]> code.delx.au - gnu-emacs/blob - src/dispnew.c
upstream
[gnu-emacs] / src / dispnew.c
1 /* Updating of data structures for redisplay.
2 Copyright (C) 1985-1988, 1993-1995, 1997-2012 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
18 #include <config.h>
19 #include <signal.h>
20 #include <stdio.h>
21 #include <ctype.h>
22 #include <setjmp.h>
23 #include <unistd.h>
24
25 #include "lisp.h"
26 #include "termchar.h"
27 #include "termopts.h"
28 /* cm.h must come after dispextern.h on Windows. */
29 #include "dispextern.h"
30 #include "cm.h"
31 #include "buffer.h"
32 #include "character.h"
33 #include "keyboard.h"
34 #include "frame.h"
35 #include "termhooks.h"
36 #include "window.h"
37 #include "commands.h"
38 #include "disptab.h"
39 #include "indent.h"
40 #include "intervals.h"
41 #include "blockinput.h"
42 #include "process.h"
43
44 #include "syssignal.h"
45
46 #ifdef HAVE_X_WINDOWS
47 #include "xterm.h"
48 #endif /* HAVE_X_WINDOWS */
49
50
51
52 #ifdef HAVE_NTGUI
53 #include "w32term.h"
54 #endif /* HAVE_NTGUI */
55
56 #ifdef HAVE_NS
57 #include "nsterm.h"
58 #endif
59
60 #ifdef HAVE_XWIDGETS
61 #include "xwidget.h"
62 #endif
63
64 /* Include systime.h after xterm.h to avoid double inclusion of time.h. */
65
66 #include "systime.h"
67 #include <errno.h>
68
69 /* Get number of chars of output now in the buffer of a stdio stream.
70 This ought to be built in stdio, but it isn't. Some s- files
71 override this because their stdio internals differ. */
72
73 #ifdef __GNU_LIBRARY__
74
75 /* The s- file might have overridden the definition with one that
76 works for the system's C library. But we are using the GNU C
77 library, so this is the right definition for every system. */
78
79 #ifdef GNU_LIBRARY_PENDING_OUTPUT_COUNT
80 #define PENDING_OUTPUT_COUNT GNU_LIBRARY_PENDING_OUTPUT_COUNT
81 #else
82 #undef PENDING_OUTPUT_COUNT
83 #define PENDING_OUTPUT_COUNT(FILE) ((FILE)->__bufp - (FILE)->__buffer)
84 #endif
85 #else /* not __GNU_LIBRARY__ */
86 #if !defined (PENDING_OUTPUT_COUNT) && HAVE_STDIO_EXT_H && HAVE___FPENDING
87 #include <stdio_ext.h>
88 #define PENDING_OUTPUT_COUNT(FILE) __fpending (FILE)
89 #endif
90 #ifndef PENDING_OUTPUT_COUNT
91 #define PENDING_OUTPUT_COUNT(FILE) ((FILE)->_ptr - (FILE)->_base)
92 #endif
93 #endif /* not __GNU_LIBRARY__ */
94
95 #if defined (HAVE_TERM_H) && defined (GNU_LINUX) && defined (HAVE_LIBNCURSES)
96 #include <term.h> /* for tgetent */
97 #endif
98 \f
99 /* Structure to pass dimensions around. Used for character bounding
100 boxes, glyph matrix dimensions and alike. */
101
102 struct dim
103 {
104 int width;
105 int height;
106 };
107
108 \f
109 /* Function prototypes. */
110
111 static void update_frame_line (struct frame *, int);
112 static int required_matrix_height (struct window *);
113 static int required_matrix_width (struct window *);
114 static void adjust_frame_glyphs (struct frame *);
115 static void change_frame_size_1 (struct frame *, int, int, int, int, int);
116 static void increment_row_positions (struct glyph_row *, EMACS_INT, EMACS_INT);
117 static void fill_up_frame_row_with_spaces (struct glyph_row *, int);
118 static void build_frame_matrix_from_window_tree (struct glyph_matrix *,
119 struct window *);
120 static void build_frame_matrix_from_leaf_window (struct glyph_matrix *,
121 struct window *);
122 static void adjust_frame_message_buffer (struct frame *);
123 static void adjust_decode_mode_spec_buffer (struct frame *);
124 static void fill_up_glyph_row_with_spaces (struct glyph_row *);
125 static void clear_window_matrices (struct window *, int);
126 static void fill_up_glyph_row_area_with_spaces (struct glyph_row *, int);
127 static int scrolling_window (struct window *, int);
128 static int update_window_line (struct window *, int, int *);
129 static void mirror_make_current (struct window *, int);
130 #if GLYPH_DEBUG
131 static void check_matrix_pointers (struct glyph_matrix *,
132 struct glyph_matrix *);
133 #endif
134 static void mirror_line_dance (struct window *, int, int, int *, char *);
135 static int update_window_tree (struct window *, int);
136 static int update_window (struct window *, int);
137 static int update_frame_1 (struct frame *, int, int);
138 static int scrolling (struct frame *);
139 static void set_window_cursor_after_update (struct window *);
140 static void adjust_frame_glyphs_for_window_redisplay (struct frame *);
141 static void adjust_frame_glyphs_for_frame_redisplay (struct frame *);
142
143 \f
144 /* Define PERIODIC_PREEMPTION_CHECKING to 1, if micro-second timers
145 are supported, so we can check for input during redisplay at
146 regular intervals. */
147 #ifdef EMACS_HAS_USECS
148 #define PERIODIC_PREEMPTION_CHECKING 1
149 #else
150 #define PERIODIC_PREEMPTION_CHECKING 0
151 #endif
152
153 #if PERIODIC_PREEMPTION_CHECKING
154
155 /* Redisplay preemption timers. */
156
157 static EMACS_TIME preemption_period;
158 static EMACS_TIME preemption_next_check;
159
160 #endif
161
162 /* Nonzero upon entry to redisplay means do not assume anything about
163 current contents of actual terminal frame; clear and redraw it. */
164
165 int frame_garbaged;
166
167 /* Nonzero means last display completed. Zero means it was preempted. */
168
169 int display_completed;
170
171 Lisp_Object Qdisplay_table, Qredisplay_dont_pause;
172
173 \f
174 /* The currently selected frame. In a single-frame version, this
175 variable always equals the_only_frame. */
176
177 Lisp_Object selected_frame;
178
179 /* A frame which is not just a mini-buffer, or 0 if there are no such
180 frames. This is usually the most recent such frame that was
181 selected. In a single-frame version, this variable always holds
182 the address of the_only_frame. */
183
184 struct frame *last_nonminibuf_frame;
185
186 /* 1 means SIGWINCH happened when not safe. */
187
188 static int delayed_size_change;
189
190 /* 1 means glyph initialization has been completed at startup. */
191
192 static int glyphs_initialized_initially_p;
193
194 /* Updated window if != 0. Set by update_window. */
195
196 struct window *updated_window;
197
198 /* Glyph row updated in update_window_line, and area that is updated. */
199
200 struct glyph_row *updated_row;
201 int updated_area;
202
203 /* A glyph for a space. */
204
205 struct glyph space_glyph;
206
207 /* Counts of allocated structures. These counts serve to diagnose
208 memory leaks and double frees. */
209
210 static int glyph_matrix_count;
211 static int glyph_pool_count;
212
213 /* If non-null, the frame whose frame matrices are manipulated. If
214 null, window matrices are worked on. */
215
216 static struct frame *frame_matrix_frame;
217
218 /* Non-zero means that fonts have been loaded since the last glyph
219 matrix adjustments. Redisplay must stop, and glyph matrices must
220 be adjusted when this flag becomes non-zero during display. The
221 reason fonts can be loaded so late is that fonts of fontsets are
222 loaded on demand. Another reason is that a line contains many
223 characters displayed by zero width or very narrow glyphs of
224 variable-width fonts. */
225
226 int fonts_changed_p;
227
228 /* Convert vpos and hpos from frame to window and vice versa.
229 This may only be used for terminal frames. */
230
231 #if GLYPH_DEBUG
232
233 static int window_to_frame_vpos (struct window *, int);
234 static int window_to_frame_hpos (struct window *, int);
235 #define WINDOW_TO_FRAME_VPOS(W, VPOS) window_to_frame_vpos ((W), (VPOS))
236 #define WINDOW_TO_FRAME_HPOS(W, HPOS) window_to_frame_hpos ((W), (HPOS))
237
238 /* One element of the ring buffer containing redisplay history
239 information. */
240
241 struct redisplay_history
242 {
243 char trace[512 + 100];
244 };
245
246 /* The size of the history buffer. */
247
248 #define REDISPLAY_HISTORY_SIZE 30
249
250 /* The redisplay history buffer. */
251
252 static struct redisplay_history redisplay_history[REDISPLAY_HISTORY_SIZE];
253
254 /* Next free entry in redisplay_history. */
255
256 static int history_idx;
257
258 /* A tick that's incremented each time something is added to the
259 history. */
260
261 static uprintmax_t history_tick;
262
263 static void add_frame_display_history (struct frame *, int);
264 \f
265 /* Add to the redisplay history how window W has been displayed.
266 MSG is a trace containing the information how W's glyph matrix
267 has been constructed. PAUSED_P non-zero means that the update
268 has been interrupted for pending input. */
269
270 static void
271 add_window_display_history (struct window *w, const char *msg, int paused_p)
272 {
273 char *buf;
274
275 if (history_idx >= REDISPLAY_HISTORY_SIZE)
276 history_idx = 0;
277 buf = redisplay_history[history_idx].trace;
278 ++history_idx;
279
280 snprintf (buf, sizeof redisplay_history[0].trace,
281 "%"pMu": window %p (`%s')%s\n%s",
282 history_tick++,
283 w,
284 ((BUFFERP (w->buffer)
285 && STRINGP (BVAR (XBUFFER (w->buffer), name)))
286 ? SSDATA (BVAR (XBUFFER (w->buffer), name))
287 : "???"),
288 paused_p ? " ***paused***" : "",
289 msg);
290 }
291
292
293 /* Add to the redisplay history that frame F has been displayed.
294 PAUSED_P non-zero means that the update has been interrupted for
295 pending input. */
296
297 static void add_frame_display_history (struct frame *f, int paused_p)
298 {
299 char *buf;
300
301 if (history_idx >= REDISPLAY_HISTORY_SIZE)
302 history_idx = 0;
303 buf = redisplay_history[history_idx].trace;
304 ++history_idx;
305
306 sprintf (buf, "%"pMu": update frame %p%s",
307 history_tick++,
308 f, paused_p ? " ***paused***" : "");
309 }
310
311
312 DEFUN ("dump-redisplay-history", Fdump_redisplay_history,
313 Sdump_redisplay_history, 0, 0, "",
314 doc: /* Dump redisplay history to stderr. */)
315 (void)
316 {
317 int i;
318
319 for (i = history_idx - 1; i != history_idx; --i)
320 {
321 if (i < 0)
322 i = REDISPLAY_HISTORY_SIZE - 1;
323 fprintf (stderr, "%s\n", redisplay_history[i].trace);
324 }
325
326 return Qnil;
327 }
328
329
330 #else /* GLYPH_DEBUG == 0 */
331
332 #define WINDOW_TO_FRAME_VPOS(W, VPOS) ((VPOS) + WINDOW_TOP_EDGE_LINE (W))
333 #define WINDOW_TO_FRAME_HPOS(W, HPOS) ((HPOS) + WINDOW_LEFT_EDGE_COL (W))
334
335 #endif /* GLYPH_DEBUG == 0 */
336
337
338 #if defined PROFILING && !HAVE___EXECUTABLE_START
339 /* FIXME: only used to find text start for profiling. */
340
341 void
342 safe_bcopy (const char *from, char *to, int size)
343 {
344 abort ();
345 }
346 #endif
347 \f
348 /***********************************************************************
349 Glyph Matrices
350 ***********************************************************************/
351
352 /* Allocate and return a glyph_matrix structure. POOL is the glyph
353 pool from which memory for the matrix should be allocated, or null
354 for window-based redisplay where no glyph pools are used. The
355 member `pool' of the glyph matrix structure returned is set to
356 POOL, the structure is otherwise zeroed. */
357
358 static struct glyph_matrix *
359 new_glyph_matrix (struct glyph_pool *pool)
360 {
361 struct glyph_matrix *result;
362
363 /* Allocate and clear. */
364 result = (struct glyph_matrix *) xmalloc (sizeof *result);
365 memset (result, 0, sizeof *result);
366
367 /* Increment number of allocated matrices. This count is used
368 to detect memory leaks. */
369 ++glyph_matrix_count;
370
371 /* Set pool and return. */
372 result->pool = pool;
373 return result;
374 }
375
376
377 /* Free glyph matrix MATRIX. Passing in a null MATRIX is allowed.
378
379 The global counter glyph_matrix_count is decremented when a matrix
380 is freed. If the count gets negative, more structures were freed
381 than allocated, i.e. one matrix was freed more than once or a bogus
382 pointer was passed to this function.
383
384 If MATRIX->pool is null, this means that the matrix manages its own
385 glyph memory---this is done for matrices on X frames. Freeing the
386 matrix also frees the glyph memory in this case. */
387
388 static void
389 free_glyph_matrix (struct glyph_matrix *matrix)
390 {
391 if (matrix)
392 {
393 int i;
394
395 /* Detect the case that more matrices are freed than were
396 allocated. */
397 if (--glyph_matrix_count < 0)
398 abort ();
399
400 /* Free glyph memory if MATRIX owns it. */
401 if (matrix->pool == NULL)
402 for (i = 0; i < matrix->rows_allocated; ++i)
403 xfree (matrix->rows[i].glyphs[LEFT_MARGIN_AREA]);
404
405 /* Free row structures and the matrix itself. */
406 xfree (matrix->rows);
407 xfree (matrix);
408 }
409 }
410
411
412 /* Return the number of glyphs to reserve for a marginal area of
413 window W. TOTAL_GLYPHS is the number of glyphs in a complete
414 display line of window W. MARGIN gives the width of the marginal
415 area in canonical character units. MARGIN should be an integer
416 or a float. */
417
418 static int
419 margin_glyphs_to_reserve (struct window *w, int total_glyphs, Lisp_Object margin)
420 {
421 int n;
422
423 if (NUMBERP (margin))
424 {
425 int width = XFASTINT (w->total_cols);
426 double d = max (0, XFLOATINT (margin));
427 d = min (width / 2 - 1, d);
428 n = (int) ((double) total_glyphs / width * d);
429 }
430 else
431 n = 0;
432
433 return n;
434 }
435
436 #if XASSERTS
437 /* Return non-zero if ROW's hash value is correct, zero if not. */
438 int
439 verify_row_hash (struct glyph_row *row)
440 {
441 return row->hash == row_hash (row);
442 }
443 #endif
444
445 /* Adjust glyph matrix MATRIX on window W or on a frame to changed
446 window sizes.
447
448 W is null if the function is called for a frame glyph matrix.
449 Otherwise it is the window MATRIX is a member of. X and Y are the
450 indices of the first column and row of MATRIX within the frame
451 matrix, if such a matrix exists. They are zero for purely
452 window-based redisplay. DIM is the needed size of the matrix.
453
454 In window-based redisplay, where no frame matrices exist, glyph
455 matrices manage their own glyph storage. Otherwise, they allocate
456 storage from a common frame glyph pool which can be found in
457 MATRIX->pool.
458
459 The reason for this memory management strategy is to avoid complete
460 frame redraws if possible. When we allocate from a common pool, a
461 change of the location or size of a sub-matrix within the pool
462 requires a complete redisplay of the frame because we cannot easily
463 make sure that the current matrices of all windows still agree with
464 what is displayed on the screen. While this is usually fast, it
465 leads to screen flickering. */
466
467 static void
468 adjust_glyph_matrix (struct window *w, struct glyph_matrix *matrix, int x, int y, struct dim dim)
469 {
470 int i;
471 int new_rows;
472 int marginal_areas_changed_p = 0;
473 int header_line_changed_p = 0;
474 int header_line_p = 0;
475 int left = -1, right = -1;
476 int window_width = -1, window_height = -1;
477
478 /* See if W had a header line that has disappeared now, or vice versa.
479 Get W's size. */
480 if (w)
481 {
482 window_box (w, -1, 0, 0, &window_width, &window_height);
483
484 header_line_p = WINDOW_WANTS_HEADER_LINE_P (w);
485 header_line_changed_p = header_line_p != matrix->header_line_p;
486 }
487 matrix->header_line_p = header_line_p;
488
489 /* If POOL is null, MATRIX is a window matrix for window-based redisplay.
490 Do nothing if MATRIX' size, position, vscroll, and marginal areas
491 haven't changed. This optimization is important because preserving
492 the matrix means preventing redisplay. */
493 if (matrix->pool == NULL)
494 {
495 left = margin_glyphs_to_reserve (w, dim.width, w->left_margin_cols);
496 right = margin_glyphs_to_reserve (w, dim.width, w->right_margin_cols);
497 xassert (left >= 0 && right >= 0);
498 marginal_areas_changed_p = (left != matrix->left_margin_glyphs
499 || right != matrix->right_margin_glyphs);
500
501 if (!marginal_areas_changed_p
502 && !fonts_changed_p
503 && !header_line_changed_p
504 && matrix->window_left_col == WINDOW_LEFT_EDGE_COL (w)
505 && matrix->window_top_line == WINDOW_TOP_EDGE_LINE (w)
506 && matrix->window_height == window_height
507 && matrix->window_vscroll == w->vscroll
508 && matrix->window_width == window_width)
509 return;
510 }
511
512 /* Enlarge MATRIX->rows if necessary. New rows are cleared. */
513 if (matrix->rows_allocated < dim.height)
514 {
515 int old_alloc = matrix->rows_allocated;
516 new_rows = dim.height - matrix->rows_allocated;
517 matrix->rows = xpalloc (matrix->rows, &matrix->rows_allocated,
518 new_rows, INT_MAX, sizeof *matrix->rows);
519 memset (matrix->rows + old_alloc, 0,
520 (matrix->rows_allocated - old_alloc) * sizeof *matrix->rows);
521 }
522 else
523 new_rows = 0;
524
525 /* If POOL is not null, MATRIX is a frame matrix or a window matrix
526 on a frame not using window-based redisplay. Set up pointers for
527 each row into the glyph pool. */
528 if (matrix->pool)
529 {
530 xassert (matrix->pool->glyphs);
531
532 if (w)
533 {
534 left = margin_glyphs_to_reserve (w, dim.width,
535 w->left_margin_cols);
536 right = margin_glyphs_to_reserve (w, dim.width,
537 w->right_margin_cols);
538 }
539 else
540 left = right = 0;
541
542 for (i = 0; i < dim.height; ++i)
543 {
544 struct glyph_row *row = &matrix->rows[i];
545
546 row->glyphs[LEFT_MARGIN_AREA]
547 = (matrix->pool->glyphs
548 + (y + i) * matrix->pool->ncolumns
549 + x);
550
551 if (w == NULL
552 || row == matrix->rows + dim.height - 1
553 || (row == matrix->rows && matrix->header_line_p))
554 {
555 row->glyphs[TEXT_AREA]
556 = row->glyphs[LEFT_MARGIN_AREA];
557 row->glyphs[RIGHT_MARGIN_AREA]
558 = row->glyphs[TEXT_AREA] + dim.width;
559 row->glyphs[LAST_AREA]
560 = row->glyphs[RIGHT_MARGIN_AREA];
561 }
562 else
563 {
564 row->glyphs[TEXT_AREA]
565 = row->glyphs[LEFT_MARGIN_AREA] + left;
566 row->glyphs[RIGHT_MARGIN_AREA]
567 = row->glyphs[TEXT_AREA] + dim.width - left - right;
568 row->glyphs[LAST_AREA]
569 = row->glyphs[LEFT_MARGIN_AREA] + dim.width;
570 }
571 }
572
573 matrix->left_margin_glyphs = left;
574 matrix->right_margin_glyphs = right;
575 }
576 else
577 {
578 /* If MATRIX->pool is null, MATRIX is responsible for managing
579 its own memory. It is a window matrix for window-based redisplay.
580 Allocate glyph memory from the heap. */
581 if (dim.width > matrix->matrix_w
582 || new_rows
583 || header_line_changed_p
584 || marginal_areas_changed_p)
585 {
586 struct glyph_row *row = matrix->rows;
587 struct glyph_row *end = row + matrix->rows_allocated;
588
589 while (row < end)
590 {
591 row->glyphs[LEFT_MARGIN_AREA]
592 = xnrealloc (row->glyphs[LEFT_MARGIN_AREA],
593 dim.width, sizeof (struct glyph));
594
595 /* The mode line never has marginal areas. */
596 if (row == matrix->rows + dim.height - 1
597 || (row == matrix->rows && matrix->header_line_p))
598 {
599 row->glyphs[TEXT_AREA]
600 = row->glyphs[LEFT_MARGIN_AREA];
601 row->glyphs[RIGHT_MARGIN_AREA]
602 = row->glyphs[TEXT_AREA] + dim.width;
603 row->glyphs[LAST_AREA]
604 = row->glyphs[RIGHT_MARGIN_AREA];
605 }
606 else
607 {
608 row->glyphs[TEXT_AREA]
609 = row->glyphs[LEFT_MARGIN_AREA] + left;
610 row->glyphs[RIGHT_MARGIN_AREA]
611 = row->glyphs[TEXT_AREA] + dim.width - left - right;
612 row->glyphs[LAST_AREA]
613 = row->glyphs[LEFT_MARGIN_AREA] + dim.width;
614 }
615 ++row;
616 }
617 }
618
619 xassert (left >= 0 && right >= 0);
620 matrix->left_margin_glyphs = left;
621 matrix->right_margin_glyphs = right;
622 }
623
624 /* Number of rows to be used by MATRIX. */
625 matrix->nrows = dim.height;
626 xassert (matrix->nrows >= 0);
627
628 if (w)
629 {
630 if (matrix == w->current_matrix)
631 {
632 /* Mark rows in a current matrix of a window as not having
633 valid contents. It's important to not do this for
634 desired matrices. When Emacs starts, it may already be
635 building desired matrices when this function runs. */
636 if (window_width < 0)
637 window_width = window_box_width (w, -1);
638
639 /* Optimize the case that only the height has changed (C-x 2,
640 upper window). Invalidate all rows that are no longer part
641 of the window. */
642 if (!marginal_areas_changed_p
643 && !header_line_changed_p
644 && new_rows == 0
645 && dim.width == matrix->matrix_w
646 && matrix->window_left_col == WINDOW_LEFT_EDGE_COL (w)
647 && matrix->window_top_line == WINDOW_TOP_EDGE_LINE (w)
648 && matrix->window_width == window_width)
649 {
650 /* Find the last row in the window. */
651 for (i = 0; i < matrix->nrows && matrix->rows[i].enabled_p; ++i)
652 if (MATRIX_ROW_BOTTOM_Y (matrix->rows + i) >= window_height)
653 {
654 ++i;
655 break;
656 }
657
658 /* Window end is invalid, if inside of the rows that
659 are invalidated below. */
660 if (INTEGERP (w->window_end_vpos)
661 && XFASTINT (w->window_end_vpos) >= i)
662 w->window_end_valid = Qnil;
663
664 while (i < matrix->nrows)
665 matrix->rows[i++].enabled_p = 0;
666 }
667 else
668 {
669 for (i = 0; i < matrix->nrows; ++i)
670 matrix->rows[i].enabled_p = 0;
671 }
672 }
673 else if (matrix == w->desired_matrix)
674 {
675 /* Rows in desired matrices always have to be cleared;
676 redisplay expects this is the case when it runs, so it
677 had better be the case when we adjust matrices between
678 redisplays. */
679 for (i = 0; i < matrix->nrows; ++i)
680 matrix->rows[i].enabled_p = 0;
681 }
682 }
683
684
685 /* Remember last values to be able to optimize frame redraws. */
686 matrix->matrix_x = x;
687 matrix->matrix_y = y;
688 matrix->matrix_w = dim.width;
689 matrix->matrix_h = dim.height;
690
691 /* Record the top y location and height of W at the time the matrix
692 was last adjusted. This is used to optimize redisplay above. */
693 if (w)
694 {
695 matrix->window_left_col = WINDOW_LEFT_EDGE_COL (w);
696 matrix->window_top_line = WINDOW_TOP_EDGE_LINE (w);
697 matrix->window_height = window_height;
698 matrix->window_width = window_width;
699 matrix->window_vscroll = w->vscroll;
700 }
701 }
702
703
704 /* Reverse the contents of rows in MATRIX between START and END. The
705 contents of the row at END - 1 end up at START, END - 2 at START +
706 1 etc. This is part of the implementation of rotate_matrix (see
707 below). */
708
709 static void
710 reverse_rows (struct glyph_matrix *matrix, int start, int end)
711 {
712 int i, j;
713
714 for (i = start, j = end - 1; i < j; ++i, --j)
715 {
716 /* Non-ISO HP/UX compiler doesn't like auto struct
717 initialization. */
718 struct glyph_row temp;
719 temp = matrix->rows[i];
720 matrix->rows[i] = matrix->rows[j];
721 matrix->rows[j] = temp;
722 }
723 }
724
725
726 /* Rotate the contents of rows in MATRIX in the range FIRST .. LAST -
727 1 by BY positions. BY < 0 means rotate left, i.e. towards lower
728 indices. (Note: this does not copy glyphs, only glyph pointers in
729 row structures are moved around).
730
731 The algorithm used for rotating the vector was, I believe, first
732 described by Kernighan. See the vector R as consisting of two
733 sub-vectors AB, where A has length BY for BY >= 0. The result
734 after rotating is then BA. Reverse both sub-vectors to get ArBr
735 and reverse the result to get (ArBr)r which is BA. Similar for
736 rotating right. */
737
738 void
739 rotate_matrix (struct glyph_matrix *matrix, int first, int last, int by)
740 {
741 if (by < 0)
742 {
743 /* Up (rotate left, i.e. towards lower indices). */
744 by = -by;
745 reverse_rows (matrix, first, first + by);
746 reverse_rows (matrix, first + by, last);
747 reverse_rows (matrix, first, last);
748 }
749 else if (by > 0)
750 {
751 /* Down (rotate right, i.e. towards higher indices). */
752 reverse_rows (matrix, last - by, last);
753 reverse_rows (matrix, first, last - by);
754 reverse_rows (matrix, first, last);
755 }
756 }
757
758
759 /* Increment buffer positions in glyph rows of MATRIX. Do it for rows
760 with indices START <= index < END. Increment positions by DELTA/
761 DELTA_BYTES. */
762
763 void
764 increment_matrix_positions (struct glyph_matrix *matrix, int start, int end,
765 EMACS_INT delta, EMACS_INT delta_bytes)
766 {
767 /* Check that START and END are reasonable values. */
768 xassert (start >= 0 && start <= matrix->nrows);
769 xassert (end >= 0 && end <= matrix->nrows);
770 xassert (start <= end);
771
772 for (; start < end; ++start)
773 increment_row_positions (matrix->rows + start, delta, delta_bytes);
774 }
775
776
777 /* Enable a range of rows in glyph matrix MATRIX. START and END are
778 the row indices of the first and last + 1 row to enable. If
779 ENABLED_P is non-zero, enabled_p flags in rows will be set to 1. */
780
781 void
782 enable_glyph_matrix_rows (struct glyph_matrix *matrix, int start, int end, int enabled_p)
783 {
784 xassert (start <= end);
785 xassert (start >= 0 && start < matrix->nrows);
786 xassert (end >= 0 && end <= matrix->nrows);
787
788 for (; start < end; ++start)
789 matrix->rows[start].enabled_p = enabled_p != 0;
790 }
791
792
793 /* Clear MATRIX.
794
795 This empties all rows in MATRIX by setting the enabled_p flag for
796 all rows of the matrix to zero. The function prepare_desired_row
797 will eventually really clear a row when it sees one with a zero
798 enabled_p flag.
799
800 Resets update hints to defaults value. The only update hint
801 currently present is the flag MATRIX->no_scrolling_p. */
802
803 void
804 clear_glyph_matrix (struct glyph_matrix *matrix)
805 {
806 if (matrix)
807 {
808 enable_glyph_matrix_rows (matrix, 0, matrix->nrows, 0);
809 matrix->no_scrolling_p = 0;
810 }
811 }
812
813
814 /* Shift part of the glyph matrix MATRIX of window W up or down.
815 Increment y-positions in glyph rows between START and END by DY,
816 and recompute their visible height. */
817
818 void
819 shift_glyph_matrix (struct window *w, struct glyph_matrix *matrix, int start, int end, int dy)
820 {
821 int min_y, max_y;
822
823 xassert (start <= end);
824 xassert (start >= 0 && start < matrix->nrows);
825 xassert (end >= 0 && end <= matrix->nrows);
826
827 min_y = WINDOW_HEADER_LINE_HEIGHT (w);
828 max_y = WINDOW_BOX_HEIGHT_NO_MODE_LINE (w);
829
830 for (; start < end; ++start)
831 {
832 struct glyph_row *row = &matrix->rows[start];
833
834 row->y += dy;
835 row->visible_height = row->height;
836
837 if (row->y < min_y)
838 row->visible_height -= min_y - row->y;
839 if (row->y + row->height > max_y)
840 row->visible_height -= row->y + row->height - max_y;
841 if (row->fringe_bitmap_periodic_p)
842 row->redraw_fringe_bitmaps_p = 1;
843 }
844 }
845
846
847 /* Mark all rows in current matrices of frame F as invalid. Marking
848 invalid is done by setting enabled_p to zero for all rows in a
849 current matrix. */
850
851 void
852 clear_current_matrices (register struct frame *f)
853 {
854 /* Clear frame current matrix, if we have one. */
855 if (f->current_matrix)
856 clear_glyph_matrix (f->current_matrix);
857
858 /* Clear the matrix of the menu bar window, if such a window exists.
859 The menu bar window is currently used to display menus on X when
860 no toolkit support is compiled in. */
861 if (WINDOWP (f->menu_bar_window))
862 clear_glyph_matrix (XWINDOW (f->menu_bar_window)->current_matrix);
863
864 /* Clear the matrix of the tool-bar window, if any. */
865 if (WINDOWP (f->tool_bar_window))
866 clear_glyph_matrix (XWINDOW (f->tool_bar_window)->current_matrix);
867
868 /* Clear current window matrices. */
869 xassert (WINDOWP (FRAME_ROOT_WINDOW (f)));
870 clear_window_matrices (XWINDOW (FRAME_ROOT_WINDOW (f)), 0);
871 }
872
873
874 /* Clear out all display lines of F for a coming redisplay. */
875
876 void
877 clear_desired_matrices (register struct frame *f)
878 {
879 if (f->desired_matrix)
880 clear_glyph_matrix (f->desired_matrix);
881
882 if (WINDOWP (f->menu_bar_window))
883 clear_glyph_matrix (XWINDOW (f->menu_bar_window)->desired_matrix);
884
885 if (WINDOWP (f->tool_bar_window))
886 clear_glyph_matrix (XWINDOW (f->tool_bar_window)->desired_matrix);
887
888 /* Do it for window matrices. */
889 xassert (WINDOWP (FRAME_ROOT_WINDOW (f)));
890 clear_window_matrices (XWINDOW (FRAME_ROOT_WINDOW (f)), 1);
891 }
892
893
894 /* Clear matrices in window tree rooted in W. If DESIRED_P is
895 non-zero clear desired matrices, otherwise clear current matrices. */
896
897 static void
898 clear_window_matrices (struct window *w, int desired_p)
899 {
900 while (w)
901 {
902 if (!NILP (w->hchild))
903 {
904 xassert (WINDOWP (w->hchild));
905 clear_window_matrices (XWINDOW (w->hchild), desired_p);
906 }
907 else if (!NILP (w->vchild))
908 {
909 xassert (WINDOWP (w->vchild));
910 clear_window_matrices (XWINDOW (w->vchild), desired_p);
911 }
912 else
913 {
914 if (desired_p)
915 clear_glyph_matrix (w->desired_matrix);
916 else
917 {
918 clear_glyph_matrix (w->current_matrix);
919 w->window_end_valid = Qnil;
920 }
921 }
922
923 w = NILP (w->next) ? 0 : XWINDOW (w->next);
924 }
925 }
926
927
928 \f
929 /***********************************************************************
930 Glyph Rows
931
932 See dispextern.h for an overall explanation of glyph rows.
933 ***********************************************************************/
934
935 /* Clear glyph row ROW. Do it in a way that makes it robust against
936 changes in the glyph_row structure, i.e. addition or removal of
937 structure members. */
938
939 static struct glyph_row null_row;
940
941 void
942 clear_glyph_row (struct glyph_row *row)
943 {
944 struct glyph *p[1 + LAST_AREA];
945
946 /* Save pointers. */
947 p[LEFT_MARGIN_AREA] = row->glyphs[LEFT_MARGIN_AREA];
948 p[TEXT_AREA] = row->glyphs[TEXT_AREA];
949 p[RIGHT_MARGIN_AREA] = row->glyphs[RIGHT_MARGIN_AREA];
950 p[LAST_AREA] = row->glyphs[LAST_AREA];
951
952 /* Clear. */
953 *row = null_row;
954
955 /* Restore pointers. */
956 row->glyphs[LEFT_MARGIN_AREA] = p[LEFT_MARGIN_AREA];
957 row->glyphs[TEXT_AREA] = p[TEXT_AREA];
958 row->glyphs[RIGHT_MARGIN_AREA] = p[RIGHT_MARGIN_AREA];
959 row->glyphs[LAST_AREA] = p[LAST_AREA];
960
961 #if 0 /* At some point, some bit-fields of struct glyph were not set,
962 which made glyphs unequal when compared with GLYPH_EQUAL_P.
963 Redisplay outputs such glyphs, and flickering effects were
964 the result. This also depended on the contents of memory
965 returned by xmalloc. If flickering happens again, activate
966 the code below. If the flickering is gone with that, chances
967 are that the flickering has the same reason as here. */
968 memset (p[0], 0, (char *) p[LAST_AREA] - (char *) p[0]);
969 #endif
970 }
971
972
973 /* Make ROW an empty, enabled row of canonical character height,
974 in window W starting at y-position Y. */
975
976 void
977 blank_row (struct window *w, struct glyph_row *row, int y)
978 {
979 int min_y, max_y;
980
981 min_y = WINDOW_HEADER_LINE_HEIGHT (w);
982 max_y = WINDOW_BOX_HEIGHT_NO_MODE_LINE (w);
983
984 clear_glyph_row (row);
985 row->y = y;
986 row->ascent = row->phys_ascent = 0;
987 row->height = row->phys_height = FRAME_LINE_HEIGHT (XFRAME (w->frame));
988 row->visible_height = row->height;
989
990 if (row->y < min_y)
991 row->visible_height -= min_y - row->y;
992 if (row->y + row->height > max_y)
993 row->visible_height -= row->y + row->height - max_y;
994
995 row->enabled_p = 1;
996 }
997
998
999 /* Increment buffer positions in glyph row ROW. DELTA and DELTA_BYTES
1000 are the amounts by which to change positions. Note that the first
1001 glyph of the text area of a row can have a buffer position even if
1002 the used count of the text area is zero. Such rows display line
1003 ends. */
1004
1005 static void
1006 increment_row_positions (struct glyph_row *row,
1007 EMACS_INT delta, EMACS_INT delta_bytes)
1008 {
1009 int area, i;
1010
1011 /* Increment start and end positions. */
1012 MATRIX_ROW_START_CHARPOS (row) += delta;
1013 MATRIX_ROW_START_BYTEPOS (row) += delta_bytes;
1014 MATRIX_ROW_END_CHARPOS (row) += delta;
1015 MATRIX_ROW_END_BYTEPOS (row) += delta_bytes;
1016 CHARPOS (row->start.pos) += delta;
1017 BYTEPOS (row->start.pos) += delta_bytes;
1018 CHARPOS (row->end.pos) += delta;
1019 BYTEPOS (row->end.pos) += delta_bytes;
1020
1021 if (!row->enabled_p)
1022 return;
1023
1024 /* Increment positions in glyphs. */
1025 for (area = 0; area < LAST_AREA; ++area)
1026 for (i = 0; i < row->used[area]; ++i)
1027 if (BUFFERP (row->glyphs[area][i].object)
1028 && row->glyphs[area][i].charpos > 0)
1029 row->glyphs[area][i].charpos += delta;
1030
1031 /* Capture the case of rows displaying a line end. */
1032 if (row->used[TEXT_AREA] == 0
1033 && MATRIX_ROW_DISPLAYS_TEXT_P (row))
1034 row->glyphs[TEXT_AREA]->charpos += delta;
1035 }
1036
1037
1038 #if 0
1039 /* Swap glyphs between two glyph rows A and B. This exchanges glyph
1040 contents, i.e. glyph structure contents are exchanged between A and
1041 B without changing glyph pointers in A and B. */
1042
1043 static void
1044 swap_glyphs_in_rows (struct glyph_row *a, struct glyph_row *b)
1045 {
1046 int area;
1047
1048 for (area = 0; area < LAST_AREA; ++area)
1049 {
1050 /* Number of glyphs to swap. */
1051 int max_used = max (a->used[area], b->used[area]);
1052
1053 /* Start of glyphs in area of row A. */
1054 struct glyph *glyph_a = a->glyphs[area];
1055
1056 /* End + 1 of glyphs in area of row A. */
1057 struct glyph *glyph_a_end = a->glyphs[max_used];
1058
1059 /* Start of glyphs in area of row B. */
1060 struct glyph *glyph_b = b->glyphs[area];
1061
1062 while (glyph_a < glyph_a_end)
1063 {
1064 /* Non-ISO HP/UX compiler doesn't like auto struct
1065 initialization. */
1066 struct glyph temp;
1067 temp = *glyph_a;
1068 *glyph_a = *glyph_b;
1069 *glyph_b = temp;
1070 ++glyph_a;
1071 ++glyph_b;
1072 }
1073 }
1074 }
1075
1076 #endif /* 0 */
1077
1078 /* Exchange pointers to glyph memory between glyph rows A and B. Also
1079 exchange the used[] array and the hash values of the rows, because
1080 these should all go together for the row's hash value to be
1081 correct. */
1082
1083 static inline void
1084 swap_glyph_pointers (struct glyph_row *a, struct glyph_row *b)
1085 {
1086 int i;
1087 unsigned hash_tem = a->hash;
1088
1089 for (i = 0; i < LAST_AREA + 1; ++i)
1090 {
1091 struct glyph *temp = a->glyphs[i];
1092 short used_tem = a->used[i];
1093
1094 a->glyphs[i] = b->glyphs[i];
1095 b->glyphs[i] = temp;
1096 a->used[i] = b->used[i];
1097 b->used[i] = used_tem;
1098 }
1099 a->hash = b->hash;
1100 b->hash = hash_tem;
1101 }
1102
1103
1104 /* Copy glyph row structure FROM to glyph row structure TO, except
1105 that glyph pointers, the `used' counts, and the hash values in the
1106 structures are left unchanged. */
1107
1108 static inline void
1109 copy_row_except_pointers (struct glyph_row *to, struct glyph_row *from)
1110 {
1111 struct glyph *pointers[1 + LAST_AREA];
1112 short used[1 + LAST_AREA];
1113 unsigned hashval;
1114
1115 /* Save glyph pointers of TO. */
1116 memcpy (pointers, to->glyphs, sizeof to->glyphs);
1117 memcpy (used, to->used, sizeof to->used);
1118 hashval = to->hash;
1119
1120 /* Do a structure assignment. */
1121 *to = *from;
1122
1123 /* Restore original pointers of TO. */
1124 memcpy (to->glyphs, pointers, sizeof to->glyphs);
1125 memcpy (to->used, used, sizeof to->used);
1126 to->hash = hashval;
1127 }
1128
1129
1130 /* Assign glyph row FROM to glyph row TO. This works like a structure
1131 assignment TO = FROM, except that glyph pointers are not copied but
1132 exchanged between TO and FROM. Pointers must be exchanged to avoid
1133 a memory leak. */
1134
1135 static inline void
1136 assign_row (struct glyph_row *to, struct glyph_row *from)
1137 {
1138 swap_glyph_pointers (to, from);
1139 copy_row_except_pointers (to, from);
1140 }
1141
1142
1143 /* Test whether the glyph memory of the glyph row WINDOW_ROW, which is
1144 a row in a window matrix, is a slice of the glyph memory of the
1145 glyph row FRAME_ROW which is a row in a frame glyph matrix. Value
1146 is non-zero if the glyph memory of WINDOW_ROW is part of the glyph
1147 memory of FRAME_ROW. */
1148
1149 #if GLYPH_DEBUG
1150
1151 static int
1152 glyph_row_slice_p (struct glyph_row *window_row, struct glyph_row *frame_row)
1153 {
1154 struct glyph *window_glyph_start = window_row->glyphs[0];
1155 struct glyph *frame_glyph_start = frame_row->glyphs[0];
1156 struct glyph *frame_glyph_end = frame_row->glyphs[LAST_AREA];
1157
1158 return (frame_glyph_start <= window_glyph_start
1159 && window_glyph_start < frame_glyph_end);
1160 }
1161
1162 #endif /* GLYPH_DEBUG */
1163
1164 #if 0
1165
1166 /* Find the row in the window glyph matrix WINDOW_MATRIX being a slice
1167 of ROW in the frame matrix FRAME_MATRIX. Value is null if no row
1168 in WINDOW_MATRIX is found satisfying the condition. */
1169
1170 static struct glyph_row *
1171 find_glyph_row_slice (struct glyph_matrix *window_matrix,
1172 struct glyph_matrix *frame_matrix, int row)
1173 {
1174 int i;
1175
1176 xassert (row >= 0 && row < frame_matrix->nrows);
1177
1178 for (i = 0; i < window_matrix->nrows; ++i)
1179 if (glyph_row_slice_p (window_matrix->rows + i,
1180 frame_matrix->rows + row))
1181 break;
1182
1183 return i < window_matrix->nrows ? window_matrix->rows + i : 0;
1184 }
1185
1186 #endif /* 0 */
1187
1188 /* Prepare ROW for display. Desired rows are cleared lazily,
1189 i.e. they are only marked as to be cleared by setting their
1190 enabled_p flag to zero. When a row is to be displayed, a prior
1191 call to this function really clears it. */
1192
1193 void
1194 prepare_desired_row (struct glyph_row *row)
1195 {
1196 if (!row->enabled_p)
1197 {
1198 int rp = row->reversed_p;
1199
1200 clear_glyph_row (row);
1201 row->enabled_p = 1;
1202 row->reversed_p = rp;
1203 }
1204 }
1205
1206
1207 /* Return a hash code for glyph row ROW. */
1208
1209 static int
1210 line_hash_code (struct glyph_row *row)
1211 {
1212 int hash = 0;
1213
1214 if (row->enabled_p)
1215 {
1216 struct glyph *glyph = row->glyphs[TEXT_AREA];
1217 struct glyph *end = glyph + row->used[TEXT_AREA];
1218
1219 while (glyph < end)
1220 {
1221 int c = glyph->u.ch;
1222 int face_id = glyph->face_id;
1223 if (FRAME_MUST_WRITE_SPACES (SELECTED_FRAME ())) /* XXX Is SELECTED_FRAME OK here? */
1224 c -= SPACEGLYPH;
1225 hash = (((hash << 4) + (hash >> 24)) & 0x0fffffff) + c;
1226 hash = (((hash << 4) + (hash >> 24)) & 0x0fffffff) + face_id;
1227 ++glyph;
1228 }
1229
1230 if (hash == 0)
1231 hash = 1;
1232 }
1233
1234 return hash;
1235 }
1236
1237
1238 /* Return the cost of drawing line VPOS in MATRIX. The cost equals
1239 the number of characters in the line. If must_write_spaces is
1240 zero, leading and trailing spaces are ignored. */
1241
1242 static int
1243 line_draw_cost (struct glyph_matrix *matrix, int vpos)
1244 {
1245 struct glyph_row *row = matrix->rows + vpos;
1246 struct glyph *beg = row->glyphs[TEXT_AREA];
1247 struct glyph *end = beg + row->used[TEXT_AREA];
1248 int len;
1249 Lisp_Object *glyph_table_base = GLYPH_TABLE_BASE;
1250 ptrdiff_t glyph_table_len = GLYPH_TABLE_LENGTH;
1251
1252 /* Ignore trailing and leading spaces if we can. */
1253 if (!FRAME_MUST_WRITE_SPACES (SELECTED_FRAME ())) /* XXX Is SELECTED_FRAME OK here? */
1254 {
1255 /* Skip from the end over trailing spaces. */
1256 while (end > beg && CHAR_GLYPH_SPACE_P (*(end - 1)))
1257 --end;
1258
1259 /* All blank line. */
1260 if (end == beg)
1261 return 0;
1262
1263 /* Skip over leading spaces. */
1264 while (CHAR_GLYPH_SPACE_P (*beg))
1265 ++beg;
1266 }
1267
1268 /* If we don't have a glyph-table, each glyph is one character,
1269 so return the number of glyphs. */
1270 if (glyph_table_base == 0)
1271 len = end - beg;
1272 else
1273 {
1274 /* Otherwise, scan the glyphs and accumulate their total length
1275 in LEN. */
1276 len = 0;
1277 while (beg < end)
1278 {
1279 GLYPH g;
1280
1281 SET_GLYPH_FROM_CHAR_GLYPH (g, *beg);
1282
1283 if (GLYPH_INVALID_P (g)
1284 || GLYPH_SIMPLE_P (glyph_table_base, glyph_table_len, g))
1285 len += 1;
1286 else
1287 len += GLYPH_LENGTH (glyph_table_base, g);
1288
1289 ++beg;
1290 }
1291 }
1292
1293 return len;
1294 }
1295
1296
1297 /* Test two glyph rows A and B for equality. Value is non-zero if A
1298 and B have equal contents. MOUSE_FACE_P non-zero means compare the
1299 mouse_face_p flags of A and B, too. */
1300
1301 static inline int
1302 row_equal_p (struct glyph_row *a, struct glyph_row *b, int mouse_face_p)
1303 {
1304 xassert (verify_row_hash (a));
1305 xassert (verify_row_hash (b));
1306
1307 if (a == b)
1308 return 1;
1309 else if (a->hash != b->hash)
1310 return 0;
1311 else
1312 {
1313 struct glyph *a_glyph, *b_glyph, *a_end;
1314 int area;
1315
1316 if (mouse_face_p && a->mouse_face_p != b->mouse_face_p)
1317 return 0;
1318
1319 /* Compare glyphs. */
1320 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
1321 {
1322 if (a->used[area] != b->used[area])
1323 return 0;
1324
1325 a_glyph = a->glyphs[area];
1326 a_end = a_glyph + a->used[area];
1327 b_glyph = b->glyphs[area];
1328
1329 while (a_glyph < a_end
1330 && GLYPH_EQUAL_P (a_glyph, b_glyph))
1331 ++a_glyph, ++b_glyph;
1332
1333 if (a_glyph != a_end)
1334 return 0;
1335 }
1336
1337 if (a->fill_line_p != b->fill_line_p
1338 || a->cursor_in_fringe_p != b->cursor_in_fringe_p
1339 || a->left_fringe_bitmap != b->left_fringe_bitmap
1340 || a->left_fringe_face_id != b->left_fringe_face_id
1341 || a->left_fringe_offset != b->left_fringe_offset
1342 || a->right_fringe_bitmap != b->right_fringe_bitmap
1343 || a->right_fringe_face_id != b->right_fringe_face_id
1344 || a->right_fringe_offset != b->right_fringe_offset
1345 || a->fringe_bitmap_periodic_p != b->fringe_bitmap_periodic_p
1346 || a->overlay_arrow_bitmap != b->overlay_arrow_bitmap
1347 || a->exact_window_width_line_p != b->exact_window_width_line_p
1348 || a->overlapped_p != b->overlapped_p
1349 || (MATRIX_ROW_CONTINUATION_LINE_P (a)
1350 != MATRIX_ROW_CONTINUATION_LINE_P (b))
1351 || a->reversed_p != b->reversed_p
1352 /* Different partially visible characters on left margin. */
1353 || a->x != b->x
1354 /* Different height. */
1355 || a->ascent != b->ascent
1356 || a->phys_ascent != b->phys_ascent
1357 || a->phys_height != b->phys_height
1358 || a->visible_height != b->visible_height)
1359 return 0;
1360 }
1361
1362 return 1;
1363 }
1364
1365
1366 \f
1367 /***********************************************************************
1368 Glyph Pool
1369
1370 See dispextern.h for an overall explanation of glyph pools.
1371 ***********************************************************************/
1372
1373 /* Allocate a glyph_pool structure. The structure returned is
1374 initialized with zeros. The global variable glyph_pool_count is
1375 incremented for each pool allocated. */
1376
1377 static struct glyph_pool *
1378 new_glyph_pool (void)
1379 {
1380 struct glyph_pool *result;
1381
1382 /* Allocate a new glyph_pool and clear it. */
1383 result = (struct glyph_pool *) xmalloc (sizeof *result);
1384 memset (result, 0, sizeof *result);
1385
1386 /* For memory leak and double deletion checking. */
1387 ++glyph_pool_count;
1388
1389 return result;
1390 }
1391
1392
1393 /* Free a glyph_pool structure POOL. The function may be called with
1394 a null POOL pointer. The global variable glyph_pool_count is
1395 decremented with every pool structure freed. If this count gets
1396 negative, more structures were freed than allocated, i.e. one
1397 structure must have been freed more than once or a bogus pointer
1398 was passed to free_glyph_pool. */
1399
1400 static void
1401 free_glyph_pool (struct glyph_pool *pool)
1402 {
1403 if (pool)
1404 {
1405 /* More freed than allocated? */
1406 --glyph_pool_count;
1407 xassert (glyph_pool_count >= 0);
1408
1409 xfree (pool->glyphs);
1410 xfree (pool);
1411 }
1412 }
1413
1414
1415 /* Enlarge a glyph pool POOL. MATRIX_DIM gives the number of rows and
1416 columns we need. This function never shrinks a pool. The only
1417 case in which this would make sense, would be when a frame's size
1418 is changed from a large value to a smaller one. But, if someone
1419 does it once, we can expect that he will do it again.
1420
1421 Value is non-zero if the pool changed in a way which makes
1422 re-adjusting window glyph matrices necessary. */
1423
1424 static int
1425 realloc_glyph_pool (struct glyph_pool *pool, struct dim matrix_dim)
1426 {
1427 ptrdiff_t needed;
1428 int changed_p;
1429
1430 changed_p = (pool->glyphs == 0
1431 || matrix_dim.height != pool->nrows
1432 || matrix_dim.width != pool->ncolumns);
1433
1434 /* Enlarge the glyph pool. */
1435 needed = matrix_dim.width;
1436 if (INT_MULTIPLY_OVERFLOW (needed, matrix_dim.height))
1437 memory_full (SIZE_MAX);
1438 needed *= matrix_dim.height;
1439 if (needed > pool->nglyphs)
1440 {
1441 ptrdiff_t old_nglyphs = pool->nglyphs;
1442 pool->glyphs = xpalloc (pool->glyphs, &pool->nglyphs,
1443 needed - old_nglyphs, -1, sizeof *pool->glyphs);
1444 memset (pool->glyphs + old_nglyphs, 0,
1445 (pool->nglyphs - old_nglyphs) * sizeof *pool->glyphs);
1446 }
1447
1448 /* Remember the number of rows and columns because (a) we use them
1449 to do sanity checks, and (b) the number of columns determines
1450 where rows in the frame matrix start---this must be available to
1451 determine pointers to rows of window sub-matrices. */
1452 pool->nrows = matrix_dim.height;
1453 pool->ncolumns = matrix_dim.width;
1454
1455 return changed_p;
1456 }
1457
1458
1459 \f
1460 /***********************************************************************
1461 Debug Code
1462 ***********************************************************************/
1463
1464 #if GLYPH_DEBUG
1465
1466
1467 /* Flush standard output. This is sometimes useful to call from the debugger.
1468 XXX Maybe this should be changed to flush the current terminal instead of
1469 stdout.
1470 */
1471
1472 void flush_stdout (void) EXTERNALLY_VISIBLE;
1473
1474 void
1475 flush_stdout (void)
1476 {
1477 fflush (stdout);
1478 }
1479
1480
1481 /* Check that no glyph pointers have been lost in MATRIX. If a
1482 pointer has been lost, e.g. by using a structure assignment between
1483 rows, at least one pointer must occur more than once in the rows of
1484 MATRIX. */
1485
1486 void
1487 check_matrix_pointer_lossage (struct glyph_matrix *matrix)
1488 {
1489 int i, j;
1490
1491 for (i = 0; i < matrix->nrows; ++i)
1492 for (j = 0; j < matrix->nrows; ++j)
1493 xassert (i == j
1494 || (matrix->rows[i].glyphs[TEXT_AREA]
1495 != matrix->rows[j].glyphs[TEXT_AREA]));
1496 }
1497
1498
1499 /* Get a pointer to glyph row ROW in MATRIX, with bounds checks. */
1500
1501 struct glyph_row *
1502 matrix_row (struct glyph_matrix *matrix, int row)
1503 {
1504 xassert (matrix && matrix->rows);
1505 xassert (row >= 0 && row < matrix->nrows);
1506
1507 /* That's really too slow for normal testing because this function
1508 is called almost everywhere. Although---it's still astonishingly
1509 fast, so it is valuable to have for debugging purposes. */
1510 #if 0
1511 check_matrix_pointer_lossage (matrix);
1512 #endif
1513
1514 return matrix->rows + row;
1515 }
1516
1517
1518 #if 0 /* This function makes invalid assumptions when text is
1519 partially invisible. But it might come handy for debugging
1520 nevertheless. */
1521
1522 /* Check invariants that must hold for an up to date current matrix of
1523 window W. */
1524
1525 static void
1526 check_matrix_invariants (struct window *w)
1527 {
1528 struct glyph_matrix *matrix = w->current_matrix;
1529 int yb = window_text_bottom_y (w);
1530 struct glyph_row *row = matrix->rows;
1531 struct glyph_row *last_text_row = NULL;
1532 struct buffer *saved = current_buffer;
1533 struct buffer *buffer = XBUFFER (w->buffer);
1534 int c;
1535
1536 /* This can sometimes happen for a fresh window. */
1537 if (matrix->nrows < 2)
1538 return;
1539
1540 set_buffer_temp (buffer);
1541
1542 /* Note: last row is always reserved for the mode line. */
1543 while (MATRIX_ROW_DISPLAYS_TEXT_P (row)
1544 && MATRIX_ROW_BOTTOM_Y (row) < yb)
1545 {
1546 struct glyph_row *next = row + 1;
1547
1548 if (MATRIX_ROW_DISPLAYS_TEXT_P (row))
1549 last_text_row = row;
1550
1551 /* Check that character and byte positions are in sync. */
1552 xassert (MATRIX_ROW_START_BYTEPOS (row)
1553 == CHAR_TO_BYTE (MATRIX_ROW_START_CHARPOS (row)));
1554 xassert (BYTEPOS (row->start.pos)
1555 == CHAR_TO_BYTE (CHARPOS (row->start.pos)));
1556
1557 /* CHAR_TO_BYTE aborts when invoked for a position > Z. We can
1558 have such a position temporarily in case of a minibuffer
1559 displaying something like `[Sole completion]' at its end. */
1560 if (MATRIX_ROW_END_CHARPOS (row) < BUF_ZV (current_buffer))
1561 {
1562 xassert (MATRIX_ROW_END_BYTEPOS (row)
1563 == CHAR_TO_BYTE (MATRIX_ROW_END_CHARPOS (row)));
1564 xassert (BYTEPOS (row->end.pos)
1565 == CHAR_TO_BYTE (CHARPOS (row->end.pos)));
1566 }
1567
1568 /* Check that end position of `row' is equal to start position
1569 of next row. */
1570 if (next->enabled_p && MATRIX_ROW_DISPLAYS_TEXT_P (next))
1571 {
1572 xassert (MATRIX_ROW_END_CHARPOS (row)
1573 == MATRIX_ROW_START_CHARPOS (next));
1574 xassert (MATRIX_ROW_END_BYTEPOS (row)
1575 == MATRIX_ROW_START_BYTEPOS (next));
1576 xassert (CHARPOS (row->end.pos) == CHARPOS (next->start.pos));
1577 xassert (BYTEPOS (row->end.pos) == BYTEPOS (next->start.pos));
1578 }
1579 row = next;
1580 }
1581
1582 xassert (w->current_matrix->nrows == w->desired_matrix->nrows);
1583 xassert (w->desired_matrix->rows != NULL);
1584 set_buffer_temp (saved);
1585 }
1586
1587 #endif /* 0 */
1588
1589 #endif /* GLYPH_DEBUG != 0 */
1590
1591
1592 \f
1593 /**********************************************************************
1594 Allocating/ Adjusting Glyph Matrices
1595 **********************************************************************/
1596
1597 /* Allocate glyph matrices over a window tree for a frame-based
1598 redisplay
1599
1600 X and Y are column/row within the frame glyph matrix where
1601 sub-matrices for the window tree rooted at WINDOW must be
1602 allocated. DIM_ONLY_P non-zero means that the caller of this
1603 function is only interested in the result matrix dimension, and
1604 matrix adjustments should not be performed.
1605
1606 The function returns the total width/height of the sub-matrices of
1607 the window tree. If called on a frame root window, the computation
1608 will take the mini-buffer window into account.
1609
1610 *WINDOW_CHANGE_FLAGS is set to a bit mask with bits
1611
1612 NEW_LEAF_MATRIX set if any window in the tree did not have a
1613 glyph matrices yet, and
1614
1615 CHANGED_LEAF_MATRIX set if the dimension or location of a matrix of
1616 any window in the tree will be changed or have been changed (see
1617 DIM_ONLY_P)
1618
1619 *WINDOW_CHANGE_FLAGS must be initialized by the caller of this
1620 function.
1621
1622 Windows are arranged into chains of windows on the same level
1623 through the next fields of window structures. Such a level can be
1624 either a sequence of horizontally adjacent windows from left to
1625 right, or a sequence of vertically adjacent windows from top to
1626 bottom. Each window in a horizontal sequence can be either a leaf
1627 window or a vertical sequence; a window in a vertical sequence can
1628 be either a leaf or a horizontal sequence. All windows in a
1629 horizontal sequence have the same height, and all windows in a
1630 vertical sequence have the same width.
1631
1632 This function uses, for historical reasons, a more general
1633 algorithm to determine glyph matrix dimensions that would be
1634 necessary.
1635
1636 The matrix height of a horizontal sequence is determined by the
1637 maximum height of any matrix in the sequence. The matrix width of
1638 a horizontal sequence is computed by adding up matrix widths of
1639 windows in the sequence.
1640
1641 |<------- result width ------->|
1642 +---------+----------+---------+ ---
1643 | | | | |
1644 | | | |
1645 +---------+ | | result height
1646 | +---------+
1647 | | |
1648 +----------+ ---
1649
1650 The matrix width of a vertical sequence is the maximum matrix width
1651 of any window in the sequence. Its height is computed by adding up
1652 matrix heights of windows in the sequence.
1653
1654 |<---- result width -->|
1655 +---------+ ---
1656 | | |
1657 | | |
1658 +---------+--+ |
1659 | | |
1660 | | result height
1661 | |
1662 +------------+---------+ |
1663 | | |
1664 | | |
1665 +------------+---------+ --- */
1666
1667 /* Bit indicating that a new matrix will be allocated or has been
1668 allocated. */
1669
1670 #define NEW_LEAF_MATRIX (1 << 0)
1671
1672 /* Bit indicating that a matrix will or has changed its location or
1673 size. */
1674
1675 #define CHANGED_LEAF_MATRIX (1 << 1)
1676
1677 static struct dim
1678 allocate_matrices_for_frame_redisplay (Lisp_Object window, int x, int y,
1679 int dim_only_p, int *window_change_flags)
1680 {
1681 struct frame *f = XFRAME (WINDOW_FRAME (XWINDOW (window)));
1682 int x0 = x, y0 = y;
1683 int wmax = 0, hmax = 0;
1684 struct dim total;
1685 struct dim dim;
1686 struct window *w;
1687 int in_horz_combination_p;
1688
1689 /* What combination is WINDOW part of? Compute this once since the
1690 result is the same for all windows in the `next' chain. The
1691 special case of a root window (parent equal to nil) is treated
1692 like a vertical combination because a root window's `next'
1693 points to the mini-buffer window, if any, which is arranged
1694 vertically below other windows. */
1695 in_horz_combination_p
1696 = (!NILP (XWINDOW (window)->parent)
1697 && !NILP (XWINDOW (XWINDOW (window)->parent)->hchild));
1698
1699 /* For WINDOW and all windows on the same level. */
1700 do
1701 {
1702 w = XWINDOW (window);
1703
1704 /* Get the dimension of the window sub-matrix for W, depending
1705 on whether this is a combination or a leaf window. */
1706 if (!NILP (w->hchild))
1707 dim = allocate_matrices_for_frame_redisplay (w->hchild, x, y,
1708 dim_only_p,
1709 window_change_flags);
1710 else if (!NILP (w->vchild))
1711 dim = allocate_matrices_for_frame_redisplay (w->vchild, x, y,
1712 dim_only_p,
1713 window_change_flags);
1714 else
1715 {
1716 /* If not already done, allocate sub-matrix structures. */
1717 if (w->desired_matrix == NULL)
1718 {
1719 w->desired_matrix = new_glyph_matrix (f->desired_pool);
1720 w->current_matrix = new_glyph_matrix (f->current_pool);
1721 *window_change_flags |= NEW_LEAF_MATRIX;
1722 }
1723
1724 /* Width and height MUST be chosen so that there are no
1725 holes in the frame matrix. */
1726 dim.width = required_matrix_width (w);
1727 dim.height = required_matrix_height (w);
1728
1729 /* Will matrix be re-allocated? */
1730 if (x != w->desired_matrix->matrix_x
1731 || y != w->desired_matrix->matrix_y
1732 || dim.width != w->desired_matrix->matrix_w
1733 || dim.height != w->desired_matrix->matrix_h
1734 || (margin_glyphs_to_reserve (w, dim.width,
1735 w->left_margin_cols)
1736 != w->desired_matrix->left_margin_glyphs)
1737 || (margin_glyphs_to_reserve (w, dim.width,
1738 w->right_margin_cols)
1739 != w->desired_matrix->right_margin_glyphs))
1740 *window_change_flags |= CHANGED_LEAF_MATRIX;
1741
1742 /* Actually change matrices, if allowed. Do not consider
1743 CHANGED_LEAF_MATRIX computed above here because the pool
1744 may have been changed which we don't now here. We trust
1745 that we only will be called with DIM_ONLY_P != 0 when
1746 necessary. */
1747 if (!dim_only_p)
1748 {
1749 adjust_glyph_matrix (w, w->desired_matrix, x, y, dim);
1750 adjust_glyph_matrix (w, w->current_matrix, x, y, dim);
1751 }
1752 }
1753
1754 /* If we are part of a horizontal combination, advance x for
1755 windows to the right of W; otherwise advance y for windows
1756 below W. */
1757 if (in_horz_combination_p)
1758 x += dim.width;
1759 else
1760 y += dim.height;
1761
1762 /* Remember maximum glyph matrix dimensions. */
1763 wmax = max (wmax, dim.width);
1764 hmax = max (hmax, dim.height);
1765
1766 /* Next window on same level. */
1767 window = w->next;
1768 }
1769 while (!NILP (window));
1770
1771 /* Set `total' to the total glyph matrix dimension of this window
1772 level. In a vertical combination, the width is the width of the
1773 widest window; the height is the y we finally reached, corrected
1774 by the y we started with. In a horizontal combination, the total
1775 height is the height of the tallest window, and the width is the
1776 x we finally reached, corrected by the x we started with. */
1777 if (in_horz_combination_p)
1778 {
1779 total.width = x - x0;
1780 total.height = hmax;
1781 }
1782 else
1783 {
1784 total.width = wmax;
1785 total.height = y - y0;
1786 }
1787
1788 return total;
1789 }
1790
1791
1792 /* Return the required height of glyph matrices for window W. */
1793
1794 static int
1795 required_matrix_height (struct window *w)
1796 {
1797 #ifdef HAVE_WINDOW_SYSTEM
1798 struct frame *f = XFRAME (w->frame);
1799
1800 if (FRAME_WINDOW_P (f))
1801 {
1802 int ch_height = FRAME_SMALLEST_FONT_HEIGHT (f);
1803 int window_pixel_height = window_box_height (w) + eabs (w->vscroll);
1804 return (((window_pixel_height + ch_height - 1)
1805 / ch_height) * w->nrows_scale_factor
1806 /* One partially visible line at the top and
1807 bottom of the window. */
1808 + 2
1809 /* 2 for header and mode line. */
1810 + 2);
1811 }
1812 #endif /* HAVE_WINDOW_SYSTEM */
1813
1814 return WINDOW_TOTAL_LINES (w);
1815 }
1816
1817
1818 /* Return the required width of glyph matrices for window W. */
1819
1820 static int
1821 required_matrix_width (struct window *w)
1822 {
1823 #ifdef HAVE_WINDOW_SYSTEM
1824 struct frame *f = XFRAME (w->frame);
1825 if (FRAME_WINDOW_P (f))
1826 {
1827 int ch_width = FRAME_SMALLEST_CHAR_WIDTH (f);
1828 int window_pixel_width = WINDOW_TOTAL_WIDTH (w);
1829
1830 /* Compute number of glyphs needed in a glyph row. */
1831 return (((window_pixel_width + ch_width - 1)
1832 / ch_width) * w->ncols_scale_factor
1833 /* 2 partially visible columns in the text area. */
1834 + 2
1835 /* One partially visible column at the right
1836 edge of each marginal area. */
1837 + 1 + 1);
1838 }
1839 #endif /* HAVE_WINDOW_SYSTEM */
1840
1841 return XINT (w->total_cols);
1842 }
1843
1844
1845 /* Allocate window matrices for window-based redisplay. W is the
1846 window whose matrices must be allocated/reallocated. */
1847
1848 static void
1849 allocate_matrices_for_window_redisplay (struct window *w)
1850 {
1851 while (w)
1852 {
1853 if (!NILP (w->vchild))
1854 allocate_matrices_for_window_redisplay (XWINDOW (w->vchild));
1855 else if (!NILP (w->hchild))
1856 allocate_matrices_for_window_redisplay (XWINDOW (w->hchild));
1857 else
1858 {
1859 /* W is a leaf window. */
1860 struct dim dim;
1861
1862 /* If matrices are not yet allocated, allocate them now. */
1863 if (w->desired_matrix == NULL)
1864 {
1865 w->desired_matrix = new_glyph_matrix (NULL);
1866 w->current_matrix = new_glyph_matrix (NULL);
1867 }
1868
1869 dim.width = required_matrix_width (w);
1870 dim.height = required_matrix_height (w);
1871 adjust_glyph_matrix (w, w->desired_matrix, 0, 0, dim);
1872 adjust_glyph_matrix (w, w->current_matrix, 0, 0, dim);
1873 }
1874
1875 w = NILP (w->next) ? NULL : XWINDOW (w->next);
1876 }
1877 }
1878
1879
1880 /* Re-allocate/ re-compute glyph matrices on frame F. If F is null,
1881 do it for all frames; otherwise do it just for the given frame.
1882 This function must be called when a new frame is created, its size
1883 changes, or its window configuration changes. */
1884
1885 void
1886 adjust_glyphs (struct frame *f)
1887 {
1888 /* Block input so that expose events and other events that access
1889 glyph matrices are not processed while we are changing them. */
1890 BLOCK_INPUT;
1891
1892 if (f)
1893 adjust_frame_glyphs (f);
1894 else
1895 {
1896 Lisp_Object tail, lisp_frame;
1897
1898 FOR_EACH_FRAME (tail, lisp_frame)
1899 adjust_frame_glyphs (XFRAME (lisp_frame));
1900 }
1901
1902 UNBLOCK_INPUT;
1903 }
1904
1905
1906 /* Adjust frame glyphs when Emacs is initialized.
1907
1908 To be called from init_display.
1909
1910 We need a glyph matrix because redraw will happen soon.
1911 Unfortunately, window sizes on selected_frame are not yet set to
1912 meaningful values. I believe we can assume that there are only two
1913 windows on the frame---the mini-buffer and the root window. Frame
1914 height and width seem to be correct so far. So, set the sizes of
1915 windows to estimated values. */
1916
1917 static void
1918 adjust_frame_glyphs_initially (void)
1919 {
1920 struct frame *sf = SELECTED_FRAME ();
1921 struct window *root = XWINDOW (sf->root_window);
1922 struct window *mini = XWINDOW (root->next);
1923 int frame_lines = FRAME_LINES (sf);
1924 int frame_cols = FRAME_COLS (sf);
1925 int top_margin = FRAME_TOP_MARGIN (sf);
1926
1927 /* Do it for the root window. */
1928 XSETFASTINT (root->top_line, top_margin);
1929 XSETFASTINT (root->total_lines, frame_lines - 1 - top_margin);
1930 XSETFASTINT (root->total_cols, frame_cols);
1931
1932 /* Do it for the mini-buffer window. */
1933 XSETFASTINT (mini->top_line, frame_lines - 1);
1934 XSETFASTINT (mini->total_lines, 1);
1935 XSETFASTINT (mini->total_cols, frame_cols);
1936
1937 adjust_frame_glyphs (sf);
1938 glyphs_initialized_initially_p = 1;
1939 }
1940
1941
1942 /* Allocate/reallocate glyph matrices of a single frame F. */
1943
1944 static void
1945 adjust_frame_glyphs (struct frame *f)
1946 {
1947 if (FRAME_WINDOW_P (f))
1948 adjust_frame_glyphs_for_window_redisplay (f);
1949 else
1950 adjust_frame_glyphs_for_frame_redisplay (f);
1951
1952 /* Don't forget the message buffer and the buffer for
1953 decode_mode_spec. */
1954 adjust_frame_message_buffer (f);
1955 adjust_decode_mode_spec_buffer (f);
1956
1957 f->glyphs_initialized_p = 1;
1958 }
1959
1960 /* Return 1 if any window in the tree has nonzero window margins. See
1961 the hack at the end of adjust_frame_glyphs_for_frame_redisplay. */
1962 static int
1963 showing_window_margins_p (struct window *w)
1964 {
1965 while (w)
1966 {
1967 if (!NILP (w->hchild))
1968 {
1969 if (showing_window_margins_p (XWINDOW (w->hchild)))
1970 return 1;
1971 }
1972 else if (!NILP (w->vchild))
1973 {
1974 if (showing_window_margins_p (XWINDOW (w->vchild)))
1975 return 1;
1976 }
1977 else if (!NILP (w->left_margin_cols)
1978 || !NILP (w->right_margin_cols))
1979 return 1;
1980
1981 w = NILP (w->next) ? 0 : XWINDOW (w->next);
1982 }
1983 return 0;
1984 }
1985
1986
1987 /* In the window tree with root W, build current matrices of leaf
1988 windows from the frame's current matrix. */
1989
1990 static void
1991 fake_current_matrices (Lisp_Object window)
1992 {
1993 struct window *w;
1994
1995 for (; !NILP (window); window = w->next)
1996 {
1997 w = XWINDOW (window);
1998
1999 if (!NILP (w->hchild))
2000 fake_current_matrices (w->hchild);
2001 else if (!NILP (w->vchild))
2002 fake_current_matrices (w->vchild);
2003 else
2004 {
2005 int i;
2006 struct frame *f = XFRAME (w->frame);
2007 struct glyph_matrix *m = w->current_matrix;
2008 struct glyph_matrix *fm = f->current_matrix;
2009
2010 xassert (m->matrix_h == WINDOW_TOTAL_LINES (w));
2011 xassert (m->matrix_w == WINDOW_TOTAL_COLS (w));
2012
2013 for (i = 0; i < m->matrix_h; ++i)
2014 {
2015 struct glyph_row *r = m->rows + i;
2016 struct glyph_row *fr = fm->rows + i + WINDOW_TOP_EDGE_LINE (w);
2017
2018 xassert (r->glyphs[TEXT_AREA] >= fr->glyphs[TEXT_AREA]
2019 && r->glyphs[LAST_AREA] <= fr->glyphs[LAST_AREA]);
2020
2021 r->enabled_p = fr->enabled_p;
2022 if (r->enabled_p)
2023 {
2024 r->used[LEFT_MARGIN_AREA] = m->left_margin_glyphs;
2025 r->used[RIGHT_MARGIN_AREA] = m->right_margin_glyphs;
2026 r->used[TEXT_AREA] = (m->matrix_w
2027 - r->used[LEFT_MARGIN_AREA]
2028 - r->used[RIGHT_MARGIN_AREA]);
2029 r->mode_line_p = 0;
2030 }
2031 }
2032 }
2033 }
2034 }
2035
2036
2037 /* Save away the contents of frame F's current frame matrix. Value is
2038 a glyph matrix holding the contents of F's current frame matrix. */
2039
2040 static struct glyph_matrix *
2041 save_current_matrix (struct frame *f)
2042 {
2043 int i;
2044 struct glyph_matrix *saved;
2045
2046 saved = (struct glyph_matrix *) xmalloc (sizeof *saved);
2047 memset (saved, 0, sizeof *saved);
2048 saved->nrows = f->current_matrix->nrows;
2049 saved->rows = (struct glyph_row *) xmalloc (saved->nrows
2050 * sizeof *saved->rows);
2051 memset (saved->rows, 0, saved->nrows * sizeof *saved->rows);
2052
2053 for (i = 0; i < saved->nrows; ++i)
2054 {
2055 struct glyph_row *from = f->current_matrix->rows + i;
2056 struct glyph_row *to = saved->rows + i;
2057 ptrdiff_t nbytes = from->used[TEXT_AREA] * sizeof (struct glyph);
2058 to->glyphs[TEXT_AREA] = (struct glyph *) xmalloc (nbytes);
2059 memcpy (to->glyphs[TEXT_AREA], from->glyphs[TEXT_AREA], nbytes);
2060 to->used[TEXT_AREA] = from->used[TEXT_AREA];
2061 }
2062
2063 return saved;
2064 }
2065
2066
2067 /* Restore the contents of frame F's current frame matrix from SAVED,
2068 and free memory associated with SAVED. */
2069
2070 static void
2071 restore_current_matrix (struct frame *f, struct glyph_matrix *saved)
2072 {
2073 int i;
2074
2075 for (i = 0; i < saved->nrows; ++i)
2076 {
2077 struct glyph_row *from = saved->rows + i;
2078 struct glyph_row *to = f->current_matrix->rows + i;
2079 ptrdiff_t nbytes = from->used[TEXT_AREA] * sizeof (struct glyph);
2080 memcpy (to->glyphs[TEXT_AREA], from->glyphs[TEXT_AREA], nbytes);
2081 to->used[TEXT_AREA] = from->used[TEXT_AREA];
2082 xfree (from->glyphs[TEXT_AREA]);
2083 }
2084
2085 xfree (saved->rows);
2086 xfree (saved);
2087 }
2088
2089
2090
2091 /* Allocate/reallocate glyph matrices of a single frame F for
2092 frame-based redisplay. */
2093
2094 static void
2095 adjust_frame_glyphs_for_frame_redisplay (struct frame *f)
2096 {
2097 struct dim matrix_dim;
2098 int pool_changed_p;
2099 int window_change_flags;
2100 int top_window_y;
2101
2102 if (!FRAME_LIVE_P (f))
2103 return;
2104
2105 top_window_y = FRAME_TOP_MARGIN (f);
2106
2107 /* Allocate glyph pool structures if not already done. */
2108 if (f->desired_pool == NULL)
2109 {
2110 f->desired_pool = new_glyph_pool ();
2111 f->current_pool = new_glyph_pool ();
2112 }
2113
2114 /* Allocate frames matrix structures if needed. */
2115 if (f->desired_matrix == NULL)
2116 {
2117 f->desired_matrix = new_glyph_matrix (f->desired_pool);
2118 f->current_matrix = new_glyph_matrix (f->current_pool);
2119 }
2120
2121 /* Compute window glyph matrices. (This takes the mini-buffer
2122 window into account). The result is the size of the frame glyph
2123 matrix needed. The variable window_change_flags is set to a bit
2124 mask indicating whether new matrices will be allocated or
2125 existing matrices change their size or location within the frame
2126 matrix. */
2127 window_change_flags = 0;
2128 matrix_dim
2129 = allocate_matrices_for_frame_redisplay (FRAME_ROOT_WINDOW (f),
2130 0, top_window_y,
2131 1,
2132 &window_change_flags);
2133
2134 /* Add in menu bar lines, if any. */
2135 matrix_dim.height += top_window_y;
2136
2137 /* Enlarge pools as necessary. */
2138 pool_changed_p = realloc_glyph_pool (f->desired_pool, matrix_dim);
2139 realloc_glyph_pool (f->current_pool, matrix_dim);
2140
2141 /* Set up glyph pointers within window matrices. Do this only if
2142 absolutely necessary since it requires a frame redraw. */
2143 if (pool_changed_p || window_change_flags)
2144 {
2145 /* Do it for window matrices. */
2146 allocate_matrices_for_frame_redisplay (FRAME_ROOT_WINDOW (f),
2147 0, top_window_y, 0,
2148 &window_change_flags);
2149
2150 /* Size of frame matrices must equal size of frame. Note
2151 that we are called for X frames with window widths NOT equal
2152 to the frame width (from CHANGE_FRAME_SIZE_1). */
2153 xassert (matrix_dim.width == FRAME_COLS (f)
2154 && matrix_dim.height == FRAME_LINES (f));
2155
2156 /* Pointers to glyph memory in glyph rows are exchanged during
2157 the update phase of redisplay, which means in general that a
2158 frame's current matrix consists of pointers into both the
2159 desired and current glyph pool of the frame. Adjusting a
2160 matrix sets the frame matrix up so that pointers are all into
2161 the same pool. If we want to preserve glyph contents of the
2162 current matrix over a call to adjust_glyph_matrix, we must
2163 make a copy of the current glyphs, and restore the current
2164 matrix' contents from that copy. */
2165 if (display_completed
2166 && !FRAME_GARBAGED_P (f)
2167 && matrix_dim.width == f->current_matrix->matrix_w
2168 && matrix_dim.height == f->current_matrix->matrix_h
2169 /* For some reason, the frame glyph matrix gets corrupted if
2170 any of the windows contain margins. I haven't been able
2171 to hunt down the reason, but for the moment this prevents
2172 the problem from manifesting. -- cyd */
2173 && !showing_window_margins_p (XWINDOW (FRAME_ROOT_WINDOW (f))))
2174 {
2175 struct glyph_matrix *copy = save_current_matrix (f);
2176 adjust_glyph_matrix (NULL, f->desired_matrix, 0, 0, matrix_dim);
2177 adjust_glyph_matrix (NULL, f->current_matrix, 0, 0, matrix_dim);
2178 restore_current_matrix (f, copy);
2179 fake_current_matrices (FRAME_ROOT_WINDOW (f));
2180 }
2181 else
2182 {
2183 adjust_glyph_matrix (NULL, f->desired_matrix, 0, 0, matrix_dim);
2184 adjust_glyph_matrix (NULL, f->current_matrix, 0, 0, matrix_dim);
2185 SET_FRAME_GARBAGED (f);
2186 }
2187 }
2188 }
2189
2190
2191 /* Allocate/reallocate glyph matrices of a single frame F for
2192 window-based redisplay. */
2193
2194 static void
2195 adjust_frame_glyphs_for_window_redisplay (struct frame *f)
2196 {
2197 xassert (FRAME_WINDOW_P (f) && FRAME_LIVE_P (f));
2198
2199 /* Allocate/reallocate window matrices. */
2200 allocate_matrices_for_window_redisplay (XWINDOW (FRAME_ROOT_WINDOW (f)));
2201
2202 #ifdef HAVE_X_WINDOWS
2203 /* Allocate/ reallocate matrices of the dummy window used to display
2204 the menu bar under X when no X toolkit support is available. */
2205 #if ! defined (USE_X_TOOLKIT) && ! defined (USE_GTK)
2206 {
2207 /* Allocate a dummy window if not already done. */
2208 struct window *w;
2209 if (NILP (f->menu_bar_window))
2210 {
2211 f->menu_bar_window = make_window ();
2212 w = XWINDOW (f->menu_bar_window);
2213 XSETFRAME (w->frame, f);
2214 w->pseudo_window_p = 1;
2215 }
2216 else
2217 w = XWINDOW (f->menu_bar_window);
2218
2219 /* Set window dimensions to frame dimensions and allocate or
2220 adjust glyph matrices of W. */
2221 XSETFASTINT (w->top_line, 0);
2222 XSETFASTINT (w->left_col, 0);
2223 XSETFASTINT (w->total_lines, FRAME_MENU_BAR_LINES (f));
2224 XSETFASTINT (w->total_cols, FRAME_TOTAL_COLS (f));
2225 allocate_matrices_for_window_redisplay (w);
2226 }
2227 #endif /* not USE_X_TOOLKIT && not USE_GTK */
2228 #endif /* HAVE_X_WINDOWS */
2229
2230 #ifndef USE_GTK
2231 {
2232 /* Allocate/ reallocate matrices of the tool bar window. If we
2233 don't have a tool bar window yet, make one. */
2234 struct window *w;
2235 if (NILP (f->tool_bar_window))
2236 {
2237 f->tool_bar_window = make_window ();
2238 w = XWINDOW (f->tool_bar_window);
2239 XSETFRAME (w->frame, f);
2240 w->pseudo_window_p = 1;
2241 }
2242 else
2243 w = XWINDOW (f->tool_bar_window);
2244
2245 XSETFASTINT (w->top_line, FRAME_MENU_BAR_LINES (f));
2246 XSETFASTINT (w->left_col, 0);
2247 XSETFASTINT (w->total_lines, FRAME_TOOL_BAR_LINES (f));
2248 XSETFASTINT (w->total_cols, FRAME_TOTAL_COLS (f));
2249 allocate_matrices_for_window_redisplay (w);
2250 }
2251 #endif
2252 }
2253
2254
2255 /* Adjust/ allocate message buffer of frame F.
2256
2257 Note that the message buffer is never freed. Since I could not
2258 find a free in 19.34, I assume that freeing it would be
2259 problematic in some way and don't do it either.
2260
2261 (Implementation note: It should be checked if we can free it
2262 eventually without causing trouble). */
2263
2264 static void
2265 adjust_frame_message_buffer (struct frame *f)
2266 {
2267 ptrdiff_t size = FRAME_MESSAGE_BUF_SIZE (f) + 1;
2268
2269 if (FRAME_MESSAGE_BUF (f))
2270 {
2271 char *buffer = FRAME_MESSAGE_BUF (f);
2272 char *new_buffer = (char *) xrealloc (buffer, size);
2273 FRAME_MESSAGE_BUF (f) = new_buffer;
2274 }
2275 else
2276 FRAME_MESSAGE_BUF (f) = (char *) xmalloc (size);
2277 }
2278
2279
2280 /* Re-allocate buffer for decode_mode_spec on frame F. */
2281
2282 static void
2283 adjust_decode_mode_spec_buffer (struct frame *f)
2284 {
2285 f->decode_mode_spec_buffer
2286 = (char *) xrealloc (f->decode_mode_spec_buffer,
2287 FRAME_MESSAGE_BUF_SIZE (f) + 1);
2288 }
2289
2290
2291 \f
2292 /**********************************************************************
2293 Freeing Glyph Matrices
2294 **********************************************************************/
2295
2296 /* Free glyph memory for a frame F. F may be null. This function can
2297 be called for the same frame more than once. The root window of
2298 F may be nil when this function is called. This is the case when
2299 the function is called when F is destroyed. */
2300
2301 void
2302 free_glyphs (struct frame *f)
2303 {
2304 if (f && f->glyphs_initialized_p)
2305 {
2306 /* Block interrupt input so that we don't get surprised by an X
2307 event while we're in an inconsistent state. */
2308 BLOCK_INPUT;
2309 f->glyphs_initialized_p = 0;
2310
2311 /* Release window sub-matrices. */
2312 if (!NILP (f->root_window))
2313 free_window_matrices (XWINDOW (f->root_window));
2314
2315 /* Free the dummy window for menu bars without X toolkit and its
2316 glyph matrices. */
2317 if (!NILP (f->menu_bar_window))
2318 {
2319 struct window *w = XWINDOW (f->menu_bar_window);
2320 free_glyph_matrix (w->desired_matrix);
2321 free_glyph_matrix (w->current_matrix);
2322 w->desired_matrix = w->current_matrix = NULL;
2323 f->menu_bar_window = Qnil;
2324 }
2325
2326 /* Free the tool bar window and its glyph matrices. */
2327 if (!NILP (f->tool_bar_window))
2328 {
2329 struct window *w = XWINDOW (f->tool_bar_window);
2330 free_glyph_matrix (w->desired_matrix);
2331 free_glyph_matrix (w->current_matrix);
2332 w->desired_matrix = w->current_matrix = NULL;
2333 f->tool_bar_window = Qnil;
2334 }
2335
2336 /* Release frame glyph matrices. Reset fields to zero in
2337 case we are called a second time. */
2338 if (f->desired_matrix)
2339 {
2340 free_glyph_matrix (f->desired_matrix);
2341 free_glyph_matrix (f->current_matrix);
2342 f->desired_matrix = f->current_matrix = NULL;
2343 }
2344
2345 /* Release glyph pools. */
2346 if (f->desired_pool)
2347 {
2348 free_glyph_pool (f->desired_pool);
2349 free_glyph_pool (f->current_pool);
2350 f->desired_pool = f->current_pool = NULL;
2351 }
2352
2353 UNBLOCK_INPUT;
2354 }
2355 }
2356
2357
2358 /* Free glyph sub-matrices in the window tree rooted at W. This
2359 function may be called with a null pointer, and it may be called on
2360 the same tree more than once. */
2361
2362 void
2363 free_window_matrices (struct window *w)
2364 {
2365 while (w)
2366 {
2367 if (!NILP (w->hchild))
2368 free_window_matrices (XWINDOW (w->hchild));
2369 else if (!NILP (w->vchild))
2370 free_window_matrices (XWINDOW (w->vchild));
2371 else
2372 {
2373 /* This is a leaf window. Free its memory and reset fields
2374 to zero in case this function is called a second time for
2375 W. */
2376 free_glyph_matrix (w->current_matrix);
2377 free_glyph_matrix (w->desired_matrix);
2378 w->current_matrix = w->desired_matrix = NULL;
2379 }
2380
2381 /* Next window on same level. */
2382 w = NILP (w->next) ? 0 : XWINDOW (w->next);
2383 }
2384 }
2385
2386
2387 /* Check glyph memory leaks. This function is called from
2388 shut_down_emacs. Note that frames are not destroyed when Emacs
2389 exits. We therefore free all glyph memory for all active frames
2390 explicitly and check that nothing is left allocated. */
2391
2392 void
2393 check_glyph_memory (void)
2394 {
2395 Lisp_Object tail, frame;
2396
2397 /* Free glyph memory for all frames. */
2398 FOR_EACH_FRAME (tail, frame)
2399 free_glyphs (XFRAME (frame));
2400
2401 /* Check that nothing is left allocated. */
2402 if (glyph_matrix_count)
2403 abort ();
2404 if (glyph_pool_count)
2405 abort ();
2406 }
2407
2408
2409 \f
2410 /**********************************************************************
2411 Building a Frame Matrix
2412 **********************************************************************/
2413
2414 /* Most of the redisplay code works on glyph matrices attached to
2415 windows. This is a good solution most of the time, but it is not
2416 suitable for terminal code. Terminal output functions cannot rely
2417 on being able to set an arbitrary terminal window. Instead they
2418 must be provided with a view of the whole frame, i.e. the whole
2419 screen. We build such a view by constructing a frame matrix from
2420 window matrices in this section.
2421
2422 Windows that must be updated have their must_be_update_p flag set.
2423 For all such windows, their desired matrix is made part of the
2424 desired frame matrix. For other windows, their current matrix is
2425 made part of the desired frame matrix.
2426
2427 +-----------------+----------------+
2428 | desired | desired |
2429 | | |
2430 +-----------------+----------------+
2431 | current |
2432 | |
2433 +----------------------------------+
2434
2435 Desired window matrices can be made part of the frame matrix in a
2436 cheap way: We exploit the fact that the desired frame matrix and
2437 desired window matrices share their glyph memory. This is not
2438 possible for current window matrices. Their glyphs are copied to
2439 the desired frame matrix. The latter is equivalent to
2440 preserve_other_columns in the old redisplay.
2441
2442 Used glyphs counters for frame matrix rows are the result of adding
2443 up glyph lengths of the window matrices. A line in the frame
2444 matrix is enabled, if a corresponding line in a window matrix is
2445 enabled.
2446
2447 After building the desired frame matrix, it will be passed to
2448 terminal code, which will manipulate both the desired and current
2449 frame matrix. Changes applied to the frame's current matrix have
2450 to be visible in current window matrices afterwards, of course.
2451
2452 This problem is solved like this:
2453
2454 1. Window and frame matrices share glyphs. Window matrices are
2455 constructed in a way that their glyph contents ARE the glyph
2456 contents needed in a frame matrix. Thus, any modification of
2457 glyphs done in terminal code will be reflected in window matrices
2458 automatically.
2459
2460 2. Exchanges of rows in a frame matrix done by terminal code are
2461 intercepted by hook functions so that corresponding row operations
2462 on window matrices can be performed. This is necessary because we
2463 use pointers to glyphs in glyph row structures. To satisfy the
2464 assumption of point 1 above that glyphs are updated implicitly in
2465 window matrices when they are manipulated via the frame matrix,
2466 window and frame matrix must of course agree where to find the
2467 glyphs for their rows. Possible manipulations that must be
2468 mirrored are assignments of rows of the desired frame matrix to the
2469 current frame matrix and scrolling the current frame matrix. */
2470
2471 /* Build frame F's desired matrix from window matrices. Only windows
2472 which have the flag must_be_updated_p set have to be updated. Menu
2473 bar lines of a frame are not covered by window matrices, so make
2474 sure not to touch them in this function. */
2475
2476 static void
2477 build_frame_matrix (struct frame *f)
2478 {
2479 int i;
2480
2481 /* F must have a frame matrix when this function is called. */
2482 xassert (!FRAME_WINDOW_P (f));
2483
2484 /* Clear all rows in the frame matrix covered by window matrices.
2485 Menu bar lines are not covered by windows. */
2486 for (i = FRAME_TOP_MARGIN (f); i < f->desired_matrix->nrows; ++i)
2487 clear_glyph_row (MATRIX_ROW (f->desired_matrix, i));
2488
2489 /* Build the matrix by walking the window tree. */
2490 build_frame_matrix_from_window_tree (f->desired_matrix,
2491 XWINDOW (FRAME_ROOT_WINDOW (f)));
2492 }
2493
2494
2495 /* Walk a window tree, building a frame matrix MATRIX from window
2496 matrices. W is the root of a window tree. */
2497
2498 static void
2499 build_frame_matrix_from_window_tree (struct glyph_matrix *matrix, struct window *w)
2500 {
2501 while (w)
2502 {
2503 if (!NILP (w->hchild))
2504 build_frame_matrix_from_window_tree (matrix, XWINDOW (w->hchild));
2505 else if (!NILP (w->vchild))
2506 build_frame_matrix_from_window_tree (matrix, XWINDOW (w->vchild));
2507 else
2508 build_frame_matrix_from_leaf_window (matrix, w);
2509
2510 w = NILP (w->next) ? 0 : XWINDOW (w->next);
2511 }
2512 }
2513
2514
2515 /* Add a window's matrix to a frame matrix. FRAME_MATRIX is the
2516 desired frame matrix built. W is a leaf window whose desired or
2517 current matrix is to be added to FRAME_MATRIX. W's flag
2518 must_be_updated_p determines which matrix it contributes to
2519 FRAME_MATRIX. If must_be_updated_p is non-zero, W's desired matrix
2520 is added to FRAME_MATRIX, otherwise W's current matrix is added.
2521 Adding a desired matrix means setting up used counters and such in
2522 frame rows, while adding a current window matrix to FRAME_MATRIX
2523 means copying glyphs. The latter case corresponds to
2524 preserve_other_columns in the old redisplay. */
2525
2526 static void
2527 build_frame_matrix_from_leaf_window (struct glyph_matrix *frame_matrix, struct window *w)
2528 {
2529 struct glyph_matrix *window_matrix;
2530 int window_y, frame_y;
2531 /* If non-zero, a glyph to insert at the right border of W. */
2532 GLYPH right_border_glyph;
2533
2534 SET_GLYPH_FROM_CHAR (right_border_glyph, 0);
2535
2536 /* Set window_matrix to the matrix we have to add to FRAME_MATRIX. */
2537 if (w->must_be_updated_p)
2538 {
2539 window_matrix = w->desired_matrix;
2540
2541 /* Decide whether we want to add a vertical border glyph. */
2542 if (!WINDOW_RIGHTMOST_P (w))
2543 {
2544 struct Lisp_Char_Table *dp = window_display_table (w);
2545 Lisp_Object gc;
2546
2547 SET_GLYPH_FROM_CHAR (right_border_glyph, '|');
2548 if (dp
2549 && (gc = DISP_BORDER_GLYPH (dp), GLYPH_CODE_P (gc))
2550 && GLYPH_CODE_CHAR_VALID_P (gc))
2551 {
2552 SET_GLYPH_FROM_GLYPH_CODE (right_border_glyph, gc);
2553 spec_glyph_lookup_face (w, &right_border_glyph);
2554 }
2555
2556 if (GLYPH_FACE (right_border_glyph) <= 0)
2557 SET_GLYPH_FACE (right_border_glyph, VERTICAL_BORDER_FACE_ID);
2558 }
2559 }
2560 else
2561 window_matrix = w->current_matrix;
2562
2563 /* For all rows in the window matrix and corresponding rows in the
2564 frame matrix. */
2565 window_y = 0;
2566 frame_y = window_matrix->matrix_y;
2567 while (window_y < window_matrix->nrows)
2568 {
2569 struct glyph_row *frame_row = frame_matrix->rows + frame_y;
2570 struct glyph_row *window_row = window_matrix->rows + window_y;
2571 int current_row_p = window_matrix == w->current_matrix;
2572
2573 /* Fill up the frame row with spaces up to the left margin of the
2574 window row. */
2575 fill_up_frame_row_with_spaces (frame_row, window_matrix->matrix_x);
2576
2577 /* Fill up areas in the window matrix row with spaces. */
2578 fill_up_glyph_row_with_spaces (window_row);
2579
2580 /* If only part of W's desired matrix has been built, and
2581 window_row wasn't displayed, use the corresponding current
2582 row instead. */
2583 if (window_matrix == w->desired_matrix
2584 && !window_row->enabled_p)
2585 {
2586 window_row = w->current_matrix->rows + window_y;
2587 current_row_p = 1;
2588 }
2589
2590 if (current_row_p)
2591 {
2592 /* Copy window row to frame row. */
2593 memcpy (frame_row->glyphs[TEXT_AREA] + window_matrix->matrix_x,
2594 window_row->glyphs[0],
2595 window_matrix->matrix_w * sizeof (struct glyph));
2596 }
2597 else
2598 {
2599 xassert (window_row->enabled_p);
2600
2601 /* Only when a desired row has been displayed, we want
2602 the corresponding frame row to be updated. */
2603 frame_row->enabled_p = 1;
2604
2605 /* Maybe insert a vertical border between horizontally adjacent
2606 windows. */
2607 if (GLYPH_CHAR (right_border_glyph) != 0)
2608 {
2609 struct glyph *border = window_row->glyphs[LAST_AREA] - 1;
2610 SET_CHAR_GLYPH_FROM_GLYPH (*border, right_border_glyph);
2611 }
2612
2613 #if GLYPH_DEBUG
2614 /* Window row window_y must be a slice of frame row
2615 frame_y. */
2616 xassert (glyph_row_slice_p (window_row, frame_row));
2617
2618 /* If rows are in sync, we don't have to copy glyphs because
2619 frame and window share glyphs. */
2620
2621 strcpy (w->current_matrix->method, w->desired_matrix->method);
2622 add_window_display_history (w, w->current_matrix->method, 0);
2623 #endif
2624 }
2625
2626 /* Set number of used glyphs in the frame matrix. Since we fill
2627 up with spaces, and visit leaf windows from left to right it
2628 can be done simply. */
2629 frame_row->used[TEXT_AREA]
2630 = window_matrix->matrix_x + window_matrix->matrix_w;
2631
2632 /* Next row. */
2633 ++window_y;
2634 ++frame_y;
2635 }
2636 }
2637
2638 /* Given a user-specified glyph, possibly including a Lisp-level face
2639 ID, return a glyph that has a realized face ID.
2640 This is used for glyphs displayed specially and not part of the text;
2641 for instance, vertical separators, truncation markers, etc. */
2642
2643 void
2644 spec_glyph_lookup_face (struct window *w, GLYPH *glyph)
2645 {
2646 int lface_id = GLYPH_FACE (*glyph);
2647 /* Convert the glyph's specified face to a realized (cache) face. */
2648 if (lface_id > 0)
2649 {
2650 int face_id = merge_faces (XFRAME (w->frame),
2651 Qt, lface_id, DEFAULT_FACE_ID);
2652 SET_GLYPH_FACE (*glyph, face_id);
2653 }
2654 }
2655
2656 /* Add spaces to a glyph row ROW in a window matrix.
2657
2658 Each row has the form:
2659
2660 +---------+-----------------------------+------------+
2661 | left | text | right |
2662 +---------+-----------------------------+------------+
2663
2664 Left and right marginal areas are optional. This function adds
2665 spaces to areas so that there are no empty holes between areas.
2666 In other words: If the right area is not empty, the text area
2667 is filled up with spaces up to the right area. If the text area
2668 is not empty, the left area is filled up.
2669
2670 To be called for frame-based redisplay, only. */
2671
2672 static void
2673 fill_up_glyph_row_with_spaces (struct glyph_row *row)
2674 {
2675 fill_up_glyph_row_area_with_spaces (row, LEFT_MARGIN_AREA);
2676 fill_up_glyph_row_area_with_spaces (row, TEXT_AREA);
2677 fill_up_glyph_row_area_with_spaces (row, RIGHT_MARGIN_AREA);
2678 }
2679
2680
2681 /* Fill area AREA of glyph row ROW with spaces. To be called for
2682 frame-based redisplay only. */
2683
2684 static void
2685 fill_up_glyph_row_area_with_spaces (struct glyph_row *row, int area)
2686 {
2687 if (row->glyphs[area] < row->glyphs[area + 1])
2688 {
2689 struct glyph *end = row->glyphs[area + 1];
2690 struct glyph *text = row->glyphs[area] + row->used[area];
2691
2692 while (text < end)
2693 *text++ = space_glyph;
2694 row->used[area] = text - row->glyphs[area];
2695 }
2696 }
2697
2698
2699 /* Add spaces to the end of ROW in a frame matrix until index UPTO is
2700 reached. In frame matrices only one area, TEXT_AREA, is used. */
2701
2702 static void
2703 fill_up_frame_row_with_spaces (struct glyph_row *row, int upto)
2704 {
2705 int i = row->used[TEXT_AREA];
2706 struct glyph *glyph = row->glyphs[TEXT_AREA];
2707
2708 while (i < upto)
2709 glyph[i++] = space_glyph;
2710
2711 row->used[TEXT_AREA] = i;
2712 }
2713
2714
2715 \f
2716 /**********************************************************************
2717 Mirroring operations on frame matrices in window matrices
2718 **********************************************************************/
2719
2720 /* Set frame being updated via frame-based redisplay to F. This
2721 function must be called before updates to make explicit that we are
2722 working on frame matrices or not. */
2723
2724 static inline void
2725 set_frame_matrix_frame (struct frame *f)
2726 {
2727 frame_matrix_frame = f;
2728 }
2729
2730
2731 /* Make sure glyph row ROW in CURRENT_MATRIX is up to date.
2732 DESIRED_MATRIX is the desired matrix corresponding to
2733 CURRENT_MATRIX. The update is done by exchanging glyph pointers
2734 between rows in CURRENT_MATRIX and DESIRED_MATRIX. If
2735 frame_matrix_frame is non-null, this indicates that the exchange is
2736 done in frame matrices, and that we have to perform analogous
2737 operations in window matrices of frame_matrix_frame. */
2738
2739 static inline void
2740 make_current (struct glyph_matrix *desired_matrix, struct glyph_matrix *current_matrix, int row)
2741 {
2742 struct glyph_row *current_row = MATRIX_ROW (current_matrix, row);
2743 struct glyph_row *desired_row = MATRIX_ROW (desired_matrix, row);
2744 int mouse_face_p = current_row->mouse_face_p;
2745
2746 /* Do current_row = desired_row. This exchanges glyph pointers
2747 between both rows, and does a structure assignment otherwise. */
2748 assign_row (current_row, desired_row);
2749
2750 /* Enable current_row to mark it as valid. */
2751 current_row->enabled_p = 1;
2752 current_row->mouse_face_p = mouse_face_p;
2753
2754 /* If we are called on frame matrices, perform analogous operations
2755 for window matrices. */
2756 if (frame_matrix_frame)
2757 mirror_make_current (XWINDOW (frame_matrix_frame->root_window), row);
2758 }
2759
2760
2761 /* W is the root of a window tree. FRAME_ROW is the index of a row in
2762 W's frame which has been made current (by swapping pointers between
2763 current and desired matrix). Perform analogous operations in the
2764 matrices of leaf windows in the window tree rooted at W. */
2765
2766 static void
2767 mirror_make_current (struct window *w, int frame_row)
2768 {
2769 while (w)
2770 {
2771 if (!NILP (w->hchild))
2772 mirror_make_current (XWINDOW (w->hchild), frame_row);
2773 else if (!NILP (w->vchild))
2774 mirror_make_current (XWINDOW (w->vchild), frame_row);
2775 else
2776 {
2777 /* Row relative to window W. Don't use FRAME_TO_WINDOW_VPOS
2778 here because the checks performed in debug mode there
2779 will not allow the conversion. */
2780 int row = frame_row - w->desired_matrix->matrix_y;
2781
2782 /* If FRAME_ROW is within W, assign the desired row to the
2783 current row (exchanging glyph pointers). */
2784 if (row >= 0 && row < w->desired_matrix->matrix_h)
2785 {
2786 struct glyph_row *current_row
2787 = MATRIX_ROW (w->current_matrix, row);
2788 struct glyph_row *desired_row
2789 = MATRIX_ROW (w->desired_matrix, row);
2790
2791 if (desired_row->enabled_p)
2792 assign_row (current_row, desired_row);
2793 else
2794 swap_glyph_pointers (desired_row, current_row);
2795 current_row->enabled_p = 1;
2796
2797 /* Set the Y coordinate of the mode/header line's row.
2798 It is needed in draw_row_with_mouse_face to find the
2799 screen coordinates. (Window-based redisplay sets
2800 this in update_window, but no one seems to do that
2801 for frame-based redisplay.) */
2802 if (current_row->mode_line_p)
2803 current_row->y = row;
2804 }
2805 }
2806
2807 w = NILP (w->next) ? 0 : XWINDOW (w->next);
2808 }
2809 }
2810
2811
2812 /* Perform row dance after scrolling. We are working on the range of
2813 lines UNCHANGED_AT_TOP + 1 to UNCHANGED_AT_TOP + NLINES (not
2814 including) in MATRIX. COPY_FROM is a vector containing, for each
2815 row I in the range 0 <= I < NLINES, the index of the original line
2816 to move to I. This index is relative to the row range, i.e. 0 <=
2817 index < NLINES. RETAINED_P is a vector containing zero for each
2818 row 0 <= I < NLINES which is empty.
2819
2820 This function is called from do_scrolling and do_direct_scrolling. */
2821
2822 void
2823 mirrored_line_dance (struct glyph_matrix *matrix, int unchanged_at_top, int nlines,
2824 int *copy_from, char *retained_p)
2825 {
2826 /* A copy of original rows. */
2827 struct glyph_row *old_rows;
2828
2829 /* Rows to assign to. */
2830 struct glyph_row *new_rows = MATRIX_ROW (matrix, unchanged_at_top);
2831
2832 int i;
2833
2834 /* Make a copy of the original rows. */
2835 old_rows = (struct glyph_row *) alloca (nlines * sizeof *old_rows);
2836 memcpy (old_rows, new_rows, nlines * sizeof *old_rows);
2837
2838 /* Assign new rows, maybe clear lines. */
2839 for (i = 0; i < nlines; ++i)
2840 {
2841 int enabled_before_p = new_rows[i].enabled_p;
2842
2843 xassert (i + unchanged_at_top < matrix->nrows);
2844 xassert (unchanged_at_top + copy_from[i] < matrix->nrows);
2845 new_rows[i] = old_rows[copy_from[i]];
2846 new_rows[i].enabled_p = enabled_before_p;
2847
2848 /* RETAINED_P is zero for empty lines. */
2849 if (!retained_p[copy_from[i]])
2850 new_rows[i].enabled_p = 0;
2851 }
2852
2853 /* Do the same for window matrices, if MATRIX is a frame matrix. */
2854 if (frame_matrix_frame)
2855 mirror_line_dance (XWINDOW (frame_matrix_frame->root_window),
2856 unchanged_at_top, nlines, copy_from, retained_p);
2857 }
2858
2859
2860 /* Synchronize glyph pointers in the current matrix of window W with
2861 the current frame matrix. */
2862
2863 static void
2864 sync_window_with_frame_matrix_rows (struct window *w)
2865 {
2866 struct frame *f = XFRAME (w->frame);
2867 struct glyph_row *window_row, *window_row_end, *frame_row;
2868 int left, right, x, width;
2869
2870 /* Preconditions: W must be a leaf window on a tty frame. */
2871 xassert (NILP (w->hchild) && NILP (w->vchild));
2872 xassert (!FRAME_WINDOW_P (f));
2873
2874 left = margin_glyphs_to_reserve (w, 1, w->left_margin_cols);
2875 right = margin_glyphs_to_reserve (w, 1, w->right_margin_cols);
2876 x = w->current_matrix->matrix_x;
2877 width = w->current_matrix->matrix_w;
2878
2879 window_row = w->current_matrix->rows;
2880 window_row_end = window_row + w->current_matrix->nrows;
2881 frame_row = f->current_matrix->rows + WINDOW_TOP_EDGE_LINE (w);
2882
2883 for (; window_row < window_row_end; ++window_row, ++frame_row)
2884 {
2885 window_row->glyphs[LEFT_MARGIN_AREA]
2886 = frame_row->glyphs[0] + x;
2887 window_row->glyphs[TEXT_AREA]
2888 = window_row->glyphs[LEFT_MARGIN_AREA] + left;
2889 window_row->glyphs[LAST_AREA]
2890 = window_row->glyphs[LEFT_MARGIN_AREA] + width;
2891 window_row->glyphs[RIGHT_MARGIN_AREA]
2892 = window_row->glyphs[LAST_AREA] - right;
2893 }
2894 }
2895
2896
2897 /* Return the window in the window tree rooted in W containing frame
2898 row ROW. Value is null if none is found. */
2899
2900 static struct window *
2901 frame_row_to_window (struct window *w, int row)
2902 {
2903 struct window *found = NULL;
2904
2905 while (w && !found)
2906 {
2907 if (!NILP (w->hchild))
2908 found = frame_row_to_window (XWINDOW (w->hchild), row);
2909 else if (!NILP (w->vchild))
2910 found = frame_row_to_window (XWINDOW (w->vchild), row);
2911 else if (row >= WINDOW_TOP_EDGE_LINE (w)
2912 && row < WINDOW_BOTTOM_EDGE_LINE (w))
2913 found = w;
2914
2915 w = NILP (w->next) ? 0 : XWINDOW (w->next);
2916 }
2917
2918 return found;
2919 }
2920
2921
2922 /* Perform a line dance in the window tree rooted at W, after
2923 scrolling a frame matrix in mirrored_line_dance.
2924
2925 We are working on the range of lines UNCHANGED_AT_TOP + 1 to
2926 UNCHANGED_AT_TOP + NLINES (not including) in W's frame matrix.
2927 COPY_FROM is a vector containing, for each row I in the range 0 <=
2928 I < NLINES, the index of the original line to move to I. This
2929 index is relative to the row range, i.e. 0 <= index < NLINES.
2930 RETAINED_P is a vector containing zero for each row 0 <= I < NLINES
2931 which is empty. */
2932
2933 static void
2934 mirror_line_dance (struct window *w, int unchanged_at_top, int nlines, int *copy_from, char *retained_p)
2935 {
2936 while (w)
2937 {
2938 if (!NILP (w->hchild))
2939 mirror_line_dance (XWINDOW (w->hchild), unchanged_at_top,
2940 nlines, copy_from, retained_p);
2941 else if (!NILP (w->vchild))
2942 mirror_line_dance (XWINDOW (w->vchild), unchanged_at_top,
2943 nlines, copy_from, retained_p);
2944 else
2945 {
2946 /* W is a leaf window, and we are working on its current
2947 matrix m. */
2948 struct glyph_matrix *m = w->current_matrix;
2949 int i, sync_p = 0;
2950 struct glyph_row *old_rows;
2951
2952 /* Make a copy of the original rows of matrix m. */
2953 old_rows = (struct glyph_row *) alloca (m->nrows * sizeof *old_rows);
2954 memcpy (old_rows, m->rows, m->nrows * sizeof *old_rows);
2955
2956 for (i = 0; i < nlines; ++i)
2957 {
2958 /* Frame relative line assigned to. */
2959 int frame_to = i + unchanged_at_top;
2960
2961 /* Frame relative line assigned. */
2962 int frame_from = copy_from[i] + unchanged_at_top;
2963
2964 /* Window relative line assigned to. */
2965 int window_to = frame_to - m->matrix_y;
2966
2967 /* Window relative line assigned. */
2968 int window_from = frame_from - m->matrix_y;
2969
2970 /* Is assigned line inside window? */
2971 int from_inside_window_p
2972 = window_from >= 0 && window_from < m->matrix_h;
2973
2974 /* Is assigned to line inside window? */
2975 int to_inside_window_p
2976 = window_to >= 0 && window_to < m->matrix_h;
2977
2978 if (from_inside_window_p && to_inside_window_p)
2979 {
2980 /* Enabled setting before assignment. */
2981 int enabled_before_p;
2982
2983 /* Do the assignment. The enabled_p flag is saved
2984 over the assignment because the old redisplay did
2985 that. */
2986 enabled_before_p = m->rows[window_to].enabled_p;
2987 m->rows[window_to] = old_rows[window_from];
2988 m->rows[window_to].enabled_p = enabled_before_p;
2989
2990 /* If frame line is empty, window line is empty, too. */
2991 if (!retained_p[copy_from[i]])
2992 m->rows[window_to].enabled_p = 0;
2993 }
2994 else if (to_inside_window_p)
2995 {
2996 /* A copy between windows. This is an infrequent
2997 case not worth optimizing. */
2998 struct frame *f = XFRAME (w->frame);
2999 struct window *root = XWINDOW (FRAME_ROOT_WINDOW (f));
3000 struct window *w2;
3001 struct glyph_matrix *m2;
3002 int m2_from;
3003
3004 w2 = frame_row_to_window (root, frame_from);
3005 /* ttn@surf.glug.org: when enabling menu bar using `emacs
3006 -nw', FROM_FRAME sometimes has no associated window.
3007 This check avoids a segfault if W2 is null. */
3008 if (w2)
3009 {
3010 m2 = w2->current_matrix;
3011 m2_from = frame_from - m2->matrix_y;
3012 copy_row_except_pointers (m->rows + window_to,
3013 m2->rows + m2_from);
3014
3015 /* If frame line is empty, window line is empty, too. */
3016 if (!retained_p[copy_from[i]])
3017 m->rows[window_to].enabled_p = 0;
3018 }
3019 sync_p = 1;
3020 }
3021 else if (from_inside_window_p)
3022 sync_p = 1;
3023 }
3024
3025 /* If there was a copy between windows, make sure glyph
3026 pointers are in sync with the frame matrix. */
3027 if (sync_p)
3028 sync_window_with_frame_matrix_rows (w);
3029
3030 /* Check that no pointers are lost. */
3031 CHECK_MATRIX (m);
3032 }
3033
3034 /* Next window on same level. */
3035 w = NILP (w->next) ? 0 : XWINDOW (w->next);
3036 }
3037 }
3038
3039
3040 #if GLYPH_DEBUG
3041
3042 /* Check that window and frame matrices agree about their
3043 understanding where glyphs of the rows are to find. For each
3044 window in the window tree rooted at W, check that rows in the
3045 matrices of leaf window agree with their frame matrices about
3046 glyph pointers. */
3047
3048 static void
3049 check_window_matrix_pointers (struct window *w)
3050 {
3051 while (w)
3052 {
3053 if (!NILP (w->hchild))
3054 check_window_matrix_pointers (XWINDOW (w->hchild));
3055 else if (!NILP (w->vchild))
3056 check_window_matrix_pointers (XWINDOW (w->vchild));
3057 else
3058 {
3059 struct frame *f = XFRAME (w->frame);
3060 check_matrix_pointers (w->desired_matrix, f->desired_matrix);
3061 check_matrix_pointers (w->current_matrix, f->current_matrix);
3062 }
3063
3064 w = NILP (w->next) ? 0 : XWINDOW (w->next);
3065 }
3066 }
3067
3068
3069 /* Check that window rows are slices of frame rows. WINDOW_MATRIX is
3070 a window and FRAME_MATRIX is the corresponding frame matrix. For
3071 each row in WINDOW_MATRIX check that it's a slice of the
3072 corresponding frame row. If it isn't, abort. */
3073
3074 static void
3075 check_matrix_pointers (struct glyph_matrix *window_matrix,
3076 struct glyph_matrix *frame_matrix)
3077 {
3078 /* Row number in WINDOW_MATRIX. */
3079 int i = 0;
3080
3081 /* Row number corresponding to I in FRAME_MATRIX. */
3082 int j = window_matrix->matrix_y;
3083
3084 /* For all rows check that the row in the window matrix is a
3085 slice of the row in the frame matrix. If it isn't we didn't
3086 mirror an operation on the frame matrix correctly. */
3087 while (i < window_matrix->nrows)
3088 {
3089 if (!glyph_row_slice_p (window_matrix->rows + i,
3090 frame_matrix->rows + j))
3091 abort ();
3092 ++i, ++j;
3093 }
3094 }
3095
3096 #endif /* GLYPH_DEBUG != 0 */
3097
3098
3099 \f
3100 /**********************************************************************
3101 VPOS and HPOS translations
3102 **********************************************************************/
3103
3104 #if GLYPH_DEBUG
3105
3106 /* Translate vertical position VPOS which is relative to window W to a
3107 vertical position relative to W's frame. */
3108
3109 static int
3110 window_to_frame_vpos (struct window *w, int vpos)
3111 {
3112 xassert (!FRAME_WINDOW_P (XFRAME (w->frame)));
3113 xassert (vpos >= 0 && vpos <= w->desired_matrix->nrows);
3114 vpos += WINDOW_TOP_EDGE_LINE (w);
3115 xassert (vpos >= 0 && vpos <= FRAME_LINES (XFRAME (w->frame)));
3116 return vpos;
3117 }
3118
3119
3120 /* Translate horizontal position HPOS which is relative to window W to
3121 a horizontal position relative to W's frame. */
3122
3123 static int
3124 window_to_frame_hpos (struct window *w, int hpos)
3125 {
3126 xassert (!FRAME_WINDOW_P (XFRAME (w->frame)));
3127 hpos += WINDOW_LEFT_EDGE_COL (w);
3128 return hpos;
3129 }
3130
3131 #endif /* GLYPH_DEBUG */
3132
3133
3134 \f
3135 /**********************************************************************
3136 Redrawing Frames
3137 **********************************************************************/
3138
3139 DEFUN ("redraw-frame", Fredraw_frame, Sredraw_frame, 1, 1, 0,
3140 doc: /* Clear frame FRAME and output again what is supposed to appear on it. */)
3141 (Lisp_Object frame)
3142 {
3143 struct frame *f;
3144
3145 CHECK_LIVE_FRAME (frame);
3146 f = XFRAME (frame);
3147
3148 /* Ignore redraw requests, if frame has no glyphs yet.
3149 (Implementation note: It still has to be checked why we are
3150 called so early here). */
3151 if (!glyphs_initialized_initially_p)
3152 return Qnil;
3153
3154 update_begin (f);
3155 #ifdef MSDOS
3156 if (FRAME_MSDOS_P (f))
3157 FRAME_TERMINAL (f)->set_terminal_modes_hook (FRAME_TERMINAL (f));
3158 #endif
3159 clear_frame (f);
3160 clear_current_matrices (f);
3161 update_end (f);
3162 if (FRAME_TERMCAP_P (f))
3163 fflush (FRAME_TTY (f)->output);
3164 windows_or_buffers_changed++;
3165 /* Mark all windows as inaccurate, so that every window will have
3166 its redisplay done. */
3167 mark_window_display_accurate (FRAME_ROOT_WINDOW (f), 0);
3168 set_window_update_flags (XWINDOW (FRAME_ROOT_WINDOW (f)), 1);
3169 f->garbaged = 0;
3170 return Qnil;
3171 }
3172
3173
3174 /* Redraw frame F. This is nothing more than a call to the Lisp
3175 function redraw-frame. */
3176
3177 void
3178 redraw_frame (struct frame *f)
3179 {
3180 Lisp_Object frame;
3181 XSETFRAME (frame, f);
3182 Fredraw_frame (frame);
3183 }
3184
3185
3186 DEFUN ("redraw-display", Fredraw_display, Sredraw_display, 0, 0, "",
3187 doc: /* Clear and redisplay all visible frames. */)
3188 (void)
3189 {
3190 Lisp_Object tail, frame;
3191
3192 FOR_EACH_FRAME (tail, frame)
3193 if (FRAME_VISIBLE_P (XFRAME (frame)))
3194 Fredraw_frame (frame);
3195
3196 return Qnil;
3197 }
3198
3199
3200 \f
3201 /***********************************************************************
3202 Frame Update
3203 ***********************************************************************/
3204
3205 /* Update frame F based on the data in desired matrices.
3206
3207 If FORCE_P is non-zero, don't let redisplay be stopped by detecting
3208 pending input. If INHIBIT_HAIRY_ID_P is non-zero, don't try
3209 scrolling.
3210
3211 Value is non-zero if redisplay was stopped due to pending input. */
3212
3213 int
3214 update_frame (struct frame *f, int force_p, int inhibit_hairy_id_p)
3215 {
3216 /* 1 means display has been paused because of pending input. */
3217 int paused_p;
3218 struct window *root_window = XWINDOW (f->root_window);
3219
3220 if (redisplay_dont_pause)
3221 force_p = 1;
3222 #if PERIODIC_PREEMPTION_CHECKING
3223 else if (NILP (Vredisplay_preemption_period))
3224 force_p = 1;
3225 else if (!force_p && NUMBERP (Vredisplay_preemption_period))
3226 {
3227 EMACS_TIME tm;
3228 double p = XFLOATINT (Vredisplay_preemption_period);
3229 int sec, usec;
3230
3231 if (detect_input_pending_ignore_squeezables ())
3232 {
3233 paused_p = 1;
3234 goto do_pause;
3235 }
3236
3237 sec = (int) p;
3238 usec = (p - sec) * 1000000;
3239
3240 EMACS_GET_TIME (tm);
3241 EMACS_SET_SECS_USECS (preemption_period, sec, usec);
3242 EMACS_ADD_TIME (preemption_next_check, tm, preemption_period);
3243 }
3244 #endif
3245
3246 if (FRAME_WINDOW_P (f))
3247 {
3248 /* We are working on window matrix basis. All windows whose
3249 flag must_be_updated_p is set have to be updated. */
3250
3251 /* Record that we are not working on frame matrices. */
3252 set_frame_matrix_frame (NULL);
3253
3254 /* Update all windows in the window tree of F, maybe stopping
3255 when pending input is detected. */
3256 update_begin (f);
3257
3258 /* Update the menu bar on X frames that don't have toolkit
3259 support. */
3260 if (WINDOWP (f->menu_bar_window))
3261 update_window (XWINDOW (f->menu_bar_window), 1);
3262
3263 /* Update the tool-bar window, if present. */
3264 if (WINDOWP (f->tool_bar_window))
3265 {
3266 struct window *w = XWINDOW (f->tool_bar_window);
3267
3268 /* Update tool-bar window. */
3269 if (w->must_be_updated_p)
3270 {
3271 Lisp_Object tem;
3272
3273 update_window (w, 1);
3274 w->must_be_updated_p = 0;
3275
3276 /* Swap tool-bar strings. We swap because we want to
3277 reuse strings. */
3278 tem = f->current_tool_bar_string;
3279 f->current_tool_bar_string = f->desired_tool_bar_string;
3280 f->desired_tool_bar_string = tem;
3281 }
3282 }
3283
3284
3285 /* Update windows. */
3286 paused_p = update_window_tree (root_window, force_p);
3287 update_end (f);
3288
3289 /* This flush is a performance bottleneck under X,
3290 and it doesn't seem to be necessary anyway (in general).
3291 It is necessary when resizing the window with the mouse, or
3292 at least the fringes are not redrawn in a timely manner. ++kfs */
3293 if (f->force_flush_display_p)
3294 {
3295 FRAME_RIF (f)->flush_display (f);
3296 f->force_flush_display_p = 0;
3297 }
3298 }
3299 else
3300 {
3301 /* We are working on frame matrix basis. Set the frame on whose
3302 frame matrix we operate. */
3303 set_frame_matrix_frame (f);
3304
3305 /* Build F's desired matrix from window matrices. */
3306 build_frame_matrix (f);
3307
3308 /* Update the display */
3309 update_begin (f);
3310 paused_p = update_frame_1 (f, force_p, inhibit_hairy_id_p);
3311 update_end (f);
3312
3313 if (FRAME_TERMCAP_P (f) || FRAME_MSDOS_P (f))
3314 {
3315 if (FRAME_TTY (f)->termscript)
3316 fflush (FRAME_TTY (f)->termscript);
3317 if (FRAME_TERMCAP_P (f))
3318 fflush (FRAME_TTY (f)->output);
3319 }
3320
3321 /* Check window matrices for lost pointers. */
3322 #if GLYPH_DEBUG
3323 check_window_matrix_pointers (root_window);
3324 add_frame_display_history (f, paused_p);
3325 #endif
3326 }
3327
3328 #if PERIODIC_PREEMPTION_CHECKING
3329 do_pause:
3330 #endif
3331 /* Reset flags indicating that a window should be updated. */
3332 set_window_update_flags (root_window, 0);
3333
3334 display_completed = !paused_p;
3335 return paused_p;
3336 }
3337
3338
3339 \f
3340 /************************************************************************
3341 Window-based updates
3342 ************************************************************************/
3343
3344 /* Perform updates in window tree rooted at W. FORCE_P non-zero means
3345 don't stop updating when input is pending. */
3346
3347 static int
3348 update_window_tree (struct window *w, int force_p)
3349 {
3350 int paused_p = 0;
3351
3352 while (w && !paused_p)
3353 {
3354 if (!NILP (w->hchild))
3355 paused_p |= update_window_tree (XWINDOW (w->hchild), force_p);
3356 else if (!NILP (w->vchild))
3357 paused_p |= update_window_tree (XWINDOW (w->vchild), force_p);
3358 else if (w->must_be_updated_p)
3359 paused_p |= update_window (w, force_p);
3360
3361 w = NILP (w->next) ? 0 : XWINDOW (w->next);
3362 }
3363
3364 return paused_p;
3365 }
3366
3367
3368 /* Update window W if its flag must_be_updated_p is non-zero. If
3369 FORCE_P is non-zero, don't stop updating if input is pending. */
3370
3371 void
3372 update_single_window (struct window *w, int force_p)
3373 {
3374 if (w->must_be_updated_p)
3375 {
3376 struct frame *f = XFRAME (WINDOW_FRAME (w));
3377
3378 /* Record that this is not a frame-based redisplay. */
3379 set_frame_matrix_frame (NULL);
3380
3381 if (redisplay_dont_pause)
3382 force_p = 1;
3383 #if PERIODIC_PREEMPTION_CHECKING
3384 else if (NILP (Vredisplay_preemption_period))
3385 force_p = 1;
3386 else if (!force_p && NUMBERP (Vredisplay_preemption_period))
3387 {
3388 EMACS_TIME tm;
3389 double p = XFLOATINT (Vredisplay_preemption_period);
3390 int sec, usec;
3391
3392 sec = (int) p;
3393 usec = (p - sec) * 1000000;
3394
3395 EMACS_GET_TIME (tm);
3396 EMACS_SET_SECS_USECS (preemption_period, sec, usec);
3397 EMACS_ADD_TIME (preemption_next_check, tm, preemption_period);
3398 }
3399 #endif
3400
3401 /* Update W. */
3402 update_begin (f);
3403 update_window (w, force_p);
3404 update_end (f);
3405
3406 /* Reset flag in W. */
3407 w->must_be_updated_p = 0;
3408 }
3409 }
3410
3411 #ifdef HAVE_WINDOW_SYSTEM
3412
3413 /* Redraw lines from the current matrix of window W that are
3414 overlapped by other rows. YB is bottom-most y-position in W. */
3415
3416 static void
3417 redraw_overlapped_rows (struct window *w, int yb)
3418 {
3419 int i;
3420 struct frame *f = XFRAME (WINDOW_FRAME (w));
3421
3422 /* If rows overlapping others have been changed, the rows being
3423 overlapped have to be redrawn. This won't draw lines that have
3424 already been drawn in update_window_line because overlapped_p in
3425 desired rows is 0, so after row assignment overlapped_p in
3426 current rows is 0. */
3427 for (i = 0; i < w->current_matrix->nrows; ++i)
3428 {
3429 struct glyph_row *row = w->current_matrix->rows + i;
3430
3431 if (!row->enabled_p)
3432 break;
3433 else if (row->mode_line_p)
3434 continue;
3435
3436 if (row->overlapped_p)
3437 {
3438 enum glyph_row_area area;
3439
3440 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
3441 {
3442 updated_row = row;
3443 updated_area = area;
3444 FRAME_RIF (f)->cursor_to (i, 0, row->y,
3445 area == TEXT_AREA ? row->x : 0);
3446 if (row->used[area])
3447 FRAME_RIF (f)->write_glyphs (row->glyphs[area],
3448 row->used[area]);
3449 FRAME_RIF (f)->clear_end_of_line (-1);
3450 }
3451
3452 row->overlapped_p = 0;
3453 }
3454
3455 if (MATRIX_ROW_BOTTOM_Y (row) >= yb)
3456 break;
3457 }
3458 }
3459
3460
3461 /* Redraw lines from the current matrix of window W that overlap
3462 others. YB is bottom-most y-position in W. */
3463
3464 static void
3465 redraw_overlapping_rows (struct window *w, int yb)
3466 {
3467 int i, bottom_y;
3468 struct glyph_row *row;
3469 struct redisplay_interface *rif = FRAME_RIF (XFRAME (WINDOW_FRAME (w)));
3470
3471 for (i = 0; i < w->current_matrix->nrows; ++i)
3472 {
3473 row = w->current_matrix->rows + i;
3474
3475 if (!row->enabled_p)
3476 break;
3477 else if (row->mode_line_p)
3478 continue;
3479
3480 bottom_y = MATRIX_ROW_BOTTOM_Y (row);
3481
3482 if (row->overlapping_p)
3483 {
3484 int overlaps = 0;
3485
3486 if (MATRIX_ROW_OVERLAPS_PRED_P (row) && i > 0
3487 && !MATRIX_ROW (w->current_matrix, i - 1)->overlapped_p)
3488 overlaps |= OVERLAPS_PRED;
3489 if (MATRIX_ROW_OVERLAPS_SUCC_P (row) && bottom_y < yb
3490 && !MATRIX_ROW (w->current_matrix, i + 1)->overlapped_p)
3491 overlaps |= OVERLAPS_SUCC;
3492
3493 if (overlaps)
3494 {
3495 if (row->used[LEFT_MARGIN_AREA])
3496 rif->fix_overlapping_area (w, row, LEFT_MARGIN_AREA, overlaps);
3497
3498 if (row->used[TEXT_AREA])
3499 rif->fix_overlapping_area (w, row, TEXT_AREA, overlaps);
3500
3501 if (row->used[RIGHT_MARGIN_AREA])
3502 rif->fix_overlapping_area (w, row, RIGHT_MARGIN_AREA, overlaps);
3503
3504 /* Record in neighbor rows that ROW overwrites part of
3505 their display. */
3506 if (overlaps & OVERLAPS_PRED)
3507 MATRIX_ROW (w->current_matrix, i - 1)->overlapped_p = 1;
3508 if (overlaps & OVERLAPS_SUCC)
3509 MATRIX_ROW (w->current_matrix, i + 1)->overlapped_p = 1;
3510 }
3511 }
3512
3513 if (bottom_y >= yb)
3514 break;
3515 }
3516 }
3517
3518 #endif /* HAVE_WINDOW_SYSTEM */
3519
3520
3521 #if defined GLYPH_DEBUG && 0
3522
3523 /* Check that no row in the current matrix of window W is enabled
3524 which is below what's displayed in the window. */
3525
3526 static void
3527 check_current_matrix_flags (struct window *w)
3528 {
3529 int last_seen_p = 0;
3530 int i, yb = window_text_bottom_y (w);
3531
3532 for (i = 0; i < w->current_matrix->nrows - 1; ++i)
3533 {
3534 struct glyph_row *row = MATRIX_ROW (w->current_matrix, i);
3535 if (!last_seen_p && MATRIX_ROW_BOTTOM_Y (row) >= yb)
3536 last_seen_p = 1;
3537 else if (last_seen_p && row->enabled_p)
3538 abort ();
3539 }
3540 }
3541
3542 #endif /* GLYPH_DEBUG */
3543
3544
3545 /* Update display of window W. FORCE_P non-zero means that we should
3546 not stop when detecting pending input. */
3547
3548 static int
3549 update_window (struct window *w, int force_p)
3550 {
3551 struct glyph_matrix *desired_matrix = w->desired_matrix;
3552 int paused_p;
3553 #if !PERIODIC_PREEMPTION_CHECKING
3554 int preempt_count = baud_rate / 2400 + 1;
3555 #endif
3556 struct redisplay_interface *rif = FRAME_RIF (XFRAME (WINDOW_FRAME (w)));
3557 #if GLYPH_DEBUG
3558 /* Check that W's frame doesn't have glyph matrices. */
3559 xassert (FRAME_WINDOW_P (XFRAME (WINDOW_FRAME (w))));
3560 #endif
3561
3562 /* Check pending input the first time so that we can quickly return. */
3563 #if !PERIODIC_PREEMPTION_CHECKING
3564 if (!force_p)
3565 detect_input_pending_ignore_squeezables ();
3566 #endif
3567
3568 /* If forced to complete the update, or if no input is pending, do
3569 the update. */
3570 if (force_p || !input_pending || !NILP (do_mouse_tracking))
3571 {
3572 struct glyph_row *row, *end;
3573 struct glyph_row *mode_line_row;
3574 struct glyph_row *header_line_row;
3575 int yb, changed_p = 0, mouse_face_overwritten_p = 0;
3576 #if ! PERIODIC_PREEMPTION_CHECKING
3577 int n_updated = 0;
3578 #endif
3579
3580 rif->update_window_begin_hook (w);
3581 yb = window_text_bottom_y (w);
3582 row = desired_matrix->rows;
3583 end = row + desired_matrix->nrows - 1;
3584
3585 /* Take note of the header line, if there is one. We will
3586 update it below, after updating all of the window's lines. */
3587 if (row->mode_line_p)
3588 {
3589 header_line_row = row;
3590 ++row;
3591 }
3592 else
3593 header_line_row = NULL;
3594
3595 /* Update the mode line, if necessary. */
3596 mode_line_row = MATRIX_MODE_LINE_ROW (desired_matrix);
3597 if (mode_line_row->mode_line_p && mode_line_row->enabled_p)
3598 {
3599 mode_line_row->y = yb;
3600 update_window_line (w, MATRIX_ROW_VPOS (mode_line_row,
3601 desired_matrix),
3602 &mouse_face_overwritten_p);
3603 }
3604
3605 /* Find first enabled row. Optimizations in redisplay_internal
3606 may lead to an update with only one row enabled. There may
3607 be also completely empty matrices. */
3608 while (row < end && !row->enabled_p)
3609 ++row;
3610
3611 /* Try reusing part of the display by copying. */
3612 if (row < end && !desired_matrix->no_scrolling_p)
3613 {
3614 int rc = scrolling_window (w, header_line_row != NULL);
3615 if (rc < 0)
3616 {
3617 /* All rows were found to be equal. */
3618 paused_p = 0;
3619 goto set_cursor;
3620 }
3621 else if (rc > 0)
3622 {
3623 /* We've scrolled the display. */
3624 force_p = 1;
3625 changed_p = 1;
3626 }
3627 }
3628
3629 /* Update the rest of the lines. */
3630 for (; row < end && (force_p || !input_pending); ++row)
3631 /* scrolling_window resets the enabled_p flag of the rows it
3632 reuses from current_matrix. */
3633 if (row->enabled_p)
3634 {
3635 int vpos = MATRIX_ROW_VPOS (row, desired_matrix);
3636 int i;
3637
3638 /* We'll have to play a little bit with when to
3639 detect_input_pending. If it's done too often,
3640 scrolling large windows with repeated scroll-up
3641 commands will too quickly pause redisplay. */
3642 #if PERIODIC_PREEMPTION_CHECKING
3643 if (!force_p)
3644 {
3645 EMACS_TIME tm, dif;
3646 EMACS_GET_TIME (tm);
3647 EMACS_SUB_TIME (dif, preemption_next_check, tm);
3648 if (EMACS_TIME_NEG_P (dif))
3649 {
3650 EMACS_ADD_TIME (preemption_next_check, tm, preemption_period);
3651 if (detect_input_pending_ignore_squeezables ())
3652 break;
3653 }
3654 }
3655 #else
3656 if (!force_p && ++n_updated % preempt_count == 0)
3657 detect_input_pending_ignore_squeezables ();
3658 #endif
3659 changed_p |= update_window_line (w, vpos,
3660 &mouse_face_overwritten_p);
3661
3662 /* Mark all rows below the last visible one in the current
3663 matrix as invalid. This is necessary because of
3664 variable line heights. Consider the case of three
3665 successive redisplays, where the first displays 5
3666 lines, the second 3 lines, and the third 5 lines again.
3667 If the second redisplay wouldn't mark rows in the
3668 current matrix invalid, the third redisplay might be
3669 tempted to optimize redisplay based on lines displayed
3670 in the first redisplay. */
3671 if (MATRIX_ROW_BOTTOM_Y (row) >= yb)
3672 for (i = vpos + 1; i < w->current_matrix->nrows - 1; ++i)
3673 MATRIX_ROW (w->current_matrix, i)->enabled_p = 0;
3674 }
3675
3676 /* Was display preempted? */
3677 paused_p = row < end;
3678
3679 set_cursor:
3680
3681 /* Update the header line after scrolling because a new header
3682 line would otherwise overwrite lines at the top of the window
3683 that can be scrolled. */
3684 if (header_line_row && header_line_row->enabled_p)
3685 {
3686 header_line_row->y = 0;
3687 update_window_line (w, 0, &mouse_face_overwritten_p);
3688 }
3689
3690 /* Fix the appearance of overlapping/overlapped rows. */
3691 if (!paused_p && !w->pseudo_window_p)
3692 {
3693 #ifdef HAVE_WINDOW_SYSTEM
3694 if (changed_p && rif->fix_overlapping_area)
3695 {
3696 redraw_overlapped_rows (w, yb);
3697 redraw_overlapping_rows (w, yb);
3698 }
3699 #endif
3700
3701 /* Make cursor visible at cursor position of W. */
3702 set_window_cursor_after_update (w);
3703
3704 #if 0 /* Check that current matrix invariants are satisfied. This is
3705 for debugging only. See the comment of check_matrix_invariants. */
3706 IF_DEBUG (check_matrix_invariants (w));
3707 #endif
3708 }
3709
3710 #if GLYPH_DEBUG
3711 /* Remember the redisplay method used to display the matrix. */
3712 strcpy (w->current_matrix->method, w->desired_matrix->method);
3713 #endif
3714
3715 #ifdef HAVE_WINDOW_SYSTEM
3716 update_window_fringes (w, 0);
3717 #endif
3718
3719 /* End the update of window W. Don't set the cursor if we
3720 paused updating the display because in this case,
3721 set_window_cursor_after_update hasn't been called, and
3722 output_cursor doesn't contain the cursor location. */
3723 rif->update_window_end_hook (w, !paused_p, mouse_face_overwritten_p);
3724 }
3725 else
3726 paused_p = 1;
3727
3728 #if GLYPH_DEBUG
3729 /* check_current_matrix_flags (w); */
3730 add_window_display_history (w, w->current_matrix->method, paused_p);
3731 #endif
3732
3733 #ifdef HAVE_XWIDGETS
3734 xwidget_end_redisplay(w, w->current_matrix);
3735 #endif
3736 clear_glyph_matrix (desired_matrix);
3737
3738 return paused_p;
3739 }
3740
3741
3742 /* Update the display of area AREA in window W, row number VPOS.
3743 AREA can be either LEFT_MARGIN_AREA or RIGHT_MARGIN_AREA. */
3744
3745 static void
3746 update_marginal_area (struct window *w, int area, int vpos)
3747 {
3748 struct glyph_row *desired_row = MATRIX_ROW (w->desired_matrix, vpos);
3749 struct redisplay_interface *rif = FRAME_RIF (XFRAME (WINDOW_FRAME (w)));
3750
3751 /* Let functions in xterm.c know what area subsequent X positions
3752 will be relative to. */
3753 updated_area = area;
3754
3755 /* Set cursor to start of glyphs, write them, and clear to the end
3756 of the area. I don't think that something more sophisticated is
3757 necessary here, since marginal areas will not be the default. */
3758 rif->cursor_to (vpos, 0, desired_row->y, 0);
3759 if (desired_row->used[area])
3760 rif->write_glyphs (desired_row->glyphs[area], desired_row->used[area]);
3761 rif->clear_end_of_line (-1);
3762 }
3763
3764
3765 /* Update the display of the text area of row VPOS in window W.
3766 Value is non-zero if display has changed. */
3767
3768 static int
3769 update_text_area (struct window *w, int vpos)
3770 {
3771 struct glyph_row *current_row = MATRIX_ROW (w->current_matrix, vpos);
3772 struct glyph_row *desired_row = MATRIX_ROW (w->desired_matrix, vpos);
3773 struct redisplay_interface *rif = FRAME_RIF (XFRAME (WINDOW_FRAME (w)));
3774 int changed_p = 0;
3775
3776 /* Let functions in xterm.c know what area subsequent X positions
3777 will be relative to. */
3778 updated_area = TEXT_AREA;
3779
3780 /* If rows are at different X or Y, or rows have different height,
3781 or the current row is marked invalid, write the entire line. */
3782 if (!current_row->enabled_p
3783 || desired_row->y != current_row->y
3784 || desired_row->ascent != current_row->ascent
3785 || desired_row->phys_ascent != current_row->phys_ascent
3786 || desired_row->phys_height != current_row->phys_height
3787 || desired_row->visible_height != current_row->visible_height
3788 || current_row->overlapped_p
3789 /* This next line is necessary for correctly redrawing
3790 mouse-face areas after scrolling and other operations.
3791 However, it causes excessive flickering when mouse is moved
3792 across the mode line. Luckily, turning it off for the mode
3793 line doesn't seem to hurt anything. -- cyd.
3794 But it is still needed for the header line. -- kfs. */
3795 || (current_row->mouse_face_p
3796 && !(current_row->mode_line_p && vpos > 0))
3797 || current_row->x != desired_row->x)
3798 {
3799 rif->cursor_to (vpos, 0, desired_row->y, desired_row->x);
3800
3801 if (desired_row->used[TEXT_AREA])
3802 rif->write_glyphs (desired_row->glyphs[TEXT_AREA],
3803 desired_row->used[TEXT_AREA]);
3804
3805 /* Clear to end of window. */
3806 rif->clear_end_of_line (-1);
3807 changed_p = 1;
3808
3809 /* This erases the cursor. We do this here because
3810 notice_overwritten_cursor cannot easily check this, which
3811 might indicate that the whole functionality of
3812 notice_overwritten_cursor would better be implemented here.
3813 On the other hand, we need notice_overwritten_cursor as long
3814 as mouse highlighting is done asynchronously outside of
3815 redisplay. */
3816 if (vpos == w->phys_cursor.vpos)
3817 w->phys_cursor_on_p = 0;
3818 }
3819 else
3820 {
3821 int stop, i, x;
3822 struct glyph *current_glyph = current_row->glyphs[TEXT_AREA];
3823 struct glyph *desired_glyph = desired_row->glyphs[TEXT_AREA];
3824 int overlapping_glyphs_p = current_row->contains_overlapping_glyphs_p;
3825 int desired_stop_pos = desired_row->used[TEXT_AREA];
3826 int abort_skipping = 0;
3827
3828 /* If the desired row extends its face to the text area end, and
3829 unless the current row also does so at the same position,
3830 make sure we write at least one glyph, so that the face
3831 extension actually takes place. */
3832 if (MATRIX_ROW_EXTENDS_FACE_P (desired_row)
3833 && (desired_stop_pos < current_row->used[TEXT_AREA]
3834 || (desired_stop_pos == current_row->used[TEXT_AREA]
3835 && !MATRIX_ROW_EXTENDS_FACE_P (current_row))))
3836 --desired_stop_pos;
3837
3838 stop = min (current_row->used[TEXT_AREA], desired_stop_pos);
3839 i = 0;
3840 x = desired_row->x;
3841
3842 /* Loop over glyphs that current and desired row may have
3843 in common. */
3844 while (i < stop)
3845 {
3846 int can_skip_p = !abort_skipping;
3847
3848 /* Skip over glyphs that both rows have in common. These
3849 don't have to be written. We can't skip if the last
3850 current glyph overlaps the glyph to its right. For
3851 example, consider a current row of `if ' with the `f' in
3852 Courier bold so that it overlaps the ` ' to its right.
3853 If the desired row is ` ', we would skip over the space
3854 after the `if' and there would remain a pixel from the
3855 `f' on the screen. */
3856 if (overlapping_glyphs_p && i > 0)
3857 {
3858 struct glyph *glyph = &current_row->glyphs[TEXT_AREA][i - 1];
3859 int left, right;
3860
3861 rif->get_glyph_overhangs (glyph, XFRAME (w->frame),
3862 &left, &right);
3863 can_skip_p = (right == 0 && !abort_skipping);
3864 }
3865
3866 if (can_skip_p)
3867 {
3868 int start_hpos = i;
3869
3870 while (i < stop
3871 && GLYPH_EQUAL_P (desired_glyph, current_glyph))
3872 {
3873 x += desired_glyph->pixel_width;
3874 ++desired_glyph, ++current_glyph, ++i;
3875 }
3876
3877 /* Consider the case that the current row contains "xxx
3878 ppp ggg" in italic Courier font, and the desired row
3879 is "xxx ggg". The character `p' has lbearing, `g'
3880 has not. The loop above will stop in front of the
3881 first `p' in the current row. If we would start
3882 writing glyphs there, we wouldn't erase the lbearing
3883 of the `p'. The rest of the lbearing problem is then
3884 taken care of by draw_glyphs. */
3885 if (overlapping_glyphs_p
3886 && i > 0
3887 && i < current_row->used[TEXT_AREA]
3888 && (current_row->used[TEXT_AREA]
3889 != desired_row->used[TEXT_AREA]))
3890 {
3891 int left, right;
3892
3893 rif->get_glyph_overhangs (current_glyph, XFRAME (w->frame),
3894 &left, &right);
3895 while (left > 0 && i > 0)
3896 {
3897 --i, --desired_glyph, --current_glyph;
3898 x -= desired_glyph->pixel_width;
3899 left -= desired_glyph->pixel_width;
3900 }
3901
3902 /* Abort the skipping algorithm if we end up before
3903 our starting point, to avoid looping (bug#1070).
3904 This can happen when the lbearing is larger than
3905 the pixel width. */
3906 abort_skipping = (i < start_hpos);
3907 }
3908 }
3909
3910 /* Try to avoid writing the entire rest of the desired row
3911 by looking for a resync point. This mainly prevents
3912 mode line flickering in the case the mode line is in
3913 fixed-pitch font, which it usually will be. */
3914 if (i < desired_row->used[TEXT_AREA])
3915 {
3916 int start_x = x, start_hpos = i;
3917 struct glyph *start = desired_glyph;
3918 int current_x = x;
3919 int skip_first_p = !can_skip_p;
3920
3921 /* Find the next glyph that's equal again. */
3922 while (i < stop
3923 && (skip_first_p
3924 || !GLYPH_EQUAL_P (desired_glyph, current_glyph))
3925 && x == current_x)
3926 {
3927 x += desired_glyph->pixel_width;
3928 current_x += current_glyph->pixel_width;
3929 ++desired_glyph, ++current_glyph, ++i;
3930 skip_first_p = 0;
3931 }
3932
3933 if (i == start_hpos || x != current_x)
3934 {
3935 i = start_hpos;
3936 x = start_x;
3937 desired_glyph = start;
3938 break;
3939 }
3940
3941 rif->cursor_to (vpos, start_hpos, desired_row->y, start_x);
3942 rif->write_glyphs (start, i - start_hpos);
3943 changed_p = 1;
3944 }
3945 }
3946
3947 /* Write the rest. */
3948 if (i < desired_row->used[TEXT_AREA])
3949 {
3950 rif->cursor_to (vpos, i, desired_row->y, x);
3951 rif->write_glyphs (desired_glyph, desired_row->used[TEXT_AREA] - i);
3952 changed_p = 1;
3953 }
3954
3955 /* Maybe clear to end of line. */
3956 if (MATRIX_ROW_EXTENDS_FACE_P (desired_row))
3957 {
3958 /* If new row extends to the end of the text area, nothing
3959 has to be cleared, if and only if we did a write_glyphs
3960 above. This is made sure by setting desired_stop_pos
3961 appropriately above. */
3962 xassert (i < desired_row->used[TEXT_AREA]
3963 || ((desired_row->used[TEXT_AREA]
3964 == current_row->used[TEXT_AREA])
3965 && MATRIX_ROW_EXTENDS_FACE_P (current_row)));
3966 }
3967 else if (MATRIX_ROW_EXTENDS_FACE_P (current_row))
3968 {
3969 /* If old row extends to the end of the text area, clear. */
3970 if (i >= desired_row->used[TEXT_AREA])
3971 rif->cursor_to (vpos, i, desired_row->y,
3972 desired_row->pixel_width);
3973 rif->clear_end_of_line (-1);
3974 changed_p = 1;
3975 }
3976 else if (desired_row->pixel_width < current_row->pixel_width)
3977 {
3978 /* Otherwise clear to the end of the old row. Everything
3979 after that position should be clear already. */
3980 int xlim;
3981
3982 if (i >= desired_row->used[TEXT_AREA])
3983 rif->cursor_to (vpos, i, desired_row->y,
3984 desired_row->pixel_width);
3985
3986 /* If cursor is displayed at the end of the line, make sure
3987 it's cleared. Nowadays we don't have a phys_cursor_glyph
3988 with which to erase the cursor (because this method
3989 doesn't work with lbearing/rbearing), so we must do it
3990 this way. */
3991 if (vpos == w->phys_cursor.vpos
3992 && (desired_row->reversed_p
3993 ? (w->phys_cursor.hpos < 0)
3994 : (w->phys_cursor.hpos >= desired_row->used[TEXT_AREA])))
3995 {
3996 w->phys_cursor_on_p = 0;
3997 xlim = -1;
3998 }
3999 else
4000 xlim = current_row->pixel_width;
4001 rif->clear_end_of_line (xlim);
4002 changed_p = 1;
4003 }
4004 }
4005
4006 return changed_p;
4007 }
4008
4009
4010 /* Update row VPOS in window W. Value is non-zero if display has been
4011 changed. */
4012
4013 static int
4014 update_window_line (struct window *w, int vpos, int *mouse_face_overwritten_p)
4015 {
4016 struct glyph_row *current_row = MATRIX_ROW (w->current_matrix, vpos);
4017 struct glyph_row *desired_row = MATRIX_ROW (w->desired_matrix, vpos);
4018 struct redisplay_interface *rif = FRAME_RIF (XFRAME (WINDOW_FRAME (w)));
4019 int changed_p = 0;
4020
4021 /* Set the row being updated. This is important to let xterm.c
4022 know what line height values are in effect. */
4023 updated_row = desired_row;
4024
4025 /* A row can be completely invisible in case a desired matrix was
4026 built with a vscroll and then make_cursor_line_fully_visible shifts
4027 the matrix. Make sure to make such rows current anyway, since
4028 we need the correct y-position, for example, in the current matrix. */
4029 if (desired_row->mode_line_p
4030 || desired_row->visible_height > 0)
4031 {
4032 xassert (desired_row->enabled_p);
4033
4034 /* Update display of the left margin area, if there is one. */
4035 if (!desired_row->full_width_p
4036 && !NILP (w->left_margin_cols))
4037 {
4038 changed_p = 1;
4039 update_marginal_area (w, LEFT_MARGIN_AREA, vpos);
4040 }
4041
4042 /* Update the display of the text area. */
4043 if (update_text_area (w, vpos))
4044 {
4045 changed_p = 1;
4046 if (current_row->mouse_face_p)
4047 *mouse_face_overwritten_p = 1;
4048 }
4049
4050 /* Update display of the right margin area, if there is one. */
4051 if (!desired_row->full_width_p
4052 && !NILP (w->right_margin_cols))
4053 {
4054 changed_p = 1;
4055 update_marginal_area (w, RIGHT_MARGIN_AREA, vpos);
4056 }
4057
4058 /* Draw truncation marks etc. */
4059 if (!current_row->enabled_p
4060 || desired_row->y != current_row->y
4061 || desired_row->visible_height != current_row->visible_height
4062 || desired_row->cursor_in_fringe_p != current_row->cursor_in_fringe_p
4063 || desired_row->overlay_arrow_bitmap != current_row->overlay_arrow_bitmap
4064 || current_row->redraw_fringe_bitmaps_p
4065 || desired_row->mode_line_p != current_row->mode_line_p
4066 || desired_row->exact_window_width_line_p != current_row->exact_window_width_line_p
4067 || (MATRIX_ROW_CONTINUATION_LINE_P (desired_row)
4068 != MATRIX_ROW_CONTINUATION_LINE_P (current_row)))
4069 rif->after_update_window_line_hook (desired_row);
4070 }
4071
4072 /* Update current_row from desired_row. */
4073 make_current (w->desired_matrix, w->current_matrix, vpos);
4074 updated_row = NULL;
4075 return changed_p;
4076 }
4077
4078
4079 /* Set the cursor after an update of window W. This function may only
4080 be called from update_window. */
4081
4082 static void
4083 set_window_cursor_after_update (struct window *w)
4084 {
4085 struct frame *f = XFRAME (w->frame);
4086 struct redisplay_interface *rif = FRAME_RIF (f);
4087 int cx, cy, vpos, hpos;
4088
4089 /* Not intended for frame matrix updates. */
4090 xassert (FRAME_WINDOW_P (f));
4091
4092 if (cursor_in_echo_area
4093 && !NILP (echo_area_buffer[0])
4094 /* If we are showing a message instead of the mini-buffer,
4095 show the cursor for the message instead. */
4096 && XWINDOW (minibuf_window) == w
4097 && EQ (minibuf_window, echo_area_window)
4098 /* These cases apply only to the frame that contains
4099 the active mini-buffer window. */
4100 && FRAME_HAS_MINIBUF_P (f)
4101 && EQ (FRAME_MINIBUF_WINDOW (f), echo_area_window))
4102 {
4103 cx = cy = vpos = hpos = 0;
4104
4105 if (cursor_in_echo_area >= 0)
4106 {
4107 /* If the mini-buffer is several lines high, find the last
4108 line that has any text on it. Note: either all lines
4109 are enabled or none. Otherwise we wouldn't be able to
4110 determine Y. */
4111 struct glyph_row *row, *last_row;
4112 struct glyph *glyph;
4113 int yb = window_text_bottom_y (w);
4114
4115 last_row = NULL;
4116 row = w->current_matrix->rows;
4117 while (row->enabled_p
4118 && (last_row == NULL
4119 || MATRIX_ROW_BOTTOM_Y (row) <= yb))
4120 {
4121 if (row->used[TEXT_AREA]
4122 && row->glyphs[TEXT_AREA][0].charpos >= 0)
4123 last_row = row;
4124 ++row;
4125 }
4126
4127 if (last_row)
4128 {
4129 struct glyph *start = last_row->glyphs[TEXT_AREA];
4130 struct glyph *last = start + last_row->used[TEXT_AREA] - 1;
4131
4132 while (last > start && last->charpos < 0)
4133 --last;
4134
4135 for (glyph = start; glyph < last; ++glyph)
4136 {
4137 cx += glyph->pixel_width;
4138 ++hpos;
4139 }
4140
4141 cy = last_row->y;
4142 vpos = MATRIX_ROW_VPOS (last_row, w->current_matrix);
4143 }
4144 }
4145 }
4146 else
4147 {
4148 cx = w->cursor.x;
4149 cy = w->cursor.y;
4150 hpos = w->cursor.hpos;
4151 vpos = w->cursor.vpos;
4152 }
4153
4154 /* Window cursor can be out of sync for horizontally split windows. */
4155 hpos = max (-1, hpos); /* -1 is for when cursor is on the left fringe */
4156 hpos = min (w->current_matrix->matrix_w - 1, hpos);
4157 vpos = max (0, vpos);
4158 vpos = min (w->current_matrix->nrows - 1, vpos);
4159 rif->cursor_to (vpos, hpos, cy, cx);
4160 }
4161
4162
4163 /* Set WINDOW->must_be_updated_p to ON_P for all windows in the window
4164 tree rooted at W. */
4165
4166 void
4167 set_window_update_flags (struct window *w, int on_p)
4168 {
4169 while (w)
4170 {
4171 if (!NILP (w->hchild))
4172 set_window_update_flags (XWINDOW (w->hchild), on_p);
4173 else if (!NILP (w->vchild))
4174 set_window_update_flags (XWINDOW (w->vchild), on_p);
4175 else
4176 w->must_be_updated_p = on_p;
4177
4178 w = NILP (w->next) ? 0 : XWINDOW (w->next);
4179 }
4180 }
4181
4182
4183 \f
4184 /***********************************************************************
4185 Window-Based Scrolling
4186 ***********************************************************************/
4187
4188 /* Structure describing rows in scrolling_window. */
4189
4190 struct row_entry
4191 {
4192 /* Number of occurrences of this row in desired and current matrix. */
4193 int old_uses, new_uses;
4194
4195 /* Vpos of row in new matrix. */
4196 int new_line_number;
4197
4198 /* Bucket index of this row_entry in the hash table row_table. */
4199 ptrdiff_t bucket;
4200
4201 /* The row described by this entry. */
4202 struct glyph_row *row;
4203
4204 /* Hash collision chain. */
4205 struct row_entry *next;
4206 };
4207
4208 /* A pool to allocate row_entry structures from, and the size of the
4209 pool. The pool is reallocated in scrolling_window when we find
4210 that we need a larger one. */
4211
4212 static struct row_entry *row_entry_pool;
4213 static ptrdiff_t row_entry_pool_size;
4214
4215 /* Index of next free entry in row_entry_pool. */
4216
4217 static ptrdiff_t row_entry_idx;
4218
4219 /* The hash table used during scrolling, and the table's size. This
4220 table is used to quickly identify equal rows in the desired and
4221 current matrix. */
4222
4223 static struct row_entry **row_table;
4224 static ptrdiff_t row_table_size;
4225
4226 /* Vectors of pointers to row_entry structures belonging to the
4227 current and desired matrix, and the size of the vectors. */
4228
4229 static struct row_entry **old_lines, **new_lines;
4230 static ptrdiff_t old_lines_size, new_lines_size;
4231
4232 /* A pool to allocate run structures from, and its size. */
4233
4234 static struct run *run_pool;
4235 static ptrdiff_t runs_size;
4236
4237 /* A vector of runs of lines found during scrolling. */
4238
4239 static struct run **runs;
4240
4241 /* Add glyph row ROW to the scrolling hash table. */
4242
4243 static inline struct row_entry *
4244 add_row_entry (struct glyph_row *row)
4245 {
4246 struct row_entry *entry;
4247 ptrdiff_t i = row->hash % row_table_size;
4248
4249 entry = row_table[i];
4250 xassert (entry || verify_row_hash (row));
4251 while (entry && !row_equal_p (entry->row, row, 1))
4252 entry = entry->next;
4253
4254 if (entry == NULL)
4255 {
4256 entry = row_entry_pool + row_entry_idx++;
4257 entry->row = row;
4258 entry->old_uses = entry->new_uses = 0;
4259 entry->new_line_number = 0;
4260 entry->bucket = i;
4261 entry->next = row_table[i];
4262 row_table[i] = entry;
4263 }
4264
4265 return entry;
4266 }
4267
4268
4269 /* Try to reuse part of the current display of W by scrolling lines.
4270 HEADER_LINE_P non-zero means W has a header line.
4271
4272 The algorithm is taken from Communications of the ACM, Apr78 "A
4273 Technique for Isolating Differences Between Files." It should take
4274 O(N) time.
4275
4276 A short outline of the steps of the algorithm
4277
4278 1. Skip lines equal at the start and end of both matrices.
4279
4280 2. Enter rows in the current and desired matrix into a symbol
4281 table, counting how often they appear in both matrices.
4282
4283 3. Rows that appear exactly once in both matrices serve as anchors,
4284 i.e. we assume that such lines are likely to have been moved.
4285
4286 4. Starting from anchor lines, extend regions to be scrolled both
4287 forward and backward.
4288
4289 Value is
4290
4291 -1 if all rows were found to be equal.
4292 0 to indicate that we did not scroll the display, or
4293 1 if we did scroll. */
4294
4295 static int
4296 scrolling_window (struct window *w, int header_line_p)
4297 {
4298 struct glyph_matrix *desired_matrix = w->desired_matrix;
4299 struct glyph_matrix *current_matrix = w->current_matrix;
4300 int yb = window_text_bottom_y (w);
4301 ptrdiff_t i;
4302 int j, first_old, first_new, last_old, last_new;
4303 int nruns, run_idx;
4304 ptrdiff_t n;
4305 struct row_entry *entry;
4306 struct redisplay_interface *rif = FRAME_RIF (XFRAME (WINDOW_FRAME (w)));
4307
4308 /* Skip over rows equal at the start. */
4309 for (i = header_line_p ? 1 : 0; i < current_matrix->nrows - 1; ++i)
4310 {
4311 struct glyph_row *d = MATRIX_ROW (desired_matrix, i);
4312 struct glyph_row *c = MATRIX_ROW (current_matrix, i);
4313
4314 if (c->enabled_p
4315 && d->enabled_p
4316 && !d->redraw_fringe_bitmaps_p
4317 && c->y == d->y
4318 && MATRIX_ROW_BOTTOM_Y (c) <= yb
4319 && MATRIX_ROW_BOTTOM_Y (d) <= yb
4320 && row_equal_p (c, d, 1))
4321 {
4322 assign_row (c, d);
4323 d->enabled_p = 0;
4324 }
4325 else
4326 break;
4327 }
4328
4329 #ifdef HAVE_XWIDGETS
4330 //currently this is needed to detect xwidget movement reliably. or probably not.
4331 //printf("scrolling_window\n");
4332 return 0;
4333 #endif
4334
4335 /* Give up if some rows in the desired matrix are not enabled. */
4336 if (!MATRIX_ROW (desired_matrix, i)->enabled_p)
4337 return -1;
4338
4339 first_old = first_new = i;
4340
4341 /* Set last_new to the index + 1 of the row that reaches the
4342 bottom boundary in the desired matrix. Give up if we find a
4343 disabled row before we reach the bottom boundary. */
4344 i = first_new + 1;
4345 while (i < desired_matrix->nrows - 1)
4346 {
4347 int bottom;
4348
4349 if (!MATRIX_ROW (desired_matrix, i)->enabled_p)
4350 return 0;
4351 bottom = MATRIX_ROW_BOTTOM_Y (MATRIX_ROW (desired_matrix, i));
4352 if (bottom <= yb)
4353 ++i;
4354 if (bottom >= yb)
4355 break;
4356 }
4357
4358 last_new = i;
4359
4360 /* Set last_old to the index + 1 of the row that reaches the bottom
4361 boundary in the current matrix. We don't look at the enabled
4362 flag here because we plan to reuse part of the display even if
4363 other parts are disabled. */
4364 i = first_old + 1;
4365 while (i < current_matrix->nrows - 1)
4366 {
4367 int bottom = MATRIX_ROW_BOTTOM_Y (MATRIX_ROW (current_matrix, i));
4368 if (bottom <= yb)
4369 ++i;
4370 if (bottom >= yb)
4371 break;
4372 }
4373
4374 last_old = i;
4375
4376 /* Skip over rows equal at the bottom. */
4377 i = last_new;
4378 j = last_old;
4379 while (i - 1 > first_new
4380 && j - 1 > first_old
4381 && MATRIX_ROW (current_matrix, j - 1)->enabled_p
4382 && (MATRIX_ROW (current_matrix, j - 1)->y
4383 == MATRIX_ROW (desired_matrix, i - 1)->y)
4384 && !MATRIX_ROW (desired_matrix, i - 1)->redraw_fringe_bitmaps_p
4385 && row_equal_p (MATRIX_ROW (desired_matrix, i - 1),
4386 MATRIX_ROW (current_matrix, j - 1), 1))
4387 --i, --j;
4388 last_new = i;
4389 last_old = j;
4390
4391 /* Nothing to do if all rows are equal. */
4392 if (last_new == first_new)
4393 return 0;
4394
4395 /* Check for integer overflow in size calculation.
4396
4397 If next_almost_prime checks (N) for divisibility by 2..10, then
4398 it can return at most N + 10, e.g., next_almost_prime (1) == 11.
4399 So, set next_almost_prime_increment_max to 10.
4400
4401 It's just a coincidence that next_almost_prime_increment_max ==
4402 NEXT_ALMOST_PRIME_LIMIT - 1. If NEXT_ALMOST_PRIME_LIMIT were
4403 13, then next_almost_prime_increment_max would be 14, e.g.,
4404 because next_almost_prime (113) would be 127. */
4405 {
4406 verify (NEXT_ALMOST_PRIME_LIMIT == 11);
4407 enum { next_almost_prime_increment_max = 10 };
4408 ptrdiff_t row_table_max =
4409 (min (PTRDIFF_MAX, SIZE_MAX) / (3 * sizeof *row_table)
4410 - next_almost_prime_increment_max);
4411 ptrdiff_t current_nrows_max = row_table_max - desired_matrix->nrows;
4412 if (current_nrows_max < current_matrix->nrows)
4413 memory_full (SIZE_MAX);
4414 }
4415
4416 /* Reallocate vectors, tables etc. if necessary. */
4417
4418 if (current_matrix->nrows > old_lines_size)
4419 old_lines = xpalloc (old_lines, &old_lines_size,
4420 current_matrix->nrows - old_lines_size,
4421 INT_MAX, sizeof *old_lines);
4422
4423 if (desired_matrix->nrows > new_lines_size)
4424 new_lines = xpalloc (new_lines, &new_lines_size,
4425 desired_matrix->nrows - new_lines_size,
4426 INT_MAX, sizeof *new_lines);
4427
4428 n = desired_matrix->nrows;
4429 n += current_matrix->nrows;
4430 if (row_table_size < 3 * n)
4431 {
4432 ptrdiff_t size = next_almost_prime (3 * n);
4433 row_table = xnrealloc (row_table, size, sizeof *row_table);
4434 row_table_size = size;
4435 memset (row_table, 0, size * sizeof *row_table);
4436 }
4437
4438 if (n > row_entry_pool_size)
4439 row_entry_pool = xpalloc (row_entry_pool, &row_entry_pool_size,
4440 n - row_entry_pool_size,
4441 -1, sizeof *row_entry_pool);
4442
4443 if (desired_matrix->nrows > runs_size)
4444 {
4445 runs = xnrealloc (runs, desired_matrix->nrows, sizeof *runs);
4446 run_pool = xnrealloc (run_pool, desired_matrix->nrows, sizeof *run_pool);
4447 runs_size = desired_matrix->nrows;
4448 }
4449
4450 nruns = run_idx = 0;
4451 row_entry_idx = 0;
4452
4453 /* Add rows from the current and desired matrix to the hash table
4454 row_hash_table to be able to find equal ones quickly. */
4455
4456 for (i = first_old; i < last_old; ++i)
4457 {
4458 if (MATRIX_ROW (current_matrix, i)->enabled_p)
4459 {
4460 entry = add_row_entry (MATRIX_ROW (current_matrix, i));
4461 old_lines[i] = entry;
4462 ++entry->old_uses;
4463 }
4464 else
4465 old_lines[i] = NULL;
4466 }
4467
4468 for (i = first_new; i < last_new; ++i)
4469 {
4470 xassert (MATRIX_ROW_ENABLED_P (desired_matrix, i));
4471 entry = add_row_entry (MATRIX_ROW (desired_matrix, i));
4472 ++entry->new_uses;
4473 entry->new_line_number = i;
4474 new_lines[i] = entry;
4475 }
4476
4477 /* Identify moves based on lines that are unique and equal
4478 in both matrices. */
4479 for (i = first_old; i < last_old;)
4480 if (old_lines[i]
4481 && old_lines[i]->old_uses == 1
4482 && old_lines[i]->new_uses == 1)
4483 {
4484 int p, q;
4485 int new_line = old_lines[i]->new_line_number;
4486 struct run *run = run_pool + run_idx++;
4487
4488 /* Record move. */
4489 run->current_vpos = i;
4490 run->current_y = MATRIX_ROW (current_matrix, i)->y;
4491 run->desired_vpos = new_line;
4492 run->desired_y = MATRIX_ROW (desired_matrix, new_line)->y;
4493 run->nrows = 1;
4494 run->height = MATRIX_ROW (current_matrix, i)->height;
4495
4496 /* Extend backward. */
4497 p = i - 1;
4498 q = new_line - 1;
4499 while (p > first_old
4500 && q > first_new
4501 && old_lines[p] == new_lines[q])
4502 {
4503 int h = MATRIX_ROW (current_matrix, p)->height;
4504 --run->current_vpos;
4505 --run->desired_vpos;
4506 ++run->nrows;
4507 run->height += h;
4508 run->desired_y -= h;
4509 run->current_y -= h;
4510 --p, --q;
4511 }
4512
4513 /* Extend forward. */
4514 p = i + 1;
4515 q = new_line + 1;
4516 while (p < last_old
4517 && q < last_new
4518 && old_lines[p] == new_lines[q])
4519 {
4520 int h = MATRIX_ROW (current_matrix, p)->height;
4521 ++run->nrows;
4522 run->height += h;
4523 ++p, ++q;
4524 }
4525
4526 /* Insert run into list of all runs. Order runs by copied
4527 pixel lines. Note that we record runs that don't have to
4528 be copied because they are already in place. This is done
4529 because we can avoid calling update_window_line in this
4530 case. */
4531 for (p = 0; p < nruns && runs[p]->height > run->height; ++p)
4532 ;
4533 for (q = nruns; q > p; --q)
4534 runs[q] = runs[q - 1];
4535 runs[p] = run;
4536 ++nruns;
4537
4538 i += run->nrows;
4539 }
4540 else
4541 ++i;
4542
4543 /* Do the moves. Do it in a way that we don't overwrite something
4544 we want to copy later on. This is not solvable in general
4545 because there is only one display and we don't have a way to
4546 exchange areas on this display. Example:
4547
4548 +-----------+ +-----------+
4549 | A | | B |
4550 +-----------+ --> +-----------+
4551 | B | | A |
4552 +-----------+ +-----------+
4553
4554 Instead, prefer bigger moves, and invalidate moves that would
4555 copy from where we copied to. */
4556
4557 for (i = 0; i < nruns; ++i)
4558 if (runs[i]->nrows > 0)
4559 {
4560 struct run *r = runs[i];
4561
4562 /* Copy on the display. */
4563 if (r->current_y != r->desired_y)
4564 {
4565 rif->clear_window_mouse_face (w);
4566 rif->scroll_run_hook (w, r);
4567 }
4568
4569 /* Truncate runs that copy to where we copied to, and
4570 invalidate runs that copy from where we copied to. */
4571 for (j = nruns - 1; j > i; --j)
4572 {
4573 struct run *p = runs[j];
4574 int truncated_p = 0;
4575
4576 if (p->nrows > 0
4577 && p->desired_y < r->desired_y + r->height
4578 && p->desired_y + p->height > r->desired_y)
4579 {
4580 if (p->desired_y < r->desired_y)
4581 {
4582 p->nrows = r->desired_vpos - p->desired_vpos;
4583 p->height = r->desired_y - p->desired_y;
4584 truncated_p = 1;
4585 }
4586 else
4587 {
4588 int nrows_copied = (r->desired_vpos + r->nrows
4589 - p->desired_vpos);
4590
4591 if (p->nrows <= nrows_copied)
4592 p->nrows = 0;
4593 else
4594 {
4595 int height_copied = (r->desired_y + r->height
4596 - p->desired_y);
4597
4598 p->current_vpos += nrows_copied;
4599 p->desired_vpos += nrows_copied;
4600 p->nrows -= nrows_copied;
4601 p->current_y += height_copied;
4602 p->desired_y += height_copied;
4603 p->height -= height_copied;
4604 truncated_p = 1;
4605 }
4606 }
4607 }
4608
4609 if (r->current_y != r->desired_y
4610 /* The condition below is equivalent to
4611 ((p->current_y >= r->desired_y
4612 && p->current_y < r->desired_y + r->height)
4613 || (p->current_y + p->height > r->desired_y
4614 && (p->current_y + p->height
4615 <= r->desired_y + r->height)))
4616 because we have 0 < p->height <= r->height. */
4617 && p->current_y < r->desired_y + r->height
4618 && p->current_y + p->height > r->desired_y)
4619 p->nrows = 0;
4620
4621 /* Reorder runs by copied pixel lines if truncated. */
4622 if (truncated_p && p->nrows > 0)
4623 {
4624 int k = nruns - 1;
4625
4626 while (runs[k]->nrows == 0 || runs[k]->height < p->height)
4627 k--;
4628 memmove (runs + j, runs + j + 1, (k - j) * sizeof (*runs));
4629 runs[k] = p;
4630 }
4631 }
4632
4633 /* Assign matrix rows. */
4634 for (j = 0; j < r->nrows; ++j)
4635 {
4636 struct glyph_row *from, *to;
4637 int to_overlapped_p;
4638
4639 to = MATRIX_ROW (current_matrix, r->desired_vpos + j);
4640 from = MATRIX_ROW (desired_matrix, r->desired_vpos + j);
4641 to_overlapped_p = to->overlapped_p;
4642 from->redraw_fringe_bitmaps_p = from->fringe_bitmap_periodic_p;
4643 assign_row (to, from);
4644 /* The above `assign_row' actually does swap, so if we had
4645 an overlap in the copy destination of two runs, then
4646 the second run would assign a previously disabled bogus
4647 row. But thanks to the truncation code in the
4648 preceding for-loop, we no longer have such an overlap,
4649 and thus the assigned row should always be enabled. */
4650 xassert (to->enabled_p);
4651 from->enabled_p = 0;
4652 to->overlapped_p = to_overlapped_p;
4653 }
4654 }
4655
4656 /* Clear the hash table, for the next time. */
4657 for (i = 0; i < row_entry_idx; ++i)
4658 row_table[row_entry_pool[i].bucket] = NULL;
4659
4660 /* Value is 1 to indicate that we scrolled the display. */
4661 return 0 < nruns;
4662 }
4663
4664
4665 \f
4666 /************************************************************************
4667 Frame-Based Updates
4668 ************************************************************************/
4669
4670 /* Update the desired frame matrix of frame F.
4671
4672 FORCE_P non-zero means that the update should not be stopped by
4673 pending input. INHIBIT_HAIRY_ID_P non-zero means that scrolling
4674 should not be tried.
4675
4676 Value is non-zero if update was stopped due to pending input. */
4677
4678 static int
4679 update_frame_1 (struct frame *f, int force_p, int inhibit_id_p)
4680 {
4681 /* Frame matrices to work on. */
4682 struct glyph_matrix *current_matrix = f->current_matrix;
4683 struct glyph_matrix *desired_matrix = f->desired_matrix;
4684 int i;
4685 int pause_p;
4686 int preempt_count = baud_rate / 2400 + 1;
4687
4688 xassert (current_matrix && desired_matrix);
4689
4690 if (baud_rate != FRAME_COST_BAUD_RATE (f))
4691 calculate_costs (f);
4692
4693 if (preempt_count <= 0)
4694 preempt_count = 1;
4695
4696 #if !PERIODIC_PREEMPTION_CHECKING
4697 if (!force_p && detect_input_pending_ignore_squeezables ())
4698 {
4699 pause_p = 1;
4700 goto do_pause;
4701 }
4702 #endif
4703
4704 /* If we cannot insert/delete lines, it's no use trying it. */
4705 if (!FRAME_LINE_INS_DEL_OK (f))
4706 inhibit_id_p = 1;
4707
4708 /* See if any of the desired lines are enabled; don't compute for
4709 i/d line if just want cursor motion. */
4710 for (i = 0; i < desired_matrix->nrows; i++)
4711 if (MATRIX_ROW_ENABLED_P (desired_matrix, i))
4712 break;
4713
4714 /* Try doing i/d line, if not yet inhibited. */
4715 if (!inhibit_id_p && i < desired_matrix->nrows)
4716 force_p |= scrolling (f);
4717
4718 /* Update the individual lines as needed. Do bottom line first. */
4719 if (MATRIX_ROW_ENABLED_P (desired_matrix, desired_matrix->nrows - 1))
4720 update_frame_line (f, desired_matrix->nrows - 1);
4721
4722 /* Now update the rest of the lines. */
4723 for (i = 0; i < desired_matrix->nrows - 1 && (force_p || !input_pending); i++)
4724 {
4725 if (MATRIX_ROW_ENABLED_P (desired_matrix, i))
4726 {
4727 if (FRAME_TERMCAP_P (f))
4728 {
4729 /* Flush out every so many lines.
4730 Also flush out if likely to have more than 1k buffered
4731 otherwise. I'm told that some telnet connections get
4732 really screwed by more than 1k output at once. */
4733 FILE *display_output = FRAME_TTY (f)->output;
4734 if (display_output)
4735 {
4736 int outq = PENDING_OUTPUT_COUNT (display_output);
4737 if (outq > 900
4738 || (outq > 20 && ((i - 1) % preempt_count == 0)))
4739 {
4740 fflush (display_output);
4741 if (preempt_count == 1)
4742 {
4743 #ifdef EMACS_OUTQSIZE
4744 if (EMACS_OUTQSIZE (0, &outq) < 0)
4745 /* Probably not a tty. Ignore the error and reset
4746 the outq count. */
4747 outq = PENDING_OUTPUT_COUNT (FRAME_TTY (f->output));
4748 #endif
4749 outq *= 10;
4750 if (baud_rate <= outq && baud_rate > 0)
4751 sleep (outq / baud_rate);
4752 }
4753 }
4754 }
4755 }
4756
4757 #if PERIODIC_PREEMPTION_CHECKING
4758 if (!force_p)
4759 {
4760 EMACS_TIME tm, dif;
4761 EMACS_GET_TIME (tm);
4762 EMACS_SUB_TIME (dif, preemption_next_check, tm);
4763 if (EMACS_TIME_NEG_P (dif))
4764 {
4765 EMACS_ADD_TIME (preemption_next_check, tm, preemption_period);
4766 if (detect_input_pending_ignore_squeezables ())
4767 break;
4768 }
4769 }
4770 #else
4771 if (!force_p && (i - 1) % preempt_count == 0)
4772 detect_input_pending_ignore_squeezables ();
4773 #endif
4774
4775 update_frame_line (f, i);
4776 }
4777 }
4778
4779 pause_p = (i < FRAME_LINES (f) - 1) ? i : 0;
4780
4781 /* Now just clean up termcap drivers and set cursor, etc. */
4782 if (!pause_p)
4783 {
4784 if ((cursor_in_echo_area
4785 /* If we are showing a message instead of the mini-buffer,
4786 show the cursor for the message instead of for the
4787 (now hidden) mini-buffer contents. */
4788 || (EQ (minibuf_window, selected_window)
4789 && EQ (minibuf_window, echo_area_window)
4790 && !NILP (echo_area_buffer[0])))
4791 /* These cases apply only to the frame that contains
4792 the active mini-buffer window. */
4793 && FRAME_HAS_MINIBUF_P (f)
4794 && EQ (FRAME_MINIBUF_WINDOW (f), echo_area_window))
4795 {
4796 int top = WINDOW_TOP_EDGE_LINE (XWINDOW (FRAME_MINIBUF_WINDOW (f)));
4797 int row, col;
4798
4799 if (cursor_in_echo_area < 0)
4800 {
4801 /* Negative value of cursor_in_echo_area means put
4802 cursor at beginning of line. */
4803 row = top;
4804 col = 0;
4805 }
4806 else
4807 {
4808 /* Positive value of cursor_in_echo_area means put
4809 cursor at the end of the prompt. If the mini-buffer
4810 is several lines high, find the last line that has
4811 any text on it. */
4812 row = FRAME_LINES (f);
4813 do
4814 {
4815 --row;
4816 col = 0;
4817
4818 if (MATRIX_ROW_ENABLED_P (current_matrix, row))
4819 {
4820 /* Frame rows are filled up with spaces that
4821 must be ignored here. */
4822 struct glyph_row *r = MATRIX_ROW (current_matrix,
4823 row);
4824 struct glyph *start = r->glyphs[TEXT_AREA];
4825 struct glyph *last = start + r->used[TEXT_AREA];
4826
4827 while (last > start
4828 && (last - 1)->charpos < 0)
4829 --last;
4830
4831 col = last - start;
4832 }
4833 }
4834 while (row > top && col == 0);
4835
4836 /* Make sure COL is not out of range. */
4837 if (col >= FRAME_CURSOR_X_LIMIT (f))
4838 {
4839 /* If we have another row, advance cursor into it. */
4840 if (row < FRAME_LINES (f) - 1)
4841 {
4842 col = FRAME_LEFT_SCROLL_BAR_COLS (f);
4843 row++;
4844 }
4845 /* Otherwise move it back in range. */
4846 else
4847 col = FRAME_CURSOR_X_LIMIT (f) - 1;
4848 }
4849 }
4850
4851 cursor_to (f, row, col);
4852 }
4853 else
4854 {
4855 /* We have only one cursor on terminal frames. Use it to
4856 display the cursor of the selected window. */
4857 struct window *w = XWINDOW (FRAME_SELECTED_WINDOW (f));
4858 if (w->cursor.vpos >= 0
4859 /* The cursor vpos may be temporarily out of bounds
4860 in the following situation: There is one window,
4861 with the cursor in the lower half of it. The window
4862 is split, and a message causes a redisplay before
4863 a new cursor position has been computed. */
4864 && w->cursor.vpos < WINDOW_TOTAL_LINES (w))
4865 {
4866 int x = WINDOW_TO_FRAME_HPOS (w, w->cursor.hpos);
4867 int y = WINDOW_TO_FRAME_VPOS (w, w->cursor.vpos);
4868
4869 if (INTEGERP (w->left_margin_cols))
4870 x += XFASTINT (w->left_margin_cols);
4871
4872 /* x = max (min (x, FRAME_TOTAL_COLS (f) - 1), 0); */
4873 cursor_to (f, y, x);
4874 }
4875 }
4876 }
4877
4878 #if !PERIODIC_PREEMPTION_CHECKING
4879 do_pause:
4880 #endif
4881
4882 clear_desired_matrices (f);
4883 return pause_p;
4884 }
4885
4886
4887 /* Do line insertions/deletions on frame F for frame-based redisplay. */
4888
4889 static int
4890 scrolling (struct frame *frame)
4891 {
4892 int unchanged_at_top, unchanged_at_bottom;
4893 int window_size;
4894 int changed_lines;
4895 int *old_hash = (int *) alloca (FRAME_LINES (frame) * sizeof (int));
4896 int *new_hash = (int *) alloca (FRAME_LINES (frame) * sizeof (int));
4897 int *draw_cost = (int *) alloca (FRAME_LINES (frame) * sizeof (int));
4898 int *old_draw_cost = (int *) alloca (FRAME_LINES (frame) * sizeof (int));
4899 register int i;
4900 int free_at_end_vpos = FRAME_LINES (frame);
4901 struct glyph_matrix *current_matrix = frame->current_matrix;
4902 struct glyph_matrix *desired_matrix = frame->desired_matrix;
4903
4904 if (!current_matrix)
4905 abort ();
4906
4907 /* Compute hash codes of all the lines. Also calculate number of
4908 changed lines, number of unchanged lines at the beginning, and
4909 number of unchanged lines at the end. */
4910 changed_lines = 0;
4911 unchanged_at_top = 0;
4912 unchanged_at_bottom = FRAME_LINES (frame);
4913 for (i = 0; i < FRAME_LINES (frame); i++)
4914 {
4915 /* Give up on this scrolling if some old lines are not enabled. */
4916 if (!MATRIX_ROW_ENABLED_P (current_matrix, i))
4917 return 0;
4918 old_hash[i] = line_hash_code (MATRIX_ROW (current_matrix, i));
4919 if (! MATRIX_ROW_ENABLED_P (desired_matrix, i))
4920 {
4921 /* This line cannot be redrawn, so don't let scrolling mess it. */
4922 new_hash[i] = old_hash[i];
4923 #define INFINITY 1000000 /* Taken from scroll.c */
4924 draw_cost[i] = INFINITY;
4925 }
4926 else
4927 {
4928 new_hash[i] = line_hash_code (MATRIX_ROW (desired_matrix, i));
4929 draw_cost[i] = line_draw_cost (desired_matrix, i);
4930 }
4931
4932 if (old_hash[i] != new_hash[i])
4933 {
4934 changed_lines++;
4935 unchanged_at_bottom = FRAME_LINES (frame) - i - 1;
4936 }
4937 else if (i == unchanged_at_top)
4938 unchanged_at_top++;
4939 old_draw_cost[i] = line_draw_cost (current_matrix, i);
4940 }
4941
4942 /* If changed lines are few, don't allow preemption, don't scroll. */
4943 if ((!FRAME_SCROLL_REGION_OK (frame)
4944 && changed_lines < baud_rate / 2400)
4945 || unchanged_at_bottom == FRAME_LINES (frame))
4946 return 1;
4947
4948 window_size = (FRAME_LINES (frame) - unchanged_at_top
4949 - unchanged_at_bottom);
4950
4951 if (FRAME_SCROLL_REGION_OK (frame))
4952 free_at_end_vpos -= unchanged_at_bottom;
4953 else if (FRAME_MEMORY_BELOW_FRAME (frame))
4954 free_at_end_vpos = -1;
4955
4956 /* If large window, fast terminal and few lines in common between
4957 current frame and desired frame, don't bother with i/d calc. */
4958 if (!FRAME_SCROLL_REGION_OK (frame)
4959 && window_size >= 18 && baud_rate > 2400
4960 && (window_size >=
4961 10 * scrolling_max_lines_saved (unchanged_at_top,
4962 FRAME_LINES (frame) - unchanged_at_bottom,
4963 old_hash, new_hash, draw_cost)))
4964 return 0;
4965
4966 if (window_size < 2)
4967 return 0;
4968
4969 scrolling_1 (frame, window_size, unchanged_at_top, unchanged_at_bottom,
4970 draw_cost + unchanged_at_top - 1,
4971 old_draw_cost + unchanged_at_top - 1,
4972 old_hash + unchanged_at_top - 1,
4973 new_hash + unchanged_at_top - 1,
4974 free_at_end_vpos - unchanged_at_top);
4975
4976 return 0;
4977 }
4978
4979
4980 /* Count the number of blanks at the start of the vector of glyphs R
4981 which is LEN glyphs long. */
4982
4983 static int
4984 count_blanks (struct glyph *r, int len)
4985 {
4986 int i;
4987
4988 for (i = 0; i < len; ++i)
4989 if (!CHAR_GLYPH_SPACE_P (r[i]))
4990 break;
4991
4992 return i;
4993 }
4994
4995
4996 /* Count the number of glyphs in common at the start of the glyph
4997 vectors STR1 and STR2. END1 is the end of STR1 and END2 is the end
4998 of STR2. Value is the number of equal glyphs equal at the start. */
4999
5000 static int
5001 count_match (struct glyph *str1, struct glyph *end1, struct glyph *str2, struct glyph *end2)
5002 {
5003 struct glyph *p1 = str1;
5004 struct glyph *p2 = str2;
5005
5006 while (p1 < end1
5007 && p2 < end2
5008 && GLYPH_CHAR_AND_FACE_EQUAL_P (p1, p2))
5009 ++p1, ++p2;
5010
5011 return p1 - str1;
5012 }
5013
5014
5015 /* Char insertion/deletion cost vector, from term.c */
5016
5017 #define char_ins_del_cost(f) (&char_ins_del_vector[FRAME_TOTAL_COLS ((f))])
5018
5019
5020 /* Perform a frame-based update on line VPOS in frame FRAME. */
5021
5022 static void
5023 update_frame_line (struct frame *f, int vpos)
5024 {
5025 struct glyph *obody, *nbody, *op1, *op2, *np1, *nend;
5026 int tem;
5027 int osp, nsp, begmatch, endmatch, olen, nlen;
5028 struct glyph_matrix *current_matrix = f->current_matrix;
5029 struct glyph_matrix *desired_matrix = f->desired_matrix;
5030 struct glyph_row *current_row = MATRIX_ROW (current_matrix, vpos);
5031 struct glyph_row *desired_row = MATRIX_ROW (desired_matrix, vpos);
5032 int must_write_whole_line_p;
5033 int write_spaces_p = FRAME_MUST_WRITE_SPACES (f);
5034 int colored_spaces_p = (FACE_FROM_ID (f, DEFAULT_FACE_ID)->background
5035 != FACE_TTY_DEFAULT_BG_COLOR);
5036
5037 if (colored_spaces_p)
5038 write_spaces_p = 1;
5039
5040 /* Current row not enabled means it has unknown contents. We must
5041 write the whole desired line in that case. */
5042 must_write_whole_line_p = !current_row->enabled_p;
5043 if (must_write_whole_line_p)
5044 {
5045 obody = 0;
5046 olen = 0;
5047 }
5048 else
5049 {
5050 obody = MATRIX_ROW_GLYPH_START (current_matrix, vpos);
5051 olen = current_row->used[TEXT_AREA];
5052
5053 /* Ignore trailing spaces, if we can. */
5054 if (!write_spaces_p)
5055 while (olen > 0 && CHAR_GLYPH_SPACE_P (obody[olen-1]))
5056 olen--;
5057 }
5058
5059 current_row->enabled_p = 1;
5060 current_row->used[TEXT_AREA] = desired_row->used[TEXT_AREA];
5061
5062 /* If desired line is empty, just clear the line. */
5063 if (!desired_row->enabled_p)
5064 {
5065 nlen = 0;
5066 goto just_erase;
5067 }
5068
5069 nbody = desired_row->glyphs[TEXT_AREA];
5070 nlen = desired_row->used[TEXT_AREA];
5071 nend = nbody + nlen;
5072
5073 /* If display line has unknown contents, write the whole line. */
5074 if (must_write_whole_line_p)
5075 {
5076 /* Ignore spaces at the end, if we can. */
5077 if (!write_spaces_p)
5078 while (nlen > 0 && CHAR_GLYPH_SPACE_P (nbody[nlen - 1]))
5079 --nlen;
5080
5081 /* Write the contents of the desired line. */
5082 if (nlen)
5083 {
5084 cursor_to (f, vpos, 0);
5085 write_glyphs (f, nbody, nlen);
5086 }
5087
5088 /* Don't call clear_end_of_line if we already wrote the whole
5089 line. The cursor will not be at the right margin in that
5090 case but in the line below. */
5091 if (nlen < FRAME_TOTAL_COLS (f))
5092 {
5093 cursor_to (f, vpos, nlen);
5094 clear_end_of_line (f, FRAME_TOTAL_COLS (f));
5095 }
5096 else
5097 /* Make sure we are in the right row, otherwise cursor movement
5098 with cmgoto might use `ch' in the wrong row. */
5099 cursor_to (f, vpos, 0);
5100
5101 make_current (desired_matrix, current_matrix, vpos);
5102 return;
5103 }
5104
5105 /* Pretend trailing spaces are not there at all,
5106 unless for one reason or another we must write all spaces. */
5107 if (!write_spaces_p)
5108 while (nlen > 0 && CHAR_GLYPH_SPACE_P (nbody[nlen - 1]))
5109 nlen--;
5110
5111 /* If there's no i/d char, quickly do the best we can without it. */
5112 if (!FRAME_CHAR_INS_DEL_OK (f))
5113 {
5114 int i, j;
5115
5116 /* Find the first glyph in desired row that doesn't agree with
5117 a glyph in the current row, and write the rest from there on. */
5118 for (i = 0; i < nlen; i++)
5119 {
5120 if (i >= olen || !GLYPH_EQUAL_P (nbody + i, obody + i))
5121 {
5122 /* Find the end of the run of different glyphs. */
5123 j = i + 1;
5124 while (j < nlen
5125 && (j >= olen
5126 || !GLYPH_EQUAL_P (nbody + j, obody + j)
5127 || CHAR_GLYPH_PADDING_P (nbody[j])))
5128 ++j;
5129
5130 /* Output this run of non-matching chars. */
5131 cursor_to (f, vpos, i);
5132 write_glyphs (f, nbody + i, j - i);
5133 i = j - 1;
5134
5135 /* Now find the next non-match. */
5136 }
5137 }
5138
5139 /* Clear the rest of the line, or the non-clear part of it. */
5140 if (olen > nlen)
5141 {
5142 cursor_to (f, vpos, nlen);
5143 clear_end_of_line (f, olen);
5144 }
5145
5146 /* Make current row = desired row. */
5147 make_current (desired_matrix, current_matrix, vpos);
5148 return;
5149 }
5150
5151 /* Here when CHAR_INS_DEL_OK != 0, i.e. we can insert or delete
5152 characters in a row. */
5153
5154 if (!olen)
5155 {
5156 /* If current line is blank, skip over initial spaces, if
5157 possible, and write the rest. */
5158 if (write_spaces_p)
5159 nsp = 0;
5160 else
5161 nsp = count_blanks (nbody, nlen);
5162
5163 if (nlen > nsp)
5164 {
5165 cursor_to (f, vpos, nsp);
5166 write_glyphs (f, nbody + nsp, nlen - nsp);
5167 }
5168
5169 /* Exchange contents between current_frame and new_frame. */
5170 make_current (desired_matrix, current_matrix, vpos);
5171 return;
5172 }
5173
5174 /* Compute number of leading blanks in old and new contents. */
5175 osp = count_blanks (obody, olen);
5176 nsp = (colored_spaces_p ? 0 : count_blanks (nbody, nlen));
5177
5178 /* Compute number of matching chars starting with first non-blank. */
5179 begmatch = count_match (obody + osp, obody + olen,
5180 nbody + nsp, nbody + nlen);
5181
5182 /* Spaces in new match implicit space past the end of old. */
5183 /* A bug causing this to be a no-op was fixed in 18.29. */
5184 if (!write_spaces_p && osp + begmatch == olen)
5185 {
5186 np1 = nbody + nsp;
5187 while (np1 + begmatch < nend && CHAR_GLYPH_SPACE_P (np1[begmatch]))
5188 ++begmatch;
5189 }
5190
5191 /* Avoid doing insert/delete char
5192 just cause number of leading spaces differs
5193 when the following text does not match. */
5194 if (begmatch == 0 && osp != nsp)
5195 osp = nsp = min (osp, nsp);
5196
5197 /* Find matching characters at end of line */
5198 op1 = obody + olen;
5199 np1 = nbody + nlen;
5200 op2 = op1 + begmatch - min (olen - osp, nlen - nsp);
5201 while (op1 > op2
5202 && GLYPH_EQUAL_P (op1 - 1, np1 - 1))
5203 {
5204 op1--;
5205 np1--;
5206 }
5207 endmatch = obody + olen - op1;
5208
5209 /* tem gets the distance to insert or delete.
5210 endmatch is how many characters we save by doing so.
5211 Is it worth it? */
5212
5213 tem = (nlen - nsp) - (olen - osp);
5214 if (endmatch && tem
5215 && (!FRAME_CHAR_INS_DEL_OK (f)
5216 || endmatch <= char_ins_del_cost (f)[tem]))
5217 endmatch = 0;
5218
5219 /* nsp - osp is the distance to insert or delete.
5220 If that is nonzero, begmatch is known to be nonzero also.
5221 begmatch + endmatch is how much we save by doing the ins/del.
5222 Is it worth it? */
5223
5224 if (nsp != osp
5225 && (!FRAME_CHAR_INS_DEL_OK (f)
5226 || begmatch + endmatch <= char_ins_del_cost (f)[nsp - osp]))
5227 {
5228 begmatch = 0;
5229 endmatch = 0;
5230 osp = nsp = min (osp, nsp);
5231 }
5232
5233 /* Now go through the line, inserting, writing and
5234 deleting as appropriate. */
5235
5236 if (osp > nsp)
5237 {
5238 cursor_to (f, vpos, nsp);
5239 delete_glyphs (f, osp - nsp);
5240 }
5241 else if (nsp > osp)
5242 {
5243 /* If going to delete chars later in line
5244 and insert earlier in the line,
5245 must delete first to avoid losing data in the insert */
5246 if (endmatch && nlen < olen + nsp - osp)
5247 {
5248 cursor_to (f, vpos, nlen - endmatch + osp - nsp);
5249 delete_glyphs (f, olen + nsp - osp - nlen);
5250 olen = nlen - (nsp - osp);
5251 }
5252 cursor_to (f, vpos, osp);
5253 insert_glyphs (f, 0, nsp - osp);
5254 }
5255 olen += nsp - osp;
5256
5257 tem = nsp + begmatch + endmatch;
5258 if (nlen != tem || olen != tem)
5259 {
5260 if (!endmatch || nlen == olen)
5261 {
5262 /* If new text being written reaches right margin, there is
5263 no need to do clear-to-eol at the end of this function
5264 (and it would not be safe, since cursor is not going to
5265 be "at the margin" after the text is done). */
5266 if (nlen == FRAME_TOTAL_COLS (f))
5267 olen = 0;
5268
5269 /* Function write_glyphs is prepared to do nothing
5270 if passed a length <= 0. Check it here to avoid
5271 unnecessary cursor movement. */
5272 if (nlen - tem > 0)
5273 {
5274 cursor_to (f, vpos, nsp + begmatch);
5275 write_glyphs (f, nbody + nsp + begmatch, nlen - tem);
5276 }
5277 }
5278 else if (nlen > olen)
5279 {
5280 /* Here, we used to have the following simple code:
5281 ----------------------------------------
5282 write_glyphs (nbody + nsp + begmatch, olen - tem);
5283 insert_glyphs (nbody + nsp + begmatch + olen - tem, nlen - olen);
5284 ----------------------------------------
5285 but it doesn't work if nbody[nsp + begmatch + olen - tem]
5286 is a padding glyph. */
5287 int out = olen - tem; /* Columns to be overwritten originally. */
5288 int del;
5289
5290 cursor_to (f, vpos, nsp + begmatch);
5291
5292 /* Calculate columns we can actually overwrite. */
5293 while (CHAR_GLYPH_PADDING_P (nbody[nsp + begmatch + out]))
5294 out--;
5295 write_glyphs (f, nbody + nsp + begmatch, out);
5296
5297 /* If we left columns to be overwritten, we must delete them. */
5298 del = olen - tem - out;
5299 if (del > 0)
5300 delete_glyphs (f, del);
5301
5302 /* At last, we insert columns not yet written out. */
5303 insert_glyphs (f, nbody + nsp + begmatch + out, nlen - olen + del);
5304 olen = nlen;
5305 }
5306 else if (olen > nlen)
5307 {
5308 cursor_to (f, vpos, nsp + begmatch);
5309 write_glyphs (f, nbody + nsp + begmatch, nlen - tem);
5310 delete_glyphs (f, olen - nlen);
5311 olen = nlen;
5312 }
5313 }
5314
5315 just_erase:
5316 /* If any unerased characters remain after the new line, erase them. */
5317 if (olen > nlen)
5318 {
5319 cursor_to (f, vpos, nlen);
5320 clear_end_of_line (f, olen);
5321 }
5322
5323 /* Exchange contents between current_frame and new_frame. */
5324 make_current (desired_matrix, current_matrix, vpos);
5325 }
5326
5327
5328 \f
5329 /***********************************************************************
5330 X/Y Position -> Buffer Position
5331 ***********************************************************************/
5332
5333 /* Determine what's under window-relative pixel position (*X, *Y).
5334 Return the OBJECT (string or buffer) that's there.
5335 Return in *POS the position in that object.
5336 Adjust *X and *Y to character positions.
5337 Return in *DX and *DY the pixel coordinates of the click,
5338 relative to the top left corner of OBJECT, or relative to
5339 the top left corner of the character glyph at (*X, *Y)
5340 if OBJECT is nil.
5341 Return WIDTH and HEIGHT of the object at (*X, *Y), or zero
5342 if the coordinates point to an empty area of the display. */
5343
5344 Lisp_Object
5345 buffer_posn_from_coords (struct window *w, int *x, int *y, struct display_pos *pos, Lisp_Object *object, int *dx, int *dy, int *width, int *height)
5346 {
5347 struct it it;
5348 Lisp_Object old_current_buffer = Fcurrent_buffer ();
5349 struct text_pos startp;
5350 Lisp_Object string;
5351 struct glyph_row *row;
5352 #ifdef HAVE_WINDOW_SYSTEM
5353 struct image *img = 0;
5354 #endif
5355 int x0, x1, to_x;
5356 void *itdata = NULL;
5357
5358 /* We used to set current_buffer directly here, but that does the
5359 wrong thing with `face-remapping-alist' (bug#2044). */
5360 Fset_buffer (w->buffer);
5361 itdata = bidi_shelve_cache ();
5362 SET_TEXT_POS_FROM_MARKER (startp, w->start);
5363 CHARPOS (startp) = min (ZV, max (BEGV, CHARPOS (startp)));
5364 BYTEPOS (startp) = min (ZV_BYTE, max (BEGV_BYTE, BYTEPOS (startp)));
5365 start_display (&it, w, startp);
5366 /* start_display takes into account the header-line row, but IT's
5367 vpos still counts from the glyph row that includes the window's
5368 start position. Adjust for a possible header-line row. */
5369 it.vpos += WINDOW_WANTS_HEADER_LINE_P (w) ? 1 : 0;
5370
5371 x0 = *x;
5372
5373 /* First, move to the beginning of the row corresponding to *Y. We
5374 need to be in that row to get the correct value of base paragraph
5375 direction for the text at (*X, *Y). */
5376 move_it_to (&it, -1, 0, *y, -1, MOVE_TO_X | MOVE_TO_Y);
5377
5378 /* TO_X is the pixel position that the iterator will compute for the
5379 glyph at *X. We add it.first_visible_x because iterator
5380 positions include the hscroll. */
5381 to_x = x0 + it.first_visible_x;
5382 if (it.bidi_it.paragraph_dir == R2L)
5383 /* For lines in an R2L paragraph, we need to mirror TO_X wrt the
5384 text area. This is because the iterator, even in R2L
5385 paragraphs, delivers glyphs as if they started at the left
5386 margin of the window. (When we actually produce glyphs for
5387 display, we reverse their order in PRODUCE_GLYPHS, but the
5388 iterator doesn't know about that.) The following line adjusts
5389 the pixel position to the iterator geometry, which is what
5390 move_it_* routines use. (The -1 is because in a window whose
5391 text-area width is W, the rightmost pixel position is W-1, and
5392 it should be mirrored into zero pixel position.) */
5393 to_x = window_box_width (w, TEXT_AREA) - to_x - 1;
5394
5395 /* Now move horizontally in the row to the glyph under *X. Second
5396 argument is ZV to prevent move_it_in_display_line from matching
5397 based on buffer positions. */
5398 move_it_in_display_line (&it, ZV, to_x, MOVE_TO_X);
5399 bidi_unshelve_cache (itdata, 0);
5400
5401 Fset_buffer (old_current_buffer);
5402
5403 *dx = x0 + it.first_visible_x - it.current_x;
5404 *dy = *y - it.current_y;
5405
5406 string = w->buffer;
5407 if (STRINGP (it.string))
5408 string = it.string;
5409 *pos = it.current;
5410 if (it.what == IT_COMPOSITION
5411 && it.cmp_it.nchars > 1
5412 && it.cmp_it.reversed_p)
5413 {
5414 /* The current display element is a grapheme cluster in a
5415 composition. In that case, we need the position of the first
5416 character of the cluster. But, as it.cmp_it.reversed_p is 1,
5417 it.current points to the last character of the cluster, thus
5418 we must move back to the first character of the same
5419 cluster. */
5420 CHARPOS (pos->pos) -= it.cmp_it.nchars - 1;
5421 if (STRINGP (it.string))
5422 BYTEPOS (pos->pos) = string_char_to_byte (string, CHARPOS (pos->pos));
5423 else
5424 BYTEPOS (pos->pos) = buf_charpos_to_bytepos (XBUFFER (w->buffer),
5425 CHARPOS (pos->pos));
5426 }
5427
5428 #ifdef HAVE_WINDOW_SYSTEM
5429 if (it.what == IT_IMAGE)
5430 {
5431 if ((img = IMAGE_FROM_ID (it.f, it.image_id)) != NULL
5432 && !NILP (img->spec))
5433 *object = img->spec;
5434 }
5435 #endif
5436
5437 if (it.vpos < w->current_matrix->nrows
5438 && (row = MATRIX_ROW (w->current_matrix, it.vpos),
5439 row->enabled_p))
5440 {
5441 if (it.hpos < row->used[TEXT_AREA])
5442 {
5443 struct glyph *glyph = row->glyphs[TEXT_AREA] + it.hpos;
5444 #ifdef HAVE_WINDOW_SYSTEM
5445 if (img)
5446 {
5447 *dy -= row->ascent - glyph->ascent;
5448 *dx += glyph->slice.img.x;
5449 *dy += glyph->slice.img.y;
5450 /* Image slices positions are still relative to the entire image */
5451 *width = img->width;
5452 *height = img->height;
5453 }
5454 else
5455 #endif
5456 {
5457 *width = glyph->pixel_width;
5458 *height = glyph->ascent + glyph->descent;
5459 }
5460 }
5461 else
5462 {
5463 *width = 0;
5464 *height = row->height;
5465 }
5466 }
5467 else
5468 {
5469 *width = *height = 0;
5470 }
5471
5472 /* Add extra (default width) columns if clicked after EOL. */
5473 x1 = max (0, it.current_x + it.pixel_width - it.first_visible_x);
5474 if (x0 > x1)
5475 it.hpos += (x0 - x1) / WINDOW_FRAME_COLUMN_WIDTH (w);
5476
5477 *x = it.hpos;
5478 *y = it.vpos;
5479
5480 return string;
5481 }
5482
5483
5484 /* Value is the string under window-relative coordinates X/Y in the
5485 mode line or header line (PART says which) of window W, or nil if none.
5486 *CHARPOS is set to the position in the string returned. */
5487
5488 Lisp_Object
5489 mode_line_string (struct window *w, enum window_part part,
5490 int *x, int *y, EMACS_INT *charpos, Lisp_Object *object,
5491 int *dx, int *dy, int *width, int *height)
5492 {
5493 struct glyph_row *row;
5494 struct glyph *glyph, *end;
5495 int x0, y0;
5496 Lisp_Object string = Qnil;
5497
5498 if (part == ON_MODE_LINE)
5499 row = MATRIX_MODE_LINE_ROW (w->current_matrix);
5500 else
5501 row = MATRIX_HEADER_LINE_ROW (w->current_matrix);
5502 y0 = *y - row->y;
5503 *y = row - MATRIX_FIRST_TEXT_ROW (w->current_matrix);
5504
5505 if (row->mode_line_p && row->enabled_p)
5506 {
5507 /* Find the glyph under X. If we find one with a string object,
5508 it's the one we were looking for. */
5509 glyph = row->glyphs[TEXT_AREA];
5510 end = glyph + row->used[TEXT_AREA];
5511 for (x0 = *x; glyph < end && x0 >= glyph->pixel_width; ++glyph)
5512 x0 -= glyph->pixel_width;
5513 *x = glyph - row->glyphs[TEXT_AREA];
5514 if (glyph < end)
5515 {
5516 string = glyph->object;
5517 *charpos = glyph->charpos;
5518 *width = glyph->pixel_width;
5519 *height = glyph->ascent + glyph->descent;
5520 #ifdef HAVE_WINDOW_SYSTEM
5521 if (glyph->type == IMAGE_GLYPH)
5522 {
5523 struct image *img;
5524 img = IMAGE_FROM_ID (WINDOW_XFRAME (w), glyph->u.img_id);
5525 if (img != NULL)
5526 *object = img->spec;
5527 y0 -= row->ascent - glyph->ascent;
5528 }
5529 #endif
5530 }
5531 else
5532 {
5533 /* Add extra (default width) columns if clicked after EOL. */
5534 *x += x0 / WINDOW_FRAME_COLUMN_WIDTH (w);
5535 *width = 0;
5536 *height = row->height;
5537 }
5538 }
5539 else
5540 {
5541 *x = 0;
5542 x0 = 0;
5543 *width = *height = 0;
5544 }
5545
5546 *dx = x0;
5547 *dy = y0;
5548
5549 return string;
5550 }
5551
5552
5553 /* Value is the string under window-relative coordinates X/Y in either
5554 marginal area, or nil if none. *CHARPOS is set to the position in
5555 the string returned. */
5556
5557 Lisp_Object
5558 marginal_area_string (struct window *w, enum window_part part,
5559 int *x, int *y, EMACS_INT *charpos, Lisp_Object *object,
5560 int *dx, int *dy, int *width, int *height)
5561 {
5562 struct glyph_row *row = w->current_matrix->rows;
5563 struct glyph *glyph, *end;
5564 int x0, y0, i, wy = *y;
5565 int area;
5566 Lisp_Object string = Qnil;
5567
5568 if (part == ON_LEFT_MARGIN)
5569 area = LEFT_MARGIN_AREA;
5570 else if (part == ON_RIGHT_MARGIN)
5571 area = RIGHT_MARGIN_AREA;
5572 else
5573 abort ();
5574
5575 for (i = 0; row->enabled_p && i < w->current_matrix->nrows; ++i, ++row)
5576 if (wy >= row->y && wy < MATRIX_ROW_BOTTOM_Y (row))
5577 break;
5578 y0 = *y - row->y;
5579 *y = row - MATRIX_FIRST_TEXT_ROW (w->current_matrix);
5580
5581 if (row->enabled_p)
5582 {
5583 /* Find the glyph under X. If we find one with a string object,
5584 it's the one we were looking for. */
5585 if (area == RIGHT_MARGIN_AREA)
5586 x0 = ((WINDOW_HAS_FRINGES_OUTSIDE_MARGINS (w)
5587 ? WINDOW_LEFT_FRINGE_WIDTH (w)
5588 : WINDOW_TOTAL_FRINGE_WIDTH (w))
5589 + window_box_width (w, LEFT_MARGIN_AREA)
5590 + window_box_width (w, TEXT_AREA));
5591 else
5592 x0 = (WINDOW_HAS_FRINGES_OUTSIDE_MARGINS (w)
5593 ? WINDOW_LEFT_FRINGE_WIDTH (w)
5594 : 0);
5595
5596 glyph = row->glyphs[area];
5597 end = glyph + row->used[area];
5598 for (x0 = *x - x0; glyph < end && x0 >= glyph->pixel_width; ++glyph)
5599 x0 -= glyph->pixel_width;
5600 *x = glyph - row->glyphs[area];
5601 if (glyph < end)
5602 {
5603 string = glyph->object;
5604 *charpos = glyph->charpos;
5605 *width = glyph->pixel_width;
5606 *height = glyph->ascent + glyph->descent;
5607 #ifdef HAVE_WINDOW_SYSTEM
5608 if (glyph->type == IMAGE_GLYPH)
5609 {
5610 struct image *img;
5611 img = IMAGE_FROM_ID (WINDOW_XFRAME (w), glyph->u.img_id);
5612 if (img != NULL)
5613 *object = img->spec;
5614 y0 -= row->ascent - glyph->ascent;
5615 x0 += glyph->slice.img.x;
5616 y0 += glyph->slice.img.y;
5617 }
5618 #endif
5619 }
5620 else
5621 {
5622 /* Add extra (default width) columns if clicked after EOL. */
5623 *x += x0 / WINDOW_FRAME_COLUMN_WIDTH (w);
5624 *width = 0;
5625 *height = row->height;
5626 }
5627 }
5628 else
5629 {
5630 x0 = 0;
5631 *x = 0;
5632 *width = *height = 0;
5633 }
5634
5635 *dx = x0;
5636 *dy = y0;
5637
5638 return string;
5639 }
5640
5641
5642 /***********************************************************************
5643 Changing Frame Sizes
5644 ***********************************************************************/
5645
5646 #ifdef SIGWINCH
5647
5648 static void
5649 window_change_signal (int signalnum) /* If we don't have an argument, */
5650 /* some compilers complain in signal calls. */
5651 {
5652 int width, height;
5653 int old_errno = errno;
5654
5655 struct tty_display_info *tty;
5656
5657 signal (SIGWINCH, window_change_signal);
5658 SIGNAL_THREAD_CHECK (signalnum);
5659
5660 /* The frame size change obviously applies to a single
5661 termcap-controlled terminal, but we can't decide which.
5662 Therefore, we resize the frames corresponding to each tty.
5663 */
5664 for (tty = tty_list; tty; tty = tty->next) {
5665
5666 if (! tty->term_initted)
5667 continue;
5668
5669 /* Suspended tty frames have tty->input == NULL avoid trying to
5670 use it. */
5671 if (!tty->input)
5672 continue;
5673
5674 get_tty_size (fileno (tty->input), &width, &height);
5675
5676 if (width > 5 && height > 2) {
5677 Lisp_Object tail, frame;
5678
5679 FOR_EACH_FRAME (tail, frame)
5680 if (FRAME_TERMCAP_P (XFRAME (frame)) && FRAME_TTY (XFRAME (frame)) == tty)
5681 /* Record the new sizes, but don't reallocate the data
5682 structures now. Let that be done later outside of the
5683 signal handler. */
5684 change_frame_size (XFRAME (frame), height, width, 0, 1, 0);
5685 }
5686 }
5687
5688 errno = old_errno;
5689 }
5690 #endif /* SIGWINCH */
5691
5692
5693 /* Do any change in frame size that was requested by a signal. SAFE
5694 non-zero means this function is called from a place where it is
5695 safe to change frame sizes while a redisplay is in progress. */
5696
5697 void
5698 do_pending_window_change (int safe)
5699 {
5700 /* If window_change_signal should have run before, run it now. */
5701 if (redisplaying_p && !safe)
5702 return;
5703
5704 while (delayed_size_change)
5705 {
5706 Lisp_Object tail, frame;
5707
5708 delayed_size_change = 0;
5709
5710 FOR_EACH_FRAME (tail, frame)
5711 {
5712 struct frame *f = XFRAME (frame);
5713
5714 if (f->new_text_lines != 0 || f->new_text_cols != 0)
5715 change_frame_size (f, f->new_text_lines, f->new_text_cols,
5716 0, 0, safe);
5717 }
5718 }
5719 }
5720
5721
5722 /* Change the frame height and/or width. Values may be given as zero to
5723 indicate no change is to take place.
5724
5725 If DELAY is non-zero, then assume we're being called from a signal
5726 handler, and queue the change for later - perhaps the next
5727 redisplay. Since this tries to resize windows, we can't call it
5728 from a signal handler.
5729
5730 SAFE non-zero means this function is called from a place where it's
5731 safe to change frame sizes while a redisplay is in progress. */
5732
5733 void
5734 change_frame_size (register struct frame *f, int newheight, int newwidth, int pretend, int delay, int safe)
5735 {
5736 Lisp_Object tail, frame;
5737
5738 if (FRAME_MSDOS_P (f))
5739 {
5740 /* On MS-DOS, all frames use the same screen, so a change in
5741 size affects all frames. Termcap now supports multiple
5742 ttys. */
5743 FOR_EACH_FRAME (tail, frame)
5744 if (! FRAME_WINDOW_P (XFRAME (frame)))
5745 change_frame_size_1 (XFRAME (frame), newheight, newwidth,
5746 pretend, delay, safe);
5747 }
5748 else
5749 change_frame_size_1 (f, newheight, newwidth, pretend, delay, safe);
5750 }
5751
5752 static void
5753 change_frame_size_1 (register struct frame *f, int newheight, int newwidth, int pretend, int delay, int safe)
5754 {
5755 int new_frame_total_cols;
5756 int count = SPECPDL_INDEX ();
5757
5758 /* If we can't deal with the change now, queue it for later. */
5759 if (delay || (redisplaying_p && !safe))
5760 {
5761 f->new_text_lines = newheight;
5762 f->new_text_cols = newwidth;
5763 delayed_size_change = 1;
5764 return;
5765 }
5766
5767 /* This size-change overrides any pending one for this frame. */
5768 f->new_text_lines = 0;
5769 f->new_text_cols = 0;
5770
5771 /* If an argument is zero, set it to the current value. */
5772 if (newheight == 0)
5773 newheight = FRAME_LINES (f);
5774 if (newwidth == 0)
5775 newwidth = FRAME_COLS (f);
5776
5777 /* Compute width of windows in F. */
5778 /* Round up to the smallest acceptable size. */
5779 check_frame_size (f, &newheight, &newwidth);
5780
5781 /* This is the width of the frame with vertical scroll bars and fringe
5782 columns. Do this after rounding - see discussion of bug#9723. */
5783 new_frame_total_cols = FRAME_TOTAL_COLS_ARG (f, newwidth);
5784
5785 /* If we're not changing the frame size, quit now. */
5786 /* Frame width may be unchanged but the text portion may change, for
5787 example, fullscreen and remove/add scroll bar. */
5788 if (newheight == FRAME_LINES (f)
5789 /* Text portion unchanged? */
5790 && newwidth == FRAME_COLS (f)
5791 /* Frame width unchanged? */
5792 && new_frame_total_cols == FRAME_TOTAL_COLS (f))
5793 return;
5794
5795 BLOCK_INPUT;
5796
5797 #ifdef MSDOS
5798 /* We only can set screen dimensions to certain values supported
5799 by our video hardware. Try to find the smallest size greater
5800 or equal to the requested dimensions. */
5801 dos_set_window_size (&newheight, &newwidth);
5802 #endif
5803
5804 if (newheight != FRAME_LINES (f))
5805 {
5806 resize_frame_windows (f, newheight, 0);
5807
5808 /* MSDOS frames cannot PRETEND, as they change frame size by
5809 manipulating video hardware. */
5810 if ((FRAME_TERMCAP_P (f) && !pretend) || FRAME_MSDOS_P (f))
5811 FrameRows (FRAME_TTY (f)) = newheight;
5812 }
5813
5814 if (new_frame_total_cols != FRAME_TOTAL_COLS (f))
5815 {
5816 resize_frame_windows (f, new_frame_total_cols, 1);
5817
5818 /* MSDOS frames cannot PRETEND, as they change frame size by
5819 manipulating video hardware. */
5820 if ((FRAME_TERMCAP_P (f) && !pretend) || FRAME_MSDOS_P (f))
5821 FrameCols (FRAME_TTY (f)) = newwidth;
5822
5823 if (WINDOWP (f->tool_bar_window))
5824 XSETFASTINT (XWINDOW (f->tool_bar_window)->total_cols, newwidth);
5825 }
5826
5827 FRAME_LINES (f) = newheight;
5828 SET_FRAME_COLS (f, newwidth);
5829
5830 {
5831 struct window *w = XWINDOW (FRAME_SELECTED_WINDOW (f));
5832 int text_area_x, text_area_y, text_area_width, text_area_height;
5833
5834 window_box (w, TEXT_AREA, &text_area_x, &text_area_y, &text_area_width,
5835 &text_area_height);
5836 if (w->cursor.x >= text_area_x + text_area_width)
5837 w->cursor.hpos = w->cursor.x = 0;
5838 if (w->cursor.y >= text_area_y + text_area_height)
5839 w->cursor.vpos = w->cursor.y = 0;
5840 }
5841
5842 adjust_glyphs (f);
5843 calculate_costs (f);
5844 SET_FRAME_GARBAGED (f);
5845 f->resized_p = 1;
5846
5847 UNBLOCK_INPUT;
5848
5849 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
5850
5851 run_window_configuration_change_hook (f);
5852
5853 unbind_to (count, Qnil);
5854 }
5855
5856
5857 \f
5858 /***********************************************************************
5859 Terminal Related Lisp Functions
5860 ***********************************************************************/
5861
5862 DEFUN ("open-termscript", Fopen_termscript, Sopen_termscript,
5863 1, 1, "FOpen termscript file: ",
5864 doc: /* Start writing all terminal output to FILE as well as the terminal.
5865 FILE = nil means just close any termscript file currently open. */)
5866 (Lisp_Object file)
5867 {
5868 struct tty_display_info *tty;
5869
5870 if (! FRAME_TERMCAP_P (SELECTED_FRAME ())
5871 && ! FRAME_MSDOS_P (SELECTED_FRAME ()))
5872 error ("Current frame is not on a tty device");
5873
5874 tty = CURTTY ();
5875
5876 if (tty->termscript != 0)
5877 {
5878 BLOCK_INPUT;
5879 fclose (tty->termscript);
5880 UNBLOCK_INPUT;
5881 }
5882 tty->termscript = 0;
5883
5884 if (! NILP (file))
5885 {
5886 file = Fexpand_file_name (file, Qnil);
5887 tty->termscript = fopen (SSDATA (file), "w");
5888 if (tty->termscript == 0)
5889 report_file_error ("Opening termscript", Fcons (file, Qnil));
5890 }
5891 return Qnil;
5892 }
5893
5894
5895 DEFUN ("send-string-to-terminal", Fsend_string_to_terminal,
5896 Ssend_string_to_terminal, 1, 2, 0,
5897 doc: /* Send STRING to the terminal without alteration.
5898 Control characters in STRING will have terminal-dependent effects.
5899
5900 Optional parameter TERMINAL specifies the tty terminal device to use.
5901 It may be a terminal object, a frame, or nil for the terminal used by
5902 the currently selected frame. In batch mode, STRING is sent to stdout
5903 when TERMINAL is nil. */)
5904 (Lisp_Object string, Lisp_Object terminal)
5905 {
5906 struct terminal *t = get_terminal (terminal, 1);
5907 FILE *out;
5908
5909 /* ??? Perhaps we should do something special for multibyte strings here. */
5910 CHECK_STRING (string);
5911 BLOCK_INPUT;
5912
5913 if (!t)
5914 error ("Unknown terminal device");
5915
5916 if (t->type == output_initial)
5917 out = stdout;
5918 else if (t->type != output_termcap && t->type != output_msdos_raw)
5919 error ("Device %d is not a termcap terminal device", t->id);
5920 else
5921 {
5922 struct tty_display_info *tty = t->display_info.tty;
5923
5924 if (! tty->output)
5925 error ("Terminal is currently suspended");
5926
5927 if (tty->termscript)
5928 {
5929 fwrite (SDATA (string), 1, SBYTES (string), tty->termscript);
5930 fflush (tty->termscript);
5931 }
5932 out = tty->output;
5933 }
5934 fwrite (SDATA (string), 1, SBYTES (string), out);
5935 fflush (out);
5936 UNBLOCK_INPUT;
5937 return Qnil;
5938 }
5939
5940
5941 DEFUN ("ding", Fding, Sding, 0, 1, 0,
5942 doc: /* Beep, or flash the screen.
5943 Also, unless an argument is given,
5944 terminate any keyboard macro currently executing. */)
5945 (Lisp_Object arg)
5946 {
5947 if (!NILP (arg))
5948 {
5949 if (noninteractive)
5950 putchar (07);
5951 else
5952 ring_bell (XFRAME (selected_frame));
5953 }
5954 else
5955 bitch_at_user ();
5956
5957 return Qnil;
5958 }
5959
5960 void
5961 bitch_at_user (void)
5962 {
5963 if (noninteractive)
5964 putchar (07);
5965 else if (!INTERACTIVE) /* Stop executing a keyboard macro. */
5966 error ("Keyboard macro terminated by a command ringing the bell");
5967 else
5968 ring_bell (XFRAME (selected_frame));
5969 }
5970
5971
5972 \f
5973 /***********************************************************************
5974 Sleeping, Waiting
5975 ***********************************************************************/
5976
5977 DEFUN ("sleep-for", Fsleep_for, Ssleep_for, 1, 2, 0,
5978 doc: /* Pause, without updating display, for SECONDS seconds.
5979 SECONDS may be a floating-point value, meaning that you can wait for a
5980 fraction of a second. Optional second arg MILLISECONDS specifies an
5981 additional wait period, in milliseconds; this may be useful if your
5982 Emacs was built without floating point support.
5983 \(Not all operating systems support waiting for a fraction of a second.) */)
5984 (Lisp_Object seconds, Lisp_Object milliseconds)
5985 {
5986 int sec, usec;
5987
5988 if (NILP (milliseconds))
5989 XSETINT (milliseconds, 0);
5990 else
5991 CHECK_NUMBER (milliseconds);
5992 usec = XINT (milliseconds) * 1000;
5993
5994 {
5995 double duration = extract_float (seconds);
5996 sec = (int) duration;
5997 usec += (duration - sec) * 1000000;
5998 }
5999
6000 #ifndef EMACS_HAS_USECS
6001 if (sec == 0 && usec != 0)
6002 error ("Millisecond `sleep-for' not supported on %s", SYSTEM_TYPE);
6003 #endif
6004
6005 /* Assure that 0 <= usec < 1000000. */
6006 if (usec < 0)
6007 {
6008 /* We can't rely on the rounding being correct if usec is negative. */
6009 if (-1000000 < usec)
6010 sec--, usec += 1000000;
6011 else
6012 sec -= -usec / 1000000, usec = 1000000 - (-usec % 1000000);
6013 }
6014 else
6015 sec += usec / 1000000, usec %= 1000000;
6016
6017 if (sec < 0 || (sec == 0 && usec == 0))
6018 return Qnil;
6019
6020 wait_reading_process_output (sec, usec, 0, 0, Qnil, NULL, 0);
6021
6022 return Qnil;
6023 }
6024
6025
6026 /* This is just like wait_reading_process_output, except that
6027 it does redisplay.
6028
6029 TIMEOUT is number of seconds to wait (float or integer),
6030 or t to wait forever.
6031 READING is 1 if reading input.
6032 If DO_DISPLAY is >0 display process output while waiting.
6033 If DO_DISPLAY is >1 perform an initial redisplay before waiting.
6034 */
6035
6036 Lisp_Object
6037 sit_for (Lisp_Object timeout, int reading, int do_display)
6038 {
6039 int sec, usec;
6040
6041 swallow_events (do_display);
6042
6043 if ((detect_input_pending_run_timers (do_display))
6044 || !NILP (Vexecuting_kbd_macro))
6045 return Qnil;
6046
6047 if (do_display >= 2)
6048 redisplay_preserve_echo_area (2);
6049
6050 if (INTEGERP (timeout))
6051 {
6052 sec = XINT (timeout);
6053 usec = 0;
6054 }
6055 else if (FLOATP (timeout))
6056 {
6057 double seconds = XFLOAT_DATA (timeout);
6058 sec = (int) seconds;
6059 usec = (int) ((seconds - sec) * 1000000);
6060 }
6061 else if (EQ (timeout, Qt))
6062 {
6063 sec = 0;
6064 usec = 0;
6065 }
6066 else
6067 wrong_type_argument (Qnumberp, timeout);
6068
6069 if (sec == 0 && usec == 0 && !EQ (timeout, Qt))
6070 return Qt;
6071
6072 #ifdef SIGIO
6073 gobble_input (0);
6074 #endif
6075
6076 wait_reading_process_output (sec, usec, reading ? -1 : 1, do_display,
6077 Qnil, NULL, 0);
6078
6079 return detect_input_pending () ? Qnil : Qt;
6080 }
6081
6082
6083 DEFUN ("redisplay", Fredisplay, Sredisplay, 0, 1, 0,
6084 doc: /* Perform redisplay.
6085 Optional arg FORCE, if non-nil, prevents redisplay from being
6086 preempted by arriving input, even if `redisplay-dont-pause' is nil.
6087 If `redisplay-dont-pause' is non-nil (the default), redisplay is never
6088 preempted by arriving input, so FORCE does nothing.
6089
6090 Return t if redisplay was performed, nil if redisplay was preempted
6091 immediately by pending input. */)
6092 (Lisp_Object force)
6093 {
6094 int count;
6095
6096 swallow_events (1);
6097 if ((detect_input_pending_run_timers (1)
6098 && NILP (force) && !redisplay_dont_pause)
6099 || !NILP (Vexecuting_kbd_macro))
6100 return Qnil;
6101
6102 count = SPECPDL_INDEX ();
6103 if (!NILP (force) && !redisplay_dont_pause)
6104 specbind (Qredisplay_dont_pause, Qt);
6105 redisplay_preserve_echo_area (2);
6106 unbind_to (count, Qnil);
6107 return Qt;
6108 }
6109
6110
6111 \f
6112 /***********************************************************************
6113 Other Lisp Functions
6114 ***********************************************************************/
6115
6116 /* A vector of size >= 2 * NFRAMES + 3 * NBUFFERS + 1, containing the
6117 session's frames, frame names, buffers, buffer-read-only flags, and
6118 buffer-modified-flags. */
6119
6120 static Lisp_Object frame_and_buffer_state;
6121
6122
6123 DEFUN ("frame-or-buffer-changed-p", Fframe_or_buffer_changed_p,
6124 Sframe_or_buffer_changed_p, 0, 1, 0,
6125 doc: /* Return non-nil if the frame and buffer state appears to have changed.
6126 VARIABLE is a variable name whose value is either nil or a state vector
6127 that will be updated to contain all frames and buffers,
6128 aside from buffers whose names start with space,
6129 along with the buffers' read-only and modified flags. This allows a fast
6130 check to see whether buffer menus might need to be recomputed.
6131 If this function returns non-nil, it updates the internal vector to reflect
6132 the current state.
6133
6134 If VARIABLE is nil, an internal variable is used. Users should not
6135 pass nil for VARIABLE. */)
6136 (Lisp_Object variable)
6137 {
6138 Lisp_Object state, tail, frame, buf;
6139 Lisp_Object *vecp, *end;
6140 int n;
6141
6142 if (! NILP (variable))
6143 {
6144 CHECK_SYMBOL (variable);
6145 state = Fsymbol_value (variable);
6146 if (! VECTORP (state))
6147 goto changed;
6148 }
6149 else
6150 state = frame_and_buffer_state;
6151
6152 vecp = XVECTOR (state)->contents;
6153 end = vecp + ASIZE (state);
6154
6155 FOR_EACH_FRAME (tail, frame)
6156 {
6157 if (vecp == end)
6158 goto changed;
6159 if (!EQ (*vecp++, frame))
6160 goto changed;
6161 if (vecp == end)
6162 goto changed;
6163 if (!EQ (*vecp++, XFRAME (frame)->name))
6164 goto changed;
6165 }
6166 /* Check that the buffer info matches. */
6167 for (tail = Vbuffer_alist; CONSP (tail); tail = XCDR (tail))
6168 {
6169 buf = XCDR (XCAR (tail));
6170 /* Ignore buffers that aren't included in buffer lists. */
6171 if (SREF (BVAR (XBUFFER (buf), name), 0) == ' ')
6172 continue;
6173 if (vecp == end)
6174 goto changed;
6175 if (!EQ (*vecp++, buf))
6176 goto changed;
6177 if (vecp == end)
6178 goto changed;
6179 if (!EQ (*vecp++, BVAR (XBUFFER (buf), read_only)))
6180 goto changed;
6181 if (vecp == end)
6182 goto changed;
6183 if (!EQ (*vecp++, Fbuffer_modified_p (buf)))
6184 goto changed;
6185 }
6186 if (vecp == end)
6187 goto changed;
6188 /* Detect deletion of a buffer at the end of the list. */
6189 if (EQ (*vecp, Qlambda))
6190 return Qnil;
6191
6192 /* Come here if we decide the data has changed. */
6193 changed:
6194 /* Count the size we will need.
6195 Start with 1 so there is room for at least one lambda at the end. */
6196 n = 1;
6197 FOR_EACH_FRAME (tail, frame)
6198 n += 2;
6199 for (tail = Vbuffer_alist; CONSP (tail); tail = XCDR (tail))
6200 n += 3;
6201 /* Reallocate the vector if data has grown to need it,
6202 or if it has shrunk a lot. */
6203 if (! VECTORP (state)
6204 || n > ASIZE (state)
6205 || n + 20 < ASIZE (state) / 2)
6206 /* Add 20 extra so we grow it less often. */
6207 {
6208 state = Fmake_vector (make_number (n + 20), Qlambda);
6209 if (! NILP (variable))
6210 Fset (variable, state);
6211 else
6212 frame_and_buffer_state = state;
6213 }
6214
6215 /* Record the new data in the (possibly reallocated) vector. */
6216 vecp = XVECTOR (state)->contents;
6217 FOR_EACH_FRAME (tail, frame)
6218 {
6219 *vecp++ = frame;
6220 *vecp++ = XFRAME (frame)->name;
6221 }
6222 for (tail = Vbuffer_alist; CONSP (tail); tail = XCDR (tail))
6223 {
6224 buf = XCDR (XCAR (tail));
6225 /* Ignore buffers that aren't included in buffer lists. */
6226 if (SREF (BVAR (XBUFFER (buf), name), 0) == ' ')
6227 continue;
6228 *vecp++ = buf;
6229 *vecp++ = BVAR (XBUFFER (buf), read_only);
6230 *vecp++ = Fbuffer_modified_p (buf);
6231 }
6232 /* Fill up the vector with lambdas (always at least one). */
6233 *vecp++ = Qlambda;
6234 while (vecp - XVECTOR (state)->contents
6235 < ASIZE (state))
6236 *vecp++ = Qlambda;
6237 /* Make sure we didn't overflow the vector. */
6238 if (vecp - XVECTOR (state)->contents
6239 > ASIZE (state))
6240 abort ();
6241 return Qt;
6242 }
6243
6244
6245 \f
6246 /***********************************************************************
6247 Initialization
6248 ***********************************************************************/
6249
6250 /* Initialization done when Emacs fork is started, before doing stty.
6251 Determine terminal type and set terminal_driver. Then invoke its
6252 decoding routine to set up variables in the terminal package. */
6253
6254 void
6255 init_display (void)
6256 {
6257 char *terminal_type;
6258
6259 /* Construct the space glyph. */
6260 space_glyph.type = CHAR_GLYPH;
6261 SET_CHAR_GLYPH (space_glyph, ' ', DEFAULT_FACE_ID, 0);
6262 space_glyph.charpos = -1;
6263
6264 inverse_video = 0;
6265 cursor_in_echo_area = 0;
6266 terminal_type = (char *) 0;
6267
6268 /* Now is the time to initialize this; it's used by init_sys_modes
6269 during startup. */
6270 Vinitial_window_system = Qnil;
6271
6272 /* SIGWINCH needs to be handled no matter what display we start
6273 with. Otherwise newly opened tty frames will not resize
6274 automatically. */
6275 #ifdef SIGWINCH
6276 #ifndef CANNOT_DUMP
6277 if (initialized)
6278 #endif /* CANNOT_DUMP */
6279 signal (SIGWINCH, window_change_signal);
6280 #endif /* SIGWINCH */
6281
6282 /* If running as a daemon, no need to initialize any frames/terminal. */
6283 if (IS_DAEMON)
6284 return;
6285
6286 /* If the user wants to use a window system, we shouldn't bother
6287 initializing the terminal. This is especially important when the
6288 terminal is so dumb that emacs gives up before and doesn't bother
6289 using the window system.
6290
6291 If the DISPLAY environment variable is set and nonempty,
6292 try to use X, and die with an error message if that doesn't work. */
6293
6294 #ifdef HAVE_X_WINDOWS
6295 if (! inhibit_window_system && ! display_arg)
6296 {
6297 char *display;
6298 display = getenv ("DISPLAY");
6299 display_arg = (display != 0 && *display != 0);
6300
6301 if (display_arg && !x_display_ok (display))
6302 {
6303 fprintf (stderr, "Display %s unavailable, simulating -nw\n",
6304 display);
6305 inhibit_window_system = 1;
6306 }
6307 }
6308
6309 if (!inhibit_window_system && display_arg)
6310 {
6311 Vinitial_window_system = Qx;
6312 #ifdef HAVE_X11
6313 Vwindow_system_version = make_number (11);
6314 #endif
6315 #if defined (GNU_LINUX) && defined (HAVE_LIBNCURSES)
6316 /* In some versions of ncurses,
6317 tputs crashes if we have not called tgetent.
6318 So call tgetent. */
6319 { char b[2044]; tgetent (b, "xterm");}
6320 #endif
6321 adjust_frame_glyphs_initially ();
6322 return;
6323 }
6324 #endif /* HAVE_X_WINDOWS */
6325
6326 #ifdef HAVE_NTGUI
6327 if (!inhibit_window_system)
6328 {
6329 Vinitial_window_system = Qw32;
6330 Vwindow_system_version = make_number (1);
6331 adjust_frame_glyphs_initially ();
6332 return;
6333 }
6334 #endif /* HAVE_NTGUI */
6335
6336 #ifdef HAVE_NS
6337 if (!inhibit_window_system
6338 #ifndef CANNOT_DUMP
6339 && initialized
6340 #endif
6341 )
6342 {
6343 Vinitial_window_system = Qns;
6344 Vwindow_system_version = make_number (10);
6345 adjust_frame_glyphs_initially ();
6346 return;
6347 }
6348 #endif
6349
6350 /* If no window system has been specified, try to use the terminal. */
6351 if (! isatty (0))
6352 {
6353 fatal ("standard input is not a tty");
6354 exit (1);
6355 }
6356
6357 #ifdef WINDOWSNT
6358 terminal_type = "w32console";
6359 #else
6360 /* Look at the TERM variable. */
6361 terminal_type = (char *) getenv ("TERM");
6362 #endif
6363 if (!terminal_type)
6364 {
6365 #ifdef HAVE_WINDOW_SYSTEM
6366 if (! inhibit_window_system)
6367 fprintf (stderr, "Please set the environment variable DISPLAY or TERM (see `tset').\n");
6368 else
6369 #endif /* HAVE_WINDOW_SYSTEM */
6370 fprintf (stderr, "Please set the environment variable TERM; see `tset'.\n");
6371 exit (1);
6372 }
6373
6374 {
6375 struct terminal *t;
6376 struct frame *f = XFRAME (selected_frame);
6377
6378 /* Open a display on the controlling tty. */
6379 t = init_tty (0, terminal_type, 1); /* Errors are fatal. */
6380
6381 /* Convert the initial frame to use the new display. */
6382 if (f->output_method != output_initial)
6383 abort ();
6384 f->output_method = t->type;
6385 f->terminal = t;
6386
6387 t->reference_count++;
6388 #ifdef MSDOS
6389 f->output_data.tty->display_info = &the_only_display_info;
6390 #else
6391 if (f->output_method == output_termcap)
6392 create_tty_output (f);
6393 #endif
6394 t->display_info.tty->top_frame = selected_frame;
6395 change_frame_size (XFRAME (selected_frame),
6396 FrameRows (t->display_info.tty),
6397 FrameCols (t->display_info.tty), 0, 0, 1);
6398
6399 /* Delete the initial terminal. */
6400 if (--initial_terminal->reference_count == 0
6401 && initial_terminal->delete_terminal_hook)
6402 (*initial_terminal->delete_terminal_hook) (initial_terminal);
6403
6404 /* Update frame parameters to reflect the new type. */
6405 Fmodify_frame_parameters
6406 (selected_frame, Fcons (Fcons (Qtty_type,
6407 Ftty_type (selected_frame)), Qnil));
6408 if (t->display_info.tty->name)
6409 Fmodify_frame_parameters (selected_frame,
6410 Fcons (Fcons (Qtty, build_string (t->display_info.tty->name)),
6411 Qnil));
6412 else
6413 Fmodify_frame_parameters (selected_frame, Fcons (Fcons (Qtty, Qnil),
6414 Qnil));
6415 }
6416
6417 {
6418 struct frame *sf = SELECTED_FRAME ();
6419 int width = FRAME_TOTAL_COLS (sf);
6420 int height = FRAME_LINES (sf);
6421
6422 /* If these sizes are so big they cause overflow, just ignore the
6423 change. It's not clear what better we could do. The rest of
6424 the code assumes that (width + 2) * height * sizeof (struct glyph)
6425 does not overflow and does not exceed PTRDIFF_MAX or SIZE_MAX. */
6426 if (INT_ADD_RANGE_OVERFLOW (width, 2, INT_MIN, INT_MAX)
6427 || INT_MULTIPLY_RANGE_OVERFLOW (width + 2, height, INT_MIN, INT_MAX)
6428 || (min (PTRDIFF_MAX, SIZE_MAX) / sizeof (struct glyph)
6429 < (width + 2) * height))
6430 fatal ("screen size %dx%d too big", width, height);
6431 }
6432
6433 adjust_frame_glyphs_initially ();
6434 calculate_costs (XFRAME (selected_frame));
6435
6436 /* Set up faces of the initial terminal frame of a dumped Emacs. */
6437 if (initialized
6438 && !noninteractive
6439 && NILP (Vinitial_window_system))
6440 {
6441 /* For the initial frame, we don't have any way of knowing what
6442 are the foreground and background colors of the terminal. */
6443 struct frame *sf = SELECTED_FRAME ();
6444
6445 FRAME_FOREGROUND_PIXEL (sf) = FACE_TTY_DEFAULT_FG_COLOR;
6446 FRAME_BACKGROUND_PIXEL (sf) = FACE_TTY_DEFAULT_BG_COLOR;
6447 call0 (intern ("tty-set-up-initial-frame-faces"));
6448 }
6449 }
6450
6451
6452 \f
6453 /***********************************************************************
6454 Blinking cursor
6455 ***********************************************************************/
6456
6457 DEFUN ("internal-show-cursor", Finternal_show_cursor,
6458 Sinternal_show_cursor, 2, 2, 0,
6459 doc: /* Set the cursor-visibility flag of WINDOW to SHOW.
6460 WINDOW nil means use the selected window. SHOW non-nil means
6461 show a cursor in WINDOW in the next redisplay. SHOW nil means
6462 don't show a cursor. */)
6463 (Lisp_Object window, Lisp_Object show)
6464 {
6465 /* Don't change cursor state while redisplaying. This could confuse
6466 output routines. */
6467 if (!redisplaying_p)
6468 {
6469 if (NILP (window))
6470 window = selected_window;
6471 else
6472 CHECK_WINDOW (window);
6473
6474 XWINDOW (window)->cursor_off_p = NILP (show);
6475 }
6476
6477 return Qnil;
6478 }
6479
6480
6481 DEFUN ("internal-show-cursor-p", Finternal_show_cursor_p,
6482 Sinternal_show_cursor_p, 0, 1, 0,
6483 doc: /* Value is non-nil if next redisplay will display a cursor in WINDOW.
6484 WINDOW nil or omitted means report on the selected window. */)
6485 (Lisp_Object window)
6486 {
6487 struct window *w;
6488
6489 if (NILP (window))
6490 window = selected_window;
6491 else
6492 CHECK_WINDOW (window);
6493
6494 w = XWINDOW (window);
6495 return w->cursor_off_p ? Qnil : Qt;
6496 }
6497
6498 DEFUN ("last-nonminibuffer-frame", Flast_nonminibuf_frame,
6499 Slast_nonminibuf_frame, 0, 0, 0,
6500 doc: /* Value is last nonminibuffer frame. */)
6501 (void)
6502 {
6503 Lisp_Object frame = Qnil;
6504
6505 if (last_nonminibuf_frame)
6506 XSETFRAME (frame, last_nonminibuf_frame);
6507
6508 return frame;
6509 }
6510 \f
6511 /***********************************************************************
6512 Initialization
6513 ***********************************************************************/
6514
6515 void
6516 syms_of_display (void)
6517 {
6518 defsubr (&Sredraw_frame);
6519 defsubr (&Sredraw_display);
6520 defsubr (&Sframe_or_buffer_changed_p);
6521 defsubr (&Sopen_termscript);
6522 defsubr (&Sding);
6523 defsubr (&Sredisplay);
6524 defsubr (&Ssleep_for);
6525 defsubr (&Ssend_string_to_terminal);
6526 defsubr (&Sinternal_show_cursor);
6527 defsubr (&Sinternal_show_cursor_p);
6528 defsubr (&Slast_nonminibuf_frame);
6529
6530 #if GLYPH_DEBUG
6531 defsubr (&Sdump_redisplay_history);
6532 #endif
6533
6534 frame_and_buffer_state = Fmake_vector (make_number (20), Qlambda);
6535 staticpro (&frame_and_buffer_state);
6536
6537 DEFSYM (Qdisplay_table, "display-table");
6538 DEFSYM (Qredisplay_dont_pause, "redisplay-dont-pause");
6539
6540 DEFVAR_INT ("baud-rate", baud_rate,
6541 doc: /* The output baud rate of the terminal.
6542 On most systems, changing this value will affect the amount of padding
6543 and the other strategic decisions made during redisplay. */);
6544
6545 DEFVAR_BOOL ("inverse-video", inverse_video,
6546 doc: /* Non-nil means invert the entire frame display.
6547 This means everything is in inverse video which otherwise would not be. */);
6548
6549 DEFVAR_BOOL ("visible-bell", visible_bell,
6550 doc: /* Non-nil means try to flash the frame to represent a bell.
6551
6552 See also `ring-bell-function'. */);
6553
6554 DEFVAR_BOOL ("no-redraw-on-reenter", no_redraw_on_reenter,
6555 doc: /* Non-nil means no need to redraw entire frame after suspending.
6556 A non-nil value is useful if the terminal can automatically preserve
6557 Emacs's frame display when you reenter Emacs.
6558 It is up to you to set this variable if your terminal can do that. */);
6559
6560 DEFVAR_LISP ("initial-window-system", Vinitial_window_system,
6561 doc: /* Name of the window system that Emacs uses for the first frame.
6562 The value is a symbol:
6563 nil for a termcap frame (a character-only terminal),
6564 'x' for an Emacs frame that is really an X window,
6565 'w32' for an Emacs frame that is a window on MS-Windows display,
6566 'ns' for an Emacs frame on a GNUstep or Macintosh Cocoa display,
6567 'pc' for a direct-write MS-DOS frame.
6568
6569 Use of this variable as a boolean is deprecated. Instead,
6570 use `display-graphic-p' or any of the other `display-*-p'
6571 predicates which report frame's specific UI-related capabilities. */);
6572
6573 DEFVAR_KBOARD ("window-system", Vwindow_system,
6574 doc: /* Name of window system through which the selected frame is displayed.
6575 The value is a symbol:
6576 nil for a termcap frame (a character-only terminal),
6577 'x' for an Emacs frame that is really an X window,
6578 'w32' for an Emacs frame that is a window on MS-Windows display,
6579 'ns' for an Emacs frame on a GNUstep or Macintosh Cocoa display,
6580 'pc' for a direct-write MS-DOS frame.
6581
6582 Use of this variable as a boolean is deprecated. Instead,
6583 use `display-graphic-p' or any of the other `display-*-p'
6584 predicates which report frame's specific UI-related capabilities. */);
6585
6586 DEFVAR_LISP ("window-system-version", Vwindow_system_version,
6587 doc: /* The version number of the window system in use.
6588 For X windows, this is 11. */);
6589
6590 DEFVAR_BOOL ("cursor-in-echo-area", cursor_in_echo_area,
6591 doc: /* Non-nil means put cursor in minibuffer, at end of any message there. */);
6592
6593 DEFVAR_LISP ("glyph-table", Vglyph_table,
6594 doc: /* Table defining how to output a glyph code to the frame.
6595 If not nil, this is a vector indexed by glyph code to define the glyph.
6596 Each element can be:
6597 integer: a glyph code which this glyph is an alias for.
6598 string: output this glyph using that string (not impl. in X windows).
6599 nil: this glyph mod 524288 is the code of a character to output,
6600 and this glyph / 524288 is the face number (see `face-id') to use
6601 while outputting it. */);
6602 Vglyph_table = Qnil;
6603
6604 DEFVAR_LISP ("standard-display-table", Vstandard_display_table,
6605 doc: /* Display table to use for buffers that specify none.
6606 See `buffer-display-table' for more information. */);
6607 Vstandard_display_table = Qnil;
6608
6609 DEFVAR_BOOL ("redisplay-dont-pause", redisplay_dont_pause,
6610 doc: /* Non-nil means display update isn't paused when input is detected. */);
6611 redisplay_dont_pause = 1;
6612
6613 #if PERIODIC_PREEMPTION_CHECKING
6614 DEFVAR_LISP ("redisplay-preemption-period", Vredisplay_preemption_period,
6615 doc: /* Period in seconds between checking for input during redisplay.
6616 This has an effect only if `redisplay-dont-pause' is nil; in that
6617 case, arriving input preempts redisplay until the input is processed.
6618 If the value is nil, redisplay is never preempted. */);
6619 Vredisplay_preemption_period = make_float (0.10);
6620 #endif
6621
6622 #ifdef CANNOT_DUMP
6623 if (noninteractive)
6624 #endif
6625 {
6626 Vinitial_window_system = Qnil;
6627 Vwindow_system_version = Qnil;
6628 }
6629 }