]> code.delx.au - gnu-emacs/blob - src/alloc.c
Try and be more careful about propagation of lexical environment.
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
25
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
29
30 #include <signal.h>
31
32 #ifdef HAVE_GTK_AND_PTHREAD
33 #include <pthread.h>
34 #endif
35
36 /* This file is part of the core Lisp implementation, and thus must
37 deal with the real data structures. If the Lisp implementation is
38 replaced, this file likely will not be used. */
39
40 #undef HIDE_LISP_IMPLEMENTATION
41 #include "lisp.h"
42 #include "process.h"
43 #include "intervals.h"
44 #include "puresize.h"
45 #include "buffer.h"
46 #include "window.h"
47 #include "keyboard.h"
48 #include "frame.h"
49 #include "blockinput.h"
50 #include "character.h"
51 #include "syssignal.h"
52 #include "termhooks.h" /* For struct terminal. */
53 #include <setjmp.h>
54
55 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
56 memory. Can do this only if using gmalloc.c. */
57
58 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
59 #undef GC_MALLOC_CHECK
60 #endif
61
62 #ifdef HAVE_UNISTD_H
63 #include <unistd.h>
64 #else
65 extern POINTER_TYPE *sbrk ();
66 #endif
67
68 #include <fcntl.h>
69
70 #ifdef WINDOWSNT
71 #include "w32.h"
72 #endif
73
74 #ifdef DOUG_LEA_MALLOC
75
76 #include <malloc.h>
77 /* malloc.h #defines this as size_t, at least in glibc2. */
78 #ifndef __malloc_size_t
79 #define __malloc_size_t int
80 #endif
81
82 /* Specify maximum number of areas to mmap. It would be nice to use a
83 value that explicitly means "no limit". */
84
85 #define MMAP_MAX_AREAS 100000000
86
87 #else /* not DOUG_LEA_MALLOC */
88
89 /* The following come from gmalloc.c. */
90
91 #define __malloc_size_t size_t
92 extern __malloc_size_t _bytes_used;
93 extern __malloc_size_t __malloc_extra_blocks;
94
95 #endif /* not DOUG_LEA_MALLOC */
96
97 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
98
99 /* When GTK uses the file chooser dialog, different backends can be loaded
100 dynamically. One such a backend is the Gnome VFS backend that gets loaded
101 if you run Gnome. That backend creates several threads and also allocates
102 memory with malloc.
103
104 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
105 functions below are called from malloc, there is a chance that one
106 of these threads preempts the Emacs main thread and the hook variables
107 end up in an inconsistent state. So we have a mutex to prevent that (note
108 that the backend handles concurrent access to malloc within its own threads
109 but Emacs code running in the main thread is not included in that control).
110
111 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
112 happens in one of the backend threads we will have two threads that tries
113 to run Emacs code at once, and the code is not prepared for that.
114 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
115
116 static pthread_mutex_t alloc_mutex;
117
118 #define BLOCK_INPUT_ALLOC \
119 do \
120 { \
121 if (pthread_equal (pthread_self (), main_thread)) \
122 BLOCK_INPUT; \
123 pthread_mutex_lock (&alloc_mutex); \
124 } \
125 while (0)
126 #define UNBLOCK_INPUT_ALLOC \
127 do \
128 { \
129 pthread_mutex_unlock (&alloc_mutex); \
130 if (pthread_equal (pthread_self (), main_thread)) \
131 UNBLOCK_INPUT; \
132 } \
133 while (0)
134
135 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
136
137 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
138 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
139
140 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
141
142 /* Value of _bytes_used, when spare_memory was freed. */
143
144 static __malloc_size_t bytes_used_when_full;
145
146 static __malloc_size_t bytes_used_when_reconsidered;
147
148 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
149 to a struct Lisp_String. */
150
151 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
152 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
153 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
154
155 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
156 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
157 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
158
159 /* Value is the number of bytes/chars of S, a pointer to a struct
160 Lisp_String. This must be used instead of STRING_BYTES (S) or
161 S->size during GC, because S->size contains the mark bit for
162 strings. */
163
164 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
165 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
166
167 /* Number of bytes of consing done since the last gc. */
168
169 int consing_since_gc;
170
171 /* Count the amount of consing of various sorts of space. */
172
173 EMACS_INT cons_cells_consed;
174 EMACS_INT floats_consed;
175 EMACS_INT vector_cells_consed;
176 EMACS_INT symbols_consed;
177 EMACS_INT string_chars_consed;
178 EMACS_INT misc_objects_consed;
179 EMACS_INT intervals_consed;
180 EMACS_INT strings_consed;
181
182 /* Minimum number of bytes of consing since GC before next GC. */
183
184 EMACS_INT gc_cons_threshold;
185
186 /* Similar minimum, computed from Vgc_cons_percentage. */
187
188 EMACS_INT gc_relative_threshold;
189
190 static Lisp_Object Vgc_cons_percentage;
191
192 /* Minimum number of bytes of consing since GC before next GC,
193 when memory is full. */
194
195 EMACS_INT memory_full_cons_threshold;
196
197 /* Nonzero during GC. */
198
199 int gc_in_progress;
200
201 /* Nonzero means abort if try to GC.
202 This is for code which is written on the assumption that
203 no GC will happen, so as to verify that assumption. */
204
205 int abort_on_gc;
206
207 /* Nonzero means display messages at beginning and end of GC. */
208
209 int garbage_collection_messages;
210
211 /* Number of live and free conses etc. */
212
213 static int total_conses, total_markers, total_symbols, total_vector_size;
214 static int total_free_conses, total_free_markers, total_free_symbols;
215 static int total_free_floats, total_floats;
216
217 /* Points to memory space allocated as "spare", to be freed if we run
218 out of memory. We keep one large block, four cons-blocks, and
219 two string blocks. */
220
221 static char *spare_memory[7];
222
223 /* Amount of spare memory to keep in large reserve block. */
224
225 #define SPARE_MEMORY (1 << 14)
226
227 /* Number of extra blocks malloc should get when it needs more core. */
228
229 static int malloc_hysteresis;
230
231 /* Non-nil means defun should do purecopy on the function definition. */
232
233 Lisp_Object Vpurify_flag;
234
235 /* Non-nil means we are handling a memory-full error. */
236
237 Lisp_Object Vmemory_full;
238
239 /* Initialize it to a nonzero value to force it into data space
240 (rather than bss space). That way unexec will remap it into text
241 space (pure), on some systems. We have not implemented the
242 remapping on more recent systems because this is less important
243 nowadays than in the days of small memories and timesharing. */
244
245 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
246 #define PUREBEG (char *) pure
247
248 /* Pointer to the pure area, and its size. */
249
250 static char *purebeg;
251 static size_t pure_size;
252
253 /* Number of bytes of pure storage used before pure storage overflowed.
254 If this is non-zero, this implies that an overflow occurred. */
255
256 static size_t pure_bytes_used_before_overflow;
257
258 /* Value is non-zero if P points into pure space. */
259
260 #define PURE_POINTER_P(P) \
261 (((PNTR_COMPARISON_TYPE) (P) \
262 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
263 && ((PNTR_COMPARISON_TYPE) (P) \
264 >= (PNTR_COMPARISON_TYPE) purebeg))
265
266 /* Total number of bytes allocated in pure storage. */
267
268 EMACS_INT pure_bytes_used;
269
270 /* Index in pure at which next pure Lisp object will be allocated.. */
271
272 static EMACS_INT pure_bytes_used_lisp;
273
274 /* Number of bytes allocated for non-Lisp objects in pure storage. */
275
276 static EMACS_INT pure_bytes_used_non_lisp;
277
278 /* If nonzero, this is a warning delivered by malloc and not yet
279 displayed. */
280
281 const char *pending_malloc_warning;
282
283 /* Pre-computed signal argument for use when memory is exhausted. */
284
285 Lisp_Object Vmemory_signal_data;
286
287 /* Maximum amount of C stack to save when a GC happens. */
288
289 #ifndef MAX_SAVE_STACK
290 #define MAX_SAVE_STACK 16000
291 #endif
292
293 /* Buffer in which we save a copy of the C stack at each GC. */
294
295 static char *stack_copy;
296 static int stack_copy_size;
297
298 /* Non-zero means ignore malloc warnings. Set during initialization.
299 Currently not used. */
300
301 static int ignore_warnings;
302
303 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
304
305 /* Hook run after GC has finished. */
306
307 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
308
309 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
310 EMACS_INT gcs_done; /* accumulated GCs */
311
312 static void mark_buffer (Lisp_Object);
313 static void mark_terminals (void);
314 extern void mark_kboards (void);
315 extern void mark_ttys (void);
316 extern void mark_backtrace (void);
317 static void gc_sweep (void);
318 static void mark_glyph_matrix (struct glyph_matrix *);
319 static void mark_face_cache (struct face_cache *);
320
321 #ifdef HAVE_WINDOW_SYSTEM
322 extern void mark_fringe_data (void);
323 #endif /* HAVE_WINDOW_SYSTEM */
324
325 static struct Lisp_String *allocate_string (void);
326 static void compact_small_strings (void);
327 static void free_large_strings (void);
328 static void sweep_strings (void);
329
330 extern int message_enable_multibyte;
331
332 /* When scanning the C stack for live Lisp objects, Emacs keeps track
333 of what memory allocated via lisp_malloc is intended for what
334 purpose. This enumeration specifies the type of memory. */
335
336 enum mem_type
337 {
338 MEM_TYPE_NON_LISP,
339 MEM_TYPE_BUFFER,
340 MEM_TYPE_CONS,
341 MEM_TYPE_STRING,
342 MEM_TYPE_MISC,
343 MEM_TYPE_SYMBOL,
344 MEM_TYPE_FLOAT,
345 /* We used to keep separate mem_types for subtypes of vectors such as
346 process, hash_table, frame, terminal, and window, but we never made
347 use of the distinction, so it only caused source-code complexity
348 and runtime slowdown. Minor but pointless. */
349 MEM_TYPE_VECTORLIKE
350 };
351
352 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
353 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
354
355
356 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
357
358 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
359 #include <stdio.h> /* For fprintf. */
360 #endif
361
362 /* A unique object in pure space used to make some Lisp objects
363 on free lists recognizable in O(1). */
364
365 static Lisp_Object Vdead;
366
367 #ifdef GC_MALLOC_CHECK
368
369 enum mem_type allocated_mem_type;
370 static int dont_register_blocks;
371
372 #endif /* GC_MALLOC_CHECK */
373
374 /* A node in the red-black tree describing allocated memory containing
375 Lisp data. Each such block is recorded with its start and end
376 address when it is allocated, and removed from the tree when it
377 is freed.
378
379 A red-black tree is a balanced binary tree with the following
380 properties:
381
382 1. Every node is either red or black.
383 2. Every leaf is black.
384 3. If a node is red, then both of its children are black.
385 4. Every simple path from a node to a descendant leaf contains
386 the same number of black nodes.
387 5. The root is always black.
388
389 When nodes are inserted into the tree, or deleted from the tree,
390 the tree is "fixed" so that these properties are always true.
391
392 A red-black tree with N internal nodes has height at most 2
393 log(N+1). Searches, insertions and deletions are done in O(log N).
394 Please see a text book about data structures for a detailed
395 description of red-black trees. Any book worth its salt should
396 describe them. */
397
398 struct mem_node
399 {
400 /* Children of this node. These pointers are never NULL. When there
401 is no child, the value is MEM_NIL, which points to a dummy node. */
402 struct mem_node *left, *right;
403
404 /* The parent of this node. In the root node, this is NULL. */
405 struct mem_node *parent;
406
407 /* Start and end of allocated region. */
408 void *start, *end;
409
410 /* Node color. */
411 enum {MEM_BLACK, MEM_RED} color;
412
413 /* Memory type. */
414 enum mem_type type;
415 };
416
417 /* Base address of stack. Set in main. */
418
419 Lisp_Object *stack_base;
420
421 /* Root of the tree describing allocated Lisp memory. */
422
423 static struct mem_node *mem_root;
424
425 /* Lowest and highest known address in the heap. */
426
427 static void *min_heap_address, *max_heap_address;
428
429 /* Sentinel node of the tree. */
430
431 static struct mem_node mem_z;
432 #define MEM_NIL &mem_z
433
434 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
435 static void lisp_free (POINTER_TYPE *);
436 static void mark_stack (void);
437 static int live_vector_p (struct mem_node *, void *);
438 static int live_buffer_p (struct mem_node *, void *);
439 static int live_string_p (struct mem_node *, void *);
440 static int live_cons_p (struct mem_node *, void *);
441 static int live_symbol_p (struct mem_node *, void *);
442 static int live_float_p (struct mem_node *, void *);
443 static int live_misc_p (struct mem_node *, void *);
444 static void mark_maybe_object (Lisp_Object);
445 static void mark_memory (void *, void *, int);
446 static void mem_init (void);
447 static struct mem_node *mem_insert (void *, void *, enum mem_type);
448 static void mem_insert_fixup (struct mem_node *);
449 static void mem_rotate_left (struct mem_node *);
450 static void mem_rotate_right (struct mem_node *);
451 static void mem_delete (struct mem_node *);
452 static void mem_delete_fixup (struct mem_node *);
453 static INLINE struct mem_node *mem_find (void *);
454
455
456 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
457 static void check_gcpros (void);
458 #endif
459
460 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
461
462 /* Recording what needs to be marked for gc. */
463
464 struct gcpro *gcprolist;
465
466 /* Addresses of staticpro'd variables. Initialize it to a nonzero
467 value; otherwise some compilers put it into BSS. */
468
469 #define NSTATICS 0x640
470 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
471
472 /* Index of next unused slot in staticvec. */
473
474 static int staticidx = 0;
475
476 static POINTER_TYPE *pure_alloc (size_t, int);
477
478
479 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
480 ALIGNMENT must be a power of 2. */
481
482 #define ALIGN(ptr, ALIGNMENT) \
483 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
484 & ~((ALIGNMENT) - 1)))
485
486
487 \f
488 /************************************************************************
489 Malloc
490 ************************************************************************/
491
492 /* Function malloc calls this if it finds we are near exhausting storage. */
493
494 void
495 malloc_warning (const char *str)
496 {
497 pending_malloc_warning = str;
498 }
499
500
501 /* Display an already-pending malloc warning. */
502
503 void
504 display_malloc_warning (void)
505 {
506 call3 (intern ("display-warning"),
507 intern ("alloc"),
508 build_string (pending_malloc_warning),
509 intern ("emergency"));
510 pending_malloc_warning = 0;
511 }
512
513
514 #ifdef DOUG_LEA_MALLOC
515 # define BYTES_USED (mallinfo ().uordblks)
516 #else
517 # define BYTES_USED _bytes_used
518 #endif
519 \f
520 /* Called if we can't allocate relocatable space for a buffer. */
521
522 void
523 buffer_memory_full (void)
524 {
525 /* If buffers use the relocating allocator, no need to free
526 spare_memory, because we may have plenty of malloc space left
527 that we could get, and if we don't, the malloc that fails will
528 itself cause spare_memory to be freed. If buffers don't use the
529 relocating allocator, treat this like any other failing
530 malloc. */
531
532 #ifndef REL_ALLOC
533 memory_full ();
534 #endif
535
536 /* This used to call error, but if we've run out of memory, we could
537 get infinite recursion trying to build the string. */
538 xsignal (Qnil, Vmemory_signal_data);
539 }
540
541
542 #ifdef XMALLOC_OVERRUN_CHECK
543
544 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
545 and a 16 byte trailer around each block.
546
547 The header consists of 12 fixed bytes + a 4 byte integer contaning the
548 original block size, while the trailer consists of 16 fixed bytes.
549
550 The header is used to detect whether this block has been allocated
551 through these functions -- as it seems that some low-level libc
552 functions may bypass the malloc hooks.
553 */
554
555
556 #define XMALLOC_OVERRUN_CHECK_SIZE 16
557
558 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
559 { 0x9a, 0x9b, 0xae, 0xaf,
560 0xbf, 0xbe, 0xce, 0xcf,
561 0xea, 0xeb, 0xec, 0xed };
562
563 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
564 { 0xaa, 0xab, 0xac, 0xad,
565 0xba, 0xbb, 0xbc, 0xbd,
566 0xca, 0xcb, 0xcc, 0xcd,
567 0xda, 0xdb, 0xdc, 0xdd };
568
569 /* Macros to insert and extract the block size in the header. */
570
571 #define XMALLOC_PUT_SIZE(ptr, size) \
572 (ptr[-1] = (size & 0xff), \
573 ptr[-2] = ((size >> 8) & 0xff), \
574 ptr[-3] = ((size >> 16) & 0xff), \
575 ptr[-4] = ((size >> 24) & 0xff))
576
577 #define XMALLOC_GET_SIZE(ptr) \
578 (size_t)((unsigned)(ptr[-1]) | \
579 ((unsigned)(ptr[-2]) << 8) | \
580 ((unsigned)(ptr[-3]) << 16) | \
581 ((unsigned)(ptr[-4]) << 24))
582
583
584 /* The call depth in overrun_check functions. For example, this might happen:
585 xmalloc()
586 overrun_check_malloc()
587 -> malloc -> (via hook)_-> emacs_blocked_malloc
588 -> overrun_check_malloc
589 call malloc (hooks are NULL, so real malloc is called).
590 malloc returns 10000.
591 add overhead, return 10016.
592 <- (back in overrun_check_malloc)
593 add overhead again, return 10032
594 xmalloc returns 10032.
595
596 (time passes).
597
598 xfree(10032)
599 overrun_check_free(10032)
600 decrease overhed
601 free(10016) <- crash, because 10000 is the original pointer. */
602
603 static int check_depth;
604
605 /* Like malloc, but wraps allocated block with header and trailer. */
606
607 POINTER_TYPE *
608 overrun_check_malloc (size)
609 size_t size;
610 {
611 register unsigned char *val;
612 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
613
614 val = (unsigned char *) malloc (size + overhead);
615 if (val && check_depth == 1)
616 {
617 memcpy (val, xmalloc_overrun_check_header,
618 XMALLOC_OVERRUN_CHECK_SIZE - 4);
619 val += XMALLOC_OVERRUN_CHECK_SIZE;
620 XMALLOC_PUT_SIZE(val, size);
621 memcpy (val + size, xmalloc_overrun_check_trailer,
622 XMALLOC_OVERRUN_CHECK_SIZE);
623 }
624 --check_depth;
625 return (POINTER_TYPE *)val;
626 }
627
628
629 /* Like realloc, but checks old block for overrun, and wraps new block
630 with header and trailer. */
631
632 POINTER_TYPE *
633 overrun_check_realloc (block, size)
634 POINTER_TYPE *block;
635 size_t size;
636 {
637 register unsigned char *val = (unsigned char *)block;
638 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
639
640 if (val
641 && check_depth == 1
642 && memcmp (xmalloc_overrun_check_header,
643 val - XMALLOC_OVERRUN_CHECK_SIZE,
644 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
645 {
646 size_t osize = XMALLOC_GET_SIZE (val);
647 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
648 XMALLOC_OVERRUN_CHECK_SIZE))
649 abort ();
650 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
651 val -= XMALLOC_OVERRUN_CHECK_SIZE;
652 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
653 }
654
655 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
656
657 if (val && check_depth == 1)
658 {
659 memcpy (val, xmalloc_overrun_check_header,
660 XMALLOC_OVERRUN_CHECK_SIZE - 4);
661 val += XMALLOC_OVERRUN_CHECK_SIZE;
662 XMALLOC_PUT_SIZE(val, size);
663 memcpy (val + size, xmalloc_overrun_check_trailer,
664 XMALLOC_OVERRUN_CHECK_SIZE);
665 }
666 --check_depth;
667 return (POINTER_TYPE *)val;
668 }
669
670 /* Like free, but checks block for overrun. */
671
672 void
673 overrun_check_free (block)
674 POINTER_TYPE *block;
675 {
676 unsigned char *val = (unsigned char *)block;
677
678 ++check_depth;
679 if (val
680 && check_depth == 1
681 && memcmp (xmalloc_overrun_check_header,
682 val - XMALLOC_OVERRUN_CHECK_SIZE,
683 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
684 {
685 size_t osize = XMALLOC_GET_SIZE (val);
686 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
687 XMALLOC_OVERRUN_CHECK_SIZE))
688 abort ();
689 #ifdef XMALLOC_CLEAR_FREE_MEMORY
690 val -= XMALLOC_OVERRUN_CHECK_SIZE;
691 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
692 #else
693 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
694 val -= XMALLOC_OVERRUN_CHECK_SIZE;
695 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
696 #endif
697 }
698
699 free (val);
700 --check_depth;
701 }
702
703 #undef malloc
704 #undef realloc
705 #undef free
706 #define malloc overrun_check_malloc
707 #define realloc overrun_check_realloc
708 #define free overrun_check_free
709 #endif
710
711 #ifdef SYNC_INPUT
712 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
713 there's no need to block input around malloc. */
714 #define MALLOC_BLOCK_INPUT ((void)0)
715 #define MALLOC_UNBLOCK_INPUT ((void)0)
716 #else
717 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
718 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
719 #endif
720
721 /* Like malloc but check for no memory and block interrupt input.. */
722
723 POINTER_TYPE *
724 xmalloc (size_t size)
725 {
726 register POINTER_TYPE *val;
727
728 MALLOC_BLOCK_INPUT;
729 val = (POINTER_TYPE *) malloc (size);
730 MALLOC_UNBLOCK_INPUT;
731
732 if (!val && size)
733 memory_full ();
734 return val;
735 }
736
737
738 /* Like realloc but check for no memory and block interrupt input.. */
739
740 POINTER_TYPE *
741 xrealloc (POINTER_TYPE *block, size_t size)
742 {
743 register POINTER_TYPE *val;
744
745 MALLOC_BLOCK_INPUT;
746 /* We must call malloc explicitly when BLOCK is 0, since some
747 reallocs don't do this. */
748 if (! block)
749 val = (POINTER_TYPE *) malloc (size);
750 else
751 val = (POINTER_TYPE *) realloc (block, size);
752 MALLOC_UNBLOCK_INPUT;
753
754 if (!val && size) memory_full ();
755 return val;
756 }
757
758
759 /* Like free but block interrupt input. */
760
761 void
762 xfree (POINTER_TYPE *block)
763 {
764 if (!block)
765 return;
766 MALLOC_BLOCK_INPUT;
767 free (block);
768 MALLOC_UNBLOCK_INPUT;
769 /* We don't call refill_memory_reserve here
770 because that duplicates doing so in emacs_blocked_free
771 and the criterion should go there. */
772 }
773
774
775 /* Like strdup, but uses xmalloc. */
776
777 char *
778 xstrdup (const char *s)
779 {
780 size_t len = strlen (s) + 1;
781 char *p = (char *) xmalloc (len);
782 memcpy (p, s, len);
783 return p;
784 }
785
786
787 /* Unwind for SAFE_ALLOCA */
788
789 Lisp_Object
790 safe_alloca_unwind (Lisp_Object arg)
791 {
792 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
793
794 p->dogc = 0;
795 xfree (p->pointer);
796 p->pointer = 0;
797 free_misc (arg);
798 return Qnil;
799 }
800
801
802 /* Like malloc but used for allocating Lisp data. NBYTES is the
803 number of bytes to allocate, TYPE describes the intended use of the
804 allcated memory block (for strings, for conses, ...). */
805
806 #ifndef USE_LSB_TAG
807 static void *lisp_malloc_loser;
808 #endif
809
810 static POINTER_TYPE *
811 lisp_malloc (size_t nbytes, enum mem_type type)
812 {
813 register void *val;
814
815 MALLOC_BLOCK_INPUT;
816
817 #ifdef GC_MALLOC_CHECK
818 allocated_mem_type = type;
819 #endif
820
821 val = (void *) malloc (nbytes);
822
823 #ifndef USE_LSB_TAG
824 /* If the memory just allocated cannot be addressed thru a Lisp
825 object's pointer, and it needs to be,
826 that's equivalent to running out of memory. */
827 if (val && type != MEM_TYPE_NON_LISP)
828 {
829 Lisp_Object tem;
830 XSETCONS (tem, (char *) val + nbytes - 1);
831 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
832 {
833 lisp_malloc_loser = val;
834 free (val);
835 val = 0;
836 }
837 }
838 #endif
839
840 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
841 if (val && type != MEM_TYPE_NON_LISP)
842 mem_insert (val, (char *) val + nbytes, type);
843 #endif
844
845 MALLOC_UNBLOCK_INPUT;
846 if (!val && nbytes)
847 memory_full ();
848 return val;
849 }
850
851 /* Free BLOCK. This must be called to free memory allocated with a
852 call to lisp_malloc. */
853
854 static void
855 lisp_free (POINTER_TYPE *block)
856 {
857 MALLOC_BLOCK_INPUT;
858 free (block);
859 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
860 mem_delete (mem_find (block));
861 #endif
862 MALLOC_UNBLOCK_INPUT;
863 }
864
865 /* Allocation of aligned blocks of memory to store Lisp data. */
866 /* The entry point is lisp_align_malloc which returns blocks of at most */
867 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
868
869 /* Use posix_memalloc if the system has it and we're using the system's
870 malloc (because our gmalloc.c routines don't have posix_memalign although
871 its memalloc could be used). */
872 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
873 #define USE_POSIX_MEMALIGN 1
874 #endif
875
876 /* BLOCK_ALIGN has to be a power of 2. */
877 #define BLOCK_ALIGN (1 << 10)
878
879 /* Padding to leave at the end of a malloc'd block. This is to give
880 malloc a chance to minimize the amount of memory wasted to alignment.
881 It should be tuned to the particular malloc library used.
882 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
883 posix_memalign on the other hand would ideally prefer a value of 4
884 because otherwise, there's 1020 bytes wasted between each ablocks.
885 In Emacs, testing shows that those 1020 can most of the time be
886 efficiently used by malloc to place other objects, so a value of 0 can
887 still preferable unless you have a lot of aligned blocks and virtually
888 nothing else. */
889 #define BLOCK_PADDING 0
890 #define BLOCK_BYTES \
891 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
892
893 /* Internal data structures and constants. */
894
895 #define ABLOCKS_SIZE 16
896
897 /* An aligned block of memory. */
898 struct ablock
899 {
900 union
901 {
902 char payload[BLOCK_BYTES];
903 struct ablock *next_free;
904 } x;
905 /* `abase' is the aligned base of the ablocks. */
906 /* It is overloaded to hold the virtual `busy' field that counts
907 the number of used ablock in the parent ablocks.
908 The first ablock has the `busy' field, the others have the `abase'
909 field. To tell the difference, we assume that pointers will have
910 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
911 is used to tell whether the real base of the parent ablocks is `abase'
912 (if not, the word before the first ablock holds a pointer to the
913 real base). */
914 struct ablocks *abase;
915 /* The padding of all but the last ablock is unused. The padding of
916 the last ablock in an ablocks is not allocated. */
917 #if BLOCK_PADDING
918 char padding[BLOCK_PADDING];
919 #endif
920 };
921
922 /* A bunch of consecutive aligned blocks. */
923 struct ablocks
924 {
925 struct ablock blocks[ABLOCKS_SIZE];
926 };
927
928 /* Size of the block requested from malloc or memalign. */
929 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
930
931 #define ABLOCK_ABASE(block) \
932 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
933 ? (struct ablocks *)(block) \
934 : (block)->abase)
935
936 /* Virtual `busy' field. */
937 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
938
939 /* Pointer to the (not necessarily aligned) malloc block. */
940 #ifdef USE_POSIX_MEMALIGN
941 #define ABLOCKS_BASE(abase) (abase)
942 #else
943 #define ABLOCKS_BASE(abase) \
944 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
945 #endif
946
947 /* The list of free ablock. */
948 static struct ablock *free_ablock;
949
950 /* Allocate an aligned block of nbytes.
951 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
952 smaller or equal to BLOCK_BYTES. */
953 static POINTER_TYPE *
954 lisp_align_malloc (size_t nbytes, enum mem_type type)
955 {
956 void *base, *val;
957 struct ablocks *abase;
958
959 eassert (nbytes <= BLOCK_BYTES);
960
961 MALLOC_BLOCK_INPUT;
962
963 #ifdef GC_MALLOC_CHECK
964 allocated_mem_type = type;
965 #endif
966
967 if (!free_ablock)
968 {
969 int i;
970 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
971
972 #ifdef DOUG_LEA_MALLOC
973 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
974 because mapped region contents are not preserved in
975 a dumped Emacs. */
976 mallopt (M_MMAP_MAX, 0);
977 #endif
978
979 #ifdef USE_POSIX_MEMALIGN
980 {
981 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
982 if (err)
983 base = NULL;
984 abase = base;
985 }
986 #else
987 base = malloc (ABLOCKS_BYTES);
988 abase = ALIGN (base, BLOCK_ALIGN);
989 #endif
990
991 if (base == 0)
992 {
993 MALLOC_UNBLOCK_INPUT;
994 memory_full ();
995 }
996
997 aligned = (base == abase);
998 if (!aligned)
999 ((void**)abase)[-1] = base;
1000
1001 #ifdef DOUG_LEA_MALLOC
1002 /* Back to a reasonable maximum of mmap'ed areas. */
1003 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1004 #endif
1005
1006 #ifndef USE_LSB_TAG
1007 /* If the memory just allocated cannot be addressed thru a Lisp
1008 object's pointer, and it needs to be, that's equivalent to
1009 running out of memory. */
1010 if (type != MEM_TYPE_NON_LISP)
1011 {
1012 Lisp_Object tem;
1013 char *end = (char *) base + ABLOCKS_BYTES - 1;
1014 XSETCONS (tem, end);
1015 if ((char *) XCONS (tem) != end)
1016 {
1017 lisp_malloc_loser = base;
1018 free (base);
1019 MALLOC_UNBLOCK_INPUT;
1020 memory_full ();
1021 }
1022 }
1023 #endif
1024
1025 /* Initialize the blocks and put them on the free list.
1026 Is `base' was not properly aligned, we can't use the last block. */
1027 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1028 {
1029 abase->blocks[i].abase = abase;
1030 abase->blocks[i].x.next_free = free_ablock;
1031 free_ablock = &abase->blocks[i];
1032 }
1033 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1034
1035 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1036 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1037 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1038 eassert (ABLOCKS_BASE (abase) == base);
1039 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1040 }
1041
1042 abase = ABLOCK_ABASE (free_ablock);
1043 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1044 val = free_ablock;
1045 free_ablock = free_ablock->x.next_free;
1046
1047 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1048 if (val && type != MEM_TYPE_NON_LISP)
1049 mem_insert (val, (char *) val + nbytes, type);
1050 #endif
1051
1052 MALLOC_UNBLOCK_INPUT;
1053 if (!val && nbytes)
1054 memory_full ();
1055
1056 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1057 return val;
1058 }
1059
1060 static void
1061 lisp_align_free (POINTER_TYPE *block)
1062 {
1063 struct ablock *ablock = block;
1064 struct ablocks *abase = ABLOCK_ABASE (ablock);
1065
1066 MALLOC_BLOCK_INPUT;
1067 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1068 mem_delete (mem_find (block));
1069 #endif
1070 /* Put on free list. */
1071 ablock->x.next_free = free_ablock;
1072 free_ablock = ablock;
1073 /* Update busy count. */
1074 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1075
1076 if (2 > (long) ABLOCKS_BUSY (abase))
1077 { /* All the blocks are free. */
1078 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1079 struct ablock **tem = &free_ablock;
1080 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1081
1082 while (*tem)
1083 {
1084 if (*tem >= (struct ablock *) abase && *tem < atop)
1085 {
1086 i++;
1087 *tem = (*tem)->x.next_free;
1088 }
1089 else
1090 tem = &(*tem)->x.next_free;
1091 }
1092 eassert ((aligned & 1) == aligned);
1093 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1094 #ifdef USE_POSIX_MEMALIGN
1095 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1096 #endif
1097 free (ABLOCKS_BASE (abase));
1098 }
1099 MALLOC_UNBLOCK_INPUT;
1100 }
1101
1102 /* Return a new buffer structure allocated from the heap with
1103 a call to lisp_malloc. */
1104
1105 struct buffer *
1106 allocate_buffer (void)
1107 {
1108 struct buffer *b
1109 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1110 MEM_TYPE_BUFFER);
1111 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1112 XSETPVECTYPE (b, PVEC_BUFFER);
1113 return b;
1114 }
1115
1116 \f
1117 #ifndef SYSTEM_MALLOC
1118
1119 /* Arranging to disable input signals while we're in malloc.
1120
1121 This only works with GNU malloc. To help out systems which can't
1122 use GNU malloc, all the calls to malloc, realloc, and free
1123 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1124 pair; unfortunately, we have no idea what C library functions
1125 might call malloc, so we can't really protect them unless you're
1126 using GNU malloc. Fortunately, most of the major operating systems
1127 can use GNU malloc. */
1128
1129 #ifndef SYNC_INPUT
1130 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1131 there's no need to block input around malloc. */
1132
1133 #ifndef DOUG_LEA_MALLOC
1134 extern void * (*__malloc_hook) (size_t, const void *);
1135 extern void * (*__realloc_hook) (void *, size_t, const void *);
1136 extern void (*__free_hook) (void *, const void *);
1137 /* Else declared in malloc.h, perhaps with an extra arg. */
1138 #endif /* DOUG_LEA_MALLOC */
1139 static void * (*old_malloc_hook) (size_t, const void *);
1140 static void * (*old_realloc_hook) (void *, size_t, const void*);
1141 static void (*old_free_hook) (void*, const void*);
1142
1143 /* This function is used as the hook for free to call. */
1144
1145 static void
1146 emacs_blocked_free (void *ptr, const void *ptr2)
1147 {
1148 BLOCK_INPUT_ALLOC;
1149
1150 #ifdef GC_MALLOC_CHECK
1151 if (ptr)
1152 {
1153 struct mem_node *m;
1154
1155 m = mem_find (ptr);
1156 if (m == MEM_NIL || m->start != ptr)
1157 {
1158 fprintf (stderr,
1159 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1160 abort ();
1161 }
1162 else
1163 {
1164 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1165 mem_delete (m);
1166 }
1167 }
1168 #endif /* GC_MALLOC_CHECK */
1169
1170 __free_hook = old_free_hook;
1171 free (ptr);
1172
1173 /* If we released our reserve (due to running out of memory),
1174 and we have a fair amount free once again,
1175 try to set aside another reserve in case we run out once more. */
1176 if (! NILP (Vmemory_full)
1177 /* Verify there is enough space that even with the malloc
1178 hysteresis this call won't run out again.
1179 The code here is correct as long as SPARE_MEMORY
1180 is substantially larger than the block size malloc uses. */
1181 && (bytes_used_when_full
1182 > ((bytes_used_when_reconsidered = BYTES_USED)
1183 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1184 refill_memory_reserve ();
1185
1186 __free_hook = emacs_blocked_free;
1187 UNBLOCK_INPUT_ALLOC;
1188 }
1189
1190
1191 /* This function is the malloc hook that Emacs uses. */
1192
1193 static void *
1194 emacs_blocked_malloc (size_t size, const void *ptr)
1195 {
1196 void *value;
1197
1198 BLOCK_INPUT_ALLOC;
1199 __malloc_hook = old_malloc_hook;
1200 #ifdef DOUG_LEA_MALLOC
1201 /* Segfaults on my system. --lorentey */
1202 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1203 #else
1204 __malloc_extra_blocks = malloc_hysteresis;
1205 #endif
1206
1207 value = (void *) malloc (size);
1208
1209 #ifdef GC_MALLOC_CHECK
1210 {
1211 struct mem_node *m = mem_find (value);
1212 if (m != MEM_NIL)
1213 {
1214 fprintf (stderr, "Malloc returned %p which is already in use\n",
1215 value);
1216 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1217 m->start, m->end, (char *) m->end - (char *) m->start,
1218 m->type);
1219 abort ();
1220 }
1221
1222 if (!dont_register_blocks)
1223 {
1224 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1225 allocated_mem_type = MEM_TYPE_NON_LISP;
1226 }
1227 }
1228 #endif /* GC_MALLOC_CHECK */
1229
1230 __malloc_hook = emacs_blocked_malloc;
1231 UNBLOCK_INPUT_ALLOC;
1232
1233 /* fprintf (stderr, "%p malloc\n", value); */
1234 return value;
1235 }
1236
1237
1238 /* This function is the realloc hook that Emacs uses. */
1239
1240 static void *
1241 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1242 {
1243 void *value;
1244
1245 BLOCK_INPUT_ALLOC;
1246 __realloc_hook = old_realloc_hook;
1247
1248 #ifdef GC_MALLOC_CHECK
1249 if (ptr)
1250 {
1251 struct mem_node *m = mem_find (ptr);
1252 if (m == MEM_NIL || m->start != ptr)
1253 {
1254 fprintf (stderr,
1255 "Realloc of %p which wasn't allocated with malloc\n",
1256 ptr);
1257 abort ();
1258 }
1259
1260 mem_delete (m);
1261 }
1262
1263 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1264
1265 /* Prevent malloc from registering blocks. */
1266 dont_register_blocks = 1;
1267 #endif /* GC_MALLOC_CHECK */
1268
1269 value = (void *) realloc (ptr, size);
1270
1271 #ifdef GC_MALLOC_CHECK
1272 dont_register_blocks = 0;
1273
1274 {
1275 struct mem_node *m = mem_find (value);
1276 if (m != MEM_NIL)
1277 {
1278 fprintf (stderr, "Realloc returns memory that is already in use\n");
1279 abort ();
1280 }
1281
1282 /* Can't handle zero size regions in the red-black tree. */
1283 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1284 }
1285
1286 /* fprintf (stderr, "%p <- realloc\n", value); */
1287 #endif /* GC_MALLOC_CHECK */
1288
1289 __realloc_hook = emacs_blocked_realloc;
1290 UNBLOCK_INPUT_ALLOC;
1291
1292 return value;
1293 }
1294
1295
1296 #ifdef HAVE_GTK_AND_PTHREAD
1297 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1298 normal malloc. Some thread implementations need this as they call
1299 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1300 calls malloc because it is the first call, and we have an endless loop. */
1301
1302 void
1303 reset_malloc_hooks ()
1304 {
1305 __free_hook = old_free_hook;
1306 __malloc_hook = old_malloc_hook;
1307 __realloc_hook = old_realloc_hook;
1308 }
1309 #endif /* HAVE_GTK_AND_PTHREAD */
1310
1311
1312 /* Called from main to set up malloc to use our hooks. */
1313
1314 void
1315 uninterrupt_malloc (void)
1316 {
1317 #ifdef HAVE_GTK_AND_PTHREAD
1318 #ifdef DOUG_LEA_MALLOC
1319 pthread_mutexattr_t attr;
1320
1321 /* GLIBC has a faster way to do this, but lets keep it portable.
1322 This is according to the Single UNIX Specification. */
1323 pthread_mutexattr_init (&attr);
1324 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1325 pthread_mutex_init (&alloc_mutex, &attr);
1326 #else /* !DOUG_LEA_MALLOC */
1327 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1328 and the bundled gmalloc.c doesn't require it. */
1329 pthread_mutex_init (&alloc_mutex, NULL);
1330 #endif /* !DOUG_LEA_MALLOC */
1331 #endif /* HAVE_GTK_AND_PTHREAD */
1332
1333 if (__free_hook != emacs_blocked_free)
1334 old_free_hook = __free_hook;
1335 __free_hook = emacs_blocked_free;
1336
1337 if (__malloc_hook != emacs_blocked_malloc)
1338 old_malloc_hook = __malloc_hook;
1339 __malloc_hook = emacs_blocked_malloc;
1340
1341 if (__realloc_hook != emacs_blocked_realloc)
1342 old_realloc_hook = __realloc_hook;
1343 __realloc_hook = emacs_blocked_realloc;
1344 }
1345
1346 #endif /* not SYNC_INPUT */
1347 #endif /* not SYSTEM_MALLOC */
1348
1349
1350 \f
1351 /***********************************************************************
1352 Interval Allocation
1353 ***********************************************************************/
1354
1355 /* Number of intervals allocated in an interval_block structure.
1356 The 1020 is 1024 minus malloc overhead. */
1357
1358 #define INTERVAL_BLOCK_SIZE \
1359 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1360
1361 /* Intervals are allocated in chunks in form of an interval_block
1362 structure. */
1363
1364 struct interval_block
1365 {
1366 /* Place `intervals' first, to preserve alignment. */
1367 struct interval intervals[INTERVAL_BLOCK_SIZE];
1368 struct interval_block *next;
1369 };
1370
1371 /* Current interval block. Its `next' pointer points to older
1372 blocks. */
1373
1374 static struct interval_block *interval_block;
1375
1376 /* Index in interval_block above of the next unused interval
1377 structure. */
1378
1379 static int interval_block_index;
1380
1381 /* Number of free and live intervals. */
1382
1383 static int total_free_intervals, total_intervals;
1384
1385 /* List of free intervals. */
1386
1387 INTERVAL interval_free_list;
1388
1389 /* Total number of interval blocks now in use. */
1390
1391 static int n_interval_blocks;
1392
1393
1394 /* Initialize interval allocation. */
1395
1396 static void
1397 init_intervals (void)
1398 {
1399 interval_block = NULL;
1400 interval_block_index = INTERVAL_BLOCK_SIZE;
1401 interval_free_list = 0;
1402 n_interval_blocks = 0;
1403 }
1404
1405
1406 /* Return a new interval. */
1407
1408 INTERVAL
1409 make_interval (void)
1410 {
1411 INTERVAL val;
1412
1413 /* eassert (!handling_signal); */
1414
1415 MALLOC_BLOCK_INPUT;
1416
1417 if (interval_free_list)
1418 {
1419 val = interval_free_list;
1420 interval_free_list = INTERVAL_PARENT (interval_free_list);
1421 }
1422 else
1423 {
1424 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1425 {
1426 register struct interval_block *newi;
1427
1428 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1429 MEM_TYPE_NON_LISP);
1430
1431 newi->next = interval_block;
1432 interval_block = newi;
1433 interval_block_index = 0;
1434 n_interval_blocks++;
1435 }
1436 val = &interval_block->intervals[interval_block_index++];
1437 }
1438
1439 MALLOC_UNBLOCK_INPUT;
1440
1441 consing_since_gc += sizeof (struct interval);
1442 intervals_consed++;
1443 RESET_INTERVAL (val);
1444 val->gcmarkbit = 0;
1445 return val;
1446 }
1447
1448
1449 /* Mark Lisp objects in interval I. */
1450
1451 static void
1452 mark_interval (register INTERVAL i, Lisp_Object dummy)
1453 {
1454 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1455 i->gcmarkbit = 1;
1456 mark_object (i->plist);
1457 }
1458
1459
1460 /* Mark the interval tree rooted in TREE. Don't call this directly;
1461 use the macro MARK_INTERVAL_TREE instead. */
1462
1463 static void
1464 mark_interval_tree (register INTERVAL tree)
1465 {
1466 /* No need to test if this tree has been marked already; this
1467 function is always called through the MARK_INTERVAL_TREE macro,
1468 which takes care of that. */
1469
1470 traverse_intervals_noorder (tree, mark_interval, Qnil);
1471 }
1472
1473
1474 /* Mark the interval tree rooted in I. */
1475
1476 #define MARK_INTERVAL_TREE(i) \
1477 do { \
1478 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1479 mark_interval_tree (i); \
1480 } while (0)
1481
1482
1483 #define UNMARK_BALANCE_INTERVALS(i) \
1484 do { \
1485 if (! NULL_INTERVAL_P (i)) \
1486 (i) = balance_intervals (i); \
1487 } while (0)
1488
1489 \f
1490 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1491 can't create number objects in macros. */
1492 #ifndef make_number
1493 Lisp_Object
1494 make_number (EMACS_INT n)
1495 {
1496 Lisp_Object obj;
1497 obj.s.val = n;
1498 obj.s.type = Lisp_Int;
1499 return obj;
1500 }
1501 #endif
1502 \f
1503 /***********************************************************************
1504 String Allocation
1505 ***********************************************************************/
1506
1507 /* Lisp_Strings are allocated in string_block structures. When a new
1508 string_block is allocated, all the Lisp_Strings it contains are
1509 added to a free-list string_free_list. When a new Lisp_String is
1510 needed, it is taken from that list. During the sweep phase of GC,
1511 string_blocks that are entirely free are freed, except two which
1512 we keep.
1513
1514 String data is allocated from sblock structures. Strings larger
1515 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1516 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1517
1518 Sblocks consist internally of sdata structures, one for each
1519 Lisp_String. The sdata structure points to the Lisp_String it
1520 belongs to. The Lisp_String points back to the `u.data' member of
1521 its sdata structure.
1522
1523 When a Lisp_String is freed during GC, it is put back on
1524 string_free_list, and its `data' member and its sdata's `string'
1525 pointer is set to null. The size of the string is recorded in the
1526 `u.nbytes' member of the sdata. So, sdata structures that are no
1527 longer used, can be easily recognized, and it's easy to compact the
1528 sblocks of small strings which we do in compact_small_strings. */
1529
1530 /* Size in bytes of an sblock structure used for small strings. This
1531 is 8192 minus malloc overhead. */
1532
1533 #define SBLOCK_SIZE 8188
1534
1535 /* Strings larger than this are considered large strings. String data
1536 for large strings is allocated from individual sblocks. */
1537
1538 #define LARGE_STRING_BYTES 1024
1539
1540 /* Structure describing string memory sub-allocated from an sblock.
1541 This is where the contents of Lisp strings are stored. */
1542
1543 struct sdata
1544 {
1545 /* Back-pointer to the string this sdata belongs to. If null, this
1546 structure is free, and the NBYTES member of the union below
1547 contains the string's byte size (the same value that STRING_BYTES
1548 would return if STRING were non-null). If non-null, STRING_BYTES
1549 (STRING) is the size of the data, and DATA contains the string's
1550 contents. */
1551 struct Lisp_String *string;
1552
1553 #ifdef GC_CHECK_STRING_BYTES
1554
1555 EMACS_INT nbytes;
1556 unsigned char data[1];
1557
1558 #define SDATA_NBYTES(S) (S)->nbytes
1559 #define SDATA_DATA(S) (S)->data
1560
1561 #else /* not GC_CHECK_STRING_BYTES */
1562
1563 union
1564 {
1565 /* When STRING in non-null. */
1566 unsigned char data[1];
1567
1568 /* When STRING is null. */
1569 EMACS_INT nbytes;
1570 } u;
1571
1572
1573 #define SDATA_NBYTES(S) (S)->u.nbytes
1574 #define SDATA_DATA(S) (S)->u.data
1575
1576 #endif /* not GC_CHECK_STRING_BYTES */
1577 };
1578
1579
1580 /* Structure describing a block of memory which is sub-allocated to
1581 obtain string data memory for strings. Blocks for small strings
1582 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1583 as large as needed. */
1584
1585 struct sblock
1586 {
1587 /* Next in list. */
1588 struct sblock *next;
1589
1590 /* Pointer to the next free sdata block. This points past the end
1591 of the sblock if there isn't any space left in this block. */
1592 struct sdata *next_free;
1593
1594 /* Start of data. */
1595 struct sdata first_data;
1596 };
1597
1598 /* Number of Lisp strings in a string_block structure. The 1020 is
1599 1024 minus malloc overhead. */
1600
1601 #define STRING_BLOCK_SIZE \
1602 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1603
1604 /* Structure describing a block from which Lisp_String structures
1605 are allocated. */
1606
1607 struct string_block
1608 {
1609 /* Place `strings' first, to preserve alignment. */
1610 struct Lisp_String strings[STRING_BLOCK_SIZE];
1611 struct string_block *next;
1612 };
1613
1614 /* Head and tail of the list of sblock structures holding Lisp string
1615 data. We always allocate from current_sblock. The NEXT pointers
1616 in the sblock structures go from oldest_sblock to current_sblock. */
1617
1618 static struct sblock *oldest_sblock, *current_sblock;
1619
1620 /* List of sblocks for large strings. */
1621
1622 static struct sblock *large_sblocks;
1623
1624 /* List of string_block structures, and how many there are. */
1625
1626 static struct string_block *string_blocks;
1627 static int n_string_blocks;
1628
1629 /* Free-list of Lisp_Strings. */
1630
1631 static struct Lisp_String *string_free_list;
1632
1633 /* Number of live and free Lisp_Strings. */
1634
1635 static int total_strings, total_free_strings;
1636
1637 /* Number of bytes used by live strings. */
1638
1639 static EMACS_INT total_string_size;
1640
1641 /* Given a pointer to a Lisp_String S which is on the free-list
1642 string_free_list, return a pointer to its successor in the
1643 free-list. */
1644
1645 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1646
1647 /* Return a pointer to the sdata structure belonging to Lisp string S.
1648 S must be live, i.e. S->data must not be null. S->data is actually
1649 a pointer to the `u.data' member of its sdata structure; the
1650 structure starts at a constant offset in front of that. */
1651
1652 #ifdef GC_CHECK_STRING_BYTES
1653
1654 #define SDATA_OF_STRING(S) \
1655 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1656 - sizeof (EMACS_INT)))
1657
1658 #else /* not GC_CHECK_STRING_BYTES */
1659
1660 #define SDATA_OF_STRING(S) \
1661 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1662
1663 #endif /* not GC_CHECK_STRING_BYTES */
1664
1665
1666 #ifdef GC_CHECK_STRING_OVERRUN
1667
1668 /* We check for overrun in string data blocks by appending a small
1669 "cookie" after each allocated string data block, and check for the
1670 presence of this cookie during GC. */
1671
1672 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1673 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1674 { 0xde, 0xad, 0xbe, 0xef };
1675
1676 #else
1677 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1678 #endif
1679
1680 /* Value is the size of an sdata structure large enough to hold NBYTES
1681 bytes of string data. The value returned includes a terminating
1682 NUL byte, the size of the sdata structure, and padding. */
1683
1684 #ifdef GC_CHECK_STRING_BYTES
1685
1686 #define SDATA_SIZE(NBYTES) \
1687 ((sizeof (struct Lisp_String *) \
1688 + (NBYTES) + 1 \
1689 + sizeof (EMACS_INT) \
1690 + sizeof (EMACS_INT) - 1) \
1691 & ~(sizeof (EMACS_INT) - 1))
1692
1693 #else /* not GC_CHECK_STRING_BYTES */
1694
1695 #define SDATA_SIZE(NBYTES) \
1696 ((sizeof (struct Lisp_String *) \
1697 + (NBYTES) + 1 \
1698 + sizeof (EMACS_INT) - 1) \
1699 & ~(sizeof (EMACS_INT) - 1))
1700
1701 #endif /* not GC_CHECK_STRING_BYTES */
1702
1703 /* Extra bytes to allocate for each string. */
1704
1705 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1706
1707 /* Initialize string allocation. Called from init_alloc_once. */
1708
1709 static void
1710 init_strings (void)
1711 {
1712 total_strings = total_free_strings = total_string_size = 0;
1713 oldest_sblock = current_sblock = large_sblocks = NULL;
1714 string_blocks = NULL;
1715 n_string_blocks = 0;
1716 string_free_list = NULL;
1717 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1718 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1719 }
1720
1721
1722 #ifdef GC_CHECK_STRING_BYTES
1723
1724 static int check_string_bytes_count;
1725
1726 static void check_string_bytes (int);
1727 static void check_sblock (struct sblock *);
1728
1729 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1730
1731
1732 /* Like GC_STRING_BYTES, but with debugging check. */
1733
1734 EMACS_INT
1735 string_bytes (struct Lisp_String *s)
1736 {
1737 EMACS_INT nbytes =
1738 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1739
1740 if (!PURE_POINTER_P (s)
1741 && s->data
1742 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1743 abort ();
1744 return nbytes;
1745 }
1746
1747 /* Check validity of Lisp strings' string_bytes member in B. */
1748
1749 static void
1750 check_sblock (b)
1751 struct sblock *b;
1752 {
1753 struct sdata *from, *end, *from_end;
1754
1755 end = b->next_free;
1756
1757 for (from = &b->first_data; from < end; from = from_end)
1758 {
1759 /* Compute the next FROM here because copying below may
1760 overwrite data we need to compute it. */
1761 EMACS_INT nbytes;
1762
1763 /* Check that the string size recorded in the string is the
1764 same as the one recorded in the sdata structure. */
1765 if (from->string)
1766 CHECK_STRING_BYTES (from->string);
1767
1768 if (from->string)
1769 nbytes = GC_STRING_BYTES (from->string);
1770 else
1771 nbytes = SDATA_NBYTES (from);
1772
1773 nbytes = SDATA_SIZE (nbytes);
1774 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1775 }
1776 }
1777
1778
1779 /* Check validity of Lisp strings' string_bytes member. ALL_P
1780 non-zero means check all strings, otherwise check only most
1781 recently allocated strings. Used for hunting a bug. */
1782
1783 static void
1784 check_string_bytes (all_p)
1785 int all_p;
1786 {
1787 if (all_p)
1788 {
1789 struct sblock *b;
1790
1791 for (b = large_sblocks; b; b = b->next)
1792 {
1793 struct Lisp_String *s = b->first_data.string;
1794 if (s)
1795 CHECK_STRING_BYTES (s);
1796 }
1797
1798 for (b = oldest_sblock; b; b = b->next)
1799 check_sblock (b);
1800 }
1801 else
1802 check_sblock (current_sblock);
1803 }
1804
1805 #endif /* GC_CHECK_STRING_BYTES */
1806
1807 #ifdef GC_CHECK_STRING_FREE_LIST
1808
1809 /* Walk through the string free list looking for bogus next pointers.
1810 This may catch buffer overrun from a previous string. */
1811
1812 static void
1813 check_string_free_list ()
1814 {
1815 struct Lisp_String *s;
1816
1817 /* Pop a Lisp_String off the free-list. */
1818 s = string_free_list;
1819 while (s != NULL)
1820 {
1821 if ((unsigned long)s < 1024)
1822 abort();
1823 s = NEXT_FREE_LISP_STRING (s);
1824 }
1825 }
1826 #else
1827 #define check_string_free_list()
1828 #endif
1829
1830 /* Return a new Lisp_String. */
1831
1832 static struct Lisp_String *
1833 allocate_string (void)
1834 {
1835 struct Lisp_String *s;
1836
1837 /* eassert (!handling_signal); */
1838
1839 MALLOC_BLOCK_INPUT;
1840
1841 /* If the free-list is empty, allocate a new string_block, and
1842 add all the Lisp_Strings in it to the free-list. */
1843 if (string_free_list == NULL)
1844 {
1845 struct string_block *b;
1846 int i;
1847
1848 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1849 memset (b, 0, sizeof *b);
1850 b->next = string_blocks;
1851 string_blocks = b;
1852 ++n_string_blocks;
1853
1854 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1855 {
1856 s = b->strings + i;
1857 NEXT_FREE_LISP_STRING (s) = string_free_list;
1858 string_free_list = s;
1859 }
1860
1861 total_free_strings += STRING_BLOCK_SIZE;
1862 }
1863
1864 check_string_free_list ();
1865
1866 /* Pop a Lisp_String off the free-list. */
1867 s = string_free_list;
1868 string_free_list = NEXT_FREE_LISP_STRING (s);
1869
1870 MALLOC_UNBLOCK_INPUT;
1871
1872 /* Probably not strictly necessary, but play it safe. */
1873 memset (s, 0, sizeof *s);
1874
1875 --total_free_strings;
1876 ++total_strings;
1877 ++strings_consed;
1878 consing_since_gc += sizeof *s;
1879
1880 #ifdef GC_CHECK_STRING_BYTES
1881 if (!noninteractive)
1882 {
1883 if (++check_string_bytes_count == 200)
1884 {
1885 check_string_bytes_count = 0;
1886 check_string_bytes (1);
1887 }
1888 else
1889 check_string_bytes (0);
1890 }
1891 #endif /* GC_CHECK_STRING_BYTES */
1892
1893 return s;
1894 }
1895
1896
1897 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1898 plus a NUL byte at the end. Allocate an sdata structure for S, and
1899 set S->data to its `u.data' member. Store a NUL byte at the end of
1900 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1901 S->data if it was initially non-null. */
1902
1903 void
1904 allocate_string_data (struct Lisp_String *s,
1905 EMACS_INT nchars, EMACS_INT nbytes)
1906 {
1907 struct sdata *data, *old_data;
1908 struct sblock *b;
1909 EMACS_INT needed, old_nbytes;
1910
1911 /* Determine the number of bytes needed to store NBYTES bytes
1912 of string data. */
1913 needed = SDATA_SIZE (nbytes);
1914 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1915 old_nbytes = GC_STRING_BYTES (s);
1916
1917 MALLOC_BLOCK_INPUT;
1918
1919 if (nbytes > LARGE_STRING_BYTES)
1920 {
1921 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1922
1923 #ifdef DOUG_LEA_MALLOC
1924 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1925 because mapped region contents are not preserved in
1926 a dumped Emacs.
1927
1928 In case you think of allowing it in a dumped Emacs at the
1929 cost of not being able to re-dump, there's another reason:
1930 mmap'ed data typically have an address towards the top of the
1931 address space, which won't fit into an EMACS_INT (at least on
1932 32-bit systems with the current tagging scheme). --fx */
1933 mallopt (M_MMAP_MAX, 0);
1934 #endif
1935
1936 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1937
1938 #ifdef DOUG_LEA_MALLOC
1939 /* Back to a reasonable maximum of mmap'ed areas. */
1940 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1941 #endif
1942
1943 b->next_free = &b->first_data;
1944 b->first_data.string = NULL;
1945 b->next = large_sblocks;
1946 large_sblocks = b;
1947 }
1948 else if (current_sblock == NULL
1949 || (((char *) current_sblock + SBLOCK_SIZE
1950 - (char *) current_sblock->next_free)
1951 < (needed + GC_STRING_EXTRA)))
1952 {
1953 /* Not enough room in the current sblock. */
1954 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1955 b->next_free = &b->first_data;
1956 b->first_data.string = NULL;
1957 b->next = NULL;
1958
1959 if (current_sblock)
1960 current_sblock->next = b;
1961 else
1962 oldest_sblock = b;
1963 current_sblock = b;
1964 }
1965 else
1966 b = current_sblock;
1967
1968 data = b->next_free;
1969 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1970
1971 MALLOC_UNBLOCK_INPUT;
1972
1973 data->string = s;
1974 s->data = SDATA_DATA (data);
1975 #ifdef GC_CHECK_STRING_BYTES
1976 SDATA_NBYTES (data) = nbytes;
1977 #endif
1978 s->size = nchars;
1979 s->size_byte = nbytes;
1980 s->data[nbytes] = '\0';
1981 #ifdef GC_CHECK_STRING_OVERRUN
1982 memcpy (data + needed, string_overrun_cookie, GC_STRING_OVERRUN_COOKIE_SIZE);
1983 #endif
1984
1985 /* If S had already data assigned, mark that as free by setting its
1986 string back-pointer to null, and recording the size of the data
1987 in it. */
1988 if (old_data)
1989 {
1990 SDATA_NBYTES (old_data) = old_nbytes;
1991 old_data->string = NULL;
1992 }
1993
1994 consing_since_gc += needed;
1995 }
1996
1997
1998 /* Sweep and compact strings. */
1999
2000 static void
2001 sweep_strings (void)
2002 {
2003 struct string_block *b, *next;
2004 struct string_block *live_blocks = NULL;
2005
2006 string_free_list = NULL;
2007 total_strings = total_free_strings = 0;
2008 total_string_size = 0;
2009
2010 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2011 for (b = string_blocks; b; b = next)
2012 {
2013 int i, nfree = 0;
2014 struct Lisp_String *free_list_before = string_free_list;
2015
2016 next = b->next;
2017
2018 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2019 {
2020 struct Lisp_String *s = b->strings + i;
2021
2022 if (s->data)
2023 {
2024 /* String was not on free-list before. */
2025 if (STRING_MARKED_P (s))
2026 {
2027 /* String is live; unmark it and its intervals. */
2028 UNMARK_STRING (s);
2029
2030 if (!NULL_INTERVAL_P (s->intervals))
2031 UNMARK_BALANCE_INTERVALS (s->intervals);
2032
2033 ++total_strings;
2034 total_string_size += STRING_BYTES (s);
2035 }
2036 else
2037 {
2038 /* String is dead. Put it on the free-list. */
2039 struct sdata *data = SDATA_OF_STRING (s);
2040
2041 /* Save the size of S in its sdata so that we know
2042 how large that is. Reset the sdata's string
2043 back-pointer so that we know it's free. */
2044 #ifdef GC_CHECK_STRING_BYTES
2045 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2046 abort ();
2047 #else
2048 data->u.nbytes = GC_STRING_BYTES (s);
2049 #endif
2050 data->string = NULL;
2051
2052 /* Reset the strings's `data' member so that we
2053 know it's free. */
2054 s->data = NULL;
2055
2056 /* Put the string on the free-list. */
2057 NEXT_FREE_LISP_STRING (s) = string_free_list;
2058 string_free_list = s;
2059 ++nfree;
2060 }
2061 }
2062 else
2063 {
2064 /* S was on the free-list before. Put it there again. */
2065 NEXT_FREE_LISP_STRING (s) = string_free_list;
2066 string_free_list = s;
2067 ++nfree;
2068 }
2069 }
2070
2071 /* Free blocks that contain free Lisp_Strings only, except
2072 the first two of them. */
2073 if (nfree == STRING_BLOCK_SIZE
2074 && total_free_strings > STRING_BLOCK_SIZE)
2075 {
2076 lisp_free (b);
2077 --n_string_blocks;
2078 string_free_list = free_list_before;
2079 }
2080 else
2081 {
2082 total_free_strings += nfree;
2083 b->next = live_blocks;
2084 live_blocks = b;
2085 }
2086 }
2087
2088 check_string_free_list ();
2089
2090 string_blocks = live_blocks;
2091 free_large_strings ();
2092 compact_small_strings ();
2093
2094 check_string_free_list ();
2095 }
2096
2097
2098 /* Free dead large strings. */
2099
2100 static void
2101 free_large_strings (void)
2102 {
2103 struct sblock *b, *next;
2104 struct sblock *live_blocks = NULL;
2105
2106 for (b = large_sblocks; b; b = next)
2107 {
2108 next = b->next;
2109
2110 if (b->first_data.string == NULL)
2111 lisp_free (b);
2112 else
2113 {
2114 b->next = live_blocks;
2115 live_blocks = b;
2116 }
2117 }
2118
2119 large_sblocks = live_blocks;
2120 }
2121
2122
2123 /* Compact data of small strings. Free sblocks that don't contain
2124 data of live strings after compaction. */
2125
2126 static void
2127 compact_small_strings (void)
2128 {
2129 struct sblock *b, *tb, *next;
2130 struct sdata *from, *to, *end, *tb_end;
2131 struct sdata *to_end, *from_end;
2132
2133 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2134 to, and TB_END is the end of TB. */
2135 tb = oldest_sblock;
2136 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2137 to = &tb->first_data;
2138
2139 /* Step through the blocks from the oldest to the youngest. We
2140 expect that old blocks will stabilize over time, so that less
2141 copying will happen this way. */
2142 for (b = oldest_sblock; b; b = b->next)
2143 {
2144 end = b->next_free;
2145 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2146
2147 for (from = &b->first_data; from < end; from = from_end)
2148 {
2149 /* Compute the next FROM here because copying below may
2150 overwrite data we need to compute it. */
2151 EMACS_INT nbytes;
2152
2153 #ifdef GC_CHECK_STRING_BYTES
2154 /* Check that the string size recorded in the string is the
2155 same as the one recorded in the sdata structure. */
2156 if (from->string
2157 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2158 abort ();
2159 #endif /* GC_CHECK_STRING_BYTES */
2160
2161 if (from->string)
2162 nbytes = GC_STRING_BYTES (from->string);
2163 else
2164 nbytes = SDATA_NBYTES (from);
2165
2166 if (nbytes > LARGE_STRING_BYTES)
2167 abort ();
2168
2169 nbytes = SDATA_SIZE (nbytes);
2170 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2171
2172 #ifdef GC_CHECK_STRING_OVERRUN
2173 if (memcmp (string_overrun_cookie,
2174 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2175 GC_STRING_OVERRUN_COOKIE_SIZE))
2176 abort ();
2177 #endif
2178
2179 /* FROM->string non-null means it's alive. Copy its data. */
2180 if (from->string)
2181 {
2182 /* If TB is full, proceed with the next sblock. */
2183 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2184 if (to_end > tb_end)
2185 {
2186 tb->next_free = to;
2187 tb = tb->next;
2188 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2189 to = &tb->first_data;
2190 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2191 }
2192
2193 /* Copy, and update the string's `data' pointer. */
2194 if (from != to)
2195 {
2196 xassert (tb != b || to <= from);
2197 memmove (to, from, nbytes + GC_STRING_EXTRA);
2198 to->string->data = SDATA_DATA (to);
2199 }
2200
2201 /* Advance past the sdata we copied to. */
2202 to = to_end;
2203 }
2204 }
2205 }
2206
2207 /* The rest of the sblocks following TB don't contain live data, so
2208 we can free them. */
2209 for (b = tb->next; b; b = next)
2210 {
2211 next = b->next;
2212 lisp_free (b);
2213 }
2214
2215 tb->next_free = to;
2216 tb->next = NULL;
2217 current_sblock = tb;
2218 }
2219
2220
2221 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2222 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2223 LENGTH must be an integer.
2224 INIT must be an integer that represents a character. */)
2225 (Lisp_Object length, Lisp_Object init)
2226 {
2227 register Lisp_Object val;
2228 register unsigned char *p, *end;
2229 int c;
2230 EMACS_INT nbytes;
2231
2232 CHECK_NATNUM (length);
2233 CHECK_NUMBER (init);
2234
2235 c = XINT (init);
2236 if (ASCII_CHAR_P (c))
2237 {
2238 nbytes = XINT (length);
2239 val = make_uninit_string (nbytes);
2240 p = SDATA (val);
2241 end = p + SCHARS (val);
2242 while (p != end)
2243 *p++ = c;
2244 }
2245 else
2246 {
2247 unsigned char str[MAX_MULTIBYTE_LENGTH];
2248 int len = CHAR_STRING (c, str);
2249 EMACS_INT string_len = XINT (length);
2250
2251 if (string_len > MOST_POSITIVE_FIXNUM / len)
2252 error ("Maximum string size exceeded");
2253 nbytes = len * string_len;
2254 val = make_uninit_multibyte_string (string_len, nbytes);
2255 p = SDATA (val);
2256 end = p + nbytes;
2257 while (p != end)
2258 {
2259 memcpy (p, str, len);
2260 p += len;
2261 }
2262 }
2263
2264 *p = 0;
2265 return val;
2266 }
2267
2268
2269 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2270 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2271 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2272 (Lisp_Object length, Lisp_Object init)
2273 {
2274 register Lisp_Object val;
2275 struct Lisp_Bool_Vector *p;
2276 int real_init, i;
2277 EMACS_INT length_in_chars, length_in_elts;
2278 int bits_per_value;
2279
2280 CHECK_NATNUM (length);
2281
2282 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2283
2284 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2285 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2286 / BOOL_VECTOR_BITS_PER_CHAR);
2287
2288 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2289 slot `size' of the struct Lisp_Bool_Vector. */
2290 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2291
2292 /* Get rid of any bits that would cause confusion. */
2293 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2294 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2295 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2296
2297 p = XBOOL_VECTOR (val);
2298 p->size = XFASTINT (length);
2299
2300 real_init = (NILP (init) ? 0 : -1);
2301 for (i = 0; i < length_in_chars ; i++)
2302 p->data[i] = real_init;
2303
2304 /* Clear the extraneous bits in the last byte. */
2305 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2306 p->data[length_in_chars - 1]
2307 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2308
2309 return val;
2310 }
2311
2312
2313 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2314 of characters from the contents. This string may be unibyte or
2315 multibyte, depending on the contents. */
2316
2317 Lisp_Object
2318 make_string (const char *contents, EMACS_INT nbytes)
2319 {
2320 register Lisp_Object val;
2321 EMACS_INT nchars, multibyte_nbytes;
2322
2323 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2324 if (nbytes == nchars || nbytes != multibyte_nbytes)
2325 /* CONTENTS contains no multibyte sequences or contains an invalid
2326 multibyte sequence. We must make unibyte string. */
2327 val = make_unibyte_string (contents, nbytes);
2328 else
2329 val = make_multibyte_string (contents, nchars, nbytes);
2330 return val;
2331 }
2332
2333
2334 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2335
2336 Lisp_Object
2337 make_unibyte_string (const char *contents, EMACS_INT length)
2338 {
2339 register Lisp_Object val;
2340 val = make_uninit_string (length);
2341 memcpy (SDATA (val), contents, length);
2342 STRING_SET_UNIBYTE (val);
2343 return val;
2344 }
2345
2346
2347 /* Make a multibyte string from NCHARS characters occupying NBYTES
2348 bytes at CONTENTS. */
2349
2350 Lisp_Object
2351 make_multibyte_string (const char *contents,
2352 EMACS_INT nchars, EMACS_INT nbytes)
2353 {
2354 register Lisp_Object val;
2355 val = make_uninit_multibyte_string (nchars, nbytes);
2356 memcpy (SDATA (val), contents, nbytes);
2357 return val;
2358 }
2359
2360
2361 /* Make a string from NCHARS characters occupying NBYTES bytes at
2362 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2363
2364 Lisp_Object
2365 make_string_from_bytes (const char *contents,
2366 EMACS_INT nchars, EMACS_INT nbytes)
2367 {
2368 register Lisp_Object val;
2369 val = make_uninit_multibyte_string (nchars, nbytes);
2370 memcpy (SDATA (val), contents, nbytes);
2371 if (SBYTES (val) == SCHARS (val))
2372 STRING_SET_UNIBYTE (val);
2373 return val;
2374 }
2375
2376
2377 /* Make a string from NCHARS characters occupying NBYTES bytes at
2378 CONTENTS. The argument MULTIBYTE controls whether to label the
2379 string as multibyte. If NCHARS is negative, it counts the number of
2380 characters by itself. */
2381
2382 Lisp_Object
2383 make_specified_string (const char *contents,
2384 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2385 {
2386 register Lisp_Object val;
2387
2388 if (nchars < 0)
2389 {
2390 if (multibyte)
2391 nchars = multibyte_chars_in_text (contents, nbytes);
2392 else
2393 nchars = nbytes;
2394 }
2395 val = make_uninit_multibyte_string (nchars, nbytes);
2396 memcpy (SDATA (val), contents, nbytes);
2397 if (!multibyte)
2398 STRING_SET_UNIBYTE (val);
2399 return val;
2400 }
2401
2402
2403 /* Make a string from the data at STR, treating it as multibyte if the
2404 data warrants. */
2405
2406 Lisp_Object
2407 build_string (const char *str)
2408 {
2409 return make_string (str, strlen (str));
2410 }
2411
2412
2413 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2414 occupying LENGTH bytes. */
2415
2416 Lisp_Object
2417 make_uninit_string (EMACS_INT length)
2418 {
2419 Lisp_Object val;
2420
2421 if (!length)
2422 return empty_unibyte_string;
2423 val = make_uninit_multibyte_string (length, length);
2424 STRING_SET_UNIBYTE (val);
2425 return val;
2426 }
2427
2428
2429 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2430 which occupy NBYTES bytes. */
2431
2432 Lisp_Object
2433 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2434 {
2435 Lisp_Object string;
2436 struct Lisp_String *s;
2437
2438 if (nchars < 0)
2439 abort ();
2440 if (!nbytes)
2441 return empty_multibyte_string;
2442
2443 s = allocate_string ();
2444 allocate_string_data (s, nchars, nbytes);
2445 XSETSTRING (string, s);
2446 string_chars_consed += nbytes;
2447 return string;
2448 }
2449
2450
2451 \f
2452 /***********************************************************************
2453 Float Allocation
2454 ***********************************************************************/
2455
2456 /* We store float cells inside of float_blocks, allocating a new
2457 float_block with malloc whenever necessary. Float cells reclaimed
2458 by GC are put on a free list to be reallocated before allocating
2459 any new float cells from the latest float_block. */
2460
2461 #define FLOAT_BLOCK_SIZE \
2462 (((BLOCK_BYTES - sizeof (struct float_block *) \
2463 /* The compiler might add padding at the end. */ \
2464 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2465 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2466
2467 #define GETMARKBIT(block,n) \
2468 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2469 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2470 & 1)
2471
2472 #define SETMARKBIT(block,n) \
2473 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2474 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2475
2476 #define UNSETMARKBIT(block,n) \
2477 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2478 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2479
2480 #define FLOAT_BLOCK(fptr) \
2481 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2482
2483 #define FLOAT_INDEX(fptr) \
2484 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2485
2486 struct float_block
2487 {
2488 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2489 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2490 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2491 struct float_block *next;
2492 };
2493
2494 #define FLOAT_MARKED_P(fptr) \
2495 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2496
2497 #define FLOAT_MARK(fptr) \
2498 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2499
2500 #define FLOAT_UNMARK(fptr) \
2501 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2502
2503 /* Current float_block. */
2504
2505 struct float_block *float_block;
2506
2507 /* Index of first unused Lisp_Float in the current float_block. */
2508
2509 int float_block_index;
2510
2511 /* Total number of float blocks now in use. */
2512
2513 int n_float_blocks;
2514
2515 /* Free-list of Lisp_Floats. */
2516
2517 struct Lisp_Float *float_free_list;
2518
2519
2520 /* Initialize float allocation. */
2521
2522 static void
2523 init_float (void)
2524 {
2525 float_block = NULL;
2526 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2527 float_free_list = 0;
2528 n_float_blocks = 0;
2529 }
2530
2531
2532 /* Return a new float object with value FLOAT_VALUE. */
2533
2534 Lisp_Object
2535 make_float (double float_value)
2536 {
2537 register Lisp_Object val;
2538
2539 /* eassert (!handling_signal); */
2540
2541 MALLOC_BLOCK_INPUT;
2542
2543 if (float_free_list)
2544 {
2545 /* We use the data field for chaining the free list
2546 so that we won't use the same field that has the mark bit. */
2547 XSETFLOAT (val, float_free_list);
2548 float_free_list = float_free_list->u.chain;
2549 }
2550 else
2551 {
2552 if (float_block_index == FLOAT_BLOCK_SIZE)
2553 {
2554 register struct float_block *new;
2555
2556 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2557 MEM_TYPE_FLOAT);
2558 new->next = float_block;
2559 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2560 float_block = new;
2561 float_block_index = 0;
2562 n_float_blocks++;
2563 }
2564 XSETFLOAT (val, &float_block->floats[float_block_index]);
2565 float_block_index++;
2566 }
2567
2568 MALLOC_UNBLOCK_INPUT;
2569
2570 XFLOAT_INIT (val, float_value);
2571 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2572 consing_since_gc += sizeof (struct Lisp_Float);
2573 floats_consed++;
2574 return val;
2575 }
2576
2577
2578 \f
2579 /***********************************************************************
2580 Cons Allocation
2581 ***********************************************************************/
2582
2583 /* We store cons cells inside of cons_blocks, allocating a new
2584 cons_block with malloc whenever necessary. Cons cells reclaimed by
2585 GC are put on a free list to be reallocated before allocating
2586 any new cons cells from the latest cons_block. */
2587
2588 #define CONS_BLOCK_SIZE \
2589 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2590 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2591
2592 #define CONS_BLOCK(fptr) \
2593 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2594
2595 #define CONS_INDEX(fptr) \
2596 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2597
2598 struct cons_block
2599 {
2600 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2601 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2602 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2603 struct cons_block *next;
2604 };
2605
2606 #define CONS_MARKED_P(fptr) \
2607 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2608
2609 #define CONS_MARK(fptr) \
2610 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2611
2612 #define CONS_UNMARK(fptr) \
2613 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2614
2615 /* Current cons_block. */
2616
2617 struct cons_block *cons_block;
2618
2619 /* Index of first unused Lisp_Cons in the current block. */
2620
2621 int cons_block_index;
2622
2623 /* Free-list of Lisp_Cons structures. */
2624
2625 struct Lisp_Cons *cons_free_list;
2626
2627 /* Total number of cons blocks now in use. */
2628
2629 static int n_cons_blocks;
2630
2631
2632 /* Initialize cons allocation. */
2633
2634 static void
2635 init_cons (void)
2636 {
2637 cons_block = NULL;
2638 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2639 cons_free_list = 0;
2640 n_cons_blocks = 0;
2641 }
2642
2643
2644 /* Explicitly free a cons cell by putting it on the free-list. */
2645
2646 void
2647 free_cons (struct Lisp_Cons *ptr)
2648 {
2649 ptr->u.chain = cons_free_list;
2650 #if GC_MARK_STACK
2651 ptr->car = Vdead;
2652 #endif
2653 cons_free_list = ptr;
2654 }
2655
2656 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2657 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2658 (Lisp_Object car, Lisp_Object cdr)
2659 {
2660 register Lisp_Object val;
2661
2662 /* eassert (!handling_signal); */
2663
2664 MALLOC_BLOCK_INPUT;
2665
2666 if (cons_free_list)
2667 {
2668 /* We use the cdr for chaining the free list
2669 so that we won't use the same field that has the mark bit. */
2670 XSETCONS (val, cons_free_list);
2671 cons_free_list = cons_free_list->u.chain;
2672 }
2673 else
2674 {
2675 if (cons_block_index == CONS_BLOCK_SIZE)
2676 {
2677 register struct cons_block *new;
2678 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2679 MEM_TYPE_CONS);
2680 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2681 new->next = cons_block;
2682 cons_block = new;
2683 cons_block_index = 0;
2684 n_cons_blocks++;
2685 }
2686 XSETCONS (val, &cons_block->conses[cons_block_index]);
2687 cons_block_index++;
2688 }
2689
2690 MALLOC_UNBLOCK_INPUT;
2691
2692 XSETCAR (val, car);
2693 XSETCDR (val, cdr);
2694 eassert (!CONS_MARKED_P (XCONS (val)));
2695 consing_since_gc += sizeof (struct Lisp_Cons);
2696 cons_cells_consed++;
2697 return val;
2698 }
2699
2700 /* Get an error now if there's any junk in the cons free list. */
2701 void
2702 check_cons_list (void)
2703 {
2704 #ifdef GC_CHECK_CONS_LIST
2705 struct Lisp_Cons *tail = cons_free_list;
2706
2707 while (tail)
2708 tail = tail->u.chain;
2709 #endif
2710 }
2711
2712 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2713
2714 Lisp_Object
2715 list1 (Lisp_Object arg1)
2716 {
2717 return Fcons (arg1, Qnil);
2718 }
2719
2720 Lisp_Object
2721 list2 (Lisp_Object arg1, Lisp_Object arg2)
2722 {
2723 return Fcons (arg1, Fcons (arg2, Qnil));
2724 }
2725
2726
2727 Lisp_Object
2728 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2729 {
2730 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2731 }
2732
2733
2734 Lisp_Object
2735 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2736 {
2737 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2738 }
2739
2740
2741 Lisp_Object
2742 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2743 {
2744 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2745 Fcons (arg5, Qnil)))));
2746 }
2747
2748
2749 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2750 doc: /* Return a newly created list with specified arguments as elements.
2751 Any number of arguments, even zero arguments, are allowed.
2752 usage: (list &rest OBJECTS) */)
2753 (int nargs, register Lisp_Object *args)
2754 {
2755 register Lisp_Object val;
2756 val = Qnil;
2757
2758 while (nargs > 0)
2759 {
2760 nargs--;
2761 val = Fcons (args[nargs], val);
2762 }
2763 return val;
2764 }
2765
2766
2767 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2768 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2769 (register Lisp_Object length, Lisp_Object init)
2770 {
2771 register Lisp_Object val;
2772 register EMACS_INT size;
2773
2774 CHECK_NATNUM (length);
2775 size = XFASTINT (length);
2776
2777 val = Qnil;
2778 while (size > 0)
2779 {
2780 val = Fcons (init, val);
2781 --size;
2782
2783 if (size > 0)
2784 {
2785 val = Fcons (init, val);
2786 --size;
2787
2788 if (size > 0)
2789 {
2790 val = Fcons (init, val);
2791 --size;
2792
2793 if (size > 0)
2794 {
2795 val = Fcons (init, val);
2796 --size;
2797
2798 if (size > 0)
2799 {
2800 val = Fcons (init, val);
2801 --size;
2802 }
2803 }
2804 }
2805 }
2806
2807 QUIT;
2808 }
2809
2810 return val;
2811 }
2812
2813
2814 \f
2815 /***********************************************************************
2816 Vector Allocation
2817 ***********************************************************************/
2818
2819 /* Singly-linked list of all vectors. */
2820
2821 static struct Lisp_Vector *all_vectors;
2822
2823 /* Total number of vector-like objects now in use. */
2824
2825 static int n_vectors;
2826
2827
2828 /* Value is a pointer to a newly allocated Lisp_Vector structure
2829 with room for LEN Lisp_Objects. */
2830
2831 static struct Lisp_Vector *
2832 allocate_vectorlike (EMACS_INT len)
2833 {
2834 struct Lisp_Vector *p;
2835 size_t nbytes;
2836
2837 MALLOC_BLOCK_INPUT;
2838
2839 #ifdef DOUG_LEA_MALLOC
2840 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2841 because mapped region contents are not preserved in
2842 a dumped Emacs. */
2843 mallopt (M_MMAP_MAX, 0);
2844 #endif
2845
2846 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2847 /* eassert (!handling_signal); */
2848
2849 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2850 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2851
2852 #ifdef DOUG_LEA_MALLOC
2853 /* Back to a reasonable maximum of mmap'ed areas. */
2854 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2855 #endif
2856
2857 consing_since_gc += nbytes;
2858 vector_cells_consed += len;
2859
2860 p->next = all_vectors;
2861 all_vectors = p;
2862
2863 MALLOC_UNBLOCK_INPUT;
2864
2865 ++n_vectors;
2866 return p;
2867 }
2868
2869
2870 /* Allocate a vector with NSLOTS slots. */
2871
2872 struct Lisp_Vector *
2873 allocate_vector (EMACS_INT nslots)
2874 {
2875 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2876 v->size = nslots;
2877 return v;
2878 }
2879
2880
2881 /* Allocate other vector-like structures. */
2882
2883 struct Lisp_Vector *
2884 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2885 {
2886 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2887 EMACS_INT i;
2888
2889 /* Only the first lisplen slots will be traced normally by the GC. */
2890 v->size = lisplen;
2891 for (i = 0; i < lisplen; ++i)
2892 v->contents[i] = Qnil;
2893
2894 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2895 return v;
2896 }
2897
2898 struct Lisp_Hash_Table *
2899 allocate_hash_table (void)
2900 {
2901 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2902 }
2903
2904
2905 struct window *
2906 allocate_window (void)
2907 {
2908 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2909 }
2910
2911
2912 struct terminal *
2913 allocate_terminal (void)
2914 {
2915 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2916 next_terminal, PVEC_TERMINAL);
2917 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2918 memset (&t->next_terminal, 0,
2919 (char*) (t + 1) - (char*) &t->next_terminal);
2920
2921 return t;
2922 }
2923
2924 struct frame *
2925 allocate_frame (void)
2926 {
2927 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2928 face_cache, PVEC_FRAME);
2929 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2930 memset (&f->face_cache, 0,
2931 (char *) (f + 1) - (char *) &f->face_cache);
2932 return f;
2933 }
2934
2935
2936 struct Lisp_Process *
2937 allocate_process (void)
2938 {
2939 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2940 }
2941
2942
2943 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2944 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2945 See also the function `vector'. */)
2946 (register Lisp_Object length, Lisp_Object init)
2947 {
2948 Lisp_Object vector;
2949 register EMACS_INT sizei;
2950 register EMACS_INT index;
2951 register struct Lisp_Vector *p;
2952
2953 CHECK_NATNUM (length);
2954 sizei = XFASTINT (length);
2955
2956 p = allocate_vector (sizei);
2957 for (index = 0; index < sizei; index++)
2958 p->contents[index] = init;
2959
2960 XSETVECTOR (vector, p);
2961 return vector;
2962 }
2963
2964
2965 /* Return a new `function vector' containing KIND as the first element,
2966 followed by NUM_NIL_SLOTS nil elements, and further elements copied from
2967 the vector PARAMS of length NUM_PARAMS (so the total length of the
2968 resulting vector is 1 + NUM_NIL_SLOTS + NUM_PARAMS).
2969
2970 If NUM_PARAMS is zero, then PARAMS may be NULL.
2971
2972 A `function vector', a.k.a. `funvec', is a funcallable vector in Emacs Lisp.
2973 See the function `funvec' for more detail. */
2974
2975 Lisp_Object
2976 make_funvec (Lisp_Object kind, int num_nil_slots, int num_params,
2977 Lisp_Object *params)
2978 {
2979 int param_index;
2980 Lisp_Object funvec;
2981
2982 funvec = Fmake_vector (make_number (1 + num_nil_slots + num_params), Qnil);
2983
2984 ASET (funvec, 0, kind);
2985
2986 for (param_index = 0; param_index < num_params; param_index++)
2987 ASET (funvec, 1 + num_nil_slots + param_index, params[param_index]);
2988
2989 XSETPVECTYPE (XVECTOR (funvec), PVEC_FUNVEC);
2990 XSETFUNVEC (funvec, XVECTOR (funvec));
2991
2992 return funvec;
2993 }
2994
2995
2996 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2997 doc: /* Return a newly created vector with specified arguments as elements.
2998 Any number of arguments, even zero arguments, are allowed.
2999 usage: (vector &rest OBJECTS) */)
3000 (register int nargs, Lisp_Object *args)
3001 {
3002 register Lisp_Object len, val;
3003 register int index;
3004 register struct Lisp_Vector *p;
3005
3006 XSETFASTINT (len, nargs);
3007 val = Fmake_vector (len, Qnil);
3008 p = XVECTOR (val);
3009 for (index = 0; index < nargs; index++)
3010 p->contents[index] = args[index];
3011 return val;
3012 }
3013
3014
3015 DEFUN ("funvec", Ffunvec, Sfunvec, 1, MANY, 0,
3016 doc: /* Return a newly created `function vector' of type KIND.
3017 A `function vector', a.k.a. `funvec', is a funcallable vector in Emacs Lisp.
3018 KIND indicates the kind of funvec, and determines its behavior when called.
3019 The meaning of the remaining arguments depends on KIND. Currently
3020 implemented values of KIND, and their meaning, are:
3021
3022 A list -- A byte-compiled function. See `make-byte-code' for the usual
3023 way to create byte-compiled functions.
3024
3025 `curry' -- A curried function. Remaining arguments are a function to
3026 call, and arguments to prepend to user arguments at the
3027 time of the call; see the `curry' function.
3028
3029 usage: (funvec KIND &rest PARAMS) */)
3030 (int nargs, Lisp_Object *args)
3031 {
3032 return make_funvec (args[0], 0, nargs - 1, args + 1);
3033 }
3034
3035
3036 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3037 doc: /* Create a byte-code object with specified arguments as elements.
3038 The arguments should be the arglist, bytecode-string, constant vector,
3039 stack size, (optional) doc string, and (optional) interactive spec.
3040 The first four arguments are required; at most six have any
3041 significance.
3042 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3043 (register int nargs, Lisp_Object *args)
3044 {
3045 register Lisp_Object len, val;
3046 register int index;
3047 register struct Lisp_Vector *p;
3048
3049 /* Make sure the arg-list is really a list, as that's what's used to
3050 distinguish a byte-compiled object from other funvecs. */
3051 CHECK_LIST (args[0]);
3052
3053 XSETFASTINT (len, nargs);
3054 if (!NILP (Vpurify_flag))
3055 val = make_pure_vector ((EMACS_INT) nargs);
3056 else
3057 val = Fmake_vector (len, Qnil);
3058
3059 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3060 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3061 earlier because they produced a raw 8-bit string for byte-code
3062 and now such a byte-code string is loaded as multibyte while
3063 raw 8-bit characters converted to multibyte form. Thus, now we
3064 must convert them back to the original unibyte form. */
3065 args[1] = Fstring_as_unibyte (args[1]);
3066
3067 p = XVECTOR (val);
3068 for (index = 0; index < nargs; index++)
3069 {
3070 if (!NILP (Vpurify_flag))
3071 args[index] = Fpurecopy (args[index]);
3072 p->contents[index] = args[index];
3073 }
3074 XSETPVECTYPE (p, PVEC_FUNVEC);
3075 XSETFUNVEC (val, p);
3076 return val;
3077 }
3078
3079
3080 \f
3081 /***********************************************************************
3082 Symbol Allocation
3083 ***********************************************************************/
3084
3085 /* Each symbol_block is just under 1020 bytes long, since malloc
3086 really allocates in units of powers of two and uses 4 bytes for its
3087 own overhead. */
3088
3089 #define SYMBOL_BLOCK_SIZE \
3090 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3091
3092 struct symbol_block
3093 {
3094 /* Place `symbols' first, to preserve alignment. */
3095 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3096 struct symbol_block *next;
3097 };
3098
3099 /* Current symbol block and index of first unused Lisp_Symbol
3100 structure in it. */
3101
3102 static struct symbol_block *symbol_block;
3103 static int symbol_block_index;
3104
3105 /* List of free symbols. */
3106
3107 static struct Lisp_Symbol *symbol_free_list;
3108
3109 /* Total number of symbol blocks now in use. */
3110
3111 static int n_symbol_blocks;
3112
3113
3114 /* Initialize symbol allocation. */
3115
3116 static void
3117 init_symbol (void)
3118 {
3119 symbol_block = NULL;
3120 symbol_block_index = SYMBOL_BLOCK_SIZE;
3121 symbol_free_list = 0;
3122 n_symbol_blocks = 0;
3123 }
3124
3125
3126 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3127 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3128 Its value and function definition are void, and its property list is nil. */)
3129 (Lisp_Object name)
3130 {
3131 register Lisp_Object val;
3132 register struct Lisp_Symbol *p;
3133
3134 CHECK_STRING (name);
3135
3136 /* eassert (!handling_signal); */
3137
3138 MALLOC_BLOCK_INPUT;
3139
3140 if (symbol_free_list)
3141 {
3142 XSETSYMBOL (val, symbol_free_list);
3143 symbol_free_list = symbol_free_list->next;
3144 }
3145 else
3146 {
3147 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3148 {
3149 struct symbol_block *new;
3150 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3151 MEM_TYPE_SYMBOL);
3152 new->next = symbol_block;
3153 symbol_block = new;
3154 symbol_block_index = 0;
3155 n_symbol_blocks++;
3156 }
3157 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3158 symbol_block_index++;
3159 }
3160
3161 MALLOC_UNBLOCK_INPUT;
3162
3163 p = XSYMBOL (val);
3164 p->xname = name;
3165 p->plist = Qnil;
3166 p->redirect = SYMBOL_PLAINVAL;
3167 SET_SYMBOL_VAL (p, Qunbound);
3168 p->function = Qunbound;
3169 p->next = NULL;
3170 p->gcmarkbit = 0;
3171 p->interned = SYMBOL_UNINTERNED;
3172 p->constant = 0;
3173 p->declared_special = 0;
3174 consing_since_gc += sizeof (struct Lisp_Symbol);
3175 symbols_consed++;
3176 return val;
3177 }
3178
3179
3180 \f
3181 /***********************************************************************
3182 Marker (Misc) Allocation
3183 ***********************************************************************/
3184
3185 /* Allocation of markers and other objects that share that structure.
3186 Works like allocation of conses. */
3187
3188 #define MARKER_BLOCK_SIZE \
3189 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3190
3191 struct marker_block
3192 {
3193 /* Place `markers' first, to preserve alignment. */
3194 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3195 struct marker_block *next;
3196 };
3197
3198 static struct marker_block *marker_block;
3199 static int marker_block_index;
3200
3201 static union Lisp_Misc *marker_free_list;
3202
3203 /* Total number of marker blocks now in use. */
3204
3205 static int n_marker_blocks;
3206
3207 static void
3208 init_marker (void)
3209 {
3210 marker_block = NULL;
3211 marker_block_index = MARKER_BLOCK_SIZE;
3212 marker_free_list = 0;
3213 n_marker_blocks = 0;
3214 }
3215
3216 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3217
3218 Lisp_Object
3219 allocate_misc (void)
3220 {
3221 Lisp_Object val;
3222
3223 /* eassert (!handling_signal); */
3224
3225 MALLOC_BLOCK_INPUT;
3226
3227 if (marker_free_list)
3228 {
3229 XSETMISC (val, marker_free_list);
3230 marker_free_list = marker_free_list->u_free.chain;
3231 }
3232 else
3233 {
3234 if (marker_block_index == MARKER_BLOCK_SIZE)
3235 {
3236 struct marker_block *new;
3237 new = (struct marker_block *) lisp_malloc (sizeof *new,
3238 MEM_TYPE_MISC);
3239 new->next = marker_block;
3240 marker_block = new;
3241 marker_block_index = 0;
3242 n_marker_blocks++;
3243 total_free_markers += MARKER_BLOCK_SIZE;
3244 }
3245 XSETMISC (val, &marker_block->markers[marker_block_index]);
3246 marker_block_index++;
3247 }
3248
3249 MALLOC_UNBLOCK_INPUT;
3250
3251 --total_free_markers;
3252 consing_since_gc += sizeof (union Lisp_Misc);
3253 misc_objects_consed++;
3254 XMISCANY (val)->gcmarkbit = 0;
3255 return val;
3256 }
3257
3258 /* Free a Lisp_Misc object */
3259
3260 void
3261 free_misc (Lisp_Object misc)
3262 {
3263 XMISCTYPE (misc) = Lisp_Misc_Free;
3264 XMISC (misc)->u_free.chain = marker_free_list;
3265 marker_free_list = XMISC (misc);
3266
3267 total_free_markers++;
3268 }
3269
3270 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3271 INTEGER. This is used to package C values to call record_unwind_protect.
3272 The unwind function can get the C values back using XSAVE_VALUE. */
3273
3274 Lisp_Object
3275 make_save_value (void *pointer, int integer)
3276 {
3277 register Lisp_Object val;
3278 register struct Lisp_Save_Value *p;
3279
3280 val = allocate_misc ();
3281 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3282 p = XSAVE_VALUE (val);
3283 p->pointer = pointer;
3284 p->integer = integer;
3285 p->dogc = 0;
3286 return val;
3287 }
3288
3289 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3290 doc: /* Return a newly allocated marker which does not point at any place. */)
3291 (void)
3292 {
3293 register Lisp_Object val;
3294 register struct Lisp_Marker *p;
3295
3296 val = allocate_misc ();
3297 XMISCTYPE (val) = Lisp_Misc_Marker;
3298 p = XMARKER (val);
3299 p->buffer = 0;
3300 p->bytepos = 0;
3301 p->charpos = 0;
3302 p->next = NULL;
3303 p->insertion_type = 0;
3304 return val;
3305 }
3306
3307 /* Put MARKER back on the free list after using it temporarily. */
3308
3309 void
3310 free_marker (Lisp_Object marker)
3311 {
3312 unchain_marker (XMARKER (marker));
3313 free_misc (marker);
3314 }
3315
3316 \f
3317 /* Return a newly created vector or string with specified arguments as
3318 elements. If all the arguments are characters that can fit
3319 in a string of events, make a string; otherwise, make a vector.
3320
3321 Any number of arguments, even zero arguments, are allowed. */
3322
3323 Lisp_Object
3324 make_event_array (register int nargs, Lisp_Object *args)
3325 {
3326 int i;
3327
3328 for (i = 0; i < nargs; i++)
3329 /* The things that fit in a string
3330 are characters that are in 0...127,
3331 after discarding the meta bit and all the bits above it. */
3332 if (!INTEGERP (args[i])
3333 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3334 return Fvector (nargs, args);
3335
3336 /* Since the loop exited, we know that all the things in it are
3337 characters, so we can make a string. */
3338 {
3339 Lisp_Object result;
3340
3341 result = Fmake_string (make_number (nargs), make_number (0));
3342 for (i = 0; i < nargs; i++)
3343 {
3344 SSET (result, i, XINT (args[i]));
3345 /* Move the meta bit to the right place for a string char. */
3346 if (XINT (args[i]) & CHAR_META)
3347 SSET (result, i, SREF (result, i) | 0x80);
3348 }
3349
3350 return result;
3351 }
3352 }
3353
3354
3355 \f
3356 /************************************************************************
3357 Memory Full Handling
3358 ************************************************************************/
3359
3360
3361 /* Called if malloc returns zero. */
3362
3363 void
3364 memory_full (void)
3365 {
3366 int i;
3367
3368 Vmemory_full = Qt;
3369
3370 memory_full_cons_threshold = sizeof (struct cons_block);
3371
3372 /* The first time we get here, free the spare memory. */
3373 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3374 if (spare_memory[i])
3375 {
3376 if (i == 0)
3377 free (spare_memory[i]);
3378 else if (i >= 1 && i <= 4)
3379 lisp_align_free (spare_memory[i]);
3380 else
3381 lisp_free (spare_memory[i]);
3382 spare_memory[i] = 0;
3383 }
3384
3385 /* Record the space now used. When it decreases substantially,
3386 we can refill the memory reserve. */
3387 #ifndef SYSTEM_MALLOC
3388 bytes_used_when_full = BYTES_USED;
3389 #endif
3390
3391 /* This used to call error, but if we've run out of memory, we could
3392 get infinite recursion trying to build the string. */
3393 xsignal (Qnil, Vmemory_signal_data);
3394 }
3395
3396 /* If we released our reserve (due to running out of memory),
3397 and we have a fair amount free once again,
3398 try to set aside another reserve in case we run out once more.
3399
3400 This is called when a relocatable block is freed in ralloc.c,
3401 and also directly from this file, in case we're not using ralloc.c. */
3402
3403 void
3404 refill_memory_reserve (void)
3405 {
3406 #ifndef SYSTEM_MALLOC
3407 if (spare_memory[0] == 0)
3408 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3409 if (spare_memory[1] == 0)
3410 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3411 MEM_TYPE_CONS);
3412 if (spare_memory[2] == 0)
3413 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3414 MEM_TYPE_CONS);
3415 if (spare_memory[3] == 0)
3416 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3417 MEM_TYPE_CONS);
3418 if (spare_memory[4] == 0)
3419 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3420 MEM_TYPE_CONS);
3421 if (spare_memory[5] == 0)
3422 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3423 MEM_TYPE_STRING);
3424 if (spare_memory[6] == 0)
3425 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3426 MEM_TYPE_STRING);
3427 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3428 Vmemory_full = Qnil;
3429 #endif
3430 }
3431 \f
3432 /************************************************************************
3433 C Stack Marking
3434 ************************************************************************/
3435
3436 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3437
3438 /* Conservative C stack marking requires a method to identify possibly
3439 live Lisp objects given a pointer value. We do this by keeping
3440 track of blocks of Lisp data that are allocated in a red-black tree
3441 (see also the comment of mem_node which is the type of nodes in
3442 that tree). Function lisp_malloc adds information for an allocated
3443 block to the red-black tree with calls to mem_insert, and function
3444 lisp_free removes it with mem_delete. Functions live_string_p etc
3445 call mem_find to lookup information about a given pointer in the
3446 tree, and use that to determine if the pointer points to a Lisp
3447 object or not. */
3448
3449 /* Initialize this part of alloc.c. */
3450
3451 static void
3452 mem_init (void)
3453 {
3454 mem_z.left = mem_z.right = MEM_NIL;
3455 mem_z.parent = NULL;
3456 mem_z.color = MEM_BLACK;
3457 mem_z.start = mem_z.end = NULL;
3458 mem_root = MEM_NIL;
3459 }
3460
3461
3462 /* Value is a pointer to the mem_node containing START. Value is
3463 MEM_NIL if there is no node in the tree containing START. */
3464
3465 static INLINE struct mem_node *
3466 mem_find (void *start)
3467 {
3468 struct mem_node *p;
3469
3470 if (start < min_heap_address || start > max_heap_address)
3471 return MEM_NIL;
3472
3473 /* Make the search always successful to speed up the loop below. */
3474 mem_z.start = start;
3475 mem_z.end = (char *) start + 1;
3476
3477 p = mem_root;
3478 while (start < p->start || start >= p->end)
3479 p = start < p->start ? p->left : p->right;
3480 return p;
3481 }
3482
3483
3484 /* Insert a new node into the tree for a block of memory with start
3485 address START, end address END, and type TYPE. Value is a
3486 pointer to the node that was inserted. */
3487
3488 static struct mem_node *
3489 mem_insert (void *start, void *end, enum mem_type type)
3490 {
3491 struct mem_node *c, *parent, *x;
3492
3493 if (min_heap_address == NULL || start < min_heap_address)
3494 min_heap_address = start;
3495 if (max_heap_address == NULL || end > max_heap_address)
3496 max_heap_address = end;
3497
3498 /* See where in the tree a node for START belongs. In this
3499 particular application, it shouldn't happen that a node is already
3500 present. For debugging purposes, let's check that. */
3501 c = mem_root;
3502 parent = NULL;
3503
3504 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3505
3506 while (c != MEM_NIL)
3507 {
3508 if (start >= c->start && start < c->end)
3509 abort ();
3510 parent = c;
3511 c = start < c->start ? c->left : c->right;
3512 }
3513
3514 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3515
3516 while (c != MEM_NIL)
3517 {
3518 parent = c;
3519 c = start < c->start ? c->left : c->right;
3520 }
3521
3522 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3523
3524 /* Create a new node. */
3525 #ifdef GC_MALLOC_CHECK
3526 x = (struct mem_node *) _malloc_internal (sizeof *x);
3527 if (x == NULL)
3528 abort ();
3529 #else
3530 x = (struct mem_node *) xmalloc (sizeof *x);
3531 #endif
3532 x->start = start;
3533 x->end = end;
3534 x->type = type;
3535 x->parent = parent;
3536 x->left = x->right = MEM_NIL;
3537 x->color = MEM_RED;
3538
3539 /* Insert it as child of PARENT or install it as root. */
3540 if (parent)
3541 {
3542 if (start < parent->start)
3543 parent->left = x;
3544 else
3545 parent->right = x;
3546 }
3547 else
3548 mem_root = x;
3549
3550 /* Re-establish red-black tree properties. */
3551 mem_insert_fixup (x);
3552
3553 return x;
3554 }
3555
3556
3557 /* Re-establish the red-black properties of the tree, and thereby
3558 balance the tree, after node X has been inserted; X is always red. */
3559
3560 static void
3561 mem_insert_fixup (struct mem_node *x)
3562 {
3563 while (x != mem_root && x->parent->color == MEM_RED)
3564 {
3565 /* X is red and its parent is red. This is a violation of
3566 red-black tree property #3. */
3567
3568 if (x->parent == x->parent->parent->left)
3569 {
3570 /* We're on the left side of our grandparent, and Y is our
3571 "uncle". */
3572 struct mem_node *y = x->parent->parent->right;
3573
3574 if (y->color == MEM_RED)
3575 {
3576 /* Uncle and parent are red but should be black because
3577 X is red. Change the colors accordingly and proceed
3578 with the grandparent. */
3579 x->parent->color = MEM_BLACK;
3580 y->color = MEM_BLACK;
3581 x->parent->parent->color = MEM_RED;
3582 x = x->parent->parent;
3583 }
3584 else
3585 {
3586 /* Parent and uncle have different colors; parent is
3587 red, uncle is black. */
3588 if (x == x->parent->right)
3589 {
3590 x = x->parent;
3591 mem_rotate_left (x);
3592 }
3593
3594 x->parent->color = MEM_BLACK;
3595 x->parent->parent->color = MEM_RED;
3596 mem_rotate_right (x->parent->parent);
3597 }
3598 }
3599 else
3600 {
3601 /* This is the symmetrical case of above. */
3602 struct mem_node *y = x->parent->parent->left;
3603
3604 if (y->color == MEM_RED)
3605 {
3606 x->parent->color = MEM_BLACK;
3607 y->color = MEM_BLACK;
3608 x->parent->parent->color = MEM_RED;
3609 x = x->parent->parent;
3610 }
3611 else
3612 {
3613 if (x == x->parent->left)
3614 {
3615 x = x->parent;
3616 mem_rotate_right (x);
3617 }
3618
3619 x->parent->color = MEM_BLACK;
3620 x->parent->parent->color = MEM_RED;
3621 mem_rotate_left (x->parent->parent);
3622 }
3623 }
3624 }
3625
3626 /* The root may have been changed to red due to the algorithm. Set
3627 it to black so that property #5 is satisfied. */
3628 mem_root->color = MEM_BLACK;
3629 }
3630
3631
3632 /* (x) (y)
3633 / \ / \
3634 a (y) ===> (x) c
3635 / \ / \
3636 b c a b */
3637
3638 static void
3639 mem_rotate_left (struct mem_node *x)
3640 {
3641 struct mem_node *y;
3642
3643 /* Turn y's left sub-tree into x's right sub-tree. */
3644 y = x->right;
3645 x->right = y->left;
3646 if (y->left != MEM_NIL)
3647 y->left->parent = x;
3648
3649 /* Y's parent was x's parent. */
3650 if (y != MEM_NIL)
3651 y->parent = x->parent;
3652
3653 /* Get the parent to point to y instead of x. */
3654 if (x->parent)
3655 {
3656 if (x == x->parent->left)
3657 x->parent->left = y;
3658 else
3659 x->parent->right = y;
3660 }
3661 else
3662 mem_root = y;
3663
3664 /* Put x on y's left. */
3665 y->left = x;
3666 if (x != MEM_NIL)
3667 x->parent = y;
3668 }
3669
3670
3671 /* (x) (Y)
3672 / \ / \
3673 (y) c ===> a (x)
3674 / \ / \
3675 a b b c */
3676
3677 static void
3678 mem_rotate_right (struct mem_node *x)
3679 {
3680 struct mem_node *y = x->left;
3681
3682 x->left = y->right;
3683 if (y->right != MEM_NIL)
3684 y->right->parent = x;
3685
3686 if (y != MEM_NIL)
3687 y->parent = x->parent;
3688 if (x->parent)
3689 {
3690 if (x == x->parent->right)
3691 x->parent->right = y;
3692 else
3693 x->parent->left = y;
3694 }
3695 else
3696 mem_root = y;
3697
3698 y->right = x;
3699 if (x != MEM_NIL)
3700 x->parent = y;
3701 }
3702
3703
3704 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3705
3706 static void
3707 mem_delete (struct mem_node *z)
3708 {
3709 struct mem_node *x, *y;
3710
3711 if (!z || z == MEM_NIL)
3712 return;
3713
3714 if (z->left == MEM_NIL || z->right == MEM_NIL)
3715 y = z;
3716 else
3717 {
3718 y = z->right;
3719 while (y->left != MEM_NIL)
3720 y = y->left;
3721 }
3722
3723 if (y->left != MEM_NIL)
3724 x = y->left;
3725 else
3726 x = y->right;
3727
3728 x->parent = y->parent;
3729 if (y->parent)
3730 {
3731 if (y == y->parent->left)
3732 y->parent->left = x;
3733 else
3734 y->parent->right = x;
3735 }
3736 else
3737 mem_root = x;
3738
3739 if (y != z)
3740 {
3741 z->start = y->start;
3742 z->end = y->end;
3743 z->type = y->type;
3744 }
3745
3746 if (y->color == MEM_BLACK)
3747 mem_delete_fixup (x);
3748
3749 #ifdef GC_MALLOC_CHECK
3750 _free_internal (y);
3751 #else
3752 xfree (y);
3753 #endif
3754 }
3755
3756
3757 /* Re-establish the red-black properties of the tree, after a
3758 deletion. */
3759
3760 static void
3761 mem_delete_fixup (struct mem_node *x)
3762 {
3763 while (x != mem_root && x->color == MEM_BLACK)
3764 {
3765 if (x == x->parent->left)
3766 {
3767 struct mem_node *w = x->parent->right;
3768
3769 if (w->color == MEM_RED)
3770 {
3771 w->color = MEM_BLACK;
3772 x->parent->color = MEM_RED;
3773 mem_rotate_left (x->parent);
3774 w = x->parent->right;
3775 }
3776
3777 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3778 {
3779 w->color = MEM_RED;
3780 x = x->parent;
3781 }
3782 else
3783 {
3784 if (w->right->color == MEM_BLACK)
3785 {
3786 w->left->color = MEM_BLACK;
3787 w->color = MEM_RED;
3788 mem_rotate_right (w);
3789 w = x->parent->right;
3790 }
3791 w->color = x->parent->color;
3792 x->parent->color = MEM_BLACK;
3793 w->right->color = MEM_BLACK;
3794 mem_rotate_left (x->parent);
3795 x = mem_root;
3796 }
3797 }
3798 else
3799 {
3800 struct mem_node *w = x->parent->left;
3801
3802 if (w->color == MEM_RED)
3803 {
3804 w->color = MEM_BLACK;
3805 x->parent->color = MEM_RED;
3806 mem_rotate_right (x->parent);
3807 w = x->parent->left;
3808 }
3809
3810 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3811 {
3812 w->color = MEM_RED;
3813 x = x->parent;
3814 }
3815 else
3816 {
3817 if (w->left->color == MEM_BLACK)
3818 {
3819 w->right->color = MEM_BLACK;
3820 w->color = MEM_RED;
3821 mem_rotate_left (w);
3822 w = x->parent->left;
3823 }
3824
3825 w->color = x->parent->color;
3826 x->parent->color = MEM_BLACK;
3827 w->left->color = MEM_BLACK;
3828 mem_rotate_right (x->parent);
3829 x = mem_root;
3830 }
3831 }
3832 }
3833
3834 x->color = MEM_BLACK;
3835 }
3836
3837
3838 /* Value is non-zero if P is a pointer to a live Lisp string on
3839 the heap. M is a pointer to the mem_block for P. */
3840
3841 static INLINE int
3842 live_string_p (struct mem_node *m, void *p)
3843 {
3844 if (m->type == MEM_TYPE_STRING)
3845 {
3846 struct string_block *b = (struct string_block *) m->start;
3847 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3848
3849 /* P must point to the start of a Lisp_String structure, and it
3850 must not be on the free-list. */
3851 return (offset >= 0
3852 && offset % sizeof b->strings[0] == 0
3853 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3854 && ((struct Lisp_String *) p)->data != NULL);
3855 }
3856 else
3857 return 0;
3858 }
3859
3860
3861 /* Value is non-zero if P is a pointer to a live Lisp cons on
3862 the heap. M is a pointer to the mem_block for P. */
3863
3864 static INLINE int
3865 live_cons_p (struct mem_node *m, void *p)
3866 {
3867 if (m->type == MEM_TYPE_CONS)
3868 {
3869 struct cons_block *b = (struct cons_block *) m->start;
3870 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3871
3872 /* P must point to the start of a Lisp_Cons, not be
3873 one of the unused cells in the current cons block,
3874 and not be on the free-list. */
3875 return (offset >= 0
3876 && offset % sizeof b->conses[0] == 0
3877 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3878 && (b != cons_block
3879 || offset / sizeof b->conses[0] < cons_block_index)
3880 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3881 }
3882 else
3883 return 0;
3884 }
3885
3886
3887 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3888 the heap. M is a pointer to the mem_block for P. */
3889
3890 static INLINE int
3891 live_symbol_p (struct mem_node *m, void *p)
3892 {
3893 if (m->type == MEM_TYPE_SYMBOL)
3894 {
3895 struct symbol_block *b = (struct symbol_block *) m->start;
3896 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3897
3898 /* P must point to the start of a Lisp_Symbol, not be
3899 one of the unused cells in the current symbol block,
3900 and not be on the free-list. */
3901 return (offset >= 0
3902 && offset % sizeof b->symbols[0] == 0
3903 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3904 && (b != symbol_block
3905 || offset / sizeof b->symbols[0] < symbol_block_index)
3906 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3907 }
3908 else
3909 return 0;
3910 }
3911
3912
3913 /* Value is non-zero if P is a pointer to a live Lisp float on
3914 the heap. M is a pointer to the mem_block for P. */
3915
3916 static INLINE int
3917 live_float_p (struct mem_node *m, void *p)
3918 {
3919 if (m->type == MEM_TYPE_FLOAT)
3920 {
3921 struct float_block *b = (struct float_block *) m->start;
3922 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3923
3924 /* P must point to the start of a Lisp_Float and not be
3925 one of the unused cells in the current float block. */
3926 return (offset >= 0
3927 && offset % sizeof b->floats[0] == 0
3928 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3929 && (b != float_block
3930 || offset / sizeof b->floats[0] < float_block_index));
3931 }
3932 else
3933 return 0;
3934 }
3935
3936
3937 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3938 the heap. M is a pointer to the mem_block for P. */
3939
3940 static INLINE int
3941 live_misc_p (struct mem_node *m, void *p)
3942 {
3943 if (m->type == MEM_TYPE_MISC)
3944 {
3945 struct marker_block *b = (struct marker_block *) m->start;
3946 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
3947
3948 /* P must point to the start of a Lisp_Misc, not be
3949 one of the unused cells in the current misc block,
3950 and not be on the free-list. */
3951 return (offset >= 0
3952 && offset % sizeof b->markers[0] == 0
3953 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3954 && (b != marker_block
3955 || offset / sizeof b->markers[0] < marker_block_index)
3956 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3957 }
3958 else
3959 return 0;
3960 }
3961
3962
3963 /* Value is non-zero if P is a pointer to a live vector-like object.
3964 M is a pointer to the mem_block for P. */
3965
3966 static INLINE int
3967 live_vector_p (struct mem_node *m, void *p)
3968 {
3969 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3970 }
3971
3972
3973 /* Value is non-zero if P is a pointer to a live buffer. M is a
3974 pointer to the mem_block for P. */
3975
3976 static INLINE int
3977 live_buffer_p (struct mem_node *m, void *p)
3978 {
3979 /* P must point to the start of the block, and the buffer
3980 must not have been killed. */
3981 return (m->type == MEM_TYPE_BUFFER
3982 && p == m->start
3983 && !NILP (((struct buffer *) p)->name));
3984 }
3985
3986 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3987
3988 #if GC_MARK_STACK
3989
3990 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3991
3992 /* Array of objects that are kept alive because the C stack contains
3993 a pattern that looks like a reference to them . */
3994
3995 #define MAX_ZOMBIES 10
3996 static Lisp_Object zombies[MAX_ZOMBIES];
3997
3998 /* Number of zombie objects. */
3999
4000 static int nzombies;
4001
4002 /* Number of garbage collections. */
4003
4004 static int ngcs;
4005
4006 /* Average percentage of zombies per collection. */
4007
4008 static double avg_zombies;
4009
4010 /* Max. number of live and zombie objects. */
4011
4012 static int max_live, max_zombies;
4013
4014 /* Average number of live objects per GC. */
4015
4016 static double avg_live;
4017
4018 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4019 doc: /* Show information about live and zombie objects. */)
4020 (void)
4021 {
4022 Lisp_Object args[8], zombie_list = Qnil;
4023 int i;
4024 for (i = 0; i < nzombies; i++)
4025 zombie_list = Fcons (zombies[i], zombie_list);
4026 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4027 args[1] = make_number (ngcs);
4028 args[2] = make_float (avg_live);
4029 args[3] = make_float (avg_zombies);
4030 args[4] = make_float (avg_zombies / avg_live / 100);
4031 args[5] = make_number (max_live);
4032 args[6] = make_number (max_zombies);
4033 args[7] = zombie_list;
4034 return Fmessage (8, args);
4035 }
4036
4037 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4038
4039
4040 /* Mark OBJ if we can prove it's a Lisp_Object. */
4041
4042 static INLINE void
4043 mark_maybe_object (Lisp_Object obj)
4044 {
4045 void *po;
4046 struct mem_node *m;
4047
4048 if (INTEGERP (obj))
4049 return;
4050
4051 po = (void *) XPNTR (obj);
4052 m = mem_find (po);
4053
4054 if (m != MEM_NIL)
4055 {
4056 int mark_p = 0;
4057
4058 switch (XTYPE (obj))
4059 {
4060 case Lisp_String:
4061 mark_p = (live_string_p (m, po)
4062 && !STRING_MARKED_P ((struct Lisp_String *) po));
4063 break;
4064
4065 case Lisp_Cons:
4066 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4067 break;
4068
4069 case Lisp_Symbol:
4070 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4071 break;
4072
4073 case Lisp_Float:
4074 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4075 break;
4076
4077 case Lisp_Vectorlike:
4078 /* Note: can't check BUFFERP before we know it's a
4079 buffer because checking that dereferences the pointer
4080 PO which might point anywhere. */
4081 if (live_vector_p (m, po))
4082 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4083 else if (live_buffer_p (m, po))
4084 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4085 break;
4086
4087 case Lisp_Misc:
4088 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4089 break;
4090
4091 default:
4092 break;
4093 }
4094
4095 if (mark_p)
4096 {
4097 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4098 if (nzombies < MAX_ZOMBIES)
4099 zombies[nzombies] = obj;
4100 ++nzombies;
4101 #endif
4102 mark_object (obj);
4103 }
4104 }
4105 }
4106
4107
4108 /* If P points to Lisp data, mark that as live if it isn't already
4109 marked. */
4110
4111 static INLINE void
4112 mark_maybe_pointer (void *p)
4113 {
4114 struct mem_node *m;
4115
4116 /* Quickly rule out some values which can't point to Lisp data. */
4117 if ((EMACS_INT) p %
4118 #ifdef USE_LSB_TAG
4119 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4120 #else
4121 2 /* We assume that Lisp data is aligned on even addresses. */
4122 #endif
4123 )
4124 return;
4125
4126 m = mem_find (p);
4127 if (m != MEM_NIL)
4128 {
4129 Lisp_Object obj = Qnil;
4130
4131 switch (m->type)
4132 {
4133 case MEM_TYPE_NON_LISP:
4134 /* Nothing to do; not a pointer to Lisp memory. */
4135 break;
4136
4137 case MEM_TYPE_BUFFER:
4138 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4139 XSETVECTOR (obj, p);
4140 break;
4141
4142 case MEM_TYPE_CONS:
4143 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4144 XSETCONS (obj, p);
4145 break;
4146
4147 case MEM_TYPE_STRING:
4148 if (live_string_p (m, p)
4149 && !STRING_MARKED_P ((struct Lisp_String *) p))
4150 XSETSTRING (obj, p);
4151 break;
4152
4153 case MEM_TYPE_MISC:
4154 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4155 XSETMISC (obj, p);
4156 break;
4157
4158 case MEM_TYPE_SYMBOL:
4159 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4160 XSETSYMBOL (obj, p);
4161 break;
4162
4163 case MEM_TYPE_FLOAT:
4164 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4165 XSETFLOAT (obj, p);
4166 break;
4167
4168 case MEM_TYPE_VECTORLIKE:
4169 if (live_vector_p (m, p))
4170 {
4171 Lisp_Object tem;
4172 XSETVECTOR (tem, p);
4173 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4174 obj = tem;
4175 }
4176 break;
4177
4178 default:
4179 abort ();
4180 }
4181
4182 if (!NILP (obj))
4183 mark_object (obj);
4184 }
4185 }
4186
4187
4188 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4189 or END+OFFSET..START. */
4190
4191 static void
4192 mark_memory (void *start, void *end, int offset)
4193 {
4194 Lisp_Object *p;
4195 void **pp;
4196
4197 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4198 nzombies = 0;
4199 #endif
4200
4201 /* Make START the pointer to the start of the memory region,
4202 if it isn't already. */
4203 if (end < start)
4204 {
4205 void *tem = start;
4206 start = end;
4207 end = tem;
4208 }
4209
4210 /* Mark Lisp_Objects. */
4211 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4212 mark_maybe_object (*p);
4213
4214 /* Mark Lisp data pointed to. This is necessary because, in some
4215 situations, the C compiler optimizes Lisp objects away, so that
4216 only a pointer to them remains. Example:
4217
4218 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4219 ()
4220 {
4221 Lisp_Object obj = build_string ("test");
4222 struct Lisp_String *s = XSTRING (obj);
4223 Fgarbage_collect ();
4224 fprintf (stderr, "test `%s'\n", s->data);
4225 return Qnil;
4226 }
4227
4228 Here, `obj' isn't really used, and the compiler optimizes it
4229 away. The only reference to the life string is through the
4230 pointer `s'. */
4231
4232 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4233 mark_maybe_pointer (*pp);
4234 }
4235
4236 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4237 the GCC system configuration. In gcc 3.2, the only systems for
4238 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4239 by others?) and ns32k-pc532-min. */
4240
4241 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4242
4243 static int setjmp_tested_p, longjmps_done;
4244
4245 #define SETJMP_WILL_LIKELY_WORK "\
4246 \n\
4247 Emacs garbage collector has been changed to use conservative stack\n\
4248 marking. Emacs has determined that the method it uses to do the\n\
4249 marking will likely work on your system, but this isn't sure.\n\
4250 \n\
4251 If you are a system-programmer, or can get the help of a local wizard\n\
4252 who is, please take a look at the function mark_stack in alloc.c, and\n\
4253 verify that the methods used are appropriate for your system.\n\
4254 \n\
4255 Please mail the result to <emacs-devel@gnu.org>.\n\
4256 "
4257
4258 #define SETJMP_WILL_NOT_WORK "\
4259 \n\
4260 Emacs garbage collector has been changed to use conservative stack\n\
4261 marking. Emacs has determined that the default method it uses to do the\n\
4262 marking will not work on your system. We will need a system-dependent\n\
4263 solution for your system.\n\
4264 \n\
4265 Please take a look at the function mark_stack in alloc.c, and\n\
4266 try to find a way to make it work on your system.\n\
4267 \n\
4268 Note that you may get false negatives, depending on the compiler.\n\
4269 In particular, you need to use -O with GCC for this test.\n\
4270 \n\
4271 Please mail the result to <emacs-devel@gnu.org>.\n\
4272 "
4273
4274
4275 /* Perform a quick check if it looks like setjmp saves registers in a
4276 jmp_buf. Print a message to stderr saying so. When this test
4277 succeeds, this is _not_ a proof that setjmp is sufficient for
4278 conservative stack marking. Only the sources or a disassembly
4279 can prove that. */
4280
4281 static void
4282 test_setjmp ()
4283 {
4284 char buf[10];
4285 register int x;
4286 jmp_buf jbuf;
4287 int result = 0;
4288
4289 /* Arrange for X to be put in a register. */
4290 sprintf (buf, "1");
4291 x = strlen (buf);
4292 x = 2 * x - 1;
4293
4294 setjmp (jbuf);
4295 if (longjmps_done == 1)
4296 {
4297 /* Came here after the longjmp at the end of the function.
4298
4299 If x == 1, the longjmp has restored the register to its
4300 value before the setjmp, and we can hope that setjmp
4301 saves all such registers in the jmp_buf, although that
4302 isn't sure.
4303
4304 For other values of X, either something really strange is
4305 taking place, or the setjmp just didn't save the register. */
4306
4307 if (x == 1)
4308 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4309 else
4310 {
4311 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4312 exit (1);
4313 }
4314 }
4315
4316 ++longjmps_done;
4317 x = 2;
4318 if (longjmps_done == 1)
4319 longjmp (jbuf, 1);
4320 }
4321
4322 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4323
4324
4325 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4326
4327 /* Abort if anything GCPRO'd doesn't survive the GC. */
4328
4329 static void
4330 check_gcpros ()
4331 {
4332 struct gcpro *p;
4333 int i;
4334
4335 for (p = gcprolist; p; p = p->next)
4336 for (i = 0; i < p->nvars; ++i)
4337 if (!survives_gc_p (p->var[i]))
4338 /* FIXME: It's not necessarily a bug. It might just be that the
4339 GCPRO is unnecessary or should release the object sooner. */
4340 abort ();
4341 }
4342
4343 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4344
4345 static void
4346 dump_zombies ()
4347 {
4348 int i;
4349
4350 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4351 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4352 {
4353 fprintf (stderr, " %d = ", i);
4354 debug_print (zombies[i]);
4355 }
4356 }
4357
4358 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4359
4360
4361 /* Mark live Lisp objects on the C stack.
4362
4363 There are several system-dependent problems to consider when
4364 porting this to new architectures:
4365
4366 Processor Registers
4367
4368 We have to mark Lisp objects in CPU registers that can hold local
4369 variables or are used to pass parameters.
4370
4371 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4372 something that either saves relevant registers on the stack, or
4373 calls mark_maybe_object passing it each register's contents.
4374
4375 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4376 implementation assumes that calling setjmp saves registers we need
4377 to see in a jmp_buf which itself lies on the stack. This doesn't
4378 have to be true! It must be verified for each system, possibly
4379 by taking a look at the source code of setjmp.
4380
4381 Stack Layout
4382
4383 Architectures differ in the way their processor stack is organized.
4384 For example, the stack might look like this
4385
4386 +----------------+
4387 | Lisp_Object | size = 4
4388 +----------------+
4389 | something else | size = 2
4390 +----------------+
4391 | Lisp_Object | size = 4
4392 +----------------+
4393 | ... |
4394
4395 In such a case, not every Lisp_Object will be aligned equally. To
4396 find all Lisp_Object on the stack it won't be sufficient to walk
4397 the stack in steps of 4 bytes. Instead, two passes will be
4398 necessary, one starting at the start of the stack, and a second
4399 pass starting at the start of the stack + 2. Likewise, if the
4400 minimal alignment of Lisp_Objects on the stack is 1, four passes
4401 would be necessary, each one starting with one byte more offset
4402 from the stack start.
4403
4404 The current code assumes by default that Lisp_Objects are aligned
4405 equally on the stack. */
4406
4407 static void
4408 mark_stack (void)
4409 {
4410 int i;
4411 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4412 union aligned_jmpbuf {
4413 Lisp_Object o;
4414 jmp_buf j;
4415 } j;
4416 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4417 void *end;
4418
4419 /* This trick flushes the register windows so that all the state of
4420 the process is contained in the stack. */
4421 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4422 needed on ia64 too. See mach_dep.c, where it also says inline
4423 assembler doesn't work with relevant proprietary compilers. */
4424 #ifdef __sparc__
4425 #if defined (__sparc64__) && defined (__FreeBSD__)
4426 /* FreeBSD does not have a ta 3 handler. */
4427 asm ("flushw");
4428 #else
4429 asm ("ta 3");
4430 #endif
4431 #endif
4432
4433 /* Save registers that we need to see on the stack. We need to see
4434 registers used to hold register variables and registers used to
4435 pass parameters. */
4436 #ifdef GC_SAVE_REGISTERS_ON_STACK
4437 GC_SAVE_REGISTERS_ON_STACK (end);
4438 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4439
4440 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4441 setjmp will definitely work, test it
4442 and print a message with the result
4443 of the test. */
4444 if (!setjmp_tested_p)
4445 {
4446 setjmp_tested_p = 1;
4447 test_setjmp ();
4448 }
4449 #endif /* GC_SETJMP_WORKS */
4450
4451 setjmp (j.j);
4452 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4453 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4454
4455 /* This assumes that the stack is a contiguous region in memory. If
4456 that's not the case, something has to be done here to iterate
4457 over the stack segments. */
4458 #ifndef GC_LISP_OBJECT_ALIGNMENT
4459 #ifdef __GNUC__
4460 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4461 #else
4462 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4463 #endif
4464 #endif
4465 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4466 mark_memory (stack_base, end, i);
4467 /* Allow for marking a secondary stack, like the register stack on the
4468 ia64. */
4469 #ifdef GC_MARK_SECONDARY_STACK
4470 GC_MARK_SECONDARY_STACK ();
4471 #endif
4472
4473 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4474 check_gcpros ();
4475 #endif
4476 }
4477
4478 #endif /* GC_MARK_STACK != 0 */
4479
4480
4481 /* Determine whether it is safe to access memory at address P. */
4482 static int
4483 valid_pointer_p (void *p)
4484 {
4485 #ifdef WINDOWSNT
4486 return w32_valid_pointer_p (p, 16);
4487 #else
4488 int fd;
4489
4490 /* Obviously, we cannot just access it (we would SEGV trying), so we
4491 trick the o/s to tell us whether p is a valid pointer.
4492 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4493 not validate p in that case. */
4494
4495 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4496 {
4497 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4498 emacs_close (fd);
4499 unlink ("__Valid__Lisp__Object__");
4500 return valid;
4501 }
4502
4503 return -1;
4504 #endif
4505 }
4506
4507 /* Return 1 if OBJ is a valid lisp object.
4508 Return 0 if OBJ is NOT a valid lisp object.
4509 Return -1 if we cannot validate OBJ.
4510 This function can be quite slow,
4511 so it should only be used in code for manual debugging. */
4512
4513 int
4514 valid_lisp_object_p (Lisp_Object obj)
4515 {
4516 void *p;
4517 #if GC_MARK_STACK
4518 struct mem_node *m;
4519 #endif
4520
4521 if (INTEGERP (obj))
4522 return 1;
4523
4524 p = (void *) XPNTR (obj);
4525 if (PURE_POINTER_P (p))
4526 return 1;
4527
4528 #if !GC_MARK_STACK
4529 return valid_pointer_p (p);
4530 #else
4531
4532 m = mem_find (p);
4533
4534 if (m == MEM_NIL)
4535 {
4536 int valid = valid_pointer_p (p);
4537 if (valid <= 0)
4538 return valid;
4539
4540 if (SUBRP (obj))
4541 return 1;
4542
4543 return 0;
4544 }
4545
4546 switch (m->type)
4547 {
4548 case MEM_TYPE_NON_LISP:
4549 return 0;
4550
4551 case MEM_TYPE_BUFFER:
4552 return live_buffer_p (m, p);
4553
4554 case MEM_TYPE_CONS:
4555 return live_cons_p (m, p);
4556
4557 case MEM_TYPE_STRING:
4558 return live_string_p (m, p);
4559
4560 case MEM_TYPE_MISC:
4561 return live_misc_p (m, p);
4562
4563 case MEM_TYPE_SYMBOL:
4564 return live_symbol_p (m, p);
4565
4566 case MEM_TYPE_FLOAT:
4567 return live_float_p (m, p);
4568
4569 case MEM_TYPE_VECTORLIKE:
4570 return live_vector_p (m, p);
4571
4572 default:
4573 break;
4574 }
4575
4576 return 0;
4577 #endif
4578 }
4579
4580
4581
4582 \f
4583 /***********************************************************************
4584 Pure Storage Management
4585 ***********************************************************************/
4586
4587 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4588 pointer to it. TYPE is the Lisp type for which the memory is
4589 allocated. TYPE < 0 means it's not used for a Lisp object. */
4590
4591 static POINTER_TYPE *
4592 pure_alloc (size_t size, int type)
4593 {
4594 POINTER_TYPE *result;
4595 #ifdef USE_LSB_TAG
4596 size_t alignment = (1 << GCTYPEBITS);
4597 #else
4598 size_t alignment = sizeof (EMACS_INT);
4599
4600 /* Give Lisp_Floats an extra alignment. */
4601 if (type == Lisp_Float)
4602 {
4603 #if defined __GNUC__ && __GNUC__ >= 2
4604 alignment = __alignof (struct Lisp_Float);
4605 #else
4606 alignment = sizeof (struct Lisp_Float);
4607 #endif
4608 }
4609 #endif
4610
4611 again:
4612 if (type >= 0)
4613 {
4614 /* Allocate space for a Lisp object from the beginning of the free
4615 space with taking account of alignment. */
4616 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4617 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4618 }
4619 else
4620 {
4621 /* Allocate space for a non-Lisp object from the end of the free
4622 space. */
4623 pure_bytes_used_non_lisp += size;
4624 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4625 }
4626 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4627
4628 if (pure_bytes_used <= pure_size)
4629 return result;
4630
4631 /* Don't allocate a large amount here,
4632 because it might get mmap'd and then its address
4633 might not be usable. */
4634 purebeg = (char *) xmalloc (10000);
4635 pure_size = 10000;
4636 pure_bytes_used_before_overflow += pure_bytes_used - size;
4637 pure_bytes_used = 0;
4638 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4639 goto again;
4640 }
4641
4642
4643 /* Print a warning if PURESIZE is too small. */
4644
4645 void
4646 check_pure_size (void)
4647 {
4648 if (pure_bytes_used_before_overflow)
4649 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4650 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4651 }
4652
4653
4654 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4655 the non-Lisp data pool of the pure storage, and return its start
4656 address. Return NULL if not found. */
4657
4658 static char *
4659 find_string_data_in_pure (const char *data, EMACS_INT nbytes)
4660 {
4661 int i;
4662 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4663 const unsigned char *p;
4664 char *non_lisp_beg;
4665
4666 if (pure_bytes_used_non_lisp < nbytes + 1)
4667 return NULL;
4668
4669 /* Set up the Boyer-Moore table. */
4670 skip = nbytes + 1;
4671 for (i = 0; i < 256; i++)
4672 bm_skip[i] = skip;
4673
4674 p = (const unsigned char *) data;
4675 while (--skip > 0)
4676 bm_skip[*p++] = skip;
4677
4678 last_char_skip = bm_skip['\0'];
4679
4680 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4681 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4682
4683 /* See the comments in the function `boyer_moore' (search.c) for the
4684 use of `infinity'. */
4685 infinity = pure_bytes_used_non_lisp + 1;
4686 bm_skip['\0'] = infinity;
4687
4688 p = (const unsigned char *) non_lisp_beg + nbytes;
4689 start = 0;
4690 do
4691 {
4692 /* Check the last character (== '\0'). */
4693 do
4694 {
4695 start += bm_skip[*(p + start)];
4696 }
4697 while (start <= start_max);
4698
4699 if (start < infinity)
4700 /* Couldn't find the last character. */
4701 return NULL;
4702
4703 /* No less than `infinity' means we could find the last
4704 character at `p[start - infinity]'. */
4705 start -= infinity;
4706
4707 /* Check the remaining characters. */
4708 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4709 /* Found. */
4710 return non_lisp_beg + start;
4711
4712 start += last_char_skip;
4713 }
4714 while (start <= start_max);
4715
4716 return NULL;
4717 }
4718
4719
4720 /* Return a string allocated in pure space. DATA is a buffer holding
4721 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4722 non-zero means make the result string multibyte.
4723
4724 Must get an error if pure storage is full, since if it cannot hold
4725 a large string it may be able to hold conses that point to that
4726 string; then the string is not protected from gc. */
4727
4728 Lisp_Object
4729 make_pure_string (const char *data,
4730 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
4731 {
4732 Lisp_Object string;
4733 struct Lisp_String *s;
4734
4735 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4736 s->data = find_string_data_in_pure (data, nbytes);
4737 if (s->data == NULL)
4738 {
4739 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4740 memcpy (s->data, data, nbytes);
4741 s->data[nbytes] = '\0';
4742 }
4743 s->size = nchars;
4744 s->size_byte = multibyte ? nbytes : -1;
4745 s->intervals = NULL_INTERVAL;
4746 XSETSTRING (string, s);
4747 return string;
4748 }
4749
4750 /* Return a string a string allocated in pure space. Do not allocate
4751 the string data, just point to DATA. */
4752
4753 Lisp_Object
4754 make_pure_c_string (const char *data)
4755 {
4756 Lisp_Object string;
4757 struct Lisp_String *s;
4758 EMACS_INT nchars = strlen (data);
4759
4760 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4761 s->size = nchars;
4762 s->size_byte = -1;
4763 s->data = (unsigned char *) data;
4764 s->intervals = NULL_INTERVAL;
4765 XSETSTRING (string, s);
4766 return string;
4767 }
4768
4769 /* Return a cons allocated from pure space. Give it pure copies
4770 of CAR as car and CDR as cdr. */
4771
4772 Lisp_Object
4773 pure_cons (Lisp_Object car, Lisp_Object cdr)
4774 {
4775 register Lisp_Object new;
4776 struct Lisp_Cons *p;
4777
4778 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4779 XSETCONS (new, p);
4780 XSETCAR (new, Fpurecopy (car));
4781 XSETCDR (new, Fpurecopy (cdr));
4782 return new;
4783 }
4784
4785
4786 /* Value is a float object with value NUM allocated from pure space. */
4787
4788 static Lisp_Object
4789 make_pure_float (double num)
4790 {
4791 register Lisp_Object new;
4792 struct Lisp_Float *p;
4793
4794 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4795 XSETFLOAT (new, p);
4796 XFLOAT_INIT (new, num);
4797 return new;
4798 }
4799
4800
4801 /* Return a vector with room for LEN Lisp_Objects allocated from
4802 pure space. */
4803
4804 Lisp_Object
4805 make_pure_vector (EMACS_INT len)
4806 {
4807 Lisp_Object new;
4808 struct Lisp_Vector *p;
4809 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4810
4811 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4812 XSETVECTOR (new, p);
4813 XVECTOR (new)->size = len;
4814 return new;
4815 }
4816
4817
4818 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4819 doc: /* Make a copy of object OBJ in pure storage.
4820 Recursively copies contents of vectors and cons cells.
4821 Does not copy symbols. Copies strings without text properties. */)
4822 (register Lisp_Object obj)
4823 {
4824 if (NILP (Vpurify_flag))
4825 return obj;
4826
4827 if (PURE_POINTER_P (XPNTR (obj)))
4828 return obj;
4829
4830 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4831 {
4832 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4833 if (!NILP (tmp))
4834 return tmp;
4835 }
4836
4837 if (CONSP (obj))
4838 obj = pure_cons (XCAR (obj), XCDR (obj));
4839 else if (FLOATP (obj))
4840 obj = make_pure_float (XFLOAT_DATA (obj));
4841 else if (STRINGP (obj))
4842 obj = make_pure_string (SDATA (obj), SCHARS (obj),
4843 SBYTES (obj),
4844 STRING_MULTIBYTE (obj));
4845 else if (FUNVECP (obj) || VECTORP (obj))
4846 {
4847 register struct Lisp_Vector *vec;
4848 register EMACS_INT i;
4849 EMACS_INT size;
4850
4851 size = XVECTOR (obj)->size;
4852 if (size & PSEUDOVECTOR_FLAG)
4853 size &= PSEUDOVECTOR_SIZE_MASK;
4854 vec = XVECTOR (make_pure_vector (size));
4855 for (i = 0; i < size; i++)
4856 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4857 if (FUNVECP (obj))
4858 {
4859 XSETPVECTYPE (vec, PVEC_FUNVEC);
4860 XSETFUNVEC (obj, vec);
4861 }
4862 else
4863 XSETVECTOR (obj, vec);
4864 }
4865 else if (MARKERP (obj))
4866 error ("Attempt to copy a marker to pure storage");
4867 else
4868 /* Not purified, don't hash-cons. */
4869 return obj;
4870
4871 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4872 Fputhash (obj, obj, Vpurify_flag);
4873
4874 return obj;
4875 }
4876
4877
4878 \f
4879 /***********************************************************************
4880 Protection from GC
4881 ***********************************************************************/
4882
4883 /* Put an entry in staticvec, pointing at the variable with address
4884 VARADDRESS. */
4885
4886 void
4887 staticpro (Lisp_Object *varaddress)
4888 {
4889 staticvec[staticidx++] = varaddress;
4890 if (staticidx >= NSTATICS)
4891 abort ();
4892 }
4893
4894 \f
4895 /***********************************************************************
4896 Protection from GC
4897 ***********************************************************************/
4898
4899 /* Temporarily prevent garbage collection. */
4900
4901 int
4902 inhibit_garbage_collection (void)
4903 {
4904 int count = SPECPDL_INDEX ();
4905 int nbits = min (VALBITS, BITS_PER_INT);
4906
4907 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4908 return count;
4909 }
4910
4911
4912 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4913 doc: /* Reclaim storage for Lisp objects no longer needed.
4914 Garbage collection happens automatically if you cons more than
4915 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4916 `garbage-collect' normally returns a list with info on amount of space in use:
4917 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4918 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4919 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4920 (USED-STRINGS . FREE-STRINGS))
4921 However, if there was overflow in pure space, `garbage-collect'
4922 returns nil, because real GC can't be done. */)
4923 (void)
4924 {
4925 register struct specbinding *bind;
4926 struct catchtag *catch;
4927 struct handler *handler;
4928 char stack_top_variable;
4929 register int i;
4930 int message_p;
4931 Lisp_Object total[8];
4932 int count = SPECPDL_INDEX ();
4933 EMACS_TIME t1, t2, t3;
4934
4935 if (abort_on_gc)
4936 abort ();
4937
4938 /* Can't GC if pure storage overflowed because we can't determine
4939 if something is a pure object or not. */
4940 if (pure_bytes_used_before_overflow)
4941 return Qnil;
4942
4943 CHECK_CONS_LIST ();
4944
4945 /* Don't keep undo information around forever.
4946 Do this early on, so it is no problem if the user quits. */
4947 {
4948 register struct buffer *nextb = all_buffers;
4949
4950 while (nextb)
4951 {
4952 /* If a buffer's undo list is Qt, that means that undo is
4953 turned off in that buffer. Calling truncate_undo_list on
4954 Qt tends to return NULL, which effectively turns undo back on.
4955 So don't call truncate_undo_list if undo_list is Qt. */
4956 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
4957 truncate_undo_list (nextb);
4958
4959 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4960 if (nextb->base_buffer == 0 && !NILP (nextb->name)
4961 && ! nextb->text->inhibit_shrinking)
4962 {
4963 /* If a buffer's gap size is more than 10% of the buffer
4964 size, or larger than 2000 bytes, then shrink it
4965 accordingly. Keep a minimum size of 20 bytes. */
4966 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4967
4968 if (nextb->text->gap_size > size)
4969 {
4970 struct buffer *save_current = current_buffer;
4971 current_buffer = nextb;
4972 make_gap (-(nextb->text->gap_size - size));
4973 current_buffer = save_current;
4974 }
4975 }
4976
4977 nextb = nextb->next;
4978 }
4979 }
4980
4981 EMACS_GET_TIME (t1);
4982
4983 /* In case user calls debug_print during GC,
4984 don't let that cause a recursive GC. */
4985 consing_since_gc = 0;
4986
4987 /* Save what's currently displayed in the echo area. */
4988 message_p = push_message ();
4989 record_unwind_protect (pop_message_unwind, Qnil);
4990
4991 /* Save a copy of the contents of the stack, for debugging. */
4992 #if MAX_SAVE_STACK > 0
4993 if (NILP (Vpurify_flag))
4994 {
4995 i = &stack_top_variable - stack_bottom;
4996 if (i < 0) i = -i;
4997 if (i < MAX_SAVE_STACK)
4998 {
4999 if (stack_copy == 0)
5000 stack_copy = (char *) xmalloc (stack_copy_size = i);
5001 else if (stack_copy_size < i)
5002 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
5003 if (stack_copy)
5004 {
5005 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
5006 memcpy (stack_copy, stack_bottom, i);
5007 else
5008 memcpy (stack_copy, &stack_top_variable, i);
5009 }
5010 }
5011 }
5012 #endif /* MAX_SAVE_STACK > 0 */
5013
5014 if (garbage_collection_messages)
5015 message1_nolog ("Garbage collecting...");
5016
5017 BLOCK_INPUT;
5018
5019 shrink_regexp_cache ();
5020
5021 gc_in_progress = 1;
5022
5023 /* clear_marks (); */
5024
5025 /* Mark all the special slots that serve as the roots of accessibility. */
5026
5027 for (i = 0; i < staticidx; i++)
5028 mark_object (*staticvec[i]);
5029
5030 for (bind = specpdl; bind != specpdl_ptr; bind++)
5031 {
5032 mark_object (bind->symbol);
5033 mark_object (bind->old_value);
5034 }
5035 mark_terminals ();
5036 mark_kboards ();
5037 mark_ttys ();
5038
5039 #ifdef USE_GTK
5040 {
5041 extern void xg_mark_data (void);
5042 xg_mark_data ();
5043 }
5044 #endif
5045
5046 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5047 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5048 mark_stack ();
5049 #else
5050 {
5051 register struct gcpro *tail;
5052 for (tail = gcprolist; tail; tail = tail->next)
5053 for (i = 0; i < tail->nvars; i++)
5054 mark_object (tail->var[i]);
5055 }
5056 #endif
5057
5058 mark_byte_stack ();
5059 for (catch = catchlist; catch; catch = catch->next)
5060 {
5061 mark_object (catch->tag);
5062 mark_object (catch->val);
5063 }
5064 for (handler = handlerlist; handler; handler = handler->next)
5065 {
5066 mark_object (handler->handler);
5067 mark_object (handler->var);
5068 }
5069 mark_backtrace ();
5070
5071 #ifdef HAVE_WINDOW_SYSTEM
5072 mark_fringe_data ();
5073 #endif
5074
5075 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5076 mark_stack ();
5077 #endif
5078
5079 /* Everything is now marked, except for the things that require special
5080 finalization, i.e. the undo_list.
5081 Look thru every buffer's undo list
5082 for elements that update markers that were not marked,
5083 and delete them. */
5084 {
5085 register struct buffer *nextb = all_buffers;
5086
5087 while (nextb)
5088 {
5089 /* If a buffer's undo list is Qt, that means that undo is
5090 turned off in that buffer. Calling truncate_undo_list on
5091 Qt tends to return NULL, which effectively turns undo back on.
5092 So don't call truncate_undo_list if undo_list is Qt. */
5093 if (! EQ (nextb->undo_list, Qt))
5094 {
5095 Lisp_Object tail, prev;
5096 tail = nextb->undo_list;
5097 prev = Qnil;
5098 while (CONSP (tail))
5099 {
5100 if (CONSP (XCAR (tail))
5101 && MARKERP (XCAR (XCAR (tail)))
5102 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5103 {
5104 if (NILP (prev))
5105 nextb->undo_list = tail = XCDR (tail);
5106 else
5107 {
5108 tail = XCDR (tail);
5109 XSETCDR (prev, tail);
5110 }
5111 }
5112 else
5113 {
5114 prev = tail;
5115 tail = XCDR (tail);
5116 }
5117 }
5118 }
5119 /* Now that we have stripped the elements that need not be in the
5120 undo_list any more, we can finally mark the list. */
5121 mark_object (nextb->undo_list);
5122
5123 nextb = nextb->next;
5124 }
5125 }
5126
5127 gc_sweep ();
5128
5129 /* Clear the mark bits that we set in certain root slots. */
5130
5131 unmark_byte_stack ();
5132 VECTOR_UNMARK (&buffer_defaults);
5133 VECTOR_UNMARK (&buffer_local_symbols);
5134
5135 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5136 dump_zombies ();
5137 #endif
5138
5139 UNBLOCK_INPUT;
5140
5141 CHECK_CONS_LIST ();
5142
5143 /* clear_marks (); */
5144 gc_in_progress = 0;
5145
5146 consing_since_gc = 0;
5147 if (gc_cons_threshold < 10000)
5148 gc_cons_threshold = 10000;
5149
5150 if (FLOATP (Vgc_cons_percentage))
5151 { /* Set gc_cons_combined_threshold. */
5152 EMACS_INT total = 0;
5153
5154 total += total_conses * sizeof (struct Lisp_Cons);
5155 total += total_symbols * sizeof (struct Lisp_Symbol);
5156 total += total_markers * sizeof (union Lisp_Misc);
5157 total += total_string_size;
5158 total += total_vector_size * sizeof (Lisp_Object);
5159 total += total_floats * sizeof (struct Lisp_Float);
5160 total += total_intervals * sizeof (struct interval);
5161 total += total_strings * sizeof (struct Lisp_String);
5162
5163 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5164 }
5165 else
5166 gc_relative_threshold = 0;
5167
5168 if (garbage_collection_messages)
5169 {
5170 if (message_p || minibuf_level > 0)
5171 restore_message ();
5172 else
5173 message1_nolog ("Garbage collecting...done");
5174 }
5175
5176 unbind_to (count, Qnil);
5177
5178 total[0] = Fcons (make_number (total_conses),
5179 make_number (total_free_conses));
5180 total[1] = Fcons (make_number (total_symbols),
5181 make_number (total_free_symbols));
5182 total[2] = Fcons (make_number (total_markers),
5183 make_number (total_free_markers));
5184 total[3] = make_number (total_string_size);
5185 total[4] = make_number (total_vector_size);
5186 total[5] = Fcons (make_number (total_floats),
5187 make_number (total_free_floats));
5188 total[6] = Fcons (make_number (total_intervals),
5189 make_number (total_free_intervals));
5190 total[7] = Fcons (make_number (total_strings),
5191 make_number (total_free_strings));
5192
5193 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5194 {
5195 /* Compute average percentage of zombies. */
5196 double nlive = 0;
5197
5198 for (i = 0; i < 7; ++i)
5199 if (CONSP (total[i]))
5200 nlive += XFASTINT (XCAR (total[i]));
5201
5202 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5203 max_live = max (nlive, max_live);
5204 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5205 max_zombies = max (nzombies, max_zombies);
5206 ++ngcs;
5207 }
5208 #endif
5209
5210 if (!NILP (Vpost_gc_hook))
5211 {
5212 int count = inhibit_garbage_collection ();
5213 safe_run_hooks (Qpost_gc_hook);
5214 unbind_to (count, Qnil);
5215 }
5216
5217 /* Accumulate statistics. */
5218 EMACS_GET_TIME (t2);
5219 EMACS_SUB_TIME (t3, t2, t1);
5220 if (FLOATP (Vgc_elapsed))
5221 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5222 EMACS_SECS (t3) +
5223 EMACS_USECS (t3) * 1.0e-6);
5224 gcs_done++;
5225
5226 return Flist (sizeof total / sizeof *total, total);
5227 }
5228
5229
5230 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5231 only interesting objects referenced from glyphs are strings. */
5232
5233 static void
5234 mark_glyph_matrix (struct glyph_matrix *matrix)
5235 {
5236 struct glyph_row *row = matrix->rows;
5237 struct glyph_row *end = row + matrix->nrows;
5238
5239 for (; row < end; ++row)
5240 if (row->enabled_p)
5241 {
5242 int area;
5243 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5244 {
5245 struct glyph *glyph = row->glyphs[area];
5246 struct glyph *end_glyph = glyph + row->used[area];
5247
5248 for (; glyph < end_glyph; ++glyph)
5249 if (STRINGP (glyph->object)
5250 && !STRING_MARKED_P (XSTRING (glyph->object)))
5251 mark_object (glyph->object);
5252 }
5253 }
5254 }
5255
5256
5257 /* Mark Lisp faces in the face cache C. */
5258
5259 static void
5260 mark_face_cache (struct face_cache *c)
5261 {
5262 if (c)
5263 {
5264 int i, j;
5265 for (i = 0; i < c->used; ++i)
5266 {
5267 struct face *face = FACE_FROM_ID (c->f, i);
5268
5269 if (face)
5270 {
5271 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5272 mark_object (face->lface[j]);
5273 }
5274 }
5275 }
5276 }
5277
5278
5279 \f
5280 /* Mark reference to a Lisp_Object.
5281 If the object referred to has not been seen yet, recursively mark
5282 all the references contained in it. */
5283
5284 #define LAST_MARKED_SIZE 500
5285 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5286 int last_marked_index;
5287
5288 /* For debugging--call abort when we cdr down this many
5289 links of a list, in mark_object. In debugging,
5290 the call to abort will hit a breakpoint.
5291 Normally this is zero and the check never goes off. */
5292 static int mark_object_loop_halt;
5293
5294 static void
5295 mark_vectorlike (struct Lisp_Vector *ptr)
5296 {
5297 register EMACS_UINT size = ptr->size;
5298 register EMACS_UINT i;
5299
5300 eassert (!VECTOR_MARKED_P (ptr));
5301 VECTOR_MARK (ptr); /* Else mark it */
5302 if (size & PSEUDOVECTOR_FLAG)
5303 size &= PSEUDOVECTOR_SIZE_MASK;
5304
5305 /* Note that this size is not the memory-footprint size, but only
5306 the number of Lisp_Object fields that we should trace.
5307 The distinction is used e.g. by Lisp_Process which places extra
5308 non-Lisp_Object fields at the end of the structure. */
5309 for (i = 0; i < size; i++) /* and then mark its elements */
5310 mark_object (ptr->contents[i]);
5311 }
5312
5313 /* Like mark_vectorlike but optimized for char-tables (and
5314 sub-char-tables) assuming that the contents are mostly integers or
5315 symbols. */
5316
5317 static void
5318 mark_char_table (struct Lisp_Vector *ptr)
5319 {
5320 register EMACS_UINT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5321 register EMACS_UINT i;
5322
5323 eassert (!VECTOR_MARKED_P (ptr));
5324 VECTOR_MARK (ptr);
5325 for (i = 0; i < size; i++)
5326 {
5327 Lisp_Object val = ptr->contents[i];
5328
5329 if (INTEGERP (val) || SYMBOLP (val) && XSYMBOL (val)->gcmarkbit)
5330 continue;
5331 if (SUB_CHAR_TABLE_P (val))
5332 {
5333 if (! VECTOR_MARKED_P (XVECTOR (val)))
5334 mark_char_table (XVECTOR (val));
5335 }
5336 else
5337 mark_object (val);
5338 }
5339 }
5340
5341 void
5342 mark_object (Lisp_Object arg)
5343 {
5344 register Lisp_Object obj = arg;
5345 #ifdef GC_CHECK_MARKED_OBJECTS
5346 void *po;
5347 struct mem_node *m;
5348 #endif
5349 int cdr_count = 0;
5350
5351 loop:
5352
5353 if (PURE_POINTER_P (XPNTR (obj)))
5354 return;
5355
5356 last_marked[last_marked_index++] = obj;
5357 if (last_marked_index == LAST_MARKED_SIZE)
5358 last_marked_index = 0;
5359
5360 /* Perform some sanity checks on the objects marked here. Abort if
5361 we encounter an object we know is bogus. This increases GC time
5362 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5363 #ifdef GC_CHECK_MARKED_OBJECTS
5364
5365 po = (void *) XPNTR (obj);
5366
5367 /* Check that the object pointed to by PO is known to be a Lisp
5368 structure allocated from the heap. */
5369 #define CHECK_ALLOCATED() \
5370 do { \
5371 m = mem_find (po); \
5372 if (m == MEM_NIL) \
5373 abort (); \
5374 } while (0)
5375
5376 /* Check that the object pointed to by PO is live, using predicate
5377 function LIVEP. */
5378 #define CHECK_LIVE(LIVEP) \
5379 do { \
5380 if (!LIVEP (m, po)) \
5381 abort (); \
5382 } while (0)
5383
5384 /* Check both of the above conditions. */
5385 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5386 do { \
5387 CHECK_ALLOCATED (); \
5388 CHECK_LIVE (LIVEP); \
5389 } while (0) \
5390
5391 #else /* not GC_CHECK_MARKED_OBJECTS */
5392
5393 #define CHECK_ALLOCATED() (void) 0
5394 #define CHECK_LIVE(LIVEP) (void) 0
5395 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5396
5397 #endif /* not GC_CHECK_MARKED_OBJECTS */
5398
5399 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5400 {
5401 case Lisp_String:
5402 {
5403 register struct Lisp_String *ptr = XSTRING (obj);
5404 if (STRING_MARKED_P (ptr))
5405 break;
5406 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5407 MARK_INTERVAL_TREE (ptr->intervals);
5408 MARK_STRING (ptr);
5409 #ifdef GC_CHECK_STRING_BYTES
5410 /* Check that the string size recorded in the string is the
5411 same as the one recorded in the sdata structure. */
5412 CHECK_STRING_BYTES (ptr);
5413 #endif /* GC_CHECK_STRING_BYTES */
5414 }
5415 break;
5416
5417 case Lisp_Vectorlike:
5418 if (VECTOR_MARKED_P (XVECTOR (obj)))
5419 break;
5420 #ifdef GC_CHECK_MARKED_OBJECTS
5421 m = mem_find (po);
5422 if (m == MEM_NIL && !SUBRP (obj)
5423 && po != &buffer_defaults
5424 && po != &buffer_local_symbols)
5425 abort ();
5426 #endif /* GC_CHECK_MARKED_OBJECTS */
5427
5428 if (BUFFERP (obj))
5429 {
5430 #ifdef GC_CHECK_MARKED_OBJECTS
5431 if (po != &buffer_defaults && po != &buffer_local_symbols)
5432 {
5433 struct buffer *b;
5434 for (b = all_buffers; b && b != po; b = b->next)
5435 ;
5436 if (b == NULL)
5437 abort ();
5438 }
5439 #endif /* GC_CHECK_MARKED_OBJECTS */
5440 mark_buffer (obj);
5441 }
5442 else if (SUBRP (obj))
5443 break;
5444 else if (FUNVECP (obj) && FUNVEC_COMPILED_P (obj))
5445 /* We could treat this just like a vector, but it is better to
5446 save the COMPILED_CONSTANTS element for last and avoid
5447 recursion there. */
5448 {
5449 register struct Lisp_Vector *ptr = XVECTOR (obj);
5450 register EMACS_UINT size = ptr->size;
5451 register EMACS_UINT i;
5452
5453 CHECK_LIVE (live_vector_p);
5454 VECTOR_MARK (ptr); /* Else mark it */
5455 size &= PSEUDOVECTOR_SIZE_MASK;
5456 for (i = 0; i < size; i++) /* and then mark its elements */
5457 {
5458 if (i != COMPILED_CONSTANTS)
5459 mark_object (ptr->contents[i]);
5460 }
5461 obj = ptr->contents[COMPILED_CONSTANTS];
5462 goto loop;
5463 }
5464 else if (FRAMEP (obj))
5465 {
5466 register struct frame *ptr = XFRAME (obj);
5467 mark_vectorlike (XVECTOR (obj));
5468 mark_face_cache (ptr->face_cache);
5469 }
5470 else if (WINDOWP (obj))
5471 {
5472 register struct Lisp_Vector *ptr = XVECTOR (obj);
5473 struct window *w = XWINDOW (obj);
5474 mark_vectorlike (ptr);
5475 /* Mark glyphs for leaf windows. Marking window matrices is
5476 sufficient because frame matrices use the same glyph
5477 memory. */
5478 if (NILP (w->hchild)
5479 && NILP (w->vchild)
5480 && w->current_matrix)
5481 {
5482 mark_glyph_matrix (w->current_matrix);
5483 mark_glyph_matrix (w->desired_matrix);
5484 }
5485 }
5486 else if (HASH_TABLE_P (obj))
5487 {
5488 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5489 mark_vectorlike ((struct Lisp_Vector *)h);
5490 /* If hash table is not weak, mark all keys and values.
5491 For weak tables, mark only the vector. */
5492 if (NILP (h->weak))
5493 mark_object (h->key_and_value);
5494 else
5495 VECTOR_MARK (XVECTOR (h->key_and_value));
5496 }
5497 else if (CHAR_TABLE_P (obj))
5498 mark_char_table (XVECTOR (obj));
5499 else
5500 mark_vectorlike (XVECTOR (obj));
5501 break;
5502
5503 case Lisp_Symbol:
5504 {
5505 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5506 struct Lisp_Symbol *ptrx;
5507
5508 if (ptr->gcmarkbit)
5509 break;
5510 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5511 ptr->gcmarkbit = 1;
5512 mark_object (ptr->function);
5513 mark_object (ptr->plist);
5514 switch (ptr->redirect)
5515 {
5516 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5517 case SYMBOL_VARALIAS:
5518 {
5519 Lisp_Object tem;
5520 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5521 mark_object (tem);
5522 break;
5523 }
5524 case SYMBOL_LOCALIZED:
5525 {
5526 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5527 /* If the value is forwarded to a buffer or keyboard field,
5528 these are marked when we see the corresponding object.
5529 And if it's forwarded to a C variable, either it's not
5530 a Lisp_Object var, or it's staticpro'd already. */
5531 mark_object (blv->where);
5532 mark_object (blv->valcell);
5533 mark_object (blv->defcell);
5534 break;
5535 }
5536 case SYMBOL_FORWARDED:
5537 /* If the value is forwarded to a buffer or keyboard field,
5538 these are marked when we see the corresponding object.
5539 And if it's forwarded to a C variable, either it's not
5540 a Lisp_Object var, or it's staticpro'd already. */
5541 break;
5542 default: abort ();
5543 }
5544 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5545 MARK_STRING (XSTRING (ptr->xname));
5546 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5547
5548 ptr = ptr->next;
5549 if (ptr)
5550 {
5551 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5552 XSETSYMBOL (obj, ptrx);
5553 goto loop;
5554 }
5555 }
5556 break;
5557
5558 case Lisp_Misc:
5559 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5560 if (XMISCANY (obj)->gcmarkbit)
5561 break;
5562 XMISCANY (obj)->gcmarkbit = 1;
5563
5564 switch (XMISCTYPE (obj))
5565 {
5566
5567 case Lisp_Misc_Marker:
5568 /* DO NOT mark thru the marker's chain.
5569 The buffer's markers chain does not preserve markers from gc;
5570 instead, markers are removed from the chain when freed by gc. */
5571 break;
5572
5573 case Lisp_Misc_Save_Value:
5574 #if GC_MARK_STACK
5575 {
5576 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5577 /* If DOGC is set, POINTER is the address of a memory
5578 area containing INTEGER potential Lisp_Objects. */
5579 if (ptr->dogc)
5580 {
5581 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5582 int nelt;
5583 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5584 mark_maybe_object (*p);
5585 }
5586 }
5587 #endif
5588 break;
5589
5590 case Lisp_Misc_Overlay:
5591 {
5592 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5593 mark_object (ptr->start);
5594 mark_object (ptr->end);
5595 mark_object (ptr->plist);
5596 if (ptr->next)
5597 {
5598 XSETMISC (obj, ptr->next);
5599 goto loop;
5600 }
5601 }
5602 break;
5603
5604 default:
5605 abort ();
5606 }
5607 break;
5608
5609 case Lisp_Cons:
5610 {
5611 register struct Lisp_Cons *ptr = XCONS (obj);
5612 if (CONS_MARKED_P (ptr))
5613 break;
5614 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5615 CONS_MARK (ptr);
5616 /* If the cdr is nil, avoid recursion for the car. */
5617 if (EQ (ptr->u.cdr, Qnil))
5618 {
5619 obj = ptr->car;
5620 cdr_count = 0;
5621 goto loop;
5622 }
5623 mark_object (ptr->car);
5624 obj = ptr->u.cdr;
5625 cdr_count++;
5626 if (cdr_count == mark_object_loop_halt)
5627 abort ();
5628 goto loop;
5629 }
5630
5631 case Lisp_Float:
5632 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5633 FLOAT_MARK (XFLOAT (obj));
5634 break;
5635
5636 case_Lisp_Int:
5637 break;
5638
5639 default:
5640 abort ();
5641 }
5642
5643 #undef CHECK_LIVE
5644 #undef CHECK_ALLOCATED
5645 #undef CHECK_ALLOCATED_AND_LIVE
5646 }
5647
5648 /* Mark the pointers in a buffer structure. */
5649
5650 static void
5651 mark_buffer (Lisp_Object buf)
5652 {
5653 register struct buffer *buffer = XBUFFER (buf);
5654 register Lisp_Object *ptr, tmp;
5655 Lisp_Object base_buffer;
5656
5657 eassert (!VECTOR_MARKED_P (buffer));
5658 VECTOR_MARK (buffer);
5659
5660 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5661
5662 /* For now, we just don't mark the undo_list. It's done later in
5663 a special way just before the sweep phase, and after stripping
5664 some of its elements that are not needed any more. */
5665
5666 if (buffer->overlays_before)
5667 {
5668 XSETMISC (tmp, buffer->overlays_before);
5669 mark_object (tmp);
5670 }
5671 if (buffer->overlays_after)
5672 {
5673 XSETMISC (tmp, buffer->overlays_after);
5674 mark_object (tmp);
5675 }
5676
5677 /* buffer-local Lisp variables start at `undo_list',
5678 tho only the ones from `name' on are GC'd normally. */
5679 for (ptr = &buffer->name;
5680 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5681 ptr++)
5682 mark_object (*ptr);
5683
5684 /* If this is an indirect buffer, mark its base buffer. */
5685 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5686 {
5687 XSETBUFFER (base_buffer, buffer->base_buffer);
5688 mark_buffer (base_buffer);
5689 }
5690 }
5691
5692 /* Mark the Lisp pointers in the terminal objects.
5693 Called by the Fgarbage_collector. */
5694
5695 static void
5696 mark_terminals (void)
5697 {
5698 struct terminal *t;
5699 for (t = terminal_list; t; t = t->next_terminal)
5700 {
5701 eassert (t->name != NULL);
5702 #ifdef HAVE_WINDOW_SYSTEM
5703 /* If a terminal object is reachable from a stacpro'ed object,
5704 it might have been marked already. Make sure the image cache
5705 gets marked. */
5706 mark_image_cache (t->image_cache);
5707 #endif /* HAVE_WINDOW_SYSTEM */
5708 if (!VECTOR_MARKED_P (t))
5709 mark_vectorlike ((struct Lisp_Vector *)t);
5710 }
5711 }
5712
5713
5714
5715 /* Value is non-zero if OBJ will survive the current GC because it's
5716 either marked or does not need to be marked to survive. */
5717
5718 int
5719 survives_gc_p (Lisp_Object obj)
5720 {
5721 int survives_p;
5722
5723 switch (XTYPE (obj))
5724 {
5725 case_Lisp_Int:
5726 survives_p = 1;
5727 break;
5728
5729 case Lisp_Symbol:
5730 survives_p = XSYMBOL (obj)->gcmarkbit;
5731 break;
5732
5733 case Lisp_Misc:
5734 survives_p = XMISCANY (obj)->gcmarkbit;
5735 break;
5736
5737 case Lisp_String:
5738 survives_p = STRING_MARKED_P (XSTRING (obj));
5739 break;
5740
5741 case Lisp_Vectorlike:
5742 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5743 break;
5744
5745 case Lisp_Cons:
5746 survives_p = CONS_MARKED_P (XCONS (obj));
5747 break;
5748
5749 case Lisp_Float:
5750 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5751 break;
5752
5753 default:
5754 abort ();
5755 }
5756
5757 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5758 }
5759
5760
5761 \f
5762 /* Sweep: find all structures not marked, and free them. */
5763
5764 static void
5765 gc_sweep (void)
5766 {
5767 /* Remove or mark entries in weak hash tables.
5768 This must be done before any object is unmarked. */
5769 sweep_weak_hash_tables ();
5770
5771 sweep_strings ();
5772 #ifdef GC_CHECK_STRING_BYTES
5773 if (!noninteractive)
5774 check_string_bytes (1);
5775 #endif
5776
5777 /* Put all unmarked conses on free list */
5778 {
5779 register struct cons_block *cblk;
5780 struct cons_block **cprev = &cons_block;
5781 register int lim = cons_block_index;
5782 register int num_free = 0, num_used = 0;
5783
5784 cons_free_list = 0;
5785
5786 for (cblk = cons_block; cblk; cblk = *cprev)
5787 {
5788 register int i = 0;
5789 int this_free = 0;
5790 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5791
5792 /* Scan the mark bits an int at a time. */
5793 for (i = 0; i <= ilim; i++)
5794 {
5795 if (cblk->gcmarkbits[i] == -1)
5796 {
5797 /* Fast path - all cons cells for this int are marked. */
5798 cblk->gcmarkbits[i] = 0;
5799 num_used += BITS_PER_INT;
5800 }
5801 else
5802 {
5803 /* Some cons cells for this int are not marked.
5804 Find which ones, and free them. */
5805 int start, pos, stop;
5806
5807 start = i * BITS_PER_INT;
5808 stop = lim - start;
5809 if (stop > BITS_PER_INT)
5810 stop = BITS_PER_INT;
5811 stop += start;
5812
5813 for (pos = start; pos < stop; pos++)
5814 {
5815 if (!CONS_MARKED_P (&cblk->conses[pos]))
5816 {
5817 this_free++;
5818 cblk->conses[pos].u.chain = cons_free_list;
5819 cons_free_list = &cblk->conses[pos];
5820 #if GC_MARK_STACK
5821 cons_free_list->car = Vdead;
5822 #endif
5823 }
5824 else
5825 {
5826 num_used++;
5827 CONS_UNMARK (&cblk->conses[pos]);
5828 }
5829 }
5830 }
5831 }
5832
5833 lim = CONS_BLOCK_SIZE;
5834 /* If this block contains only free conses and we have already
5835 seen more than two blocks worth of free conses then deallocate
5836 this block. */
5837 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5838 {
5839 *cprev = cblk->next;
5840 /* Unhook from the free list. */
5841 cons_free_list = cblk->conses[0].u.chain;
5842 lisp_align_free (cblk);
5843 n_cons_blocks--;
5844 }
5845 else
5846 {
5847 num_free += this_free;
5848 cprev = &cblk->next;
5849 }
5850 }
5851 total_conses = num_used;
5852 total_free_conses = num_free;
5853 }
5854
5855 /* Put all unmarked floats on free list */
5856 {
5857 register struct float_block *fblk;
5858 struct float_block **fprev = &float_block;
5859 register int lim = float_block_index;
5860 register int num_free = 0, num_used = 0;
5861
5862 float_free_list = 0;
5863
5864 for (fblk = float_block; fblk; fblk = *fprev)
5865 {
5866 register int i;
5867 int this_free = 0;
5868 for (i = 0; i < lim; i++)
5869 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5870 {
5871 this_free++;
5872 fblk->floats[i].u.chain = float_free_list;
5873 float_free_list = &fblk->floats[i];
5874 }
5875 else
5876 {
5877 num_used++;
5878 FLOAT_UNMARK (&fblk->floats[i]);
5879 }
5880 lim = FLOAT_BLOCK_SIZE;
5881 /* If this block contains only free floats and we have already
5882 seen more than two blocks worth of free floats then deallocate
5883 this block. */
5884 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5885 {
5886 *fprev = fblk->next;
5887 /* Unhook from the free list. */
5888 float_free_list = fblk->floats[0].u.chain;
5889 lisp_align_free (fblk);
5890 n_float_blocks--;
5891 }
5892 else
5893 {
5894 num_free += this_free;
5895 fprev = &fblk->next;
5896 }
5897 }
5898 total_floats = num_used;
5899 total_free_floats = num_free;
5900 }
5901
5902 /* Put all unmarked intervals on free list */
5903 {
5904 register struct interval_block *iblk;
5905 struct interval_block **iprev = &interval_block;
5906 register int lim = interval_block_index;
5907 register int num_free = 0, num_used = 0;
5908
5909 interval_free_list = 0;
5910
5911 for (iblk = interval_block; iblk; iblk = *iprev)
5912 {
5913 register int i;
5914 int this_free = 0;
5915
5916 for (i = 0; i < lim; i++)
5917 {
5918 if (!iblk->intervals[i].gcmarkbit)
5919 {
5920 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5921 interval_free_list = &iblk->intervals[i];
5922 this_free++;
5923 }
5924 else
5925 {
5926 num_used++;
5927 iblk->intervals[i].gcmarkbit = 0;
5928 }
5929 }
5930 lim = INTERVAL_BLOCK_SIZE;
5931 /* If this block contains only free intervals and we have already
5932 seen more than two blocks worth of free intervals then
5933 deallocate this block. */
5934 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5935 {
5936 *iprev = iblk->next;
5937 /* Unhook from the free list. */
5938 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5939 lisp_free (iblk);
5940 n_interval_blocks--;
5941 }
5942 else
5943 {
5944 num_free += this_free;
5945 iprev = &iblk->next;
5946 }
5947 }
5948 total_intervals = num_used;
5949 total_free_intervals = num_free;
5950 }
5951
5952 /* Put all unmarked symbols on free list */
5953 {
5954 register struct symbol_block *sblk;
5955 struct symbol_block **sprev = &symbol_block;
5956 register int lim = symbol_block_index;
5957 register int num_free = 0, num_used = 0;
5958
5959 symbol_free_list = NULL;
5960
5961 for (sblk = symbol_block; sblk; sblk = *sprev)
5962 {
5963 int this_free = 0;
5964 struct Lisp_Symbol *sym = sblk->symbols;
5965 struct Lisp_Symbol *end = sym + lim;
5966
5967 for (; sym < end; ++sym)
5968 {
5969 /* Check if the symbol was created during loadup. In such a case
5970 it might be pointed to by pure bytecode which we don't trace,
5971 so we conservatively assume that it is live. */
5972 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5973
5974 if (!sym->gcmarkbit && !pure_p)
5975 {
5976 if (sym->redirect == SYMBOL_LOCALIZED)
5977 xfree (SYMBOL_BLV (sym));
5978 sym->next = symbol_free_list;
5979 symbol_free_list = sym;
5980 #if GC_MARK_STACK
5981 symbol_free_list->function = Vdead;
5982 #endif
5983 ++this_free;
5984 }
5985 else
5986 {
5987 ++num_used;
5988 if (!pure_p)
5989 UNMARK_STRING (XSTRING (sym->xname));
5990 sym->gcmarkbit = 0;
5991 }
5992 }
5993
5994 lim = SYMBOL_BLOCK_SIZE;
5995 /* If this block contains only free symbols and we have already
5996 seen more than two blocks worth of free symbols then deallocate
5997 this block. */
5998 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5999 {
6000 *sprev = sblk->next;
6001 /* Unhook from the free list. */
6002 symbol_free_list = sblk->symbols[0].next;
6003 lisp_free (sblk);
6004 n_symbol_blocks--;
6005 }
6006 else
6007 {
6008 num_free += this_free;
6009 sprev = &sblk->next;
6010 }
6011 }
6012 total_symbols = num_used;
6013 total_free_symbols = num_free;
6014 }
6015
6016 /* Put all unmarked misc's on free list.
6017 For a marker, first unchain it from the buffer it points into. */
6018 {
6019 register struct marker_block *mblk;
6020 struct marker_block **mprev = &marker_block;
6021 register int lim = marker_block_index;
6022 register int num_free = 0, num_used = 0;
6023
6024 marker_free_list = 0;
6025
6026 for (mblk = marker_block; mblk; mblk = *mprev)
6027 {
6028 register int i;
6029 int this_free = 0;
6030
6031 for (i = 0; i < lim; i++)
6032 {
6033 if (!mblk->markers[i].u_any.gcmarkbit)
6034 {
6035 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
6036 unchain_marker (&mblk->markers[i].u_marker);
6037 /* Set the type of the freed object to Lisp_Misc_Free.
6038 We could leave the type alone, since nobody checks it,
6039 but this might catch bugs faster. */
6040 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6041 mblk->markers[i].u_free.chain = marker_free_list;
6042 marker_free_list = &mblk->markers[i];
6043 this_free++;
6044 }
6045 else
6046 {
6047 num_used++;
6048 mblk->markers[i].u_any.gcmarkbit = 0;
6049 }
6050 }
6051 lim = MARKER_BLOCK_SIZE;
6052 /* If this block contains only free markers and we have already
6053 seen more than two blocks worth of free markers then deallocate
6054 this block. */
6055 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6056 {
6057 *mprev = mblk->next;
6058 /* Unhook from the free list. */
6059 marker_free_list = mblk->markers[0].u_free.chain;
6060 lisp_free (mblk);
6061 n_marker_blocks--;
6062 }
6063 else
6064 {
6065 num_free += this_free;
6066 mprev = &mblk->next;
6067 }
6068 }
6069
6070 total_markers = num_used;
6071 total_free_markers = num_free;
6072 }
6073
6074 /* Free all unmarked buffers */
6075 {
6076 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6077
6078 while (buffer)
6079 if (!VECTOR_MARKED_P (buffer))
6080 {
6081 if (prev)
6082 prev->next = buffer->next;
6083 else
6084 all_buffers = buffer->next;
6085 next = buffer->next;
6086 lisp_free (buffer);
6087 buffer = next;
6088 }
6089 else
6090 {
6091 VECTOR_UNMARK (buffer);
6092 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6093 prev = buffer, buffer = buffer->next;
6094 }
6095 }
6096
6097 /* Free all unmarked vectors */
6098 {
6099 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6100 total_vector_size = 0;
6101
6102 while (vector)
6103 if (!VECTOR_MARKED_P (vector))
6104 {
6105 if (prev)
6106 prev->next = vector->next;
6107 else
6108 all_vectors = vector->next;
6109 next = vector->next;
6110 lisp_free (vector);
6111 n_vectors--;
6112 vector = next;
6113
6114 }
6115 else
6116 {
6117 VECTOR_UNMARK (vector);
6118 if (vector->size & PSEUDOVECTOR_FLAG)
6119 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6120 else
6121 total_vector_size += vector->size;
6122 prev = vector, vector = vector->next;
6123 }
6124 }
6125
6126 #ifdef GC_CHECK_STRING_BYTES
6127 if (!noninteractive)
6128 check_string_bytes (1);
6129 #endif
6130 }
6131
6132
6133
6134 \f
6135 /* Debugging aids. */
6136
6137 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6138 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6139 This may be helpful in debugging Emacs's memory usage.
6140 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6141 (void)
6142 {
6143 Lisp_Object end;
6144
6145 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6146
6147 return end;
6148 }
6149
6150 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6151 doc: /* Return a list of counters that measure how much consing there has been.
6152 Each of these counters increments for a certain kind of object.
6153 The counters wrap around from the largest positive integer to zero.
6154 Garbage collection does not decrease them.
6155 The elements of the value are as follows:
6156 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6157 All are in units of 1 = one object consed
6158 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6159 objects consed.
6160 MISCS include overlays, markers, and some internal types.
6161 Frames, windows, buffers, and subprocesses count as vectors
6162 (but the contents of a buffer's text do not count here). */)
6163 (void)
6164 {
6165 Lisp_Object consed[8];
6166
6167 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6168 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6169 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6170 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6171 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6172 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6173 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6174 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6175
6176 return Flist (8, consed);
6177 }
6178
6179 int suppress_checking;
6180
6181 void
6182 die (const char *msg, const char *file, int line)
6183 {
6184 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6185 file, line, msg);
6186 abort ();
6187 }
6188 \f
6189 /* Initialization */
6190
6191 void
6192 init_alloc_once (void)
6193 {
6194 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6195 purebeg = PUREBEG;
6196 pure_size = PURESIZE;
6197 pure_bytes_used = 0;
6198 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6199 pure_bytes_used_before_overflow = 0;
6200
6201 /* Initialize the list of free aligned blocks. */
6202 free_ablock = NULL;
6203
6204 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6205 mem_init ();
6206 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6207 #endif
6208
6209 all_vectors = 0;
6210 ignore_warnings = 1;
6211 #ifdef DOUG_LEA_MALLOC
6212 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6213 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6214 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6215 #endif
6216 init_strings ();
6217 init_cons ();
6218 init_symbol ();
6219 init_marker ();
6220 init_float ();
6221 init_intervals ();
6222 init_weak_hash_tables ();
6223
6224 #ifdef REL_ALLOC
6225 malloc_hysteresis = 32;
6226 #else
6227 malloc_hysteresis = 0;
6228 #endif
6229
6230 refill_memory_reserve ();
6231
6232 ignore_warnings = 0;
6233 gcprolist = 0;
6234 byte_stack_list = 0;
6235 staticidx = 0;
6236 consing_since_gc = 0;
6237 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6238 gc_relative_threshold = 0;
6239 }
6240
6241 void
6242 init_alloc (void)
6243 {
6244 gcprolist = 0;
6245 byte_stack_list = 0;
6246 #if GC_MARK_STACK
6247 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6248 setjmp_tested_p = longjmps_done = 0;
6249 #endif
6250 #endif
6251 Vgc_elapsed = make_float (0.0);
6252 gcs_done = 0;
6253 }
6254
6255 void
6256 syms_of_alloc (void)
6257 {
6258 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6259 doc: /* *Number of bytes of consing between garbage collections.
6260 Garbage collection can happen automatically once this many bytes have been
6261 allocated since the last garbage collection. All data types count.
6262
6263 Garbage collection happens automatically only when `eval' is called.
6264
6265 By binding this temporarily to a large number, you can effectively
6266 prevent garbage collection during a part of the program.
6267 See also `gc-cons-percentage'. */);
6268
6269 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6270 doc: /* *Portion of the heap used for allocation.
6271 Garbage collection can happen automatically once this portion of the heap
6272 has been allocated since the last garbage collection.
6273 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6274 Vgc_cons_percentage = make_float (0.1);
6275
6276 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6277 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6278
6279 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6280 doc: /* Number of cons cells that have been consed so far. */);
6281
6282 DEFVAR_INT ("floats-consed", &floats_consed,
6283 doc: /* Number of floats that have been consed so far. */);
6284
6285 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6286 doc: /* Number of vector cells that have been consed so far. */);
6287
6288 DEFVAR_INT ("symbols-consed", &symbols_consed,
6289 doc: /* Number of symbols that have been consed so far. */);
6290
6291 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6292 doc: /* Number of string characters that have been consed so far. */);
6293
6294 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6295 doc: /* Number of miscellaneous objects that have been consed so far. */);
6296
6297 DEFVAR_INT ("intervals-consed", &intervals_consed,
6298 doc: /* Number of intervals that have been consed so far. */);
6299
6300 DEFVAR_INT ("strings-consed", &strings_consed,
6301 doc: /* Number of strings that have been consed so far. */);
6302
6303 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6304 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6305 This means that certain objects should be allocated in shared (pure) space.
6306 It can also be set to a hash-table, in which case this table is used to
6307 do hash-consing of the objects allocated to pure space. */);
6308
6309 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6310 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6311 garbage_collection_messages = 0;
6312
6313 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6314 doc: /* Hook run after garbage collection has finished. */);
6315 Vpost_gc_hook = Qnil;
6316 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6317 staticpro (&Qpost_gc_hook);
6318
6319 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6320 doc: /* Precomputed `signal' argument for memory-full error. */);
6321 /* We build this in advance because if we wait until we need it, we might
6322 not be able to allocate the memory to hold it. */
6323 Vmemory_signal_data
6324 = pure_cons (Qerror,
6325 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6326
6327 DEFVAR_LISP ("memory-full", &Vmemory_full,
6328 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6329 Vmemory_full = Qnil;
6330
6331 staticpro (&Qgc_cons_threshold);
6332 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6333
6334 staticpro (&Qchar_table_extra_slots);
6335 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6336
6337 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6338 doc: /* Accumulated time elapsed in garbage collections.
6339 The time is in seconds as a floating point value. */);
6340 DEFVAR_INT ("gcs-done", &gcs_done,
6341 doc: /* Accumulated number of garbage collections done. */);
6342
6343 defsubr (&Scons);
6344 defsubr (&Slist);
6345 defsubr (&Svector);
6346 defsubr (&Sfunvec);
6347 defsubr (&Smake_byte_code);
6348 defsubr (&Smake_list);
6349 defsubr (&Smake_vector);
6350 defsubr (&Smake_string);
6351 defsubr (&Smake_bool_vector);
6352 defsubr (&Smake_symbol);
6353 defsubr (&Smake_marker);
6354 defsubr (&Spurecopy);
6355 defsubr (&Sgarbage_collect);
6356 defsubr (&Smemory_limit);
6357 defsubr (&Smemory_use_counts);
6358
6359 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6360 defsubr (&Sgc_status);
6361 #endif
6362 }
6363
6364 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6365 (do not change this comment) */