]> code.delx.au - gnu-emacs/blob - src/editfns.c
; Merge from origin/emacs-25
[gnu-emacs] / src / editfns.c
1 /* Lisp functions pertaining to editing. -*- coding: utf-8 -*-
2
3 Copyright (C) 1985-1987, 1989, 1993-2016 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include <config.h>
22 #include <sys/types.h>
23 #include <stdio.h>
24
25 #ifdef HAVE_PWD_H
26 #include <pwd.h>
27 #include <grp.h>
28 #endif
29
30 #include <unistd.h>
31
32 #ifdef HAVE_SYS_UTSNAME_H
33 #include <sys/utsname.h>
34 #endif
35
36 #include "lisp.h"
37
38 /* systime.h includes <sys/time.h> which, on some systems, is required
39 for <sys/resource.h>; thus systime.h must be included before
40 <sys/resource.h> */
41 #include "systime.h"
42
43 #if defined HAVE_SYS_RESOURCE_H
44 #include <sys/resource.h>
45 #endif
46
47 #include <errno.h>
48 #include <float.h>
49 #include <limits.h>
50
51 #include <intprops.h>
52 #include <strftime.h>
53 #include <verify.h>
54
55 #include "composite.h"
56 #include "intervals.h"
57 #include "character.h"
58 #include "buffer.h"
59 #include "coding.h"
60 #include "window.h"
61 #include "blockinput.h"
62
63 #define TM_YEAR_BASE 1900
64
65 #ifdef WINDOWSNT
66 extern Lisp_Object w32_get_internal_run_time (void);
67 #endif
68
69 static struct lisp_time lisp_time_struct (Lisp_Object, int *);
70 static Lisp_Object format_time_string (char const *, ptrdiff_t, struct timespec,
71 Lisp_Object, struct tm *);
72 static long int tm_gmtoff (struct tm *);
73 static int tm_diff (struct tm *, struct tm *);
74 static void update_buffer_properties (ptrdiff_t, ptrdiff_t);
75 static Lisp_Object styled_format (ptrdiff_t, Lisp_Object *, bool);
76
77 #ifndef HAVE_TM_GMTOFF
78 # define HAVE_TM_GMTOFF false
79 #endif
80
81 enum { tzeqlen = sizeof "TZ=" - 1 };
82
83 /* Time zones equivalent to current local time, to wall clock time,
84 and to UTC, respectively. */
85 static timezone_t local_tz;
86 static timezone_t wall_clock_tz;
87 static timezone_t const utc_tz = 0;
88
89 /* A valid but unlikely setting for the TZ environment variable.
90 It is OK (though a bit slower) if the user chooses this value. */
91 static char dump_tz_string[] = "TZ=UtC0";
92
93 /* The cached value of Vsystem_name. This is used only to compare it
94 to Vsystem_name, so it need not be visible to the GC. */
95 static Lisp_Object cached_system_name;
96
97 static void
98 init_and_cache_system_name (void)
99 {
100 init_system_name ();
101 cached_system_name = Vsystem_name;
102 }
103
104 static struct tm *
105 emacs_localtime_rz (timezone_t tz, time_t const *t, struct tm *tm)
106 {
107 tm = localtime_rz (tz, t, tm);
108 if (!tm && errno == ENOMEM)
109 memory_full (SIZE_MAX);
110 return tm;
111 }
112
113 static time_t
114 emacs_mktime_z (timezone_t tz, struct tm *tm)
115 {
116 errno = 0;
117 time_t t = mktime_z (tz, tm);
118 if (t == (time_t) -1 && errno == ENOMEM)
119 memory_full (SIZE_MAX);
120 return t;
121 }
122
123 /* Allocate a timezone, signaling on failure. */
124 static timezone_t
125 xtzalloc (char const *name)
126 {
127 timezone_t tz = tzalloc (name);
128 if (!tz)
129 memory_full (SIZE_MAX);
130 return tz;
131 }
132
133 /* Free a timezone, except do not free the time zone for local time.
134 Freeing utc_tz is also a no-op. */
135 static void
136 xtzfree (timezone_t tz)
137 {
138 if (tz != local_tz)
139 tzfree (tz);
140 }
141
142 /* Convert the Lisp time zone rule ZONE to a timezone_t object.
143 The returned value either is 0, or is LOCAL_TZ, or is newly allocated.
144 If SETTZ, set Emacs local time to the time zone rule; otherwise,
145 the caller should eventually pass the returned value to xtzfree. */
146 static timezone_t
147 tzlookup (Lisp_Object zone, bool settz)
148 {
149 static char const tzbuf_format[] = "XXX%s%"pI"d:%02d:%02d";
150 char tzbuf[sizeof tzbuf_format + INT_STRLEN_BOUND (EMACS_INT)];
151 char const *zone_string;
152 timezone_t new_tz;
153
154 if (NILP (zone))
155 return local_tz;
156 else if (EQ (zone, Qt))
157 {
158 zone_string = "UTC0";
159 new_tz = utc_tz;
160 }
161 else
162 {
163 if (EQ (zone, Qwall))
164 zone_string = 0;
165 else if (STRINGP (zone))
166 zone_string = SSDATA (zone);
167 else if (INTEGERP (zone))
168 {
169 EMACS_INT abszone = eabs (XINT (zone)), hour = abszone / (60 * 60);
170 int min = (abszone / 60) % 60, sec = abszone % 60;
171 sprintf (tzbuf, tzbuf_format, &"-"[XINT (zone) < 0], hour, min, sec);
172 zone_string = tzbuf;
173 }
174 else
175 xsignal2 (Qerror, build_string ("Invalid time zone specification"),
176 zone);
177 new_tz = xtzalloc (zone_string);
178 }
179
180 if (settz)
181 {
182 block_input ();
183 emacs_setenv_TZ (zone_string);
184 timezone_t old_tz = local_tz;
185 local_tz = new_tz;
186 tzfree (old_tz);
187 unblock_input ();
188 }
189
190 return new_tz;
191 }
192
193 void
194 init_editfns (bool dumping)
195 {
196 const char *user_name;
197 register char *p;
198 struct passwd *pw; /* password entry for the current user */
199 Lisp_Object tem;
200
201 /* Set up system_name even when dumping. */
202 init_and_cache_system_name ();
203
204 #ifndef CANNOT_DUMP
205 /* When just dumping out, set the time zone to a known unlikely value
206 and skip the rest of this function. */
207 if (dumping)
208 {
209 # ifdef HAVE_TZSET
210 xputenv (dump_tz_string);
211 tzset ();
212 # endif
213 return;
214 }
215 #endif
216
217 char *tz = getenv ("TZ");
218
219 #if !defined CANNOT_DUMP && defined HAVE_TZSET
220 /* If the execution TZ happens to be the same as the dump TZ,
221 change it to some other value and then change it back,
222 to force the underlying implementation to reload the TZ info.
223 This is needed on implementations that load TZ info from files,
224 since the TZ file contents may differ between dump and execution. */
225 if (tz && strcmp (tz, &dump_tz_string[tzeqlen]) == 0)
226 {
227 ++*tz;
228 tzset ();
229 --*tz;
230 }
231 #endif
232
233 /* Set the time zone rule now, so that the call to putenv is done
234 before multiple threads are active. */
235 wall_clock_tz = xtzalloc (0);
236 tzlookup (tz ? build_string (tz) : Qwall, true);
237
238 pw = getpwuid (getuid ());
239 #ifdef MSDOS
240 /* We let the real user name default to "root" because that's quite
241 accurate on MS-DOS and because it lets Emacs find the init file.
242 (The DVX libraries override the Djgpp libraries here.) */
243 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
244 #else
245 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
246 #endif
247
248 /* Get the effective user name, by consulting environment variables,
249 or the effective uid if those are unset. */
250 user_name = getenv ("LOGNAME");
251 if (!user_name)
252 #ifdef WINDOWSNT
253 user_name = getenv ("USERNAME"); /* it's USERNAME on NT */
254 #else /* WINDOWSNT */
255 user_name = getenv ("USER");
256 #endif /* WINDOWSNT */
257 if (!user_name)
258 {
259 pw = getpwuid (geteuid ());
260 user_name = pw ? pw->pw_name : "unknown";
261 }
262 Vuser_login_name = build_string (user_name);
263
264 /* If the user name claimed in the environment vars differs from
265 the real uid, use the claimed name to find the full name. */
266 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
267 if (! NILP (tem))
268 tem = Vuser_login_name;
269 else
270 {
271 uid_t euid = geteuid ();
272 tem = make_fixnum_or_float (euid);
273 }
274 Vuser_full_name = Fuser_full_name (tem);
275
276 p = getenv ("NAME");
277 if (p)
278 Vuser_full_name = build_string (p);
279 else if (NILP (Vuser_full_name))
280 Vuser_full_name = build_string ("unknown");
281
282 #ifdef HAVE_SYS_UTSNAME_H
283 {
284 struct utsname uts;
285 uname (&uts);
286 Voperating_system_release = build_string (uts.release);
287 }
288 #else
289 Voperating_system_release = Qnil;
290 #endif
291 }
292 \f
293 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
294 doc: /* Convert arg CHAR to a string containing that character.
295 usage: (char-to-string CHAR) */)
296 (Lisp_Object character)
297 {
298 int c, len;
299 unsigned char str[MAX_MULTIBYTE_LENGTH];
300
301 CHECK_CHARACTER (character);
302 c = XFASTINT (character);
303
304 len = CHAR_STRING (c, str);
305 return make_string_from_bytes ((char *) str, 1, len);
306 }
307
308 DEFUN ("byte-to-string", Fbyte_to_string, Sbyte_to_string, 1, 1, 0,
309 doc: /* Convert arg BYTE to a unibyte string containing that byte. */)
310 (Lisp_Object byte)
311 {
312 unsigned char b;
313 CHECK_NUMBER (byte);
314 if (XINT (byte) < 0 || XINT (byte) > 255)
315 error ("Invalid byte");
316 b = XINT (byte);
317 return make_string_from_bytes ((char *) &b, 1, 1);
318 }
319
320 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
321 doc: /* Return the first character in STRING. */)
322 (register Lisp_Object string)
323 {
324 register Lisp_Object val;
325 CHECK_STRING (string);
326 if (SCHARS (string))
327 {
328 if (STRING_MULTIBYTE (string))
329 XSETFASTINT (val, STRING_CHAR (SDATA (string)));
330 else
331 XSETFASTINT (val, SREF (string, 0));
332 }
333 else
334 XSETFASTINT (val, 0);
335 return val;
336 }
337
338 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
339 doc: /* Return value of point, as an integer.
340 Beginning of buffer is position (point-min). */)
341 (void)
342 {
343 Lisp_Object temp;
344 XSETFASTINT (temp, PT);
345 return temp;
346 }
347
348 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
349 doc: /* Return value of point, as a marker object. */)
350 (void)
351 {
352 return build_marker (current_buffer, PT, PT_BYTE);
353 }
354
355 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
356 doc: /* Set point to POSITION, a number or marker.
357 Beginning of buffer is position (point-min), end is (point-max).
358
359 The return value is POSITION. */)
360 (register Lisp_Object position)
361 {
362 if (MARKERP (position))
363 set_point_from_marker (position);
364 else if (INTEGERP (position))
365 SET_PT (clip_to_bounds (BEGV, XINT (position), ZV));
366 else
367 wrong_type_argument (Qinteger_or_marker_p, position);
368 return position;
369 }
370
371
372 /* Return the start or end position of the region.
373 BEGINNINGP means return the start.
374 If there is no region active, signal an error. */
375
376 static Lisp_Object
377 region_limit (bool beginningp)
378 {
379 Lisp_Object m;
380
381 if (!NILP (Vtransient_mark_mode)
382 && NILP (Vmark_even_if_inactive)
383 && NILP (BVAR (current_buffer, mark_active)))
384 xsignal0 (Qmark_inactive);
385
386 m = Fmarker_position (BVAR (current_buffer, mark));
387 if (NILP (m))
388 error ("The mark is not set now, so there is no region");
389
390 /* Clip to the current narrowing (bug#11770). */
391 return make_number ((PT < XFASTINT (m)) == beginningp
392 ? PT
393 : clip_to_bounds (BEGV, XFASTINT (m), ZV));
394 }
395
396 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
397 doc: /* Return the integer value of point or mark, whichever is smaller. */)
398 (void)
399 {
400 return region_limit (1);
401 }
402
403 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
404 doc: /* Return the integer value of point or mark, whichever is larger. */)
405 (void)
406 {
407 return region_limit (0);
408 }
409
410 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
411 doc: /* Return this buffer's mark, as a marker object.
412 Watch out! Moving this marker changes the mark position.
413 If you set the marker not to point anywhere, the buffer will have no mark. */)
414 (void)
415 {
416 return BVAR (current_buffer, mark);
417 }
418
419 \f
420 /* Find all the overlays in the current buffer that touch position POS.
421 Return the number found, and store them in a vector in VEC
422 of length LEN. */
423
424 static ptrdiff_t
425 overlays_around (EMACS_INT pos, Lisp_Object *vec, ptrdiff_t len)
426 {
427 Lisp_Object overlay, start, end;
428 struct Lisp_Overlay *tail;
429 ptrdiff_t startpos, endpos;
430 ptrdiff_t idx = 0;
431
432 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
433 {
434 XSETMISC (overlay, tail);
435
436 end = OVERLAY_END (overlay);
437 endpos = OVERLAY_POSITION (end);
438 if (endpos < pos)
439 break;
440 start = OVERLAY_START (overlay);
441 startpos = OVERLAY_POSITION (start);
442 if (startpos <= pos)
443 {
444 if (idx < len)
445 vec[idx] = overlay;
446 /* Keep counting overlays even if we can't return them all. */
447 idx++;
448 }
449 }
450
451 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
452 {
453 XSETMISC (overlay, tail);
454
455 start = OVERLAY_START (overlay);
456 startpos = OVERLAY_POSITION (start);
457 if (pos < startpos)
458 break;
459 end = OVERLAY_END (overlay);
460 endpos = OVERLAY_POSITION (end);
461 if (pos <= endpos)
462 {
463 if (idx < len)
464 vec[idx] = overlay;
465 idx++;
466 }
467 }
468
469 return idx;
470 }
471
472 DEFUN ("get-pos-property", Fget_pos_property, Sget_pos_property, 2, 3, 0,
473 doc: /* Return the value of POSITION's property PROP, in OBJECT.
474 Almost identical to `get-char-property' except for the following difference:
475 Whereas `get-char-property' returns the property of the char at (i.e. right
476 after) POSITION, this pays attention to properties's stickiness and overlays's
477 advancement settings, in order to find the property of POSITION itself,
478 i.e. the property that a char would inherit if it were inserted
479 at POSITION. */)
480 (Lisp_Object position, register Lisp_Object prop, Lisp_Object object)
481 {
482 CHECK_NUMBER_COERCE_MARKER (position);
483
484 if (NILP (object))
485 XSETBUFFER (object, current_buffer);
486 else if (WINDOWP (object))
487 object = XWINDOW (object)->contents;
488
489 if (!BUFFERP (object))
490 /* pos-property only makes sense in buffers right now, since strings
491 have no overlays and no notion of insertion for which stickiness
492 could be obeyed. */
493 return Fget_text_property (position, prop, object);
494 else
495 {
496 EMACS_INT posn = XINT (position);
497 ptrdiff_t noverlays;
498 Lisp_Object *overlay_vec, tem;
499 struct buffer *obuf = current_buffer;
500 USE_SAFE_ALLOCA;
501
502 set_buffer_temp (XBUFFER (object));
503
504 /* First try with room for 40 overlays. */
505 Lisp_Object overlay_vecbuf[40];
506 noverlays = ARRAYELTS (overlay_vecbuf);
507 overlay_vec = overlay_vecbuf;
508 noverlays = overlays_around (posn, overlay_vec, noverlays);
509
510 /* If there are more than 40,
511 make enough space for all, and try again. */
512 if (ARRAYELTS (overlay_vecbuf) < noverlays)
513 {
514 SAFE_ALLOCA_LISP (overlay_vec, noverlays);
515 noverlays = overlays_around (posn, overlay_vec, noverlays);
516 }
517 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
518
519 set_buffer_temp (obuf);
520
521 /* Now check the overlays in order of decreasing priority. */
522 while (--noverlays >= 0)
523 {
524 Lisp_Object ol = overlay_vec[noverlays];
525 tem = Foverlay_get (ol, prop);
526 if (!NILP (tem))
527 {
528 /* Check the overlay is indeed active at point. */
529 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
530 if ((OVERLAY_POSITION (start) == posn
531 && XMARKER (start)->insertion_type == 1)
532 || (OVERLAY_POSITION (finish) == posn
533 && XMARKER (finish)->insertion_type == 0))
534 ; /* The overlay will not cover a char inserted at point. */
535 else
536 {
537 SAFE_FREE ();
538 return tem;
539 }
540 }
541 }
542 SAFE_FREE ();
543
544 { /* Now check the text properties. */
545 int stickiness = text_property_stickiness (prop, position, object);
546 if (stickiness > 0)
547 return Fget_text_property (position, prop, object);
548 else if (stickiness < 0
549 && XINT (position) > BUF_BEGV (XBUFFER (object)))
550 return Fget_text_property (make_number (XINT (position) - 1),
551 prop, object);
552 else
553 return Qnil;
554 }
555 }
556 }
557
558 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
559 the value of point is used instead. If BEG or END is null,
560 means don't store the beginning or end of the field.
561
562 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
563 results; they do not effect boundary behavior.
564
565 If MERGE_AT_BOUNDARY is non-nil, then if POS is at the very first
566 position of a field, then the beginning of the previous field is
567 returned instead of the beginning of POS's field (since the end of a
568 field is actually also the beginning of the next input field, this
569 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
570 non-nil case, if two fields are separated by a field with the special
571 value `boundary', and POS lies within it, then the two separated
572 fields are considered to be adjacent, and POS between them, when
573 finding the beginning and ending of the "merged" field.
574
575 Either BEG or END may be 0, in which case the corresponding value
576 is not stored. */
577
578 static void
579 find_field (Lisp_Object pos, Lisp_Object merge_at_boundary,
580 Lisp_Object beg_limit,
581 ptrdiff_t *beg, Lisp_Object end_limit, ptrdiff_t *end)
582 {
583 /* Fields right before and after the point. */
584 Lisp_Object before_field, after_field;
585 /* True if POS counts as the start of a field. */
586 bool at_field_start = 0;
587 /* True if POS counts as the end of a field. */
588 bool at_field_end = 0;
589
590 if (NILP (pos))
591 XSETFASTINT (pos, PT);
592 else
593 CHECK_NUMBER_COERCE_MARKER (pos);
594
595 after_field
596 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
597 before_field
598 = (XFASTINT (pos) > BEGV
599 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
600 Qfield, Qnil, NULL)
601 /* Using nil here would be a more obvious choice, but it would
602 fail when the buffer starts with a non-sticky field. */
603 : after_field);
604
605 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
606 and POS is at beginning of a field, which can also be interpreted
607 as the end of the previous field. Note that the case where if
608 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
609 more natural one; then we avoid treating the beginning of a field
610 specially. */
611 if (NILP (merge_at_boundary))
612 {
613 Lisp_Object field = Fget_pos_property (pos, Qfield, Qnil);
614 if (!EQ (field, after_field))
615 at_field_end = 1;
616 if (!EQ (field, before_field))
617 at_field_start = 1;
618 if (NILP (field) && at_field_start && at_field_end)
619 /* If an inserted char would have a nil field while the surrounding
620 text is non-nil, we're probably not looking at a
621 zero-length field, but instead at a non-nil field that's
622 not intended for editing (such as comint's prompts). */
623 at_field_end = at_field_start = 0;
624 }
625
626 /* Note about special `boundary' fields:
627
628 Consider the case where the point (`.') is between the fields `x' and `y':
629
630 xxxx.yyyy
631
632 In this situation, if merge_at_boundary is non-nil, consider the
633 `x' and `y' fields as forming one big merged field, and so the end
634 of the field is the end of `y'.
635
636 However, if `x' and `y' are separated by a special `boundary' field
637 (a field with a `field' char-property of 'boundary), then ignore
638 this special field when merging adjacent fields. Here's the same
639 situation, but with a `boundary' field between the `x' and `y' fields:
640
641 xxx.BBBByyyy
642
643 Here, if point is at the end of `x', the beginning of `y', or
644 anywhere in-between (within the `boundary' field), merge all
645 three fields and consider the beginning as being the beginning of
646 the `x' field, and the end as being the end of the `y' field. */
647
648 if (beg)
649 {
650 if (at_field_start)
651 /* POS is at the edge of a field, and we should consider it as
652 the beginning of the following field. */
653 *beg = XFASTINT (pos);
654 else
655 /* Find the previous field boundary. */
656 {
657 Lisp_Object p = pos;
658 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
659 /* Skip a `boundary' field. */
660 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
661 beg_limit);
662
663 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
664 beg_limit);
665 *beg = NILP (p) ? BEGV : XFASTINT (p);
666 }
667 }
668
669 if (end)
670 {
671 if (at_field_end)
672 /* POS is at the edge of a field, and we should consider it as
673 the end of the previous field. */
674 *end = XFASTINT (pos);
675 else
676 /* Find the next field boundary. */
677 {
678 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
679 /* Skip a `boundary' field. */
680 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
681 end_limit);
682
683 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
684 end_limit);
685 *end = NILP (pos) ? ZV : XFASTINT (pos);
686 }
687 }
688 }
689
690 \f
691 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
692 doc: /* Delete the field surrounding POS.
693 A field is a region of text with the same `field' property.
694 If POS is nil, the value of point is used for POS. */)
695 (Lisp_Object pos)
696 {
697 ptrdiff_t beg, end;
698 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
699 if (beg != end)
700 del_range (beg, end);
701 return Qnil;
702 }
703
704 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
705 doc: /* Return the contents of the field surrounding POS as a string.
706 A field is a region of text with the same `field' property.
707 If POS is nil, the value of point is used for POS. */)
708 (Lisp_Object pos)
709 {
710 ptrdiff_t beg, end;
711 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
712 return make_buffer_string (beg, end, 1);
713 }
714
715 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
716 doc: /* Return the contents of the field around POS, without text properties.
717 A field is a region of text with the same `field' property.
718 If POS is nil, the value of point is used for POS. */)
719 (Lisp_Object pos)
720 {
721 ptrdiff_t beg, end;
722 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
723 return make_buffer_string (beg, end, 0);
724 }
725
726 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
727 doc: /* Return the beginning of the field surrounding POS.
728 A field is a region of text with the same `field' property.
729 If POS is nil, the value of point is used for POS.
730 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
731 field, then the beginning of the *previous* field is returned.
732 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
733 is before LIMIT, then LIMIT will be returned instead. */)
734 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
735 {
736 ptrdiff_t beg;
737 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
738 return make_number (beg);
739 }
740
741 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
742 doc: /* Return the end of the field surrounding POS.
743 A field is a region of text with the same `field' property.
744 If POS is nil, the value of point is used for POS.
745 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
746 then the end of the *following* field is returned.
747 If LIMIT is non-nil, it is a buffer position; if the end of the field
748 is after LIMIT, then LIMIT will be returned instead. */)
749 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
750 {
751 ptrdiff_t end;
752 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
753 return make_number (end);
754 }
755
756 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
757 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
758 A field is a region of text with the same `field' property.
759
760 If NEW-POS is nil, then use the current point instead, and move point
761 to the resulting constrained position, in addition to returning that
762 position.
763
764 If OLD-POS is at the boundary of two fields, then the allowable
765 positions for NEW-POS depends on the value of the optional argument
766 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
767 constrained to the field that has the same `field' char-property
768 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
769 is non-nil, NEW-POS is constrained to the union of the two adjacent
770 fields. Additionally, if two fields are separated by another field with
771 the special value `boundary', then any point within this special field is
772 also considered to be `on the boundary'.
773
774 If the optional argument ONLY-IN-LINE is non-nil and constraining
775 NEW-POS would move it to a different line, NEW-POS is returned
776 unconstrained. This is useful for commands that move by line, like
777 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
778 only in the case where they can still move to the right line.
779
780 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
781 a non-nil property of that name, then any field boundaries are ignored.
782
783 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
784 (Lisp_Object new_pos, Lisp_Object old_pos, Lisp_Object escape_from_edge,
785 Lisp_Object only_in_line, Lisp_Object inhibit_capture_property)
786 {
787 /* If non-zero, then the original point, before re-positioning. */
788 ptrdiff_t orig_point = 0;
789 bool fwd;
790 Lisp_Object prev_old, prev_new;
791
792 if (NILP (new_pos))
793 /* Use the current point, and afterwards, set it. */
794 {
795 orig_point = PT;
796 XSETFASTINT (new_pos, PT);
797 }
798
799 CHECK_NUMBER_COERCE_MARKER (new_pos);
800 CHECK_NUMBER_COERCE_MARKER (old_pos);
801
802 fwd = (XINT (new_pos) > XINT (old_pos));
803
804 prev_old = make_number (XINT (old_pos) - 1);
805 prev_new = make_number (XINT (new_pos) - 1);
806
807 if (NILP (Vinhibit_field_text_motion)
808 && !EQ (new_pos, old_pos)
809 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
810 || !NILP (Fget_char_property (old_pos, Qfield, Qnil))
811 /* To recognize field boundaries, we must also look at the
812 previous positions; we could use `Fget_pos_property'
813 instead, but in itself that would fail inside non-sticky
814 fields (like comint prompts). */
815 || (XFASTINT (new_pos) > BEGV
816 && !NILP (Fget_char_property (prev_new, Qfield, Qnil)))
817 || (XFASTINT (old_pos) > BEGV
818 && !NILP (Fget_char_property (prev_old, Qfield, Qnil))))
819 && (NILP (inhibit_capture_property)
820 /* Field boundaries are again a problem; but now we must
821 decide the case exactly, so we need to call
822 `get_pos_property' as well. */
823 || (NILP (Fget_pos_property (old_pos, inhibit_capture_property, Qnil))
824 && (XFASTINT (old_pos) <= BEGV
825 || NILP (Fget_char_property
826 (old_pos, inhibit_capture_property, Qnil))
827 || NILP (Fget_char_property
828 (prev_old, inhibit_capture_property, Qnil))))))
829 /* It is possible that NEW_POS is not within the same field as
830 OLD_POS; try to move NEW_POS so that it is. */
831 {
832 ptrdiff_t shortage;
833 Lisp_Object field_bound;
834
835 if (fwd)
836 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
837 else
838 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
839
840 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
841 other side of NEW_POS, which would mean that NEW_POS is
842 already acceptable, and it's not necessary to constrain it
843 to FIELD_BOUND. */
844 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
845 /* NEW_POS should be constrained, but only if either
846 ONLY_IN_LINE is nil (in which case any constraint is OK),
847 or NEW_POS and FIELD_BOUND are on the same line (in which
848 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
849 && (NILP (only_in_line)
850 /* This is the ONLY_IN_LINE case, check that NEW_POS and
851 FIELD_BOUND are on the same line by seeing whether
852 there's an intervening newline or not. */
853 || (find_newline (XFASTINT (new_pos), -1,
854 XFASTINT (field_bound), -1,
855 fwd ? -1 : 1, &shortage, NULL, 1),
856 shortage != 0)))
857 /* Constrain NEW_POS to FIELD_BOUND. */
858 new_pos = field_bound;
859
860 if (orig_point && XFASTINT (new_pos) != orig_point)
861 /* The NEW_POS argument was originally nil, so automatically set PT. */
862 SET_PT (XFASTINT (new_pos));
863 }
864
865 return new_pos;
866 }
867
868 \f
869 DEFUN ("line-beginning-position",
870 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
871 doc: /* Return the character position of the first character on the current line.
872 With optional argument N, scan forward N - 1 lines first.
873 If the scan reaches the end of the buffer, return that position.
874
875 This function ignores text display directionality; it returns the
876 position of the first character in logical order, i.e. the smallest
877 character position on the line.
878
879 This function constrains the returned position to the current field
880 unless that position would be on a different line than the original,
881 unconstrained result. If N is nil or 1, and a front-sticky field
882 starts at point, the scan stops as soon as it starts. To ignore field
883 boundaries, bind `inhibit-field-text-motion' to t.
884
885 This function does not move point. */)
886 (Lisp_Object n)
887 {
888 ptrdiff_t charpos, bytepos;
889
890 if (NILP (n))
891 XSETFASTINT (n, 1);
892 else
893 CHECK_NUMBER (n);
894
895 scan_newline_from_point (XINT (n) - 1, &charpos, &bytepos);
896
897 /* Return END constrained to the current input field. */
898 return Fconstrain_to_field (make_number (charpos), make_number (PT),
899 XINT (n) != 1 ? Qt : Qnil,
900 Qt, Qnil);
901 }
902
903 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
904 doc: /* Return the character position of the last character on the current line.
905 With argument N not nil or 1, move forward N - 1 lines first.
906 If scan reaches end of buffer, return that position.
907
908 This function ignores text display directionality; it returns the
909 position of the last character in logical order, i.e. the largest
910 character position on the line.
911
912 This function constrains the returned position to the current field
913 unless that would be on a different line than the original,
914 unconstrained result. If N is nil or 1, and a rear-sticky field ends
915 at point, the scan stops as soon as it starts. To ignore field
916 boundaries bind `inhibit-field-text-motion' to t.
917
918 This function does not move point. */)
919 (Lisp_Object n)
920 {
921 ptrdiff_t clipped_n;
922 ptrdiff_t end_pos;
923 ptrdiff_t orig = PT;
924
925 if (NILP (n))
926 XSETFASTINT (n, 1);
927 else
928 CHECK_NUMBER (n);
929
930 clipped_n = clip_to_bounds (PTRDIFF_MIN + 1, XINT (n), PTRDIFF_MAX);
931 end_pos = find_before_next_newline (orig, 0, clipped_n - (clipped_n <= 0),
932 NULL);
933
934 /* Return END_POS constrained to the current input field. */
935 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
936 Qnil, Qt, Qnil);
937 }
938
939 /* Save current buffer state for `save-excursion' special form.
940 We (ab)use Lisp_Misc_Save_Value to allow explicit free and so
941 offload some work from GC. */
942
943 Lisp_Object
944 save_excursion_save (void)
945 {
946 return make_save_obj_obj_obj_obj
947 (Fpoint_marker (),
948 Qnil,
949 /* Selected window if current buffer is shown in it, nil otherwise. */
950 (EQ (XWINDOW (selected_window)->contents, Fcurrent_buffer ())
951 ? selected_window : Qnil),
952 Qnil);
953 }
954
955 /* Restore saved buffer before leaving `save-excursion' special form. */
956
957 void
958 save_excursion_restore (Lisp_Object info)
959 {
960 Lisp_Object tem, tem1;
961
962 tem = Fmarker_buffer (XSAVE_OBJECT (info, 0));
963 /* If we're unwinding to top level, saved buffer may be deleted. This
964 means that all of its markers are unchained and so tem is nil. */
965 if (NILP (tem))
966 goto out;
967
968 Fset_buffer (tem);
969
970 /* Point marker. */
971 tem = XSAVE_OBJECT (info, 0);
972 Fgoto_char (tem);
973 unchain_marker (XMARKER (tem));
974
975 /* If buffer was visible in a window, and a different window was
976 selected, and the old selected window is still showing this
977 buffer, restore point in that window. */
978 tem = XSAVE_OBJECT (info, 2);
979 if (WINDOWP (tem)
980 && !EQ (tem, selected_window)
981 && (tem1 = XWINDOW (tem)->contents,
982 (/* Window is live... */
983 BUFFERP (tem1)
984 /* ...and it shows the current buffer. */
985 && XBUFFER (tem1) == current_buffer)))
986 Fset_window_point (tem, make_number (PT));
987
988 out:
989
990 free_misc (info);
991 }
992
993 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
994 doc: /* Save point, and current buffer; execute BODY; restore those things.
995 Executes BODY just like `progn'.
996 The values of point and the current buffer are restored
997 even in case of abnormal exit (throw or error).
998
999 If you only want to save the current buffer but not point,
1000 then just use `save-current-buffer', or even `with-current-buffer'.
1001
1002 Before Emacs 25.1, `save-excursion' used to save the mark state.
1003 To save the marker state as well as the point and buffer, use
1004 `save-mark-and-excursion'.
1005
1006 usage: (save-excursion &rest BODY) */)
1007 (Lisp_Object args)
1008 {
1009 register Lisp_Object val;
1010 ptrdiff_t count = SPECPDL_INDEX ();
1011
1012 record_unwind_protect (save_excursion_restore, save_excursion_save ());
1013
1014 val = Fprogn (args);
1015 return unbind_to (count, val);
1016 }
1017
1018 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
1019 doc: /* Record which buffer is current; execute BODY; make that buffer current.
1020 BODY is executed just like `progn'.
1021 usage: (save-current-buffer &rest BODY) */)
1022 (Lisp_Object args)
1023 {
1024 ptrdiff_t count = SPECPDL_INDEX ();
1025
1026 record_unwind_current_buffer ();
1027 return unbind_to (count, Fprogn (args));
1028 }
1029 \f
1030 DEFUN ("buffer-size", Fbuffer_size, Sbuffer_size, 0, 1, 0,
1031 doc: /* Return the number of characters in the current buffer.
1032 If BUFFER, return the number of characters in that buffer instead. */)
1033 (Lisp_Object buffer)
1034 {
1035 if (NILP (buffer))
1036 return make_number (Z - BEG);
1037 else
1038 {
1039 CHECK_BUFFER (buffer);
1040 return make_number (BUF_Z (XBUFFER (buffer))
1041 - BUF_BEG (XBUFFER (buffer)));
1042 }
1043 }
1044
1045 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
1046 doc: /* Return the minimum permissible value of point in the current buffer.
1047 This is 1, unless narrowing (a buffer restriction) is in effect. */)
1048 (void)
1049 {
1050 Lisp_Object temp;
1051 XSETFASTINT (temp, BEGV);
1052 return temp;
1053 }
1054
1055 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
1056 doc: /* Return a marker to the minimum permissible value of point in this buffer.
1057 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
1058 (void)
1059 {
1060 return build_marker (current_buffer, BEGV, BEGV_BYTE);
1061 }
1062
1063 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
1064 doc: /* Return the maximum permissible value of point in the current buffer.
1065 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1066 is in effect, in which case it is less. */)
1067 (void)
1068 {
1069 Lisp_Object temp;
1070 XSETFASTINT (temp, ZV);
1071 return temp;
1072 }
1073
1074 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
1075 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1076 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1077 is in effect, in which case it is less. */)
1078 (void)
1079 {
1080 return build_marker (current_buffer, ZV, ZV_BYTE);
1081 }
1082
1083 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1084 doc: /* Return the position of the gap, in the current buffer.
1085 See also `gap-size'. */)
1086 (void)
1087 {
1088 Lisp_Object temp;
1089 XSETFASTINT (temp, GPT);
1090 return temp;
1091 }
1092
1093 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1094 doc: /* Return the size of the current buffer's gap.
1095 See also `gap-position'. */)
1096 (void)
1097 {
1098 Lisp_Object temp;
1099 XSETFASTINT (temp, GAP_SIZE);
1100 return temp;
1101 }
1102
1103 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1104 doc: /* Return the byte position for character position POSITION.
1105 If POSITION is out of range, the value is nil. */)
1106 (Lisp_Object position)
1107 {
1108 CHECK_NUMBER_COERCE_MARKER (position);
1109 if (XINT (position) < BEG || XINT (position) > Z)
1110 return Qnil;
1111 return make_number (CHAR_TO_BYTE (XINT (position)));
1112 }
1113
1114 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1115 doc: /* Return the character position for byte position BYTEPOS.
1116 If BYTEPOS is out of range, the value is nil. */)
1117 (Lisp_Object bytepos)
1118 {
1119 ptrdiff_t pos_byte;
1120
1121 CHECK_NUMBER (bytepos);
1122 pos_byte = XINT (bytepos);
1123 if (pos_byte < BEG_BYTE || pos_byte > Z_BYTE)
1124 return Qnil;
1125 if (Z != Z_BYTE)
1126 /* There are multibyte characters in the buffer.
1127 The argument of BYTE_TO_CHAR must be a byte position at
1128 a character boundary, so search for the start of the current
1129 character. */
1130 while (!CHAR_HEAD_P (FETCH_BYTE (pos_byte)))
1131 pos_byte--;
1132 return make_number (BYTE_TO_CHAR (pos_byte));
1133 }
1134 \f
1135 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1136 doc: /* Return the character following point, as a number.
1137 At the end of the buffer or accessible region, return 0. */)
1138 (void)
1139 {
1140 Lisp_Object temp;
1141 if (PT >= ZV)
1142 XSETFASTINT (temp, 0);
1143 else
1144 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1145 return temp;
1146 }
1147
1148 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1149 doc: /* Return the character preceding point, as a number.
1150 At the beginning of the buffer or accessible region, return 0. */)
1151 (void)
1152 {
1153 Lisp_Object temp;
1154 if (PT <= BEGV)
1155 XSETFASTINT (temp, 0);
1156 else if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1157 {
1158 ptrdiff_t pos = PT_BYTE;
1159 DEC_POS (pos);
1160 XSETFASTINT (temp, FETCH_CHAR (pos));
1161 }
1162 else
1163 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1164 return temp;
1165 }
1166
1167 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1168 doc: /* Return t if point is at the beginning of the buffer.
1169 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1170 (void)
1171 {
1172 if (PT == BEGV)
1173 return Qt;
1174 return Qnil;
1175 }
1176
1177 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1178 doc: /* Return t if point is at the end of the buffer.
1179 If the buffer is narrowed, this means the end of the narrowed part. */)
1180 (void)
1181 {
1182 if (PT == ZV)
1183 return Qt;
1184 return Qnil;
1185 }
1186
1187 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1188 doc: /* Return t if point is at the beginning of a line. */)
1189 (void)
1190 {
1191 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1192 return Qt;
1193 return Qnil;
1194 }
1195
1196 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1197 doc: /* Return t if point is at the end of a line.
1198 `End of a line' includes point being at the end of the buffer. */)
1199 (void)
1200 {
1201 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1202 return Qt;
1203 return Qnil;
1204 }
1205
1206 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1207 doc: /* Return character in current buffer at position POS.
1208 POS is an integer or a marker and defaults to point.
1209 If POS is out of range, the value is nil. */)
1210 (Lisp_Object pos)
1211 {
1212 register ptrdiff_t pos_byte;
1213
1214 if (NILP (pos))
1215 {
1216 pos_byte = PT_BYTE;
1217 XSETFASTINT (pos, PT);
1218 }
1219
1220 if (MARKERP (pos))
1221 {
1222 pos_byte = marker_byte_position (pos);
1223 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1224 return Qnil;
1225 }
1226 else
1227 {
1228 CHECK_NUMBER_COERCE_MARKER (pos);
1229 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1230 return Qnil;
1231
1232 pos_byte = CHAR_TO_BYTE (XINT (pos));
1233 }
1234
1235 return make_number (FETCH_CHAR (pos_byte));
1236 }
1237
1238 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1239 doc: /* Return character in current buffer preceding position POS.
1240 POS is an integer or a marker and defaults to point.
1241 If POS is out of range, the value is nil. */)
1242 (Lisp_Object pos)
1243 {
1244 register Lisp_Object val;
1245 register ptrdiff_t pos_byte;
1246
1247 if (NILP (pos))
1248 {
1249 pos_byte = PT_BYTE;
1250 XSETFASTINT (pos, PT);
1251 }
1252
1253 if (MARKERP (pos))
1254 {
1255 pos_byte = marker_byte_position (pos);
1256
1257 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1258 return Qnil;
1259 }
1260 else
1261 {
1262 CHECK_NUMBER_COERCE_MARKER (pos);
1263
1264 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1265 return Qnil;
1266
1267 pos_byte = CHAR_TO_BYTE (XINT (pos));
1268 }
1269
1270 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1271 {
1272 DEC_POS (pos_byte);
1273 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1274 }
1275 else
1276 {
1277 pos_byte--;
1278 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1279 }
1280 return val;
1281 }
1282 \f
1283 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1284 doc: /* Return the name under which the user logged in, as a string.
1285 This is based on the effective uid, not the real uid.
1286 Also, if the environment variables LOGNAME or USER are set,
1287 that determines the value of this function.
1288
1289 If optional argument UID is an integer or a float, return the login name
1290 of the user with that uid, or nil if there is no such user. */)
1291 (Lisp_Object uid)
1292 {
1293 struct passwd *pw;
1294 uid_t id;
1295
1296 /* Set up the user name info if we didn't do it before.
1297 (That can happen if Emacs is dumpable
1298 but you decide to run `temacs -l loadup' and not dump. */
1299 if (NILP (Vuser_login_name))
1300 init_editfns (false);
1301
1302 if (NILP (uid))
1303 return Vuser_login_name;
1304
1305 CONS_TO_INTEGER (uid, uid_t, id);
1306 block_input ();
1307 pw = getpwuid (id);
1308 unblock_input ();
1309 return (pw ? build_string (pw->pw_name) : Qnil);
1310 }
1311
1312 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1313 0, 0, 0,
1314 doc: /* Return the name of the user's real uid, as a string.
1315 This ignores the environment variables LOGNAME and USER, so it differs from
1316 `user-login-name' when running under `su'. */)
1317 (void)
1318 {
1319 /* Set up the user name info if we didn't do it before.
1320 (That can happen if Emacs is dumpable
1321 but you decide to run `temacs -l loadup' and not dump. */
1322 if (NILP (Vuser_login_name))
1323 init_editfns (false);
1324 return Vuser_real_login_name;
1325 }
1326
1327 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1328 doc: /* Return the effective uid of Emacs.
1329 Value is an integer or a float, depending on the value. */)
1330 (void)
1331 {
1332 uid_t euid = geteuid ();
1333 return make_fixnum_or_float (euid);
1334 }
1335
1336 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1337 doc: /* Return the real uid of Emacs.
1338 Value is an integer or a float, depending on the value. */)
1339 (void)
1340 {
1341 uid_t uid = getuid ();
1342 return make_fixnum_or_float (uid);
1343 }
1344
1345 DEFUN ("group-gid", Fgroup_gid, Sgroup_gid, 0, 0, 0,
1346 doc: /* Return the effective gid of Emacs.
1347 Value is an integer or a float, depending on the value. */)
1348 (void)
1349 {
1350 gid_t egid = getegid ();
1351 return make_fixnum_or_float (egid);
1352 }
1353
1354 DEFUN ("group-real-gid", Fgroup_real_gid, Sgroup_real_gid, 0, 0, 0,
1355 doc: /* Return the real gid of Emacs.
1356 Value is an integer or a float, depending on the value. */)
1357 (void)
1358 {
1359 gid_t gid = getgid ();
1360 return make_fixnum_or_float (gid);
1361 }
1362
1363 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1364 doc: /* Return the full name of the user logged in, as a string.
1365 If the full name corresponding to Emacs's userid is not known,
1366 return "unknown".
1367
1368 If optional argument UID is an integer or float, return the full name
1369 of the user with that uid, or nil if there is no such user.
1370 If UID is a string, return the full name of the user with that login
1371 name, or nil if there is no such user. */)
1372 (Lisp_Object uid)
1373 {
1374 struct passwd *pw;
1375 register char *p, *q;
1376 Lisp_Object full;
1377
1378 if (NILP (uid))
1379 return Vuser_full_name;
1380 else if (NUMBERP (uid))
1381 {
1382 uid_t u;
1383 CONS_TO_INTEGER (uid, uid_t, u);
1384 block_input ();
1385 pw = getpwuid (u);
1386 unblock_input ();
1387 }
1388 else if (STRINGP (uid))
1389 {
1390 block_input ();
1391 pw = getpwnam (SSDATA (uid));
1392 unblock_input ();
1393 }
1394 else
1395 error ("Invalid UID specification");
1396
1397 if (!pw)
1398 return Qnil;
1399
1400 p = USER_FULL_NAME;
1401 /* Chop off everything after the first comma. */
1402 q = strchr (p, ',');
1403 full = make_string (p, q ? q - p : strlen (p));
1404
1405 #ifdef AMPERSAND_FULL_NAME
1406 p = SSDATA (full);
1407 q = strchr (p, '&');
1408 /* Substitute the login name for the &, upcasing the first character. */
1409 if (q)
1410 {
1411 Lisp_Object login = Fuser_login_name (make_number (pw->pw_uid));
1412 USE_SAFE_ALLOCA;
1413 char *r = SAFE_ALLOCA (strlen (p) + SBYTES (login) + 1);
1414 memcpy (r, p, q - p);
1415 char *s = lispstpcpy (&r[q - p], login);
1416 r[q - p] = upcase ((unsigned char) r[q - p]);
1417 strcpy (s, q + 1);
1418 full = build_string (r);
1419 SAFE_FREE ();
1420 }
1421 #endif /* AMPERSAND_FULL_NAME */
1422
1423 return full;
1424 }
1425
1426 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1427 doc: /* Return the host name of the machine you are running on, as a string. */)
1428 (void)
1429 {
1430 if (EQ (Vsystem_name, cached_system_name))
1431 init_and_cache_system_name ();
1432 return Vsystem_name;
1433 }
1434
1435 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1436 doc: /* Return the process ID of Emacs, as a number. */)
1437 (void)
1438 {
1439 pid_t pid = getpid ();
1440 return make_fixnum_or_float (pid);
1441 }
1442
1443 \f
1444
1445 #ifndef TIME_T_MIN
1446 # define TIME_T_MIN TYPE_MINIMUM (time_t)
1447 #endif
1448 #ifndef TIME_T_MAX
1449 # define TIME_T_MAX TYPE_MAXIMUM (time_t)
1450 #endif
1451
1452 /* Report that a time value is out of range for Emacs. */
1453 void
1454 time_overflow (void)
1455 {
1456 error ("Specified time is not representable");
1457 }
1458
1459 static void
1460 invalid_time (void)
1461 {
1462 error ("Invalid time specification");
1463 }
1464
1465 /* Check a return value compatible with that of decode_time_components. */
1466 static void
1467 check_time_validity (int validity)
1468 {
1469 if (validity <= 0)
1470 {
1471 if (validity < 0)
1472 time_overflow ();
1473 else
1474 invalid_time ();
1475 }
1476 }
1477
1478 /* Return the upper part of the time T (everything but the bottom 16 bits). */
1479 static EMACS_INT
1480 hi_time (time_t t)
1481 {
1482 time_t hi = t >> LO_TIME_BITS;
1483
1484 /* Check for overflow, helping the compiler for common cases where
1485 no runtime check is needed, and taking care not to convert
1486 negative numbers to unsigned before comparing them. */
1487 if (! ((! TYPE_SIGNED (time_t)
1488 || MOST_NEGATIVE_FIXNUM <= TIME_T_MIN >> LO_TIME_BITS
1489 || MOST_NEGATIVE_FIXNUM <= hi)
1490 && (TIME_T_MAX >> LO_TIME_BITS <= MOST_POSITIVE_FIXNUM
1491 || hi <= MOST_POSITIVE_FIXNUM)))
1492 time_overflow ();
1493
1494 return hi;
1495 }
1496
1497 /* Return the bottom bits of the time T. */
1498 static int
1499 lo_time (time_t t)
1500 {
1501 return t & ((1 << LO_TIME_BITS) - 1);
1502 }
1503
1504 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1505 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1506 The time is returned as a list of integers (HIGH LOW USEC PSEC).
1507 HIGH has the most significant bits of the seconds, while LOW has the
1508 least significant 16 bits. USEC and PSEC are the microsecond and
1509 picosecond counts. */)
1510 (void)
1511 {
1512 return make_lisp_time (current_timespec ());
1513 }
1514
1515 static struct lisp_time
1516 time_add (struct lisp_time ta, struct lisp_time tb)
1517 {
1518 EMACS_INT hi = ta.hi + tb.hi;
1519 int lo = ta.lo + tb.lo;
1520 int us = ta.us + tb.us;
1521 int ps = ta.ps + tb.ps;
1522 us += (1000000 <= ps);
1523 ps -= (1000000 <= ps) * 1000000;
1524 lo += (1000000 <= us);
1525 us -= (1000000 <= us) * 1000000;
1526 hi += (1 << LO_TIME_BITS <= lo);
1527 lo -= (1 << LO_TIME_BITS <= lo) << LO_TIME_BITS;
1528 return (struct lisp_time) { hi, lo, us, ps };
1529 }
1530
1531 static struct lisp_time
1532 time_subtract (struct lisp_time ta, struct lisp_time tb)
1533 {
1534 EMACS_INT hi = ta.hi - tb.hi;
1535 int lo = ta.lo - tb.lo;
1536 int us = ta.us - tb.us;
1537 int ps = ta.ps - tb.ps;
1538 us -= (ps < 0);
1539 ps += (ps < 0) * 1000000;
1540 lo -= (us < 0);
1541 us += (us < 0) * 1000000;
1542 hi -= (lo < 0);
1543 lo += (lo < 0) << LO_TIME_BITS;
1544 return (struct lisp_time) { hi, lo, us, ps };
1545 }
1546
1547 static Lisp_Object
1548 time_arith (Lisp_Object a, Lisp_Object b,
1549 struct lisp_time (*op) (struct lisp_time, struct lisp_time))
1550 {
1551 int alen, blen;
1552 struct lisp_time ta = lisp_time_struct (a, &alen);
1553 struct lisp_time tb = lisp_time_struct (b, &blen);
1554 struct lisp_time t = op (ta, tb);
1555 if (! (MOST_NEGATIVE_FIXNUM <= t.hi && t.hi <= MOST_POSITIVE_FIXNUM))
1556 time_overflow ();
1557 Lisp_Object val = Qnil;
1558
1559 switch (max (alen, blen))
1560 {
1561 default:
1562 val = Fcons (make_number (t.ps), val);
1563 /* Fall through. */
1564 case 3:
1565 val = Fcons (make_number (t.us), val);
1566 /* Fall through. */
1567 case 2:
1568 val = Fcons (make_number (t.lo), val);
1569 val = Fcons (make_number (t.hi), val);
1570 break;
1571 }
1572
1573 return val;
1574 }
1575
1576 DEFUN ("time-add", Ftime_add, Stime_add, 2, 2, 0,
1577 doc: /* Return the sum of two time values A and B, as a time value. */)
1578 (Lisp_Object a, Lisp_Object b)
1579 {
1580 return time_arith (a, b, time_add);
1581 }
1582
1583 DEFUN ("time-subtract", Ftime_subtract, Stime_subtract, 2, 2, 0,
1584 doc: /* Return the difference between two time values A and B, as a time value. */)
1585 (Lisp_Object a, Lisp_Object b)
1586 {
1587 return time_arith (a, b, time_subtract);
1588 }
1589
1590 DEFUN ("time-less-p", Ftime_less_p, Stime_less_p, 2, 2, 0,
1591 doc: /* Return non-nil if time value T1 is earlier than time value T2. */)
1592 (Lisp_Object t1, Lisp_Object t2)
1593 {
1594 int t1len, t2len;
1595 struct lisp_time a = lisp_time_struct (t1, &t1len);
1596 struct lisp_time b = lisp_time_struct (t2, &t2len);
1597 return ((a.hi != b.hi ? a.hi < b.hi
1598 : a.lo != b.lo ? a.lo < b.lo
1599 : a.us != b.us ? a.us < b.us
1600 : a.ps < b.ps)
1601 ? Qt : Qnil);
1602 }
1603
1604
1605 DEFUN ("get-internal-run-time", Fget_internal_run_time, Sget_internal_run_time,
1606 0, 0, 0,
1607 doc: /* Return the current run time used by Emacs.
1608 The time is returned as a list (HIGH LOW USEC PSEC), using the same
1609 style as (current-time).
1610
1611 On systems that can't determine the run time, `get-internal-run-time'
1612 does the same thing as `current-time'. */)
1613 (void)
1614 {
1615 #ifdef HAVE_GETRUSAGE
1616 struct rusage usage;
1617 time_t secs;
1618 int usecs;
1619
1620 if (getrusage (RUSAGE_SELF, &usage) < 0)
1621 /* This shouldn't happen. What action is appropriate? */
1622 xsignal0 (Qerror);
1623
1624 /* Sum up user time and system time. */
1625 secs = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
1626 usecs = usage.ru_utime.tv_usec + usage.ru_stime.tv_usec;
1627 if (usecs >= 1000000)
1628 {
1629 usecs -= 1000000;
1630 secs++;
1631 }
1632 return make_lisp_time (make_timespec (secs, usecs * 1000));
1633 #else /* ! HAVE_GETRUSAGE */
1634 #ifdef WINDOWSNT
1635 return w32_get_internal_run_time ();
1636 #else /* ! WINDOWSNT */
1637 return Fcurrent_time ();
1638 #endif /* WINDOWSNT */
1639 #endif /* HAVE_GETRUSAGE */
1640 }
1641 \f
1642
1643 /* Make a Lisp list that represents the Emacs time T. T may be an
1644 invalid time, with a slightly negative tv_nsec value such as
1645 UNKNOWN_MODTIME_NSECS; in that case, the Lisp list contains a
1646 correspondingly negative picosecond count. */
1647 Lisp_Object
1648 make_lisp_time (struct timespec t)
1649 {
1650 time_t s = t.tv_sec;
1651 int ns = t.tv_nsec;
1652 return list4i (hi_time (s), lo_time (s), ns / 1000, ns % 1000 * 1000);
1653 }
1654
1655 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1656 Set *PHIGH, *PLOW, *PUSEC, *PPSEC to its parts; do not check their values.
1657 Return 2, 3, or 4 to indicate the effective length of SPECIFIED_TIME
1658 if successful, 0 if unsuccessful. */
1659 static int
1660 disassemble_lisp_time (Lisp_Object specified_time, Lisp_Object *phigh,
1661 Lisp_Object *plow, Lisp_Object *pusec,
1662 Lisp_Object *ppsec)
1663 {
1664 Lisp_Object high = make_number (0);
1665 Lisp_Object low = specified_time;
1666 Lisp_Object usec = make_number (0);
1667 Lisp_Object psec = make_number (0);
1668 int len = 4;
1669
1670 if (CONSP (specified_time))
1671 {
1672 high = XCAR (specified_time);
1673 low = XCDR (specified_time);
1674 if (CONSP (low))
1675 {
1676 Lisp_Object low_tail = XCDR (low);
1677 low = XCAR (low);
1678 if (CONSP (low_tail))
1679 {
1680 usec = XCAR (low_tail);
1681 low_tail = XCDR (low_tail);
1682 if (CONSP (low_tail))
1683 psec = XCAR (low_tail);
1684 else
1685 len = 3;
1686 }
1687 else if (!NILP (low_tail))
1688 {
1689 usec = low_tail;
1690 len = 3;
1691 }
1692 else
1693 len = 2;
1694 }
1695 else
1696 len = 2;
1697
1698 /* When combining components, require LOW to be an integer,
1699 as otherwise it would be a pain to add up times. */
1700 if (! INTEGERP (low))
1701 return 0;
1702 }
1703 else if (INTEGERP (specified_time))
1704 len = 2;
1705
1706 *phigh = high;
1707 *plow = low;
1708 *pusec = usec;
1709 *ppsec = psec;
1710 return len;
1711 }
1712
1713 /* Convert T into an Emacs time *RESULT, truncating toward minus infinity.
1714 Return true if T is in range, false otherwise. */
1715 static bool
1716 decode_float_time (double t, struct lisp_time *result)
1717 {
1718 double lo_multiplier = 1 << LO_TIME_BITS;
1719 double emacs_time_min = MOST_NEGATIVE_FIXNUM * lo_multiplier;
1720 if (! (emacs_time_min <= t && t < -emacs_time_min))
1721 return false;
1722
1723 double small_t = t / lo_multiplier;
1724 EMACS_INT hi = small_t;
1725 double t_sans_hi = t - hi * lo_multiplier;
1726 int lo = t_sans_hi;
1727 long double fracps = (t_sans_hi - lo) * 1e12L;
1728 #ifdef INT_FAST64_MAX
1729 int_fast64_t ifracps = fracps;
1730 int us = ifracps / 1000000;
1731 int ps = ifracps % 1000000;
1732 #else
1733 int us = fracps / 1e6L;
1734 int ps = fracps - us * 1e6L;
1735 #endif
1736 us -= (ps < 0);
1737 ps += (ps < 0) * 1000000;
1738 lo -= (us < 0);
1739 us += (us < 0) * 1000000;
1740 hi -= (lo < 0);
1741 lo += (lo < 0) << LO_TIME_BITS;
1742 result->hi = hi;
1743 result->lo = lo;
1744 result->us = us;
1745 result->ps = ps;
1746 return true;
1747 }
1748
1749 /* From the time components HIGH, LOW, USEC and PSEC taken from a Lisp
1750 list, generate the corresponding time value.
1751 If LOW is floating point, the other components should be zero.
1752
1753 If RESULT is not null, store into *RESULT the converted time.
1754 If *DRESULT is not null, store into *DRESULT the number of
1755 seconds since the start of the POSIX Epoch.
1756
1757 Return 1 if successful, 0 if the components are of the
1758 wrong type, and -1 if the time is out of range. */
1759 int
1760 decode_time_components (Lisp_Object high, Lisp_Object low, Lisp_Object usec,
1761 Lisp_Object psec,
1762 struct lisp_time *result, double *dresult)
1763 {
1764 EMACS_INT hi, lo, us, ps;
1765 if (! (INTEGERP (high)
1766 && INTEGERP (usec) && INTEGERP (psec)))
1767 return 0;
1768 if (! INTEGERP (low))
1769 {
1770 if (FLOATP (low))
1771 {
1772 double t = XFLOAT_DATA (low);
1773 if (result && ! decode_float_time (t, result))
1774 return -1;
1775 if (dresult)
1776 *dresult = t;
1777 return 1;
1778 }
1779 else if (NILP (low))
1780 {
1781 struct timespec now = current_timespec ();
1782 if (result)
1783 {
1784 result->hi = hi_time (now.tv_sec);
1785 result->lo = lo_time (now.tv_sec);
1786 result->us = now.tv_nsec / 1000;
1787 result->ps = now.tv_nsec % 1000 * 1000;
1788 }
1789 if (dresult)
1790 *dresult = now.tv_sec + now.tv_nsec / 1e9;
1791 return 1;
1792 }
1793 else
1794 return 0;
1795 }
1796
1797 hi = XINT (high);
1798 lo = XINT (low);
1799 us = XINT (usec);
1800 ps = XINT (psec);
1801
1802 /* Normalize out-of-range lower-order components by carrying
1803 each overflow into the next higher-order component. */
1804 us += ps / 1000000 - (ps % 1000000 < 0);
1805 lo += us / 1000000 - (us % 1000000 < 0);
1806 hi += lo >> LO_TIME_BITS;
1807 ps = ps % 1000000 + 1000000 * (ps % 1000000 < 0);
1808 us = us % 1000000 + 1000000 * (us % 1000000 < 0);
1809 lo &= (1 << LO_TIME_BITS) - 1;
1810
1811 if (result)
1812 {
1813 if (! (MOST_NEGATIVE_FIXNUM <= hi && hi <= MOST_POSITIVE_FIXNUM))
1814 return -1;
1815 result->hi = hi;
1816 result->lo = lo;
1817 result->us = us;
1818 result->ps = ps;
1819 }
1820
1821 if (dresult)
1822 {
1823 double dhi = hi;
1824 *dresult = (us * 1e6 + ps) / 1e12 + lo + dhi * (1 << LO_TIME_BITS);
1825 }
1826
1827 return 1;
1828 }
1829
1830 struct timespec
1831 lisp_to_timespec (struct lisp_time t)
1832 {
1833 if (! ((TYPE_SIGNED (time_t) ? TIME_T_MIN >> LO_TIME_BITS <= t.hi : 0 <= t.hi)
1834 && t.hi <= TIME_T_MAX >> LO_TIME_BITS))
1835 return invalid_timespec ();
1836 time_t s = (t.hi << LO_TIME_BITS) + t.lo;
1837 int ns = t.us * 1000 + t.ps / 1000;
1838 return make_timespec (s, ns);
1839 }
1840
1841 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1842 Store its effective length into *PLEN.
1843 If SPECIFIED_TIME is nil, use the current time.
1844 Signal an error if SPECIFIED_TIME does not represent a time. */
1845 static struct lisp_time
1846 lisp_time_struct (Lisp_Object specified_time, int *plen)
1847 {
1848 Lisp_Object high, low, usec, psec;
1849 struct lisp_time t;
1850 int len = disassemble_lisp_time (specified_time, &high, &low, &usec, &psec);
1851 int val = len ? decode_time_components (high, low, usec, psec, &t, 0) : 0;
1852 check_time_validity (val);
1853 *plen = len;
1854 return t;
1855 }
1856
1857 /* Like lisp_time_struct, except return a struct timespec.
1858 Discard any low-order digits. */
1859 struct timespec
1860 lisp_time_argument (Lisp_Object specified_time)
1861 {
1862 int len;
1863 struct lisp_time lt = lisp_time_struct (specified_time, &len);
1864 struct timespec t = lisp_to_timespec (lt);
1865 if (! timespec_valid_p (t))
1866 time_overflow ();
1867 return t;
1868 }
1869
1870 /* Like lisp_time_argument, except decode only the seconds part,
1871 and do not check the subseconds part. */
1872 static time_t
1873 lisp_seconds_argument (Lisp_Object specified_time)
1874 {
1875 Lisp_Object high, low, usec, psec;
1876 struct lisp_time t;
1877
1878 int val = disassemble_lisp_time (specified_time, &high, &low, &usec, &psec);
1879 if (val != 0)
1880 {
1881 val = decode_time_components (high, low, make_number (0),
1882 make_number (0), &t, 0);
1883 if (0 < val
1884 && ! ((TYPE_SIGNED (time_t)
1885 ? TIME_T_MIN >> LO_TIME_BITS <= t.hi
1886 : 0 <= t.hi)
1887 && t.hi <= TIME_T_MAX >> LO_TIME_BITS))
1888 val = -1;
1889 }
1890 check_time_validity (val);
1891 return (t.hi << LO_TIME_BITS) + t.lo;
1892 }
1893
1894 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1895 doc: /* Return the current time, as a float number of seconds since the epoch.
1896 If SPECIFIED-TIME is given, it is the time to convert to float
1897 instead of the current time. The argument should have the form
1898 (HIGH LOW) or (HIGH LOW USEC) or (HIGH LOW USEC PSEC). Thus,
1899 you can use times from `current-time' and from `file-attributes'.
1900 SPECIFIED-TIME can also have the form (HIGH . LOW), but this is
1901 considered obsolete.
1902
1903 WARNING: Since the result is floating point, it may not be exact.
1904 If precise time stamps are required, use either `current-time',
1905 or (if you need time as a string) `format-time-string'. */)
1906 (Lisp_Object specified_time)
1907 {
1908 double t;
1909 Lisp_Object high, low, usec, psec;
1910 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1911 && decode_time_components (high, low, usec, psec, 0, &t)))
1912 invalid_time ();
1913 return make_float (t);
1914 }
1915
1916 /* Write information into buffer S of size MAXSIZE, according to the
1917 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1918 Use the time zone specified by TZ.
1919 Use NS as the number of nanoseconds in the %N directive.
1920 Return the number of bytes written, not including the terminating
1921 '\0'. If S is NULL, nothing will be written anywhere; so to
1922 determine how many bytes would be written, use NULL for S and
1923 ((size_t) -1) for MAXSIZE.
1924
1925 This function behaves like nstrftime, except it allows null
1926 bytes in FORMAT and it does not support nanoseconds. */
1927 static size_t
1928 emacs_nmemftime (char *s, size_t maxsize, const char *format,
1929 size_t format_len, const struct tm *tp, timezone_t tz, int ns)
1930 {
1931 size_t total = 0;
1932
1933 /* Loop through all the null-terminated strings in the format
1934 argument. Normally there's just one null-terminated string, but
1935 there can be arbitrarily many, concatenated together, if the
1936 format contains '\0' bytes. nstrftime stops at the first
1937 '\0' byte so we must invoke it separately for each such string. */
1938 for (;;)
1939 {
1940 size_t len;
1941 size_t result;
1942
1943 if (s)
1944 s[0] = '\1';
1945
1946 result = nstrftime (s, maxsize, format, tp, tz, ns);
1947
1948 if (s)
1949 {
1950 if (result == 0 && s[0] != '\0')
1951 return 0;
1952 s += result + 1;
1953 }
1954
1955 maxsize -= result + 1;
1956 total += result;
1957 len = strlen (format);
1958 if (len == format_len)
1959 return total;
1960 total++;
1961 format += len + 1;
1962 format_len -= len + 1;
1963 }
1964 }
1965
1966 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1967 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1968 TIME is specified as (HIGH LOW USEC PSEC), as returned by
1969 `current-time' or `file-attributes'. The obsolete form (HIGH . LOW)
1970 is also still accepted.
1971 The optional ZONE is omitted or nil for Emacs local time, t for
1972 Universal Time, `wall' for system wall clock time, or a string as in
1973 `set-time-zone-rule' for a time zone rule.
1974 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1975 by text that describes the specified date and time in TIME:
1976
1977 %Y is the year, %y within the century, %C the century.
1978 %G is the year corresponding to the ISO week, %g within the century.
1979 %m is the numeric month.
1980 %b and %h are the locale's abbreviated month name, %B the full name.
1981 (%h is not supported on MS-Windows.)
1982 %d is the day of the month, zero-padded, %e is blank-padded.
1983 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1984 %a is the locale's abbreviated name of the day of week, %A the full name.
1985 %U is the week number starting on Sunday, %W starting on Monday,
1986 %V according to ISO 8601.
1987 %j is the day of the year.
1988
1989 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1990 only blank-padded, %l is like %I blank-padded.
1991 %p is the locale's equivalent of either AM or PM.
1992 %M is the minute.
1993 %S is the second.
1994 %N is the nanosecond, %6N the microsecond, %3N the millisecond, etc.
1995 %Z is the time zone name, %z is the numeric form.
1996 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1997
1998 %c is the locale's date and time format.
1999 %x is the locale's "preferred" date format.
2000 %D is like "%m/%d/%y".
2001 %F is the ISO 8601 date format (like "%Y-%m-%d").
2002
2003 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
2004 %X is the locale's "preferred" time format.
2005
2006 Finally, %n is a newline, %t is a tab, %% is a literal %.
2007
2008 Certain flags and modifiers are available with some format controls.
2009 The flags are `_', `-', `^' and `#'. For certain characters X,
2010 %_X is like %X, but padded with blanks; %-X is like %X,
2011 but without padding. %^X is like %X, but with all textual
2012 characters up-cased; %#X is like %X, but with letter-case of
2013 all textual characters reversed.
2014 %NX (where N stands for an integer) is like %X,
2015 but takes up at least N (a number) positions.
2016 The modifiers are `E' and `O'. For certain characters X,
2017 %EX is a locale's alternative version of %X;
2018 %OX is like %X, but uses the locale's number symbols.
2019
2020 For example, to produce full ISO 8601 format, use "%FT%T%z".
2021
2022 usage: (format-time-string FORMAT-STRING &optional TIME ZONE) */)
2023 (Lisp_Object format_string, Lisp_Object timeval, Lisp_Object zone)
2024 {
2025 struct timespec t = lisp_time_argument (timeval);
2026 struct tm tm;
2027
2028 CHECK_STRING (format_string);
2029 format_string = code_convert_string_norecord (format_string,
2030 Vlocale_coding_system, 1);
2031 return format_time_string (SSDATA (format_string), SBYTES (format_string),
2032 t, zone, &tm);
2033 }
2034
2035 static Lisp_Object
2036 format_time_string (char const *format, ptrdiff_t formatlen,
2037 struct timespec t, Lisp_Object zone, struct tm *tmp)
2038 {
2039 char buffer[4000];
2040 char *buf = buffer;
2041 ptrdiff_t size = sizeof buffer;
2042 size_t len;
2043 Lisp_Object bufstring;
2044 int ns = t.tv_nsec;
2045 USE_SAFE_ALLOCA;
2046
2047 timezone_t tz = tzlookup (zone, false);
2048 tmp = emacs_localtime_rz (tz, &t.tv_sec, tmp);
2049 if (! tmp)
2050 {
2051 xtzfree (tz);
2052 time_overflow ();
2053 }
2054 synchronize_system_time_locale ();
2055
2056 while (true)
2057 {
2058 buf[0] = '\1';
2059 len = emacs_nmemftime (buf, size, format, formatlen, tmp, tz, ns);
2060 if ((0 < len && len < size) || (len == 0 && buf[0] == '\0'))
2061 break;
2062
2063 /* Buffer was too small, so make it bigger and try again. */
2064 len = emacs_nmemftime (NULL, SIZE_MAX, format, formatlen, tmp, tz, ns);
2065 if (STRING_BYTES_BOUND <= len)
2066 {
2067 xtzfree (tz);
2068 string_overflow ();
2069 }
2070 size = len + 1;
2071 buf = SAFE_ALLOCA (size);
2072 }
2073
2074 xtzfree (tz);
2075 bufstring = make_unibyte_string (buf, len);
2076 SAFE_FREE ();
2077 return code_convert_string_norecord (bufstring, Vlocale_coding_system, 0);
2078 }
2079
2080 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 2, 0,
2081 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST UTCOFF).
2082 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED),
2083 as from `current-time' and `file-attributes', or nil to use the
2084 current time. The obsolete form (HIGH . LOW) is also still accepted.
2085 The optional ZONE is omitted or nil for Emacs local time, t for
2086 Universal Time, `wall' for system wall clock time, or a string as in
2087 `set-time-zone-rule' for a time zone rule.
2088
2089 The list has the following nine members: SEC is an integer between 0
2090 and 60; SEC is 60 for a leap second, which only some operating systems
2091 support. MINUTE is an integer between 0 and 59. HOUR is an integer
2092 between 0 and 23. DAY is an integer between 1 and 31. MONTH is an
2093 integer between 1 and 12. YEAR is an integer indicating the
2094 four-digit year. DOW is the day of week, an integer between 0 and 6,
2095 where 0 is Sunday. DST is t if daylight saving time is in effect,
2096 otherwise nil. UTCOFF is an integer indicating the UTC offset in
2097 seconds, i.e., the number of seconds east of Greenwich. (Note that
2098 Common Lisp has different meanings for DOW and UTCOFF.)
2099
2100 usage: (decode-time &optional TIME ZONE) */)
2101 (Lisp_Object specified_time, Lisp_Object zone)
2102 {
2103 time_t time_spec = lisp_seconds_argument (specified_time);
2104 struct tm local_tm, gmt_tm;
2105 timezone_t tz = tzlookup (zone, false);
2106 struct tm *tm = emacs_localtime_rz (tz, &time_spec, &local_tm);
2107 xtzfree (tz);
2108
2109 if (! (tm
2110 && MOST_NEGATIVE_FIXNUM - TM_YEAR_BASE <= local_tm.tm_year
2111 && local_tm.tm_year <= MOST_POSITIVE_FIXNUM - TM_YEAR_BASE))
2112 time_overflow ();
2113
2114 /* Avoid overflow when INT_MAX < EMACS_INT_MAX. */
2115 EMACS_INT tm_year_base = TM_YEAR_BASE;
2116
2117 return CALLN (Flist,
2118 make_number (local_tm.tm_sec),
2119 make_number (local_tm.tm_min),
2120 make_number (local_tm.tm_hour),
2121 make_number (local_tm.tm_mday),
2122 make_number (local_tm.tm_mon + 1),
2123 make_number (local_tm.tm_year + tm_year_base),
2124 make_number (local_tm.tm_wday),
2125 local_tm.tm_isdst ? Qt : Qnil,
2126 (HAVE_TM_GMTOFF
2127 ? make_number (tm_gmtoff (&local_tm))
2128 : gmtime_r (&time_spec, &gmt_tm)
2129 ? make_number (tm_diff (&local_tm, &gmt_tm))
2130 : Qnil));
2131 }
2132
2133 /* Return OBJ - OFFSET, checking that OBJ is a valid fixnum and that
2134 the result is representable as an int. Assume OFFSET is small and
2135 nonnegative. */
2136 static int
2137 check_tm_member (Lisp_Object obj, int offset)
2138 {
2139 EMACS_INT n;
2140 CHECK_NUMBER (obj);
2141 n = XINT (obj);
2142 if (! (INT_MIN + offset <= n && n - offset <= INT_MAX))
2143 time_overflow ();
2144 return n - offset;
2145 }
2146
2147 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
2148 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
2149 This is the reverse operation of `decode-time', which see.
2150 The optional ZONE is omitted or nil for Emacs local time, t for
2151 Universal Time, `wall' for system wall clock time, or a string as in
2152 `set-time-zone-rule' for a time zone rule. It can also be a list (as
2153 from `current-time-zone') or an integer (as from `decode-time')
2154 applied without consideration for daylight saving time.
2155
2156 You can pass more than 7 arguments; then the first six arguments
2157 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
2158 The intervening arguments are ignored.
2159 This feature lets (apply \\='encode-time (decode-time ...)) work.
2160
2161 Out-of-range values for SECOND, MINUTE, HOUR, DAY, or MONTH are allowed;
2162 for example, a DAY of 0 means the day preceding the given month.
2163 Year numbers less than 100 are treated just like other year numbers.
2164 If you want them to stand for years in this century, you must do that yourself.
2165
2166 Years before 1970 are not guaranteed to work. On some systems,
2167 year values as low as 1901 do work.
2168
2169 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
2170 (ptrdiff_t nargs, Lisp_Object *args)
2171 {
2172 time_t value;
2173 struct tm tm;
2174 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
2175
2176 tm.tm_sec = check_tm_member (args[0], 0);
2177 tm.tm_min = check_tm_member (args[1], 0);
2178 tm.tm_hour = check_tm_member (args[2], 0);
2179 tm.tm_mday = check_tm_member (args[3], 0);
2180 tm.tm_mon = check_tm_member (args[4], 1);
2181 tm.tm_year = check_tm_member (args[5], TM_YEAR_BASE);
2182 tm.tm_isdst = -1;
2183
2184 if (CONSP (zone))
2185 zone = XCAR (zone);
2186 timezone_t tz = tzlookup (zone, false);
2187 value = emacs_mktime_z (tz, &tm);
2188 xtzfree (tz);
2189
2190 if (value == (time_t) -1)
2191 time_overflow ();
2192
2193 return list2i (hi_time (value), lo_time (value));
2194 }
2195
2196 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string,
2197 0, 2, 0,
2198 doc: /* Return the current local time, as a human-readable string.
2199 Programs can use this function to decode a time,
2200 since the number of columns in each field is fixed
2201 if the year is in the range 1000-9999.
2202 The format is `Sun Sep 16 01:03:52 1973'.
2203 However, see also the functions `decode-time' and `format-time-string'
2204 which provide a much more powerful and general facility.
2205
2206 If SPECIFIED-TIME is given, it is a time to format instead of the
2207 current time. The argument should have the form (HIGH LOW . IGNORED).
2208 Thus, you can use times obtained from `current-time' and from
2209 `file-attributes'. SPECIFIED-TIME can also have the form (HIGH . LOW),
2210 but this is considered obsolete.
2211
2212 The optional ZONE is omitted or nil for Emacs local time, t for
2213 Universal Time, `wall' for system wall clock time, or a string as in
2214 `set-time-zone-rule' for a time zone rule. */)
2215 (Lisp_Object specified_time, Lisp_Object zone)
2216 {
2217 time_t value = lisp_seconds_argument (specified_time);
2218 timezone_t tz = tzlookup (zone, false);
2219
2220 /* Convert to a string in ctime format, except without the trailing
2221 newline, and without the 4-digit year limit. Don't use asctime
2222 or ctime, as they might dump core if the year is outside the
2223 range -999 .. 9999. */
2224 struct tm tm;
2225 struct tm *tmp = emacs_localtime_rz (tz, &value, &tm);
2226 xtzfree (tz);
2227 if (! tmp)
2228 time_overflow ();
2229
2230 static char const wday_name[][4] =
2231 { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
2232 static char const mon_name[][4] =
2233 { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
2234 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
2235 printmax_t year_base = TM_YEAR_BASE;
2236 char buf[sizeof "Mon Apr 30 12:49:17 " + INT_STRLEN_BOUND (int) + 1];
2237 int len = sprintf (buf, "%s %s%3d %02d:%02d:%02d %"pMd,
2238 wday_name[tm.tm_wday], mon_name[tm.tm_mon], tm.tm_mday,
2239 tm.tm_hour, tm.tm_min, tm.tm_sec,
2240 tm.tm_year + year_base);
2241
2242 return make_unibyte_string (buf, len);
2243 }
2244
2245 /* Yield A - B, measured in seconds.
2246 This function is copied from the GNU C Library. */
2247 static int
2248 tm_diff (struct tm *a, struct tm *b)
2249 {
2250 /* Compute intervening leap days correctly even if year is negative.
2251 Take care to avoid int overflow in leap day calculations,
2252 but it's OK to assume that A and B are close to each other. */
2253 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
2254 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
2255 int a100 = a4 / 25 - (a4 % 25 < 0);
2256 int b100 = b4 / 25 - (b4 % 25 < 0);
2257 int a400 = a100 >> 2;
2258 int b400 = b100 >> 2;
2259 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
2260 int years = a->tm_year - b->tm_year;
2261 int days = (365 * years + intervening_leap_days
2262 + (a->tm_yday - b->tm_yday));
2263 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
2264 + (a->tm_min - b->tm_min))
2265 + (a->tm_sec - b->tm_sec));
2266 }
2267
2268 /* Yield A's UTC offset, or an unspecified value if unknown. */
2269 static long int
2270 tm_gmtoff (struct tm *a)
2271 {
2272 #if HAVE_TM_GMTOFF
2273 return a->tm_gmtoff;
2274 #else
2275 return 0;
2276 #endif
2277 }
2278
2279 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 2, 0,
2280 doc: /* Return the offset and name for the local time zone.
2281 This returns a list of the form (OFFSET NAME).
2282 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
2283 A negative value means west of Greenwich.
2284 NAME is a string giving the name of the time zone.
2285 If SPECIFIED-TIME is given, the time zone offset is determined from it
2286 instead of using the current time. The argument should have the form
2287 (HIGH LOW . IGNORED). Thus, you can use times obtained from
2288 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
2289 have the form (HIGH . LOW), but this is considered obsolete.
2290 Optional second arg ZONE is omitted or nil for the local time zone, or
2291 a string as in `set-time-zone-rule'.
2292
2293 Some operating systems cannot provide all this information to Emacs;
2294 in this case, `current-time-zone' returns a list containing nil for
2295 the data it can't find. */)
2296 (Lisp_Object specified_time, Lisp_Object zone)
2297 {
2298 struct timespec value;
2299 struct tm local_tm, gmt_tm;
2300 Lisp_Object zone_offset, zone_name;
2301
2302 zone_offset = Qnil;
2303 value = make_timespec (lisp_seconds_argument (specified_time), 0);
2304 zone_name = format_time_string ("%Z", sizeof "%Z" - 1, value,
2305 zone, &local_tm);
2306
2307 if (HAVE_TM_GMTOFF || gmtime_r (&value.tv_sec, &gmt_tm))
2308 {
2309 long int offset = (HAVE_TM_GMTOFF
2310 ? tm_gmtoff (&local_tm)
2311 : tm_diff (&local_tm, &gmt_tm));
2312 zone_offset = make_number (offset);
2313 if (SCHARS (zone_name) == 0)
2314 {
2315 /* No local time zone name is available; use "+-NNNN" instead. */
2316 long int m = offset / 60;
2317 long int am = offset < 0 ? - m : m;
2318 long int hour = am / 60;
2319 int min = am % 60;
2320 char buf[sizeof "+00" + INT_STRLEN_BOUND (long int)];
2321 zone_name = make_formatted_string (buf, "%c%02ld%02d",
2322 (offset < 0 ? '-' : '+'),
2323 hour, min);
2324 }
2325 }
2326
2327 return list2 (zone_offset, zone_name);
2328 }
2329
2330 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
2331 doc: /* Set the Emacs local time zone using TZ, a string specifying a time zone rule.
2332 If TZ is nil or `wall', use system wall clock time. If TZ is t, use
2333 Universal Time. If TZ is an integer, treat it as in `encode-time'.
2334
2335 Instead of calling this function, you typically want something else.
2336 To temporarily use a different time zone rule for just one invocation
2337 of `decode-time', `encode-time', or `format-time-string', pass the
2338 function a ZONE argument. To change local time consistently
2339 throughout Emacs, call (setenv "TZ" TZ): this changes both the
2340 environment of the Emacs process and the variable
2341 `process-environment', whereas `set-time-zone-rule' affects only the
2342 former. */)
2343 (Lisp_Object tz)
2344 {
2345 tzlookup (NILP (tz) ? Qwall : tz, true);
2346 return Qnil;
2347 }
2348
2349 /* A buffer holding a string of the form "TZ=value", intended
2350 to be part of the environment. If TZ is supposed to be unset,
2351 the buffer string is "tZ=". */
2352 static char *tzvalbuf;
2353
2354 /* Get the local time zone rule. */
2355 char *
2356 emacs_getenv_TZ (void)
2357 {
2358 return tzvalbuf[0] == 'T' ? tzvalbuf + tzeqlen : 0;
2359 }
2360
2361 /* Set the local time zone rule to TZSTRING, which can be null to
2362 denote wall clock time. Do not record the setting in LOCAL_TZ.
2363
2364 This function is not thread-safe, in theory because putenv is not,
2365 but mostly because of the static storage it updates. Other threads
2366 that invoke localtime etc. may be adversely affected while this
2367 function is executing. */
2368
2369 int
2370 emacs_setenv_TZ (const char *tzstring)
2371 {
2372 static ptrdiff_t tzvalbufsize;
2373 ptrdiff_t tzstringlen = tzstring ? strlen (tzstring) : 0;
2374 char *tzval = tzvalbuf;
2375 bool new_tzvalbuf = tzvalbufsize <= tzeqlen + tzstringlen;
2376
2377 if (new_tzvalbuf)
2378 {
2379 /* Do not attempt to free the old tzvalbuf, since another thread
2380 may be using it. In practice, the first allocation is large
2381 enough and memory does not leak. */
2382 tzval = xpalloc (NULL, &tzvalbufsize,
2383 tzeqlen + tzstringlen - tzvalbufsize + 1, -1, 1);
2384 tzvalbuf = tzval;
2385 tzval[1] = 'Z';
2386 tzval[2] = '=';
2387 }
2388
2389 if (tzstring)
2390 {
2391 /* Modify TZVAL in place. Although this is dicey in a
2392 multithreaded environment, we know of no portable alternative.
2393 Calling putenv or setenv could crash some other thread. */
2394 tzval[0] = 'T';
2395 strcpy (tzval + tzeqlen, tzstring);
2396 }
2397 else
2398 {
2399 /* Turn 'TZ=whatever' into an empty environment variable 'tZ='.
2400 Although this is also dicey, calling unsetenv here can crash Emacs.
2401 See Bug#8705. */
2402 tzval[0] = 't';
2403 tzval[tzeqlen] = 0;
2404 }
2405
2406 if (new_tzvalbuf
2407 #ifdef WINDOWSNT
2408 /* MS-Windows implementation of 'putenv' copies the argument
2409 string into a block it allocates, so modifying tzval string
2410 does not change the environment. OTOH, the other threads run
2411 by Emacs on MS-Windows never call 'xputenv' or 'putenv' or
2412 'unsetenv', so the original cause for the dicey in-place
2413 modification technique doesn't exist there in the first
2414 place. */
2415 || 1
2416 #endif
2417 )
2418 {
2419 /* Although this is not thread-safe, in practice this runs only
2420 on startup when there is only one thread. */
2421 xputenv (tzval);
2422 }
2423
2424 return 0;
2425 }
2426 \f
2427 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
2428 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
2429 type of object is Lisp_String). INHERIT is passed to
2430 INSERT_FROM_STRING_FUNC as the last argument. */
2431
2432 static void
2433 general_insert_function (void (*insert_func)
2434 (const char *, ptrdiff_t),
2435 void (*insert_from_string_func)
2436 (Lisp_Object, ptrdiff_t, ptrdiff_t,
2437 ptrdiff_t, ptrdiff_t, bool),
2438 bool inherit, ptrdiff_t nargs, Lisp_Object *args)
2439 {
2440 ptrdiff_t argnum;
2441 Lisp_Object val;
2442
2443 for (argnum = 0; argnum < nargs; argnum++)
2444 {
2445 val = args[argnum];
2446 if (CHARACTERP (val))
2447 {
2448 int c = XFASTINT (val);
2449 unsigned char str[MAX_MULTIBYTE_LENGTH];
2450 int len;
2451
2452 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2453 len = CHAR_STRING (c, str);
2454 else
2455 {
2456 str[0] = CHAR_TO_BYTE8 (c);
2457 len = 1;
2458 }
2459 (*insert_func) ((char *) str, len);
2460 }
2461 else if (STRINGP (val))
2462 {
2463 (*insert_from_string_func) (val, 0, 0,
2464 SCHARS (val),
2465 SBYTES (val),
2466 inherit);
2467 }
2468 else
2469 wrong_type_argument (Qchar_or_string_p, val);
2470 }
2471 }
2472
2473 void
2474 insert1 (Lisp_Object arg)
2475 {
2476 Finsert (1, &arg);
2477 }
2478
2479
2480 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2481 doc: /* Insert the arguments, either strings or characters, at point.
2482 Point and before-insertion markers move forward to end up
2483 after the inserted text.
2484 Any other markers at the point of insertion remain before the text.
2485
2486 If the current buffer is multibyte, unibyte strings are converted
2487 to multibyte for insertion (see `string-make-multibyte').
2488 If the current buffer is unibyte, multibyte strings are converted
2489 to unibyte for insertion (see `string-make-unibyte').
2490
2491 When operating on binary data, it may be necessary to preserve the
2492 original bytes of a unibyte string when inserting it into a multibyte
2493 buffer; to accomplish this, apply `string-as-multibyte' to the string
2494 and insert the result.
2495
2496 usage: (insert &rest ARGS) */)
2497 (ptrdiff_t nargs, Lisp_Object *args)
2498 {
2499 general_insert_function (insert, insert_from_string, 0, nargs, args);
2500 return Qnil;
2501 }
2502
2503 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2504 0, MANY, 0,
2505 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2506 Point and before-insertion markers move forward to end up
2507 after the inserted text.
2508 Any other markers at the point of insertion remain before the text.
2509
2510 If the current buffer is multibyte, unibyte strings are converted
2511 to multibyte for insertion (see `unibyte-char-to-multibyte').
2512 If the current buffer is unibyte, multibyte strings are converted
2513 to unibyte for insertion.
2514
2515 usage: (insert-and-inherit &rest ARGS) */)
2516 (ptrdiff_t nargs, Lisp_Object *args)
2517 {
2518 general_insert_function (insert_and_inherit, insert_from_string, 1,
2519 nargs, args);
2520 return Qnil;
2521 }
2522
2523 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2524 doc: /* Insert strings or characters at point, relocating markers after the text.
2525 Point and markers move forward to end up after the inserted text.
2526
2527 If the current buffer is multibyte, unibyte strings are converted
2528 to multibyte for insertion (see `unibyte-char-to-multibyte').
2529 If the current buffer is unibyte, multibyte strings are converted
2530 to unibyte for insertion.
2531
2532 If an overlay begins at the insertion point, the inserted text falls
2533 outside the overlay; if a nonempty overlay ends at the insertion
2534 point, the inserted text falls inside that overlay.
2535
2536 usage: (insert-before-markers &rest ARGS) */)
2537 (ptrdiff_t nargs, Lisp_Object *args)
2538 {
2539 general_insert_function (insert_before_markers,
2540 insert_from_string_before_markers, 0,
2541 nargs, args);
2542 return Qnil;
2543 }
2544
2545 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2546 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2547 doc: /* Insert text at point, relocating markers and inheriting properties.
2548 Point and markers move forward to end up after the inserted text.
2549
2550 If the current buffer is multibyte, unibyte strings are converted
2551 to multibyte for insertion (see `unibyte-char-to-multibyte').
2552 If the current buffer is unibyte, multibyte strings are converted
2553 to unibyte for insertion.
2554
2555 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2556 (ptrdiff_t nargs, Lisp_Object *args)
2557 {
2558 general_insert_function (insert_before_markers_and_inherit,
2559 insert_from_string_before_markers, 1,
2560 nargs, args);
2561 return Qnil;
2562 }
2563 \f
2564 DEFUN ("insert-char", Finsert_char, Sinsert_char, 1, 3,
2565 "(list (read-char-by-name \"Insert character (Unicode name or hex): \")\
2566 (prefix-numeric-value current-prefix-arg)\
2567 t))",
2568 doc: /* Insert COUNT copies of CHARACTER.
2569 Interactively, prompt for CHARACTER. You can specify CHARACTER in one
2570 of these ways:
2571
2572 - As its Unicode character name, e.g. \"LATIN SMALL LETTER A\".
2573 Completion is available; if you type a substring of the name
2574 preceded by an asterisk `*', Emacs shows all names which include
2575 that substring, not necessarily at the beginning of the name.
2576
2577 - As a hexadecimal code point, e.g. 263A. Note that code points in
2578 Emacs are equivalent to Unicode up to 10FFFF (which is the limit of
2579 the Unicode code space).
2580
2581 - As a code point with a radix specified with #, e.g. #o21430
2582 (octal), #x2318 (hex), or #10r8984 (decimal).
2583
2584 If called interactively, COUNT is given by the prefix argument. If
2585 omitted or nil, it defaults to 1.
2586
2587 Inserting the character(s) relocates point and before-insertion
2588 markers in the same ways as the function `insert'.
2589
2590 The optional third argument INHERIT, if non-nil, says to inherit text
2591 properties from adjoining text, if those properties are sticky. If
2592 called interactively, INHERIT is t. */)
2593 (Lisp_Object character, Lisp_Object count, Lisp_Object inherit)
2594 {
2595 int i, stringlen;
2596 register ptrdiff_t n;
2597 int c, len;
2598 unsigned char str[MAX_MULTIBYTE_LENGTH];
2599 char string[4000];
2600
2601 CHECK_CHARACTER (character);
2602 if (NILP (count))
2603 XSETFASTINT (count, 1);
2604 CHECK_NUMBER (count);
2605 c = XFASTINT (character);
2606
2607 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2608 len = CHAR_STRING (c, str);
2609 else
2610 str[0] = c, len = 1;
2611 if (XINT (count) <= 0)
2612 return Qnil;
2613 if (BUF_BYTES_MAX / len < XINT (count))
2614 buffer_overflow ();
2615 n = XINT (count) * len;
2616 stringlen = min (n, sizeof string - sizeof string % len);
2617 for (i = 0; i < stringlen; i++)
2618 string[i] = str[i % len];
2619 while (n > stringlen)
2620 {
2621 QUIT;
2622 if (!NILP (inherit))
2623 insert_and_inherit (string, stringlen);
2624 else
2625 insert (string, stringlen);
2626 n -= stringlen;
2627 }
2628 if (!NILP (inherit))
2629 insert_and_inherit (string, n);
2630 else
2631 insert (string, n);
2632 return Qnil;
2633 }
2634
2635 DEFUN ("insert-byte", Finsert_byte, Sinsert_byte, 2, 3, 0,
2636 doc: /* Insert COUNT (second arg) copies of BYTE (first arg).
2637 Both arguments are required.
2638 BYTE is a number of the range 0..255.
2639
2640 If BYTE is 128..255 and the current buffer is multibyte, the
2641 corresponding eight-bit character is inserted.
2642
2643 Point, and before-insertion markers, are relocated as in the function `insert'.
2644 The optional third arg INHERIT, if non-nil, says to inherit text properties
2645 from adjoining text, if those properties are sticky. */)
2646 (Lisp_Object byte, Lisp_Object count, Lisp_Object inherit)
2647 {
2648 CHECK_NUMBER (byte);
2649 if (XINT (byte) < 0 || XINT (byte) > 255)
2650 args_out_of_range_3 (byte, make_number (0), make_number (255));
2651 if (XINT (byte) >= 128
2652 && ! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2653 XSETFASTINT (byte, BYTE8_TO_CHAR (XINT (byte)));
2654 return Finsert_char (byte, count, inherit);
2655 }
2656
2657 \f
2658 /* Making strings from buffer contents. */
2659
2660 /* Return a Lisp_String containing the text of the current buffer from
2661 START to END. If text properties are in use and the current buffer
2662 has properties in the range specified, the resulting string will also
2663 have them, if PROPS is true.
2664
2665 We don't want to use plain old make_string here, because it calls
2666 make_uninit_string, which can cause the buffer arena to be
2667 compacted. make_string has no way of knowing that the data has
2668 been moved, and thus copies the wrong data into the string. This
2669 doesn't effect most of the other users of make_string, so it should
2670 be left as is. But we should use this function when conjuring
2671 buffer substrings. */
2672
2673 Lisp_Object
2674 make_buffer_string (ptrdiff_t start, ptrdiff_t end, bool props)
2675 {
2676 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
2677 ptrdiff_t end_byte = CHAR_TO_BYTE (end);
2678
2679 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2680 }
2681
2682 /* Return a Lisp_String containing the text of the current buffer from
2683 START / START_BYTE to END / END_BYTE.
2684
2685 If text properties are in use and the current buffer
2686 has properties in the range specified, the resulting string will also
2687 have them, if PROPS is true.
2688
2689 We don't want to use plain old make_string here, because it calls
2690 make_uninit_string, which can cause the buffer arena to be
2691 compacted. make_string has no way of knowing that the data has
2692 been moved, and thus copies the wrong data into the string. This
2693 doesn't effect most of the other users of make_string, so it should
2694 be left as is. But we should use this function when conjuring
2695 buffer substrings. */
2696
2697 Lisp_Object
2698 make_buffer_string_both (ptrdiff_t start, ptrdiff_t start_byte,
2699 ptrdiff_t end, ptrdiff_t end_byte, bool props)
2700 {
2701 Lisp_Object result, tem, tem1;
2702 ptrdiff_t beg0, end0, beg1, end1, size;
2703
2704 if (start_byte < GPT_BYTE && GPT_BYTE < end_byte)
2705 {
2706 /* Two regions, before and after the gap. */
2707 beg0 = start_byte;
2708 end0 = GPT_BYTE;
2709 beg1 = GPT_BYTE + GAP_SIZE - BEG_BYTE;
2710 end1 = end_byte + GAP_SIZE - BEG_BYTE;
2711 }
2712 else
2713 {
2714 /* The only region. */
2715 beg0 = start_byte;
2716 end0 = end_byte;
2717 beg1 = -1;
2718 end1 = -1;
2719 }
2720
2721 if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2722 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2723 else
2724 result = make_uninit_string (end - start);
2725
2726 size = end0 - beg0;
2727 memcpy (SDATA (result), BYTE_POS_ADDR (beg0), size);
2728 if (beg1 != -1)
2729 memcpy (SDATA (result) + size, BEG_ADDR + beg1, end1 - beg1);
2730
2731 /* If desired, update and copy the text properties. */
2732 if (props)
2733 {
2734 update_buffer_properties (start, end);
2735
2736 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2737 tem1 = Ftext_properties_at (make_number (start), Qnil);
2738
2739 if (XINT (tem) != end || !NILP (tem1))
2740 copy_intervals_to_string (result, current_buffer, start,
2741 end - start);
2742 }
2743
2744 return result;
2745 }
2746
2747 /* Call Vbuffer_access_fontify_functions for the range START ... END
2748 in the current buffer, if necessary. */
2749
2750 static void
2751 update_buffer_properties (ptrdiff_t start, ptrdiff_t end)
2752 {
2753 /* If this buffer has some access functions,
2754 call them, specifying the range of the buffer being accessed. */
2755 if (!NILP (Vbuffer_access_fontify_functions))
2756 {
2757 /* But don't call them if we can tell that the work
2758 has already been done. */
2759 if (!NILP (Vbuffer_access_fontified_property))
2760 {
2761 Lisp_Object tem
2762 = Ftext_property_any (make_number (start), make_number (end),
2763 Vbuffer_access_fontified_property,
2764 Qnil, Qnil);
2765 if (NILP (tem))
2766 return;
2767 }
2768
2769 CALLN (Frun_hook_with_args, Qbuffer_access_fontify_functions,
2770 make_number (start), make_number (end));
2771 }
2772 }
2773
2774 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2775 doc: /* Return the contents of part of the current buffer as a string.
2776 The two arguments START and END are character positions;
2777 they can be in either order.
2778 The string returned is multibyte if the buffer is multibyte.
2779
2780 This function copies the text properties of that part of the buffer
2781 into the result string; if you don't want the text properties,
2782 use `buffer-substring-no-properties' instead. */)
2783 (Lisp_Object start, Lisp_Object end)
2784 {
2785 register ptrdiff_t b, e;
2786
2787 validate_region (&start, &end);
2788 b = XINT (start);
2789 e = XINT (end);
2790
2791 return make_buffer_string (b, e, 1);
2792 }
2793
2794 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2795 Sbuffer_substring_no_properties, 2, 2, 0,
2796 doc: /* Return the characters of part of the buffer, without the text properties.
2797 The two arguments START and END are character positions;
2798 they can be in either order. */)
2799 (Lisp_Object start, Lisp_Object end)
2800 {
2801 register ptrdiff_t b, e;
2802
2803 validate_region (&start, &end);
2804 b = XINT (start);
2805 e = XINT (end);
2806
2807 return make_buffer_string (b, e, 0);
2808 }
2809
2810 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2811 doc: /* Return the contents of the current buffer as a string.
2812 If narrowing is in effect, this function returns only the visible part
2813 of the buffer. */)
2814 (void)
2815 {
2816 return make_buffer_string_both (BEGV, BEGV_BYTE, ZV, ZV_BYTE, 1);
2817 }
2818
2819 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2820 1, 3, 0,
2821 doc: /* Insert before point a substring of the contents of BUFFER.
2822 BUFFER may be a buffer or a buffer name.
2823 Arguments START and END are character positions specifying the substring.
2824 They default to the values of (point-min) and (point-max) in BUFFER.
2825
2826 Point and before-insertion markers move forward to end up after the
2827 inserted text.
2828 Any other markers at the point of insertion remain before the text.
2829
2830 If the current buffer is multibyte and BUFFER is unibyte, or vice
2831 versa, strings are converted from unibyte to multibyte or vice versa
2832 using `string-make-multibyte' or `string-make-unibyte', which see. */)
2833 (Lisp_Object buffer, Lisp_Object start, Lisp_Object end)
2834 {
2835 register EMACS_INT b, e, temp;
2836 register struct buffer *bp, *obuf;
2837 Lisp_Object buf;
2838
2839 buf = Fget_buffer (buffer);
2840 if (NILP (buf))
2841 nsberror (buffer);
2842 bp = XBUFFER (buf);
2843 if (!BUFFER_LIVE_P (bp))
2844 error ("Selecting deleted buffer");
2845
2846 if (NILP (start))
2847 b = BUF_BEGV (bp);
2848 else
2849 {
2850 CHECK_NUMBER_COERCE_MARKER (start);
2851 b = XINT (start);
2852 }
2853 if (NILP (end))
2854 e = BUF_ZV (bp);
2855 else
2856 {
2857 CHECK_NUMBER_COERCE_MARKER (end);
2858 e = XINT (end);
2859 }
2860
2861 if (b > e)
2862 temp = b, b = e, e = temp;
2863
2864 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2865 args_out_of_range (start, end);
2866
2867 obuf = current_buffer;
2868 set_buffer_internal_1 (bp);
2869 update_buffer_properties (b, e);
2870 set_buffer_internal_1 (obuf);
2871
2872 insert_from_buffer (bp, b, e - b, 0);
2873 return Qnil;
2874 }
2875
2876 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2877 6, 6, 0,
2878 doc: /* Compare two substrings of two buffers; return result as number.
2879 Return -N if first string is less after N-1 chars, +N if first string is
2880 greater after N-1 chars, or 0 if strings match. Each substring is
2881 represented as three arguments: BUFFER, START and END. That makes six
2882 args in all, three for each substring.
2883
2884 The value of `case-fold-search' in the current buffer
2885 determines whether case is significant or ignored. */)
2886 (Lisp_Object buffer1, Lisp_Object start1, Lisp_Object end1, Lisp_Object buffer2, Lisp_Object start2, Lisp_Object end2)
2887 {
2888 register EMACS_INT begp1, endp1, begp2, endp2, temp;
2889 register struct buffer *bp1, *bp2;
2890 register Lisp_Object trt
2891 = (!NILP (BVAR (current_buffer, case_fold_search))
2892 ? BVAR (current_buffer, case_canon_table) : Qnil);
2893 ptrdiff_t chars = 0;
2894 ptrdiff_t i1, i2, i1_byte, i2_byte;
2895
2896 /* Find the first buffer and its substring. */
2897
2898 if (NILP (buffer1))
2899 bp1 = current_buffer;
2900 else
2901 {
2902 Lisp_Object buf1;
2903 buf1 = Fget_buffer (buffer1);
2904 if (NILP (buf1))
2905 nsberror (buffer1);
2906 bp1 = XBUFFER (buf1);
2907 if (!BUFFER_LIVE_P (bp1))
2908 error ("Selecting deleted buffer");
2909 }
2910
2911 if (NILP (start1))
2912 begp1 = BUF_BEGV (bp1);
2913 else
2914 {
2915 CHECK_NUMBER_COERCE_MARKER (start1);
2916 begp1 = XINT (start1);
2917 }
2918 if (NILP (end1))
2919 endp1 = BUF_ZV (bp1);
2920 else
2921 {
2922 CHECK_NUMBER_COERCE_MARKER (end1);
2923 endp1 = XINT (end1);
2924 }
2925
2926 if (begp1 > endp1)
2927 temp = begp1, begp1 = endp1, endp1 = temp;
2928
2929 if (!(BUF_BEGV (bp1) <= begp1
2930 && begp1 <= endp1
2931 && endp1 <= BUF_ZV (bp1)))
2932 args_out_of_range (start1, end1);
2933
2934 /* Likewise for second substring. */
2935
2936 if (NILP (buffer2))
2937 bp2 = current_buffer;
2938 else
2939 {
2940 Lisp_Object buf2;
2941 buf2 = Fget_buffer (buffer2);
2942 if (NILP (buf2))
2943 nsberror (buffer2);
2944 bp2 = XBUFFER (buf2);
2945 if (!BUFFER_LIVE_P (bp2))
2946 error ("Selecting deleted buffer");
2947 }
2948
2949 if (NILP (start2))
2950 begp2 = BUF_BEGV (bp2);
2951 else
2952 {
2953 CHECK_NUMBER_COERCE_MARKER (start2);
2954 begp2 = XINT (start2);
2955 }
2956 if (NILP (end2))
2957 endp2 = BUF_ZV (bp2);
2958 else
2959 {
2960 CHECK_NUMBER_COERCE_MARKER (end2);
2961 endp2 = XINT (end2);
2962 }
2963
2964 if (begp2 > endp2)
2965 temp = begp2, begp2 = endp2, endp2 = temp;
2966
2967 if (!(BUF_BEGV (bp2) <= begp2
2968 && begp2 <= endp2
2969 && endp2 <= BUF_ZV (bp2)))
2970 args_out_of_range (start2, end2);
2971
2972 i1 = begp1;
2973 i2 = begp2;
2974 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2975 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2976
2977 while (i1 < endp1 && i2 < endp2)
2978 {
2979 /* When we find a mismatch, we must compare the
2980 characters, not just the bytes. */
2981 int c1, c2;
2982
2983 QUIT;
2984
2985 if (! NILP (BVAR (bp1, enable_multibyte_characters)))
2986 {
2987 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2988 BUF_INC_POS (bp1, i1_byte);
2989 i1++;
2990 }
2991 else
2992 {
2993 c1 = BUF_FETCH_BYTE (bp1, i1);
2994 MAKE_CHAR_MULTIBYTE (c1);
2995 i1++;
2996 }
2997
2998 if (! NILP (BVAR (bp2, enable_multibyte_characters)))
2999 {
3000 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
3001 BUF_INC_POS (bp2, i2_byte);
3002 i2++;
3003 }
3004 else
3005 {
3006 c2 = BUF_FETCH_BYTE (bp2, i2);
3007 MAKE_CHAR_MULTIBYTE (c2);
3008 i2++;
3009 }
3010
3011 if (!NILP (trt))
3012 {
3013 c1 = char_table_translate (trt, c1);
3014 c2 = char_table_translate (trt, c2);
3015 }
3016 if (c1 < c2)
3017 return make_number (- 1 - chars);
3018 if (c1 > c2)
3019 return make_number (chars + 1);
3020
3021 chars++;
3022 }
3023
3024 /* The strings match as far as they go.
3025 If one is shorter, that one is less. */
3026 if (chars < endp1 - begp1)
3027 return make_number (chars + 1);
3028 else if (chars < endp2 - begp2)
3029 return make_number (- chars - 1);
3030
3031 /* Same length too => they are equal. */
3032 return make_number (0);
3033 }
3034 \f
3035 static void
3036 subst_char_in_region_unwind (Lisp_Object arg)
3037 {
3038 bset_undo_list (current_buffer, arg);
3039 }
3040
3041 static void
3042 subst_char_in_region_unwind_1 (Lisp_Object arg)
3043 {
3044 bset_filename (current_buffer, arg);
3045 }
3046
3047 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
3048 Ssubst_char_in_region, 4, 5, 0,
3049 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
3050 If optional arg NOUNDO is non-nil, don't record this change for undo
3051 and don't mark the buffer as really changed.
3052 Both characters must have the same length of multi-byte form. */)
3053 (Lisp_Object start, Lisp_Object end, Lisp_Object fromchar, Lisp_Object tochar, Lisp_Object noundo)
3054 {
3055 register ptrdiff_t pos, pos_byte, stop, i, len, end_byte;
3056 /* Keep track of the first change in the buffer:
3057 if 0 we haven't found it yet.
3058 if < 0 we've found it and we've run the before-change-function.
3059 if > 0 we've actually performed it and the value is its position. */
3060 ptrdiff_t changed = 0;
3061 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
3062 unsigned char *p;
3063 ptrdiff_t count = SPECPDL_INDEX ();
3064 #define COMBINING_NO 0
3065 #define COMBINING_BEFORE 1
3066 #define COMBINING_AFTER 2
3067 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
3068 int maybe_byte_combining = COMBINING_NO;
3069 ptrdiff_t last_changed = 0;
3070 bool multibyte_p
3071 = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3072 int fromc, toc;
3073
3074 restart:
3075
3076 validate_region (&start, &end);
3077 CHECK_CHARACTER (fromchar);
3078 CHECK_CHARACTER (tochar);
3079 fromc = XFASTINT (fromchar);
3080 toc = XFASTINT (tochar);
3081
3082 if (multibyte_p)
3083 {
3084 len = CHAR_STRING (fromc, fromstr);
3085 if (CHAR_STRING (toc, tostr) != len)
3086 error ("Characters in `subst-char-in-region' have different byte-lengths");
3087 if (!ASCII_CHAR_P (*tostr))
3088 {
3089 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
3090 complete multibyte character, it may be combined with the
3091 after bytes. If it is in the range 0xA0..0xFF, it may be
3092 combined with the before and after bytes. */
3093 if (!CHAR_HEAD_P (*tostr))
3094 maybe_byte_combining = COMBINING_BOTH;
3095 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
3096 maybe_byte_combining = COMBINING_AFTER;
3097 }
3098 }
3099 else
3100 {
3101 len = 1;
3102 fromstr[0] = fromc;
3103 tostr[0] = toc;
3104 }
3105
3106 pos = XINT (start);
3107 pos_byte = CHAR_TO_BYTE (pos);
3108 stop = CHAR_TO_BYTE (XINT (end));
3109 end_byte = stop;
3110
3111 /* If we don't want undo, turn off putting stuff on the list.
3112 That's faster than getting rid of things,
3113 and it prevents even the entry for a first change.
3114 Also inhibit locking the file. */
3115 if (!changed && !NILP (noundo))
3116 {
3117 record_unwind_protect (subst_char_in_region_unwind,
3118 BVAR (current_buffer, undo_list));
3119 bset_undo_list (current_buffer, Qt);
3120 /* Don't do file-locking. */
3121 record_unwind_protect (subst_char_in_region_unwind_1,
3122 BVAR (current_buffer, filename));
3123 bset_filename (current_buffer, Qnil);
3124 }
3125
3126 if (pos_byte < GPT_BYTE)
3127 stop = min (stop, GPT_BYTE);
3128 while (1)
3129 {
3130 ptrdiff_t pos_byte_next = pos_byte;
3131
3132 if (pos_byte >= stop)
3133 {
3134 if (pos_byte >= end_byte) break;
3135 stop = end_byte;
3136 }
3137 p = BYTE_POS_ADDR (pos_byte);
3138 if (multibyte_p)
3139 INC_POS (pos_byte_next);
3140 else
3141 ++pos_byte_next;
3142 if (pos_byte_next - pos_byte == len
3143 && p[0] == fromstr[0]
3144 && (len == 1
3145 || (p[1] == fromstr[1]
3146 && (len == 2 || (p[2] == fromstr[2]
3147 && (len == 3 || p[3] == fromstr[3]))))))
3148 {
3149 if (changed < 0)
3150 /* We've already seen this and run the before-change-function;
3151 this time we only need to record the actual position. */
3152 changed = pos;
3153 else if (!changed)
3154 {
3155 changed = -1;
3156 modify_text (pos, XINT (end));
3157
3158 if (! NILP (noundo))
3159 {
3160 if (MODIFF - 1 == SAVE_MODIFF)
3161 SAVE_MODIFF++;
3162 if (MODIFF - 1 == BUF_AUTOSAVE_MODIFF (current_buffer))
3163 BUF_AUTOSAVE_MODIFF (current_buffer)++;
3164 }
3165
3166 /* The before-change-function may have moved the gap
3167 or even modified the buffer so we should start over. */
3168 goto restart;
3169 }
3170
3171 /* Take care of the case where the new character
3172 combines with neighboring bytes. */
3173 if (maybe_byte_combining
3174 && (maybe_byte_combining == COMBINING_AFTER
3175 ? (pos_byte_next < Z_BYTE
3176 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
3177 : ((pos_byte_next < Z_BYTE
3178 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
3179 || (pos_byte > BEG_BYTE
3180 && ! ASCII_CHAR_P (FETCH_BYTE (pos_byte - 1))))))
3181 {
3182 Lisp_Object tem, string;
3183
3184 tem = BVAR (current_buffer, undo_list);
3185
3186 /* Make a multibyte string containing this single character. */
3187 string = make_multibyte_string ((char *) tostr, 1, len);
3188 /* replace_range is less efficient, because it moves the gap,
3189 but it handles combining correctly. */
3190 replace_range (pos, pos + 1, string,
3191 0, 0, 1);
3192 pos_byte_next = CHAR_TO_BYTE (pos);
3193 if (pos_byte_next > pos_byte)
3194 /* Before combining happened. We should not increment
3195 POS. So, to cancel the later increment of POS,
3196 decrease it now. */
3197 pos--;
3198 else
3199 INC_POS (pos_byte_next);
3200
3201 if (! NILP (noundo))
3202 bset_undo_list (current_buffer, tem);
3203 }
3204 else
3205 {
3206 if (NILP (noundo))
3207 record_change (pos, 1);
3208 for (i = 0; i < len; i++) *p++ = tostr[i];
3209 }
3210 last_changed = pos + 1;
3211 }
3212 pos_byte = pos_byte_next;
3213 pos++;
3214 }
3215
3216 if (changed > 0)
3217 {
3218 signal_after_change (changed,
3219 last_changed - changed, last_changed - changed);
3220 update_compositions (changed, last_changed, CHECK_ALL);
3221 }
3222
3223 unbind_to (count, Qnil);
3224 return Qnil;
3225 }
3226
3227
3228 static Lisp_Object check_translation (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3229 Lisp_Object);
3230
3231 /* Helper function for Ftranslate_region_internal.
3232
3233 Check if a character sequence at POS (POS_BYTE) matches an element
3234 of VAL. VAL is a list (([FROM-CHAR ...] . TO) ...). If a matching
3235 element is found, return it. Otherwise return Qnil. */
3236
3237 static Lisp_Object
3238 check_translation (ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t end,
3239 Lisp_Object val)
3240 {
3241 int initial_buf[16];
3242 int *buf = initial_buf;
3243 ptrdiff_t buf_size = ARRAYELTS (initial_buf);
3244 int *bufalloc = 0;
3245 ptrdiff_t buf_used = 0;
3246 Lisp_Object result = Qnil;
3247
3248 for (; CONSP (val); val = XCDR (val))
3249 {
3250 Lisp_Object elt;
3251 ptrdiff_t len, i;
3252
3253 elt = XCAR (val);
3254 if (! CONSP (elt))
3255 continue;
3256 elt = XCAR (elt);
3257 if (! VECTORP (elt))
3258 continue;
3259 len = ASIZE (elt);
3260 if (len <= end - pos)
3261 {
3262 for (i = 0; i < len; i++)
3263 {
3264 if (buf_used <= i)
3265 {
3266 unsigned char *p = BYTE_POS_ADDR (pos_byte);
3267 int len1;
3268
3269 if (buf_used == buf_size)
3270 {
3271 bufalloc = xpalloc (bufalloc, &buf_size, 1, -1,
3272 sizeof *bufalloc);
3273 if (buf == initial_buf)
3274 memcpy (bufalloc, buf, sizeof initial_buf);
3275 buf = bufalloc;
3276 }
3277 buf[buf_used++] = STRING_CHAR_AND_LENGTH (p, len1);
3278 pos_byte += len1;
3279 }
3280 if (XINT (AREF (elt, i)) != buf[i])
3281 break;
3282 }
3283 if (i == len)
3284 {
3285 result = XCAR (val);
3286 break;
3287 }
3288 }
3289 }
3290
3291 xfree (bufalloc);
3292 return result;
3293 }
3294
3295
3296 DEFUN ("translate-region-internal", Ftranslate_region_internal,
3297 Stranslate_region_internal, 3, 3, 0,
3298 doc: /* Internal use only.
3299 From START to END, translate characters according to TABLE.
3300 TABLE is a string or a char-table; the Nth character in it is the
3301 mapping for the character with code N.
3302 It returns the number of characters changed. */)
3303 (Lisp_Object start, Lisp_Object end, register Lisp_Object table)
3304 {
3305 register unsigned char *tt; /* Trans table. */
3306 register int nc; /* New character. */
3307 int cnt; /* Number of changes made. */
3308 ptrdiff_t size; /* Size of translate table. */
3309 ptrdiff_t pos, pos_byte, end_pos;
3310 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3311 bool string_multibyte IF_LINT (= 0);
3312
3313 validate_region (&start, &end);
3314 if (CHAR_TABLE_P (table))
3315 {
3316 if (! EQ (XCHAR_TABLE (table)->purpose, Qtranslation_table))
3317 error ("Not a translation table");
3318 size = MAX_CHAR;
3319 tt = NULL;
3320 }
3321 else
3322 {
3323 CHECK_STRING (table);
3324
3325 if (! multibyte && (SCHARS (table) < SBYTES (table)))
3326 table = string_make_unibyte (table);
3327 string_multibyte = SCHARS (table) < SBYTES (table);
3328 size = SBYTES (table);
3329 tt = SDATA (table);
3330 }
3331
3332 pos = XINT (start);
3333 pos_byte = CHAR_TO_BYTE (pos);
3334 end_pos = XINT (end);
3335 modify_text (pos, end_pos);
3336
3337 cnt = 0;
3338 for (; pos < end_pos; )
3339 {
3340 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
3341 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
3342 int len, str_len;
3343 int oc;
3344 Lisp_Object val;
3345
3346 if (multibyte)
3347 oc = STRING_CHAR_AND_LENGTH (p, len);
3348 else
3349 oc = *p, len = 1;
3350 if (oc < size)
3351 {
3352 if (tt)
3353 {
3354 /* Reload as signal_after_change in last iteration may GC. */
3355 tt = SDATA (table);
3356 if (string_multibyte)
3357 {
3358 str = tt + string_char_to_byte (table, oc);
3359 nc = STRING_CHAR_AND_LENGTH (str, str_len);
3360 }
3361 else
3362 {
3363 nc = tt[oc];
3364 if (! ASCII_CHAR_P (nc) && multibyte)
3365 {
3366 str_len = BYTE8_STRING (nc, buf);
3367 str = buf;
3368 }
3369 else
3370 {
3371 str_len = 1;
3372 str = tt + oc;
3373 }
3374 }
3375 }
3376 else
3377 {
3378 nc = oc;
3379 val = CHAR_TABLE_REF (table, oc);
3380 if (CHARACTERP (val))
3381 {
3382 nc = XFASTINT (val);
3383 str_len = CHAR_STRING (nc, buf);
3384 str = buf;
3385 }
3386 else if (VECTORP (val) || (CONSP (val)))
3387 {
3388 /* VAL is [TO_CHAR ...] or (([FROM-CHAR ...] . TO) ...)
3389 where TO is TO-CHAR or [TO-CHAR ...]. */
3390 nc = -1;
3391 }
3392 }
3393
3394 if (nc != oc && nc >= 0)
3395 {
3396 /* Simple one char to one char translation. */
3397 if (len != str_len)
3398 {
3399 Lisp_Object string;
3400
3401 /* This is less efficient, because it moves the gap,
3402 but it should handle multibyte characters correctly. */
3403 string = make_multibyte_string ((char *) str, 1, str_len);
3404 replace_range (pos, pos + 1, string, 1, 0, 1);
3405 len = str_len;
3406 }
3407 else
3408 {
3409 record_change (pos, 1);
3410 while (str_len-- > 0)
3411 *p++ = *str++;
3412 signal_after_change (pos, 1, 1);
3413 update_compositions (pos, pos + 1, CHECK_BORDER);
3414 }
3415 ++cnt;
3416 }
3417 else if (nc < 0)
3418 {
3419 Lisp_Object string;
3420
3421 if (CONSP (val))
3422 {
3423 val = check_translation (pos, pos_byte, end_pos, val);
3424 if (NILP (val))
3425 {
3426 pos_byte += len;
3427 pos++;
3428 continue;
3429 }
3430 /* VAL is ([FROM-CHAR ...] . TO). */
3431 len = ASIZE (XCAR (val));
3432 val = XCDR (val);
3433 }
3434 else
3435 len = 1;
3436
3437 if (VECTORP (val))
3438 {
3439 string = Fconcat (1, &val);
3440 }
3441 else
3442 {
3443 string = Fmake_string (make_number (1), val);
3444 }
3445 replace_range (pos, pos + len, string, 1, 0, 1);
3446 pos_byte += SBYTES (string);
3447 pos += SCHARS (string);
3448 cnt += SCHARS (string);
3449 end_pos += SCHARS (string) - len;
3450 continue;
3451 }
3452 }
3453 pos_byte += len;
3454 pos++;
3455 }
3456
3457 return make_number (cnt);
3458 }
3459
3460 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
3461 doc: /* Delete the text between START and END.
3462 If called interactively, delete the region between point and mark.
3463 This command deletes buffer text without modifying the kill ring. */)
3464 (Lisp_Object start, Lisp_Object end)
3465 {
3466 validate_region (&start, &end);
3467 del_range (XINT (start), XINT (end));
3468 return Qnil;
3469 }
3470
3471 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
3472 Sdelete_and_extract_region, 2, 2, 0,
3473 doc: /* Delete the text between START and END and return it. */)
3474 (Lisp_Object start, Lisp_Object end)
3475 {
3476 validate_region (&start, &end);
3477 if (XINT (start) == XINT (end))
3478 return empty_unibyte_string;
3479 return del_range_1 (XINT (start), XINT (end), 1, 1);
3480 }
3481 \f
3482 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
3483 doc: /* Remove restrictions (narrowing) from current buffer.
3484 This allows the buffer's full text to be seen and edited. */)
3485 (void)
3486 {
3487 if (BEG != BEGV || Z != ZV)
3488 current_buffer->clip_changed = 1;
3489 BEGV = BEG;
3490 BEGV_BYTE = BEG_BYTE;
3491 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
3492 /* Changing the buffer bounds invalidates any recorded current column. */
3493 invalidate_current_column ();
3494 return Qnil;
3495 }
3496
3497 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
3498 doc: /* Restrict editing in this buffer to the current region.
3499 The rest of the text becomes temporarily invisible and untouchable
3500 but is not deleted; if you save the buffer in a file, the invisible
3501 text is included in the file. \\[widen] makes all visible again.
3502 See also `save-restriction'.
3503
3504 When calling from a program, pass two arguments; positions (integers
3505 or markers) bounding the text that should remain visible. */)
3506 (register Lisp_Object start, Lisp_Object end)
3507 {
3508 CHECK_NUMBER_COERCE_MARKER (start);
3509 CHECK_NUMBER_COERCE_MARKER (end);
3510
3511 if (XINT (start) > XINT (end))
3512 {
3513 Lisp_Object tem;
3514 tem = start; start = end; end = tem;
3515 }
3516
3517 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
3518 args_out_of_range (start, end);
3519
3520 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
3521 current_buffer->clip_changed = 1;
3522
3523 SET_BUF_BEGV (current_buffer, XFASTINT (start));
3524 SET_BUF_ZV (current_buffer, XFASTINT (end));
3525 if (PT < XFASTINT (start))
3526 SET_PT (XFASTINT (start));
3527 if (PT > XFASTINT (end))
3528 SET_PT (XFASTINT (end));
3529 /* Changing the buffer bounds invalidates any recorded current column. */
3530 invalidate_current_column ();
3531 return Qnil;
3532 }
3533
3534 Lisp_Object
3535 save_restriction_save (void)
3536 {
3537 if (BEGV == BEG && ZV == Z)
3538 /* The common case that the buffer isn't narrowed.
3539 We return just the buffer object, which save_restriction_restore
3540 recognizes as meaning `no restriction'. */
3541 return Fcurrent_buffer ();
3542 else
3543 /* We have to save a restriction, so return a pair of markers, one
3544 for the beginning and one for the end. */
3545 {
3546 Lisp_Object beg, end;
3547
3548 beg = build_marker (current_buffer, BEGV, BEGV_BYTE);
3549 end = build_marker (current_buffer, ZV, ZV_BYTE);
3550
3551 /* END must move forward if text is inserted at its exact location. */
3552 XMARKER (end)->insertion_type = 1;
3553
3554 return Fcons (beg, end);
3555 }
3556 }
3557
3558 void
3559 save_restriction_restore (Lisp_Object data)
3560 {
3561 struct buffer *cur = NULL;
3562 struct buffer *buf = (CONSP (data)
3563 ? XMARKER (XCAR (data))->buffer
3564 : XBUFFER (data));
3565
3566 if (buf && buf != current_buffer && !NILP (BVAR (buf, pt_marker)))
3567 { /* If `buf' uses markers to keep track of PT, BEGV, and ZV (as
3568 is the case if it is or has an indirect buffer), then make
3569 sure it is current before we update BEGV, so
3570 set_buffer_internal takes care of managing those markers. */
3571 cur = current_buffer;
3572 set_buffer_internal (buf);
3573 }
3574
3575 if (CONSP (data))
3576 /* A pair of marks bounding a saved restriction. */
3577 {
3578 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3579 struct Lisp_Marker *end = XMARKER (XCDR (data));
3580 eassert (buf == end->buffer);
3581
3582 if (buf /* Verify marker still points to a buffer. */
3583 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3584 /* The restriction has changed from the saved one, so restore
3585 the saved restriction. */
3586 {
3587 ptrdiff_t pt = BUF_PT (buf);
3588
3589 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3590 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3591
3592 if (pt < beg->charpos || pt > end->charpos)
3593 /* The point is outside the new visible range, move it inside. */
3594 SET_BUF_PT_BOTH (buf,
3595 clip_to_bounds (beg->charpos, pt, end->charpos),
3596 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3597 end->bytepos));
3598
3599 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3600 }
3601 /* These aren't needed anymore, so don't wait for GC. */
3602 free_marker (XCAR (data));
3603 free_marker (XCDR (data));
3604 free_cons (XCONS (data));
3605 }
3606 else
3607 /* A buffer, which means that there was no old restriction. */
3608 {
3609 if (buf /* Verify marker still points to a buffer. */
3610 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3611 /* The buffer has been narrowed, get rid of the narrowing. */
3612 {
3613 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3614 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3615
3616 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3617 }
3618 }
3619
3620 /* Changing the buffer bounds invalidates any recorded current column. */
3621 invalidate_current_column ();
3622
3623 if (cur)
3624 set_buffer_internal (cur);
3625 }
3626
3627 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3628 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3629 The buffer's restrictions make parts of the beginning and end invisible.
3630 (They are set up with `narrow-to-region' and eliminated with `widen'.)
3631 This special form, `save-restriction', saves the current buffer's restrictions
3632 when it is entered, and restores them when it is exited.
3633 So any `narrow-to-region' within BODY lasts only until the end of the form.
3634 The old restrictions settings are restored
3635 even in case of abnormal exit (throw or error).
3636
3637 The value returned is the value of the last form in BODY.
3638
3639 Note: if you are using both `save-excursion' and `save-restriction',
3640 use `save-excursion' outermost:
3641 (save-excursion (save-restriction ...))
3642
3643 usage: (save-restriction &rest BODY) */)
3644 (Lisp_Object body)
3645 {
3646 register Lisp_Object val;
3647 ptrdiff_t count = SPECPDL_INDEX ();
3648
3649 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3650 val = Fprogn (body);
3651 return unbind_to (count, val);
3652 }
3653 \f
3654 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3655 doc: /* Display a message at the bottom of the screen.
3656 The message also goes into the `*Messages*' buffer, if `message-log-max'
3657 is non-nil. (In keyboard macros, that's all it does.)
3658 Return the message.
3659
3660 In batch mode, the message is printed to the standard error stream,
3661 followed by a newline.
3662
3663 The first argument is a format control string, and the rest are data
3664 to be formatted under control of the string. See `format' for details.
3665
3666 Note: Use (message "%s" VALUE) to print the value of expressions and
3667 variables to avoid accidentally interpreting `%' as format specifiers.
3668
3669 If the first argument is nil or the empty string, the function clears
3670 any existing message; this lets the minibuffer contents show. See
3671 also `current-message'.
3672
3673 usage: (message FORMAT-STRING &rest ARGS) */)
3674 (ptrdiff_t nargs, Lisp_Object *args)
3675 {
3676 if (NILP (args[0])
3677 || (STRINGP (args[0])
3678 && SBYTES (args[0]) == 0))
3679 {
3680 message1 (0);
3681 return args[0];
3682 }
3683 else
3684 {
3685 Lisp_Object val = Fformat_message (nargs, args);
3686 message3 (val);
3687 return val;
3688 }
3689 }
3690
3691 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3692 doc: /* Display a message, in a dialog box if possible.
3693 If a dialog box is not available, use the echo area.
3694 The first argument is a format control string, and the rest are data
3695 to be formatted under control of the string. See `format' for details.
3696
3697 If the first argument is nil or the empty string, clear any existing
3698 message; let the minibuffer contents show.
3699
3700 usage: (message-box FORMAT-STRING &rest ARGS) */)
3701 (ptrdiff_t nargs, Lisp_Object *args)
3702 {
3703 if (NILP (args[0]))
3704 {
3705 message1 (0);
3706 return Qnil;
3707 }
3708 else
3709 {
3710 Lisp_Object val = Fformat_message (nargs, args);
3711 Lisp_Object pane, menu;
3712
3713 pane = list1 (Fcons (build_string ("OK"), Qt));
3714 menu = Fcons (val, pane);
3715 Fx_popup_dialog (Qt, menu, Qt);
3716 return val;
3717 }
3718 }
3719
3720 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3721 doc: /* Display a message in a dialog box or in the echo area.
3722 If this command was invoked with the mouse, use a dialog box if
3723 `use-dialog-box' is non-nil.
3724 Otherwise, use the echo area.
3725 The first argument is a format control string, and the rest are data
3726 to be formatted under control of the string. See `format' for details.
3727
3728 If the first argument is nil or the empty string, clear any existing
3729 message; let the minibuffer contents show.
3730
3731 usage: (message-or-box FORMAT-STRING &rest ARGS) */)
3732 (ptrdiff_t nargs, Lisp_Object *args)
3733 {
3734 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3735 && use_dialog_box)
3736 return Fmessage_box (nargs, args);
3737 return Fmessage (nargs, args);
3738 }
3739
3740 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3741 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3742 (void)
3743 {
3744 return current_message ();
3745 }
3746
3747
3748 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3749 doc: /* Return a copy of STRING with text properties added.
3750 First argument is the string to copy.
3751 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3752 properties to add to the result.
3753 usage: (propertize STRING &rest PROPERTIES) */)
3754 (ptrdiff_t nargs, Lisp_Object *args)
3755 {
3756 Lisp_Object properties, string;
3757 ptrdiff_t i;
3758
3759 /* Number of args must be odd. */
3760 if ((nargs & 1) == 0)
3761 error ("Wrong number of arguments");
3762
3763 properties = string = Qnil;
3764
3765 /* First argument must be a string. */
3766 CHECK_STRING (args[0]);
3767 string = Fcopy_sequence (args[0]);
3768
3769 for (i = 1; i < nargs; i += 2)
3770 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3771
3772 Fadd_text_properties (make_number (0),
3773 make_number (SCHARS (string)),
3774 properties, string);
3775 return string;
3776 }
3777
3778 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3779 doc: /* Format a string out of a format-string and arguments.
3780 The first argument is a format control string.
3781 The other arguments are substituted into it to make the result, a string.
3782
3783 The format control string may contain %-sequences meaning to substitute
3784 the next available argument:
3785
3786 %s means print a string argument. Actually, prints any object, with `princ'.
3787 %d means print as number in decimal (%o octal, %x hex).
3788 %X is like %x, but uses upper case.
3789 %e means print a number in exponential notation.
3790 %f means print a number in decimal-point notation.
3791 %g means print a number in exponential notation
3792 or decimal-point notation, whichever uses fewer characters.
3793 %c means print a number as a single character.
3794 %S means print any object as an s-expression (using `prin1').
3795
3796 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3797 Use %% to put a single % into the output.
3798
3799 A %-sequence may contain optional flag, width, and precision
3800 specifiers, as follows:
3801
3802 %<flags><width><precision>character
3803
3804 where flags is [+ #-0]+, width is [0-9]+, and precision is .[0-9]+
3805
3806 The + flag character inserts a + before any positive number, while a
3807 space inserts a space before any positive number; these flags only
3808 affect %d, %e, %f, and %g sequences, and the + flag takes precedence.
3809 The - and 0 flags affect the width specifier, as described below.
3810
3811 The # flag means to use an alternate display form for %o, %x, %X, %e,
3812 %f, and %g sequences: for %o, it ensures that the result begins with
3813 \"0\"; for %x and %X, it prefixes the result with \"0x\" or \"0X\";
3814 for %e, %f, and %g, it causes a decimal point to be included even if
3815 the precision is zero.
3816
3817 The width specifier supplies a lower limit for the length of the
3818 printed representation. The padding, if any, normally goes on the
3819 left, but it goes on the right if the - flag is present. The padding
3820 character is normally a space, but it is 0 if the 0 flag is present.
3821 The 0 flag is ignored if the - flag is present, or the format sequence
3822 is something other than %d, %e, %f, and %g.
3823
3824 For %e, %f, and %g sequences, the number after the "." in the
3825 precision specifier says how many decimal places to show; if zero, the
3826 decimal point itself is omitted. For %s and %S, the precision
3827 specifier truncates the string to the given width.
3828
3829 usage: (format STRING &rest OBJECTS) */)
3830 (ptrdiff_t nargs, Lisp_Object *args)
3831 {
3832 return styled_format (nargs, args, false);
3833 }
3834
3835 DEFUN ("format-message", Fformat_message, Sformat_message, 1, MANY, 0,
3836 doc: /* Format a string out of a format-string and arguments.
3837 The first argument is a format control string.
3838 The other arguments are substituted into it to make the result, a string.
3839
3840 This acts like `format', except it also replaces each left single
3841 quotation mark (\\=‘) and grave accent (\\=`) by a left quote, and each
3842 right single quotation mark (\\=’) and apostrophe (\\=') by a right quote.
3843 The left and right quote replacement characters are specified by
3844 `text-quoting-style'.
3845
3846 usage: (format-message STRING &rest OBJECTS) */)
3847 (ptrdiff_t nargs, Lisp_Object *args)
3848 {
3849 return styled_format (nargs, args, true);
3850 }
3851
3852 /* Implement ‘format-message’ if MESSAGE is true, ‘format’ otherwise. */
3853
3854 static Lisp_Object
3855 styled_format (ptrdiff_t nargs, Lisp_Object *args, bool message)
3856 {
3857 ptrdiff_t n; /* The number of the next arg to substitute. */
3858 char initial_buffer[4000];
3859 char *buf = initial_buffer;
3860 ptrdiff_t bufsize = sizeof initial_buffer;
3861 ptrdiff_t max_bufsize = STRING_BYTES_BOUND + 1;
3862 char *p;
3863 ptrdiff_t buf_save_value_index IF_LINT (= 0);
3864 char *format, *end;
3865 ptrdiff_t nchars;
3866 /* When we make a multibyte string, we must pay attention to the
3867 byte combining problem, i.e., a byte may be combined with a
3868 multibyte character of the previous string. This flag tells if we
3869 must consider such a situation or not. */
3870 bool maybe_combine_byte;
3871 bool arg_intervals = false;
3872 USE_SAFE_ALLOCA;
3873
3874 /* Each element records, for one argument,
3875 the start and end bytepos in the output string,
3876 whether the argument has been converted to string (e.g., due to "%S"),
3877 and whether the argument is a string with intervals. */
3878 struct info
3879 {
3880 ptrdiff_t start, end;
3881 bool_bf converted_to_string : 1;
3882 bool_bf intervals : 1;
3883 } *info;
3884
3885 CHECK_STRING (args[0]);
3886 char *format_start = SSDATA (args[0]);
3887 ptrdiff_t formatlen = SBYTES (args[0]);
3888
3889 /* Allocate the info and discarded tables. */
3890 ptrdiff_t alloca_size;
3891 if (INT_MULTIPLY_WRAPV (nargs, sizeof *info, &alloca_size)
3892 || INT_ADD_WRAPV (sizeof *info, alloca_size, &alloca_size)
3893 || INT_ADD_WRAPV (formatlen, alloca_size, &alloca_size)
3894 || SIZE_MAX < alloca_size)
3895 memory_full (SIZE_MAX);
3896 /* info[0] is unused. Unused elements have -1 for start. */
3897 info = SAFE_ALLOCA (alloca_size);
3898 memset (info, 0, alloca_size);
3899 for (ptrdiff_t i = 0; i < nargs + 1; i++)
3900 info[i].start = -1;
3901 /* discarded[I] is 1 if byte I of the format
3902 string was not copied into the output.
3903 It is 2 if byte I was not the first byte of its character. */
3904 char *discarded = (char *) &info[nargs + 1];
3905
3906 /* Try to determine whether the result should be multibyte.
3907 This is not always right; sometimes the result needs to be multibyte
3908 because of an object that we will pass through prin1.
3909 or because a grave accent or apostrophe is requoted,
3910 and in that case, we won't know it here. */
3911
3912 /* True if the format is multibyte. */
3913 bool multibyte_format = STRING_MULTIBYTE (args[0]);
3914 /* True if the output should be a multibyte string,
3915 which is true if any of the inputs is one. */
3916 bool multibyte = multibyte_format;
3917 for (ptrdiff_t i = 1; !multibyte && i < nargs; i++)
3918 if (STRINGP (args[i]) && STRING_MULTIBYTE (args[i]))
3919 multibyte = true;
3920
3921 int quoting_style = message ? text_quoting_style () : -1;
3922
3923 /* If we start out planning a unibyte result,
3924 then discover it has to be multibyte, we jump back to retry. */
3925 retry:
3926
3927 p = buf;
3928 nchars = 0;
3929 n = 0;
3930
3931 /* Scan the format and store result in BUF. */
3932 format = format_start;
3933 end = format + formatlen;
3934 maybe_combine_byte = false;
3935
3936 while (format != end)
3937 {
3938 /* The values of N and FORMAT when the loop body is entered. */
3939 ptrdiff_t n0 = n;
3940 char *format0 = format;
3941 char const *convsrc = format;
3942 unsigned char format_char = *format++;
3943
3944 /* Bytes needed to represent the output of this conversion. */
3945 ptrdiff_t convbytes = 1;
3946
3947 if (format_char == '%')
3948 {
3949 /* General format specifications look like
3950
3951 '%' [flags] [field-width] [precision] format
3952
3953 where
3954
3955 flags ::= [-+0# ]+
3956 field-width ::= [0-9]+
3957 precision ::= '.' [0-9]*
3958
3959 If a field-width is specified, it specifies to which width
3960 the output should be padded with blanks, if the output
3961 string is shorter than field-width.
3962
3963 If precision is specified, it specifies the number of
3964 digits to print after the '.' for floats, or the max.
3965 number of chars to print from a string. */
3966
3967 bool minus_flag = false;
3968 bool plus_flag = false;
3969 bool space_flag = false;
3970 bool sharp_flag = false;
3971 bool zero_flag = false;
3972
3973 for (; ; format++)
3974 {
3975 switch (*format)
3976 {
3977 case '-': minus_flag = true; continue;
3978 case '+': plus_flag = true; continue;
3979 case ' ': space_flag = true; continue;
3980 case '#': sharp_flag = true; continue;
3981 case '0': zero_flag = true; continue;
3982 }
3983 break;
3984 }
3985
3986 /* Ignore flags when sprintf ignores them. */
3987 space_flag &= ~ plus_flag;
3988 zero_flag &= ~ minus_flag;
3989
3990 char *num_end;
3991 uintmax_t raw_field_width = strtoumax (format, &num_end, 10);
3992 if (max_bufsize <= raw_field_width)
3993 string_overflow ();
3994 ptrdiff_t field_width = raw_field_width;
3995
3996 bool precision_given = *num_end == '.';
3997 uintmax_t precision = (precision_given
3998 ? strtoumax (num_end + 1, &num_end, 10)
3999 : UINTMAX_MAX);
4000 format = num_end;
4001
4002 if (format == end)
4003 error ("Format string ends in middle of format specifier");
4004
4005 char conversion = *format++;
4006 memset (&discarded[format0 - format_start], 1,
4007 format - format0 - (conversion == '%'));
4008 if (conversion == '%')
4009 goto copy_char;
4010
4011 ++n;
4012 if (! (n < nargs))
4013 error ("Not enough arguments for format string");
4014
4015 /* For 'S', prin1 the argument, and then treat like 's'.
4016 For 's', princ any argument that is not a string or
4017 symbol. But don't do this conversion twice, which might
4018 happen after retrying. */
4019 if ((conversion == 'S'
4020 || (conversion == 's'
4021 && ! STRINGP (args[n]) && ! SYMBOLP (args[n]))))
4022 {
4023 if (! info[n].converted_to_string)
4024 {
4025 Lisp_Object noescape = conversion == 'S' ? Qnil : Qt;
4026 args[n] = Fprin1_to_string (args[n], noescape);
4027 info[n].converted_to_string = true;
4028 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
4029 {
4030 multibyte = true;
4031 goto retry;
4032 }
4033 }
4034 conversion = 's';
4035 }
4036 else if (conversion == 'c')
4037 {
4038 if (FLOATP (args[n]))
4039 {
4040 double d = XFLOAT_DATA (args[n]);
4041 args[n] = make_number (FIXNUM_OVERFLOW_P (d) ? -1 : d);
4042 }
4043
4044 if (INTEGERP (args[n]) && ! ASCII_CHAR_P (XINT (args[n])))
4045 {
4046 if (!multibyte)
4047 {
4048 multibyte = true;
4049 goto retry;
4050 }
4051 args[n] = Fchar_to_string (args[n]);
4052 info[n].converted_to_string = true;
4053 }
4054
4055 if (info[n].converted_to_string)
4056 conversion = 's';
4057 zero_flag = false;
4058 }
4059
4060 if (SYMBOLP (args[n]))
4061 {
4062 args[n] = SYMBOL_NAME (args[n]);
4063 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
4064 {
4065 multibyte = true;
4066 goto retry;
4067 }
4068 }
4069
4070 if (conversion == 's')
4071 {
4072 /* handle case (precision[n] >= 0) */
4073
4074 ptrdiff_t prec = -1;
4075 if (precision_given && precision <= TYPE_MAXIMUM (ptrdiff_t))
4076 prec = precision;
4077
4078 /* lisp_string_width ignores a precision of 0, but GNU
4079 libc functions print 0 characters when the precision
4080 is 0. Imitate libc behavior here. Changing
4081 lisp_string_width is the right thing, and will be
4082 done, but meanwhile we work with it. */
4083
4084 ptrdiff_t width, nbytes;
4085 ptrdiff_t nchars_string;
4086 if (prec == 0)
4087 width = nchars_string = nbytes = 0;
4088 else
4089 {
4090 ptrdiff_t nch, nby;
4091 width = lisp_string_width (args[n], prec, &nch, &nby);
4092 if (prec < 0)
4093 {
4094 nchars_string = SCHARS (args[n]);
4095 nbytes = SBYTES (args[n]);
4096 }
4097 else
4098 {
4099 nchars_string = nch;
4100 nbytes = nby;
4101 }
4102 }
4103
4104 convbytes = nbytes;
4105 if (convbytes && multibyte && ! STRING_MULTIBYTE (args[n]))
4106 convbytes = count_size_as_multibyte (SDATA (args[n]), nbytes);
4107
4108 ptrdiff_t padding
4109 = width < field_width ? field_width - width : 0;
4110
4111 if (max_bufsize - padding <= convbytes)
4112 string_overflow ();
4113 convbytes += padding;
4114 if (convbytes <= buf + bufsize - p)
4115 {
4116 if (! minus_flag)
4117 {
4118 memset (p, ' ', padding);
4119 p += padding;
4120 nchars += padding;
4121 }
4122
4123 if (p > buf
4124 && multibyte
4125 && !ASCII_CHAR_P (*((unsigned char *) p - 1))
4126 && STRING_MULTIBYTE (args[n])
4127 && !CHAR_HEAD_P (SREF (args[n], 0)))
4128 maybe_combine_byte = true;
4129
4130 p += copy_text (SDATA (args[n]), (unsigned char *) p,
4131 nbytes,
4132 STRING_MULTIBYTE (args[n]), multibyte);
4133
4134 info[n].start = nchars;
4135 nchars += nchars_string;
4136 info[n].end = nchars;
4137
4138 if (minus_flag)
4139 {
4140 memset (p, ' ', padding);
4141 p += padding;
4142 nchars += padding;
4143 }
4144
4145 /* If this argument has text properties, record where
4146 in the result string it appears. */
4147 if (string_intervals (args[n]))
4148 info[n].intervals = arg_intervals = true;
4149
4150 continue;
4151 }
4152 }
4153 else if (! (conversion == 'c' || conversion == 'd'
4154 || conversion == 'e' || conversion == 'f'
4155 || conversion == 'g' || conversion == 'i'
4156 || conversion == 'o' || conversion == 'x'
4157 || conversion == 'X'))
4158 error ("Invalid format operation %%%c",
4159 STRING_CHAR ((unsigned char *) format - 1));
4160 else if (! NUMBERP (args[n]))
4161 error ("Format specifier doesn't match argument type");
4162 else
4163 {
4164 enum
4165 {
4166 /* Maximum precision for a %f conversion such that the
4167 trailing output digit might be nonzero. Any precision
4168 larger than this will not yield useful information. */
4169 USEFUL_PRECISION_MAX =
4170 ((1 - DBL_MIN_EXP)
4171 * (FLT_RADIX == 2 || FLT_RADIX == 10 ? 1
4172 : FLT_RADIX == 16 ? 4
4173 : -1)),
4174
4175 /* Maximum number of bytes generated by any format, if
4176 precision is no more than USEFUL_PRECISION_MAX.
4177 On all practical hosts, %f is the worst case. */
4178 SPRINTF_BUFSIZE =
4179 sizeof "-." + (DBL_MAX_10_EXP + 1) + USEFUL_PRECISION_MAX,
4180
4181 /* Length of pM (that is, of pMd without the
4182 trailing "d"). */
4183 pMlen = sizeof pMd - 2
4184 };
4185 verify (USEFUL_PRECISION_MAX > 0);
4186
4187 /* Avoid undefined behavior in underlying sprintf. */
4188 if (conversion == 'd' || conversion == 'i')
4189 sharp_flag = false;
4190
4191 /* Create the copy of the conversion specification, with
4192 any width and precision removed, with ".*" inserted,
4193 and with pM inserted for integer formats.
4194 At most three flags F can be specified at once. */
4195 char convspec[sizeof "%FFF.*d" + pMlen];
4196 {
4197 char *f = convspec;
4198 *f++ = '%';
4199 *f = '-'; f += minus_flag;
4200 *f = '+'; f += plus_flag;
4201 *f = ' '; f += space_flag;
4202 *f = '#'; f += sharp_flag;
4203 *f = '0'; f += zero_flag;
4204 *f++ = '.';
4205 *f++ = '*';
4206 if (conversion == 'd' || conversion == 'i'
4207 || conversion == 'o' || conversion == 'x'
4208 || conversion == 'X')
4209 {
4210 memcpy (f, pMd, pMlen);
4211 f += pMlen;
4212 zero_flag &= ~ precision_given;
4213 }
4214 *f++ = conversion;
4215 *f = '\0';
4216 }
4217
4218 int prec = -1;
4219 if (precision_given)
4220 prec = min (precision, USEFUL_PRECISION_MAX);
4221
4222 /* Use sprintf to format this number into sprintf_buf. Omit
4223 padding and excess precision, though, because sprintf limits
4224 output length to INT_MAX.
4225
4226 There are four types of conversion: double, unsigned
4227 char (passed as int), wide signed int, and wide
4228 unsigned int. Treat them separately because the
4229 sprintf ABI is sensitive to which type is passed. Be
4230 careful about integer overflow, NaNs, infinities, and
4231 conversions; for example, the min and max macros are
4232 not suitable here. */
4233 char sprintf_buf[SPRINTF_BUFSIZE];
4234 ptrdiff_t sprintf_bytes;
4235 if (conversion == 'e' || conversion == 'f' || conversion == 'g')
4236 {
4237 double x = (INTEGERP (args[n])
4238 ? XINT (args[n])
4239 : XFLOAT_DATA (args[n]));
4240 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4241 }
4242 else if (conversion == 'c')
4243 {
4244 /* Don't use sprintf here, as it might mishandle prec. */
4245 sprintf_buf[0] = XINT (args[n]);
4246 sprintf_bytes = prec != 0;
4247 }
4248 else if (conversion == 'd')
4249 {
4250 /* For float, maybe we should use "%1.0f"
4251 instead so it also works for values outside
4252 the integer range. */
4253 printmax_t x;
4254 if (INTEGERP (args[n]))
4255 x = XINT (args[n]);
4256 else
4257 {
4258 double d = XFLOAT_DATA (args[n]);
4259 if (d < 0)
4260 {
4261 x = TYPE_MINIMUM (printmax_t);
4262 if (x < d)
4263 x = d;
4264 }
4265 else
4266 {
4267 x = TYPE_MAXIMUM (printmax_t);
4268 if (d < x)
4269 x = d;
4270 }
4271 }
4272 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4273 }
4274 else
4275 {
4276 /* Don't sign-extend for octal or hex printing. */
4277 uprintmax_t x;
4278 if (INTEGERP (args[n]))
4279 x = XUINT (args[n]);
4280 else
4281 {
4282 double d = XFLOAT_DATA (args[n]);
4283 if (d < 0)
4284 x = 0;
4285 else
4286 {
4287 x = TYPE_MAXIMUM (uprintmax_t);
4288 if (d < x)
4289 x = d;
4290 }
4291 }
4292 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4293 }
4294
4295 /* Now the length of the formatted item is known, except it omits
4296 padding and excess precision. Deal with excess precision
4297 first. This happens only when the format specifies
4298 ridiculously large precision. */
4299 uintmax_t excess_precision = precision - prec;
4300 uintmax_t leading_zeros = 0, trailing_zeros = 0;
4301 if (excess_precision)
4302 {
4303 if (conversion == 'e' || conversion == 'f'
4304 || conversion == 'g')
4305 {
4306 if ((conversion == 'g' && ! sharp_flag)
4307 || ! ('0' <= sprintf_buf[sprintf_bytes - 1]
4308 && sprintf_buf[sprintf_bytes - 1] <= '9'))
4309 excess_precision = 0;
4310 else
4311 {
4312 if (conversion == 'g')
4313 {
4314 char *dot = strchr (sprintf_buf, '.');
4315 if (!dot)
4316 excess_precision = 0;
4317 }
4318 }
4319 trailing_zeros = excess_precision;
4320 }
4321 else
4322 leading_zeros = excess_precision;
4323 }
4324
4325 /* Compute the total bytes needed for this item, including
4326 excess precision and padding. */
4327 uintmax_t numwidth = sprintf_bytes + excess_precision;
4328 ptrdiff_t padding
4329 = numwidth < field_width ? field_width - numwidth : 0;
4330 if (max_bufsize - sprintf_bytes <= excess_precision
4331 || max_bufsize - padding <= numwidth)
4332 string_overflow ();
4333 convbytes = numwidth + padding;
4334
4335 if (convbytes <= buf + bufsize - p)
4336 {
4337 /* Copy the formatted item from sprintf_buf into buf,
4338 inserting padding and excess-precision zeros. */
4339
4340 char *src = sprintf_buf;
4341 char src0 = src[0];
4342 int exponent_bytes = 0;
4343 bool signedp = src0 == '-' || src0 == '+' || src0 == ' ';
4344 if (zero_flag
4345 && ((src[signedp] >= '0' && src[signedp] <= '9')
4346 || (src[signedp] >= 'a' && src[signedp] <= 'f')
4347 || (src[signedp] >= 'A' && src[signedp] <= 'F')))
4348 {
4349 leading_zeros += padding;
4350 padding = 0;
4351 }
4352
4353 if (excess_precision
4354 && (conversion == 'e' || conversion == 'g'))
4355 {
4356 char *e = strchr (src, 'e');
4357 if (e)
4358 exponent_bytes = src + sprintf_bytes - e;
4359 }
4360
4361 if (! minus_flag)
4362 {
4363 memset (p, ' ', padding);
4364 p += padding;
4365 nchars += padding;
4366 }
4367
4368 *p = src0;
4369 src += signedp;
4370 p += signedp;
4371 memset (p, '0', leading_zeros);
4372 p += leading_zeros;
4373 int significand_bytes
4374 = sprintf_bytes - signedp - exponent_bytes;
4375 memcpy (p, src, significand_bytes);
4376 p += significand_bytes;
4377 src += significand_bytes;
4378 memset (p, '0', trailing_zeros);
4379 p += trailing_zeros;
4380 memcpy (p, src, exponent_bytes);
4381 p += exponent_bytes;
4382
4383 info[n].start = nchars;
4384 nchars += leading_zeros + sprintf_bytes + trailing_zeros;
4385 info[n].end = nchars;
4386
4387 if (minus_flag)
4388 {
4389 memset (p, ' ', padding);
4390 p += padding;
4391 nchars += padding;
4392 }
4393
4394 continue;
4395 }
4396 }
4397 }
4398 else
4399 {
4400 /* Named constants for the UTF-8 encodings of U+2018 LEFT SINGLE
4401 QUOTATION MARK and U+2019 RIGHT SINGLE QUOTATION MARK. */
4402 enum
4403 {
4404 uLSQM0 = 0xE2, uLSQM1 = 0x80, uLSQM2 = 0x98,
4405 /* uRSQM0 = 0xE2, uRSQM1 = 0x80, */ uRSQM2 = 0x99
4406 };
4407
4408 unsigned char str[MAX_MULTIBYTE_LENGTH];
4409
4410 if ((format_char == '`' || format_char == '\'')
4411 && quoting_style == CURVE_QUOTING_STYLE)
4412 {
4413 if (! multibyte)
4414 {
4415 multibyte = true;
4416 goto retry;
4417 }
4418 convsrc = format_char == '`' ? uLSQM : uRSQM;
4419 convbytes = 3;
4420 }
4421 else if (format_char == '`' && quoting_style == STRAIGHT_QUOTING_STYLE)
4422 convsrc = "'";
4423 else if (format_char == uLSQM0 && CURVE_QUOTING_STYLE < quoting_style
4424 && multibyte_format
4425 && (unsigned char) format[0] == uLSQM1
4426 && ((unsigned char) format[1] == uLSQM2
4427 || (unsigned char) format[1] == uRSQM2))
4428 {
4429 convsrc = (((unsigned char) format[1] == uLSQM2
4430 && quoting_style == GRAVE_QUOTING_STYLE)
4431 ? "`" : "'");
4432 format += 2;
4433 memset (&discarded[format0 + 1 - format_start], 2, 2);
4434 }
4435 else
4436 {
4437 /* Copy a single character from format to buf. */
4438 if (multibyte_format)
4439 {
4440 /* Copy a whole multibyte character. */
4441 if (p > buf
4442 && !ASCII_CHAR_P (*((unsigned char *) p - 1))
4443 && !CHAR_HEAD_P (format_char))
4444 maybe_combine_byte = true;
4445
4446 while (! CHAR_HEAD_P (*format))
4447 format++;
4448
4449 convbytes = format - format0;
4450 memset (&discarded[format0 + 1 - format_start], 2,
4451 convbytes - 1);
4452 }
4453 else if (multibyte && !ASCII_CHAR_P (format_char))
4454 {
4455 int c = BYTE8_TO_CHAR (format_char);
4456 convbytes = CHAR_STRING (c, str);
4457 convsrc = (char *) str;
4458 }
4459 }
4460
4461 copy_char:
4462 if (convbytes <= buf + bufsize - p)
4463 {
4464 memcpy (p, convsrc, convbytes);
4465 p += convbytes;
4466 nchars++;
4467 continue;
4468 }
4469 }
4470
4471 /* There wasn't enough room to store this conversion or single
4472 character. CONVBYTES says how much room is needed. Allocate
4473 enough room (and then some) and do it again. */
4474
4475 ptrdiff_t used = p - buf;
4476 if (max_bufsize - used < convbytes)
4477 string_overflow ();
4478 bufsize = used + convbytes;
4479 bufsize = bufsize < max_bufsize / 2 ? bufsize * 2 : max_bufsize;
4480
4481 if (buf == initial_buffer)
4482 {
4483 buf = xmalloc (bufsize);
4484 sa_must_free = true;
4485 buf_save_value_index = SPECPDL_INDEX ();
4486 record_unwind_protect_ptr (xfree, buf);
4487 memcpy (buf, initial_buffer, used);
4488 }
4489 else
4490 {
4491 buf = xrealloc (buf, bufsize);
4492 set_unwind_protect_ptr (buf_save_value_index, xfree, buf);
4493 }
4494
4495 p = buf + used;
4496 format = format0;
4497 n = n0;
4498 }
4499
4500 if (bufsize < p - buf)
4501 emacs_abort ();
4502
4503 if (maybe_combine_byte)
4504 nchars = multibyte_chars_in_text ((unsigned char *) buf, p - buf);
4505 Lisp_Object val = make_specified_string (buf, nchars, p - buf, multibyte);
4506
4507 /* If the format string has text properties, or any of the string
4508 arguments has text properties, set up text properties of the
4509 result string. */
4510
4511 if (string_intervals (args[0]) || arg_intervals)
4512 {
4513 /* Add text properties from the format string. */
4514 Lisp_Object len = make_number (SCHARS (args[0]));
4515 Lisp_Object props = text_property_list (args[0], make_number (0),
4516 len, Qnil);
4517 if (CONSP (props))
4518 {
4519 ptrdiff_t bytepos = 0, position = 0, translated = 0;
4520 ptrdiff_t argn = 1;
4521
4522 /* Adjust the bounds of each text property
4523 to the proper start and end in the output string. */
4524
4525 /* Put the positions in PROPS in increasing order, so that
4526 we can do (effectively) one scan through the position
4527 space of the format string. */
4528 props = Fnreverse (props);
4529
4530 /* BYTEPOS is the byte position in the format string,
4531 POSITION is the untranslated char position in it,
4532 TRANSLATED is the translated char position in BUF,
4533 and ARGN is the number of the next arg we will come to. */
4534 for (Lisp_Object list = props; CONSP (list); list = XCDR (list))
4535 {
4536 Lisp_Object item = XCAR (list);
4537
4538 /* First adjust the property start position. */
4539 ptrdiff_t pos = XINT (XCAR (item));
4540
4541 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
4542 up to this position. */
4543 for (; position < pos; bytepos++)
4544 {
4545 if (! discarded[bytepos])
4546 position++, translated++;
4547 else if (discarded[bytepos] == 1)
4548 {
4549 position++;
4550 if (translated == info[argn].start)
4551 {
4552 translated += info[argn].end - info[argn].start;
4553 argn++;
4554 }
4555 }
4556 }
4557
4558 XSETCAR (item, make_number (translated));
4559
4560 /* Likewise adjust the property end position. */
4561 pos = XINT (XCAR (XCDR (item)));
4562
4563 for (; position < pos; bytepos++)
4564 {
4565 if (! discarded[bytepos])
4566 position++, translated++;
4567 else if (discarded[bytepos] == 1)
4568 {
4569 position++;
4570 if (translated == info[argn].start)
4571 {
4572 translated += info[argn].end - info[argn].start;
4573 argn++;
4574 }
4575 }
4576 }
4577
4578 XSETCAR (XCDR (item), make_number (translated));
4579 }
4580
4581 add_text_properties_from_list (val, props, make_number (0));
4582 }
4583
4584 /* Add text properties from arguments. */
4585 if (arg_intervals)
4586 for (ptrdiff_t i = 1; i < nargs; i++)
4587 if (info[i].intervals)
4588 {
4589 len = make_number (SCHARS (args[i]));
4590 Lisp_Object new_len = make_number (info[i].end - info[i].start);
4591 props = text_property_list (args[i], make_number (0), len, Qnil);
4592 props = extend_property_ranges (props, new_len);
4593 /* If successive arguments have properties, be sure that
4594 the value of `composition' property be the copy. */
4595 if (1 < i && info[i - 1].end)
4596 make_composition_value_copy (props);
4597 add_text_properties_from_list (val, props,
4598 make_number (info[i].start));
4599 }
4600 }
4601
4602 /* If we allocated BUF or INFO with malloc, free it too. */
4603 SAFE_FREE ();
4604
4605 return val;
4606 }
4607 \f
4608 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
4609 doc: /* Return t if two characters match, optionally ignoring case.
4610 Both arguments must be characters (i.e. integers).
4611 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
4612 (register Lisp_Object c1, Lisp_Object c2)
4613 {
4614 int i1, i2;
4615 /* Check they're chars, not just integers, otherwise we could get array
4616 bounds violations in downcase. */
4617 CHECK_CHARACTER (c1);
4618 CHECK_CHARACTER (c2);
4619
4620 if (XINT (c1) == XINT (c2))
4621 return Qt;
4622 if (NILP (BVAR (current_buffer, case_fold_search)))
4623 return Qnil;
4624
4625 i1 = XFASTINT (c1);
4626 i2 = XFASTINT (c2);
4627
4628 /* FIXME: It is possible to compare multibyte characters even when
4629 the current buffer is unibyte. Unfortunately this is ambiguous
4630 for characters between 128 and 255, as they could be either
4631 eight-bit raw bytes or Latin-1 characters. Assume the former for
4632 now. See Bug#17011, and also see casefiddle.c's casify_object,
4633 which has a similar problem. */
4634 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4635 {
4636 if (SINGLE_BYTE_CHAR_P (i1))
4637 i1 = UNIBYTE_TO_CHAR (i1);
4638 if (SINGLE_BYTE_CHAR_P (i2))
4639 i2 = UNIBYTE_TO_CHAR (i2);
4640 }
4641
4642 return (downcase (i1) == downcase (i2) ? Qt : Qnil);
4643 }
4644 \f
4645 /* Transpose the markers in two regions of the current buffer, and
4646 adjust the ones between them if necessary (i.e.: if the regions
4647 differ in size).
4648
4649 START1, END1 are the character positions of the first region.
4650 START1_BYTE, END1_BYTE are the byte positions.
4651 START2, END2 are the character positions of the second region.
4652 START2_BYTE, END2_BYTE are the byte positions.
4653
4654 Traverses the entire marker list of the buffer to do so, adding an
4655 appropriate amount to some, subtracting from some, and leaving the
4656 rest untouched. Most of this is copied from adjust_markers in insdel.c.
4657
4658 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
4659
4660 static void
4661 transpose_markers (ptrdiff_t start1, ptrdiff_t end1,
4662 ptrdiff_t start2, ptrdiff_t end2,
4663 ptrdiff_t start1_byte, ptrdiff_t end1_byte,
4664 ptrdiff_t start2_byte, ptrdiff_t end2_byte)
4665 {
4666 register ptrdiff_t amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
4667 register struct Lisp_Marker *marker;
4668
4669 /* Update point as if it were a marker. */
4670 if (PT < start1)
4671 ;
4672 else if (PT < end1)
4673 TEMP_SET_PT_BOTH (PT + (end2 - end1),
4674 PT_BYTE + (end2_byte - end1_byte));
4675 else if (PT < start2)
4676 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
4677 (PT_BYTE + (end2_byte - start2_byte)
4678 - (end1_byte - start1_byte)));
4679 else if (PT < end2)
4680 TEMP_SET_PT_BOTH (PT - (start2 - start1),
4681 PT_BYTE - (start2_byte - start1_byte));
4682
4683 /* We used to adjust the endpoints here to account for the gap, but that
4684 isn't good enough. Even if we assume the caller has tried to move the
4685 gap out of our way, it might still be at start1 exactly, for example;
4686 and that places it `inside' the interval, for our purposes. The amount
4687 of adjustment is nontrivial if there's a `denormalized' marker whose
4688 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
4689 the dirty work to Fmarker_position, below. */
4690
4691 /* The difference between the region's lengths */
4692 diff = (end2 - start2) - (end1 - start1);
4693 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
4694
4695 /* For shifting each marker in a region by the length of the other
4696 region plus the distance between the regions. */
4697 amt1 = (end2 - start2) + (start2 - end1);
4698 amt2 = (end1 - start1) + (start2 - end1);
4699 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
4700 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
4701
4702 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
4703 {
4704 mpos = marker->bytepos;
4705 if (mpos >= start1_byte && mpos < end2_byte)
4706 {
4707 if (mpos < end1_byte)
4708 mpos += amt1_byte;
4709 else if (mpos < start2_byte)
4710 mpos += diff_byte;
4711 else
4712 mpos -= amt2_byte;
4713 marker->bytepos = mpos;
4714 }
4715 mpos = marker->charpos;
4716 if (mpos >= start1 && mpos < end2)
4717 {
4718 if (mpos < end1)
4719 mpos += amt1;
4720 else if (mpos < start2)
4721 mpos += diff;
4722 else
4723 mpos -= amt2;
4724 }
4725 marker->charpos = mpos;
4726 }
4727 }
4728
4729 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
4730 doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2.
4731 The regions should not be overlapping, because the size of the buffer is
4732 never changed in a transposition.
4733
4734 Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update
4735 any markers that happen to be located in the regions.
4736
4737 Transposing beyond buffer boundaries is an error. */)
4738 (Lisp_Object startr1, Lisp_Object endr1, Lisp_Object startr2, Lisp_Object endr2, Lisp_Object leave_markers)
4739 {
4740 register ptrdiff_t start1, end1, start2, end2;
4741 ptrdiff_t start1_byte, start2_byte, len1_byte, len2_byte, end2_byte;
4742 ptrdiff_t gap, len1, len_mid, len2;
4743 unsigned char *start1_addr, *start2_addr, *temp;
4744
4745 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2, tmp_interval3;
4746 Lisp_Object buf;
4747
4748 XSETBUFFER (buf, current_buffer);
4749 cur_intv = buffer_intervals (current_buffer);
4750
4751 validate_region (&startr1, &endr1);
4752 validate_region (&startr2, &endr2);
4753
4754 start1 = XFASTINT (startr1);
4755 end1 = XFASTINT (endr1);
4756 start2 = XFASTINT (startr2);
4757 end2 = XFASTINT (endr2);
4758 gap = GPT;
4759
4760 /* Swap the regions if they're reversed. */
4761 if (start2 < end1)
4762 {
4763 register ptrdiff_t glumph = start1;
4764 start1 = start2;
4765 start2 = glumph;
4766 glumph = end1;
4767 end1 = end2;
4768 end2 = glumph;
4769 }
4770
4771 len1 = end1 - start1;
4772 len2 = end2 - start2;
4773
4774 if (start2 < end1)
4775 error ("Transposed regions overlap");
4776 /* Nothing to change for adjacent regions with one being empty */
4777 else if ((start1 == end1 || start2 == end2) && end1 == start2)
4778 return Qnil;
4779
4780 /* The possibilities are:
4781 1. Adjacent (contiguous) regions, or separate but equal regions
4782 (no, really equal, in this case!), or
4783 2. Separate regions of unequal size.
4784
4785 The worst case is usually No. 2. It means that (aside from
4786 potential need for getting the gap out of the way), there also
4787 needs to be a shifting of the text between the two regions. So
4788 if they are spread far apart, we are that much slower... sigh. */
4789
4790 /* It must be pointed out that the really studly thing to do would
4791 be not to move the gap at all, but to leave it in place and work
4792 around it if necessary. This would be extremely efficient,
4793 especially considering that people are likely to do
4794 transpositions near where they are working interactively, which
4795 is exactly where the gap would be found. However, such code
4796 would be much harder to write and to read. So, if you are
4797 reading this comment and are feeling squirrely, by all means have
4798 a go! I just didn't feel like doing it, so I will simply move
4799 the gap the minimum distance to get it out of the way, and then
4800 deal with an unbroken array. */
4801
4802 start1_byte = CHAR_TO_BYTE (start1);
4803 end2_byte = CHAR_TO_BYTE (end2);
4804
4805 /* Make sure the gap won't interfere, by moving it out of the text
4806 we will operate on. */
4807 if (start1 < gap && gap < end2)
4808 {
4809 if (gap - start1 < end2 - gap)
4810 move_gap_both (start1, start1_byte);
4811 else
4812 move_gap_both (end2, end2_byte);
4813 }
4814
4815 start2_byte = CHAR_TO_BYTE (start2);
4816 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4817 len2_byte = end2_byte - start2_byte;
4818
4819 #ifdef BYTE_COMBINING_DEBUG
4820 if (end1 == start2)
4821 {
4822 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4823 len2_byte, start1, start1_byte)
4824 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4825 len1_byte, end2, start2_byte + len2_byte)
4826 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4827 len1_byte, end2, start2_byte + len2_byte))
4828 emacs_abort ();
4829 }
4830 else
4831 {
4832 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4833 len2_byte, start1, start1_byte)
4834 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4835 len1_byte, start2, start2_byte)
4836 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4837 len2_byte, end1, start1_byte + len1_byte)
4838 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4839 len1_byte, end2, start2_byte + len2_byte))
4840 emacs_abort ();
4841 }
4842 #endif
4843
4844 /* Hmmm... how about checking to see if the gap is large
4845 enough to use as the temporary storage? That would avoid an
4846 allocation... interesting. Later, don't fool with it now. */
4847
4848 /* Working without memmove, for portability (sigh), so must be
4849 careful of overlapping subsections of the array... */
4850
4851 if (end1 == start2) /* adjacent regions */
4852 {
4853 modify_text (start1, end2);
4854 record_change (start1, len1 + len2);
4855
4856 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4857 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4858 /* Don't use Fset_text_properties: that can cause GC, which can
4859 clobber objects stored in the tmp_intervals. */
4860 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4861 if (tmp_interval3)
4862 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4863
4864 USE_SAFE_ALLOCA;
4865
4866 /* First region smaller than second. */
4867 if (len1_byte < len2_byte)
4868 {
4869 temp = SAFE_ALLOCA (len2_byte);
4870
4871 /* Don't precompute these addresses. We have to compute them
4872 at the last minute, because the relocating allocator might
4873 have moved the buffer around during the xmalloc. */
4874 start1_addr = BYTE_POS_ADDR (start1_byte);
4875 start2_addr = BYTE_POS_ADDR (start2_byte);
4876
4877 memcpy (temp, start2_addr, len2_byte);
4878 memcpy (start1_addr + len2_byte, start1_addr, len1_byte);
4879 memcpy (start1_addr, temp, len2_byte);
4880 }
4881 else
4882 /* First region not smaller than second. */
4883 {
4884 temp = SAFE_ALLOCA (len1_byte);
4885 start1_addr = BYTE_POS_ADDR (start1_byte);
4886 start2_addr = BYTE_POS_ADDR (start2_byte);
4887 memcpy (temp, start1_addr, len1_byte);
4888 memcpy (start1_addr, start2_addr, len2_byte);
4889 memcpy (start1_addr + len2_byte, temp, len1_byte);
4890 }
4891
4892 SAFE_FREE ();
4893 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4894 len1, current_buffer, 0);
4895 graft_intervals_into_buffer (tmp_interval2, start1,
4896 len2, current_buffer, 0);
4897 update_compositions (start1, start1 + len2, CHECK_BORDER);
4898 update_compositions (start1 + len2, end2, CHECK_TAIL);
4899 }
4900 /* Non-adjacent regions, because end1 != start2, bleagh... */
4901 else
4902 {
4903 len_mid = start2_byte - (start1_byte + len1_byte);
4904
4905 if (len1_byte == len2_byte)
4906 /* Regions are same size, though, how nice. */
4907 {
4908 USE_SAFE_ALLOCA;
4909
4910 modify_text (start1, end1);
4911 modify_text (start2, end2);
4912 record_change (start1, len1);
4913 record_change (start2, len2);
4914 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4915 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4916
4917 tmp_interval3 = validate_interval_range (buf, &startr1, &endr1, 0);
4918 if (tmp_interval3)
4919 set_text_properties_1 (startr1, endr1, Qnil, buf, tmp_interval3);
4920
4921 tmp_interval3 = validate_interval_range (buf, &startr2, &endr2, 0);
4922 if (tmp_interval3)
4923 set_text_properties_1 (startr2, endr2, Qnil, buf, tmp_interval3);
4924
4925 temp = SAFE_ALLOCA (len1_byte);
4926 start1_addr = BYTE_POS_ADDR (start1_byte);
4927 start2_addr = BYTE_POS_ADDR (start2_byte);
4928 memcpy (temp, start1_addr, len1_byte);
4929 memcpy (start1_addr, start2_addr, len2_byte);
4930 memcpy (start2_addr, temp, len1_byte);
4931 SAFE_FREE ();
4932
4933 graft_intervals_into_buffer (tmp_interval1, start2,
4934 len1, current_buffer, 0);
4935 graft_intervals_into_buffer (tmp_interval2, start1,
4936 len2, current_buffer, 0);
4937 }
4938
4939 else if (len1_byte < len2_byte) /* Second region larger than first */
4940 /* Non-adjacent & unequal size, area between must also be shifted. */
4941 {
4942 USE_SAFE_ALLOCA;
4943
4944 modify_text (start1, end2);
4945 record_change (start1, (end2 - start1));
4946 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4947 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4948 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4949
4950 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4951 if (tmp_interval3)
4952 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4953
4954 /* holds region 2 */
4955 temp = SAFE_ALLOCA (len2_byte);
4956 start1_addr = BYTE_POS_ADDR (start1_byte);
4957 start2_addr = BYTE_POS_ADDR (start2_byte);
4958 memcpy (temp, start2_addr, len2_byte);
4959 memcpy (start1_addr + len_mid + len2_byte, start1_addr, len1_byte);
4960 memmove (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4961 memcpy (start1_addr, temp, len2_byte);
4962 SAFE_FREE ();
4963
4964 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4965 len1, current_buffer, 0);
4966 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4967 len_mid, current_buffer, 0);
4968 graft_intervals_into_buffer (tmp_interval2, start1,
4969 len2, current_buffer, 0);
4970 }
4971 else
4972 /* Second region smaller than first. */
4973 {
4974 USE_SAFE_ALLOCA;
4975
4976 record_change (start1, (end2 - start1));
4977 modify_text (start1, end2);
4978
4979 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4980 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4981 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4982
4983 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4984 if (tmp_interval3)
4985 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4986
4987 /* holds region 1 */
4988 temp = SAFE_ALLOCA (len1_byte);
4989 start1_addr = BYTE_POS_ADDR (start1_byte);
4990 start2_addr = BYTE_POS_ADDR (start2_byte);
4991 memcpy (temp, start1_addr, len1_byte);
4992 memcpy (start1_addr, start2_addr, len2_byte);
4993 memmove (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4994 memcpy (start1_addr + len2_byte + len_mid, temp, len1_byte);
4995 SAFE_FREE ();
4996
4997 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4998 len1, current_buffer, 0);
4999 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
5000 len_mid, current_buffer, 0);
5001 graft_intervals_into_buffer (tmp_interval2, start1,
5002 len2, current_buffer, 0);
5003 }
5004
5005 update_compositions (start1, start1 + len2, CHECK_BORDER);
5006 update_compositions (end2 - len1, end2, CHECK_BORDER);
5007 }
5008
5009 /* When doing multiple transpositions, it might be nice
5010 to optimize this. Perhaps the markers in any one buffer
5011 should be organized in some sorted data tree. */
5012 if (NILP (leave_markers))
5013 {
5014 transpose_markers (start1, end1, start2, end2,
5015 start1_byte, start1_byte + len1_byte,
5016 start2_byte, start2_byte + len2_byte);
5017 fix_start_end_in_overlays (start1, end2);
5018 }
5019
5020 signal_after_change (start1, end2 - start1, end2 - start1);
5021 return Qnil;
5022 }
5023
5024 \f
5025 void
5026 syms_of_editfns (void)
5027 {
5028 DEFSYM (Qbuffer_access_fontify_functions, "buffer-access-fontify-functions");
5029 DEFSYM (Qwall, "wall");
5030
5031 DEFVAR_LISP ("inhibit-field-text-motion", Vinhibit_field_text_motion,
5032 doc: /* Non-nil means text motion commands don't notice fields. */);
5033 Vinhibit_field_text_motion = Qnil;
5034
5035 DEFVAR_LISP ("buffer-access-fontify-functions",
5036 Vbuffer_access_fontify_functions,
5037 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
5038 Each function is called with two arguments which specify the range
5039 of the buffer being accessed. */);
5040 Vbuffer_access_fontify_functions = Qnil;
5041
5042 {
5043 Lisp_Object obuf;
5044 obuf = Fcurrent_buffer ();
5045 /* Do this here, because init_buffer_once is too early--it won't work. */
5046 Fset_buffer (Vprin1_to_string_buffer);
5047 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
5048 Fset (Fmake_local_variable (Qbuffer_access_fontify_functions), Qnil);
5049 Fset_buffer (obuf);
5050 }
5051
5052 DEFVAR_LISP ("buffer-access-fontified-property",
5053 Vbuffer_access_fontified_property,
5054 doc: /* Property which (if non-nil) indicates text has been fontified.
5055 `buffer-substring' need not call the `buffer-access-fontify-functions'
5056 functions if all the text being accessed has this property. */);
5057 Vbuffer_access_fontified_property = Qnil;
5058
5059 DEFVAR_LISP ("system-name", Vsystem_name,
5060 doc: /* The host name of the machine Emacs is running on. */);
5061 Vsystem_name = cached_system_name = Qnil;
5062
5063 DEFVAR_LISP ("user-full-name", Vuser_full_name,
5064 doc: /* The full name of the user logged in. */);
5065
5066 DEFVAR_LISP ("user-login-name", Vuser_login_name,
5067 doc: /* The user's name, taken from environment variables if possible. */);
5068 Vuser_login_name = Qnil;
5069
5070 DEFVAR_LISP ("user-real-login-name", Vuser_real_login_name,
5071 doc: /* The user's name, based upon the real uid only. */);
5072
5073 DEFVAR_LISP ("operating-system-release", Voperating_system_release,
5074 doc: /* The release of the operating system Emacs is running on. */);
5075
5076 defsubr (&Spropertize);
5077 defsubr (&Schar_equal);
5078 defsubr (&Sgoto_char);
5079 defsubr (&Sstring_to_char);
5080 defsubr (&Schar_to_string);
5081 defsubr (&Sbyte_to_string);
5082 defsubr (&Sbuffer_substring);
5083 defsubr (&Sbuffer_substring_no_properties);
5084 defsubr (&Sbuffer_string);
5085 defsubr (&Sget_pos_property);
5086
5087 defsubr (&Spoint_marker);
5088 defsubr (&Smark_marker);
5089 defsubr (&Spoint);
5090 defsubr (&Sregion_beginning);
5091 defsubr (&Sregion_end);
5092
5093 /* Symbol for the text property used to mark fields. */
5094 DEFSYM (Qfield, "field");
5095
5096 /* A special value for Qfield properties. */
5097 DEFSYM (Qboundary, "boundary");
5098
5099 defsubr (&Sfield_beginning);
5100 defsubr (&Sfield_end);
5101 defsubr (&Sfield_string);
5102 defsubr (&Sfield_string_no_properties);
5103 defsubr (&Sdelete_field);
5104 defsubr (&Sconstrain_to_field);
5105
5106 defsubr (&Sline_beginning_position);
5107 defsubr (&Sline_end_position);
5108
5109 defsubr (&Ssave_excursion);
5110 defsubr (&Ssave_current_buffer);
5111
5112 defsubr (&Sbuffer_size);
5113 defsubr (&Spoint_max);
5114 defsubr (&Spoint_min);
5115 defsubr (&Spoint_min_marker);
5116 defsubr (&Spoint_max_marker);
5117 defsubr (&Sgap_position);
5118 defsubr (&Sgap_size);
5119 defsubr (&Sposition_bytes);
5120 defsubr (&Sbyte_to_position);
5121
5122 defsubr (&Sbobp);
5123 defsubr (&Seobp);
5124 defsubr (&Sbolp);
5125 defsubr (&Seolp);
5126 defsubr (&Sfollowing_char);
5127 defsubr (&Sprevious_char);
5128 defsubr (&Schar_after);
5129 defsubr (&Schar_before);
5130 defsubr (&Sinsert);
5131 defsubr (&Sinsert_before_markers);
5132 defsubr (&Sinsert_and_inherit);
5133 defsubr (&Sinsert_and_inherit_before_markers);
5134 defsubr (&Sinsert_char);
5135 defsubr (&Sinsert_byte);
5136
5137 defsubr (&Suser_login_name);
5138 defsubr (&Suser_real_login_name);
5139 defsubr (&Suser_uid);
5140 defsubr (&Suser_real_uid);
5141 defsubr (&Sgroup_gid);
5142 defsubr (&Sgroup_real_gid);
5143 defsubr (&Suser_full_name);
5144 defsubr (&Semacs_pid);
5145 defsubr (&Scurrent_time);
5146 defsubr (&Stime_add);
5147 defsubr (&Stime_subtract);
5148 defsubr (&Stime_less_p);
5149 defsubr (&Sget_internal_run_time);
5150 defsubr (&Sformat_time_string);
5151 defsubr (&Sfloat_time);
5152 defsubr (&Sdecode_time);
5153 defsubr (&Sencode_time);
5154 defsubr (&Scurrent_time_string);
5155 defsubr (&Scurrent_time_zone);
5156 defsubr (&Sset_time_zone_rule);
5157 defsubr (&Ssystem_name);
5158 defsubr (&Smessage);
5159 defsubr (&Smessage_box);
5160 defsubr (&Smessage_or_box);
5161 defsubr (&Scurrent_message);
5162 defsubr (&Sformat);
5163 defsubr (&Sformat_message);
5164
5165 defsubr (&Sinsert_buffer_substring);
5166 defsubr (&Scompare_buffer_substrings);
5167 defsubr (&Ssubst_char_in_region);
5168 defsubr (&Stranslate_region_internal);
5169 defsubr (&Sdelete_region);
5170 defsubr (&Sdelete_and_extract_region);
5171 defsubr (&Swiden);
5172 defsubr (&Snarrow_to_region);
5173 defsubr (&Ssave_restriction);
5174 defsubr (&Stranspose_regions);
5175 }