt_jump
3226 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3227 : 0;
3228 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
3229 this_group_regnum = COMPILE_STACK_TOP.regnum;
3230 /* If we've reached MAX_REGNUM groups, then this open
3231 won't actually generate any code, so we'll have to
3232 clear pending_exact explicitly. */
3233 pending_exact = 0;
3234
3235 /* We're at the end of the group, so now we know how many
3236 groups were inside this one. */
3237 if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
3238 BUF_PUSH_2 (stop_memory, this_group_regnum);
3239 }
3240 break;
3241
3242
3243 case '|': /* `\|'. */
3244 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3245 goto normal_backslash;
3246 handle_alt:
3247 if (syntax & RE_LIMITED_OPS)
3248 goto normal_char;
3249
3250 /* Insert before the previous alternative a jump which
3251 jumps to this alternative if the former fails. */
3252 GET_BUFFER_SPACE (3);
3253 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3254 pending_exact = 0;
3255 b += 3;
3256
3257 /* The alternative before this one has a jump after it
3258 which gets executed if it gets matched. Adjust that
3259 jump so it will jump to this alternative's analogous
3260 jump (put in below, which in turn will jump to the next
3261 (if any) alternative's such jump, etc.). The last such
3262 jump jumps to the correct final destination. A picture:
3263 _____ _____
3264 | | | |
3265 | v | v
3266 a | b | c
3267
3268 If we are at `b', then fixup_alt_jump right now points to a
3269 three-byte space after `a'. We'll put in the jump, set
3270 fixup_alt_jump to right after `b', and leave behind three
3271 bytes which we'll fill in when we get to after `c'. */
3272
3273 FIXUP_ALT_JUMP ();
3274
3275 /* Mark and leave space for a jump after this alternative,
3276 to be filled in later either by next alternative or
3277 when know we're at the end of a series of alternatives. */
3278 fixup_alt_jump = b;
3279 GET_BUFFER_SPACE (3);
3280 b += 3;
3281
3282 laststart = 0;
3283 begalt = b;
3284 break;
3285
3286
3287 case '{':
3288 /* If \{ is a literal. */
3289 if (!(syntax & RE_INTERVALS)
3290 /* If we're at `\{' and it's not the open-interval
3291 operator. */
3292 || (syntax & RE_NO_BK_BRACES))
3293 goto normal_backslash;
3294
3295 handle_interval:
3296 {
3297 /* If got here, then the syntax allows intervals. */
3298
3299 /* At least (most) this many matches must be made. */
3300 int lower_bound = 0, upper_bound = -1;
3301
3302 beg_interval = p;
3303
3304 GET_UNSIGNED_NUMBER (lower_bound);
3305
3306 if (c == ',')
3307 GET_UNSIGNED_NUMBER (upper_bound);
3308 else
3309 /* Interval such as `{1}' => match exactly once. */
3310 upper_bound = lower_bound;
3311
3312 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
3313 || (upper_bound >= 0 && lower_bound > upper_bound))
3314 FREE_STACK_RETURN (REG_BADBR);
3315
3316 if (!(syntax & RE_NO_BK_BRACES))
3317 {
3318 if (c != '\\')
3319 FREE_STACK_RETURN (REG_BADBR);
3320 if (p == pend)
3321 FREE_STACK_RETURN (REG_EESCAPE);
3322 PATFETCH (c);
3323 }
3324
3325 if (c != '}')
3326 FREE_STACK_RETURN (REG_BADBR);
3327
3328 /* We just parsed a valid interval. */
3329
3330 /* If it's invalid to have no preceding re. */
3331 if (!laststart)
3332 {
3333 if (syntax & RE_CONTEXT_INVALID_OPS)
3334 FREE_STACK_RETURN (REG_BADRPT);
3335 else if (syntax & RE_CONTEXT_INDEP_OPS)
3336 laststart = b;
3337 else
3338 goto unfetch_interval;
3339 }
3340
3341 if (upper_bound == 0)
3342 /* If the upper bound is zero, just drop the sub pattern
3343 altogether. */
3344 b = laststart;
3345 else if (lower_bound == 1 && upper_bound == 1)
3346 /* Just match it once: nothing to do here. */
3347 ;
3348
3349 /* Otherwise, we have a nontrivial interval. When
3350 we're all done, the pattern will look like:
3351 set_number_at <jump count> <upper bound>
3352 set_number_at <succeed_n count> <lower bound>
3353 succeed_n <after jump addr> <succeed_n count>
3354 <body of loop>
3355 jump_n <succeed_n addr> <jump count>
3356 (The upper bound and `jump_n' are omitted if
3357 `upper_bound' is 1, though.) */
3358 else
3359 { /* If the upper bound is > 1, we need to insert
3360 more at the end of the loop. */
3361 unsigned int nbytes = (upper_bound < 0 ? 3
3362 : upper_bound > 1 ? 5 : 0);
3363 unsigned int startoffset = 0;
3364
3365 GET_BUFFER_SPACE (20); /* We might use less. */
3366
3367 if (lower_bound == 0)
3368 {
3369 /* A succeed_n that starts with 0 is really a
3370 a simple on_failure_jump_loop. */
3371 INSERT_JUMP (on_failure_jump_loop, laststart,
3372 b + 3 + nbytes);
3373 b += 3;
3374 }
3375 else
3376 {
3377 /* Initialize lower bound of the `succeed_n', even
3378 though it will be set during matching by its
3379 attendant `set_number_at' (inserted next),
3380 because `re_compile_fastmap' needs to know.
3381 Jump to the `jump_n' we might insert below. */
3382 INSERT_JUMP2 (succeed_n, laststart,
3383 b + 5 + nbytes,
3384 lower_bound);
3385 b += 5;
3386
3387 /* Code to initialize the lower bound. Insert
3388 before the `succeed_n'. The `5' is the last two
3389 bytes of this `set_number_at', plus 3 bytes of
3390 the following `succeed_n'. */
3391 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3392 b += 5;
3393 startoffset += 5;
3394 }
3395
3396 if (upper_bound < 0)
3397 {
3398 /* A negative upper bound stands for infinity,
3399 in which case it degenerates to a plain jump. */
3400 STORE_JUMP (jump, b, laststart + startoffset);
3401 b += 3;
3402 }
3403 else if (upper_bound > 1)
3404 { /* More than one repetition is allowed, so
3405 append a backward jump to the `succeed_n'
3406 that starts this interval.
3407
3408 When we've reached this during matching,
3409 we'll have matched the interval once, so
3410 jump back only `upper_bound - 1' times. */
3411 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3412 upper_bound - 1);
3413 b += 5;
3414
3415 /* The location we want to set is the second
3416 parameter of the `jump_n'; that is `b-2' as
3417 an absolute address. `laststart' will be
3418 the `set_number_at' we're about to insert;
3419 `laststart+3' the number to set, the source
3420 for the relative address. But we are
3421 inserting into the middle of the pattern --
3422 so everything is getting moved up by 5.
3423 Conclusion: (b - 2) - (laststart + 3) + 5,
3424 i.e., b - laststart.
3425
3426 We insert this at the beginning of the loop
3427 so that if we fail during matching, we'll
3428 reinitialize the bounds. */
3429 insert_op2 (set_number_at, laststart, b - laststart,
3430 upper_bound - 1, b);
3431 b += 5;
3432 }
3433 }
3434 pending_exact = 0;
3435 beg_interval = NULL;
3436 }
3437 break;
3438
3439 unfetch_interval:
3440 /* If an invalid interval, match the characters as literals. */
3441 assert (beg_interval);
3442 p = beg_interval;
3443 beg_interval = NULL;
3444
3445 /* normal_char and normal_backslash need `c'. */
3446 c = '{';
3447
3448 if (!(syntax & RE_NO_BK_BRACES))
3449 {
3450 assert (p > pattern && p[-1] == '\\');
3451 goto normal_backslash;
3452 }
3453 else
3454 goto normal_char;
3455
3456 #ifdef emacs
3457 /* There is no way to specify the before_dot and after_dot
3458 operators. rms says this is ok. --karl */
3459 case '=':
3460 BUF_PUSH (at_dot);
3461 break;
3462
3463 case 's':
3464 laststart = b;
3465 PATFETCH (c);
3466 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3467 break;
3468
3469 case 'S':
3470 laststart = b;
3471 PATFETCH (c);
3472 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3473 break;
3474
3475 case 'c':
3476 laststart = b;
3477 PATFETCH (c);
3478 BUF_PUSH_2 (categoryspec, c);
3479 break;
3480
3481 case 'C':
3482 laststart = b;
3483 PATFETCH (c);
3484 BUF_PUSH_2 (notcategoryspec, c);
3485 break;
3486 #endif /* emacs */
3487
3488
3489 case 'w':
3490 if (syntax & RE_NO_GNU_OPS)
3491 goto normal_char;
3492 laststart = b;
3493 BUF_PUSH_2 (syntaxspec, Sword);
3494 break;
3495
3496
3497 case 'W':
3498 if (syntax & RE_NO_GNU_OPS)
3499 goto normal_char;
3500 laststart = b;
3501 BUF_PUSH_2 (notsyntaxspec, Sword);
3502 break;
3503
3504
3505 case '<':
3506 if (syntax & RE_NO_GNU_OPS)
3507 goto normal_char;
3508 BUF_PUSH (wordbeg);
3509 break;
3510
3511 case '>':
3512 if (syntax & RE_NO_GNU_OPS)
3513 goto normal_char;
3514 BUF_PUSH (wordend);
3515 break;
3516
3517 case '_':
3518 if (syntax & RE_NO_GNU_OPS)
3519 goto normal_char;
3520 laststart = b;
3521 PATFETCH (c);
3522 if (c == '<')
3523 BUF_PUSH (symbeg);
3524 else if (c == '>')
3525 BUF_PUSH (symend);
3526 else
3527 FREE_STACK_RETURN (REG_BADPAT);
3528 break;
3529
3530 case 'b':
3531 if (syntax & RE_NO_GNU_OPS)
3532 goto normal_char;
3533 BUF_PUSH (wordbound);
3534 break;
3535
3536 case 'B':
3537 if (syntax & RE_NO_GNU_OPS)
3538 goto normal_char;
3539 BUF_PUSH (notwordbound);
3540 break;
3541
3542 case '`':
3543 if (syntax & RE_NO_GNU_OPS)
3544 goto normal_char;
3545 BUF_PUSH (begbuf);
3546 break;
3547
3548 case '\'':
3549 if (syntax & RE_NO_GNU_OPS)
3550 goto normal_char;
3551 BUF_PUSH (endbuf);
3552 break;
3553
3554 case '1': case '2': case '3': case '4': case '5':
3555 case '6': case '7': case '8': case '9':
3556 {
3557 regnum_t reg;
3558
3559 if (syntax & RE_NO_BK_REFS)
3560 goto normal_backslash;
3561
3562 reg = c - '0';
3563
3564 /* Can't back reference to a subexpression before its end. */
3565 if (reg > regnum || group_in_compile_stack (compile_stack, reg))
3566 FREE_STACK_RETURN (REG_ESUBREG);
3567
3568 laststart = b;
3569 BUF_PUSH_2 (duplicate, reg);
3570 }
3571 break;
3572
3573
3574 case '+':
3575 case '?':
3576 if (syntax & RE_BK_PLUS_QM)
3577 goto handle_plus;
3578 else
3579 goto normal_backslash;
3580
3581 default:
3582 normal_backslash:
3583 /* You might think it would be useful for \ to mean
3584 not to translate; but if we don't translate it
3585 it will never match anything. */
3586 goto normal_char;
3587 }
3588 break;
3589
3590
3591 default:
3592 /* Expects the character in `c'. */
3593 normal_char:
3594 /* If no exactn currently being built. */
3595 if (!pending_exact
3596
3597 /* If last exactn not at current position. */
3598 || pending_exact + *pending_exact + 1 != b
3599
3600 /* We have only one byte following the exactn for the count. */
3601 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
3602
3603 /* If followed by a repetition operator. */
3604 || (p != pend && (*p == '*' || *p == '^'))
3605 || ((syntax & RE_BK_PLUS_QM)
3606 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3607 : p != pend && (*p == '+' || *p == '?'))
3608 || ((syntax & RE_INTERVALS)
3609 && ((syntax & RE_NO_BK_BRACES)
3610 ? p != pend && *p == '{'
3611 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
3612 {
3613 /* Start building a new exactn. */
3614
3615 laststart = b;
3616
3617 BUF_PUSH_2 (exactn, 0);
3618 pending_exact = b - 1;
3619 }
3620
3621 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3622 {
3623 int len;
3624
3625 if (! multibyte)
3626 MAKE_CHAR_MULTIBYTE (c);
3627 c = TRANSLATE (c);
3628 if (target_multibyte)
3629 {
3630 len = CHAR_STRING (c, b);
3631 b += len;
3632 }
3633 else
3634 {
3635 MAKE_CHAR_UNIBYTE (c);
3636 *b++ = c;
3637 len = 1;
3638 }
3639 (*pending_exact) += len;
3640 }
3641
3642 break;
3643 } /* switch (c) */
3644 } /* while p != pend */
3645
3646
3647 /* Through the pattern now. */
3648
3649 FIXUP_ALT_JUMP ();
3650
3651 if (!COMPILE_STACK_EMPTY)
3652 FREE_STACK_RETURN (REG_EPAREN);
3653
3654 /* If we don't want backtracking, force success
3655 the first time we reach the end of the compiled pattern. */
3656 if (syntax & RE_NO_POSIX_BACKTRACKING)
3657 BUF_PUSH (succeed);
3658
3659 /* We have succeeded; set the length of the buffer. */
3660 bufp->used = b - bufp->buffer;
3661
3662 #ifdef emacs
3663 /* Now the buffer is adjusted for the multibyteness of a target. */
3664 bufp->multibyte = bufp->target_multibyte;
3665 #endif
3666
3667 #ifdef DEBUG
3668 if (debug > 0)
3669 {
3670 re_compile_fastmap (bufp);
3671 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3672 print_compiled_pattern (bufp);
3673 }
3674 debug--;
3675 #endif /* DEBUG */
3676
3677 #ifndef MATCH_MAY_ALLOCATE
3678 /* Initialize the failure stack to the largest possible stack. This
3679 isn't necessary unless we're trying to avoid calling alloca in
3680 the search and match routines. */
3681 {
3682 int num_regs = bufp->re_nsub + 1;
3683
3684 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
3685 {
3686 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
3687
3688 if (! fail_stack.stack)
3689 fail_stack.stack
3690 = (fail_stack_elt_t *) malloc (fail_stack.size
3691 * sizeof (fail_stack_elt_t));
3692 else
3693 fail_stack.stack
3694 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3695 (fail_stack.size
3696 * sizeof (fail_stack_elt_t)));
3697 }
3698
3699 regex_grow_registers (num_regs);
3700 }
3701 #endif /* not MATCH_MAY_ALLOCATE */
3702
3703 FREE_STACK_RETURN (REG_NOERROR);
3704 } /* regex_compile */
3705 \f
3706 /* Subroutines for `regex_compile'. */
3707
3708 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3709
3710 static void
3711 store_op1 (op, loc, arg)
3712 re_opcode_t op;
3713 unsigned char *loc;
3714 int arg;
3715 {
3716 *loc = (unsigned char) op;
3717 STORE_NUMBER (loc + 1, arg);
3718 }
3719
3720
3721 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3722
3723 static void
3724 store_op2 (op, loc, arg1, arg2)
3725 re_opcode_t op;
3726 unsigned char *loc;
3727 int arg1, arg2;
3728 {
3729 *loc = (unsigned char) op;
3730 STORE_NUMBER (loc + 1, arg1);
3731 STORE_NUMBER (loc + 3, arg2);
3732 }
3733
3734
3735 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3736 for OP followed by two-byte integer parameter ARG. */
3737
3738 static void
3739 insert_op1 (op, loc, arg, end)
3740 re_opcode_t op;
3741 unsigned char *loc;
3742 int arg;
3743 unsigned char *end;
3744 {
3745 register unsigned char *pfrom = end;
3746 register unsigned char *pto = end + 3;
3747
3748 while (pfrom != loc)
3749 *--pto = *--pfrom;
3750
3751 store_op1 (op, loc, arg);
3752 }
3753
3754
3755 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3756
3757 static void
3758 insert_op2 (op, loc, arg1, arg2, end)
3759 re_opcode_t op;
3760 unsigned char *loc;
3761 int arg1, arg2;
3762 unsigned char *end;
3763 {
3764 register unsigned char *pfrom = end;
3765 register unsigned char *pto = end + 5;
3766
3767 while (pfrom != loc)
3768 *--pto = *--pfrom;
3769
3770 store_op2 (op, loc, arg1, arg2);
3771 }
3772
3773
3774 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3775 after an alternative or a begin-subexpression. We assume there is at
3776 least one character before the ^. */
3777
3778 static boolean
3779 at_begline_loc_p (pattern, p, syntax)
3780 re_char *pattern, *p;
3781 reg_syntax_t syntax;
3782 {
3783 re_char *prev = p - 2;
3784 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3785
3786 return
3787 /* After a subexpression? */
3788 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3789 /* After an alternative? */
3790 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3791 /* After a shy subexpression? */
3792 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3793 && prev[-1] == '?' && prev[-2] == '('
3794 && (syntax & RE_NO_BK_PARENS
3795 || (prev - 3 >= pattern && prev[-3] == '\\')));
3796 }
3797
3798
3799 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3800 at least one character after the $, i.e., `P < PEND'. */
3801
3802 static boolean
3803 at_endline_loc_p (p, pend, syntax)
3804 re_char *p, *pend;
3805 reg_syntax_t syntax;
3806 {
3807 re_char *next = p;
3808 boolean next_backslash = *next == '\\';
3809 re_char *next_next = p + 1 < pend ? p + 1 : 0;
3810
3811 return
3812 /* Before a subexpression? */
3813 (syntax & RE_NO_BK_PARENS ? *next == ')'
3814 : next_backslash && next_next && *next_next == ')')
3815 /* Before an alternative? */
3816 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3817 : next_backslash && next_next && *next_next == '|');
3818 }
3819
3820
3821 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3822 false if it's not. */
3823
3824 static boolean
3825 group_in_compile_stack (compile_stack, regnum)
3826 compile_stack_type compile_stack;
3827 regnum_t regnum;
3828 {
3829 int this_element;
3830
3831 for (this_element = compile_stack.avail - 1;
3832 this_element >= 0;
3833 this_element--)
3834 if (compile_stack.stack[this_element].regnum == regnum)
3835 return true;
3836
3837 return false;
3838 }
3839 \f
3840 /* analyse_first.
3841 If fastmap is non-NULL, go through the pattern and fill fastmap
3842 with all the possible leading chars. If fastmap is NULL, don't
3843 bother filling it up (obviously) and only return whether the
3844 pattern could potentially match the empty string.
3845
3846 Return 1 if p..pend might match the empty string.
3847 Return 0 if p..pend matches at least one char.
3848 Return -1 if fastmap was not updated accurately. */
3849
3850 static int
3851 analyse_first (p, pend, fastmap, multibyte)
3852 re_char *p, *pend;
3853 char *fastmap;
3854 const int multibyte;
3855 {
3856 int j, k;
3857 boolean not;
3858
3859 /* If all elements for base leading-codes in fastmap is set, this
3860 flag is set true. */
3861 boolean match_any_multibyte_characters = false;
3862
3863 assert (p);
3864
3865 /* The loop below works as follows:
3866 - It has a working-list kept in the PATTERN_STACK and which basically
3867 starts by only containing a pointer to the first operation.
3868 - If the opcode we're looking at is a match against some set of
3869 chars, then we add those chars to the fastmap and go on to the
3870 next work element from the worklist (done via `break').
3871 - If the opcode is a control operator on the other hand, we either
3872 ignore it (if it's meaningless at this point, such as `start_memory')
3873 or execute it (if it's a jump). If the jump has several destinations
3874 (i.e. `on_failure_jump'), then we push the other destination onto the
3875 worklist.
3876 We guarantee termination by ignoring backward jumps (more or less),
3877 so that `p' is monotonically increasing. More to the point, we
3878 never set `p' (or push) anything `<= p1'. */
3879
3880 while (p < pend)
3881 {
3882 /* `p1' is used as a marker of how far back a `on_failure_jump'
3883 can go without being ignored. It is normally equal to `p'
3884 (which prevents any backward `on_failure_jump') except right
3885 after a plain `jump', to allow patterns such as:
3886 0: jump 10
3887 3..9: <body>
3888 10: on_failure_jump 3
3889 as used for the *? operator. */
3890 re_char *p1 = p;
3891
3892 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3893 {
3894 case succeed:
3895 return 1;
3896 continue;
3897
3898 case duplicate:
3899 /* If the first character has to match a backreference, that means
3900 that the group was empty (since it already matched). Since this
3901 is the only case that interests us here, we can assume that the
3902 backreference must match the empty string. */
3903 p++;
3904 continue;
3905
3906
3907 /* Following are the cases which match a character. These end
3908 with `break'. */
3909
3910 case exactn:
3911 if (fastmap)
3912 /* If multibyte is nonzero, the first byte of each
3913 character is an ASCII or a leading code. Otherwise,
3914 each byte is a character. Thus, this works in both
3915 cases. */
3916 fastmap[p[1]] = 1;
3917 break;
3918
3919
3920 case anychar:
3921 /* We could put all the chars except for \n (and maybe \0)
3922 but we don't bother since it is generally not worth it. */
3923 if (!fastmap) break;
3924 return -1;
3925
3926
3927 case charset_not:
3928 if (!fastmap) break;
3929 {
3930 /* Chars beyond end of bitmap are possible matches. */
3931 /* In a multibyte case, the bitmap is used only for ASCII
3932 characters. */
3933 int limit = multibyte ? 128 : (1 << BYTEWIDTH);
3934
3935 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3936 j < limit; j++)
3937 fastmap[j] = 1;
3938 }
3939
3940 /* Fallthrough */
3941 case charset:
3942 if (!fastmap) break;
3943 not = (re_opcode_t) *(p - 1) == charset_not;
3944 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3945 j >= 0; j--)
3946 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
3947 fastmap[j] = 1;
3948
3949 if ((not && multibyte)
3950 /* Any leading code can possibly start a character
3951 which doesn't match the specified set of characters. */
3952 || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3953 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3954 /* If we can match a character class, we can match
3955 any multibyte characters. */
3956 {
3957 if (match_any_multibyte_characters == false)
3958 {
3959 for (j = 0x80; j < (1 << BYTEWIDTH); j++)
3960 fastmap[j] = 1;
3961 match_any_multibyte_characters = true;
3962 }
3963 }
3964
3965 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3966 && match_any_multibyte_characters == false)
3967 {
3968 /* Set fastmap[I] to 1 where I is a leading code of each
3969 multibyte characer in the range table. */
3970 int c, count;
3971 unsigned char lc1, lc2;
3972
3973 /* Make P points the range table. `+ 2' is to skip flag
3974 bits for a character class. */
3975 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
3976
3977 /* Extract the number of ranges in range table into COUNT. */
3978 EXTRACT_NUMBER_AND_INCR (count, p);
3979 for (; count > 0; count--, p += 2 * 3) /* XXX */
3980 {
3981 /* Extract the start and end of each range. */
3982 EXTRACT_CHARACTER (c, p);
3983 lc1 = CHAR_LEADING_CODE (c);
3984 p += 3;
3985 EXTRACT_CHARACTER (c, p);
3986 lc2 = CHAR_LEADING_CODE (c);
3987 for (j = lc1; j <= lc2; j++)
3988 fastmap[j] = 1;
3989 }
3990 }
3991 break;
3992
3993 case syntaxspec:
3994 case notsyntaxspec:
3995 if (!fastmap) break;
3996 #ifndef emacs
3997 not = (re_opcode_t)p[-1] == notsyntaxspec;
3998 k = *p++;
3999 for (j = 0; j < (1 << BYTEWIDTH); j++)
4000 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
4001 fastmap[j] = 1;
4002 break;
4003 #else /* emacs */
4004 /* This match depends on text properties. These end with
4005 aborting optimizations. */
4006 return -1;
4007
4008 case categoryspec:
4009 case notcategoryspec:
4010 if (!fastmap) break;
4011 not = (re_opcode_t)p[-1] == notcategoryspec;
4012 k = *p++;
4013 for (j = (multibyte ? 127 : (1 << BYTEWIDTH)); j >= 0; j--)
4014 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
4015 fastmap[j] = 1;
4016
4017 if (multibyte)
4018 {
4019 /* Any character set can possibly contain a character
4020 whose category is K (or not). */
4021 if (match_any_multibyte_characters == false)
4022 {
4023 for (j = 0x80; j < (1 << BYTEWIDTH); j++)
4024 fastmap[j] = 1;
4025 match_any_multibyte_characters = true;
4026 }
4027 }
4028 break;
4029
4030 /* All cases after this match the empty string. These end with
4031 `continue'. */
4032
4033 case before_dot:
4034 case at_dot:
4035 case after_dot:
4036 #endif /* !emacs */
4037 case no_op:
4038 case begline:
4039 case endline:
4040 case begbuf:
4041 case endbuf:
4042 case wordbound:
4043 case notwordbound:
4044 case wordbeg:
4045 case wordend:
4046 case symbeg:
4047 case symend:
4048 continue;
4049
4050
4051 case jump:
4052 EXTRACT_NUMBER_AND_INCR (j, p);
4053 if (j < 0)
4054 /* Backward jumps can only go back to code that we've already
4055 visited. `re_compile' should make sure this is true. */
4056 break;
4057 p += j;
4058 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4059 {
4060 case on_failure_jump:
4061 case on_failure_keep_string_jump:
4062 case on_failure_jump_loop:
4063 case on_failure_jump_nastyloop:
4064 case on_failure_jump_smart:
4065 p++;
4066 break;
4067 default:
4068 continue;
4069 };
4070 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4071 to jump back to "just after here". */
4072 /* Fallthrough */
4073
4074 case on_failure_jump:
4075 case on_failure_keep_string_jump:
4076 case on_failure_jump_nastyloop:
4077 case on_failure_jump_loop:
4078 case on_failure_jump_smart:
4079 EXTRACT_NUMBER_AND_INCR (j, p);
4080 if (p + j <= p1)
4081 ; /* Backward jump to be ignored. */
4082 else
4083 { /* We have to look down both arms.
4084 We first go down the "straight" path so as to minimize
4085 stack usage when going through alternatives. */
4086 int r = analyse_first (p, pend, fastmap, multibyte);
4087 if (r) return r;
4088 p += j;
4089 }
4090 continue;
4091
4092
4093 case jump_n:
4094 /* This code simply does not properly handle forward jump_n. */
4095 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
4096 p += 4;
4097 /* jump_n can either jump or fall through. The (backward) jump
4098 case has already been handled, so we only need to look at the
4099 fallthrough case. */
4100 continue;
4101
4102 case succeed_n:
4103 /* If N == 0, it should be an on_failure_jump_loop instead. */
4104 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
4105 p += 4;
4106 /* We only care about one iteration of the loop, so we don't
4107 need to consider the case where this behaves like an
4108 on_failure_jump. */
4109 continue;
4110
4111
4112 case set_number_at:
4113 p += 4;
4114 continue;
4115
4116
4117 case start_memory:
4118 case stop_memory:
4119 p += 1;
4120 continue;
4121
4122
4123 default:
4124 abort (); /* We have listed all the cases. */
4125 } /* switch *p++ */
4126
4127 /* Getting here means we have found the possible starting
4128 characters for one path of the pattern -- and that the empty
4129 string does not match. We need not follow this path further. */
4130 return 0;
4131 } /* while p */
4132
4133 /* We reached the end without matching anything. */
4134 return 1;
4135
4136 } /* analyse_first */
4137 \f
4138 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4139 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4140 characters can start a string that matches the pattern. This fastmap
4141 is used by re_search to skip quickly over impossible starting points.
4142
4143 Character codes above (1 << BYTEWIDTH) are not represented in the
4144 fastmap, but the leading codes are represented. Thus, the fastmap
4145 indicates which character sets could start a match.
4146
4147 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4148 area as BUFP->fastmap.
4149
4150 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4151 the pattern buffer.
4152
4153 Returns 0 if we succeed, -2 if an internal error. */
4154
4155 int
4156 re_compile_fastmap (bufp)
4157 struct re_pattern_buffer *bufp;
4158 {
4159 char *fastmap = bufp->fastmap;
4160 int analysis;
4161
4162 assert (fastmap && bufp->buffer);
4163
4164 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4165 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4166
4167 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
4168 fastmap, RE_MULTIBYTE_P (bufp));
4169 bufp->can_be_null = (analysis != 0);
4170 return 0;
4171 } /* re_compile_fastmap */
4172 \f
4173 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4174 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4175 this memory for recording register information. STARTS and ENDS
4176 must be allocated using the malloc library routine, and must each
4177 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4178
4179 If NUM_REGS == 0, then subsequent matches should allocate their own
4180 register data.
4181
4182 Unless this function is called, the first search or match using
4183 PATTERN_BUFFER will allocate its own register data, without
4184 freeing the old data. */
4185
4186 void
4187 re_set_registers (bufp, regs, num_regs, starts, ends)
4188 struct re_pattern_buffer *bufp;
4189 struct re_registers *regs;
4190 unsigned num_regs;
4191 regoff_t *starts, *ends;
4192 {
4193 if (num_regs)
4194 {
4195 bufp->regs_allocated = REGS_REALLOCATE;
4196 regs->num_regs = num_regs;
4197 regs->start = starts;
4198 regs->end = ends;
4199 }
4200 else
4201 {
4202 bufp->regs_allocated = REGS_UNALLOCATED;
4203 regs->num_regs = 0;
4204 regs->start = regs->end = (regoff_t *) 0;
4205 }
4206 }
4207 WEAK_ALIAS (__re_set_registers, re_set_registers)
4208 \f
4209 /* Searching routines. */
4210
4211 /* Like re_search_2, below, but only one string is specified, and
4212 doesn't let you say where to stop matching. */
4213
4214 int
4215 re_search (bufp, string, size, startpos, range, regs)
4216 struct re_pattern_buffer *bufp;
4217 const char *string;
4218 int size, startpos, range;
4219 struct re_registers *regs;
4220 {
4221 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4222 regs, size);
4223 }
4224 WEAK_ALIAS (__re_search, re_search)
4225
4226 /* Head address of virtual concatenation of string. */
4227 #define HEAD_ADDR_VSTRING(P) \
4228 (((P) >= size1 ? string2 : string1))
4229
4230 /* End address of virtual concatenation of string. */
4231 #define STOP_ADDR_VSTRING(P) \
4232 (((P) >= size1 ? string2 + size2 : string1 + size1))
4233
4234 /* Address of POS in the concatenation of virtual string. */
4235 #define POS_ADDR_VSTRING(POS) \
4236 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4237
4238 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4239 virtual concatenation of STRING1 and STRING2, starting first at index
4240 STARTPOS, then at STARTPOS + 1, and so on.
4241
4242 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4243
4244 RANGE is how far to scan while trying to match. RANGE = 0 means try
4245 only at STARTPOS; in general, the last start tried is STARTPOS +
4246 RANGE.
4247
4248 In REGS, return the indices of the virtual concatenation of STRING1
4249 and STRING2 that matched the entire BUFP->buffer and its contained
4250 subexpressions.
4251
4252 Do not consider matching one past the index STOP in the virtual
4253 concatenation of STRING1 and STRING2.
4254
4255 We return either the position in the strings at which the match was
4256 found, -1 if no match, or -2 if error (such as failure
4257 stack overflow). */
4258
4259 int
4260 re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
4261 struct re_pattern_buffer *bufp;
4262 const char *str1, *str2;
4263 int size1, size2;
4264 int startpos;
4265 int range;
4266 struct re_registers *regs;
4267 int stop;
4268 {
4269 int val;
4270 re_char *string1 = (re_char*) str1;
4271 re_char *string2 = (re_char*) str2;
4272 register char *fastmap = bufp->fastmap;
4273 register RE_TRANSLATE_TYPE translate = bufp->translate;
4274 int total_size = size1 + size2;
4275 int endpos = startpos + range;
4276 boolean anchored_start;
4277 /* Nonzero if BUFP is setup for multibyte characters. We are sure
4278 that it is the same as RE_TARGET_MULTIBYTE_P (bufp). */
4279 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4280
4281 /* Check for out-of-range STARTPOS. */
4282 if (startpos < 0 || startpos > total_size)
4283 return -1;
4284
4285 /* Fix up RANGE if it might eventually take us outside
4286 the virtual concatenation of STRING1 and STRING2.
4287 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4288 if (endpos < 0)
4289 range = 0 - startpos;
4290 else if (endpos > total_size)
4291 range = total_size - startpos;
4292
4293 /* If the search isn't to be a backwards one, don't waste time in a
4294 search for a pattern anchored at beginning of buffer. */
4295 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4296 {
4297 if (startpos > 0)
4298 return -1;
4299 else
4300 range = 0;
4301 }
4302
4303 #ifdef emacs
4304 /* In a forward search for something that starts with \=.
4305 don't keep searching past point. */
4306 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4307 {
4308 range = PT_BYTE - BEGV_BYTE - startpos;
4309 if (range < 0)
4310 return -1;
4311 }
4312 #endif /* emacs */
4313
4314 /* Update the fastmap now if not correct already. */
4315 if (fastmap && !bufp->fastmap_accurate)
4316 re_compile_fastmap (bufp);
4317
4318 /* See whether the pattern is anchored. */
4319 anchored_start = (bufp->buffer[0] == begline);
4320
4321 #ifdef emacs
4322 gl_state.object = re_match_object;
4323 {
4324 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
4325
4326 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4327 }
4328 #endif
4329
4330 /* Loop through the string, looking for a place to start matching. */
4331 for (;;)
4332 {
4333 /* If the pattern is anchored,
4334 skip quickly past places we cannot match.
4335 We don't bother to treat startpos == 0 specially
4336 because that case doesn't repeat. */
4337 if (anchored_start && startpos > 0)
4338 {
4339 if (! ((startpos <= size1 ? string1[startpos - 1]
4340 : string2[startpos - size1 - 1])
4341 == '\n'))
4342 goto advance;
4343 }
4344
4345 /* If a fastmap is supplied, skip quickly over characters that
4346 cannot be the start of a match. If the pattern can match the
4347 null string, however, we don't need to skip characters; we want
4348 the first null string. */
4349 if (fastmap && startpos < total_size && !bufp->can_be_null)
4350 {
4351 register re_char *d;
4352 register re_wchar_t buf_ch;
4353
4354 d = POS_ADDR_VSTRING (startpos);
4355
4356 if (range > 0) /* Searching forwards. */
4357 {
4358 register int lim = 0;
4359 int irange = range;
4360
4361 if (startpos < size1 && startpos + range >= size1)
4362 lim = range - (size1 - startpos);
4363
4364 /* Written out as an if-else to avoid testing `translate'
4365 inside the loop. */
4366 if (RE_TRANSLATE_P (translate))
4367 {
4368 if (multibyte)
4369 while (range > lim)
4370 {
4371 int buf_charlen;
4372
4373 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4374 buf_charlen);
4375 buf_ch = RE_TRANSLATE (translate, buf_ch);
4376 if (fastmap[CHAR_LEADING_CODE (buf_ch)])
4377 break;
4378
4379 range -= buf_charlen;
4380 d += buf_charlen;
4381 }
4382 else
4383 while (range > lim)
4384 {
4385 buf_ch = *d;
4386 MAKE_CHAR_MULTIBYTE (buf_ch);
4387 buf_ch = RE_TRANSLATE (translate, buf_ch);
4388 MAKE_CHAR_UNIBYTE (buf_ch);
4389 if (fastmap[buf_ch])
4390 break;
4391 d++;
4392 range--;
4393 }
4394 }
4395 else
4396 {
4397 if (multibyte)
4398 while (range > lim)
4399 {
4400 int buf_charlen;
4401
4402 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4403 buf_charlen);
4404 if (fastmap[CHAR_LEADING_CODE (buf_ch)])
4405 break;
4406 range -= buf_charlen;
4407 d += buf_charlen;
4408 }
4409 else
4410 while (range > lim && !fastmap[*d])
4411 {
4412 d++;
4413 range--;
4414 }
4415 }
4416 startpos += irange - range;
4417 }
4418 else /* Searching backwards. */
4419 {
4420 int room = (startpos >= size1
4421 ? size2 + size1 - startpos
4422 : size1 - startpos);
4423 if (multibyte)
4424 {
4425 buf_ch = STRING_CHAR (d, room);
4426 buf_ch = TRANSLATE (buf_ch);
4427 if (! fastmap[CHAR_LEADING_CODE (buf_ch)])
4428 goto advance;
4429 }
4430 else
4431 {
4432 if (! fastmap[TRANSLATE (*d)])
4433 goto advance;
4434 }
4435 }
4436 }
4437
4438 /* If can't match the null string, and that's all we have left, fail. */
4439 if (range >= 0 && startpos == total_size && fastmap
4440 && !bufp->can_be_null)
4441 return -1;
4442
4443 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4444 startpos, regs, stop);
4445 #ifndef REGEX_MALLOC
4446 # ifdef C_ALLOCA
4447 alloca (0);
4448 # endif
4449 #endif
4450
4451 if (val >= 0)
4452 return startpos;
4453
4454 if (val == -2)
4455 return -2;
4456
4457 advance:
4458 if (!range)
4459 break;
4460 else if (range > 0)
4461 {
4462 /* Update STARTPOS to the next character boundary. */
4463 if (multibyte)
4464 {
4465 re_char *p = POS_ADDR_VSTRING (startpos);
4466 re_char *pend = STOP_ADDR_VSTRING (startpos);
4467 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4468
4469 range -= len;
4470 if (range < 0)
4471 break;
4472 startpos += len;
4473 }
4474 else
4475 {
4476 range--;
4477 startpos++;
4478 }
4479 }
4480 else
4481 {
4482 range++;
4483 startpos--;
4484
4485 /* Update STARTPOS to the previous character boundary. */
4486 if (multibyte)
4487 {
4488 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4489 re_char *p0 = p;
4490 re_char *phead = HEAD_ADDR_VSTRING (startpos);
4491
4492 /* Find the head of multibyte form. */
4493 PREV_CHAR_BOUNDARY (p, phead);
4494 range += p0 - 1 - p;
4495 if (range > 0)
4496 break;
4497
4498 startpos -= p0 - 1 - p;
4499 }
4500 }
4501 }
4502 return -1;
4503 } /* re_search_2 */
4504 WEAK_ALIAS (__re_search_2, re_search_2)
4505 \f
4506 /* Declarations and macros for re_match_2. */
4507
4508 static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4509 register int len,
4510 RE_TRANSLATE_TYPE translate,
4511 const int multibyte));
4512
4513 /* This converts PTR, a pointer into one of the search strings `string1'
4514 and `string2' into an offset from the beginning of that string. */
4515 #define POINTER_TO_OFFSET(ptr) \
4516 (FIRST_STRING_P (ptr) \
4517 ? ((regoff_t) ((ptr) - string1)) \
4518 : ((regoff_t) ((ptr) - string2 + size1)))
4519
4520 /* Call before fetching a character with *d. This switches over to
4521 string2 if necessary.
4522 Check re_match_2_internal for a discussion of why end_match_2 might
4523 not be within string2 (but be equal to end_match_1 instead). */
4524 #define PREFETCH() \
4525 while (d == dend) \
4526 { \
4527 /* End of string2 => fail. */ \
4528 if (dend == end_match_2) \
4529 goto fail; \
4530 /* End of string1 => advance to string2. */ \
4531 d = string2; \
4532 dend = end_match_2; \
4533 }
4534
4535 /* Call before fetching a char with *d if you already checked other limits.
4536 This is meant for use in lookahead operations like wordend, etc..
4537 where we might need to look at parts of the string that might be
4538 outside of the LIMITs (i.e past `stop'). */
4539 #define PREFETCH_NOLIMIT() \
4540 if (d == end1) \
4541 { \
4542 d = string2; \
4543 dend = end_match_2; \
4544 } \
4545
4546 /* Test if at very beginning or at very end of the virtual concatenation
4547 of `string1' and `string2'. If only one string, it's `string2'. */
4548 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4549 #define AT_STRINGS_END(d) ((d) == end2)
4550
4551
4552 /* Test if D points to a character which is word-constituent. We have
4553 two special cases to check for: if past the end of string1, look at
4554 the first character in string2; and if before the beginning of
4555 string2, look at the last character in string1. */
4556 #define WORDCHAR_P(d) \
4557 (SYNTAX ((d) == end1 ? *string2 \
4558 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4559 == Sword)
4560
4561 /* Disabled due to a compiler bug -- see comment at case wordbound */
4562
4563 /* The comment at case wordbound is following one, but we don't use
4564 AT_WORD_BOUNDARY anymore to support multibyte form.
4565
4566 The DEC Alpha C compiler 3.x generates incorrect code for the
4567 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4568 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4569 macro and introducing temporary variables works around the bug. */
4570
4571 #if 0
4572 /* Test if the character before D and the one at D differ with respect
4573 to being word-constituent. */
4574 #define AT_WORD_BOUNDARY(d) \
4575 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4576 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4577 #endif
4578
4579 /* Free everything we malloc. */
4580 #ifdef MATCH_MAY_ALLOCATE
4581 # define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4582 # define FREE_VARIABLES() \
4583 do { \
4584 REGEX_FREE_STACK (fail_stack.stack); \
4585 FREE_VAR (regstart); \
4586 FREE_VAR (regend); \
4587 FREE_VAR (best_regstart); \
4588 FREE_VAR (best_regend); \
4589 } while (0)
4590 #else
4591 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4592 #endif /* not MATCH_MAY_ALLOCATE */
4593
4594 \f
4595 /* Optimization routines. */
4596
4597 /* If the operation is a match against one or more chars,
4598 return a pointer to the next operation, else return NULL. */
4599 static re_char *
4600 skip_one_char (p)
4601 re_char *p;
4602 {
4603 switch (SWITCH_ENUM_CAST (*p++))
4604 {
4605 case anychar:
4606 break;
4607
4608 case exactn:
4609 p += *p + 1;
4610 break;
4611
4612 case charset_not:
4613 case charset:
4614 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4615 {
4616 int mcnt;
4617 p = CHARSET_RANGE_TABLE (p - 1);
4618 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4619 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4620 }
4621 else
4622 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4623 break;
4624
4625 case syntaxspec:
4626 case notsyntaxspec:
4627 #ifdef emacs
4628 case categoryspec:
4629 case notcategoryspec:
4630 #endif /* emacs */
4631 p++;
4632 break;
4633
4634 default:
4635 p = NULL;
4636 }
4637 return p;
4638 }
4639
4640
4641 /* Jump over non-matching operations. */
4642 static re_char *
4643 skip_noops (p, pend)
4644 re_char *p, *pend;
4645 {
4646 int mcnt;
4647 while (p < pend)
4648 {
4649 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4650 {
4651 case start_memory:
4652 case stop_memory:
4653 p += 2; break;
4654 case no_op:
4655 p += 1; break;
4656 case jump:
4657 p += 1;
4658 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4659 p += mcnt;
4660 break;
4661 default:
4662 return p;
4663 }
4664 }
4665 assert (p == pend);
4666 return p;
4667 }
4668
4669 /* Non-zero if "p1 matches something" implies "p2 fails". */
4670 static int
4671 mutually_exclusive_p (bufp, p1, p2)
4672 struct re_pattern_buffer *bufp;
4673 re_char *p1, *p2;
4674 {
4675 re_opcode_t op2;
4676 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4677 unsigned char *pend = bufp->buffer + bufp->used;
4678
4679 assert (p1 >= bufp->buffer && p1 < pend
4680 && p2 >= bufp->buffer && p2 <= pend);
4681
4682 /* Skip over open/close-group commands.
4683 If what follows this loop is a ...+ construct,
4684 look at what begins its body, since we will have to
4685 match at least one of that. */
4686 p2 = skip_noops (p2, pend);
4687 /* The same skip can be done for p1, except that this function
4688 is only used in the case where p1 is a simple match operator. */
4689 /* p1 = skip_noops (p1, pend); */
4690
4691 assert (p1 >= bufp->buffer && p1 < pend
4692 && p2 >= bufp->buffer && p2 <= pend);
4693
4694 op2 = p2 == pend ? succeed : *p2;
4695
4696 switch (SWITCH_ENUM_CAST (op2))
4697 {
4698 case succeed:
4699 case endbuf:
4700 /* If we're at the end of the pattern, we can change. */
4701 if (skip_one_char (p1))
4702 {
4703 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4704 return 1;
4705 }
4706 break;
4707
4708 case endline:
4709 case exactn:
4710 {
4711 register re_wchar_t c
4712 = (re_opcode_t) *p2 == endline ? '\n'
4713 : RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
4714
4715 if ((re_opcode_t) *p1 == exactn)
4716 {
4717 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
4718 {
4719 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4720 return 1;
4721 }
4722 }
4723
4724 else if ((re_opcode_t) *p1 == charset
4725 || (re_opcode_t) *p1 == charset_not)
4726 {
4727 int not = (re_opcode_t) *p1 == charset_not;
4728
4729 /* Test if C is listed in charset (or charset_not)
4730 at `p1'. */
4731 if (! multibyte || IS_REAL_ASCII (c))
4732 {
4733 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4734 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4735 not = !not;
4736 }
4737 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4738 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
4739
4740 /* `not' is equal to 1 if c would match, which means
4741 that we can't change to pop_failure_jump. */
4742 if (!not)
4743 {
4744 DEBUG_PRINT1 (" No match => fast loop.\n");
4745 return 1;
4746 }
4747 }
4748 else if ((re_opcode_t) *p1 == anychar
4749 && c == '\n')
4750 {
4751 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4752 return 1;
4753 }
4754 }
4755 break;
4756
4757 case charset:
4758 {
4759 if ((re_opcode_t) *p1 == exactn)
4760 /* Reuse the code above. */
4761 return mutually_exclusive_p (bufp, p2, p1);
4762
4763 /* It is hard to list up all the character in charset
4764 P2 if it includes multibyte character. Give up in
4765 such case. */
4766 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4767 {
4768 /* Now, we are sure that P2 has no range table.
4769 So, for the size of bitmap in P2, `p2[1]' is
4770 enough. But P1 may have range table, so the
4771 size of bitmap table of P1 is extracted by
4772 using macro `CHARSET_BITMAP_SIZE'.
4773
4774 In a multibyte case, we know that all the character
4775 listed in P2 is ASCII. In a unibyte case, P1 has only a
4776 bitmap table. So, in both cases, it is enough to test
4777 only the bitmap table of P1. */
4778
4779 if ((re_opcode_t) *p1 == charset)
4780 {
4781 int idx;
4782 /* We win if the charset inside the loop
4783 has no overlap with the one after the loop. */
4784 for (idx = 0;
4785 (idx < (int) p2[1]
4786 && idx < CHARSET_BITMAP_SIZE (p1));
4787 idx++)
4788 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4789 break;
4790
4791 if (idx == p2[1]
4792 || idx == CHARSET_BITMAP_SIZE (p1))
4793 {
4794 DEBUG_PRINT1 (" No match => fast loop.\n");
4795 return 1;
4796 }
4797 }
4798 else if ((re_opcode_t) *p1 == charset_not)
4799 {
4800 int idx;
4801 /* We win if the charset_not inside the loop lists
4802 every character listed in the charset after. */
4803 for (idx = 0; idx < (int) p2[1]; idx++)
4804 if (! (p2[2 + idx] == 0
4805 || (idx < CHARSET_BITMAP_SIZE (p1)
4806 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4807 break;
4808
4809 if (idx == p2[1])
4810 {
4811 DEBUG_PRINT1 (" No match => fast loop.\n");
4812 return 1;
4813 }
4814 }
4815 }
4816 }
4817 break;
4818
4819 case charset_not:
4820 switch (SWITCH_ENUM_CAST (*p1))
4821 {
4822 case exactn:
4823 case charset:
4824 /* Reuse the code above. */
4825 return mutually_exclusive_p (bufp, p2, p1);
4826 case charset_not:
4827 /* When we have two charset_not, it's very unlikely that
4828 they don't overlap. The union of the two sets of excluded
4829 chars should cover all possible chars, which, as a matter of
4830 fact, is virtually impossible in multibyte buffers. */
4831 break;
4832 }
4833 break;
4834
4835 case wordend:
4836 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
4837 case symend:
4838 return ((re_opcode_t) *p1 == syntaxspec
4839 && (p1[1] == Ssymbol || p1[1] == Sword));
4840 case notsyntaxspec:
4841 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4842
4843 case wordbeg:
4844 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
4845 case symbeg:
4846 return ((re_opcode_t) *p1 == notsyntaxspec
4847 && (p1[1] == Ssymbol || p1[1] == Sword));
4848 case syntaxspec:
4849 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4850
4851 case wordbound:
4852 return (((re_opcode_t) *p1 == notsyntaxspec
4853 || (re_opcode_t) *p1 == syntaxspec)
4854 && p1[1] == Sword);
4855
4856 #ifdef emacs
4857 case categoryspec:
4858 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4859 case notcategoryspec:
4860 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4861 #endif /* emacs */
4862
4863 default:
4864 ;
4865 }
4866
4867 /* Safe default. */
4868 return 0;
4869 }
4870
4871 \f
4872 /* Matching routines. */
4873
4874 #ifndef emacs /* Emacs never uses this. */
4875 /* re_match is like re_match_2 except it takes only a single string. */
4876
4877 int
4878 re_match (bufp, string, size, pos, regs)
4879 struct re_pattern_buffer *bufp;
4880 const char *string;
4881 int size, pos;
4882 struct re_registers *regs;
4883 {
4884 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
4885 pos, regs, size);
4886 # if defined C_ALLOCA && !defined REGEX_MALLOC
4887 alloca (0);
4888 # endif
4889 return result;
4890 }
4891 WEAK_ALIAS (__re_match, re_match)
4892 #endif /* not emacs */
4893
4894 #ifdef emacs
4895 /* In Emacs, this is the string or buffer in which we
4896 are matching. It is used for looking up syntax properties. */
4897 Lisp_Object re_match_object;
4898 #endif
4899
4900 /* re_match_2 matches the compiled pattern in BUFP against the
4901 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4902 and SIZE2, respectively). We start matching at POS, and stop
4903 matching at STOP.
4904
4905 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4906 store offsets for the substring each group matched in REGS. See the
4907 documentation for exactly how many groups we fill.
4908
4909 We return -1 if no match, -2 if an internal error (such as the
4910 failure stack overflowing). Otherwise, we return the length of the
4911 matched substring. */
4912
4913 int
4914 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4915 struct re_pattern_buffer *bufp;
4916 const char *string1, *string2;
4917 int size1, size2;
4918 int pos;
4919 struct re_registers *regs;
4920 int stop;
4921 {
4922 int result;
4923
4924 #ifdef emacs
4925 int charpos;
4926 gl_state.object = re_match_object;
4927 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
4928 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4929 #endif
4930
4931 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4932 (re_char*) string2, size2,
4933 pos, regs, stop);
4934 #if defined C_ALLOCA && !defined REGEX_MALLOC
4935 alloca (0);
4936 #endif
4937 return result;
4938 }
4939 WEAK_ALIAS (__re_match_2, re_match_2)
4940
4941 #ifdef emacs
4942 #define TRANSLATE_VIA_MULTIBYTE(c) \
4943 do { \
4944 if (multibyte) \
4945 (c) = TRANSLATE (c); \
4946 else \
4947 { \
4948 MAKE_CHAR_MULTIBYTE (c); \
4949 (c) = TRANSLATE (c); \
4950 MAKE_CHAR_UNIBYTE (c); \
4951 } \
4952 } while (0)
4953
4954 #else
4955 #define TRANSLATE_VIA_MULTIBYTE(c) ((c) = TRANSLATE (c))
4956 #endif
4957
4958
4959 /* This is a separate function so that we can force an alloca cleanup
4960 afterwards. */
4961 static int
4962 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4963 struct re_pattern_buffer *bufp;
4964 re_char *string1, *string2;
4965 int size1, size2;
4966 int pos;
4967 struct re_registers *regs;
4968 int stop;
4969 {
4970 /* General temporaries. */
4971 int mcnt;
4972 size_t reg;
4973 boolean not;
4974
4975 /* Just past the end of the corresponding string. */
4976 re_char *end1, *end2;
4977
4978 /* Pointers into string1 and string2, just past the last characters in
4979 each to consider matching. */
4980 re_char *end_match_1, *end_match_2;
4981
4982 /* Where we are in the data, and the end of the current string. */
4983 re_char *d, *dend;
4984
4985 /* Used sometimes to remember where we were before starting matching
4986 an operator so that we can go back in case of failure. This "atomic"
4987 behavior of matching opcodes is indispensable to the correctness
4988 of the on_failure_keep_string_jump optimization. */
4989 re_char *dfail;
4990
4991 /* Where we are in the pattern, and the end of the pattern. */
4992 re_char *p = bufp->buffer;
4993 re_char *pend = p + bufp->used;
4994
4995 /* We use this to map every character in the string. */
4996 RE_TRANSLATE_TYPE translate = bufp->translate;
4997
4998 /* Nonzero if BUFP is setup for multibyte characters. We are sure
4999 that it is the same as RE_TARGET_MULTIBYTE_P (bufp). */
5000 const boolean multibyte = RE_MULTIBYTE_P (bufp);
5001
5002 /* Failure point stack. Each place that can handle a failure further
5003 down the line pushes a failure point on this stack. It consists of
5004 regstart, and regend for all registers corresponding to
5005 the subexpressions we're currently inside, plus the number of such
5006 registers, and, finally, two char *'s. The first char * is where
5007 to resume scanning the pattern; the second one is where to resume
5008 scanning the strings. */
5009 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5010 fail_stack_type fail_stack;
5011 #endif
5012 #ifdef DEBUG
5013 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5014 #endif
5015
5016 #if defined REL_ALLOC && defined REGEX_MALLOC
5017 /* This holds the pointer to the failure stack, when
5018 it is allocated relocatably. */
5019 fail_stack_elt_t *failure_stack_ptr;
5020 #endif
5021
5022 /* We fill all the registers internally, independent of what we
5023 return, for use in backreferences. The number here includes
5024 an element for register zero. */
5025 size_t num_regs = bufp->re_nsub + 1;
5026
5027 /* Information on the contents of registers. These are pointers into
5028 the input strings; they record just what was matched (on this
5029 attempt) by a subexpression part of the pattern, that is, the
5030 regnum-th regstart pointer points to where in the pattern we began
5031 matching and the regnum-th regend points to right after where we
5032 stopped matching the regnum-th subexpression. (The zeroth register
5033 keeps track of what the whole pattern matches.) */
5034 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5035 re_char **regstart, **regend;
5036 #endif
5037
5038 /* The following record the register info as found in the above
5039 variables when we find a match better than any we've seen before.
5040 This happens as we backtrack through the failure points, which in
5041 turn happens only if we have not yet matched the entire string. */
5042 unsigned best_regs_set = false;
5043 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5044 re_char **best_regstart, **best_regend;
5045 #endif
5046
5047 /* Logically, this is `best_regend[0]'. But we don't want to have to
5048 allocate space for that if we're not allocating space for anything
5049 else (see below). Also, we never need info about register 0 for
5050 any of the other register vectors, and it seems rather a kludge to
5051 treat `best_regend' differently than the rest. So we keep track of
5052 the end of the best match so far in a separate variable. We
5053 initialize this to NULL so that when we backtrack the first time
5054 and need to test it, it's not garbage. */
5055 re_char *match_end = NULL;
5056
5057 #ifdef DEBUG
5058 /* Counts the total number of registers pushed. */
5059 unsigned num_regs_pushed = 0;
5060 #endif
5061
5062 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5063
5064 INIT_FAIL_STACK ();
5065
5066 #ifdef MATCH_MAY_ALLOCATE
5067 /* Do not bother to initialize all the register variables if there are
5068 no groups in the pattern, as it takes a fair amount of time. If
5069 there are groups, we include space for register 0 (the whole
5070 pattern), even though we never use it, since it simplifies the
5071 array indexing. We should fix this. */
5072 if (bufp->re_nsub)
5073 {
5074 regstart = REGEX_TALLOC (num_regs, re_char *);
5075 regend = REGEX_TALLOC (num_regs, re_char *);
5076 best_regstart = REGEX_TALLOC (num_regs, re_char *);
5077 best_regend = REGEX_TALLOC (num_regs, re_char *);
5078
5079 if (!(regstart && regend && best_regstart && best_regend))
5080 {
5081 FREE_VARIABLES ();
5082 return -2;
5083 }
5084 }
5085 else
5086 {
5087 /* We must initialize all our variables to NULL, so that
5088 `FREE_VARIABLES' doesn't try to free them. */
5089 regstart = regend = best_regstart = best_regend = NULL;
5090 }
5091 #endif /* MATCH_MAY_ALLOCATE */
5092
5093 /* The starting position is bogus. */
5094 if (pos < 0 || pos > size1 + size2)
5095 {
5096 FREE_VARIABLES ();
5097 return -1;
5098 }
5099
5100 /* Initialize subexpression text positions to -1 to mark ones that no
5101 start_memory/stop_memory has been seen for. Also initialize the
5102 register information struct. */
5103 for (reg = 1; reg < num_regs; reg++)
5104 regstart[reg] = regend[reg] = NULL;
5105
5106 /* We move `string1' into `string2' if the latter's empty -- but not if
5107 `string1' is null. */
5108 if (size2 == 0 && string1 != NULL)
5109 {
5110 string2 = string1;
5111 size2 = size1;
5112 string1 = 0;
5113 size1 = 0;
5114 }
5115 end1 = string1 + size1;
5116 end2 = string2 + size2;
5117
5118 /* `p' scans through the pattern as `d' scans through the data.
5119 `dend' is the end of the input string that `d' points within. `d'
5120 is advanced into the following input string whenever necessary, but
5121 this happens before fetching; therefore, at the beginning of the
5122 loop, `d' can be pointing at the end of a string, but it cannot
5123 equal `string2'. */
5124 if (pos >= size1)
5125 {
5126 /* Only match within string2. */
5127 d = string2 + pos - size1;
5128 dend = end_match_2 = string2 + stop - size1;
5129 end_match_1 = end1; /* Just to give it a value. */
5130 }
5131 else
5132 {
5133 if (stop < size1)
5134 {
5135 /* Only match within string1. */
5136 end_match_1 = string1 + stop;
5137 /* BEWARE!
5138 When we reach end_match_1, PREFETCH normally switches to string2.
5139 But in the present case, this means that just doing a PREFETCH
5140 makes us jump from `stop' to `gap' within the string.
5141 What we really want here is for the search to stop as
5142 soon as we hit end_match_1. That's why we set end_match_2
5143 to end_match_1 (since PREFETCH fails as soon as we hit
5144 end_match_2). */
5145 end_match_2 = end_match_1;
5146 }
5147 else
5148 { /* It's important to use this code when stop == size so that
5149 moving `d' from end1 to string2 will not prevent the d == dend
5150 check from catching the end of string. */
5151 end_match_1 = end1;
5152 end_match_2 = string2 + stop - size1;
5153 }
5154 d = string1 + pos;
5155 dend = end_match_1;
5156 }
5157
5158 DEBUG_PRINT1 ("The compiled pattern is: ");
5159 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5160 DEBUG_PRINT1 ("The string to match is: `");
5161 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5162 DEBUG_PRINT1 ("'\n");
5163
5164 /* This loops over pattern commands. It exits by returning from the
5165 function if the match is complete, or it drops through if the match
5166 fails at this starting point in the input data. */
5167 for (;;)
5168 {
5169 DEBUG_PRINT2 ("\n%p: ", p);
5170
5171 if (p == pend)
5172 { /* End of pattern means we might have succeeded. */
5173 DEBUG_PRINT1 ("end of pattern ... ");
5174
5175 /* If we haven't matched the entire string, and we want the
5176 longest match, try backtracking. */
5177 if (d != end_match_2)
5178 {
5179 /* 1 if this match ends in the same string (string1 or string2)
5180 as the best previous match. */
5181 boolean same_str_p = (FIRST_STRING_P (match_end)
5182 == FIRST_STRING_P (d));
5183 /* 1 if this match is the best seen so far. */
5184 boolean best_match_p;
5185
5186 /* AIX compiler got confused when this was combined
5187 with the previous declaration. */
5188 if (same_str_p)
5189 best_match_p = d > match_end;
5190 else
5191 best_match_p = !FIRST_STRING_P (d);
5192
5193 DEBUG_PRINT1 ("backtracking.\n");
5194
5195 if (!FAIL_STACK_EMPTY ())
5196 { /* More failure points to try. */
5197
5198 /* If exceeds best match so far, save it. */
5199 if (!best_regs_set || best_match_p)
5200 {
5201 best_regs_set = true;
5202 match_end = d;
5203
5204 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5205
5206 for (reg = 1; reg < num_regs; reg++)
5207 {
5208 best_regstart[reg] = regstart[reg];
5209 best_regend[reg] = regend[reg];
5210 }
5211 }
5212 goto fail;
5213 }
5214
5215 /* If no failure points, don't restore garbage. And if
5216 last match is real best match, don't restore second
5217 best one. */
5218 else if (best_regs_set && !best_match_p)
5219 {
5220 restore_best_regs:
5221 /* Restore best match. It may happen that `dend ==
5222 end_match_1' while the restored d is in string2.
5223 For example, the pattern `x.*y.*z' against the
5224 strings `x-' and `y-z-', if the two strings are
5225 not consecutive in memory. */
5226 DEBUG_PRINT1 ("Restoring best registers.\n");
5227
5228 d = match_end;
5229 dend = ((d >= string1 && d <= end1)
5230 ? end_match_1 : end_match_2);
5231
5232 for (reg = 1; reg < num_regs; reg++)
5233 {
5234 regstart[reg] = best_regstart[reg];
5235 regend[reg] = best_regend[reg];
5236 }
5237 }
5238 } /* d != end_match_2 */
5239
5240 succeed_label:
5241 DEBUG_PRINT1 ("Accepting match.\n");
5242
5243 /* If caller wants register contents data back, do it. */
5244 if (regs && !bufp->no_sub)
5245 {
5246 /* Have the register data arrays been allocated? */
5247 if (bufp->regs_allocated == REGS_UNALLOCATED)
5248 { /* No. So allocate them with malloc. We need one
5249 extra element beyond `num_regs' for the `-1' marker
5250 GNU code uses. */
5251 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5252 regs->start = TALLOC (regs->num_regs, regoff_t);
5253 regs->end = TALLOC (regs->num_regs, regoff_t);
5254 if (regs->start == NULL || regs->end == NULL)
5255 {
5256 FREE_VARIABLES ();
5257 return -2;
5258 }
5259 bufp->regs_allocated = REGS_REALLOCATE;
5260 }
5261 else if (bufp->regs_allocated == REGS_REALLOCATE)
5262 { /* Yes. If we need more elements than were already
5263 allocated, reallocate them. If we need fewer, just
5264 leave it alone. */
5265 if (regs->num_regs < num_regs + 1)
5266 {
5267 regs->num_regs = num_regs + 1;
5268 RETALLOC (regs->start, regs->num_regs, regoff_t);
5269 RETALLOC (regs->end, regs->num_regs, regoff_t);
5270 if (regs->start == NULL || regs->end == NULL)
5271 {
5272 FREE_VARIABLES ();
5273 return -2;
5274 }
5275 }
5276 }
5277 else
5278 {
5279 /* These braces fend off a "empty body in an else-statement"
5280 warning under GCC when assert expands to nothing. */
5281 assert (bufp->regs_allocated == REGS_FIXED);
5282 }
5283
5284 /* Convert the pointer data in `regstart' and `regend' to
5285 indices. Register zero has to be set differently,
5286 since we haven't kept track of any info for it. */
5287 if (regs->num_regs > 0)
5288 {
5289 regs->start[0] = pos;
5290 regs->end[0] = POINTER_TO_OFFSET (d);
5291 }
5292
5293 /* Go through the first `min (num_regs, regs->num_regs)'
5294 registers, since that is all we initialized. */
5295 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
5296 {
5297 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5298 regs->start[reg] = regs->end[reg] = -1;
5299 else
5300 {
5301 regs->start[reg]
5302 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5303 regs->end[reg]
5304 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
5305 }
5306 }
5307
5308 /* If the regs structure we return has more elements than
5309 were in the pattern, set the extra elements to -1. If
5310 we (re)allocated the registers, this is the case,
5311 because we always allocate enough to have at least one
5312 -1 at the end. */
5313 for (reg = num_regs; reg < regs->num_regs; reg++)
5314 regs->start[reg] = regs->end[reg] = -1;
5315 } /* regs && !bufp->no_sub */
5316
5317 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5318 nfailure_points_pushed, nfailure_points_popped,
5319 nfailure_points_pushed - nfailure_points_popped);
5320 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
5321
5322 mcnt = POINTER_TO_OFFSET (d) - pos;
5323
5324 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
5325
5326 FREE_VARIABLES ();
5327 return mcnt;
5328 }
5329
5330 /* Otherwise match next pattern command. */
5331 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5332 {
5333 /* Ignore these. Used to ignore the n of succeed_n's which
5334 currently have n == 0. */
5335 case no_op:
5336 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5337 break;
5338
5339 case succeed:
5340 DEBUG_PRINT1 ("EXECUTING succeed.\n");
5341 goto succeed_label;
5342
5343 /* Match the next n pattern characters exactly. The following
5344 byte in the pattern defines n, and the n bytes after that
5345 are the characters to match. */
5346 case exactn:
5347 mcnt = *p++;
5348 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
5349
5350 /* Remember the start point to rollback upon failure. */
5351 dfail = d;
5352
5353 #ifndef emacs
5354 /* This is written out as an if-else so we don't waste time
5355 testing `translate' inside the loop. */
5356 if (RE_TRANSLATE_P (translate))
5357 do
5358 {
5359 PREFETCH ();
5360 if (RE_TRANSLATE (translate, *d) != *p++)
5361 {
5362 d = dfail;
5363 goto fail;
5364 }
5365 d++;
5366 }
5367 while (--mcnt);
5368 else
5369 do
5370 {
5371 PREFETCH ();
5372 if (*d++ != *p++)
5373 {
5374 d = dfail;
5375 goto fail;
5376 }
5377 }
5378 while (--mcnt);
5379 #else /* emacs */
5380 /* The cost of testing `translate' is comparatively small. */
5381 if (multibyte)
5382 do
5383 {
5384 int pat_charlen, buf_charlen;
5385 unsigned int pat_ch, buf_ch;
5386
5387 PREFETCH ();
5388 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
5389 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5390
5391 if (TRANSLATE (buf_ch) != pat_ch)
5392 {
5393 d = dfail;
5394 goto fail;
5395 }
5396
5397 p += pat_charlen;
5398 d += buf_charlen;
5399 mcnt -= pat_charlen;
5400 }
5401 while (mcnt > 0);
5402 else
5403 do
5404 {
5405 unsigned int buf_ch;
5406
5407 PREFETCH ();
5408 buf_ch = *d++;
5409 TRANSLATE_VIA_MULTIBYTE (buf_ch);
5410 if (buf_ch != *p++)
5411 {
5412 d = dfail;
5413 goto fail;
5414 }
5415 }
5416 while (--mcnt);
5417 #endif
5418 break;
5419
5420
5421 /* Match any character except possibly a newline or a null. */
5422 case anychar:
5423 {
5424 int buf_charlen;
5425 re_wchar_t buf_ch;
5426
5427 DEBUG_PRINT1 ("EXECUTING anychar.\n");
5428
5429 PREFETCH ();
5430 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5431 buf_ch = TRANSLATE (buf_ch);
5432
5433 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5434 && buf_ch == '\n')
5435 || ((bufp->syntax & RE_DOT_NOT_NULL)
5436 && buf_ch == '\000'))
5437 goto fail;
5438
5439 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5440 d += buf_charlen;
5441 }
5442 break;
5443
5444
5445 case charset:
5446 case charset_not:
5447 {
5448 register unsigned int c;
5449 boolean not = (re_opcode_t) *(p - 1) == charset_not;
5450 int len;
5451
5452 /* Start of actual range_table, or end of bitmap if there is no
5453 range table. */
5454 re_char *range_table;
5455
5456 /* Nonzero if there is a range table. */
5457 int range_table_exists;
5458
5459 /* Number of ranges of range table. This is not included
5460 in the initial byte-length of the command. */
5461 int count = 0;
5462
5463 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5464
5465 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
5466
5467 if (range_table_exists)
5468 {
5469 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5470 EXTRACT_NUMBER_AND_INCR (count, range_table);
5471 }
5472
5473 PREFETCH ();
5474 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5475 TRANSLATE_VIA_MULTIBYTE (c); /* The character to match. */
5476
5477 if (! multibyte || IS_REAL_ASCII (c))
5478 { /* Lookup bitmap. */
5479 /* Cast to `unsigned' instead of `unsigned char' in
5480 case the bit list is a full 32 bytes long. */
5481 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
5482 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5483 not = !not;
5484 }
5485 #ifdef emacs
5486 else if (range_table_exists)
5487 {
5488 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5489
5490 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5491 | (class_bits & BIT_MULTIBYTE)
5492 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5493 | (class_bits & BIT_SPACE && ISSPACE (c))
5494 | (class_bits & BIT_UPPER && ISUPPER (c))
5495 | (class_bits & BIT_WORD && ISWORD (c)))
5496 not = !not;
5497 else
5498 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5499 }
5500 #endif /* emacs */
5501
5502 if (range_table_exists)
5503 p = CHARSET_RANGE_TABLE_END (range_table, count);
5504 else
5505 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
5506
5507 if (!not) goto fail;
5508
5509 d += len;
5510 break;
5511 }
5512
5513
5514 /* The beginning of a group is represented by start_memory.
5515 The argument is the register number. The text
5516 matched within the group is recorded (in the internal
5517 registers data structure) under the register number. */
5518 case start_memory:
5519 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5520
5521 /* In case we need to undo this operation (via backtracking). */
5522 PUSH_FAILURE_REG ((unsigned int)*p);
5523
5524 regstart[*p] = d;
5525 regend[*p] = NULL; /* probably unnecessary. -sm */
5526 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5527
5528 /* Move past the register number and inner group count. */
5529 p += 1;
5530 break;
5531
5532
5533 /* The stop_memory opcode represents the end of a group. Its
5534 argument is the same as start_memory's: the register number. */
5535 case stop_memory:
5536 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5537
5538 assert (!REG_UNSET (regstart[*p]));
5539 /* Strictly speaking, there should be code such as:
5540
5541 assert (REG_UNSET (regend[*p]));
5542 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5543
5544 But the only info to be pushed is regend[*p] and it is known to
5545 be UNSET, so there really isn't anything to push.
5546 Not pushing anything, on the other hand deprives us from the
5547 guarantee that regend[*p] is UNSET since undoing this operation
5548 will not reset its value properly. This is not important since
5549 the value will only be read on the next start_memory or at
5550 the very end and both events can only happen if this stop_memory
5551 is *not* undone. */
5552
5553 regend[*p] = d;
5554 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5555
5556 /* Move past the register number and the inner group count. */
5557 p += 1;
5558 break;
5559
5560
5561 /* \<digit> has been turned into a `duplicate' command which is
5562 followed by the numeric value of <digit> as the register number. */
5563 case duplicate:
5564 {
5565 register re_char *d2, *dend2;
5566 int regno = *p++; /* Get which register to match against. */
5567 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5568
5569 /* Can't back reference a group which we've never matched. */
5570 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5571 goto fail;
5572
5573 /* Where in input to try to start matching. */
5574 d2 = regstart[regno];
5575
5576 /* Remember the start point to rollback upon failure. */
5577 dfail = d;
5578
5579 /* Where to stop matching; if both the place to start and
5580 the place to stop matching are in the same string, then
5581 set to the place to stop, otherwise, for now have to use
5582 the end of the first string. */
5583
5584 dend2 = ((FIRST_STRING_P (regstart[regno])
5585 == FIRST_STRING_P (regend[regno]))
5586 ? regend[regno] : end_match_1);
5587 for (;;)
5588 {
5589 /* If necessary, advance to next segment in register
5590 contents. */
5591 while (d2 == dend2)
5592 {
5593 if (dend2 == end_match_2) break;
5594 if (dend2 == regend[regno]) break;
5595
5596 /* End of string1 => advance to string2. */
5597 d2 = string2;
5598 dend2 = regend[regno];
5599 }
5600 /* At end of register contents => success */
5601 if (d2 == dend2) break;
5602
5603 /* If necessary, advance to next segment in data. */
5604 PREFETCH ();
5605
5606 /* How many characters left in this segment to match. */
5607 mcnt = dend - d;
5608
5609 /* Want how many consecutive characters we can match in
5610 one shot, so, if necessary, adjust the count. */
5611 if (mcnt > dend2 - d2)
5612 mcnt = dend2 - d2;
5613
5614 /* Compare that many; failure if mismatch, else move
5615 past them. */
5616 if (RE_TRANSLATE_P (translate)
5617 ? bcmp_translate (d, d2, mcnt, translate, multibyte)
5618 : memcmp (d, d2, mcnt))
5619 {
5620 d = dfail;
5621 goto fail;
5622 }
5623 d += mcnt, d2 += mcnt;
5624 }
5625 }
5626 break;
5627
5628
5629 /* begline matches the empty string at the beginning of the string
5630 (unless `not_bol' is set in `bufp'), and after newlines. */
5631 case begline:
5632 DEBUG_PRINT1 ("EXECUTING begline.\n");
5633
5634 if (AT_STRINGS_BEG (d))
5635 {
5636 if (!bufp->not_bol) break;
5637 }
5638 else
5639 {
5640 unsigned c;
5641 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
5642 if (c == '\n')
5643 break;
5644 }
5645 /* In all other cases, we fail. */
5646 goto fail;
5647
5648
5649 /* endline is the dual of begline. */
5650 case endline:
5651 DEBUG_PRINT1 ("EXECUTING endline.\n");
5652
5653 if (AT_STRINGS_END (d))
5654 {
5655 if (!bufp->not_eol) break;
5656 }
5657 else
5658 {
5659 PREFETCH_NOLIMIT ();
5660 if (*d == '\n')
5661 break;
5662 }
5663 goto fail;
5664
5665
5666 /* Match at the very beginning of the data. */
5667 case begbuf:
5668 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5669 if (AT_STRINGS_BEG (d))
5670 break;
5671 goto fail;
5672
5673
5674 /* Match at the very end of the data. */
5675 case endbuf:
5676 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5677 if (AT_STRINGS_END (d))
5678 break;
5679 goto fail;
5680
5681
5682 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5683 pushes NULL as the value for the string on the stack. Then
5684 `POP_FAILURE_POINT' will keep the current value for the
5685 string, instead of restoring it. To see why, consider
5686 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5687 then the . fails against the \n. But the next thing we want
5688 to do is match the \n against the \n; if we restored the
5689 string value, we would be back at the foo.
5690
5691 Because this is used only in specific cases, we don't need to
5692 check all the things that `on_failure_jump' does, to make
5693 sure the right things get saved on the stack. Hence we don't
5694 share its code. The only reason to push anything on the
5695 stack at all is that otherwise we would have to change
5696 `anychar's code to do something besides goto fail in this
5697 case; that seems worse than this. */
5698 case on_failure_keep_string_jump:
5699 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5700 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5701 mcnt, p + mcnt);
5702
5703 PUSH_FAILURE_POINT (p - 3, NULL);
5704 break;
5705
5706 /* A nasty loop is introduced by the non-greedy *? and +?.
5707 With such loops, the stack only ever contains one failure point
5708 at a time, so that a plain on_failure_jump_loop kind of
5709 cycle detection cannot work. Worse yet, such a detection
5710 can not only fail to detect a cycle, but it can also wrongly
5711 detect a cycle (between different instantiations of the same
5712 loop).
5713 So the method used for those nasty loops is a little different:
5714 We use a special cycle-detection-stack-frame which is pushed
5715 when the on_failure_jump_nastyloop failure-point is *popped*.
5716 This special frame thus marks the beginning of one iteration
5717 through the loop and we can hence easily check right here
5718 whether something matched between the beginning and the end of
5719 the loop. */
5720 case on_failure_jump_nastyloop:
5721 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5722 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5723 mcnt, p + mcnt);
5724
5725 assert ((re_opcode_t)p[-4] == no_op);
5726 {
5727 int cycle = 0;
5728 CHECK_INFINITE_LOOP (p - 4, d);
5729 if (!cycle)
5730 /* If there's a cycle, just continue without pushing
5731 this failure point. The failure point is the "try again"
5732 option, which shouldn't be tried.
5733 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5734 PUSH_FAILURE_POINT (p - 3, d);
5735 }
5736 break;
5737
5738 /* Simple loop detecting on_failure_jump: just check on the
5739 failure stack if the same spot was already hit earlier. */
5740 case on_failure_jump_loop:
5741 on_failure:
5742 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5743 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5744 mcnt, p + mcnt);
5745 {
5746 int cycle = 0;
5747 CHECK_INFINITE_LOOP (p - 3, d);
5748 if (cycle)
5749 /* If there's a cycle, get out of the loop, as if the matching
5750 had failed. We used to just `goto fail' here, but that was
5751 aborting the search a bit too early: we want to keep the
5752 empty-loop-match and keep matching after the loop.
5753 We want (x?)*y\1z to match both xxyz and xxyxz. */
5754 p += mcnt;
5755 else
5756 PUSH_FAILURE_POINT (p - 3, d);
5757 }
5758 break;
5759
5760
5761 /* Uses of on_failure_jump:
5762
5763 Each alternative starts with an on_failure_jump that points
5764 to the beginning of the next alternative. Each alternative
5765 except the last ends with a jump that in effect jumps past
5766 the rest of the alternatives. (They really jump to the
5767 ending jump of the following alternative, because tensioning
5768 these jumps is a hassle.)
5769
5770 Repeats start with an on_failure_jump that points past both
5771 the repetition text and either the following jump or
5772 pop_failure_jump back to this on_failure_jump. */
5773 case on_failure_jump:
5774 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5775 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5776 mcnt, p + mcnt);
5777
5778 PUSH_FAILURE_POINT (p -3, d);
5779 break;
5780
5781 /* This operation is used for greedy *.
5782 Compare the beginning of the repeat with what in the
5783 pattern follows its end. If we can establish that there
5784 is nothing that they would both match, i.e., that we
5785 would have to backtrack because of (as in, e.g., `a*a')
5786 then we can use a non-backtracking loop based on
5787 on_failure_keep_string_jump instead of on_failure_jump. */
5788 case on_failure_jump_smart:
5789 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5790 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5791 mcnt, p + mcnt);
5792 {
5793 re_char *p1 = p; /* Next operation. */
5794 /* Here, we discard `const', making re_match non-reentrant. */
5795 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5796 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
5797
5798 p -= 3; /* Reset so that we will re-execute the
5799 instruction once it's been changed. */
5800
5801 EXTRACT_NUMBER (mcnt, p2 - 2);
5802
5803 /* Ensure this is a indeed the trivial kind of loop
5804 we are expecting. */
5805 assert (skip_one_char (p1) == p2 - 3);
5806 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
5807 DEBUG_STATEMENT (debug += 2);
5808 if (mutually_exclusive_p (bufp, p1, p2))
5809 {
5810 /* Use a fast `on_failure_keep_string_jump' loop. */
5811 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
5812 *p3 = (unsigned char) on_failure_keep_string_jump;
5813 STORE_NUMBER (p2 - 2, mcnt + 3);
5814 }
5815 else
5816 {
5817 /* Default to a safe `on_failure_jump' loop. */
5818 DEBUG_PRINT1 (" smart default => slow loop.\n");
5819 *p3 = (unsigned char) on_failure_jump;
5820 }
5821 DEBUG_STATEMENT (debug -= 2);
5822 }
5823 break;
5824
5825 /* Unconditionally jump (without popping any failure points). */
5826 case jump:
5827 unconditional_jump:
5828 IMMEDIATE_QUIT_CHECK;
5829 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
5830 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5831 p += mcnt; /* Do the jump. */
5832 DEBUG_PRINT2 ("(to %p).\n", p);
5833 break;
5834
5835
5836 /* Have to succeed matching what follows at least n times.
5837 After that, handle like `on_failure_jump'. */
5838 case succeed_n:
5839 /* Signedness doesn't matter since we only compare MCNT to 0. */
5840 EXTRACT_NUMBER (mcnt, p + 2);
5841 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5842
5843 /* Originally, mcnt is how many times we HAVE to succeed. */
5844 if (mcnt != 0)
5845 {
5846 /* Here, we discard `const', making re_match non-reentrant. */
5847 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5848 mcnt--;
5849 p += 4;
5850 PUSH_NUMBER (p2, mcnt);
5851 }
5852 else
5853 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5854 goto on_failure;
5855 break;
5856
5857 case jump_n:
5858 /* Signedness doesn't matter since we only compare MCNT to 0. */
5859 EXTRACT_NUMBER (mcnt, p + 2);
5860 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5861
5862 /* Originally, this is how many times we CAN jump. */
5863 if (mcnt != 0)
5864 {
5865 /* Here, we discard `const', making re_match non-reentrant. */
5866 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5867 mcnt--;
5868 PUSH_NUMBER (p2, mcnt);
5869 goto unconditional_jump;
5870 }
5871 /* If don't have to jump any more, skip over the rest of command. */
5872 else
5873 p += 4;
5874 break;
5875
5876 case set_number_at:
5877 {
5878 unsigned char *p2; /* Location of the counter. */
5879 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5880
5881 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5882 /* Here, we discard `const', making re_match non-reentrant. */
5883 p2 = (unsigned char*) p + mcnt;
5884 /* Signedness doesn't matter since we only copy MCNT's bits . */
5885 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5886 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5887 PUSH_NUMBER (p2, mcnt);
5888 break;
5889 }
5890
5891 case wordbound:
5892 case notwordbound:
5893 not = (re_opcode_t) *(p - 1) == notwordbound;
5894 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
5895
5896 /* We SUCCEED (or FAIL) in one of the following cases: */
5897
5898 /* Case 1: D is at the beginning or the end of string. */
5899 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5900 not = !not;
5901 else
5902 {
5903 /* C1 is the character before D, S1 is the syntax of C1, C2
5904 is the character at D, and S2 is the syntax of C2. */
5905 re_wchar_t c1, c2;
5906 int s1, s2;
5907 int dummy;
5908 #ifdef emacs
5909 int offset = PTR_TO_OFFSET (d - 1);
5910 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5911 UPDATE_SYNTAX_TABLE (charpos);
5912 #endif
5913 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5914 s1 = SYNTAX (c1);
5915 #ifdef emacs
5916 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5917 #endif
5918 PREFETCH_NOLIMIT ();
5919 GET_CHAR_AFTER (c2, d, dummy);
5920 s2 = SYNTAX (c2);
5921
5922 if (/* Case 2: Only one of S1 and S2 is Sword. */
5923 ((s1 == Sword) != (s2 == Sword))
5924 /* Case 3: Both of S1 and S2 are Sword, and macro
5925 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5926 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5927 not = !not;
5928 }
5929 if (not)
5930 break;
5931 else
5932 goto fail;
5933
5934 case wordbeg:
5935 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5936
5937 /* We FAIL in one of the following cases: */
5938
5939 /* Case 1: D is at the end of string. */
5940 if (AT_STRINGS_END (d))
5941 goto fail;
5942 else
5943 {
5944 /* C1 is the character before D, S1 is the syntax of C1, C2
5945 is the character at D, and S2 is the syntax of C2. */
5946 re_wchar_t c1, c2;
5947 int s1, s2;
5948 int dummy;
5949 #ifdef emacs
5950 int offset = PTR_TO_OFFSET (d);
5951 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5952 UPDATE_SYNTAX_TABLE (charpos);
5953 #endif
5954 PREFETCH ();
5955 GET_CHAR_AFTER (c2, d, dummy);
5956 s2 = SYNTAX (c2);
5957
5958 /* Case 2: S2 is not Sword. */
5959 if (s2 != Sword)
5960 goto fail;
5961
5962 /* Case 3: D is not at the beginning of string ... */
5963 if (!AT_STRINGS_BEG (d))
5964 {
5965 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5966 #ifdef emacs
5967 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5968 #endif
5969 s1 = SYNTAX (c1);
5970
5971 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5972 returns 0. */
5973 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5974 goto fail;
5975 }
5976 }
5977 break;
5978
5979 case wordend:
5980 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5981
5982 /* We FAIL in one of the following cases: */
5983
5984 /* Case 1: D is at the beginning of string. */
5985 if (AT_STRINGS_BEG (d))
5986 goto fail;
5987 else
5988 {
5989 /* C1 is the character before D, S1 is the syntax of C1, C2
5990 is the character at D, and S2 is the syntax of C2. */
5991 re_wchar_t c1, c2;
5992 int s1, s2;
5993 int dummy;
5994 #ifdef emacs
5995 int offset = PTR_TO_OFFSET (d) - 1;
5996 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5997 UPDATE_SYNTAX_TABLE (charpos);
5998 #endif
5999 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6000 s1 = SYNTAX (c1);
6001
6002 /* Case 2: S1 is not Sword. */
6003 if (s1 != Sword)
6004 goto fail;
6005
6006 /* Case 3: D is not at the end of string ... */
6007 if (!AT_STRINGS_END (d))
6008 {
6009 PREFETCH_NOLIMIT ();
6010 GET_CHAR_AFTER (c2, d, dummy);
6011 #ifdef emacs
6012 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
6013 #endif
6014 s2 = SYNTAX (c2);
6015
6016 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
6017 returns 0. */
6018 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
6019 goto fail;
6020 }
6021 }
6022 break;
6023
6024 case symbeg:
6025 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
6026
6027 /* We FAIL in one of the following cases: */
6028
6029 /* Case 1: D is at the end of string. */
6030 if (AT_STRINGS_END (d))
6031 goto fail;
6032 else
6033 {
6034 /* C1 is the character before D, S1 is the syntax of C1, C2
6035 is the character at D, and S2 is the syntax of C2. */
6036 re_wchar_t c1, c2;
6037 int s1, s2;
6038 #ifdef emacs
6039 int offset = PTR_TO_OFFSET (d);
6040 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6041 UPDATE_SYNTAX_TABLE (charpos);
6042 #endif
6043 PREFETCH ();
6044 c2 = RE_STRING_CHAR (d, dend - d);
6045 s2 = SYNTAX (c2);
6046
6047 /* Case 2: S2 is neither Sword nor Ssymbol. */
6048 if (s2 != Sword && s2 != Ssymbol)
6049 goto fail;
6050
6051 /* Case 3: D is not at the beginning of string ... */
6052 if (!AT_STRINGS_BEG (d))
6053 {
6054 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6055 #ifdef emacs
6056 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
6057 #endif
6058 s1 = SYNTAX (c1);
6059
6060 /* ... and S1 is Sword or Ssymbol. */
6061 if (s1 == Sword || s1 == Ssymbol)
6062 goto fail;
6063 }
6064 }
6065 break;
6066
6067 case symend:
6068 DEBUG_PRINT1 ("EXECUTING symend.\n");
6069
6070 /* We FAIL in one of the following cases: */
6071
6072 /* Case 1: D is at the beginning of string. */
6073 if (AT_STRINGS_BEG (d))
6074 goto fail;
6075 else
6076 {
6077 /* C1 is the character before D, S1 is the syntax of C1, C2
6078 is the character at D, and S2 is the syntax of C2. */
6079 re_wchar_t c1, c2;
6080 int s1, s2;
6081 #ifdef emacs
6082 int offset = PTR_TO_OFFSET (d) - 1;
6083 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6084 UPDATE_SYNTAX_TABLE (charpos);
6085 #endif
6086 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6087 s1 = SYNTAX (c1);
6088
6089 /* Case 2: S1 is neither Ssymbol nor Sword. */
6090 if (s1 != Sword && s1 != Ssymbol)
6091 goto fail;
6092
6093 /* Case 3: D is not at the end of string ... */
6094 if (!AT_STRINGS_END (d))
6095 {
6096 PREFETCH_NOLIMIT ();
6097 c2 = RE_STRING_CHAR (d, dend - d);
6098 #ifdef emacs
6099 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
6100 #endif
6101 s2 = SYNTAX (c2);
6102
6103 /* ... and S2 is Sword or Ssymbol. */
6104 if (s2 == Sword || s2 == Ssymbol)
6105 goto fail;
6106 }
6107 }
6108 break;
6109
6110 case syntaxspec:
6111 case notsyntaxspec:
6112 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
6113 mcnt = *p++;
6114 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
6115 PREFETCH ();
6116 #ifdef emacs
6117 {
6118 int offset = PTR_TO_OFFSET (d);
6119 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6120 UPDATE_SYNTAX_TABLE (pos1);
6121 }
6122 #endif
6123 {
6124 int len;
6125 re_wchar_t c;
6126
6127 GET_CHAR_AFTER (c, d, len);
6128 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
6129 goto fail;
6130 d += len;
6131 }
6132 break;
6133
6134 #ifdef emacs
6135 case before_dot:
6136 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
6137 if (PTR_BYTE_POS (d) >= PT_BYTE)
6138 goto fail;
6139 break;
6140
6141 case at_dot:
6142 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
6143 if (PTR_BYTE_POS (d) != PT_BYTE)
6144 goto fail;
6145 break;
6146
6147 case after_dot:
6148 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6149 if (PTR_BYTE_POS (d) <= PT_BYTE)
6150 goto fail;
6151 break;
6152
6153 case categoryspec:
6154 case notcategoryspec:
6155 not = (re_opcode_t) *(p - 1) == notcategoryspec;
6156 mcnt = *p++;
6157 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
6158 PREFETCH ();
6159 {
6160 int len;
6161 re_wchar_t c;
6162
6163 GET_CHAR_AFTER (c, d, len);
6164 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
6165 goto fail;
6166 d += len;
6167 }
6168 break;
6169
6170 #endif /* emacs */
6171
6172 default:
6173 abort ();
6174 }
6175 continue; /* Successfully executed one pattern command; keep going. */
6176
6177
6178 /* We goto here if a matching operation fails. */
6179 fail:
6180 IMMEDIATE_QUIT_CHECK;
6181 if (!FAIL_STACK_EMPTY ())
6182 {
6183 re_char *str, *pat;
6184 /* A restart point is known. Restore to that state. */
6185 DEBUG_PRINT1 ("\nFAIL:\n");
6186 POP_FAILURE_POINT (str, pat);
6187 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
6188 {
6189 case on_failure_keep_string_jump:
6190 assert (str == NULL);
6191 goto continue_failure_jump;
6192
6193 case on_failure_jump_nastyloop:
6194 assert ((re_opcode_t)pat[-2] == no_op);
6195 PUSH_FAILURE_POINT (pat - 2, str);
6196 /* Fallthrough */
6197
6198 case on_failure_jump_loop:
6199 case on_failure_jump:
6200 case succeed_n:
6201 d = str;
6202 continue_failure_jump:
6203 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
6204 p = pat + mcnt;
6205 break;
6206
6207 case no_op:
6208 /* A special frame used for nastyloops. */
6209 goto fail;
6210
6211 default:
6212 abort();
6213 }
6214
6215 assert (p >= bufp->buffer && p <= pend);
6216
6217 if (d >= string1 && d <= end1)
6218 dend = end_match_1;
6219 }
6220 else
6221 break; /* Matching at this starting point really fails. */
6222 } /* for (;;) */
6223
6224 if (best_regs_set)
6225 goto restore_best_regs;
6226
6227 FREE_VARIABLES ();
6228
6229 return -1; /* Failure to match. */
6230 } /* re_match_2 */
6231 \f
6232 /* Subroutine definitions for re_match_2. */
6233
6234 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6235 bytes; nonzero otherwise. */
6236
6237 static int
6238 bcmp_translate (s1, s2, len, translate, multibyte)
6239 re_char *s1, *s2;
6240 register int len;
6241 RE_TRANSLATE_TYPE translate;
6242 const int multibyte;
6243 {
6244 register re_char *p1 = s1, *p2 = s2;
6245 re_char *p1_end = s1 + len;
6246 re_char *p2_end = s2 + len;
6247
6248 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6249 different lengths, but relying on a single `len' would break this. -sm */
6250 while (p1 < p1_end && p2 < p2_end)
6251 {
6252 int p1_charlen, p2_charlen;
6253 re_wchar_t p1_ch, p2_ch;
6254
6255 GET_CHAR_AFTER (p1_ch, p1, p1_charlen);
6256 GET_CHAR_AFTER (p2_ch, p2, p2_charlen);
6257
6258 if (RE_TRANSLATE (translate, p1_ch)
6259 != RE_TRANSLATE (translate, p2_ch))
6260 return 1;
6261
6262 p1 += p1_charlen, p2 += p2_charlen;
6263 }
6264
6265 if (p1 != p1_end || p2 != p2_end)
6266 return 1;
6267
6268 return 0;
6269 }
6270 \f
6271 /* Entry points for GNU code. */
6272
6273 /* re_compile_pattern is the GNU regular expression compiler: it
6274 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6275 Returns 0 if the pattern was valid, otherwise an error string.
6276
6277 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6278 are set in BUFP on entry.
6279
6280 We call regex_compile to do the actual compilation. */
6281
6282 const char *
6283 re_compile_pattern (pattern, length, bufp)
6284 const char *pattern;
6285 size_t length;
6286 struct re_pattern_buffer *bufp;
6287 {
6288 reg_errcode_t ret;
6289
6290 /* GNU code is written to assume at least RE_NREGS registers will be set
6291 (and at least one extra will be -1). */
6292 bufp->regs_allocated = REGS_UNALLOCATED;
6293
6294 /* And GNU code determines whether or not to get register information
6295 by passing null for the REGS argument to re_match, etc., not by
6296 setting no_sub. */
6297 bufp->no_sub = 0;
6298
6299 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
6300
6301 if (!ret)
6302 return NULL;
6303 return gettext (re_error_msgid[(int) ret]);
6304 }
6305 WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
6306 \f
6307 /* Entry points compatible with 4.2 BSD regex library. We don't define
6308 them unless specifically requested. */
6309
6310 #if defined _REGEX_RE_COMP || defined _LIBC
6311
6312 /* BSD has one and only one pattern buffer. */
6313 static struct re_pattern_buffer re_comp_buf;
6314
6315 char *
6316 # ifdef _LIBC
6317 /* Make these definitions weak in libc, so POSIX programs can redefine
6318 these names if they don't use our functions, and still use
6319 regcomp/regexec below without link errors. */
6320 weak_function
6321 # endif
6322 re_comp (s)
6323 const char *s;
6324 {
6325 reg_errcode_t ret;
6326
6327 if (!s)
6328 {
6329 if (!re_comp_buf.buffer)
6330 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6331 return (char *) gettext ("No previous regular expression");
6332 return 0;
6333 }
6334
6335 if (!re_comp_buf.buffer)
6336 {
6337 re_comp_buf.buffer = (unsigned char *) malloc (200);
6338 if (re_comp_buf.buffer == NULL)
6339 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6340 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6341 re_comp_buf.allocated = 200;
6342
6343 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6344 if (re_comp_buf.fastmap == NULL)
6345 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6346 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6347 }
6348
6349 /* Since `re_exec' always passes NULL for the `regs' argument, we
6350 don't need to initialize the pattern buffer fields which affect it. */
6351
6352 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
6353
6354 if (!ret)
6355 return NULL;
6356
6357 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6358 return (char *) gettext (re_error_msgid[(int) ret]);
6359 }
6360
6361
6362 int
6363 # ifdef _LIBC
6364 weak_function
6365 # endif
6366 re_exec (s)
6367 const char *s;
6368 {
6369 const int len = strlen (s);
6370 return
6371 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6372 }
6373 #endif /* _REGEX_RE_COMP */
6374 \f
6375 /* POSIX.2 functions. Don't define these for Emacs. */
6376
6377 #ifndef emacs
6378
6379 /* regcomp takes a regular expression as a string and compiles it.
6380
6381 PREG is a regex_t *. We do not expect any fields to be initialized,
6382 since POSIX says we shouldn't. Thus, we set
6383
6384 `buffer' to the compiled pattern;
6385 `used' to the length of the compiled pattern;
6386 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6387 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6388 RE_SYNTAX_POSIX_BASIC;
6389 `fastmap' to an allocated space for the fastmap;
6390 `fastmap_accurate' to zero;
6391 `re_nsub' to the number of subexpressions in PATTERN.
6392
6393 PATTERN is the address of the pattern string.
6394
6395 CFLAGS is a series of bits which affect compilation.
6396
6397 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6398 use POSIX basic syntax.
6399
6400 If REG_NEWLINE is set, then . and [^...] don't match newline.
6401 Also, regexec will try a match beginning after every newline.
6402
6403 If REG_ICASE is set, then we considers upper- and lowercase
6404 versions of letters to be equivalent when matching.
6405
6406 If REG_NOSUB is set, then when PREG is passed to regexec, that
6407 routine will report only success or failure, and nothing about the
6408 registers.
6409
6410 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6411 the return codes and their meanings.) */
6412
6413 int
6414 regcomp (preg, pattern, cflags)
6415 regex_t *__restrict preg;
6416 const char *__restrict pattern;
6417 int cflags;
6418 {
6419 reg_errcode_t ret;
6420 reg_syntax_t syntax
6421 = (cflags & REG_EXTENDED) ?
6422 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6423
6424 /* regex_compile will allocate the space for the compiled pattern. */
6425 preg->buffer = 0;
6426 preg->allocated = 0;
6427 preg->used = 0;
6428
6429 /* Try to allocate space for the fastmap. */
6430 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
6431
6432 if (cflags & REG_ICASE)
6433 {
6434 unsigned i;
6435
6436 preg->translate
6437 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6438 * sizeof (*(RE_TRANSLATE_TYPE)0));
6439 if (preg->translate == NULL)
6440 return (int) REG_ESPACE;
6441
6442 /* Map uppercase characters to corresponding lowercase ones. */
6443 for (i = 0; i < CHAR_SET_SIZE; i++)
6444 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
6445 }
6446 else
6447 preg->translate = NULL;
6448
6449 /* If REG_NEWLINE is set, newlines are treated differently. */
6450 if (cflags & REG_NEWLINE)
6451 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6452 syntax &= ~RE_DOT_NEWLINE;
6453 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
6454 }
6455 else
6456 syntax |= RE_NO_NEWLINE_ANCHOR;
6457
6458 preg->no_sub = !!(cflags & REG_NOSUB);
6459
6460 /* POSIX says a null character in the pattern terminates it, so we
6461 can use strlen here in compiling the pattern. */
6462 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
6463
6464 /* POSIX doesn't distinguish between an unmatched open-group and an
6465 unmatched close-group: both are REG_EPAREN. */
6466 if (ret == REG_ERPAREN)
6467 ret = REG_EPAREN;
6468
6469 if (ret == REG_NOERROR && preg->fastmap)
6470 { /* Compute the fastmap now, since regexec cannot modify the pattern
6471 buffer. */
6472 re_compile_fastmap (preg);
6473 if (preg->can_be_null)
6474 { /* The fastmap can't be used anyway. */
6475 free (preg->fastmap);
6476 preg->fastmap = NULL;
6477 }
6478 }
6479 return (int) ret;
6480 }
6481 WEAK_ALIAS (__regcomp, regcomp)
6482
6483
6484 /* regexec searches for a given pattern, specified by PREG, in the
6485 string STRING.
6486
6487 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6488 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6489 least NMATCH elements, and we set them to the offsets of the
6490 corresponding matched substrings.
6491
6492 EFLAGS specifies `execution flags' which affect matching: if
6493 REG_NOTBOL is set, then ^ does not match at the beginning of the
6494 string; if REG_NOTEOL is set, then $ does not match at the end.
6495
6496 We return 0 if we find a match and REG_NOMATCH if not. */
6497
6498 int
6499 regexec (preg, string, nmatch, pmatch, eflags)
6500 const regex_t *__restrict preg;
6501 const char *__restrict string;
6502 size_t nmatch;
6503 regmatch_t pmatch[__restrict_arr];
6504 int eflags;
6505 {
6506 int ret;
6507 struct re_registers regs;
6508 regex_t private_preg;
6509 int len = strlen (string);
6510 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
6511
6512 private_preg = *preg;
6513
6514 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6515 private_preg.not_eol = !!(eflags & REG_NOTEOL);
6516
6517 /* The user has told us exactly how many registers to return
6518 information about, via `nmatch'. We have to pass that on to the
6519 matching routines. */
6520 private_preg.regs_allocated = REGS_FIXED;
6521
6522 if (want_reg_info)
6523 {
6524 regs.num_regs = nmatch;
6525 regs.start = TALLOC (nmatch * 2, regoff_t);
6526 if (regs.start == NULL)
6527 return (int) REG_NOMATCH;
6528 regs.end = regs.start + nmatch;
6529 }
6530
6531 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6532 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6533 was a little bit longer but still only matching the real part.
6534 This works because the `endline' will check for a '\n' and will find a
6535 '\0', correctly deciding that this is not the end of a line.
6536 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6537 a convenient '\0' there. For all we know, the string could be preceded
6538 by '\n' which would throw things off. */
6539
6540 /* Perform the searching operation. */
6541 ret = re_search (&private_preg, string, len,
6542 /* start: */ 0, /* range: */ len,
6543 want_reg_info ? &regs : (struct re_registers *) 0);
6544
6545 /* Copy the register information to the POSIX structure. */
6546 if (want_reg_info)
6547 {
6548 if (ret >= 0)
6549 {
6550 unsigned r;
6551
6552 for (r = 0; r < nmatch; r++)
6553 {
6554 pmatch[r].rm_so = regs.start[r];
6555 pmatch[r].rm_eo = regs.end[r];
6556 }
6557 }
6558
6559 /* If we needed the temporary register info, free the space now. */
6560 free (regs.start);
6561 }
6562
6563 /* We want zero return to mean success, unlike `re_search'. */
6564 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6565 }
6566 WEAK_ALIAS (__regexec, regexec)
6567
6568
6569 /* Returns a message corresponding to an error code, ERRCODE, returned
6570 from either regcomp or regexec. We don't use PREG here. */
6571
6572 size_t
6573 regerror (errcode, preg, errbuf, errbuf_size)
6574 int errcode;
6575 const regex_t *preg;
6576 char *errbuf;
6577 size_t errbuf_size;
6578 {
6579 const char *msg;
6580 size_t msg_size;
6581
6582 if (errcode < 0
6583 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
6584 /* Only error codes returned by the rest of the code should be passed
6585 to this routine. If we are given anything else, or if other regex
6586 code generates an invalid error code, then the program has a bug.
6587 Dump core so we can fix it. */
6588 abort ();
6589
6590 msg = gettext (re_error_msgid[errcode]);
6591
6592 msg_size = strlen (msg) + 1; /* Includes the null. */
6593
6594 if (errbuf_size != 0)
6595 {
6596 if (msg_size > errbuf_size)
6597 {
6598 strncpy (errbuf, msg, errbuf_size - 1);
6599 errbuf[errbuf_size - 1] = 0;
6600 }
6601 else
6602 strcpy (errbuf, msg);
6603 }
6604
6605 return msg_size;
6606 }
6607 WEAK_ALIAS (__regerror, regerror)
6608
6609
6610 /* Free dynamically allocated space used by PREG. */
6611
6612 void
6613 regfree (preg)
6614 regex_t *preg;
6615 {
6616 if (preg->buffer != NULL)
6617 free (preg->buffer);
6618 preg->buffer = NULL;
6619
6620 preg->allocated = 0;
6621 preg->used = 0;
6622
6623 if (preg->fastmap != NULL)
6624 free (preg->fastmap);
6625 preg->fastmap = NULL;
6626 preg->fastmap_accurate = 0;
6627
6628 if (preg->translate != NULL)
6629 free (preg->translate);
6630 preg->translate = NULL;
6631 }
6632 WEAK_ALIAS (__regfree, regfree)
6633
6634 #endif /* not emacs */
6635
6636 /* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6637 (do not change this comment) */