]> code.delx.au - gnu-emacs/blob - src/search.c
Fix long filename handling of byte-compile-fix-header.
[gnu-emacs] / src / search.c
1 /* String search routines for GNU Emacs.
2
3 Copyright (C) 1985-1987, 1993-1994, 1997-1999, 2001-2012
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include <config.h>
23 #include <setjmp.h>
24 #include "lisp.h"
25 #include "syntax.h"
26 #include "category.h"
27 #include "buffer.h"
28 #include "character.h"
29 #include "charset.h"
30 #include "region-cache.h"
31 #include "commands.h"
32 #include "blockinput.h"
33 #include "intervals.h"
34
35 #include <sys/types.h>
36 #include "regex.h"
37
38 #define REGEXP_CACHE_SIZE 20
39
40 /* If the regexp is non-nil, then the buffer contains the compiled form
41 of that regexp, suitable for searching. */
42 struct regexp_cache
43 {
44 struct regexp_cache *next;
45 Lisp_Object regexp, whitespace_regexp;
46 /* Syntax table for which the regexp applies. We need this because
47 of character classes. If this is t, then the compiled pattern is valid
48 for any syntax-table. */
49 Lisp_Object syntax_table;
50 struct re_pattern_buffer buf;
51 char fastmap[0400];
52 /* Nonzero means regexp was compiled to do full POSIX backtracking. */
53 char posix;
54 };
55
56 /* The instances of that struct. */
57 static struct regexp_cache searchbufs[REGEXP_CACHE_SIZE];
58
59 /* The head of the linked list; points to the most recently used buffer. */
60 static struct regexp_cache *searchbuf_head;
61
62
63 /* Every call to re_match, etc., must pass &search_regs as the regs
64 argument unless you can show it is unnecessary (i.e., if re_match
65 is certainly going to be called again before region-around-match
66 can be called).
67
68 Since the registers are now dynamically allocated, we need to make
69 sure not to refer to the Nth register before checking that it has
70 been allocated by checking search_regs.num_regs.
71
72 The regex code keeps track of whether it has allocated the search
73 buffer using bits in the re_pattern_buffer. This means that whenever
74 you compile a new pattern, it completely forgets whether it has
75 allocated any registers, and will allocate new registers the next
76 time you call a searching or matching function. Therefore, we need
77 to call re_set_registers after compiling a new pattern or after
78 setting the match registers, so that the regex functions will be
79 able to free or re-allocate it properly. */
80 static struct re_registers search_regs;
81
82 /* The buffer in which the last search was performed, or
83 Qt if the last search was done in a string;
84 Qnil if no searching has been done yet. */
85 static Lisp_Object last_thing_searched;
86
87 /* Error condition signaled when regexp compile_pattern fails. */
88 static Lisp_Object Qinvalid_regexp;
89
90 /* Error condition used for failing searches. */
91 static Lisp_Object Qsearch_failed;
92
93 static void set_search_regs (EMACS_INT, EMACS_INT);
94 static void save_search_regs (void);
95 static EMACS_INT simple_search (EMACS_INT, unsigned char *, EMACS_INT,
96 EMACS_INT, Lisp_Object, EMACS_INT, EMACS_INT,
97 EMACS_INT, EMACS_INT);
98 static EMACS_INT boyer_moore (EMACS_INT, unsigned char *, EMACS_INT,
99 Lisp_Object, Lisp_Object, EMACS_INT,
100 EMACS_INT, int);
101 static EMACS_INT search_buffer (Lisp_Object, EMACS_INT, EMACS_INT,
102 EMACS_INT, EMACS_INT, EMACS_INT, int,
103 Lisp_Object, Lisp_Object, int);
104 static void matcher_overflow (void) NO_RETURN;
105
106 static void
107 matcher_overflow (void)
108 {
109 error ("Stack overflow in regexp matcher");
110 }
111
112 /* Compile a regexp and signal a Lisp error if anything goes wrong.
113 PATTERN is the pattern to compile.
114 CP is the place to put the result.
115 TRANSLATE is a translation table for ignoring case, or nil for none.
116 POSIX is nonzero if we want full backtracking (POSIX style)
117 for this pattern. 0 means backtrack only enough to get a valid match.
118
119 The behavior also depends on Vsearch_spaces_regexp. */
120
121 static void
122 compile_pattern_1 (struct regexp_cache *cp, Lisp_Object pattern, Lisp_Object translate, int posix)
123 {
124 char *val;
125 reg_syntax_t old;
126
127 cp->regexp = Qnil;
128 cp->buf.translate = (! NILP (translate) ? translate : make_number (0));
129 cp->posix = posix;
130 cp->buf.multibyte = STRING_MULTIBYTE (pattern);
131 cp->buf.charset_unibyte = charset_unibyte;
132 if (STRINGP (Vsearch_spaces_regexp))
133 cp->whitespace_regexp = Vsearch_spaces_regexp;
134 else
135 cp->whitespace_regexp = Qnil;
136
137 /* rms: I think BLOCK_INPUT is not needed here any more,
138 because regex.c defines malloc to call xmalloc.
139 Using BLOCK_INPUT here means the debugger won't run if an error occurs.
140 So let's turn it off. */
141 /* BLOCK_INPUT; */
142 old = re_set_syntax (RE_SYNTAX_EMACS
143 | (posix ? 0 : RE_NO_POSIX_BACKTRACKING));
144
145 if (STRINGP (Vsearch_spaces_regexp))
146 re_set_whitespace_regexp (SSDATA (Vsearch_spaces_regexp));
147 else
148 re_set_whitespace_regexp (NULL);
149
150 val = (char *) re_compile_pattern (SSDATA (pattern),
151 SBYTES (pattern), &cp->buf);
152
153 /* If the compiled pattern hard codes some of the contents of the
154 syntax-table, it can only be reused with *this* syntax table. */
155 cp->syntax_table = cp->buf.used_syntax ? BVAR (current_buffer, syntax_table) : Qt;
156
157 re_set_whitespace_regexp (NULL);
158
159 re_set_syntax (old);
160 /* UNBLOCK_INPUT; */
161 if (val)
162 xsignal1 (Qinvalid_regexp, build_string (val));
163
164 cp->regexp = Fcopy_sequence (pattern);
165 }
166
167 /* Shrink each compiled regexp buffer in the cache
168 to the size actually used right now.
169 This is called from garbage collection. */
170
171 void
172 shrink_regexp_cache (void)
173 {
174 struct regexp_cache *cp;
175
176 for (cp = searchbuf_head; cp != 0; cp = cp->next)
177 {
178 cp->buf.allocated = cp->buf.used;
179 cp->buf.buffer
180 = (unsigned char *) xrealloc (cp->buf.buffer, cp->buf.used);
181 }
182 }
183
184 /* Clear the regexp cache w.r.t. a particular syntax table,
185 because it was changed.
186 There is no danger of memory leak here because re_compile_pattern
187 automagically manages the memory in each re_pattern_buffer struct,
188 based on its `allocated' and `buffer' values. */
189 void
190 clear_regexp_cache (void)
191 {
192 int i;
193
194 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
195 /* It's tempting to compare with the syntax-table we've actually changed,
196 but it's not sufficient because char-table inheritance means that
197 modifying one syntax-table can change others at the same time. */
198 if (!EQ (searchbufs[i].syntax_table, Qt))
199 searchbufs[i].regexp = Qnil;
200 }
201
202 /* Compile a regexp if necessary, but first check to see if there's one in
203 the cache.
204 PATTERN is the pattern to compile.
205 TRANSLATE is a translation table for ignoring case, or nil for none.
206 REGP is the structure that says where to store the "register"
207 values that will result from matching this pattern.
208 If it is 0, we should compile the pattern not to record any
209 subexpression bounds.
210 POSIX is nonzero if we want full backtracking (POSIX style)
211 for this pattern. 0 means backtrack only enough to get a valid match. */
212
213 struct re_pattern_buffer *
214 compile_pattern (Lisp_Object pattern, struct re_registers *regp, Lisp_Object translate, int posix, int multibyte)
215 {
216 struct regexp_cache *cp, **cpp;
217
218 for (cpp = &searchbuf_head; ; cpp = &cp->next)
219 {
220 cp = *cpp;
221 /* Entries are initialized to nil, and may be set to nil by
222 compile_pattern_1 if the pattern isn't valid. Don't apply
223 string accessors in those cases. However, compile_pattern_1
224 is only applied to the cache entry we pick here to reuse. So
225 nil should never appear before a non-nil entry. */
226 if (NILP (cp->regexp))
227 goto compile_it;
228 if (SCHARS (cp->regexp) == SCHARS (pattern)
229 && STRING_MULTIBYTE (cp->regexp) == STRING_MULTIBYTE (pattern)
230 && !NILP (Fstring_equal (cp->regexp, pattern))
231 && EQ (cp->buf.translate, (! NILP (translate) ? translate : make_number (0)))
232 && cp->posix == posix
233 && (EQ (cp->syntax_table, Qt)
234 || EQ (cp->syntax_table, BVAR (current_buffer, syntax_table)))
235 && !NILP (Fequal (cp->whitespace_regexp, Vsearch_spaces_regexp))
236 && cp->buf.charset_unibyte == charset_unibyte)
237 break;
238
239 /* If we're at the end of the cache, compile into the nil cell
240 we found, or the last (least recently used) cell with a
241 string value. */
242 if (cp->next == 0)
243 {
244 compile_it:
245 compile_pattern_1 (cp, pattern, translate, posix);
246 break;
247 }
248 }
249
250 /* When we get here, cp (aka *cpp) contains the compiled pattern,
251 either because we found it in the cache or because we just compiled it.
252 Move it to the front of the queue to mark it as most recently used. */
253 *cpp = cp->next;
254 cp->next = searchbuf_head;
255 searchbuf_head = cp;
256
257 /* Advise the searching functions about the space we have allocated
258 for register data. */
259 if (regp)
260 re_set_registers (&cp->buf, regp, regp->num_regs, regp->start, regp->end);
261
262 /* The compiled pattern can be used both for multibyte and unibyte
263 target. But, we have to tell which the pattern is used for. */
264 cp->buf.target_multibyte = multibyte;
265
266 return &cp->buf;
267 }
268
269 \f
270 static Lisp_Object
271 looking_at_1 (Lisp_Object string, int posix)
272 {
273 Lisp_Object val;
274 unsigned char *p1, *p2;
275 EMACS_INT s1, s2;
276 register EMACS_INT i;
277 struct re_pattern_buffer *bufp;
278
279 if (running_asynch_code)
280 save_search_regs ();
281
282 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
283 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
284 = BVAR (current_buffer, case_eqv_table);
285
286 CHECK_STRING (string);
287 bufp = compile_pattern (string,
288 (NILP (Vinhibit_changing_match_data)
289 ? &search_regs : NULL),
290 (!NILP (BVAR (current_buffer, case_fold_search))
291 ? BVAR (current_buffer, case_canon_table) : Qnil),
292 posix,
293 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
294
295 immediate_quit = 1;
296 QUIT; /* Do a pending quit right away, to avoid paradoxical behavior */
297
298 /* Get pointers and sizes of the two strings
299 that make up the visible portion of the buffer. */
300
301 p1 = BEGV_ADDR;
302 s1 = GPT_BYTE - BEGV_BYTE;
303 p2 = GAP_END_ADDR;
304 s2 = ZV_BYTE - GPT_BYTE;
305 if (s1 < 0)
306 {
307 p2 = p1;
308 s2 = ZV_BYTE - BEGV_BYTE;
309 s1 = 0;
310 }
311 if (s2 < 0)
312 {
313 s1 = ZV_BYTE - BEGV_BYTE;
314 s2 = 0;
315 }
316
317 re_match_object = Qnil;
318
319 i = re_match_2 (bufp, (char *) p1, s1, (char *) p2, s2,
320 PT_BYTE - BEGV_BYTE,
321 (NILP (Vinhibit_changing_match_data)
322 ? &search_regs : NULL),
323 ZV_BYTE - BEGV_BYTE);
324 immediate_quit = 0;
325
326 if (i == -2)
327 matcher_overflow ();
328
329 val = (0 <= i ? Qt : Qnil);
330 if (NILP (Vinhibit_changing_match_data) && i >= 0)
331 for (i = 0; i < search_regs.num_regs; i++)
332 if (search_regs.start[i] >= 0)
333 {
334 search_regs.start[i]
335 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
336 search_regs.end[i]
337 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
338 }
339
340 /* Set last_thing_searched only when match data is changed. */
341 if (NILP (Vinhibit_changing_match_data))
342 XSETBUFFER (last_thing_searched, current_buffer);
343
344 return val;
345 }
346
347 DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 1, 0,
348 doc: /* Return t if text after point matches regular expression REGEXP.
349 This function modifies the match data that `match-beginning',
350 `match-end' and `match-data' access; save and restore the match
351 data if you want to preserve them. */)
352 (Lisp_Object regexp)
353 {
354 return looking_at_1 (regexp, 0);
355 }
356
357 DEFUN ("posix-looking-at", Fposix_looking_at, Sposix_looking_at, 1, 1, 0,
358 doc: /* Return t if text after point matches regular expression REGEXP.
359 Find the longest match, in accord with Posix regular expression rules.
360 This function modifies the match data that `match-beginning',
361 `match-end' and `match-data' access; save and restore the match
362 data if you want to preserve them. */)
363 (Lisp_Object regexp)
364 {
365 return looking_at_1 (regexp, 1);
366 }
367 \f
368 static Lisp_Object
369 string_match_1 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start, int posix)
370 {
371 EMACS_INT val;
372 struct re_pattern_buffer *bufp;
373 EMACS_INT pos, pos_byte;
374 int i;
375
376 if (running_asynch_code)
377 save_search_regs ();
378
379 CHECK_STRING (regexp);
380 CHECK_STRING (string);
381
382 if (NILP (start))
383 pos = 0, pos_byte = 0;
384 else
385 {
386 EMACS_INT len = SCHARS (string);
387
388 CHECK_NUMBER (start);
389 pos = XINT (start);
390 if (pos < 0 && -pos <= len)
391 pos = len + pos;
392 else if (0 > pos || pos > len)
393 args_out_of_range (string, start);
394 pos_byte = string_char_to_byte (string, pos);
395 }
396
397 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
398 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
399 = BVAR (current_buffer, case_eqv_table);
400
401 bufp = compile_pattern (regexp,
402 (NILP (Vinhibit_changing_match_data)
403 ? &search_regs : NULL),
404 (!NILP (BVAR (current_buffer, case_fold_search))
405 ? BVAR (current_buffer, case_canon_table) : Qnil),
406 posix,
407 STRING_MULTIBYTE (string));
408 immediate_quit = 1;
409 re_match_object = string;
410
411 val = re_search (bufp, SSDATA (string),
412 SBYTES (string), pos_byte,
413 SBYTES (string) - pos_byte,
414 (NILP (Vinhibit_changing_match_data)
415 ? &search_regs : NULL));
416 immediate_quit = 0;
417
418 /* Set last_thing_searched only when match data is changed. */
419 if (NILP (Vinhibit_changing_match_data))
420 last_thing_searched = Qt;
421
422 if (val == -2)
423 matcher_overflow ();
424 if (val < 0) return Qnil;
425
426 if (NILP (Vinhibit_changing_match_data))
427 for (i = 0; i < search_regs.num_regs; i++)
428 if (search_regs.start[i] >= 0)
429 {
430 search_regs.start[i]
431 = string_byte_to_char (string, search_regs.start[i]);
432 search_regs.end[i]
433 = string_byte_to_char (string, search_regs.end[i]);
434 }
435
436 return make_number (string_byte_to_char (string, val));
437 }
438
439 DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
440 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
441 Matching ignores case if `case-fold-search' is non-nil.
442 If third arg START is non-nil, start search at that index in STRING.
443 For index of first char beyond the match, do (match-end 0).
444 `match-end' and `match-beginning' also give indices of substrings
445 matched by parenthesis constructs in the pattern.
446
447 You can use the function `match-string' to extract the substrings
448 matched by the parenthesis constructions in REGEXP. */)
449 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
450 {
451 return string_match_1 (regexp, string, start, 0);
452 }
453
454 DEFUN ("posix-string-match", Fposix_string_match, Sposix_string_match, 2, 3, 0,
455 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
456 Find the longest match, in accord with Posix regular expression rules.
457 Case is ignored if `case-fold-search' is non-nil in the current buffer.
458 If third arg START is non-nil, start search at that index in STRING.
459 For index of first char beyond the match, do (match-end 0).
460 `match-end' and `match-beginning' also give indices of substrings
461 matched by parenthesis constructs in the pattern. */)
462 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
463 {
464 return string_match_1 (regexp, string, start, 1);
465 }
466
467 /* Match REGEXP against STRING, searching all of STRING,
468 and return the index of the match, or negative on failure.
469 This does not clobber the match data. */
470
471 EMACS_INT
472 fast_string_match (Lisp_Object regexp, Lisp_Object string)
473 {
474 EMACS_INT val;
475 struct re_pattern_buffer *bufp;
476
477 bufp = compile_pattern (regexp, 0, Qnil,
478 0, STRING_MULTIBYTE (string));
479 immediate_quit = 1;
480 re_match_object = string;
481
482 val = re_search (bufp, SSDATA (string),
483 SBYTES (string), 0,
484 SBYTES (string), 0);
485 immediate_quit = 0;
486 return val;
487 }
488
489 /* Match REGEXP against STRING, searching all of STRING ignoring case,
490 and return the index of the match, or negative on failure.
491 This does not clobber the match data.
492 We assume that STRING contains single-byte characters. */
493
494 EMACS_INT
495 fast_c_string_match_ignore_case (Lisp_Object regexp, const char *string)
496 {
497 EMACS_INT val;
498 struct re_pattern_buffer *bufp;
499 size_t len = strlen (string);
500
501 regexp = string_make_unibyte (regexp);
502 re_match_object = Qt;
503 bufp = compile_pattern (regexp, 0,
504 Vascii_canon_table, 0,
505 0);
506 immediate_quit = 1;
507 val = re_search (bufp, string, len, 0, len, 0);
508 immediate_quit = 0;
509 return val;
510 }
511
512 /* Like fast_string_match but ignore case. */
513
514 EMACS_INT
515 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
516 {
517 EMACS_INT val;
518 struct re_pattern_buffer *bufp;
519
520 bufp = compile_pattern (regexp, 0, Vascii_canon_table,
521 0, STRING_MULTIBYTE (string));
522 immediate_quit = 1;
523 re_match_object = string;
524
525 val = re_search (bufp, SSDATA (string),
526 SBYTES (string), 0,
527 SBYTES (string), 0);
528 immediate_quit = 0;
529 return val;
530 }
531 \f
532 /* Match REGEXP against the characters after POS to LIMIT, and return
533 the number of matched characters. If STRING is non-nil, match
534 against the characters in it. In that case, POS and LIMIT are
535 indices into the string. This function doesn't modify the match
536 data. */
537
538 EMACS_INT
539 fast_looking_at (Lisp_Object regexp, EMACS_INT pos, EMACS_INT pos_byte, EMACS_INT limit, EMACS_INT limit_byte, Lisp_Object string)
540 {
541 int multibyte;
542 struct re_pattern_buffer *buf;
543 unsigned char *p1, *p2;
544 EMACS_INT s1, s2;
545 EMACS_INT len;
546
547 if (STRINGP (string))
548 {
549 if (pos_byte < 0)
550 pos_byte = string_char_to_byte (string, pos);
551 if (limit_byte < 0)
552 limit_byte = string_char_to_byte (string, limit);
553 p1 = NULL;
554 s1 = 0;
555 p2 = SDATA (string);
556 s2 = SBYTES (string);
557 re_match_object = string;
558 multibyte = STRING_MULTIBYTE (string);
559 }
560 else
561 {
562 if (pos_byte < 0)
563 pos_byte = CHAR_TO_BYTE (pos);
564 if (limit_byte < 0)
565 limit_byte = CHAR_TO_BYTE (limit);
566 pos_byte -= BEGV_BYTE;
567 limit_byte -= BEGV_BYTE;
568 p1 = BEGV_ADDR;
569 s1 = GPT_BYTE - BEGV_BYTE;
570 p2 = GAP_END_ADDR;
571 s2 = ZV_BYTE - GPT_BYTE;
572 if (s1 < 0)
573 {
574 p2 = p1;
575 s2 = ZV_BYTE - BEGV_BYTE;
576 s1 = 0;
577 }
578 if (s2 < 0)
579 {
580 s1 = ZV_BYTE - BEGV_BYTE;
581 s2 = 0;
582 }
583 re_match_object = Qnil;
584 multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
585 }
586
587 buf = compile_pattern (regexp, 0, Qnil, 0, multibyte);
588 immediate_quit = 1;
589 len = re_match_2 (buf, (char *) p1, s1, (char *) p2, s2,
590 pos_byte, NULL, limit_byte);
591 immediate_quit = 0;
592
593 return len;
594 }
595
596 \f
597 /* The newline cache: remembering which sections of text have no newlines. */
598
599 /* If the user has requested newline caching, make sure it's on.
600 Otherwise, make sure it's off.
601 This is our cheezy way of associating an action with the change of
602 state of a buffer-local variable. */
603 static void
604 newline_cache_on_off (struct buffer *buf)
605 {
606 if (NILP (BVAR (buf, cache_long_line_scans)))
607 {
608 /* It should be off. */
609 if (buf->newline_cache)
610 {
611 free_region_cache (buf->newline_cache);
612 buf->newline_cache = 0;
613 }
614 }
615 else
616 {
617 /* It should be on. */
618 if (buf->newline_cache == 0)
619 buf->newline_cache = new_region_cache ();
620 }
621 }
622
623 \f
624 /* Search for COUNT instances of the character TARGET between START and END.
625
626 If COUNT is positive, search forwards; END must be >= START.
627 If COUNT is negative, search backwards for the -COUNTth instance;
628 END must be <= START.
629 If COUNT is zero, do anything you please; run rogue, for all I care.
630
631 If END is zero, use BEGV or ZV instead, as appropriate for the
632 direction indicated by COUNT.
633
634 If we find COUNT instances, set *SHORTAGE to zero, and return the
635 position past the COUNTth match. Note that for reverse motion
636 this is not the same as the usual convention for Emacs motion commands.
637
638 If we don't find COUNT instances before reaching END, set *SHORTAGE
639 to the number of TARGETs left unfound, and return END.
640
641 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
642 except when inside redisplay. */
643
644 EMACS_INT
645 scan_buffer (register int target, EMACS_INT start, EMACS_INT end,
646 EMACS_INT count, EMACS_INT *shortage, int allow_quit)
647 {
648 struct region_cache *newline_cache;
649 int direction;
650
651 if (count > 0)
652 {
653 direction = 1;
654 if (! end) end = ZV;
655 }
656 else
657 {
658 direction = -1;
659 if (! end) end = BEGV;
660 }
661
662 newline_cache_on_off (current_buffer);
663 newline_cache = current_buffer->newline_cache;
664
665 if (shortage != 0)
666 *shortage = 0;
667
668 immediate_quit = allow_quit;
669
670 if (count > 0)
671 while (start != end)
672 {
673 /* Our innermost scanning loop is very simple; it doesn't know
674 about gaps, buffer ends, or the newline cache. ceiling is
675 the position of the last character before the next such
676 obstacle --- the last character the dumb search loop should
677 examine. */
678 EMACS_INT ceiling_byte = CHAR_TO_BYTE (end) - 1;
679 EMACS_INT start_byte = CHAR_TO_BYTE (start);
680 EMACS_INT tem;
681
682 /* If we're looking for a newline, consult the newline cache
683 to see where we can avoid some scanning. */
684 if (target == '\n' && newline_cache)
685 {
686 ptrdiff_t next_change;
687 immediate_quit = 0;
688 while (region_cache_forward
689 (current_buffer, newline_cache, start_byte, &next_change))
690 start_byte = next_change;
691 immediate_quit = allow_quit;
692
693 /* START should never be after END. */
694 if (start_byte > ceiling_byte)
695 start_byte = ceiling_byte;
696
697 /* Now the text after start is an unknown region, and
698 next_change is the position of the next known region. */
699 ceiling_byte = min (next_change - 1, ceiling_byte);
700 }
701
702 /* The dumb loop can only scan text stored in contiguous
703 bytes. BUFFER_CEILING_OF returns the last character
704 position that is contiguous, so the ceiling is the
705 position after that. */
706 tem = BUFFER_CEILING_OF (start_byte);
707 ceiling_byte = min (tem, ceiling_byte);
708
709 {
710 /* The termination address of the dumb loop. */
711 register unsigned char *ceiling_addr
712 = BYTE_POS_ADDR (ceiling_byte) + 1;
713 register unsigned char *cursor
714 = BYTE_POS_ADDR (start_byte);
715 unsigned char *base = cursor;
716
717 while (cursor < ceiling_addr)
718 {
719 unsigned char *scan_start = cursor;
720
721 /* The dumb loop. */
722 while (*cursor != target && ++cursor < ceiling_addr)
723 ;
724
725 /* If we're looking for newlines, cache the fact that
726 the region from start to cursor is free of them. */
727 if (target == '\n' && newline_cache)
728 know_region_cache (current_buffer, newline_cache,
729 BYTE_TO_CHAR (start_byte + scan_start - base),
730 BYTE_TO_CHAR (start_byte + cursor - base));
731
732 /* Did we find the target character? */
733 if (cursor < ceiling_addr)
734 {
735 if (--count == 0)
736 {
737 immediate_quit = 0;
738 return BYTE_TO_CHAR (start_byte + cursor - base + 1);
739 }
740 cursor++;
741 }
742 }
743
744 start = BYTE_TO_CHAR (start_byte + cursor - base);
745 }
746 }
747 else
748 while (start > end)
749 {
750 /* The last character to check before the next obstacle. */
751 EMACS_INT ceiling_byte = CHAR_TO_BYTE (end);
752 EMACS_INT start_byte = CHAR_TO_BYTE (start);
753 EMACS_INT tem;
754
755 /* Consult the newline cache, if appropriate. */
756 if (target == '\n' && newline_cache)
757 {
758 ptrdiff_t next_change;
759 immediate_quit = 0;
760 while (region_cache_backward
761 (current_buffer, newline_cache, start_byte, &next_change))
762 start_byte = next_change;
763 immediate_quit = allow_quit;
764
765 /* Start should never be at or before end. */
766 if (start_byte <= ceiling_byte)
767 start_byte = ceiling_byte + 1;
768
769 /* Now the text before start is an unknown region, and
770 next_change is the position of the next known region. */
771 ceiling_byte = max (next_change, ceiling_byte);
772 }
773
774 /* Stop scanning before the gap. */
775 tem = BUFFER_FLOOR_OF (start_byte - 1);
776 ceiling_byte = max (tem, ceiling_byte);
777
778 {
779 /* The termination address of the dumb loop. */
780 register unsigned char *ceiling_addr = BYTE_POS_ADDR (ceiling_byte);
781 register unsigned char *cursor = BYTE_POS_ADDR (start_byte - 1);
782 unsigned char *base = cursor;
783
784 while (cursor >= ceiling_addr)
785 {
786 unsigned char *scan_start = cursor;
787
788 while (*cursor != target && --cursor >= ceiling_addr)
789 ;
790
791 /* If we're looking for newlines, cache the fact that
792 the region from after the cursor to start is free of them. */
793 if (target == '\n' && newline_cache)
794 know_region_cache (current_buffer, newline_cache,
795 BYTE_TO_CHAR (start_byte + cursor - base),
796 BYTE_TO_CHAR (start_byte + scan_start - base));
797
798 /* Did we find the target character? */
799 if (cursor >= ceiling_addr)
800 {
801 if (++count >= 0)
802 {
803 immediate_quit = 0;
804 return BYTE_TO_CHAR (start_byte + cursor - base);
805 }
806 cursor--;
807 }
808 }
809
810 start = BYTE_TO_CHAR (start_byte + cursor - base);
811 }
812 }
813
814 immediate_quit = 0;
815 if (shortage != 0)
816 *shortage = count * direction;
817 return start;
818 }
819 \f
820 /* Search for COUNT instances of a line boundary, which means either a
821 newline or (if selective display enabled) a carriage return.
822 Start at START. If COUNT is negative, search backwards.
823
824 We report the resulting position by calling TEMP_SET_PT_BOTH.
825
826 If we find COUNT instances. we position after (always after,
827 even if scanning backwards) the COUNTth match, and return 0.
828
829 If we don't find COUNT instances before reaching the end of the
830 buffer (or the beginning, if scanning backwards), we return
831 the number of line boundaries left unfound, and position at
832 the limit we bumped up against.
833
834 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
835 except in special cases. */
836
837 EMACS_INT
838 scan_newline (EMACS_INT start, EMACS_INT start_byte,
839 EMACS_INT limit, EMACS_INT limit_byte,
840 register EMACS_INT count, int allow_quit)
841 {
842 int direction = ((count > 0) ? 1 : -1);
843
844 register unsigned char *cursor;
845 unsigned char *base;
846
847 EMACS_INT ceiling;
848 register unsigned char *ceiling_addr;
849
850 int old_immediate_quit = immediate_quit;
851
852 /* The code that follows is like scan_buffer
853 but checks for either newline or carriage return. */
854
855 if (allow_quit)
856 immediate_quit++;
857
858 start_byte = CHAR_TO_BYTE (start);
859
860 if (count > 0)
861 {
862 while (start_byte < limit_byte)
863 {
864 ceiling = BUFFER_CEILING_OF (start_byte);
865 ceiling = min (limit_byte - 1, ceiling);
866 ceiling_addr = BYTE_POS_ADDR (ceiling) + 1;
867 base = (cursor = BYTE_POS_ADDR (start_byte));
868 while (1)
869 {
870 while (*cursor != '\n' && ++cursor != ceiling_addr)
871 ;
872
873 if (cursor != ceiling_addr)
874 {
875 if (--count == 0)
876 {
877 immediate_quit = old_immediate_quit;
878 start_byte = start_byte + cursor - base + 1;
879 start = BYTE_TO_CHAR (start_byte);
880 TEMP_SET_PT_BOTH (start, start_byte);
881 return 0;
882 }
883 else
884 if (++cursor == ceiling_addr)
885 break;
886 }
887 else
888 break;
889 }
890 start_byte += cursor - base;
891 }
892 }
893 else
894 {
895 while (start_byte > limit_byte)
896 {
897 ceiling = BUFFER_FLOOR_OF (start_byte - 1);
898 ceiling = max (limit_byte, ceiling);
899 ceiling_addr = BYTE_POS_ADDR (ceiling) - 1;
900 base = (cursor = BYTE_POS_ADDR (start_byte - 1) + 1);
901 while (1)
902 {
903 while (--cursor != ceiling_addr && *cursor != '\n')
904 ;
905
906 if (cursor != ceiling_addr)
907 {
908 if (++count == 0)
909 {
910 immediate_quit = old_immediate_quit;
911 /* Return the position AFTER the match we found. */
912 start_byte = start_byte + cursor - base + 1;
913 start = BYTE_TO_CHAR (start_byte);
914 TEMP_SET_PT_BOTH (start, start_byte);
915 return 0;
916 }
917 }
918 else
919 break;
920 }
921 /* Here we add 1 to compensate for the last decrement
922 of CURSOR, which took it past the valid range. */
923 start_byte += cursor - base + 1;
924 }
925 }
926
927 TEMP_SET_PT_BOTH (limit, limit_byte);
928 immediate_quit = old_immediate_quit;
929
930 return count * direction;
931 }
932
933 EMACS_INT
934 find_next_newline_no_quit (EMACS_INT from, EMACS_INT cnt)
935 {
936 return scan_buffer ('\n', from, 0, cnt, (EMACS_INT *) 0, 0);
937 }
938
939 /* Like find_next_newline, but returns position before the newline,
940 not after, and only search up to TO. This isn't just
941 find_next_newline (...)-1, because you might hit TO. */
942
943 EMACS_INT
944 find_before_next_newline (EMACS_INT from, EMACS_INT to, EMACS_INT cnt)
945 {
946 EMACS_INT shortage;
947 EMACS_INT pos = scan_buffer ('\n', from, to, cnt, &shortage, 1);
948
949 if (shortage == 0)
950 pos--;
951
952 return pos;
953 }
954 \f
955 /* Subroutines of Lisp buffer search functions. */
956
957 static Lisp_Object
958 search_command (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror,
959 Lisp_Object count, int direction, int RE, int posix)
960 {
961 register EMACS_INT np;
962 EMACS_INT lim, lim_byte;
963 EMACS_INT n = direction;
964
965 if (!NILP (count))
966 {
967 CHECK_NUMBER (count);
968 n *= XINT (count);
969 }
970
971 CHECK_STRING (string);
972 if (NILP (bound))
973 {
974 if (n > 0)
975 lim = ZV, lim_byte = ZV_BYTE;
976 else
977 lim = BEGV, lim_byte = BEGV_BYTE;
978 }
979 else
980 {
981 CHECK_NUMBER_COERCE_MARKER (bound);
982 lim = XINT (bound);
983 if (n > 0 ? lim < PT : lim > PT)
984 error ("Invalid search bound (wrong side of point)");
985 if (lim > ZV)
986 lim = ZV, lim_byte = ZV_BYTE;
987 else if (lim < BEGV)
988 lim = BEGV, lim_byte = BEGV_BYTE;
989 else
990 lim_byte = CHAR_TO_BYTE (lim);
991 }
992
993 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
994 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
995 = BVAR (current_buffer, case_eqv_table);
996
997 np = search_buffer (string, PT, PT_BYTE, lim, lim_byte, n, RE,
998 (!NILP (BVAR (current_buffer, case_fold_search))
999 ? BVAR (current_buffer, case_canon_table)
1000 : Qnil),
1001 (!NILP (BVAR (current_buffer, case_fold_search))
1002 ? BVAR (current_buffer, case_eqv_table)
1003 : Qnil),
1004 posix);
1005 if (np <= 0)
1006 {
1007 if (NILP (noerror))
1008 xsignal1 (Qsearch_failed, string);
1009
1010 if (!EQ (noerror, Qt))
1011 {
1012 if (lim < BEGV || lim > ZV)
1013 abort ();
1014 SET_PT_BOTH (lim, lim_byte);
1015 return Qnil;
1016 #if 0 /* This would be clean, but maybe programs depend on
1017 a value of nil here. */
1018 np = lim;
1019 #endif
1020 }
1021 else
1022 return Qnil;
1023 }
1024
1025 if (np < BEGV || np > ZV)
1026 abort ();
1027
1028 SET_PT (np);
1029
1030 return make_number (np);
1031 }
1032 \f
1033 /* Return 1 if REGEXP it matches just one constant string. */
1034
1035 static int
1036 trivial_regexp_p (Lisp_Object regexp)
1037 {
1038 EMACS_INT len = SBYTES (regexp);
1039 unsigned char *s = SDATA (regexp);
1040 while (--len >= 0)
1041 {
1042 switch (*s++)
1043 {
1044 case '.': case '*': case '+': case '?': case '[': case '^': case '$':
1045 return 0;
1046 case '\\':
1047 if (--len < 0)
1048 return 0;
1049 switch (*s++)
1050 {
1051 case '|': case '(': case ')': case '`': case '\'': case 'b':
1052 case 'B': case '<': case '>': case 'w': case 'W': case 's':
1053 case 'S': case '=': case '{': case '}': case '_':
1054 case 'c': case 'C': /* for categoryspec and notcategoryspec */
1055 case '1': case '2': case '3': case '4': case '5':
1056 case '6': case '7': case '8': case '9':
1057 return 0;
1058 }
1059 }
1060 }
1061 return 1;
1062 }
1063
1064 /* Search for the n'th occurrence of STRING in the current buffer,
1065 starting at position POS and stopping at position LIM,
1066 treating STRING as a literal string if RE is false or as
1067 a regular expression if RE is true.
1068
1069 If N is positive, searching is forward and LIM must be greater than POS.
1070 If N is negative, searching is backward and LIM must be less than POS.
1071
1072 Returns -x if x occurrences remain to be found (x > 0),
1073 or else the position at the beginning of the Nth occurrence
1074 (if searching backward) or the end (if searching forward).
1075
1076 POSIX is nonzero if we want full backtracking (POSIX style)
1077 for this pattern. 0 means backtrack only enough to get a valid match. */
1078
1079 #define TRANSLATE(out, trt, d) \
1080 do \
1081 { \
1082 if (! NILP (trt)) \
1083 { \
1084 Lisp_Object temp; \
1085 temp = Faref (trt, make_number (d)); \
1086 if (INTEGERP (temp)) \
1087 out = XINT (temp); \
1088 else \
1089 out = d; \
1090 } \
1091 else \
1092 out = d; \
1093 } \
1094 while (0)
1095
1096 /* Only used in search_buffer, to record the end position of the match
1097 when searching regexps and SEARCH_REGS should not be changed
1098 (i.e. Vinhibit_changing_match_data is non-nil). */
1099 static struct re_registers search_regs_1;
1100
1101 static EMACS_INT
1102 search_buffer (Lisp_Object string, EMACS_INT pos, EMACS_INT pos_byte,
1103 EMACS_INT lim, EMACS_INT lim_byte, EMACS_INT n,
1104 int RE, Lisp_Object trt, Lisp_Object inverse_trt, int posix)
1105 {
1106 EMACS_INT len = SCHARS (string);
1107 EMACS_INT len_byte = SBYTES (string);
1108 register int i;
1109
1110 if (running_asynch_code)
1111 save_search_regs ();
1112
1113 /* Searching 0 times means don't move. */
1114 /* Null string is found at starting position. */
1115 if (len == 0 || n == 0)
1116 {
1117 set_search_regs (pos_byte, 0);
1118 return pos;
1119 }
1120
1121 if (RE && !(trivial_regexp_p (string) && NILP (Vsearch_spaces_regexp)))
1122 {
1123 unsigned char *p1, *p2;
1124 EMACS_INT s1, s2;
1125 struct re_pattern_buffer *bufp;
1126
1127 bufp = compile_pattern (string,
1128 (NILP (Vinhibit_changing_match_data)
1129 ? &search_regs : &search_regs_1),
1130 trt, posix,
1131 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
1132
1133 immediate_quit = 1; /* Quit immediately if user types ^G,
1134 because letting this function finish
1135 can take too long. */
1136 QUIT; /* Do a pending quit right away,
1137 to avoid paradoxical behavior */
1138 /* Get pointers and sizes of the two strings
1139 that make up the visible portion of the buffer. */
1140
1141 p1 = BEGV_ADDR;
1142 s1 = GPT_BYTE - BEGV_BYTE;
1143 p2 = GAP_END_ADDR;
1144 s2 = ZV_BYTE - GPT_BYTE;
1145 if (s1 < 0)
1146 {
1147 p2 = p1;
1148 s2 = ZV_BYTE - BEGV_BYTE;
1149 s1 = 0;
1150 }
1151 if (s2 < 0)
1152 {
1153 s1 = ZV_BYTE - BEGV_BYTE;
1154 s2 = 0;
1155 }
1156 re_match_object = Qnil;
1157
1158 while (n < 0)
1159 {
1160 EMACS_INT val;
1161
1162 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1163 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1164 (NILP (Vinhibit_changing_match_data)
1165 ? &search_regs : &search_regs_1),
1166 /* Don't allow match past current point */
1167 pos_byte - BEGV_BYTE);
1168 if (val == -2)
1169 {
1170 matcher_overflow ();
1171 }
1172 if (val >= 0)
1173 {
1174 if (NILP (Vinhibit_changing_match_data))
1175 {
1176 pos_byte = search_regs.start[0] + BEGV_BYTE;
1177 for (i = 0; i < search_regs.num_regs; i++)
1178 if (search_regs.start[i] >= 0)
1179 {
1180 search_regs.start[i]
1181 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1182 search_regs.end[i]
1183 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1184 }
1185 XSETBUFFER (last_thing_searched, current_buffer);
1186 /* Set pos to the new position. */
1187 pos = search_regs.start[0];
1188 }
1189 else
1190 {
1191 pos_byte = search_regs_1.start[0] + BEGV_BYTE;
1192 /* Set pos to the new position. */
1193 pos = BYTE_TO_CHAR (search_regs_1.start[0] + BEGV_BYTE);
1194 }
1195 }
1196 else
1197 {
1198 immediate_quit = 0;
1199 return (n);
1200 }
1201 n++;
1202 }
1203 while (n > 0)
1204 {
1205 EMACS_INT val;
1206
1207 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1208 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1209 (NILP (Vinhibit_changing_match_data)
1210 ? &search_regs : &search_regs_1),
1211 lim_byte - BEGV_BYTE);
1212 if (val == -2)
1213 {
1214 matcher_overflow ();
1215 }
1216 if (val >= 0)
1217 {
1218 if (NILP (Vinhibit_changing_match_data))
1219 {
1220 pos_byte = search_regs.end[0] + BEGV_BYTE;
1221 for (i = 0; i < search_regs.num_regs; i++)
1222 if (search_regs.start[i] >= 0)
1223 {
1224 search_regs.start[i]
1225 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1226 search_regs.end[i]
1227 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1228 }
1229 XSETBUFFER (last_thing_searched, current_buffer);
1230 pos = search_regs.end[0];
1231 }
1232 else
1233 {
1234 pos_byte = search_regs_1.end[0] + BEGV_BYTE;
1235 pos = BYTE_TO_CHAR (search_regs_1.end[0] + BEGV_BYTE);
1236 }
1237 }
1238 else
1239 {
1240 immediate_quit = 0;
1241 return (0 - n);
1242 }
1243 n--;
1244 }
1245 immediate_quit = 0;
1246 return (pos);
1247 }
1248 else /* non-RE case */
1249 {
1250 unsigned char *raw_pattern, *pat;
1251 EMACS_INT raw_pattern_size;
1252 EMACS_INT raw_pattern_size_byte;
1253 unsigned char *patbuf;
1254 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
1255 unsigned char *base_pat;
1256 /* Set to positive if we find a non-ASCII char that need
1257 translation. Otherwise set to zero later. */
1258 int char_base = -1;
1259 int boyer_moore_ok = 1;
1260
1261 /* MULTIBYTE says whether the text to be searched is multibyte.
1262 We must convert PATTERN to match that, or we will not really
1263 find things right. */
1264
1265 if (multibyte == STRING_MULTIBYTE (string))
1266 {
1267 raw_pattern = SDATA (string);
1268 raw_pattern_size = SCHARS (string);
1269 raw_pattern_size_byte = SBYTES (string);
1270 }
1271 else if (multibyte)
1272 {
1273 raw_pattern_size = SCHARS (string);
1274 raw_pattern_size_byte
1275 = count_size_as_multibyte (SDATA (string),
1276 raw_pattern_size);
1277 raw_pattern = (unsigned char *) alloca (raw_pattern_size_byte + 1);
1278 copy_text (SDATA (string), raw_pattern,
1279 SCHARS (string), 0, 1);
1280 }
1281 else
1282 {
1283 /* Converting multibyte to single-byte.
1284
1285 ??? Perhaps this conversion should be done in a special way
1286 by subtracting nonascii-insert-offset from each non-ASCII char,
1287 so that only the multibyte chars which really correspond to
1288 the chosen single-byte character set can possibly match. */
1289 raw_pattern_size = SCHARS (string);
1290 raw_pattern_size_byte = SCHARS (string);
1291 raw_pattern = (unsigned char *) alloca (raw_pattern_size + 1);
1292 copy_text (SDATA (string), raw_pattern,
1293 SBYTES (string), 1, 0);
1294 }
1295
1296 /* Copy and optionally translate the pattern. */
1297 len = raw_pattern_size;
1298 len_byte = raw_pattern_size_byte;
1299 patbuf = (unsigned char *) alloca (len * MAX_MULTIBYTE_LENGTH);
1300 pat = patbuf;
1301 base_pat = raw_pattern;
1302 if (multibyte)
1303 {
1304 /* Fill patbuf by translated characters in STRING while
1305 checking if we can use boyer-moore search. If TRT is
1306 non-nil, we can use boyer-moore search only if TRT can be
1307 represented by the byte array of 256 elements. For that,
1308 all non-ASCII case-equivalents of all case-sensitive
1309 characters in STRING must belong to the same charset and
1310 row. */
1311
1312 while (--len >= 0)
1313 {
1314 unsigned char str_base[MAX_MULTIBYTE_LENGTH], *str;
1315 int c, translated, inverse;
1316 int in_charlen, charlen;
1317
1318 /* If we got here and the RE flag is set, it's because we're
1319 dealing with a regexp known to be trivial, so the backslash
1320 just quotes the next character. */
1321 if (RE && *base_pat == '\\')
1322 {
1323 len--;
1324 raw_pattern_size--;
1325 len_byte--;
1326 base_pat++;
1327 }
1328
1329 c = STRING_CHAR_AND_LENGTH (base_pat, in_charlen);
1330
1331 if (NILP (trt))
1332 {
1333 str = base_pat;
1334 charlen = in_charlen;
1335 }
1336 else
1337 {
1338 /* Translate the character. */
1339 TRANSLATE (translated, trt, c);
1340 charlen = CHAR_STRING (translated, str_base);
1341 str = str_base;
1342
1343 /* Check if C has any other case-equivalents. */
1344 TRANSLATE (inverse, inverse_trt, c);
1345 /* If so, check if we can use boyer-moore. */
1346 if (c != inverse && boyer_moore_ok)
1347 {
1348 /* Check if all equivalents belong to the same
1349 group of characters. Note that the check of C
1350 itself is done by the last iteration. */
1351 int this_char_base = -1;
1352
1353 while (boyer_moore_ok)
1354 {
1355 if (ASCII_BYTE_P (inverse))
1356 {
1357 if (this_char_base > 0)
1358 boyer_moore_ok = 0;
1359 else
1360 this_char_base = 0;
1361 }
1362 else if (CHAR_BYTE8_P (inverse))
1363 /* Boyer-moore search can't handle a
1364 translation of an eight-bit
1365 character. */
1366 boyer_moore_ok = 0;
1367 else if (this_char_base < 0)
1368 {
1369 this_char_base = inverse & ~0x3F;
1370 if (char_base < 0)
1371 char_base = this_char_base;
1372 else if (this_char_base != char_base)
1373 boyer_moore_ok = 0;
1374 }
1375 else if ((inverse & ~0x3F) != this_char_base)
1376 boyer_moore_ok = 0;
1377 if (c == inverse)
1378 break;
1379 TRANSLATE (inverse, inverse_trt, inverse);
1380 }
1381 }
1382 }
1383
1384 /* Store this character into the translated pattern. */
1385 memcpy (pat, str, charlen);
1386 pat += charlen;
1387 base_pat += in_charlen;
1388 len_byte -= in_charlen;
1389 }
1390
1391 /* If char_base is still negative we didn't find any translated
1392 non-ASCII characters. */
1393 if (char_base < 0)
1394 char_base = 0;
1395 }
1396 else
1397 {
1398 /* Unibyte buffer. */
1399 char_base = 0;
1400 while (--len >= 0)
1401 {
1402 int c, translated;
1403
1404 /* If we got here and the RE flag is set, it's because we're
1405 dealing with a regexp known to be trivial, so the backslash
1406 just quotes the next character. */
1407 if (RE && *base_pat == '\\')
1408 {
1409 len--;
1410 raw_pattern_size--;
1411 base_pat++;
1412 }
1413 c = *base_pat++;
1414 TRANSLATE (translated, trt, c);
1415 *pat++ = translated;
1416 }
1417 }
1418
1419 len_byte = pat - patbuf;
1420 pat = base_pat = patbuf;
1421
1422 if (boyer_moore_ok)
1423 return boyer_moore (n, pat, len_byte, trt, inverse_trt,
1424 pos_byte, lim_byte,
1425 char_base);
1426 else
1427 return simple_search (n, pat, raw_pattern_size, len_byte, trt,
1428 pos, pos_byte, lim, lim_byte);
1429 }
1430 }
1431 \f
1432 /* Do a simple string search N times for the string PAT,
1433 whose length is LEN/LEN_BYTE,
1434 from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
1435 TRT is the translation table.
1436
1437 Return the character position where the match is found.
1438 Otherwise, if M matches remained to be found, return -M.
1439
1440 This kind of search works regardless of what is in PAT and
1441 regardless of what is in TRT. It is used in cases where
1442 boyer_moore cannot work. */
1443
1444 static EMACS_INT
1445 simple_search (EMACS_INT n, unsigned char *pat,
1446 EMACS_INT len, EMACS_INT len_byte, Lisp_Object trt,
1447 EMACS_INT pos, EMACS_INT pos_byte,
1448 EMACS_INT lim, EMACS_INT lim_byte)
1449 {
1450 int multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1451 int forward = n > 0;
1452 /* Number of buffer bytes matched. Note that this may be different
1453 from len_byte in a multibyte buffer. */
1454 EMACS_INT match_byte;
1455
1456 if (lim > pos && multibyte)
1457 while (n > 0)
1458 {
1459 while (1)
1460 {
1461 /* Try matching at position POS. */
1462 EMACS_INT this_pos = pos;
1463 EMACS_INT this_pos_byte = pos_byte;
1464 EMACS_INT this_len = len;
1465 unsigned char *p = pat;
1466 if (pos + len > lim || pos_byte + len_byte > lim_byte)
1467 goto stop;
1468
1469 while (this_len > 0)
1470 {
1471 int charlen, buf_charlen;
1472 int pat_ch, buf_ch;
1473
1474 pat_ch = STRING_CHAR_AND_LENGTH (p, charlen);
1475 buf_ch = STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (this_pos_byte),
1476 buf_charlen);
1477 TRANSLATE (buf_ch, trt, buf_ch);
1478
1479 if (buf_ch != pat_ch)
1480 break;
1481
1482 this_len--;
1483 p += charlen;
1484
1485 this_pos_byte += buf_charlen;
1486 this_pos++;
1487 }
1488
1489 if (this_len == 0)
1490 {
1491 match_byte = this_pos_byte - pos_byte;
1492 pos += len;
1493 pos_byte += match_byte;
1494 break;
1495 }
1496
1497 INC_BOTH (pos, pos_byte);
1498 }
1499
1500 n--;
1501 }
1502 else if (lim > pos)
1503 while (n > 0)
1504 {
1505 while (1)
1506 {
1507 /* Try matching at position POS. */
1508 EMACS_INT this_pos = pos;
1509 EMACS_INT this_len = len;
1510 unsigned char *p = pat;
1511
1512 if (pos + len > lim)
1513 goto stop;
1514
1515 while (this_len > 0)
1516 {
1517 int pat_ch = *p++;
1518 int buf_ch = FETCH_BYTE (this_pos);
1519 TRANSLATE (buf_ch, trt, buf_ch);
1520
1521 if (buf_ch != pat_ch)
1522 break;
1523
1524 this_len--;
1525 this_pos++;
1526 }
1527
1528 if (this_len == 0)
1529 {
1530 match_byte = len;
1531 pos += len;
1532 break;
1533 }
1534
1535 pos++;
1536 }
1537
1538 n--;
1539 }
1540 /* Backwards search. */
1541 else if (lim < pos && multibyte)
1542 while (n < 0)
1543 {
1544 while (1)
1545 {
1546 /* Try matching at position POS. */
1547 EMACS_INT this_pos = pos;
1548 EMACS_INT this_pos_byte = pos_byte;
1549 EMACS_INT this_len = len;
1550 const unsigned char *p = pat + len_byte;
1551
1552 if (this_pos - len < lim || (pos_byte - len_byte) < lim_byte)
1553 goto stop;
1554
1555 while (this_len > 0)
1556 {
1557 int pat_ch, buf_ch;
1558
1559 DEC_BOTH (this_pos, this_pos_byte);
1560 PREV_CHAR_BOUNDARY (p, pat);
1561 pat_ch = STRING_CHAR (p);
1562 buf_ch = STRING_CHAR (BYTE_POS_ADDR (this_pos_byte));
1563 TRANSLATE (buf_ch, trt, buf_ch);
1564
1565 if (buf_ch != pat_ch)
1566 break;
1567
1568 this_len--;
1569 }
1570
1571 if (this_len == 0)
1572 {
1573 match_byte = pos_byte - this_pos_byte;
1574 pos = this_pos;
1575 pos_byte = this_pos_byte;
1576 break;
1577 }
1578
1579 DEC_BOTH (pos, pos_byte);
1580 }
1581
1582 n++;
1583 }
1584 else if (lim < pos)
1585 while (n < 0)
1586 {
1587 while (1)
1588 {
1589 /* Try matching at position POS. */
1590 EMACS_INT this_pos = pos - len;
1591 EMACS_INT this_len = len;
1592 unsigned char *p = pat;
1593
1594 if (this_pos < lim)
1595 goto stop;
1596
1597 while (this_len > 0)
1598 {
1599 int pat_ch = *p++;
1600 int buf_ch = FETCH_BYTE (this_pos);
1601 TRANSLATE (buf_ch, trt, buf_ch);
1602
1603 if (buf_ch != pat_ch)
1604 break;
1605 this_len--;
1606 this_pos++;
1607 }
1608
1609 if (this_len == 0)
1610 {
1611 match_byte = len;
1612 pos -= len;
1613 break;
1614 }
1615
1616 pos--;
1617 }
1618
1619 n++;
1620 }
1621
1622 stop:
1623 if (n == 0)
1624 {
1625 if (forward)
1626 set_search_regs ((multibyte ? pos_byte : pos) - match_byte, match_byte);
1627 else
1628 set_search_regs (multibyte ? pos_byte : pos, match_byte);
1629
1630 return pos;
1631 }
1632 else if (n > 0)
1633 return -n;
1634 else
1635 return n;
1636 }
1637 \f
1638 /* Do Boyer-Moore search N times for the string BASE_PAT,
1639 whose length is LEN_BYTE,
1640 from buffer position POS_BYTE until LIM_BYTE.
1641 DIRECTION says which direction we search in.
1642 TRT and INVERSE_TRT are translation tables.
1643 Characters in PAT are already translated by TRT.
1644
1645 This kind of search works if all the characters in BASE_PAT that
1646 have nontrivial translation are the same aside from the last byte.
1647 This makes it possible to translate just the last byte of a
1648 character, and do so after just a simple test of the context.
1649 CHAR_BASE is nonzero if there is such a non-ASCII character.
1650
1651 If that criterion is not satisfied, do not call this function. */
1652
1653 static EMACS_INT
1654 boyer_moore (EMACS_INT n, unsigned char *base_pat,
1655 EMACS_INT len_byte,
1656 Lisp_Object trt, Lisp_Object inverse_trt,
1657 EMACS_INT pos_byte, EMACS_INT lim_byte,
1658 int char_base)
1659 {
1660 int direction = ((n > 0) ? 1 : -1);
1661 register EMACS_INT dirlen;
1662 EMACS_INT limit;
1663 int stride_for_teases = 0;
1664 int BM_tab[0400];
1665 register unsigned char *cursor, *p_limit;
1666 register EMACS_INT i;
1667 register int j;
1668 unsigned char *pat, *pat_end;
1669 int multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1670
1671 unsigned char simple_translate[0400];
1672 /* These are set to the preceding bytes of a byte to be translated
1673 if char_base is nonzero. As the maximum byte length of a
1674 multibyte character is 5, we have to check at most four previous
1675 bytes. */
1676 int translate_prev_byte1 = 0;
1677 int translate_prev_byte2 = 0;
1678 int translate_prev_byte3 = 0;
1679
1680 /* The general approach is that we are going to maintain that we know
1681 the first (closest to the present position, in whatever direction
1682 we're searching) character that could possibly be the last
1683 (furthest from present position) character of a valid match. We
1684 advance the state of our knowledge by looking at that character
1685 and seeing whether it indeed matches the last character of the
1686 pattern. If it does, we take a closer look. If it does not, we
1687 move our pointer (to putative last characters) as far as is
1688 logically possible. This amount of movement, which I call a
1689 stride, will be the length of the pattern if the actual character
1690 appears nowhere in the pattern, otherwise it will be the distance
1691 from the last occurrence of that character to the end of the
1692 pattern. If the amount is zero we have a possible match. */
1693
1694 /* Here we make a "mickey mouse" BM table. The stride of the search
1695 is determined only by the last character of the putative match.
1696 If that character does not match, we will stride the proper
1697 distance to propose a match that superimposes it on the last
1698 instance of a character that matches it (per trt), or misses
1699 it entirely if there is none. */
1700
1701 dirlen = len_byte * direction;
1702
1703 /* Record position after the end of the pattern. */
1704 pat_end = base_pat + len_byte;
1705 /* BASE_PAT points to a character that we start scanning from.
1706 It is the first character in a forward search,
1707 the last character in a backward search. */
1708 if (direction < 0)
1709 base_pat = pat_end - 1;
1710
1711 /* A character that does not appear in the pattern induces a
1712 stride equal to the pattern length. */
1713 for (i = 0; i < 0400; i++)
1714 BM_tab[i] = dirlen;
1715
1716 /* We use this for translation, instead of TRT itself.
1717 We fill this in to handle the characters that actually
1718 occur in the pattern. Others don't matter anyway! */
1719 for (i = 0; i < 0400; i++)
1720 simple_translate[i] = i;
1721
1722 if (char_base)
1723 {
1724 /* Setup translate_prev_byte1/2/3/4 from CHAR_BASE. Only a
1725 byte following them are the target of translation. */
1726 unsigned char str[MAX_MULTIBYTE_LENGTH];
1727 int cblen = CHAR_STRING (char_base, str);
1728
1729 translate_prev_byte1 = str[cblen - 2];
1730 if (cblen > 2)
1731 {
1732 translate_prev_byte2 = str[cblen - 3];
1733 if (cblen > 3)
1734 translate_prev_byte3 = str[cblen - 4];
1735 }
1736 }
1737
1738 i = 0;
1739 while (i != dirlen)
1740 {
1741 unsigned char *ptr = base_pat + i;
1742 i += direction;
1743 if (! NILP (trt))
1744 {
1745 /* If the byte currently looking at is the last of a
1746 character to check case-equivalents, set CH to that
1747 character. An ASCII character and a non-ASCII character
1748 matching with CHAR_BASE are to be checked. */
1749 int ch = -1;
1750
1751 if (ASCII_BYTE_P (*ptr) || ! multibyte)
1752 ch = *ptr;
1753 else if (char_base
1754 && ((pat_end - ptr) == 1 || CHAR_HEAD_P (ptr[1])))
1755 {
1756 unsigned char *charstart = ptr - 1;
1757
1758 while (! (CHAR_HEAD_P (*charstart)))
1759 charstart--;
1760 ch = STRING_CHAR (charstart);
1761 if (char_base != (ch & ~0x3F))
1762 ch = -1;
1763 }
1764
1765 if (ch >= 0200 && multibyte)
1766 j = (ch & 0x3F) | 0200;
1767 else
1768 j = *ptr;
1769
1770 if (i == dirlen)
1771 stride_for_teases = BM_tab[j];
1772
1773 BM_tab[j] = dirlen - i;
1774 /* A translation table is accompanied by its inverse -- see
1775 comment following downcase_table for details. */
1776 if (ch >= 0)
1777 {
1778 int starting_ch = ch;
1779 int starting_j = j;
1780
1781 while (1)
1782 {
1783 TRANSLATE (ch, inverse_trt, ch);
1784 if (ch >= 0200 && multibyte)
1785 j = (ch & 0x3F) | 0200;
1786 else
1787 j = ch;
1788
1789 /* For all the characters that map into CH,
1790 set up simple_translate to map the last byte
1791 into STARTING_J. */
1792 simple_translate[j] = starting_j;
1793 if (ch == starting_ch)
1794 break;
1795 BM_tab[j] = dirlen - i;
1796 }
1797 }
1798 }
1799 else
1800 {
1801 j = *ptr;
1802
1803 if (i == dirlen)
1804 stride_for_teases = BM_tab[j];
1805 BM_tab[j] = dirlen - i;
1806 }
1807 /* stride_for_teases tells how much to stride if we get a
1808 match on the far character but are subsequently
1809 disappointed, by recording what the stride would have been
1810 for that character if the last character had been
1811 different. */
1812 }
1813 pos_byte += dirlen - ((direction > 0) ? direction : 0);
1814 /* loop invariant - POS_BYTE points at where last char (first
1815 char if reverse) of pattern would align in a possible match. */
1816 while (n != 0)
1817 {
1818 EMACS_INT tail_end;
1819 unsigned char *tail_end_ptr;
1820
1821 /* It's been reported that some (broken) compiler thinks that
1822 Boolean expressions in an arithmetic context are unsigned.
1823 Using an explicit ?1:0 prevents this. */
1824 if ((lim_byte - pos_byte - ((direction > 0) ? 1 : 0)) * direction
1825 < 0)
1826 return (n * (0 - direction));
1827 /* First we do the part we can by pointers (maybe nothing) */
1828 QUIT;
1829 pat = base_pat;
1830 limit = pos_byte - dirlen + direction;
1831 if (direction > 0)
1832 {
1833 limit = BUFFER_CEILING_OF (limit);
1834 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1835 can take on without hitting edge of buffer or the gap. */
1836 limit = min (limit, pos_byte + 20000);
1837 limit = min (limit, lim_byte - 1);
1838 }
1839 else
1840 {
1841 limit = BUFFER_FLOOR_OF (limit);
1842 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1843 can take on without hitting edge of buffer or the gap. */
1844 limit = max (limit, pos_byte - 20000);
1845 limit = max (limit, lim_byte);
1846 }
1847 tail_end = BUFFER_CEILING_OF (pos_byte) + 1;
1848 tail_end_ptr = BYTE_POS_ADDR (tail_end);
1849
1850 if ((limit - pos_byte) * direction > 20)
1851 {
1852 unsigned char *p2;
1853
1854 p_limit = BYTE_POS_ADDR (limit);
1855 p2 = (cursor = BYTE_POS_ADDR (pos_byte));
1856 /* In this loop, pos + cursor - p2 is the surrogate for pos. */
1857 while (1) /* use one cursor setting as long as i can */
1858 {
1859 if (direction > 0) /* worth duplicating */
1860 {
1861 while (cursor <= p_limit)
1862 {
1863 if (BM_tab[*cursor] == 0)
1864 goto hit;
1865 cursor += BM_tab[*cursor];
1866 }
1867 }
1868 else
1869 {
1870 while (cursor >= p_limit)
1871 {
1872 if (BM_tab[*cursor] == 0)
1873 goto hit;
1874 cursor += BM_tab[*cursor];
1875 }
1876 }
1877 /* If you are here, cursor is beyond the end of the
1878 searched region. You fail to match within the
1879 permitted region and would otherwise try a character
1880 beyond that region. */
1881 break;
1882
1883 hit:
1884 i = dirlen - direction;
1885 if (! NILP (trt))
1886 {
1887 while ((i -= direction) + direction != 0)
1888 {
1889 int ch;
1890 cursor -= direction;
1891 /* Translate only the last byte of a character. */
1892 if (! multibyte
1893 || ((cursor == tail_end_ptr
1894 || CHAR_HEAD_P (cursor[1]))
1895 && (CHAR_HEAD_P (cursor[0])
1896 /* Check if this is the last byte of
1897 a translatable character. */
1898 || (translate_prev_byte1 == cursor[-1]
1899 && (CHAR_HEAD_P (translate_prev_byte1)
1900 || (translate_prev_byte2 == cursor[-2]
1901 && (CHAR_HEAD_P (translate_prev_byte2)
1902 || (translate_prev_byte3 == cursor[-3]))))))))
1903 ch = simple_translate[*cursor];
1904 else
1905 ch = *cursor;
1906 if (pat[i] != ch)
1907 break;
1908 }
1909 }
1910 else
1911 {
1912 while ((i -= direction) + direction != 0)
1913 {
1914 cursor -= direction;
1915 if (pat[i] != *cursor)
1916 break;
1917 }
1918 }
1919 cursor += dirlen - i - direction; /* fix cursor */
1920 if (i + direction == 0)
1921 {
1922 EMACS_INT position, start, end;
1923
1924 cursor -= direction;
1925
1926 position = pos_byte + cursor - p2 + ((direction > 0)
1927 ? 1 - len_byte : 0);
1928 set_search_regs (position, len_byte);
1929
1930 if (NILP (Vinhibit_changing_match_data))
1931 {
1932 start = search_regs.start[0];
1933 end = search_regs.end[0];
1934 }
1935 else
1936 /* If Vinhibit_changing_match_data is non-nil,
1937 search_regs will not be changed. So let's
1938 compute start and end here. */
1939 {
1940 start = BYTE_TO_CHAR (position);
1941 end = BYTE_TO_CHAR (position + len_byte);
1942 }
1943
1944 if ((n -= direction) != 0)
1945 cursor += dirlen; /* to resume search */
1946 else
1947 return direction > 0 ? end : start;
1948 }
1949 else
1950 cursor += stride_for_teases; /* <sigh> we lose - */
1951 }
1952 pos_byte += cursor - p2;
1953 }
1954 else
1955 /* Now we'll pick up a clump that has to be done the hard
1956 way because it covers a discontinuity. */
1957 {
1958 limit = ((direction > 0)
1959 ? BUFFER_CEILING_OF (pos_byte - dirlen + 1)
1960 : BUFFER_FLOOR_OF (pos_byte - dirlen - 1));
1961 limit = ((direction > 0)
1962 ? min (limit + len_byte, lim_byte - 1)
1963 : max (limit - len_byte, lim_byte));
1964 /* LIMIT is now the last value POS_BYTE can have
1965 and still be valid for a possible match. */
1966 while (1)
1967 {
1968 /* This loop can be coded for space rather than
1969 speed because it will usually run only once.
1970 (the reach is at most len + 21, and typically
1971 does not exceed len). */
1972 while ((limit - pos_byte) * direction >= 0)
1973 {
1974 int ch = FETCH_BYTE (pos_byte);
1975 if (BM_tab[ch] == 0)
1976 goto hit2;
1977 pos_byte += BM_tab[ch];
1978 }
1979 break; /* ran off the end */
1980
1981 hit2:
1982 /* Found what might be a match. */
1983 i = dirlen - direction;
1984 while ((i -= direction) + direction != 0)
1985 {
1986 int ch;
1987 unsigned char *ptr;
1988 pos_byte -= direction;
1989 ptr = BYTE_POS_ADDR (pos_byte);
1990 /* Translate only the last byte of a character. */
1991 if (! multibyte
1992 || ((ptr == tail_end_ptr
1993 || CHAR_HEAD_P (ptr[1]))
1994 && (CHAR_HEAD_P (ptr[0])
1995 /* Check if this is the last byte of a
1996 translatable character. */
1997 || (translate_prev_byte1 == ptr[-1]
1998 && (CHAR_HEAD_P (translate_prev_byte1)
1999 || (translate_prev_byte2 == ptr[-2]
2000 && (CHAR_HEAD_P (translate_prev_byte2)
2001 || translate_prev_byte3 == ptr[-3])))))))
2002 ch = simple_translate[*ptr];
2003 else
2004 ch = *ptr;
2005 if (pat[i] != ch)
2006 break;
2007 }
2008 /* Above loop has moved POS_BYTE part or all the way
2009 back to the first pos (last pos if reverse).
2010 Set it once again at the last (first if reverse) char. */
2011 pos_byte += dirlen - i - direction;
2012 if (i + direction == 0)
2013 {
2014 EMACS_INT position, start, end;
2015 pos_byte -= direction;
2016
2017 position = pos_byte + ((direction > 0) ? 1 - len_byte : 0);
2018 set_search_regs (position, len_byte);
2019
2020 if (NILP (Vinhibit_changing_match_data))
2021 {
2022 start = search_regs.start[0];
2023 end = search_regs.end[0];
2024 }
2025 else
2026 /* If Vinhibit_changing_match_data is non-nil,
2027 search_regs will not be changed. So let's
2028 compute start and end here. */
2029 {
2030 start = BYTE_TO_CHAR (position);
2031 end = BYTE_TO_CHAR (position + len_byte);
2032 }
2033
2034 if ((n -= direction) != 0)
2035 pos_byte += dirlen; /* to resume search */
2036 else
2037 return direction > 0 ? end : start;
2038 }
2039 else
2040 pos_byte += stride_for_teases;
2041 }
2042 }
2043 /* We have done one clump. Can we continue? */
2044 if ((lim_byte - pos_byte) * direction < 0)
2045 return ((0 - n) * direction);
2046 }
2047 return BYTE_TO_CHAR (pos_byte);
2048 }
2049
2050 /* Record beginning BEG_BYTE and end BEG_BYTE + NBYTES
2051 for the overall match just found in the current buffer.
2052 Also clear out the match data for registers 1 and up. */
2053
2054 static void
2055 set_search_regs (EMACS_INT beg_byte, EMACS_INT nbytes)
2056 {
2057 int i;
2058
2059 if (!NILP (Vinhibit_changing_match_data))
2060 return;
2061
2062 /* Make sure we have registers in which to store
2063 the match position. */
2064 if (search_regs.num_regs == 0)
2065 {
2066 search_regs.start = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
2067 search_regs.end = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
2068 search_regs.num_regs = 2;
2069 }
2070
2071 /* Clear out the other registers. */
2072 for (i = 1; i < search_regs.num_regs; i++)
2073 {
2074 search_regs.start[i] = -1;
2075 search_regs.end[i] = -1;
2076 }
2077
2078 search_regs.start[0] = BYTE_TO_CHAR (beg_byte);
2079 search_regs.end[0] = BYTE_TO_CHAR (beg_byte + nbytes);
2080 XSETBUFFER (last_thing_searched, current_buffer);
2081 }
2082 \f
2083 DEFUN ("word-search-regexp", Fword_search_regexp, Sword_search_regexp, 1, 2, 0,
2084 doc: /* Return a regexp which matches words, ignoring punctuation.
2085 Given STRING, a string of words separated by word delimiters,
2086 compute a regexp that matches those exact words separated by
2087 arbitrary punctuation. If LAX is non-nil, the end of the string
2088 need not match a word boundary unless it ends in whitespace.
2089
2090 Used in `word-search-forward', `word-search-backward',
2091 `word-search-forward-lax', `word-search-backward-lax'. */)
2092 (Lisp_Object string, Lisp_Object lax)
2093 {
2094 register unsigned char *o;
2095 register EMACS_INT i, i_byte, len, punct_count = 0, word_count = 0;
2096 Lisp_Object val;
2097 int prev_c = 0;
2098 EMACS_INT adjust;
2099 int whitespace_at_end;
2100
2101 CHECK_STRING (string);
2102 len = SCHARS (string);
2103
2104 for (i = 0, i_byte = 0; i < len; )
2105 {
2106 int c;
2107
2108 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, i, i_byte);
2109
2110 if (SYNTAX (c) != Sword)
2111 {
2112 punct_count++;
2113 if (SYNTAX (prev_c) == Sword)
2114 word_count++;
2115 }
2116
2117 prev_c = c;
2118 }
2119
2120 if (SYNTAX (prev_c) == Sword)
2121 {
2122 word_count++;
2123 whitespace_at_end = 0;
2124 }
2125 else
2126 {
2127 whitespace_at_end = 1;
2128 if (!word_count)
2129 return empty_unibyte_string;
2130 }
2131
2132 adjust = - punct_count + 5 * (word_count - 1)
2133 + ((!NILP (lax) && !whitespace_at_end) ? 2 : 4);
2134 if (STRING_MULTIBYTE (string))
2135 val = make_uninit_multibyte_string (len + adjust,
2136 SBYTES (string)
2137 + adjust);
2138 else
2139 val = make_uninit_string (len + adjust);
2140
2141 o = SDATA (val);
2142 *o++ = '\\';
2143 *o++ = 'b';
2144 prev_c = 0;
2145
2146 for (i = 0, i_byte = 0; i < len; )
2147 {
2148 int c;
2149 EMACS_INT i_byte_orig = i_byte;
2150
2151 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, i, i_byte);
2152
2153 if (SYNTAX (c) == Sword)
2154 {
2155 memcpy (o, SDATA (string) + i_byte_orig, i_byte - i_byte_orig);
2156 o += i_byte - i_byte_orig;
2157 }
2158 else if (SYNTAX (prev_c) == Sword && --word_count)
2159 {
2160 *o++ = '\\';
2161 *o++ = 'W';
2162 *o++ = '\\';
2163 *o++ = 'W';
2164 *o++ = '*';
2165 }
2166
2167 prev_c = c;
2168 }
2169
2170 if (NILP (lax) || whitespace_at_end)
2171 {
2172 *o++ = '\\';
2173 *o++ = 'b';
2174 }
2175
2176 return val;
2177 }
2178 \f
2179 DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
2180 "MSearch backward: ",
2181 doc: /* Search backward from point for STRING.
2182 Set point to the beginning of the occurrence found, and return point.
2183 An optional second argument bounds the search; it is a buffer position.
2184 The match found must not extend before that position.
2185 Optional third argument, if t, means if fail just return nil (no error).
2186 If not nil and not t, position at limit of search and return nil.
2187 Optional fourth argument COUNT, if non-nil, means to search for COUNT
2188 successive occurrences. If COUNT is negative, search forward,
2189 instead of backward, for -COUNT occurrences.
2190
2191 Search case-sensitivity is determined by the value of the variable
2192 `case-fold-search', which see.
2193
2194 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2195 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2196 {
2197 return search_command (string, bound, noerror, count, -1, 0, 0);
2198 }
2199
2200 DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "MSearch: ",
2201 doc: /* Search forward from point for STRING.
2202 Set point to the end of the occurrence found, and return point.
2203 An optional second argument bounds the search; it is a buffer position.
2204 The match found must not extend after that position. A value of nil is
2205 equivalent to (point-max).
2206 Optional third argument, if t, means if fail just return nil (no error).
2207 If not nil and not t, move to limit of search and return nil.
2208 Optional fourth argument COUNT, if non-nil, means to search for COUNT
2209 successive occurrences. If COUNT is negative, search backward,
2210 instead of forward, for -COUNT occurrences.
2211
2212 Search case-sensitivity is determined by the value of the variable
2213 `case-fold-search', which see.
2214
2215 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2216 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2217 {
2218 return search_command (string, bound, noerror, count, 1, 0, 0);
2219 }
2220
2221 DEFUN ("word-search-backward", Fword_search_backward, Sword_search_backward, 1, 4,
2222 "sWord search backward: ",
2223 doc: /* Search backward from point for STRING, ignoring differences in punctuation.
2224 Set point to the beginning of the occurrence found, and return point.
2225 An optional second argument bounds the search; it is a buffer position.
2226 The match found must not extend before that position.
2227 Optional third argument, if t, means if fail just return nil (no error).
2228 If not nil and not t, move to limit of search and return nil.
2229 Optional fourth argument is repeat count--search for successive occurrences.
2230
2231 Relies on the function `word-search-regexp' to convert a sequence
2232 of words in STRING to a regexp used to search words without regard
2233 to punctuation. */)
2234 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2235 {
2236 return search_command (Fword_search_regexp (string, Qnil), bound, noerror, count, -1, 1, 0);
2237 }
2238
2239 DEFUN ("word-search-forward", Fword_search_forward, Sword_search_forward, 1, 4,
2240 "sWord search: ",
2241 doc: /* Search forward from point for STRING, ignoring differences in punctuation.
2242 Set point to the end of the occurrence found, and return point.
2243 An optional second argument bounds the search; it is a buffer position.
2244 The match found must not extend after that position.
2245 Optional third argument, if t, means if fail just return nil (no error).
2246 If not nil and not t, move to limit of search and return nil.
2247 Optional fourth argument is repeat count--search for successive occurrences.
2248
2249 Relies on the function `word-search-regexp' to convert a sequence
2250 of words in STRING to a regexp used to search words without regard
2251 to punctuation. */)
2252 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2253 {
2254 return search_command (Fword_search_regexp (string, Qnil), bound, noerror, count, 1, 1, 0);
2255 }
2256
2257 DEFUN ("word-search-backward-lax", Fword_search_backward_lax, Sword_search_backward_lax, 1, 4,
2258 "sWord search backward: ",
2259 doc: /* Search backward from point for STRING, ignoring differences in punctuation.
2260 Set point to the beginning of the occurrence found, and return point.
2261
2262 Unlike `word-search-backward', the end of STRING need not match a word
2263 boundary, unless STRING ends in whitespace.
2264
2265 An optional second argument bounds the search; it is a buffer position.
2266 The match found must not extend before that position.
2267 Optional third argument, if t, means if fail just return nil (no error).
2268 If not nil and not t, move to limit of search and return nil.
2269 Optional fourth argument is repeat count--search for successive occurrences.
2270
2271 Relies on the function `word-search-regexp' to convert a sequence
2272 of words in STRING to a regexp used to search words without regard
2273 to punctuation. */)
2274 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2275 {
2276 return search_command (Fword_search_regexp (string, Qt), bound, noerror, count, -1, 1, 0);
2277 }
2278
2279 DEFUN ("word-search-forward-lax", Fword_search_forward_lax, Sword_search_forward_lax, 1, 4,
2280 "sWord search: ",
2281 doc: /* Search forward from point for STRING, ignoring differences in punctuation.
2282 Set point to the end of the occurrence found, and return point.
2283
2284 Unlike `word-search-forward', the end of STRING need not match a word
2285 boundary, unless STRING ends in whitespace.
2286
2287 An optional second argument bounds the search; it is a buffer position.
2288 The match found must not extend after that position.
2289 Optional third argument, if t, means if fail just return nil (no error).
2290 If not nil and not t, move to limit of search and return nil.
2291 Optional fourth argument is repeat count--search for successive occurrences.
2292
2293 Relies on the function `word-search-regexp' to convert a sequence
2294 of words in STRING to a regexp used to search words without regard
2295 to punctuation. */)
2296 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2297 {
2298 return search_command (Fword_search_regexp (string, Qt), bound, noerror, count, 1, 1, 0);
2299 }
2300
2301 DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
2302 "sRE search backward: ",
2303 doc: /* Search backward from point for match for regular expression REGEXP.
2304 Set point to the beginning of the match, and return point.
2305 The match found is the one starting last in the buffer
2306 and yet ending before the origin of the search.
2307 An optional second argument bounds the search; it is a buffer position.
2308 The match found must start at or after that position.
2309 Optional third argument, if t, means if fail just return nil (no error).
2310 If not nil and not t, move to limit of search and return nil.
2311 Optional fourth argument is repeat count--search for successive occurrences.
2312
2313 Search case-sensitivity is determined by the value of the variable
2314 `case-fold-search', which see.
2315
2316 See also the functions `match-beginning', `match-end', `match-string',
2317 and `replace-match'. */)
2318 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2319 {
2320 return search_command (regexp, bound, noerror, count, -1, 1, 0);
2321 }
2322
2323 DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
2324 "sRE search: ",
2325 doc: /* Search forward from point for regular expression REGEXP.
2326 Set point to the end of the occurrence found, and return point.
2327 An optional second argument bounds the search; it is a buffer position.
2328 The match found must not extend after that position.
2329 Optional third argument, if t, means if fail just return nil (no error).
2330 If not nil and not t, move to limit of search and return nil.
2331 Optional fourth argument is repeat count--search for successive occurrences.
2332
2333 Search case-sensitivity is determined by the value of the variable
2334 `case-fold-search', which see.
2335
2336 See also the functions `match-beginning', `match-end', `match-string',
2337 and `replace-match'. */)
2338 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2339 {
2340 return search_command (regexp, bound, noerror, count, 1, 1, 0);
2341 }
2342
2343 DEFUN ("posix-search-backward", Fposix_search_backward, Sposix_search_backward, 1, 4,
2344 "sPosix search backward: ",
2345 doc: /* Search backward from point for match for regular expression REGEXP.
2346 Find the longest match in accord with Posix regular expression rules.
2347 Set point to the beginning of the match, and return point.
2348 The match found is the one starting last in the buffer
2349 and yet ending before the origin of the search.
2350 An optional second argument bounds the search; it is a buffer position.
2351 The match found must start at or after that position.
2352 Optional third argument, if t, means if fail just return nil (no error).
2353 If not nil and not t, move to limit of search and return nil.
2354 Optional fourth argument is repeat count--search for successive occurrences.
2355
2356 Search case-sensitivity is determined by the value of the variable
2357 `case-fold-search', which see.
2358
2359 See also the functions `match-beginning', `match-end', `match-string',
2360 and `replace-match'. */)
2361 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2362 {
2363 return search_command (regexp, bound, noerror, count, -1, 1, 1);
2364 }
2365
2366 DEFUN ("posix-search-forward", Fposix_search_forward, Sposix_search_forward, 1, 4,
2367 "sPosix search: ",
2368 doc: /* Search forward from point for regular expression REGEXP.
2369 Find the longest match in accord with Posix regular expression rules.
2370 Set point to the end of the occurrence found, and return point.
2371 An optional second argument bounds the search; it is a buffer position.
2372 The match found must not extend after that position.
2373 Optional third argument, if t, means if fail just return nil (no error).
2374 If not nil and not t, move to limit of search and return nil.
2375 Optional fourth argument is repeat count--search for successive occurrences.
2376
2377 Search case-sensitivity is determined by the value of the variable
2378 `case-fold-search', which see.
2379
2380 See also the functions `match-beginning', `match-end', `match-string',
2381 and `replace-match'. */)
2382 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2383 {
2384 return search_command (regexp, bound, noerror, count, 1, 1, 1);
2385 }
2386 \f
2387 DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 5, 0,
2388 doc: /* Replace text matched by last search with NEWTEXT.
2389 Leave point at the end of the replacement text.
2390
2391 If second arg FIXEDCASE is non-nil, do not alter case of replacement text.
2392 Otherwise maybe capitalize the whole text, or maybe just word initials,
2393 based on the replaced text.
2394 If the replaced text has only capital letters
2395 and has at least one multiletter word, convert NEWTEXT to all caps.
2396 Otherwise if all words are capitalized in the replaced text,
2397 capitalize each word in NEWTEXT.
2398
2399 If third arg LITERAL is non-nil, insert NEWTEXT literally.
2400 Otherwise treat `\\' as special:
2401 `\\&' in NEWTEXT means substitute original matched text.
2402 `\\N' means substitute what matched the Nth `\\(...\\)'.
2403 If Nth parens didn't match, substitute nothing.
2404 `\\\\' means insert one `\\'.
2405 Case conversion does not apply to these substitutions.
2406
2407 FIXEDCASE and LITERAL are optional arguments.
2408
2409 The optional fourth argument STRING can be a string to modify.
2410 This is meaningful when the previous match was done against STRING,
2411 using `string-match'. When used this way, `replace-match'
2412 creates and returns a new string made by copying STRING and replacing
2413 the part of STRING that was matched.
2414
2415 The optional fifth argument SUBEXP specifies a subexpression;
2416 it says to replace just that subexpression with NEWTEXT,
2417 rather than replacing the entire matched text.
2418 This is, in a vague sense, the inverse of using `\\N' in NEWTEXT;
2419 `\\N' copies subexp N into NEWTEXT, but using N as SUBEXP puts
2420 NEWTEXT in place of subexp N.
2421 This is useful only after a regular expression search or match,
2422 since only regular expressions have distinguished subexpressions. */)
2423 (Lisp_Object newtext, Lisp_Object fixedcase, Lisp_Object literal, Lisp_Object string, Lisp_Object subexp)
2424 {
2425 enum { nochange, all_caps, cap_initial } case_action;
2426 register EMACS_INT pos, pos_byte;
2427 int some_multiletter_word;
2428 int some_lowercase;
2429 int some_uppercase;
2430 int some_nonuppercase_initial;
2431 register int c, prevc;
2432 ptrdiff_t sub;
2433 EMACS_INT opoint, newpoint;
2434
2435 CHECK_STRING (newtext);
2436
2437 if (! NILP (string))
2438 CHECK_STRING (string);
2439
2440 case_action = nochange; /* We tried an initialization */
2441 /* but some C compilers blew it */
2442
2443 if (search_regs.num_regs <= 0)
2444 error ("`replace-match' called before any match found");
2445
2446 if (NILP (subexp))
2447 sub = 0;
2448 else
2449 {
2450 CHECK_NUMBER (subexp);
2451 if (! (0 <= XINT (subexp) && XINT (subexp) < search_regs.num_regs))
2452 args_out_of_range (subexp, make_number (search_regs.num_regs));
2453 sub = XINT (subexp);
2454 }
2455
2456 if (NILP (string))
2457 {
2458 if (search_regs.start[sub] < BEGV
2459 || search_regs.start[sub] > search_regs.end[sub]
2460 || search_regs.end[sub] > ZV)
2461 args_out_of_range (make_number (search_regs.start[sub]),
2462 make_number (search_regs.end[sub]));
2463 }
2464 else
2465 {
2466 if (search_regs.start[sub] < 0
2467 || search_regs.start[sub] > search_regs.end[sub]
2468 || search_regs.end[sub] > SCHARS (string))
2469 args_out_of_range (make_number (search_regs.start[sub]),
2470 make_number (search_regs.end[sub]));
2471 }
2472
2473 if (NILP (fixedcase))
2474 {
2475 /* Decide how to casify by examining the matched text. */
2476 EMACS_INT last;
2477
2478 pos = search_regs.start[sub];
2479 last = search_regs.end[sub];
2480
2481 if (NILP (string))
2482 pos_byte = CHAR_TO_BYTE (pos);
2483 else
2484 pos_byte = string_char_to_byte (string, pos);
2485
2486 prevc = '\n';
2487 case_action = all_caps;
2488
2489 /* some_multiletter_word is set nonzero if any original word
2490 is more than one letter long. */
2491 some_multiletter_word = 0;
2492 some_lowercase = 0;
2493 some_nonuppercase_initial = 0;
2494 some_uppercase = 0;
2495
2496 while (pos < last)
2497 {
2498 if (NILP (string))
2499 {
2500 c = FETCH_CHAR_AS_MULTIBYTE (pos_byte);
2501 INC_BOTH (pos, pos_byte);
2502 }
2503 else
2504 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, pos, pos_byte);
2505
2506 if (lowercasep (c))
2507 {
2508 /* Cannot be all caps if any original char is lower case */
2509
2510 some_lowercase = 1;
2511 if (SYNTAX (prevc) != Sword)
2512 some_nonuppercase_initial = 1;
2513 else
2514 some_multiletter_word = 1;
2515 }
2516 else if (uppercasep (c))
2517 {
2518 some_uppercase = 1;
2519 if (SYNTAX (prevc) != Sword)
2520 ;
2521 else
2522 some_multiletter_word = 1;
2523 }
2524 else
2525 {
2526 /* If the initial is a caseless word constituent,
2527 treat that like a lowercase initial. */
2528 if (SYNTAX (prevc) != Sword)
2529 some_nonuppercase_initial = 1;
2530 }
2531
2532 prevc = c;
2533 }
2534
2535 /* Convert to all caps if the old text is all caps
2536 and has at least one multiletter word. */
2537 if (! some_lowercase && some_multiletter_word)
2538 case_action = all_caps;
2539 /* Capitalize each word, if the old text has all capitalized words. */
2540 else if (!some_nonuppercase_initial && some_multiletter_word)
2541 case_action = cap_initial;
2542 else if (!some_nonuppercase_initial && some_uppercase)
2543 /* Should x -> yz, operating on X, give Yz or YZ?
2544 We'll assume the latter. */
2545 case_action = all_caps;
2546 else
2547 case_action = nochange;
2548 }
2549
2550 /* Do replacement in a string. */
2551 if (!NILP (string))
2552 {
2553 Lisp_Object before, after;
2554
2555 before = Fsubstring (string, make_number (0),
2556 make_number (search_regs.start[sub]));
2557 after = Fsubstring (string, make_number (search_regs.end[sub]), Qnil);
2558
2559 /* Substitute parts of the match into NEWTEXT
2560 if desired. */
2561 if (NILP (literal))
2562 {
2563 EMACS_INT lastpos = 0;
2564 EMACS_INT lastpos_byte = 0;
2565 /* We build up the substituted string in ACCUM. */
2566 Lisp_Object accum;
2567 Lisp_Object middle;
2568 EMACS_INT length = SBYTES (newtext);
2569
2570 accum = Qnil;
2571
2572 for (pos_byte = 0, pos = 0; pos_byte < length;)
2573 {
2574 EMACS_INT substart = -1;
2575 EMACS_INT subend = 0;
2576 int delbackslash = 0;
2577
2578 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2579
2580 if (c == '\\')
2581 {
2582 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2583
2584 if (c == '&')
2585 {
2586 substart = search_regs.start[sub];
2587 subend = search_regs.end[sub];
2588 }
2589 else if (c >= '1' && c <= '9')
2590 {
2591 if (search_regs.start[c - '0'] >= 0
2592 && c <= search_regs.num_regs + '0')
2593 {
2594 substart = search_regs.start[c - '0'];
2595 subend = search_regs.end[c - '0'];
2596 }
2597 else
2598 {
2599 /* If that subexp did not match,
2600 replace \\N with nothing. */
2601 substart = 0;
2602 subend = 0;
2603 }
2604 }
2605 else if (c == '\\')
2606 delbackslash = 1;
2607 else
2608 error ("Invalid use of `\\' in replacement text");
2609 }
2610 if (substart >= 0)
2611 {
2612 if (pos - 2 != lastpos)
2613 middle = substring_both (newtext, lastpos,
2614 lastpos_byte,
2615 pos - 2, pos_byte - 2);
2616 else
2617 middle = Qnil;
2618 accum = concat3 (accum, middle,
2619 Fsubstring (string,
2620 make_number (substart),
2621 make_number (subend)));
2622 lastpos = pos;
2623 lastpos_byte = pos_byte;
2624 }
2625 else if (delbackslash)
2626 {
2627 middle = substring_both (newtext, lastpos,
2628 lastpos_byte,
2629 pos - 1, pos_byte - 1);
2630
2631 accum = concat2 (accum, middle);
2632 lastpos = pos;
2633 lastpos_byte = pos_byte;
2634 }
2635 }
2636
2637 if (pos != lastpos)
2638 middle = substring_both (newtext, lastpos,
2639 lastpos_byte,
2640 pos, pos_byte);
2641 else
2642 middle = Qnil;
2643
2644 newtext = concat2 (accum, middle);
2645 }
2646
2647 /* Do case substitution in NEWTEXT if desired. */
2648 if (case_action == all_caps)
2649 newtext = Fupcase (newtext);
2650 else if (case_action == cap_initial)
2651 newtext = Fupcase_initials (newtext);
2652
2653 return concat3 (before, newtext, after);
2654 }
2655
2656 /* Record point, then move (quietly) to the start of the match. */
2657 if (PT >= search_regs.end[sub])
2658 opoint = PT - ZV;
2659 else if (PT > search_regs.start[sub])
2660 opoint = search_regs.end[sub] - ZV;
2661 else
2662 opoint = PT;
2663
2664 /* If we want non-literal replacement,
2665 perform substitution on the replacement string. */
2666 if (NILP (literal))
2667 {
2668 ptrdiff_t length = SBYTES (newtext);
2669 unsigned char *substed;
2670 ptrdiff_t substed_alloc_size, substed_len;
2671 int buf_multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2672 int str_multibyte = STRING_MULTIBYTE (newtext);
2673 int really_changed = 0;
2674
2675 substed_alloc_size = ((STRING_BYTES_BOUND - 100) / 2 < length
2676 ? STRING_BYTES_BOUND
2677 : length * 2 + 100);
2678 substed = (unsigned char *) xmalloc (substed_alloc_size);
2679 substed_len = 0;
2680
2681 /* Go thru NEWTEXT, producing the actual text to insert in
2682 SUBSTED while adjusting multibyteness to that of the current
2683 buffer. */
2684
2685 for (pos_byte = 0, pos = 0; pos_byte < length;)
2686 {
2687 unsigned char str[MAX_MULTIBYTE_LENGTH];
2688 const unsigned char *add_stuff = NULL;
2689 ptrdiff_t add_len = 0;
2690 ptrdiff_t idx = -1;
2691
2692 if (str_multibyte)
2693 {
2694 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext, pos, pos_byte);
2695 if (!buf_multibyte)
2696 c = multibyte_char_to_unibyte (c);
2697 }
2698 else
2699 {
2700 /* Note that we don't have to increment POS. */
2701 c = SREF (newtext, pos_byte++);
2702 if (buf_multibyte)
2703 MAKE_CHAR_MULTIBYTE (c);
2704 }
2705
2706 /* Either set ADD_STUFF and ADD_LEN to the text to put in SUBSTED,
2707 or set IDX to a match index, which means put that part
2708 of the buffer text into SUBSTED. */
2709
2710 if (c == '\\')
2711 {
2712 really_changed = 1;
2713
2714 if (str_multibyte)
2715 {
2716 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext,
2717 pos, pos_byte);
2718 if (!buf_multibyte && !ASCII_CHAR_P (c))
2719 c = multibyte_char_to_unibyte (c);
2720 }
2721 else
2722 {
2723 c = SREF (newtext, pos_byte++);
2724 if (buf_multibyte)
2725 MAKE_CHAR_MULTIBYTE (c);
2726 }
2727
2728 if (c == '&')
2729 idx = sub;
2730 else if (c >= '1' && c <= '9' && c <= search_regs.num_regs + '0')
2731 {
2732 if (search_regs.start[c - '0'] >= 1)
2733 idx = c - '0';
2734 }
2735 else if (c == '\\')
2736 add_len = 1, add_stuff = (unsigned char *) "\\";
2737 else
2738 {
2739 xfree (substed);
2740 error ("Invalid use of `\\' in replacement text");
2741 }
2742 }
2743 else
2744 {
2745 add_len = CHAR_STRING (c, str);
2746 add_stuff = str;
2747 }
2748
2749 /* If we want to copy part of a previous match,
2750 set up ADD_STUFF and ADD_LEN to point to it. */
2751 if (idx >= 0)
2752 {
2753 ptrdiff_t begbyte = CHAR_TO_BYTE (search_regs.start[idx]);
2754 add_len = CHAR_TO_BYTE (search_regs.end[idx]) - begbyte;
2755 if (search_regs.start[idx] < GPT && GPT < search_regs.end[idx])
2756 move_gap (search_regs.start[idx]);
2757 add_stuff = BYTE_POS_ADDR (begbyte);
2758 }
2759
2760 /* Now the stuff we want to add to SUBSTED
2761 is invariably ADD_LEN bytes starting at ADD_STUFF. */
2762
2763 /* Make sure SUBSTED is big enough. */
2764 if (substed_alloc_size - substed_len < add_len)
2765 substed =
2766 xpalloc (substed, &substed_alloc_size,
2767 add_len - (substed_alloc_size - substed_len),
2768 STRING_BYTES_BOUND, 1);
2769
2770 /* Now add to the end of SUBSTED. */
2771 if (add_stuff)
2772 {
2773 memcpy (substed + substed_len, add_stuff, add_len);
2774 substed_len += add_len;
2775 }
2776 }
2777
2778 if (really_changed)
2779 {
2780 if (buf_multibyte)
2781 {
2782 EMACS_INT nchars =
2783 multibyte_chars_in_text (substed, substed_len);
2784
2785 newtext = make_multibyte_string ((char *) substed, nchars,
2786 substed_len);
2787 }
2788 else
2789 newtext = make_unibyte_string ((char *) substed, substed_len);
2790 }
2791 xfree (substed);
2792 }
2793
2794 /* Replace the old text with the new in the cleanest possible way. */
2795 replace_range (search_regs.start[sub], search_regs.end[sub],
2796 newtext, 1, 0, 1);
2797 newpoint = search_regs.start[sub] + SCHARS (newtext);
2798
2799 if (case_action == all_caps)
2800 Fupcase_region (make_number (search_regs.start[sub]),
2801 make_number (newpoint));
2802 else if (case_action == cap_initial)
2803 Fupcase_initials_region (make_number (search_regs.start[sub]),
2804 make_number (newpoint));
2805
2806 /* Adjust search data for this change. */
2807 {
2808 EMACS_INT oldend = search_regs.end[sub];
2809 EMACS_INT oldstart = search_regs.start[sub];
2810 EMACS_INT change = newpoint - search_regs.end[sub];
2811 int i;
2812
2813 for (i = 0; i < search_regs.num_regs; i++)
2814 {
2815 if (search_regs.start[i] >= oldend)
2816 search_regs.start[i] += change;
2817 else if (search_regs.start[i] > oldstart)
2818 search_regs.start[i] = oldstart;
2819 if (search_regs.end[i] >= oldend)
2820 search_regs.end[i] += change;
2821 else if (search_regs.end[i] > oldstart)
2822 search_regs.end[i] = oldstart;
2823 }
2824 }
2825
2826 /* Put point back where it was in the text. */
2827 if (opoint <= 0)
2828 TEMP_SET_PT (opoint + ZV);
2829 else
2830 TEMP_SET_PT (opoint);
2831
2832 /* Now move point "officially" to the start of the inserted replacement. */
2833 move_if_not_intangible (newpoint);
2834
2835 return Qnil;
2836 }
2837 \f
2838 static Lisp_Object
2839 match_limit (Lisp_Object num, int beginningp)
2840 {
2841 EMACS_INT n;
2842
2843 CHECK_NUMBER (num);
2844 n = XINT (num);
2845 if (n < 0)
2846 args_out_of_range (num, make_number (0));
2847 if (search_regs.num_regs <= 0)
2848 error ("No match data, because no search succeeded");
2849 if (n >= search_regs.num_regs
2850 || search_regs.start[n] < 0)
2851 return Qnil;
2852 return (make_number ((beginningp) ? search_regs.start[n]
2853 : search_regs.end[n]));
2854 }
2855
2856 DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
2857 doc: /* Return position of start of text matched by last search.
2858 SUBEXP, a number, specifies which parenthesized expression in the last
2859 regexp.
2860 Value is nil if SUBEXPth pair didn't match, or there were less than
2861 SUBEXP pairs.
2862 Zero means the entire text matched by the whole regexp or whole string. */)
2863 (Lisp_Object subexp)
2864 {
2865 return match_limit (subexp, 1);
2866 }
2867
2868 DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
2869 doc: /* Return position of end of text matched by last search.
2870 SUBEXP, a number, specifies which parenthesized expression in the last
2871 regexp.
2872 Value is nil if SUBEXPth pair didn't match, or there were less than
2873 SUBEXP pairs.
2874 Zero means the entire text matched by the whole regexp or whole string. */)
2875 (Lisp_Object subexp)
2876 {
2877 return match_limit (subexp, 0);
2878 }
2879
2880 DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 3, 0,
2881 doc: /* Return a list containing all info on what the last search matched.
2882 Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.
2883 All the elements are markers or nil (nil if the Nth pair didn't match)
2884 if the last match was on a buffer; integers or nil if a string was matched.
2885 Use `set-match-data' to reinstate the data in this list.
2886
2887 If INTEGERS (the optional first argument) is non-nil, always use
2888 integers \(rather than markers) to represent buffer positions. In
2889 this case, and if the last match was in a buffer, the buffer will get
2890 stored as one additional element at the end of the list.
2891
2892 If REUSE is a list, reuse it as part of the value. If REUSE is long
2893 enough to hold all the values, and if INTEGERS is non-nil, no consing
2894 is done.
2895
2896 If optional third arg RESEAT is non-nil, any previous markers on the
2897 REUSE list will be modified to point to nowhere.
2898
2899 Return value is undefined if the last search failed. */)
2900 (Lisp_Object integers, Lisp_Object reuse, Lisp_Object reseat)
2901 {
2902 Lisp_Object tail, prev;
2903 Lisp_Object *data;
2904 int i, len;
2905
2906 if (!NILP (reseat))
2907 for (tail = reuse; CONSP (tail); tail = XCDR (tail))
2908 if (MARKERP (XCAR (tail)))
2909 {
2910 unchain_marker (XMARKER (XCAR (tail)));
2911 XSETCAR (tail, Qnil);
2912 }
2913
2914 if (NILP (last_thing_searched))
2915 return Qnil;
2916
2917 prev = Qnil;
2918
2919 data = (Lisp_Object *) alloca ((2 * search_regs.num_regs + 1)
2920 * sizeof (Lisp_Object));
2921
2922 len = 0;
2923 for (i = 0; i < search_regs.num_regs; i++)
2924 {
2925 EMACS_INT start = search_regs.start[i];
2926 if (start >= 0)
2927 {
2928 if (EQ (last_thing_searched, Qt)
2929 || ! NILP (integers))
2930 {
2931 XSETFASTINT (data[2 * i], start);
2932 XSETFASTINT (data[2 * i + 1], search_regs.end[i]);
2933 }
2934 else if (BUFFERP (last_thing_searched))
2935 {
2936 data[2 * i] = Fmake_marker ();
2937 Fset_marker (data[2 * i],
2938 make_number (start),
2939 last_thing_searched);
2940 data[2 * i + 1] = Fmake_marker ();
2941 Fset_marker (data[2 * i + 1],
2942 make_number (search_regs.end[i]),
2943 last_thing_searched);
2944 }
2945 else
2946 /* last_thing_searched must always be Qt, a buffer, or Qnil. */
2947 abort ();
2948
2949 len = 2 * i + 2;
2950 }
2951 else
2952 data[2 * i] = data[2 * i + 1] = Qnil;
2953 }
2954
2955 if (BUFFERP (last_thing_searched) && !NILP (integers))
2956 {
2957 data[len] = last_thing_searched;
2958 len++;
2959 }
2960
2961 /* If REUSE is not usable, cons up the values and return them. */
2962 if (! CONSP (reuse))
2963 return Flist (len, data);
2964
2965 /* If REUSE is a list, store as many value elements as will fit
2966 into the elements of REUSE. */
2967 for (i = 0, tail = reuse; CONSP (tail);
2968 i++, tail = XCDR (tail))
2969 {
2970 if (i < len)
2971 XSETCAR (tail, data[i]);
2972 else
2973 XSETCAR (tail, Qnil);
2974 prev = tail;
2975 }
2976
2977 /* If we couldn't fit all value elements into REUSE,
2978 cons up the rest of them and add them to the end of REUSE. */
2979 if (i < len)
2980 XSETCDR (prev, Flist (len - i, data + i));
2981
2982 return reuse;
2983 }
2984
2985 /* We used to have an internal use variant of `reseat' described as:
2986
2987 If RESEAT is `evaporate', put the markers back on the free list
2988 immediately. No other references to the markers must exist in this
2989 case, so it is used only internally on the unwind stack and
2990 save-match-data from Lisp.
2991
2992 But it was ill-conceived: those supposedly-internal markers get exposed via
2993 the undo-list, so freeing them here is unsafe. */
2994
2995 DEFUN ("set-match-data", Fset_match_data, Sset_match_data, 1, 2, 0,
2996 doc: /* Set internal data on last search match from elements of LIST.
2997 LIST should have been created by calling `match-data' previously.
2998
2999 If optional arg RESEAT is non-nil, make markers on LIST point nowhere. */)
3000 (register Lisp_Object list, Lisp_Object reseat)
3001 {
3002 ptrdiff_t i;
3003 register Lisp_Object marker;
3004
3005 if (running_asynch_code)
3006 save_search_regs ();
3007
3008 CHECK_LIST (list);
3009
3010 /* Unless we find a marker with a buffer or an explicit buffer
3011 in LIST, assume that this match data came from a string. */
3012 last_thing_searched = Qt;
3013
3014 /* Allocate registers if they don't already exist. */
3015 {
3016 ptrdiff_t length = XFASTINT (Flength (list)) / 2;
3017
3018 if (length > search_regs.num_regs)
3019 {
3020 ptrdiff_t num_regs = search_regs.num_regs;
3021 search_regs.start =
3022 xpalloc (search_regs.start, &num_regs, length - num_regs,
3023 min (PTRDIFF_MAX, UINT_MAX), sizeof (regoff_t));
3024 search_regs.end =
3025 xrealloc (search_regs.end, num_regs * sizeof (regoff_t));
3026
3027 for (i = search_regs.num_regs; i < num_regs; i++)
3028 search_regs.start[i] = -1;
3029
3030 search_regs.num_regs = num_regs;
3031 }
3032
3033 for (i = 0; CONSP (list); i++)
3034 {
3035 marker = XCAR (list);
3036 if (BUFFERP (marker))
3037 {
3038 last_thing_searched = marker;
3039 break;
3040 }
3041 if (i >= length)
3042 break;
3043 if (NILP (marker))
3044 {
3045 search_regs.start[i] = -1;
3046 list = XCDR (list);
3047 }
3048 else
3049 {
3050 EMACS_INT from;
3051 Lisp_Object m;
3052
3053 m = marker;
3054 if (MARKERP (marker))
3055 {
3056 if (XMARKER (marker)->buffer == 0)
3057 XSETFASTINT (marker, 0);
3058 else
3059 XSETBUFFER (last_thing_searched, XMARKER (marker)->buffer);
3060 }
3061
3062 CHECK_NUMBER_COERCE_MARKER (marker);
3063 from = XINT (marker);
3064
3065 if (!NILP (reseat) && MARKERP (m))
3066 {
3067 unchain_marker (XMARKER (m));
3068 XSETCAR (list, Qnil);
3069 }
3070
3071 if ((list = XCDR (list), !CONSP (list)))
3072 break;
3073
3074 m = marker = XCAR (list);
3075
3076 if (MARKERP (marker) && XMARKER (marker)->buffer == 0)
3077 XSETFASTINT (marker, 0);
3078
3079 CHECK_NUMBER_COERCE_MARKER (marker);
3080 search_regs.start[i] = from;
3081 search_regs.end[i] = XINT (marker);
3082
3083 if (!NILP (reseat) && MARKERP (m))
3084 {
3085 unchain_marker (XMARKER (m));
3086 XSETCAR (list, Qnil);
3087 }
3088 }
3089 list = XCDR (list);
3090 }
3091
3092 for (; i < search_regs.num_regs; i++)
3093 search_regs.start[i] = -1;
3094 }
3095
3096 return Qnil;
3097 }
3098
3099 /* If non-zero the match data have been saved in saved_search_regs
3100 during the execution of a sentinel or filter. */
3101 static int search_regs_saved;
3102 static struct re_registers saved_search_regs;
3103 static Lisp_Object saved_last_thing_searched;
3104
3105 /* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
3106 if asynchronous code (filter or sentinel) is running. */
3107 static void
3108 save_search_regs (void)
3109 {
3110 if (!search_regs_saved)
3111 {
3112 saved_search_regs.num_regs = search_regs.num_regs;
3113 saved_search_regs.start = search_regs.start;
3114 saved_search_regs.end = search_regs.end;
3115 saved_last_thing_searched = last_thing_searched;
3116 last_thing_searched = Qnil;
3117 search_regs.num_regs = 0;
3118 search_regs.start = 0;
3119 search_regs.end = 0;
3120
3121 search_regs_saved = 1;
3122 }
3123 }
3124
3125 /* Called upon exit from filters and sentinels. */
3126 void
3127 restore_search_regs (void)
3128 {
3129 if (search_regs_saved)
3130 {
3131 if (search_regs.num_regs > 0)
3132 {
3133 xfree (search_regs.start);
3134 xfree (search_regs.end);
3135 }
3136 search_regs.num_regs = saved_search_regs.num_regs;
3137 search_regs.start = saved_search_regs.start;
3138 search_regs.end = saved_search_regs.end;
3139 last_thing_searched = saved_last_thing_searched;
3140 saved_last_thing_searched = Qnil;
3141 search_regs_saved = 0;
3142 }
3143 }
3144
3145 static Lisp_Object
3146 unwind_set_match_data (Lisp_Object list)
3147 {
3148 /* It is NOT ALWAYS safe to free (evaporate) the markers immediately. */
3149 return Fset_match_data (list, Qt);
3150 }
3151
3152 /* Called to unwind protect the match data. */
3153 void
3154 record_unwind_save_match_data (void)
3155 {
3156 record_unwind_protect (unwind_set_match_data,
3157 Fmatch_data (Qnil, Qnil, Qnil));
3158 }
3159
3160 /* Quote a string to deactivate reg-expr chars */
3161
3162 DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
3163 doc: /* Return a regexp string which matches exactly STRING and nothing else. */)
3164 (Lisp_Object string)
3165 {
3166 register char *in, *out, *end;
3167 register char *temp;
3168 int backslashes_added = 0;
3169
3170 CHECK_STRING (string);
3171
3172 temp = (char *) alloca (SBYTES (string) * 2);
3173
3174 /* Now copy the data into the new string, inserting escapes. */
3175
3176 in = SSDATA (string);
3177 end = in + SBYTES (string);
3178 out = temp;
3179
3180 for (; in != end; in++)
3181 {
3182 if (*in == '['
3183 || *in == '*' || *in == '.' || *in == '\\'
3184 || *in == '?' || *in == '+'
3185 || *in == '^' || *in == '$')
3186 *out++ = '\\', backslashes_added++;
3187 *out++ = *in;
3188 }
3189
3190 return make_specified_string (temp,
3191 SCHARS (string) + backslashes_added,
3192 out - temp,
3193 STRING_MULTIBYTE (string));
3194 }
3195 \f
3196 void
3197 syms_of_search (void)
3198 {
3199 register int i;
3200
3201 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
3202 {
3203 searchbufs[i].buf.allocated = 100;
3204 searchbufs[i].buf.buffer = (unsigned char *) xmalloc (100);
3205 searchbufs[i].buf.fastmap = searchbufs[i].fastmap;
3206 searchbufs[i].regexp = Qnil;
3207 searchbufs[i].whitespace_regexp = Qnil;
3208 searchbufs[i].syntax_table = Qnil;
3209 staticpro (&searchbufs[i].regexp);
3210 staticpro (&searchbufs[i].whitespace_regexp);
3211 staticpro (&searchbufs[i].syntax_table);
3212 searchbufs[i].next = (i == REGEXP_CACHE_SIZE-1 ? 0 : &searchbufs[i+1]);
3213 }
3214 searchbuf_head = &searchbufs[0];
3215
3216 DEFSYM (Qsearch_failed, "search-failed");
3217 DEFSYM (Qinvalid_regexp, "invalid-regexp");
3218
3219 Fput (Qsearch_failed, Qerror_conditions,
3220 pure_cons (Qsearch_failed, pure_cons (Qerror, Qnil)));
3221 Fput (Qsearch_failed, Qerror_message,
3222 make_pure_c_string ("Search failed"));
3223
3224 Fput (Qinvalid_regexp, Qerror_conditions,
3225 pure_cons (Qinvalid_regexp, pure_cons (Qerror, Qnil)));
3226 Fput (Qinvalid_regexp, Qerror_message,
3227 make_pure_c_string ("Invalid regexp"));
3228
3229 last_thing_searched = Qnil;
3230 staticpro (&last_thing_searched);
3231
3232 saved_last_thing_searched = Qnil;
3233 staticpro (&saved_last_thing_searched);
3234
3235 DEFVAR_LISP ("search-spaces-regexp", Vsearch_spaces_regexp,
3236 doc: /* Regexp to substitute for bunches of spaces in regexp search.
3237 Some commands use this for user-specified regexps.
3238 Spaces that occur inside character classes or repetition operators
3239 or other such regexp constructs are not replaced with this.
3240 A value of nil (which is the normal value) means treat spaces literally. */);
3241 Vsearch_spaces_regexp = Qnil;
3242
3243 DEFVAR_LISP ("inhibit-changing-match-data", Vinhibit_changing_match_data,
3244 doc: /* Internal use only.
3245 If non-nil, the primitive searching and matching functions
3246 such as `looking-at', `string-match', `re-search-forward', etc.,
3247 do not set the match data. The proper way to use this variable
3248 is to bind it with `let' around a small expression. */);
3249 Vinhibit_changing_match_data = Qnil;
3250
3251 defsubr (&Slooking_at);
3252 defsubr (&Sposix_looking_at);
3253 defsubr (&Sstring_match);
3254 defsubr (&Sposix_string_match);
3255 defsubr (&Ssearch_forward);
3256 defsubr (&Ssearch_backward);
3257 defsubr (&Sword_search_regexp);
3258 defsubr (&Sword_search_forward);
3259 defsubr (&Sword_search_backward);
3260 defsubr (&Sword_search_forward_lax);
3261 defsubr (&Sword_search_backward_lax);
3262 defsubr (&Sre_search_forward);
3263 defsubr (&Sre_search_backward);
3264 defsubr (&Sposix_search_forward);
3265 defsubr (&Sposix_search_backward);
3266 defsubr (&Sreplace_match);
3267 defsubr (&Smatch_beginning);
3268 defsubr (&Smatch_end);
3269 defsubr (&Smatch_data);
3270 defsubr (&Sset_match_data);
3271 defsubr (&Sregexp_quote);
3272 }